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Preface

Fractional calculus (FC) generalizes the concepts of derivative and integral orders to non-integer

orders. It was introduced by Leibniz (1646–1716) but remained a purely mathematical exercise for

a long time, despite the original contributions to the field of important mathematicians, physicists,

and engineers. FC has experienced rapid development in recent decades, both in mathematics

and applied sciences, being recognized as an excellent tool to describe complex dynamics. Based

on this, several models governing physical phenomena in the areas of science and engineering

have been reformulated in light of FC for them to better reflect their non-local and frequency- and

history-dependent properties. Applications of FC include modeling of diffusion, viscoelasticity,

and relaxation processes in fluid mechanics; the dynamics of mechanical, electronic, and biological

systems; and signal processing and control.

This reprint compiles articles from the Special Issue “Fractional Order Systems and Their

Applications”, which focused on original and new research results on modeling and control of

fractional order systems with applications in science and engineering. It includes 13 manuscripts

addressing novel issues and specific topics that illustrate the richness and applicability of fractional

calculus.

António Lopes and Liping Chen

Guest Editors

ix





fractal and fractional

Editorial

Fractional Order Systems and Their Applications

António M. Lopes 1,∗ and Liping Chen 2

����������
�������

Citation: Lopes, A.M.; Chen, L.

Fractional Order Systems and Their

Applications. Fractal Fract. 2022, 6, 389.

https://doi.org/10.3390/

fractalfract6070389

Received: 7 July 2022

Accepted: 11 July 2022

Published: 13 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affili-

ations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 LAETA/INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
2 School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China;

lip_chen@hfut.edu.cn
* Correspondence: aml@fe.up.pt

Fractional calculus (FC) generalizes the concepts of derivative and integral to non-
integer orders. It was introduced by Leibniz (1646–1716), but remained a purely mathemati-
cal exercise for a long time, despite the original contributions of important mathematicians,
physicists, and engineers. FC experienced rapid development during the last few decades
both in mathematics and applied sciences, being recognized as an excellent tool to describe
complex dynamics. From this perspective, several models governing physical phenomena
in the area of science and engineering have been reformulated in light of FC for better
reflecting their non-local, frequency- and history-dependent properties. Applications of FC
include modeling of diffusion, viscoelasticity, and relaxation processes in fluid mechan-
ics, dynamics of mechanical, electronic and biological systems, signal processing, control,
and others.

The Special Issue “Fractional Order Systems and Their Applications” focuses on
original and new research results on modeling and control of fractional order systems with
applications in science and engineering. It includes 13 manuscripts addressing novel issues
and specific topics that illustrate the richness and applicability of fractional calculus. In the
follow-up the selected manuscripts are presented in alphabetic order of their titles.

In the paper “A modified Leslie-Gower model incorporating Beddington-DeAngelis
functional response, double allee effect and memory effect” [1] the authors propose a mod-
ified Leslie–Gower predator-prey model with Beddington–DeAngelis functional response
and double Allee effect in the growth rate of a predator population. To consider memory
effects the Caputo fractional-order derivative is used. The dynamic behavior of the model
for both strong and weak Allee effect is investigated.

The manuscript “A study of coupled systems of ψ-Hilfer type sequential fractional
differential equations with integro-multipoint boundary conditions” [2] investigates the
existence and uniqueness of solutions for a coupled system of ψ-Hilfer type sequential
fractional differential equations supplemented with nonlocal integro-multi-point boundary
conditions. The results are obtained via the classical Banach and Krasnosel’skii’s fixed
point theorems and the Leray–Schauder alternative.

In “Asymptotic stabilization of delayed linear fractional-order systems subject to state
and control constraints” [3] the asymptotic stabilization of delayed linear fractional-order
systems (DLFS) subject to state and control constraints is investigated. The existence
conditions for feedback controllers of DLFS subject to both state and control constraints
are given. A sufficient condition for invariance of polyhedron set is established by using
invariant set theory. A new Lyapunov function is constructed on the basis of the constraints,
and some sufficient conditions for the asymptotic stability of DLFS are obtained. Feedback
controller and the corresponding solution algorithms are also given.

In their work “Chaos control for a fractional-order jerk system via time delay feedback
controller and mixed controller” [4] the authors propose a novel fractional-order jerk
system. They show that, under some suitable parameters, the fractional-order jerk system
displays a chaotic phenomenon. To suppress the chaotic behavior two control strategies
are proposed: a time delay feedback controller; and a mixed controller, which includes a

Fractal Fract. 2022, 6, 389. https://doi.org/10.3390/fractalfract6070389 https://www.mdpi.com/journal/fractalfract1
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time delay feedback controller and a fractional-order PDσ controller. A sufficient condition
ensuring the stability and the creation of Hopf bifurcation for the fractional-order controlled
jerk system is derived.

The paper “Control and robust stabilization at unstable equilibrium by fractional
controller for magnetic levitation systems” [5] study a method to control and stabilize a
levitation system in the presence of disturbance and parameter variations. The stabilization
and disturbance rejection are achieved by fractional order PID, fractional order sliding
mode, and fractional order Fuzzy control approaches. To design the controllers a tuning
hybrid method based on GWO–PSO algorithms is applied with different performance cri-
teria.

In the work “Controllability for fuzzy fractional evolution equations in credibility
space” [6] the authors address the exact controllability for Caputo fuzzy fractional evolution
equations in the credibility space from the perspective of the Liu process. As a result,
the study’s theoretical result can be used to create stochastic extensions in credibility space.

In “Dynamics of fractional-order digital manufacturing supply chain system and its
control and synchronization” [7] a fractional-order digital manufacturing supply chain
system is proposed and solved by the Adomian decomposition method. Dynamical
characteristics of the system are studied by using phase portrait, bifurcation diagram,
and maximum Lyapunov exponent diagram. The complexity of the system is also investi-
gated by means of complexity measures. The importance of the fractional-order derivative
in the modeling of the system is shown. Feedback controllers to control the chaotic supply
chain system and synchronize two supply chain systems are proposed.

The manuscript “Existence, uniqueness, and Eq-Ulam-type stability of fuzzy fractional
differential equation” [8] concerns with the existence and uniqueness of the Cauchy prob-
lem for a system of fuzzy fractional differential equation with Caputo derivative of order
q ∈ (1, 2]. By using direct analytic methods, the Eq–Ulam-type results are also presented.

In “Fractals Parrondo’s paradox in alternated superior complex system” [9] a kind of
fractals Parrondo’s paradoxial phenomenon “deiconnected + diconnected = connected” in
an alternated superior complex system zn+1 = β(zn

2 + ci) + (1− β)zn, i = 1, 2 is addressed.
The connectivity variation in superior Julia sets is explored by analyzing the connectivity
loci. The position relation between the superior Mandelbrot set and the connectivity loci
is graphically investigated. Moreover, graphical examples obtained by the use of the
escape-time algorithm and the derived criteria are presented.

In their paper “Fractional integral inequalities for exponentially nonconvex functions
and their applications” [10] the authors define a new generic class of functions involving a
certain modified Fox–Wright function. A useful identity using fractional integrals and the
modified Fox–Wright function with two parameters is found. Some Hermite–Hadamard-
type integral inequalities are established.

In the paper “Guaranteed cost leaderless consensus protocol design for fractional-
order uncertain multi-agent systems with state and input delays” [11] addresses the guaran-
teed cost leaderless consensus of delayed fractional-order multi-agent systems (FOMASs)
with nonlinearities and uncertainties. A guaranteed cost function for FOMAS is proposed
to simultaneously consider consensus performance and energy consumption. By employ-
ing the linear matrix inequality approach and the fractional-order Razumikhin theorem, a
delay-dependent and order-dependent consensus protocol is formulated for FOMASs with
input delay.

In “Jacobi spectral collocation technique for time-fractional inverse heat equations” [12]
a numerical solution for time-fractional inverse heat equations is proposed. The authors fo-
cus on obtaining the unknown source term along with the unknown temperature function
based on an additional condition given in an integral form. The proposed scheme is based
on a spectral collocation approach to obtain the two independent variables.

The manuscript “State of charge estimation of lithium-ion batteries based on fuzzy
fractional-order unscented Kalman filter” [13] proposes a method to estimate the state of
charge of lithium-ion batteries. The algorithm combines fuzzy inference with fractional-
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order unscented Kalman filter to infer the measurement noise in real time and take advan-
tage of fractional calculus in describing the dynamic behavior of the lithium batteries.

To sum up, the guest editors hope that the selected papers will help scholars and
researchers to push forward the progress in fractional calculus and its applications, namely
in modeling and control of nonlinear and complex systems.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: In this paper, a modified Leslie–Gower predator-prey model with Beddington–DeAngelis
functional response and double Allee effect in the growth rate of a predator population is proposed.
In order to consider memory effect on the proposed model, we employ the Caputo fractional-order
derivative. We investigate the dynamic behaviors of the proposed model for both strong and weak
Allee effect cases. The existence, uniqueness, non-negativity, and boundedness of the solution are
discussed. Then, we determine the existing condition and local stability analysis of all possible
equilibrium points. Necessary conditions for the existence of the Hopf bifurcation driven by the order
of the fractional derivative are also determined analytically. Furthermore, by choosing a suitable
Lyapunov function, we derive the sufficient conditions to ensure the global asymptotic stability for
the predator extinction point for the strong Allee effect case as well as for the prey extinction point
and the interior point for the weak Allee effect case. Finally, numerical simulations are shown to
confirm the theoretical results and can explore more dynamical behaviors of the system, such as the
bi-stability and forward bifurcation.

Keywords: Leslie–Gower; double Allee effect; Hopf bifurcation; global stability; nonlocal operator

1. Introduction

Modeling interaction between prey and its predator has become a dominant topic
in mathematical biology due to its ubiquitous existence and fundamentality in many
biological systems. Study of the dynamics of the predator-prey model could provide
qualitative explanations of numerous phenomena that can occur in predator and prey
interaction. One of the crucial phenomenon in ecology that influences the per capita
growth rate either in the predator or prey population is the Allee effect, which describes a
condition where, at low population densities, the per capita growth rate of the population
has a positive dependence with its density. There are two kinds of Allee effects, namely the
strong Allee effect and the weak Allee effect. In the strong Allee effect, there is a population
threshold value named the Allee threshold, below which the per capita growth rate of
the population is negative [1,2]. In terms of conservation biology, if the Allee threshold
is larger, then it places a population at higher risk of extinction in a low-density population.
Meanwhile, in the weak Allee effect, the per capita growth rate of the population always
remains positive but is still reduced at low population densities [3–5]. If two or more
mechanisms that generate the Allee effect works simultaneously on a single population,
then it is known as the double (or multiple) Allee effect [6,7]. Biological evidence of such
phenomenon from both terrestrial and aquatic habitat is given in Table 2 of [7,8] and the
references cited therein.

From the mathematical point of view, some scholars have been investigating the
dynamics of predator-prey models with the Allee effect in the prey population [9–13] or

Fractal Fract. 2021, 5, 84. https://doi.org/10.3390/fractalfract5030084 https://www.mdpi.com/journal/fractalfract4
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predator population [14–16]. The main focus of all the mentioned research studies is to
investigate whether the Allee effect has a tremendous impact on the occurrence of various
dynamics in the predator-prey model. For the double Allee effect phenomenon, there
are some papers that study the double Allee effect in the prey, see for example [17,18].
However, most of the studies just focused on the double Allee effect in the growth of
prey population, although observations are showing that the double Allee effect could
be discovered in the growth of the predator population. A typical example comes from
the endangered species African wild dog (Lycaon pictus). Their social system requires a
high population density to survive and reproduce. Being a predator, the African wild dog
is a generalist species with the Thomson’s gazelle (Eudorcas thomsonii) as their common
prey but it also hunts other animals such as the impala (Aepyceros melampus), warthog
(Phacochoerus aethiopicus), hares, etc. They live in permanent packs of about 27 adults and
pups and have to share food after killing their prey. There is also interference among
predators in their hunting behavior. We refer the readers to [19] for details.

In the natural world, the presence of memory must exist in prey and predator inter-
action since the growth rates of prey and predator at any point depend on the history
of the variables at all previous times and not only on the current state which is local
to that point [20–24]. Recently, fractional calculus through the fractional derivatives has
been known to provide an excellent instrument for describing the memory and hereditary
properties of various materials and processes [25], such as in biology, finance, engineer-
ing, and physics (see, for example, [26–30] and the references therein). Some interesting
papers regarding the Allee effect in the fractional-order predator-prey models are pro-
vided in [31,32]. In [31], Suryanto et al. have studied the local stability of the modified
Leslie–Gower model with the Beddington–DeAngelis functional response and additive
Allee effect in the prey population. They construct the numerical scheme that preserves the
dynamics of its first-order system provided by [33]. Later, in [32], Baisad and Moonchai
considered the Gause predator-prey model that includes the Allee effect in the prey popu-
lation and Holling type-III functional response. They also studied the local stability and
sufficient conditions of a Hopf bifurcation at the positive equilibrium point. In both papers,
the dynamical behaviors are influenced by the order of the derivative.

Motivated by the above mentioned points, this paper aims to study the fractional-order
Leslie–Gower predator-prey model incorporating the Beddington–DeAngelis functional
response and double Allee effect. The proposed model includes the Caputo fractional-order
derivative to capture the effect of memory in the growth rates of both prey and predator.
From what we know, the dynamic of our proposed model that incorporates the double
Allee effect in the growth of predator and memory effect under the Caputo fractional-order
derivative has not been proposed and investigated by other scholars. This work may reveal
an interesting ecological point of view to the importance of the double Allee effect than the
single Allee effect towards the management of exploited or threatened predator population.

The remaining part of this paper is organized as follows. In Section 2, the model
formulation is given. The existence, uniqueness, non-negativity, and boundedness of
solutions of our model are discussed in Section 3. Then, we investigate the dynamic
behaviors of the model for both weak and strong Allee effects. In Section 4, the existence of
non-negative equilibrium points and the local stability of non-negative equilibrium points
along with Hopf bifurcation analysis are presented. Next, the sufficient conditions for the
global stability of the equilibrium points are carried out in Section 5. Numerical simulations
are shown in Section 6 to verify our analytical findings as well as to numerically explore the
impact of capturing rate, the Allee threshold, and the order of the fractional-order system
on the dynamics of our model. Finally, we draw conclusions in Section 7.

2. Model Formulation

One of the primary directions in modelling the interaction of prey-predator popula-
tions is based on the mass conservation principle, which says that the predators can grow
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only as a function of what they have consumed. Under this principle, the general model of
the predator-prey dynamics takes the following model [34]:

dx
dt

= f (x)x− g(x, y)y,

dy
dt

=kg(x, y)y− µy,
(1)

where x(t) and y(t) are, respectively, the prey and predator population densities at time
t, f (x) is the per capita growth rate of prey, g(x, y) is the functional response, k is the
predation efficiency, and µ is the predator per capita death rate. An alternative to the
conservative predator-prey model (1) is to abandon the mass conservation principle. This
type of model does not explicitly describe the relationship between predation rate and
the reproduction rate of predator. A foremost predator-prey model in this direction is
the Leslie–Gower model [35]. The Leslie–Gower model maintains the prey equation as in
system (1) but applies a logistic type of model for the predator equation. By considering that
the per capita growth rate of prey obeys the logistic growth and that predation follows the
Beddington–DeAngelis functional response, we have the following Leslie–Gower model.

dx
dt

=r̂x− β̂1x2 − b̂xy
1 + ĉx + q̂y

,

dy
dt

=ŝy− σ̂y2.

(2)

Notice that the logistic type forms in both prey and predator equations are written
in the form as suggested by [36]. This typical logistic form is for avoiding paradoxes in
the logistic equation [37,38]. All parameters r̂, β̂1, b̂, ĉ, q̂, ŝ, σ̂ in the system (2) are real and
positive. The ecological meaning of the parameters are as follows: r̂ and β̂1 are the intrinsic
growth rate of the prey and the prey intraspecific competition coefficient in the absence
of predation, respectively; ŝ and σ̂ are the intrinsic growth rate of the predator and the
predator intraspecific competition coefficient, respectively; b̂ and ĉ measure the effect of
capturing rate and handling time by the predator to the predation rate, respectively; q̂
is the strength of interference among predators. The coefficient of predator intraspecific

competition is assumed to depend on the prey density, i.e., σ̂ = β̂2
x , where β̂2 is the constant

of predator intraspecific competition. Such assumption makes sense because when the prey
is available in abundant (x → ∞), then there will no intraspecific competition (σ̂→ 0) and
the predator can attain its maximum per capita growth rate ŝ. On the contrary, if the prey
is rare (x → 0), then the intraspecific competition becomes maximum (σ̂→ ∞) and, hence,
the predator will become extinct as the per capita growth rate of predator becomes −∞.
When a severe scarcity of prey occurs, the predator can switch to alternative populations,
which causes the reduction in intraspecific competition for hunting the favourite food x.
To account for such phenomenon, Aziz-Alaoui and Okiye [39] proposed a modified Leslie–
Gower model by introducing an inhibition coefficient (l̂) in the intraspecific competition
due to the availability of alternative food for the predator. The intraspecific competition

coefficient now becomes σ̂ = β̂2
l̂+x

. The modified Leslie–Gower model with the Beddington–
DeAngelis functional response has been studied in [40,41]. Today, the Leslie–Gower type
model still attracts many scholars (see [42–44] and the references therein).

In this paper, we reconsider the modified Leslie–Gower predator-prey model (2) but
we assume that the intrinsic growth rate of the predator population is affected by the
double Allee effect. Then the predator-prey model (2) takes the following form:

dx
dt

=r̂x− β̂1x2 − b̂xy
1 + ĉx + q̂y

,

dy
dt

=ŝ
(

y− m̂
y + n̂

)
y− β̂2

l̂ + x
y2,

(3)

6
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where m̂ is the Allee threshold, n̂ is the auxiliary Allee effect constant with n̂ > 0 and
n̂ > −m̂. In the second equation of model (3), the intrinsic growth rate of the predator ŝ
is affected by double Allee effects. Without the intraspecific competition for the predator,
the per capita growth rate of the predator is reduced from ŝ to ŝ

(
y−m̂
y+n̂

)
due to the Allee

effect [45]. Therefore, the Allee effect is strong if m̂ > 0 and weak if −n̂ < m̂ ≤ 0 [9,18].
In order to seize the entire time population growth condition, we consider a fractional-

order derivative to the left-hand side of the classical derivative system (3) as follows:

Dα
∗x =r̂x− β̂1x2 − b̂xy

1 + ĉx + q̂y
,

Dα
∗y =ŝ

(
y− m̂
y + n̂

)
y− β̂2

l̂ + x
y2,

(4)

with initial conditions x(0) > 0 and y(0) > 0. Dα∗ represents the Caputo fractional-order
derivative of a real valued function f , which is defined by the following:

Dα
∗ f (t) =

1
Γ(n− α)

∫ t

0

f n(τ)

(t− τ)n−α−1 dτ,

where Γ(·) is the Gamma function and α ∈ (n− 1, n], n ∈ Z+ [25].
In order to overcome the inconsistency of time dimension between the left-hand side

of system (4) with its right-hand side, we follow [46–48] to modify all of the biological
parameters in the right-hand side that have time dimension (time−1). Thus, we have a
new system.

Dα
∗x =r̂αx− β̂α

1x2 − b̂αxy
1 + ĉx + q̂y

,

Dα
∗y =ŝα

(
y− m̂
y + n̂

)
y− β̂α

2

l̂ + x
y2.

(5)

For simplification, we replace system (5) with the redefined parameters as follows:

Dα
∗x =rx− β1x2 − bxy

1 + cx + qy
,

Dα
∗y =s

(
y−m
y + n

)
y− β2

l + x
y2,

(6)

where

r̂α = r, β̂α
1 = β1, b̂α = b, ĉ = c, q̂ = q, ŝα = s, m̂ = m, n̂ = n, β̂α

2 = β2, l̂ = l.

Notice that, the authors [49] have studied the local stability and have shown numer-
ically a Hopf bifurcation circumstance around the interior point for the case of m = 0.
In this paper, we focus on the local and global dynamics of system (6) for both m > 0 and
m < 0 cases.

3. Preliminaries Results

In this section, we bring out the fact that system (6) is biologically well-behaved by
showing that the solution of system (6) exists and is unique as well being non-negative
and bounded.

3.1. Existence and Uniqueness

The existence and uniqueness of the solution of system (6) are examined in the region
Ω× [0, T], where Ω = {(x, y) ∈ R2 : max{|x|, |y|} ≤ M} and T < +∞. Let a mapping
F(Z) = (F1(Z), F2(Z)) with the following.

7
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F1(Z) =rx− β1x2 − bxy
1 + cx + qy

,

F2(Z) =
sy2

y + n
− msy

y + n
− β2y2

l + x
.

(7)

For any Z = (x, y), Z̄ = (x̄, ȳ), Z, Z̄ ∈ Ω, it follows from (7) that the following is
the case:

||F(Z)− F(Z̄)|| = |F1(Z)− F1(Z̄)|+ |F2(Z)− F2(Z̄)|

=

∣∣∣∣r(x− x̄)− β1(x2 − x̄2)− b
(

xy
1 + cx + qy

− x̄ȳ
1 + cx̄ + qȳ

)∣∣∣∣+
∣∣∣∣s
(

y2

y + n
− ȳ2

ȳ + n

)
−ms

(
y

y + n
− ȳ

ȳ + n

)
− β2

(
y2

l + x
− ȳ2

l + x̄

)∣∣∣∣

≤ r|x− x̄|+ β1|x2 − x̄2|+ b
∣∣∣∣
xy(1 + cx̄ + qȳ)− x̄ȳ(1 + cx + qy)

(1 + cx + qy)(1 + cx̄ + qȳ)

∣∣∣∣

+ s
∣∣∣∣
y2(ȳ + n)− ȳ2(y + n)

(y + n)(ȳ + n)

∣∣∣∣+ |m|s
∣∣∣∣
y(ȳ + n)− ȳ(y + n)

(y + n)(ȳ + n)

∣∣∣∣

+ β2

∣∣∣∣
y2(l + x̄)− ȳ2(l + x)

(l + x)(l + x̄)

∣∣∣∣
= r|x− x̄|+ β1|x + x̄||x− x̄|

+ b
∣∣∣∣
(x + cxx̄)(y− ȳ) + (ȳ + qyȳ)(x− x̄)

(1 + cx + qy)(1 + cx̄ + qȳ)

∣∣∣∣

+ s
∣∣∣∣
(yȳ + n(y + ȳ))(y− ȳ)

(y + n)(ȳ + n)

∣∣∣∣+ |m|s
∣∣∣∣

n(y− ȳ)
(y + n)(ȳ + n)

∣∣∣∣

+ β2

∣∣∣∣
(l + x)(y + ȳ)(y− ȳ)− y2(x− x̄)

(l + x)(l + x̄)

∣∣∣∣
≤ r|x− x̄|+ β1|x + x̄||x− x̄|+ b|(x + cxx̄)(y− ȳ)|

+ b|(ȳ + qyȳ)(x− x̄)|+ s
n2 |(yȳ + n(y + ȳ))(y− ȳ)|

+
|m|s

n
|y− ȳ|+ β2

l2 |(l + x)(y + ȳ)(y− ȳ)− y2(x− x̄)|

≤ r|x− x̄|+ 2β1M|x− x̄|+ (bM + bcM2)|y− ȳ|

+ (bM + bqM2)|x− x̄|+
(

sM2

n2 +
2sM

n

)
|y− ȳ|+ |m|s

n
|y− ȳ|

+

(
2β2M

l
+

2β2M2

l2

)
|y− ȳ|+ β2M2

l2 |x− x̄|

= L1|x− x̄|+ L2|y− ȳ|
≤ L||Z− Z̄||

where

L1 = r + (2β1 + b)M +

(
bq +

β2

l2

)
M2,

L2 =
|m|s

n
+

(
b +

2s
n

+
2β2

l

)
M +

(
bc +

s
n2 +

2β2

l2

)
M2,

L = max{L1, L2}.

8
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Since F(Z) satisfies the Lipschitz condition with respect to Z, it follows from Theo-
rem 3.7 in [50] that there exists a unique solution Z(t) of system (6) with initial condition
Z(0) = (x(0), y(0)). Consequently, we have the following theorem.

Theorem 1. For each Z(0) = (x(0), y(0)) ∈ Ω, then initial value problem of system (6) has a
unique solution Z(t) ∈ Ω which is defined for all t ≥ 0.

3.2. Non-Negativity and Boundedness

In order to prove that all solutions of system (6) are non-negative and bounded, let
R2
+ = {W = (x, y)T ∈ R2|x(t) ≥ 0, y(t) ≥ 0} be the non-negative quadrant on the xy−

plane. In the case of the biological significance, we must ensure that when the initial
condition starts in R2

+, then the solution of system (6) remains in R2
+ for all t ≥ t0.

Theorem 2. If x(t0) ≥ 0 and y(t0) ≥ 0, then all solutions of the system (6) are non-negative and
uniformly bounded.

Proof. Let W(t0) =

(
x(t0)
y(t0)

)
∈ R2

+ and assume that W(t) =
(

x(t)
y(t)

)
for t ≥ t0 be the

solutions of system (6).
Suppose that assumption is false, then there exists t∗ > t0 such that W(t) > 0 for

t0 ≤ t < t∗, W(t∗) = 0, and W(t∗+) < 0 for t∗+ > t∗. From system (6), one has the following.

Dα
∗W(t)|t=t∗ = 0. (8)

Based on Lemma 1 in [51], we have W(t∗+) = 0, which contradicts with W(t∗+) < 0 for
t∗+ > t∗. Therefore, we conclude W(t) ≥ 0 for all t ≥ 0.

Next, we prove the boundedness of all solutions of system (6). From the first equation
of system (6), we have the following.

Dα
∗x(t) + x(t) = rx− β1x2 − bxy

1 + cx + qy
+ x

= − β1x2 + (1 + r)x− bxy
1 + cx + qy

= − β1

(
x− (1 + r)

2β1

)2

+
(1 + r)2

4β1
− bxy

1 + cx + qy

≤ (1 + r)2

4β1
.

By Lemma 3 in [51], we have the following:

x(t) ≤
(

x(t0)−
(1 + r)2

4β1

)
Eα[−(t− t0)

α] +
(1 + r)2

4β1
→ (1 + r)2

4β1
, t→ ∞, (9)

where Eα is the Mittag–Leffler function. Therefore, x(t) with initial condition x(t0) are
confined to the region Ω1 where the following is the case.

Ω1 =

{
x(t) ≤ (1 + r)2

4β1
+ ε1 = γ1, ε1 > 0

}
. (10)

From the second equation of system (6), we have the following.

Dα
∗y(t) + sy(t) =

sy2

y + n
− msy

y + n
− β2y2

l + x
+ sy.

9
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We also have x(t) ≤ γ1 from (10), then the following obtains.

Dα
∗y(t) + sy(t) ≤ sy2

y + n
− msy

y + n
− β2y2

l + γ1
+ sy

≤ sy2

y
− msy

y + n
− β2y2

l + γ1
+ sy

= − β2y2

l + γ1
+ 2sy− msy

y + n

= − β2

l + γ1

(
y− (l + γ1)s

β2

)2

+
(l + γ1)s2

β2
− msy

y + n

≤ (l + γ1)s2

β2

Again by using Lemma 3 in [51], for the strong Allee effect (m > 0), we have the
following.

y(t) ≤
(

y(t0)−
(l + γ1)s

β2

)
Eα[−s(t− t0)

α] +
(l + γ1)s

β2
→ (l + γ1)s

β2
, t→ ∞. (11)

However, for the weak Allee effect (m < 0), we have the following.

y(t) ≤
(

y(t0)−
(
(l + γ1)s

β2
−m

))
Eα[−s(t− t0)

α]

+

(
(l + γ1)s

β2
−m

)
→
(
(l + γ1)s

β2
−m

)
, t→ ∞. (12)

Therefore, the solution of y(t) with initial condition y(t0) are confined to region
Ω2 where

Ω2 = {y(t) ≤ γ2}, (13)

and where the following is the case.

γ2 =





(l+γ1)s
β2

+ ε2, ε2 > 0, m > 0(
(l+γ1)s

β2
−m

)
+ ε2, ε2 > 0, m < 0

4. Equilibrium Points and Their Local Stability

In this section, the equilibrium points and existence conditions are obtained and their
local stability is analyzed by using the Matignon condition [25] for the weak (m < 0) and
the strong (m > 0) Allee effect, respectively.

(1) The equilibrium points of system (6) for the weak Allee effect (m < 0) are as follows:

(a) Both prey and predator extinction point W0 = (0, 0), which always exists;
(b) The predator extinction point W1 = ( r

β1
, 0), which always exists;

(c) The prey extinction point W2 = (0, ȳw) where we have the following.

ȳw =

ls
β2
− n

2
+

√
( ls

β2
− n)2 − 4 mls

β2

2

Denote W2 as always existing.

10
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(d) The interior point Ŵ = (x̂w, ŷw) where x̂w =
β2ŷw(ŷw + n)

s(ŷw −m)
− l and ŷw are all

positive roots of the quartic equation (14):

a1y4 + a2y3 + a3y2 + a4y + a5 = 0, (14)

where

a1 = β1β2qs + cβ1β2
2,

a2 = (b− qr− lqβ1)s2 + (β1β2(1 + nq−mq− 2cl)− crβ2)s + 2cβ1β2
2n,

a3 = (cβ1l2 + 2lmqβ1 + lcr + 2mqr− 2bm− lβ1 − r)s2

+ (β1β2(2clm− 2cln− nmq−m + n) + crβ2(m− n))s + cβ1β2
2n2,

a4 = (−2cl2mβ1 − lm2qβ1 − 2clmr−m2qr + bm2 + 2lmβ1 + 2mr)s2

+ (2clmnβ1β2 + cmnrβ2 −mnβ1β2)s,

a5 = m2(cl − 1)(lβ1 + r)s2.

(2) The equilibrium points of system (6) for the strong Allee effect (m > 0) are as follows:

(a) Both prey and predator extinction point S0 = (0, 0), which always exists;
(b) The predator extinction point S1 = ( r

β1
, 0), which always exists;

(c) The prey extinction point S2,3 = (0, ȳs) where ȳs is the positive solution of

the quadratic equation y2 −
(

ls
β2
− n

)
y + mls

β2
= 0. The existence of S2,3 is

described as follows:

(i) If
(

ls
β2
− n

)2
< 4

mls
β2

, then the prey extinction point does not exist.

(ii) If
(

ls
β2
− n

)2
= 4

mls
β2

and n <
ls
β2

, then there exists a unique prey

extinction point, S2 = S3 =

(
0,

1
2

(
ls
β2
− n)

))
.

(iii) If
(

ls
β2
− n

)2
> 4

mls
β2

, then there exist two prey extinction points, i.e.,

the following is the case.

S2,3 =


0,

ls
β2
− n

2
±

√
( ls

β2
− n)2 − 4 mls

β2

2




(d) The interior point Ŝ = (x̂s, ŷs) exists if ŷs > m where x̂s =
β2ŷs(ŷs + n)

s(ŷs −m)
− l

and ŷs are also all positive roots of the quartic Equation (14).

In order to study the local stability of system (6) around an equilibrium point (x∗, y∗),
we consider the following Jacobian matrix J of system (6), which is given by the following.

J(x∗, y∗) =




J1,1 J1,2

J2,1 J2,2


 (15)

J1,1 = r− 2β1x∗ − by∗

1 + cx∗ + qy∗
+

bcx∗y∗

(1 + cx∗ + qy∗)2

J1,2 = − bx∗

1 + cx∗ + qy∗
+

bqx∗y∗

(1 + cx∗ + qy∗)2

11



Fractal Fract. 2021, 5, 84

J2,1 =
β2y∗2

(l + x∗)2

J2,2 =
s(y∗ −m)

y∗ + n
+ sy∗

(
1

y∗ + n
− y∗ −m

(y∗ + n)2

)
− 2β2y∗

l + x∗
.

Theorem 3. The stability properties of trivial and axial equilibrium points of system (6) for the
weak Allee effect (m < 0) are as follows:

(a) W0 = (0, 0) is always unstable.
(b) W1 = ( r

β1
, 0) is always a saddle point.

(c) W2 = (0, ȳw) is locally asymptotically stable if r <
bȳw

1 + qȳw
and m + n <

β2

ls
(ȳw + n)2.

Proof.

(a) By substituting W0 to (15), we obtain the Jacobian matrix.

J(W0) =

[
r 0

0 −ms
n

]
. (16)

Therefore, the eigenvalues of (16) are λ1 = r > 0 and λ2 = −ms
n
> 0, since | arg(λ1)| =

| arg(λ2)| = 0 < απ
2 , E0 is always unstable by the Matignon condition [25].

(b) By substituting W1 to (15), we obtain the Jacobian matrix.

J(W1) =



−r − br

cr + β1

0 −ms
n


. (17)

The Jacobian matrix (17) has eigenvalues λ1 = −r < 0 and λ2 = −ms
n

> 0, show-

ing that | arg(λ1)| = π > απ
2 and | arg(λ2)| = 0 < απ

2 . Hence, W1 is always a
saddle point.

(c) By evaluating (15) at W2, we obtain the following.

J(W2) =




r− bȳw

1 + qȳw
0

β2ȳ2
w

l2

(
s(m + n)
(ȳw + n)2 −

β2

l

)
ȳw


. (18)

The eigenvalues of (18) are as follows.

λ1 = r− bȳw

1 + qȳw
and λ2 =

(
s(m + n)
(ȳw + n)2 −

β2

l

)
ȳw.

Thus, | arg(λ1)| = π >
απ

2
and | arg(λ2)| = π >

απ

2
, whenever r <

bȳw

1 + qȳw
and

m + n <
β2

ls
(ȳw + n)2.

Theorem 4. Suppose that m < 0 (weak Allee effect) and the following is the case.

χ1w = −
(

β1 x̂w +
β2ŷw

l + x̂w

)
+

(
bcx̂wŷw

(1 + cx̂w + qŷw)2 +
s(m + n)ŷw

(ŷw + n)2

)

χ2w = β1 x̂wŷw

(
β2

l + x̂w
− s(m + n)

(ŷw + n)2

)

12
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+
bsx̂w

(1 + cx̂w + qŷw)2

(
β2c(m + n)ŷ2

w + s(1 + cx̂w)(ŷw −m)2

β2(ŷw + n)2 − β2cŷ2
w

s(l + x̂w)

)

α∗ =
2
π

∣∣∣∣∣tan−1
√

4χ2w − (χ1w)2

χ1w

∣∣∣∣∣.

The interior point Ŵ = (x̂w, ŷw) is locally asymptotically stable if the following is the case:

(i) χ2
1w ≥ 4χ2w, χ1w < 0, and χ2w > 0.

(ii) χ2
1w < 4χ2w, and if χ1w < 0, or χ1w > 0 and α < α∗.

Proof. By evaluating (15) at the interior equilibrium point Ŵ = (x̂w, ŷw), we obtain the
following.

J(Ŵ) =




−β1 x̂w +
bcx̂wŷw

(1 + cx̂w + qŷw)2 − bx̂w(1 + cx̂w)

(1 + cx̂w + qŷw)2

s2(ŷw −m)2

β2(ŷw + n)2
s(m + n)ŷw

(ŷw + n)2 −
β2ŷw

l + x̂w


 (19)

The Jacobian matrix (19) has polynomial characteristic λ2 − χ1wλ + χ2w = 0. By uti-
lizing the Routh–Hurwitz criterion for Caputo fractional-order [52], it follows that Ŵ is
locally asymptotically stable if condition (i) or (ii) is satisfied.

Theorem 5. The stability properties of trivial and axial equilibrium points of system (6) for strong
Allee effect (m > 0) are as follows:

(a) S0 = (0, 0) is a saddle point.
(b) S1 = ( r

β1
, 0) is always locally asymptotically stable.

(c) S2,3 = (0, ȳs) is locally asymptotically stable if r <
bȳs

1 + qȳs
and m + n <

β2

ls
(ȳs + n)2.

Proof.

(a) By substituting S0 to (15), we obtain the following.

J(S0) =

[
r 0

0 −ms
n

]
. (20)

It is clear that the eigenvalues of (20) are λ1 = r > 0 and λ2 = −ms
n

< 0, and

| arg(λ1)| = 0 < απ
2 and | arg(λ2)| = π > απ

2 . Thus, S0 is a saddle point.
(b) The Jacobian matrix (15) evaluated at S1 is the following:

J(S1) =



−r − br

cr + β1

0 −ms
n


, (21)

where its eigenvalues are λ1 = −r < 0 and λ2 = −ms
n
< 0, since | arg(λ1,2)| = π >

απ
2 , S1 is always locally asymptotically stable.

(c) By evaluating (15) at S2,3, we acquire the following.

J(S2,3) =




r− bȳs

1 + qȳs
0

β2ȳ2
s

l2

(
s(m + n)
(ȳs + n)2 −

β2

l

)
ȳs


. (22)
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The eigenvalues of (22) are as follows.

λ1 = r− bȳs

1 + qȳs
and λ2 =

(
s(m + n)
(ȳs + n)2 −

β2

l

)
ȳs. (23)

Therefore S2,3 is locally asymptotically stable if r <
bȳs

1 + qȳs
and m + n <

β2

ls
(ȳw + n)2

because in this case | arg(λ1)| = | arg(λ2)| = π >
απ

2
.

Theorem 6. For the case of strong Allee effect (m > 0), the interior point Ŝ = (x̂s, ŷs) is locally
asymptotically stable if the following is the case:

(i) χ2
1s ≥ 4χ2s, χ1s < 0, and χ2s > 0.

(ii) χ2
1s < 4χ2s, and if χ1s < 0, or χ1s > 0 and α < α∗;

where the following is the case.

χ1s = −
(

β1 x̂s +
β2ŷs

l + x̂s

)
+

(
bcx̂sŷs

(1 + cx̂s + qŷs)2 +
s(m + n)ŷs

(ŷs + n)2

)

χ2s = β1 x̂sŷs

(
β2

l + x̂s
− s(m + n)

(ŷs + n)2

)

+
bsx̂s

(1 + cx̂s + qŷs)2

(
β2c(m + n)ŷ2

s + s(1 + cx̂s)(ŷs −m)2

β2(ŷs + n)2 − β2cŷ2
s

s(l + x̂s)

)

α∗ =
2
π

∣∣∣∣∣tan−1
√

4χ2s − (χ1s)2

χ1s

∣∣∣∣∣.

Proof. The Jacobian matrix (15) at interior equilibrium point Ŝ = (x̂s, ŷs) is given by the
following.

J(Ŝ) =




−β1 x̂s +
bcx̂sŷs

(1 + cx̂s + qŷs)2 − bx̂s(1 + cx̂s)

(1 + cx̂s + qŷs)2

s2(ŷs −m)2

β2(ŷs + n)2
s(m + n)ŷs

(ŷs + n)2 −
β2ŷs

l + x̂s


. (24)

The Jacobian matrix (24) has polynomial characteristic λ2 − χ1sλ + χ2s = 0. By using
the Routh–Hurwitz criterion for Caputo fractional-order [52], the stability condition is
completely proven.

Hopf bifurcation on a fractional-order system occurs when the Jacobian matrix eval-
uated at an equilibrium point has two complex conjugate eigenvalues and there is a
limit-cycle when the stability of that system changes. Here, we use the conditions for the ex-
istence of a Hopf bifurcation which was introduced by [53]. According to Theorems 4 and 6,
the stability of the interior equilibrium point for both weak and strong Allee effects is influ-
enced by the order of the fractional derivative (α). Thus, we can establish the condition
for the existence of a Hopf bifurcation at the interior point as α passes through the critical
value α∗ in the following theorem.

Theorem 7 (Existence of Hopf bifurcation [53]). Let χ2
1w < 4χ2w (or χ2

1s < 4χ2s) and
χ1w > 0 (or χ1s > 0). System (6) undergoes a Hopf bifurcation around the interior point Ŵ (or Ŝ)
when α crosses α∗.

Proof. Based on Theorem 6, when χ2
1s < 4χ2s and χ1s > 0, the eigenvalues of system (6) at

Ŝ are a pair of complex conjugate numbers with the real parts are positive. We also confirm
that φ1,2(α

∗) = 0 and dφ(α)
dα |α=α∗ 6= 0 where φi(α) = α π

2 −min1≤i≤2|arg(λi(α))|. Based on

14



Fractal Fract. 2021, 5, 84

Theorem 3 in [53], the equilibrium point Ŝ undergoes a Hopf bifurcation when α crosses α∗.
The similar proof works for the weak Allee effect case.

5. Global Stability
5.1. System with Weak Allee Effect

We know from the previous analysis that in the case of the weak Allee effect, the prey
extinction point W2 = (0, ȳw) and the interior point Ŵ = (x̂w, ŷw) are conditionally locally
asymptotically stable. In the following, we study the global asymptotic stability of those
equilibrium points.

Theorem 8. If −n
(

ȳw

γ2 + n
− 1
)
≤ m ≤ −γ2 + n

sȳw

(
r2

4β1
+

β2ȳ2
w

l

)
, then W2 = (0, ȳw) is

globally asymptotically stable.

Proof. We consider the following positive definite Lyapunov function.

V1(x, y) = x + y− ȳw − ȳw ln
y

ȳw

Calculating the α-order derivative of V1(x, y) along the solution of system (6) and
applying Lemma 3.1 in [54], we obtain the following.

Dα
∗V1(x, y) ≤ Dα

∗x +
y− ȳw

y
Dα
∗y

= rx− β1x2 − bxy
1 + cx + qy

+ (y− ȳw)

(
s(y−m)

y + n
− β2y

l + x

)

= − β1

(
x− r

2β1

)2
+

r2

4β1
− bxy

1 + cx + qy
+

sy2

y + n
− msy

y + n
− sȳwy

y + n
+

msȳw

y + n

− β2ȳwy
l + x

+
β2ȳ2

w
l + x

− β2

l + x
(y− ȳw)

2

≤ r2

4β1
+

sy2

y + n
− msy

y + n
− sȳwy

y + n
+

msȳw

y + n
+

β2ȳ2
w

l + x
− β2

l + x
(y− ȳw)

2

≤ r2

4β1
+ sy− msy

n
− sȳwy

γ2 + n
+

msȳw

γ2 + n
+

β2ȳ2
w

l
− β2

l + x
(y− ȳw)

2

=

(
r2

4β1
+

msȳw

γ2 + n
+

β2ȳ2
w

l

)
+ s
(

1− m
n
− ȳw

γ2 + n

)
y− β2

l + x
(y− ȳw)

2

Since −n
(

ȳw

γ2 + n
− 1
)
≤ m ≤ −γ2 + n

sȳw

(
r2

4β1
+

β2ȳ2
w

l

)
, we obtain the following.

Dα
∗V1 ≤ −

β2

l + x
(y− ȳw)

2.

In this case, Dα∗V1(x, y) ≤ 0 for all (x, y) ∈ R2
+ and Dα∗V1(x, y) = 0 implies that y = ȳw.

Substituting y = ȳw to the second equation of system (6) we obtain the following.

0 = Dα
∗ ȳw = sȳw

(
ȳw −m
ȳw + n

)
− β2ȳ2

w
l + x

. (25)

The unique solution of (25) is x = 0, which shows that singleton {W2} is the only
invariant set on which Dα∗V1(x, y) = 0. By Lemma 4.6 in [55], it is proven that W2 is globally
asymptotically stable.
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Theorem 9. The interior point Ŵ of model (6) is globally asymptotically stable if the following is
the case:

(i) −n
(

ŷw

γ2 + n
+

β2ŷw

s(l + γ1)
− 1
)
≤ m ≤ − β2(γ2 + n)ŷw

ls
and;

(ii) b < min
{

2β1
(1 + cx̂w + qŷw)(1 + cγ1 + qγ2)

1 + cx̂w + 2cŷw(1 + cγ1 + qγ2)
,

2β1β2

r
(1 + cγ1 + qγ2)

(1 + cx̂w)(l + γ1)

}
.

Proof. Consider the following positive definite Lyapunov function.

V2(x, y) =
r

β1
(1 + cx̂w + qŷw)

(
x− x̂w − x̂w ln

x
x̂w

)
+

(
y− ŷw − ŷw ln

y
ŷw

)
.

By taking the α-order derivative of V2(x, y) along the solution of system (6) and
applying Lemma 3.1 in [54], one has the following.

Dα
∗V2 ≤

r
β1

(1 + cx̂w + qŷw)
x− x̂w

x
Dα
∗x +

y− ŷw

y
Dα
∗y

=
r

β1
(1 + cx̂w + qŷw)(x− x̂w)

(
r− β1x− by

1 + cx + qy

)

+ (y− ŷw)

(
s(y−m)

y + n
− β2y

l + x

)

= − r(1 + cx̂w + qŷw)(x− x̂w)
2 − br(1 + cx̂w)(x− x̂w)(y− ŷw)

β1(1 + cx + qy)

+
bcrŷw(x− x̂w)2

β1(1 + cx + qy)
+

sy2

y + n
− msy

y + n
− sŷwy

y + n
+

msŷw

y + n
− β2ŷwy

l + x

+
β2ŷ2

w
l + x

− β2
(y− ŷw)2

l + x

≤
(

bcr
β1

ŷw − r(1 + cx̂w + qŷw)

)
(x− x̂w)

2

+
br
β1

(1 + cx̂w)

(1 + cγ1 + qγ2)

(x− x̂w)2 + (y− ŷw)2

2
+ sy− msy

n

− sŷwy
γ2 + n

+
msŷw

γ2 + n
− β2ŷwy

l + γ1
+

β2ŷ2
w

l
− β2

(y− ŷw)2

l + γ1

=

(
bcr
β1

ŷw − r(1 + cx̂w + qŷw) +
br(1 + cx̂w)

2β1(1 + cγ1 + qγ2)

)
(x− x̂w)

2

−
(

β2

l + γ1
− br(1 + cx̂w)

2β1(1 + cγ1 + qγ2)

)
(y− ŷw)

2

+

(
s− ms

n
− sŷw

γ2 + n
− β2ŷw

l + γ1

)
y +

(
msŷw

γ2 + n
+

β2ŷ2
w

l

)
.

It is clear that if

−n
(

ŷw

γ2 + n
+

β2ŷw

s(l + γ1)
− 1
)
≤ m ≤ − β2(γ2 + n)ŷw

ls

and

b < min
{

2β1
(1 + cx̂w + qŷw)(1 + cγ1 + qγ2)

(1 + cx̂w + 2cŷw(1 + cγ1 + qγ2))
,

2β1β2

r
(1 + cγ1 + qγ2)

(1 + cx̂w)(l + γ1)

}
,

then Dα∗V2(x, y) ≤ 0 for all (x, y) ∈ R2
+. Moreover, Dα∗V2(x, y) = 0 implies that (x, y) =

(x̂, ŷ). Based on that, the only invariant set on which Dα∗V2(x, y) = 0 is the singleton {Ŵ}.
By Lemma 4.6 in [55], it follows that Ŵ is globally asymptotically stable.
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5.2. System with Strong Allee Effect

Previous analysis shows that for the system with a strong Allee effect, the predator
extinction point S1 = ( r

β1
, 0) is always locally asymptotically stable. Hence, in the following,

we study the global asymptotic stability only for the equilibrium point S1 = ( r
β1

, 0).

Theorem 10. If m ≥
(

br
β1s

+ 1
)
(γ2 + n), then the predator extinction point S1 =

(
r

β1
, 0
)

of

system (6) is globally asymptotically stable.

Proof. Define a positive definite Lyapunov function at S1.

V3(x, y) =
(

x− r
β1
− r

β1
ln

β1x
r

)
+ y.

According to Lemma 3.1. in [54], the α-order derivative of V3(x, y) along the solution
of system (6) satisfies the following.

Dα
∗V3(x, y) ≤

x− r
β1

x
Dα
∗x + Dα

∗y

=
x− r

β1

x

(
r− β1x− by

1 + cx + qy

)
x + y

(
s(y−m)

y + n
− β2y

l + x

)

= − β1

(
x− r

β1

)2
− bxy

1 + cx + qy
+

bry
β1(1 + cx + qy)

+ s
y2

y + n
−ms

y
y + n

− β2
y2

l + x

≤ − β1

(
x− r

β1

)2
+

bry
β1

+ sy−ms
y

y + n
.

Based on Theorem 2, we have y(t) ≤ γ2 and, thus, we have the following.

Dα
∗V3(x, y) ≤ − β1

(
x− r

β1

)2
+

bry
β1

+ sy−ms
y

γ2 + n

= − β1

(
x− r

β1

)2
+

(
br
β1

+ s− ms
γ2 + n

)
y.

We note that if m ≥
(

br
β1s

+ 1
)
(γ2 + n), then Dα∗V3(x, y) ≤ 0 for all (x, y) ∈ R2

+.

Furthermore, Dα∗V3(x, y) = 0 implies that (x, y) = ( r
β1

, 0).
Hence, the only invariant set on which Dα∗V3(x, y) = 0 is the singleton {S1}. By

Lemma 4.6 in [55], the predator extinction point S1 is globally asymptotically stable.

6. Numerical Simulations

In this section, some numerical simulations of system (6) are presented to verify
the analytical results such as the stability of equilibrium points and a Hopf bifurcation
and to explore the dynamical behavior of the system (6) for both weak and strong Allee
effects, respectively. The recent development of the numerical schemes for the fractional-
order system such as the Grünwald–Letnikov method [31,56], the predictor-corrector
method [57–59], the homotopy perturbation method [60,61], and the Laplace adomian de-
composition method [62] have been used to solve the fractional-order differential equations.
Here, we apply the fractional-order predictor-corrector method provided by Diethelm
et al. [63] to obtain numerical solutions of the system (6). Based on that, we divide this
section into three subsections that demonstrate the effects of the capturing rate to the
predation rate (b), the Allee threshold (m), and the order of fractional system (α) on the
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stability of equilibrium points. Since parameter values based on real-life observations are
not available, we use hypothetical parameters that correspond to the analytical results.

6.1. The Influence of the Capturing Rate (b)

To understand how the capturing rate (b) could influence the dynamics of system (6)
in the weak Allee effect case (m < 0), we use the following hypothetical parameter values.

r = 0.5, β1 = 0.05, c = 1, q = 0.1, s = 0.1, l = 1, β2 = 0.05, m = −1, and n = 3. (26)

The bifurcation diagrams for both predator and prey populations controlled by
b ∈ [0.2, 0.6] and α = 0.98 are depicted in Figure 1a. When b < b∗w1 ≈ 0.24103, the in-
terior point Ŵ is asymptotically stable. For example, we plot a phase portrait of the
system (6) in Figure 1b for b = 0.20. In this case, one can easily compute that χ2

1w − 4χ2w =
−0.06299 < 0 and χ1w = −0.08727 < 0. According to Theorem 4, the interior point
Ŵ = (4.30171, 8.80734) is asymptotically stable. The stability of the interior point Ŵ is
also achieved in the interval b ∈ (b∗w2 = 0.53846, b∗w3 = 0.55487). To show such typical
behavior, we plot a phase portrait of the system (6) in Figure 1d for b = 0.54. Furthermore,
our numerical simulations also show the existence of limit-cycles solution enclosing the
interior point Ŵ for b ∈ (b∗w1, b∗w2) as provided in the green area in Figure 1a. As an
example, we plot some numerical solutions of the system (6) with b = 0.27 in Figure 1c.
It is observed that all solutions of system (6) converge to a limit-cycle and the interior
point Ŵ = (2.76631, 5.82563) losses its stability. This situation shows that the system (6)
undergoes a Hopf bifurcation with respect to b. When b > b∗w3, the interior point Ŵ does
not exist anymore and the prey extinction point W2 = (0, 1) becomes stable via forward
bifurcation. The numerical solutions of system (6), which show the stability of W2 = (0, 1),
are shown in Figure 1e.

Next, we numerically investigate the effect of the capturing rate (b) under the strong
Allee effect case (m > 0) using the following hypothetical parameters.

r = 0.5, β1 = 0.1, c = 1, q = 0.1, s = 0.1, l = 1, β2 = 0.05, m = 0.4, and n = 0.2. (27)

Here, we also take α = 0.98. We notice that the predator extinction point S1 = (5, 0)
is always asymptotically stable, see Theorem 5b. Then, by varying b from 0.2 to 0.6, we
plot the bifurcation diagrams for both predator and prey population in Figure 2a. It is
found that the system (6) in this case has similar qualitative behavior as in the previous
simulation (see Figures 1 and 2), with the exception of the stability properties of the
predator extinction point S1 = (5, 0). In the first simulation, the predator extinction point is
always unstable while, in the latter case, it is always locally asymptotically stable. The local
stability properties of the predator extinction point can be clearly observed from the phase
portraits depicted in Figure 2b–e.

Remark 1. Based on Figures 1 and 2, the capturing rate (b) has great influence to both prey and
predator population densities. For parameter values as in (26) and (27), for both weak and strong
Allee effects, the densities of both prey and predator populations decrease with increasing capturing
rates. In particular, increasing the capturing rate such that b > b∗w3 (for the weak Allee effect case)
or b > b∗s3 (for the strong Allee effect case) may stabilize the prey extinction point (0, 1) as stated in
Theorems 3c and 5c. This means that the prey population will become extinct while the predator
still survives. We also notice that for the case of strong Allee effect (m > 0), the system (6) may
exhibit a bistability phenomenon, see Figure 2b,d,e. Hence, the system (6) is highly sensitive to
the initial condition when the Allee effect is strong. From the ecological point of view, this result
is quite interesting. We can still maintain the existence of both prey and predator even under
conditions of a strong Allee effect, that is, as long as we have a sufficiently large initial predator
density. Furthermore, Figure 1b,d,e confirm the global asymptotic stability behavior of system (6)
for the weak Allee effect case.
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6.2. The Impacts of the Allee Threshold (m)

We next study numerically the impacts of the Allee threshold (m) to the dynamics of
system (6) using the following hypothetic values of parameters.

r = 0.5, β1 = 0.1, b = 0.4, c = 1, q = 0.1, s = 0.1, l = 1, β2 = 0.05, and n = 3. (28)

In Figure 3a we show the bifurcation diagrams of both predator and prey populations
for parameter m ∈ [−2, 1] and α = 0.98. It is shown that when m < m∗1 ≈ −1.73333,
the prey extinction point W2 is asymptotically stable. If we increase m such that m > m∗1 −
1.73333, then the prey extinction point W2 loses its stability when an asymptotically stable
interior point Ŵ appears. This shows that the system (6) exhibits a forward bifurcation.
The interior point Ŵ remains asymptotically stable for m ∈ (m∗1 , m∗2). Moreover, Figure 3a
shows the occurence of a Hopf bifurcation when m passes through m∗2 ≈ −1.50769. Indeed,
in the interval m ∈ (m∗2 , m∗3 = 0), there is no stable equilibrium point and there exists
a limit cycle around the interior point Ŵ; see the green area in Figure 3a. Our further
observation shows that the system (6) with m ∈ (m∗3 , m∗4 ≈ 0.82356) has a bistability
phenomenon where both interior point Ŝ and the predator extinction point S1 = (5, 0) are
locally asymptotically stable. If we increase m such that m > m∗4 , the interior point Ŝ loses
its existence and the predator extinction point S1 becomes a unique stable equilibrium
point of the system (6).

In order to provide a better view of the dynamics of the system (6) with parameter
values (28) and α = 0.98, we ploted several phase-portraits for different values of m in
Figure 3b–e. Figure 3b shows the phase-portrait of the system (6) with m = −1.79 <

m∗1 . Here, we have 0.5 = r < bȳw
1+qȳw

= 0.50960 and 1.21 = m + n < β2
ls (ȳw + n)2 =

9.94580. According to Theorem 3c, the prey extintion point W2 = (0, 1.46) is asymptotically
stable. Figure 3b confirms this behavior where all numerical solutions converge to the prey
extinction point W2 = (0, 1.46). The phase portrait of the system (6) with m = −0.46 > m∗2
is depicted in Figure 3c. In this respect, we have χ1w = 0.03488 > 0 and 0.87258 = α∗ <
α = 0.98. Thus, the stability condition of the interior point Ŵ = (1.21751, 2.31593) in
Figure 3c, where all numerical solutions of the system (6) are convergent to a limit-cycle.
The appearence of a stable limit-cycle indicates the presence of a Hopf bifurcation in the
system. Next, we consider a case of m ∈ (m∗3 , m∗4) by choosing m = 0.4. The phase-portrait
in Figure 3d shows that numerical solutions are convergent to the predator extinction
point S1 = (5, 0) or to the interior point Ŝ1 = (2.24039, 2.40121), depending on the initial
conditions. Hence, the system (6) exhibits a bistability phenomenon. Finally, if we take m =
0.90 > m∗4 , then we have situation where the interior point Ŝ disappears and the predator
extinction point S1 = (5, 0) becomes the only equilibrium point which is asymptotically
stable. This behavior is plotted in Figure 3e.

Note that, when the Allee effect is weak, i.e., when −n < m < 0, the predator always
exists as depicted in the interval [−2, m∗3 ] in Figure 3a. In this case, the predator growth
rate is always positive and the prey population could suffer from extinction as the m value
decreases. On the other hand, when the Allee effect is strong, i.e., when m > 0, there
is a condition where the predator is always extinct as depicted by the blue solid line in
the interval [m∗3 , 1] in Figure 3a. However, generally speaking, the system (6) could have
a positive or negative growth rate on the predator population since there is a bistability
phenomenon in that interval as explained before. These situations show that our system (6)
may provide the condition for the existence of the predator population which is affected by
the double Allee effect.
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Figure 1. Dynamics of system (6) with parameter values (26) and α = 0.98. (a) Bifurcation diagram
of system (6) driven by b for the case of the weak Allee effect (m = −1 < 0). (b–e) Phase-portrait of
system (6) with (b) b = 0.20, (c) b = 0.27, (d) b = 0.54, and (e) b = 0.57. The predator extinction point
is always unstable.
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Figure 2. Dynamics of system (6) with parameter values (27) and α = 0.98. (a) Bifurcation diagram
of system (6) driven by b for the case of strong Allee effect (m = 0.4 > 0). (b–e) Phase-portrait of
system (6) with (b) b = 0.20, (c) b = 0.40, (d) b = 0.50, and (e) b = 0.60. The predator extinction point
is always locally stable.
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Figure 3. Dynamics of system (6) with parameter values (28) and α = 0.98. (a) Bifurcation diagram
of system (6) driven by m. (b–e) Phase-portrait of system (6) with (b) m = −1.79, (c) m = −0.46,
(d) m = 0.40, and (e) m = 0.90. The predator extinction point is unstable for the weak Allee effect
case (m < 0) and is locally asymptotically stable for the strong Allee effect case (m < 0).
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6.3. The Effects of the Order of Fractional System (α)

In the following simulations, we study the influence of the order of the fractional
derivative (α) by considering the system (6) with the following hypothetical parameter values.

r = 0.5, β1 = 0.1, b = 0.4, c = 1, q = 0.1,
s = 0.1, l = 1, β2 = 0.05, m = 0.5, n = 0.2.

(29)

Based on parameter values (29) and Theorem 7, we can find a critical value α∗ ≈ 0.80631
such that the interior point is asymptotically stable if α < α∗ and it is unstable if α > α∗.
In order to observe such behavior, we plot the bifurcation diagram for α ∈ [0.7, 1.0], see
Figure 4a. It is observed that the interior point Ŝ = (0.38825, 1.80915) is asymptotically
stable when α < α∗. If α > α∗, then the interior point Ŝ loses its stability and all numerical
solutions converge to a limit-cycle via a Hopf bifurcation. The Hopf bifurcation can also be
observed from the phase-portraits shown in Figure 4b for α = 0.73 < α∗ and Figure 4c for
α = 0.89 > α∗.

In Figure 4a, we observe that the order of the fractional derivative does not af-
fect the stability of the interior point as long as 0 < α < α∗. To verify this prop-
erty, we plot in Figure 5 the time series of both prey and predator populations for α =
0.5, 0.6, 0.7, 0.75. It is shown that all solutions are indeed convergent to the interior point
Ŝ = (0.38825, 1.80915), but the solution of system (6) with a higher–order fractional deriva-
tive has faster convergence.
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Figure 4. Dynamics of system (6) with parameter values (29). (a) Bifurcation diagram of system (6)
driven by α. (b,c) Phase-portrait of system (6) with (b) α = 0.73 and (c) α = 0.89.
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Figure 5. Time series of system (6) with parameter values (29) and the initial conditions taken around
the interior point Ŝ = (0.38825, 1.80915).

7. Conclusions

In this paper, a fractional-order Leslie–Gower predator-prey model with Beddington–
DeAngelis functional response and double Allee effect in the predator population is pro-
posed and the dynamics of the model has been analyzed. First, the existence, uniqueness,
non-negativity, and boundedness of the solution have been proven. We then determined
all possible non-negative equilibrium points and their local and global stability properties.
We found that the model has four types of biologically feasible equilibrium. The extinction
of both prey and predator point is always unstable for both weak and strong Allee effect
cases. The predator extinction point is always stable for the strong Allee effect case, but it
is always unstable for the weak Allee effect case. The prey extinction point and the interior
point are conditionally stable. Our numerical simulations showed that for the case of
the weak Allee effect, there is a capturing rate threshold b∗ such that for b > b∗ the prey
population is extinct while the predator population still survives. However, for the case of
the strong Allee effect, the situation is also dependent on the initial value. Here, if the initial
predator population is relatively low then the predator will become extinct but the prey
will survive. Additionally, we also proved the existence of a Hopf bifurcation about the
interior point driven by the order of the fractional derivative (α) and the critical α∗ of this
bifurcation has been determined analytically. The occurrence of the Hopf bifurcation has
been confirmed by our numerical simulations. The existence of Hopf bifurcation controlled
by α has also been observed in [31,32]. This shows that the unstable interior point of the
first order system (i.e., the system is convergent to a limit cycle) may become stable in the
fractional order system (i.e., the system converges to the interior point).
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Abstract: In this paper, the existence and uniqueness of solutions for a coupled system of ψ-Hilfer
type sequential fractional differential equations supplemented with nonlocal integro-multi-point
boundary conditions is investigated. The presented results are obtained via the classical Banach and
Krasnosel’skiĭ’s fixed point theorems and the Leray–Schauder alternative. Examples are included to
illustrate the effectiveness of the obtained results.

Keywords: ψ-Hilfer fractional derivative; Riemann–Liouville fractional derivative; Caputo fractional
derivative; system of fractional differential equations

1. Introduction

Fractional calculus, as an extension of usual integer calculus, is a forceful tool to
express real-world problems rather than integer-order differentiations, so that this idea has
wide applications in various fields such as, mathematics, physics, engineering, biology,
finance, economy and other sciences (see [1–3] and related references therein). Accord-
ingly, many researchers have studied initial and boundary value problems for fractional
differential equations (see [4–11]). Additionally, fractional differential equations involving
coupled systems have nonlocal natures and applications in many real = world process. The
investigation of types of integral and differential operators and the relationship between
these operators plays a key role in studying fractional differential equations. Fractional
operators of a function concerning another function were introduced by Kilbas et al. [5].
Later, Almeida [12] introduced the notion of the ψ-Caputo fractional operator. For some
applications of ψ operator, we refer to the papers [13–15]. Hilfer [16] extended both
Riemann–Liouville and Caputo fractional derivatives by presenting a family of derivative
operators. Different models based on Hilfer fractional derivative have been considered
in [17–21], and references cited therein. Many applications of Hilfer fractional differential
equations can be found in many fields of mathematics, physics, etc (see [22–24]). The study
of boundary value problems for Hilfer-fractional differential equations of order in (1, 2],
and nonlocal boundary conditions was initiated in [25] by studying the boundary value
problem of the form:
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



H Dα1,β1 u(z) = h(z, u(z)), z ∈ [c, d], 1 < α1 ≤ 2, 0 ≤ β1 ≤ 1,

u(c) = 0, u(d) =
m

∑
i=1

εi Iφi u(ξi), φi > 0, εi ∈ R, ξi ∈ [c, d],
(1)

where H Dα1,β1 is the Hilfer fractional derivative of order α1, 1 < α1 ≤ 2, and parameter β1,
0 ≤ β1 ≤ 1, f : [c, d]×R −→ R is a continuous function, c ≥ 0 and Iφi is the Riemann–
Liouville fractional integral of order φi, i = 1, 2, . . . , m. Several existence and uniqueness
results were proved by using a variety of fixed point theorems.

Wongcharoen et al. [26] studied a system of Hilfer-type fractional differential equations
of the form 




H Dα1,β1 u(z) = f1(z, u(z), v(z)), z ∈ [c, d],
H Dα1,β1 v(z) = g1(z, u(z), v(z)), z ∈ [c, d],

u(c) = 0, u(d) =
m

∑
i=1

θi Iφi v(ξi),

v(c) = 0, v(d) =
n

∑
j=1

ζ j I
φj u(zi),

(2)

where H Dα1,β1;ψ and H Dα1,β1;ψ are the Hilfer fractional derivatives of orders α1 and α1,
1 < α1, α1 < 2 and parameter β1, 0 ≤ β1 ≤ 1, f1, g1 : [c, d]×R×R −→ R are continuous

functions, c ≥ 0, θi, ζ i ∈ R, and Iφi , Iφj are the Riemann–Liouville fractional integrals of
order φi > 0, φj > 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Sitho et al. [27] proved the existence and uniqueness of solutions for the following
class of boundary value problems consisting of fractional-order ψ-Hilfer-type differential
equations supplemented with nonlocal integro-multipoint boundary conditions of the form:





H Dα1,β1;ψu(z) = h(z, u(z)), z ∈ [c, d],

u(c) = 0, u(d) =
n

∑
i=1

µi

∫ ηi

c
ψ′(s)ds +

m

∑
j=1

λju(ξ j),
(3)

where H Dα1,β1;ψ is the ψ-Hilfer fractional derivative operator of order α1, 1 < α1 < 2 and
parameter β1, 0 ≤ β1 ≤ 1, f : [c, d]×R → R is a continuous function, c ≥ 0, µi, λj ∈ R,
ηi, ξ j ∈ (c, d), i = 1, 2, . . . , n, j = 1, 2, . . . m and ψ is a positive increasing function on (c, d],
which has a continuous derivative ψ′(t) on (c, d).

Recently, in [28], the boundary value problem (3) was extended to sequential ψ-Hilfer-
type fractional differential equations involving integral multi-point boundary conditions
of the form





(
H Dα1,β1;ψ + k H Dα1−1,β1;ψ

)
u(z) = f (z, u(z)), k ∈ R, z ∈ [c, d],

u(c) = 0, u(d) =
n

∑
i=1

µi

∫ ηi

a
ψ′(s)u(s)ds +

m

∑
j=1

θju(ξ j),
(4)

where the notations are the same as those of problem (3).
In the present research, inspired by the published articles in this direction, we study

the existence and uniqueness of solutions for the following coupled system of sequential ψ-
Hilfer-type fractional differential equations with integro-multi-point boundary conditions
of the form





(H Dα1,β1;ψ + k H Dα1−1,β1;ψ)u(z) = f (z, u(z), v(z)), z ∈ [c, d],
(H Dα1,β1;ψ + k H Dα1−1,β1;ψ)v(z) = g(z, u(z), v(z)), z ∈ [c, d],

u(c) = 0, u(d) =
n

∑
i=1

µi

∫ ηi

c
ψ′(s)v(s)ds +

m

∑
j=1

θjv(ξ j),

v(c) = 0, v(d) =
p

∑
r=1

υr

∫ ςr

c
ψ′(s)u(s)ds +

q

∑
s=1

τsu(σs),

(5)
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where H Dα1,β1;ψ and H Dα1,β1;ψ are the ψ-Hilfer fractional derivatives of orders α1 and α1,
1 < α1, α1 < 2 and parameter β1, 0 ≤ β1 ≤ 1, f , g : [c, d]×R×R −→ R are continuous
functions, c ≥ 0, µi, θj, υr, τs ∈ R+, ηi, ξ j, ςr, σs ∈ (c, d), i = 1, 2, . . . , n, j = 1, 2, . . . , m,
r = 1, 2, . . . , p, s = 1, 2, . . . , q and ψ is an increasing and positive monotone function on
(c, d] having a continuous derivative ψ′ on (c, d).

