
mdpi.com/journal/information

Special Issue Reprint

Best IDEAS
International Database Engineered
Applications Symposium

Edited by
Peter Z. Revesz

Best IDEAS: International Database
Engineered Applications Symposium

Best IDEAS: International Database
Engineered Applications Symposium

Guest Editor

Peter Z. Revesz

Basel ‚ Beijing ‚ Wuhan ‚ Barcelona ‚ Belgrade ‚ Novi Sad ‚ Cluj ‚ Manchester

Guest Editor

Peter Z. Revesz

School of Computing

University of Nebraska-Lincoln

Lincoln

United States

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal Information

(ISSN 2078-2489), freely accessible at: www.mdpi.com/journal/information/special issues/

1D5WDEWMG5.

For citation purposes, cite each article independently as indicated on the article page online and

using the guide below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-2754-1 (Hbk)

ISBN 978-3-7258-2753-4 (PDF)

https://doi.org/10.3390/books978-3-7258-2753-4

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

www.mdpi.com/journal/information/special_issues/1D5WDEWMG5
www.mdpi.com/journal/information/special_issues/1D5WDEWMG5
https://doi.org/10.3390/books978-3-7258-2753-4

Contents

About the Editor . vii

Preface . ix

Peter Z. Revesz
Best IDEAS: Special Issue of the International Database Engineered Applications Symposium
Reprinted from: Information 2024, 15, 713, https://doi.org/10.3390/info15110713 1

Victor Casamayor Pujol, Andrea Morichetta, Ilir Murturi, Praveen Kumar Donta and
Schahram Dustdar
Fundamental Research Challenges for Distributed Computing Continuum Systems
Reprinted from: Information 2023, 14, 198, https://doi.org/10.3390/info14030198 5

Ali Abbasi Tadi, Saroj Dayal, Dima Alhadidi and Noman Mohammed
Comparative Analysis of Membership Inference Attacks in Federated and Centralized Learning
Reprinted from: Information 2023, 14, 620, https://doi.org/10.3390/info14110620 15

Francisco Enguix, Carlos Carrascosa and Jaime Rincon
Exploring Federated Learning Tendencies Using a Semantic Keyword Clustering Approach
Reprinted from: Information 2024, 15, 379, https://doi.org/10.3390/info15070379 41

Panagiotis Filippakis, Stefanos Ougiaroglou and Georgios Evangelidis
Prototype Selection for Multilabel Instance-Based Learning †

Reprinted from: Information 2023, 14, 572, https://doi.org/10.3390/info14100572 68

Shruti Daggumati and Peter Z. Revesz
Convolutional Neural Networks Analysis Reveals Three Possible Sources of Bronze Age
Writings between Greece and India :

Reprinted from: Information 2023, 14, 227, https://doi.org/10.3390/info14040227 90

Peter Z. Revesz
Archaeogenetic Data Mining Supports a Uralic–Minoan Homeland in the Danube Basin :

Reprinted from: Information 2024, 15, 646, https://doi.org/10.3390/info15100646 109

Giacomo Bergami, Samuel Appleby and Graham Morgan
Quickening Data-Aware Conformance Checking through Temporal Algebras :

Reprinted from: Information 2023, 14, 173, https://doi.org/10.3390/info14030173 128

Giacomo Bergami
Streamlining Temporal Formal Verification over Columnar Databases
Reprinted from: Information 2024, 15, 34, https://doi.org/10.3390/info15010034 188

Joseph Ajayi, Yao Xu, Lixin Li and Kai Wang
Enhancing Flight Delay Predictions Using Network Centrality Measures
Reprinted from: Information 2024, 15, 559, https://doi.org/10.3390/info15090559 210

Muhammad Alfian, Umi Laili Yuhana, Eric Pardede and Akbar Noto Ponco Bimantoro
Correction of Threshold Determination in Rapid-Guessing Behaviour Detection
Reprinted from: Information 2023, 14, 422, https://doi.org/10.3390/info14070422 221

Reza Shahbazian and Irina Trubitsyna
DEGAIN: Generative-Adversarial-Network-Based Missing Data Imputation
Reprinted from: Information 2022, 13, 575, https://doi.org/10.3390/info13120575 233

v

About the Editor

Peter Z. Revesz

Dr. Peter Z. Revesz earned a B.S. summa cum laude with a double major in computer science and

mathematics from Tulane University and a Ph.D. in computer science from Brown University. He was

a postdoctoral fellow at the University of Toronto before joining the University of Nebraska-Lincoln,

where he is a professor at the School of Computing. He is an expert in computational linguistics,

databases, bioinformatics, and geoinformatics. He is the editor of Computational Linguistics and

Natural Language Processing (MDPI, 2024) and the author of Introduction to Databases: From

Biological to Spatio-Temporal (Springer, 2010). He has held visiting appointments at the IBM T.J.

Watson Research Center, INRIA, the Max Planck Institute for Computer Science, the University of

Athens, the University of Hasselt, the University of Helsinki, the U.S. Air Force Office of Scientific

Research, and the U.S. Department of State. He is a recipient of an AAAS Science & Technology Policy

Fellowship, a J. William Fulbright Scholarship, an Alexander von Humboldt Research Fellowship, a

Jefferson Science Fellowship, a National Science Foundation CAREER award, a Faculty International

Scholar of the Year award by Phi Beta Delta, and was ranked in the Stanford/Elsevier World’s Top

2% Scientists list.

vii

Preface

The aim of this Special Issue is to present the latest research on database engineered applications,

including applications in the areas of distributed computing systems, federated learning, learning

instance selection, data analytics and data mining, temporal databases, data prediction and

imputation, and the detection of user behavior. The authors are leading international experts in

these areas. Most of the authors already presented preliminary versions of their works at various

International Database Engineered Applications Symposia in the past few years, but this Special

Issue contains a collection of their full journal articles. The readers can apply these authors’

cutting-edge ideas and techniques to various specific applications. In addition, several articles

describe many challenging open problems for researchers who would like to find novel topics in

database engineering.

Peter Z. Revesz

Guest Editor

ix

Citation: Revesz, P.Z. Best IDEAS:

Special Issue of the International

Database Engineered Applications

Symposium. Information 2024, 15, 713.

https://doi.org/10.3390/

info15110713

Received: 22 October 2024

Revised: 2 November 2024

Accepted: 4 November 2024

Published: 6 November 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Editorial

Best IDEAS: Special Issue of the International Database
Engineered Applications Symposium
Peter Z. Revesz 1,2

1 School of Computing, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
peter.revesz@unl.edu

2 Department of Classics and Religious Studies, College of Arts and Sciences, University of Nebraska-Lincoln,
Lincoln, NE 68588, USA

1. Introduction

Database engineered applications cover a broad range of topics including various
design and maintenance methods, as well as data analytics and data mining algorithms and
learning strategies for enterprise, distributed, or federated data stores. The exponentially
growing amounts of commercial, governmental, and non-government organizational data
provide a continued challenge for many database engineered applications. The collection of
papers in this Special Issue makes several fundamental contributions to this research area.

This Special Issue is primarily based on extended versions of selected papers from the
27th International Database Engineered Applications Symposium (IDEAS) held in 2023 in
Heraklion, Crete, Greece, as well as selected papers from prior IDEAS conferences. We also
invited additional papers on the conference theme, and they also underwent a rigorous
review process.

These invited papers included the paper “Fundamental Research Challenges for
Distributed Computing Continuum Systems” by Schahram Dustdar, Professor and Head of
the Distributed Systems group at the Vienna University of Technology (TU Wien), and his
coworkers [1]. Schahram Dustdar was invited to contribute to this Special Issue because he
has served as one of the invited speakers at several IDEAS conferences. This paper [1] lays
out a bold vision for the future of distributed computing systems.

The other papers in the Special Issue cover a range of topics, as follows.

2. Federated Learning and Learning Instance Selection

In 2010, Revesz and Triplet [2] introduced the concept—though not the term—of fed-
erated learning, in which multiple entities collaborate to train a model without sharing the
data due to privacy concerns. Revesz and Triplet [2] gave the example of a set of hospitals
who may not share information about their cardiology patients because of patient privacy
restrictions. Revesz and Triplet [2] proposed that each hospital train its own classification
model on their local data, and then they share the classification models instead of the raw
data. Revesz and Triplet [2] also presented several classification integration methods based
on constraint databases [3]. Bonawitz et al. [4] termed this type of collaborative learning
‘federated learning’ and applied it to a set of mobile devices training a neural network.
Federated learning has become a very active research area since then [5]. It should not be
confused with federated databases [6], which also cooperate in answering queries, but not
in learning.

Two papers in this Special Issue deal with the topic of federated learning. The paper
“Comparative Analysis of Membership Inference Attacks in Federated and Centralized
Learning” by Abbasi Tadi et al. [7] describes several methods that can be used to prevent po-
tential attackers from inferring sensitive data by intercepting updates transmitted between
training parties and a central server which maintains the common learned model.

Information 2024, 15, 713. https://doi.org/10.3390/info15110713 https://www.mdpi.com/journal/information1

Information 2024, 15, 713

The paper “Exploring Federated Learning Tendencies Using a Semantic Keyword
Clustering Approach” by Enguix, Carrascosa, and Rincon [8] considers identifying current
trends and emerging subareas within a research area. The authors propose an automatic
semantic keyword clustering method. They apply their method to the set of federated
learning research papers published since 2017 and identify the fastest growing subareas.

The paper “Prototype Selection for Multilabel Instance-Based Learning” by Filippakis,
Ougiaroglou, and Evangelidis [9] considers the problem of reducing the size of the training
set in the case of multilabel instance-based classification learning. Here, the term “mul-
tilabel” means that each instance can belong to several classes. While there are several
well-known algorithms for reducing the size of the training set in the case of single-label
instance-based classification learning, the multilabel case was an open problem. Filippakis
et al. [9] propose several solutions to this open problem.

We would like to point out that the authors of [9] had the highest and the authors
of [7] had the second highest ranked paper at the IDEAS 2023 conference, and their journal
articles are also excellent contributions to this Special Issue.

3. Data Analysis and Data Mining

Learning is closely related to data analysis and data mining. In fact, the paper “Convo-
lutional Neural Networks Analysis Reveals Three Possible Sources of Bronze Age Writings
between Greece and India” by Daggumati and Revesz [10] included training a set of con-
volutional neural networks (CNNs) to recognize eight Bronze Age scripts as a first step.
In a second step, Daggumati and Revesz passed each script’s signs to each other script’s
trained CNN. As each CNN recognized each of the foreign scripts’ signs as a local sign, a
table of sign correspondences was found. Two scripts could be identified as being related if
their sign correspondence table showed a one-to-one function. Based on that idea, the eight
Bronze Age scripts were found to form three groups: (1) Sumerian pictograms, the Indus
Valley script, and the proto-Elamite script; (2) Cretan hieroglyphs and Linear B; and (3) the
Phoenician, Greek, and Brahmi alphabets. The CNN-based script similarity method of
Daggumati and Revesz [10] improves on an earlier computational script similarity method
based on feature vectors [11]. A better understanding of script similarities helps in the
decipherment of ancient inscriptions [12,13].

The paper “Archaeogenetic Data Mining Supports a Uralic–Minoan Homeland in the
Danube Basin” by Revesz [14] applies data mining to the rapidly growing archaeogenetic
data. The available archaeogenetic data are often incomplete and therefore more difficult
to analyze than regular genetic data. By using some novel data mining algorithms, it was
possible to show that the Minoans, who formed the first Bronze Age civilization in Europe,
mostly originated from the lower Danube Basin. A better understanding of the origin of the
Minoans helps to narrow down the set of languages to be considered as likely cognates with
the Minoan language. This could avoid resorting to brute-force methods of cryptanalysis
where all possible ancient languages are considered from the Mediterranean and Black Sea
areas [15]. The lower Danube Basin is a good candidate for a Proto-Uralic language area in
the Neolithic.

4. Temporal Logic and Verification

Linear Temporal Logic over finite traces (LTLf) can be used to express a set of temporal
specifications Φ. Verifying that a system satisfies an LTLf specification is a computationally
difficult task. Therefore, an extended LTLf (xtLTLf) is proposed by Bergami, Appleby,
and Morgan [16] in the paper “Quickening Data-Aware Conformance Checking through
Temporal Algebras”. They describe systems by a set of traces of observed and completed
labeled activities expressing one possible run of a process. Verifying that such system
descriptions satisfy an xtLTLf specification can be efficiently checked if the set of traces are
first converted to a columnar data storage [16].

The paper “Streamlining Temporal Formal Verification over Columnar Databases”
by Bergami [17] takes this idea further by considering the following four new operators:

2

Information 2024, 15, 713

ChainResponse(A,B), ChainPrecedence(A,B), AltResponse(A,B), and AltPrecedence(A,B).
For example, ChainResponse(A,B) is true if the activation of A is immediately followed
by the target B. Bergami [17] shows that expressions including these operators can also be
checked efficiently if the traces are converted to columnar data storage.

5. Prediction, Detection and Imputation

The paper “Enhancing Flight Delay Predictions Using Network Centrality Measures”
by Ajayi et al. [18] aims at improving the accuracy of predicting airplane flight delays. The
authors improve the prediction accuracy by introducing a novel method based on network
centrality measures that are sensitive to the structure of the flight network.

The paper “Correction of Threshold Determination in Rapid-Guessing Behaviour
Detection” by Alfian et al. [19] concerns detecting whether a student is only guessing
answers on a multiple-choice test. The traditional method of detecting whether a student
is guessing is based on setting a fixed threshold response time, say K seconds, where K
is a small number like 3 or 5 depending on the overall difficulty level of the test. If the
student’s response time is less than K seconds, then the student is assumed to have guessed
the answer. Alfian et al. [19] criticize this K-seconds approach because the difficulty of
the questions could vary on a test. They show that the accuracy of detecting guessing is
improved when the threshold is a variable depending on the difficulty level of the questions.

Greco, Molinaro, and Trubitsyna already considered the challenging topic of incom-
plete databases in an earlier IDEAS paper [20]. Now, Shahbazian and Trubitsyna [21]
address the issue again in the paper “DEGAIN: Generative-Adversarial-Network-Based
Missing Data Imputation”. They propose handling missing data in incomplete databases by
means of data imputation, where the missing values are estimated based on the rest of the
data. Generative Adversarial Imputation Nets (GAINs) can be used to generate synthetic
data that are like the real data [22]. The main idea is to have a generator of fake data and
a discriminator that tries to tell whether a datum is real or fake. However, Shahbazian
and Trubitsyna [21] argue that there is a strong correlation among real data. Hence, a
deconvolution process is needed to reduce these correlations, and then the generator and
discriminator network will work more effectively. Combining deconvolution and GAIN
gives rise to the name DEGAIN. We hope that DEGAIN will gain widespread acceptance
in data imputation in the future.

Acknowledgments: I would like to thank the many reviewers of the papers submitted to this Special
Issue. Their detailed comments and thoughtful recommendations regarding acceptance or rejection
helped to maintain a high standard for this Special Issue. I also would like to thank the Section
Managing Editor at MDPI for this Special Issue, for her outstanding help in every aspect of the
organization work, including her help in finding some reviewers. I thank Haridimos Kondylakis for
serving as editor of [14] and Xin Ning for serving as editor of [10] to avoid any conflicts of interest in
the review process. Finally, I express my great appreciation for the many talented contributors to this
Special Issue, as well as the authors and editors that contributed to the IDEAS 2023 conference and
earlier IDEAS conferences. It was great working with the authors throughout the publication process
and learning about their exciting results. I wish all of them much success in their future research.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Casamayor Pujol, V.; Morichetta, A.; Murturi, I.; Donta, P.K.; Dustdar, S. Fundamental Research Challenges for Distributed

Computing Continuum Systems. Information 2023, 14, 198. [CrossRef]
2. Revesz, P.Z.; Triplet, T. Classification integration and reclassification using constraint databases. Artif. Intell. Med. 2010, 49, 79–91.

[CrossRef] [PubMed]
3. Kanellakis, P.C.; Kuper, G.M.; Revesz, P.Z. Constraint query languages. J. Comput. Syst. Sci. 1995, 51, 26–52. [CrossRef]
4. Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical secure

aggregation for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, Association for Computing Machinery, New York, NY, USA, 30 October–3 November 2017;
pp. 1175–1191.

3

Information 2024, 15, 713

5. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings,
R.; et al. Advances and open problems in federated learning. Found. Trends Mach. Learn. 2021, 14, 1–210. [CrossRef]

6. Sheth, A.P.; Larson, J.A. Federated database systems for managing distributed, heterogeneous, and autonomous databases. ACM
Comput. Surv. 1990, 22, 183–236. [CrossRef]

7. Abbasi Tadi, A.; Dayal, S.; Alhadidi, A.; Mohammed, N. Comparative Analysis of Membership Inference Attacks in Federated
and Centralized Learning. Information 2023, 14, 620. [CrossRef]

8. Enguix, F.; Carrascosa, C.; Rincon, J. Exploring Federated Learning Tendencies Using a Semantic Keyword Clustering Approach.
Information 2024, 15, 379. [CrossRef]

9. Filippakis, P.; Ougiaroglou, S.; Evangelidis, G. Prototype Selection for Multilabel Instance-Based Learning. Information 2023, 14,
572. [CrossRef]

10. Daggumati, S.; Revesz, P.Z. Convolutional Neural Networks Analysis Reveals Three Possible Sources of Bronze Age Writings
between Greece and India. Information 2023, 14, 227. [CrossRef]

11. Revesz, P.Z. Establishing the West-Ugric Language Family with Minoan, Hattic and Hungarian by a Decipherment of Linear A.
WSEAS Trans. Inf. Sci. Appl. 2017, 14, 306–335.

12. Revesz, P.Z. A Translation of the Arkalochori Axe and the Malia Altar Stone. WSEAS Trans. Inf. Sci. Appl. 2017, 14, 124–133.
13. Hughes-Castleberry, K. Could AI Language Models Like ChatGPT Unlock Mysterious Ancient Texts? Discover Magazine. 11

April 2023. Available online: https://www.discovermagazine.com/technology/could-ai-language-models-like-chatgpt-unlock-
mysterious-ancient-texts (accessed on 15 April 2023).

14. Revesz, P.Z. Archaeogenetic Data Mining Supports a Uralic–Minoan Homeland in the Danube Basin. Information 2024, 15, 646.
[CrossRef]

15. Nepal, A.; Perono Cacciafoco, F. Minoan Cryptanalysis: Computational Approaches to Deciphering Linear A and Assessing its
Connections with Language Families from the Mediterranean and the Black Sea Areas. Information 2024, 15, 73. [CrossRef]

16. Bergami, G.; Appleby, S.; Morgan, G. Quickening Data-Aware Conformance Checking through Temporal Algebras. Information
2023, 14, 173. [CrossRef]

17. Bergami, G. Streamlining Temporal Formal Verification over Columnar Databases. Information 2024, 15, 34. [CrossRef]
18. Ajayi, J.; Xu, Y.; Li, L.; Wang, K. Enhancing Flight Delay Predictions Using Network Centrality Measures. Information 2024, 15,

559. [CrossRef]
19. Alfian, M.; Yuhana, U.L.; Pardede, E.; Bimantoro, A.N.P. Correction of Threshold Determination in Rapid-Guessing Behaviour

Detection. Information 2023, 14, 422. [CrossRef]
20. Greco, S.; Molinaro, C.; Trubitsyna, I. Algorithms for computing approximate certain answers over incomplete databases. In

Proceedings of the 22nd International Database Engineering and Applications Symposium, Villa San Giovanni, Italy, 18–20 June
2018; ACM Press: New York, NY, USA, 2018; pp. 1–4.

21. Shahbazian, R.; Trubitsyna, I. DEGAIN: Generative-Adversarial-Network-Based Missing Data Imputation. Information 2022, 13,
575. [CrossRef]

22. Yoon, J.; Jordon, J.; Schaar, M. GAIN: Missing data imputation using generative adversarial nets. In Proceedings of the
International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5689–5698.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

4

Citation: Casamayor Pujol, V.;

Morichetta, A.; Murturi, I.; Kumar

Donta, P.; Dustdar, S. Fundamental

Research Challenges for Distributed

Computing Continuum Systems .

Information 2023, 14, 198. https://

doi.org/10.3390/info14030198

Academic Editor: Hamid R. Arabnia

Received: 14 January 2023

Revised: 7 March 2023

Accepted: 16 March 2023

Published: 22 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Fundamental Research Challenges for Distributed Computing
Continuum Systems
Victor Casamayor Pujol * , Andrea Morichetta , Ilir Murturi and Praveen Kumar Donta
and Schahram Dustdar

Distributed Systems Group, TU Wien, 1040 Vienna, Austria; a.morichetta@dsg.tuwien.ac.at (A.M.);
i.murturi@dsg.tuwien.ac.at (I.M.); p.donta@dsg.tuwien.ac.at (P.K.D.); dustdar@dsg.tuwien.ac.at (S.D.)
* Correspondence: v.casamayor@dsg.tuwien.ac.at

Abstract: This article discusses four fundamental topics for future Distributed Computing Con-
tinuum Systems: their representation, model, lifelong learning, and business model. Further, it
presents techniques and concepts that can be useful to define these four topics specifically for Dis-
tributed Computing Continuum Systems. Finally, this article presents a broad view of the synergies
among the presented technique that can enable the development of future Distributed Computing
Continuum Systems.

Keywords: distributed computing continuum systems; system representation; system model; lifelong
learning; business model

1. Introduction

The expansion from Cloud computing to Edge computing has brought a new paradigm
called the Distributed Computing Continuum [1–4]. This combines the virtually unlimited
resources of the Cloud with the heterogeneity and proximity of the Edge. To do so, the
Distributed Computing Continuum combines the underlying infrastructure of all other
computing tiers. Hence, the infrastructure becomes a first-class citizen compared to current
Internet-distributed systems.

Current research on Edge computing and Distributed Computing Continuum focuses
on solving specific problems, which produce particular solutions with narrow applicability.
A few examples include: in [5], the approach is tailored to an ultradense network; in [6],
the authors present a solution for a static description of the system; or in [7], the authors
present an orchestration for the edge-cloud that requires centralization on the Cloud. In
this article, we aim to show pointers to generalized solutions; we organize it through the
highlighting of four key aspects that require in-depth analysis, as well as a high degree of
agreement among the scientific community and the other stakeholders to make tangible
progress on the development of the Distributed Computing Continuum.

First, the Distributed Computing Continuum needs a novel representation beyond
the classical architecture of computer systems. Distributed Computing Continuum Systems
are built of a large variety of heterogeneous devices and networks. The system’s functional
requirements can either naturally evolve during their lifetime, dynamically change the
running services [8], or, more critically, suffer unexpected events. These changes will affect
the underlying infrastructure configuration, out-dating previous architectural representa-
tions. For instance, the Edge infrastructure requires a dynamic adaption to new devices
and network connections, leading to a completely new system from the perspective of
its design phase. This behavior contrasts with Cloud computing, where changes in the
underlying infrastructure can be updated, but the application is not affected.

Another challenge for Distributed Computing Continuum Systems is their model.
First, we need to clarify the difference between the representation and the model. Our view

Information 2023, 14, 198. https://doi.org/10.3390/info14030198 https://www.mdpi.com/journal/information5

Information 2023, 14, 198

is that representation is a description of the system, its components, its relations, and its
characteristics. Whereas we address the dynamic behavior of the system and its components
by the model. Nevertheless, both concepts require a certain level of agreement as, ideally,
one aims to have a compatible representation and model of the system. The complexity
of the system, coupled with its openness (i.e., many external and spontaneous actors can
affect the system), endangers the correctness of adaptation strategies; in the Cloud, this is
usually solved by only considering a single elasticity strategy per component [9]. Further, it
is complex to assess the impact of the adaptation on the entire system, i.e., using a different
set of Edge devices might imply moving data through another network, which can affect
privacy/security constraints. Hence, tools to describe the new behavior of the infrastructure
are needed.

The third key element is a lifelong learning framework. The dynamicity of the
environment, the user’s variety of behaviors, the evolution of functional requirements,
and the long-term usage of the underlying infrastructure require developing a learning
framework to keep high-quality standards during the system’s entire life cycle. This is
aligned with the idea presented in [10] about lifelong learning for self-adaptive systems.

The last facet that requires agreement among the community is the business model.
A key enabler for the Cloud tier has been its successful business model. Nevertheless,
the multi-tenant and multi-proprietary characteristics of the underlying infrastructure
produce a more challenging set of stakeholders for Distributed Computing Continuum
Systems. However, to attract the needed collaborations and investments to develop such
an ambitious computing tier, it is of utmost importance to develop certain agreements that
can enable the best business model. In this regard, we have witnessed, in the context of
the Mobile World Congress 2023, how the big telecommunication companies want to be
part of the Distributed Computing Continuum Systems by providing an API to application
developers to tailor their networks to the application’s needs, e.g., see “GSMA Open
Gateway”, from Future Networks (https://www.gsma.com/futurenetworks/?page_id=35
168—accessed 1 March 2023).

The main goal of this work presented as a vision for the emerging Distributed Com-
puting Continuum Systems, is to highlight the need for a holistic perspective. This type
of system is far from being a reality, and we believe that common grounds are required to
advance their development. Hence, we provide what we think are fundamental research
challenges to be solved and what are our research road-maps for each of them. We seek to
spark discussion and creativity in the research community to enable these future systems.

To sum up, Distributed Computing Continuum Systems require a broad agreement
on a representation, a model, a lifelong learning framework, and a business model to
enable its development. This article presents a few ideas on how to start building these
required blocks. In the following section, a technique or concept is presented for each of
the presented aspects to shape our vision of Distributed Computing Continuum Systems.
Then, we discuss the overall merging of all presented concepts and techniques, and we
finish this article with a conclusion and future work.

2. Vision

In this section, we present key elements for each of the previously introduced aspects that,
from our perspective, will be key for developing Distributed Computing Continuum Systems.

2.1. Representation

The characteristics of the Distributed Computing Continuum require new represen-
tations for Internet-distributed systems enabling dynamic systems and topologies. This
contrasts with the usage of the concept of system architecture, where the word architecture
refers to a static structure of the system. As previously discussed, the complex and dynamic
behavior of Distributed Computing Continuum calls for other techniques to represent these
systems, which can accommodate the dynamic behavior of the underlying infrastructure
and the system’s environment.

6

Information 2023, 14, 198

Further, a fundamental concept requires an in-depth discussion: the definition and
scope of the system and its relation to each component. Simply put, the Distributed Com-
puting Continuum needs to be understood as an ecosystem in which there are different
abstraction layers, where components are described and aggregated differently. Interest-
ingly, when one thinks about an ecosystem, the synergies and dependencies between the
components blur the definition of self, i.e., the boundaries of an autonomic component are
flexible and dependent on the purpose. Components interact with others both horizontally
and vertically with respect to their abstraction levels. In this regard, Distributed Computing
Continuum Systems have multi-level and multi-scale structures, and their components
show a dual tendency; from one side, they aim to be autonomous, and from the other side,
they need to be integrated with others to provide a complete view of the system. Hence,
they require defining what is the self : the entire system, a single autonomic component, or
all things simultaneously. Hence, we need to analyze and provide arguments for each case
to understand which is the best solution for the system’s representation.

Our initial intuition is that we need a holistic view of the system, considering it as a
system of systems and providing compatible tools at any level. Hence, we envision the
Markov Blanket as a key element to represent Distributed Computing Continuum Systems
given its nesting and filtering capacity [11].

Markov Blanket

The Markov Blanket, in Bayesian statistics, refers to the set of variables that contain
all needed information to determine a target variable. Simply put, the Markov Blanket
concept can be used to determine which variables influence another. Formally, if x is a
random variable, and Y is the set of random variables of the Markov Blanket of x, then
P(x|Y) = P(x|Y, Z), where Z represents any other random variable [12].

In large-scale Distributed Computing Continuum Systems, the Markov Blanket con-
cept can be seen as causal filtering, given that it allows working only with the subset of
variables affecting the target. This is key in terms of scalability, e.g., the problem of select-
ing the best device for each service in an application is NP-Hard with exponential time
complexity [13]; hence dealing with only the required subset of components can drastically
alleviate the difficulty. Further, the definition of a random variable within the Markov
Blanket scope is flexible, which means that regardless of the abstraction level in which
the variable exists, it will be possible to build its Markov Blanket. Hence, we can foresee
this as a nesting capability in which the higher-level abstraction Markov Blanket can be
decomposed as a set of other Markov Blankets at lower-level abstractions. If we bring
this to the Distributed Computing Continuum Systems, it is possible to define the entire
system with a Markov Blanket describing the main components that affect the system, and
it is possible to go deeper in detail and describe smaller components also in terms of a
Markov Blanket. Hence, both scalability and the self’s definition are addressed by using
the Markov Blanket abstraction. In conclusion, the Markov Blanket concept is needed to
represent Distributed Computing Continuum Systems.

2.2. Model

Two main challenges are identified specific to Distributed Computing Continuum
Systems to develop models of their behavior. (1) Its decentralization precludes developing
a model of the entire system as a single entity; conversely, the model should allow its
distribution. In other words, the model has to allow its splitting among the different parts
of the system. Further, it can be linked with the representation; one could imagine that
there is a model for each Markov Blanket used to represent the system. (2) Distributed
Computing Continuum Systems are set within an uncertain environment. On the one
side, there is unpredictability in the user’s behavior, e.g., in an autonomous vehicle use
case, external computations require to follow a car through its trajectory to keep latency
at a lower bound [14], but the required hops can not be predicted beforehand, given that
the trajectory can change on demand. On the other side, the underlying infrastructure of

7

Information 2023, 14, 198

Distributed Computing Continuum Systems is multi-tenant and multi-proprietary. Hence,
another source of uncertainty is from the usage of others tenants of the shared resources.
Further, their complexity and interconnection also generate internal uncertainty, given that
the exact knowledge of the system’s behavior might not be known; in this regard, there
are many sources of internal uncertainties for self-adaptive software systems, as explained
in [15], in brief, the model has to handle uncertainty.

To develop the system’s model, we look at one concept and one technique. The concept,
called DeepSLOs, can define and link constraints for a Distributed Computing Continuum
System at different abstraction levels. In contrast, the technique, Causal inference allows
the system to understand its own behavior and to perform a priori analyzed changes on its
underlying infrastructure to minimize the effects of uncertainty.

2.2.1. DeepSLOs

DeepSLOs stem from Cloud Service Level Objectives (SLOs). In general, an SLO is
a constraint to the underlying infrastructure, simply put, the minimal availability of a
service or the maximal CPU usage of a workload. Hence, in the Cloud, when a constraint
is violated, an elasticity strategy is triggered, which modifies the system and brings the
Service Level Indicator (SLI) within the value specified by the SLO. In contrast, a DeepSLO
is a set of hierarchically connected SLOs. This deviates from Cloud SLOs because they are
no longer isolated constraints of the system. However, they provide a holistic perspective
on the system status given by its constraints. Hence, it is possible to obtain a complete
description of the system’s performance. Further, DeepSLOs also aim to fully describe
the characteristics of the underlying infrastructure, which highlights the infrastructure as
a key part of any Distributed Computing Continuum System. Within a single DeepSLO,
there are SLOs at different levels of abstraction, which describe the system’s performance
from different perspectives. Simply put, low-level abstraction SLOs can easily define
infrastructure behavior, i.e., the performance of GPUs at the Edge, while higher-level
abstraction can deal with application performance, i.e., the accuracy of the inference job at
the Edge. Both given examples can be expressed as constraints within a single DeepSLO,
each as an SLO but connected through the system dependencies. Still, the first brings
information on the hardware performance for the inference job, and the second has a
holistic performance on the tasks. In this way, different elastic strategies can be used
efficiently depending on the cause of the system’s performance degradation.

2.2.2. Causal Inference

Causal inference [16] is a mathematical framework able to discover causal relations
between system variables and predict their behavior. Hence, it provides a better under-
standing of why events occur, solving conflicts when several adaptation strategies are
needed. Further, it can predict the outcome of interventions in the system. Simply put, it
predicts how the system will behave after a new configuration. Finally, causal inference un-
folds the ability to develop counterfactuals to better understand the system’s true behavior,
providing a key element to the learning capability. On the one side, studying interventions,
i.e., applying a specific condition to the variables, can ease the selection of the adaptation
strategies; further, using counterfactuals, hypothetical situations can be described to extract
learnings and improve the system’s resistance against uncertainty. These methods are very
relevant for uncertainty management, given that it is possible to achieve knowledge of
the system’s behavior under conditions not yet met in real operations. Causal inference
is usually applied over a directed acyclic graph to perform its analyses and explain the
behavior of the system; interestingly, this graph can be provided by the Markov Blanket
representation of the system.

One can imagine an application with a peak of demand in some region. Hence, the
Distributed Computing Continuum System is required to perform an adaptive action to
properly maintain its expected quality standards. However, there can be several ways to
tackle that situation, scaling up Cloud or Edge components, using new resources, etc. In

8

Information 2023, 14, 198

such situations, causal inference provides an understanding of how the system will react to
these changes, e.g., how costs can be increased, how other services can be affected, how
sustainable is the solution, etc. Further, if quality and cost (see Section 2.4) are not fixed, and
there are some assumable margins, the manifold of options and their consequences grows.
This complexity, also explained through an illustrative use case in [17], can be tackled by a
better understanding of the internal system relations provided by causal inference.

2.3. Lifelong Learning Framework

Under the assumption that Distributed Computing Continuum Systems are complex
and inhabit a dynamic environment, providing the system with the learning capacity is of
foremost importance. Hence, lifelong learning enables improving the models that govern
the system, and, due to the nature of these systems, it also needs to be related to composition,
i.e., which are the best components of the underlying infrastructure to use in an application.
Systems need to be able to change their configuration using other components that are
not initially part of the system; in other words, the use of adaptation strategies requires
learning, given the huge space of possible configurations. Consequently, they need to make
decisions dependent on the system’s current state, which cannot be foreseen at design time.
Hence, Distributed Computing Continuum Systems need techniques that provide this
capacity for continuous improvement in a dynamic setting. In this regard, the Free Energy
Principle (FEP) explains the behavior of systems to adapt to their environment, initially
developed as a hypothesis on how the brain works [18]. To do so, the FEP aims to maximize
the knowledge of the system about its environment, which is needed to continuously
improve operation.

Free Energy Principle and Active Inference

The FEP was first defined by K. Friston to describe the behavior of the brain as a
system that adapts to its dynamic environment. In brief, the FEP shows that adaptive
systems have an internal model of their environment and that this allows adaptive systems
to persist in it. Further, the FEP claims that this adaptivity is achieved by minimizing
the difference between the internal model that the system possesses of its environment
concerning the real environment behavior. Another important observation of the FEP
for Distributed Computing Continuum Systems is that regardless of the scale, adaptive
systems behave similarly [19].

The active inference is a corollary of the FEP, providing a methodology to develop
agents (systems) that can learn from actions following the FEP [20]. Hence, by adapting Dis-
tributed Computing Continuum Systems to the active inference methodology, it will be pos-
sible to develop systems that progressively learn to adapt within a dynamic environment.

2.4. Business Model

We have learned from Cloud computing that a key aspect of the success of Distributed
Computing Continuum Systems is considering and easing their business logic. These
systems are multi-tenant and multi-proprietary; hence, we need concepts and methods
that allow several stakeholders to collaborate or share part of their infrastructure. We are
not considering here which has to be the business model, but two ideas are needed for its
emergence. Our intuition is that to enable this, communication and understanding among
them need to be the cornerstone. Further, the fact that systems, components, and other
involved stakeholders understand different abstractions is a great challenge that needs
to be addressed. From this perspective, the use of Resources, Quality, and Cost as the
highest-level abstraction state variables enables homogenization among components and
systems [21]. Further, they are understandable to all stakeholders given their higher level
of abstraction [22].

Finally, security is key to engaging stakeholders. Therefore, Zero Trust [23] concepts
promise control network flows between all assets, advanced resource protection, fast
detection of malicious activities, improved system performance, and secure communication

9

Information 2023, 14, 198

between components. Features that are vital to make Distributed Computing Continuum
a reality.

2.4.1. Resources, Quality, and Cost

In previous work on Cloud computing, Resources, Quality, and Cost have been
defined as elasticity dimensions [24], which can define the system’s overall state. For
Distributed Computing Continuum Systems, we are convinced that the same abstractions
are needed; however, they are not elasticity dimensions but the highest-level abstractions
of the system state, which will ease the system’s management decisions. In other words,
Resources, Quality, and Cost are required to understand the system’s current situation
at the highest level of abstraction and how it can deviate toward other possible states. It
is important to remark that Resources, Quality, and Cost are chosen because any system
stakeholder can interpret them, and agreements at the highest level can be reached, which
then can be specified into lower-level agreements tailored to the specific characteristic of
each stakeholder.

2.4.2. Security through Zero Trust

Trustworthiness is key among stakeholders, and secure systems are needed to enforce
trust. In this regard, Zero Trust [23,25] is an emerging security paradigm where trust among
system components needs to be achieved at every step. In other words, it is not enough to
be part of the network’s system, but the components’ behavior is also continuously verified.

3. Discussion

This section first presents some alternative directions to the ones discussed and shows
our holistic vision of the ideas and techniques presented. The alternative ideas presented
are not exhaustive as this work presents a vision. Hence, this section aims just at providing a
broader context to the current research around Distributed Computing Continuum Systems.

3.1. Techniques Discussion

In terms of representation techniques for Distributed Computing Continuum Systems,
some works focus on graph-based representations; in [26], the authors specify the task type
and system with graphs and leverage such a representation to solve the task offloading
problem. Another perspective is given by [27], where their graph-based representation
of Distributed Computing Continuum Systems is the input for graph-based neural net-
works to solve the distributed scheduling problem. Conversely, our representation aims
at being general for whichever problem needs to be solved in the Distributed Computing
Continuum paradigm. Further, the filtering and nesting capacity of the Markov Blanket,
which is also graph-based, is of utmost importance for Distributed Computing Continuum
Systems. Take, for instance, the work in [13], which uses propositional logic to represent
the Distributed Computing Continuum System; they show how the complexity of solving
the task assignment problem is exponential. Hence, a representation able to filter out the
useless aspects for the specific case can make it feasible.

There are several approaches that propose a model for the entire Distributed Com-
puting Continuum that can be leveraged to describe and forecast its expected behavior.
Most of the time, the description is left to deep neural networks [28–30], which, in general,
provide good results, but it is hard to assess its generalization capabilities. There are also
approaches that provide a function-based description that allows for solving the problem,
e.g., through game theory [31]. This type of model usually requires many parameters and
assumptions on these parameters. A similar situation is found when modeling through
queue theory [32,33]. From our perspective, queue theory embraces the randomness found
in these systems. However, it requires precise modeling for the probability distributions
governing the system behavior. Another interesting approach follows the osmotic comput-
ing concept [34,35], which uses the analogy of physical pressure to manage Distributed
Computing Continuum Systems. Finally, there are also constraint-based approaches for

10

Information 2023, 14, 198

system modeling, such as in [36], where they are able to verify the system’s performance.
We are proposing a constraint-based perspective from the use of DeepSLOs where we can
relate the underlying infrastructure with the application to define the entire Distributed
Computing Continuum System. Still, we understand that the complex and stochastic
behavior requires another modeling layer. There, we see fit for causal inference to leverage
a probabilistic model with causal relationships.

We relate lifelong learning with the capacity of a system to continue learning and
improving its behavior during its life-cyle when the requirements and tasks can change
over time. This problem is usually tackled through machine learning, specifically with
reinforcement learning in robotics [37,38]. In this regard, an interesting framework for
self-adaptive systems is provided by [10]. A new and interesting approach is on graph
continuous learning; a survey is presented in [39]. Our intuition to propose active inference
from the FEP relates to its ultimate goal of modeling the dynamic environment to optimize
the system’s adaptive capacity. Further, its mathematical formulation fits well with the
use of Markov Blankets, allowing us to easily combine both techniques. We are aware that
FEP has been questioned in terms of applicability and generality [40,41]. Nevertheless, its
fitness to our scope and the results showed in other articles [42] are promising.

Regarding the business model, there is a vast amount of work on security aspects,
where Zero Trust is one of the most prominent perspectives. In terms of high-level abstrac-
tions to set common ground on business objectives, the literature is scarce. We propose
Cost, Quality, and Resources that stem from previous work and have worked as expected
in Cloud systems. In general, objectives can be QoS parameters, but there is no consensus
on how to abstract or normalize such metrics.

3.2. Holistic Perspective

The four key aspects discussed in this article are presented in an integrated view in
Figure 1.

The Markov Blanket concept provides a nested representation of the system, which
allows us to represent the highest-level state of the system (Resources, Quality, and Cost)
as a wrapping blanket over the lower-level states. Interestingly, maintaining the Markov
Blanket representation across abstraction layers enables the usage of the same techniques,
regardless of the abstraction layer. Further, SLOs can leverage this structure of blankets
to add constraints on the infrastructure at different layers, covering the entire Distributed
Computing Continuum System. Hence, they can be understood as the hooks to the infras-
tructure, allowing the building of a modular and adaptive system’s model. Combining
these SLOs enables the building of the DeepSLO construct. Hence, by means of causal
inference, we can define and predict how the relations within a DeepSLO will behave.
It will be possible to tailor the adaptive measures to the predictions through the study
of interventional situations. Further, the counterfactual capacity of causal inference can
generate hypothetical situations that can be input for a lifelong learning framework. Within
this framework, lifelong learning can be achieved by using methodologies such as active
inference from the FEP that will be biased toward actions that can improve the system’s
knowledge of its environment. Finally, understanding and trustworthiness are required to
build a business model for Distributed Computing Continuum Systems; hence, both state
variables, such as Resources, Quality, and Cost, as well as a secure environment, are key to
that development.

11

Information 2023, 14, 198

Figure 1. Starting at the center of the figure, we see that all developments require a trusted and secure
environment, where Zero Trust techniques will have great relevance due to the heterogeneity and
distribution characteristics of the system. On the left (A), three different abstractions for a Distributed
Computing Continuum System are depicted (the granularity shown can be refined by showing
network characteristics or unfolding aspects from the application logic). Each abstraction can easily
engage a kind of stakeholder. However, the highest level: Resources-Cost-Quality, aims at being
understood by all of them. On top (B), there is the representation of the system through Markov
Blankets, considering α as a high-level abstraction variable that we can assess by observing the
surrounding node, i.e., those factors that affect its value, remarkably thanks to the Markov Blanket
approach only those that are relevant are there. Further, α can be decomposed on other lower-level
variables (β and γ), providing a nested structure that can cover the entire system. On the right (C), we
take advantage of this representation to embed SLOs, more specifically, a DeepSLO, in order to model
the behavior of the system. As an example, SLO1 can be related to the quality of a machine-learning
inference component, which has its own metrics and adaptation strategies. This is linked to two
other lower-level SLOs; in this example, SLO2 can control the input data by making sure that it has
the expected resolution, while SLO3 controls the required time to perform the inference. Having
this decomposition enables a fine-grained capacity for adaptation; other lower-level or higher-level
SLOs could be developed if needed to have a broader view of a larger component or a more fine-
grained control over a smaller one. On the bottom (D), several cases are shown with forced values
for metrics and/or elastic strategies. This way, causal inference can improve the systems model to
deal with future situations that are not yet known, providing a basis to deal with unexpected or
unforeseen scenarios.

4. Conclusions

This article has presented a novel discussion of fundamental aspects that require
agreement among the community to enable the development of Distributed Computing

12

Information 2023, 14, 198

Continuum Systems. This work aims at deviating from the mainstream topics on Dis-
tributed Computing Continuum, which usually tackles one of these topics by solving a
specific issue, by focusing on the system’s representation, its model, its lifelong learning
framework, and finally, its business model. This research presents some techniques and
concepts that can help address the issues of each of the discussed characteristics, and we
compare them with some of the current trends for Distributed Computing Continuum
Systems. Further, we show some relations among the presented techniques that can use
their synergies to enable future Distributed Computing Continuum Systems.

Author Contributions: All authors contributed equally to conceptualization, investigation and
providing resources; writing—original draft preparation and visualization, V.C.P.; writing—review
and editing, all authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No data was generated in the context of this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Beckman, P.; Dongarra, J.; Ferrier, N.; Fox, G.; Moore, T.; Reed, D.; Beck, M. Harnessing the computing continuum for

programming our world. In Fog Computing; Zomaya, A., Abbas, A., Khan, S., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA,
2020; pp. 215–230. [CrossRef]

2. Morichetta, A.; Casamayor Pujol, V.; Dustdar, S. A roadmap on learning and reasoning for distributed computing continuum
ecosystems. In Proceedings of the IEEE International Conference on Edge Computing (EDGE), Chicago, IL, USA, 5–10 September
2021; Institute of Electrical and Electronics Engineers: New York, NY, USA, 2021; pp. 25–31. [CrossRef]

3. Costa, B.; Bachiega, J., Jr.; de Carvalho, L.R.; Araujo, A.P. Orchestration in Fog Computing: A Comprehensive Survey.
ACM Comput. Surv. (CSUR) 2022, 55, 1–34. [CrossRef]

4. Dustdar, S.; Casamayor Pujol, V.; Donta, P.K. On distributed computing continuum systems. IEEE Trans. Knowl. Data Eng. 2023,
35, 4092–4105. [CrossRef]

5. Yu, S.; Chen, X.; Zhou, Z.; Gong, X.; Wu, D. When Deep Reinforcement Learning Meets Federated Learning: Intelligent
Multitimescale Resource Management for Multiaccess Edge Computing in 5G Ultradense Network. IEEE Internet Things J. 2021,
8, 2238–2251. [CrossRef]

6. Xia, X.; Chen, F.; He, Q.; Grundy, J.C.; Abdelrazek, M.; Jin, H. Cost-Effective App Data Distribution in Edge Computing.
IEEE Trans. Parallel Distrib. Syst. 2021, 32, 31–44. [CrossRef]

7. Ullah, A.; Dagdeviren, H.; Ariyattu, R.C.; DesLauriers, J.; Kiss, T.; Bowden, J. MiCADO-Edge: Towards an Application-level
Orchestrator for the Cloud-to-Edge Computing Continuum. J. Grid Comput. 2021, 19, 47. [CrossRef]

8. Hastbacka, D.; Halme, J.; Barna, L.; Hoikka, H.; Pettinen, H.; Larranaga, M.; Bjorkbom, M.; Mesia, H.; Jaatinen, A.; Elo, M.
Dynamic Edge and Cloud Service Integration for Industrial IoT and Production Monitoring Applications of Industrial Cyber-
Physical Systems. IEEE Trans. Ind. Inform. 2022, 18, 498–508. [CrossRef]

9. Pusztai, T.; Nastic, S.; Morichetta, A.; Casamayor Pujol, V.; Dustdar, S.; Ding, X.; Vij, D.; Xiong, Y. A Novel Middleware for
Efficiently Implementing Complex Cloud-Native SLOs. In Proceedings of the 2021 IEEE 14th International Conference on Cloud
Computing (CLOUD), Chicago, IL, USA, 5–10 September 2021.

10. Gheibi, O.; Weyns, D. Lifelong self-adaptation: Self-adaptation meets lifelong machine learning. In Proceedings of the SEAMS’22—
17th Symposium on Software Engineering for Adaptive and Self-Managing Systems, Pittsburgh, PA, USA, 22–24 May 2022;
Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–12. [CrossRef]

11. Kirchhoff, M.; Parr, T.; Palacios, E.; Friston, K.; Kiverstein, J. The Markov blankets of life: Autonomy, active inference and the free
energy principle. J. R. Soc. Interface 2018, 15, 20170792. [CrossRef]

12. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann Publishers Inc.:
San Francisco, CA, USA, 1988.

13. Forti, S.; Bisicchia, G.; Brogi, A. Declarative continuous reasoning in the cloud-IoT continuum. J. Log. Comput. 2022, 32, 206–232.
[CrossRef]

14. Rihan, M.; Elwekeil, M.; Yang, Y.; Huang, L.; Xu, C.; Selim, M.M. Deep-VFog: When Artificial Intelligence Meets Fog Computing
in V2X. IEEE Syst. J. 2021, 15, 3492–3505. [CrossRef]

15. Esfahani, N.; Malek, S. Uncertainty in self-adaptive software systems. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2013; Volume 7475
LNCS, pp. 214–238. ISBN: 9783642358128. [CrossRef]

16. Pearl, J.; Mackenzie, D. The Book of Why: The New Science of Cause and Effect, 1st ed.; Basic Books, Inc.: New York, NY, USA, 2018.

13

Information 2023, 14, 198

17. Casamayor Pujol, V.; Raith, P.; Dustdar, S. Towards a new paradigm for managing computing continuum applications. In Pro-
ceedings of the IEEE 3rd International Conference on Cognitive Machine Intelligence, CogMI 2021, Virtual, 13–15 December 2021;
Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 180–188. [CrossRef]

18. Friston, K.; Kilner, J.; Harrison, L. A free energy principle for the brain. J. Physiol. Paris 2006, 100, 70–87. [CrossRef]
19. Palacios, E.R.; Razi, A.; Parr, T.; Kirchhoff, M.; Friston, K. On Markov blankets and hierarchical self-organisation. J. Theor. Biol.

2020, 486, 110089. [CrossRef]
20. Smith, R.; Friston, K.J.; Whyte, C.J. A step-by-step tutorial on active inference and its application to empirical data. J. Math. Psychol.

2022, 107, 102632. [CrossRef]
21. Dustdar, S.; Guo, Y.; Satzger, B.; Truong, H.L. Principles of elastic processes. IEEE Internet Comput. 2011, 15, 66–71. [CrossRef]
22. Nastic, S.; Morichetta, A.; Pusztai, T.; Dustdar, S.; Ding, X.; Vij, D.; Xiong, Y. SLOC: Service level objectives for next generation

cloud computing. IEEE Internet Comput. 2020, 24, 39–50. [CrossRef]
23. Stafford, V. Zero trust architecture. NIST Spec. Publ. 2020, 800, 207.
24. Truong, H.L.; Dustdar, S.; Leymann, F. Towards the Realization of Multi-dimensional Elasticity for Distributed Cloud Systems.

Procedia Comput. Sci. 2016, 97, 14–23. [CrossRef]
25. Rose, S.; Borchert, O.; Mitchell, S.; Connelly, S. Zero Trust Architecture; Technical Report; National Institute of Standards and

Technology: Gaithersburg, MD, USA, 2020.
26. LiWang, M.; Gao, Z.; Hosseinalipour, S.; Dai, H. Multi-Task Offloading over Vehicular Clouds under Graph-based Representation.