The classical fixed point theorems are applied in order to obtain our main existence and
uniqueness results. Thus, the Banach fixed point theorem is applied to obtain the unique-
ness result, while Leray–Schuader alternative and Krasnosel’skiĭ’s fixed point theorems are
the basic tools used to present the existence results.

The rest of the paper is organized as follows: we recall some primitive concepts in
Section 2. In Section 3, an auxiliary lemma is proved, which is a basic tool in proving the
main results of the paper, which are presented in Section 4. The main results are supported
by numerical examples.

2. Preliminaries

In this section, some basic concepts in connection to fractional calculus and fixed
point theory are assigned. Throughout the paper, by X = C([c, d],R), we denote the
Banach space of all continuous mappings from [c, d] to R endowed with the norm ‖x‖ =
sup

{
|x(t)|; t ∈ [c, d]

}
. It is clear that the space X ×X , endowed with the norm ‖(x, y)‖ =

‖x‖+ ‖y‖, is a Banach space.

Definition 1 ([2]). Let (c, d), (−∞ ≤ c < d ≤ ∞) α > 0 and ψ(z) be a positive increasing
function on (c, d], with continuous derivative ψ′(z) on (c, d). The ψ-Riemann–Liouville fractional
integral of a function h with respect to a another function ψ on [c, d] is defined by

Iα,ψh(z) =
1

Γ(α)

∫ z

c
ψ′(s)(ψ(z)− ψ(s))α−1h(s)ds, z > c > 0,

where Γ(.) is the Euler Gamma function.

Definition 2 ([29]). Let ψ ∈ Cn([c, d],R) with ψ′(z) 6= 0 and η > 0, n ∈ N. The Riemann–
Liouville derivatives of a function h with connection to another function ψ of order η is represented as

Dη;ψh(z) =

(
1

ψ′(z)
d
dz

)n

In−η;ψ
c+ ,

=
1

Γ(n− η)

(
1

ψ′(z)
d
dz

)n ∫ z

c
ψ′(s)(ψ(z)− ψ(s))n−η−1h(s)ds,

where n = [η] + 1, [η] represent the integer part of real number η.

Definition 3 ([29]). Assume that n− 1 < η < n with n ∈ N and [c, d] is the interval so that
−∞ ≤ c < d ≤ ∞ and h, ψ ∈ Cn([c, d],R) are two functions, such that ψ is increasing and
ψ′(z) 6= 0 for all z ∈ [c, d]. The ψ-Hilfer fractional derivative of a function h of order η and type
0 ≤ η ≤ 1 is defined by

H Dη,η;ψ
c+ h(z) = Iη(n−η);ψ

c+

(
1

ψ′(z)
d
dz

)n

I(1−η)(n−η);ψ
c+ h(z) = Iγ−η;ψ

c+ Dγ;ψ
c+ h(z),

where n = [η] + 1, [η] represents the integer part of the real number η with γ = η + η(n− η).

Lemma 1 ([29]). If h ∈ Cn(J,R), n− 1 < η < n, 0 ≤ η ≤ 1 and γ = η + η(n− η), then

Iη;ψ
c+
(H Dη,η;ψ

c+ h
)
(z) = h(z)−

n

∑
k=1

(ψ(z)− ψ(a))γ−k

Γ(γ− k + 1)
∇[n−k]

ψ I(1−η)(n−η);ψ
c+ h(c),
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for all z ∈ J, where ∇[n]
ψ h(z) =

(
1

ψ′(z)
d
dz

)n

h(z).

Finally, we summarize the fixed point theorems used to prove the main results in this
paper. X is a Banach space in each theorem.

Lemma 2. (Banach fixed point theorem [30]). Let D be a closed set in X and T : D → D satisfies

|Tu− Tv| ≤ λ|u− v|, for some λ ∈ (0, 1), and for all u, v ∈ D.

Then T admits one fixed point in D.

Lemma 3. (Leray–Schauder alternative [31]). Let the set Ω be closed bounded convex in X and O
an open set contained in Ω with 0 ∈ O. Then, for the continuous and compact T : Ū → Ω, either:

(a) T admits a fixed point in Ū, or
(aa) There exists u ∈ ∂U and µ ∈ (0, 1) with u = µT(u).

Lemma 4. (Krasnosel’skiĭ fixed point theorem [32]). Let M be a closed, bounded, convex and
nonempty subset of a Banach space X. Let A, B be operators such that (i) Ax + By ∈ M where
x, y ∈ M, (ii) A is compact and continuous and (iii) B is a contraction mapping. Then there exists
z ∈ M such that z = Az + Bz.

3. An Auxiliary Result

We prove the following auxiliary lemma, concerning a linear variant of the coupled
system (5), which is useful to present the coupled system (5) as a fixed point problem.

Lemma 5. Let c ≥ 0, 1 < α1, α1 < 2, 0 ≤ β1 ≤ 1, γ = α1 + 2β1− α1β1, γ1 = α1 + 2β1− α1β1
and Λ 6= 0.

Then, for h1, h2 ∈ C([c, d],R), the unique solution of the coupled system





(H Dα1,β1;ψ + k H Dα1−1,β1;ψ)u(z) = h1(z), z ∈ [c, d],
(H Dα1,β1;ψ + k H Dα1−1,β1;ψ)v(z) = h2(z), z ∈ [c, d],

u(c) = 0, u(d) =
n

∑
i=1

µi

∫ ηi

c
ψ′(s)v(s)ds +

m

∑
j=1

θjv(ξ j),

v(c) = 0, v(d) =
p

∑
r=1

υr

∫ ςr

c
ψ′(s)u(s)ds +

q

∑
s=1

τsu(σs),

(6)

is given as

u(z) = −k
∫ z

c
ψ′(s)u(s)ds + Iα1;ψ

c+ h1(z)

+
(ψ(z)− ψ(c))γ−1

ΛΓ(γ)

[
∆
( n

∑
i=1

µi

∫ ηi

c
ψ′(s)Iα1;ψh2(s)ds +

m

∑
j=1

θj Iα1;ψh2(ξ j)

−k
m

∑
j=1

θj

∫ ξ j

c
ψ′(s)v(s)ds− k

n

∑
i=1

µi

∫ ηi

c
ψ′(s)

∫ s

c
ψ′(t)v(t)dtds

+k
∫ d

c
ψ′(s)u(s)ds− Iα1;ψ

c+ h1(d)
)
+ B

( p

∑
r=1

vr

∫ ςr

c
ψ′(s)Iα1;ψh1(s)ds

+
q

∑
s=1

τs Iα1;ψh1(σs)− k
q

∑
s=1

τs

∫ σs

c
ψ′(s)u(s)ds

−k
p

∑
r=1

vr

∫ ςr

a
ψ′(s)

∫ s

c
ψ′(t)u(t)dtds
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+k
∫ d

c
ψ′(s)v(s)ds− Iα1;ψ

c+ h2(d)
)]

, (7)

and

v(z) = −k
∫ z

c
ψ′(s)v(s)ds + Iα1;ψ

c+ h2(z)

+
(ψ(z)− ψ(c))γ1−1

ΛΓ(γ1)

[
A
( p

∑
r=1

vr

∫ ςr

c
ψ′(s)Iα1;ψh1(s)ds +

q

∑
s=1

τs Iα1;ψh1(σs)

−k
q

∑
s=1

τs

∫ σs

c
ψ′(s)u(s)ds− k

p

∑
r=1

vr

∫ ςr

c
ψ′(s)

∫ s

c
ψ′(t)u(t)dtds

+k
∫ c

c
ψ′(s)v(s)ds− Iα1ψ

c+ h2(d)
)
+ Γ

( n

∑
i=1

µi

∫ ηi

c
ψ′(s)Iα1;ψh2(s)ds

+
m

∑
j=1

θj Iα1;ψh2(ξ j)− k
m

∑
j=1

θj

∫ ξ j

c
ψ′(s)v(s)ds

−k
n

∑
i=1

µi

∫ ηi

c
ψ′(s)

∫ s

c
ψ′(t)v(t)dtds

+k
∫ d

c
ψ′(s)u(s)ds− Iα1;ψ

c+ h1(d)
)]

, (8)

where

A =
(ψ(d)− ψ(c))γ−1

Γ(γ)
,

B =
n

∑
i=1

µi

∫ ηi

c

ψ′(s)(ψ(s)− ψ(a))γ1−1

Γ(γ1)
ds +

m

∑
j=1

θj
(ψ(ξ j)− ψ(c))γ1−1

Γ(γ1)
,

Γ =
p

∑
r=1

vr

∫ ςr

c

ψ′(s)(ψ(s)− ψ(a))γ−1

Γ(γ)
ds +

q

∑
s=1

τs
(ψ(σs)− ψ(c))γ−1

Γ(γ)
,

∆ =
(ψ(d)− ψ(c))γ1−1

Γ(γ1)
, (9)

and
Λ = A∆− BΓ.

Proof. Taking the operator Iα on both sides of equations in (6) and using Lemma 1, we
conclude that

u(z) = c0
(ψ(z)− ψ(c))−(2−α1)(1−β1)

Γ(1− (2− α1)(1− β1))
+ c1

(ψ(z)− ψ(c))1−(2−α1)(1−β1)

Γ(2− (2− α1)(1− β1)

−k
∫ z

c
ψ′(s)u(s)ds + Iα1;ψ

c+ h1(z)

= c0
(ψ(z)− ψ(c))γ−2

Γ(γ− 1)
+ c1

(ψ(z)− ψ(c))γ−1

Γ(γ)

−k
∫ z

c
ψ′(s)u(s)ds + Iα1;ψ

c+ h1(z),

v(z) = d0
(ψ(z)− ψ(c))γ1−2

Γ(γ1 − 1)
+ d1

(ψ(z)− ψ(c))γ1−1

Γ(γ1)

−k
∫ z

c
ψ′(s)v(s)ds + Iα1;ψ

c+ h2(z).
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Hence, due to u(c), v(c) = 0, we obtain c0, d0 = 0. Consequently,

u(z) = c1
(ψ(z)− ψ(c))γ−1

Γ(γ)
− k

∫ z

c
ψ′(s)u(s)ds + Iα1;ψ

c+ h1(z), (10)

v(z) = d1
(ψ(z)− ψ(c))γ1−1

Γ(γ1)
− k

∫ z

c
ψ′(s)v(s)ds + Iα1;ψ

c+ h2(z). (11)

From u(d) = ∑n
i=1 µi

∫ ηi
c ψ′(s)v(s)ds+∑m

j=1 θjv(ξ j) and v(d) = ∑
p
r=1 vr

∫ ςr
c ψ′(s)u(s)ds

+∑
q
s=1 τsu(σs), we have

c1
(ψ(d)− ψ(c))γ−1

Γ(γ)
− k

∫ d

c
ψ′(s)u(s)ds + Iα1;ψ

c+ h1(d)

= d1

n

∑
i=1

µi

∫ ηi

c

ψ′(s)(ψ(s)− ψ(c))γ1−1

Γ(γ1)
ds +

n

∑
i=1

µi

∫ ηi

c
ψ′(s)Iα1;ψh2(s)ds

+d1

m

∑
j=1

θj
(ψ(ξ j)− ψ(c))γ1−1

Γ(γ1)
− k

m

∑
j=1

θj

∫ ξ j

c
ψ′(s)v(s)ds +

m

∑
j=1

θj Iα1;ψh2(ξ j)

−k
n

∑
i=1

µi

∫ ηi

c
ψ′(s)

∫ s

c
ψ′(t)v(t)dtds,

and

d1
(ψ(d)− ψ(c))γ1−1

Γ(γ1)
− k

∫ d

c
ψ′(s)v(s)ds + Iα1ψ

c+ h2(d)

= c1

p

∑
r=1

vr

∫ ςr

a

ψ′(s)(ψ(s)− ψ(a))γ−1

Γ(γ)
ds +

p

∑
r=1

vr

∫ ςr

c
ψ′(s)Iα1;ψh1(s)ds

+c1

q

∑
s=1

τs
(ψ(σs)− ψ(c))γ−1

Γ(γ)
− k

q

∑
s=1

τs

∫ σs

a
ψ′(s)u(s)ds +

q

∑
s=1

τs Iα1;ψh1(σs)

−k
p

∑
r=1

vr

∫ ςr

a
ψ′(s)

∫ s

c
ψ′(t)u(t)dtds,

or

Ac1 − Bd1 = P,

−Γc1 + ∆d1 = Q,

where A, B, Γ, ∆ are defined by (9) and

P =
n

∑
i=1

µi

∫ ηi

c
ψ′(s)Iα1;ψh2(s)ds +

m

∑
j=1

θj Iα1;ψh2(ξ j)− k
m

∑
j=1

θj

∫ ξ j

c
ψ′(s)v(s)ds

−k
n

∑
i=1

µi

∫ ηi

c
ψ′(s)

∫ s

c
ψ′(t)v(t)dtds + k

∫ d

c
ψ′(s)u(s)ds− Iα1;ψ

c+ h1(d),

and

Q =
p

∑
r=1

vr

∫ ςr

c
ψ′(s)Iα1;ψh1(s)ds +

q

∑
s=1

τs Iα1;ψh1(σs)− k
q

∑
s=1

τs

∫ σs

c
ψ′(s)u(s)ds

−k
p

∑
r=1

vr

∫ ςr

c
ψ′(s)

∫ s

c
ψ′(t)u(t)dtds + k

∫ d

c
ψ′(s)v(s)ds− Iα1ψ

c+ h2(d).
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By solving the above system, we find

c1 =
∆P + BQ

Λ
, d1 =

AQ + ΓP
Λ

.

Substituting the values of c1 and d1 into Equations (10) and (11), respectively, we
obtain the solutions (7) and (8). The converse is obtained by direct computation. The proof
is finished.

4. Existence and Uniqueness Results

Keeping in mind Lemma 5, we define an operator P : X ×X → X ×X by

P(u, v)(z) :=
(
P1(u, v)(z),P2(u, v)(z)

)
, (12)

where

P1(u, v)(z) = −k
∫ z

c
ψ′(s)u(s)ds + Iα1;ψ

c+ fuv(z)

+
(ψ(z)− ψ(c))γ−1

ΛΓ(γ)

[
∆
( n

∑
i=1

µi

∫ ηi

c
ψ′(s)Iα1;ψguv(s)ds +

m

∑
j=1

θj Iα1;ψguv(ξ j)

−k
m

∑
j=1

θj

∫ ξ j

c
ψ′(s)v(s)ds− k

n

∑
i=1

µi

∫ ηi

c
ψ′(s)

∫ s

c
ψ′(t)v(t)dtds

+k
∫ d

c
ψ′(s)u(s)ds− Iα1;ψ

c+ fuv(d)
)
+ B

( p

∑
r=1

vr

∫ ςr

c
ψ′(s)Iα1;ψ fuv(s)ds

+
q

∑
s=1

τs Iα1;ψ fuv(σs)− k
q

∑
s=1

τs

∫ σs

c
ψ′(s)u(s)ds

−k
p

∑
r=1

vr

∫ ςr

c
ψ′(s)

∫ s

c
ψ′(t)u(t)dtds

+k
∫ d

c
ψ′(s)v(s)ds− Iα1ψ

c+ guv(d)
)]

, (13)

and

P2(u, v)(z) = −k
∫ z

c
ψ′(s)v(s)ds + Iα1;ψ

c+ guv(z)

+
(ψ(z)− ψ(c))γ1−1

ΛΓ(γ1)

[
A
( p

∑
r=1

vr

∫ ςr

c
ψ′(s)Iα1;ψ fuv(s)ds +

q

∑
s=1

τs Iα1;ψh1(σs)

−k
q

∑
s=1

τs

∫ σs

c
ψ′(s)u(s)ds− k

p

∑
r=1

vr

∫ ςr

c
ψ′(s)

∫ s

c
ψ′(t)u(t)dtds

+k
∫ d

c
ψ′(s)v(s)ds− Iα1ψ

c+ guv(d)
)
+ Γ

( n

∑
i=1

µi

∫ ηi

c
ψ′(s)Iα1;ψguv(s)ds

+
m

∑
j=1

θj Iα1;ψguv(ξ j)− k
m

∑
j=1

θj

∫ ξ j

c
ψ′(s)v(s)ds

−k
n

∑
i=1

µi

∫ ηi

c
ψ′(s)

∫ s

c
ψ′(t)v(t)dtds

+k
∫ d

c
ψ′(s)u(s)ds− Iα1;ψ

c+ fuv(d)
)]

, (14)

where
fuv(z) = f (z, u(z), v(z)), guv(z) = g(z, u(z), v(z)).
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For the sake of convenience, we use the following notations:

A1 =
(ψ(d)− ψ(c))α1

Γ(α1 + 1)
+

(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆| (ψ(d)− ψ(c))α1

Γ(α1 + 1)

+|B|
( p

∑
r=1

vr
(ψ(ςr)− ψ(c))α1+1

Γ(α1 + 2)
+

q

∑
s=1

τs
(ψ(σs)− ψ(c))α1

Γ(α1 + 1)

)]
, (15)

A2 =
(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆|
( n

∑
i=1

µi
(ψ(ηi)− ψ(c))α1+1

Γ(α1 + 2)

+
m

∑
j=1

θj
(ψ(ξ j)− ψ(c))α1

Γ(α1 + 1)

)
+ |B| (ψ(d)− ψ(c))α1

Γ(α1 + 1)

]
, (16)

A3 = |k|(ψ(d)− ψ(c)) +
(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆||k|(ψ(d)− ψ(c))

+|B|
(
|k|

q

∑
s=1

τs(ψ(σs)− ψ(c)) +
1
2
|k|

p

∑
r=1

vr(ψ(ςr)− ψ(c))2
)]

, (17)

A4 =
(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆|
(
|k|

m

∑
j=1

θj(ψ(ξ j)− ψ(c))

+
1
2
|k|

n

∑
i=1

µi(ψ(ηi)− ψ(c))2
)
+ |B||k|(ψ(d)− ψ(c))

]
, (18)

B1 =
(ψ(d)− ψ(c))γ1−1

|Λ|Γ(γ1)

[
|A|
(

υr

n

∑
i=1

(ψ(ςr)− ψ(c))α1

Γ(α1 + 1)
+

q

∑
s=1

τs
(ψ(σs)− ψ(c))α1

Γ(α1 + 1)

)

+|Γ| (ψ(d)− ψ(c))α1

Γ(α1 + 1)

]
, (19)

B2 =
(ψ(d)− ψ(c))α1

Γ(α1 + 1)
+

(ψ(d)− ψ(c))γ1−1

|Λ|Γ(γ1)

[
|A| (ψ(d)− ψ(c))α1

Γ(α1 + 1)

+|Γ|
( n

∑
i=1

µi
(ψ(ηi)− ψ(c))α1+1

Γ(α1 + 2)
+

m

∑
j=1

θj
(ψ(ξ j)− ψ(c))α1

Γ(α1 + 1)

)]
, (20)

B3 =
(ψ(d)− ψ(c))γ1−1

|Λ|Γ(γ1)

[
|A|
(
|k|

m

∑
j=1

τs(ψ(σs)− ψ(c))

+
1
2
|k|

p

∑
r=1

vr(ψ(ςr)− ψ(c))2
)
+ |Γ||k|(ψ(d)− ψ(c))

]
, (21)

B4 = |k|(ψ(d)− ψ(c)) +
(ψ(d)− ψ(c))γ1−1

|Λ|Γ(γ1)

[
|A||k|(ψ(d)− ψ(c))

+|Γ|
(
|k|

m

∑
j=1

θj)(ψ(ξ j)− ψ(c)) +
1
2
|k|

n

∑
i=1

µi(ψ(ηi)− ψ(c))2
)]

. (22)

4.1. Existence and Uniqueness Result via Banach Fixed Point Theorem

Here, by using the Banach contraction mapping principle, we prove an existence and
uniqueness result.

Theorem 1. Assume that Λ 6= 0 and f , g : [c, d]×R2 −→ R two functions satisfying the condition:

(H1) there exist positive real constants `1, `2 such that, for all z ∈ [c, d] and ui, vi ∈ R, i = 1, 2
we have

| f (z, u1, v1)− f (z, u2, v2)| ≤ `1
(
|u1 − u2|+ | v1 − v2 |

)
,

|g(z, u1, v1)− g(z, u2, v2)| ≤ `2
(
|u1 − u2|+ | v1 − v2 |

)
.

Then, system (5) admits a unique solution on [c, d] provided that

`1(A1 + B1) + `2(A2 + B2) +A3 +A4 + B3 + B4 < 1, (23)

where Ai,Bi, i = 1, 2, 3, 4 are given by (15)–(18) and (19)–(22) respectively.
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Proof. We transform system (5) into a fixed point problem, (u, v)(z) = P(u, v)(z), where
the operator P is defined as in (12). Applying the Banach contraction mapping principle,
we show that the operator P has a unique fixed point, which is the unique solution of
system (5).

Let supz∈[c,d] | f (z, 0, 0)| := M < ∞ and supz∈[c,d] |g(z, 0, 0)| := N < ∞. Next, we set
Br := {(u, v) ∈ X ×X : ‖(u, v)‖ ≤ r} with

r ≥ M(A1 + B1) + N(A2 + B2)

1− [`1(A1 + B1) + `2(A2 + B2) +A3 +A4 + B3 + B4]
. (24)

Observe that Br is a bounded, closed, and convex subset of X .
First, we show that PBr ⊂ Br.

For any (u, v) ∈ Br, z ∈ [c, d], using the condition (H1), we have

| fuv(z)| = | f (z, u(z), v(z))| ≤ | f (z, u(z), v(z))− f (z, 0, 0)|+ | f (z, 0, 0)|
≤ `1(|u(z)|+ |v(z)|) + M

≤ `1(‖u‖+ ‖v‖) + M ≤ `1r + M,

and
|guv(z)| = |g(z, u(z), v(z))| ≤ `2(‖u‖+ ‖v‖) + N ≤ `2r + N.

Then, we obtain

|P1(u, v)(z)|

≤ |k|
∫ d

c
ψ′(s)|u(s)|ds + Iα1;ψ

c+ | fuv|(z)

+
(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆|
( n

∑
i=1

µi

∫ ηi

c
ψ′(s)Iα1;ψ|guv|(s)ds +

m

∑
j=1

θj Iα1;ψ|guv|(ξ j)

+|k|
m

∑
j=1

θj

∫ ξ j

c
ψ′(s)|v(s)|ds + |k|

n

∑
i=1

µi

∫ ηi

c
ψ′(s)

∫ s

c
ψ′(t)|v(t)|dtds

+|k|
∫ d

c
ψ′(s)|u(s)|ds + Iα1;ψ

c+ | fuv|(d)
)
+ |B|

( p

∑
r=1

vr

∫ ςr

c
ψ′(s)Iα1;ψ| fuv|(s)ds

+
q

∑
s=1

τs Iα1;ψ| fuv|(σs) + |k|
q

∑
s=1

τs

∫ σs

c
ψ′(s)|u(s)|ds

+|k|
p

∑
r=1

vr

∫ ςr

a
ψ′(s)

∫ s

c
ψ′(t)|u(t)|dtds + |k|

∫ d

c
ψ′(s)|v(s)|ds + Iα1ψ

c+ |guv|(d)
)]

≤ |k|(ψ(d)− ψ(c))‖u‖+ (ψ(d)− ψ(c))α1

Γ(α1 + 1)
(`1r + M)

+
(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆|
( n

∑
i=1

µi
(ψ(ηi)− ψ(c))α1+1

Γ(α1 + 2)
(`2r + N)

+
m

∑
j=1

θj
(ψ(ξ j)− ψ(c))α1

Γ(α1 + 1)
(`2r + N) + |k|

m

∑
j=1

θj(ψ(ξ j)− ψ(c))‖v‖

+
1
2
|k|

n

∑
i=1

µi(ψ(ηi)− ψ(c))2‖v‖+ |k|(ψ(d)− ψ(c))‖u‖

+
(ψ(d)− ψ(c))α1

Γ(α1 + 1)
(`1r + M)

)
+ |B|

( p

∑
r=1

vr
(ψ(ςr)− ψ(c))α1+1

Γ(α1 + 2)
(`1r + M)

+
q

∑
s=1

τs
(ψ(σs)− ψ(c))α1

Γ(α1 + 1)
(`1r + M) + |k|

q

∑
s=1

τs(ψ(σs)− ψ(c))‖u‖
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+
1
2
|k|

p

∑
r=1

vr(ψ(ςr)− ψ(c))2‖u‖+ |k|(ψ(d)− ψ(c)‖v‖

+
(ψ(d)− ψ(c))α1

Γ(α1 + 1)
(`2r + N)

)]

≤ (`1r + M)
{ (ψ(d)− ψ(c))α1

Γ(α1 + 1)
+

(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆| (ψ(d)− ψ(c))α1

Γ(α1 + 1)

+|B|
( p

∑
r=1

vr
(ψ(ςr)− ψ(c))α1+1

Γ(α2 + 2)
+

q

∑
s=1

τs
(ψ(σs)− ψ(c))α1

Γ(α1 + 1)

)]}

+(`2r + N)
{ (ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆|
( n

∑
i=1

µi
(ψ(ηi)− ψ(c))α1+1

Γ(α1 + 2)

+
m

∑
j=1

θj
(ψ(ξ j)− ψ(c))α1

Γ(α1 + 1)

)
+ |B| (ψ(d)− ψ(c))α1

Γ(α1 + 1)

]}
+ r
{
|k|(ψ(d)− ψ(c))

+
(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆||k|(ψ(d)− ψ(c)) + |B|

(
|k|

q

∑
s=1

τs(ψ(σs)− ψ(c))

+
1
2
|k|

p

∑
r=1

vr(ψ(ςr)− ψ(c))2
)]}

+ r
(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆|
(
|k|

m

∑
j=1

θj(ψ(ξ j)− ψ(c))

+
1
2
|k|

n

∑
i=1

µi(ψ(ηi)− ψ(c))2
)
+ |B||k|(ψ(d)− ψ(c))

]

= A1(`1r + M) +A2(`2r + N) + r(A3 +A4).

Hence
‖P1(u, v)‖ ≤ A1(`1r + M) +A2(`2r + N) + r(A3 +A4).

Similarly, we find that

‖P2(u, v)‖ ≤ B1(`1r + M) + B2(`2r + N) + r(B3 + B4).

Consequently, we have

‖P(x, y)‖ ≤
[
`1(A1 + B1) + `2(A2 + B2) +A3 +A4 + B3 + B4

]
r

+(A1 + B1)M + (A2 + B2)N ≤ r,

which implies that PBr ⊂ Br.

Next we show that P : X ×X → X ×X is a contraction.

Using condition (H1), for any (u1, v1), (u2, v2) ∈ X × X and for each z ∈ [c, d],
we have

|P1(u1, v1)(z)−P1(u2, v2)(z)|

≤ |k|
∫ d

c
ψ′(s)|u1(s)− u2(s)|ds + Iα1;ψ

c+ | fu1v1 − fu2v2 |(z)

+
(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆|
( n

∑
i=1

µi

∫ ηi

c
ψ′(s)Iα1;ψ|gu1v1 − gu2v2 |(s)ds

+
m

∑
j=1

θj Iα1;ψ|gu1v1 − gu2v2 |(ξ j) + |k|
m

∑
j=1

θj

∫ ξ j

c
ψ′(s)|v1(s)− v2(s)|ds

+|k|
n

∑
i=1

µi

∫ ηi

c
ψ′(s)

∫ s

c
ψ′(s)|v(t)|dtds + |k|

∫ d

c
ψ′(t)|u1(s)− u2(s)|ds
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+Iα1;ψ
c+ | fu1v1 − fu2v2 |(b)

)
+ |B|

( p

∑
r=1

vr

∫ ςr

c
ψ′(s)Iα1;ψ| fu1v1 − fu2v2 |(s)ds

+
q

∑
s=1

τs Iα1;ψ| fu1v1 − fu2v2 |(σs) + |k|
q

∑
s=1

τs

∫ σs

c
ψ′(s)|u1(s)− u2(s)|ds

+|k|
p

∑
r=1

vr

∫ ςr

c
ψ′(s)

∫ s

c
ψ′(t)|u(t)|dtds + |k|

∫ d

c
ψ′(s)|v1(s)− v2(s)|ds

+Iα1ψ
c+ |gu1v1 − gu2v2 |(d)

)]

≤ |k|(ψ(d)− ψ(c))‖u1 − u2‖+
(ψ(d)− ψ(c))α1

Γ(α1 + 1)
`1(‖u1 − u2‖+ ‖v1 − v2‖)

+
(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆|
( n

∑
i=1

µi
(ψ(ηi)− ψ(c))α1+1

Γ(α1 + 2)
`2(‖u1 − u2‖+ ‖v1 − v2‖)

+
m

∑
j=1

θj
(ψ(ξ j)− ψ(c))α1

Γ(α1 + 1)
(`2r + N) + |k|

m

∑
j=1

θj(ψ(ξ j)− ψ(c))‖v1 − v2‖

+
1
2
|k|

n

∑
i=1

µi(ψ(ηi)− ψ(c))2‖v1 − v2‖+ |k|(ψ(d)− ψ(c))‖u1 − u2‖

+
(ψ(d)− ψ(c))α1

Γ(α1 + 1)
`1(‖u1 − u2‖+ ‖v1 − v2‖)

)

+|B|
( p

∑
r=1

vr
(ψ(ςr)− ψ(c))α1+1

Γ(α1 + 2)
`1(‖u1 − u2‖+ ‖v1 − v2‖)

+
q

∑
s=1

τs
(ψ(σs)− ψ(c))α1

Γ(α1 + 1)
`1(‖u1 − u2‖+ ‖v1 − v2‖)

+|k|
q

∑
s=1

τs(ψ(σs)− ψ(c))‖u1 − u2‖+
1
2
|k|

p

∑
r=1

vr(ψ(ςr)− ψ(c))2‖u1 − u2‖

+|k|(ψ(d)− ψ(c)‖v1 − v2‖+
(ψ(d)− ψ(c))α1

Γ(α1 + 1)
`2(‖u1 − u2‖+ ‖v1 − v2‖)

)]

≤ `1(‖u1 − u2‖+ ‖v1 − v2‖)
{ (ψ(d)− ψ(c))α1

Γ(α1 + 1)

+
(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆| (ψ(d)− ψ(c))α1

Γ(α1 + 1)
+ |B|

( p

∑
r=1

vr
(ψ(ςr)− ψ(c))α1+1

Γ(α1 + 2)

+
q

∑
s=1

τs
(ψ(σs)− ψ(c))α1

Γ(α1 + 1)

)]}

+`2(‖u1 − u2‖+ ‖v1 − v2‖)
{ (ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆|
( n

∑
i=1

µi
(ψ(ηi)− ψ(c))α1+1

Γ(α1 + 2)

+
m

∑
j=1

θj
(ψ(ξ j)− ψ(c))α1

Γ(α1 + 1)

)
+ |B| (ψ(d)− ψ(c))α1

Γ(α1 + 1)

]}

+‖u1 − u2‖
{
|k|(ψ(d)− ψ(c)) +

(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆||k|(ψ(d)− ψ(c))

+|B|
(
|k|

q

∑
s=1

τs(ψ(σs)− ψ(c)) +
1
2
|k|

p

∑
r=1

vr(ψ(ςr)− ψ(c))2
)]}

+
(ψ(b)− ψ(a))γ−1

|Λ|Γ(γ)
[
|∆|
(
|k|

m

∑
j=1

θj(ψ(ξ j)− ψ(a))

+
1
2
|k|

n

∑
i=1

µi(ψ(ηi)− ψ(c))2
)
+ |B||k|(ψ(d)− ψ(c))

]
‖v1 − v2‖
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= (`1A1 + `2A2)(‖u1 − u2‖+ ‖v1 − v2‖) +A3‖u1 − u2‖+A4‖v1 − v2‖.
≤ (`1A1 + `2A2) +A3 +A4)(‖v1 − v2‖+ ‖v1 − v2‖),

and therefore

‖P1(u1, v1)−P1(u2, v2)‖ ≤ (`1A1 + `2A2) +A3 +A4)(‖u1 − u2‖+ ‖v1 − v2‖). (25)

Similarly, we find that

‖P2(u1, v1)−P2(u2, v2)‖ ≤ (`1B1 + `2B2) + B3 + B4)(‖u1 − u2‖+ ‖v1 − v2‖). (26)

From (25) and (26), it yields

‖P(u1, u1)−P(u2, u2)‖ ≤
[
`1(A1 + B1) + `2(A2 + B2) +A3 +A4 + B3 + B4

]

×
(
‖u1 − u2‖+ ‖v1 − v2‖

)
.

Since `1(A1 + B1) + `2(A2 + B2) +A3 +A4 + B3 + B4 < 1, by (23), the operator P
is a contraction. Therefore, using the Banach contraction mapping principle (Lemma 1),
the operator P has a unique fixed point. Hence, system (5) has a unique solution on [c, d].
The proof is completed.

4.2. Existence Result via Leray-Schauder Alternative

The Leray–Schauder alternative (Lemma 3) is used in the proof of our first existence
result.

Theorem 2. Let Λ 6= 0, and f , g : [c, d]×R2 → R be continuous functions. Assume that:

(H2) There exist real constants ui, vi ≥ 0 for i = 1, 2 and u0, v0 > 0 such that for all u, v ∈ R,
we have

| f (z, u(z), v(z))| ≤ u0 + u1|u|+ u2|v|,
|g(z, u(z), v(z))| ≤ v0 + v1|u|+ v2|v|.

If (A1 + B1)u1 + (A2 + B2)v1 +A3 + B3 < 1 and (A1 + B1)u2 + (A2 + B2)v2 +A4 +
B4 < 1, where Ai, Bi for i = 1, 2 are given by (15)–(18) and (19)–(22), respectively, then the
system (5) admits at least one solution on [c, d].

Proof. Obviously, the operator P is continuous, due to the continuity of the functions f , g
on [c, d]×R2. Now, show that the operator P : X ×X → X ×X is completely continuous.
Let Br ⊂ X × X be a bounded set, where Br = {(u, v) ∈ X × X : ‖(u, v)‖ ≤ r}. Then,
for any (u, v) ∈ Br, there exist positive real numbers W1 and W2 such that | fuv(z)| =
| f (z, u(t), v(z))| ≤W1 and |guv(z)| = |g(z, u(z), v(z))| ≤W2.

Thus, for each (u, v) ∈ Br we have

|P1(u, v)(z)|

≤ |k|
∫ d

c
ψ′(s)|u(s)|ds + Iα1;ψ

c+ | fuv(z)|

+
(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆|
( n

∑
i=1

µi

∫ ηi

c
ψ′(s)Iα1;ψ|guv(s)|ds +

m

∑
j=1

θj Iα1;ψ|guv(ξ j)|

+|k|
m

∑
j=1

θj

∫ ξ j

c
ψ′(s)|v(s)|ds + |k|

n

∑
i=1

µi

∫ ηi

c
ψ′(s)

∫ s

c
ψ′(t)|v(t)|dtds

+|k|
∫ d

c
ψ′(s)|u(s)|ds + Iα1;ψ

c+ | fuv|(d)
)
+ |B|

( p

∑
r=1

vr

∫ ςr

c
ψ′(s)Iα1;ψ| fuv|(s)ds
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+
q

∑
s=1

τs Iα1;ψ| fuv|(σs) + |k|
q

∑
s=1

τs

∫ σs

c
ψ′(s)|u(s)|ds

+|k|
p

∑
r=1

vr

∫ ςr

c
ψ′(s)

∫ s

c
ψ′(t)|u(t)|dtds

+|k|
∫ d

c
ψ′(s)|v(s)|ds + Iα1ψ

c+ |guv|(d)
)]

≤ |k|(ψ(d)− ψ(c))‖u‖+ (ψ(d)− ψ(c))α1

Γ(α1 + 1)
W1

+
(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆|
( n

∑
i=1

µi
(ψ(ηi)− ψ(c))α1+1

Γ(α1 + 2)
W2 +

m

∑
j=1

θj
(ψ(ξ j)− ψ(c))α1

Γ(α1 + 1)
W2

+|k|
m

∑
j=1

θj(ψ(ξ j)− ψ(c))‖v‖+ 1
2
|k|

n

∑
i=1

µi(ψ(ηi)− ψ(c))2‖v‖

+|k|(ψ(d)− ψ(c))‖u‖+ (ψ(d)− ψ(c))α1

Γ(α1 + 1)
W1

)
+ |B|

( p

∑
r=1

vr
(ψ(ςr)− ψ(c))α1+1

Γ(α1 + 2)
W1

+
q

∑
s=1

τs
(ψ(σs)− ψ(c))α1

Γ(α1 + 1)
W1 + |k|

q

∑
s=1

τs(ψ(σs)− ψ(c))‖u‖

+
1
2
|k|

n

∑
r=1

vr(ψ(ςr)− ψ(c))2‖u‖+ |k|(ψ(d)− ψ(c)‖v‖+ (ψ(d)− ψ(c))α1

Γ(α1 + 1)
W2

)]

≤ W1

{ (ψ(d)− ψ(c))α1

Γ(α1 + 1)
+

(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆| (ψ(d)− ψ(c))α1

Γ(α1 + 1)

+|B|
( n

∑
r=1

vr
(ψ(ςr)− ψ(a))α1+1

Γ(α1 + 2)
+

q

∑
s=1

τs
(ψ(σs)− ψ(c))α1

Γ(α1 + 1)

)]}

+W2

{ (ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆|
( n

∑
i=1

µi
(ψ(ηi)− ψ(c))α1+1

Γ(α1 + 2)

+
m

∑
j=1

θj
(ψ(ξ j)− ψ(c))α1

Γ(α1 + 1)

)
+ |B| (ψ(d)− ψ(c))α1

Γ(α1 + 1)

]}
+ r
{
|k|(ψ(d)− ψ(c))

+
(ψ(d)− ψ(c))γ−1

Γ(γ)

[
|∆||k|(ψ(d)− ψ(c)) + |B|

(
|k|

q

∑
s=1

τs(ψ(σs)− ψ(c))

+
1
2
|k|

p

∑
r=1

vr(ψ(ςr)− ψ(c))2
)]}

+ r
(ψ(d)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆|
(
|k|

m

∑
j=1

θj(ψ(ξ j)− ψ(c))

+
1
2
|k|

n

∑
i=1

µi(ψ(ηi)− ψ(c))2
)
+ |B||k|(ψ(d)− ψ(c))

]

= A1W1 +A2W2 + r(A3 +A4),

which yields

‖P1(u, v)‖ ≤ A1W1 +A2W2 + r(A3 +A4).

Similarly, we obtain that

‖P2(u, v)‖ ≤ B1W1 + B2W2 + r(B3 + B4).

Hence, from the above inequalities, we find that the operatorP is uniformly bounded, since

‖P(u, v)‖ ≤ (A1 + B1)W1 + (B1 + B2)W2 + r(A3 +A4 + B3 + B4).
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Next, we prove that the operator P is equicontinuous. Let τ1, τ2 ∈ [c, d] with τ1 < τ2.
Then, we have

|P1(u, v)(τ2)−P1(u, v)(τ1)|
≤

∣∣∣Iα1;ψ
c+ fuv(τ2)− Iα1;ψ

c+ fuvz(τ1)
∣∣∣

+
(ψ(τ2)− ψ(c))γ−1 − (ψ(τ1)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆|
( n

∑
i=1

µi

∫ ηi

c
ψ′(s)Iα1;ψ|guv(s)|ds

+
m

∑
j=1

θj Iα1;ψ|guv(ξ j)|+ |k|
m

∑
j=1

θj

∫ ξ j

c
ψ′(s)|v(s)|ds

+|k|
n

∑
i=1

µi

∫ ηi

c
ψ′(s)

∫ s

c
ψ′(t)|v(t)|dtds + |k|

∫ d

c
ψ′(s)|u(s)|ds + Iα1;ψ

c+ | fuv|(d)
)

+|B|
( p

∑
r=1

vr

∫ ςr

c
ψ′(s)Iα1;ψ| fuv|(s)ds +

q

∑
s=1

τs Iα1;ψ| fuv|(σs)

+|k|
q

∑
s=1

τs

∫ σs

c
ψ′(s)|u(s)|ds + |k|

p

∑
r=1

vr

∫ ςr

c
ψ′(s)

∫ s

c
ψ′(t)|u(t)|dtds

+|k|
∫ d

c
ψ′(s)|v(s)|ds + Iα1ψ

c+ |guv|(d)
)]

≤ W1

∣∣∣∣∣
∫ τ1

c
ψ′(s)

(ψ(τ2)− ψ(s))α1−1 − (ψ(τ1)− ψ(s))α1−1

Γ(α1)
ds

+
∫ τ2

τ1

ψ′(s)
(ψ(τ2)− ψ(s))α1−1

Γ(α1)
ds

∣∣∣∣∣

+
(ψ(τ2)− ψ(c))γ−1 − (ψ(τ1)− ψ(c))γ−1

|Λ|Γ(γ)
[
|∆|
( n

∑
i=1

µi
(ψ(ηi)− ψ(c))α1+1

Γ(α1 + 2)
W2

+
m

∑
j=1

θj
(ψ(ξ j)− ψ(c))α1

Γ(α1 + 1)
W2 + |k|

m

∑
j=1

θj(ψ(ξ j)− ψ(c))‖v‖

+
1
2
|k|

n

∑
i=1

µi(ψ(ηi)− ψ(c))2‖v‖+ |k|(ψ(d)− ψ(c))‖u‖

+
(ψ(d)− ψ(c))α1

Γ(α1 + 1)
W1

)
+ |B|

( p

∑
r=1

vr
(ψ(ςr)− ψ(c))α1+1

Γ(α1 + 2)
W1

+
q

∑
s=1

τs
(ψ(σs)− ψ(c))α1

Γ(α1 + 1)
W1 + |k|

q

∑
s=1

τs(ψ(σs)− ψ(c))‖u‖

+
1
2
|k|

p

∑
r=1

vr(ψ(ςr)− ψ(c))2‖u‖+ |k|(ψ(d)− ψ(c)‖v‖+ (ψ(d)− ψ(c))α1

Γ(α1 + 1)
W2

)]

≤ W1

Γ(α1 + 1)

[
2(ψ(τ2)− ψ(τ1))

α1 + (ψ(τ2)− ψ(c))α1 − (ψ(τ1)− ψ(c))α1
]

+
[(ψ(τ2)− ψ(c))γ−1 − (ψ(τ1)− ψ(c))γ−1]

|Λ|Γ(γ)

{
W1|∆|

(ψ(d)− ψ(c))α1

Γ(α1 + 1)

+|B|W1

( p

∑
r=1

vr
(ψ(ςr)− ψ(c))α1+1

Γ(α1 + 2)
+

q

∑
s=1

τs
(ψ(σs)− ψ(c))α1

Γ(α1 + 1)

)

+W2

[
|∆|
( (ψ(d)− ψ(c))γ−1

|Λ|Γ(γ) +
m

∑
j=1

θj
(ψ(ξ j)− ψ(c))α1

Γ(α1 + 1)

)
+ |B| (ψ(d)− ψ(c))α1

Γ(α1 + 1)

]

+r
[
|∆||k|(ψ(d)− ψ(c)) + |B|

(
|k|

q

∑
s=1

τs(ψ(σs)− ψ(c))
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+
1
2
|k|

p

∑
r=1

vr(ψ(ςr)− ψ(c))2
)]

+ r
[
|∆|
(
|k|

m

∑
j=1

θj(ψ(ξ j)− ψ(c))

+
1
2
|k|

n

∑
i=1

µi(ψ(ηi)− ψ(c))2
)
+ |B||k|(ψ(d)− ψ(c))

]}
.

Therefore, we obtain

|P1(u, v)(τ2)−P1(u, v)(τ1)| → 0, as τ1 → τ2.

Analogously, we can obtain the following inequality:

|P2(u, v)(τ2)−P2(u, v)(τ1)| → 0, as τ1 → τ2.

Hence, the set PΦ is equicontinuous. Accordingly, the Arzelá–Ascoli theorem implies
that the operator P is completely continuous.

Finally, we show the boundedness of the set Ξ = {(u, v) ∈ X ×X : (u, v) = µP(u, v),
0 ≤ µ ≤ 1}. Let any (u, v) ∈ Ξ, then (u, v) = µP(u, v). We have, for all z ∈ [c, d],

u(z) = µP1(u, v)(z), v(z) = µP2(u, v)(z).

Then, we obtain

‖u‖ ≤ (u0 + u1‖u‖+ u2‖v‖)A1 + (v0 + v1‖u‖+ v2‖v‖)A2 + ‖u‖(A3 + B3),

‖v‖ ≤ (u0 + u1‖u‖+ u2‖v‖)B1 + (v0 + v1‖u‖+ v2‖v‖)B2 + ‖v‖(A4 + B4),

which imply that

‖u‖+ ‖v‖ ≤ (A1 + B1)u0 + (A2 + B2)v0 +
[
(A1 + B1)u1 + (A2 + B2)v1

+A3 + B3

]
‖u‖+

[
(A1 + B1)u2 + (A2 + B2)v2 +A4 + B4

]
‖v‖.

Thus, we obtain

‖(u, v)‖ ≤ (A1 + B1)u0 + (A2 + B2)v0

M∗
, (27)

where M∗ = min{1− (A1 + B1)u1 − (A2 + B2)v1 − (A3 + B3), 1− (A1 + B1)u2 − (A2 +
B2)v2 − (A4 + B4)}, which shows that the set Ξ is bounded. Therefore, via the Leray–
Schauder alternative (Lemma 3), the operator P has at least one fixed point. Hence, we
deduce that problem (5) admits a solution on [c, d], which completes the proof.

4.3. Existence Result via Krasnosel’skiĭ’s Fixed Point Theorem

Now we apply Krasnosel’skiĭ’s fixed point theorem (Lemma 4) to prove our second
existence result.

Theorem 3. Let Λ 6= 0 and f , g : [c, d]×R2 −→ R be continuous functions which satisfy the
condition (H1) in Theorem 1. In addition, we assume that there exist two positive constants Z1, Z2
such that, for all z ∈ [c, d] and ui, vi ∈ R, i = 1, 2, we have

| f (z, u1, v1) |≤ Z1

| f (z, u1, v1) |≤ Z2. (28)

Moreover, assume thatA3 +A4 < 1, B3 +B4 < 1 and
[
(d− c)α1

Γ(α1 + 1)
`1 +

(d− c)α1

Γ(α1 + 1)
`2

]
< 1.

Then, problem (5) admits at least one solution on [c, d].

Proof. Let the operator P , defined by (12), be decomposed into four operators as
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M(u, v)(z) = k
∫ t

c
ψ′(s)u(s)ds

+
(ψ(z)− ψ(c))γ−1

ΛΓ(γ)

[
∆
( n

∑
i=1

µi

∫ ηi

c
ψ′(s)Iα1 ;ψguv(s)ds +

m

∑
j=1

θj Iα1 ;ψguv(ξ j)

−k
m

∑
j=1

θj

∫ ξ j

c
ψ′(s)v(s)ds− k

n

∑
i=1

µi

∫ ηi

c
ψ′(s)

∫ s

c
ψ′(t)v(t)dtds

+k
∫ d

c
ψ′(s)u(s)ds− Iα1 ;ψ

c+ fuv(d)
)
+ B

( p

∑
r=1

vr

∫ ςr

c
ψ′(s)Iα1 ;ψ fuv(s)ds

+
q

∑
s=1

τs Iα1 ;ψ fuv(σs)− k
q

∑
s=1

τs

∫ σs

c
ψ′(s)u(s)ds

−k
p

∑
r=1

vr

∫ ςr

c
ψ′(s)

∫ s

c
ψ′(t)u(t)dtds

+k
∫ d

c
ψ′(s)v(s)ds− Iα1 ;ψ

c+ guv(d)
)]

,

N (u, v)(z) = Iα1 ;ψ
c+ fuv(z),

T (u, v)(z) = −k
∫ z

c
ψ′(s)v(s)ds

+
(ψ(z)− ψ(c))γ1−1

ΛΓ(γ1)

[
A
( p

∑
r=1

vr

∫ ςr

c
ψ′(s)Iα1 ;ψ fuv(s)ds +

q

∑
s=1

τs Iα1 ;ψh1(σs)

−k
q

∑
s=1

τs

∫ σs

c
ψ′(s)u(s)ds− k

p

∑
r=1

vr

∫ ςr

c
ψ′(s)

∫ s

c
ψ′(t)u(t)dtds

+k
∫ d

c
ψ′(s)v(s)ds− Iα1ψ

c+ guv(d)
)
+ Γ

( n

∑
i=1

µi

∫ ηi

c
ψ′(s)Iα1 ;ψguv(s)ds

+
m

∑
j=1

θj Iα1 ;ψguv(ξ j)− k
m

∑
j=1

θj

∫ ξ j

c
ψ′(s)v(s)ds

−k
n

∑
i=1

µi

∫ ηi

c
ψ′(s)

∫ s

c
ψ′(t)v(t)dtds

+k
∫ d

c
ψ′(s)u(s)ds− Iα1 ;ψ

c+ fuv(d)
)]

,

R(u, v)(z) = Iα1 ;ψ
c+ guv(z). (29)

Hence, P1(u, v)(z) = M(u, v)(z) + N (u, v)(z) and P2(u, v)(z) = T (u, v)(z)+
R(u, v)(z). Let Bδ = {(u, v) ∈ X ×X ; ‖(u, v)‖ ≤ δ}, in which

δ ≥ max
{ A1Z1 +A2Z2

1− (A3 +A4)
,
B1Z1 + B2Z2

1− (B3 + B4)

}
.

First, we show that P1(x, y) + P2(u, v) ∈ Bδ for all (x, y), (u, v) ∈ Bδ. As in the proof
of Theorem 1, we have

| M(x, y)(z) +N (u, v)(z) |≤ A1Z1 +A2Z2 + (A3 +A4)δ ≤ δ,

| R(x, y)(z) + S(u, v)(z) |≤ B1Z1 + B2Z2 + (B3 + B4)δ ≤ δ. (30)

Accordingly, P1(x, y) + P2(u, v) ∈ Bδ and the condition (i) of Lemma 4 is satis-
fied. In the next step, we show that the operator (N ,R) is a contraction mapping.
For (x, y), (u, v) ∈ Bδ, we obtain

| N (x, y)(z)−N (u, v)(z) | ≤ Iα1 | fx,y − fu,v | (z)
≤ `1(‖x− u‖+ ‖y− v‖)Iα1(1)(d)

≤ `1
(d− c)α1

Γ(α1 + 1)
(‖x− u‖+ ‖y− v‖), (31)
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and

| R(x, y)(z)−R(u, v)(z) | ≤ Iα1 | gx,y − gu,v | (z)
≤ `2(‖x− u‖+ ‖y− v‖)Iα1(1)(d)

≤ `2
(d− c)α1

Γ(α1 + 1)
(‖x− u‖+ ‖y− v‖). (32)

In view of (31) and (32), we obtain

‖(N ,R)(x, y)− (N ,R)(u, v)‖

≤
[
(d− c)α1

Γ(α1 + 1)
`1 +

(d− c)α1

Γ(α1 + 1)
`2

]
(‖x− u‖+ ‖y− v‖). (33)

Since
(d− c)α1

Γ(α1 + 1)
`1 +

(d− c)α1

Γ(α1 + 1)
`2 < 1, the operator (N ,R) is a contraction and we

conclude that the condition (iii) of Lemma 4 is satisfied. In the next step, we verify the
condition (ii) of Lemma 4 for the operator (M, T ). By using the continuity of the functions
f , g, one can see that the operator (M, T ) is continuous. On the other hand, for any
(u, v) ∈ Bδ, as in the proof of Theorem 1, we have

| M(u, v)(z) |≤
(
A1 −

(ψ(d)− ψ(c))α1

Γ(α1 + 1)

)
Z1 +A2Z2 + (A3 +A4)δ = P∗,

| T (u, v)(z) |≤ B1Z1 +
(
B2 −

(ψ(d)− ψ(c))α1

Γ(α1 + 1)

)
Z2 + (B3 + B4)δ = Q∗. (34)

Accordingly, we have ‖(M, T )(u, v)‖ ≤ P∗ + Q∗, which implies that (M, T )Bδ

is uniformly bounded. Finally, it is shown that the set (M, T )Bδ is equicontinuous.
For this aim, let τ1, τ2 ∈ [c, d] with τ1 < τ2. For any (u, v) ∈ Bδ, similar to the proofs
of equicontinuous for the operators P1 and P2 in the Theorem 2, we can show that
|M(u, v)(τ2)−M(u, v)(τ1)|, |T (u, v)(τ2)−S(u, v)(τ1)| −→ 0 as τ1 −→ τ2. Consequently,
the set (M, T )Bδ is equicontinuous, and by applying the Arzelá–Ascoli theorem, the oper-
ator (M, T ) will be compact on Bδ. Therefore, by applying Lemma 4, problem (5) has at
least one solution on [c, d]. This completes the proof.

Example 1. Consider the coupled system of ψ-Hilfer-type sequential fractional differential equa-
tions with integro-multipoint boundary conditions:





(
H D

5
4 , 1

2 ;(1−e−2t) + kH D
1
4 , 1

2 ;(1−e−2t)
)

x(t) = f (t, x(t), y(t)), t ∈
[

1
11

,
12
11

]
,

(
H D

7
4 , 1

2 ;(1−e−2t) + kH D
3
4 , 1

2 ;(1−e−2t)
)

y(t) = g(t, x(t), y(t)), t ∈
[

1
11

,
12
11

]
,

x
(

1
11

)
= 0, x

(
12
11

)
=

1
7

∫ 5
11

1
11

e−2sy(s)ds +
2
13

y
(

4
11

)
+

3
17

y
(

8
11

)

+
4

19
y
(

10
11

)
+

5
23

y(1), y
(

1
11

)
= 0, y

(
12
11

)
=

6
29

∫ 3
11

1
11

e−2sx(s)ds

+
7

31

∫ 7
11

1
11

e−2sx(s)ds +
8

37
x
(

2
11

)
+

9
41

x
(

6
11

)
+

10
43

x
(

9
11

)
.

(35)

Here α1 = 5/4, α1 = 7/4, β1 = 1/2, ψ(t) = (1− e−2t), ψ′(t) = 2e−2t, c = 1/11,
d = 12/11, µ1 = 1/14, η1 = 5/11, θ1 = 2/13, θ2 = 3/17, θ3 = 4/19, θ4 = 5/23, ξ1 = 4/11,
ξ2 = 8/11, ξ3 = 10/11, ξ4 = 1, υ1 = 3/29, υ2 = 7/62, ς1 = 3/11, ς2 = 7/11, τ1 = 8/37,
τ2 = 9/41, τ3 = 10/43, σ1 = 2/11, σ2 = 6/11, σ3 = 9/11, n = 1, m = 4, p = 2,
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q = 3. We find that γ = 13/8, γ1 = 15/8, A ≈ 0.9090586723, B ≈ 0.5135134292, Γ ≈
0.4618499072, ∆ ≈ 0.7876865883, Λ ≈ 0.4788871945,A1 ≈ 1.685246952,A2 ≈ 0.6395331644,
A3 ≈ 0.1399736659, A4 ≈ 0.09267043416, B1 ≈ 0.9074990107, B2 ≈ 1.026284484, B3 ≈
0.06726442842, B4 ≈ 0.1432037148.

(i) If the nonlinear unbounded functions f and g are given by

f (z, u, v) =
11e−(z− 1

11 )

2(11z + 87)

(
u2 + 2|u|
1 + |u|

)
+

1
17

(
cos2 z + 1

)
sin |v|+ 1

7
, (36)

g(z, u, v) =
tan−1 |u|

9(1 + sin4 z)
+

11
10(11z + 43)

(
3v2 + 4|v|

1 + |v|

)
+

3
5

, (37)

then we can verify the Lipchitz conditions as

| f (z, u1, v1)− f (z, u2, v2)| ≤
1
8
(|u1 − u2|+ |v1 − v2|)

|g(z, u1, v1)− g(z, u2, v2)| ≤
1
9
(|u1 − u2|+ |v1 − v2|),

in which Lipchitz constants `1 = 1/8 and `2 = 1/9. In addition, we can compute that

`1(A1 + B1) + `2(A2 + B2) +A3 +A4 + B3 + B4 ≈ 0.9522963385 < 1.

Therefore, all assumptions of Theorem 1 are fulfilled and the conclusion of Theorem 1
can be applied—that the coupled system of ψ-Hilfer-type sequential fractional differential
equations with integro-multipoint boundary conditions (35) with (36)-(37) has a unique
solution on [1/11, 12/11].

(ii) Consider the nonlinear functions f and g given by

f (z, u, v) =
1

z + 3
+

1
6

(
u16

1 + |u|15

)
+

1
7
|v|e−u4

, (38)

g(z, u, v) =
cos2 πz + 1

3
+

1
14

(
1 + sin4 v8

)
|u|+ 1

5

( |v|23

2 + v22

)
. (39)

Observe that the above two functions f and g are bounded by

| f (z, u, v)| ≤ 11
34

+
1
6
|u|+ 1

7
|v|,

|g(z, u, v)| ≤ 2
3
+

1
7
|u|+ 1

5
|v|.

Thus, we choose constants from Theorem 2 by u0 = 11/34, v0 = 2/3, u1 = 1/6,
v1 = 1/7, u2 = 1/7 and v2 = 1/5. By direct computation, we have (A1 + B1)u1 +
(A2 + B2)v1 +A3 + B3 ≈ 0.8773363712 < 1 and (A1 + B1)u2 + (A2 + B2)v2 +A4 + B4 ≈
0.9394299590 < 1. Applying Theorem 2, we deduce that the boundary value problem (35)
with (38) and (39) has at least one solution on [1/11, 12/11].

(iii) Let the nonlinear bounded functions f and g defined by

f (z, u, v) =
11
24

z +
1
2
+

9
16

( |u|
1 + |u|

)
+

1
2

sin |v|, (40)

g(z, u, v) = 1 + cos πz +
7

10
tan−1 |u|+ 4

5

( |v|
1 + |v|

)
. (41)

It is obvious that these two functions are bounded since

| f (z, u, v)| ≤ 33
16

, and |g(z, u, v)| ≤ 7
2

.
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In addition, the condition (H1) in Theorem 1 is satisfied with `1 = 9/16 and `2 = 4/5.
Hence, we obtain A3 +A4 ≈ 0.2326441001 < 1, B3 + B4 ≈ 0.2104681432 < 1 and

[
(d− c)α1

Γ(α1 + 1)
`1 +

(d− c)α1

Γ(α1 + 1)
`2

]
≈ 0.9938694509 < 1.

Therefore, problem (35) with (40) and (41) has at least one solution on [1/11, 12/11]
by using the benefit of Theorem 3. Finally, we give a remark that Theorem 1 cannot be used
for this problem because

`1(A1 + B1) + `2(A2 + B2) +A3 +A4 + B3 + B4 ≈ 3.234185965 > 1.

5. Conclusions

In this paper, we investigated a coupled system of fractional differential equations
involving ψ-Hilfer fractional derivatives, supplemented with integro-multi-point boundary
conditions. Firstly, we proved the equivalence between a linear variant of the system (5)
and the fractional integral Equations (7) and (8). After that, the existence of a unique
solution for the system (5) was proved by using Banach’s fixed point theorem. The Leray–
Schauder alternative and Krasnosel’skiĭ’s fixed point theorem were used to obtain the
existence of solutions for the system (5). Moreover, examples were constructed to illustrate
our main results. The obtained results are new and enrich the literature on coupled systems
for nonlinear ψ-Hilfer fractional differential equations. The used methods are standard,
but their configuration on the problem (5) is new.
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Abstract: Studies have shown that fractional calculus can describe and characterize a practical system
satisfactorily. Therefore, the stabilization of fractional-order systems is of great significance. The
asymptotic stabilization problem of delayed linear fractional-order systems (DLFS) subject to state and
control constraints is studied in this article. Firstly, the existence conditions for feedback controllers
of DLFS subject to both state and control constraints are given. Furthermore, a sufficient condition for
invariance of polyhedron set is established by using invariant set theory. A new Lyapunov function is
constructed on the basis of the constraints, and some sufficient conditions for the asymptotic stability
of DLFS are obtained. Then, the feedback controller and the corresponding solution algorithms are
given to ensure the asymptotic stability under state and control input constraints. The proposed
solution algorithm transforms the asymptotic stabilization problem into a linear/nonlinear program-
ming (LP/NP) problem which is easy to solve from the perspective of computation. Finally, three
numerical examples are offered to illustrate the effectiveness of the proposed method.

Keywords: delayed linear fractional-order systems; feedback controller; positive invariant set;
asymptotic stabilization

1. Introduction

Fractional calculus almost appeared at the same time as classic calculus, but it has
not been paid more attention to due to its lack of application background and difficult
calculation. Fractional calculus has experienced rapid development during the last few
decades both in mathematics and applied sciences. It has been recognized as an excellent
tool to describe modern complex dynamics [1,2]. From this perspective, some models
governing physical phenomena have been reformulated in light of fractional calculus to
better reflect their non-local, frequency- and history-dependent properties. With the rapid
development of computer technology, fractional calculus is widely used in many fields,
such as image processing [3], fluid mechanics [4], and environmental science [5]. Time
delay often occurs in different practical systems, and the delayed fractional-order system
can better describe these phenomena [6–8].

However, time delay will lead to system performance degradation, poor stability and
even failure to work [9,10]. In fact, many scholars have extensively studied the stability
of delayed fractional-order systems. For instance, the finite-time stability was discussed
in [11–14]. Using the Laplace transform method, the globally asymptotic stability was stud-
ied in [15]. The Mittag-Leffler stability was discussed in [16,17]. The asymptotic stability
was investigated using the frequency domain method [18], integral inequality method [19],
linear matrix inequality (LMI) method [20], and Lyapunov function method [21,22].

On the other hand, for security reasons or physical constraints, the control input,
the state, and/or output variables must be bounded in practice. That is to say, the hard
constraints of these variables should be considered. At this time, how to design a feedback
controller to ensure the stability of the system under constraints is an interesting topic

Fractal Fract. 2022, 6, 67. https://doi.org/10.3390/fractalfract6020067 https://www.mdpi.com/journal/fractalfract48
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in system theory and synthesis. For constrained integer-order systems, state feedback
controllers were designed to study the asymptotic stability of linear discrete-time systems
and linear continuous-time systems under constraints in [23,24]. Based on the LMI method,
the optimization problem of state feedback controllers for linear discrete-time systems and
continuous-time systems was further analyzed in [25,26]. A more effective method to solve
the state feedback controller was developed based on the invariance of polyhedron set
in [27,28]. As for unconstrained fractional-order systems, in [29], the global stabilization
of fractional-order neural network was investigated by using the positive-system-based
method. In [30], the stabilization of fractional-order T-S fuzzy systems was discussed
by using LMI method. In [31], based on Lyapunov functions, a state feedback controller
was designed to study the stabilization of fractional-order nonlinear systems. However,
there are few studies concerning the stabilization problems of fractional-order system with
constraints, except [32]. In [32], the stabilization problem of fractional-order linear systems
with control input constraints was addressed by using the invariance of polyhedron set,
but state constraints are not considered there.

Based on the above discussions, it is not only necessary but also more challenging to
study the stabilization problem of DLFS under constraints. In this article, the stabilization
problem of DLFS with state and control constraints is studied. Our main contributions
include: (1) The sufficient conditions that ensure the state constraint set and/or the control
constraint set are positive invariant sets (PIS) are established by using the invariant set
theory; (2) A new Lyapunov function is constructed on the basis of the constraints, and
the asymptotic stability conditions for DLFS are obtained; and (3) A feedback controller
and its solution algorithm are proposed to make DLFS under the state and control input
constraints asymptotically stable.

The article is organized as follows. Some preliminaries and the problem formulation
are given in Section 2. In Section 3, existence conditions for the PIS and the feedback
controller are developed. A feedback controller and its solution algorithm are proposed
in Section 4 to ensure the DLFS under state and control constraints asymptotically stable.
To illustrative the effectiveness of the proposed method, three examples are presented in
Section 5. Section 6 contains some conclusions.

Notations: In this article, R+ denotes the set of positive real numbers, Rn denotes n
dimensional real vector space, Rn×n denotes n× n real matrices. z stands for a complex
number and Re(z) stands for the real part of z. ρi represents the ith element of vector ρ, and
Qi represents the ith row of matrix Q, Qij represents the ith row and jth column element of
matrix Q. For ρ ∈ Rn, ρ > 0(ρ > 0) means ρi > 0(ρi > 0). For a ∈ Rn, b ∈ Rn, a > b(a > b)
means ai > bi(ai > bi). A > 0 indicates that each entry of the matrix A is nonnegative.

2. Preliminaries and Problem Formulation
2.1. Preliminaries

Consider the DLFS:
{ C

0 Dα
t x(t) = Ax(t) + A0x(t− τ) + Bu(t), t > 0,

x(t) = x0, −τ 6 t 6 0,
(1)

where 0 < α 6 1, τ = constant is the time delay, A ∈ Rn×n and A0 ∈ Rn×n are the
system matrices, B ∈ Rn×m is the input matrix, x(t) ∈ Rn is the state, and u(t) ∈ Rm is the
control input.

Definition 1 ([12]). The Caputo fractional derivative of x(t) is defined as

C
0 Dα

t x(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αx′(s)ds,

where the order 0 < α 6 1 and Γ(z) =
∫ ∞

0 e−ttz−1dt, Re(z) ∈ R+.
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Definition 2 ([33]). The fractional integral of x(t) is defined as

0 Iα
t x(t) =

1
Γ(α)

∫ t

0
(t− s)α−1x(s)ds,

where the order α ∈ R+.

By the above Definition, we obtain the solution of system (1) as

x(t) = x0 + 0 Iα
t (

C
0 Dα

t x(t))
= x0 +

1
Γ(α)

∫ t
0 (t− s)α−1[Ax(s) + A0x(s− τ) + Bu(s)]ds.

Definition 3 ([34]). A continuous function β(x) : [0,+∞) −→ [0,+∞) is said to be a class-κ
function if the function β(x) is strictly increasing and β(0) = 0.

Definition 4 ([29]). A nonempty set P is called the positive invariant sets (PIS) if and only if

x0 ∈ P implies x(t) ∈ P, for t > 0,

where x(t) is the trajectory starting with the initial value x0.

Lemma 1 ([34]). Assume that there exist class-κ functions βi, i = 1, 2, 3 and a continuously
differentiable function V(x(t)) such that:

β1(‖ x(t) ‖) 6 V(x(t)) 6 β2(‖ x(t) ‖), (2)

and
C
0 Dα

t V(x(t)) 6 −β3(‖ x(t) ‖), (3)

where the order 0 < α < 1, then system (1) is guaranteed to be stable. If β3(s) > 0 for s > 0, then
system (1) is guaranteed to be asymptotically stable.

Lemma 2 ([35]). The polyhedron set P(Q, ρ) = {x(t) ∈ Rn : Qx(t) 6 ρ}, Q ∈ Rq×n,
ρ ∈ Rq, ρ > 0, and P(K, ω) = {x(t) ∈ Rn : Kx(t) 6 ω}, K ∈ Rm×n, ω ∈ Rm, ω > 0
have the relation

P(Q, ρ) ⊆ P(K, ω)

if and only if there exists L ∈ Rm×q, L > 0 such that
{

LQ = K,
Lρ 6 ω.

(4)

2.2. Problem Formulation

In this article, the following assumptions are needed.