In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Virtual, 7–11 June 2020; pp. 1–7.
[CrossRef]

27. Zhao, Z.; Verma, G.; Rao, C.; Swami, A.; Segarra, S. Distributed scheduling using graph neural networks. In Proceedings of the
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing—Proceedings, Toronto, ON, Canada, 6–11
June 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; pp. 4720–4724. [CrossRef]

28. Yu, Z.; Hu, J.; Min, G.; Wang, Z.; Miao, W.; Li, S. Privacy-Preserving Federated Deep Learning for Cooperative Hierarchical
Caching in Fog Computing. IEEE Internet Things J. 2022, 9, 22246–22255. [CrossRef]

29. Zhang, K.; Cao, J.; Zhang, Y. Adaptive Digital Twin and Multi-agent Deep Reinforcement Learning for Vehicular Edge Computing
and Networks. IEEE Trans. Ind. Inform. 2022, 18, 1405–1413. [CrossRef]

30. Sheng, S.; Chen, P.; Chen, Z.; Wu, L.; Yao, Y. Deep Reinforcement Learning-Based Task Scheduling in IoT Edge Computing.
Sensors 2021, 21, 1666. [CrossRef]

31. Xia, X.; Chen, F.; He, Q.; Cui, G.; Grundy, J.C.; Abdelrazek, M.; Xu, X.; Jin, H. Data, User and Power Allocations for Caching in
Multi-Access Edge Computing. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 1144–1155. [CrossRef]

32. Tadakamalla, V.; Menasce, D. Autonomic Elasticity Control for Multi-server Queues under Generic Workload Surges in Cloud
Environments. IEEE Trans. Cloud Comput. 2020, 10, 984–995. [CrossRef]

33. Guo, S.; Wu, D.; Zhang, H.; Yuan, D. Queueing Network Model and Average Delay Analysis for Mobile Edge Computing. In
Proceedings of the 2018 International Conference on Computing, Networking and Communications, ICNC 2018, Maui, HI, USA,
5–8 March 2018; pp. 172–176. ISBN: 9781538636527. [CrossRef]

34. Villari, M.; Fazio, M.; Dustdar, S.; Rana, O.; Ranjan, R. Osmotic Computing: A New Paradigm for Edge/Cloud Integration.
IEEE Cloud Comput. 2016, 3, 76–83. [CrossRef]

35. Gamal, I.; Abdel-Galil, H.; Ghalwash, A. Osmotic Message-Oriented Middleware for Internet of Things. Computers 2022, 11, 56.
[CrossRef]

36. Camara, J.; Muccini, H.; Vaidhyanathan, K. Quantitative verification-aided machine learning: A tandem approach for architecting
self-adaptive IoT systems. In Proceedings of the IEEE 17th International Conference on Software Architecture, ICSA 2020,
Salvador, Brazil, 16–20 March 2020; pp. 11–22. ISBN: 9781728146591. [CrossRef]

37. Thrun, S. Lifelong Learning Algorithms. In Learning to Learn; Thrun, S., Pratt, L., Eds.; Springer US: Boston, MA, USA, 1998;
pp. 181–209. [CrossRef]

38. Yang, F.; Yang, C.; Liu, H.; Sun, F. Evaluations of the Gap between Supervised and Reinforcement Lifelong Learning on Robotic
Manipulation Tasks. In Proceedings of the 5th Conference on Robot Learning. PMLR, London, UK, 8–11 November 2022;
pp. 547–556.

39. Febrinanto, F.G.; Xia, F.; Moore, K.; Thapa, C.; Aggarwal, C. Graph Lifelong Learning: A Survey. IEEE Comput. Intell. Mag. 2023,
18, 32–51. [CrossRef]

40. Aguilera, M.; Millidge, B.; Tschantz, A.; Buckley, C.L. How particular is the physics of the free energy principle? Phys. Life Rev.
2021, 40, 24–50. [CrossRef]

41. Raja, V.; Valluri, D.; Baggs, E.; Chemero, A.; Anderson, M.L. The Markov blanket trick: On the scope of the free energy principle
and active inference. Phys. Life Rev. 2021, 39, 49–72. [CrossRef] [PubMed]

42. Da Costa, L.; Parr, T.; Sajid, N.; Veselic, S.; Neacsu, V.; Friston, K. Active inference on discrete state-spaces: A synthesis.
J. Math. Psychol. 2020, 99, 102447. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

14

Citation: Abbasi Tadi, A.; Dayal, S.;

Alhadidi, D.; Mohammed, N.

Comparative Analysis of

Membership Inference Attacks in

Federated and Centralized Learning.

Information 2023, 14, 620. https://

doi.org/10.3390/info14110620

Academic Editor: Peter Revesz

Received: 30 September 2023

Revised: 17 November 2023

Accepted: 18 November 2023

Published: 19 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Comparative Analysis of Membership Inference Attacks in
Federated and Centralized Learning †

Ali Abbasi Tadi 1,∗, Saroj Dayal 1, Dima Alhadidi 1 and Noman Mohammed 2

1 School of Computer Science, University of Windsor, Windsor, ON N9B 3P4, Canada;
sdayal@uwindsor.ca (S.D.); dima.alhadidi@uwindsor.ca (D.A.)

2 Department of Computer Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
noman.mohammed@umanitoba.ca

* Correspondence: abbasit@uwindsor.ca
† This paper is an extended version of our paper published in International Database Engineered Applications

Symposium Conference, Heraklion, Crete, Greece, 5–7 May 2023. Entitled ’Comparative Analysis of
Membership Inference Attacks in Federated Learning’.

Abstract: The vulnerability of machine learning models to membership inference attacks, which
aim to determine whether a specific record belongs to the training dataset, is explored in this
paper. Federated learning allows multiple parties to independently train a model without sharing
or centralizing their data, offering privacy advantages. However, when private datasets are used in
federated learning and model access is granted, the risk of membership inference attacks emerges,
potentially compromising sensitive data. To address this, effective defenses in a federated learning
environment must be developed without compromising the utility of the target model. This study
empirically investigates and compares membership inference attack methodologies in both federated
and centralized learning environments, utilizing diverse optimizers and assessing attacks with and
without defenses on image and tabular datasets. The findings demonstrate that a combination of
knowledge distillation and conventional mitigation techniques (such as Gaussian dropout, Gaussian
noise, and activity regularization) significantly mitigates the risk of information leakage in both
federated and centralized settings.

Keywords: federated learning; membership inference attack; privacy; machine learning

1. Introduction

Machine learning (ML) is gaining popularity thanks to the increasing availability
of extensive datasets and technological advancements [1,2]. Centralized learning (CL)
techniques become impractical in the context of abundant private data as they mandate
transmitting and processing data through a central server. Google’s federated learning (FL)
has emerged as a distributed machine learning paradigm since its inception in 2017 [3].
In FL, a central server supports participants in the training model by exchanging trained
models or gradients of training data without revealing raw or sensitive information either
to the central server or other participants. The application of FL is crucial, particularly in
processing sensitive and personal data, such as in healthcare, where ML is increasingly
prevalent, especially in compliance with GDPR [4] and HIPAA [5] regulations. Despite
its advancements, FL is susceptible to membership inference attacks (MIA), a method
employed to gain insights into training data. Although FL primarily aims for privacy
protection, attackers can infer specific data by intercepting FL updates transmitted between
training parties and the central server [6,7]. For instance, if an attacker is aware that patient
data are part of the model’s training set, they could deduce the patient’s current health
status [8]. Prior research has explored membership inference attacks (MIA) in a centralized
environment where data are owned by a single data owner. It is imperative to extend
this investigation to MIA in federated learning (FL). This article undertakes an analysis

Information 2023, 14, 620. https://doi.org/10.3390/info14110620 https://www.mdpi.com/journal/information15

Information 2023, 14, 620

of various MIA techniques initially proposed in the centralized learning (CL) environ-
ment [9–11]. The examination encompasses their applicability in the FL environment and
evaluates the effectiveness of countermeasures to mitigate these attacks in both FL and CL
environments. An earlier version of this work has already been published [12], focusing
solely on MIA in the FL environment. In that iteration, we scrutinized nine mitigation
techniques [9,10,13–19] against MIA attacks and showed that knowledge distillation [19]
performs better in reducing the attack recall while keeping accuracy as high as possible.
We also conducted some experiments to observe the effects of three various optimizers,
Stochastic Gradient Descent (SGD) [20], Root Mean Squared Propagation (RMSProp) [21],
and Adaptive Gradient (Adagrad) [22], in deep learning on MIA recall and FL model
accuracy. We found no difference between these optimizers on MIA recall. In this paper,
we investigated two more optimizers and three more countermeasures in both CL and FL
environments, and we compared the results. To the best of our knowledge, this study is
the first comprehensive study that investigates the MIA in both CL and FL environments
and applies twelve mitigation techniques against MIA with five various optimizers for the
target model. Our contributions in this paper are summarized below.

• We conducted a comprehensive study of the effectiveness of the membership infer-
ence attack in the FL and CL environments considering different attack techniques,
optimizers, datasets, and countermeasures. Existing related work focuses on the CL
environment and the effectiveness of one single countermeasure. In this paper, we
investigated the FL environment, compared it with the CL environment, and studied
the effectiveness of combining two mitigation techniques together.

• We compared the effectiveness of four well-known membership inference
attacks [9–11] in the CL and FL environments considering different mitigation tech-
niques: dropout [16], Monte Carlo dropout [13], batch normalization [14], Gaussian
noise [23], Gaussian dropout [16], activity regularization [24], masking [17], and
knowledge distillation [19].

• We compared the accuracy of models in the CL and the FL environments using five
optimizers: SGD, RMSProp, Adagrad, incorporation of Nesterov momentum into
Adam (Nadam) [25], and Adaptive Learning Rate method (Adadelta) [26] using
four real datasets, MNIST [27], Fashion-MNIST (FMNIST) [28], CIFAR-10 [29], and
Purchase [30]. We found that using the Adadelta optimizer alone, for image datasets,
can mitigate the MIA significantly while preserving the accuracy of the model.

• We established a trade-off relationship between model accuracy and attack recall.
Our investigation revealed that employing knowledge distillation in conjunction with
either Gaussian noise, Gaussian dropout, or activity regularization yields the most
favorable balance between model accuracy and attack recall across both image and
tabular datasets.

The remainder of this article is organized as follows. In the Section 2, we presented the
related work. In Section 3, we explained the different attacks on a model for membership
inference. Countermeasures are detailed in Section 4. The setup and the results of the
experiments are described and analyzed in Section 5. Finally, we conclude our article in
Section 6.

2. Related Work

This section summarizes the related work focusing on the MIA in CL and FL (Table 1).

16

Information 2023, 14, 620

Table 1. Related work summary.

Authors CL or FL Attack Defense

Shokri et al. [9] CL X X
Salem et al. [10] CL X X
Nasr et al. [31] CL, FL X ×
Liu et al. [11] CL X ×
Carlini et al. [2] CL X ×
Conti et al. [32] CL X X
Zheng et al. [33] CL × X
Shejwalkar et al. [34] CL × X
Lee et al. [35] FL × X
Su et al. [36] FL × X
Xie et al. [37] FL × X

2.1. MIA against CL

Shokri et al. [9] performed the first MIA on ML models to identify the presence of a
data sample in the training set of the ML model with black-box access. Shokri et al. [9]
created a target model, shadow models, and attack models, and they made two main
assumptions. First, the attacker must create multiple shadow models, each with the same
structure as the target model. Second, the dataset used to train shadow models comes from
the same distribution as the target model’s training data. Subsequently, Salem et al. [10]
widened the scope of the MIA of Shokri et al. [9]. They showed that the MIA is possible
without having any prior assumption of the target model dataset or having multiple
shadow models. Nasr et al. [31] showed that more reasonable attack scenarios are possible
in both FL and CL environments. They designed a white-box attack on the target model in
FL and CL by assuming different adversary prior knowledge. Lan Liu et al. [11] studied
perturbations in feature space and found that the sensitivity of trained data to a fully
trained machine learning model is lower than that of untrained data. Lan Liu et al. [11]
calculated sensitivity by comparing the sensitivity values of different data samples using a
Jacobian matrix, which measures the relationship between the target’s predictions and the
feature value of the target sample.

Numerous attacks in the existing literature draw inspiration from Shokri’s research [9].
Carlini et al. [2] introduced a novel attack called the Likelihood Ratio Attack (LiRA), which
amalgamates concepts from various research papers. They advocate for a shift in the
evaluation metric for MIA by recommending the use of the true positive rate (recall) while
maintaining a very low false alarm rate. Their findings reveal that, when measured by
recall, many attacks prove to be less effective than previously believed. In our study, we
adopt the use of recall, rather than accuracy, as the measure of MIA attack effectiveness.

2.2. MIA against FL

Nasr et al. [31] showed that MIA seriously compromises the privacy of FL participants
even when the universal model achieves high prediction accuracy. A common defense
against such attacks is the differential privacy (DP) [38] approach, which manipulates
each update with some random noise. However, it suffers from a significant loss of FL
classification accuracy. Bai et al. [39] proposed a homomorphic-cryptography-based pri-
vacy enhancement mechanism impacting MIA. They used homomorphic cryptography to
encrypt the collaborators’ parameters and added a parameter selection method to the FL
system aggregator to select specific participant updates with a given probability. Another
FL MIA defense technique is the digestive neural network (DNN) [35], which modifies
inputs and skews updates, maximizing FL classification accuracy and minimizing inference
attack accuracy. Wang et al. [36] proposed a new privacy mechanism called the Federated
Regularization Learning Model to prevent information leakage in FL. Xie et al. [37] pro-
posed an adversarial noise generation method that was added to the attack features of the
attack model on MIA against FL.

17

Information 2023, 14, 620

3. Attack Techniques for Membership Inference

In this section, we summarize the different methods of MIA [9–11] that we applied in
this paper. The summary of the considered membership attacks is shown in Table 2. We
employed four well-known attacks in this paper, and each of them has its own characteristics.

Table 2. Comparison of the considered attacks.

Attack Type Shadow Model Target’s ModelTraining Data Distribution Prediction SensitivityNo. Shadow Models Target Model Structure

Attack 1 [9] 10 X X -
Attack 2 [10] 1 - X -
Attack 3 [10] 1 - - -
Attack 4 [11] - - - X

3.1. Shokri et al.’s MIA

MIA can be formulated [40] as follows:

MAttack(KMTarget(x, y))→ 0, 1 (1)

Given a data sample(x, y) and additional knowledge KMTarget about the target model
MTarget, the attacker typically tries to create an attack model MAttack to eventually return
either 0 or 1, where 0 indicates the sample is not a member of the training set and 1 indicates
the sample is a member of the training set. The additional knowledge can be the distribution
of the target data and the type of the target model. Figure 1 summarizes the general idea of
the first MIA on ML models proposed by Shokri et al. [9].

Figure 1. Overview of MIA on ML models [9].

The target model takes a data sample as input and generates the probability prediction
vector after training. Suppose DTrain

Target is the private training dataset of the target model
MTarget, where (xi, yi) are the labeled data records. In this labeled dataset, (xi) represents the
input to the target model, while (yi) represents the class label of xi in the set 1, 2, ..., CTarget.
The output of the target model MTarget is a vector of probabilities of size CTarget, where the
elements range from 0 to 1 and they sum to 1. Multiple shadow models are created by
the attacker to mimic the behavior of the target model and to generate the data needed to
train the attack model. The attacker creates several (n) shadow models Mi

Shadow(), where
each shadow model i is trained on the dataset Di

Shadow. The attacker first splits its dataset

Di
Shadow into two sets, DiTrain

Shadow and DiTest

Shadow, such that DiTrain

Shadow ∩ DiTrial

Shadow = φ. Then, the

18

Information 2023, 14, 620

attacker trains each shadow model Mi
Shadow with the training set DiTrain

Shadow and tests the same
model with DiTest

Shadow test dataset. The attack model is a collection of models, one for each
output class of target data. DTrain

Attack is the attack model’s training dataset, which contains
labeled data records (xi, yi) and the probability vector generated by the shadow model for
each data sample xi. The label for xi in the attack model is either "in" if xi is used to train
the shadow model or "out" if xi is used to test the shadow model. This attack is named
Attack 1 in our experiments.

3.2. Salem et al.’s MIA

Early demonstrations by Shokri et al. [9] on the feasibility of MIA are based on many
assumptions, e.g. the use of multiple shadow models, knowledge of the structure of the
target model, and the availability of a dataset from the same distribution as the training
data of the target model. Salem et al [10] diminished all these key assumptions, showing
that the MIA is generally applicable at low cost and carries greater risk than previously
thought [10]. They provided two MIA attacks: I) with the knowledge of dataset distribution,
model architecture, and only one shadow model, and II) with no knowledge about dataset
distribution and model architecture. The former attack is named Attack 2 and the latter
one is named Attack 3 in Table 2.

3.3. Prediction Sensitivity MIA

The idea behind this attack is that training data from a fully trained ML model gener-
ally have lower prediction sensitivity than untrained data (i.e., test data). The overview of
this attack [11] is shown in Figure 2. The only allowed interaction between the attacker and
the target model M is to query M with a sample x and then obtain the prediction result.
The target model M maps the n-dimensional vector x ∈ Rn to the output m-dimensional
y ∈ Rm. The Jacobian matrix of M is a matrix m× n whose element in the ith row and jth
column is Jij =

∂yi
∂xj

(i ∈ [1, 2, . . . , n] and j ∈ [1, 2, . . . , m]):

J(x; M) =
[

∂M(x)
∂x1

. . . ∂M(x)
∂xn

]
=

∂y1
∂x1

. . . ∂y1
∂xn

...
. . .

...
∂ym
∂x1

. . . ∂ym
∂xn

 (2)

where y = M(x). The input sample is x = [x1, x2, . . . , xn], and the corresponding prediction
is y = [y1, y2, . . . , ym].

∂yi
∂xi

is the relationship between the change in the input record’s i-th
feature value and the change in the prediction probability that this sample belongs to
j-th class.

Figure 2. Overview of MIA using Jacobian matrix and prediction sensitivity [11].

The Jacobian matrix comprises a series of first-order partial derivatives. The deriva-
tives can be approximated by calculating the numerical differentiation with the
following equation:

∂yj

∂xi
≈ M(x + ε)−M(x− ε)

2ε
, (3)

19

Information 2023, 14, 620

where ε is a small value added to the input sample’s i-th feature value. Add ε to the
i-th feature value of the target sample xt, whose membership property to know provides
two modified samples to query the target model and derive the partial derivatives of
the i-th feature for the target model: ∂M(x)

∂xi
=
[

∂y1
∂xi

, ∂y2
∂xi

. . . , ∂ym
∂xi

]
. Then, for each feature

in x, this process is repeated to combine the partial derivatives into the Jacobian matrix.
For simplicity, the approximation of the Jacobian matrix is defined as J(x; M). The L-2
norm of J(x; M) represents the prediction sensitivity for the target sample, as described by
Novak et al. [41]. For a m× n matrix A, the L-2 norm of A can be computed as follows:

||A||2 = (
m

∑
i=1

n

∑
j=1
|aij|2)

1
2 (4)

where i and j are the row and column number of the matrix element aij, respectively. There
is a difference in prediction sensitivity between samples from the training set and samples
from the testing set. Once prediction sensitivity is calculated, an unsupervised clustering
method (like k-means) partitions a set of target records (prediction sensitivity values) into
two subsets. The cluster with the lowest mean sensitivity compared to the members of
the M’s training set is chosen. Then, during the inference stage, the samples are clustered
into three or more groups and ordered by an average norm. Finally, the groups with lower
average norms are predicted from the target model’s training set, whereas others are not.

4. Defense Mechanisms

Attackers take advantage of the fact that ML models behave differently during the
prediction with new data than with training data to differentiate members from nonmem-
bers. This property is associated with the degree of overfitting, which is measured by
the generalization gap. The generalization gap is the difference between the accuracy
of the model between training and testing time. When overfitting is high, the model is
more vulnerable to MIA. Therefore, whatever method is used to reduce overfitting is also
profitable for MIA reduction. We applied the following methods to see how they mitigate
the MIA.

• Dropout (D): It prevents overfitting by randomly deleting units in the neural network
and allows for an approximately efficient combination of many different neural net-
work architectures [16]. This was suggested by Salem et al. [10] and implemented as
an MIA mitigation technique in ML models in a centralized framework.

• Monte Carlo Dropout (MCD): It is proposed by Gal et al. [13]. It captures the uncer-
tainty of the model. Various networks (where several neurons have been randomly
disabled) can be visualized as Monte Carlo samples from the space of all available
models. This provides a mathematical basis for the model to infer its uncertainty, often
improving its performance. This work allows dropout to be applied to the neural
network during model inference [42]. Therefore, instead of making one prediction,
multiple predictions are made, one for each model (already prepared with random dis-
abled neurons), and their distributions are averaged. Then, the average is considered
as the final prediction.

• Batch Normalization (BN): This is a technique that improves accuracy by normalizing
activations in the middle layers of deep neural networks [14]. Normalization is used
as a defense in label-only MIA, and the results show that both regularization and
normalization can slightly decrease the average accuracy of the attack [32].

• Gaussian Noise (GN): This is the most practical perturbation-based model for de-
scribing the nonlinear effects caused by additive Gaussian noise [23]. GN is used to
ignore adversarial attacks [15].

• Gaussian Dropout (GD): It is the integration of Gaussian noise with the random
probability of nodes. Unlike standard dropout, nodes are not entirely deleted. Instead
of ignoring neurons, they are subject to Gaussian noise. From Srivatsava’s experi-
ments [16], it appears that using the Gaussian dropout reduced computation time

20

Information 2023, 14, 620

because the weights did not have to be scaled each time to match the skipped nodes,
as in the standard dropout.

• Activity Regularization (AR): It is a technique used to encourage the model to have
specific properties regarding the activations (outputs) of neurons in the network
during training. The purpose of activity regularization is to prevent overfitting and
encourage certain desirable characteristics in the network’s behavior. The L1 regular-
izer and the L2 regularizer are two regularization techniques [24]. L1 regularization
penalizes the sum of the absolute values of the weights, while L2 regularization pe-
nalizes the sum of the squares of the weights. Shokri et al. [9] used a conventional L2
regularizer as a defense technique to overcome MIA in ML neural network models.

• Masking (M): It tells the sequence processing layers that some steps are missing from
the input and should be ignored during data processing [17]. If all input tensor values
in that timestep are equal to the mask value, the timestep is masked (ignored) in all
subsequent layers of that timestep.

• Differential Privacy (DP): Differentially Private Stochastic Gradient Descent (DPSGD)
is a differentially private version of the Stochastic Gradient Descent (SGD) algorithm
that happens during model training [18] and incorporates gradient updates with
some additive Gaussian noise to provide differential privacy. DP [43–45] is a solid
standard to ensure the privacy of distributed datasets.

• Knowledge Distillation (KD): It distills and transfers knowledge from one deep neu-
ral network (DNN) to another DNN [19,46]. According to many MIA mitigation
articles, KD outperforms the cutting edge approaches [33,34] in terms of MIA mitiga-
tion, while other FL articles support that it facilitates effective communication [47–49]
to maintain the heterogeneity of the collaborating parties.

• Combination of KD with AR (AR–KD): In our early experiments [12], we noticed
that, in most test cases, KD lowers the recall while preserving the model accuracy. In
this work, we are combining AR as a mitigation technique with KD. To the best of our
knowledge, this is the first work that combines AR and KD and evaluates its results
both in CL and FL.

• Combination of KD with GN (GN–KD): Like AR, we are also combining GN and KD
to see how they affect the attack recall and model accuracy. This paper is also the first
paper that combines GN and KD and evaluates the performance of this combination
in CL and FL environments.

• Combination of KD with GD (GD–KD): We also combine KD and GD to see their
effects on attack recall and model accuracy using five various optimizers on image
datasets. To our knowledge, there is no work that combines these two methods to
evaluate how they behave against MIA. Therefore, this is the first paper that combines
these methods and analyses them in both CL and FL environments.

5. Performance Analysis

In this section, a summary of the experimental setup and results is provided. We
performed our experiments on a 2.30 GHz 12th Gen Intel(R) Core(TM) i7-12700H processor
with 16.00 GB RAM on the x64-based Windows 11 OS. We used open-source frameworks
and standard libraries, such as Keras and Tensorflow in Python. The code of this work is
available at [50].

5.1. Experimental Setup

In the following, we detail the experimental setup.

5.1.1. Datasets

The datasets of our experiments are CIFAR-10 [29], MNIST [27], FMNIST [28], and
Purchase [30]. These datasets are the benchmark to validate the MIA, and they are the
same as those used in recent related work [51]. CIFAR-10, MNIST, and FMNIST are image
datasets in which, by normalizing, we fit the image pixel data in the range [0,1], which helps

21

Information 2023, 14, 620

to train the model more accurately. Purchase is a tabular dataset that has 600 dimensions
and 100 labels. We used one-hot encoding of this dataset to be able to feed it into the
neural network [51]. Each dataset is split into 30,000 for training and 10,000 for testing. For
training in the FL environment, the training dataset is uniformly divided between three FL
participants to train the local models based on the FedAvg [3] algorithm separately and
update the central server to reach a global optimal model.

5.1.2. Model Architecture

The models are based on the Keras sequential function and a linear stack of neural
network layers. In these models, we first defined the flattened input layer, followed by three
dense layers. The MNIST and FMNIST input sizes are 28× 28, while the CIFAR-10 input
sizes are 32× 32. The Purchase dataset input size is considered 600 since it has 600 features.
We added all countermeasure layers in between the dense layers. As knowledge distillation
is an architectural mitigation technique, we ran a separate experiment to see its performance.
We specified an output size of 10 as the labels for each class in the MNIST, FMNIST, and
CIFAR-10 datasets range between 0 and 9. Also, we set the output size of 100 for the
Purchase dataset as the labels for this dataset range between 0 and 99. In addition, we set
the activation function for the output layer to softmax to make the outputs sum to 1.

5.1.3. Training Setup

For training, we used SGD, RMSProp, Adagrad, Nadam, and Adadelta optimizers,
with a learning rate equal to 0.01. The loss function for all the optimizers is the categorical
cross-entropy. We have a batch size of 32 and epochs of 10 for each participant during
training. We reproduced the FL process, including local participant training and FedAvg
aggregation. The scheme of data flow is illustrated in Figure 3.

Figure 3. Overview of the FL system.

5.1.4. Evaluation Metrics

We focus on test accuracy as an evaluation metric for the FL model and recall as an
evaluation metric for successful attacks in the FL setting. The recall (true positive rate)
represents the fraction of the members of the training dataset that are correctly inferred as
members by the attacker.

5.1.5. Comparison Methods

We investigated the performance of four attacks, as mentioned in Table 2. Attack 1
employs multiple shadow models mimicking both the structure and the data distribution
of the target model. Attack 2 applies a single shadow model. The structure of the model is

22

Information 2023, 14, 620

different. However, the training data distribution imitates the target model. Unlike Attack 1
and Attack 2, in Attack 3, both the structure of the model and the training data distribution
differ from the target model. Finally, Attack 4 applies the Jacobian matrix paradigm, which
brings us an entirely different membership inference attack using the target model.

5.2. Experimental Results

In this section, we compared FL and CL. We also experimentally analyzed the effect
of the MIA and the effect of the mitigation techniques in both environments, considering
image and tabular datasets.

5.2.1. CL vs. FL

Many studies thoroughly compared the CL and FL approaches [52,53]. FL is concluded
as a network-efficient alternative to CL [54]. In our comparison of the two approaches, as
shown in Figures 4–7, CL outperformed FL regarding accuracy in most cases, which is
expected. In Figure 7, the accuracy in CL is considerably lower than the accuracy in FL for
GN, GD, and AR. This is justified by the nature of the tabular dataset, which seems to be
overfitted using Adadelta and Nadam optimizers in the CL environment, and overfitting is
removed when we apply these optimizers in the FL environment. The accuracy values are
also tabulated in Tables 3 and 4 for CL and FL environments, respectively. In all figures
and tables, the WC is the value for the model accuracy (or attack recall) without having
any countermeasure included in the model. Figures 8–11 illustrate attack recall in our
experiments. An interesting aspect to note is related to the Adadelta optimizer in image
datasets. If we examine Adadelta’s performance in image datasets in Figures 4–6, we can
observe that there is minimal loss in accuracy when using this optimizer. However, our
experiments depicted in Figures 8–10 indicate that, even when we do not implement any
countermeasure (WC) to mitigate membership inference attacks (MIA), Adadelta is capable
of functioning as a countermeasure without significantly compromising utility. It is evident
that utilizing Adadelta alone results in a substantial reduction in the recall of the MIA
attack. However, for tabular datasets, Adadelta is not performing significantly differently
from other optimizers, as shown in Figure 11. In all the tables in this paper, the value
in parentheses shows the difference between that countermeasure and its corresponding
value in the without countermeasure (WC) column. WC shows the values when we do not
use any countermeasure.

Figure 4. Comparison of model accuracy of CL and FL using various optimizers and
countermeasures—MNIST dataset.

23

In
fo

rm
at

io
n

20
23

,1
4,

62
0

Ta
bl

e
3.

C
L

m
od

el
ac

cu
ra

cy
.

D
at

as
et

s
O

pt
im

iz
er

s
W

C
D

M
C

D
B

N
G

D
A

R
G

N
M

K
D

D
P

A
R

–K
D

G
N

–K
D

G
D

–K
D

M
N

IS
T

SG
D

93
.1

81
.6

(−
11

.5
)

88
.3

(−
4.

8)
92

.8
(−

0.
3)

89
.1

(−
4)

92
.1

(−
1)

91
.4

(−
1.

7)
91

.6
(−

1.
5)

92
.8

(−
0.

3)
85

.5
(−

7.
6)

82
.8

(−
10

.3
)

85
.2

(−
7.

9)
84

.8
(−

8.
3)

A
da

gr
ad

92
.6

86
.5

(−
6.

1)
85

.7
(−

6.
9)

92
.1

(−
0.

5)
89

.6
(−

3)
91

.6
(−

1)
91

.1
(−

1.
5)

90
.3

(−
2.

3)
92

(−
0.

6)
-

83
.8

(−
8.

8)
85

.6
(−

7)
84

.9
(−

7.
7)

R
M

SP
ro

p
92

.8
92

.5
(−

0.
3)

90
.9

(−
1.

9)
92

.7
(−

0.
1)

91
.3

(−
1.

5)
90

.4
(−

2.
4)

90
.7

(−
2.

1)
91

.5
(−

1.
3)

91
.2

(−
1.

6)
-

88
.3

(−
4.

5)
86

.1
(−

6.
7)

84
.8

(−
8)

N
ad

am
95

.5
94

.1
(−

1.
4)

90
.3

(−
5.

2)
94

.4
(−

1.
1)

89
.4

(−
6.

1)
80

.7
(−

14
.8

)
94

.5
(−

1)
94

.7
(−

0.
8)

90
.6

(−
4.

9)
-

88
.3

(−
7.

2)
85

.4
(−

10
.1

)
85

.2
(−

10
.3

)
A

da
de

lt
a

90
.2

87
.5

(−
2.

7)
81

.6
(−

8.
6)

90
.1

(−
0.

1)
82

.3
(−

7.
9)

88
.8

(−
1.

4)
85

.4
(−

4.
8)

88
.8

(−
1.

4)
90

.1
(−

0.
1)

-
88

(−
2.

2)
84

.3
(−

5.
9)

84
.3

(−
5.

9)

FM
N

IS
T

SG
D

88
.6

84
.7

(−
3.

9)
84

.1
(−

4.
5)

86
.4

(−
2.

2)
85

.2
(−

3.
3)

87
.3

(−
1.

3)
85

.8
(−

2.
8)

88
.1

(−
0.

5)
86

.9
(−

1.
7)

84
.2

(−
4.

4)
82

.2
(−

6.
4)

74
.7

(−
13

.9
)

73
.2

(−
15

.4
)

A
da

gr
ad

85
.8

78
.6

(−
7.

2)
75

.9
(−

9.
9)

84
.6

(−
1.

2)
81

.9
(−

3.
9)

83
.8

(−
2)

79
.1

(−
6.

7)
88

.7
(+

2.
9)

82
.3

(−
3.

5)
-

83
.1

(−
2.

7)
75

.3
(−

10
.5

)
73

.8
(−

12
)

R
M

SP
ro

p
83

.6
79

.5
(−

4.
1)

78
.5

(−
5.

1)
82

.9
(−

0.
7)

78
.7

(−
4.

9)
82

.6
(−

1)
81

.7
(−

1.
9)

83
.1

(−
0.

5)
81

.9
(−

1.
7)

-
81

.5
(−

2.
1)

75
.5

(−
8.

1)
73

.2
(−

10
.4

)
N

ad
am

85
.9

82
.5

(−
3.

4)
78

.8
(−

7.
1)

83
.4

(−
2.

5)
74

.4
(−

11
.5

)
66

.2
(−

19
.7

)
83

(−
2.

9)
83

.2
(−

2.
7)

82
.5

(−
3.

4)
-

82
.4

(−
3.

5)
75

.6
(−

10
.3

)
72

.6
(−

13
.3

)
A

da
de

lt
a

83
.8

77
.6

(−
6.

2)
75

.1
(−

8.
7)

82
.7

(−
1.

1)
73

(−
10

.8
)

77
.4

(−
6.

4)
77

.8
(−

6)
81

.8
(−

2)
82

.3
(−

1.
5)

-
82

(−
1.

8)
74

.2
(−

9.
6)

71
.3

(−
12

.5
)

C
IF

A
R

-1
0

SG
D

85
.7

74
.2

(−
11

.5
)

74
.9

(−
10

.8
)

82
.8

(−
2.

9)
83

.1
(−

2.
6)

84
.3

(−
1.

4)
78

.6
(−

7.
1)

82
.5

(−
3.

2)
83

.9
(−

1.
8)

74
.6

(−
11

.1
)

82
.6

(−
3.

1)
75

.1
(−

10
.6

)
74

.2
(−

11
.5

)
A

da
gr

ad
88

.4
75

.7
(−

12
.7

)
72

.6
(−

15
.8

)
85

.8
(−

2.
6)

83
.6

(−
4.

8)
87

.2
(−

1.
2)

81
.9

(−
6.

5)
82

.5
(−

5.
9)

85
.3

(−
3.

1)
-

83
.9

(−
4.

5)
76

.3
(−

12
.1

)
75

.1
(−

13
.3

)
R

M
SP

ro
p

86
.3

81
.6

(−
4.

7)
76

.4
(−

9.
9)

85
.7

(−
0.

6)
84

.9
(−

1.
4)

84
.2

(−
2.

1)
82

.1
(−

4.
2)

83
.6

(−
2.

7)
81

.5
(−

4.
8)

-
80

.5
(−

5.
8)

77
(−

9.
3)

75
.9

(−
10

.4
)

N
ad

am
75

.3
73

.4
(−

1.
9)

73
.6

(−
1.

7)
81

.6
(6

.3
)

80
.6

(5
.3

)
72

.3
(7

)
78

.2
(2

.9
)

80
.8

(5
.5

)
81

.1
(5

.8
)

-
79

.8
(4

.5
)

76
.2

(0
.9

)
75

.6
(0

.3
)

A
da

de
lt

a
78

.2
71

.2
(−

7)
70

.5
(−

7.
7)

83
.1

(4
.9

)
82

.1
(3

.9
)

75
.5

(7
.3

)
79

.4
(1

.2
)

81
.3

(3
.1

)
84

.5
(6

.3
)

-
82

.1
(3

.9
)

75
.9

(−
2.

3)
73

.8
(−

4.
4)

Pu
rc

ha
se

SG
D

79
.3

72
(−

7.
3)

79
.2

(−
0.

1)
70

.5
(−

8.
8)

57
(−

22
.3

)
3.

8(
−

75
.5

)
76

.8
(−

2.
5)

79
.8

(0
.5

)
79

.2
(−

0.
1)

70
.3

(−
9)

82
.6

(3
.3

)
75

.1
(−

4.
2)

74
.2

(−
5.

1)
A

da
gr

ad
82

.6
76

.2
(−

6.
4)

83
.1

(0
.5

)
69

.2
(−

13
.4

)
64

.7
(−

17
.9

)
4.

4(
−

78
.2

)
80

.7
(−

1.
9)

82
.9

(0
.3

)
78

.8
(−

3.
8)

-
83

.9
(1

.3
)

76
.3

(−
6.

3)
75

.1
(−

7.
5)

R
M

SP
ro

p
56

.4
24

.1
(−

32
.3

)
51

.5
(−

4.
9)

67
.4

(1
1)

8.
5(
−

47
.9

)
5.

2(
−

51
.2

)
51

.7
(−

4.
7)

52
.6

(−
3.

8)
77

.8
(2

1.
4)

-
80

.5
(2

4.
1)

77
(2

0.
6)

75
.9

(1
9.

5)
N

ad
am

65
.1

41
.4

(−
23

.7
)

66
.6

(1
.5

)
68

.9
(3

.8
)

13
.2

(−
51

.9
)

8.
2(
−

56
.9

)
60

.9
(−

4.
2)

67
.5

(2
.4

)
79

.4
(1

4.
3)

-
79

.8
(1

4.
7)

76
.2

(1
1.

1)
75

.6
(1

0.
5)

A
da

de
lt

a
28

.1
15

.5
(−

12
.6

)
29

.1
(1

)
24

.6
(−

3.
5)

3.
1(
−

25
)

2.
5(
−

25
.6

)
14

.3
(−

13
.8

)
29

.1
(1

)
80

.3
(5

2.
2)

-
82

.1
(5

4)
75

.9
(4

7.
8)

73
.8

(4
5.

7)

24

In
fo

rm
at

io
n

20
23

,1
4,

62
0

Ta
bl

e
4.

FL
m

od
el

ac
cu

ra
cy

.

D
at

as
et

s
O

pt
im

iz
er

s
W

C
D

M
C

D
B

N
G

D
A

R
G

N
M

K
D

D
P

A
R

–K
D

G
N

–K
D

G
D

–K
D

M
N

IS
T

SG
D

87
72

(−
15

)
80

(−
7)

86
.7

(−
0.

3)
85

.5
(−

1.
5)

85
.4

(−
1.

6)
85

.6
(−

1.
4)

86
.2

(−
0.

8)
86

.9
(−

0.
1)

79
.9

(−
7.

1)
90

.9
(3

.9
)

82
.3

(−
4.

7)
77

.9
(−

9.
1)

A
da

gr
ad

88
.7

88
.2

(−
0.

5)
84

.9
(−

3.
8)

88
.3

(−
0.

4)
88

.1
(−

0.
6)

88
.5

(−
0.

2)
88

.3
(−

0.
4)

87
(−

1.
7)

88
.2

(−
0.

5)
-

91
.6

(2
.9

)
79

.7
(−

9)
77

.5
(−

11
.2

)
R

M
SP

ro
p

91
.7

91
.6

(−
0.

1)
89

.5
(−

2.
2)

91
.1

(−
0.

6)
87

.4
(−

4.
3)

86
(−

5.
7)

90
(−

1.
7)

91
.7

(0
)

87
.9

(−
3.

8)
-

90
.9

(−
0.

8)
80

.4
(−

11
.3

)
78

(−
13

.7
)

N
ad

am
95

.5
93

.9
(−

1.
6)

89
.3

(−
6.

2)
95

.3
(−

0.
2)

86
.7

(−
8.

8)
30

.4
(−

65
.1

)
95

.3
(−

0.
2)

95
.4

(−
0.

1)
94

.1
(−

1.
4)

-
91

.5
(−

4)
80

.1
(−

15
.4

)
77

.4
(−

18
.1

)
A

da
de

lt
a

94
.3

92
.8

(−
1.

5)
83

.9
(−

10
.4

)
94

.1
(−

0.
2)

92
.8

(−
1.

5)
94

(−
0.

3)
91

.6
(−

2.
7)

90
.5

(−
3.

8)
90

.7
(−

3.
6)

-
90

.2
(−

4.
1)

79
.3

(−
15

)
77

.9
(−

16
.4

)

FM
N

IS
T

SG
D

81
.3

79
.8

(−
1.

5)
76

.4
(−

4.
9)

81
(−

0.
3)

75
.7

(−
5.

6)
80

.5
(−

0.
8)

74
.9

(−
6.

4)
80

.3
(−

1)
80

.9
(−

0.
4)

77
.6

(−
3.

7)
83

.5
(2

.2
)

73
.3

(−
8)

69
.4

(−
11

.9
)

A
da

gr
ad

82
.6

82
(−

0.
6)

78
.9

(−
3.

7)
81

.6
(−

1)
79

.9
(−

2.
7)

82
.2

(−
0.

4)
78

.4
(−

4.
2)

80
.6

(−
2)

80
.7

(−
1.

9)
-

83
.5

(0
.9

)
73

.2
(−

9.
4)

69
.6

(−
13

)
R

M
SP

ro
p

91
.7

76
.8

(−
14

.9
)

74
.4

(−
17

.3
)

71
(−

20
.7

)
72

.3
(−

19
.4

)
68

.2
(−

23
.5

)
55

(−
36

.7
)

76
.1

(−
15

.6
)

75
.8

(−
15

.9
)

-
83

.1
(−

8.
6)

73
.3

(−
18

.4
)

69
.6

(−
22

.1
)

N
ad

am
84

.6
82

.2
(−

2.
4)

78
.6

(−
6)

83
(−

1.
6)

69
.3

(−
15

.3
)

52
.5

(−
32

.1
)

73
.8

(−
10

.8
)

83
.2

(−
1.

4)
83

.9
(−

0.
7)

-
83

.3
(−

1.
3)

73
.3

(−
11

.3
)

69
(−

15
.6

)
A

da
de

lt
a

84
.1

81
.1

(−
3)

75
.8

(−
8.

3)
81

.1
(−

3)
72

(−
12

.1
)

81
.6

(−
2.

5)
75

.4
(−

8.
7)

82
.8

(−
1.

3)
83

(−
1.

1)
-

83
(−

1.
1)

72
.8

(−
11

.3
)

67
.8

(−
16

.3
)

C
IF

A
R

-1
0

SG
D

79
.5

73
(−

6.
5)

65
.9

(−
13

.6
)

79
.3

(−
0.

2)
73

.2
(−

6.
3)

74
.6

(−
4.

9)
74

.9
(−

4.
6)

73
.1

(−
6.

4)
79

.3
(−

0.
2)

75
.7

(−
3.

8)
82

.8
(3

.3
)

75
.3

(−
4.

2)
68

.5
(−

11
)

A
da

gr
ad

76
.3

67
(−

9.
3)

54
(−

22
.3

)
76

.2
(−

0.
1)

72
.9

(−
3.

4)
71

.4
(−

4.
9)

71
.1

(−
5.

2)
69

.9
(−

6.
4)

75
.7

(−
0.

6)
-

79
.7

(3
.4

)
70

.2
(−

6.
1)

66
.7

(−
9.

6)
R

M
SP

ro
p

72
.8

61
.2

(−
11

.6
)

53
.6

(−
19

.2
)

72
.4

(−
0.

4)
70

.9
(−

1.
9)

72
.2

(−
0.

6)
71

(−
1.

8)
68

.6
(−

4.
2)

72
.1

(−
0.

7)
-

71
.3

(−
1.

5)
64

.8
(−

8)
61

.1
(−

11
.7

)
N

ad
am

80
.3

75
.6

(−
4.

7)
70

.9
(−

9.
4)

79
.8

(−
0.

5)
72

.3
(−

8)
74

.6
(−

5.
7)

75
.2

(−
5.

1)
76

.8
(−

3.
5)

77
.6

(−
2.

7)
-

79
.4

(−
0.

9)
70

.8
(−

9.
5)

70
.3

(−
10

)
A

da
de

lt
a

78
.6

77
.8

(−
4.

8)
72

.6
(−

10
)

78
.2

(−
4.

4)
70

.1
(−

12
.5

)
71

.3
(−

11
.3

)
77

.8
(−

4.
8)

75
.9

(−
6.

7)
76

.3
(−

6.
3)

-
81

.5
(−

1.
1)

65
.8

(−
16

.8
)

66
.8

(−
15

.8
)

Pu
rc

ha
se

SG
D

78
.9

77
.8

(−
1.

1)
78

.5
(−

0.
4)

78
.3

(−
0.

6)
79

(0
.1

)
79

.6
(0

.7
)

78
.3

(−
0.

6)
79

.3
(0

.4
)

78
.8

(−
0.

1)
76

.5
(−

2.
4)

78
(−

0.
9)

75
.5

(−
3.

4)
43

.9
(−

35
)

A
da

gr
ad

81
.3

80
.2

(−
1.

1)
80

.4
(−

0.
9)

80
.4

(−
0.

9)
80

(−
1.

3)
81

.4
(0

.1
)

80
.2

(−
1.

1)
80

.1
(−

1.
2)

77
.6

(−
3.

7)
-

79
(−

2.
3)

77
.4

(−
3.

9)
43

.8
(−

37
.5

)
R

M
SP

ro
p

21
.6

20
.6

(−
1)

19
.4

(−
2.

2)
22

.7
(1

.1
)

23
.8

(2
.2

)
21

.8
(0

.2
)

23
(1

.4
)

23
.9

(2
.3

)
76

.6
(5

5)
-

78
.8

(5
7.

2)
76

.9
(5

5.
3)

46
.8

(2
5.

2)
N

ad
am

30
.1

28
.7

(−
1.

4)
32

(1
.9

)
29

.9
(−

0.
2)

29
.3

(−
0.

8)
28

.6
(−

1.
5)

27
.9

(−
2.

2)
25

.5
(−

4.
6)

79
.3

(4
9.

2)
-

78
.8

(4
8.

7)
74

.1
(4

4)
45

.3
(1

5.
2)

A
da

de
lt

a
30

.8
29

.6
(−

1.
2)

32
.8

(2
)

34
.4

(3
.6

)
33

.8
(3

)
32

.2
(1

.4
)

32
.6

(1
.8

)
31

.4
(0

.6
)

78
.6

(4
7.

8)
-

77
.8

(4
7)

77
(4

6.
2)

42
.9

(1
2.

1)

25

Information 2023, 14, 620

Figure 5. Comparison of model accuracy of CL and FL using various optimizers and
countermeasures—FMNIST dataset.

Figure 6. Comparison of model accuracy of CL and FL using various optimizers and
countermeasures—CIFAR-10 dataset.

26

Information 2023, 14, 620

Figure 7. Comparison of model accuracy of CL and FL using various optimizers and
countermeasures—Purchase dataset.

Figure 8. Comparison of Attack 1 recall on CL and FL using various optimizers and countermeasures—
MNIST dataset.

27

Information 2023, 14, 620

Figure 9. Comparison of Attack 1 Recall on CL and FL using various optimizers and
countermeasures—FMNIST dataset.

Figure 10. Comparison of Attack 1 recall on CL and FL using various optimizers and
countermeasures—CIFAR-10 dataset.

28

Information 2023, 14, 620

Figure 11. Comparison of Attack 1 recall on CL and FL using various optimizers and
countermeasures—Purchase dataset.

Generally, the recall of Attack 1 is almost the same, if not less, in FL compared to the
recall in CL considering different mitigation techniques. Figure 12 illustrates five various
optimizers’ effects as well as various countermeasures’ effects on the FL model accuracy,
where the y-axis provides the test accuracy of the FL model. As DP-SGD is specialized for
SGD optimizer, we applied DP only on SGD optimizer and not with other optimizers. The
first group in all the plots is WC, which represents the baseline without countermeasures.
We have provided the full details of our experiments in CL and FL environments in
Tables 3 and 4, respectively.

Figure 12. A comparison of FL model accuracy with five various optimizers, with and without
countermeasures—MNIST, FMNIST, CIFAR-10, and Purchase datasets.

• CL model accuracy without countermeasure: As per Table 3, the highest CL model
accuracy results for Nadam, SGD, Adagrad, and Adagrad on the MNIST, FMNIST,
CIFAR-10, and Purchase datasets, respectively. In contrast, Nadam on the CIFAR-10,
Adadelta on MNIST, FMNIST, and Purchase yield the lowest accuracy. Generally
speaking, depending on the dataset, the optimizer, and the batch size used in each
round of training, the values for the model accuracy change.

29

Information 2023, 14, 620

• CL model accuracy with countermeasures: As per Table 4, the combination that
yields the highest CL model accuracy for MNIST after applying countermeasures
belongs to Nadam with M. When we apply M as the countermeasure and Nadam
as the optimizer, the accuracy of the model slightly decreases compared to the case
when we use no countermeasure (WC). Subsequently, this is followed by an increase
in the attack recall when using Nadam with M, as per Table 5. In general, Nadam with
M slightly decreases model accuracy and significantly increases attack recall for the
MNIST dataset, while Adadelta with MCD provides the lowest model accuracy. For
the FMNIST dataset, when we use Adagrad with M, we have even higher accuracy
than no countermeasure. However, the attack recall is subsequently high, as shown
in Table 5. In CIFAR-10, AR and BN hold the highest accuracy, while MCD has the
lowest accuracy. In the Purchase dataset, AR–KD yields the highest accuracy for all
optimizers, even better than without countermeasures. This happens while attack
recall in the Purchase dataset, as per Table 5, is reduced for SGD and Adagrad.

• FL model accuracy without countermeasure: As shown in Table 4, the highest FL
model accuracy belongs to Nadam, RMSProp, Adadelta, and Adagrad on the MNIST,
FMNIST, CIFAR-10, and Purchase datasets, respectively, whereas RMSProp on the
CIFAR-10 and Purchase datasets as well as SGD on MNIST and FMNIST yield the
lowest accuracy. In general, FL model accuracy is the lowest for Purchase and the
highest for MNIST. This is justified by the nature of the datasets and the distribution
of their features, which make each data record more distinguishable from the others.
The reason why some optimizers are performing very well for specific datasets in the
CL environment and not performing well for the same dataset in the FL environment
is that these optimizers are sensitive to the FedAvg algorithm, where we average the
total weights that are computed locally by the clients to generate the global model.

• FL model accuracy with countermeasures: As per Table 4, BN has no significant
effect on the CIFAR-10 model accuracy. For CIFAR-10, the highest accuracy belongs
to AR–KD when using the SGD optimizer, and the lowest accuracy belongs to MCD
when using the Adagrad optimizer. For MNIST and FMNIST, the countermeasure that
maintains the maximum accuracy varies between different optimizers. For instance,
in FMNIST, the mitigation technique that keeps the model accuracy at its maximum
value is AR–KD for four optimizers: SGD, Adagrad, RMSProp, and Adadelta. Also,
for Nadam, KD yields the highest accuracy in the FL environment. For FMNIST, the
lowest accuracy belongs to AR when using the Nadam optimizer. For MNIST, the best
accuracy goes for AR–KD when using SGD and Adagrad, whereas M provides the
highest accuracy in RMSProp and Nadam. Also, BN provides the highest accuracy
when using Adadelta. The lowest accuracy for MNIST belongs to GD–KD when using
the Nadam optimizer. The highest accuracy for the Purchase dataset belongs to AR
when using SGD and Adagrad, as well as KD when using Nadam and Adadelta.

30

In
fo

rm
at

io
n

20
23

,1
4,

62
0

Ta
bl

e
5.

C
L

at
ta

ck
re

ca
ll.

D
at

as
et

s
O

pt
im

iz
er

s
A

tt
ac

ks
W

C
D

M
C

D
B

N
G

D
A

R
G

N
M

K
D

D
P

A
R

–K
D

G
N

–K
D

G
D

–K
D

M
N

IS
T

SG
D

A
tt

ac
k-

1
95

.4
0

94
.2

(−
1.

2)
83

.4
(−

12
)

94
.4

(−
1)

87
.9

(−
7.

5)
94

(−
1.

4)
79

.8
(−

15
.6

)
93

.1
(−

2.
3)

84
.6

(−
10

.8
)

89
.2

(−
6.

2)
68

.1
(−

27
.3

)
65

.8
(−

29
.6

)
68

.6
(−

26
.8

)
A

tt
ac

k-
2

94
.9

0
93

.7
(−

1.
2)

83
.2

(−
11

.7
)

94
.8

(−
0.

1)
86

.8
(−

8.
1)

93
.6

(−
1.

3)
93

.2
(−

1.
7)

93
.9

(−
1)

82
.4

(−
12

.5
)

88
.3

(−
6.

6)
65

.4
(−

29
.5

)
63

.2
(−

31
.7

)
65

.2
(−

29
.7

)
A

tt
ac

k-
3

90
.7

0
85

.3
(−

5.
4)

74
.5

(−
16

.2
)

88
.7

(−
2)

82
.9

(−
7.

8)
83

.2
(−

7.
5)

88
.6

(−
2.

1)
89

.3
(−

1.
4)

80
.5

(−
10

.2
)

82
.4

(−
8.

3)
63

.7
(−

27
)

60
.4

(−
30

.3
)

63
.4

(−
27

.3
)

A
tt

ac
k-

4
87

.1
0

32
(−

55
.1

)
34

.6
(−

52
.5

)
28

.7
(−

58
.4

)
24

.5
(−

62
.2

)
35

.3
(−

51
.8

)
37

.4
(−

49
.7

)
24

.6
(−

62
.5

)
22

.6
(−

64
.5

)
26

.8
(−

60
.3

)
24

.7
(−

62
.4

)
32

.5
(−

54
.6

)
28

(−
59

.1
)

A
da

gr
ad

A
tt

ac
k-

1
97

.8
0

97
.2

(−
0.

6)
93

.8
(−

4)
96

.6
(−

1.
2)

95
.2

(−
2.