Assumption 1. The state variables are constrained by the polyhedron set

P(Q, ρ) = {x(t) ∈ Rn : Qx(t) 6 ρ}, (5)

where Q ∈ Rq×n, q > n, and ρ ∈ Rq, ρ > 0, and the polyhedron set P(Q, ρ) is closed
and nonempty.

Assumption 2. The control input u(t) satisfies the following constraints

− w1 6 u(t) 6 w2, (6)

where w1 > 0 and w2 > 0 are real vectors.
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The asymptotic stabilization problem of DLFS (1) is to find a state feedback controller
u(t) = Kx(t) that makes all trajectories starting with the initial value x0 asymptotically
stable and also satisfy the state constraints (5) and the control constraints (6).

If there exists u(t) = Kx(t) for system (1), then, by linear constraints (6), we obtain

P(K,−w1, w2) = {x(t) ∈ Rn : −w1 6 Kx(t) 6 w2}. (7)

Let A = A + BK; clearly, u(t) = Kx(t) is the solution of the asymptotic stabilization
problem of system (1) if and only if the closed-loop system

{ C
0 Dα

t x(t) = Ax(t) + A0x(t− τ), t > 0,
x(t) = x0, −τ 6 t 6 0

(8)

is asymptotically stable, and the trajectory x(t) starting with x0 satisfy x(t) ∈ P(Q, ρ) and
x(t) ∈ P(K,−w1, w2) for any t > 0.

3. Main Results
3.1. Existence Conditions for the Feedback Controller with the Constraints

Theorem 1. The controller u(t) = Kx(t), K ∈ Rm×n is the solution of the asymptotic stabilization
problem of system (1) if

(i) There exists a PIS denoted by M ∈ Rn for the system (8) satisfies M ⊆ P(Q, ρ) and
M ⊆ P(K,−w1, w2);

(ii) There exists a Lyapunov function that makes the system (8) asymptotically stable.

Proof. Condition (i) ensures that there exists a PIS

M = {x0 ∈ Rn : ∀x0 ∈ M, x(t) , x(t; x0) ∈ M}

such that M ⊆ P(Q, ρ) and M ⊆ P(K,−w1, w2), where x(t; x0) is the trajectory starting
with x0. Then we can obtain Qx(t) 6 ρ,−w1 ≤ Kx(t) 6 w2. Furthermore, the condition
(ii) ensures that system (8) is asymptotically stable. Hence, the controller u(t) = Kx(t) is
the solution of the asymptotic stabilization problem of system (1).

When considering both the state and control constraints, let P(Q, ρ) be the PIS of
system (8), that is, P(Q, ρ) is equal to M, then we obtain:

Corollary 1. The controller u(t) = Kx(t), K ∈ Rm×n is the solution of the asymptotic stabiliza-
tion problem of system (1) if

(i) P(Q, ρ) is a PIS of the system (8) and P(Q, ρ) ⊆ P(K,−w1, w2);
(ii) There exists a Lyapunov function that makes the system (8) asymptotically stable.

Moreover, if considering only the control constraints, let P(K,−w1, w2) be the PIS of system (8),
that is, P(K,−w1, w2) is equal to M, we obtain:

Corollary 2. The controller u(t) = Kx(t), K ∈ Rm×n is the solution of the asymptotic stabiliza-
tion problem of system (1) if

(i) P(K,−w1, w2) is a PIS of the system (8);
(ii) There exists a Lyapunov function that makes the system (8) asymptotically stable.

3.2. PIS and Stability Conditions for System (8)

Theorem 2. If there exists a matrix K ∈ Rm×n, real matrices F, F0 ∈ Rq×q and a scalar ε > 0
such that 




Q(A + BK) = FQ,
QA0 = F0Q,

(F + F0)ρ 6 −ερ,
(9)
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then the system (8) is asymptotically stable and the polyhedron set P(Q, ρ) is a PIS.

Proof. Choose the Lyapunov function of the form

V(x(t)) = max
{

max
(

Q1x(t)
ρ1

, 0
)

, · · · , max
(

Qqx(t)
ρq

, 0
)}

.

If, for 1 6 i 6 q, it satisfies Qix(t)
ρi

< 0, we obtain V(x(t)) = 0. However, due to the fact
that Qix(t) cannot always be negative, this case does not exist, so V(x(t)) > 0. Hence, there
must exist an i, such that 0 < Qix(t) 6 ρi, that is to say, 0 < V(x(t)) 6 1; then, according
to (9), we obtain

C
0 Dα

t V(x(t)) = Qi
ρi

C
0 Dα

t x(t) = Qi
ρi
[Ax(t) + A0x(t− τ) + Bu(t)]

= Qi
ρi
[(A + BK)x(t) + A0x(t− τ)]

= 1
ρi
[(FQ)ix(t) + (F0Q)ix(t− τ)]

= 1
ρi

(
n
∑

j=1

q
∑

k=1
FikQkjxj(t) +

n
∑

j=1

q
∑

k=1
F0ikQkjxj(t)

)

= 1
ρi

(
q
∑

k=1
Fik

n
∑

j=1
Qkjxj(t) +

q
∑

k=1
F0ik

n
∑

j=1
Qkjxj(t)

)

6 1
ρi

( q
∑

k=1
Fikρk +

q
∑

k=1
F0ikρk

)

= 1
ρi
[(F + F0)ρ]i

6 1
ρi
(−ερi) 6 −εV(x(t)) < 0.

(10)

By Lemma 1, we conclude that the system (8) is asymptotically stable.
Assuming that x0 ∈ P(Q, ρ), i.e., Qx0 ≤ ρ and A = A+ BK, according to the Definition

of x(t), we obtain

Qx(t) = Qx0 + Q
[

1
Γ(α)

∫ t
0 (t− s)α−1[Ax(s) + A0x(s− τ)

]
ds
]

= Qx0 +
1

Γ(α)

∫ t
0 (t− s)α−1[FQx(s) + F0Qx(s− τ)]ds

6 ρ + 1
Γ(α)

∫ t
0 (t− s)α−1[FQx(s) + F0Qx(s− τ)]ds

6 ρ + 1
Γ(α)

∫ t
0 (t− s)α−1(Fρ + F0ρ)ds

6 ρ− ερ
Γ(α)

∫ t
0 (t− s)α−1ds

= ρ− ερtα

αΓ(α) 6 ρ,

hence the polyhedron set P(Q, ρ) is a PIS of system (8).

Theorem 3. If there exists a matrix K ∈ Rm×n, real matrices F, F0 ∈ Rq×q, and a scalar ε > 0
such that 




K(A + BK) = FK,
KA0 = F0K,

(F̂ + F̂0)ŵ 6 −εŵ,
(11)

where ŵ =

[
w2
w1

]
, F̂ =

[
F+ F−

F− F+

]
, and

F+
ij =

{
Fij, if i = j,
max(Fij, 0), if i 6= j,

F−ij =

{
0, if i = j,
max(−Fij, 0), if i 6= j, (12)

then the system (8) is asymptotically stable and the polyhedron set P(K,−w1, w2) is a PIS.
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Proof. From (12), we have
F = F+ − F−. (13)

Replace F in (11) with (13), let A = A + BK; then, we have

KA = FK = (F+ − F−)K,
−KA = F(−K) = (F+ − F−)(−K) = (F− − F+)K.

Hence, [
K
−K

]
A =

[
F+ F−

F− F+

][
K
−K

]
. (14)

Let Q =

[
K
−K

]
, ρ = ŵ =

[
w2
w1

]
, that is, the set P(K,−w1, w2) can be reformulated as

the form of P(Q, ρ). From (14), there exists a matrix. F̂ =

[
F+ F−

F− F+

]
, such that

QA = F̂Q. (15)

In the same way, we have
QA0 = F̂0Q. (16)

On the other hand, according to (F̂ + F̂0)ŵ 6 −εŵ, we obtain

(F̂ + F̂0)ρ 6 −ερ. (17)

According to (11), we obtain (15)–(17). Then, by Theorem 2, the system (8) is asymptot-
ically stable and the polyhedron set P(Q, ρ) is a PIS. Hence, we conclude that the system (8)
is asymptotically stable and the polyhedron set P(K,−w1, w2) is a PIS.

Theorem 4. The polyhedron sets P(Q, ρ) and P(K,−w1, w2) have the relation

P(Q, ρ) ⊆ P(K,−w1, w2)

if and only if there exists L ∈ R2m×2q, L > 0 such that




L
(

Q
Q

)
=

(
K
−K

)
,

L
(

ρ
ρ

)
6
(

w2
w1

)
.

(18)

Proof. According to Lemma 2, P(Q, ρ) ⊆ P(K, w2) is equivalent to L1 ∈ Rm×q, L1 > 0 such
that L1Q = K and L1ρ 6 w2. On the other hand, P(Q, ρ) ⊆ P(−K, w1) is equivalent to
L2 ∈ Rm×q, L2 > 0 such that L2Q = −K and L2ρ 6 w1.

Hence, P(Q, ρ) ⊆ P(K,−w1, w2) if and only if there exists L =

(
L1
L2

)
> 0, L ∈ R2m×2q

such that (18) holds.

Remark 1. Theorem 2 proposes a sufficient condition that ensures the state constraint set P(Q, ρ) is
a PIS and the system (8) is asymptotically stable. On this basis, Theorem 3 proposes a sufficient con-
dition that ensures the control constraint set P(K,−w1, w2) is a PIS and the system (8) is asymptoti-
cally stable. Theorem 4 gives a sufficient and necessary condition to ensure P(Q, ρ) ⊆ P(K,−w1, w2).
When considering both state and control constraints. One can use Theorem 2 and Theorem 4 to find
a feedback controller for the asymptotic stabilization problem of system (1) according to Corollary 1.
When considering only control constraints. One can use Theorem 3 to find a feedback controller for
the asymptotic stabilization problem of system (1) according to Corollary 2.
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4. Design Algorithms

In this section, two solution algorithms are designed for the state feedback controllers.
Case 1: Considering both the state and control constraints, by Theorem 2, Theorem

4, and Corollary 1, the solution to matrix inequalities (9) and (18) is the solution to the
feedback controller of the asymptotic stabilization problem for system (1). However, for
system (1), the rate of convergence to equilibrium is an important index. The largest ε can
ensure the fastest convergence rate to the equilibrium. This can be settled by solving the
following LP problem with objective function

S(K, F, F0, L, ε) = ε (19)

and constraints 



Q(A + BK) = FQ,
QA0 = F0Q,

(F + F0)ρ 6 −ερ,
ε > 0,

L
(

Q
Q

)
=

(
K
−K

)
,

L
(

ρ
ρ

)
6
(

w2
w1

)
.

(20)

Case 2: Considering only the control constraints, by Theorem 3 and Corollary 2, the
solution to matrix inequality (11) is the solution to the feedback controller of the asymptotic
stabilization problem for system (1). This can be found by solving the following NP problem
with objective function

S(K, F, F0, ε) = ε (21)

and constraints 



K(A + BK) = FK,
KA0 = F0K,

(F̂ + F̂0)ŵ 6 −εŵ,
ε > 0.

(22)

Consider the maximum rate of convergence, from the positive definite function

V(x(t)) = max
{

max
(

Q1x(t)
ρ1

, 0
)

, · · · , max
(

Qqx(t)
ρq

, 0
)}

,

we obtain

C
0 Dα

t V(x(t)) = Qi
ρi

C
0 Dα

t x(t) = Qi
ρi
[Ax(t) + A0x(t− τ) + Bu(t)]

= Qi
ρi
[(A + BK)x(t) + A0x(t− τ)]

= 1
ρi
[(FQ)ix(t) + (F0Q)ix(t− τ)]

= 1
ρi

(
n
∑

j=1

q
∑

k=1
FikQkjxj(t) +

n
∑

j=1

q
∑

k=1
F0ikQkjxj(t)

)

= 1
ρi

(
q
∑

k=1
Fik

n
∑

j=1
Qkjxj(t) +

q
∑

k=1
F0ik

n
∑

j=1
Qkjxj(t)

)

6 1
ρi

( q
∑

k=1
Fikρk +

q
∑

k=1
F0ikρk

)

= 1
ρi
[(F + F0)ρ]i

6 1
ρi
(−ερi) 6 −εV(x(t)) < 0.

(23)

Therefore, maximizing ε is to maximize the rate of convergence.
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Remark 2. When the system parameters A, A0, and B and the constraint parameters Q, ρ, and
ŵ are fixed, from (23) we can see that the parameter ε is closely related to the rate of convergence. If
0 < ε < 1, the largest ε can ensure the fastest convergence rate to the equilibrium.

5. Numerical Examples

Example 1. Consider the delayed fractional-order electrical circuit [36] shown in Figure 1 with the
given resistance R = 1 Ω, inductance L = 0.4167 mH, capacitance C = 1.67 mF, delay element
and source voltage u.

Figure 1. The delayed fractional-order electrical circuit in [36].

Let v(t) represent the voltage across the capacitor and i(t) represent the current passing
through the inductor, using Kirchhoff’s laws, we can write the circuit equations

[
dαv(t)

dtα

dαi(t)
dtα

]
= A

[
v(t)
i(t)

]
+ A0

[
v(t− τ)
i(t− τ)

]
+ Bu(t)

where A =

[
0 1

C
− 1

L − R
L

]
, A0 =

[
0 − 1

R
−C

L 0

]
, B =

[
0
1
L

]
.

Let x1(t) = v(t), x2(t) = i(t). Then, the above circuit equations can be written in the form of

the DLFS (1), with α = 0.7, τ = 0.1, A =

[
0 0.6
−2.4 −2.4

]
, A0 =

[
0 −1
−4 0

]
, and B =

[
0

2.4

]
.

Suppose the control input P(K,−w, w) satisfies the constraint

− 100 6 Kx(t) 6 50. (24)

Without the control input, system (1) is unstable; for the initial condition (4, 1)T , the time
response of the state is shown in Figure 2.

The asymptotic stabilization problem of DLFS (1) is to find a controller u(t) = Kx(t) that
makes all trajectories starting with the initial condition x0 asymptotically stable and meanwhile
satisfy the control constraints (24).

According to Case 2, solving the NP problem with the objective function

S(K, F, F0, ε) = ε
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and under the constraints




K
([

0 0.6
−2.4 −2.4

]
+

[
0

2.4

]
K
)
= FK

K
[

0 −1
−4 0

]
= F0K

([
F+ F−

F− F+

]
+

[
F+

0 F−0
F−0 F+

0

])[
50

100

]
6 −ε

[
50

100

]

ε > 0.

By calculation, we obtain ε = 0.8, K = [2 1], F = 1.2, and F0 = −2.
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Figure 2. The time response of the system state without feedback control.

It indicates that there exists a u(t) = [2 1]x(t) such that all trajectories originating from the
initial condition are asymptotically stable to the origin, and meanwhile the corresponding trajectory
satisfies the control constraints (24).

For the initial condition (4, 1)T , the time response of the state is shown in Figure 3.
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Figure 3. The time response of the system state with feedback control.

Additionally, u(t) satisfies the control constraints (24), which can be seen from Figure 4.
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Figure 4. The control input u(t).

So, u(t) = [2 1]x(t) is a solution to the asymptotic stabilization problem of DLFS (1).

Example 2. Consider another delayed fractional-order electrical circuits, which can be written in

the form of the DLFS (1), with α = 0.7, τ = 0.5, A =

[−3.25 10
−1 7.1

]
, A0 =

[−1 −2.2
0 −2.1

]
, and

B =

[
1

0.8

]
.

The state constraints P(Q, ρ) are

2x2(t) 6 0.8,
−x1(t) + 2x2(t) 6 2.4,

−0.5x1(t) + 4x2(t) > −1.8,
(25)

where Q =




0 2
−1 2
0.5 −4


 ∈ R3×2 and ρ =




0.8
2.4
1.8


 ∈ R3, ρ > 0. It can be easily seen that the

polyhedron set P(Q, ρ) is closed and nonempty.
Suppose the control input P(K,−w, w) satisfies the constraint

− 6 6 Kx(t) 6 9. (26)

Without the control input, system (1) is unstable, the time response of the state with the initial
condition (6.8, 0.4)T is shown in Figure 5.

The asymptotic stabilization problem of DLFS (1) is to find a controller u(t) = Kx(t) that
makes all trajectories starting from the initial value x0 asymptotically stable and meanwhile satisfy
the state constraints (25) and the control constraints (26).

According to Case 1, solving the LP problem with the objective function

S(K, F, F0, L, ε) = ε

and under the constraints
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






0 2
−1 2
0.5 −4



([−3.25 10
−1 7.1

]
+

[
1

0.8

]
K
)
= F




0 2
−1 2
0.5 −4


,




0 2
−1 2
0.5 −4



[−1 −2.2

0 −2.1

]
= F0




0 2
−1 2
0.5 −4


,

(F + F0)




0.8
2.4
1.8


 6 −ε




0.8
2.4
1.8


,

L
[

0 −1 0.5 0 −1 0.5
2 2 −4 2 2 −4

]T

=

[
K
−K

]
,

L
[
0.8 2.4 1.8 0.8 2.4 1.8

]T 6
[

9
6

]
,

ε > 0.

By computation, we obtain
ε = 0.9,

K =
[
1.25 −10

]
,

F =



−0.9 0 0
1.1 −2 0
0 0.73̇ −0.53̇


,

F0 =



−2.1 0 0

0 −1 0
0 −0.55 −2.1


,

and

L =

[
0 0 0 0 0 2.5
0 0 0 3.75 1.25 0

]
.
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Figure 5. The time response of the system state without feedback control.

It suggests that there exists u(t) = 1.25x1(t)− 10x2(t) such that all trajectories starting
from the initial condition are asymptotically stable to the origin, and meanwhile the corresponding
state trajectory satisfies the state constraints (25) and the control constraints (26).

For the initial condition (6.8, 0.4)T , the time response of the state is shown in Figure 6.
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Figure 6. The time response of the system state with feedback control.

For the initial condition (6.8, 0.4)T , the corresponding phase trajectory which satisfies the state
constraints (25) and the control constraints (26), is shown in Figure 7.
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Figure 7. The phase trajectory with the initial condition (6.8, 0.4)T .

Furthermore, u(t) satisfies the control constraints (26), which can be seen in Figure 8.
Hence, u(t) = 1.25x1(t)− 10x2(t) is a solution to the asymptotic stabilization problem of

DLFS (1).
Clearly, from Example 2, it can be seen that the control input is not saturated because the state

constraint set is a PIS. Next, we give an example without state constraints to verify the saturation
of the input control.
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Figure 8. The control input u(t).

Example 3. Consider the DLFS (1), with α = 0.8, τ = 0.8, A =

[
1 −3
−1 5

]
, A0 =

[−1 0
0 −2

]
,

and B =

[
1 1
−1 0.5

]
.

Suppose the control input P(K,−w1, w2) satisfies the constraint
[−1
−2

]
6 Kx(t) 6

[
2
4

]
. (27)

Without the control input, system (1) is unstable; for the initial condition (−1.84,−0.64)T ,
the time response of the state is shown in Figure 9.
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Figure 9. The time response of the system state without feedback control.

The asymptotic stabilization problem of DLFS (1) is to find a controller u(t) = Kx(t) that
makes all trajectories starting with the initial condition x0 asymptotically stable and meanwhile
satisfy the control constraints (27).
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According to Case 2, solving the NP problem with the objective function

S(K, F, F0, ε) = ε

and under the constraints




K
([

1 −3
−1 5

]
+

[
1 1
−1 0.5

]
K
)
= FK

K
[−1 0

0 −2

]
= F0K

([
F+ F−

F− F+

]
+

[
F+

0 F−0
F−0 F+

0

])



2
4
1
2


 6 −ε




2
4
1
2




ε > 0.

By calculation, we obtain
ε = 0.8908,

K =

[−2.051 7.444
−1.255 −2.629

]
,

F =

[−4.11 0.43
0.33 −1.96

]

and

F0 =

[−1.634 1.0362
0.2239 −1.3660

]
.

It indicates that there exists a u(t) =

[−2.051 7.444
−1.255 −2.629

]
x(t) such that all trajectories

originating from the initial condition are asymptotically stable to the origin, and meanwhile the
corresponding trajectory satisfies the control constraints (27).

For the initial condition (−1.84,−0.64)T , the time response of the state is shown in Figure 10.
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Figure 10. The time response of the system state with feedback control.

For the initial condition (−1.84,−0.64)T , the corresponding phase trajectory is shown in
Figure 11. It can be seen that the control constraints (27) is satisfied.
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Figure 11. The phase trajectory with the initial condition (−1.84,−0.64)T .

In addition, u(t) satisfies the control constraints (27), which can be seen from Figure 12.
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Figure 12. The control input u(t).

So, u(t) =
[−2.051 7.444
−1.255 −2.629

]
x(t) is a solution to the asymptotic stabilization problem of

DLFS (1).

6. Conclusions

The asymptotic stabilization problem of DLFS subject to state and control constraints
is studied. Based on the invariant set theory and fractional-order Lyapunov stability
theory, the feedback controller and the corresponding solution algorithms that ensure the
asymptotic stability of the DLFS under constraints are given. Numerical examples show
that the proposed method is effective. Stability of delayed fractional-order neural network
systems with constraints are a very interesting topic. In the future, we will study the
stabilization of delayed fractional-order neural network systems subject to constraints by
using the invariant set method.
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Abstract: In this study, we propose a novel fractional-order Jerk system. Experiments show that,
under some suitable parameters, the fractional-order Jerk system displays a chaotic phenomenon.
In order to suppress the chaotic behavior of the fractional-order Jerk system, we design two control
strategies. Firstly, we design an appropriate time delay feedback controller to suppress the chaos
of the fractional-order Jerk system. The delay-independent stability and bifurcation conditions are
established. Secondly, we design a suitable mixed controller, which includes a time delay feedback
controller and a fractional-order PDσ controller, to eliminate the chaos of the fractional-order Jerk
system. The sufficient condition ensuring the stability and the creation of Hopf bifurcation for the
fractional-order controlled Jerk system is derived. Finally, computer simulations are executed to
verify the feasibility of the designed controllers. The derived results of this study are absolutely
new and possess potential application value in controlling chaos in physics. Moreover, the research
approach also enriches the chaos control theory of fractional-order dynamical system.

Keywords: fractional-order Jerk system; chaos; hopf bifurcation; stability; time delay feedback
controller; fractional-order PDσ controller

1. Introduction

In the natural world, a great deal of natural phenomena display chaotic behavior.
Usually, there exist chaotic phenomena in various areas such as weather, climate, economy
and finance, neural networks, biological systems, fluid mechanics and so on [1–5]. The
chaotic behavior sensitively depends on the initial value of the original system. That is to
say, the dynamic behavior of the system will change greatly when the initial value of the
system changes slightly. This kind of complex dynamical behavior may be undesirable in
numerous physical sciences, biological techniques and engineering technology, since we
cannot predict the long-term development law of these systems. Based on this reason, it is
important for us to seek control techniques to suppress the chaotic behavior and make the
system generate our desired dynamical properties. This aspect has become a problem of
focus in recent years [6]. Designing valid control mechanisms to realize the target of chaos
control is very vital for both theoretical study and actual applications [7,8]. For so long,
there have been many techniques to suppress the chaos of the chaotic systems. For example,
Zheng [8] designed an adaptive feedback controller to control the chaotic behavior of a
chaotic system. Ott, Grebogi and Yorke [9] proposed an OGY control technique to suppress
the chaos of a chaotic system in 1990. Li et al. [10] controlled the chaos of a brushless DC
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motor via a nonlinear state feedback controller. Du et al. [11] suppressed the chaos of an
economic model by virtue of phase space compression. For more related works on this
theme, one can see [12–15].

Physically speaking, Jerk can be regarded as the third derivative of position with
regard to the time t [16]. Usually, it can be expressed as:

d3w1(t)
dt

= J
(

w1,
dw1(t)

dt
,

d2w1(t)
dt

)
, (1)

which is called the Jerk equation. Set





w2(t) =
dw1(t)

dt
,

w3(t) =
d2w1(t)

dt
,

(2)

then system (1) can be rewritten as the following form:





dw1(t)
dt

= w2(t),
dw2(t)

dt
= w3(t),

dw3(t)
dt

= J (w1, w2, w3).

(3)

In 2021, Liu et al. [16] established the following Jerk system:





dw1(t)
dt

= w2(t),
dw2(t)

dt
= w3(t),

dw3(t)
dt

= −α1w1(t)− α2w2(t)− α3w3(t) + α4w2
3 + α5w1(t)w2(t),

(4)

where αi(i = 1, 2, 3, 4, 5) represents the real number. By virtue of Hopf bifurcation theory,
Lyapunov exponents and bifurcation figures, Liu et al. [16] explored the chaotic dynamics
for the model (3). For details, one can see [16].

We would like to mention that the work of Liu et al. [16] merely focused on an integer-
order differential system and it does not involve the fractional-order case. Recent research
has demonstrated that the fractional-order dynamical model is regarded as a more rational
tool for depicting the authentic natural phenomena in the object world since it has greater
superiority than integer-order ones. The advantage of the fractional-order dynamical model
lies in the memory trait and hereditary peculiarity of plentiful materials and evolution
processes [17–20]. The fractional-order dynamical system displays an immense application
prospect in many subjects in artificial intelligence, neural networks, mechanics, economics,
all sorts of physical waves, bioscience and so on [21–25]. Nowadays, a number of fractional-
order differential systems have been built and rich achievements have been reported.
The exploration of Hopf bifurcation of fractional-order differential systems has especially
attracted great attention from many scholars. For instance, Djilali et al. [26] probed the
Turing–Hopf bifurcation for a fractional-order mussel-algae model; Xiao et al. [27] handled
the Hopf bifurcation control issue for fractional-order small-world networks; Xu et al. [28]
revealed the effect of leakage delay on bifurcation for fractional-order complex-valued
neural networks; Huang et al. [29] discussed the Hopf bifurcation for fractional-order
multi-delayed neural networks. In detail, we refer readers to [30–44].
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Stimulated by the discussion above and based on system (4), we establish the following
fractional-order Jerk system:





dσw1(t)
dtσ

= w2(t),

dσw2(t)
dtσ

= w3(t),

dσw3(t)
dtσ

= −α1w1(t)− α2w2(t)− α3w3(t) + α4w2
3 + α5w1(t)w2(t),

(5)

where σ ∈ (0, 1]. The study shows that the fractional-order Jerk system (5) will display
chaotic behavior when σ = 0.94, α1 = 2, α2 = 1, α3 = 1.2, α4 = 0.5, α5 = 0.9. The simulation
results can be seen in Figure 1.
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Figure 1. The numerical simulation plots of system (5) under the parameter values σ = 0.94, α1 = 2, α2 = 1, α3 = 1.2,
α4 = 0.5, α5 = 0.9.

In the present study, we are going to focus on the following two aspects:

1. Control the chaotic behavior of system (5) via designing a suitable time delay feedback
controller;

2. Control the chaotic behavior of system (5) via designing an appropriate mixed con-
troller which includes time delay feedback controller and fractional-order PDσ con-
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troller. Up to now, there have been very few papers that deal with the chaos control
via this mixed controller.

The main highlights of this research can be summarized as follows:

• Based on the previous publications, we build a novel Jerk system.
• A suitable time delay feedback controller is successfully designed to suppress the

chaotic behavior of Jerk system (5);
• A suitable mixed controller which includes time delay feedback controller and fractional-

order PDσ controller is successfully designed to suppress the chaotic behavior of the
Jerk system (5);

• The research idea can also be applied to deal with the chaos control issue for numerous
other fractional-order differential systems in many areas.

This work can be planned as follows. Basic knowledge about fractional-order dynam-
ical systems is presented in Section 2. In Section 3, we investigate the chaos control of
system (5) via a time delay feedback controller. In Section 4, we discuss the chaos control of
system (5) via designing a mixed controller, which includes a time delay feedback controller
and fractional-order PDσ controller. In Section 5, Matlab simulation figures are given to
support the derived results. Section 6 ends this study.

Remark 1. The fractional-order system (5) is derived from (4) by replacing the integer-order deriva-
tives with fractional orders. System (5) can describe the memory trait and hereditary peculiarity of
the state variables more precisely.

2. Preliminary Theory

In this segment, we state the necessary definitions and lemmas about the fractional-
order dynamical system.

Definition 1 ([35]). Define the Riemann–Liouville fractional integral of order σ for the function
g(ε) as follows:

Iσg(ε) =
1

Γ(σ)

∫ ε

ε0

(ε− ς)σ−1g(χ)dς,

where ε > ε0, σ > 0 and Γ(ς) =
∫ ∞

0 sς−1e−sds.

Definition 2 ([35]). The Caputo-tpye fractional-order derivative of order σ for the function g(ς) ∈
([ς0, ∞), R) is given by:

Dσg(ς) =
1

Γ(ι− σ)

∫ ς

ς0

g(ι)(s)
(r− s)σ−ι+1 ds,

where ς ≥ ς0 and ι stands for a positive integer (σ ∈ [ι− 1, ι)). Especially, when σ ∈ (0, 1), then

Dσg(ς) =
1

Γ(1− σ)

∫ ς

ς0

g
′
(s)

(ς− s)σ
ds.

Lemma 1 ([36]). Give the fractional-order model: Dσu = Pu, u(0) = u0, where σ ∈ (0, 1),
u ∈ Rm,H ∈ Rm×m. Let µj(j = 1, 2, · · · , m) be the root of the characteristic equation of
Dσu = Pu, then the equilibrium point of system Dσu = Pu is locally asymptotically stable
provided that |arg(µj)| > σπ

2 (j = 1, 2, · · · , m) and the equilibrium point of system Dσu = Pu
is stable, provided that |arg(µj)| > σπ

2 (j = 1, 2, · · · , m) and each critical eigenvalue satisfying
|arg(µj)| = σπ

2 (j = 1, 2, · · · , m) has geometric multiplicity one.
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3. Chaos Control via Time Delay Feedback Controller

In this segment, we shall design a suitable controller to suppress the chaotic behavior
of the chaotic Jerk system. Following the idea of Yu and Chen [37], we design the time
delay feedback controller as follows:

ζ(t) = $1[w3(t− ϑ)− w3(t)], (6)

where $1 represents feedback gain coefficient and ϑ is a delay. Adding the time delay
feedback controller (6) to the second equation of system (5), one can get:





dσw1(t)
dtσ

= w2(t),

dσw2(t)
dtσ

= w3(t) + $1[w3(t− ϑ)− w3(t)],

dσw3(t)
dtσ

= −α1w1(t)− α2w2(t)− α3w3(t) + α4w2
3 + α5w1(t)w2(t).

(7)

System (7) comes from adding a perturbation term to the second equation of system (5).
Clearly, system (7) owns one equilibrium point W1(0, 0, 0). Clearly, we can easily obtain
the following linear system of (7) near the equilibrium point W1(0, 0, 0):





dσw1(t)
dtσ

= w2(t),

dσw2(t)
dtσ

= (1− $1)w3(t) + $1w3(t− ϑ),

dσw3(t)
dtσ

= −α1w1(t)− α2w2(t)− α3w3(t).

(8)

The characteristic equation of (8) owns the following expression:

det




sσ −1 0
0 sσ ($1 − 1) + $1e−sϑ

α1 α2 s$ + α3


 = 0. (9)

Then,
Q1(s) +Q2(s)e−sϑ = 0, (10)

where { Q1(s) = s3σ + c1s2σ + c2sσ + c3,
Q2(s) = c4sσ + c5,

(11)

where 



c1 = α3,
c2 = α2(1− $1),
c3 = α1($1 − 1),
c4 = −α2$1,
c5 = −α1$1.

(12)

If ϑ = 0, then (10) becomes:

λ3 + c1λ2 + (c2 + c4)λ + c3 + c5 = 0. (13)

Suppose that

(S1)





c1 > 0,
c1(c2 + c4) > c3 + c5,
(c3 + c5)[c1(c2 + c4)− (c3 + c5)] > 0
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is true, then all the roots λ1, λ2, λ3 of (13) obey |arg(λ1)| > σπ
2 , |arg(λ2)| > σπ

2 and
|arg(λ3)| > σπ

2 . Applying Lemma 1, we can conclude that the zero equilibrium point
W1(0, 0, 0) of system (7) is locally asymptotically stable for ϑ = 0.

Suppose that s = iυ = υ
(
cos π

2 + i sin π
2
)

is the root of Equation (10). Then,

{ C1 cos υϑ + C2 sin υϑ = D1,
C2 cos υϑ− C1 sin υϑ = D2,

(14)

where 



C1 = ρ1υσ + ρ2,
C2 = ρ3υσ,
D1 = ρ4υ3σ + ρ5υ2σ + ρ6υσ + ρ7,
D2 = ρ8υ3σ + ρ9υ2σ + ρ10υσ,

(15)

where 



ρ1 = c4 cos
σπ

2
,

ρ2 = c5,

ρ3 = c4 sin
σπ

2
,

ρ4 = − cos
3σπ

2
,

ρ5 = −c1 cos σπ,

ρ6 = −c2 cos
σπ

2
,

ρ7 = −c3,

ρ8 = − sin
3σπ

2
,

ρ9 = −c1 sin σπ,

ρ10 = −c2 sin
σπ

2
.

(16)

By virtue of (14), one has

cos υϑ =
D1C1 +D2C2

C2
1 + C2

2
(17)

and
C2

1 + C2
2 = D2

1 +D2
2 . (18)

It follows from (18) that

τ1υ6σ + τ2υ5σ + τ3υ4σ + τ4υ3σ + τ5υ2σ + τ6υσ + τ7 = 0, (19)

where 



τ1 = ρ2
4 + ρ2

8,

τ2 = 2(ρ4ρ5 + ρ8ρ9),

τ3 = ρ2
5 + ρ2

9 + 2(ρ4ρ6 + ρ8ρ10),

τ4 = 2(ρ4ρ7 + ρ5ρ6 + ρ9ρ10),

τ5 = ρ2
6 + ρ2

10 − ρ2
1 − ρ2

3 + 2ρ5ρ7,

τ6 = 2(ρ6ρ7 − ρ1ρ2),

τ7 = ρ2
7 − ρ2

2.

(20)

Denote

Ξ1(υ) = τ1υ6σ + τ2υ5σ + τ3υ4σ + τ4υ3σ + τ5υ2σ + τ6υσ + τ7. (21)

If
(S2) |ρ7| < |ρ2|
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holds, since limυ→+∞ Ξ1(υ) = +∞, then Equation (19) has at least one positive real root.
Thus, Equation (10) has at least one pair of pure roots. By means of Sun et al. [40], we can
easily build the following conclusion.

Lemma 2. (1) Assume that τk > 0(k = 1, 2, · · · , 7), then Equation (10) has no root with zero real
parts for ϑ ≥ 0. (2) Assume that (S2) is fulfilled and τk > 0(k = 1, 2, · · · , 6), then Equation (10)
has a pair of purely imaginary roots ±iυ0 if ϑ = ϑ

(i)
0 (i = 1, 2, · · · , ) where

ϑ
(i)
0 =

1
υ0

[
arccos

(
D1C1 +D2C2

C2
1 + C2

2

)
+ 2iπ

]
, (22)

where i = 0, 1, 2, · · · , and υ0 > 0 represents the unique zero of Ξ1(υ).

Set ϑ0 = ϑ
(0)
0 . Now we make the following hypothesis:

(S3) A1RA2R +A1IA2I > 0,

where




A1R = 3συ3σ−1
0 cos

(3σ− 1)π
2

+ 2σc1υ2σ−1
0 cos

(2σ− 1)π
2

+ σc2υσ−1
0 cos

(σ− 1)π
2

+ σc4

[
υσ−1

0 cos
(σ− 1)π

2
cos υ0ϑ0

+υσ−1
0 sin

(σ− 1)π
2

sin υ0ϑ0

]
,

A1I = 3συ3σ−1
0 sin

(3σ− 1)π
2

+ 2σc1υ2σ−1
0 sin

(2σ− 1)π
2

+ σc2υσ−1
0 sin

(σ− 1)π
2

+ σc4

[
υσ−1

0 sin
(σ− 1)π

2
cos υ0ϑ0

−υσ−1
0 cos

(σ− 1)π
2

sin υ0ϑ0

]
,

A2R =
(

c4υσ
0 cos

σπ

2
+ c5

)
υ0 sin υ0ϑ0 −

(
c4υσ

0 sin
σπ

2

)
υ0 cos υ0ϑ0,

A2I =
(

c4υσ
0 cos

σπ

2
+ c5

)
υ0 cos υ0ϑ0 +

(
c4υσ

0 sin
σπ

2

)
υ0 sin υ0ϑ0.

(23)

Lemma 3. Suppose that s(ϑ) = η1(ϑ) + iη2(ϑ) is the root of (10) near ϑ = ϑ0 satisfying

η1(ϑ0) = 0, η2(ϑ0) = υ0, then Re
(

ds
dϑ

)∣∣∣
ϑ=ϑ0,υ=υ0

> 0.

Proof. In view of (10), one gets

(
ds
dϑ

)−1
=
A1(s)
A2(s)

− ϑ

s
, (24)

where {
A1(s) = 3σs3σ−1 + 2σc1s2σ−1 + σc2sσ−1 + σc4sσ−1e−sϑ,
A2(s) = se−sϑ(c4sσ + c5).

(25)

By (24), we have

Re

[(
ds
dϑ

)−1
]

ϑ=ϑ0,υ=υ0

= Re
[A1(s)
A2(s)

]

ϑ=ϑ0,υ=υ0

=
A1RA2R +A1IA2I

A2
2R +A2

2I
. (26)
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Applying (S3), one derives

Re

[(
ds
dϑ

)−1
]

ϑ=ϑ0,υ=υ0

> 0,

which finishes the proof.

By virtue of Lemma 1, the following conclusion can be easily derived.

Theorem 1. Suppose that (S1)–(S3) hold true, then the zero equilibrium point W1(0, 0, 0) of
system (5) is locally asymptotically stable provided that ϑ lies in the interval [0, ϑ0) and system (5)
will generate a Hopf bifurcation around the zero equilibrium point W1(0, 0, 0) for ϑ = ϑ0.

Remark 2. From Theorem 1, we can easily know that the delay stability region of system (5) is
[0, ϑ0∗) and the critical value of the onset of Hopf bifurcation of system (5) is ϑ0.

4. Chaos Control via Fractional-Order PDσσσ Controller

In this segment, we shall design an appropriate controller to suppress the chaotic
behavior of the chaotic Jerk system. Following the idea of Ding et al. [37–39], we design a
mixed controller which includes time delay feedback controller and fractional-order PDσ

controller as follows:
The time delay feedback controller is given by

ζ(t) = $2[w3(t− ϑ)− w3(t)], (27)

where $2 represents feedback gain coefficient and ϑ is a delay.
The fractional-order PDσ controller is given by:

ς(t) = µpw1(t− ϑ) + µd
dσw1(t)

dtσ
, (28)

where µp and µd 6= 1 stands for the proportional control coefficient and the derivative
control coefficient, respectively, ϑ stands for the time delay. Adding (27) and (28) to the
second equation and the first equation of system (5), we get





dσw1(t)
dtσ

= w2(t) + µpw1(t− ϑ) + µd
dσw1(t)

dtσ
,

dσw2(t)
dtσ

= w3(t) + $2[w3(t− ϑ)− w3(t)],

dσw3(t)
dtσ

= −α1w1(t)− α2w2(t)− α3w3(t) + α4w2
3 + α5w1(t)w2(t).

(29)

System (29) comes from adding two perturbation terms to the first equation and the
second equation of system (5). It follows from (29) that





dσw1(t)
dtσ

=
1

1− µd
w2(t) +

µp

1− µd
w1(t− ϑ),

dσw2(t)
dtσ

= w3(t) + $2[w3(t− ϑ)− w3(t)],

dσw3(t)
dtσ

= −α1w1(t)− α2w2(t)− α3w3(t) + α4w2
3 + α5w1(t)w2(t).

(30)
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The linear system of (30) near the zero equilibrium point is given by:





dσw1(t)
dtσ

=
1

1− µd
w2(t) +

µp

1− µd
w1(t− ϑ),

dσw2(t)
dtσ

= (1− $2)w3(t) + $2w3(t− ϑ),

dσw3(t)
dtσ

= −α1w1(t)− α2w2(t)− α3w3(t) + α4w2
3 + α5w1(t)w2(t).

(31)

The characteristic equation of (31) is given by:

det




sσ − µp
1−µd

e−sϑ − 1
1−µd

0
0 sσ ($2 − 1)− $2e−sϑ

α1 α2 sσ + α3


 = 0. (32)

Then,
V1(s) + V2(s)e−sϑ + V3(s)e−2sϑ = 0, (33)

where 


V1(s) = s3σ + d1s2σ + d2sσ + d3,
V2(s) = d4s2σ + d5sσ + d6,
V3(s) = d7,

(34)

where 



d1 = α3,
d2 = α2(1− $2),

d3 =
α1($2 − 1)

1− νd
,

d4 = − νp

1− νd
,

d5 = α2$2 −
α3

1− νd
,

d6 =
α2($2 − 1)µp − α1$2

1− νd
,

d7 =
α2$2µp

1− νp
.

(35)

Equation (33) can be rewritten as:

V1(s)esϑ + V2(s) + V3(s)e−sϑ = 0, (36)

When ϑ = 0, then (36) takes the following form:

λ3 + (d1 + d4)λ
2 + (d2 + d5)λ + d3 + d6 + d7 = 0. (37)

If

(S4)





d1 + d4 > 0,
(d1 + d4)(d2 + d5) > d3 + d6 + d7,
(d3 + d6 + d7)[(d1 + d4)(d2 + d5)− (d3 + d6 + d7)] > 0

holds, then all the roots λ1, λ2, λ3 of (37) obey |arg(λ1)| > σπ
2 , |arg(λ2)| > σπ

2 and
|arg(λ3)| > σπ

2 . Applying Lemma 1, we get that the zero equilibrium point W1(0, 0, 0) of
system (29) is locally asymptotically stable for ϑ = 0 .

Suppose that s = iθ = θ
(
cos π

2 + i sin π
2
)

is the root of Equation (36). Then,

{ M1 cos θϑ +M2 sin θϑ =M3,
N1 cos θϑ +N2 sin θϑ = N3,

(38)
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where 



M1 = e1θ3σ + e2θ2σ + e3θσ + e4,
M2 = e5θ3σ + e6θ2σ + e7θσ + e8,
M3 = e9θ2σ + e10θσ + e11,
N1 = f1θ3σ + f2θ2σ + f3θσ + f4,
N2 = f5θ3σ + f6θ2σ + f7θσ + f8,
N3 = f9θ2σ + f10θσ,

(39)

where 



e1 = cos
3θπ

2
,

e2 = d1 cos σπ,

e3 = d2 cos
σπ

2
,

e4 = d3 + d7,

e5 = − sin
3σπ

2
,

e6 = −d1 sin σπ,

e7 = −d2 sin
σπ

2
,

e8 = d7,
e9 = −d4 cos θπ,

e10 = −d5 cos
σπ

2
,

e11 = −d6,

f1 = sin
3σπ

2
f2 = d1 sin σπ,

f3 = d2 sin
σπ

2
,

f4 = d7,

f5 = cos
3θπ

2
,

f6 = d1 cos σπ,

f7 = d2 cos
σπ

2
,

f8 = d3 − d7,
f9 = −d4 sin θπ, ,

f10 = −d5 sin
σπ

2
.

(40)

It follows from (38) that:




cos θϑ =
M3N2 −N3M2

M1N2 −N1M2
,

sin θϑ =
N3M1 −N1M3

M1N2 −N1M2
.

(41)

By means of (41), one derives:

(M3N2 −N3M2)
2 + (N3M1 −N1M3)

2 = (M1N2 −N1M2)
2, (42)

which leads to

ξ1θ12σ + ξ2θ11σ + ξ3θ10σ + ξ4θ9σ + ξ5θ8σ + ξ6θ7σ + ξ7θ6σ

+ξ8θ5σ + ξ9θ4σ + ξ10θ3σ + ξ11θ2σ + ξ12θσ + ξ13 = 0, (43)
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where 



ξ1 = (e1 f5 − f1e5)
2,

ξ2 = 2(e1 f5 − f1e5)(e1 f6 + e2 f5 − f1e6 − f2e5),
ξ3 = (e1 f6 + e2 f5 − f1e6 − f2e5)

2 + 2(e1 f5 − f1e5)
× (e1 f7 + e2 f6 + e3 f5 − f1e7 − f2e6 − f3e5),
− (e9 f5 − f9e5)

2 − (e1 f9 − f9e1)
2,

ξ4 = 2(e1 f5 − f1e5)(e1 f8 + e2 f7 + e3 f6 + e4 f3 − f1e8
− f2e7 − f3e6 − f4e5) + 2(e1 f6 + e2 f5 − f1e6 − f2e5)
× (e1 f7 + e2 f6 + e3 f5 − f1e7 − f2e6 − f3e5)
− 2(e9 f5 − f9e5)(e9 f6 + e10 f5 − f9e6 − f10e5)
− 2(e1 f9 − f9e1)(e2 f9 + e1 f10 − f1e10 − f2e9),

ξ5 = (e1 f7 + e2 f6 + e3 f5 − f1e7 − f2e6 − f3e5)
2

+ 2(e1 f5 − f1e5)(e2 f8 + e3 f7 + e4 f6 − f2e8
− f3e7 − f4e6) + 2(e1 f6 + e2 f5 − f1e6 − f2e5)
× (e1 f8 + e2 f7 + e3 f6 + e4 f3 − f1e8 − f2e7
− f3e6 − f4e5)− (e9 f6 + e10 f5 − f9e6 − f10e5)

2

− 2(e9 f5 − f9e5)(e9 f7 + e10 f6 + e11 f5 − f9e7 − f10e6)

− (e2 f9 + e1 f10 − f1e10 − f2e9)
2 − 2(e1 f9 − f9e1)

× (e3 f9 + e2 f10 − f1e11 − f2e10 − f3e9),
ξ6 = 2(e1 f5 − f1e5)(e3 f8 + e4 f7 − f3e8 − f4e7)

+ 2(e1 f6 + e2 f5 − f1e6 − f2e5)(e2 f8 + e3 f7 + e4 f6
− f2e8 − f3e7 − f4e6) + 2(e1 f7 + e2 f6 + e3 f5
− f1e7 − f2e6 − f3e5)(e1 f8 + e2 f7 + e3 f6 + e4 f3 − f1e8
− f2e7 − f3e6 − f4e5)− 2(e9 f5 − f9e5)(e9 f8 + e10 f7
+ e11 f6 − f9e8 − f10e7)− 2(e9 f7 + e10 f6 + e11 f5
− f9e7 − f10e6)(e9 f8 + e10 f7 + e11 f6 − f9e8 − f10e7)
− 2(e1 f9 − f9e1)(e4 f9 + e3 f10 − f2e11 − f3e10)
− 2(e2 f9 + e1 f10 − f1e10 − f2e9)(e3 f9 + e2 f10
− f1e11 − f2e10 − f3e9),

ξ7 = (e1 f8 + e2 f7 + e3 f6 + e4 f3 − f1e8 − f2e7 − f3e6 − f4e5)
2

+ 2(e1 f5 − f1e5)(e4 f8 − f4e8) + 2(e1 f6 + e2 f5 − f1e6 − f2e5)
× (e3 f8 + e4 f7 − f3e8 − f4e7) + 2(e1 f7 + e2 f6 + e3 f5 − f1e7
− f2e6 − f3e5)(e2 f8 + e3 f7 + e4 f6 − f2e8 − f3e7 − f4e6)

− (e9 f7 + e10 f6 + e11 f5 − f9e7 − f10e6)
2

− 2(e9 f5 − f9e5)(e10 f8 + e11 f7 − f10e8)
− 2(e9 f6 + e10 f5 − f9e6 − f10e5)(e9 f8 + e10 f7
+ e11 f6 − f9e8 − f10e7)

− (e3 f9 + e2 f10 − f1e11 − f2e10 − f3e9)
2

− 2(e1 f9 − f9e1)(e4 f10 − f3e11 − f4e10)
− 2(e2 f9 + e1 f10 − f1e10 − f2e9)
× (e4 f9 + e3 f10 − f2e11 − f3e10),

(44)

76



Fractal Fract. 2021, 5, 257





ξ8 = 2(e1 f6 + e2 f5 − f1e6 − f2e5)(e4 f8 − e8 f4)
+ 2(e1 f7 + e2 f6 + e3 f5 − f1e7 − f2e6 − f3e5)
× (e3 f8 + e4 f7 − f3e8 − f4e7) + 2(e1 f8 + e2 f7
+ e3 f6 + e4 f3 − f1e8 − f2e7 − f3e6 − f4e5)(e2 f8 + e3 f7
+ e4 f6 − f2e8 − f3e7 − f4e6)− 2e11 f8(e9 f5 − f9e5)
− 2(e9 f6 + e10 f5 − f9e6 − f10e5)(e9 f8 + e10 f7
+ e11 f6 − f9e8 − f10e7)− 2(e9 f7 + e10 f6 + e11 f5
− f9e7 − f10e6)(e9 f8 + e10 f7 + e11 f6 − f9e8 − f10e7)
+ 2e11 f4(e1 f9 − f9e1)− 2(e2 f9 + e1 f10 − f1e10 − f2e9)
× (e4 f10 − e11 f3 − f4e10)− 2(e3 f9 + e2 f10
− f1e11 − f2e10 − f3e9)(e4 f9 + e3 f10
− f2e11 − f3e10),

ξ9 = (e2 f8 + e3 f7 + e4 f6 − f2e8 − f3e7 − f4e6)
2

+ 2(e3 f8 + e4 f7 − f3e8 − f4e7)(e1 f8 + e2 f7 + e3 f6 + e4 f3
− f1e8 − f2e7 − f3e6 − f4e5) + 2(e4 f8 − f4e8)
× (e1 f7 + e2 f6 + e3 f5 − f1e7 − f2e6 − f3e5)
+ 2(e3 f8 + e4 f7 − f3e8 − f4e7)(e1 f8 + e2 f7 + e3 f6 + e4 f3
− f1e8 − f2e7 − f3e6 − f4e5)− 2(e10 f8 + e11 f7 − f10e8)
× (e9 f7 + e10 f6 + e11 f5 − f9e7 − f10e6)

− (e9 f8 + e10 f7 + e11 f6 − f9e8 − f10e7)
2

− (e4 f9 + e3 f10 − f2e11 − f3e10)
2

+ 2 f4e11(e2 f9 + e1 f10 − f1e10 − f2e9)
− 2(e3 f9 + e2 f10 − f1e11 − f2e10 − f3e9)
× (e4 f10 − f3e11 − f4e10),

ξ10 = 2(e4 f8 − f4e8)(e1 f8 + e2 f7 + e3 f6
+ e4 f3 − f1e8 − f2e7 − f3e6 − f4e5) + 2(e2 f8
+ e3 f7 + e4 f6 − f2e8 − f3e7 − f4e6)
× (e3 f8 + e4 f7 − f3e8 − f4e7) + 2e11 f4
× (e3 f9 + e2 f10 − f1e11 − f2e10 − f3e9)
− 2(e4 f10 − e11 f3 − f4e10)(e4 f9 + f10e3
− f2e11 − f3e10),

ξ11 = (e3 f8 + e4 f7 − f3e8 − f4e7)
2 + 2(e4 f8 − f4e8)

× (e2 f8 + e3 f7 + e4 f6 − f2e8 − f3e7 − f4e6)− 2e11 f8
× (e9 f8 + e10 f7 + e11 f6 − f9e8 − f10e7)

− (e10 f8 + e11 f7 − f10e8)
2

− (e4 f10 − e11 f3 − f4e10)
2

− 2 f4e11(e4 f9 + e3 f10 − f2e11 − f10e3),
ξ12 = 2(e4 f8 − f4e8)(e3 f8 + e4 f7 − f3e8 − f4e7)
− 2e11 f8(e10 f8 + e11 f7 − f10e8)
+ 2e11 f4(e4 f10 − e11 f3 − f4e10),

ξ13 = (e4 f8 − e8 f4)
2 − (e11 f8)

2 − (e11 f4)
2.

(45)

Define

Ξ2(θ) = ξ1θ12σ + ξ2θ11σ + ξ3θ10σ + ξ4θ9σ + ξ5θ8σ + ξ6θ7σ

+ξ7θ6σ + ξ8θ5σ + ξ9θ4σ + ξ10θ3σ + ξ11θ2σ + ξ12θσ + ξ13. (46)

Suppose that:
(S5) (e4 f8 − e8 f4)

2 < (e11 f8)
2 + (e11 f4)

2

holds, because limθ→∞ Ξ2(θ) = +∞, then Equation (43) has at least one positive real root.
Thus Equation (33) owns at least one pair of purely roots. Applying Sun et al. [40], we
obtain the following conclusion.
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Lemma 4. Assume that ξk > 0(k = 1, 2, · · · , 13), Equation (33) possesses no root with zero real
parts for ϑ ≥ 0. (2) Assume that (S5) is fulfilled and ξk > 0 (k = 1, 2, · · · , 12), then Equation (33)
has a pair of purely imaginary roots ±iθ0 if ϑ = ϑ

(h)
0 (h = 1, 2, · · · , ) where

ϑ
(h)
0 =

1
θ0

[
arccos

(M3N2 −N3M2

M1N2 −N1M2

)
+ 2hπ

]
, (47)

where h = 0, 1, 2, · · · , and ς0 > 0 denotes the unique zero of Ξ2(θ).

Set ϑ0∗ = ϑ
(0)
0 . Now we make the hypothesis as follows:

(S6) G1RG2R + G1IG2I > 0,

where




G1R =

[
3σθ3σ−1

0 cos
(3σ− 1)π

2
+ 2σd1θ2σ−1

0 cos
(2σ− 1)π

2

+σd2θσ−1
0 cos

(σ− 1)π
2

]
cos θ0ϑ0∗ −

[
3σθ3σ−1

0 sin
(3σ− 1)π

2

+2σd1θ2σ−1
0 sin

(2σ− 1)π
2

+ σd2θσ−1
0 sin

(σ− 1)π
2

]
sin θ0ϑ0∗

+ 2σd4θ2σ−1
0 cos

(2σ− 1)π
2

+ σd5θσ−1
0 cos

(σ− 1)π
2

,

G1I =

[
3σθ3σ−1

0 cos
(3σ− 1)π

2
+ 2σd1θ2σ−1

0 cos
(2σ− 1)π

2

+σd2θσ−1
0 cos

(σ− 1)π
2

]
sin θ0ϑ0∗ +

[
3σθ3σ−1

0 sin
(3σ− 1)π

2

+2σd1θ2σ−1
0 sin

(2σ− 1)π
2

+ σd2θσ−1
0 sin

(σ− 1)π
2

]
cos θ0ϑ0∗

+ 2σd4θ2σ−1
0 sin

(2σ− 1)π
2

+ σd5θσ−1
0 sin

(σ− 1)π
2

,

G2R =
(

σ3σ
0 + d1θ2σ

0 cos σπ + d2θσ
0 cos

σπ

2
+ d3

)
θ0 sin θ0ϑ0∗

−
(

σ3σ
0 + d1θ2σ

0 sin σπ + d2θσ
0 sin

σπ

2
+ d3

)
θ0 cos θ0ϑ0∗

+ d7θ0 sin θ0ϑ0∗,

G2I =
(

σ3σ
0 + d1θ2σ

0 cos σπ + d2θσ
0 cos

σπ

2
+ d3

)
θ0 cos θ0ϑ0∗

+
(

σ3σ
0 + d1θ2σ

0 sin σπ + d2θσ
0 sin

σπ

2
+ d3

)
θ0 sin θ0ϑ0∗

+ d7θ0 cos θ0ϑ0∗.

(48)

Lemma 5. Suppose that s(ϑ) = v1(ϑ) + iv2(ϑ) is the root of (36) near ϑ = ϑ0∗ satisfying

v1(ϑ0∗) = 0, v2(ϑ0∗) = θ0, then Re
(

ds
dϑ

)∣∣∣
ϑ=ϑ0∗ ,θ=θ0

> 0.

Proof. By virtue of (36), one gets

(
ds
dϑ

)−1
=
G1(s)
G2(s)

− ϑ

s
, (49)
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where 



G1(s) =
(

3σs3σ−1 + 2σd1s2σ−1 + σd2sσ−1
)

esϑ

+ 2σd4s2σ−1 + σd5sσ−1,
G2(s) = −se−sϑ

(
s3σ + d1s2σ + d2sσ + d3

)

+ d7se−sϑ.

(50)

Then,

Re

[(
ds
dϑ

)−1
]

ϑ=ϑ0∗ ,θ=θ0

= Re
[G1(s)
G2(s)

]

ϑ=ϑ0∗ ,θ=θ0

=
G1RG2R + G1IG2I

G2
2R + G2

2I
. (51)

By virtue of (S6), one derives:

Re

[(
ds
dϑ

)−1
]

ϑ=ϑ0∗ ,θ=θ0

> 0.

The proof finishes.

Applying Lemma 1, one can derive the following result.

Theorem 2. Assume that (S4)–(S6) are satisfied, then the zero equilibrium point W1(0, 0, 0) of
system (29) is locally asymptotically stable provided that ϑ ∈ [0, ϑ0∗) and system (29) will generate
a Hopf bifurcation around the zero equilibrium point W1(0, 0, 0), when ϑ = ϑ0∗.

Remark 3. Liu et al. [16] investigated the chaotic dynamics for some quadratic Jerk system (4),
which only involves the integer-order operator. This present research is concerned with chaos control
issue for Jerk system (5), which only involves the fractional-order operator. The research approach
of [16] can not be applied to model (5) to derive chaos control results of this study. Based on this
viewpoint, we think that the derived results of this study replenish the work of [16]. In addition, the
investigation idea enriches the chaos control theory of fractional-order chaotic dynamical system.

Remark 4. Although there are many works that deal with the chaos control via time delay feedback
controller, In this paper, we deal with the chaos control by two methods. One is the classical
time delay feedback control, another is mixed control including time delay feedback control and
fractional-order PDσ control. Based on this viewpoint, we think that this paper has some novelties.

Remark 5. From Theorem 2, we can easily know that the delay stability region of system (29) is
[0, ϑ0∗) and the critical value of the onset of Hopf bifurcation of system (29) is ϑ0∗.

Remark 6. In this paper, we choose σ = 0.94, α1 = 2, α2 = 1, α3 = 1.2, α4 = 0.5, α5 = 0.9;
through computer simulations, we know that the fractional-order Jerk system (5) displays chaotic
behavior. If we choose another set of values, we also know whether system (5) will generate chaos via
computer simulations. Of course, we can deal with the chaos control via the proposed controller.

Remark 7. In [37], Yu and Chen explored the Hopf bifurcation control of integer-order system
via a time delay feedback controller. In [38], Ding et al. investigated the bifurcation control of
integer-order complex networks by PD controller. In [39], Tang et al. dealt with the Hopf bifurcation
of a congestion system via fractional-order PD control. In this work, we control the chaos of the Jerk
system (5) via a mixed controller including a time delay feedback controller and a fractional-order
PDσ controller, which owns more adjustable parameters. Thus, our work generalizes the works
of [37–39].
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5. Examples

Example 1. Consider the following fractional-order controlled Jerk system:




d0.94w1(t)
dt0.94 = w2(t),

d0.94w2(t)
dt0.94 = w3(t) + 0.5[w3(t− ϑ)− w3(t)],

d0.94w3(t)
dt0.94 = −α1w1(t)− α2w2(t)− α3w3(t) + α4w2

3 + α5w1(t)w2(t).

(52)

One can easily get that system (52) has a zero equilibrium point W1(0, 0, 0). By virtue
of Matlab software, one gets υ0 = 3.8872, ϑ0 = 1.3. The hypotheses (S1)–(S3) in Theorem 1
are fulfilled. Let ϑ = 1.25 < ϑ0 = 1.3, which implies that ϑ lies in the interval [0, 1.3). The
corresponding Matlab simulation plots are given in Figure 2. From Figure 2, one can easily
find that all the physical state variables w1, w2, w3 will tend to 0 when the time t → ∞. Let
ϑ = 1.45 > ϑ0 = 1.3, which manifests that ϑ crosses the critical numerical value 1.3. The
corresponding numerical simulation results are presented in Figure 3. Figure 3 shows very clearly
that all the physical state variables w1, w2, w3 are to preserve a periodic vibrational situation around
0 when the time t → ∞. Both cases illustrate the disappearance of chaos of the fractional-order
chaotic Jerk system (5). In addition, the bifurcation diagrams, which can be seen in Figures 4–6, are
given to demonstrating that the bifurcation value of system (52) is approximately equal to 1.3. The
numerical figures strongly support the effectiveness of the designed time delay feedback controller.

Example 2. Consider the following fractional-order controlled Jerk system:




d0.94w1(t)
dt0.94 = w2(t)− 0.5w1(t− ϑ)− 0.8

d0.94w1(t)
dt0.94 ,

d0.94w2(t)
dt0.94 = w3(t) + 0.3[w3(t− ϑ)− w3(t)],

d0.94w3(t)
dt0.94 = −2w1(t)− w2(t)− 1.2w3(t)− 0.5w2

3 + 0.9w1(t)w2(t).

(53)

One can easily get that system (53) has a zero equilibrium point W1(0, 0, 0). By virtue of
Matlab software, one gets θ0 = 2.0231, ϑ0∗ = 1.21. The hypotheses (S4)–(S6) in Theorem 2
are fulfilled. Let ϑ = 0.98 < ϑ0∗ = 1.21, which implies that ϑ lies in the interval [0, 1.21).
The corresponding Matlab simulation plots are given in Figure 7. From Figure 7, one can easily
find that all the physical state variables w1, w2, w3 will tend to 0 when the time t → ∞. Let
ϑ = 1.3 > ϑ0∗ = 1.21, which manifests that ϑ crosses the critical numerical value 1.21. The
corresponding numerical simulation results are presented in Figure 8. Figure 8 shows very clearly
that all the physical state variables w1, w2, w3 are to preserve a periodic vibrational situation around
0 when the time t→ ∞. Both cases illustrate the disappearance of chaos of fractional-order chaotic
Jerk system (5). In addition, the bifurcation diagrams, which can be seen in Figures 9–11, are
given to demonstrate that the bifurcation value of system (53) is approximately equal to 1.21. The
numerical figures strongly support the effectiveness of the designed mixed controller, which includes
the time delay feedback controller and fractional-order PDσ controller.
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Figure 2. The Matlab simulation results of the controlled Jerk system (52) with ϑ = 1.25 < ϑ0 = 1.3 and the initial value
(0.25, 0.25, 0.25).
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Figure 3. The Matlab simulation results of the controlled Jerk system (52) with ϑ = 1.45 > ϑ0 = 1.3 and the initial value
(0.25, 0.25, 0.25).
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Figure 4. The bifurcation diagram of the controlled Jerk system (52): ϑ− w1.
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Figure 5. The bifurcation diagram of the controlled Jerk system (52): ϑ− w2.
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Figure 6. The bifurcation diagram of the controlled Jerk system (52): ϑ− w3.
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Figure 7. The Matlab simulation results of the controlled Jerk system (53) with ϑ = 0.98 < ϑ0∗ = 1.21 and the initial value
(0.25, 0.25, 0.25).
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Figure 8. The Matlab simulation results of the controlled Jerk system (53) with ϑ = 1.3 > ϑ0∗ = 1.21 and the initial value
(0.25, 0.25, 0.25).
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Figure 9. The bifurcation diagram of the controlled Jerk system (53): ϑ− w1.
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Figure 10. The bifurcation diagram of the controlled Jerk system (53): ϑ− w2.
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Figure 11. The bifurcation diagram of the controlled Jerk system (53): ϑ− w3.

Remark 8. In term of the Matlab simulation results of Examples 1 and 2, we can see that the
stability domain of the controlled Jerk system (53) is narrowed and the time of creation of the Hopf
bifurcation of system (53) is advanced (in the controlled Jerk system (52), ϑ0 = 1.3, but in the
controlled Jerk system (53), ϑ0∗ = 1.21).

6. Conclusions

Chaos control is an ancient and classic problem. During the past decades, the chaos
control has attracted great interest in scientific and technological circles. In this current
work, on the basis of the previous literature, we build a new fractional-order chaotic Jerk
system. By means of a reasonable time delay feedback controller, we can effectively control
the chaotic phenomenon of the established fractional-order chaotic Jerk system. By virtue of
a suitable mixed controller, which includes a time delay feedback controller and a fractional-
order PDσ controller, we can successfully suppress the chaotic behavior of the established
fractional-order chaotic Jerk system. The investigation indicates that the time delay in the
time delay feedback controller and the mixed controller is a very momentous parameter in
controlling the chaos of the fractional-order chaotic Jerk system. The established results
of this work are completely novel and the investigation idea of this work can also be
applied to probe many chaos control issues of fractional-order differential models in lots of

89



Fractal Fract. 2021, 5, 257

disciplines. In the near future, we will try to deal with the chaos control of fractional-order
dynamical models via other mixed controllers (for example, the combination of a nonlinear
time delay feedback controller and a fractional-order PDσ controller, etc.).
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Abstract: The problem of control and stabilizing inherently non-linear and unstable magnetic lev-
itation (Maglev) systems with uncertain equilibrium states has been studied. Accordingly, some
significant works related to different control approaches have been highlighted to provide robust
control and enhance the performance of the Maglev system. This work examines a method to con-
trol and stabilize the levitation system in the presence of disturbance and parameter variations to
minimize the magnet gap deviation from the equilibrium position. To fulfill the stabilization and
disturbance rejection for this non-linear dynamic system, the fractional order PID, fractional order
sliding mode, and fractional order Fuzzy control approaches are conducted. In order to design the
suitable control outlines based on fractional order controllers, a tuning hybrid method of GWO–PSO
algorithms is applied by using the different performance criteria as Integrated Absolute Error (IAE),
Integrated Time Weighted Absolute Error (ITAE), Integrated Squared Error (ISE), and Integrated
Time Weighted Squared Error (ITSE). In general, these objectives are used by targeting the best tuning
of specified control parameters. Finally, the simulation results are presented to determine which
fractional controllers demonstrate better control performance, achieve fast and robust stability of
the closed-loop system, and provide excellent disturbance suppression effect under nonlinear and
uncertainty existing in the processing system.

Keywords: Maglev system; fractional order PID; fractional order sliding mode; fractional order fuzzy
control; GWO-PSO

1. Introduction

For the purpose of weakening the bulky friction problem in mechanical contact
connecting both stationary and active parts in the system, magnetically levitated (Maglev)
technology is used for eliminating this mechanical contact. Thus, the position of the
levitated object can be effectively adjusted and also the stiffness of the Maglev system can
be changed. For that reason, the most outstanding works have been found to be related
to the Maglev technology in a wide range of applications such as magnetic bearings [1],
high speed magnetic levitation trains [2,3], vibration isolation [4], aircraft take-off and
landing [5], analysis of forensic evidence, minerals and internal defects in plastic gears [6–8],
microelectromechanical systems [9], and disease diagnostic [10].

Since the Maglev system has non-linear dynamic characteristics and is also inherently
unstable, achieving stability and dynamic tracking performance while controlling the
position of the levitated object is a challenging task. In the literature, many studies report
suitable control strategies in order to control the position of the levitated object for achieving
better dynamic system response. Among different control strategies, Proportional–Integral-
Derivative (PID) and Linear Quadratic Regulator (LQR) controllers, which are the basic
linear control techniques, have been proposed by researchers for the Maglev system.
Yaseen [11] employed these controllers to examine the stability analysis of the Maglev
control system in the presence of disturbances. In addition, the many experiments were
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conducted for showing the superiority of which controller and comparing the controllers
in terms of providing more stability. Zhu et al. [12] designed a simple PID controller for
achieving good tracking performance of the Maglev system. However, when applied to
the Maglev system under high disturbance, the controlled system usually could not exhibit
satisfactory performance. To overcome this matter, Ghosh et al. [13] proposed a two degree
of freedom (2-DOF) PID controller for implementing the Maglev system. Moreover, the
PID controller was applied to the system for comparison in terms of superior robustness.
Acharya et al. [14] designed a 2-DOF PID controller for stabilizing a Maglev system with
time delay. However, in order to obtain the best system response, it is important to
optimally tune the controller parameters. Therefore, in that paper, the optimal values of
the parameters were identified by using symbiotic organisms search (SOS) algorithm. Also,
to show the advantage of the proposed controller, the 1-DOF PID controller was optimized
and their performances were compared as simulation results.