6)
96

.9
(−

0.
9)

95
.4

(−
2.

4)
96

.9
(−

0.
9)

94
.6

(−
3.

2)
-

81
.6

(−
16

.2
)

65
.9

(−
31

.9
)

55
.9

(−
41

.9
)

A
tt

ac
k-

2
97

.7
0

92
.4

(−
5.

3)
93

.5
(−

4.
2)

95
.7

(−
2)

95
.1

(−
2.

6)
96

.4
(−

1.
3)

93
.6

(−
4.

1)
95

.9
(−

1.
8)

76
.1

(−
21

.6
)

-
66

.2
(−

31
.5

)
64

.1
(−

33
.6

)
55

.3
(−

42
.4

)
A

tt
ac

k-
3

91
.3

0
87

.4
(−

3.
9)

76
.6

(−
14

.7
)

89
.5

(−
1.

8)
86

.2
(−

5.
1)

86
.3

(−
5)

81
.3

(−
10

)
85

.4
(−

5.
9)

74
.9

(−
16

.4
)

-
63

.4
(−

27
.9

)
58

.9
(−

32
.4

)
52

.1
(−

39
.2

)
A

tt
ac

k-
4

86
.9

0
33

.6
(−

53
.3

)
32

.1
(−

54
.8

)
35

.2
(−

51
.7

)
34

.1
(−

52
.8

)
39

.7
(−

47
.2

)
31

.8
(−

55
.1

)
35

.3
(−

51
.6

)
31

.4
(−

55
.5

)
-

20
(−

66
.9

)
96

(9
.1

)
84

(−
2.

9)

R
M

SP
ro

p
A

tt
ac

k-
1

99
.4

0
98

.9
(−

0.
5)

98
.3

(−
1.

1)
99

.3
(−

0.
1)

98
.8

(−
0.

6)
99

.1
(−

0.
3)

98
.6

(−
0.

8)
98

.4
(−

1)
98

.2
(−

1.
2)

-
66

.2
(−

33
.2

)
49

.7
(−

49
.7

)
34

.2
(−

65
.2

)
A

tt
ac

k-
2

99
.2

0
98

.6
(−

0.
6)

97
.3

(−
1.

9)
98

.7
(−

0.
5)

97
.2

(−
2)

98
.3

(−
0.

9)
97

.7
(−

1.
5)

97
(−

2.
2)

96
.4

(−
2.

8)
-

64
.3

(−
34

.9
)

45
.5

(−
53

.7
)

33
.1

(−
66

.1
)

A
tt

ac
k-

3
98

.6
0

96
.3

(−
2.

3)
94

.1
(−

4.
5)

98
.2

(−
0.

4)
93

.1
(−

5.
5)

95
.6

(−
3)

94
.3

(−
4.

3)
94

.8
(−

3.
8)

92
.5

(−
6.

1)
-

58
.9

(−
39

.7
)

43
.8

(−
54

.8
)

32
.4

(−
66

.2
)

A
tt

ac
k-

4
89

.9
0

23
(−

66
.9

)
38

.7
(−

51
.2

)
39

.5
(−

50
.4

)
37

.3
(−

52
.6

)
39

.4
(−

50
.4

)
34

.6
(−

55
.3

)
32

.8
(−

57
.1

)
31

.3
(−

58
.6

)
-

24
(−

65
.9

)
16

(−
73

.9
)

20
(−

69
.9

)

N
ad

am
A

tt
ac

k-
1

82
.9

0
71

.9
(−

11
)

70
.1

(−
12

.8
)

86
.3

(3
.4

)
77

.8
(−

5.
1)

67
.7

(−
15

.2
)

81
.1

(−
1.

8)
95

(1
2.

1)
48

.3
(−

34
.6

)
-

63
.1

(−
19

.8
)

46
.5

(−
36

.4
)

34
.6

(−
48

.3
)

A
tt

ac
k-

2
80

.7
0

70
.3

(−
10

.4
)

68
.5

(−
12

.2
)

85
.6

(4
.9

)
76

.4
(−

4.
3)

66
.4

(−
14

.3
)

79
.5

(−
1.

2)
92

.9
(1

2.
2)

45
.5

(−
35

.2
)

-
61

.2
(−

19
.5

)
44

.6
(−

36
.1

)
32

.1
(−

48
.6

)
A

tt
ac

k-
3

78
.5

0
71

.5
(−

7)
69

.4
(−

9.
1)

77
.5

(−
1)

65
.1

(−
13

.4
)

58
.9

(−
19

.6
)

73
.6

(−
4.

9)
78

.2
(−

0.
3)

44
.7

(−
33

.8
)

-
59

.8
(−

18
.7

)
39

.5
(−

39
)

29
.8

(−
48

.7
)

A
tt

ac
k-

4
80

.3
0

69
(−

11
.3

)
67

.9
(−

12
.4

)
78

(−
2.

3)
32

(−
48

.3
)

28
(−

52
.3

)
84

.4
(4

.1
)

43
.3

(−
37

)
52

(−
28

.3
)

-
30

(−
50

.3
)

24
.2

(−
56

.1
)

12
(−

68
.3

)

A
da

de
lt

a
A

tt
ac

k-
1

59
.7

0
48

.4
(−

11
.3

)
47

.3
(−

12
.4

)
93

(3
3.

3)
49

.8
(−

9.
9)

48
.3

(−
11

.4
)

48
.3

(−
11

.4
)

55
.3

(−
4.

4)
54

.4
(−

5.
3)

-
44

.6
(−

15
.1

)
48

.3
(−

11
.4

)
48

.3
(−

11
.4

)
A

tt
ac

k-
2

58
.8

0
47

.3
(−

11
.5

)
46

.7
(−

12
.1

)
91

.8
(3

3)
45

.5
(−

13
.3

)
47

.8
(−

11
)

44
.2

(−
14

.6
)

52
.8

(−
6)

53
.1

(−
5.

7)
-

43
.1

(−
15

.7
)

45
.6

(−
13

.2
)

46
.9

(−
11

.9
)

A
tt

ac
k-

3
56

.5
0

43
.6

(−
12

.9
)

46
.8

(−
9.

7)
92

.2
(3

5.
7)

49
.3

(−
7.

2)
45

.6
(−

10
.9

)
41

.3
(−

15
.2

)
51

.9
(−

4.
6)

52
.2

(−
4.

3)
-

42
.6

(−
13

.9
)

43
.5

(−
13

)
45

.8
(−

10
.7

)
A

tt
ac

k-
4

44
.0

0
36

(−
8)

34
.8

(−
9.

2)
76

.2
(3

2.
2)

8(
−

36
)

20
(−

24
)

20
(−

24
)

12
(−

32
)

32
.8

(−
11

.2
)

-
16

(−
28

)
24

(−
20

)
20

(−
24

)

FM
N

IS
T

SG
D

A
tt

ac
k-

1
95

.8
93

.7
(−

2.
1)

85
.6

(−
10

.2
)

95
.3

(−
0.

5)
88

.9
(−

6.
9)

94
.7

(−
1.

1)
86

.5
(−

9.
3)

93
.4

(−
2.

4)
83

.5
(−

12
.3

)
86

.3
(−

9.
5)

68
.4

(−
27

.4
)

57
.9

(−
37

.9
)

58
.4

(−
37

.4
)

A
tt

ac
k-

2
93

.6
86

.4
(−

7.
2)

83
.2

(−
10

.4
)

93
.1

(−
0.

5)
85

.9
(−

7.
7)

92
.8

(−
0.

8)
86

.1
(−

7.
5)

92
.5

(−
1.

1)
82

.9
(−

10
.7

)
85

.7
(−

7.
9)

65
.2

(−
28

.4
)

55
.6

(−
38

)
56

.2
(−

37
.4

)
A

tt
ac

k-
3

90
.2

82
.2

(−
8)

81
.6

(−
8.

6)
89

.6
(−

0.
6)

84
.9

(−
5.

3)
89

.1
(−

1.
1)

83
.7

(−
6.

5)
88

.5
(−

1.
7)

81
.9

(−
8.

3)
83

.1
(−

7.
1)

61
.3

(−
28

.9
)

51
.2

(−
39

)
54

.2
(−

36
)

A
tt

ac
k-

4
82

.1
27

(−
55

.1
)

25
.8

(−
56

.3
)

33
.6

(−
48

.5
)

38
.4

(−
43

.7
)

42
.8

(−
39

.3
)

29
.5

(−
52

.6
)

37
.5

(−
44

.6
)

21
.7

(−
60

.4
)

27
.9

(−
54

.2
)

35
.9

(−
46

.2
)

22
.8

(−
59

.3
)

8(
−

74
.1

)

A
da

gr
ad

A
tt

ac
k-

1
90

.6
83

.2
(−

7.
4)

82
.4

(−
8.

2)
85

.4
(−

5.
2)

83
.6

(−
7)

86
.9

(−
3.

7)
87

.6
(−

3)
89

.5
(−

1.
1)

84
.2

(−
6.

2)
-

78
.8

(−
11

.8
)

72
.6

(−
18

)
62

.7
(−

27
.9

)
A

tt
ac

k-
2

87
.2

82
.6

(−
4.

6)
81

.6
(−

5.
6)

84
.3

(−
2.

9)
81

.9
(−

5.
3)

85
.3

(−
1.

9)
86

.8
(−

0.
4)

85
.7

(−
1.

5)
81

.8
(−

5.
4)

-
76

.5
(−

10
.7

)
68

.5
(−

18
.7

)
58

.6
(−

28
.6

)
A

tt
ac

k-
3

85
.7

82
.4

(−
3.

3)
81

.1
(−

4.
6)

82
.8

(−
2.

9)
78

.4
(−

7.
3)

82
.9

(−
2.

8)
82

.7
(−

3)
83

.6
(−

2.
1)

79
.3

(−
6.

4)
-

75
.1

(−
10

.6
)

65
.3

(−
20

.4
)

55
.9

(−
29

.8
)

A
tt

ac
k-

4
80

.9
46

.2
(−

34
.7

)
26

.9
(−

54
)

36
.7

(−
44

.2
)

26
.4

(−
54

.5
)

35
.4

(−
45

.5
)

32
(−

48
.9

)
43

.2
(−

37
.7

)
31

.2
(−

49
.7

)
-

88
(7

.1
)

68
(−

12
.9

)
24

(−
56

.9
)

R
M

SP
ro

p
A

tt
ac

k-
1

91
.5

76
.4

(−
15

.1
)

73
.8

(−
17

.7
)

89
.4

(−
2.

1)
86

.9
(−

4.
6)

88
.4

(−
3.

1)
85

.2
(−

6.
1)

87
.5

(−
4)

72
.6

(−
18

.9
)

-
51

(−
40

.5
)

68
.7

(−
22

.8
)

55
.1

(−
36

.4
)

A
tt

ac
k-

2
89

.2
73

.6
(−

15
.6

)
72

.7
(−

16
.5

)
86

.3
(−

2.
9)

82
.8

(−
6.

4)
87

.2
(−

2)
83

.1
(−

6.
1)

85
.3

(−
3.

9)
71

.8
(−

17
.4

)
-

47
.3

(−
41

.9
)

65
.3

(−
23

.9
)

52
.6

(−
36

.6
)

A
tt

ac
k-

3
85

.3
71

.9
(−

13
.4

)
70

.6
(−

14
.7

)
84

.3
(−

1)
81

.4
(−

3.
9)

82
.8

(−
2.

5)
80

.1
(−

5.
2)

81
.6

(−
3.

7)
69

.3
(−

16
)

-
45

.9
(−

39
.4

)
58

.8
(−

26
.5

)
50

.8
(−

34
.5

)
A

tt
ac

k-
4

70
.8

20
.1

(−
50

.7
)

20
.5

(−
50

.3
)

35
.9

(−
34

.9
)

26
.2

(−
44

.6
)

34
.8

(−
36

)
28

.6
(−

42
.2

)
29

.6
(−

41
.2

)
26

.1
(−

44
.7

)
-

24
(−

46
.8

)
92

(2
1.

2)
28

(−
42

.8
)

N
ad

am
A

tt
ac

k-
1

66
.5

75
.2

(8
.7

)
71

.2
(4

.7
)

83
(1

6.
5)

58
.4

(−
8.

1)
27

.5
(−

39
)

74
.1

(7
.6

)
68

.4
(1

.9
)

53
.3

(−
13

.2
)

-
69

.6
(3

.1
)

54
.5

(−
12

)
64

.1
(−

2.
4)

A
tt

ac
k-

2
65

.7
73

.5
(7

.8
)

70
.4

(4
.7

)
81

.3
(1

5.
6)

55
.3

(−
10

.4
)

25
.6

(−
40

.1
)

73
.1

(7
.4

)
65

.2
(−

0.
5)

51
.6

(−
14

.1
)

-
65

.8
(0

.1
)

52
.6

(−
13

.1
)

63
.2

(−
2.

5)
A

tt
ac

k-
3

60
.3

69
.8

(9
.5

)
65

.9
(5

.6
)

79
.7

(1
9.

4)
51

.9
(−

8.
4)

26
.6

(−
33

.7
)

70
.4

(1
0.

1)
62

.8
(2

.5
)

49
.8

(−
10

.5
)

-
64

.2
(3

.9
)

50
.8

(−
9.

5)
61

.5
(1

.2
)

A
tt

ac
k-

4
28

66
(3

8)
58

.7
(3

0.
7)

14
(−

14
)

88
(6

0)
12

(−
16

)
92

(6
4)

4(
−

24
)

44
(1

6)
-

76
.2

(4
8.

2)
32

(4
)

84
(5

6)

A
da

de
lt

a
A

tt
ac

k-
1

51
.8

49
.1

(−
2.

7)
47

.2
(−

4.
6)

48
.8

(−
3)

60
.5

(8
.7

)
39

.2
(−

12
.6

)
59

.2
(7

.4
)

60
(8

.2
)

39
.4

(−
12

.4
)

-
49

.7
(−

2.
1)

43
.3

(−
8.

5)
39

.5
(−

12
.3

)
A

tt
ac

k-
2

50
.7

47
.1

(−
3.

6)
45

.3
(−

5.
4)

50
.3

(−
0.

4)
59

.6
(8

.9
)

37
.4

(−
13

.3
)

58
.1

(7
.4

)
58

.2
(7

.5
)

37
.6

(−
13

.1
)

-
45

.6
(−

5.
1)

42
.1

(−
8.

6)
35

.8
(−

14
.9

)
A

tt
ac

k-
3

49
.6

46
.8

(−
2.

8)
44

.4
(−

5.
2)

49
.5

(−
0.

1)
55

.3
(5

.7
)

35
.5

(−
14

.1
)

57
.6

(8
)

57
.3

(7
.7

)
35

.9
(−

13
.7

)
-

43
.8

(−
5.

8)
39

.6
(−

10
)

34
.5

(−
15

.1
)

A
tt

ac
k-

4
92

88
(−

4)
78

.3
(−

13
.7

)
92

(0
)

80
(−

12
)

16
(−

76
)

84
(−

8)
12

(−
80

)
20

(−
72

)
-

7(
−

85
)

66
.3

(−
25

.7
)

39
.9

(−
52

.1
)

31

In
fo

rm
at

io
n

20
23

,1
4,

62
0

Ta
bl

e
5.

C
on

t.

D
at

as
et

s
O

pt
im

iz
er

s
A

tt
ac

ks
W

C
D

M
C

D
B

N
G

D
A

R
G

N
M

K
D

D
P

A
R

–K
D

G
N

–K
D

G
D

–K
D

C
IF

A
R

-1
0

SG
D

A
tt

ac
k-

1
92

.6
82

.8
(−

9.
8)

80
.5

(−
12

.1
)

91
.7

(−
0.

9)
91

.5
(−

1.
1)

89
.4

(−
3.

2)
85

.3
(−

7.
3)

90
.4

(−
2.

2)
81

.3
(−

11
.3

)
84

.2
(−

8.
4)

67
.3

(−
25

.3
)

58
.6

(−
34

)
66

.3
(−

26
.3

)
A

tt
ac

k-
2

90
.4

80
.2

(−
10

.2
)

79
.9

(−
10

.5
)

89
.2

(−
1.

2)
89

.6
(−

0.
8)

84
.2

(−
6.

2)
83

.7
(−

6.
7)

86
.9

(−
3.

5)
79

.4
(−

11
)

81
.8

(−
8.

6)
63

.2
(−

27
.2

)
55

.4
(−

35
)

64
.8

(−
25

.6
)

A
tt

ac
k-

3
84

.7
77

.9
(−

6.
8)

75
.1

(−
9.

6)
82

.8
(−

1.
9)

82
.6

(−
2.

1)
81

.7
(−

3)
82

.3
(−

2.
4)

82
.8

(−
1.

9)
75

.2
(−

9.
5)

76
.4

(−
8.

3)
62

.1
(−

22
.6

)
53

.7
(−

31
)

60
.1

(−
24

.6
)

A
tt

ac
k-

4
78

.4
36

.8
(−

41
.6

)
35

.6
(−

42
.8

)
42

.7
(−

35
.7

)
40

.9
(−

37
.5

)
40

.5
(−

37
.9

)
39

.1
(−

39
.3

)
40

.6
(−

37
.8

)
33

.9
(−

44
.5

)
35

.2
(−

43
.2

)
25

.6
(−

52
.8

)
38

.4
(−

40
)

26
(−

52
.4

)

A
da

gr
ad

A
tt

ac
k-

1
91

.3
76

.8
(−

14
.5

)
75

.7
(−

15
.6

)
90

.2
(−

1.
1)

89
.4

(−
1.

9)
90

.4
(−

0.
9)

87
.6

(−
3.

7)
88

.1
(−

3.
3)

74
.2

(−
17

.1
)

-
70

.2
(−

21
.1

)
73

.8
54

.8
(−

36
.5

)
A

tt
ac

k-
2

89
.4

73
.6

(−
15

.8
)

72
.4

(−
17

)
88

.3
(−

1.
1)

87
.9

(−
1.

5)
85

.3
(−

4.
1)

84
.1

(−
5.

3)
83

.8
(−

5.
6)

72
.8

(−
16

.6
)

-
68

.3
(−

21
.1

)
69

.7
(−

19
.7

)
51

.9
(−

37
.5

)
A

tt
ac

k-
3

83
.6

68
.9

(−
14

.7
)

65
.7

(−
17

.9
)

83
.1

(−
0.

5)
80

.7
(−

2.
9)

81
.5

(−
2.

1)
81

.6
(−

2)
82

.4
(−

1.
2)

66
.9

(−
16

.7
)

-
65

.4
(−

18
.2

)
68

.3
(−

15
.3

)
50

.1
(−

33
.5

)
A

tt
ac

k-
4

72
.5

28
.6

(−
43

.9
)

25
.3

(−
47

.2
)

36
.4

(−
36

.1
)

34
.9

(−
37

.6
)

37
.7

(−
34

.8
)

30
.3

(−
42

.2
)

33
.4

(−
39

.1
)

25
.9

(−
46

.6
)

-
71

.3
(−

1.
2)

53
.9

(−
18

.6
)

24
(−

48
.5

)

R
M

SP
ro

p
A

tt
ac

k-
1

89
.3

83
.6

(−
5.

7)
82

.9
(−

6.
4)

88
.4

(−
0.

9)
87

.3
(−

2)
88

(−
1.

3)
87

.6
(−

1.
7)

89
.1

(−
0.

2)
82

.5
(−

6.
8)

-
56

.8
(−

32
.5

)
68

.2
(−

21
.1

)
60

.3
(−

29
)

A
tt

ac
k-

2
84

.2
78

.4
(−

5.
8)

75
.9

(−
8.

3)
83

.9
(−

0.
3)

82
.4

(−
1.

8)
81

.9
(−

2.
3)

82
.8

(−
1.

4)
82

.7
(−

1.
5)

76
.8

(−
7.

4)
-

60
.9

(−
23

.3
)

65
.8

(−
18

.4
)

58
.9

(−
25

.3
)

A
tt

ac
k-

3
81

.6
74

.9
(−

6.
7)

72
.9

(−
8.

7)
80

.6
(−

1)
78

.5
(−

3.
1)

77
.3

(−
4.

3)
78

.2
(−

3.
4)

80
.1

(−
1.

5)
71

.4
(−

10
.2

)
-

61
.2

(−
20

.4
)

67
.3

(−
14

.3
)

54
.6

(−
27

)
A

tt
ac

k-
4

68
.5

24
.7

(−
43

.8
)

22
.6

(−
45

.9
)

32
.9

(−
35

.6
)

30
.5

(−
38

)
31

.8
(−

36
.7

)
29

.2
(−

39
.3

)
31

.3
(−

37
.2

)
23

.4
(−

45
.1

)
-

48
.8

(−
19

.7
)

60
.8

(−
7.

7)
28

.8
(−

39
.7

)

N
ad

am
A

tt
ac

k-
1

67
.2

65
.8

(−
1.

4)
64

.2
(−

3)
67

.1
(−

0.
1)

60
.6

(−
6.

6)
28

.6
(−

38
.6

)
74

.3
(7

.1
)

65
.3

(−
1.

9)
55

.3
(−

11
.9

)
-

65
.8

(−
1.

4)
55

.6
(−

11
.6

)
65

.1
(−

2.
1)

A
tt

ac
k-

2
65

.8
63

.3
(−

2.
5)

62
.1

(−
3.

7)
64

.2
(−

1.
6)

58
.3

(−
7.

5)
25

.7
(−

40
.1

)
73

.6
(7

.8
)

61
.4

(−
4.

4)
51

.2
(−

14
.6

)
-

62
.3

(−
3.

5)
54

.3
(−

11
.5

)
63

.8
(−

2)
A

tt
ac

k-
3

63
.2

61
.1

(−
2.

1)
60

.7
(−

2.
5)

62
.1

(−
1.

1)
57

.8
(−

5.
4)

24
.5

(−
38

.7
)

74
.8

(1
1.

6)
63

.1
(−

0.
1)

50
.8

(−
12

.4
)

-
60

.9
(−

2.
3)

52
.8

(−
10

.4
)

60
.9

(−
2.

3)
A

tt
ac

k-
4

68
.3

48
.3

(−
20

)
45

.6
(−

22
.7

)
67

.5
(−

0.
8)

61
.2

(−
7.

1)
29

.6
(−

38
.7

)
88

.5
(2

0.
2)

72
.1

(3
.8

)
45

.3
(−

23
)

-
44

.2
(−

24
.1

)
58

.9
(−

9.
4)

18
(−

50
.3

)

A
da

de
lt

a
A

tt
ac

k-
1

65
.3

63
.5

(−
1.

8)
61

.9
(−

3.
4)

65
.1

(−
0.

2)
58

.3
(−

7)
55

.8
(−

9.
5)

73
.5

(8
.2

)
68

.3
(3

)
52

.8
(−

12
.5

)
-

61
.7

(−
3.

6)
55

.8
(−

9.
5)

51
.8

(−
13

.5
)

A
tt

ac
k-

2
64

.2
61

.3
(−

2.
9)

60
.2

(−
4)

64
.1

(−
0.

1)
57

.6
(−

6.
6)

53
.9

(−
10

.3
)

73
.6

(9
.4

)
65

.1
(0

.9
)

53
.4

(−
10

.8
)

-
60

.5
(−

3.
7)

54
.9

(−
9.

3)
49

.3
(−

14
.9

)
A

tt
ac

k-
3

63
.1

59
.8

(−
3.

3)
57

.8
(−

5.
3)

62
.3

(−
0.

8)
55

.8
(−

7.
3)

52
.1

(−
11

)
74

.5
(1

1.
4)

66
.3

(3
.2

)
51

.1
(−

12
)

-
58

.8
(−

4.
3)

53
.1

(−
10

)
45

.2
(−

17
.9

)
A

tt
ac

k-
4

58
53

(−
5)

51
.4

(−
6.

6)
38

(−
20

)
35

(−
23

)
48

.6
(−

9.
4)

70
.8

(1
2.

8)
28

.8
(−

29
.2

)
24

(−
34

)
-

48
(−

10
)

32
(−

26
)

40
.8

(−
17

.2
)

Pu
rc

ha
se

SG
D

A
tt

ac
k-

1
53

.3
52

.5
(−

0.
8)

51
.6

(−
1.

7)
66

.9
(1

3.
6)

54
.2

(0
.9

)
53

.5
(0

.2
)

54
.2

(0
.9

)
51

.1
(−

2.
2)

41
(−

12
.3

)
51

.2
(−

2.
1)

48
.7

(−
4.

6)
57

(3
.7

)
52

(−
1.

3)
A

tt
ac

k-
2

52
.2

51
.2

(−
1)

50
.6

(−
1.

6)
66

.1
(1

3.
9)

53
.8

(1
.6

)
52

.5
(0

.3
)

53
.3

(1
.1

)
50

.1
(−

2.
1)

40
.5

(−
11

.7
)

50
.1

(−
2.

1)
47

.5
(−

4.
7)

56
.5

(4
.3

)
51

.8
(−

0.
4)

A
tt

ac
k-

3
51

.8
50

.1
(−

1.
7)

50
.1

(−
1.

7)
65

.8
(1

4)
52

.2
(0

.4
)

51
.2

(−
0.

6)
52

.1
(0

.3
)

49
.8

(−
2)

39
.2

(−
12

.6
)

49
.9

(−
1.

9)
46

.9
(−

4.
9)

55
.3

(3
.5

)
50

.9
(−

0.
9)

A
tt

ac
k-

4
88

12
(−

76
)

66
.8

(−
21

.2
)

70
.3

(−
17

.7
)

32
.6

(−
55

.4
)

54
.3

(−
33

.7
)

16
(−

72
)

12
(−

76
)

20
(−

68
)

66
(−

22
)

26
(−

62
)

28
(−

60
)

24
(−

64
)

A
da

gr
ad

A
tt

ac
k-

1
59

.9
52

.9
(−

7)
59

.4
(−

0.
5)

73
.7

(1
3.

8)
53

.1
(−

6.
8)

50
.1

(−
9.

8)
53

.9
(−

6)
57

.9
(−

2)
35

(−
24

.9
)

-
52

.3
(−

7.
6)

49
.6

(−
10

.3
)

53
.7

(−
6.