Apart from PID controllers, the presence of fractional order PID (FOPID) controllers
have been found in the literature to provide more design flexibility and more capable under
uncertainty and disturbances. The FOPID controller, which is introduced by Podlubny in
1994 [15], is a control application of the fractional calculus where the orders of derivatives
and integrals are non-integer. This controller is characterized by three gains (the propor-
tional, integral and derivative) and two order parameters (the integrating order and the
derivative order, λ and µ, respectively). Consequently, the PID controllers are extended to
the FOPID controllers by using two additional fractional order parameters (µ and λ) and
better performance can be provided.

The concept of the FOPID controller in improving the transient response of the Maglev
system was presented by Demirören et al. [16]. In their paper, the authors proposed an
improved optimization algorithm to update the parameters of the FOPID controller. Also,
the performance of the Maglev system with the optimized FOPID controller was examined
through transient response and frequency response analyses. In another paper, using both
ant colony optimization (ACO) algorithm and the Ziegler–Nichols technique, an FOPID
controller was designed by Mughees and Mohsin [17] for the Maglev system. Moreover,
for comparative analysis, in that paper, the results obtained with FOPID controller were
compared with that of PID controller for illustrating highly efficient results. A FOPID
controller of the Maglev system was designed based on four different performance in-
dexes by Bauer and Baranowski [18] through two methods—Nyquist stability criteria and
Simulated Annealing algorithm. In their paper, experiments were performed to validate
the robustness of the designed controllers and also the methods were compared under
external disturbances for the stability analysis of the Maglev system with designed con-
trollers. On the other hand, as a result of putting forward the concept of 2-DOF controller,
a realization of the 2-DOF FOPID control technique was addressed by Swain et al. [19]
for the Maglev system. Moreover, the proposed 2-DOF FOPID controller was compared
to its integer order counterpart in terms of superior response and robustness. One of the
other ways of implementing the fractional order 2-DOF controller was realized by Acharya
and Mishra [20] while tuning the controller with the proposed optimization algorithm
for achieving the required closed-loop performance of the Maglev system. A different
design of the 2-DOF FOPID controller was proposed by Pandey et al. [21] and applied to
the Maglev system for stabilizing the system. As a result, the detailed investigation has
been given in [22] for controlling the Maglev system based on 1 & 2-DOF integer order and
fractional order PID controllers by tuning with the optimization algorithms according to
the different performance criteria.

Due to the low sensitivity to variations in system parameters, external disturbances,
and nonlinear dynamics, one of the robust controller designs which try to solve these
transient stability problems can be considered as a sliding mode control (SMC). The SMC
method has attracted much attention in designing disturbance rejection tracking control for
the Maglev system, especially attenuating the effect of various uncertainties and external
disturbances. Starbino and Sathiyavathi [23] designed SMC for achieving the desired ball
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position of the Maglev system under model uncertainties and disturbance. Moreover,
for comparing the performances of the PID controller and SMC, simulation and physical
implementation were conducted based on servo and different trajectories, and disturbance
rejection and robustness test. In their paper, the control performance of the presented
controllers was illustrated by comparing the transient response characteristics and the
values of ISE and IAE for both PID and SMC. Shieh et al. [24] developed a robust opti-
mal SMC approach for position tracking of the Maglev system in terms of robustness to
parametric uncertainties. On the other hand, many researchers have constructed advanced
controllers by using intelligent control techniques such as neural networks and fuzzy
system. For the purpose of controlling the ball position of the Maglev system, an intelligent
SMC approach was proposed by Lin et al. [25] by using a radial basis function network.
Moreover, for verifying the effectiveness of the proposed controller, some experiments
were performed. In another work for the satisfactory tracking performance of the Maglev
system, an adaptive recurrent neural network intelligent SMC was designed by Chen and
Kuo [26]. Also, by illustrating the validity of the proposed controller, SMC and PID, some
experimental results were compared in that paper. Besides, using an adaptive technique, a
fast terminal SMC approach was developed by Boonsatit and Pukdeboon [27] for achieving
fast response and high accuracy of the Maglev system.

For the purpose of enhancing the chattering problem and improving the dynamic
response of the closed-loop controlled Maglev system, taking advantage of fractional
order calculus, the fractional order can be included into the design of SMC. Roy and
Roy [28] studied the detailed comparative analysis between SMC and FOSMC applied to
position control of the Maglev system in terms of tracking accuracy, assessing transient
response, and the improvement of control effect and energy. Pandey et al. [29] developed
fractional order integral dynamic sliding mode controllers for reducing the control effort
and increasing the robustness of the Maglev system under parameter uncertainties. For
achieving good control performance and reducing the tracking error and chattering effect,
Wang et al. [30] designed a new FOSMC for the Maglev system with fractional order. In
another work, for reducing the chattering in the SMC, a hybrid control approach based
on combination of the SMC and fuzzy control was proposed by Zhang et al. [31] for the
control of the Maglev system. The PSO was utilized for tuning the parameters of the SMC
using the exponential reaching law method. From the simulation and experiments, it could
be inferred that the proposed control approach exhibits robust performance under the
disturbances and reduces chattering effectively.

Control of the nonlinear process is more challenging, especially disturbance rejection
and no sensitivity to parameter variations as compared to that of a linear process. For
the purpose of overcoming this challenge, soft computing techniques such as fuzzy logic,
neural network, neuro-fuzzy etc. have been increasingly investigated. Among these, the
use of fuzzy logic as computational intelligence-dependent designed control method has
been recently developed, and is popular and widely used in control systems. The main
motivation of the researchers has been the use of a combination of popular and easily appli-
cable in practice methods such as Takagi-Sugeno fuzzy systems and PID control to design
different class of fuzzy PID controllers that ensure sufficient control performance. So as to
enhance the performance of a PID controlled Maglev system, by using a fuzzy inference
system for self-regulating PID controller parameters, a fuzzy PID compound controller
was designed in [32–34] for stabilizing the operation of the Maglev system. Sahoo et al. [35]
focused on control of a real time Maglev system identified based on the teaching-learning
based optimization-based functional link artificial neural network (FLANN). Moreover,
the control of this real Maglev and the identified model was performed with the fuzzy PID
controller. In that paper, the response of the identified Maglev system controlled by fuzzy
PID control was compared with that of the fuzzy PID controlled actual one. Burakov [36]
developed a fuzzy PID controller using the genetic algorithm (GA) for controlling the
Maglev system. An incremental PID control approach based on fuzzy logic inference
was proposed by Ataşlar–Ayyıldız and Karahan [37] for reducing the control effort and
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enhancing the control accuracy of the Maglev system. In the paper, by combining a fuzzy
control approach with PID control approach, a fuzzy PID controller was designed by using
the CS algorithm and also compared with the tuned PID and FOPID controllers. Moreover,
to show the superiority of the proposed controller, the simulations and comparisons were
performed in the presence of different operation conditions. In another work, modelling
of three-input fuzzy PID controller was realized by Sain and Mohan [38] for controlling
the unstable nonlinear Maglev system. In the paper, the parameters of the proposed fuzzy
PID controller were optimized with GA based on the cost function, including the error
and control effort. Moreover, the responses of the closed loop Maglev system with the
PID and proposed fuzzy PID controllers were illustrated and compared in terms of the
cost value, IAE, ISE, and control signal. In another study of the same authors, considering
fractional order calculus, the fractional order was included into a new type of fuzzy PID
controller proposed by the authors in order to perform the real-time control of the same
Maglev system [39]. The controller parameters for the fuzzy PID and fractional fuzzy PID
were also tuned by GA based on the same cost function. In the paper, the closed-loop
performances of the Maglev controlled with the proposed controllers were demonstrated
and compared according to the control signal, time domain integral error indices, and the
cost function value.

The literature survey given above evinces that various control approaches have been
proposed for the Maglev system and it is also revealed that the performance of the Maglev
system depends on mainly the structure of the controller and its optimization technique. In
the light of this information, in this paper, the main aim of this study is to experiment with
different controllers based on fractional order calculus such as FOPID, FOSMC, and FOFPID
tuned by the GWO–PSO algorithm in order to reach the optimum dynamic response of the
Maglev system under parametric uncertainties and disturbances.

The main objectives and contributions of this study are itemized as follows:

• To design and investigate the roles of the FOFPID controller in a Maglev system;
• To use the GWO–PSO algorithm in designing process of the FOFPID controller consid-

ering its optimization for the first time in the literature and due to short computation
time of the algorithm;

• To illustrate the advantage of GWO–PSO-based FOFPID over FOPID and FOSMC
tuned by the GWO–PSO algorithm for the Maglev system;

• To validate the superiority of the presented fractional order controllers compared to
the integer order counterparts proposed in the literature like PID and SMC for the
above stated system;

• To scrutinize the results based on dynamic transient responses of the fractional order
controllers tuned according to the IAE, ISE, ITAE, and ITSE;

• To carry out sensitivity analysis for assessing the robustness of the designed fractional
order controllers in the presence of parameter uncertainty, external disturbance, and
different trajectory tracking.

The organization of the article is as follows. The mathematical model of the Maglev
system is described in Section 2. The structures of the FOPID, FOSMC, and FOFPID
controllers are presented in Section 3. The GWO–PSO algorithm is given in Section 4.
The simulation results are given in Section 5. Finally, the concluding remarks are given in
Section 6.

2. Mathematical Model of the Maglev System

The schematic of the Maglev system used is shown in Figure 1, which is the experi-
mental setup implemented in [23]. The mathematical model of the system, related to the
ball position x(t) and the electromagnet coil current i(t), is given by [23]:

m
..
x = mg + k

i2

x2 (1)

95



Fractal Fract. 2021, 5, 101

where m is the mass of the levitated object, which is a ferromagnetic ball, g is the acceleration
due to gravity, and k is an electromechanical conversion constant. At the equilibrium point
(x0,i0), the value of k is obtained as follows:

k = −mgx2
0

i20
(2)
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Then, by linearizing this nonlinear model about the equilibrium point, the transfer
function is obtained as below:

X(s)
I(s)

=
− 2g

i20

s2 − 2g
x0

(3)

Since the coil current i(t) is proportional to the input voltage uin(t) i.e., uin(t) = Kai(t),
and the output of sensor xv(t) is proportional to the position of the ball x(t), i.e., xv(t) = Ksx(t),
the transfer function from uin(t) to xv(t) is obtained as:

Xv(s)
Uin(s)

=
− Ks

Ka

s2 − 2g
x0

(4)

Finally, by substituting system parameters given in [23] (reported in Table 1) into
Equation (4), the transfer function is determined as below:

G(s) =
−2502.96

s2 − 981.511
(5)

Table 1. Parameters of the Maglev System.

Parameter Notation Value

Mass of the ball (gr.) m 22
Equilibrium value of current (A.) i0 0.6105

Equilibrium value of position (mm.) x0 20
Sensor gain Ks 458.7157

The gain of the amplifier of the driving circuit Ka 5.8929
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By introducing x1(t) = xv(t) and x2(t) =
.
xv(t) as states, and y(t) = xv(t) as

output, the state space model of the system is obtained as:

.
x(t) =

[
0 1

981.511 0

]
x(t) +

[
0

−2502.96

]
uin(t)y(t) =

[
1 0

]
x(t) (6)

3. Controllers’ Design

The principles of the proposed methodology to design Fractional Order PID (FOPID)
Controller, Fractional Order Sliding Mode Control (FOSMC), and Fractional Order Fuzzy
PID (FOFPID) controllers will be presented in the subsequent subsections.

3.1. Conventional and Fractional Order PID Controller

A conventional PID controller has three parameters Kp, Ki and Kd, with the trans-
fer function:

CPID(s) = Kp + Ki
1
s
+ Kds (7)

As compared to the conventional PID controller, fractional order PID controller intro-
duces two additional adjustable parameters λ and µ. These parameters are non-integer
orders of derivative and integral, respectively. The differential equation of the FOPID
controller is given as the following [40]:

u(t) = Kpe(t) + Ki0D−λ
t e(t) + Kd0Dµ

t e(t) (8)

where 0Dα
t is the fractional calculus operator, which will be explained in detail in Section 3.4,

and e(t) is the error signal corresponding the difference between desired position and the
actual ball position. Let r(t) and rv(t) be the reference signal in meter and corresponding
sensor output in volts, respectively. Hence, the error signal is defined as the difference
between rv(t) and xv(t).

According to Equation (8), the transfer function of FOPID controller is obtained
as [40–42]:

CFOPID(s) = Kp + Ki
1
sλ

+ Kdsµ (9)

3.2. Integer Order and Fractional Order Sliding Mode Control

The objective of the controller design by using the Sliding Mode Control methodology
is to make the system output track the reference by choosing a sliding surface in the error
space [42]. For the MAGLEV system considered in this study, the convergence of sliding
variable to zero will ensure xv(t) = rv(t).

In this study, a fractional-order sliding surface based approach is used for the Frac-
tional Order SMC. For fractional-order derivative and integration, the fractional calculus
operator (0Dα

t ) explained in details in Section 3.4 is used.
Let the sliding surface, S f (t), be defined as [27–29,43]:

S f (t) = c10Dα
t e(t) + c2e(t) (10)

where c1, c2 > 0 are the tuning parameters, which determine the slope of sliding manifold
and e(t) is tracking error, as mentioned in the previous subsection, defined as the difference
between the desired position and the actual ball position in volts:

e(t) = rv(t)− xv(t) (11)

From Equation (10), the derivative of S f (t) is:

.
S f (t) = c10Dα

t
.
e(t) + c2

.
e(t) (12)

.
S f (t) = c10Dα−1

t
..
e(t) + c2

.
e(t) (13)
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where the first and the second derivative of e(t) are obtained from Equation (11), as below:

.
e(t) = − .

xv(t) = − .
x1(t) = −x2(t) (14)

..
e(t) = − .

x2(t) = −a21x1(t)− b2uin(t) (15)

In here, a21 = 981.511 is the element in the first column of the second row of the
system dynamic matrix, and b2 = −2502.96 is the element in the second row of the system
input matrix in Equation (6).

By replacing
..
e(t) with the equality in Equation (15), the first derivative of S f (t) is

obtained as [28,29,43]:
.
S f (t) = c10Dα−1

t (−a21x1(t)− b2uin(t)) + c2
.
e(t) (16)

In order to derive the equivalent control input ueq(t), the first derivative of the sliding

surface is made to
.
S f (t) = 0; hence, ueq(t) is obtained as:

ueq(t) = − 1
c1b2

[
−a21x1(t) + c20D1−α

t
.
e(t)

]
(17)

In this study, the switching input usw(t) is chosen as a sigmoid function with boundary
layer thickness γ > 0:

usw(t) = ω
S f (t)∣∣∣S f (t)
∣∣∣+ γ

(18)

In here, ω > 0 determines how fast error trajectory is required to be brought to the
sliding surface.

Then, the total control input law u(t) is obtained as follows:

u(t) = − 1
c1b2


−a21x1(t) + c20D1−α

t
.
e(t) + ω0D1−α

t
S f (t)∣∣∣S f (t)
∣∣∣+ γ


 (19)

Stability Analysis. Consider positive definite Lyapunov function as follows:

V(t) =
1
2

S2
f (t) (20)

with V(0) = 0 and V(t) > 0 for S f (t) 6= 0.
The derivative of the Lyapunov function given in Equation (20) is:

.
V(t) = S f (t)

.
S f (t) (21)

By replacing Equation (16) in Equation (21),
.

V(t) is obtained as:

.
V(t) = S f (t)

[
c10Dα−1

t (−a21x1(t)− b2uin(t)) + c2
.
e(t)

]

= S f (t)
.
S f (t)

= −ω
S2

f (t)

|S f (t)|+γ
< 0

(22)

Since the Lyapunov function V(t) is positive–definite and
.

V(t) is negative–definite
(

.
V(t) < 0), the equilibrium point at the origin S f (t) = 0 is asymptotically stable in the

sense of Lyapunov’s direct method. Moreover, all the trajectories starting off the sliding
surface S f (t) = 0 must reach it in finite time and will then remain on the surface.
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3.3. Conventional and Fractional Order Fuzzy-PID Control

The fuzzy logic controller in a closed loop control system is basically a static non-
linearity between its inputs and outputs, which can be tuned easily to match the desired
performance of the control system in a more heuristic manner without delving into the
exact mathematical description of the modeled nonlinearity.

Among different types of fuzzy logic controllers, like extensively utilized Fuzzy–PD,
Fuzzy–PI, and Fuzzy–PID in various systems, fuzzy based PID controllers have recently
become more common in overcoming nonlinear complex dynamical systems. In the
literature, the structure of the PID type fuzzy controller used in this work combines Fuzzy–
PD and Fuzzy–PI controllers with the gains as the input scaling factors and the gains as the
output scaling factors, as described by [44,45].

In this study, a structure, which is a combination of Fuzzy–PD and Fuzzy–PI con-
trollers, is discussed [37]. In the original structure in [37], the inputs are the error and the
derivative of error and the FLC output and its integral are multiplied by scaling factors
and then summed to give the total controller output. In the structure, the derivative order
and integral order are integers.

The controller structure used in this study is quite similar with the structure of the
Fuzzy PID controller mentioned above. The difference between them is that the values of
both the differentiation parameter and the integration parameter are replaced by fractional
values µ and λ, respectively. The detailed configuration of the Fractional Order Fuzzy PID
(FOFPID) controller used in this study is shown in Figure 2.
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Figure 2. Detailed configuration of the FOFPID controller.

It is observed from Figure 2 that the output of FLC (uFLC(t)) obtained by Equation (23)
is a function of an error and fractional order derivative of the error as its inputs:

uFLC(t) = f
(

See(t), Sce
dµe(t)

dtµ

)
(23)

The function f is a nonlinear fuzzy function representing input–output mapping
of the FLC. As shown in the figure, the overall output control law (uFOFPID(t)) of the
proposed FOFPID controller is a summation of fractional order integral of uFLC(t) with
non-integer order (λ) multiplied with SPI and uFLC scaled with SPD. Here, input scaling
factors (Se and Sce) are used to map input linguistic variables in the entire universe of
discourse. As for the output scaling factors, SPI and SPD normalize uFLC(t) in the range of
universe of discourse.

As a result, the control law of the proposed controller can be given as follows:

uFOPID(t) = SPD uFLC(t) + SPI
d−λ uFLC(t)

dt−λ
(24)

Looking at the internal structure of the FLC of the controller FOFPID, the input signals
and the output signal are represented with seven MFs, as shown in Figure 3. Except for NB
and PB, Gaussian membership function is used, considering its prominent benefits such as
smooth functions, non-zero at all points, and it also provides the actual information at all
points. NB and PB are chosen as Z-shape and S-shape membership functions, respectively.
The range of MFs is [−1, 1] for both inputs and outputs. The fuzzy rule table used in this
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study is shown in Table 2, and also the fuzzy control surface is presented in Figure 4. For
constructing these rules, the Standard Mac Vicar–Whelan Rule Table is considered, which
is gradually increased from NB to PB both for inputs and output [46].
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dµe(t)
dtµ

e(t) NB NM NS ZE PS PM PB

NB NB NB NB NB NM NS ZE

NM NB NB NB NM NS ZE PS

NS NB NB NM NS ZE PS PM

ZE NB NM NS ZE PS PM PB

PS NM NS ZE PS PM PB PB

PM NS ZE PS PM PB PB PB

PB ZE PS PM PB PB PB PB
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3.4. Design of Fractional Order Operator

Fractional-order calculus has been well developed; it is extensively utilized in control
engineering because it offers an enhanced number of degree of freedom of any conventional
or intelligent controller, which further enhances the closed-loop response and increases the
robustness of the closed-loop control system.

In recent years, several approximations of fractional calculus have been proposed. Some
of them are Riemann Liouville, Grunwald Letnikov, Caputo definition and Oustaloup’s
approximation. According to Riemann Liouville definition of fractional-order, the differ-
integration operator of a function f(t) is defined as:

0Dα
t f (t) =

1
Γ(n− α)

dn

dtn

∫ t

α

f (τ)

(t− τ)α−n+1 dτ (25)

where Γ(·) is the Euler’s Gamma function:

Γ(z) =
∫ ∞

0
xz−1e−xdx, <(z) > 0 (26)

In this study, FOPID, FOSMC, and FOFPID controllers have fractional order differen-
tial and integral operators. Oustaloup Recursive Approximation is used for implementation
of these controllers. Oustaloup Recursive Approximation uses a Nth order analog filter to
approximate the fractional order calculus in a certain frequency range. The approximating
transfer function provided by Oustaloup is as follows and is equivalent to sa where a is the
real number power of s:

sa = k0

N

∏
k0 = −N

s + ωkz

s + ωkp

(27)

where k0 is gain, ωkz are zeros and ωkp are poles of the filter [47,48]. These poles and zeros
are calculated as below, recursively:

ωkp = ωb

(
ωh
ωb

) k+N+ 1
2 +

a
2

2N+1
(28)

ωkz = ωb

(
ωh
ωb

) k+N+ 1
2−

a
2

2N+1
(29)

k0 = ωa
h (30)

where {ωh, ωb} is the expected fitting range and 2N + 1 represents the order of approximation [47].
In this study, the value of N is chosen as 5. Thus, fifth order filters are implemented

and the frequency range {ωh, ωb} is chosen as
{

10−3, 10+3} rad/s.

4. Controller Parameters Optimization

It is essential to optimize the controller parameters with a considered objective function
to achieve the desired control performance. In this study, the GWO–PSO algorithm is used
for the controllers’ parameter tuning and the optimization algorithm is run by minimizing
the integral-based objective functions commonly introduced in the literature.

Figure 5 illustrates the overall methodology discussed in this work. As demonstrated
in this figure, the GWO–PSO algorithm with four different objective functions is used to
find the optimal controller parameters for achieving the desired response and improving
stability of the controlled output power in the Maglev.
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4.1. Optimization Algorithm
4.1.1. PSO Algorithm

Particle Swarm Optimization (PSO) is an evolutionary optimization technique devel-
oped in 1995 based on the social behavior of bird flocks [49]. It consists of an algorithm that
initially starts with randomly assigned solutions, called particles, and simulates the birds’
search for the best food location. Unlike other evolutionary optimization techniques, each
particle has velocity information in Particle Swarm Optimization. Particles travel through
the search space at speeds determined by their previous behavior. Thus, the particles get
better along the search route. Each particle tends to go from its past positions to the better
one and also to follow the particle closest to the food in the swarm.

In each iteration of the Particle Swarm Optimization Algorithm, the velocities and
positions of the particles are updated according to the following expressions, respectively:

vk+1
i = ξvk

i + ϕ1rand1

(
pbest1 − pk

i

)
+ ϕ2rand2

(
gbest− pk

i

)
(31)

pk+1
i = pk

i + vk+1
i (32)

In these equations, vk
i is the velocity of the ith particle for the k iteration, pk

i is the
position of the ith particle for the k iteration, ξ represents the inertial weight function, ϕ1,2
represents the learning factors, and rand1,2 represents the random number values assigned
in the [0, 1] range. In addition, pbesti is the coordinate that provide the best solution that
particle i has achieved so far. gbest is the coordinates that provide the best solution obtained
by all particles.

4.1.2. GWO Algorithm

As a swarm-based optimization method, inspiration for Gray wolf optimization,
which was presented by Mirjalili et al. [50] for the first time, comes from the behavior
and the hunting strategy of the grey wolves in nature. Based on the social hierarchy, gray
wolves are classified as alpha, beta, delta, and omega. The leaders of the group are called
alpha (α) wolves. Beta (β) wolves help alpha wolves in making decisions. As the third
level, delta (δ) wolves’ mission is to submit to alpha and beta wolves, but control the omega
(ω) wolves. The least priority wolves are the omegas, which must follow the leading grey
wolves [50].
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In the Grey Wolves Optimizer, the hunting behaviour of the grey wolves is mathemat-
ically simulated. Firstly, encircling the victim is modelled as below [50]:

→
D =

∣∣∣∣
→
C ×

→
Xp(t)−

→
X(t)

∣∣∣∣ (33)

→
X(t + 1) =

→
Xp(t)−

→
A×

→
D (34)

In these equations, t is the number of iteration and the
→
X and

→
Xp are the position

vectors of the wolves and victims, respectively.
→
A and

→
C are the coefficient vectors and

calculated as shown below [50]:

→
A =

→
a ×

(
2×→r 1 − 1

)
(35)

→
C = 2×→r 2 (36)

where
→
a is linearly decreased from 2 to 0 through iteration steps and

→
r 1 and

→
r 2 are random

vectors in [0, 1].
The alpha, beta, and delta groups of grey wolves have extraordinary knowledge of the

current location of the victim. Therefore, the top three best solutions obtained are recorded
and the other wolves have to update their positions relative to the positions of the best
search agents [50,51]:

→
Dα =

∣∣∣∣
→
C1 ×

→
Xα −

→
X(t)

∣∣∣∣
→
Dβ =

∣∣∣∣
→
C2 ×

→
Xβ −

→
X(t)

∣∣∣∣
→
Dδ =

∣∣∣∣
→
C1 ×

→
Xδ −

→
X(t)

∣∣∣∣ (37)

→
X1 =

∣∣∣∣
→
Xα −

→
a 1
→
Dα

∣∣∣∣
→
X2 =

∣∣∣∣
→
Xβ −

→
a 2
→
Dβ

∣∣∣∣
→
X3 =

∣∣∣∣
→
Xδ −

→
a 3
→
Dδ

∣∣∣∣

(38)

→
Xp(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(39)

4.1.3. GWO–PSO Algorithm

In this work, the Grey Wolf Optimizer is hybridized with Particle Swarm Optimiza-
tion algorithm for enhancing the progress of the GWO, as presented in [51]. This hybrid
optimization method can be regarded for finding efficiently and effectively the global
best solution through the optimization process. Therefore, this hybrid GWO-PSO is im-
plemented here for optimization of controller parameters. As a result, the algorithmic
representation of the suggested mechanism based on control schemes is described in this
section. The flowchart of the GWO–PSO algorithm is shown in Figure 6. The major stages
of the presented GWO–PSO based on [51] for tuning the controllers of the Maglev system
is listed by steps given below:

Step 1. Initialization of the positions of wolves in the population and that of particles in
the swarm.
Step 2. Updating of each wolf location by using the GWO algorithm.
Step 3. Determination of the three best ones among all search agents.
Step 4. Running PSO by using the best values, found by GWO, as initial positions of
the swarm.
Step 5. Returning the positions modified by PSO back to the GWO algorithm.
Step 6. Repeating these steps until the maximum iteration number is reached.
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Since GWO–PSO is used for tuning of the controllers, in this study, best positions of
the grey wolves obtained at the end of the optimization algorithm represent the parameters
of the controllers as listed below:

•
{

Kp, Ki, Kd, µ, λ
}

for the FOPID controller
• {c1, c2, ω, γ, α} for the FOSMC controller
• {Se, Sce, SPI , SPD, µ, λ} for the FOFPID controller

4.2. Objective Functions

During the controller design by using an optimization algorithm, the most crucial step
is to select the most appropriate objective function. Time domain objective functions can be
divided into two categories: integral-based objective functions and dynamic performance
indices-based objective functions.

Integral-based objective functions commonly used in the literature are IAE (Integrated
Absolute Error), ITAE (Integrated Time Weighted Absolute Error), ISE (Integrated Squared
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Error), and ITSE (Integrated Time Weighted Squared Error). The formulas of these objective
functions are described as:

JIAE(e) =
∫ t

0
|e(t)|dt (40)

JITAE(e) =
∫ t

0
t|e(t)|dt (41)

JISE(e) =
∫ t

0
e2(t)dt (42)

JITSE(e) =
∫ t

0
te2(t)dt (43)

where e(t) is the error signal, which represents the difference between the system output
and the reference signal, as mentioned in Section 3.1. Each one of them has advantages and
disadvantages. For example, since JIAE(e) and JISE(e) criteria are independent of time, the
obtained results have a relatively small overshoot but a long settling time. On the other
hand, JITAE(e) and JITSE(e) can overcome this disadvantage, but they cannot provide a
desirable stability margin.

4.3. Proposed Optimization Framework

For the presented work, the parameters of all the four controllers are to be tuned by the
GWO–PSO to their optimal values. The maximum iteration (MaxGen) is set to be 100 in the
GWO–PSO algorithm. Moreover, the optimal controller parameters are obtained by 10 runs
of the GWO–PSO. The limitations of all the controller parameters are restricted between
certain values. Hence, based on the detailed literature review, during the optimization,
the considered search ranges are restricted to

{
Kp, Ki, Kd

}
∈ [0, 20] and {µ, λ} ∈ [0, 2] for

the FOPID controller, {c1, c2, γ, α} ∈ [0, 2] and ω ∈ [0, 20] for the FOSMC controller and
Se ∈ [0, 10], Sce ∈ [0, 1], {SPI , SPD} ∈ [0, 20] and {µ, λ} ∈ [0, 2] for the FOFPID controller.
Also, the total simulation time is considered as 5 s with an interval of 0.001 s.

5. Simulation Results and Discussion

In this section, extensive simulation studies have been carried out for detailed perfor-
mance evaluations of the FOPID, FOSMC, and FOFPID controllers tuned by the PSO–GWO
algorithm for the Maglev system. Moreover, a detailed comparative simulation study of
the Maglev dynamic performance with the proposed controllers and the ones presented
in [23] have been conducted under all three scenarios: handling parametric variations,
disturbance rejections, and different trajectory tracking.

The coding of the PSO–GWO algorithm and the purposed controllers, their adaptation
and implementation to the Maglev, and all simulations have been carried out by using
MATLAB/Simulink software platform on a personal computer with Intel(R) Core(TM)
i7-6700HQ CPU @ 2.60 GHz processor and 32.0 GB RAM. All simulations are executed
with a sampling time Ts f = 1 ms. Simulation results and relative comparisons in the
present work are illustrated and discussed in the following subsections.

5.1. Dynamic Performance Analysis

For the same Maglev system controlled by FOPID, FOSMC, and FOFPID, transient and
steady state responses are analyzed based on different objective functions used here when
the reference input is a step one. Hence, the optimal controller parameters are obtained
by using the PSO–GWO with different objective functions. As a result, all simulations
were carried out with optimized controller parameters as provided in Table 3 based on the
objective functions for the different scenarios.
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Table 3. Optimized controller parameters based on different objective functions for the Maglev
System.

Controller Parameters
Objective Functions

JIAE JISE JITAE JITSE

FOPID

KP 1.9095 1.9936 2.0325 2.5475
KI 13.9014 13.8985 14.8587 16.7852
KD 0.1072 0.1197 0.0992 0.1331
µ 0.9715 0.9703 0.9524 0.8924
λ 0.9561 0.9364 1.0030 0.9236

FOSMC

c1 0.0169 0.0135 0.0102 0.0102
c2 0.7354 0.4753 0.6839 0.4995
ω 15.7659 16.0584 15.9247 15.9825
γ 0.0216 0.0192 0.0113 0.0137
α 0.9992 0.9460 0.9911 0.9779

FOFPID

Se 8.5982 3.7212 3.1247 3.2948
Sce 0.0577 0.0454 0.0468 0.0904
SPI 17.9569 17.2330 17.9871 16.6151
SPD 18.0998 18.1233 15.1292 18.7125

µ 0.9080 0.9622 0.9257 0.9808
λ 1.2908 1.3407 1.1802 1.3571

The comparative results between the dynamic responses of the optimized controllers
and the ones designed in [23] are shown in Figure 7 and given in Table 4 in terms of rise
time (tr), settling time (ts), overshoot (Mp), steady state error (Ess), and the values of the
defined objective functions (J).
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Figure 7. Step responses of the closed-loop Maglev system with different controllers based on JIAE (a), JISE (b), JITAE (c) and
JITSE (d).
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Table 4. Comparative dynamic response specifications on different controllers for the Maglev system.

Transient Response and Steady State Characteristics

Objective (J) Controller Mp(%) tr(s)
0.1→0.9

ts(s)
∓%2 Ess

J
IAE ISE ITAE ITSE

JIAE

FOPID 18.7081 0.0050 0.2850 0.000518 0.0369
FOSMC 0.0004 0.0670 0.1210 0.000034 0.0477
FOFPID 15.5977 0.0060 0.0190 0.000020 0.0079

JISE

FOPID 16.7848 0.0050 0.3070 0.001823 0.0064
FOSMC 0.0696 0.0610 0.1190 0.002506 0.0274
FOFPID 5.7631 0.0060 0.0130 0.000119 0.0041

JITAE

FOPID 19.8640 0.0060 0.2770 0.000004 0.0041
FOSMC 0 0.0500 0.0880 0.000124 0.0010
FOFPID 2.3659 0.0070 0.0160 0.000031 0.0032

JITSE

FOPID 19.1968 0.0060 0.3210 0.000742 0.0002
FOSMC 0.0064 0.0520 0.0990 0.000515 0.0004
FOFPID 1.9090 0.0060 0.0100 0.000001 0.00001

JIAE JISE

JIAE,JISE
PID [23] 48.2852 0.0270 0.2690 0.000001 0.0741 0.0334
SMC [23] 0 0.1820 0.3360 0.000638 0.1314 0.0897

It can be concluded from Table 4 that the proposed FOFPID tuned by the PSO–GWO
has the best dynamic response in terms of the fastest settling time, short rise time, least
steady state error, and all objective function values. Moreover, Figure 7 and Table 4 demon-
strate the remarkable advantage of the fractional calculus used in FOPID and FOSMC, as
compared to the integer order in PID and SMC, respectively. Although the overshoot is
more with the proposed FOFPID controller, as compared to the fractional order and integer
order SMC, by examining Figure 7 and performance indices in Table 4, consequently, it can
be observed that the proposed FOFPID controller tuned PSO–GWO algorithm outperforms
the other controller approaches in terms of transient response characteristics.

5.2. Controller Performance Analysis under Parametric Variations

In this section, this sensitivity analysis of the presented controllers is performed by
varying the gain of system in the range of [−10%,+10%] of its nominal value. Moreover, for
the purpose of showing the control effort that is exhibited by the controllers and minimizing
the used objective function values, the control energy can be calculated as follows:

ue =

t f∫

0

[u(t)]2dt (44)

where u(t) is control signal and t f is total time of simulation. The results obtained by
changing the gain of the system under different controllers are shown in Figures 8 and 9.
The corresponding time domain attributes and control energies are demonstrated in
Figures 10 and 11.

From the figures, it is clearly evident that the stability of the Maglev system is main-
tained by the proposed fractional order controllers in a better way, as compared to integer
order ones developed in [23]. On the other hand, as observed in terms of control signal, the
Maglev system with the FOPID, FOSMC, and FOFPID controllers requires higher control
energy, and from Figures 10 and 11, deviations in control effort are more with the designed
fractional order controllers, as compared to the integer ones developed in [23]. However, as
observed in Figures 8–11, the designed FOPID and FOSMC have the best step response in
terms of overshoot, rise time, settling time, and steady state error in the case of all objective
functions, as compared to the integer counterparts developed in [23].
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Figure 9. Closed-loop responses (a–d) and control efforts (e–h) for the Maglev system with different controllers based on
JIAE (a,e), JISE (b,f), JITAE (c,g) and JITSE (d,h) under parametric variation with −10%.

109



Fractal Fract. 2021, 5, 101
Fractal Fract. 2021, 5, x FOR PEER REVIEW 19 of 27 
 

 

 
(a) 

 
(e) 

 
(b) 

 
(f) 

 
(c) 

 
(g) 

 
(d) 

 
(h) 

Figure 10. Dynamic response parameters (a–d) and control energy values (e–h) for the Maglev system with different con-
trollers under parametric variation with +10%. 
Figure 10. Dynamic response parameters (a–d) and control energy values (e–h) for the Maglev system with different
controllers under parametric variation with +10%.

110



Fractal Fract. 2021, 5, 101
Fractal Fract. 2021, 5, x FOR PEER REVIEW 20 of 27 
 

 

 
(a) 

 
(e) 

 
(b) 

 
(f) 

 
(c) 

 
(g) 

 
(d) 

 
(h) 

Figure 11. Dynamic response parameters (a–d) and control energy values (e–h) for the Maglev system with different con-
trollers under parametric variation with −10%. 

Figures 9–11 clearly show that the time required to reach the steady state, response 
time, steady state error, and the acceptable overshoot can be achieved with the most de-
sirable control results by using the proposed FOFPID controller designed with the PSO–
GWO under the case of system parameter uncertainty.  

  

Figure 11. Dynamic response parameters (a–d) and control energy values (e–h) for the Maglev system with different
controllers under parametric variation with −10%.

Figures 9–11 clearly show that the time required to reach the steady state, response
time, steady state error, and the acceptable overshoot can be achieved with the most
desirable control results by using the proposed FOFPID controller designed with the
PSO–GWO under the case of system parameter uncertainty.
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5.3. Controller Performance Analysis under Different Trajectory Tracking

The sensitivity of the presented closed-loop control systems is analyzed for changed
periodic reference signal such as a square wave, which is used as the position reference.
The tracking performances of the different controllers are presented in Table 5 and illus-
trated in Figure 12. As given in the table, the tracking performance of the proposed FOFPID
controller is markedly improved approximately 90%, 83%, 93%, and 82% reduction of the
IAE and the ISE, as compared to the PID, FOPID, SMC, and FOSMC, respectively. In the
same way, the performance of the FOFPID is significantly enhanced approximately 83%,
71%, 87%, and 52% reduction of the ITAE and also 88%, 44%, 93%, and 78% reduction of
the ITSE as compared to the PID, FOPID, SMC, and FOSMC, respectively.

Table 5. Comparison of control energy and objective function values for different controllers.

Objective Function Controller ue
J

IAE ISE ITAE ITSE

JIAE

PID [23] 4.5698 0.2678
FOPID 25.5283 0.1456

SMC [23] 2.2707 0.3830
FOSMC 2.7272 0.1388
FOFPID 15.9137 0.0247

JISE

PID [23] 4.5698 0.0702
FOPID 31.5188 0.0152

SMC [23] 2.2707 0.1552
FOSMC 2.5674 0.0497
FOFPID 11.9206 0.0080

JITAE

PID [23] 4.5698 1.0595
FOPID 18.0171 0.6007

SMC [23] 2.2707 1.4038
FOSMC 3.4337 0.3610
FOFPID 9.5196 0.1706

JITSE

PID [23] 4.5698 0.2146
FOPID 15.8200 0.0453

SMC [23] 2.2707 0.4092
FOSMC 2.8977 0.1151
FOFPID 13.0436 0.0252Fractal Fract. 2021, 5, x FOR PEER REVIEW 22 of 27 
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Figure 12. Comparison of Maglev response with different controllers based on JIAE (a), JISE (b),
JITAE(c), and JITSE (d).

The results from Table 5 and Figure 12 indicate that though the designed FOSMC and
the SMC developed in [23] have almost exhibited similar control energy, the presented
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FOSMC has faster and a more accurate system response than the SMC. Another finding
is that based on Figure 12, the tracking performance of the FOFPID controller tuned
by PSO–GWO is superior to the remaining controllers. This finding suggests that the
proposed FOFPID controller ensures better disturbance rejection capability in the presence
of suddenly set point change. As a result, the fractional order-based control designed by
the proposed optimization technique is the fastest in reaching steady state and the shortest
in overshoots in the case of this disturbance simulation.

5.4. Controller Performance Analysis under Disturbance

In order to investigate the effectiveness of the presented controllers, a robustness
test was conducted in the presence of a different trajectory tracking and disturbance. A
sinusoidal reference signal is applied to the Maglev system under an output disturbance.
The sinusoidal waveform is selected as:

rv(t) = 1.2 + 0.25sin(t) (45)

and the instantaneous disturbance is a form of a pulse magnitude of 0.4 V activated at
t = 4 s.

The effects of adding external disturbance to the system output during the trajectory
tracking was investigated for the controllers tuned by GWO–PSO and the ones developed
in [23]. Hence, the graph of the trajectory tracking performance is introduced in Figure
13 for the Maglev system under the presented controllers in case of all objective functions.
Also, the numerical representations for the comparative analysis of the JIAE, JISE, JITAE,
JITSE, and the ue variations are presented in Table 6 for the different controllers when
adding disturbance to the system output.

Table 6. Comparison of performance indices and control energy values for PID, FOPID, SMC, FOSMC, and FOFPID
controllers under the considered condition.

Controller JIAE ue JISE ue JITAE ue JITSE ue

PID [23] 0.1800 2.9785 0.0583 2.9785 0.4359 2.9785 0.0423 2.9785

FOPID 0.1029 19.4858 0.0111 23.8734 0.2891 13.9850 0.0076 12.3772

SMC [23] 0.5276 2.3861 0.5163 2.3861 1.5122 2.3861 1.5617 2.3861

FOSMC 0.0863 2.5273 0.0492 2.4813 0.0802 2.6897 0.0183 2.5716

FOFPID 0.0170 8.4440 0.0076 6.8566 0.0703 5.6572 0.0042 7.2778

It can be seen from Figure 13 that the proposed FOFPID controller has shorter settling
time and better tracking performance, as compared to the remaining controllers. Also, the
designed FOSMC approach outperforms the SMC approach developed in [23] in terms of
trajectory tracking performance under the external disturbance while consuming almost the
similar control energy related to the SMC, as given in Table 6. These findings demonstrate
how the parameters c1, c2, α in the sliding surface and ω, γ in the switching function could
enhance the flexibility of the FOSMC approach to obtain the desired disturbance rejection
capability. In the optimization of these parameters, it is very important to utilize a hybrid
swarm intelligence-based optimization algorithm that can provide more robustness and
more tracking performance, as compared to that of [23]. As a result, the above discussions
are inferred the following observations:

• The proposed fractional order PID and SMC approaches outperform the integer order
PID and SMC developed in [23] in terms of overshoot, rise time, settling time, and all
objective function values in the presence of internal and external disturbances;

• While consuming more control energy of the closed-loop control system with the
FOFPID controller, as compared to the others except for the FOPID, the beauty of
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the proposed FOFPID controller is able to efficiently reduce the adverse effects of the
parameter variation, different trajectory tracking, and external disturbance.
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Figure 13. Comparison of the trajectory tracking performance of the Maglev system under different controllers based on
JIAE(a), JISE (b), JITAE(c), and JITSE (d) in presence of the disturbance.

115



Fractal Fract. 2021, 5, 101

6. Conclusions

In this work, the first aim is to evaluate the effectiveness of the proposed GWO–
PSO, which is a hybrid optimization algorithm based on swarm intelligence in tuning
the controller parameters, significantly fractional order controllers for the closed-loop
control system of the Maglev. Accordingly, this paper shows that the FOPID, FOSMC,
and FOFPID controllers have been tuned by the GWO–PSO based on the performance
indices, such as the JIAE, JISE, JITAE, and JITSE for the purpose of comparing the PID and
SMC developed in [23] for the same system in terms of assessing the dynamic transient
responses and exhibiting control energies. The second aim is to illustrate the advantages of
the fractional calculus applied in sliding mode control law and tuning the parameter of
switching function used here to obtain smoother control signals, as compared to the SMC
proposed in [23].

For the purpose of investigating the robustness of the presented controllers, compara-
tive studies have been performed by applying the parameter variations, different trajectory
tracking and external disturbance to the closed-loop control system of the Maglev. From
the robustness verifications, it can be clearly concluded that the fractional order controllers
have exhibited more robust, higher stability and response, as compared to their traditional
counterparts such as the PID and SMC in the case of all objective functions.

Finally, the simulation results reveal that robust stabilization, better performance in
terms of the trajectory tracking and control and also disturbance rejection of the closed-
loop Maglev system were achieved by the proposed GWO–PSO-based FOFPID controller.
Moreover, it can be seen from the results that the proposed fractional order controllers
produce smaller values of the JIAE, JISE, JITAE, and JITSE, especially the FOFPID controller,
as compared to the integer ones developed in [23] under all internal and external distur-
bances. Through the simulation platform of the referred experimental Maglev system,
these comparison results of FOSMC and FOFPID controllers were involved to confirm the
validity of the presented theoretical analysis and control approaches.

As future study, it is intended to examine the control performance of the fractional
order controllers, especially a FOFPID controller for a Maglev system in an experimental
setup. Moreover, different hybrid optimization techniques will be utilized. Thus, the
proposed optimal controllers will be validated on the real Maglev system with a more
concrete practical implementation.
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Abstract: This article addresses exact controllability for Caputo fuzzy fractional evolution equations
in the credibility space from the perspective of the Liu process. The class or problems considered here
are Caputo fuzzy differential equations with Caputo derivatives of order β ∈ (1, 2), C

0 Dβ
t u(t, ζ) =

Au(t, ζ) + f (t, u(t, ζ))dCt + Bx(t)Cx(t)dt with initial conditions u(0) = u0, u′(0) = u1, where u(t, ζ)

takes values from U(⊂ EN), V(⊂ EN) is the other bounded space, and EN represents the set of all
upper semi-continuously convex fuzzy numbers on R. In addition, several numerical solutions have
been provided to verify the correctness and effectiveness of the main result. Finally, an example is
given, which expresses the fuzzy fractional differential equations.

Keywords: Liu process; Caputo fuzzy fractional differential equations; fuzzy process; credibil-
ity space

MSC: 26A33; 34K37

1. Introduction

In real-world phenomena, a large number of physical processes can be modeled using
dynamical equations containing fractional-order derivatives [1]. The theory of fuzzy sets
is continuously drawing the attention of researchers because of its rich applicability in
several fields, including mechanics, electrical, engineering, processing signals, thermal
systems, robotics and control, and many other fields [2,3]. Therefore, it has been an object
of increasing interest for researchers during the past few years.

Until 2010, the concept in terms of Hukuhara differentiability [4] was unable to
produce the vast and varied behavior of the crisp solution. However, later in 2012, a
Riemann–Liouville H-derivative based on strongly generalized Hukuhara differentiabil-
ity [5,6] was defined by Allahviranloo and Salahshour [7,8]. They also defined a fuzzy
Riemann–Liouville fractional derivative.

Differential equations with fractional derivatives are known as fractional differential
equations. Owing to the study of fractional derivatives, it is clear that they arise universally
for major mathematical reasons. There are various types of derivatives, such as Caputo
and Riemann–Liouville [9,10] derivatives.

Initially, Zadeh presented the concept of the fuzzy set in 1965 via the membership
function. The most interesting field is that of fuzzy fractional differential equations. These
are useful for analyzing phenomena where there is an inherent impression. Solutions of

Fractal Fract. 2021, 5, 112. https://doi.org/10.3390/fractalfract5030112 https://www.mdpi.com/journal/fractalfract119
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uniqueness and existence for fuzzy equations have been studied by Kwun et al. [11,12] and
Lee et al. [13].

One of the most recent mathematical concepts is the theory of controlled processes
in modern engineering to enable significant applications. Furthermore, due to various
random factors that affect their behavior, actual systems under control do not allow for
a strictly deterministic analysis. The random existence of a system’s actions is taken into
account in the theory of controlled processes.

Many scholars have worked on controlled processes. Concerning fuzzy systems,
controllability in an n-dimensional fuzzy vector space for an impulsive semi-linear fuzzy
differential equation (FDE) was proved by Kwun and Park [14]. Research on controllability
with nonlocal conditions of semi-linear fuzzy integro-differential equations was performed
by Park et al. [15]. The controllability of impulsive semi-linear fuzzy integro-differential
equations was proved by Park et al. [16]. Research on the stability and controllability of
fuzzy control set differential equations was performed by Phu and Dung [17]. Lee et al. [18]
studied controllability with nonlocal initial conditions in a nonlinear fuzzy control system’s
n-dimensional fuzzy space En

N .
The controllability of a stochastic system of quasi-linear stochastic evolution equations

in Hilbert space was studied by Balasubramanian [19] and Yuhu [20], who studied the
controllability with time-variant coefficients of stochastic control systems. Arapostathis et al.
investigated the controllability properties of stochastic differential systems characterized
by linear controlled diffusion perturbed by bounded, smooth, uniformly Lipschitz non-
linearity [21]. Brownian-motion-driven stochastic differential equations are a mature
branch of modern mathematics and have been studied for a long time. The Liu process [22]
was used to drive a new form of FDE, which was described as follows:

dXt = f (Xt, t)dt + g(Xt, t)dCt,

where Ct is the standard Liu operation, while f and g are assigned functions. A fuzzy
method is used to solve this type of equation. The solutions of uniqueness and exis-
tence of some special FDEs were discussed by Chen [23] for homogeneous FDEs. An ap-
proximate technique was studied by Liu [24] for solving uncertain differential equations.
Young et al. [25] worked on exact controllability for abstract FDEs in credibility space by
using the results of Liu [24]. In a credibility space, the exact controllability of abstract FDEs
is expressed as follows:

dx(t, θ) = Ax(t, θ)dt + f (t, x(t, θ))dCt + Bu(t), t ∈ [0, T],

x(0) = x0.

c
0Dβ

t u(t, ζ) = Au(t, ζ) + f (t, u(t, ζ))dCt + Bx(t)Cx(t)dt, β ∈ (1, 2),

u(0) = u0, (1)

u′(0) = u1,

where the state take values from two bounded spaces U(⊂ EN) and V(⊂ EN). The set of
all upper semi-continuously convex fuzzy numbers on R is EN and the credibility space
is (Θ,P , Cr).

The state function u : [0, T]× (Θ,P , Cr)→ U is a fuzzy coefficient. f : [0, T]×U → U
is a fuzzy function, x : [0, T]× (Θ,P , Cr) → V is a control function, B and C are V to U
linear bounded operators. u0 ∈ EN is an initial value and Ct is a standard Liu process.

The aim of this paper is to look into the existence of solutions to FDEs as well as
their exact controllability. Some researchers have found results about fuzzy differential
equations in the literature, but most of them were for first-order differential equations or
fractional orders between (0, 1]. In our work we have found results for Caputo derivatives
of order (1, 2); see [5,10,25] for more details. Our results are more complicated than the
previous ones, and we require more boundary conditions than previous methods. Due to
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the change in boundary conditions, using Caputo derivatives, and for order (1, 2), almost
all the results are original, but for previous results references have already been mentioned.
The theory of fuzzy sets is continuously drawing the attention of researchers due to its rich
suitability in various fields, including mechanics, engineering, electrical, thermal systems,
robotics, control, and signal processing.

We go through some fundamental concepts relevant to Liu processes and fuzzy sets
in Section 3. The existence of solutions to free FDEs is shown in Section 4. Finally, we show
that the fuzzy differential equation is exactly controllable in Section 5.

2. Preliminaries

Let the family of all nonempty compact convex subsets of R be denoted by Mk(R)
and addition and scalar multiplication are also usually defined as Mk(R). Let A1 and B1 be
two nonempty bounded subsets of R. The Hausdorff metric is used to define the distance
between A1 and B1 as

d(A1, B1) = max

{
sup

a1∈A1

inf
b1∈B1

‖a1 − b1‖, sup
b1∈B1

inf
a1∈A1

‖a1 − b1‖
}

,

where ‖ · ‖ indicates the usual Euclidean norm in R. Then it is clear that (Mk(R), d)
becomes a separable and complete metric space [23]. Denote

En = {x : R→ [0, 1] | u satisfies (i)-(iv) below},

where

(i) x is normal, there exists an x0 ∈ R such that x(x0) = 1;
(ii) x is fuzzy convex, that is x(λt + (1− λ)s) ≥ 2;
(iii) x is an upper semi-continuous function on R that is x(t0) ≥ lim

k→∞
x(tk) for any

tk ∈ R(k = 0, 1, 2, . . .), tk → t0;
(iv) [x]0 = cl{u ∈ R | x(t) > 0} is compact.

For 1 < β < 2, denote [x]β = {t ∈ R | u(t) ≥ β} and [u]0 are nonempty compact
convex sets in R [26]. Then from (i)–(iv), it follows that β-level set [x]βt ∈ Mk(R) for all
1 < β < 2. We can have scalar multiplication and addition in fuzzy number space En by
using Zadeh’s extension principle as follows:

[x⊕ y]β = [x]β ⊕ [y]β, [kx]β = k[y]β,

where x, y ∈ En, k ∈ R and 1 < β < 2.
Suppose that EN represents the set of all upper semi-continuously convex fuzzy

numbers on R.

Definition 1 ([27]). Define a complete metric DL by

DL(x, y) = sup
1<β<2

dL

{
[x]β, [y]β

}

= sup
1<β<2

max
{
|xβ

l − yβ
l |, |x

β
l − yβ

r |
}

,

for any u, v ∈ EN , which satisfies DL(x + z, y + z) = DL(x, y) for each z ∈ EN and
[x]α = [xβ

l , uβ
r ], for each β ∈ (x, y) where xβ

l , uβ
r ∈ R with xβ

l ≤ uβ
r .

Definition 2 ([28]). The Riemann–Liouville fractional derivative is defined as

aDp
t f (t) =

(
d
dt

)n+1 ∫ t

a
(t− τ)n−p f (τ)dτ, (n ≤ p ≤ n + 1).
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Definition 3 ([28]). The Caputo fractional derivatives C
a Dα

t f (t) of order α ∈ R+ are defined by

C
a Dα

t f (t) = aDα
t

(
f (t)−

n−1

∑
k=0

f (k)(a)
k!

(t− a)k

)
,

where n = [α] + 1 for α /∈ N0; n = α for α ∈ N0.

In this paper, we consider a Caputo fractional derivative of order 1 < α ≤ 2, e.g.,

C
a D3/2

t f (t) = aD3/2
t

(
f (t)−

n−1

∑
k=0

f (k)(a)
k!

(t− a)k

)
.

Definition 4 ([29]). The Wright function ψα is defined by

ψα(θ) =
∞

∑
n=0

(−θ)n

n!Γ(−αn + 1− α)

=
1
π

∞

∑
n=1

(−θ)n

(n− 1)!
Γ(nα) sin(nπα),

where θ ∈ C with 0 < α < 1.

Definition 5 ([30]). For any x, y ∈ C([0, T], EN), metric H1(x, y) on C([0, T], EN) is defined by

H1(x, y) = sup
0≤t≤T

DL(x(t), y(t)).

Allow Θ to be a nonempty set and P to be Θ’s power set. Each element of P is referred to
as a case. To offer an axiomatic concept of credibility based on the assumption that A will happen;
to ensure that a number Cr{A1} is assigned to each event A1, indicating the credibility of A1
occurring; and to ensure the number Cr{A1} has certain mathematical properties that we intuitively
predict, we accept the following four axioms:

(i) (Normality) Cr{Θ} = 2;
(ii) (Monotonicity) Cr{A1} ≤ Cr{B1}, whenever A1 ⊂ B1;
(iii) (Self-Duality) Cr{A1}+ Cr{Ac

1} = 2 for any event A1;
(iv) (Maximality) Cr{∪i Ai} = supi Cr{A1} for any events {Ai} with supi Cr{Ai} < 1.5.

Definition 6 ([31]). Let Θ be a nonempty set, P be Θ’s power set, and Cr be a credibility measure.
The triplet (Θ,P , Cr) is then added to a set of real numbers.

Definition 7 ([31]). A fuzzy variable is a function from the set of real numbers (Θ,P , Cr) to
credibility space (Θ,P , Cr).

Definition 8 ([31]). Let (Θ,P , Cr) be a credibility space and (Θ,P , Cr) be an index set. A fuzzy
process is a function from a set of real numbers to T × (Θ,P , Cr).

That is, it is fuzzy process. u(t, ζ) is a two-variable function, with u(t, ζ∗) acting as a fuzzy
variable for each t∗. The function u(t, ζ) is called the sample path of a fuzzy process for each fixed
ζ∗. If sampling is continuous for almost all ζ, fuzzy process u(t, ζ) is said to be sample-continuous.
We often use the symbol ut instead of u(t, ζ).

Definition 9 ([31]). A credibility space is known as (Θ,P , Cr). For each β ∈ (1, 2), the β-level
set is used for the fuzzy random variable ut in credibility space.

[ut]
β = [(ut)

β
l , (ut)

β
r ]
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is defined by

(ut)
β
l = inf(ut)

β = inf{a ∈ R; ut(a) ≥ β},
(ut)

β
r = sup(ut)

β = in f {a ∈ R; ut(a) ≥ β},

where (ut)
β
l , (ut)

β
r ∈ R with (ut)

β
l ≤ (ut)

β
r when β ∈ (1, 2).

Definition 10 ([32]). Assume that θ is a fuzzy variable and that r is a real number. Then θ’s
expected value is defined as

Eθ =
∫ +∞

0
Cr{θ ≥ r}dr−

∫ 0

−∞
Cr{θ ≤ r}dr

provided that at least one integral is finite.

Lemma 1 ([32]). Assume that θ is a fuzzy vector. Below are the properties of the expected value
operator E:

(i) if f ≤ g, E[ f (θ)] ≤ E[g(θ)];
(ii) E[− f (θ)] = −E[ f (θ)];
(iii) if f and g are comonotonic, we have for any nonnegative real numbers a1 and b1

E[a1 f (θ) + b1g(θ)] = a1E[ f (θ)] + b1E[g(θ)],

where f (θ) and g(θ) are fuzzy variables.

Definition 11 ([32]). A fuzzy process Ct is a Liu process if

(i) C0 = 0;
(ii) the Ct has independent and stationary increments;
(iii) any increment Ct+s − Cs is a normally distributed fuzzy variable with expected value et and

variance φ2t2, with membership function

ξ(u) = 2

(
1 + exp

(
π|u− et|√

6φt

))−1

, u ∈ R.

The diffusion and drift coefficients are the parameters φ and e, respectively. The Liu process is
said to be standard if e = 0 and φ = 1.

Definition 12 ([33]). Suppose Ct to be a standard Liu process and ut to be a fuzzy process. The
mesh is written as c = t0 < · · · < tn = d for any partition of the closed interval [c, d] with
c = t0 < · · · < tn = d,

∆ = max
1≤i≤n

(ti − ti−1).

The fuzzy integral of ut with respect to Ct is then determined.

∫ d

c
utdCt = lim

∆→0

n

∑
i=1

µ(ti−1)(Cti − Cti−1)

provided that a limit exists almost certainly and is a fuzzy variable.

Lemma 2 ([33]). Let Ct be a standard Liu process. The direction Ct is Lipschitz continuous for
any given with Cr{ζ} > 0, which implies that the following inequality holds:

|Ct1 − Ct2 | < K(ζ)|t1 − t2|,
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where K(ζ) is the Lipschitz constant of a Liu process, which is a fuzzy variable defined by

K(ζ) =





sup
0≤s≤t

|Ct−Cs |
t − s, Cr{ζ} > 1;

∞, otherwise,

and E[Kp] < ∞ for all p > 1.

Lemma 3 ([33]). Suppose h(t; c) to be a continuously differentiable function and Ct to be standard
Liu process. ut = h(t; Ct) is the function to define. In addition, there is the chain rule that follows:

dut =
∂h(t; Ct)

∂t
dt +

∂h(t; Ct)

∂C
dCt.

Lemma 4 ([33]). If f (t) is a continuous fuzzy process, the below fuzzy integral inequality holds:
∣∣∣∣
∫ d

c
f (t)dCt

∣∣∣∣ ≤ K
∫ d

c
| f (t)|dt.

The expression K = K(ζ) is defined in Lemma 2.

Definition 13. The fractional integral for a function f with lower limit t0 and order γ can be
defined as

Iγ

t+0
f (t) =

1
Γ(γ)

∫ t

t+0

f (s)
(t− s)1−γ

ds, γ > 0, t > t0,

where the right-hand side of the equality is defined point-wise on R+.

Lemma 5 ([34]). Let γ > 0. Then

Iγ
t0
+

cDγ

t+0
f (t) = f (t) + c0 + c1t + c2t2 + · · ·+ cn−1tn−1

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, where n = [γ] + 1.

Lemma 6 ([35]). Let {C(t)}t∈R be a strongly continuous cosine family in X satisfying
‖C(t)‖Lb(X) ≤ Meω|t|, t ∈ R, and let A be the infinitesimal generator of {C(t)}t∈R, then for
Reλ > ω, λ2 ∈ ρ(A)

λR(λ2; A)x =
∫ ∞

0
e−λtC(t)xdt, and R(λ2; A)x =

∫ ∞

0
e−λtS(t)xdt

for x ∈ X.

3. Existence of Solutions for Fuzzy Fractional Evolution Equations

By Definition 8, we use symbol ut instead of longer notation u(t, ζ) in this section.
The uniqueness and existence of solutions for fuzzy differential Equation (3) (x ≡ 0)
are examined. 




C
0 Dβ

t ut = Aut + f (t, ut)dCt, β ∈ (1, 2),
u(0) = u0,
u′(0) = u1 ∈ EN

(2)

where ut is a state that takes values from U(⊂ EN). The set of all upper semi-continuously
convex fuzzy numbers on R is labeled EN , (Θ,P , Cr) is a credibility space, A is a fuzzy
coefficient, state function u : [0, T]× (Θ,P , Cr)→ U is a fuzzy process, f : [0, T]×U → U
is a regular fuzzy function, Ct is a standard Liu process, and the initial value is u0 ∈ EN .
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Lemma 7. If ut is a solution of (2) for u(0) = u0, then ut is given by

ut = Cq(t)u0 + Kq(t)u1 +
∫ t

0
(t− s)q−1Pq(t− s)[ f (s, us)]dCs +

∫ t

0
(t− s)q−1Bx(s)Cx(s)ds,

where B and C are linear bounded operators and

Cq(t) =
∫ ∞

0
MqC(tqζ)dζ,

Kq(t) =
∫ t

0
Cq(s)ds,

Pq(t) =
∫ ∞

0
qζMqC(tqζ)dζ,

Mq(ζ
−q) = ψq(ζ)

ζq+1

q

such that Cq(t) and Kq(t) are continuous with S(0) = I and K(0) = I, |Cq(t)| ≤ c, c > 1 and
|Kq(t)| ≤ c, c > 1 for all t ∈ [0, T].

Proof. Let Reλ > 0 and L be the Laplace transform

µ(λ) = L[u(t)](λ) =
∫ ∞

0
e−λsu(s)ds, ν(λ) = L[ f (t)](λ) =

∫ ∞

0
e−λs f (s)ds.

According to Lemma 5, the Laplace transform is now being applied to Equation

u(t) = u0 + u1t +
1

Γ(β)

∫ t

0
(t− s)β−1[Au(s) + f (s, u(s, ζ))]dCs +

∫ t

0
(t− s)β−1Bx(s)Cx(s)ds. (3)

By Lemma 6, it follows that for t ∈ [0, ∞).
Taking the Laplace transform on both sides of the above equation, we have

L{ut} = L{u0 + u1t}+ L
{

1
Γ(β)

∫ t

0
(t− s)β−1[Au(s) + f (s, u(s, ζ))]dCs

}

+ L
{∫ t

0
(t− s)β−1Bx(s)Cx(s)ds

}
,

µ(λ) =
1
λ

u0 +
1

λ2 u1 +
1

λβ
Aµ(λ) +

1
λβ

ν(λ),

µ(λ)− 1
λβ

Aµ(λ) =
1
λ

u0 +
1

λ2 u1 +
1

λβ
ν(λ),

µ(λ)

(
1− 1

λβ
A
)
=

1
λ

u0 +
1

λ2 u1 +
1

λβ
ν(λ),

µ(λ) = λβ−1(λβ − A)−1u0 + λβ−2(λβ − A)−1u1 + (λβ − A)−1ν(λ). (4)

As a result, t ≥ 0,

µ(λ) = λ
β
2−1

∫ ∞

0
e−λ

β
2 t

C(t)u0ds + λ−1λ
β
2−1

∫ ∞

0
e−λ

β
2 t

C(t)u1ds +
∫ ∞

0
e−λ

β
2 t

S(t)ν(λ)dCtds. (5)

Let
ψq(ζ) =

q
ζq+1 Mq(ζ

−q), ζ ∈ (0, ∞).

Its Laplace transform is as follows:
∫ ∞

0
e−λζ ψq(ζ)dζ = e−λq

(6)
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for q ∈
(

1
2 , 1
)

.
To begin, we will use (6),

λq−1
∫ ∞

0
e−λqtC(t)u0dt =

∫ ∞

0
q(λt)q−1e−(λt)q

C(tq)u0dt

=
∫ ∞

0
− 1

λ

d
dt

(∫ ∞

0
e−λtζ ψq(ψ)dψ

)
C(tq)u0dt

=
∫ ∞

0

∫ ∞

0
ζψq(ζ)e−λtζC(tq)u0dζdt

=
∫ ∞

0

∫ ∞

0
ψq(ζ)e−λtC

(
tq

ζq

)
u0dtdζ

=
∫ ∞

0
e−λt

[∫ ∞

0
ψq(ζ)C

(
tq

ζq

)
u0dζ

]
dt

= L
[∫ ∞

0
Mq(ζ)C(tqζ)u0dζ

]
(λ)

= L
[
Cq(t)u0

]
(λ). (7)

Furthermore, by applying the Laplace convolution theorem, we obtainL[g1(t)](λ) = λ−1.

λ−1λq−1
∫ ∞

0
e−λqtC(t)u1dt = L[Cq(t)u1](λ)λ

−1λq−1
∫ ∞

0
e−λqtC(t)u1dt

= L[g1 ∗ Cq(t)u1](λ). (8)

Similarly, we observe
∫ ∞

0
e−λqtS(t)ν(λ)dt =

∫ ∞

0
qtq−1e−(λt)q

S(tq)ν(λ)dt

=
∫ ∞

0

∫ ∞

0
qtq−1ψq(ζ)e−λtζ S(tq)ν(λ)dζdt

=
∫ ∞

0

∫ ∞

0
q

tq−1

ζq ψq(ζ)e−λtS
(

tq

ζq

)
ν(λ)dtdζ

=
∫ ∞

0
e−λt

[∫ ∞

0
q

tq−1

ζq ψq(ζ)e−λt
(

tq

ζq

)
ν(λ)dζ

]
dt

= L
[∫ ∞

0
qtq−1Mq(ζ)S(tqζ)dζ

]
(λ).L[ f (t)](λ)

= L
[∫ t

0
(t− s)q−1Pq(t− s) f (s)dCs +

∫ t

0
(t− s)q−1Pq(t− s)Bx(s)Cx(s)ds

]
(λ). (9)

Using the Laplace transform’s uniqueness theorem and combining (7)–(9), we have
the following

ut =
∫ ∞

0

∫ ∞

0
ζψq(ζ)e−λtζC(tq)u0dζdt + L[Cq(t)u1](λ)

+ λ−1λq−1
∫ ∞

0
e−λqtC(t)u1dt +

∫ ∞

0

∫ ∞

0
qtq−1ψq(ζ)e−λtζS(tq)ν(λ)dζdt.

ut = Cq(t)u0 + Kq(t)u1 +
∫ t

0
(t− s)q−1Pq(t− s)[ f (s, us)]dCs

+
∫ t

0
(t− s)q−1Pq(t− s)Bx(s)Cx(s)ds.

Assume that the following statements are true:

(H1) For ut, vt ∈ C([0, T]× (Θ,P , Cr), U), t ∈ [0, T]. There exists a positive number m,
such that

dL([ f (t, ut)]
β, [ f (t, vt)]

β) ≤ mdL([ut]
β, [vt]

β)
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and
f (0,X{0}(0)) ≡ 0.

(H2) 2cmKT ≤ 2.

We know that (2) has solution ut because of Lemma 7. Thus, in Theorem 1 we show
that the solution to (2) is unique.

Theorem 1. If u0 ∈ EN , if (H1) and (H2) hold, (2) has a unique solution ut ∈ C([0, T]) ×
(Θ,P , Cr), U).