2)
A

tt
ac

k-
2

58
.4

51
.3

(−
7.

1)
58

.8
(0

.4
)

73
.1

(1
4.

7)
52

.8
(−

5.
6)

49
.4

(−
9)

53
.1

(−
5.

3)
56

.7
(−

1.
7)

32
.5

(−
25

.9
)

-
51

.9
(−

6.
5)

48
.5

(−
9.

9)
52

.9
(−

5.
5)

A
tt

ac
k-

3
57

.2
50

.2
(−

7)
58

.1
(0

.9
)

72
.8

(1
5.

6)
52

(−
5.

2)
48

.9
(−

8.
3)

52
.8

(−
4.

4)
55

.9
(−

1.
3)

31
.8

(−
25

.4
)

-
51

.1
(−

6.
1)

48
.9

(−
8.

3)
52

.1
(−

5.
1)

A
tt

ac
k-

4
16

16
(0

)
24

(8
)

16
(0

)
28

(1
2)

14
(−

2)
12

(−
4)

24
(8

)
26

(1
0)

-
20

(4
)

8(
−

8)
25

(9
)

R
M

SP
ro

p
A

tt
ac

k-
1

46
.9

36
.4

(−
10

.5
)

49
.8

(2
.9

)
71

.8
(2

4.
9)

52
.1

(5
.2

)
53

.9
(7

)
71

.8
(2

4.
9)

48
.4

(1
.5

)
26

(−
20

.9
)

-
54

.9
(8

)
25

.2
(−

21
.7

)
40

.5
(−

6.
4)

A
tt

ac
k-

2
45

.3
36

.1
(−

9.
2)

48
.9

(3
.6

)
70

.5
(2

5.
2)

51
.2

(5
.9

)
52

.9
(7

.6
)

70
.2

(2
4.

9)
47

.9
(2

.6
)

25
.4

(−
19

.9
)

-
53

.8
(8

.5
)

24
.7

(−
20

.6
)

39
.7

(−
5.

6)
A

tt
ac

k-
3

44
.3

35
.2

(−
9.

1)
48

.1
(3

.8
)

69
.9

(2
5.

6)
51

.1
(6

.8
)

52
.1

(7
.8

)
68

.9
(2

4.
6)

47
.1

(2
.8

)
24

.9
(−

19
.4

)
-

53
.1

(8
.8

)
23

.9
(−

20
.4

)
39

.1
(−

5.
2)

A
tt

ac
k-

4
92

24
(−

68
)

32
(−

60
)

12
(−

80
)

16
(−

76
)

92
(0

)
12

(−
80

)
24

(−
68

)
76

(−
16

)
-

20
(−

72
)

8(
−

84
)

36
(−

56
)

N
ad

am
A

tt
ac

k-
1

56
.2

40
.4

(−
15

.8
)

53
.4

(−
2.

8)
72

.1
(1

5.
9)

53
.1

(−
3.

1)
51

.3
(−

4.
9)

46
(−

10
.2

)
55

.8
(−

0.
4)

20
.8

(−
35

.4
)

-
51

.3
(−

4.
9)

30
.2

(−
26

)
51

(−
5.

2)
A

tt
ac

k-
2

55
.3

39
.8

(−
15

.5
)

52
.2

(−
3.

1)
71

.8
(1

6.
5)

52
.3

(−
3)

50
.8

(−
4.

5)
45

.7
(−

9.
6)

55
.1

(−
0.

2)
19

.9
(−

35
.4

)
-

50
.9

(−
4.

4)
29

.2
(−

26
.1

)
50

.8
(−

4.
5)

A
tt

ac
k-

3
55

.1
39

.2
(−

15
.9

)
51

.3
(−

3.
8)

70
.9

(1
5.

8)
51

.3
(−

3.
8)

49
.2

(−
5.

9)
44

.3
(−

10
.8

)
55

.8
(0

.7
)

18
.4

(−
36

.7
)

-
50

.1
(−

5)
28

.7
(−

26
.4

)
49

.9
(−

5.
2)

A
tt

ac
k-

4
84

92
(8

)
24

(−
60

)
16

(−
68

)
24

(−
60

)
76

(−
8)

11
(−

73
)

8(
−

76
)

28
(−

56
)

-
8(
−

76
)

18
(−

66
)

12
(−

72
)

A
da

de
lt

a
A

tt
ac

k-
1

52
.7

51
.1

(−
1.

6)
51

.1
(−

1.
6)

51
.8

(−
0.

9)
55

.3
(2

.6
)

51
.9

(−
0.

8)
50

(−
2.

7)
50

(−
2.

7)
46

.8
(−

5.
9)

-
55

.6
(2

.9
)

52
(−

0.
7)

53
.7

(1
)

A
tt

ac
k-

2
51

.3
50

.2
(−

1.
1)

49
.8

(−
1.

5)
50

.3
(−

1)
52

.7
(1

.4
)

49
.8

(−
1.

5)
48

.7
(−

2.
6)

49
.2

(−
2.

1)
45

.2
(−

6.
1)

-
53

.2
(1

.9
)

51
.2

(−
0.

1)
51

.3
(0

)
A

tt
ac

k-
3

49
.8

48
.3

(−
1.

5)
49

.5
(−

0.
3)

48
.2

(−
1.

6)
50

.8
(1

)
49

.2
(−

0.
6)

47
.6

(−
2.

2)
48

.6
(−

1.
2)

43
.2

(−
6.

6)
-

50
.1

(0
.3

)
49

.8
(0

)
50

.1
(0

.3
)

A
tt

ac
k-

4
84

4(
−

80
)

72
(−

12
)

8(
−

76
)

24
(−

60
)

64
(−

20
)

28
(−

56
)

62
(−

22
)

8(
−

76
)

-
18

(−
66

)
16

(−
68

)
16

(−
68

)

32

Information 2023, 14, 620

5.2.2. Attack Recall

Reducing the attacks’ recall is the best sign that implies MIA mitigation. Figure 13
illustrates the results of the four aforementioned attacks applying five optimizers, with(out)
countermeasures on four datasets, MNIST, FMNIST, CIFAR-10, and Purchase, respectively.
The y-axis represents the recall of the attack. The attack recall in CL is tabulated in Table 5,
whereas the attack recall in FL is tabulated in Table 6 on various datasets and optimizers.

Figure 13. A comparison of the four attacks on the FL environment using five optimizers with and
without countermeasures.

33

In
fo

rm
at

io
n

20
23

,1
4,

62
0

Ta
bl

e
6.

FL
at

ta
ck

re
ca

ll.

D
at

as
et

s
O

pt
im

iz
er

s
A

tt
ac

ks
W

C
D

M
C

D
B

N
G

D
A

R
G

N
M

K
D

D
P

A
R

–K
D

G
N

–K
D

G
D

–K
D

M
N

IS
T

SG
D

A
tt

ac
k-

1
95

.2
79

.3
(−

15
.9

)
82

.4
(−

12
.8

)
94

.5
(−

0.
7)

91
.6

(−
3.

6)
93

.6
(−

1.
6)

81
(−

14
.2

)
93

.4
(−

1.
8)

75
.7

(−
19

.5
)

88
(−

7.
2)

76
.9

(−
18

.3
)

72
.6

(−
22

.6
)

69
.8

(−
25

.4
)

A
tt

ac
k-

2
94

.5
74

.6
(−

19
.9

)
82

(−
12

.5
)

94
.3

(−
0.

2)
91

(−
3.

5)
93

.1
(−

1.
4)

78
.2

(−
16

.3
)

93
(−

1.
5)

72
.8

(−
21

.7
)

86
.7

(−
7.

8)
74

.5
(−

20
)

72
.5

(−
22

)
67

.2
(−

27
.3

)
A

tt
ac

k-
3

88
.2

71
.7

(−
16

.5
)

68
.4

(−
19

.8
)

86
.2

(−
2)

82
.5

(−
5.

7)
81

.1
(−

7.
1)

69
.4

(−
18

.8
)

85
(−

3.
2)

68
.9

(−
19

.3
)

81
.2

(−
7)

72
.6

(−
15

.6
)

71
.8

(−
16

.4
)

65
.8

(−
22

.4
)

A
tt

ac
k-

4
86

24
.8

(−
61

.2
)

34
(−

52
)

24
.4

(−
61

.6
)

24
.1

(−
61

.9
)

34
.5

(−
51

.5
)

28
(−

58
)

24
.3

(−
61

.7
)

18
(−

68
)

22
.1

(−
63

.9
)

48
.4

(−
37

.6
)

40
(−

46
)

35
.5

(−
50

.5
)

A
da

gr
ad

A
tt

ac
k-

1
97

.6
97

(−
0.

6)
93

.4
(−

4.
2)

95
.8

(−
1.

8)
96

.4
(−

1.
2)

96
.7

(−
0.

9)
93

.5
(−

4.
1)

97
(−

0.
6)

73
.4

(−
24

.2
)

-
77

.6
(−

20
)

73
(−

24
.6

)
77

.4
(−

20
.2

)
A

tt
ac

k-
2

97
.5

89
(−

8.
5)

93
.1

(−
4.

4)
94

(−
3.

5)
96

.1
(−

1.
4)

96
.3

(−
1.

2)
92

.1
(−

5.
4)

95
(−

2.
5)

70
.3

(−
27

.2
)

-
75

.8
(−

21
.7

)
72

.3
(−

25
.2

)
83

.2
(−

14
.3

)
A

tt
ac

k-
3

89
.2

88
.1

(−
1.

1)
74

.7
(−

14
.5

)
86

(−
3.

2)
86

.2
(−

3)
84

.5
(−

4.
7)

79
(−

10
.2

)
81

.9
(−

7.
3)

64
.2

(−
25

)
-

73
.6

(−
15

.6
)

71
.2

(−
18

)
81

.6
(−

7.
6)

A
tt

ac
k-

4
82

16
(−

66
)

38
(−

44
)

34
.3

(4
7.

7)
32

(−
50

)
38

.4
(−

43
.6

)
20

(−
62

)
16

(−
66

)
17

.8
(−

64
.2

)
-

13
.9

(−
68

.1
)

28
(−

54
)

24
(−

58
)

R
M

SP
ro

p
A

tt
ac

k-
1

99
98

.7
(−

0.
3)

97
.4

(−
1.

6)
98

.6
(−

0.
4)

92
.8

(−
6.

2)
93

.5
(−

5.
5)

97
(−

2)
96

.6
(−

2.
4)

83
.6

(−
15

.4
)

-
82

.7
(−

16
.3

)
66

.5
(−

32
.5

)
69

.4
(−

29
.6

)
A

tt
ac

k-
2

98
.9

98
.2

(−
0.

7)
97

(−
1.

9)
98

.3
(−

0.
6)

89
.4

(−
9.

5)
87

.7
(−

11
.3

)
91

.9
(−

7)
91

.3
(−

7.
6)

78
.6

(−
20

.4
)

-
75

.2
(−

23
.7

)
63

.2
(−

35
.7

)
68

.7
(−

30
.2

)
A

tt
ac

k-
3

93
.5

90
.8

(−
2.

7)
83

.4
(−

10
.1

)
92

.9
(−

0.
6)

85
.3

(−
8.

2)
91

(−
2.

5)
91

.7
(−

1.
8)

91
.0

5(
−

2.
4)

72
.5

(−
21

)
-

71
.1

(−
22

.4
)

61
.1

(−
32

.4
)

65
.9

(−
27

.6
)

A
tt

ac
k-

4
88

70
(−

18
)

31
(−

57
)

36
(−

52
)

32
(−

56
)

36
.2

(5
1.

8)
30

(−
58

)
28

(−
60

)
22

.6
(−

65
.4

)
-

21
.6

(−
66

.4
)

28
(−

60
)

68
(−

20
)

N
ad

am
A

tt
ac

k-
1

94
.5

81
.1

(−
13

.4
)

79
.8

(−
14

.7
)

85
.1

(−
9.

4)
76

.5
(−

18
)

40
.5

(−
54

)
83

.9
(−

10
.6

)
62

.1
(−

32
.4

)
57

.4
(−

37
.1

)
-

74
.2

(−
20

.3
)

52
.9

(−
41

.6
)

70
.2

(−
24

.3
)

A
tt

ac
k-

2
93

.8
79

.5
(−

14
.3

)
78

.2
(−

15
.6

)
84

.2
(−

9.
6)

75
.6

(−
18

.2
)

39
.5

(−
54

.3
)

82
.3

(−
11

.5
)

60
.9

(−
32

.9
)

56
.2

(−
37

.6
)

-
72

.1
(−

21
.7

)
50

.7
(−

43
.1

)
68

.5
(−

25
.3

)
A

tt
ac

k-
3

89
.5

75
.8

(−
13

.7
)

68
.5

(−
21

)
83

.9
(−

5.
6)

73
.2

(−
16

.3
)

38
.7

(−
50

.8
)

79
.8

(−
9.

7)
58

.6
(−

30
.9

)
55

.3
(−

34
.2

)
-

70
.6

(−
18

.9
)

48
.2

(−
41

.3
)

64
.3

(−
25

.2
)

A
tt

ac
k-

4
88

49
.3

(−
38

.7
)

47
.5

(−
40

.5
)

87
.2

(−
0.

8)
80

(−
8)

16
(−

72
)

56
(−

32
)

52
(−

36
)

54
.6

(−
33

.4
)

-
33

(−
55

)
8(
−

80
)

12
(−

76
)

A
da

de
lt

a
A

tt
ac

k-
1

65
.7

55
.1

(−
10

.6
)

52
.3

(−
13

.4
)

83
.7

(1
8)

48
.1

(−
17

.6
)

48
.3

(−
17

.4
)

48
.8

(−
16

.9
)

66
.8

(1
.1

)
70

.7
(5

)
-

58
.1

(−
7.

6)
48

.3
(−

17
.4

)
58

.4
(−

7.
3)

A
tt

ac
k-

2
64

.3
53

.9
(−

10
.4

)
50

.8
(−

13
.5

)
81

.8
(1

7.
5)

45
.4

(−
18

.9
)

46
.7

(−
17

.6
)

47
.5

(−
16

.8
)

65
.2

(0
.9

)
68

.5
(4

.2
)

-
56

.3
(−

8)
47

.6
(−

16
.7

)
56

.3
(−

8)
A

tt
ac

k-
3

60
.9

50
.2

(−
10

.7
)

46
.7

(−
14

.2
)

75
.6

(1
4.

7)
41

.8
(−

19
.1

)
44

.3
(−

16
.6

)
45

.4
(−

15
.5

)
60

.8
(−

0.
1)

65
.3

(4
.4

)
-

52
.3

(−
8.

6)
41

.1
(−

19
.8

)
52

.1
(−

8.
8)

A
tt

ac
k-

4
88

69
.3

(−
18

.7
)

65
.4

(−
22

.6
)

12
(−

76
)

84
(−

4)
32

(−
56

)
32

(−
56

)
49

(−
39

)
45

.6
(−

42
.4

)
-

28
(−

60
)

12
(−

76
)

50
.6

(−
37

.4
)

FM
N

IS
T

SG
D

A
tt

ac
k-

1
82

.4
71

(−
11

.4
)

74
.6

(−
7.

4)
76

.7
(−

5.
7)

80
.5

(−
1.

9)
77

.5
(−

4.
9)

77
(−

5.
4)

81
.9

(−
0.

5)
74

.8
(−

7.
6)

75
.1

(−
7.

3)
64

.7
(−

17
.7

)
65

.2
(−

17
.2

)
50

.1
(−

32
.3

)
A

tt
ac

k-
2

82
.1

70
.3

(−
11

.8
)

69
.8

(−
12

.3
)

74
.4

(−
7.

7)
77

.2
(−

4.
9)

79
.1

(−
3)

76
.9

(−
5.

2)
81

.1
(−

1)
70

.2
(−

11
.9

)
71

.6
(−

10
.5

)
63

.2
(−

18
.9

)
63

.5
(−

18
.6

)
49

.2
(−

32
.9

)
A

tt
ac

k-
3

76
.8

64
.1

(−
12

.7
)

63
.2

(−
13

.6
)

69
.8

(−
7)

71
.9

(−
4.

9)
71

.1
(−

5.
7)

69
.7

(−
7.

1)
68

.3
(−

8.
5)

65
.6

(−
11

.2
)

65
.8

(−
11

)
61

.3
(−

15
.5

)
60

.2
(−

16
.6

)
47

.9
(−

28
.9

)
A

tt
ac

k-
4

72
9(
−

63
)

16
(−

56
)

32
.8

(−
39

.2
)

36
.2

(−
35

.8
)

44
(−

28
)

36
(−

36
)

32
(−

40
)

26
.1

(−
45

.9
)

23
.8

(−
48

.2
)

76
.1

(4
.1

)
44

(−
28

)
62

.6
(−

9.
4)

A
da

gr
ad

A
tt

ac
k-

1
83

.6
80

.2
(−

3.
4)

78
.2

(−
5.

4)
81

.1
(−

2.
5)

81
(−

2.
6)

80
.6

(−
2)

78
.9

(−
4.

7)
82

.5
(−

1.
1)

73
.2

(−
10

.4
)

-
84

.5
(0

.9
)

62
.9

(−
20

.7
)

66
.8

(−
16

.8
)

A
tt

ac
k-

2
82

.2
80

(−
2.

2)
77

.5
(−

4.
7)

80
.9

(−
1.

3)
81

(−
1.

2)
80

.2
(−

2)
78

.1
(−

4.
1)

82
(−

0.
2)

71
.2

(−
11

)
-

80
.6

(−
1.

6)
59

.8
(−

22
.4

)
64

.8
(−

17
.4

)
A

tt
ac

k-
3

75
.1

73
.4

(−
1.

7)
71

.3
(−

3.
8)

71
.1

(−
4)

69
.9

(−
5.

2)
70

(−
5.

1)
72

.1
(−

3)
74

.2
(−

0.
9)

69
.4

(−
5.

7)
-

78
.8

(3
.7

)
57

.3
(−

17
.8

)
63

.1
(−

12
)

A
tt

ac
k-

4
80

68
(−

12
)

24
(−

56
)

36
.4

(−
43

.6
)

24
(−

56
)

36
.8

(−
43

.2
)

34
(−

46
)

36
(−

44
)

26
.3

(−
53

.7
)

-
92

(1
2)

84
(4

)
59

.8
(−

20
.2

)

R
M

SP
ro

p
A

tt
ac

k-
1

74
.2

69
.9

(−
4.

3)
72

.3
(−

1.
9)

67
.8

(−
6.

4)
66

(−
8.

2)
64

.3
(−

9.
9)

67
.5

(−
6.

7)
73

.6
(−

0.
6)

63
.9

(−
10

.3
)

-
88

.1
(1

3.
9)

69
.4

(−
4.

8)
65

.3
(−

8.
9)

A
tt

ac
k-

2
73

.9
69

.4
(−

4.
5)

71
.7

(−
2.

2)
66

.7
(−

7.
2)

66
.5

(−
7.

4)
63

.8
(−

10
.1

)
66

.1
(−

7.
8)

73
(−

0.
9)

60
.8

(−
13

.1
)

-
83

.7
(9

.8
)

67
.5

(−
6.

4)
63

.7
(−

10
.2

)
A

tt
ac

k-
3

68
.2

61
.3

(−
6.

9)
55

.8
(−

12
.4

)
59

(−
9.

2)
58

.3
(−

9.
9)

59
.6

(−
8.

6)
59

.3
(−

8.
9)

64
.6

(−
3.

6)
58

.1
(−

10
.1

)
-

80
.9

(1
2.

7)
65

.1
(−

3.
1)

62
.9

(−
5.

3)
A

tt
ac

k-
4

69
12

(−
57

)
16

(−
53

)
38

(−
31

)
14

(−
55

)
32

.3
(−

36
.7

)
34

(−
35

)
32

(−
37

)
24

.7
(−

44
.3

)
-

85
(1

6)
76

.1
(7

.1
)

41
(−

28
)

N
ad

am
A

tt
ac

k-
1

82
.6

63
.9

(−
18

.7
)

74
.7

(−
7.

9)
81

.2
5(
−

1.
3)

56
.9

(−
25

.7
)

32
.1

(−
50

.5
)

78
.8

(−
3.

8)
80

.2
(−

2.
4)

68
.4

(−
14

.2
)

-
84

.2
(1

.6
)

58
.8

(−
23

.8
)

56
.9

(−
25

.7
)

A
tt

ac
k-

2
80

.7
62

.5
(−

18
.2

)
73

.2
(−

7.
5)

79
.4

(−
1.

3)
55

.5
(−

25
.2

)
33

.2
(−

47
.5

)
75

.6
(−

5.
1)

78
.6

(−
2.

1)
65

.2
(−

15
.5

)
-

82
.6

(1
.9

)
57

.4
(−

23
.3

)
55

.8
(−

24
.9

)
A

tt
ac

k-
3

81
.5

58
.1

(−
23

.4
)

56
.8

(−
24

.7
)

72
.3

(−
9.

2)
52

.3
(−

29
.2

)
40

.2
(−

41
.3

)
73

.1
(−

8.
4)

75
.9

(−
5.

6)
54

.5
(−

27
)

-
80

.9
(−

0.
6)

53
.4

(−
28

.1
)

54
.3

(−
27

.2
)

A
tt

ac
k-

4
83

.2
79

.2
(−

4)
54

(−
29

.2
)

72
(−

11
.2

)
80

(−
3.

2)
76

(−
7.

2)
71

.6
(−

11
.6

)
69

.1
(−

14
.1

)
39

(−
44

.2
)

-
76

(−
7.

2)
84

(0
.8

)
60

(−
23

.2
)

A
da

de
lt

a
A

tt
ac

k-
1

68
.9

49
.4

(−
19

.5
)

48
.2

(−
20

.7
)

61
.8

(−
7.

1)
59

.4
(−

9.
5)

58
.9

(−
10

)
48

.5
(−

20
.4

)
67

.6
(−

1.
3)

51
.2

(−
17

.7
)

-
44

.6
(−

24
.3

)
62

.9
(−

6)
40

.3
(−

28
.6

)
A

tt
ac

k-
2

67
.8

48
.7

(−
19

.1
)

47
.3

(−
20

.5
)

60
.2

(−
7.

6)
58

.2
(−

9.
6)

56
.5

(−
11

.3
)

46
.8

(−
21

)
67

.2
(−

0.
6)

48
.5

(−
19

.3
)

-
43

.1
(−

24
.7

)
60

.8
(−

7)
38

.6
(−

29
.2

)
A

tt
ac

k-
3

62
.2

47
.6

(−
14

.6
)

46
.5

(−
15

.7
)

57
.8

(−
4.

4)
59

.5
(−

2.
7)

51
.2

(−
11

)
42

.3
(−

19
.9

)
60

.8
(−

1.
4)

47
.3

(−
14

.9
)

-
42

.6
(−

19
.6

)
62

.4
(0

.2
)

35
.4

(−
26

.8
)

A
tt

ac
k-

4
62

.8
22

(−
40

.8
)

20
(−

42
.8

)
55

.9
(−

6.
9)

61
.6

(−
1.

2)
68

.8
(6

)
62

.4
(−

0.
4)

45
.3

(−
17

.5
)

37
.9

(−
24

.9
)

-
16

(−
46

.8
)

84
(2

1.
2)

38
.2

(−
24

.6
)

34

In
fo

rm
at

io
n

20
23

,1
4,

62
0

Ta
bl

e
6.

C
on

t.

D
at

as
et

s
O

pt
im

iz
er

s
A

tt
ac

ks
W

C
D

M
C

D
B

N
G

D
A

R
G

N
M

K
D

D
P

A
R

–K
D

G
N

–K
D

G
D

–K
D

C
IF

A
R

-1
0

SG
D

A
tt

ac
k-

1
79

68
.5

(−
10

.5
)

62
.2

(−
16

.8
)

78
.3

(−
0.

7)
77

.8
(−

1.
2)

76
.3

(−
2.

7)
75

.2
(−

3.
8)

73
.6

(−
5.

4)
68

.9
(−

10
.1

)
69

.1
(−

9.
9)

60
.2

(−
18

.8
)

63
.3

(−
15

.7
)

51
.2

(−
27

.8
)

A
tt

ac
k-

2
78

.6
68

.2
(−

10
.4

)
61

.1
(−

17
.5

)
78

.1
(−

0.
5)

77
.4

(−
1.

2)
74

.3
(−

4.
3)

76
.7

(−
1.

9)
74

.2
(−

4.
4)

63
.1

(−
15

.5
)

67
.6

(−
11

)
58

.3
(−

20
.3

)
61

.7
(−

16
.9

)
48

.9
(−

29
.7

)
A

tt
ac

k-
3

74
.3

67
.4

(−
6.

9)
60

.9
(−

13
.4

)
73

.4
(−

0.
9)

73
.2

(−
1.

1)
71

.5
(−

2.
8)

71
.2

(−
3.

1)
72

.8
(−

1.
5)

60
.4

(−
13

.9
)

69
.6

(−
4.

7)
57

.4
(−

16
.9

)
58

.4
(−

15
.9

)
45

.3
(−

29
)

A
tt

ac
k-

4
75

.6
31

(−
44

.6
)

28
(−

47
.6

)
33

.9
(−

41
.7

)
32

.6
(−

43
)

30
(−

45
.6

)
29

.8
(−

45
.8

)
23

.4
(−

52
.2

)
25

.8
(−

49
.8

)
30

.9
(−

44
.7

)
48

(−
27

.6
)

40
(−

35
.6

)
29

(−
46

.6
)

A
da

gr
ad

A
tt

ac
k-

1
74

.2
65

(−
9.

2)
61

(−
13

.2
)

73
.8

(−
0.

4)
73

.1
(−

1.
1)

72
.4

(−
1.

8)
73

(−
1.

2)
70

(−
4.

2)
65

.8
(−

8.
4)

-
71

.4
(−

2.
8)

54
.2

(−
20

)
58

.1
(−

16
.1

)
A

tt
ac

k-
2

73
.7

64
.3

(−
9.

4)
60

(−
13

.7
)

73
.1

(−
0.

6)
72

.6
(−

1.
1)

72
.2

(−
1.

5)
72

.8
(−

0.
9)

69
.5

(−
4.