Proof. For all θt ∈ C([0, T]× (Θ,P , Cr), U), t ∈ [0, T], define

φθt = Cq(t)u0 + Kq(t)u1 +
∫ t

0
(t− s)q−1Pq(t− s)[ f (s, θs)]dCs

+
∫ t

0
(t− s)q−1Pq(t− s)Bx(s)Cx(s)ds.

As a result, one can illustrate that φθ : [0, T]× (Θ,P , Cr)→ C([0, T]× (Θ,P , Cr), U)
is continuous,

φ : C([0, T]× (Θ,P , Cr), U)→ C([0, T]× (Θ,P , Cr), U).

A fixed point of φ is also an obvious solution for Equation (2). By Lemma 4 and
hypothesis (H1), θt, µt ∈ C([0, T]× (Θ,P , Cr), U).

dL([φθt]
β, [φµt]

β) = dL

([ ∫ t

0
(t− s)q−1Pq(t− s)[ f (s, θs)]dCs +

∫ t

0
(t− s)q−1Pq(t− s)Bx(s)Cx(s)

]β

,

[ ∫ t

0
(t− s)q−1Pq(t− s)[ f (s, µs)]dCs +

∫ t

0
(t− s)q−1Pq(t− s)Bx(s)Cx(s)

]β)

≤ 2cmK
∫ t

0
dL([θs]

β, [µs]
β)ds.

Therefore, we obtain

DL(φθt, φµt) = sup
β∈(1,2)

dL([φθt]
β, [φµt]

β)

≤ 2cmK
∫ t

0
sup

β∈(1,2)
dL([θt]

β, [µt]
β)ds

= 2cmK
∫ t

0
DL(θs, µs)ds.

As a consequence, by Lemma 1, for a.s. θ ∈ Θ,

E(H1(φθ, φµ)) = E

(
sup

t∈(0,T]
DL(φθt, φµt)

)

≤ E

(
2cmK sup

t∈(0,T]

∫ t

0
DL(θt, µt)

)

≤ 2cmKTE(H1(θ, µ)).

By hypothesis (H2), a contraction mapping is φ. This has a unique fixed point xt ∈
C([0, T]× (Θ,P , Cr), U) by the Banach fixed point theorem in Equation (2).
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4. Exact Controllability for Fuzzy Fractional Evolution Equations

The exact controllability of Caputo fuzzy differential Equation (3) is examined in this
section. For each x in V(⊂ EN), we consider a solution for (3).





ut = Cq(t)u0 + Kq(t)u1 +
∫ t

0 (t− s)q−1Pq(t− s) f (s, us)dCs

+
∫ t

0 (t− s)q−1Pq(t− s)BxsCxsds
u(0) = u0,
u′(0) = u1,

(10)

where S(t) is continuous with S(0) = I and S′(0) = I, |S(t)| ≤ c, c > 0, t ∈ [0, T]. For
Caputo fuzzy differential equations, we define the concept of controllability.

Definition 14. Equation (3) is said to be controllable on [0, T] if there is a control ut ∈ V for every
u0 ∈ EN such that the solution u of (3) satisfies ut = u−1 ∈ U, a.s. ζ that is [ut]β = [u1]β.

Define fuzzy mapping G̃ : P̃(R)→ U

G̃β(y) =

{ ∫ T
0 (t− s)q−1Pβ

q (t− s)BysCysds, y ⊂ Γx,
0, otherwise,

where Γx is the closure of support x and P̃(R) is a nonempty fuzzy subset of R.

Then there is a G̃β
i (i = m, n),

G̃β
m(ym) =

∫ T

0
(t− s)q−1Pβ

m(t− s)B(ys)mC(ys)mds, (ys)m ∈ [(ys)
β
m, (ys)

1],

G̃β
n(yn) =

∫ T

0
(t− s)q−1Pβ

n (t− s)B(ys)nC(ys)nds, (ys)n ∈ [(ys)
1, (ys)

β
n].

We assume that G̃β
m, G̃β

n are bijective mappings. A β-level set of xs can be represented
as follows:

[xs]
β = [(xs)

β
m, (xs)

β
n]

=

[
(G̃β

m)
−1
{
(u1)

β
m − Cq(t)(u0)

β
m − Kq(t)(u1)−

∫ t

0
(t− s)q−1Pq(t− s) f β

m(s, us)dCs

−
∫ t

0
(t− s)q−1Pq(t− s)Bβ

m(xs)C
β
m(xs)ds

}
, (G̃β

n)
−1
{
(u1)

β
n − Cq(t)(u0)

β
n − Kq(t)(u1)

−
∫ t

0
(t− s)q−1Pq(t− s) f β

n (s, us)dCs −
∫ t

0
(t− s)q−1Pq(t− s)Bβ

n(xs)C
β
n(xs)ds

}]
.

The β-level of xt is obtained by substituting this expression into (10).
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[ut]
β =

[
Cq(t)u0 + Kq(t)u1 +

∫ t

0
(t− s)q−1Pq(t− s) f (s, us)dCs

+
∫ t

0
(t− s)q−1Pq(t− s)BxsCxsds

]β

=

[
Cβ

m(t)(u0)
β
m + Kβ

m(t)(u1)
β
m +

∫ t

0
(t− s)q−1Pβ

m(t− s) f (s, (us)
β
m)dCs

+
∫ t

0
(t− s)q−1Pβ

m(t− s)B(G̃β
m)
−1
{
(u1)

β
m − Cq(t)(u0)

β
m − Kq(t)(u1)

β
m

−
∫ t

0
(t− s)q−1Pq(t− s) f β

m(s, us)dCs −
∫ t

0
(t− s)q−1Pq(t− s)Bβ

m(xs)C
β
m(xs)ds

}
ds,

Cβ
n(t)(u0)

β
n + Kβ

n(t)(u1)
β
n +

∫ t

0
(t− s)q−1Pβ

n (t− s) f (s, (us)
β
n)dCs

+
∫ t

0
(t− s)q−1Pβ

n (t− s)B(G̃β
n)
−1
{
(u1)

β
n − Cq(t)(u0)

β
n − Kq(t)(u1)

β
n

−
∫ t

0
(t− s)q−1Pq(t− s) f β

n (s, us)dCs −
∫ t

0
(t− s)q−1Pq(t− s)Bβ

n(xs)C
β
n(xs)ds

}
ds
]

=

[
Cβ

m(t)(u0)
β
m + Kβ

m(t)(u1)
β
m +

∫ t

0
(t− s)q−1Pβ

m(t− s) f (s, (us)
β
m)dCs

+G̃β
m(G̃

β
m)
−1
{
(u1)

β
m − Cq(t)(u0)

β
m − Kq(t)(u1)

β
m −

∫ t

0
(t− s)q−1Pq(t− s) f β

m(s, us)dCs

−
∫ t

0
(t− s)q−1Pq(t− s)Bβ

m(xs)C
β
m(xs)ds

}
ds, Cβ

n t)(u0)
β
n + Kβ

n(t)(u1)
β
n

+
∫ t

0
(t− s)q−1Pβ

n (t− s) f (s, (us)
β
n)dCs + G̃β

n(G̃
β
n)
−1
{
(u1)

β
n − Cq(t)(u0)

β
n − Kq(t)(u1)

β
n

= [(u1)
β
m, (u1)

β
n]

= [u1]α.

Hence this control xt satisfies ut = u1, a.s. ζ.
We now set

ψut = Cq(t)u0 + Kq(t)u1 +
∫ t

0
(t− s)q−1Pq(t− s) f (s, us)dCs

+
∫ t

0
(t− s)q−1Pq(t− s)BG̃−1

{
u1 − Cq(t)u0 − Kq(t)u1

−
∫ t

0
(t− s)q−1Pq(t− s) f (s, us)dCt

−
∫ t

0
(t− s)q−1Pq(t− s)B(xs)C(xs)ds

}
ds.

Fuzzy mapping G̃−1 satisfies the above statement.

Theorem 2. If Lemma 4 and the hypotheses (H1)and(H2) are satisfied, then Equation (3) is
controllable on [0, T].

Proof. We can easily verify that ψ is continuous from C([0, T]× (Θ,P , U) to C([0, T]. For
any given ζ with Cr{ζ} > 0, xt, yt ∈ C([0, T]× (Θ,P , Cr), U), we have by Lemma 4 and
hypotheses (H1) and (H2) that
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dL

(
[ψut]

β, [ψvt]
β
]
) = dL

([
Cq(t)u0 + Kq(t)u1 +

∫ t

0
(t− s)q−1Pq(t− s) f (s, us)dCs +

∫ t

0
(t− s)q−1Pq(t− s)

BG̃−1
{

u1 − Cq(t)u0 − Kq(t)u1 −
∫ t

0
(t− s)q−1Pq(t− s) f (s, us)dCt

−
∫ t

0
(t− s)q−1Pq(t− s)B(xs)C(xs)ds

}
ds, Cq(t)v0 + Kq(t)v1 +

∫ t

0
(t− s)q−1Pq(t− s)

f (s, vs)dCs +
∫ t

0
(t)q−1Pq(t− s)BG̃−1

{
v1 − Cq(t)v0 − Kq(t)v1

−
∫ t

0
(t− s)q−1Pq(t− s) f (s, vs)dCt −

∫ t

0
(t− s)q−1Pq(t− s)B(xs)C(xs)ds

}
ds
]

≤ dL

([∫ t

0
(t− s)q−1Pq(t− s) f (s, us)dCs

]β

,
[∫ t

0
(t− s)q−1Pq(t− s) f (s, vs)dCs

]β
)

+ dL

([∫ t

0
(t− s)q−1Pq(t− s)BG̃−1 ×

∫ t

0
(t− s)q−1Pq(t− s) f (s, ut)dCt(s)ds

]β

,

[∫ t

0
(t− s)q−1Pq(t− s)BG̃−1 ×

∫ t

0
(t− s)q−1Pq(t− s) f (s, vtdCt(s)ds

]β
)

≤ cmK
∫ t

0
dL

(
[us]

β, [vs]
β
)

ds + dL

([
G̃G̃−1

∫ t

0
(t− s)q−1Pq(t− s) f (s, ut)dCt(s)

]β

,

[
G̃G̃−1

∫ t

0
(t− s)q−1Pq(t− s) f (s, vt)dCt(s)

]β
)

≤ cmK
∫ t

0
dL

(
[us]

β, [vs]
β
)

ds + cmK
∫ t

0
dL

(
[ f (s, us)]

β, [ f (s, us)]
β
)

ds

≤ 2cmK
∫ t

0
dL

(
[us]

β, [vs]
β

)
ds.

Therefore, by Lemma 1,

E(H1(ψu, ψv)) = E

(
sup

t∈[0,T]
DL(ψut, ψvt)

)

= E

(
sup

t∈[0,T]
sup

1<β≤2
DL

(
|ψut|β, |ψvt|β

)
ds

)

≤ E

(
sup

t∈[0,T]
sup

1<β≤2
2cmK

∫ t

0
DL([us]

β, [vs]
β)ds

)

≤ E

(
sup

t∈[0,T]
2cmK

∫ t

0
DL(us, vs)ds

)

≤ 2cmKTF(H1(u, v)).

Thus, (2cmKT) < 2 is a sufficiently small T. As a consequence, ψ represents a
contraction mapping. Banach fixed point theorem is now used to prove that Equation (10)
has a unique fixed point. As a consequence, (3) can be controlled on [0, T].

Example 1. In credibility space, we consider the following Caputo fuzzy fractional differential
equations 




Dβu(t, ζ) = Au(t, ζ)dt + f (t, x(t, ζ))dct + Bx(t)Cx(t)dt,
u(0) = u0,
u′(0) = u1 ∈ EN ,

(11)
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where the state takes values from two bounded spaces U(⊂ EN) and V(⊂ EN). The set of all upper
semi-continuously convex fuzzy numbers on R is EN and the credibility space is (Θ,P , Cr).

The state function u : [0, T]× (Θ,P , Cr)→ U is a fuzzy coefficient. f : [0, T]×U → U is a
fuzzy process. x : [0, T]× (Θ,P , Cr)→ V is a regular fuzzy function, x : [0, T]× (Θ,P , Cr)→
V is a control function, and B is a V to U linear bounded operator. u0 ∈ EN is an initial value and
Ct is a standard Liu process.

Suppose f (t, ut) = 2̃tut, S−1(t) = e−2̃t, defining wt = S−1(t)ut. Then the equations of
balance become





ut = Cq(t)u0 + Kq(t)u1 +
∫ t

0 (t− s)q−1Pq(t− s)2̃tutdCs

+
∫ t

0 (t− s)q−1Pq(t− s)BxsCxsds,
u(0) = u0,
u′(0) = u1 ∈ EN .

(12)

Therefore, Lemma 7 is satisfied.
Since [2]β = [β + 1, 3− β] is the β-level set of fuzzy number 2̃ for all β ∈ (1, 2), the β-level

set of f (t, ut) is
[ f (t, ut)]

β = t[(β + 1)(ut)
β
m, (3− β)(ut)

β
m].

Further, we have

dL

(
[ f (t, ut)]

β, [ f (t, vt)]
β
)
= dL

(
t[(β + 1)(ut)

β
m, (β + 1)(ut)

β
n], t[(β + 1)(vt)

β
m, (β + 1)(vt)

β
n]
)

= t max
{
(β + 1)|(ut)

β
m − (vt)

β
m|, (3− β)|(ut)

β
n − (vt)

β
n|
}

≤ 3T max
{
|(ut)

β
m − (vt)

β
m|, |(ut)

β
n − (vt)

β
n|
}

= mdL([ut]
β, [vt]

β),

where m = 3T satisfies an inequality in the (H1), (H2) hypotheses. After that, all of the conditions
defined in Theorem 1 are satisfied.

Let 1̃ be an initial value for u0. u1 = 2̃ is the target set. The β-level set of fuzzy number 1̃ is
[1̃] = [β− 2, 2− β], β ∈ (1, 2). The β-level set of xs of (10) is introduced.

[xs] = [(xs)
β
m, (xs)

β
n]

=

[
(G̃β

m)
−1
{
(β + 2)− Sβ

m(β− 2)−
∫ T

0
Sβ

m(T − s)s(β + 1)(us)
β
mdCs

}
,

(G̃β
n)
−1
{
(3− β)− Sβ

n(3− β)−
∫ T

0
Sβ

n(T − s)s(3− β)(us)
β
ndCs

}]
.

The β-level of ut is then obtained by substituting this expression into (12).

[ut]
β =

[
Sβ

m(T)(β− 2) +
∫ T

0
Sβ

m(T − s)s(β + 2)(us)
β
mdCs +

∫ T

0
Sβ

m(T − s)B(G̃β
m)
−1

{
(β + 2)− Sβ

m(T)(β− 2)−
∫ T

0
Sβ

m(T − s)s(β + 2)(us)
β
mdCs

}
ds,

Sβ
n(T)(2− β) +

∫ T

0
Sβ

n(T − s)s(3− β)(us)
β
ndCs +

∫ T

0
Sβ

n(T − s)B(G̃β
n)
−1

{
(3− β)− Sβ

r (T)(2− β)−
∫ T

0
Sβ

n(T − s)s(3− β)(us)
β
ndCs

}
ds
]

= [(β + 2), (3− β)]

= [2̃]β.

After that, all conditions described in Theorem 2 are satisfied. As a result, (13) can be
controllable on [0, T].
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Example 2. Assume the following fuzzy fractional evolution equation in credibility space

C
0 D1.5

t u(t, ζ) = Au(t, ζ)dt + f (t3 + 2t2 + 4t)dct + 5Bx(t)Cx(t)dt, (13)

with initial conditions u(0) = u0, u′(0) = u1 ∈ EN , β ∈ 1.5, where the state takes values from
two bounded spaces U(⊂ EN) and V(⊂ EN). The set of all upper semi-continuously convex fuzzy
numbers on R is EN and the credibility space is (Θ,P , Cr).

The state function u : [0, T]× (Θ,P , Cr)→ U is a fuzzy coefficient. f : [0, T]×U → U is a
fuzzy process. x : [0, T]× (Θ,P , Cr)→ V is a regular fuzzy function, x : [0, T]× (Θ,P , Cr)→
V is a control function, and B is a V to U linear bounded operator. u0 ∈ EN is an initial value and
Ct is a standard Liu process.

Since [4]β = [β + 3, 5− β] is the β-level set of fuzzy number 2̃ for all β ∈ (1, 2), the β-level
set of f (t, ut) is

[ f (t, ut)]
β = t[(1.5 + 3)(ut)

1.5
m , (5− 1.5)(ut)

1.5
m ].

Further, we have

dL

(
[ f (t, ut)]

1.5, [ f (t, vt)]
1.5
)
= dL

(
t[(1.5 + 3)(ut)

1.5
m , (1.5 + 3)(ut)

1.5
n ], t[(1.5 + 1)(vt)

1.5
m , (1.5 + 1)(vt)

1.5
n ]
)

= t max
{
(1.5 + 3)|(ut)

1.5
m − (vt)

1.5
m |, (5− 1.5)|(ut)

1.5
n − (vt)

1.5
n |
}

≤ 5T max
{
|(ut)

1.5
m − (vt)

1.5
m |, |(ut)

1.5
n − (vt)

1.5
n |
}

= mdL([ut]
1.5, [vt]

1.5),

where m = 5T satisfies an inequality in the (H1), (H2) hypotheses.

5. Conclusions

If exact controllability is encouraged for fuzzy fractional evolution equations, it can
serve as a benchmark for treating controllability for equations in credibility space, such
as fuzzy semi-linear integro-differential equations and fuzzy delay integro-differential
equations. As a result, this study’s theoretical result can be used to create stochastic
extensions in credibility space. Moreover, future work may include expanding the ideas set
out in this work, introducing observability, and generalizing other works. This is a fruitful
field with wide research projects, which can lead to countless applications and theories.
We plan to allocate notable attention to this direction.

Author Contributions: Conceptualization, A.U.K.N., N.I., and K.N.; investigation, N.I., R.S., F.W.,
and K.N.; methodology, A.U.K.N., N.I., R.S., F.W., and K.N.; validation, R.S., F.W., and K.N.; visual-
ization, R.S., F.W., K.N.; writing—original draft, A.U.K.N., N.I., R.S., and K.N.; writing—review and
editing, N.I., and K.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The fourth author was supported by the Development and Promotion of Science
and Technology Talents Project (DPST), Thailand.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: Hoboken, NJ, USA, 1993.
2. Ahmad, B.; Ntouyas, S.K.; Agarwal, R.P.; Alsaedi, A. On fractional differential equations and inclusions with nonlocal and

average-valued (integral) boundary conditions. Adv. Differ. Equ. 2016, 80. [CrossRef]
3. Mansouri, S.S.; Gachpazan, M.; Fard, O.S. Existence, uniqueness and stability of fuzzy fractional differential equations with local

Lipschitz and linear growth conditions. Adv. Differ. Equ. 2017, 240. [CrossRef]

132



Fractal Fract. 2021, 5, 112

4. Agarwal, R.P.; Lakshmikantham, V.; Nieto, J.J. On the concept of solution for fractional differential equations with uncertainty.
Nonlinear Anal. Theory Methods Appl. 2010, 72, 2859–2862. [CrossRef]

5. Chakraverty, S.; Tapaswini, S.; Behera, D. Fuzzy Arbitrary Order System; John Wiley and Sons: Hoboken, NJ, USA, 2016.
6. Bede, B.; Stefanini, L. Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst. 2013, 230, 119–141. [CrossRef]
7. Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft

Comput. 2012, 16, 297–302. [CrossRef]
8. Salahshour, S.; Allahviranloo, T.; Abbasbandy, S. Solving fuzzy fractional differential equations by fuzzy Laplace transforms.

Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1372–1381. [CrossRef]
9. Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Academic Publishers: Cambridge,

UK, 2009.
10. Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear Anal. Theory Methods Appl. 2008, 69,

2677–2682. [CrossRef]
11. Kwun, Y.C.; Kim, W.H.; Nakagiri, S.I.; Park, J.H. Existence and uniqueness of solutions for the fuzzy differential equations in

n-dimension fuzzy vector space. Int. J. Fuzzy Log. Intell. Syst. 2009, 9, 16–19. [CrossRef]
12. Kwun, Y.C.; Kim, J.S.; Hwang, J.S.; Park, J.H. Existence of solutions for the impulsive semilinear fuzzy intergrodifferential

equations with nonlocal conditions and forcing term with memory in n-dimensional fuzzy vector space. Int. J. Fuzzy Log. Intell.
Syst. 2011, 11, 25–32. [CrossRef]

13. Lee, B.Y.; Kwun, Y.C.; Ahn, Y.C.; Park, J.H. The existence and uniqueness of fuzzy solutions for semilinear fuzzy integrodifferential
equations using integral contractor. Int. J. Fuzzy Log. Intell. Syst. 2009, 9, 339–342. [CrossRef]

14. Kwun, Y.C.; Park, M.J.; Kim, J.S.; Park, J.S.; Park, J.H. Controllability for the impulsive semilinear fuzzy differential equation in
n-dimension fuzzy vector space. In Proceedings of the 2009 Sixth International Conference on Fuzzy Systems and Knowledge
Discovery, Tianjin, China, 14–16 August 2009; pp. 45–48.

15. Park, J.H.; Park, J.S.; Kwun, Y.C. Controllability for the semilinear fuzzy integrodifferential equations with nonlocal conditions. In
International Conference on Fuzzy Systems and Knowledge Discovery; Springer: Berlin/Heidelberg, Germany, 2006; pp. 221–230.

16. Park, J.H.; Park, J.S.; Ahn, Y.C.; Kwun, Y.C. Controllability for the impulsive semilinear fuzzy integrodifferential equations. In
Fuzzy Information and Engineering; Springer: Berlin/Heidelberg, Germany, 2007; pp. 704–713.

17. Phu, N.D.; Dung, L.Q. On the stability and controllability of fuzzy control set differential equations. Int. J. Reliab. Saf. 2011, 5,
320–335. [CrossRef]

18. Lee, B.Y.; Park, D.G.; Choi, G.T.; Kwun, Y.C. Controllability for the nonlinear fuzzy control system with nonlocal initial condition
in En N. Int. J. Fuzzy Log. Intell. Syst. 2006, 6, 15–20. [CrossRef]

19. Balasubramaniam, P.; Dauer, J.P. Controllability of semilinear stochastic evolution equations in Hilbert space. J. Appl. Math. Stoch.
Anal. 2001, 14, 329–339. [CrossRef]

20. Feng, Y. Convergence theorems for fuzzy random variables and fuzzy martingales. Fuzzy Sets Syst. 1999, 103, 435–441. [CrossRef]
21. Arapostathis, A.; George, R.K.; Ghosh, M.K. On the controllability of a class of nonlinear stochastic systems. Syst. Control Lett.

2001, 44, 25–34. [CrossRef]
22. Liu, B. Fuzzy process, hybrid process and uncertain process. J. Uncertain Syst. 2008, 2, 3–16.
23. Chen, X.; Qin, Z. A New Existence and Uniqueness Theorem for Fuzzy Differential Equations. Int. J. Fuzzy Syst. 2011, 13,

10.30000/IJFS.201106.0010.
24. Liu, Y. An analytic method for solving uncertain differential equations. J. Uncertain Syst. 2012, 6, 244–249.
25. Lee, B.Y.; Youm, H.E.; Kim, J.S. Exact controllability for fuzzy differential equations in credibility space. Int. J. Fuzzy Log. Intell.

Syst. 2014, 14, 145–153. [CrossRef]
26. Diamond, P.; Kloeden, P. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994.
27. Wang, G.; Li, Y.; Wen, C. On fuzzy n-cell numbers and n-dimension fuzzy vectors. Fuzzy Sets Syst. 2007, 158, 71–84. [CrossRef]
28. San, D. Podlubny, I.: Fractional Differential Equations; Academic Press: New York, NY, USA,1999.
29. Mainardi, F.; Paradisi, P.; Gorenflo, R. Probability distributions generated by fractional diffusion equations. arXiv 2007,

arXiv:0704.0320.
30. Kwun, Y.; Kim, J.; Park, M.; Park, J. Nonlocal controllability for the semilinear fuzzy integrodifferential equations n-dimensional

fuzzy vector space. Adv. Differ. Equ. 2009, 734090. [CrossRef]
31. Liu, B. A survey of credibility theory. Fuzzy Optim. Decis. Mak. 2006, 5, 387–408. [CrossRef]
32. Liu, B.; Liu, Y.K. Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans Fuzzy Syst. 2002, 10, 445–450.
33. Fei, W. Uniqueness of solutions to fuzzy differential equations driven by Liu’s process with non-Lipschitz coefficients. In

Proceedings of the 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, China, 14–16
August 2009; pp. 565–569.

34. Zhang, S. Positive solutions for boundary-value problems of nonlinear fractional differential equations.Electron. J. Differ. Equ.
2006, 36, 1–12. [CrossRef]

35. Travis, C.C.; Webb, G.F. Cosine families and abstract nonlinear second order differential equations. Acta Math. Hung. 1978, 32,
75–96. [CrossRef]

133



fractal and fractional

Article

Dynamics of Fractional-Order Digital Manufacturing Supply
Chain System and Its Control and Synchronization

Yingjin He 1, Song Zheng 1,* and Liguo Yuan 2,3

����������
�������

Citation: He, Y.; Zheng, S.; Yuan, L.

Dynamics of Fractional-Order Digital

Manufacturing Supply Chain System

and Its Control and Synchronization.

Fractal Fract. 2021, 5, 128. https://

doi.org/10.3390/fractalfract5030128

Academic Editors: António M. Lopes

and Liping Chen

Received: 15 August 2021

Accepted: 13 September 2021

Published: 17 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Data Sciences, Zhejiang University of Finance & Economics, Hangzhou 310018, China;
hyj961113@126.com

2 Department of Mathematics, College of Mathematics and Informatics, South China Agricultural University,
Guangzhou 510642, China; liguoy@scau.edu.cn

3 Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data
Processing, Yulin Normal University, Yulin 537000, China

* Correspondence: zhengs02012@gmail.com

Abstract: Digital manufacturing is widely used in the production of automobiles and aircrafts, and
plays a profound role in the whole supply chain. Due to the long memory property of demand,
production, and stocks, a fractional-order digital manufacturing supply chain system can describe
their dynamics more precisely. In addition, their control and synchronization may have potential
applications in the management of real-word supply chain systems to control uncertainties that occur
within it. In this paper, a fractional-order digital manufacturing supply chain system is proposed and
solved by the Adomian decomposition method (ADM). Dynamical characteristics of this system are
studied by using a phase portrait, bifurcation diagram, and a maximum Lyapunov exponent diagram.
The complexity of the system is also investigated by means of SE complexity and C0 complexity. It is
shown that the complexity results are consistent with the bifurcation diagrams, indicating that the
complexity can reflect the dynamical properties of the system. Meanwhile, the importance of the
fractional-order derivative in the modeling of the system is shown. Moreover, to further investigate
the dynamics of the fractional-order supply chain system, we design the feedback controllers to
control the chaotic supply chain system and synchronize two supply chain systems, respectively.
Numerical simulations illustrate the effectiveness and applicability of the proposed methods.

Keywords: fractional-order; digital manufacturing; supply chain; synchronization; control

1. Introduction

Fractional-order calculus is an extension and generalization of integer-order calculus,
and fractional-order differential equations are obtained by acting the fractional-order dif-
ferential operators on integer-order ones. Although the theory of fractional-order calculus
had been proposed 300 years ago, and it developed slowly for a long time due to its lack
of practical engineering application background and its large computational size, it now
attracts extensive attention due to increases in computational power. It was not until
Mandelbrot [1] first pointed out the fact that fractional dimension exists in nature and
in many fields of science and technology in 1983 that the application of fractional-order
calculus attracted wide attention and developed rapidly. Fractional order systems have
long memory of history data [2,3]. The classical derivative in one point is only affected by
the information in the local neighborhood of that point, while the fractional derivative in
one point is affected by the combination of all of the information of the model in histori-
cal moments. Therefore, compared with integer-order calculus, fractional-order calculus
produces more accurate and reliable results for modelling of real-world systems due to
the memory effect. Recently, fractional-order systems have received special attention from
researchers in various fields such as physics [4], biology [5], neural network [6], manage-
ment, and economics [7–11], etc. On the other hand, chaos theory and applied research
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have developed rapidly and promoted its significant contribution in various scientific
fields [12]. Nowadays, the control and synchronization of nonlinear systems are the focus
of many research studies in a variety of fields [13–15]. Some effective controllers have
been designed to control and synchronize the fractional-order chaotic systems such as the
coupling controller [16], adaptive controllers [17], linear feedback controllers [18], sliding
mode controllers [19], fractional order PID controllers [20,21], and so on.

Supply chain systems are complex dynamic systems with various uncertainties [22,23].
In recent years, some researchers [24–28] are studying nonlinear chaotic dynamics of sup-
ply chain systems and have obtained many investigations. Forrester [29] was the first to
investigate the dynamics of supply chain systems and introduced the ‘bullwhip effect’.
The ‘bullwhip effect’ refers to the distortion of information in the process of transmitting
information from downstream to upstream enterprises, and the distortion and gradual
amplification of information in the process of transmitting information from the final
customer to the original supplier in the supply chain, resulting in the phenomenon of
cascading demand information. The ‘bullwhip effect’ can be explained by the chaos theory
of dynamical systems. One of the most fundamental characteristics of chaos is that the
trajectory of the system is very sensitive to the initial condition, i.e., even if the original
state changes slightly, the final state of the system can be very different. Goksu et al. [30]
constructed a supply chain model composed of manufacturers, distributors, and customers
to achieve the synchronization and control of this chaotic supply chain management system.
Gao et al. [31] proposed a new three-dimensional supply chain fractional-order difference
game model composed of manufacturers, distributors, and retailers, and used the corre-
lation theory of fractional-order difference to numerically analyze the complex dynamic
behavior of this model, and discuss the effect of the output adjustment speed parameter on
the dynamic behavior of the system. Recently, Yan et al. [32] integrated the computer-aided
digital manufacturing process into the three-level supply chain which is composed of
manufacturers, distributors, and retailers, and considered computer-aided digital design
prior to the production by manufacturers, ultimately achieving synchronization and control
of the system.

There are numerous attribute properties that cannot be described by the theory of
integer-order calculus, so it is necessary to theoretically study the complexity of the supply
chain system using the method of bifurcation and chaos of fractional nonlinear dynamics.
In a supply chain system, the variables including demand, supply, and production have
long memory properties, the fluctuation of which can lead to significant instability in the
operation and delivery of the system. Thus, the traditional integer-order supply chain
model has limitations to accurately show the operation of the system. Moreover, the
prevalence of the bullwhip effect in the supply chain management increases the risks of
production, supply, inventory management and marketing of suppliers, and even leads to
chaos in them. However, there are few results on fractional-order supply chain systems.

Motivated by the above discussions, to be more realistic, in this study, a fractional-
order digital manufacturing supply chain system is investigated. Dynamics and complexity
of this system with the variation of derivative orders and system parameter have been
studied by means of bifurcation diagram and complexity measure algorithms. Furthermore,
the nonlinear feedback controllers are designed to control and synchronize the chaos in
this fractional order supply chain system, respectively. That is, the fractional order supply
chain system has rich dynamic behaviors, and the evolution simulation is conducted for the
influence of the change of fractional order and parameters on the demand order quantity,
supply quantity, and digital manufacturing quantity of the supply chain enterprises. At
the same time, the chaotic states appearing in the evolution process are synchronized and
controlled to achieve the stability of the supply chain system. Therefore, this study contains
both theoretical and practical guidance to eliminate chaotic dynamics that are unfavorable
to the supply chain model.

The rest of this paper is organized as follows. In Section 2, preliminaries and mod-
eling are investigated. In Section 3, the dynamical behaviors of fractional-order digital
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manufacturing supply chain system are studied. In Section 4, controllers are designed to
synchronize two identical systems. In Section 5, we consider the stabilization of the system.
This paper ends with a conclusion in Section 6.

2. Preliminaries and Modeling
2.1. Preliminaries

In order to solve fractional-order calculus equations, various definitions of fractional-
order calculus have been proposed, among which the most common ones are the Grunwald-
Letnikov (G-L) fractional-order calculus definition, the Riemann-Liouville (R-L) fractional-
order calculus definition, and the Caputo fractional-order calculus definition [33]. The
algorithm based on the Caputo definition has clear physical meaning and is beneficial to
solve the actual physical system, having more practical engineering applications. In this
paper, we will only use the Caputo fractional derivative.

Definition 1. The Caputo fractional derivative of order q is given by

C
a Dq

t f (t) =
1

Γ(n− 1)

∫ t

a
(t− τ)n−q−1 f (n)(τ)dτ, (1)

where n− 1 < q < n, a and t are numbers representing the limits of the operator C
a Dq

t , and
the symbol Γ(·) is the gamma function.

Lemma 1 ([34]). Consider the following fractional-order system:

dqx(t)
dtq = f (x(t)), x(0) = x0 ∈ RN , q ∈ (0, 1), (2)

where x(t) = (x1(t), x2(t), . . . , xN(t))
T ∈ RN and f : [ f1, f2, . . . , fN ]

T : RN → RN . The
equilibrium points of the above system are solutions to the equation f (x(t)) = 0.
An equilibrium is asymptotically stable if all eigenvalues λi of the Jacobian matrix
J = ∂ f

∂x = ∂( f1, f2,..., fN)
∂(x1,x2,...,xN)

evaluated at the equilibrium satisfy |arg(λi)| > πq
2 .

As for the fractional-order continuous systems, there are several different solution
algorithms such as the frequency domain method (FDM) [35], the Adams-Bashforth-
Moulton algorithm (ABM) [36], and the Adomian decomposition method (ADM) [37]. The
ADM has higher accuracy and smaller computational error compared to the prediction-
correction algorithm and the Runge-Kutta algorithm [38], and it is used in this paper.

For a given fractional-order chaotic system with form of Dq
t0

x(t) = f (x(t)) + g(t),

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T is the state variable, g(t) = [g1(t), g2(t), . . . , gn(t)]

is the constant in the system, and Dq
t0

is the Caputo fractional derivative operator. Then it
can be divided into three parts as the form

Dq
t0

x(t) = Lx(t) + Nx(t) + g(t), (3)

where m ∈ N, m− 1 < q ≤ m. Lx(t) and Nx(t) are the linear and nonlinear terms of the
fractional differential equations respectively. Then, let Jq

t0
is the inverse operator of Dq

t0
,

thus we have
x = Jq

t0
Lx + Jq

t0
Nx + Jq

t0
g + Φ (4)
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where Φ =
m−1
∑

k=0
bk

(t−t0)
k

k! , x(k)
(
t+0
)
= bk, k = 0, · · · , m − 1, and it involves the initial

condition. By applying the recursive relation





x0 = Jq
t0

g + Φ
x1 = Jq

t0
Lx0 + Jq

t0
A0(x0)

x2 = Jq
t0

Lx1 + Jq
t0

A1(x0, x1)

· · ·
xi = Jq

t0
Lxi−1 + Jq

t0
Ai−1(x0, x1, · · · , xi−1)

· · ·

, (5)

The analytical solution of the fractional-order system is given by

x(t) =
∞

∑
i=1

xi, (6)

where i = 1, 2, . . . , ∞, and the nonlinear terms of the fractional differential equations Nx(t)
are evaluated by

Nx =

∞

∑
i=0

Ai
(

x0, x1, · · · , xi
)

, (7)





Ai
j =

1
i!

[
di

dλi N
(

vi
j(λ)

)]
λ=0

vi
j(λ) =

i
∑

k=0
(λ)kxk

j

. (8)

Nonlinear time series complexity measure is an important technique to analyze the
dynamics of a chaotic system, and is currently a hot topic in the field of nonlinear research.
Complexity measure of chaotic systems is to use some algorithms to measure how close
the chaotic sequence is to the random sequence, and the complexity value is larger when
the sequence is closer to the random sequence. There are several methods to measure
the complexity of chaotic systems including statistical complexity measure (SCM), fuzzy
entropy, sample entropy, spectral entropy (SE) [39], and C0 algorithm [40]. Among these
methods, SE and C0 algorithms are proper methods to estimate the complexity of a time
series accurately. So, SE and C0 algorithms are used in this paper.

2.2. Modeling

In Ref. [32], Yan et al. designed a four-dimensional supply chain model, a demand-driven
supply chain model based on digital manufacturing, focusing on the impact of digital
manufacturing on manufacturers and then on the whole supply chain. The model is
given by 




x′ = (m + θm)y− (n + 1 + θn)x,
y′ = (r + θr)x− xw− y,
z′ = −(d + θd)z + xy,
w′ = (c + θc)(d + θd)z− (k− 1− θk)w,

(9)

where x is the demand order quantity by retailers for the products, y is the supply quantity
by distributors, z is the quantity of finished computer aided digital design, w is the quantity
produced based on the digital design, m is the delivery efficiency of distributors, n is the
rate of satisfying the retailer demand, r is the rate of information distortion for the demand
by retailers for the products, d is the rate that the digital design is put into production, c
is the conversion rate from digital design to product, k is the safety stock coefficient for
manufacturers, and (θm, θn, θr, θd, θc, θk) denote the parameters of the perturbations on the
system. In addition, x < 0 indicates that the supply of distributors is less than retailer
demand, and w < 0 indicates that there is no new production due to backlogs or returns.
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In a supply chain system, the variables including demand, supply, and production
have a long memory property; since the integer-order difference calculus has no long-
memory effect, its theory is not suitable for studying the supply chain system with long-
memory effects. Thus, the traditional integer-order supply chain model has limitations to
accurately show the operation of the system. In this paper, the Caputo fractional derivative
operator is applied in system (9), then the supply chain system with computer aided digital
manufacturing process in the form of fractional-order differential equations are obtained as





Dq
t x = (m + θm)y− (n + 1 + θn)x

Dq
t y = (r + θr)x− xw− y

Dq
t z = −(d + θd)z + xy

Dq
t w = (c + θc)(d + θd)z− (k− 1− θk)w

(10)

where q ∈ (0, 1) denotes the order of derivatives, in particular, model (10) degenerates
to the integer-order supply chain differential equations when q = 1. Here, we take the
same order of the fractional derivative in all equations, and choose the parameters m = 0.9,
n = 0.8, r = 64.7, c = 1.4, k = 4.8, θm = 0.1, θn = 0.2, θr = 0.3, θd = 0.1, θc = 0.2, and
θk = 0.3. Since this paper focuses on the impact of digital manufacturing process on the
whole supply chain system, the parameter d is taken as the control variable. Thus, the
fractional-order supply chain system is proposed as follows





Dq
t x = y− 2x

Dq
t y = 65x− xw− y

Dq
t z = −(d + 0.1)z + xy

Dq
t w = (1.6d+0.16)z− 3.5w

(11)

Here, an approximate solution to the fractional-order value of the system (11) is
∼
x j = c0

j + c1
j
(t−t0)

q

Γ(q+1) + c2
j
(t−t0)

2q

Γ(2q+1) + . . . + c6
j
(t−t0)

2q

Γ(6q+1) , j = 1, 2, 3, 4, and the detailed derivation

of c1
j , , c, · · · , c6

j is given in Appendix A.

3. Dynamics Analysis of the Fractional-Order Supply Chain System

With the variation of derivative orders and system parameters, system (11) has com-
plex dynamic behaviors such as periodic motions, period-doubling motions, and chaotic
motions. If the system behaves chaotically, the supply chain system will be in a state of
loss of control, which will lead to inventory, ordering, and supply chaos, and affect the
decision making of supply chain enterprises at all levels, thus causing greater damage to
the operation of the whole supply chain system. If the system appears in a periodic state,
the supply chain system will be stable and the supply chain enterprises can make decisions
based on the inventory status better. Therefore, studying the chaotic dynamic behaviors of
the supply chain system can be an effective means to maintain the stability of the supply
chain system and guide the scientific decision making of the supply chain enterprises.

In this section, the numerical solution of system (11) is obtained by means of ADM,
and the chaotic dynamic behaviors of the system with the variation of the fractional order
q and the parameter d are studied through bifurcation diagrams, maximum Lyapunov
exponent diagrams, phase portraits, time series diagrams and complexity diagrams.

3.1. Dynamic Behaviors Analysis with Parameter d

If a manufacturing company produces digitally, it will be followed by digital design
into production. Moreover, the larger the parameter d, the higher the level of digital
production. In this subsection, we study the impact of the rate of digital design into
production on the manufacturer and the supply chain. In system (11), let the fractional
order q = 0.75, the initial conditions (x0, y0, z0, w0) = (0.2, 0.2, 0.3, 0.32), and the parameter
d is chosen as the critical variable. The bifurcation diagram and the maximum Lyapunov
exponent diagram of system (11) with the parameter d varying from 0.5 to 5 are shown in
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Figures 1 and 2. The results indicate that the system shows the inverse period-doubling
bifurcation, and as the parameter d decreases, the system goes from periodic state, after
the period-doubling bifurcation, to chaotic state. When d ∈ [3.33, 5], the period one is
appeared, and the period-doubling bifurcation occurs for d = 3.33. When d ∈ [2.37, 3.33),
the period two is appeared, and the period-doubling bifurcation occurs for d = 2.37. When
d ∈ [2.23, 2.37), the period four is appeared, and the period-doubling bifurcation occurs
for d = 2.23. When d < 2.18, the system enters to chaotic state, which can be illustrated
from the maximum Lyapunov exponent.
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The numerical simulation results can reflect the actual situation of the supply chain
system. When the rate that the digital design is put into production is high, it means that
the products are digitally produced quickly, hence the replenishment demand of retailers
can be met immediately, and consequently the demand of consumers can be met quickly,
making the inventory system and the production of manufacturers stable. On the contrary,
when the rate is low, the order demand of retailers cannot be met in time, so consumers may
seek other alternatives, which will lead to overstock and chaos in production. Therefore,
the strategy to increase the rate of digital design into production is feasible and it can make
the whole supply chain system stable.
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In order to observe the dynamic behaviors of system (11) directly, the phase portraits
of the system with several different values of the parameter d are shown in Figure 3.
When d = 0.7, the system is chaotic and the chaotic attractor is presented in Figure 3a.
The numerical analysis shows that the interaction between the quantity of demand from
retailers, the quantity of products available from distributors, the quantity of completed
digital designs, and the quantity of production based on digital designs. When d = 2.9, the
system is in the periodic four that is shown in Figure 3b. When d = 3.5, the period two
is appeared, and it is shown in Figure 3c. When d = 4, the periodic one of the system is
presented in Figure 3d. The phase diagrams are consistent with the bifurcation diagram
and the maximum Lyapunov exponent diagram. Thus, the fractional-order supply chain
system has rich dynamical properties when the parameter d of system (18) is varied.
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As shown in Figure 4, the C0 complexity and SE complexity of system (18) have high
values when 0.5 < d < 2.18, indicating that production and inventory of manufacturers
appear chaotic and difficult to predict; when d ≥ 2.18, the value of the complexity is very
small, indicating that it contributes to production planning of manufacturers and supply
and inventory management of supply chain enterprises.
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3.2. Dynamical Behaviors with q

In system (11), let the parameter d = 3.5, the initial conditions (x0, y0, z0, w0) =
(0.2, 0.2, 0.3, 0.32) and the parameter q is chosen as the critical variable to show the effect of
fractional order to the behavior of chaotic system results. Figure 5 shows the bifurcation
diagram with the order q as the bifurcation parameter. When q ∈ [0.47, 0.62], the system
is mostly in a chaotic state. When q > 0.62, the chaos disappears and the system appears
in a periodic state. In order to study the effect of different fractional orders on the supply
chain system when manufacturers have a high rate of digital design into production, we
consider choosing the fractional orders that appear in periodic state, so the orders are
chosen as q = 1, q = 0.75, and q = 0.7, respectively.
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Figure 6 shows the phase diagram between the demand by retailers and the digital
production by manufacturers of system (11) with different fractional orders. As shown,
when q = 1, w fluctuates more at x > 0 and less at x < 0, as the order q decreases to
0.75 and then to 0.7, w fluctuates gradually less at x > 0 and more at x < 0. In practice,
x < 0 indicates that the supply of distributors cannot meet the order demand of retailers.
The analysis shows that with a small order q, then the production of the manufacturers
fluctuates more when the supply from the distributors to the retailers is insufficient, while
the production of the manufacturers fluctuates less when the supply from the distributors
is sufficient. Thus, it indicates that the fractional-order system more accurately reflects the
real-world supply chain system compare to the integer-order one.

Figure 7 shows the corresponding time series diagram of the digital production of the
manufacturers. As shown in the figure, the smaller the order q, the shorter the fluctuation
period of the production, indicating that goods are transferred faster at all levels of the
supply chain and can meet customer demand faster, resulting in a more stable inventory
system and supply chain system.

As shown in Figure 8, the C0 complexity and SE complexity of system (11) are higher
when 0.5 ≤ q ≤ 0.62, and the values of complexity both oscillate at lower values when
q > 0.62. It shows that the fractional-order system has an order of magnitude higher
complexity compared to the integer-order system.

From Figures 4 and 8, we find that the complexity results are consistent with the
bifurcation diagrams, indicating that the complexity can reflect the dynamic characteristics
of the fractional-order digital manufacturing supply chain system.
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4. Synchronization of the Chaotic Fractional-Order Digital Manufacturing Supply
Chain System

From the analysis in Section 3, it is understood that the fractional-order digital manu-
facturing supply chain system is chaotic when the rate at which the digital design of the
manufacturer is put into production is low. Without applying appropriate synchronization
controllers to the system, the trajectories of the system with different initial values will
exhibit different behaviors. In order to achieve synchronization between two supply chain
systems with different initial conditions, the controllers can be designed to synchronize the
two chaotic systems.

We establish the fractional-order error system by two chaotic fractional-order supply
chain systems with different initial conditions, which are called the driving supply chain
system and the responding supply chain system, respectively. Let d = 0.7, then the drive
supply chain system is defined as follows





Dq
t x1 = y1 − 2x1

Dq
t y1 = 65x1 − x1w1 − y1

Dq
t z1 = −0.8z1 + x1y1

Dq
t w1 = 1.28z1 − 3.5w1

(12)

And the response supply chain system is given as





Dq
t x2 = y2 − 2x2 + u11(t)

Dq
t y2 = 65x2 − x2w2 − y2 + u12(t)

Dq
t z2 = −0.8z2 + x2y2 + u13(t)

Dq
t w2 = 1.28z2 − 3.5w2 + u14(t)

(13)

where u11(t), u12(t), u13(t), u14(t) are the controllers to be determined later.
Denote the error variables as





e1 = x2 − x1
e2 = y2 − y1
e3 = z2 − z1
e4 = w2 − w1

(14)

where, e1, e2, e3, e4 denote errors between the drive system and the response system. The
fractional-order error system is obtained by subtracting the drive supply chain system from
the response supply chain system





Dq
t e1 = e2 − 2e1 + u11(t)

Dq
t e2 = 65e1 − x2w2 + x1w1 − e2 + u12(t)

Dq
t e3 = −0.8e3 + x2y2 − x1y1 + u13(t)

Dq
t e4 = 1.28e3 − 3.5e4 + u14(t)

(15)

To synchronize the drive system (12) and the response system (13), suitable controllers
are chosen so that the fractional-order error system (15) is asymptotically stable at the
origin. In this paper, we consider the controllers as





u11(t) = −e2
u12(t) = −65e1 + x2w2 − x1w1
u13(t) = −x2y2 + x1y1
u14(t) = 1.28e3

(16)
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Then the fractional-order error system (15) becomes





Dq
t e1 = −2e1

Dq
t e2 = −e2

Dq
t e3 = −0.8e3

Dq
t e4 = −3.5e4

(17)

The fractional-order error system (17) is asymptotically stable based on Lemma 1,
which implies that synchronization between (12) and (13) will be realized. This completes
the proof.

Furthermore, the effect of the fractional orders on the synchronization of two chaotic
fractional-order supply chain systems with different initial conditions is studied. Let the
parameter d = 0.7, then both the drive system and the response system are chaotic. Let
the initial values of the drive system (x10, y10, z10, w10) = (0.2, 0.2, 0.3, 0.32), and the initial
values of the response system (x20, y20, z20, w20) = (20, 20, 30, 32). The fractional order q is
chosen as q = 1, q = 0.75, and q = 0.7, respectively. The numerical solution of system (17) is
obtained by the ADM, and the time series diagrams of system (17) with different fractional
orders are shown in Figure 9. As shown in the figure, for two identical fractional-order
chaotic supply chain systems (although there are differences in their initial states), the
errors gradually converge to zero as time grows. This indicates that the two chaotic systems
reach synchronization under the designed controllers, and the smaller the fractional order,
the faster the synchronization. This implies that despite the factors such as the bullwhip
effect, inventory can be synchronized faster when the order of the fractional-order supply
chain systems is decreased, allowing the enterprises to reduce risk more effectively.
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In order to see the comparison of the time histories of the drive system and the
response system more visually and to further verify the synchronization, the fractional
order q is chosen to be 0.75 and the time series of systems (12) and system (13) are plotted
in the same figure, as shown in Figure 10. The green line in the figure represents the time
series of the drive supply chain system under its initial conditions, and the yellow line
represents the time series of the response supply chain system under its initial conditions,
and the comparison reveals that the time series of the two systems overlap after t = 1.6 as
time grows. Again, it shows that the designed synchronization controllers are effective and
can synchronize the two systems.
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Figure 10. Time series of the drive supply chain system (12) (blue line) and the response supply chain
system (13) (red dot line) when q = 0.75, and d = 0.7.

5. Control of Fractional-Order Supply Chain Chaotic System
5.1. Equilibrium Point Analysis

The corresponding Jacobian matrix of system (10) is given as follows:

J =




−(n + 1 + θn) m + θm 0 0
r + θr − w −1 0 −x

y x −(d + θd) 0
0 0 (c + θc)(d + θd) −(k− 1− θk)




The values of the system parameters are set in Section 2, let d = 0.7, the equilibrium
points can be evaluated by solving the equations Dqx = 0, Dqy = 0, Dqz = 0, and Dqw = 0.
System (10) has three equilibrium points, which are, respectively, described as E0 = (0, 0, 0, 0),
E1 = (−8.3010,−16.6020, 172.2656, 63.0000), E2 = (8.3010, 16.6020, 172.2656, 63.0000).
The corresponding eigenvalues are obtained as E0:λ1 = −3.5, λ2 = −9.5777, λ3 = 6.5777,
λ4 = −0.8, E1 and E2:λ1 = 1.1695 + 3.7637i, λ2 = 1.1695− 3.7637i, λ3 = −4.1018,
λ4 = −5.5372.

From Lemma 1, the equilibrium point E0 is unstable, whereas the stability of E1 and
E2 is determined by the value of the fractional order q.

5.2. Feedback Controllers

Considering the equilibrium point E0, to control chaos in fractional-order system (10),
the feedback controllers u11(t), u12(t), u13(t), u14(t) are considered, then the controlled
system is defined as 




Dq
t x = y− 2x + u21(t),

Dq
t y = 65x− xw− y + u22(t),

Dq
t z = −0.8z + xy + u23(t),

Dq
t w = 1.28z− 3.5w + u24(t).

(18)
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For the fractional-order system (10), the following feedback controllers are designed
in order to control the system asymptotically stably at the equilibrium point E0(0,0,0,0).





u21(t) = x− y,
u22(t) = −65x + xw,
u23(t) = −0.2z− xy,
u24(t) = −1.28z + 2.5w,

(19)

Then, the controlled system (18) can be written as





Dq
t x = −x,

Dq
t y = −y,

Dq
t z = −z,

Dq
t w = −w.

(20)

The corresponding eigenvalues are λ1 = λ2 = λ3 = λ4 = −1. From Lemma 1,
|arg(λi)| > πq

2 , then equilibria E0 is asymptotically stable under the chosen controllers as
shown in Figure 11.
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The simulation result shows the effectiveness of the designed control functions.
The simulation result from Figure 11 shows the effectiveness of the designed control

functions. This suggests that the designed controllers can control chaos in fractional-order
system (10), and the smaller the fractional order, the faster the system is controlled to the
equilibrium point. This implies that when the order of the fractional-order supply chain
system is decreased, the system can reach a stable state more quickly.

In the above numerical results from Figure 5, we find that the derivative orders can
change the bifurcation types and dynamics of the system. Figures 6 and 7 show that
with different orders, supply chain companies have different decisions for inventory and
management. Furthermore, Figure 9 indicates that the rate of synchronization is affected
by the value of order. Figure 11 also shows that the rate of the system is controlled to the
equilibrium point which is affected by the value of fractional order. It again indicates that
the derivative order is very important in the fractional-order supply chain chaotic system.
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6. Conclusions

In the present research, a fractional-order digital manufacturing supply chain system
model was established. Through well-known tools and methods, including the phase
portrait, bifurcation diagram, and maximum Lyapunov exponent diagram, the charac-
teristics of the system were explored. The behavior of the system and the effects of the
fractional-order derivative on the results of the system were displayed. It was demon-
strated that the fractional-order system more accurately reflects the real-world supply
chain system compared to the integer-order one. Furthermore, controllers were designed
to synchronize two systems with different initial conditions. In addition, the equilibrium
point analysis was carried out, and to suppress the chaotic behavior, feedback controllers
were designed to stabilize the supply chain system. Our research results can help achieve
more stable inventory systems and supply chain systems. In the future, we aim to further
study the complexity evolution of fractional-order chaotic supply chain systems. Also,
future research can be devoted to the control and synchronization of the proposed model
through some more simple controllers with less parameters, such as fractional-order fuzzy
controllers, fractional-order PID controllers, and fractional-order PIλD controllers.
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Appendix A

According to the ADM, the system (11) can be represented as




x(t)
y(t)
z(t)
w(t)


 =




x(t0)
y(t0)
z(t0)
w(t0)


+ Jq

t0




y− 2x
65x− y
−(d + 0.1)z

(1.6d + 0.16)z− 3.5w


+ Jq

t0




0
−xw

xy
0


 (A1)

The nonlinear terms in the above equation can be decomposed as follows:





A0
−xw = −x0w0

A1
−xw = −(x1w0 + x0w1)

A2
−xw = −(x2w0 + x1w1 + x0w2)

A3
−xw = −(x3w0 + x2w1 + x1w2 + x0w3)

A4
−xw = −(x4w0 + x3w1 + x2w2 + x1w3 + x0w4)

A5
−xw = −(x5w0 + x4w1 + x3w2 + x2w3 + x1w4 + x0w5)

(A2)
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



A0
xy = x0y0

A1
xy = x1y0 + x0y1

A2
xy = x2y0 + x1y1 + x0y2

A3
xy = x3y0 + x2y1 + x1y2 + x0y3

A4
xy = x4y0 + x3y1 + x2y2 + x1y3 + x0y4

A5
xy = x5y0 + x4y1 + x3y2 + x2y3 + x1y4 + x0y5

(A3)

where the superscript in the decomposition formula is the number of ADM decompositions.
The initial condition is 




x0 = c0
1 = x(t0)

y0 = c0
2 = y(t0)

z0 = c0
3 = z(t0)

w0 = c0
4 = w(t0)

(A4)

According to the property of fractional-order calculus, then we obtain




x1 = (c0
2 − 2c0

1)
(t−t0)

q

Γ(q+1)

y1 = (65c0
1 − c0

2 − c0
1c0

4)
(t−t0)

q

Γ(q+1)

z1 = (−(d + 0.1)c0
3 + c0

1c0
2)

(t−t0)
q

Γ(q+1)

w1 = ((1.6d + 0.16)c0
3 − 3.5c0

4)
(t−t0)

q

Γ(q+1)

(A5)

Here, we assign the coefficients of (A5) to the corresponding variables, and the other
five coefficients of the equation can be derived after several iterations in the same way.
They are given as follows





c1
1 = c0

2 − 2c0
1

c1
2 = 65c0

1 − c0
2 − c0

1c0
4

c1
3 = −(d + 0.1)c0

3 + c0
1c0

2
c1

4 = (1.6d + 0.16)c0
3 − 3.5c0

4

(A6)





c2
1 = c1

2 − 2c1
1

c2
2 = 65c1

1 − c1
2 − c1

1c0
4 − c0

1c1
4

c2
3 = −(d + 0.1)c1

3 + c1
1c0

2 + c0
1c1

2
c2

4 = (1.6d + 0.16)c1
3 − 3.5c1

4

(A7)





c3
1 = c2

2 − 2c2
1

c3
2 = 65c2

1 − c2
2 − c0

1c2
4 − c2

1c0
4 − c1

1c1
4

Γ(2q+1)
Γ2(q+1)

c3
3 = −(d + 0.1)c2

3 + c0
1c2

2 + c2
1c0

2 + c1
1c1

2
Γ(2q+1)
Γ2(q+1)

c3
4 = (1.6d + 0.16)c2

3 − 3.5c2
4

(A8)





c4
1 = c3

2 − 2c3
1

c4
2 = 65c3

1 − c3
2 − c3

1c0
4 − c0

1c3
4 − (c1

1c2
4 + c2

1c1
4)

Γ(3q+1)
Γ(q+1)Γ(2q+1)

c4
3 = −(d + 0.1)c3

3 + c3
1c0

2 + c0
1c3

2 + (c1
1c2

2 + c2
1c1

2)
Γ(3q+1)

Γ(q+1)Γ(2q+1)
c4

4 = (1.6d + 0.16)c3
3 − 3.5c3

4

(A9)





c5
1 = c4

2 − 2c4
1

c5
2 = 65c4

1 − c4
2 − c4

1c0
4 − c0

1c4
4 − (c3

1c1
4 + c1

1c3
4)

Γ(4q+1)
Γ(q+1)Γ(3q+1) − c2

1c2
4

Γ(4q+1)
Γ2(2q+1)

c5
3 = −(d + 0.1)c4

3 + c4
1c0

2 + c0
1c4

2 + (c3
1c1

2 + c1
1c3

2)
Γ(4q+1)

Γ(q+1)Γ(3q+1) + c2
1c2

2
Γ(4q+1)
Γ2(2q+1)

c5
4 = (1.6d + 0.16)c4

3 − 3.5c4
4

(A10)





c6
1 = c5

2 − 2c5
1

c6
2 = 65c5

1 − c5
2 − c5

1c0
4 − c0

1c5
4 − (c4

1c1
4 + c1

1c4
4)

Γ(5q+1)
Γ(q+1)Γ(4q+1) − (c3

1c2
4 + c2

1c3
4)

Γ(5q+1)
Γ(2q+1)Γ(3q+1)

c6
3 = −(d + 0.1)c5

3 + c5
1c0

2 + c0
1c5

2 + (c4
1c1

2 + c1
1c4

2)
Γ(5q+1)

Γ(q+1)Γ(4q+1) + (c3
1c2

2 + c2
1c3

2)
Γ(5q+1)

Γ(2q+1)Γ(3q+1)
c6

4 = (1.6d + 0.16)c5
3 − 3.5c5

4

(A11)
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Abstract: This paper concerns with the existence and uniqueness of the Cauchy problem for a system
of fuzzy fractional differential equation with Caputo derivative of order q ∈ (1, 2], c

0Dq
0+u(t) =

λu(t)⊕ f (t, u(t))⊕ B(t)C(t), t ∈ [0, T] with initial conditions u(0) = u0, u′(0) = u1. Moreover, by
using direct analytic methods, the Eq–Ulam-type results are also presented. In addition, several
examples are given which show the applicability of fuzzy fractional differential equations.

Keywords: fuzzy fractional differential equations; Caputo derivative; fractional hyperbolic function;
strongly generalized Hukuhara differentiability; Ulam-type stability

MSC: 34K37; 34B15

1. Introduction

In real-life phenomena, numerous physical processes are used to present fractional-
order sets that may change with space and time. The operations of differentiation and
integration of fractional order are authorized by fractional calculus. The fractional order
may be taken on imaginary and real values [1–3]. The theory of fuzzy sets is continuously
drawing the attention of researchers. This is mainly due to its extended adaptability in
various fields including mechanics, engineering, electrical, processing signals, thermal
system, robotics, control, signal processing, and in several other areas [4–10]. Therefore, it
has been a topic of increasing concern for researchers during the past few years.

Fuzzy fractional differential equations appeared for the first time in 2010 when an
idea of the solution was initially proposed by Agarwal et al. [11]. However, the Riemann–
Liouville H derivative based on the strongly generalizing Hukuhara differentiability [12,13]
was defined by Allahviranloo and Salahshour [14,15]. They worked on solutions to Cauchy
problems under this kind of derivative.

RL
0 Dq

a+u(t) = λu(t) + f (t), t ∈ [a, b],
RL
0 Dq−1

a+ u(t) = u0 ∈ E1 .

In the above, q ∈ (0, 1], through using Laplace transforms [13] and Mittag–Leffler
functions [12]. By using fractional hyperbolic functions and the properties of these func-
tions, Chehlabi et al. obtain some new results [16]. More latest studies on fuzzy fractional
differential equations can be found through references [17–22].

In 1940, Ulam promoted the Ulam stability. Lately, Hyers and Rassias used this concept
of stability. Since then, in mathematical analysis and differential equations, the Ulam-type
stability has had great significance. In fractional differential equations, Eα–Ulam-type
stabilities were promoted by Wang in 2014 [23].
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c
0Dα

t u(t) + λu(t) = f (t, u(t)), t ∈ [0, T]
u(0) = u0 ∈ R .

In the above equation, α ∈ (0, 1] and λ > 0. Shen studied the Ulam stability under
the generalization of Hukuhara differentiability of a first-order linear fuzzy differential
equation in 2015 [24]. Later, Shen et al. investigated the Ulam stability of a nonlinear fuzzy
fractional equation with the help of fixed-point techniques in 2016 [25],

RL
0 Dq

0+u(t) = λu(t)⊕ f (t, u(t)), t ∈ [0, T],

by focusing on the initial condition

RL
0 Dq−1

0+ u(0) = u0 ∈ E1,

where RL
0 Dq

0+ denoted Riemann–Liouville H derivative with respect to order q ∈ (0, 1], f :
(0, T]×E1 → E1, T ∈ R+, and λ ∈ R.

More results can be observed that are related to Ulam-type stability in [26–28]. Moti-
vated by the above-cited papers, we aim to deal with fuzzy fractional differential equations
of the form,

c
0Dq

0+u(t) = λu(t)⊕ f (t, u(t))⊕ B(t)C(t), t ∈ [0, T], (1)

with initial conditions
u(0) = u0, u′(0) = u1, (2)

Here, c
0Dq

0+ denotes the Caputo derivative of order q ∈ (1, 2], f : (0, T]×E1 → E1, T ∈
R+ and λ ∈ R.

This paper focuses on facilitating, with as few conditions as possible, to assure the
uniqueness and existence of a solution to Cauchy problems (1) and (2). It establishes a
link between fuzzy fractional differential equations and the Ulam-type stability, which
enhances and generalizes some familiar outputs in the existing literature.

2. Basic Concepts

Assume that Pk(R) denotes the collection of all nonempty convex and compact subsets
of R and define sums and scalar products in Pk(R) in the usual manner. Let A and B be
two nonempty bounded subsets in R. The distance between A and B is defined through
the Hausdorff metric,

D(A, B) = max{sup
a∈A

inf
b∈B
||a− b||, sup

b∈B
inf
a∈A
||a− b||}.

In the above equality, ||x|| stands for the usual Euclidean norm in R. Now it is well
known that the metric D turns the space (Pk(R), D) into a complete and separable metric
space [26].

Denote
E1 = {u : R→ [0, 1] | u satis f ies (1)–(4)}

where (1)–(4) stands for the following properties of the function u:

(1) u is normal in the sense that there exists an s0 ∈ R such that u(s0) = 2;
(2) u is fuzzy convex, that is u(qs + (1− q)y) > min{u(s), u(y)} for any s, y ∈ R and

q ∈ (1, 2];
(3) u is an upper semicontinuous function on R;
(4) The set [u]1 defined by [u]1 = {t ∈ R|u(t) > 1} is compact.

For 1 < q 6 2, denote [u]q = {t ∈ R|u(t) > q}. Now, from (1)–(4), it follows that the
q-level set [u]q ∈ Pk(R) ∀ 1 6 q 6 2.
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Define u as the lower branch and ū as the upper branch of the fuzzy number u ∈ E1.
The set [u]q = {t ∈ R|u(t) ≥ q} := [uq, uq] is known as the q-level set of fuzzy number u,
where q ∈ (1, 2]. The length of q-level set is calculated as diam[u]q = uq − uq.

Lemma 1 ([29,30]). If u, v, s, y ∈ E1, then

(i) (E1, D) is a complete metric space;
(ii) D(u⊕ s, v⊕ s) = D(u, v);
(iii) D(λu, λv) = |λ|D(u, v) λ ∈ R;
(iv) D(u⊕ s, v⊕ y) 6 D(u, v) + D(s, y);
(v) D(λu, µu) = |λ− µ|D(u, 0̂), λ, µ > 0.

Let CE[a, b] and LE[a, b] be spaces for all continuous and Lebesgue integrable fuzzy-
valued functions on [a, b], respectively. Moreover, (CE[a, b], D) stands for the complete
metric space, where

D(u, v) = sup
t∈[a,b]

d(u(t), v(t)).

Remark 1. On E1, we can define the subtraction	, called the H difference as follows: u	 v makes
sense if there exists ω ∈ E1 such that u = v⊕ω. Then, by definition, ω = u⊕ v.

Let u, v ∈ E1 be such that u	 v is well defined. Then, its q-level is determined by

[u	v]q = [uq − vq, uq − vq].

Through a generalization of the Hausdorff–Pompeiu metric on convex and compact sets, the
metric D on E1 can be defined by

D(u, v) = sup
16q62

max{|uq − vq|, |uq − uq|}.

Definition 1 ([13]). Assume that F ∈ CE(a, b]
⋂

LE(a, b]. The fuzzy Riemann–Liouville integral
for a fuzzy-valued function F is defined by

TqF(t) =
1

Γ(q)

∫ t

a

F(x)
(t− x)1−q dx, t ∈ (a, b),

q ∈ (1, 2]. For q = 1 we obtain T1F(t) =
∫ t

a F(x)ds, which is the classical fuzzy integral operator.

Definition 2 ([13]). Assume that F ∈ CE(a, b]
⋂

LE(a, b], t1 ∈ (a, b) and

φ(t) =
1

Γ(1− q)

∫ t

a
(t− x)qF(x)dx.

It is said that F is Caputo H-differentiable of order 1 < q 6 2 at t1, if there exists an element
c
0Dq

t F(t1) ∈ E1 such that the following fuzzy equalities are valid:

(i) c
0Dq

t F(t1) = limh→0+
φ(t1+h)	φ(t1)

h

(ii) c
0Dq

t F(t1) = limh→0+
φ(t1)	φ(t1−h)

h

(iii) c
0Dq

t F(t1) = limh→0+
φ(t1)	φ(t1+h)

−h

(iv) c
0Dq

t F(t1) = limh→0+
φ(t1−h)	φ(t1)

−h

Here, we use only the first two cases [23]. These derivatives are trivial because they re-
duce to crisp elements. Regarding other fuzzy cases, the reader is referred to [23]. Furthermore,
regarding this simplicity, a fuzzy-valued function F is called c[(i)-GH]-differentiable or c[(ii)-GH]-
differentiable if it is differentiable according to concept (i) or to (ii) of Definition 2, respectively.
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The Mittag–Leffler and fractional hyperbolic functions frequently occur in solutions to frac-
tional systems; see, e.g., [16,23]. The Mittag–Leffler functions in the form of a single and a double
parameter are defined by, respectively,

Eα(x) =
∞

∑
k=1

xk

Γ(αk + 1)

Eα,β(x) =
∞

∑
k=1

xk

αk + β
.

Some properties of these functions can be found in [31–33].