2)
63

.1
(−

10
.6

)
-

69
.2

(−
4.

5)
52

.4
(−

21
.3

)
56

.8
(−

16
.9

)
A

tt
ac

k-
3

67
.4

56
.9

(−
10

.5
)

53
(−

14
.4

)
62

.4
(−

5)
62

.2
(−

5.
2)

60
.4

(−
7)

61
.5

(−
5.

9)
58

.4
(−

9)
60

.4
(−

7)
-

67
.4

(0
)

51
.1

(−
16

.3
)

52
.4

(−
15

)
A

tt
ac

k-
4

70
.1

17
(−

53
.1

)
13

(−
57

.1
)

28
.4

(−
41

.7
)

25
(−

45
.1

)
27

.1
(−

43
)

25
.2

(−
44

.9
)

12
(−

58
.1

)
26

.2
(−

43
.9

)
-

18
(−

52
.1

)
32

(−
38

.1
)

25
(−

45
.1

)

R
M

SP
ro

p
A

tt
ac

k-
1

68
.2

58
.6

(−
9.

6)
55

(−
13

.2
)

65
.8

(−
2.

4)
64

.2
(−

4)
65

.3
(−

2.
9)

64
(−

4.
2)

62
.1

(−
6.

1)
62

.3
(−

5.
9)

-
52

.4
(−

15
.8

)
58

.7
(−

9.
5)

59
.3

(−
8.

9)
A

tt
ac

k-
2

67
.9

57
.3

(−
10

.6
)

53
.2

(−
14

.7
)

65
.1

(−
2.

8)
63

.6
(−

5.
3)

61
.9

(−
6)

62
.4

(−
5.

5)
60

.8
(−

7.
1)

60
.6

(−
7.

3)
-

50
.6

(−
17

.3
)

57
.1

(−
10

.8
)

57
.9

(−
10

)
A

tt
ac

k-
3

63
.7

56
(−

7.
7)

52
.9

(−
10

.8
)

62
.3

(−
1.

4)
60

.8
(−

2.
9)

61
.7

(−
2)

59
(−

4.
7)

59
.4

(−
4.

3)
57

.2
(−

6.
5)

-
49

.7
(−

14
)

56
.2

(−
7.

5)
55

.4
(−

8.
3)

A
tt

ac
k-

4
65

.6
23

(−
42

.6
)

12
(−

53
.6

)
34

(−
31

.6
)

32
.1

(−
33

.5
)

32
.7

(−
32

.9
)

30
.3

(−
35

.3
)

25
.6

(−
40

)
21

.9
(−

43
.7

)
-

32
.4

(−
33

.2
)

46
.8

(−
18

.8
)

35
(−

30
.6

)

N
ad

am
A

tt
ac

k-
1

78
.4

68
.5

(−
9.

9)
65

.8
(−

12
.6

)
77

.8
(−

0.
6)

53
.1

(−
25

.3
)

45
.2

(−
33

.2
)

74
.3

(−
4.

1)
75

.9
(−

2.
5)

67
.1

(−
11

.3
)

-
74

.3
(−

4.
1)

55
.6

(−
22

.8
)

52
.6

(−
25

.8
)

A
tt

ac
k-

2
75

.2
64

.2
(−

11
)

62
.3

(−
12

.9
)

74
.2

(−
1)

52
.8

(−
22

.4
)

43
.8

(−
31

.4
)

71
.6

(−
3.

6)
74

.2
(−

1)
52

.3
(−

22
.9

)
-

71
.4

(−
3.

8)
52

.1
(−

23
.1

)
49

.4
(−

25
.8

)
A

tt
ac

k-
3

73
.1

6
4.

8(
−

8.
3)

61
.7

(−
11

.4
)

72
.1

(−
1)

50
.3

(−
22

.8
)

41
.6

(−
31

.5
)

69
.2

(−
3.

9)
72

.6
(−

0.
5)

50
.9

(−
22

.2
)

-
69

.8
(−

3.
3)

51
.3

(−
21

.8
)

48
.7

(−
24

.4
)

A
tt

ac
k-

4
70

.6
65

.2
(−

5.
4)

32
(−

38
.6

)
70

.1
(−

0.
5)

65
.4

(−
5.

2)
50

.3
(−

20
.3

)
60

.5
(−

10
.1

)
55

.6
(−

15
)

31
.2

(−
39

.4
)

-
60

.3
(−

10
.3

)
74

.6
(4

)
49

.1
(−

21
.5

)

A
da

de
lt

a
A

tt
ac

k-
1

65
.9

55
.3

(−
10

.6
)

53
.1

(−
12

.8
)

65
.1

(−
0.

8)
58

.5
(−

7.
4)

52
.6

(−
13

.3
)

45
.2

(−
20

.7
)

62
.1

(−
3.

8)
50

.3
(−

15
.6

)
-

35
.3

(−
30

.6
)

55
.8

(−
10

.1
)

43
.7

(−
22

.2
)

A
tt

ac
k-

2
64

.5
52

.1
(−

12
.4

)
51

.2
(−

13
.3

)
63

.1
(−

1.
4)

56
.2

(−
8.

3)
49

.5
(−

15
)

43
.8

(−
20

.7
)

59
.8

(−
4.

7)
48

.7
(−

15
.8

)
-

33
.7

(−
30

.8
)

52
.9

(−
11

.6
)

42
.9

(−
21

.6
)

A
tt

ac
k-

3
62

.3
50

.6
(−

11
.7

)
48

.5
(−

13
.8

)
61

.1
(−

1.
2)

53
.1

(−
9.

2)
47

.6
(−

14
.7

)
41

.9
(−

20
.4

)
57

.6
(−

4.
7)

45
.4

(−
16

.9
)

-
32

.2
(−

30
.1

)
51

.6
(−

10
.7

)
40

.3
(−

22
)

A
tt

ac
k-

4
58

22
(−

36
)

20
(−

38
)

50
(−

8)
50

.3
(−

7.
7)

60
(2

)
56

.2
(−

1.
8)

45
.7

(−
12

.3
)

18
(−

40
)

-
18

.6
(−

39
.4

)
32

.4
(−

25
.6

)
36

.9
(−

21
.1

)

Pu
rc

ha
se

SG
D

A
tt

ac
k-

1
52

.2
53

.1
(1

.9
)

49
.3

(−
1.

9)
52

.2
(1

)
52

.9
(1

.7
)

54
.5

(3
.3

)
51

.6
(0

.4
)

50
.1

(−
1.

1)
51

.9
(0

.7
)

49
.5

(−
1.

7)
48

.9
(−

2.
3)

50
.9

(−
0.

3)
48

.4
(−

2.
8)

A
tt

ac
k-

2
50

.2
52

.2
(2

)
48

.9
(−

1.
3)

51
.8

(1
.6

)
52

.1
(1

.9
)

53
.7

(3
.5

)
50

.8
(0

.6
)

49
.5

(−
0.

7)
51

.1
(0

.9
)

49
.1

(−
1.

1)
48

.1
(−

2.
1)

50
.6

(0
.4

)
47

.9
(−

2.
3)

A
tt

ac
k-

3
49

.3
51

.6
(2

.3
)

48
.1

(−
1.

2)
51

.1
(1

.8
)

51
.5

(2
.2

)
52

.4
(3

.1
)

50
.1

(0
.8

)
49

(−
0.

3)
50

.8
(1

.5
)

48
.7

(−
0.

6)
47

.8
(−

1.
5)

49
.9

(0
.6

)
47

.1
(−

2.
2)

A
tt

ac
k-

4
84

24
(−

60
)

24
(−

60
)

92
(8

)
22

(−
62

)
80

(−
4)

12
(−

72
)

36
(−

48
)

8(
−

76
)

80
(−

4)
84

(0
)

88
(4

)
20

(−
64

)

A
da

gr
ad

A
tt

ac
k-

1
52

.4
53

.3
(0

.9
)

53
.1

(0
.7

)
58

.7
(6

.3
)

51
.1

(−
1.

3)
55

.2
(2

.8
)

53
.4

(1
)

55
.3

(2
.9

)
54

.9
(2

.5
)

-
54

(1
.6

)
47

.9
(−

4.
5)

49
.1

(−
3.

3)
A

tt
ac

k-
2

51
.2

52
.8

(1
.6

)
52

.8
(1

.6
)

57
.8

(6
.6

)
50

.8
(−

0.
4)

54
.9

(3
.7

)
53

.1
(1

.9
)

54
.8

(3
.6

)
54

.2
(3

)
-

53
.5

(2
.3

)
47

(−
4.

2)
48

.8
(−

2.
4)

A
tt

ac
k-

3
50

.8
52

.1
(1

.3
)

52
.1

(1
.3

)
57

(6
.2

)
50

.2
(−

0.
6)

54
.2

(3
.4

)
52

.8
(2

)
54

.1
(3

.3
)

53
.7

(2
.9

)
-

53
.1

(2
.3

)
46

.5
(−

4.
3)

48
.1

(−
2.

7)
A

tt
ac

k-
4

72
80

(8
)

88
(1

6)
12

(−
60

)
28

(−
44

)
24

(−
48

)
84

(1
2)

24
(−

48
)

80
(8

)
-

12
(−

60
)

84
(1

2)
92

(2
0)

R
M

SP
ro

p
A

tt
ac

k-
1

37
.8

42
.3

(4
.5

)
36

(−
1.

8)
23

.1
(−

14
.7

)
51

.8
(1

4)
52

(1
4.

2)
35

.2
(−

2.
6)

39
.8

(2
)

55
.8

(1
8)

-
54

.7
(1

6.
9)

43
.4

(5
.6

)
42

.2
(4

.4
)

A
tt

ac
k-

2
37

.1
41

.9
(4

.8
)

35
.7

(−
1.

4)
22

.8
(−

14
.3

)
51

.2
(1

4.
1)

51
.6

(1
4.

5)
34

.8
(−

2.
3)

39
.1

(2
)

55
.1

(1
8)

-
53

.9
(1

6.
8)

42
.8

(5
.7

)
41

.8
(4

.7
)

A
tt

ac
k-

3
36

.8
41

(4
.2

)
35

(−
1.

8)
22

.5
(−

14
.3

)
49

.7
(1

2.
9)

51
(1

4.
2)

34
.2

(−
2.

6)
38

.7
(1

.9
)

54
.9

(1
8.

1)
-

53
.1

(1
6.

3)
42

.2
(5

.4
)

41
.2

(4
.4

)
A

tt
ac

k-
4

96
88

(−
8)

36
(−

60
)

36
(−

60
)

24
(−

72
)

32
(−

64
)

36
(−

60
)

24
(−

72
)

96
(0

)
-

16
(−

80
)

20
(−

76
)

24
(−

72
)

N
ad

am
A

tt
ac

k-
1

35
.8

40
.4

(4
.6

)
35

.1
(−

0.
7)

19
.2

(−
16

.6
)

54
.4

(1
8.

6)
50

.5
(1

4.
7)

29
.6

(−
6.

2)
34

.4
(−

1.
4)

51
.4

(1
5.

6)
-

45
.3

(9
.5

)
46

.1
(1

0.
3)

50
.9

(1
5.

1)
A

tt
ac

k-
2

34
.7

39
.8

(5
.1

)
34

.7
(0

)
18

.9
(−

15
.8

)
53

.9
(1

9.
2)

49
.8

(1
5.

1)
28

.9
(−

5.
8)

34
(−

0.
7)

50
.7

(1
6)

-
44

.8
(1

0.
1)

45
.8

(1
1.

1)
50

.1
(1

5.
4)

A
tt

ac
k-

3
34

.1
39

(4
.9

)
34

(−
0.

1)
18

.3
(−

15
.8

)
53

.1
(1

9)
49

.1
(1

5)
28

.3
(−

5.
8)

33
.8

(−
0.

3)
50

(1
5.

9)
-

44
.3

(1
0.

2)
45

.3
(1

1.
2)

49
.8

(1
5.

7)
A

tt
ac

k-
4

40
28

(−
12

)
72

(3
2)

20
(−

20
)

88
(4

8)
80

(4
0)

88
(4

8)
8(
−

32
)

72
(3

2)
-

12
(−

28
)

84
(4

4)
16

(−
24

)

A
da

de
lt

a
A

tt
ac

k-
1

51
.1

50
.5

(−
0.

6)
53

.1
(2

)
54

.7
(3

.6
)

55
.1

(4
)

53
.1

(2
)

52
.8

(1
.7

)
53

.9
(2

.8
)

59
.4

(8
.3

)
-

46
.4

(−
4.

7)
50

.5
(−

0.
6)

49
.3

(−
1.

8)
A

tt
ac

k-
2

50
.4

49
.5

(−
0.

9)
52

.9
(2

.5
)

54
.1

(3
.7

)
54

.8
(4

.4
)

52
.8

(2
.4

)
51

.9
(1

.5
)

53
.2

(2
.8

)
58

.7
(8

.3
)

-
45

.9
(−

4.
5)

50
(−

0.
4)

48
.6

(−
1.

8)
A

tt
ac

k-
3

50
49

.1
(−

0.
9)

52
.1

(2
.1

)
53

.3
(3

.3
)

54
.3

(4
.3

)
52

.1
(2

.1
)

51
.1

(1
.1

)
52

.8
(2

.8
)

58
(8

)
-

45
.3

(−
4.

7)
49

.8
(−

0.
2)

48
.1

(−
1.

9)
A

tt
ac

k-
4

72
28

(−
44

)
96

(2
4)

24
(−

48
)

96
(2

4)
64

(−
8)

32
(−

40
)

68
(−

4)
4(
−

68
)

-
8(
−

64
)

12
(−

60
)

24
(−

48
)

35

Information 2023, 14, 620

• CL attacks recall without countermeasure: As shown in Table 5, for the MNIST
dataset, the strongest attack is Attack 1 when we apply RMSProp. The recall value of
this attack without any countermeasure is 99.4%, which is the highest among other
attacks. For Attack 1, only changing the optimizer to Adadelta drops this value to
59.7% without using any countermeasure. Also, the weakest attack goes for Attack
4 when using Adadelta optimization. The recall value of this attack is 44%. For the
FMNIST dataset, the strongest attack is Attack 1 with the SGD optimizer and the
weakest attack is Attack 4 with the Nadam optimizer. For CIFAR-10, the strongest
attack is Attack 1 with SGD optimizer and the weakest is Attack 4 with Adadelta
optimizer. For the Purchase dataset, the best attack is Attack 4 with RMSProp optimizer
and the worst attack is Attack 4 with Adagrad optimizer.

• CL attacks recall with countermeasures: As per Table 5, different mitigation tech-
niques provide various recall values in every attack. We observe that the strongest
attack in the case of MNIST, which is Attack 1 with RMSProp, is defended by GD–KD
by a reduction of 65.2% of recall value, which is impressive. Using GD–KD is only
reducing the model accuracy by 8% according to Table 3. We can conclude that, in
the CL environment, GD–KD provides the strongest defense with the lowest model
accuracy degradation. This is very important in developing future ML models. For
the FMNIST dataset, the strongest attack belongs to Attack 1 when using SGD. This
attack in the case of FMNIST is also defended by GD–KD by a reduction of 37.4% in
recall value, although the strongest defense for this particular attack and dataset is
GN–KD with a 37.9% recall reduction. It is noteworthy that GD–KD and GN–KD
drop model accuracy by 15.4% and 13.9%, respectively, as shown in Table 3. The
same thing holds true for the CIFAR-10 dataset. The strongest attack is Attack 1 with
SGD optimizer for this dataset, and GN–KD is capable of defending this attack by a
reduction in attack recall by 34%. Also, in the Purchase dataset, the strongest attack,
which is Attack 4 with RMSProp optimizer, is defended by GN–KD and resulted in
recall value reduction by 84%. In general, we observe that, in the CL environment,
in most of the experiments, the combinations of KD and another countermeasure
provides lower attack recall values than other mitigation techniques. This means that
these combinations are the best to defend MIA against ML in the CL environment.

• FL attacks recall without countermeasure: As shown in Figure 13 and Table 6, for the
MNIST dataset, we observe that the highest attack recall (99%) belongs to Attack 1 with
RMSProp. This value is significantly reduced to 65.7% by only changing the optimizer
to Adadelta. It is impressive to see that changing the optimizer to Adadelta will not
drop model accuracy significantly. According to Table 4, using Adadelta reduces FL
model accuracy by approximately 1% compared to Nadam. For the FMNIST dataset,
Attack 1 with Adagrad provides the highest attack recall value (83.6%). When we
change the optimizer to Adadelta, we witness a drop in attack recall to 68.9% without
any mitigation technique. The same as Adadelta in MNIST, we are seeing a slight drop
in accuracy from 91.7% to 84.1% according to Table 4. For the CIFAR-10 dataset, the
highest attack recall is 79% for Attack 1 with SGD optimizer. This value is dropped to
65.9% by only changing the optimizer to Adadelta. Similar to MNIST and FMNIST,
this change has not had a significant impact on the accuracy of the FL model. As shown
in Table 4, the accuracy of CIFAR-10, when using Adadelta as an optimizer, only drops
by roughly 2%. For the Purchase dataset, the best attack is Attack 4 with the RMSProp
optimizer with 96% recall value. Also, without applying any countermeasure, the
lowest recall value for this dataset belongs to Attack 3 with the Nadam optimizer.

• FL attacks recall with countermeasures: As shown in Table 6, it is evident that the
various mitigation techniques exhibit varying performance. However, in general,
the combinations of KD with either GD, GN, or AR consistently offer improved
protection while preserving the model’s utility. For MNIST with RMSProp, GN–KD
effectively reduces the recall of Attack 1 by 32.5%, which is the most potent attack in
our FL MNIST experiments. Remarkably, this reduction is achieved with only an 11%

36

Information 2023, 14, 620

decrease in FL model accuracy, as indicated in Table 4. In the case of FMNIST, Table 6
reveals that Attack 1 with Adagrad exhibits a high recall value of 83.6%. However, this
attack can be mitigated by GN–KD, resulting in a 20.7% reduction in recall. It is worth
noting that this defense strategy incurs a modest accuracy drop of 9.7%, as reflected in
Table 4. In CIFAR-10, the strongest attack is Attack 1 with SGD, boasting a recall value
of 92.6%. GN–KD is capable of reducing this recall to 58.6% while causing a minimal
4.2% drop in FL accuracy, as detailed in Table 4. In the Purchase dataset, the most
potent attack, Attack 4, using the RMSProp optimizer, experiences an 80% reduction in
effectiveness with a recall value of 96% when AR–KD is applied. Notably, AR–KD not
only avoids a decline in accuracy for the Purchase dataset with the RMSProp optimizer
but also substantially boosts accuracy by 52%. This improvement is attributed to the
capacity of AR–KD to modify the model’s architecture, thereby averting overfitting.

5.2.3. Accuracy–Recall Trade-Off

To obtain a clear comparison between the efficiency of the countermeasures, we
calculated the ratio of accuracy over recall. The higher the ratio is, the better the trade-off
we are achieving. Figure 14 illustrates the accuracy–recall ratio of each countermeasure. As
shown in Figure 14, for almost all optimizers, the highest trade-off belongs to one of the
combinatory approaches (either AR–KD, GN–KD, or GD–KD). This figure proves that the
combinational approaches that we tested provide a better trade-off between the accuracy
of the target model and MIA attack recall. The higher value of this trade-off conveys the
message that the mitigation technique keeps the accuracy of the target model high and
reduces the attack recall as much as possible.

Figure 14. The ratio of the accuracy of the model over recall of the attack model in FL environment.

5.2.4. Privacy and Utility

Concluding from Tables 3–6, it is noted that combination of KD with either AR, GN, or
GD has significant advantages over using each one of them separately as well as over other
conventional countermeasures. Experiments are showing that the new combinations of
countermeasures successfully handle the trade-off between privacy and utility. Generally
speaking, in all datasets and almost all optimizers (AR, GD, and GN), KD is capable of
reducing the attack recall while preserving the accuracy of the model at a high level. Not
only do they preserve the utility of the model at a high level but also, due to the nature of
KD, in some cases, they increase model accuracy as well.

6. Conclusions

This research paper presents a thorough examination of the accuracy of centralized
and federated learning models, as well as the recall rates associated with different mem-
bership inference attacks. Additionally, it evaluates the effectiveness of various defense
mechanisms within both centralized and federated learning environments. Our experimen-
tal findings reveal that Attack 1 [9] yields the highest advantage for potential attackers,

37

Information 2023, 14, 620

while Attack 4 [11] is the least favorable for malicious actors. Among the defense strategies
examined, the combination of knowledge distillation (KD) with activity regularization
(AR), Gaussian dropout (GD), or Gaussian noise (GN) emerges as the most effective in the
context of centralized and federated learning. Notably, these three combinations stand
out for their ability to effectively balance the trade-off between preserving privacy and
maintaining utility. This comparative analysis holds significant importance for guiding
future advancements in model development.

Author Contributions: Conceptualization, A.A.T. and D.A.; methodology, A.A.T., S.D. and D.A.; soft-
ware, A.A.T., S.D. and N.M.; validation, A.A.T., D.A. and N.M.; formal analysis, A.A.T.; investigation,
A.A.T. and N.M.; resources, D.A.; data curation, A.A.T.; writing—original draft preparation, A.A.T.,
S.D. and D.A.; writing—review and editing, A.A.T. and D.A.; visualization, A.A.T.; supervision,
D.A.; project administration, D.A.; funding acquisition, D.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research is supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) Discovery Grant (RGPIN-2019-05689).

Data Availability Statement: The codes and data are available at https://github.com/University-
of-Windsor/ComparitiveAnalysis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Niknam, S.; Dhillon, H.S.; Reed, J.H. Federated learning for wireless communications: Motivation, opportunities, and challenges.

IEEE Commun. Mag. 2020, 58, 46–51. [CrossRef]
2. Carlini, N.; Chien, S.; Nasr, M.; Song, S.; Terzis, A.; Tramer, F. Membership inference attacks from first principles. In Proceedings

of the 2022 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 22–26 May 2022; pp. 1897–1914.
3. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 20–22 April 2017;
pp. 1273–1282.

4. Regulation, P. General data protection regulation. Intouch 2018, 25, 1–5.
5. Act, A. Health insurance portability and accountability act of 1996. Public Law 1996, 104, 191.
6. Carlini, N.; Liu, C.; Erlingsson, Ú.; Kos, J.; Song, D. The Secret Sharer: Evaluating and Testing Unintended Memorization in

Neural Networks. In Proceedings of the USENIX Security Symposium, Santa Clara, CA, USA, 14–16 August 2019; Volume 267.
7. Melis, L.; Song, C.; De Cristofaro, E.; Shmatikov, V. Exploiting unintended feature leakage in collaborative learning. In

Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 691–706.
8. Backes, M.; Berrang, P.; Humbert, M.; Manoharan, P. Membership privacy in MicroRNA-based studies. In Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 319–330.
9. Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership inference attacks against machine learning models. In Proceedings

of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–24 May 2017; pp. 3–18.
10. Salem, A.; Zhang, Y.; Humbert, M.; Berrang, P.; Fritz, M.; Backes, M. Ml-leaks: Model and data independent membership

inference attacks and defenses on machine learning models. arXiv 2018, arXiv:1806.01246.
11. Liu, L.; Wang, Y.; Liu, G.; Peng, K.; Wang, C. Membership Inference Attacks Against Machine Learning Models via Prediction

Sensitivity. IEEE Trans. Dependable Secur. Comput. 2022, 20, 2341–2347. [CrossRef]
12. Dayal, S.; Alhadidi, D.; Abbasi Tadi, A.; Mohammed, N. Comparative Analysis of Membership Inference Attacks in Federated

Learning. In Proceedings of the 27th International Database Engineered Applications Symposium, Heraklion, Greece, 5–7 May
2023; pp. 185–192.

13. Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings
of the International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 1050–1059.

14. Bjorck, N.; Gomes, C.P.; Selman, B.; Weinberger, K.Q. Understanding batch normalization. In Proceedings of the Advances in
Neural Information Processing Systems 31 (NeurIPS 2018), Montreal, QC, Canada, 8 December 2018; pp. 31–40.

15. Xiao, Y.; Yan, C.; Lyu, S.; Pei, Q.; Liu, X.; Zhang, N.; Dong, M. Defed: An Edge Feature Enhanced Image Denoised Networks
Against Adversarial Attacks for Secure Internet-of-Things. IEEE Internet Things J. 2022, 10, 6836–6848. [CrossRef]

16. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

17. Keras Documentation: Masking Layer. Available online: https://keras.io/api/layers/core_layers/masking/ (accessed on 29
September 2023).

38

Information 2023, 14, 620

18. Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H.B.; Mironov, I.; Talwar, K.; Zhang, L. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October
2016; pp. 308–318.

19. Yim, J.; Joo, D.; Bae, J.; Kim, J. A gift from knowledge distillation: Fast optimization, network minimization and transfer learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 4133–4141.

20. Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of the COMPSTAT’2010: 19th
International Conference on Computational Statistics, Paris, France, 22–27 August 2010; pp. 177–186.

21. Tieleman, T.; Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA
Neural Netw. Mach. Learn. 2012, 4, 26–31.

22. McMahan, H.B.; Streeter, M. Adaptive bound optimization for online convex optimization. arXiv 2010, arXiv:1002.4908.
23. Poggiolini, P. The GN model of non-linear propagation in uncompensated coherent optical systems. J. Light. Technol. 2012,

30, 3857–3879. [CrossRef]
24. Keras Documentation: Activityregularization Layer. Available online: https://keras.io/api/layers/regularization_layers/

activity_regularization/ (accessed on 29 September 2023).
25. Dozat, T. Incorporating Nesterov Momentum into Adam. Available online: https://openreview.net/forum?id=OM0jvwB8jIp5

7ZJjtNEZ (accessed on 29 September 2023).
26. Zeiler, M.D. Adadelta: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.
27. Deng, L. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process.

Mag. 2012, 29, 141–142. [CrossRef]
28. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,

arXiv:1708.07747.
29. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; University of Toronto: Toronto, ON, Canada, 2009.
30. Datasets. Available online: https://www.comp.nus.edu.sg/~reza/files/datasets.html (accessed on 29 September 2023).
31. Nasr, M.; Shokri, R.; Houmansadr, A. Comprehensive privacy analysis of deep learning: Passive and active white-box inference

attacks against centralized and federated learning. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP),
San Francisco, CA, USA, 19–23 May 2019; pp. 739–753.