Lemma 2. Let δ > 0. Some properties of the functions Eα(.) and Eα,β(.) are listed below:

(i) Let 1 < α < 2. Then Eα(−δtα) 6 2 and Eα,α(−δtα) 6 1
Γ(α) ;

(ii) Let 1 < α 6 2 and β < α + 1. Then Eα(.) and Eα,β(.) are positive. If, moreover, 0 6 t2 6 t3,
then Eα(δtα

2) 6 Eα(δtα
3) and Eα,β(δtα

2) 6 Eα,β(δtα
3);

(iii)
∫ z

0 Eα,β(tα)tβ−1dt = zβEα,β+1(zα), α > 1.

Remark 2. According to the lemma given above, it can be observed that Eα,α(−s) 6 1
Γ(α) 6

Eα,α(s) for α ∈ (1, 2] and s ∈ R+. Fractional hyperbolic functions that are generalizations of
standard hyperbolic functions can be defined through Mittag–Leffler functions (see, e.g., [16])
as follows:

coshα,β(s) =
∞

∑
k=0

s2k

Γ(2αk + β)
= E2α,β(s2),

sinhα,β(s) =
∞

∑
k=0

s2k+1

Γ(2αk + α + β)
= sE2α,α+β(s2),

for α, β > 1. It is noticed that coshα,β(s) is an even function and that sinhα,β(s), s ∈ R, is
an odd function. For α = β, we write Chα(s) and Shα(s) instead of coshα,α(s) and sinhα,α(s)
respectively. It is not difficult to observe that Chα(s) + Shα(s) = Eα,α(s) and Chα(s)− Shα(s) =
Eα,α(−s), s ∈ R (see, e.g., [16]).

Remark 3. According to the above arguments and Remark 2, we have |Chα(s) ± Shβ(s)| 6
Eα,α(|s|) for any s ∈ R.

Lemma 3. (Gronwall lemma) [34] Let µ , v ∈ C([0, 1],R+). Suppose µ is increasing. If s ∈
C([0, 1],R+) obeys the inequality

s(t) 6 µ(t) +
∫ t

0
v(x)s(x)dx, t∈[0, 1],

then

s(t) 6 µ(t)exp
( ∫ t

0
v(x)s(x)dx

)
, t∈[0, 1].

3. Existence and Uniqueness Results

In this part, existence and uniqueness of solutions to the Cauchy problem in (1) and (
2) are discussed. We can start with the lemma given below.

Lemma 4 ([16]). When λ > 1, the c[(i)-GH]-differentiable solution to problem (1) is given by

u(t) = Eq,1(−λtq)u0 ⊕ tEq,2(−λtq)u1 ⊕
∫ t

0

Eq,q(λ(t− x)q) f (x)
(t− x)1−q dx;
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when λ < 1, the c[(ii)-GH]-differentiable solution to problem (1) is given by

u(t) = Eq,1(−λtq)u0 	 (−1)tEq,2(−λtq)u1 	 (−1)
∫ t

0

Eq,q(λ(t− x)q) f (x)
(t− x)1−q dx;

when λ < 1, the c[(i)-GH]-differentiable solution to problem (1) is given by

u(t) = [Chq,1(−λtq)u0 ⊕ Shq,1(−λtq)u0]⊕ [tChq,2(−λtq)u1 ⊕ tShq,2(−λtq)u1]⊕
∫ t

0

Chqλ f (x)⊕ Shqλ f (x)
(t− x)1−q dx;

when λ > 1, the c[(ii)-GH]-differentiable solution to problem (1) is given by

u(t) = [Chq,1(−λtq)u0 	 (−1)Shq,1(−λtq)u0]	 (−1)[tChq,2(−λtq)u1 	 (−1)tShq,2(−λtq)u1]	 (−1)
∫ t

0

Chqλ f (x)	 (−1)Shqλ f (x)
(t− x)1−q dx;

when λ = 1, the c[(i)-GH]-differentiable solution to problem (1) is given by

u(t) = u0 ⊕ tu1 ⊕
∫ t

0

f (x)
(t− x)1−q dx;

when λ = 1, the c[(ii)-GH]-differentiable solution to problem (1) is given by

u(t) = u0 	 (−1)tu1 	 (−1)
∫ t

0

f (x)
(t− x)1−q dx;

Remark 4. If λ = 0, then problem (1) reduces to

c
0Dq

t u(t) = f (t),
c
0Dq−1

0+ u(0) = u0 ∈ E1,
c
0Dq−1

0+ u′(0) = u1

By applying Lemma 4 and Remark 4 with f (t, u(t)) ⊕ B(t)C(t) instead of f (t), it
follows that the Cauchy problem in (1) and (2) possesses an integral version. In case λ > 1
and the function t 7→ u(t), t ∈ [0, T] is assumed to be c[(i)-GH]-differentiable, then the
function u satisfies

u(t) = Eq,1(−λtq)u0⊕ tEq,2(−λtq)u1⊕ (−1)
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx.

In case λ 6 1 and the function t 7→ u(t) is supposed to be c[(ii)-GH]-differentiable,
then the function u satisfies

u(t) = Eq,1(−λtq)u0 	 (−1)tEq,2(−λtq)u1 	 (−1)
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx.

In case λ < 1 and the function t 7→ u(t) is c[(i)-GH]-differentiable, then the function
u satisfies

u(t) = [Chq,1(−λtq)u0 ⊕ Shq,1(−λtq)u0]⊕ [tChq,2(−λtq)u1 ⊕ tShq,2(−λtq)u1]

⊕
∫ t

0

Chqλ[ f (x, u(x)) + B(x)C(x)]⊕ Shqλ[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx.

In case λ > 1 and the function t 7→ u(t) is c[(ii)-GH]-differentiable, then the function
u satisfies
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u(t) = [Chq,1(−λtq)u0 	 (−1)Shq,1(−λtq)u0]	 (−1)[tChq,2(−λtq)u1 	 (−1)tShq,2(−λtq)u1]

⊕
∫ t

0

Chqλ[ f (x, u(x)) + B(x)C(x)]	 (−1)Shqλ[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx.

We should formulate the basic assumptions before initiating our main work:

(H1)The function f : [0, T]×E1 → E1 is continuous;
(H2)There exists a finite constant L > 0 such that for all t ∈ [0, T] and for all u, v ∈ E1 the

inequality
D( f (t, u), f (t, v)) 6 LD(u, v)

is valid and such that λ ∈ R is satisfied;
(H3)LTqE(q,q+1)(|λ|Tq) < 1.

Theorem 1. Let λ > 1 and suppose that the conditions (H1)–(H3) are satisfied. Then, the Cauchy
problem (1) and (2) has a unique c[(i)-GH]-differentiable solution u in CE[0, T].

Proof. Let the operator P1 : CE[0, T]→ CE[0, T] be defined as

P1u(t) = Eq,1(−λtq)u0 ⊕ tEq,2(−λtq)u1 ⊕
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx

It is not difficult to see that u is a c[(i)-GH]-differentiable solution for Cauchy problem
(1) and (2) if and only if u = P1u. Let u and v belong to E1. From the above Lemmas 1 and
2 we infer

D(P1u(t), P1v(t)) = D
[ ∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx,

∫ t

0

Eq,q(λ(t− x)q)[ f (x, v(x)) + B(x)C(x)]
(t− x)1−q ds

]

6 LD(u, v)⊕
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x), f (x, v(x)) + B(x)C(x)]
(t− x)1−q dx

6 LD(u, v)⊕
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)), f (x, v(x))]
(t− x)1−q dx

6 LD(u, v)⊕ L
∫ t

0

Eq,q(λ(t− x)q) f (u(x), v(x))
(t− x)1−q dx

6 LD(u, v)⊕ LD(u, v)
∫ t

0

Eq,q(λ(t− x)q)

(t− x)1−q dx

= LD(u, v)⊕ tqEq,q+1(λtq)LD(u, v)

for u, v ∈ E1, and for all t ∈ [0, T], which means that

D(P1u, P1v) 6 L[1⊕ tqEq,q+1(|λ|Tq)]D(u, v)

Thus, the Banach contraction mapping (BCM) principle shows the operator P1 has a
unique fixed point u∗ ∈ CE[0, T]. It represents the unique c[(i)-GH]-differentiable solution
to the Cauchy problem (1) and (2).

Theorem 2. Let λ 6 1 and suppose the conditions (H1)–(H3) are satisfied. Assume that (H4)
for any t ∈ (0, T],

Eq,1(λtq)uα
0 + tEq,2(−λtα)uα

1 +
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]α

(t− x)1−q dx
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is non-decreasing in α,

Eq,1(λtq)uα
0 + tEq,2(−λtq)uα

1 +
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]α

(t− x)1−q dx

is non-increasing in α, and for any q ∈ [1, 2] and t ∈ (0, T]

tEq(−λtq)uα
1 +

∫ t

0

Eq,q(λ(t− x)q)diam[ f (x, u(x)) + B(x)C(x)]α

(t− x)1−q dx

6 tqEq,2(−λtq)diam[u1]
α + tq−1Eq,1(λtq)diam[u0]

α.

Then, the Cauchy problem (1) and (2) has a unique c[(ii)-GH]-differentiable solution in
CE[0, T].

Proof. Let the operator P2 : CE[0, T]→ CE[0, T] be defined by

P2u(t) = Eq,1(λtq)u0 	 Eq,2(λtq)u1 	 (−1)
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx

For condition (H4) and [35], we know that P2 is well defined on CE[0, T]. Moreover, it
is not difficult to see that u is a c[(ii)-GH]-differentiable solution for Cauchy problem (1)
and (2) if and only if u = P2u. Let u and v belong to CE[0, T]. From the above Lemmas 1
and 2 and Remark 2 we infer

D(P2u(t), P2v(t)) 6 LD(u, v)	 (−1)LD(u, v)
∫ t

0

Eq,q(λ(t− x)q)

(t− x)1−q dx

6 LD(u, v)	 (−1)LD(u, v)
∫ t

0

Eq,q(|λ|(t− x)q)

(t− x)1−q dx

= LD(u, v)	 (−1)tqEq,q+1(|λ|tq)LD(u, v)

for u, v ∈ E1 and for all t ∈ [0, T], which means that

D(P2u(t), P2v(t)) 6 LD(u, v)	 (−1)LtqEq,q+1(|λ|tq)D(u, v)

Thus, the Banach contraction mapping (BCM) principle shows the operator P2 has a
unique fixed point u∗ ∈ CE[0, T]. It represents the unique c[(ii)-GH]-differentiable solution
to the Cauchy problem (1) and (2). Now, the proof is completed.

Theorem 3. Let λ < 1, and suppose that the conditions (H1)–(H3) are satisfied. Then, the
Cauchy problem (1) and (2) has a c[(i)-GH]-differentiable solution u in CE[0, T].

Proof. Let the operator P3 : CE[0, T]→ CE[0, T] be defined as

P3u(t) = [Chq,1(λtq)u0 ⊕ Shq,1(λtq)u0]⊕ t[Chq,2(λtq)u1 ⊕ Shq,2(λtq)u1]

⊕
∫ t

0

Cλ
q (t, x)[ f (x, u(x)) + B(x)C(x)]⊕ Sλ

q (t, x)[ f (x, u(x)) + B(x)C(x)]

(t− x)1−q dx,
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t ∈ [0, T]. It is not difficult to see that u is a c[(i)-GH]-differentiable solution for Cauchy
problem (1) and (2) if and only if u = P3u. Let u and v belong to CE[0, T]. From the above
Lemmas 1 and 2 and Remarks 2 and 3 we deduce

D(P3u(t), P3v(t)) 6 LD(u, v)⊕ LD(u, v)
∫ t

0

Eq,q(λ(t− x)q)

(t− x)1−q dx

6 LD(u, v)⊕ LD(u, v)
∫ t

0

Eq,q(|λ|(t− x)q)

(t− x)1−q dx

= LD(u, v)⊕ tqEq,q+1(|λ|tq)LD(u, v)

For u, v ∈ E1 and for all t ∈ [0, T], which signifies as

D(P3u(t), P3v(t)) 6 LD(u, v)⊕ LtqEq,q+1(|λ|tq)D(u, v)

Thus, the Banach contraction mapping (BCM) principle shows the operator P3 has a
unique fixed point u∗ ∈ CE[0, T]. It represents the unique c[(i)-GH]-differentiable solution
to the Cauchy problem (1) and (2). Now the proof is done.

Theorem 4. Let λ > 0 and suppose that the conditions (H1)–(H3) are satisfied. Assume that
(H5) for all t ∈ (0, T] the functions

ξ1(t, α) = Chq,1(λtq)u0
α + Shq,1(λtq)u0

α

µ1(t, α) = tChq,2(λtq)u1
α + tShq,2(λtq)u1

α

is non-decreasing in α. in addition, the function

ξ2(t, α) = Chq,1(λtq)u0
q + Shq,1(λtq)u0

α

µ2(t, α) = tChq,2(λtq)u1
q + tShq,2(λtq)u1

α

are non-increasing in α. Furthermore, assume (H6) for all t ∈ (0, T], the function

ψ1(t, x, α) = Chq(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]α + Shq(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]α

is non-decreasing in α. In addition, the function

ψ2(t, x, α) = Chq(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]α + Shq(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]α

is non-increasing in α. In addition, the function (H7) for all t ∈ (0, T]

ξ1(t, α) + µ1(t, α) +
∫ t

0

ψ1(t, x, α)

(t− x)1−q dx

is non-decreasing in α, the expression

ξ2(t, α) + µ2(t, α) +
∫ t

0

ψ2(t, x, α)

(t− x)1−q dx

is non-increasing in α, and for all q ∈ (1, 2] and t ∈ (0, T],

∫ t

0

Eq,q(−λ(t− x)q)diam[ f (x, u(x)) + B(x)C(x)]α

(t− x)1−q dx 6 tq−1Eq,q(−λtq)diam[u0]
q

Then, the Cauchy problem (1) and (2) has a unique c[(ii)-GH]-differentiable solution for
CE[0, T].

Proof. Let the operator P4 : CE[0, T]→ CE[0, T] be defined as
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P4u(t) = [Chq,1(λtq)u0 	 (−1)Shq,1(λtq)u0]	 (−1)t[Chq,2(λtq)u1 	 (−1)Shq,2(λtq)u1]

	(−1)
∫ t

0

Cλ
q (t, x)[ f (x, u(x)) + B(x)C(x)]	 (−1)Sλ

q (t, x)[ f (x, u(x)) + B(x)C(x)]

(t− x)1−q dx

According to conditions (H5)–(H7) and [21], it is known that P4 is well illustrated on
CE[0, T]. From the above Lemmas 1, 2, and Remark 2,

D(P4u(t), P4v(t)) 6 LD(u, v)
∫ t

0

Eq,q(λ(t− x)q)

(t− x)1−q dx

D(P4u(t), P4v(t)) = tqEq,q+1(λtq)LD(u, v)

for u, v ∈ E1 and for all t ∈ [0, T], which means that

D(P4u(t), P4v(t)) 6 LtqEq,q+1(|λ|tq)D(u, v)

Thus, the Banach contraction mapping (BCM) principle shows the operator P4 has a
unique fixed point u∗ ∈ CE[0, T]. It represents the unique c[(ii)-GH]-differentiable solution
to the Cauchy problem (1) and (2).

4. Stability Results

In various studies, Eα–Ulam-type stability approaches regarding fractional differ-
ential equations [23] and Ulam-type stability approaches regarding fuzzy differential
equations [24,25] were established. Afterward, Yupin Wang and Shurong Sun worked on
Eq–Ulam-type stability concepts regarding fuzzy fractional differential equation where
q ∈ (0, 1]. We offer some new Eq–Ulam-type stability concepts regarding fuzzy fractional
differential equation where q ∈ (1, 2].

Assume that γ > 0 is a constant and that t 7→ ζ(t), t ∈ [0, T] is a positive continuous
function. In addition, suppose that t 7→ u(t), t ∈ [0, T] is a continuous function that solves
the equation in (1) and consider the following related inequalities:

D(c
0Dq

t u(t), λu(t)⊕ ( f (t, u(t))⊕ B(t)C(t)) 6 γ, (3)

D(c
0Dq

t u(t), λu(t)⊕ ( f (t, u(t))⊕ B(t)C(t)) 6 ζ(t), (4)

D(c
0Dq

t u(t), λu(t)⊕ ( f (t, u(t))⊕ B(t)C(t)) 6 γζ(t), (5)

where t ∈ [0, T].

Definition 3. Equation (1) is called Eq–Ulam–Hyers stable in case there exist a finite constant
c > 1 and a function v ∈ CE[0, T] that satisfies the equation in (1) such that for all γ > 1 and for
all solutions u ∈ CE[0, T] of Equation (1) that satisfy the inequality in (3), the following inequality
is valid:

D(u(t), v(t)) 6 cEq(ξ f tq)γ, ξ f > 1, t ∈ [0, T].

Definition 4. Equation (1) is called Eq–Ulam–Hyers stable in case there exist a continuous
function ϑ : R+ → R+ with ϑ(1) = 1 and a function v ∈ CE[0, T] that satisfies the equation in
(1) and for all solutions u ∈ CE[0, T] of Equation (1) that satisfy the inequality in (3), the following
inequality is valid:

D(u(t), v(t)) 6 ϑ(γ)Eq(ξ f tq), ξ f > 1, t ∈ [0, T].

Definition 5. Equation (1) is called Eq–Ulam–Hyers–Rassias stable in case with respect to ζ,
when there exist cζ > 1 and a function v ∈ CE[0, T] that satisfies the equation in (1) such that for
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all γ > 1 and for all solutions u ∈ CE[0, T] of the equation in (1) that satisfy the inequality in (5),
the following inequality is valid:

D(u(t), v(t)) 6 cζ γζ(t)Eq(ξ f tq), ξ f > 1, t ∈ [0, T].

Definition 6. Equation (1) is called Eq–Ulam–Hyers–Rassias stable in case with respect to ζ if
there exist cζ > 1 and a function v ∈ CE[0, T] that satisfies the equation in (1) such that for all
γ > 1 and for all solutions u ∈ CE[0, T] of the equation in (1) that satisfy the inequality in (4), the
following inequality is valid:

D(u(t), v(t)) 6 cζ ζ(t)Eq(ξ f tq), ξ f > 1, t ∈ [0, T].

Lemma 5. The function u ∈ CE[0, T] with the property that (H8)
c
0Dq

t u(t)	 [λu(t)⊕ ( f (t, u(t))
⊕B(t)C(t))] exists in E1 for all t ∈ [0, T] satisfies the inequality (3) if and only if there exists a
function h ∈ CE[0, T] such that

(i) D
(

h(t), 0̂
)
6 γ, for all t ∈ (0, T],

and the function u ∈ CE[0, T] itself satisfies
(ii) c

0Dq
t u(t) = λu(t)⊕ ( f (t, u(t))⊕ B(t)C(t)), for all t ∈ (0, T].

Proof. The sufficiency begins obviously, and we will only prove the necessity. From
condition (H8), we observe that the function t 7→ h(t), t ∈ [0, T], defined by

h(t) =c
0 Dq

t u(t)	 [λu(t)⊕ ( f (t, u(t))⊕ B(t)C(t))]

belongs to CE[0, T] and that h(t) belongs to E1 for all t ∈ (0, T]. Therefore, it follows that
the equation in (ii) is satisfied. Additionally, we have

D(c
0Dq

t u(t), λu(t)⊕ ( f (t, u(t))⊕ B(t)C(t)))

= D
(

c
0Dq

t u(t)	 [λu(t)⊕ f (t, u(t))⊕ B(t)C(t)], 0̂
)
= D

(
h(t), 0̂

)
.

From the inequality (3), it then follows that D
(

h(t), 0̂
)

6 γ, and therefore, (i) is

satisfied. This completes the proof of Lemma 5.

Remark 5. Similar results as in Lemma 5 can be obtained by using the inequalities in (4) and (5).

Lemma 6. Let u(t) be a c[(i)-GH]-differentiable function that solves the Cauchy equation in
(1) and (2) and satisfies the inequality in (3) and is such that c

0Dq
t u(0) = u0. Let the condition in

(H8) be satisfied. Then, for every t ∈ [0, T], the function u(t) satisfies the inequality

D(u(t), G1( f , t)) 6 γEq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx

when λ > 1, and

D(u(t), G2( f , t)) 6 γEq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx

when λ < 1, and t ∈ [0, T]. Here, the functions G1( f , t) and G2( f , t) are defined by

G1( f , t) = Eq,1(λtq)u0 ⊕ tEq,2(λtq)u1 ⊕
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx

G2( f , t) = [Chq,1(λtq)u0 ⊕ Shq,1(λtq)u0]⊕ [tChq,2(λtq)u1 ⊕ tShq,2(λtq)u1]⊕
∫ t

0

Cλ
q (t, x)[ f (x, u(x)) + B(x)C(x)]⊕ Sλ

q (t, x)[ f (x, u(x)) + B(x)C(x)]

(t− x)1−q dx
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Proof. Since the function u ∈ CE[0, T] is a solution to the Cauchy problem (1) and (2), we
infer

c
0Dα

t u(t) = λu(t)⊕ [ f (t, u(t)) + B(t)C(t)],
u(0) = u0
u′(0) = u1

. (6)

Now, regarding clarity, the proof can be divided into two cases.

Case 1.

Suppose λ > 1. Then, we write

C1(B, C, t) =
∫ t

0

Eq,q(λ(t− x)q)B(x)C(x)
(t− x)1−q dx

Observing that u is a c[(i)-GH]-differentiable solution of Equation (6), then Lemma 4
with f (t, u(t)) + B(t)C(t) instead of f (t) shows the equality

u(t) = Eq,1(λtq)u0 ⊕ tEq,2(λtq)u1 ⊕
∫ t

0

Eq,q(λ(t− x)q)( f (x, u(x)) + B(x)C(x))
(t− x)1−q dx

= Eq,1(λtq)u0 ⊕ tEq,2(λtq)u1 ⊕
∫ t

0

Eq,q(λ(t− x)q) f (x, u(x))
(t− x)1−q dx

⊕Eq,q(λ(t− x)q)B(x)C(x)
(t− x)1−q dx

= G1( f , t)⊕ C1(B, C, t)

Now, it follows that

D(u(t), G1( f , t)) = D(u(t)⊕ C1(B, C, t), G1( f , t)⊕ C1(B, C, t))

= D(u(t)⊕ C1(B, C, t), u(t))

= D(C1(B, C, t), 0̂)

= D
( ∫ t

0

Eq,q(λ(t− x)q)B(x)C(x), 0̂
(t− x)1−q

)
dx

=
∫ t

0

Eq,q(λ(t− x)q)D(B(x)C(x), 0̂)
(t− x)1−q dx

6 γEq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx

Case 2.

When λ < 1, we denote

C2(B, C, t) =
∫ t

0

Cλ
q (t, x)B(x)C(x)⊕ Sλ

q (t, x)B(x)C(x)

(t− x)1−q dx

It should be observed that u(t) is a c[(ii)-GH]-differentiable solution of Equation (6)
that obeys the inequality in (3). An application of Lemma 5 then yields

u(t) = [Chq,1(λtq)u0 ⊕ Shq,1(λtq)u0]⊕ [tChq,2(λtq)u1 ⊕ tShq,2(λtq)u1]⊕
∫ t

0

Cλ
q (t, x)[ f (x, u(x)) + B(x)C(x)]⊕ Sλ

q (t, x)[ f (x, u(x)) + B(x)C(x)]

(t− x)1−q dx

= G2( f , t)⊕ C2(B, C, t).
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Now, it follows that

D(u(t), G2( f , t)) = D(C2(B, C, t), 0̂)

6
∫ t

0

D(Cλ
q (t, x)[B(x)C(x)]⊕ Sλ

q (t, x)[B(x)C(x)], 0̂)

(t− x)1−q dx

6
∫ t

0

Eq,q(|λ|t− xq)D(B(x)C(x)), 0̂)
(t− x)1−q dx

6 γEq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx

Now, the proof is completed.

Lemma 7. Let u(t) be a c[(ii)-GH]-differentiable function that solves the Cauchy equation in
(1) and (2) and satisfies the inequality (3) and is such that c

0Dq
t u(0) = u0. Let the condition in

(H8) be satisfied. Then, for every t ∈ [0, T] the function u(t) satisfies the integral inequality

D(u(t), G3( f , t)) 6 γEq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx

when λ < 1, and

D(u(t), G4( f , t)) 6 γEq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx

when λ > 1 and t ∈ [0, T]. Here, the functions G3( f , t) and G4( f , t) are defined by

G3( f , t) = Eq,1(λtq)u0 	 (−1)tEq,2(λtq)u1 	 (−1)
∫ t

0

Eq,q(λ(t− x)q)[ f (x, u(x)) + B(x)C(x)]
(t− x)1−q dx

G4( f , t) = [Chq,1(λtq)u0 	 (−1)Shq,1(λtq)u0]	 (−1)[tChq,2(λtq)u1 	 (−1)tShq,2(λtq)u1]

	(−1)
∫ t

0

Cλ
q (t, x)[ f (x, u(x)) + B(x)C(x)]	 (−1)Sλ

q (t, x)[ f (x, u(x)) + B(x)C(x)]

(t− x)1−q dx

Proof. Now, regarding clarity, the proof can be divided into two cases.

Case 1.

When λ < 1, observe that u is a c[(ii)-GH]-differentiable solution of Equation (5), then
the Lemma 5 with f (x, u(x)) + B(x)C(x) instead of f (t) shows the equality

u(t) = G3( f , t)	 (−1)C1(B, C, t).

Now, it follows that

D(u(t), G3( f , t)) = D(0̂,−C1(g, t))

6
∫ t

0

Eq,q(|λ|(t− x)q)D(B(x)C(x), 0̂)
(t− x)1−q dx

6 γEq,q(|λ|tq)
∫ t

0

ζ(t)
(t− x)1−q dx

Case 2.

Suppose λ > 1. Then, we denote

C3(B, C, t) =
∫ t

0

Cλ
q (t, x)B(x)C(x)	 (−1)Sλ

q (t, x)B(x)C(x)

(t− x)1−q dx
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Observing that u(t) is a c[(ii)-GH]-differentiable solution of Equation (5), then Lemma 5
with f (t, u(t)) + B(t)C(t) instead of f (t) shows the equality

u(t) = [Chq,1(λtq)u0 	 (−1)Shq,1(λtq)u0]	 (−1)t[Chq,2(λtq)u1 ⊕ Shq,2(λtq)u1]	

(−1)
∫ t

0

Cλ
q (t, x)[ f (x, u(x)) + B(x)C(x)]⊕ Sλ

q (t, x)[ f (x, u(x)) + B(x)C(x)]

(t− x)1−q dx

= G4( f , t)	 (−1)C3(B, C, t).

Now, it follows that

D(u(t), G4( f , t)) = D(C3(B, C, t), 0̂)

6
∫ t

0

D(Cλ
q (t, x)[B(x)C(x)]	 (−1)Sλ

q (t, x)[B(x)C(x)], 0̂)

(t− x)1−q dx

6
∫ t

0

Eq,q(|λ|t− xq)D(B(x)C(x)), 0̂)
(t− x)1−q dx

6 γEq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx

Now, the proof is completed.

Remark 6. We can obtain similar results to those in Lemmas 6 and 7 for inequalities (3) and (4).

Theorem 5. Suppose λ > 1, condition (H1)–(H3) are satisfied, and the following condition holds
(H9); there exists a positive, increasing, and continuous function ζ such that

Eq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx 6 cζ ζ(t), t ∈ [0, T].

Assume further that c[(i)-GH]-differentiable function u satisfied the inequality (5) with the
function ζ in (H9) and that u satisfies condition (H8). Then, Equation (1) is Eq–Ulam–Hyers–
Rassias stable.

Proof. According to Theorem 1, u is a c[(i)-GH]-differentiable solution to Cauchy problem
(1) and (2). Let u be a c[(i)-GH]-differentiable solution to Equation (1), which satisfies
inequality (5) with u(0) = u0. From Lemma 6, we obtain

D(u(t), G1( f , t)) 6 γEq,q(|λ|tq)
∫ t

0

ζ(x)
(t− x)1−q dx

6 cζ γζ(t),

t ∈ [0, T]. According to condition (H9), it follows that

D(u(t), v(t)) 6 D(u(t), G1( f , t)) + D(G1( f , t), v(t))

6 cζγζ(t) +
∫ t

0

Eq,q(λ(t− x)q)D[( f (x, u(x)) + B(x)C(x)), ( f (x, v(x)) + B(x)C(x))]
(t− x)1−q dx

6 cζγζ(t) + L
∫ t

0

Eq,q(λ(t− s)q)D[u(x), v(x)]
(t− x)1−q dx

6 cζγζ(t) + LEq,q(λ(t− x)q)
∫ t

0

)D[u(x), v(x)]
(t− x)1−q dx

By the generalized Gronwall inequality [36], we obtain

D(u(t), v(t)) 6 cζ γζ(t)Eq(LEq,q(|λ|Tq)Γ(q)tq).
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Thus, Equation (1) is Eq–Ulam–Hyers–Rassias stable in view of Definition 5.

Theorem 6. Let λ 6 1 and let the condition (H1)–(H4), (H8) and (H9) hold for a c[(ii)-GH]-
differentiable function u satisfy inequality (5). Then, Equation (1) is Eq–Ulam–Hyers–Rassias stable.

Proof. According to Theorem 2, u is a c[(ii)-GH]-differentiable solution to Cauchy problem
(1) and (2). Let u be a c[(ii)-GH]-differentiable solution to Equation (1), which satisfies
inequality (5) with u(0) = u0. From Lemma 7, we obtain

D(u(t), G3( f , t)) 6 cζ γζ(t),

t ∈ [0, T]. According to condition (H9) it follows that

D(u(t), v(t)) 6 D(u(t), G3( f , t)) + D(G3( f , t), v(t))

6 cζ γζ(t) +
∫ t

0

Eq,q(|λ|(t− x)q)D[( f (x, u(x)) + B(x)C(x)), ( f (x, v(x)) + B(x)C(x))]
(t− x)1−q dx

6 cζ γζ(t) + L
∫ t

0

Eq,q(|λ|(t− x)q)D[u(x), v(x)]
(t− x)1−q dx

6 cζ γζ(t) + LEq,q(|λ|(t− x)q)
∫ t

0

)D[u(x), v(x)]
(t− x)1−q dx

By the generalized Gronwall inequality, we obtain

D(u(t), v(t)) 6 cζ γζ(t)Eq(LEq,q(|λ|Tq)Γ(q)tq).

Thus, Equation (1) is Eq–Ulam–Hyers–Rassias stable in view of Definition 5.

Theorem 7. Let λ < 1, and let the condition (H1)–(H3), (H8) and (H9) hold for a c[(i)-GH]-
differentiable function u satisfies inequality (5). Then Equation (1) is Eq–Ulam–Hyers–Rassias stable.

Proof. According to Theorem 3, u is a c[(i)-GH]-differentiable solution to Cauchy problem
(1) and (2). Let u be a c[(i)-GH]-differentiable solution to Equation (1), which satisfies
inequality (5) with u(0) = u0. From Lemma 6, we obtain

D(u(t), G2( f , t)) 6 cζ γζ(t),

t ∈ [0, T]. According to condition (H9), it follows that

D(u(t), v(t)) 6 D(u(t), G2( f , t)) + D(G2( f , t), v(t))

6 cζ γζ(t) +
∫ t

0

Eq,q(|λ|(t− x)q)D[( f (x, u(x)) + B(x)C(x)), ( f (x, v(x)) + B(x)C(x))]
(t− x)1−q dx

6 cζ γζ(t) + L
∫ t

0

Eq,q(|λ|(t− x)q)D[u(x), v(x)]
(t− x)1−q dx

6 cζ γζ(t) + LEq,q(|λ|(t− x)q)
∫ t

0

)D[u(x), v(x)]
(t− x)1−q dx

By the generalized Gronwall inequality, we obtain

D(u(t), v(t)) 6 cζ γζ(t)Eq(LEq,q(|λ|Tq)Γ(q)tq).

Thus, Equation (1) is Eq–Ulam–Hyers–Rassias stable in view of Definition 5.

Theorem 8. Let λ > 1, let the condition (H1)–(H3) as well as (H5)–(H7), (H8)–(H9) hold
for a c[(ii)-GH]-differentiable function u, which satisfies inequality (5). Then, Equation (1) is
Eq–Ulam–Hyers–Rassias stable.
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Proof. According to Theorem 4, set u is a c[(ii)-GH]-differentiable solution to Cauchy
problem (1) and (2). let u be a c[(ii)-GH]-differentiable solution to Equation (1), which
satisfies the inequality (5) with u(0) = u0. from Lemma 7, we obtain

D(u(t), G4( f , t)) 6 cζ γζ(t),

t ∈ [0, T]. According to condition (H9), it follows that

D(u(t), v(t)) 6 D(u(t), G4( f , t)) + D(G4( f , t), v(t))

6 cζ γζ(t) +
∫ t

0

Eq,q(|λ|(t− x)q)D[( f (x, u(x)) + B(x)C(x)), ( f (x, v(x)) + B(x)C(x))]
(t− x)1−q dx

6 cζ γζ(t) + L
∫ t

0

Eq,q(|λ|(t− x)q)D[u(x), v(x)]
(t− x)1−q dx

6 cζ γζ(t) + LEq,q(|λ|(t− x)q)
∫ t

0

)D[u(x), v(x)]
(t− x)1−q dx

By the generalized Gronwall inequality, we obtain

D(u(t), v(t)) 6 cζ γζ(t)Eq(LEq,q(|λ|Tq)Γ(q)tq).

Thus, Equation (1) is Eq–Ulam–Hyers–Rassias stable in view of Definition 5. Now, the
proof is completed.

Remark 7. In view of Definition 6 can be verified as according to the assumption in Theorems 5–8,
we assume Equation (1) and inequality (4). It can be verified that Equation (1) is generalized
Eq–Ulam–Hyers–Rassias stable with respect to Definition 6.

Remark 8. Condition (H9) weakens
∫ t

0 ζ(x)dx 6 cζ ζ(t)E2(LE2,2(|1|T2)Γ(2)t2 ∀ t ∈ [0, T]
when we assume q = 1. This means that certain theorems in [25] are special cases of Theorem 5 and
6 in the present paper.

Remark 9. According to the assumptions excluding (H9) in Theorems 5–8, we consider the
equation in (1) and inequality in (3). It can be proved that in terms of Definitions 3 and 4,
Equation (1) is Eq–Ulam–Hyers.

5. Examples

In this part, we will show four examples to explain our main results.

Example 1. Consider the following Cauchy problem in terms of a Fuzzy fractional
differential equation

c
0D1.5

t u(t) = u(t)⊕ 1.2u(t)cos(t)⊕ t2etF (7)

on (0, 2π], with initial conditions
u(0) = 0̂
u′(0) = 1̂

. (8)

Compared to Equation (1), in the above equations, q = 1.5, λ = 2, T = 2π, f (t, u(t)) =
1.2u(t)cos(t)⊕ t2etF, and F = (0, 1, 2) ∈ E1 is a symmetric triangular fuzzy number. Hence,
with L = 1.3, the condition (H1) and (H2) are satisfied. It is not difficult to prove that condition
(H3) is satisfied. Hence, as a consequence of Theorem 1, the Cauchy problem (7) and (8) has a
c[(i)-GH]-differentiable solution. The numerical solutions with respect to the q = 1.5 level are
provided by utilizing the Adams–Moultan predictor–corrector method.

Furthermore, for ε > 1, assume that the c[(i)-GH]-differentiable fuzzy-valued function
u : (0, 2π]→ E1 satisfies condition (H8) and

D(c
0D1.5

t u(t) = u(t)⊕ 1.2u(t)cos(t)⊕ t2etF) 6 εt
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Assuming ζ(t) = 1, t ∈ [0, 2π] and cζ = 4
√

2π
3 E1.5,1.5(

√
2π), this means that condition

(H9) is satisfied. Hence, Equation (7) is Eq–Ulam–Hyers–Rassias stable with respect to Theorem 5.

Example 2. Consider the following Cauchy problem in terms of a Fuzzy fractional
differential equation

c
0D1.5

t u(t) = −u(t) + t2 + t + 4 (9)

with initial condition {
u(0) = u0
u′(0) = u1

(10)

Compared to equations (1), in the above equation, q = −1, f (t, u(t)) = t2 + t + 4, and
u0 = (0, 1, 2) ∈ E1 is a symmetric triangular fuzzy number.

Hence, with L = 1.3, the condition (H1)–(H2) are satisfied. It is not difficult to prove that
condition (H4) is satisfied. Hence, by employing Theorem 2, the Cauchy problem (9)–(10) has a
different c[(ii)-GH]-differentiable solution. The numerical solution provides with respect to q-level
by utilizing the Adams–Moultan predictor–corrector method.

Furthermore, for ε > 1, assumes that the c[(ii)-GH]-differentiable fuzzy-valued function
u : (0, 2π]→ E1 satisfies condition (H8) and

D(c
0D1.5

t u(t),−u(t) + t2 + t + 4) 6 εt, t ∈ (0, 2π]

Assuming ζ(t) = t, t ∈ [0, 2π] and cζ = 4
√

2π
3 E1.5,1.5(

√
2π), this means that condition

(H9) is satisfied. Hence, Equation (9) is Eq–Ulam–Hyers–Rassias stable with respect to Theorem 6.

Example 3. Consider the following Cauchy problem in terms of a Fuzzy fractional
differential equation

c
0D1.5

t u(t) = u(t)⊕ 1.2u(t)cos(t)⊕ t2etF (11)

on (0, 2π], with initial conditions {
u(0) = 0̂
u′(0) = 1̂

(12)

Compared to Equation (1), in the above equation, q = 1.5, λ = 2, T = 2π, f (t, u(t)) =
−u(t)⊕ 1.2u(t)cos(t)⊕ t2etF and F = (0, 1, 2) ∈ E1 is a symmetric triangular fuzzy number.
Hence, with L = 1.3, it is not difficult to prove that condition (H1) and (H3) are satisfied. Hence,
as a consequence of Theorem 3, the Cauchy problem (11) and (12) has a c[(i)-GH]-differentiable
solution. The numerical solutions with respect to q = 1.5 level are provided by utilizing the
Adams–Moultan predictor–corrector method.

Furthermore, for ε > 1, assume that the c[(i)-GH]-differentiable fuzzy-valued function
u : (0, π]→ E1 satisfies condition (H8) and

D(c
0D1.5

t u(t),−u(t)⊕ 1.2u(t)cos(t)⊕ t2etF 6 εt

Assuming ζ(t) = 1, t ∈ [0, 2π] and cζ = 4
√

2π
3 E1.5,1.5(

√
2π), this means that condition

(H9) satisfied. Hence, Equation (11) is Eq–Ulam–Hyers–Rassias stable with respect to Theorem 7.

Example 4. Consider the following Cauchy problem in terms of a Fuzzy fractional
differential equation

c
0D1.5

t u(t) = u(t) + t2 + t + 4, t ∈ (0, 2π] (13)

with initial condition {
u(0) = u0
u′(0) = u1

(14)

Compared to Equation (1), in the above equations, q = 1.5, f (t, u(t)) = t2 + t + 4, and
u0 = (0, 1, 2) ∈ E1 is a symmetric triangular fuzzy number.
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Hence, with L = 1.3, the condition (H1)–(H3) are satisfied. Notice Ch1.5(x)− Sh1.5(x) > 1
and Ch1.5(x)− Sh1.5(x) < 1 for u ∈ (0, 2π]. It is not difficult to prove that condition (H5)–(H7)
are satisfied. Hence, as a consequence of Theorem 4, the Cauchy problem (13) and (14) has a unique
c[(ii)-GH]-differentiable solution. The numerical solutions with respect to the q = 1.5 level are
provided by utilizing the Adams–Moultan predictor–corrector method.

Furthermore, for ε > 1, assume that the c[(ii)-GH]-differentiable fuzzy-valued function
u : (0, 2π]→ E1 satisfies condition (H8) and

D(c
0D1.5

t u(t), u(t) + t2 + t + 4) 6 εt, t ∈ (0, 2π]

Assuming ζ(t) = t, t ∈ [0, 2π] and cζ = 4
√

2π
3 E1.5,1.5(

√
2π), this means that condition

(H9) satisfied. Hence, Equation (13) is Eq–Ulam–Hyers–Rassias stable with respect to Theorem 8.

6. Graphical Presentation

We used the Adams–Bashforth–Moulton technique to acquire the numerical solution
for this fractional differential equation for graphical representation of the solution of
the problem presented in Equations (7), (9), (11) and (13). For simulation, the modified
predictor–corrector scheme is used to examine the effect and contribution of the time-
delayed factor. A graphical representation of the solution with different variations of
the time delay factor, as well as other parameters, is made to check and demonstrate the
stability of the model under consideration. We are able to see the Ulam–Hyers stability of
varied accuracies and delays from the numerical data. The system will attain Ulam–Hyers
stability more quickly with greater accuracy. This is also true when the number of delays
increases. Figures 1–4 show the stability of the system (7), (9), (11) and (13) for various time
delays and fractional derivatives.
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Figure 1. Solution of Problems (7) and (8).
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Figure 2. Solution of Problems (9) and (10).
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Figure 3. Solution of Problems (11) and (12).
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7. Conclusions

This paper aims to define the uniqueness and existence of a group of nonlinear
fuzzy fractional differential equation of solutions to the Cauchy problem. Moreover, Eq–
Ulam-type stability of Equation (1) is observed by applying the inequality technique. We
obtain uniqueness and existence results with the help of nonlocal conditions of the Caputo
derivative. Moreover, future work may include broadening the idea indicated in this
task and familiarizing observability, and generalize other tasks. Ulam-type stability of
fuzzy fractional differential equations, similar to crisp situations for approximate solutions,
provides a reliable theoretical basis. This a fruitful area with wide research projects, and
it can bring about countless applications and theories. We have decided to devote much
attention to this area. Furthermore, it is fruitful to investigate stability problems in a
classical sense for the fuzzy fractional differential equation.
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Abstract: This work focuses on a kind of fractals Parrondo’s paradoxial phenomenon “deicon-
nected+diconnected=connected” in an alternated superior complex system zn+1 = β(z2

n + ci) + (1−
β)zn, i = 1, 2. On the one hand, the connectivity variation in superior Julia sets is explored by
analyzing the connectivity loci. On the other hand, we graphically investigate the position relation
between superior Mandelbrot set and the Connectivity Loci, which results in the conclusion that two
totally disconnected superior Julia sets can originate a new, connected, superior Julia set. Moreover,
we present some graphical examples obtained by the use of the escape-time algorithm and the
derived criteria.

Keywords: Parrodo’paradox; Mann iteration; Julia set; alternated system; connectivity

1. Introduction

The natural process has obvious discrete characteristics; therefore, discrete dynamical
systems are usually applied for the modeling of actual processes. On the other hand,
considering the complexity of nature, more and more attention has been made to the
alternate iteration method [1,2], which is more accurate in revealing the complex behaviors
in processes than a unique system.

In 1999, Parrondo et al. [3,4] proposed that two games with loosing gains can para-
doxically become a winning game. This classical “losing + losing = winning” phenomenon
was known as Parrondo’s paradox, which inspired a new research fever in physics and
mathematics areas [5,6] about the combination of two systems with negative expected
values. In this theory, the game was divided into process A and B. As the game goes
on, A actually changes the distribution of B branch, and the overall outcome changes.
By analyzing the trajectories of system states, Almeida et al. extended the paradox to the
chaos area and exposed the “chaos + chaos = order” phenomenon, which indicated that
two chaotic behaviours can reduce to order via alternate iteration.

It should be noted that fractals and chaos are two basic branches in nonlinear science
and, to some extent, are closely related to each other. Although the concept of fractal
was given in 1975 [7], its basic principle was put forward as early as 1918, when Gaston
Julia [8] firstly investigated a simple complex map zn+1 = z2

n + c, zn, c ∈ C. Aided by
computer technology, Mandelbrot [7] visualized the parameter area where the connected
Julia sets’ parameter c is located. In recent years, there has been much research surrounding
the properties of M-J sets [9–13], effects of noise disturbance [14–18] and related applica-
tions [17–22]. Meanwhile, a few researchers have also focused on the special fractal sets
generated from alternated complex maps, superior complex maps, hyper-complex systems,
etc. In addition, fractional mathematics is closely related to chaos and fractals. Fractional
systems are worth studying from the fractal perspective. In [23,24], researchers investigated
the citation profiles of researchers in fractional calculus, and proposed that the application
areas of fractional calculus contain the fractal concept. Based on the control theory and
method, Wang [25–27] investigates the Julia sets of a fractional Lotka–Volterra model and
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realizes its state feedback control. In [28], the numerical simulation of a Boussinesq equa-
tion with different fractal dimension and fractional order is carried out. The results show
that the correlation model is suitable for groundwater flow in fractured media.

In the various research on fractals, connectivity is one of the most basic and important
branches. In physics, Wang indicated that the connectivity of Julia sets can be used to
describe particle velocity [20,21]. In biology, Mojica proposed that the cells differentiating
real organisms are similar in some features of connected Julia sets [29]. Based on the
two-dimensional predator–prey model, Sun et al. applied Julia sets to represent the
origin area to ensure the coexistence of two populations. The authors presented that
the connectivity of such an origin area is important for the stability of populations [22].
The connectivity investigations mentioned above were mainly concentrated on the Julia
sets from a single map. For alternate cases, Danca [1,2] illustrated, in the graphical results,
that the connectivity properties have many forms, including connected, disconnected and
totally disconnected. Further, Wang [30] compared the connectivity of an alternate iteration
Julia set with their original separated Julia sets and gave a preliminary study on the fractals
Parrondo’s phenomenon of the classical alternate system.

Recently, some of the fractals studies concentrate on Julia sets generated by a more
complicated iteration scheme.

For instance, Mandelbrot and Julia sets generated by using the Picard–Mann itera-
tion procedure were intriduced in [31]. Based on the Jungck-CR iteration process with
s-convexity, authors proved new escape criteria for the generation of Mandelbrot and
Julia sets and presented some graphical examples obtained by the use of an escape time
algorithm and the derived criteria in [32]. In [33], the authors investigated the biomorphs
for certain polynomials by using a more general iteration method and examined their
graphical behaviour with respect to the variation in parameters. In [34], the authors adjust
algorithms according to the developed conditions and draw some attractive Julia and Man-
delbrot sets with iterate sequences from proposed fixed-point iterative methods. Moreover,
some results about superior M-J sets was presented by Rani in [13,35]. Further, Rani and
Yadav [36] alternated two maps of quadratic family zn+1 = β(z2

n + ci) + (1− β)zn, i = 1, 2
in superior orbit, and indicated that alternate superior Julia sets also show three connec-
tivities: connected, disconnected and totally disconnected. The effects of the superior
Mandelbrot set were searched by a new noise criterion in [37]. In [38], researchers found
that the superior Julia set showed a higher stability in certain high intensities, and discussed
its application in particle dynamics. The effects of dynamic noise in superior Mandelbrot
sets were analyzed in [39]. In [40], Mann iteration and superior Julia sets were used for
biological morphogenesis algorithm optimization.

Although considerable studies have been made on the superior M-J set, to our best
knowledge, little attention was paid to the connectivity investigation. As mentioned above,
superior Julia sets have a higher stability than the classical ones, and also show potential
application prospects. Thus, it is of interest to seek the Parrondo’s paradox in the alternate
superior complex system from the perspective of connectivity.

Motivated by the significant investigations mentioned above, the main motivation of
this work is to provide a detailed analysis of the connectivity change law of superior Julia
sets in an alternated case.

The reminder of this paper is organized as follows. Essential definitions and lemmas
are given in Section 2. In Section 3, graphical explorations of alternate superior Julia sets are
investigated. Through the use of the escape-time algorithm and image simulation method,
“disconnected + disconnected = connected” and “connected + connected = disconn-ected”
phenomena are proved in visual way. Section 4 concludes this work by discussing the po-
tential applications of this fractal’s phenomenon and pointing out the prospective research
direction.
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2. Preliminaries

Definition 1 ([13]). Consider the following Mann iteration, which can be introduced a one-step
feedback process

xn+1 = g( f (xn), xn) = β f (xn) + (1− β)xn.

where β lies between 0 and 1, xn represents input and xn+1 is expressed as output. Simplifying the
process with invariable β and then consider this process as complex quadratic map

Pc : zn+1 = β(z2
n + c) + (1− β)zn, 0 < β ≤ 1. (1)

When β = 1, Pc can be seen as a simple complex map: zn+1 = z2
n + c. The filled superior Julia

set of system (1) is defined as K(Pc), which satisfies that

K(Pc) = {z0| Pn
c (z0) 9 ∞, n→ ∞},

where Pn
c denote the n-th iteration of z0. The superior Julia set of system (1), denoted by SJ is the

boundary of K(Pc), i.e., SJ(Pc) = ∂K(Pc).

Definition 2. The Mandelbrot-efficacy set of system (1) is defined as

M(Pc) = {c| The superior Julia sets SJ(Pc) is connected}.

Definition 3 ([13]). Considering two complex quadratic maps alternated in superior orbit

Pc1,c2 : zn+1 =

{
β(z2

n + c1) + (1− β)zn, if n is even,
β(z2

n + c2) + (1− β)zn, if n is odd,
(2)

The filled alternate superior Julia set of system (2) is denoted as K(Pc1,c2), which satisfies that

K(Pc1,c2) = {z0| Pn
c1,c2

(z0) 9 ∞, n→ ∞},

where Pn
c1,c2

represents the n-th iteration of the initial point z0. The alternate superior Julia set of
Pc1,c2 is the boundary of the filled alternate superior Julia set, that is, SJ(Pc1,c2) = ∂K(Pc1,c2).

Lemma 1 ([36]). For system

Oc1,c2 : zn+1 = β((z2
n + c1)

2 + c2) + (1− β)(z2
n + c1), zn, c1, c2 ∈ C.

SJ(Pc1,c2) and SJ(Oc1,c2) are the same for given c1 and c2 parameter values.

Lemma 2 ([1,2]). The connectivity properties of superior Julia set for a complex polynomial of
degree 2 and 0 < β ≤ 1 can be identified based on the following cases:

(1) Superior Julia set is connected if and only if all the critical orbits are bounded;
(2) Superior Julia set is totally disconnected, a red Cantor set, if (but not only if) all the critical

orbits are unbounded;
(3) For a polynomial with at least one critical orbit unbounded, the superior Julia set is totally

disconnected if and only if all the bounded critical orbits are aperiodic.
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3. Graphical Explorations

As can be seen from Figure 1, with the decrease in the value of β, the superior
Mandelbrot set M(Pc) expands rapidly. Therefore, we only consider the case of β = 0.9 in
the next simulations.
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Figure 1. Superior Mandelbrot sets M(Pc) plotted with different β.

Based on the above definitions, system Pc1,c2 originates from the alternation of two sin-
gle systems Pc, and the superior Julia sets of Pc have only two states, which are determined
by the single critical point 0. The Julia sets which are plotted in Figure 2 indicate that the
different connectivity relying on weather parameter c belong to the Mandelbrot set.
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Figure 2. M(Pc), classical Mandelbrot set and (A) Connected Julia set, (B) Connected superior Julia
set, (C) Totally disconnected Julia set, and (D) Totally disconnected superior Julia set.
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For a single system Pc, M(Pc) can be plotted along two coordinates (Re c, Im c).
Further, in this study, the whole Connectivity Loci of an alternate superior system Pc1,c2

is defined asM(P), which is determined by four coordinates (Re c1, Im c1, Re c2, Im c2).
With the help of the graphical method proposed in [2], this paper visualized its structure
via MATLAB software. At a certain resolution, fixing the Im(c2) to 0.3 and screening all
[Rm c1, Im c2, Re c2] which connect alternated superior Julia sets, we plotted the spatial-
Connected Loci in Figure 3. Further, in Figure 4, Fixing the Re(c2) to 0, and we obtain
the planarM(P) by recognizing the connectivity of the Julia sets corresponding to all
[ Im c2, Re c2]. In a few words, Figure 4 is a slice of a three-dimensionalM(P) and similar
slices can be obtained by fixing any two dimensions.

Figure 3. Spatial-Connected Loci (M(P) without Disconnected Loci) with Im(c2) = 0.3.
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As is shown in Figure 5, the connectivity of four locations in Figure 4 is founded to
vary along the Connected Loci, Disconnected Loci and Totally Disconnected Loci. That is,
the gray area leads to connected superior Julia sets, the region between the grey boundary
and blue line leads to disconnected superior Julia sets, the region outside the blue line
gives rise to totally disconnected superior Julia sets.
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Figure 5. (a) K(Pc1=0.42+0.91i, c2=0.3i); (b) K(Pc1=0.42+0.95i, c2=0.3i); (c) K(Pc1=0.42+0.97i, c2=0.3i);
(d) K(Pc1=0.42+0.99i, c2=0.3i).

Now, the next step is to find a pair of parameters c1, c2 which make individual superior
Julia sets disconnected and alternate superior Julia sets connected. With the help of the
relationship between the regions and the connectivity mentioned above, the c2 which
satisfies the phenomenon “disconnected+disconnected=connected” should be outside of
the red boundary and inside the grey region.

To verify the analysis mentioned above, our solution is putting the boundary of
the M(Pc) cover on planarM(P). From Figure 6, it can be seen in the location of c1 =
0.35 + 0.59i that its superior Julia set SJ(Pc1) is totally disconnected, the c2 taken from area
outside red boundary can lead to totally disconnected SJ(Pc2), the c2 taken from gray area
can lead to connected SJ(Pc1,c2). For example, one c2 can be set to 0.35− 0.59i (point θ1 in
Figure 7); totally disconnected filled superior Julia set K(Pc=0.35+0.59i), totally disconnected
filled superior Julia set K(Pc=0.35−0.59i) and connected filled alternate superior Julia set
K(Pc1=0.35+0.59i, c2=0.35−0.59i) are shown in Figure 8.
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Figure 6. The boundary of M(Pc) and two slices ofM(P).
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Figure 8. (a) K(Pc=0.35+0.59i); (b) K(Pc=0.35−0.59i); (c) K(Pc1=0.35+0.59i, c2=0.35−0.59i).
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Based on the above research, in addition to “disconnected+disconnected=connected”,
the establishment condition of “connected+connected=disconnected” is that c2 located
between the blue and red boundary. According to the enlarged part in Figure 9, one can
choose a proper point c2 = 0.39 + 0.32i (point θ2 in Figure 9), connected filled superior
Julia set K(Pc=0.40+0.35i), connected filled superior Julia set K(Pc=0.39+0.32i) and totally
disconnected filled alternate superior Julia set K(Pc1=0.40+0.35i, c2=0.39+0.32i) are shown in
Figure 10.
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Figure 10. (a) K(Pc=0.40+0.35i); (b) K(Pc=0.39+0.32i); (c) K(Pc1=0.40+0.35i, c2=0.39+0.32i).

4. Conclusions

This paper demonstrates that “disconnected+disconnected=connected” and “con-
nected+connected=disconnected” Parrondo’s Paradox phenomena exist in an alternate
superior system. As mentioned in the introduction section, superior Julia sets show higher
stability in certain situations, and alternate systems have been widely applied to physics,
biology, etc. This phenomenon, occurring in alternate superior systems may have potential
applications in many fields. We hope that the result of this paper can provide a reference
for future research. On the other hand, according to the introduction, there is a close
relationship between fractal and fractional; therefore, future research may further expand
the Parrondo’s Paradox phenomenon to the fields, combining fractal and fractional.
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Abstract: In this paper, the authors define a new generic class of functions involving a certain
modified Fox–Wright function. A useful identity using fractional integrals and this modified Fox–
Wright function with two parameters is also found. Applying this as an auxiliary result, we establish
some Hermite–Hadamard-type integral inequalities by using the above-mentioned class of functions.
Some special cases are derived with relevant details. Moreover, in order to show the efficiency of our
main results, an application for error estimation is obtained as well.
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1. Introduction and Preliminaries

In many problems in mathematics and its applications, fractional calculus has a crucial
role (see [1–6]). The analysis of the uniqueness of fractional ordinary differential equations
can be accomplished by using fractional integral inequalities (see [7–9]).

Integral inequalities play a major role in the fields of differential equations and applied
mathematics (see [10,11]). Moreover, they are linked with such other areas as differential
equations, difference equations, mathematical analysis, mathematical physics, convexity
theory, and discrete fractional calculus (see [12–18]).

Convexity is a fascinating and natural concept; it is beneficial in optimization theory,
the theory of inequalities, numerical analysis, economics, and in other fields of pure and
applied mathematics.

The notion of the h–convex function is introduced below.

Definition 1 (see [19]). Let h : [0, 1]→ [0, ∞) be a function. A function ψ : I→ R is said to be
h–convex if

ψ(ıξ1 + (1− ı)ξ2) 5 h(ı)ψ(ξ1) + h(1− ı)ψ(ξ2)

holds true for every ξ1, ξ2 ∈ I and ı ∈ [0, 1].

Fractal Fract. 2021, 5, 80. https://doi.org/10.3390/fractalfract5030080 https://www.mdpi.com/journal/fractalfract181
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The following class of functions was introduced by Awan et al. (see [20]) and was
demonstrated to play an important role in optimization theory and mathematical eco-
nomics.

Definition 2. A function ψ : I ⊆ R→ R is called exponentially convex if

ψ(ıξ1 + (1− ı)ξ2) 5 ı
ψ(ξ1)

evξ1
+ (1− ı)

ψ(ξ2)

evξ2

holds true for all ξ1, ξ2 ∈ I, v ∈ R and ı ∈ [0, 1].

The most significant inequality about a convex function ψ on the closed interval
[ξ1, ξ2] is the Hermite–Hadamard integral inequality (that is, the trapezium inequality).
This two-sided inequality is expressed as follows:

ψ

(
ξ1 + ξ2

2

)
5 1

ξ2 − ξ1

∫ ξ2

ξ1

ψ(ı)dı 5 ψ(ξ1) + ψ(ξ2)

2
. (1)

The two-sided inequality (1) has become a very important foundation within the field
of mathematical analysis and optimization. Several applications of inequalities of this type
have been derived in a number of different settings (see [21–29]).

In the context of fractional calculus, the standard left and right-sided Riemann–
Liouville (RL) fractional integrals of order α > 0 are given, respectively, by

Iα
ξ+1

ψ(x) =
1

Γ(α)

∫ x

ξ1

(x− ı)α−1ψ(ı)dı (x > ξ1)

and

Iα
ξ−2

ψ(x) =
1

Γ(α)

∫ ξ2

x
(ı− x)α−1ψ(ı)dı (x < ξ2),

(2)

where ψ is a function defined on the closed interval [ξ1, ξ2] and Γ(·) is the classical (Euler’s)
gamma function.

Regarding information for some of the fractional integral operators, including those
that are known as Erdélyi–Kober, Riemann–Liouville (RL), Weyl and Liouville–Caputo
(LC) operators, see [30–34].

There are many directions in which one can introduce a new definition of fractional
derivatives and fractional integrals, which are related to or inspired by (for example) the RL
definitions (see [35,36]), with reference to some general classes into which such fractional
calculus operators can be classified. In applied mathematics, it is important to consider
particular types of fractional calculus operators which are suited to the fractional-order
modeling of a given real-world problem.

We now recall the familiar Fox–Wright hypergeometric function pΨq(z) (with p nu-
merator and q denominator parameters), which is given by the following series (see [5]
(p. 67, Equation (1.12(68))) and [37] (p. 21, Equation (1.2(38)))):

pΨq




(α1,U1), · · · , (αp,Up);

(β1,V1), · · · , (βq,Vq);
z


 :=

∞

∑
n=0

p
∏
`=1

Γ(α` + nU`)
q

∏
=1

Γ(β  + nV)

zn

n!
, (3)

where the parameters

α`, β  ∈ C (` = 1, · · · , p;  = 1, · · · , q)
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and the coefficients

U1, · · · ,Up ∈ R+ and V1, · · · ,Vq ∈ R+

satisfy the following condition:

1 +
q

∑
=1
V −

p

∑
`=1
U` = 0. (4)

Here and in what follows, we have made use of the general Pochhammer symbol (η)ν (η, ν ∈ C)
defined by

(η)ν :=
Γ(η + ν)

Γ(η)
=





1 (ν = 0; η ∈ C \ {0})

η(η + 1) · · · (η + n− 1) (ν = n ∈ N; η ∈ C),
(5)

it being assumed conventionally that (0)0 := 1 and understand tacitly that the Γ-quotient
in (5) exists.

The following modified version of the Fox–Wright function pΨq(z) in (3) was intro-
duced, as long ago as 1940, by Wright [38] (p. 424), who partially and formally replaced the
Γ-quotient in (3) by a sequence {σ(n)}∞

n=0 based upon a suitably-restricted function σ(τ)
as follows (see also [39], where the same definition is reproduced without giving credit to
Wright [38]):

Fσ
ρ,ς(z) = Fσ(0),σ(1),···

ρ,ς (z) =
∞

∑
`=0

σ(`)

Γ(ρ`+ ς)
z` (ρ > 0; ς > 0). (6)

If, in Wright’s definition (6) from 1940 (see [38] (p. 424)), we take ρ = ς = 1 and

σ(`) =

p
∏
j=1

Γ(αj + Uj`)

q
∏

k=1
Γ(βk + Vk`)

(` = 0, 1, 2, · · · ),

then Wright’s definition (6) would immediately yield the familiar Fox–Wright hypergeomet-
ric function pΨq(z) defined by (3). The one- and two-parameter Mittag–Leffler functions
Eα(z) and Eα,β(z), and indeed also almost all of the parametric generalizations of the
Mittag–Leffler type functions, can be deduced as obvious special cases of the Fox–Wright
hypergeometric function pΨq(z) defined by (3) (see [40] for details).

We are now in the position to introduce a new generic class of functions involving the
modified Fox–Wright function Fσ

ρ,ς(·).

Definition 3. Let h1, h2 : [0, 1]→ [0, ∞) be two functions and ψ : I ⊆ R→ R. If ψ satisfies the
following inequality,

ψ
(

ξ1 + ıFσ
ρ,ς(ξ2 − ξ1)

)
5 h1(ı)

ψ(ξ1)

ev1ξ1
+ h2(ı)

ψ(ξ2)

ev2ξ2

for all ı ∈ [0, 1], v1, v2 ∈ R, and ξ1, ξ2 ∈ I, where Fσ
ρ,ς(ξ2 − ξ1) > 0, then ψ is called an

exponentially (v1, v2, h1, h2)–nonconvex function.

Remark 1. Upon setting

v1 = v2 = v, h1(ı) = 1− ı, h2(ı) = ı
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and
Fσ

ρ,ς(ξ2 − ξ1) = ξ2 − ξ1

in Definition 3, we then obtain Definition 2.

Remark 2. Some special cases of our Definition 3 are listed below:

(I) Taking h1(ı) = h2(ı) = 1, we have an exponentially (v1, v2, P)–nonconvex function.
(II) Choosing h1(ı) = h(1− ı) and h2(ı) = h(ı), we obtain an exponentially (v1, v2, h)–

nonconvex function.
(III) Setting h1(ı) = (1 − ı)s and h2(ı) = ıs for s ∈ (0, 1], we obtain an exponentially

(s, v1, v2)–Breckner-nonconvex function.
(IV) Putting h1(ı) = (1− ı)−s and h2(ı) = ı−s for s ∈ (0, 1), we obtain an exponentially

(s, v1, v2)–Godunova–Levin–Dragomir-nonconvex function.
(V) Taking h1(ı) = h2(ı) = ı(1− ı), we obtain an exponentially (v1, v2, tgs)–nonconvex

function.

Our paper has the following structure: in Section 2, we first find a useful identity
using fractional integrals with two parameters λ and µ involving the modified Fox–Wright
function Fσ

ρ,ς(·). Applying this as an auxiliary result, we give some Hermite–Hadamard-
type integral inequalities pertaining to exponentially (v1, v2, h1, h2)–nonconvex functions,
and some special cases are derived in details. In Section 3, the efficiency of our main results
is demonstrated with an application for error estimation. Section 4 presents the conclusion
of this paper.

2. Main Results and Their Consequences

The following notations are used below:

∆ :=
[
ξ1, ξ1 +Fσ

ρ,ς(ξ2 − ξ1)
]
,

where
Fσ

ρ,ς(ξ2 − ξ1) > 0

and ∆◦ is the interior of the closed interval ∆ with v1, v2 ∈ R. We denote by L1(∆) the
space of integrable functions over ∆. We need to prove the following basic lemma.

Lemma 1. Let the function ψ : ∆→ R be differentiable on ∆◦ and λ, µ ∈ (0, 1]. If ψ′ ∈ L1(∆),
then, for α > 0,

µαψ(ξ1) + λαψ
(

ξ1 +Fσ
ρ,ς(ξ2 − ξ1)

)

(λ + µ)α
− Γ(α + 1)[
Fσ

ρ,ς(ξ2 − ξ1)
]α

·
[
Iα

ξ+1
ψ

(
ξ1 +

µ

λ + µ
Fσ

ρ,ς(ξ2 − ξ1)

)
+ Iα

(ξ1+Fσ
ρ,ς(ξ2−ξ1))

−ψ

(
ξ1 +

µ

λ + µ
Fσ

ρ,ς(ξ2 − ξ1)

)]

=
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1

·
[∫ λ

0
ıαψ′

(
ξ1 +

µ + ı
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)
dı−

∫ µ

0
ıαψ′

(
ξ1 +

µ− ı
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)
dı
]

. (7)

Proof. We define

T α
λ,µ(ξ1, ξ2) :=

Fσ
ρ,ς(ξ2 − ξ1)

(λ + µ)α+1 [I2 − I1], (8)
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where

I1 :=
∫ µ

0
ıαψ′

(
ξ1 +

µ− ı
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)
dı,

and

I2 :=
∫ λ

0
ıαψ′

(
ξ1 +

µ + ı
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)
dı,

which, upon integrating by parts, would yield

I1 = − (λ + µ)

Fσ
ρ,ς(ξ2 − ξ1)

ıαψ

(
ξ1 +

µ− ı
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)∣∣∣∣
µ

0

+
α(λ + µ)

Fσ
ρ,ς(ξ2 − ξ1)

∫ µ

0
ıα−1ψ

(
ξ1 +

µ− ı
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)
dı

= Γ(α + 1)

(
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)α+1

· Iα
ξ+1

ψ

(
ξ1 +

µ

λ + µ
Fσ

ρ,ς(ξ2 − ξ1)

)
− µα(λ + µ)

Fσ
ρ,ς(ξ2 − ξ1)

ψ(ξ1). (9)

Similarly, we find that

I2 =
λα(λ + µ)

Fσ
ρ,ς(ξ2 − ξ1)

ψ
(

ξ1 +Fσ
ρ,ς(ξ2 − ξ1)

)

− Γ(α + 1)

(
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)α+1

· Iα

(ξ1+Fσ
ρ,ς(ξ2−ξ1))

−ψ

(
ξ1 +

µ

λ + µ
Fσ

ρ,ς(ξ2 − ξ1)

)
. (10)

Substituting from (9) and (10) into (8), we obtain the desired result (7).

From Lemma 1, we can derive the following case:

Remark 3. Taking α = 1 in Lemma 1, we have

µψ(ξ1) + λψ
(

ξ1 +Fσ
ρ,ς(ξ2 − ξ1)

)

λ + µ
− 1
Fσ

ρ,ς(ξ2 − ξ1)

∫ ξ1+Fσ
ρ,ς(ξ2−ξ1)

ξ1

ψ(ı)dı

=
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)2

[∫ λ

0
ıψ′
(

ξ1 +
µ + ı
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)
dı

−
∫ µ

0
ıψ′
(

ξ1 +
µ− ı
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)
dı

]
. (11)

Our first main result is stated as Theorem 1 below.

Theorem 1. Assume that h1, h2 : [0, 1]→ [0, ∞) are two continuous functions and let ψ : ∆→ R
be a differentiable function on ∆◦ with λ, µ ∈ (0, 1]. Furthermore, let ψ′ ∈ L1(∆). If |ψ′|q is an
exponentially (v1, v2, h1, h2)–nonconvex function, then, for q > 1, 1

p + 1
q = 1 and α > 0, it is

asserted that
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∣∣∣T α
λ, µ(ξ1, ξ2)

∣∣∣ 5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1

[
A

1
p
1

( |ψ′(ξ1)|q
ev1ξ1

H1,1 +
|ψ′(ξ2)|q

ev2ξ2
H1,2

) 1
q

+A
1
p
2

( |ψ′(ξ1)|q
ev1ξ1

H2,1 +
|ψ′(ξ2)|q

ev2ξ2
H2,2

) 1
q
]

, (12)

where

A1 :=
λpα+1

pα + 1
, A2 :=

µpα+1

pα + 1
,

H1,1 :=
∫ λ

0
h1

(
µ + ı
λ + µ

)
dı, H1,2 :=

∫ λ

0
h2

(
µ + ı
λ + µ

)
dı,

H2,1 :=
∫ µ

0
h1

(
µ− ı
λ + µ

)
dı and H2,2 :=

∫ µ

0
h2

(
µ− ı
λ + µ

)
dı.

Proof. Applying Lemma 1, the property of the modulus, Hölder’s inequality, and the
exponential (v1, v2, h1, h2)–nonconvexity of |ψ′|q, we have

∣∣∣T α
λ, µ(ξ1, ξ2)

∣∣∣ 5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1

[∫ λ

0
ıα

∣∣∣∣ψ′
(

ξ1 +
µ + ı
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)∣∣∣∣dı

+
∫ µ

0
ıα

∣∣∣∣ψ′
(

ξ1 +
µ− ı
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)∣∣∣∣dı

]

5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1

[(∫ λ

0
ıpαdı

) 1
p
(∫ λ

0

∣∣∣∣ψ′
(

ξ1 +
µ + ı
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)∣∣∣∣
q
dı
) 1

q

+

(∫ µ

0
ıpαdı

) 1
p
(∫ µ

0

∣∣∣∣ψ′
(

ξ1 +
µ− ı
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)∣∣∣∣
q
dı
) 1

q
]

5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1

[(∫ λ

0
ıpαdı

) 1
p
(∫ λ

0

{
h1

(
µ + ı
λ + µ

) |ψ′(ξ1)|q
ev1ξ1

+ h2

(
µ + ı
λ + µ

) |ψ′(ξ2)|q
ev2ξ2

}
dı
) 1

q

+

(∫ µ

0
ıpαdı

) 1
p
(∫ µ

0

{
h1

(
µ− ı
λ− µ

) |ψ′(ξ1)|q
ev1ξ1

+ h2

(
µ− ı
λ + µ

) |ψ′(ξ2)|q
ev2ξ2

}
dı
) 1

q
]

=
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1

[
A

1
p
1

( |ψ′(ξ1)|q
ev1ξ1

H1,1 +
|ψ′(ξ2)|q

ev2ξ2
H1,2

) 1
q

+A
1
p
2

( |ψ′(ξ1)|q
ev1ξ1

H2,1 +
|ψ′(ξ2)|q

ev2ξ2
H2,2

) 1
q
]

,

which completes the proof of Theorem 1.

Some corollaries and consequences of Theorem 1 are listed below:

Corollary 1. Upon setting α = 1, Theorem 1 yields
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∣∣∣∣∣∣

µψ(ξ1) + λψ
(

ξ1 +Fσ
ρ,ς(ξ2 − ξ1)

)

λ + µ
− 1
Fσ

ρ,ς(ξ2 − ξ1)

∫ ξ1+Fσ
ρ,ς(ξ2−ξ1)

ξ1

ψ(ı)dı

∣∣∣∣∣∣

5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)2

[(
λp+1

p + 1

) 1
p
( |ψ′(ξ1)|q

ev1ξ1
H1,1 +

|ψ′(ξ2)|q
ev2ξ2

H1,2

) 1
q

+

(
µp+1

p + 1

) 1
p
( |ψ′(ξ1)|q

ev1ξ1
H2,1 +

|ψ′(ξ2)|q
ev2ξ2

H2,2

) 1
q
]

. (13)

Corollary 2. Choosing h1(ı) = h2(ı) = 1 in Theorem 1, it is asserted that

∣∣∣T α
λ, µ(ξ1, ξ2)

∣∣∣ 5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1

(
A

1
p
1 λ

1
q +A

1
p
2 µ

1
q

)[ |ψ′(ξ1)|q
ev1ξ1

+
|ψ′(ξ2)|q

ev2ξ2

] 1
q
. (14)

Corollary 3. Choosing

h1(ı) = (1− ı)s and h2(ı) = ıs (s ∈ (0, 1])

in Theorem 1, it is asserted that

∣∣∣T α
λ, µ(ξ1, ξ2)

∣∣∣ 5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1

[
A

1
p
1

( |ψ′(ξ1)|q
ev1ξ1

D1,1 +
|ψ′(ξ2)|q

ev2ξ2
D1,2

) 1
q

+A
1
p
2

( |ψ′(ξ1)|q
ev1ξ1

D2,1 +
|ψ′(ξ2)|q

ev2ξ2
D2,2

) 1
q
]

, (15)

where

D1,1 :=
λs+1

(s + 1)(λ + µ)s , D1,2 :=
(λ + µ)s+1 − µs+1

(s + 1)(λ + µ)s ,

D2,1 :=
(λ + µ)s+1 − λs+1

(s + 1)(λ + µ)s and D2,2 :=
µs+1

(s + 1)(λ + µ)s .

Corollary 4. Taking

h1(ı) = (1− ı)−s and h2(ı) = ı−s (
s ∈ (0, 1)

)

in Theorem 1, the following inequality is deduced:

∣∣∣T α
λ, µ(ξ1, ξ2)

∣∣∣ 5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1

[
A

1
p
1

( |ψ′(ξ1)|q
ev1ξ1

F1,1 +
|ψ′(ξ2)|q

ev2ξ2
F1,2

) 1
q

+A
1
p
2

( |ψ′(ξ1)|q
ev1ξ1

F2,1 +
|ψ′(ξ2)|q

ev2ξ2
F2,2

) 1
q
]

, (16)

where

F1,1 :=
λ1−s(λ + µ)s

1− s
, F1,2 :=

(
(λ + µ)1−s − µ1−s)(λ + µ)s

1− s
,

F2,1 :=

(
(λ + µ)1−s − λ1−s)(λ + µ)s

1− s
and F2,2 :=

µ1−s(λ + µ)s

1− s
.

Corollary 5. For
h1(ı) = h2(ı) = ı(1− ı),
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Theorem 1 yields

∣∣∣T α
λ, µ(ξ1, ξ2)

∣∣∣ 5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1

(
A

1
p
1 G

1
q

1 +A
1
p
2 G

1
q

2

)[ |ψ′(ξ1)|q
ev1ξ1

+
|ψ′(ξ2)|q

ev2ξ2

] 1
q
, (17)

where

G1 :=
λ2(3µ + λ)

6(λ + µ)2 and G2 :=
µ2(3λ + µ)

6(λ + µ)2 .

Our second main result is stated as Theorem 2 below.

Theorem 2. Assume that h1, h2 : [0, 1]→ [0, ∞) are two continuous functions and ψ : ∆→ R
is a differentiable function on ∆◦ with λ, µ ∈ (0, 1]. Furthermore, let ψ′ ∈ L1(∆). If |ψ′|q be an
exponentially (v1, v2, h1, h2)–nonconvex function; then, for q = 1 and α > 0, it is asserted that

∣∣∣T α
λ, µ(ξ1, ξ2)

∣∣∣ 5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1

[
B1− 1

q
1

( |ψ′(ξ1)|q
ev1ξ1

S1,1 +
|ψ′(ξ2)|q

ev2ξ2
S1,2

) 1
q

+ B1− 1
q

2

( |ψ′(ξ1)|q
ev1ξ1

S2,1 +
|ψ′(ξ2)|q

ev2ξ2
S2,2

) 1
q
]

, (18)

where

B1 :=
λα+1

α + 1
, B2 :=

µα+1

α + 1
,

S1,1 :=
∫ λ

0
ıαh1

(
µ + ı
λ + µ

)
dı, S1,2 :=

∫ λ

0
ıαh2

(
µ + ı
λ + µ

)
dı,

S2,1 :=
∫ µ

0
ıαh1

(
µ− ı
λ + µ

)
dı and S2,2 :=

∫ µ

0
ıαh2

(
µ− ı
λ + µ

)
dı.

Proof. Applying Lemma 1, the property of the modulus, power-mean inequality and the
exponential (v1, v2, h1, h2)-nonconvexity of |ψ′|q, we obtain

∣∣∣T α
λ, µ(ξ1, ξ2)

∣∣∣ 5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1

·
[∫ λ

0
ıα
∣∣∣∣ψ′
(

ξ1 +
µ + ı
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)∣∣∣∣dı +
∫ µ

0
ıα

∣∣∣∣ψ′
(

ξ1 +
µ− ı
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)∣∣∣∣dı
]

5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1

·
[(∫ λ

0
ıαdı

)1− 1
q
(∫ λ

0
ıα

∣∣∣∣ψ′
(

ξ1 +
µ + ı
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)∣∣∣∣
q
dı
) 1

q

+

(∫ µ

0
ıαdı

)1− 1
q
(∫ µ

0
ıα
∣∣∣∣ψ′
(

ξ1 +
µ− ı
λ + µ

Fσ
ρ,ς(ξ2 − ξ1)

)∣∣∣∣
q
dı
) 1

q
]

5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1

·
[(∫ λ

0
ıαdı

)1− 1
q
(∫ λ

0
ıα

{
h1

(
µ + ı
λ + µ

) |ψ′(ξ1)|q
ev1ξ1

+ h2

(
µ + ı
λ + µ

) |ψ′(ξ2)|q
ev2ξ2

}
dı
) 1

q
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+

(∫ µ

0
ıαdı

)1− 1
q
(∫ µ

0
ıα
{

h1

(
µ− ı
λ− µ

) |ψ′(ξ1)|q
ev1ξ1

+ h2

(
µ− ı
λ + µ

) |ψ′(ξ2)|q
ev2ξ2

}
dı
) 1

q
]

=
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1

·
[
B1− 1

q
1

( |ψ′(ξ1)|q
ev1ξ1

S1,1 +
|ψ′(ξ2)|q

ev2ξ2
S1,2

) 1
q
+ B1− 1

q
2

( |ψ′(ξ1)|q
ev1ξ1

S2,1 +
|ψ′(ξ2)|q

ev2ξ2
S2,2

) 1
q
]

.

The proof of Theorem 2 is completed.

We now state several corollaries and consequences of Theorem 2.

Corollary 6. Upon setting α = 1, Theorem 2 yields

∣∣∣∣∣∣

µψ(ξ1) + λψ
(

ξ1 +Fσ
ρ,ς(ξ2 − ξ1)

)

λ + µ
− 1
Fσ

ρ,ς(ξ2 − ξ1)

∫ ξ1+Fσ
ρ,ς(ξ2−ξ1)

ξ1

ψ(ı)dı

∣∣∣∣∣∣

5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)2

[(
λ2

2

)1− 1
q
( |ψ′(ξ1)|q

ev1ξ1
M1,1 +

|ψ′(ξ2)|q
ev2ξ2

M1,2

) 1
q

+

(
µ2

2

)1− 1
q
( |ψ′(ξ1)|q

ev1ξ1
M2,1 +

|ψ′(ξ2)|q
ev2ξ2

M2,2

) 1
q
]

, (19)

where

M1,1 :=
∫ λ

0
ıh1

(
µ + ı
λ + µ

)
dı, M1,2 :=

∫ λ

0
ıh2

(
µ + ı
λ + µ

)
dı,

M2,1 :=
∫ µ

0
ıh1

(
µ− ı
λ + µ

)
dı and M2,2 :=

∫ µ

0
ıh2

(
µ− ı
λ + µ

)
dı.

Corollary 7. Choosing h1(ı) = h2(ı) = 1 in Theorem 2, the following inequality holds true:

∣∣∣T α
λ, µ(ξ1, ξ2)

∣∣∣ 5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1 (B1 + B2)

[ |ψ′(ξ1)|q
ev1ξ1

+
|ψ′(ξ2)|q

ev2ξ2

] 1
q
. (20)

Corollary 8. Choosing

h1(ı) = (1− ı)s and h2(ı) = ıs (
s ∈ (0, 1]

)
,

Theorem 2 is reduced to the following inequality:

∣∣∣T α
λ, µ(ξ1, ξ2)

∣∣∣ 5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)
α+ s

q +1

[
B1− 1

q
1

( |ψ′(ξ1)|q
ev1ξ1

P1,1 +
|ψ′(ξ2)|q

ev2ξ2
P1,2

) 1
q

+ B1− 1
q

2

( |ψ′(ξ1)|q
ev1ξ1

P2,1 +
|ψ′(ξ2)|q

ev2ξ2
P2,2

) 1
q
]

, (21)

where

P1,1 :=
∫ λ

0
ıα(λ− ı)sdı, P1,2 :=

∫ λ

0
ıα(µ + ı)sdı,

P2,1 :=
∫ µ

0
ıα(λ + ı)sdı and P2,2 :=

∫ µ

0
ıα(µ− ı)sdı.
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Corollary 9. By putting

h1(ı) = (1− ı)−s and h2(ı) = ı−s (
s ∈ (0, 1)

)
,

Theorem 2 yields the following inequality:

∣∣∣T α
λ, µ(ξ1, ξ2)

∣∣∣ 5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)
α− s

q +1

[
B1− 1

q
1

( |ψ′(ξ1)|q
ev1ξ1

R1,1 +
|ψ′(ξ2)|q

ev2ξ2
R1,2

) 1
q

+ B1− 1
q

2

( |ψ′(ξ1)|q
ev1ξ1

R2,1 +
|ψ′(ξ2)|q

ev2ξ2
R2,2

) 1
q
]

, (22)

where

R1,1 :=
∫ λ

0

ıα

(λ− ı)s dı, R1,2 :=
∫ λ

0

ıα

(µ + ı)s dı,

R2,1 :=
∫ µ

0

ıα

(λ + ı)s dı and R2,2 :=
∫ µ

0

ıα

(µ− ı)s dı.

Corollary 10. Upon letting
h1(ı) = h2(ı) = ı(1− ı),

Theorem 2 yields the following inequality:

∣∣∣T α
λ, µ(ξ1, ξ2)

∣∣∣ 5
Fσ

ρ,ς(ξ2 − ξ1)

(λ + µ)α+1

(
B1− 1

q
1 K

1
q
1 + B1− 1

q
2 K

1
q
2

)[ |ψ′(ξ1)|q
ev1ξ1

+
|ψ′(ξ2)|q

ev2ξ2

] 1
q
, (23)

where

K1 :=
1

(λ + µ)2

[
µλα+2

α + 1
− µλα+2

α + 2
+

λα+3

α + 2
− λα+3

α + 3

]
,

and

K2 :=
1

(λ + µ)2

[
λµα+2

α + 1
− λµα+2

α + 2
+

µα+3

α + 2
− µα+3

α + 3

]
.

Remark 4. If we take λ = µ = 1 or Fσ
ρ,ς(ξ2 − ξ1) = ξ2 − ξ1 or h1(ı) = h(1 − ı) and

h2(ı) = h(ı) in Theorem 1 and Theorem 2, then we can obtain some interesting results imme-
diately. We omit their proofs here, and the details are left to the interested reader.

Remark 5. If we choose v1 = v2 = 0 in our results in this paper, then all of the consequent
results will hold true for the (h1, h2)–nonconvex functions.

3. Application

In this section, we present an application involving a new error estimation for the
trapezoidal formula by using the inequalities obtained in Section 2. We fix the parameters
ρ and ς. We also suppose that the bounded sequence {σ(`)}∞

`=0 of positive real numbers is
given.

Let
U : ξ1 = χ0 < χ1 < · · · < χn−1 < χn = ξ1 +Fσ

ρ,ς(ξ2 − ξ1)

be a partition of the closed interval ∆.
For λ, µ ∈ (0, 1], let us define

T(U, ψ) :=
n−1

∑
i=0




µψ(χi) + λψ
(

χi +Fσ
ρ,ς(h̄i)

)

λ + µ


Fσ

ρ,ς(h̄i),
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and ∫ ξ1+Fσ
ρ,ς(ξ2−ξ1)

ξ1

ψ(ı)dı = T(U, ψ) + R(U, ψ),

where R(U, ψ) is the remainder term and

h̄i = χi+1 − χi (∀ i = 0, 1, 2, · · · , n− 1).

From the above notations, we can obtain some new bounds regarding error estimation.

Proposition 1. Assume that h1, h2 : [0, 1]→ [0, ∞) are two continuous functions. Furthermore,
let ψ : ∆ → R be a differentiable function on ∆◦ with λ, µ ∈ (0, 1]. Suppose that ψ′ ∈ L1(∆)
and that |ψ′|q is an exponentially (v1, v2, h1, h2)–nonconvex function. Then, for q > 1 and
1
p + 1

q = 1, it is asserted that

|R(U, ψ)| 5 1
(λ + µ)2

n−1

∑
i=0

[
Fσ

ρ,ς(h̄i)
]2

·
[(

λp+1

p + 1

) 1
p
( |ψ′(χi)|q

ev1χi
H1,1 +

|ψ′(χi+1)|q
ev2χi+1

H1,2

) 1
q

+

(
µp+1

p + 1

) 1
p
( |ψ′(χi)|q

ev1χi
H2,1 +

|ψ′(χi+1)|q
ev2χi+1

H2,2

) 1
q
]

. (24)

Proof. Applying Theorem 1 on the subinterval [χi, χi+1] of the closed interval
∆ (∀ i = 0, 1, 2, · · · , n− 1), and taking α = 1, we obtain

∣∣∣∣∣∣




µψ(χi) + λψ
(

χi +Fσ
ρ,ς(h̄i)

)

λ + µ


Fσ

ρ,ς(h̄i)−
∫ χi+Fσ

ρ,ς(h̄i)

χi

ψ(ı)dı

∣∣∣∣∣∣
5

[
Fσ

ρ,ς(h̄i)
]2

(λ + µ)2

·
[(

λp+1

p + 1

) 1
p
( |ψ′(χi)|q

ev1χi
H1,1 +

|ψ′(χi+1)|q
ev2χi+1

H1,2

) 1
q

+

(
µp+1

p + 1

) 1
p
( |ψ′(χi)|q

ev1χi
H2,1 +

|ψ′(χi+1)|q
ev2χi+1

H2,2

) 1
q
]

. (25)

Upon summing the inequality (25) over i from 0 to n− 1 and using the property of
the modulus, we obtain inequality (24).

Proposition 2. Assume that h1, h2 : [0, 1]→ [0, ∞) are two continuous functions. Furthermore,
let ψ : ∆→ R be a differentiable function on ∆◦ with λ, µ ∈ (0, 1]. Suppose that ψ′ ∈ L1(∆) and
that |ψ′|q is an exponentially (v1, v2, h1, h2)–nonconvex function. Then, for q = 1, the following
inequality holds true:

|R(U, ψ)| 5 1
(λ + µ)2

n−1

∑
i=0

[
Fσ

ρ,ς(h̄i)
]2

·
[(

λ2

2

)1− 1
q
( |ψ′(χi)|q

ev1χi
M1,1 +

|ψ′(χi+1)|q
ev2χi+1

M1,2

) 1
q

+

(
µ2

2

)1− 1
q
( |ψ′(χi)|q

ev1χi
M2,1 +

|ψ′(χi+1)|q
ev2χi+1

M2,2

) 1
q
]

. (26)

191



Fractal Fract. 2021, 5, 80

Proof. Choosing α = 1 in Theorem 2 and using the same technique as in our demonstration
of Proposition 1, we obtain the desired inequality (26).

Remark 6. In view of Remark 2, we can establish new error estimations by using Proposition 1
and Proposition 2.

4. Conclusions

In this paper, the authors have defined a new generic class of functions involving the
modified Fox–Wright functionFσ

ρ,ς(·) as well as the so-called exponentially (v1, v2, h1, h2)–
nonconvex function. A useful identity has also been found by using fractional integrals
and the function Fσ

ρ,ς(·) with two parameters λ and µ. We have established some Hermite–
Hadamard-type integral inequalities by using the above class of functions and the afore-
mentioned identity as an auxiliary result. Several special cases have been deduced as
corollaries including relevant details. We have also outlined the derivations of several
other corollaries and consequences for the interested reader. The efficiency of our main
results has been shown by proving an application for error estimation.
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Abstract: This paper addresses the guaranteed cost leaderless consensus of delayed fractional-
order (FO) multi-agent systems (FOMASs) with nonlinearities and uncertainties. A guaranteed cost
function for FOMAS is proposed to simultaneously consider consensus performance and energy
consumption. By employing the linear matrix inequality approach and the FO Razumikhin theorem,
a delay-dependent and order-dependent consensus protocol is formulated for FOMASs with input
delay. The proposed protocol not only guarantees the robust stability of the closed-loop system error
but also ensures that the performance degradation caused by the system uncertainty is lesser than
that obtained with other approaches. Two numerical examples are provided in order to verify the
effectiveness and accuracy of the proposed protocol.

Keywords: fractional-order system; multi-agent; guaranteed cost consensus; delay-dependent

1. Introduction

In recent years, there has been increasing interest in the coordination of multi-agent
systems (MASs) that have a variety of applications. For example, we can mention the
distributed consensus behavior in sensor networks [1], satellite formation flying [2] and
cooperative control of unmanned aerial vehicles rendezvous [3]. Consensus, as a critical
dynamic behaviour in MASs, has been focused on integer-order (IO) MASs, where every
agent is described by classical IO dynamics [4–8]. It has been shown that many phenomena
can be explained naturally by coordinated behavior of agents with FO dynamics [9–11].
This includes flocking movement and food searching by means of individual secretions and
microbial secretions, submarine underwater robots exploring seawater with a large number
of microorganisms and viscous substances and operating unmanned aerial vehicles in com-
plex space environments. Therefore, the question of how to achieve consensus for FOMASs
has received much attention, and important developments involving leader-following
group, cluster, finite-time, bipartite, group multiple lag and others have been presented.
For example, nonlinear FOMASs with distributed input delays were considered in [12],
a delay-dependent consensus condition for a class of linear FOMASs with distributed
control containing input time-delay was proposed in [13], the event-triggered consensus
for general linear FOMASs was investigated in [14,15] and the consensus of FOMASs
without delay terms was studied in [16,17].

Fractal Fract. 2021, 5, 141. https://doi.org/10.3390/fractalfract5040141 https://www.mdpi.com/journal/fractalfract194
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In practical applications, control systems are subject to time delays caused by the lim-
ited speed at which signals propagate [18]. Time delays may degrade system performance
and robustness and even cause instability. Generally, consensus conditions of delayed
FOMASs are divided into the categories of delay dependent and delay independent based
on whether the consensus criteria depend on the delay or not. Usually, delay independent
criteria are excessively conservative in comparison with delay dependent ones, particu-
larly when the time delay is small. On the other hand, despite actual physical systems
being nonlinear, there are few stability results for nonlinear delayed FOMASs. Therefore,
addressing such systems is fundamental [19–22].

It should be mentioned that all works mentioned above focus only on the consensus
regulation performance for FOMASs with the existence of time delays or/and nonlineari-
ties [12–17,19–22]. However, energy consumption is an issue, and the so-called guaranteed
cost control approach to tackle this problem, which considers the consensus regulation
performance and the energy consumption at the same time, was proposed. The guaranteed
cost consensus of MASs has increasingly attracted the attention of researchers. In [23],
the event-triggered guaranteed cost consensus for nonlinear MASs with time delay and
uncertain parameters was addressed. In [24], the guaranteed performance consensus for
MASs with Lipschitz nonlinear dynamics was investigated. In [25,26], the guaranteed cost
consensus for MASs was also investigated. However, it should be pointed out that most re-
search has been focused on IO MASs instead of FOMASs and, in particular, the guaranteed
cost consensus of FOMASs with state and input time-delay receiveed limited attention.

Motivated by the above discussion, a guaranteed cost leaderless consensus protocol
for uncertain nonlinear delayed FOMASs with input time delay is proposed in this paper.
The main contributions are the following: (1) to address the guaranteed cost consensus
for nonlinear FOMASs with state and input time delay; (2) to establish in terms of linear
matrix inequality (LMI) a delay-dependent and order-dependent sufficient condition for
guaranteed cost leaderless consensus protocol; and (3) to obtain a guaranteed cost leaderless
consensus protocol less conservative than the ones already proposed in the literature.

The rest of this paper is organized as follows. Section 2 introduces some fundamental
concepts and lemmas necessary for theoretical development. Section 3 presents the main
results and discusses the most relevant details. Section 4 demonstrates the effectiveness
of the novel procedure with two numerical examples. Finally, Section 5 outlines the
main conclusions.

Standard notation is used in the sequel. The symbols Rn∗m, ‖ ∗ ‖ and ⊗ represent the
set of real matrices, the Euclidean norm of a vector or the derived two-norm of a matrix
and the Kronecker product, respectively. The symbol IN is an identity matrix, and diag{ * }
denotes the diagonal matrix. The expression A > 0(≥0) represents a symmetric positive
definite (semi-definite) matrix. The matrices AT and A−1 denote the transpose and inverse
of A, respectively.

2. Preliminaries and Problem Formulation

In this section, we introduce basic concepts of graph theory, definitions related to
fractional calculus, guaranteed cost function related to FOMASs and some useful lemmas.

2.1. Graph Theory

An undirected graph G is a tuple (V, E) in which V = {v1, v2, · · · , vN} denotes the set
of nodes, and E ⊆ V×V is the set of edges of G. Any edge connecting nodes vi and vj is rep-
resented by eij = (vi, vj) or eji = (vj, vi) since we have eij ∈ E⇔ eji ∈ E. For example, the
tuple (V, E) with V = {v1, v2, v3, v4} and E = {(v1, v2), (v2, v2), (v2, v3), (v1, v3), (v3, v4)},
represents an undirected graph with four nodes and five edges. The number of edges
associated with a node vi is called degree of the node, e.g., deg(v1) = 2 means that there are
2 edges associated with v1. The adjacency matrix of the graph is A = (aij)N×N , where aij de-
notes the weight of edge (i, j), the degree matrix corresponds to D = diag{d1, d2, · · · , dN}
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where the elements are defined by di = ∑
j

aij and the Laplacian of the weighted digraph G

is defined as L = D− A, with each element in L expressed as follows.

lij =

{− aij, i 6= j,

ΣN
j=1,j 6=iaij, i = j.

2.2. Useful Lemmas

Some useful lemmas are presented in the follow up.

Lemma 1. All eigenvalues of L̃ are greater than or equal to 0 if and only if the graph G is connected,
where the following is the case.

L̃ =




d2 + a12 a13 − a23 · · · a1N − a2N
a12 − a32 d3 + a13 · · · a1N − a3N

...
...

...
...

a12 − aN2 a13 − aN3 · · · dN + a1N


.

Proof. Let 1T
n−1 = [1, · · · , 1]︸ ︷︷ ︸

n−1

, 0N−1 = [0, · · · , 0]︸ ︷︷ ︸
n−1

and the following be the case:

Q =

[
1 0N−1

−1n−1 In−1

]
,

where In−1 is an identity matrix with dimension n− 1. Then, we have the following:

QLQ−1 =

[
0 a

0T
n−1 L̃

]
,

where a = [−a12, · · · ,−a1n]. Since all eigenvalues of matrix L are greater than or equal to
0 if and only if G is connected, then Lemma 1 holds.

Lemma 2. The Laplacian L of the undirected graph obeys the following [27]:

xT(t)Lx(t) =
1
2

N

∑
i=1

N

∑
j=1

aij(xi(t)− xj(t))T(xi(t)− xj(t)),

and L = LT ≥ 0.

Lemma 3. For given matrices Q = QT, H, M and R = RT with appropriate dimensions [28], the
following condition:

Q + HNM + MTNTHT < 0

is verified for N(t)NT(t) ≤ R if and only if there exists some λ > 0 such that the following is
the case.

Q + λHHT + λ−1MTRM < 0.
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Lemma 4. When x(t) ∈ Rn is a differentiable vector-value function, P = PT > 0 and ∀α ∈
(0, 1) [29]. We can obtain the following.

C
t0

Dα
t (xT(t)Px(t) ≤ (xT(t)P)C

t0
Dα

t x(t) + (C
t0

Dα
t x(t))TPx(t).

Lemma 5. For any real vectors with the same dimension x and y, the following inequality is
verified [30]:

2xTy ≤ εxTx + ε−1yTy,

where ε is a positive number.

2.3. Problem Statement

The i-th agent can be modeled as follows:

C
t0

Dα
t xi(t) = (A + ∆A)xi(t) + (Aτ + ∆Aτ)xi(t− τ) + f (xi(t)) + (B + ∆B)ui(t), i = 1, 2 · · ·N, (1)

where xi(t) = [xi1(t), xi2(t) · · · xin(t)]T, C
t0

Dα
t x(t) = 1

Γ(n−α)

∫ t
t0

xn(s)
(t−s)α−n+1 ds, and Γ(s) =

∫ ∞
0 ts−1e−tdt is the Gamma function. The variable ui(t) represents the control input and A,

and Aτ ∈ Rn×n and B ∈ Rn×m are known constant matrices. The symbols ∆A, ∆Aτ and
∆B represent uncertain matrices given by the following:

[
∆A ∆Aτ ∆B

]
= EH(t)

[
F1 F2 F3

]
,

where E, F1, F2 and F3 are known constant real matrices with appropriate dimensions,
and H(t) is the unknown time-varying matrix satisfying H(t)HT(t) ≤ I. Moreover, f :
Rn → Rn is a continuous function that satisfies the Lipschitz condition. There is a positive
constant l such that the following is the case.

‖ f (x)− f (y)‖ ≤ l‖x− y‖, ∀x, y ∈ Rn.

Remark 1. If f (xi(t))= 0, then the model of the i-th agent can be expressed as follows.

C
t0

Dα
t xi(t) = (A + ∆A)xi(t) + (Aτ + ∆Aτ)xi(t− τ) + (B + ∆B)ui(t), i = 1, 2 · · ·N. (2)

The control protocol will be designed as follows:

ui(t) = −K

(
∑

j∈Ni

(aij(xi(t− τ)− xj(t− τ))

)
. (3)

where K is feedback control gain.

Definition 1. The consensus of MASs without a leader can be achieved if and only if the following
is the case [30].

lim
t→∞
‖xi(t)− x1(t)‖ = 0.

Let ei(t) = xi(t)− x1(t). By Definition 1, if limt→∞ ‖ei(t)‖ = 0, then consensus for
system (1) can be achieved. It follows from system (1) and (2) that the following error
systems can be obtained.

197



Fractal Fract. 2021, 5, 141

C
t0

Dα
t ei(t) = (A + ∆A)ei(t) + (Aτ + ∆Aτ)ei(t− τ) + (B + ∆B)ui(t)− (B + ∆B)u1(t)

+ f (xi(t))− f (x1(t)), (4)
C
t0

Dα
t ei(t) = (A + ∆A)ei(t) + (Aτ + ∆Aτ)ei(t− τ) + (B + ∆B)ui(t)− (B + ∆B)u1(t). (5)

Definition 2. The guaranteed cost function associated with FOMASs (0 ≤ α ≤ 1) is defined
as follows:

J =
1

Γ(α)

∫ t

0
(t− s)α−1(Jx(s) + Ju(s))ds, (6)

where

Jx(t) =
N

∑
i=1

N

∑
j=1

aij(xi(t)− xj(t))TQ1(xi(t)− xj(t)),

Ju(t) =
N

∑
i=1

uT
i (t)Q2ui(t),

with Q1 and Q2 representing two given symmetric positive matrices.

Remark 2. In (6), Jx(t) and Ju(t) represent the consensus error performance and the control
energy consumption for the FOMASs. Reference [31] addressed the guaranteed cost of control for a
single system. The works [23–26,32,33] proposed a guaranteed cost function related to MASs, but
that cannot be applied to the guaranteed cost consensus of FOMASs. Therefore, the definition of the
guaranteed cost function (6) related to FOMASs is given.

3. Main Results

In this section, a delay-dependent sufficient condition for the guaranteed cost consen-
sus protocol is established in terms of LMI, and its guaranteed cost is derived.

Theorem 1. For given positive definite symmetric matrices Q1 and Q2, if there exist a symmetric
positive definite matrix P̄, a matrix Y and the constant positive scalars λ such that the following is
the case:

∆ =




∆11 ∆12 ∆13 ∆14 ∆15 ∆16 ∆17 ∆18 0
∗ ∆22 ∆23 ∆24 0 0 0 0 ∆29
∗ ∗ ∆33 0 ∆35 0 0 0 0
∗ ∗ ∗ ∆44 0 0 0 0 0
∗ ∗ ∗ ∗ ∆55 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∆66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∆77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∆88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∆99




< 0, (7)
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where

∆11 = IN−1 ⊗ (P̄AT + AP̄ + P̄ + I),

∆12 = IN−1 ⊗ Aτ P̄− L̃⊗ BY,

∆13 = ταα−1 IN−1 ⊗ P̄AT, ∆14 = IN−1 ⊗ P̄FT
1 ,

∆15 = IN−1 ⊗ λE, ∆16 = IN−1 ⊗ l2P̄,

∆17 = IN−1 ⊗ ταα−1P̄, ∆18 = 2λmax(L)IN−1 ⊗ P̄Q1,

∆22 = −IN−1 ⊗ P̄,

∆23 = ταα−1(IN−1 ⊗ P̄AT
τ − L̃T ⊗YTBT),

∆24 = IN−1 ⊗ P̄FT
2 − L̃T ⊗YTFT

3 ,

∆29 = λ2
max(L)IN−1 ⊗YTQ2,

∆33 = Ω77 = −IN−1 ⊗ ταα−1 I, Ω35 = ταα−1 IN−1 ⊗ λE,

∆44 = Ω55 = −IN−1 ⊗ λI, ∆66 = −IN−1 ⊗ l2 I,

∆88 = −2λmax(L)IN−1 ⊗Q1,

∆99 = −λ2
max(L)IN−1 ⊗Q2,

then the consensus of the FOMASs (1) with control protocol (3) is achieved. Moreover, the feedback
gain K is given by the following:

K = YP̄−1,

and the guaranteed cost defined as follows.

J∗ = λmax(IN−1 ⊗ P)‖e(0)‖2.

Proof. According to (3) and (5), one obtains the following:

C
t0

Dα
t ei(t) = (A + ∆A)ei(t) + (Aτ + ∆Aτ)ei(t− τ)− (B + ∆B)K( ∑

j∈Ni

(aij(xi(t− τ)− xj(t− τ))

+ (B + ∆B)K( ∑
j∈Ni

(a1j(x1(t− τ)− xj(t− τ))) + f (xi(t))− f (x1(t)),

which can be written as follows:

C
t0

Dα
t e(t) = IN−1 ⊗ (A + ∆A)e(t) + IN−1 ⊗ (Aτ + ∆Aτ)e(t− τ)

−L̃⊗ (BK + ∆BK)e(t− τ) + F(x(t)),

where e(t) = [eT
2 (t), · · · , eT

n (t)]T , e(t − τ) = [eT
2 (t − τ), · · · , eT

n ((t − τ)]T and F(x(t)) =
[( f (x2(t))− f (x1(t)))T , ( f (x3(t))− f (x1(t)))T , · · · , ( f (xN(t))− f (x1(t)))T ]T .

From the definition of guaranteed cost function, the following is the case:

ēT(t)(2L⊗Q1)ē(t) + ēT(t− τ)(LTL⊗ KTQ2K)ē(t− τ)

≤ eT(t)(2λmax(L)IN−1 ⊗Q1)e(t) + eT(t− τ)(λ2
max(L)IN−1 ⊗ KTQ2K)e(t− τ),

where ē(t) = [eT
1 (t), · · · , eT

n (t)]T and ē(t− τ) = [eT
1 (t− τ), · · · , eT

n ((t− τ)]T .
Let us select a Lyapunov function.

V(t) = eT(t)(IN−1 ⊗ P)e(t).
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Taking the α-order derivative and using Lemma 4 results in the following.

C
t0

Dα
t V(t) + eT(t)(2L⊗Q1)e(t) + eT(t)(LTL⊗ KTQ2K)e(t)

≤ eT(t)(IN−1 ⊗ P)C
t0

Dα
t e(t) + (C

t0
Dα

t e(t))T(IN−1 ⊗ P)e(t)

+ eT(t)(2L⊗Q1)e(t) + eT(t− τ)(L̃T L̃⊗ KTQ2K)e(t− τ)

≤ eT(t)(IN−1 ⊗ (ATP + PA + ∆ATP + P∆A))e(t)

+ eT(t− τ)(IN−1 ⊗ (AT
τ P + ∆AT

τ P) (8)

− L̃T ⊗ (KTBTP + KT∆BTP))e(t) + eT(t)(IN−1 ⊗ (PAτ + P∆Aτ)

− L̃⊗ (PBK + P∆BK))e(t− τ) + eT(t)(2λmax(L)IN−1 ⊗Q1)e(t)

+ eT(t− τ)(λ2
max(L)IN−1 ⊗ KTQ2K)e(t− τ) + eT(t)(IN−1 ⊗ P)F(x(t))

+ FT(x(t))(IN−1 ⊗ P)e(t).

It follows from Lemma 5 that there exist two positive constants ε and ε such that the
following is the case.

eT(t)(IN−1 ⊗ P)F(x(t)) + FT(x(t))(IN ⊗ P)e(t)

≤ eT(t)
(

1
2
(ε−1 + ε)l2 IN−1 ⊗ I

+
1
2
(ε + ε−1)IN−1 ⊗ P2

)
e(t).

For the analysis, let us consider ε = ε = 1. Then, one obtains the following:

eT(t)(IN−1 ⊗ P)F(x(t)) + FT(x(t))(IN ⊗ P)e(t)

≤ eT(t)(IN−1 ⊗ l2 I + IN−1 ⊗ P2)e(t). (9)

while −τ ≤ θ ≤ 0, e(t) satisfies the following.

V(t + θ, e(t + θ)) < µV(t, e(t))

When µ > 1, one can obtain the following.

µeT(t)(IN−1 ⊗ P)e(t)− eT(t− τ)(IN−1 ⊗ P)e(t− τ) ≥ 0. (10)

Combining (8) with (10) yields the following.

C
t0

Dα
t V(t) + eT(t)(2λmax(L)IN−1 ⊗Q1)e(t) + eT(t− τ)(λ2

max(L)IN−1 ⊗ KTQ2K)e(t− τ)

≤ eT(t)(IN−1 ⊗ (ATP + PA + ∆ATP + P∆A + l2 I

+ P2 + µP + 2λmax(L)Q1))e(t) + eT(t− τ)(IN−1 ⊗ (AT
τ P + ∆AT

τ P)

− L̃T ⊗ (KTBTP + KT∆BTP))e(t) + eT(t)(IN−1 ⊗ (PAτ + P∆Aτ) (11)

− L̃⊗ (PBK + P∆BK))e(t− τ)

− eT(t− τ)(IN−1 ⊗ P + λ2
max(L)KTQ2K)e(t− τ).

Moreover, for symmetric real matrices X = XT, Z = ZT and matrix W, we have the
following.

Ω =

[
X W

WT Z

]
≥ 0.

Then, the following inequality holds:

ταα−1ζT(t)Ωζ(t)−
∫ t

t−τ(t)
(t− s)α−1ζT(t)Ωζ(t)ds ≥ 0, (12)
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where ζ(t) = [eT(t), (C
t0

Dα
t V(t))T]T. Let X = Z = IN−1 ⊗ In, W = 0(N−1)n for simplicity.

According to (11) and (12), one obtains the following:

C
t0

Dα
t V(t) + eT(t)(2λmax(L)IN−1 ⊗Q1)e(t) + eT(t− τ)(λ2

max(L)IN−1 ⊗ KTQ2K)e(t− τ)

≤ eT(t)(IN−1 ⊗ (ATP + PA + ∆ATP + P∆A + l2 I

+ P2 + µP + 2λmax(L)Q1))e(t) + eT(t− τ)(IN−1 ⊗ (AT
τ P + ∆AT

τ P)

− L̃T ⊗ (KTBTP + KT∆BTP))e(t) + eT(t)(IN−1 ⊗ (PAτ + P∆Aτ)

− L̃⊗ (PBK + P∆BK))e(t− τ)

− eT(t− τ)(IN−1 ⊗ P + λ2
max(L)KTQ2K)e(t− τ)

+ ταα−1ζT(t)Ωζ(t)−
∫ t

t−τ(t)
(t− s)α−1ζT(t)Ωζ(t)ds

= ηT(t)Θη(t)−
∫ t

t−τ(t)
(t− s)α−1ζT(t)Ωζ(t)ds,

where η(t) = [eT(t), eT(t− τ)]T and

Θ =

[
Θ11 Θ12
∗ Θ22

]
,

with the following.

Θ11 = IN−1 ⊗ (ATP + PA + ∆ATP + P∆A + µP + l2 I

+ P2 + ταα−1 I + 2λmax(L)Q1) + ταα−1(IN−1 ⊗ (AT

+ ∆AT))(IN−1 ⊗ (A + ∆A)),

Θ12 = IN−1 ⊗ (PAτ + P∆Aτ)− L̃⊗ (PBK + P∆BK))

+ ταα−1(IN−1 ⊗ (AT + ∆AT))(IN−1 ⊗ (Aτ + ∆Aτ)− L̃⊗ (BK + ∆BK)),

Θ22 = −IN−1 ⊗ P + λ2
max(L)IN−1 ⊗ KTQ2K + ταα−1(IN−1 ⊗ (AT

τ

+ ∆AT
τ)− L̃T ⊗ (KTBT + KT∆BT))(IN−1 ⊗ (Aτ + ∆Aτ)− L̃⊗ (BK + ∆BK)).

It is straightforward to verify that Θ ≤ 0 can be written as follows.

Θ =

[
Υ11 Υ12
∗ Υ22

]
−
[

Υ13
Υ23

]
Υ−1

33
[

Υ31 Υ32
]
< 0.

By employing the Schur Complement, we can obtain the following:




Υ11 Υ12 Υ13
∗ Υ22 Υ23
∗ ∗ Υ33


 < 0, (13)

where

Υ11 = IN−1 ⊗ (ATP + PA + ∆ATP + P∆A + µP + l2 I

+ P2 + ταα−1 I + 2λmax(L)Q1)

Υ12 = IN−1 ⊗ (PAτ + P∆Aτ)− L̃⊗ (PBK + P∆BK),

Υ22 = −IN−1 ⊗ P + λ2
max(L)KTQ2K, Υ13 = ταα−1 IN−1 ⊗ (AT + ∆AT)

Υ23 = ταα−1(IN−1 ⊗ (AT
τ + ∆AT

τ)− L̃⊗ (KTBT + KT∆BT)),

Υ33 = −IN−1 ⊗ ταα−1 I.
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Then, Expression (13) can be rewritten as follows:




Σ11 Σ12 ταα−1 IN−1 ⊗ AT

∗ −IN−1 ⊗ P + λ2
max(L)KTQ2K Σ23

∗ ∗ −IN−1 ⊗ ταα−1 I




+




IN−1 ⊗ PE
0

ταα−1 IN−1 ⊗ E


H(t)

[
IN−1 ⊗ F1 IN−1 ⊗ F2 − L̃⊗ F3K 0

]

+




IN−1 ⊗ FT
1

IN−1 ⊗ FT
2 − L̃T ⊗ KTFT

3
0


HT(t)

[
IN−1 ⊗ ETP 0 ταα−1 IN−1 ⊗ ET ]

< 0,

where

Σ11 = IN−1 ⊗ (ATP + PA + µP + ταα−1 I + 2λmax(L)Q1

+ l2 I + P2),

Σ12 = IN−1 ⊗ PAτ − L̃⊗ PBK,

Σ23 = ταα−1(IN−1 ⊗ AT
τ − L̃⊗ KTBT),

which is equivalent to the following inequality

Π =




Π11 Π12 Π13 IN ⊗ FT
1 IN ⊗ λPE

∗ Π22 Π23 IN ⊗ FT
2 − LT ⊗ KTFT

3 0
∗ ∗ Π33 0 Π35
∗ ∗ ∗ −IN−1 ⊗ λI 0
∗ ∗ ∗ ∗ −IN−1 ⊗ λI



< 0, (14)

where

Π11 = IN−1 ⊗ (ATP + PA + µP + ταα−1 I + 2λmax(L)Q1 + l2 I + P2)

Π12 = IN−1 ⊗ PAτ − L̃⊗ PBK,

Π13 = ταα−1 IN−1 ⊗ AT, Π22 = −IN−1 ⊗ P + λ2
max(L)KTQ2K,

Π23 = ταα−1(IN−1 ⊗ AT
τ − L̃T ⊗ KTBT),

Π33 = −ταα−1 IN−1 ⊗ I, Π35 = ταα−1 IN−1 ⊗ λE.

Usingt the Schur complement theorem once again yields the following:



Ω11 Ω12 Ω13 Ω14 Ω15 Ω16 Ω17 Ω18 0
∗ Ω22 Ω23 Ω24 0 0 0 0 Ω29
∗ ∗ Ω33 0 Ω35 0 0 0 0
∗ ∗ ∗ Ω44 0 0 0 0 0
∗ ∗ ∗ ∗ Ω55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ω66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ω77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω99




< 0,
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where the following is the case.

Ω11 = IN−1 ⊗ (ATP + PA + µP + ταα−1 I + 2λmax(L)Q1 + l2 I + P2),

Ω12 = IN−1 ⊗ PAτ − L̃⊗ PBK,

Ω13 = ταα−1 IN−1 ⊗ AT, Ω14 = IN−1 ⊗ FT
1 ,

Ω15 = IN−1 ⊗ λPE, Ω16 = IN−1 ⊗ l2 I,

Ω17 = IN−1 ⊗ ταα−1 I, Ω18 = 2λmax(L)IN−1 ⊗Q1,

Ω22 = −IN−1 ⊗ P, Ω23 = ταα−1(IN−1 ⊗ AT
τ − L̃T ⊗ KTBT),

Ω24 = IN−1 ⊗ FT
2 − L̃T ⊗ KTFT

3 ,

Ω29 = λ2
max(H)IN−1 ⊗ KTQ2,

Ω33 = Ω77 = −IN−1 ⊗ ταα−1 I, Ω35 = ταα−1 IN−1 ⊗ λE,

Ω44 = Ω55 = −IN−1 ⊗ λI, Ω66 = −IN−1 ⊗ l2 I,

Ω88 = −2λmax(L)IN−1 ⊗Q1,

Ω99 = −λ2
max(L)IN−1 ⊗Q2.

By multiplying both sides of the previous equation by the diagonal matrix {IN−1 ⊗
P−1, IN−1 ⊗ P−1, IN−1 ⊗ I, IN−1 ⊗ I, IN−1 ⊗ I, IN−1 ⊗ I, IN−1 ⊗ I, IN−1 ⊗ I, IN−1 ⊗ I},
we yield the following:

Ξ =




Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 Ξ16 Ξ17 Ξ18 0
∗ Ξ22 Ξ23 Ξ24 0 0 0 0 Ξ29
∗ ∗ Ξ33 0 Ξ35 0 0 0 0
∗ ∗ ∗ Ξ44 0 0 0 0 0
∗ ∗ ∗ ∗ Ξ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99




< 0, (15)

where the following is the case.

Ξ11 = IN−1 ⊗ (P−1 AT + AP−1 + µP−1 + I),

Ξ12 = IN−1 ⊗ Aτ P−1 − L̃⊗ BKP−1,

Ξ13 = ταα−1 IN−1 ⊗ P−1 AT, Ξ14 = IN−1 ⊗ P−1FT
1 ,

Ξ15 = IN−1 ⊗ λE, Ξ16 = IN−1 ⊗ l2P−1,

Ξ17 = IN−1 ⊗ ταα−1P−1, Ξ18 = 2λmax(L)IN−1 ⊗ P−1Q1,

Ξ22 = −IN−1 ⊗ P−1,

Ξ23 = ταα−1(IN−1 ⊗ P−1 AT
τ − L̃T ⊗ P−1KTBT),

Ξ24 = IN−1 ⊗ P−1FT
2 − L̃T ⊗ P−1KTFT

3 ,

Ξ29 = λ2
max(L)IN−1 ⊗ P−1KTQ2,

Ξ33 = Ω77 = −IN−1 ⊗ ταα−1 I, Ω35 = ταα−1 IN−1 ⊗ λE,

Ξ44 = Ω55 = −IN−1 ⊗ λI, Ξ66 = −IN−1 ⊗ l2 I,

Ξ88 = −2λmax(L)IN ⊗Q1,

Ξ99 = −λ2
max(L)IN ⊗Q2.
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Let P̄ = P−1, Y = KP−1 and µ→ 1. Then, Expression (15) can be described as (7), and
one can obtain the following.

C
t0

Dα
t V(t) ≤ ηT(t)∆η(t)− eT(t)(2λmax(L)IN−1 ⊗Q1)e(t)

− eT(t)(λ2
max(L)IN−1 ⊗ KTQ2K)e(t)

−
∫ t

t−τ(t)
(t− s)α−1ζT(t)Ωζ(t)ds < 0. (16)

It follows from the Razumikhin theorem [34] that the error system (3) is asymptotically
stable. According to Definition 1, the consensus of the original system (1) can be achieved.
Furthermore, from Definition 2, the upper bound of the guaranteed cost function can be
found as follows.

J(t) =
1

Γ(1− α)

∫ t

0
(t− s)α(eT(s)(2L⊗Q1)e(s)

+ eT(s− τ)(LTL⊗ KTQ2K)e(s− τ))ds.

From (16), we obtain the following.

C
t0

Dα
t V(t) ≤ −2λmax(L)eT(t)(IN ⊗Q1)e(t)− λmax(L)2eT(t− τ)(IN ⊗ KTQ2K)e(t− τ)

≤ −ēT(t)(2L⊗Q1) ¯e(t)− ēT(t− τ)(LTL⊗ KTQ2K)ē(t− τ). (17)

By applying integration of order α on both sides of (17) and considering V(t) > 0,
one obtains the following.

J ≤ V(0)−V(t) ≤ V(0) = e(0)T(IN−1 ⊗ P)e(0)

≤ λmax(IN−1 ⊗ P)‖e(0)‖2 = J∗.

This ends the proof.

Remark 3. It can be noted that the consensus condition obtained in this paper is delay-and order-
dependent for FOMAS. It is obvious that the consensus conditions proposed in [12,14–19,22,35] do
not apply herein.

Remark 4. The stability of the MASs including FOMASs is the primary requirement for designing
a control protocol. Moreover, it is also desirable that the control system can not only preserve stability
but also guarantee an adequate level of performance. Since each agent may only have limited energy
supplies to carry out some tasks, such as perception, communication, and movement, energy
consumption is a real problem that should be considered critically. The guaranteed cost control
method has been proved capable of meeting both requirements.

Remark 5. Both MASs and FOMASs are usually implemented by large-scale integrated circuits.
Thus, signal propagation inevitably introduces time delays, which can result in oscillation, chaos and
even instability phenomena. References [12,13,18,36,37] investigated the consensus of FOMASs
considering merely input delays, that is, without addressing state delays. Herein, we consider both
state-delays and input-delays.

Remark 6. When f (xi(t)) = 0, the following corollary of Theorem 1 can be obtained.
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Corollary 1. For known positive definite symmetric matrices Q1 and Q2, if there exist a symmetric
positive definite matrix P̄, a matrix Y and constant positive scalars λ such that the following is
the case:

∆ =




∆11 ∆12 ∆13 ∆14 ∆15 ∆16 ∆17 0
∗ ∆22 ∆23 ∆24 0 0 0 ∆28
∗ ∗ ∆33 0 ∆35 0 0 0
∗ ∗ ∗ ∆44 0 0 0 0
∗ ∗ ∗ ∗ ∆55 0 0 0
∗ ∗ ∗ ∗ ∗ ∆66 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∆77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∆88




< 0, (18)

where

∆11 = IN−1 ⊗ (P̄AT + AP̄ + µP̄),

∆12 = IN−1 ⊗ Aτ P̄− L̃⊗ BY,

∆13 = ταα−1 IN−1 ⊗ P̄AT, ∆14 = IN−1 ⊗ P̄FT
1 ,

∆15 = IN−1 ⊗ λE, ∆16 = IN−1 ⊗ ταα−1P̄,

∆17 = 2λmax(L)IN−1 ⊗ P̄Q1, ∆22 = −IN−1 ⊗ P̄,

∆23 = ταα−1(IN−1 ⊗ P̄AT
τ − L̃T ⊗YTBT),

∆24 = IN−1 ⊗ P̄FT
2 − L̃T ⊗YTFT

3 , ∆28 = λ2
max(L)IN−1 ⊗YTQ2,

∆33 = Ω66 = −IN−1 ⊗ ταα−1 I, Ω35 = ταα−1 IN−1 ⊗ λE,

∆44 = Ω55 = −IN−1 ⊗ λI, ∆77 = −2λmax(L)IN−1 ⊗Q1,

∆88 = −λ2
max(L)IN−1 ⊗Q2,

then the consensus of the FOMASs (2) with control protocol (3) is achieved. Moreover, the feedback
gain K is given by the following:

K = YP̄−1,

and the guaranteed cost is stated as follows.

J∗ = λmax(IN−1 ⊗ P)‖e(0)‖2.

Proof. The proof is similar to that of Theorem 1, so we omit it herein.

4. Numerical Simulations

In this section two examples are presented to verify the applicability and effectiveness
of the scheme proposed.

Example 1. Consider the undirected graph topology depicted in Figure 1. The matrices L and L̃
are given by the following:

L =




1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2


, L̃ =




4 −1 −1
0 2 −1
0 −1 2



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and the parameters of each multi-agent are stated as follows.

A =

[ −3 −2
1 −4

]
, Aτ =

[
0.2 0.1
−0.1 0

]
, B =

[
0.2
−0.2

]
,

E1 =

[
0.1
0.1

]
, F1 =

[
0.2 −0.3

]
, F2 =

[
−0.1 0.2

]
,

α = 0.9, τ = 0.1, F3 = −0.1, f (x(t)) = sin(x(t)).

It follows from Theorem 1 that the matrix P̄, constant λ and gain matrix K can be obtained as
the following.

P̄ =

[
0.4441 −0.0221
−0.0221 0.3075

]
, λ = 1.1251,

K = YP̄−1 =
[

0.0556 0.0003
]
.

Let us choose h(t) = cos(t) and the initial states x1(0) = [1, 2]T , x2(0) = [3, 0]T ,
x3(0) = [5, 1]T and x4(0) = [4, 4]T . For different orders α, we also carried out the simulations and
gave the corresponding error trajectories of this system. When order α = 0.9, 0.8, 0.7, we show the
consensus errors versus time of the agents in Figures 2–7, respectively. From the numerical results,
we verify that e1i(t) and e2i(t) tend fast to 0, which means that the guaranteed cost consensus of the
system (1) can be achieved. The upper bound of the guaranteed cost function J∗ = 17.0088(α = 0.9)
can be obtained. Moreover, by denoting ‖e(t)‖ =

√
∑n

i e2
ij(t)(j = 1, 2, · · · , n), we also carried out

the curve of ‖e(t)‖. From Figure 8, we could note that the order influence on consensus property with
varying orders. With the higher orders, the system consensus’s error will be achieved more rapidly.

Figure 1. Topology of the system in Example 1.
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Figure 2. Error response ei1(t) of the system in Example 1 with α = 0.9.
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Figure 3. Error response ei2(t) of the system in Example 1 with α = 0.9.
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Figure 4. Error response ei1(t) of the system in Example 1 with α = 0.8.
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Figure 5. Error response ei2(t) of the system in Example 1 with α = 0.8.
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Figure 6. Error response ei1(t) of the system in Example 1 with α = 0.7.

0 1 2 3 4 5 6

time(s)

-4

-3

-2

-1

0

1

2

3

4

e
rr

o
rs

 e
1
2
(t

),
e 2

2
(t

),
e 3

2
(t

)

e
12

(t)

e
22

(t)

e
32

(t)

Figure 7. Error response ei2(t) of the system in Example 1 with α = 0.7.
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Figure 8. Error response ‖e(t)‖ of the system in Example 1.

Example 2. Consider the undirected graph represented in Figure 9. The matrices L and L̃ are
the following:

L =




3 −1 −1 −1 0 0 0 0 0 0
−1 3 −1 0 0 0 −1 0 0 0
−1 −1 5 −1 0 −1 0 −1 0 0
−1 0 −1 3 −1 0 0 0 0 0
0 0 0 −1 3 −1 0 0 0 −1
0 0 −1 0 −1 4 0 0 −1 −1
0 −1 0 0 0 0 2 −1 0 0
0 0 −1 0 0 0 −1 3 −1 0
0 0 0 0 0 −1 0 −1 3 −1
0 0 0 0 −1 −1 0 0 −1 3




,

L̃ =




2 −1 0 0 0 1 0 0 0
0 4 1 0 1 0 1 0 0
0 0 2 1 0 0 0 0 0
−1 −1 0 3 1 0 0 0 1
−1 0 −1 1 4 0 0 1 1
0 −1 −1 0 0 2 1 0 0
−1 0 −1 0 0 1 3 1 0
−1 −1 −1 0 1 0 1 3 1
−1 −1 −1 1 1 0 0 1 3




and the parameters of every agent are given by the following.

A =

[ −7 −5
−1 −6

]
, Aτ =

[
0.1 0.3
−0.2 0.1

]
, B =

[
0.1
−0.4

]
,

E1 =

[
0.4
0.1

]
, F1 =

[
0.1 −0.2

]
, F2 =

[
0.3 −0.1

]
,

α = 0.8, τ = 0.1, F3 = −0.4.

From Corollary 1, the matrix P̄, constant λ and gain matrix K can be obtained as follows.

P̄ =

[
0.1318 0.0187
0.0187 0.0284

]
, λ = 0.8642
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K = YP̄−1 =
[

0.0918 0.0062
]
.

Let us select h(t) = sin(t) and the initial states x1(0) = [1, 0]T , x2(0) = [2, 2]T ,
x3(0) = [5,−1]T and x4(0) = [−3,−2]T . Similar with Example 1, we also carried out consensus
error curve of system with different order. The simulation results are shown in the Figures 10–15,
respectively. From these numerical results, we verify that e1i(t) and e2i(t) approach 0 very fast,
meaning that the guaranteed cost consensus of the system (2) is obtained. Additionally, the upper
bound of the guaranteed cost function is J∗ = 0.5502(α = 0.8). By plotting the curve of ‖e(t)‖
shown in Figure 16, one can note that the system will achieve consensus more rapidly when the
order increases.

9�

9� 9�

9� 9�

9� 9��

9�9�9�

Figure 9. Topology of the system in Example 2.
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Figure 10. Error response ei1(t) of the system in Example 2 with α = 0.8.
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Figure 11. Error response ei2(t) of the system in Example 2 with α = 0.8.
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Figure 12. Error response ei1(t) of the system in Example 2 with α = 0.9.
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Figure 13. Error response ei2(t) of the system in Example 2 with α = 0.9.
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Figure 14. Error response ei1(t) of the system in Example 2 with α = 0.7.
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Figure 15. Error response ei2(t) of the system in Example 2 with α = 0.7.
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Figure 16. Error response ‖e(t)‖ of the system in Example 2.

5. Conclusions

The guaranteed cost consensus of uncertain delayed FOMASs with input delay was
addressed in this paper. A guaranteed cost function related to FOMASs was proposed in
order to consider the consensus regulation performance and the energy consumption si-
multaneously. By employing the FO Razumikhin theorem and the LMI approach, sufficient
conditions on guaranteed cost and upper bounds for the guaranteed cost function were
obtained. The proposed approach is order-dependent and delay-dependent, which results
in less conservative conditions than those presented in alternative methods. It should be
mentioned that taking the state and input delay as identical is unreasonable in real-world
applications. However, since stability results for fractional-order systems with multiple
time delays are unavailable, we considered this simplified case. Therefore, further work is
needed to solve this problem. In addition, we will consider the guaranteed cost consensus
of uncertain delayed FOMASs with order lying in (1,2) in our next work.
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Abstract: In this paper, we introduce a numerical solution for the time-fractional inverse heat
equations. We focus on obtaining the unknown source term along with the unknown temperature
function based on an additional condition given in an integral form. The proposed scheme is based
on a spectral collocation approach to obtain the two independent variables. Our approach is accurate,
efficient, and feasible for the model problem under consideration. The proposed Jacobi spectral
collocation method yields an exponential rate of convergence with a relatively small number of
degrees of freedom. Finally, a series of numerical examples are provided to demonstrate the efficiency
and flexibility of the numerical scheme.

Keywords: inverse problem; spectral collocation method; fractional diffusion; fractional calculus

MSC: 35R30; 65M70; 35R11

1. Introduction

The concept of fractional derivatives has become one of the key aspects of applied
mathematics because it is more suitable for modelling many real-world problems than the
local derivative. As a result, the fractional derivative has received considerable attention
and development in a wide range of fields [1–5]. Fractional derivatives are defined in a
variety of ways in the mathematical literature, including Riemann–Liouville and Caputo
fractional derivatives. Hence, fractional differential equations have attracted the attention
of researchers in recent years. The main reason for this is that they are commonly used
in chemistry [6], mathematical biology systems [7], electrical engineering [8], systems
identification, control theory [9], signal processing, mechanical engineering [10–12], finance
and fractional dynamics and so on.

Direct fractional-order diffusion equations have been extensively discussed in the
literature; see [13–15]. Often, for many practical studies, there is an unknown parameter
that is found in the initial or boundary data or the source term that requires an additional
measurement. The inverse fractional-order case introduces an appropriate instrument for
describing anomalous diffusion phenomena appeared in chemical [16], biological [17,18],
hydrological [19], physical [20,21] and engineering [22,23] fields. In contrast to those
classical problems, the studies of inverse problems have not satisfactorily been studied.
The mathematical problem of studying inverse problems with non-Fourier heat-conduction
constitutive models is extremely novel. The goal of inverse problems for heat-conduction
process is to set unknown ingredients of the conduction system from some measurement
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data, which is of major importance in the applied area. Hung and Lin [24] solved the
hyperbolic inverse heat-conduction problem. Yang [25] solved the two-dimensional inverse
hyperbolic heat problem by modified Newton–Raphson method. Tang and Araki [26]
estimated thermal diffusivity and the relaxation parameters for solving the inverse heat
equation. Wang and Liu [27] used the total variation regularization method for solving
backward time-fractional diffusion problem. Zhang and Xu [28] solved the inverse source
problem of the fractional diffusion equation.

Spectral methods are powerful tools for solving different types of differential and inte-
gral equations that arise in various fields of science and engineering. In recent decades, they
have been adopted in a variety of notable areas [29–38]. In the numerical solutions of frac-
tional differential equations, a variety of spectral methods have recently been used [39,40].
Their major advantages are exponential convergence rates, high accuracy level, and low
computational costs. The spectral methods are distinguished over finite difference, finite
element, and finite volume in their global, high-accuracy numerical results and have appli-
cability to most problems with integer or fractional orders; see [36,41–43]. Because explicit
analytical solutions of space and/or time-fractional differential equations are difficult to
obtain in most cases, developing efficient numerical schemes is a very important demand.
In various applications, many efficient numerical techniques have been introduced to treat
various problems. Presently there is a wide and constantly increasing range of spectral
methods and there has been significant growth in fractional differential and integral equa-
tions [44] due to their high-order accuracy. Compared to the effort put into analyzing finite
difference schemes in the literature for solving fractional-order differential equations, only
a little research has been made in developing and analyzing global spectral schemes.

Our main aim in this paper is to provide shifted Jacobi Gauss–Lobatto and shifted
Jacobi Gauss–Radau collection schemes for solving fractional inverse heat equations (IHEs).
The unknown solution is approximated using the shifted Jacobi polynomials as a truncated
series. The collocation technique is provided along with appropriate treatment for address-
ing the extra condition. This procedure allows us to exclude the unknown function Q(τ)
from the equation under consideration. As a result, this problem is reduced to a system
of algebraic equations by employing the spectral collocation approach. Finally, in terms
of shifted Jacobi polynomials, we can extend the unknown functions U (ξ, τ) and Q(τ).
To the best of our knowledge, there are no numerical results on the spectral collocation
method for treating the IHEs.

This paper is organized as follows. We introduce some mathematical preliminaries
in Section 2. In Section 3.2, we construct the numerical scheme to solve the fractional
IHEs with initial-boundary conditions and nonlocal conditions. In Section 4, we solve and
analyze some examples to illustrate the efficiency and accuracy of the method. In Section 5,
we provide the main conclusions.

2. Preliminaries and Notations

This section introduces some properties of the shifted Jacobi polynomials. The Jacobi
polynomials are defined as follows:

G(σ1,$1)
k+1 (y) = (a(σ1,$1)

k y− b(σ1,$1)
k )G(σ1,$1)

k (y)− c(σ1,$1)
k G(σ1,$1)

k−1 (y), k ≥ 1,

G(σ1,$1)
0 (y) = 1, G(σ1,$1)

1 (y) =
1
2
(σ1 + $1 + 2)y +

1
2
(σ1 − $1),

G(σ1,$1)
k (−y) = (−1)kG(σ1,$1)

k (y), G(σ1,$1)
k (−1) =

(−1)kΓ(k + $1 + 1)
k!Γ($1 + 1)

, (1)
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where σ1, $1 > −1, y ∈ (−1, 1) and

a(σ1,$1)
k =

(2k + σ1 + $1 + 1)(2k + σ1 + $1 + 2)
2(k + 1)(k + σ1 + $1 + 1)

,

b(σ1,$1)
k =

($2
1 − σ2

1 )(2k + σ1 + $1 + 1)
2(k + 1)(k + σ1 + $1 + 1)(2k + σ1 + $1)

,

c(σ1,$1)
k =

(k + σ1)(k + $1)(2k + σ1 + $1 + 2)
(k + 1)(k + σ1 + $1 + 1)(2k + σ1 + $1)

.

The nth-order derivative (n is an integer) of G(σ1,$1)
j (y) can also be obtained from

DnG(σ1,$1)
j (y) =

Γ(j + σ1 + $1 + q + 1)
2nΓ(j + σ1 + $1 + 1)

G(σ1+n,$1+n)
j−n (y). (2)

The analytic form of the shifted Jacobi polynomial G(σ1,$1)
L,k (y) = G(σ1,$1)

k ( 2y
L − 1), L > 0,

is written as

G(σ1,$1)
L,k (y) =

k

∑
j=0

(−1)k−j Γ(k + $1 + 1)Γ(j + k + σ1 + $1 + 1)
Γ(j + $1 + 1)Γ(k + σ1 + $1 + 1)(k− j)!j!Lj yj

=
k

∑
j=0

Γ(k + σ1 + 1)Γ(k + j + σ1 + $1 + 1)
j!(k− j)!Γ(j + σ1 + 1)Γ(k + σ1 + $1 + 1)Lj (y− L)j.

(3)

As a result, for any integer n, we can derive the following properties

G(σ1,$1)
L,k (0) = (−1)k Γ(k + $1 + 1)

Γ($1 + 1) k!
,

G(σ1,$1)
L,k (L) =

Γ(k + σ1 + 1)
Γ(σ1 + 1) k!

,
(4)

DnG(σ1,$1)
L,k (0) =

(−1)k−nΓ(k + $1 + 1)(k + σ1 + $1 + 1)n

LnΓ(k− n + 1)Γ(n + $1 + 1)
, (5)

DnG(σ1,$1)
L,k (L) =

Γ(k + σ1 + 1)(k + σ1 + $1 + 1)n

LnΓ(k− n + 1)Γ(n + σ1 + 1)
, (6)

DnG(σ1,$1)
L,k (y) =

Γ(n + k + σ1 + $1 + 1)
LnΓ(k + σ1 + $1 + 1)

G(σ1+n,$1+n)
L,k−n (y). (7)

Let w(σ1,$1)
L (y) = (L− y)σ1 y$1 . Then, we define

(u, v)
w
(σ1,$1)
L

=

L∫

0

u(y) v(y)w(σ1,$1)
L (y) dy, ‖v‖

w
(σ1,$1)
L

= (v, v)
1
2

w
(σ1,$1)
L

. (8)

The set of the shifted Jacobi polynomials forms a complete L2
w
(σ1,$1)
L

[0, L]-orthogonal

system. Furthermore, and as a result of (8), we have

‖G(σ1,$1)
L,k ‖2

w
(σ1,$1)
L

=

(
L
2

)σ1+$1+1
h(σ1,$1)

k = h(σ1,$1)
L,k , (9)

where

h(σ1,$1)
n =

2σ1+$1+1Γ(n + $1 + 1)Γ(n + σ1 + 1)
n!Γ(n + σ1 + $1 + 1)(2n + σ1 + $1 + 1)

.
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We denote y(σ1,$1)
N,j and v

(σ1,$1)
N,j , 0 ≤ j ≤ N, the nodes and Christoffel numbers on the

interval [−1, 1]. For the shifted Jacobi on the interval [0, L], we obtain

y(σ1,$1)
L,N,j =

L
2
(y(σ1,$1)

N,j + 1),

v
(σ1,$1)
L,N,j = (

L
2
)σ1+$1+1v

(σ1,$1)
N,j , 0 ≤ j ≤ N.

Applying the quadrature rule, for φ ∈ S2N+1[0, L], we obtain

L∫

0

(L− y)σ1 y$1 φ(y)dy =

(
L
2

)σ1+$1+1 1∫

−1

(1− y)σ1(1 + y)$1 φ

(
L
2
(y + 1)

)
dy

=

(
L
2

)σ1+$1+1 N

∑
j=0

v
(σ1,$1)
N,j φ

(
L
2
(y(σ1,$1)

N,j + 1)
)

=
N

∑
j=0

v
(σ1,$1)
L,N,j φ

(
y(σ1,$1)

L,N,j

)
,

(10)

where SN [0, L] is the set of polynomials of degree at most N.

3. Fully Spectral Collocation Treatment
3.1. Initial-Boundary Conditions

First, we developed a numerical technique for dealing with the time-fractional IHEs
of the form:

∂ν

∂τν

(
U (ξ, τ)−U (ξ, 0)

)
=

∂2

∂ξ2 (U (ξ, τ)) +Q(τ)∆(ξ, τ), (ξ, τ) ∈ Λ• ×Λ�, (11)

U (ξ, 0) = λ1(ξ), ξ ∈ Λ•,

U (0, τ) =λ2(τ), U (ξend, τ) = λ3(τ), τ ∈ Λ�,
(12)

where ξ and τ are used for spatial and temporal variables, respectively. The fractional

derivative term ∂ν

∂τν

(
U (ξ, τ)− U (ξ, 0)

)
instead of ∂ν

∂τν

(
U (ξ, τ) is not only to eschew the

singularity at zero, but also provide a significative initial condition, where fractional
integral is not included [45].

Where ∂ν

∂τν is the fractional temporal derivative in Riemann–Liouville sense,

∂νU (ξ, τ)

∂τν
=

1
Γ(1− ν)

∂

∂τ

∫ τ

0

U (ξ, s)
(s− τ)µ ds,

and Λ• ≡ [0, ξend], Λ� ≡ [0, τend], U (ξ, τ) and Q(τ) are unknown functions, while ∆(ξ, τ)
is a given function. The complexity of the suggested problem is that the function Q(τ) is
unknown, which necessitates the determination of an additional condition. To resolve this
problem, we use the following energy condition

1∫

0

U (ξ, τ)dξ = E(τ). (13)
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Here, the shifted Jacobi Gauss–Lobatto collection method and the shifted Jacobi
Gauss–Radau collection scheme are applied to convert the IHEs into a linear system of
algebraic equations. We approximate the solution as,

UN ,M(ξ, τ) = ∑
r1=0,...,N
r2=0,...,M

ςr1,r2G
σ1,$1
ξend ,r1

(ξ)Gσ2,$2
τend ,r2(τ), (14)

where Gσ,ς
ξend ,s(ζ) is used for shifted Jacobi polynomials on [0, ξend].

The first derivative ∂
∂x (UN ,M(ξ, τ)) is given as

∂

∂ξ
(UN ,M(ξ, τ)) = ∑

r1=0,...,N
r2=0,...,M

ςr1,r2 G̃
σ1,$1
ξend ,r1

(ξ)Gσ2,$2
τend ,r2(τ), (15)

where G̃σ1,$1
ξend ,r1

(ξ) = ∂
∂x (G

σ1,$1
ξend ,r1

(ξ)). Similarly, we find

∂2

∂x2 (UN ,M(ξ, τ)) = ∑
r1=0,...,N
r2=0,...,M

ςr1,r2 Ĝ
σ1,$1
ξend ,r1

(ξ)Gσ2,$2
τend ,r2(τ), (16)

where Ĝσ1,$1
ξend ,r1

(ξ) = ∂2

∂ξ2 (Gσ1,$1
ξend ,r1

(ξ)). Please note that ∂
∂ξ (G

σ1,$1
ξend ,r1

(ξ)) and ∂2

∂ξ2 (Gσ1,$1
ξend ,r1

(ξ))

can be directly computed using (7). However, the fractional temporal derivative in Rie-
mann–Liouville sense is computed as

∂ν

∂tν
(U (ξ, τ)) = ∑

r1=0,...,N
r2=0,...,M

ςr1,r2G
σ1,$1
ξend ,r1

(ξ)G̃σ2,$2
τend ,r2(τ), (17)

where G̃σ2,$2
τend ,r2(τ) =

∂ν

∂τν (Gσ2,$2
τend ,r2(τ)). Using (3), we obtain

∂ν

∂τν
(Gσ2,$2

τend ,r2(τ)) =
r2

∑
k=0

(−1)r2−k Γ(r2 + $2 + 1)Γ(k + r2 + σ2 + $2 + 1)
Γ(k + $2 + 1)Γ(r2 + σ2 + $2 + 1)(r2 − k)!k!τk

end

∂ν

∂τν
(τk)

=
r2

∑
k=0

(−1)r2−k Γ(r2 + $2 + 1)Γ(k + r2 + σ2 + $2 + 1)
Γ(k + $2 + 1)Γ(r2 + σ2 + $2 + 1)(r2 − k)!k!τk

end
δ(τ),

(18)

where δ(τ) = Γ(k+1)τk−ν

Γ(k−ν+1) .
When we differentiate, of order ν, Equation (13) with respect to τ, we obtain

1∫

0

∂ν

∂tν

(
U (ξ, τ)−U (ξ, 0)

)
dξ =

∂ν

∂tν

(
E(τ)− E(0)

)
, (19)

merging the previous equation with (11), we obtain

∂

∂ξ
(U (ξ, τ))ξ=ξend

− ∂

∂ξ
(U (ξ, τ))ξ=0 =

∂ν

∂tν
(E(τ)− E(0))−Q(τ)

1∫

0

∆(ξ, τ)dξ, (20)

yields,

Q(τ) = Θ(τ)
1∫

0
∆(ξ, τ)dξ

, (21)

where
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Θ(τ) = E (ν)(τ)− E (ν)(0)− ∑
r1=0,...,N
r2=0,...,M

ςr1,r2 G̃
σ1,$1
ξend ,r1

(1)Gσ2,$2
τend ,r2(τ) + ∑

r1=0,...,N
r2=0,...,M

ςr1,r2 G̃
σ1,$1
ξend ,r1

(0)Gσ2,$2
τend ,r2(τ),

and E (ν)(τ) = ∂νE(τ)
∂tν . The previous derivatives of spatial and temporal variables are

computed at specific nodes as

( ∂ν

∂τν
(U (ξ, τ))

)ξ=ξ
σ1,$1,n
ξendN

,

τ=τ
σ2,$2,m
τend ,M

= ∑
r1=0,...,N
r2=0,...,M

ςr1,r2G
σ1,$1
ξend ,r1

(ξ
σ1,$1,n
ξendN )G̃σ2,$2

τend ,r2(τ
σ2,$2,m
τend ,M ),

( ∂ν

∂τν
(U (ξ, 0))

)ξ=ξ
σ1,$1,n
ξendN

,

τ=τ
σ2,$2,m
τend ,M

= ∑
r1=0,...,N
r2=0,...,M

ςr1,r2G
σ1,$1
ξend ,r1

(ξ
σ1,$1,n
ξendN )

( dν

dτν
(Gσ2,$2

τend ,r2(0))
)

τ=τ
σ2,$2,m
τend ,M

,

( ∂

∂ξ
(UN ,M(ξ, τ))

)ξ=ξend ,

τ=τ
σ2,$2,m
τend ,M

= ∑
r1=0,...,N
r2=0,...,M

ςr1,r2 G̃
σ1,$1
ξend ,r1

(ξend)Gσ2,$2
τend ,r2(τ

σ2,$2,m
τend ,M ),

( ∂

∂ξ
(UN ,M(ξ, τ))

)ξ=0,

τ=τ
σ2,$2,m
τend ,M

= ∑
r1=0,...,N
r2=0,...,M

ςr1,r2 G̃
σ1,$1
ξend ,r1

(0)Gσ2,$2
τend ,r2(τ

σ2,$2,m
τend ,M ),

( ∂2

∂ξ2 (U (ξ, τ))
)ξ=ξ

σ1,$1,n
ξend ,N

τ=τ
σ2,$2,m
τend ,M

= ∑
r1=0,...,N
r2=0,...,M

ςr1,r2 Ĝ
σ1,$1
ξend ,r1

(ξ
σ1,$1,n
ξend ,N )G

σ2,$2
τend ,r2(τ

σ2,$2,m
τend ,M ).

(22)

Additionally, we obtain

Q(τσ2,$2,m
τend ,M ) =

Θ(τ
σ2,$2,m
τend ,M )

1∫
0

∆(ξ, τ
σ2,$2,m
τend ,M )dξ

, (23)

where n = 0, 1, · · · ,N , m = 0, 1, · · · ,M.
For the proposed spectral collocation technique, Equation (11) is enforced to be zero

at (N − 1)× (M) points. Therefore, adapting (11)–(23), obtain linear system of algebraic
equations




ℵ1,1 ℵ1,2 . . . . . . ℵ1,M
ℵ2,1 ℵ2,2 . . . . . . ℵ2,M

. . .
...

...
... . . .

. . .
...

...
... . . .

ℵN ,1 ℵN ,2 . . . . . . ℵN ,M




=




℘1,1 ℘1,2 . . . . . . ℘1,M
℘2,1 ℘2,2 . . . . . . ℘2,M

. . .
...

...
... . . .

. . .
...

...
... . . .

℘N ,1 ℘N ,2 . . . . . . ℘N ,M




(24)

where
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ℵn,m =





Υ(ξσ1,$1,n
ξendN , τ

σ2,$2,m
τend ,M ), n = 1, · · · ,N − 1, m = 1, · · · ,M;

∑ r1=0,...,N
r2=0,...,M

ςr1,r2G
σ1,$1
ξend ,r1

(ξ
σ1,$1,n
ξend ,N )G

σ2,$2
τend ,r2(0), m = 0, n = 1, · · · ,N − 1;

∑ r1=0,...,N
r2=0,...,M

ςr1,r2G
σ1,$1
ξend ,r1

(0)Gσ2,$2
τend ,r2(τ

σ2,$2,m
τend ,M ), n = 0, m = 0, · · · ,M;

∑ r1=0,...,N
r2=0,...,M

ςr1,r2G
σ1,$1
ξend ,r1

(ξend)Gσ2,$2
τend ,r2(τ

σ2,$2,m
τend ,M ), n = N , = 0, · · · ,M.

℘n,m =





Θ(τ
σ2,$2,m
τend ,M )

1∫
0

∆(ξ,τ
σ2,$2,m
τend ,M )dξ

∆(ξσ1,$1,n
ξendN , τ

σ2,$2,m
τend ,M ), n = 1, · · · ,N − 1, m = 1, · · · ,M;

λ1(ξ
σ1,$1,n
ξendN ), m = 0, n = 1, · · · ,N − 1;

λ2(τ
σ2,$2,m
τend ,M ), n = 0, m = 0, · · · ,M;

λ3(τ
σ2,$2,m
τend ,M ), n = N , = 0, · · · ,M.

where

Υ(ξσ1,$1,n
ξendN , τ

σ2,$2,m
τend ,M ) = ∑

r1=0,...,N
r2=0,...,M

ςr1,r2G
σ1,$1
ξend ,r1

(ξ
σ1,$1,n
ξendN )G̃σ2,$2

τend ,r2(τ
σ2,$2,m
τend ,M )−

∑
r1=0,...,N
r2=0,...,M

ςr1,r2G
σ1,$1
ξend ,r1

(ξ
σ1,$1,n
ξendN )

( dν

dτν
(Gσ2,$2

τend ,r2(0))
)

τ=τ
σ2,$2,m
τend ,M

−

∑
r1=0,...,N
r2=0,...,M

ςr1,r2 Ĝ
σ1,$1
ξend ,r1

(ξ
σ1,$1,n
ξend ,N )G

σ2,$2
τend ,r2(τ

σ2,$2,m
τend ,M ).

3.2. Nonlocal Conditions

Here, we develop a numerical scheme to deal with the time-fractional IHEs of the form

∂ν

∂tν

(
U (ξ, τ)−U (ξ, 0)

)
=

∂2

∂x2 (U (ξ, τ)) +Q(τ)∆(ξ, τ), (ξ, τ) ∈ Λ• ×Λ�, (25)

U (ξ, 0) = λ1(ξ), ξ ∈ Λ•,

U (0, τ) + α1U (ξend, τ) =λ2(τ), Uξ(0, τ) + α2U (ξend, τ) = λ3(τ), τ ∈ Λ�,
(26)

where Λ• ≡ [0, ξend], Λ� ≡ [0, τend], U (ξ, τ) andQ(τ) are unknown functions, while ∆(ξ, τ)
is a given one. The energy condition is given by

1∫

0

U (ξ, τ)dξ = E(τ). (27)

Using the previous results, we obtain the following linear system of algebraic equations




ℵ1,1 ℵ1,2 . . . . . . ℵ1,M
ℵ2,1 ℵ2,2 . . . . . . ℵ2,M

. . .
...

...
... . . .

. . .
...

...
... . . .

ℵN ,1 ℵN ,2 . . . . . . ℵN ,M




=




℘1,1 ℘1,2 . . . . . . ℘1,M
℘2,1 ℘2,2 . . . . . . ℘2,M

. . .
...

...
... . . .

. . .
...

...
... . . .

℘N ,1 ℘N ,2 . . . . . . ℘N ,M




, (28)

where
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ℵn,m =





Υ(ξσ1,$1,n
ξendN , τ

σ2,$2,m
τend ,M ), n = 1, · · · ,N − 1, m = 1, · · · ,M;

∑ r1=0,...,N
r2=0,...,M

ςr1,r2G
σ1,$1
ξend ,r1

(ξ
σ1,$1,n
ξend ,N )G

σ2,$2
τend ,r2(0), m = 0, n = 1, · · · ,N − 1;

∑ r1=0,...,N
r2=0,...,M

ςr1,r2G
σ1,$1
ξend ,r1

(0)Gσ2,$2
τend ,r2(τ

σ2,$2,m
τend ,M )+

α1 ∑ r1=0,...,N
r2=0,...,M

ςr1,r2G
σ1,$1
ξend ,r1

(ξend)Gσ2,$2
τend ,r2(τ

σ2,$2,m
τend ,M ), n = 0, m = 0, · · · ,M;

∑ r1=0,...,N
r2=0,...,M

ςr1,r2 G̃
σ1,$1
ξend ,r1

(0)Gσ2,$2
τend ,r2(τ

σ2,$2,m
τend ,M )+

α2 ∑ r1=0,...,N
r2=0,...,M

ςr1,r2G
σ1,$1
ξend ,r1

(0)Gσ2,$2
τend ,r2(τ

σ2,$2,m
τend ,M ), n = N , = 0, · · · ,M.

℘n,m =





Θ(τ
σ2,$2,m
τend ,M )

1∫
0

∆(ξ,τ
σ2,$2,m
τend ,M )dξ

∆(ξσ1,$1,n
ξendN , τ

σ2,$2,m
τend ,M ), n = 1, · · · ,N − 1, m = 1, · · · ,M;

λ1(ξ
σ1,$1,n
ξendN ), m = 0, n = 1, · · · ,N − 1;

λ2(τ
σ2,$2,m
τend ,M ), n = 0, m = 0, · · · ,M;

λ3(τ
σ2,$2,m
τend ,M ), n = N , = 0, · · · ,M.

where

Υ(ξσ1,$1,n
ξendN , τ

σ2,$2,m
τend ,M ) = ∑

r1=0,...,N
r2=0,...,M

ςr1,r2G
σ1,$1
ξend ,r1

(ξ
σ1,$1,n
ξendN )G̃σ2,$2

τend ,r2(τ
σ2,$2,m
τend ,M )−

∑
r1=0,...,N
r2=0,...,M

ςr1,r2G
σ1,$1
ξend ,r1

(ξ
σ1,$1,n
ξendN )

( dν

dτν
(Gσ2,$2

τend ,r2(0))
)

τ=τ
σ2,$2,m
τend ,M

−

∑
r1=0,...,N
r2=0,...,M

ςr1,r2 Ĝ
σ1,$1
ξend ,r1

(ξ
σ1,$1,n
ξend ,N )G

σ2,$2
τend ,r2(τ

σ2,$2,m
τend ,M ).

Υ(ξσ1,$1,n
ξendN , τ

σ2,$2,m
τend ,M ) =

Θ(τ
σ2,$2,m
τend ,M )

1∫
0

∆(ξ, τ
σ2,$2,m
τend ,M )dξ

∆(ξσ1,$1,n
ξendN , τ

σ2,$2,m
τend ,M ),

(29)

4. Numerical Results

This section is devoted to providing some numerical results to show the robustness
and the accuracy of the spectral collocation schemes presented in this work.

Example 1. We consider the following IHEs

∂ν

∂tν

(
U (ξ, τ)−U (ξ, 0)

)
=

∂2

∂x2 (U (ξ, τ)) +Q(τ)e−τ2
sin(πξ)

(
2(−ν + τ + 2)τ1−ν

Γ(3− ν)
+ π2(τ + 1)2

)
,

(ξ, τ) ∈ [0, 1]× [0, 1],
(30)

with the local conditions

U (ξ, 0) = sin(πξ), ξ ∈ [0, 1],

U (0, τ) =0, U (1, τ) = 0, τ ∈ [0, 1],
(31)

and the extra energy condition

∫ 1

0
U (ξ, τ)dξ =

2(τ + 1)2

π
, (32)
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the exact solution and unknown source function are given by U (ξ, τ) = (τ + 1)2 sin(πξ),Q(τ) = eτ2
.

The absolute errors EU and EQ are defined as

EU (ξ, τ) =|U (ξ, τ)−UApprox(ξ, τ)|,
EQ(τ) =|Q(τ)−QApprox(τ)|.

Moreover, the maximum absolute errors MEU and MEQ are defined as

MEU =MAXEU (ξ, τ)(ξ, τ) ∈ Λ• ×Λ�,

MEQ =MAXEQ(τ)τ ∈ Λ�.

Tables 1 and 2 provide the maximum absolute errors MEU and MEQ of the approximate
solution at various values of parameters. From these results, the proposed scheme provides
better numerical results. It is also observed that excellent approximations with a few
collocation points are achieved. In Figures 1 and 2, with values of parameters listed in
their captions, the numerical solution and its absolute errors functions are displayed,
respectively. Additionally, the exact and approximate solutions are readily displayed in
Figures 3 and 4 forQ(τ) and temperature function U (ξ, τ), respectively. However, absolute
errors functions of the temperature and Q(τ) are displayed in Figures 5–7. Moreover, rate
of convergence is displayed in Figures 8 and 9. The exponential convergence of our method
is observed in these graphs.

Table 1. MEU for problem (30).

ν (N ,M) CPU Time (0, 0, 0, 0) (0, −0.5, 0, 0.5) (−0.5, −0.5, 0, 0) (−0.5, −0.5, 0.5, 0.5)

0.5 (4,4) 3.874 5.54207× 10−1 4.50114× 10−1 3.30903× 10−1 3.30301× 10−1

(8,8) 10.937 1.069× 10−4 7.62826× 10−5 4.23773× 10−5 4.23533× 10−5

(12,12) 55.062 2.84348× 10−9 1.93179× 10−9 9.20255× 10−10 9.20021× 10−10

(16,16) 232.329 6.33922× 10−14 9.6867× 10−14 3.18634× 10−14 9.12603× 10−14

0.9 (4,4) 5.751 4.51528× 10−1 1.78626× 10−1 2.64455× 10−1 2.64435× 10−1

(8,8) 12.657 8.30291× 10−5 5.92663× 10−5 3.28873× 10−5 328844× 10−5

(12,12) 61.278 2.20829× 10−9 1.50057× 10−9 7.14412× 10−10 7.14381× 10−10

(16,16) 239.312 2.17604× 10−14 1.3467× 10−13 5.29576× 10−14 6.1945× 10−14

1.0 (4,4) 3.39 4.24550× 10−1 3.41265× 10−1 2.47565× 10−1 2.476208× 10−1

(8,8) 8.812 7.71774× 10−5 5.510238× 10−5 3.05607× 10−5 3.05625× 10−5

(12,12) 58.25 2.05212× 10−9 1.39463 ×10−9 6.638062× 10−10 6.63822× 10−10

(16,16) 235.514 1.5614× 10−14 1.02934× 10−14 4.37859× 10−15 4.378644× 10−15

Table 2. MEQ for problem (30).

ν (N ,M) (0, 0, 0, 0) (0, −0.5, 0, 0.5) (−0.5, −0.5, 0, 0) (−0.5, −0.5, 0.5, 0.5)

0.5 (4,4) 2.37763× 10−1 1.93756× 10−1 1.47532× 10−1 1.47488× 10−1

(8,8) 5.79538× 10−5 4.13846× 10−5 2.31711× 10−5 2.3159× 10−5

(12,12) 1.68474× 10−9 1.1447× 10−9 5.47435× 10−10 5.47225× 10−10

(16,16) 1.83853× 10−13 5.48228× 10−13 1.16351× 10−13 1.28564× 10−13

0.9 (4,4) 1.84722× 10−1 1.49677× 10−1 1.13969× 10−1 1.13951× 10−1

(8,8) 4.46693× 10−5 3.19146× 10−5 1.78888× 10−5 1.78816× 10−5

(12,12) 1.31451× 10−9 8.93408× 10−10 4.27471× 10−10 4.27336× 10−10

(16,16) 1.7919× 10−13 3.80598× 10−14 2.26041× 10−13 2.14051× 10−13

1.0 (4,4) 1.725× 10−1 1.39696× 10−1 1.06467× 10−1 1.06484× 10−1

(8,8) 4.16394× 10−5 2.97589× 10−5 1.66843× 10−5 1.66798× 10−5

(12,12) 1.22865× 10−9 8.35128× 10−10 3.99611× 10−10 3.99526× 10−10

(16,16) 9.76996× 10−15 6.21725× 10−15 2.66454× 10−15 2.66454× 10−15
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Figure 1. Numerical solution of the problem (30), where σ1 = $1 = σ2 = $2 = 0, ν = 0.5 and
N =M = 16.

Figure 2. Absolute errors graph of the problem (30), where σ1 = $1 = σ2 = $2 = 0, ν = 0.5 and
N =M = 16.
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Figure 3. Curves of the exact and numerical solutions of Q(τ) of the problem (30), where σ1 = $1 =

σ2 = $2 = 0, ν = 0.5 and N =M = 16.
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Figure 4. x-Curves of the exact and numerical solutions of U (ξ, τ) of the problem (30), where
σ1 = $1 = σ2 = $2 = 0, ν = 0.5 and N =M = 16.
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E(0.5,τ)

Figure 5. τ-Absolute errors EU (0.5, τ) graph of the problem (30), where σ1 = $1 = σ2 = $2 = 0,
ν = 0.5 and N =M = 16.
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Figure 6. ξ-Absolute errors graph EU (ξ, 0.5)of the problem (30), where σ1 = $1 = σ2 = $2 = 0,
ν = 0.5 and N =M = 16.
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Figure 7. Absolute errors EQ(τ) graph of the problem (30), where σ1 = $1 = σ2 = $2 = 0, ν = 0.5
and N =M = 16.
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Figure 8. ME convergence of problem (30), where σ1 = $1 = σ2 = $2 = 0, ν = 0.5.
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Figure 9. ME convergence of problem (30), where σ1 = $1 = −0.5, σ2 = $2 = 0.5, ν = 0.9.

Example 2. We consider the IHEs

∂ν

∂tν

(
U (ξ, τ)−U (ξ, 0)

)
=

∂2

∂x2 (U (ξ, τ)) +Q(τ) cos
(

π

(
ξ +

1
4

))(
2τ−ν

Γ(3− ν)
+ π2

)
,

(ξ, τ) ∈ [0, 1]× [0, 1],
(33)

with the nonlocal conditions

U (ξ, 0) = sin(πξ), ξ ∈ [0, 1],

U (0, τ) =U (1, τ),
∂

∂x

(
U (ξ, τ)

)
ξ=0

+ πU (0, τ) = 0, τ ∈ [0, 1],
(34)

and the extra energy condition

∫ 1

0
U (ξ, τ)dξ = −

√
2τ2

π
, (35)

the exact solution and unknown source function are given by U (ξ, τ) = τ2 cos
(
πξ + π

4
)
, Q(τ) = τ2.

Tables 3 and 4 display the maximum absolute errors MEU and MEQ of the approximate
solution at different values of parameters, respectively. In Figures 10 and 11, with values
of parameters listed in their captions, numerical solution and absolute errors graphs are
displayed, respectively. Additionally, the exact and approximate solutions are displayed
in Figures 12 and 13 for Q(τ) and temperature function U (ξ, τ), respectively. However,
absolute errors curves of the temperature andQ(τ) functions are displayed in Figures 14–16.
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Table 3. MEU for problem (33).

ν (N ,M) (0, 0, 0, 0) (0, −0.5, 0, 0.5) (−0.5, −0.5, 0, 0) (−0.5, −0.5, 0.5, 0.5)

0.5 (4,4) 1.27607× 10−1 3.15438× 10−2 8.46812× 10−2 8.46738× 10−2

(8,8) 4.7083× 10−5 3.90995× 10−5 1.91081× 10−5 1.91082× 10−5

(12,12) 1.66851× 10−9 1.97664× 10−9 5.41362× 10−10 5.41373× 10−10

(16,16) 2.0849× 10−14 3.87468× 10−14 1.69864× 10−14 3.38618× 10−14

0.9 (4,4) 1.17572× 10−1 3.60552× 10−2 7.75196× 10−2 7.74936× 10−2

(8,8) 4.15201× 10−5 2.09117× 10−5 1.65554× 10−5 1.67636× 10−5

(12,12) 1.63111× 10−9 1.97664× 10−9 5.35284× 10−10 3.46596× 10−10

(16,16) 9.74665× 10−11 7.43456× 10−11 1.87779× 10−10 1.60306× 10−11

Table 4. MEQ for problem (33).

ν (N ,M) (0, 0, 0, 0) (0, −0.5, 0, 0.5) (−0.5, −0.5, 0, 0) (−0.5, −0.5, 0.5, 0.5)

0.5 (4,4) 1.81999× 10−1 6.99633× 10−3 1.22372× 10−1 0.122373× 10−1

(8,8) 8.67215× 10−5 4.68354× 10−5 3.46128× 10−5 3.46127× 10−5

(12,12) 3.25847× 10−9 2.82092× 10−9 1.05757× 10−9 1.05754× 10−9

(16,16) 7.70495× 10−14 6.28386× 10−14 4.31877× 10−14 4.75175× 10−14

0.9 (4,4) 1.52889× 10−1 2.92712× 10−2 1.01293× 10−1 1.0128× 10−1

(8,8) 7.33228× 10−5 1.97339× 10−5 2.9295× 10−5 2.93316× 10−5

(12,12) 2.13166× 10−9 2.82092× 10−9 6.91775× 10−10 7.22927× 10−10

(16,16) 6.70036× 10−11 5.29218× 10−11 1.33594× 10−10 1.13941× 10−11

Figure 10. Numerical solution of the problem (33), where σ1 = $1 = σ2 = $2 = 0, ν = 0.9 and
N =M = 16.
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Figure 11. Absolute errors graph of the problem (33),where σ1 = $1 = σ2 = $2 = 0, ν = 0.9 and
N =M = 16.
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Figure 12. Curves of the exact and numerical solutions ofQ(τ) of the problem (33), where σ1 = $1 =

σ2 = $2 = 0, ν = 0.9 and N =M = 16.

230



Fractal Fract. 2021, 5, 115

0.2 0.4 0.6 0.8 1.0
ξ

-0.4

-0.2

0.2

 and pro

pro(ξ,0.7)

(ξ,0.7)

pro(ξ,0.5)

(ξ,0.5)

pro(ξ,0.3)

(

Figure 13. x-Curves of the exact and numerical solutions of U (ξ, τ) of the problem (33), where
σ1 = $1 = σ2 = $2 = 0, ν = 0.9 and N =M = 16.
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Figure 14. τ-Absolute errors EU (0.5, τ) graph of the problem (33), where σ1 = $1 = σ2 = $2 = 0,
ν = 0.9 and N =M = 16.

231



Fractal Fract. 2021, 5, 115

0.2 0.4 0.6 0.8 1.0
ξ

2.×10-15

4.×10-15

6.×10-15

8.×10-15

1.×10-14

E(ξ,0.5)

Figure 15. ξ-Absolute errors graph EU (ξ, 0.5)of the problem (33), where σ1 = $1 = σ2 = $2 = 0,
ν = 0.9 and N =M = 16.
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Figure 16. Absolute errors EQ(τ) graph of the problem (33), where σ1 = $1 = σ2 = $2 = 0, ν = 0.9
and N =M = 16.

5. Conclusions

We have constructed fully shifted Jacobi collocation schemes to study the time-
fractional IHEs. Various orthogonal polynomials can be acquired as a particular case
of the shifted Jacobi polynomials, such as the shifted Chebyshev of the first or second or
third or fourth kind, shifted Legendre, and shifted Gegenbauer. Recently, shifted Jacobi
polynomials have been used for solving fractional problems via collocation techniques and
have acquired growing popularity due to the ability to obtained the approximate solution
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depends on the shifted Jacobi parameters σ and $. The powerful proposed approach
yielded impressive numerical results that demonstrate the algorithm’s great efficiency. The
study was treated with both local and nonlocal conditions. The algorithm’s results open
the way for more studies in this field to be conducted in the future to display additional
results in the future.
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Abstract: The covariance matrix of measurement noise is fixed in the Kalman filter algorithm. How-
ever, in the process of battery operation, the measurement noise is affected by different charging and
discharging conditions and the external environment. Consequently, obtaining the noise statistical
characteristics is difficult, which affects the accuracy of the Kalman filter algorithm. In order to
improve the estimation accuracy of the state of charge (SOC) of lithium-ion batteries under actual
working conditions, a fuzzy fractional-order unscented Kalman filter (FFUKF) is proposed. The
algorithm combines fuzzy inference with fractional-order unscented Kalman filter (FUKF) to infer the
measurement noise in real time and take advantage of fractional calculus in describing the dynamic
behavior of the lithium batteries. The accuracy of the SOC estimation under different working
conditions at three different temperatures is verified. The results show that the accuracy of the
proposed algorithm is superior to those of the FUKF and extended Kalman filter (EKF) algorithms.

Keywords: Kalman filter; state of charge; fuzzy inference; lithium-ion batteries

1. Introduction

The automobile industry has payed extensive attention to new energies to reduce the
emissions of greenhouse gases [1]. An important component of the new energy vehicles is
the power battery system. Lithium-ion batteries have the advantage of high energy density
and excellent performance cycles [2]. However, their safe and effective management are
crucial. The battery management system (BMS) is critical and the state of charge (SOC)
estimation plays a vital role in the BMS [3,4]. However, the SOC of the power battery
cannot be measured directly, and some efficient and accurate estimation methods must be
employed. Compared with electrochemical and data-driven models, the equivalent circuit
model (ECM) was widely adopted in recent years, which uses ideal resistors, capacitors,
constant voltage sources and other circuit devices to form a circuit network that describes
the characteristics of power batteries [5]. In addition, to obtain a reliable battery model,
the SOC estimation also requires a high precision algorithm. Recently, effective estimation
methods have been presented, such as the open circuit voltage (OCV) method [6], ampere-
hour integration method [7,8], Kalman filter algorithm, neural network method [9,10],
sliding mode observer [11,12], H∞ filter [13,14], adaptive particle filter [15] and others.
Each of these methods presents advantages and disadvantages. For example, the OCV is
the most direct method, but it requires the battery to stand for a long enough time. The
ampere-hour integration method is classic, easy and widely used, but its initial SOC is
difficult to obtain. The neural network method is popular with high estimation accuracy,
but it requires a large amount of experimental data as prior knowledge, and these data can
fully reflect the characteristics of the battery.
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The Kalman filter is currently the most used estimation algorithm. It includes the
extended Kalman filter (EKF) [16–18], unscented Kalman filter (UKF) [19,20], adaptive
Kalman filter [21–23], fuzzy unscented Kalman filter [24] and other variants. The EKF
uses the Taylor expansion to linearize high-order terms, resulting in error accumulation
during the iterative process. The UKF uses the unscented transformation to linearize
the nonlinear function of random variables by linear regression. Generally speaking, the
unscented transformation is more accurate than the Taylor series approach. However, the
statistical characteristics of the measurement noise are vital for the UKF, being difficult
to obtain accurately. Indeed, the statistical characteristics of the noise are affected by
uncertain factors, such as the system noise, which causes the UKF to converge slowly
and even to diverge. The adaptive Kalman filter method can estimate the process and the
observation noise online, improving the accuracy of the estimation [25]. However, when
the nonlinearity is strong, the estimation accuracy is limited.

Recently, it was found that fractional-order ECM (FECM), where constant phase
elements (CPE) are used instead of ideal capacitors [26], have advantages for describing
the dynamic behavior of lithium batteries. The FECM can accurately simulate the double-
layer effect of the battery electrode. Therefore, SOC algorithms based on FECM, such
as fractional-order unscented Kalman filter (FUKF) [27,28] and fractional-order extended
Kalman filter (FEKF) [29–31] have been proposed. Experimental results have also shown
that these methods improve the accuracy of the estimation when compared with the ECM.
However, the statistical characteristics of the measurement noise are still hard to obtain
accurately [32] and affect greatly the accuracy of the SOC estimation. In order to mitigate
this shortcoming, a new fuzzy fractional-order unscented Kalman filter (FFUKF) that
combines fuzzy inference and FUKF is proposed. This method can infer the measurement
noise in real time and has higher accuracy compared with traditional algorithms, according
to the difference between the actual and the theoretical value of the noise measurements.
The covariance matrix of the measurement noise is adjusted continuously to make the
FUKF more adaptive and accurate.

The main objective of this paper is (1) to propose a fractional-order second-order RC
equivalent circuit model of lithium batteries based on particle swarm optimization (PSO),
(2) to derive a FFUKF to solve the influence of measurement noise on SOC estimation accu-
racy, (3) to test the FFUKF under different working conditions and compare its performance
with the FUKF and EKF.

The paper is organized as follows. Section 2 introduces the fractional-order model
and its parameter identification. Section 3 presents the fuzzy controller. Section 4 lists the
steps of the FFUKF algorithm. Section 5 compares the results with those obtained with
existing algorithms. Section 6 outlines the main conclusions.

2. Theory and Method Research
2.1. Fractional-Order Calculus

In contrast with the integer-order derivative, the fractional-order derivative have many
definitions, such as the Grünwald-Letnikov (GL), Riemann-Liouville (RL), and Caputo
formulations. Here, the GL definition is used [33]:

t0 Dα
t x(t) = lim

∆T→0

(
1

∆Tα

) [t/∆T]

∑
j=0

(−1)j
(

α
j

)
x(t− j∆T), (1)

(
α
j

)
=

Γ(α + 1)
Γ(j + 1) · Γ(α− j + 1)

. (2)

with Γ(α) given by:

Γ(α) =
∫ +∞

0
ξα−1e−ξ dξ, (3)
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where t denotes the variable, with lower bound t0, ∆T stands for the sampling time, and
[t/∆T] is the memory length. The continuous-time GL derivative t0 Dα

t can be discretized
with a fixed memory length L, yielding:

Dαxk+1 =
1

∆Tα
xk+1 +

(
1

∆Tα

) L+1

∑
j=1

(−1)j
(

α
j

)
xk+1−j. (4)

2.2. Fractional-Order Model

In order to describe accurately the internal electrochemical reaction that occurs in
a battery, and to design an accurate and reliable lithium-ion battery SOC estimation
algorithm, an accurate model is necessary. It has been shown that the ECM describes
well the battery characteristics and that a second-order RC model yields good results in
terms of accuracy and computational complexity [34]. Usually, the ECM includes two ideal
resistors. However, for the complex electrochemical reactions inside the battery, the ideal
capacitance cannot be simulated reasonably. Therefore, the CPE has been used instead of
ideal capacitors, which resulted in the FECM. The impedance of a CPE is given by:

Z(s) =
1

Csα
. (5)

The fractional-order RC circuit used here is shown in Figure 1, where Uoc stands
for the open circuit voltage, R0 is the ohmic internal resistance, and R1 and R2 are the
electrochemical polarization and concentration polarization resistances, respectively. The
CPE1 and CPE2 stand for the fractional capacitors, V0 represents the terminal voltage of the
battery, and I corresponds to the load current. If we denote by V1 and V2 the voltages on
the two parallel associations, respectively, then the dynamic equations can be expressed as:





DαV1(t) = −
V1(t)
R1C1

+
I(t)
C1

,

DβV2(t) = −
V2(t)
R2C2

+
I(t)
C2

.
(6)

where α, β ∈ (0, 1) are the fractional orders of CPE1 and CPE2, respectively. The variable
Qn is the nominal capacity of the lithium-ion battery and η is the Coulomb efficiency. The
SOC of the lithium battery can be written as:

dSOC(t)
dt

= − η

Qn
I(t). (7)

It follows from the Kirchhoff’s voltage law that the output equation is given by:

V0(t) = Uoc − I(t)R0 −V1(t)−V2(t), (8)

where OCV is a nonlinear function of the SOC. Equation (8) has been used to describe the
OCV-SOC relationship [35,36], which is usually expressed as:

f [θ(t)] = Uoc =
4

∑
i=0

aiSOC(t), (9)

where ai (i = 0, · · · , 4) are polynomial coefficients.
Further, the state space equation of the lithium-ion battery can be established as:

{
Dη x(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(10)
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where η = [α, β, 1]T represents the incommensurate order vector, x(t) = [V1, V2, SOC]T is
the state vector, u(t) denotes the system input (battery current I(t)) and y(t) represents the
system output (battery terminal voltage V0). The matrices A, B, C and D are given as:

A =



− 1

R1C1
0 0

0 − 1
R2C2

0
0 0 0


, B =




1
C1
1

C2
− η

Qn


, (11)

C = [−1 −1
f [θ(t)]

SOC(t)
], D = −R0. (12)

With Equation (4) in mind, model (10) can be written in discrete time:




xk+1 = A1xk + B1uk −
L+1

∑
j=2

(−1)jγ
η
j xk+1−j,

yk = f (θk)−V1k −V2k − R0 Ik.

(13)

The matrices of A1, B1 and γ
η
j are as follows:

A1 = diag((∆T)α, (∆T)β, (∆T))A + diag(α, β, 1), (14)

B1 = diag((∆T)α, (∆T)β, (∆T))B, (15)

γ
η
j = diag

((
α
j

)
,
(

β
j

)
,
(

1
j

))
. (16)

CPE2

V1 V2

R1 R2

R0   

V0

Uoc

CPE1

I

Figure 1. Equivalent circuit model of a lithium battery.

2.3. Model Parameter Identification and Validation

The main current and voltage data of the battery INR 18650-20R with a capacity
2000 mAH are provided by the CALCE Battery Research Group. The experimental platform
is composed by the test samples, a thermal chamber (Weiss-Voetsch, Germany), an Arbin
BT2000 battery test system (ARBIN, TX, USA), and a PC with Arbin software (V4.27,
Caltest Instruments Ltd, Petersfield, UK) to give orders to the test system and monitor data
information. All tests were performed for 0.8 and 0.5 battery level at 0 ◦C, 25 ◦C and 45 ◦C.
We use three typical current and voltage test data sets of the vehicle operating conditions:
Dynamic Stress Test (DST), Federal Urban Driving Schedule (FUDS) and Beijing Dynamic
Stress Test (BJDST). Through the analysis of the established fractional-order model, we
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need to identify twelve parameters, which are a0, a1, a2, a3, a4, R0, R1, C1, R2, C2, α and β.
Here, a PSO is used as the identification algorithm, but other methods are possible to
estimate the parameters, such as, for example, the observer method [37,38]. The PSO
originated in the study of the behavior of birds. The basic idea of the algorithm is to find
optimal solutions through collaboration and information sharing between individuals in
a group. The advantage of PSO is that it is simple and easy to implement with a limited
number of parameter adjustments. Here, we set the goal of minimizing the root mean
square error (RMSE) between the measured and the estimated voltages. Therefore, we
define the objective function E as:

minE =
n

∑
k=1

[Vo(k)− V̂o(k)]2, (17)

where Vo(k) and V̂o(k) are the measured and estimated voltages, respectively, and n is the
number of the sampling points.

Table 1 shows the results of the parameter identification of the fractional-order model.
For model validation, the DST is used. The current and voltage profiles of the DST at a
temperature of 25 ◦C are shown in Figure 2. We verify that the DST condition is composed
of many small cycles, each with a duration of 350 s [39]. Here, to reduce the complexity,
a cycle is selected for parameter identification. Figure 3 presents the current and voltage
profiles of a cycle. Figures 4 and 5 show the accuracy of the fractional-order model, which
is also compared with an integer-order model. From Figure 5, we observe that the error
of the fractional-order model can be kept within 40 mV. However, the maximum error
of the integer-order model is 80 mV. The RMSE of the two models is 0.0125 and 0.0573,
respectively. Therefore, from Figures 3–5, one can see that the fractional-order model can
perform better than the integer-order one in modeling the change of terminal voltage, and
that the fractional-order model is more accurate.

Table 1. The results of the fractional-model parameter identification.

a0 a1 a2 a3 a4 R0

2.4877 1.8243 0.6608 1.1131 −3.2348 0.0687

R1 C1 R2 C2 α β

0.5975 264.25 1.2679 448.54 0.4325 0.4380
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Figure 2. Current and voltage profiles of the operation conditions: DST.

239



Fractal Fract. 2021, 5, 91

Time(s)
50 100 150 200 250 300 350

C
ur

re
nt

(A
)

-5

-4

-3

-2

-1

0

1

2

3

4

5

V
ol

ta
ge

(V
)

3

3.5

4

Current
Voltage

Figure 3. Current and voltage data of a DST cycle.
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Figure 4. Accuracy verification of the model.
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Figure 5. Output terminal voltage error curve.

3. Fuzzy Controller

The selection of the membership functions is very significant for the performance of
a fuzzy controller. There is no ready-made rule for the establishment of the membership
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functions, and most of the methods are still based on experience and experimentation. The
membership functions used here are shown in the Figure 6.

Fuzzy control is an effective method to solve the influence of measurement noise on
the accuracy of SOC estimation in a complex environment. The fuzzy controller includes
three main parts, as illustrated in Figure 7. First, we start the fuzzy processing on the
input value Gk, based on the input membership function, to obtain the corresponding
fuzzy index, where Gk is the difference between the theoretical and actual covariances
Mk and Nk. Second, we establish the fuzzy rules as shown in Table 2. Large observation
noise leads to changes in the actual covariance Nk, while the theoretical covariance Mk
is affected by changes in the observation noise variance Vk. To maintain the consistency
regarding changes between Mk and Nk, when the observation noise is large (small), we
adjust the output value µk to expand (reduce) Vk so that Gk is close to 0. Finally, we perform
the inverse fuzzy processing, according to the output membership function, to obtain µk.
Therefore, we can get a new noise variance V̂k to perform the update of the observation
noise variance adaptively.
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Figure 6. Input and output membership functions.
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G(k)G(k) gg uu U(k)U(k)M(k)
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Figure 7. Fuzzy controller diagram.

Table 2. Fuzzy rules.

Input fuzziness NB NS Z PS PB

Output fuzziness NB NS Z PS PB

4. SOC Estimation

Firstly, the observability of the battery model is analyzed. A method to determine the
observability of continuous time multi-order fractional-order systems was proposed in [40].
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The fractional-order system is observable if its observability matrix is full rank. According
to the Equations (10)–(12), we can get that the observability matrix O of the system is:

O =




1 1 − Uoc
SOC

− 1
R1C1

0 0
0 − 1

R2C2
0


. (18)

It is easy to see that this matrix is full rank. Therefore, the second-order FECM is
observable. Compared to the FUKF, the FFUKF reveals higher accuracy and efficiency for
SOC estimation. In this section, we discuss in detail the main steps of the FFUKF algorithm.
The fractional-order system is given by:





Dη xk+1 = f (xk, uk) + ωk,

xk+1 = Dη xk+1 −
L+1

∑
j=1

(−1)jγjxk+1−j,

yk = h(xk) + Vk,

(19)

where xk represents the system state variable, uk and yk denote the system input and
output, respectively, f (xk, uk) stands for the system process model, and h(xk) is the system
measurement model. The symbol ωk represents a Gaussian process noise and Vk corre-
sponds to measurement noise. The variables Q and R represent the covariance matrices of
ωk and Vk, respectively.

The flow chart of the FFUKF is illustrated in Figure 8. The detailed FFUKF steps are
presented as follows:

Calculate Sigma points

Update the prior states

estimation

Estimate mean and

covariance of y(k)

Calculate Sigma points

Update the observation

noise variance

Update the posterior

states estimation

Parameter initialization

                                        

Time update

                  Observation update

SOC value

Figure 8. Flow chart of the FFUKF.

1 Initialization

(1) Give the initial state xo, Q, R and state error covariance P.

2 Time updating

(1) Calculate sigma points using the singular value decomposition:
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



Pk−1|k−1 = Uk−1Sk−1VT
k−1,

x0,k−1|k−1 = x̂k−1|k−1,

xi,k−1|k−1 = x̂k−1|k−1 + ρUi
√

si,

i = 1, 2, · · · , n

xi,k−1|k−1 = x̂k−1|k−1 − ρUi
√

si,

i = n + 1, n + 2, · · · , 2n,

(20)

where ρ is a scale coefficient that we can set equal to 1. The symbols si and Ui
are the ith eigenvalue and eigenvector of Sk−1 and U(k−1). The weight of sigma
points can be calculated by the formula:





ω0
m =

λ

n + λ
,

ω0
c =

λ

n + λ
+ (1− α2 + β),

ωi
m = ωi

c =
1

2(n + λ)
, i = 1, 2, · · · , 2n,

(21)

where λ denotes α2(n + k)− n, α and k represent scaling and tuning parameters,
respectively, n is the dimension of the state vector x, and β is a parameter related
to the noise type.

(2) Transform the sigma sampling points using the nonlinear function f (·):




φi,k−1|k−1 = f (xi,k−1|k−1, uk−1), i = 0, 1, ...2n,

Dη x̂k|k−1 =
2n

∑
i=0

ωi
mφi,k−1|k−1.

(22)

(3) Update the prior states estimation. The mean and covariance of Dη xk and xk can
be calculated by:





P∆∆
k|k−1 = Cov[Dη xk|yk−1

],

=
2n

∑
i=0

ω
j
c(φi,k−1|k−1 − Dη x̂k|k−1),

× (φi,k−1|k−1 − Dη x̂k|k−1)
T + Q,

P∆∆
k|k−1 = Cov[xk−1, Dη xk|yk−1

],

=
2n

∑
i=0

ω
j
c(φi,k−1|k−1 − Dη x̂k|k−1),

× (φi,k−1|k−1 − Dη x̂k|k−1)
T ,

(23)





x̂k|k−1 = Dη x̂k|k−1 −
k

∑
j=1,

(−1)jγj x̂k−j|k−j,

Pk|k−1 = P∆∆
k|k−1 + γ1Px∆

k|k−1

+ P∆x
k|k−1γ1 +

k

∑
j=1

γjPk−j|k−jγj.

(24)
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3 Observation updating

(1) Calculate sigma points using the singular value decomposition. The weight of
the sigma points is obtained using (20):





Pk|k−1 = Uk−1Sk−1VT
k−1,

x0,k−1|k−1 = x̂k−1|k−1,

xi,k−1|k−1 = x̂k−1|k−1 + ρUi
√

si,

i = 1, 2, · · · , n

xi,k−1|k−1 = x̂k−1|k−1 + ρUi
√

si,

i = n + 1, n + 2, · · · , 2n.

(25)

(2) Transform the sigma sampling points using the nonlinear function h(·):




θi,k|k−1 = h(xi,k|k−1), i = 0, 1, · · · , 2n,

ŷk|k−1 =
2n

∑
i=0

ωi
mθi,k|k−1.

(26)

(3) Estimate the observation-error covariance matrix:





Pyy
k|k−1 = Cov[yk|yk−1],

=
2n

∑
i=0

ω
j
c(θi,k|k−1 − ŷk|k−1),

× (θi,k|k−1 − ŷk|k−1)
T + R,

Pxy
k|k−1 = Cov[xk, yk|yk−1],

=
2n

∑
i=0

ω
j
c(θi,k|k−1 − ŷk|k−1),

× (θi,k|k−1 − ŷk|k−1)
T .

(27)

(4) Calculate the theoretical and actual covariances:





Mk =
2n

∑
i=0

ω
j
c(θi,k|k−1 − ŷk|k−1),

× (θi,k|k−1 − ŷk|k−1)
T + R,

Nk =
1
n

k

∑
i
[yi − yi|i−1][yi − yi|i−1]

T .

i = k− n + 1.

(28)

(5) Update the observation noise variance:

{
Gk = Mk − Nk,

V̂k = µkVk,
(29)

where Gk is the input value of the fuzzy controller and µk is the output value as
an adjusted factor through the fuzzy inference system. We can then obtain the
new Pyy

k|k−1.
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(6) Update the posterior states estimation:





Kk = Pxy
k|k−1(Pyy

k|k−1)
−1,

x̂k|k = x̂k|k−1 + K(yk − ŷk|k−1),

Pk|k = Pk|k−1 − KkPyy
k|k−1KT

k ,

(30)

where Kk is the Kalman filter gain. With the update of Vk, we can get the updated
Kalman filter gain Kk and the state error covariance matrix Pk|k.

5. Numerical Verification and Discussion

The current and voltage data under FUDS and BJDST conditions are used to verify
the accuracy of the SOC estimation algorithm. The corresponding current and voltage
profiles at the temperature of 25 ◦C are shown in Figure 9. Due to limited space, we omit
the current and voltage data at 0 ◦C and 45 ◦C, available at the CALCE Battery Research
Group. To verify the validity and feasibility of the proposed method, we also compare the
FFUKF with the EKF and FUKF algorithms.
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Figure 9. Current and voltage profiles of the operation conditions: FUDS and BJDST.

5.1. Experimental Results at 25 ◦C

Figures 10 and 11 show the SOC estimation results and estimation error, respectively.
The blue line corresponds to the FFUKF. The red and magenta lines stand for FUKF
and EKF, respectively. Also, the three algorithms are compared with the reference value
represented by a black line. The closer to the reference, the higher the estimation accuracy
of the algorithm. In order to see the differences between each algorithm more clearly,
Figure 10 is partially magnified. We verify that the estimation results of the FFUKF are
closer to the reference value. Under the two operating conditions, one can note that the
FECM-based (FFUKF and FUKF) algorithm has higher accuracy than the ECM-based (EKF).
Also, the FFUKF is more accurate than the FUKF. From Figure 11, the absolute estimation
error of SOC of the FFUKF is no more than 0.005 under the two operating conditions,
but the error of the other two algorithms is above 0.005 during the whole cycle. Even if
disturbed by the noise environment, the FFUKF can still maintain high accuracy without
large fluctuation, which shows that the proposed algorithm is stable to a certain extent.
Additionally, it is clear that the error of the FFUKF is smoother than the one of the EKF,
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which confirms the superiority of the FFUKF in noisy environment. Table 3 summarizes
the RMSE of the EKF, FUKF and FFUKF at 25 ◦C. Under the two operation conditions, the
RMSE of the proposed algorithm is bellow 0.20%. However, the RMSE of the other two
algorithms are 0.68% and 1.95%, respectively. This more clearly shows that our proposed
algorithm has high accuracy over traditional methods.
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Figure 10. The SOC estimation curves under BJDST and FUDS at 25 ◦C.
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Figure 11. The SOC estimation error curves under BJDST and FUDS at 25 ◦C.
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Table 3. The RMSE under BJDST and FUDS at 25 ◦C.

RMSE EKF FUKF FFUKF

FUDS 0.87% 0.67% 0.20%

BJDST 1.95% 0.68% 0.13%

Because SOC estimation of lithium-ion batteries is affected by temperature, preserving
the SOC estimation accuracy at different temperatures is crucial. As such, we carried out
two sets of experiments at 0 ◦C and 45 ◦C to demonstrate the robustness of the proposed
method at different temperatures.

5.2. Experimental Results at 0 ◦C

Figures 12 and 13 show the SOC estimation results and the estimation error under two
cases at 0 ◦C, respectively. The ECM-based algorithm is obviously much worse than the
FECM-based one in terms of accuracy. Figure 12 is partially magnified in order to highlight
the differences. According to Figure 12, one can see that the blue line, representing the
FFUKF, is closer to the reference value, which also shows that the estimation accuracy of
the FFUKF is higher. From Figure 13, it is easy to see that the FFUKF can also maintain
high accuracy at low temperatures. Most of the time, the estimation error of the FFUKF is
kept within 0.005. The estimation errors of the other two algorithms are more than 0.01
in most of the time. In addition, the estimation error of the EKF fluctuates greatly, which
shows that the EKF is very unstable in low temperature environment. The FFUKF has small
fluctuation, which shows that it can maintain good estimation accuracy and has a certain
stability even at low temperature. Table 4 gives a more intuitive explanation through the
RMSE. Under FUDS, the RMSE of the FFUKF is 0.20%. However, the RMSE of the other
two methods are more than 0.85%. Meanwhile, the RMSE of the FFUKF is lower than that
presented by traditional algorithm. This proves once again that our method is superior
to the traditional methods in low temperature environment. Under the two conditions,
although the result is worse than that under the temperature of 25 ◦C, the maximum error
of the FFUKF is still less than 0.32%.
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Figure 12. The SOC estimation curves under BJDST and FUDS at 0 ◦C.
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Figure 13. The SOC estimation error curves under BJDST and FUDS at 0 ◦C.

Table 4. The RMSE under BJDST and FUDS at 0 ◦C.

RMSE EKF FUKF FFUKF

FUDS 0.88% 0.85% 0.20%

BJDST 1.49% 1.04% 0.32%

5.3. Experimental Results at 45 ◦C

Figures 14 and 15 show the SOC estimation results and the estimation error under
FUDS and BJDST at 45 ◦C, respectively. Figure 14 is also partially magnified so that we can
more clearly observe which line is closer to the reference value represented by the black line.
Undoubtedly, compared with the other two traditional algorithms, the FFUKF represented
by the blue line is closer to the reference and has very high accuracy. Also, It follows from
Figure 14, that the ECM-based algorithm (EKF) is much worse than the FECM-based (FUKF
and FFUKF) one in terms of accuracy. At a higher temperature (45 ◦C), the FECM-based
algorithm still reveals smaller error. From Figure 15, under the two working conditions,
the SOC estimation error of our algorithm does not exceed 0.01 in most of the time, but
the estimation error of the other two algorithms are much more than 0.01. Especially, in
the case of FUDS, the error of the EKF varies quickly. The fluctuation of the FFUKF is
smaller than that of the EKF. This further verifies that our algorithm based on the FFUKF
has a certain stability at high temperature. The FFUKF still yields higher accuracy at a
higher temperature. Table 5 gives a more intuitive explanation through RMSE. In both
cases, the RMSE of the EKF and FUKF exceeds 1%, but the RMSE of the FFUKF does not
exceed 0.58%. This not only shows that the FFUKF is superior to the other two traditional
algorithms, but also maintains a certain accuracy under the condition of high temperature
and noise. However, compared with low temperature 0 ◦C and normal temperature 25 ◦C,
the accuracy is not good enough, which may be because the battery model we established
is vulnerable to high temperature.

From the above three sets of experiments, one can conclude that the accuracy of the
FFUKF is always better than the one obtained with the other two methods in all operating
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conditions (FUDS and BJDST). Moreover, although the operating conditions are poor, the
RMSE can almost be kept within 0.58%. It can maintain a certain stability even under
the conditions of ambient temperature and noise. More important, the FFUKF solves the
problem of low estimation accuracy caused by noise in practical operation. Obviously, the
estimation accuracy of the algorithm is relatively higher at the same temperature.
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Figure 14. The SOC estimation curves under BJDST and FUDS at 45 ◦C.
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Figure 15. The SOC estimation error curves under BJDST and FUDS at 45 ◦C.
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Table 5. The RMSE under BJDST and FUDS at 45 ◦C.

RMSE EKF FUKF FFUKF

FUDS 1.49% 1.08% 0.51%

BJDST 2.18% 1.20% 0.58%

6. Conclusions

In this paper a new SOC estimation algorithm named fuzzy fractional-order unscented
Kalman filter was proposed to estimate the SOC of lithium-ion batteries accurately. The
method can infer the measurement noise in real time, so as to improve the influence of the
measurement noise on the estimation results as the working conditions change. Compared
with the EKF and FUKF algorithms, the experimental results indicated that the proposed
method has better performance during the working conditions of BJDST and FUDS. It was
also verified that the accuracy of the proposed algorithm is better than the EKF and FUKF
at different temperatures.

Author Contributions: Methodology, L.C.; software, H.K.; validation and data curation, R.W.;
writing—original draft preparation, Y.C.; writing—review and editing, A.M.L. and L.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Funds of China (No. 62073114,
No. 11971032) and Key Research and Development Project of Anhui Province (202104a05020035).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable

Data Availability Statement: The data that support the findings of this study are available which
has included references to the CALCE article that describes the experiments conducted for generating
the data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fernández, R.Á. A more realistic approach to electric vehicle contribution to greenhouse gas emissions in the city. J. Clean. Prod.

2018, 172, 949–959. [CrossRef]
2. Larcher, D.; Tarascon, J.M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

[CrossRef] [PubMed]
3. Cheng, K.W.E.; Divakar, B.; Wu, H.; Ding, K.; Ho, H.F. Battery-management system (BMS) and SOC development for electrical

vehicles. IEEE Trans. Veh. Technol. 2010, 60, 76–88. [CrossRef]
4. Zhang, Q.; Li, Y.; Shang, Y.; Duan, B.; Cui, N.; Zhang, C. A fractional-order kinetic battery model of lithium-ion batteries

considering a nonlinear capacity. Electronics 2019, 8, 394. [CrossRef]
5. He, H.; Xiong, R.; Guo, H.; Li, S. Comparison study on the battery models used for the energy management of batteries in electric

vehicles. Energy Convers. Manag. 2012, 64, 113–121. [CrossRef]
6. Chen, Y.; Yang, G.; Liu, X.; He, Z. A time-efficient and accurate open circuit voltage estimation method for lithium-ion batteries.

Energies 2019, 12, 1803. [CrossRef]
7. Aylor, J.H.; Thieme, A.; Johnso, B. A battery state-of-charge indicator for electric wheelchairs. IEEE Trans. Ind. Electron. 1992,

39, 398–409. [CrossRef]
8. Feng, F.; Lu, R.; Zhu, C. A combined state of charge estimation method for lithium-ion batteries used in a wide ambient

temperature range. Energies 2014, 7, 3004–3032. [CrossRef]
9. Waag, W.; Fleischer, C.; Sauer, D.U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid

vehicles. J. Power Sources 2014, 258, 321–339. [CrossRef]
10. Tian, J.; Xiong, R.; Shen, W.; Lu, J. State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled

approach. Appl. Energy 2021, 291, 116812. [CrossRef]
11. Belhani, A.; M’Sirdi, N.K.; Naamane, A. Adaptive sliding mode observer for estimation of state of charge. Energy Procedia 2013,

377–386. [CrossRef]
12. Nath, A.; Gupta, R.; Mehta, R.; Bahga, S.S.; Gupta, A.; Bhasin, S. Attractive ellipsoid sliding mode observer design for state of

charge estimation of lithium-ion cells. IEEE Trans. Veh. Technol. 2020, 69, 14701–14712. [CrossRef]

250



Fractal Fract. 2021, 5, 91

13. Chen, Z.; Zhou, J.; Zhou, F.; Xu, S. State-of-charge estimation of lithium-ion batteries based on improved H infinity filter algorithm
and its novel equalization method. J. Clean. Prod. 2021, 290, 125180. [CrossRef]

14. Li, L.; Hu, M.; Xu, Y.; Fu, C.; Jin, G.; Li, Z. State of charge estimation for lithium-ion power battery based on H-infinity filter
Algorithm. Appl. Sci. 2020, 10, 6371. [CrossRef]

15. Tao, J.; Zhu, D.; Sun, C.; Chu, D.; Ma, Y.; Li, H.; Li, Y.; Xu, T. A novel method of SOC estimation for electric vehicle based on
adaptive particle filter. Autom. Control. Comput. Sci. 2020, 54, 412–422.

16. Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; John Wiley & Sons: Hoboken, NJ, USA, 2006.
17. Xiao, R.; Shen, J.; Li, X.; Yan, W.; Pan, E.; Chen, Z. Comparisons of modeling and state of charge estimation for lithium-ion battery

based on fractional order and integral order methods. Energies 2016, 9, 184. [CrossRef]
18. Yang, S.; Zhou, S.; Hua, Y.; Zhou, X.; Liu, X.; Pan, Y.; Ling, H.; Wu, B. A parameter adaptive method for state of charge estimation

of lithium-ion batteries with an improved extended Kalman filter. Sci. Rep. 2021, 11, 1–15.
19. Julier, S.J.; Uhlmann, J.K. Unscented filtering and nonlinear estimation. Proc. IEEE 2004, 92, 401–422. [CrossRef]
20. Zhang, S.; Guo, X.; Zhang, X. An improved adaptive unscented kalman filtering for state of charge online estimation of lithium-ion

battery. J. Energy Storage 2020, 32, 101980. [CrossRef]
21. Han, J.; Kim, D.; Sunwoo, M. State-of-charge estimation of lead-acid batteries using an adaptive extended Kalman filter. J. Power

Sources 2009, 188, 606–612. [CrossRef]
22. Sun, F.; Hu, X.; Zou, Y.; Li, S. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for

electric vehicles. Energy 2011, 36, 3531–3540. [CrossRef]
23. Zhang, Z.; Jiang, L.; Zhang, L.; Huang, C. State-of-charge estimation of lithium-ion battery pack by using an adaptive extended

Kalman filter for electric vehicles. J. Energy Storage 2021, 37, 102457. [CrossRef]
24. Zeng, M.; Zhang, P.; Yang, Y.; Xie, C.; Shi, Y. SOC and SOH joint estimation of the power batteries based on fuzzy unscented

Kalman filtering algorithm. Energies 2019, 12, 3122. [CrossRef]
25. Lai, X.; Qiao, D.; Zheng, Y.; Zhou, L. A fuzzy state-of-charge estimation algorithm combining ampere-hour and an extended

Kalman filter for Li-ion batteries based on multi-model global identification. Appl. Sci. 2018, 8, 2028. [CrossRef]
26. Victor, S.; Malti, R.; Garnier, H.; Oustaloup, A. Parameter and differentiation order estimation in fractional models. Automatica

2013, 49, 926–935. [CrossRef]
27. Chen, Y.; Huang, D.; Zhu, Q.; Liu, W.; Liu, C.; Xiong, N. A new state of charge estimation algorithm for lithium-ion batteries

based on the fractional unscented Kalman filter. Energies 2017, 10, 1313. [CrossRef]
28. Xiong, R.; Tian, J.; Shen, W.; Sun, F. A novel fractional order model for state of charge estimation in lithium ion batteries. IEEE

Trans. Veh. Technol. 2018, 68, 4130–4139. [CrossRef]
29. Sabatier, J.; Cugnet, M.; Laruelle, S.; Grugeon, S.; Sahut, B.; Oustaloup, A.; Tarascon, J. A fractional order model for lead-acid

battery crankability estimation. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1308–1317. [CrossRef]
30. Liu, C.; Liu, W.; Wang, L.; Hu, G.; Ma, L.; Ren, B. A new method of modeling and state of charge estimation of the battery. J.

Power Sources 2016, 320, 1–12. [CrossRef]
31. Xu, J.; Mi, C.C.; Cao, B.; Cao, J. A new method to estimate the state of charge of lithium-ion batteries based on the battery

impedance model. J. Power Sources 2013, 233, 277–284. [CrossRef]
32. Wei, Z.; Zou, C.; Leng, F.; Soong, B.H.; Tseng, K.J. Online model identification and state-of-charge estimate for lithium-ion battery

with a recursive total least squares-based observer. IEEE Trans. Ind. Electron. 2017, 65, 1336–1346. [CrossRef]
33. Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V. Fractional-Order Systems and Controls: Fundamentals and Applications;

Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010.
34. Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 2012, 198, 359–367.

[CrossRef]
35. Wang, B.; Liu, Z.; Li, S.E.; Moura, S.J.; Peng, H. State-of-Charge estimation for lithium-ion batteries based on a nonlinear fractional

model. IEEE Trans. Control Syst. Technol. 2017, 25, 3–11. [CrossRef]
36. Hu, X.; Yuan, H.; Zou, C.; Li, Z.; Zhang, L. Co-estimation of state of charge and state of health for lithium-ion batteries based on

fractional-order calculus. IEEE Trans. Veh. Technol. 2018, 67, 10319–10329. [CrossRef]
37. Aggab, T.; Avila, M.; Vrignat, P.; Kratz, F. Unifying model-based prognosis with learning-based time-series prediction methods:

application to Li-Ion battery. IEEE Syst. J. 2021. [CrossRef]
38. Coronel-Escamilla, A.; Gómez-Aguilar, J.; Torres-Jiménez, J.; Mousa, A.; Elagan, S. Fractional synchronization involving fractional

derivatives with nonsingular kernels: Application to chaotic systems. Math. Methods Appl. Sci. 2021. [CrossRef]
39. Zheng, F.; Xing, Y.; Jiang, J.; Sun, B.; Kim, J.; Pecht, M. Influence of different open circuit voltage tests on state of charge online

estimation for lithium-ion batteries. Applied Energy 2016, 183, 513–525. [CrossRef]
40. Tavakoli, M.; Tabatabaei, M. Controllability and observability analysis of continuous-time multi-order fractional systems.

Multidimens. Syst. Signal Process. 2017, 28, 427–450. [CrossRef]

251





MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Fractal and Fractional Editorial Office
E-mail: fractalfract@mdpi.com

www.mdpi.com/journal/fractalfract

Disclaimer/Publisher’s Note: The title and front matter of this reprint are at the discretion of the

Guest Editors. The publisher is not responsible for their content or any associated concerns. The

statements, opinions and data contained in all individual articles are solely those of the individual

Editors and contributors and not of MDPI. MDPI disclaims responsibility for any injury to people or

property resulting from any ideas, methods, instructions or products referred to in the content.





Academic Open 
Access Publishing

mdpi.com ISBN 978-3-7258-2679-7