32. Conti, M.; Li, J.; Picek, S.; Xu, J. Label-Only Membership Inference Attack against Node-Level Graph Neural Networks. In
Proceedings of the 15th ACM Workshop on Artificial Intelligence and Security, Los Angeles, CA, USA, 11 November 2022;
pp. 1–12.

33. Zheng, J.; Cao, Y.; Wang, H. Resisting membership inference attacks through knowledge distillation. Neurocomputing 2021,
452, 114–126. [CrossRef]

34. Shejwalkar, V.; Houmansadr, A. Membership privacy for machine learning models through knowledge transfer. In Proceedings
of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 9549–9557.

35. Lee, H.; Kim, J.; Ahn, S.; Hussain, R.; Cho, S.; Son, J. Digestive neural networks: A novel defense strategy against inference
attacks in federated learning. Comput. Secur. 2021, 109, 102378. [CrossRef]

36. Su, T.; Wang, M.; Wang, Z. Federated Regularization Learning: An Accurate and Safe Method for Federated Learning. In
Proceedings of the 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS), Washington,
DC, USA, 6–9 June 2021; pp. 1–4.

37. Xie, Y.; Chen, B.; Zhang, J.; Wu, D. Defending against Membership Inference Attacks in Federated learning via Adversarial
Example. In Proceedings of the 2021 17th International Conference on Mobility, Sensing and Networking (MSN), Exeter, UK,
13–15 December 2021; pp. 153–160.

38. Firdaus, M.; Larasati, H.T.; Rhee, K.H. A Secure Federated Learning Framework using Blockchain and Differential Privacy. In
Proceedings of the 2022 IEEE 9th International Conference on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th
International Conference on Edge Computing and Scalable Cloud (EdgeCom), Xi’an, China, 25–27 June 2022; pp. 18–23.

39. Bai, Y.; Fan, M. A method to improve the privacy and security for federated learning. In Proceedings of the 2021 IEEE 6th
International Conference on Computer and Communication Systems (ICCCS), Las Vegas, CA, USA, 4–6 October 2021; pp. 704–708.

40. Chen, H.; Li, H.; Dong, G.; Hao, M.; Xu, G.; Huang, X.; Liu, Z. Practical membership inference attack against collaborative
inference in industrial IoT. IEEE Trans. Ind. Infor. 2020, 18, 477–487. [CrossRef]

41. Novak, R.; Bahri, Y.; Abolafia, D.A.; Pennington, J.; Sohl-Dickstein, J. Sensitivity and generalization in neural networks: An
empirical study. arXiv 2018, arXiv:1802.08760.

42. Milanés-Hermosilla, D.; Trujillo Codorniú, R.; López-Baracaldo, R.; Sagaró-Zamora, R.; Delisle-Rodriguez, D.; Villarejo-Mayor, J.J.;
Núñez-Álvarez, J.R. Monte Carlo Dropout for Uncertainty Estimation and Motor Imagery Classification. Sensors 2021, 21, 7241.
[CrossRef]

43. Dwork, C.; McSherry, F.; Nissim, K.; Smith, A. Calibrating noise to sensitivity in private data analysis. In Proceedings of the
Theory of Cryptography Conference, New York, NY, USA, 4–7 March 2006; pp. 265–284.

44. Dwork, C. A firm foundation for private data analysis. Commun. ACM 2011, 54, 86–95. [CrossRef]
45. Dwork, C.; Roth, A. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 2014, 9, 211–407.

[CrossRef]

39

Information 2023, 14, 620

46. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
47. Wu, C.; Wu, F.; Lyu, L.; Huang, Y.; Xie, X. Communication-efficient federated learning via knowledge distillation. Nat. Commun.

2022, 13, 2032. [CrossRef]
48. Jiang, D.; Shan, C.; Zhang, Z. Federated learning algorithm based on knowledge distillation. In Proceedings of the 2020

International Conference on Artificial Intelligence and Computer Engineering (ICAICE), Beijing, China, 23–25 October 2020;
pp. 163–167.

49. Li, X.; Chen, B.; Lu, W. FedDKD: Federated learning with decentralized knowledge distillation. Appl. Intell. 2023, 53, 18547–18563.
[CrossRef]

50. Available online: https://github.com/University-of-Windsor/ComparitiveAnalysis (accessed on 29 September 2023).
51. Yuan, X.; Zhang, L. Membership Inference Attacks and Defenses in Neural Network Pruning. In Proceedings of the 31st USENIX

Security Symposium (USENIX Security 22), Boston, MA, USA, 10–12 August 2022.
52. Asad, M.; Moustafa, A.; Ito, T. Federated learning versus classical machine learning: A convergence comparison. arXiv 2021,

arXiv:2107.10976.
53. Peng, S.; Yang, Y.; Mao, M.; Park, D.S. Centralized Machine Learning Versus Federated Averaging: A Comparison using MNIST

Dataset. KSII Trans. Internet Inf. Syst. (TIIS) 2022, 16, 742–756.
54. Drainakis, G.; Katsaros, K.V.; Pantazopoulos, P.; Sourlas, V.; Amditis, A. Federated vs. centralized machine learning under

privacy-elastic users: A comparative analysis. In Proceedings of the 2020 IEEE 19th International Symposium on Network
Computing and Applications (NCA), Cambridge, MA, USA, 24–27 November 2020; pp. 1–8.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

40

Citation: Enguix, F.; Carrascosa, C.;

Rincon, J. Exploring Federated

Learning Tendencies Using a

Semantic Keyword Clustering

Approach. Information 2024, 15, 379.

https://doi.org/10.3390/

info15070379

Academic Editor: Peter Z. Revesz

Received: 7 May 2024

Revised: 18 June 2024

Accepted: 26 June 2024

Published: 28 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Review

Exploring Federated Learning Tendencies Using a Semantic
Keyword Clustering Approach
Francisco Enguix 1,* , Carlos Carrascosa 1 and Jaime Rincon 2

1 Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de València (UPV),
46022 Valencia, Spain; carrasco@dsic.upv.es

2 Departamento de Digitalización, Escuela Politécnica Superior, Universidad de Burgos,
09006 Miranda de Ebro, Spain; jarincon@ubu.es

* Correspondence: fraenan@upv.es

Abstract: This paper presents a novel approach to analyzing trends in federated learning (FL) using
automatic semantic keyword clustering. The authors collected a dataset of FL research papers
from the Scopus database and extracted keywords to form a collection representing the FL research
landscape. They employed natural language processing (NLP) techniques, specifically a pre-trained
transformer model, to convert keywords into vector embeddings. Agglomerative clustering was then
used to identify major thematic trends and sub-areas within FL. The study provides a granular view
of the thematic landscape and captures the broader dynamics of research activity in FL. The key focus
areas are divided into theoretical areas and practical applications of FL. The authors make their FL
paper dataset and keyword clustering results publicly available. This data-driven approach moves
beyond manual literature reviews and offers a comprehensive overview of the current evolution
of FL.

Keywords: federated learning; analysis; review; multi-agent system (MAS)

1. Introduction

Federated learning (FL) has emerged as a revolutionary paradigm in collaborative
machine learning [1]. It empowers multiple devices or institutions to train a model while
collectively safeguarding data privacy. This decentralized approach contrasts traditional
methods where data are centralized for model training, potentially compromising user
privacy and data ownership. FL accomplishes this collaborative learning by keeping raw
data distributed on individual devices, and instead of sharing the raw data, participants
exchange the model updates.

The field of FL is experiencing explosive growth, leading to a vast and ever-expanding
body of research literature. This presents a significant challenge to researchers attempting
to identify current trends and emerging sub-areas within FL. Traditional manual literature
reviews with a global approach, while valuable, become increasingly impractical for ana-
lyzing field trends as the number of publications and the intricate interplay of FL concepts
continue to grow exponentially, as depicted in Figure 1. To address this challenge, this
paper proposes the use of an automated semantic keyword clustering technique as a critical
tool for analyzing FL research trends.

Automated semantic keyword clustering leverages advanced natural language pro-
cessing (NLP) techniques to extract meaningful data from the vast amount of interconnected
areas in FL. Using pre-trained transformer models [2], the research article keywords can
be transformed into dense vector spaces that capture their semantic relationships. This
empowers the creation of clusters based on thematic relevance, revealing the underlying
thematic structure of the FL research landscape.

Information 2024, 15, 379. https://doi.org/10.3390/info15070379 https://www.mdpi.com/journal/information41

Information 2024, 15, 379

2017 2018 2019 2020 2021 2022 2023

2

5

10

2

5

100

2

5

1000

2

5
Category

federated learning

Year

N
um

be
r

of
 p

ap
er

s

Figure 1. Number of papers containing the keyword “federated learning” across the years, on a
logarithmic scale on the y-axis, based on the public dataset presented in Section 2.

This paper presents a semantically-based literature analysis of the 7 953 papers about
FL. The primary objective is to uncover and explore the major theoretical categories and
practical application areas of FL and examine the current trends of the field, along with the
emerging sub-areas that have received less research attention. First, we formulate a series
of research questions (RQs) that guide the investigation. These RQs delve into the current
trends in FL (RQ1), the tendencies of these trends (RQ2), and the application domains
where FL techniques are finding utility (RQ3 and RQ4). Recognizing the potential in
under-explored areas, we propose additional research questions (RQ5 and RQ6) that focus
on identifying emerging sub-areas within FL that have received limited research focus,
and investigating how existing FL techniques can be adapted to address these application
domains. The final question (RQ7) looks ahead to predict potential future directions and
areas of growth. Formally, we formulated the following research questions:

RQ1: What are the current trends in FL?
RQ2: What are the tendencies of the current trends in FL?
RQ3: What are the application domains where FL techniques are applied?
RQ4: What are the tendencies of the application domains?
RQ5: What are the emerging sub-areas within FL?
RQ6: What are the tendencies of the emerging sub-areas?
RQ7: What are the potential future trends of FL?

A data-mining technique and a transformer-based semantic analysis of the literature’s
keywords will be employed to address these RQs and uncover the trends and tendencies
within this extensive collection. This approach permits automatically grouping keywords
into clusters, revealing the thematic relationships and dominant topics within the current
body of FL research.

The Structure of the Survey

The structure of this survey is designed to address the research questions and present
the findings. Figure 2 provides a classification scheme outlining these categories. Then, we
will delve deeper into each category and explore the relevant advancements from the exist-
ing literature. Following the introduction, this paper unfolds across several key sections:

42

Information 2024, 15, 379

Federated Learning
Literature

3 Theoretical Cate-
gories

3.2 Security

3.3 Communication

3.4 Coalitions

3.5 Data Distribu-
tion

3.6 Model Aggrega-
tions

4 Practical Cate-
gories

4.2 Neural Net-
works

4.3 Information Clas-
sification

4.4 Blockchain

4.5 Internet of
Things

4.6 Edge computing

5 Emerging Sub-
areas

5.2 Biological Sys-
tem Modeling

5.3 Model Compres-
sion

5.4 Speech Recogni-
tion

5.5 Real-Time Sys-
tems

5.6 Game Theory

Figure 2. Taxonomy of this paper.

• Research Method (Section 2). This section delves into the approach employed to ana-
lyze trends and sub-areas within FL. It details the utilization of keyword extraction and
automated clustering techniques to gain insights from the vast FL research landscape.

• Theoretical Categories (Section 3). Here, we present a detailed analysis of the key the-
oretical areas of FL. This section explores crucial aspects such as security mechanisms,
communication protocols, coalition formation, data distribution strategies, and model
aggregation techniques.

• Practical Categories (Section 4). Shifting the focus to the practical applications of FL,
this section examines its implementation in various domains. We will explore how FL
empowers neural networks, facilitates information classification tasks, integrates with
blockchain technology, and finds applications in the Internet of Things (IoT) and edge
computing environments.

• Emerging Sub-Areas (Section 5). This section explores the sub-areas of FL research that
have emerged as a result of previous research directions. Here, we will identify and
analyze these emerging trends that hold significant promise for the future development
of the field, including biological system modeling, model compression techniques,
advancements in speech recognition, the application of FL to real-time systems, and
the utilization of game theory for improved performance.

43

Information 2024, 15, 379

• Conclusion (Section 6). Building upon the foundation in the preceding sections, this
section will synthesize the key findings. It will address the research questions and
explore potential future research directions of FL.

2. Research Method

This study aims to analyze the current trends and sub-areas within the field of FL
while examining the tendencies over the years. We leverage a data-driven approach that
utilizes keyword extraction and automated clustering techniques to achieve this.

Our analysis begins by collecting a comprehensive dataset of research papers from
the Scopus database. We employ a query to identify relevant publications of FL in
computer science that are written in English. The exact query we used in advance
Scopus searcher is: TITLE-ABS-KEY (“federated learning”) AND (LIMIT-TO (EXAC-
TKEYWORD, “Federated Learning”)) AND (LIMIT-TO (SUBAREA, “COMP”)) AND
(LIMIT-TO (LANGUAGE, “English”)).

The result of this query, on 15 April 2024, reveals 7953 results without counting the
11 duplicated papers. Subsequently, we extract the keywords from each paper, forming a
collection of 22,841 unique keywords that represent the research landscape in FL. Then, to
uncover the underlying thematic structure within this keyword collection, we turn to Natu-
ral Language Processing (NLP) techniques. We employ a pre-trained transformer model,
specifically the all-mpnet-base-v2 model, to convert each keyword into a 768-dimensional
dense vector space. We used the all-mpnet-base-v2 transformer because it is trained for a
total number of sentence pairs above 1 billion sentences (https://huggingface.co/sentence-
transformers/all-mpnet-base-v2, accessed on 26 April 2024) and this corpus includes the Se-
mantic Scholar Open Research Corpus (S2ORC), which is a general-purpose corpus for NLP
and text mining research over scientific papers [3]. In addition, the all-mpnet-base-v2
model has the best average performance between the performance of sentence embeddings
and the performance of semantic search, over all the Hugging Face pre-trained sentence
transformers models (https://www.sbert.net/docs/pretrained_models.html, accessed on
26 April 2024).

These embeddings capture the semantic relationships between keywords, allowing us
to group them based on their semantic meaning. We perform agglomerative clustering on
the vector embeddings to identify the major thematic trends and sub-areas. This clustering
algorithm starts with each keyword as an individual cluster and iteratively merges the most
similar clusters based on a distance metric. In this case, we utilize the Euclidean metric to
measure the distance between cluster centroids and Ward’s linkage to determine the optimal
merging strategy. We used the Euclidean distance because effectively captures the inherent
semantic relationships among the keywords, ensuring that the clustering process reflects
true semantic groupings [4]. Moreover, the Euclidean distance is computationally efficient,
facilitating the iterative process of agglomerative clustering, which involves repeated
distance calculations between clusters. The final number of clusters, set at 100, provides
a granular view of the thematic landscape while maintaining a manageable number of
groups for analysis.

By examining the keywords within each cluster, we can identify the key thematic
trends and sub-areas that are currently shaping the field of FL. In Table 1 are shown the
number of papers of five keyword groups, over the years, of each category presented
on this paper. The number of papers, over all the years, of the keywords groups can be
found in Tables A1 and A2. This novel data-driven approach allows us to move beyond
manual literature reviews and capture the broader dynamics of research activity within
the domain. We can then delve deeper into specific clusters to understand the research
questions, methodologies, and potential applications that are driving the current evolution
of FL.

We made the FL paper dataset public and the keyword clustering results. You can find
those files under the following public GitHub repository: https://github.com/FranEnguix/
datasets/tree/main/2024%20FL%20Tendencies (accessed on 26 April 2024).

44

Information 2024, 15, 379

Table 1. The number of papers over the years of the selected keyword groups.

Category Total 2017 2018 2019 2020 2021 2022 2023 2024

communication 1110 1 1 20 84 182 300 382 140
security 1076 1 1 7 43 110 255 498 161
coalition 942 1 1 8 77 104 297 355 99
data distribution 671 0 0 6 27 72 170 297 99
model aggregations 574 0 0 5 34 92 139 232 72

neural networks 2592 2 3 28 137 327 657 1097 341
classification (of information) 1292 0 1 10 65 172 321 536 187
blockchain 1281 1 0 21 68 147 340 515 189
Internet of Things 1262 0 1 12 53 116 328 541 211
edge computing 1142 0 0 16 73 158 325 417 153

biological system modeling 288 0 0 0 5 26 59 140 58
model compression 277 0 0 3 18 43 58 109 46
speech recognition 273 0 0 1 26 30 84 99 33
real-time systems 241 0 1 5 18 35 53 94 35
game theory 232 0 0 6 16 23 57 90 40

3. Main Theoretical Categories

This section dissects the research landscape by analyzing the publication trends within
the following core theoretical areas: security, communication, coalitions, data distribution,
and model aggregation. Our analysis, presented in the following subsections, leverages a
data-driven trend analysis approach examining the yearly publication volume across these
categories. Subsequently, we will present each category, highlighting the novel advances in
each sub-area.

3.1. Data Analysis

While the current main sub-areas of FL started with just a handful of publications in
2017 and 2018, there has been a steady rise across all categories, with a sharp increase from
2019 onward, as depicted in Figure 3. This growth highlights the growing interest in FL as
a method to collaboratively train ML models without compromising data privacy. Notably,
as Figure 4 exposed, the category of “security” shows the most significant rise, reflecting a
growing focus on addressing potential vulnerabilities in FL systems. Interestingly, “com-
munication” research, though increasing, has not grown at the same exponential rate as
other categories. This suggests that researchers might be prioritizing core security and
privacy challenges over delving deeper into optimizing communication efficiency in FL.
Overall, the data indicate a maturing field of FL research with a focus on building robust
and secure systems for collaborative ML.

2017

2018

2019

2020

2021

2022

2023

2024

0 200
400
600
800
1000
1200
1400
1600
1800

2017

2018

2019

0 5 10 15 20 25 30 35 40 45

communication

security

coalition

data distribution

model aggregations

Figure 3. All theoretical keyword category groups over the years.

45

Information 2024, 15, 379

2017 2018 2019 2020 2021 2022 2023 2024

0

100

200

300

400

500 Category
communication
security
coalition
data distribution
model aggregations

Year

N
um

be
r

of
 p

ap
er

s

Figure 4. Tendencies of the selected keyword groups over the years.

3.2. Security

FL offers a compelling solution for collaborative machine learning while safeguarding
data privacy. However, its core strength—keeping data distributed across devices—also
presents a significant security challenge. The FL security research addresses these challenges
through a multi-pronged approach, focusing on protecting both model parameters and the
underlying data.

3.2.1. Model Inversion Attacks

One major concern is model inversion attacks. In these attacks, malicious participants
attempt to reconstruct the training data used to build the model by analyzing the model
updates exchanged during the FL process [5–8]. Researchers are developing differential
privacy techniques to address this [9,10]. Differential privacy injects controlled noise
into model updates, making it statistically impossible to infer any information about
individual data points used for training. This technique provides strong data privacy for
participants [11].

3.2.2. Poisoning Attacks

Another security threat involves poisoning attacks. Here, malicious actors attempt to
manipulate the training process by injecting poisoned data or updates. This can lead to a
degraded or biased model [12].

Data Poisoning Attacks

In these attacks, malicious actors inject tampered data points into the training process,
aiming to manipulate the FL model to their advantage. These points are designed to mislead
the FL model during training, forcing it to learn incorrect patterns or biased outputs that
benefit the attacker.

Since FL relies on local participant updates, it can be challenging to detect poisoned
data points, especially if they are disguised. Additionally, the distributed nature of FL
makes it difficult to pinpoint the source of the attack. Also, there is a novel approach that
directly inverts the loss function, generating strong malicious gradients at each training
iteration to push the model away from the optimal solution [13].

Techniques like outlier detection algorithms can identify suspicious data points during
aggregation [14]. Additionally, robust aggregation methods that down-weight or eliminate
extreme updates can further reduce the impact of poisoned data [15].

46

Information 2024, 15, 379

Model Poisoning Attacks

Unlike data poisoning attacks that focus on corrupting data points, model poisoning at-
tacks target the model updates exchanged during FL. Malicious participants can contribute
strategically modified model updates that steer the global model in the desired direction.

Successful model poisoning attacks can cause the global model to learn faulty patterns
or biased outputs. This can lead to inaccurate predictions, hindering the functionality
of the FL system and potentially causing harm depending on the application. A novel
technique named the model shuffle attack (MSA) introduces a unique method of shuffling
and scaling model parameters. While the attacker’s model appears accurate during testing,
it secretly disrupts the training of the global model [16]. This sabotage can significantly
slow convergence or even prevent the global model from learning effectively.

Several approaches can help mitigate model poisoning attacks. Cryptographic tech-
niques like SMPC combined with blockchain [17] can be employed to prevent participants
from directly observing the model updates, making it harder to inject malicious modifi-
cations. Additionally, federated Byzantine fault tolerance (Byzantine-FL) protocols can
identify and exclude unreliable or malicious participants from the training process [15],
safeguarding the integrity of the federated model.

3.2.3. Membership Inference Attacks

These attacks attempt to determine whether a specific data point belongs to a particular
participant’s dataset that contributes to the FL training process.

Attackers can potentially infer membership by analyzing the model’s predictions on
strategically crafted data points. If the model’s behavior deviates significantly for a certain
input compared to the general prediction pattern, it might indicate the presence of that
data point in a participant’s training dataset. The PAPI attack is a novel poisoning-assisted
property inference attack that targets properties of the training data that are not directly
relevant to the model’s purpose [18]. By strategically manipulating data labels, a malicious
participant can leverage updates to the central model to infer these sensitive properties,
even from benign participants.

Existing works have proposed homomorphic encryption and secure multiparty com-
putation (SMC) to address this issue, but these approaches do not apply to large-scale
systems with limited computation resources. Differential privacy methods inject noise into
the model updates during training, making it statistically harder to link specific data points
to participants. Still, it brings a substantial trade-off between privacy budget and model
performance. A novel FL framework, based on the computational Diffie–Hellman (CDH)
problem to encrypt local models, safeguards against inference attacks [19]. The framework
achieves this with minimal impact on model accuracy and computational/communication
costs and eliminates the need for secure pairwise communication channels.

3.2.4. Backdoor Attacks

A backdoor attack is a malicious attempt to manipulate a model during training.
This is achieved by introducing triggers embedded in the training data. When a sample
containing this trigger is fed to the model, it will be misled into producing a specific,
attacker-defined output, while functioning normally for all other data. These attacks can be
untargeted, aiming to simply degrade the model’s overall performance, or targeted, aiming
to force the model to misclassify specific triggered samples into a particular category [20].

The attacker achieves this by poisoning the training data. Pairs of data points are
created: one being the original training sample and its correct label, and another being the
same sample altered with the backdoor trigger and a desired, potentially incorrect, label.
The attacker can manipulate the model’s learning process by strategically including these
poisoned pairs in a small portion of the training data without raising major red flags. This
way, the backdoor becomes embedded in the final model, causing it to malfunction when
encountering the specific trigger.

47

Information 2024, 15, 379

The attacks occur during the training phase and rely on a universal trigger that can
be added to any sample to activate the backdoor functionality. Backdoor attacks can be
particularly concerning as they can bypass standard privacy-preserving techniques in FL.
An attacker might steer the model’s predictions toward a specific outcome, as they are
designed to be subtle and difficult to detect.

An example of a backdoor attack is Cerberus Poisoning (CerP), a new distributed
backdoor attack against FL systems [21]. CerP works by having multiple attackers collab-
orate to fine-tune a backdoor trigger for each of their devices. This makes the poisoned
models from the attackers appear more similar to the unpoisoned models from honest
users, allowing CerP to bypass existing defenses and successfully embed a backdoor in the
final FL model.

While some defenses against label-flipping attacks exist, backdoor attacks are a signifi-
cant threat. The defense mechanism defending poisoning attacks in FL (DPA-FL) tackles this
issue in two phases [22]. First, it compares model weights from participants to identify sig-
nificant differences, potentially indicating a malicious actor. Second, it tests the aggregated
model’s accuracy on a dataset, potentially revealing attackers through low performance.

3.3. Communication

Initially, a common depiction featured a central server orchestrating model aggrega-
tion, while clients performed local training. This configuration, known as centralized FL,
typically employs a star topology. In contrast, decentralized FL, adopting a mesh topology,
has gained prominence. In decentralized FL, no central server exists. Instead, clients use
peer-to-peer (P2P) communication, exchanging local models directly. This decentralized
approach enhances privacy and mitigates reliance on potentially untrusted central servers.

3.3.1. Centralized FL (CFL)

CFL takes a coordinated approach to training a model while keeping data private.
Unlike traditional centralized learning—where all data go to one place—CFL leverages a
central server to manage the process without ever directly accessing the raw data residing
on participants’ devices or institutions. This server acts as a conductor, first distributing a
starting global model to all participants.

Participants train this model locally on their own datasets, tailoring it to their specific
data. Afterward, only the updated model weights, representing the learning from the local
training, are uploaded back to the central server. This server then plays a crucial role by ag-
gregating these updates from multiple participants. Combining the knowledge embedded
in each update, the central server refines the global model, effectively incorporating the
insights from all the distributed datasets. This iterative process of distributing, training
locally, and aggregating updates continues until the desired level of model performance
is achieved.

3.3.2. Decentralized FL (DFL)

DFL presents an alternative approach that tackles limitations inherent to the cen-
tral server in CFL. Unlike CFL, DFL dismantles the single point of control, fostering a
collaborative learning environment that is both more distributed and potentially more
privacy-preserving. This paradigm thrives on direct communication between participating
devices or institutions, eliminating the need for a central server altogether. This P2P ap-
proach offers potential benefits in reducing communication overhead compared to CFL, as
updates can be exchanged directly between participants.

However, removing the central server also complicates the training process. DFL relies
on techniques like consensus algorithms [23] to ensure all participants agree on the current
state of the global model, a task that becomes more intricate without a central authority.
Additionally, ensuring robust security measures remains an active area of research in
DFL [24]. DFL offers advantages in privacy and potentially reduces the communication
burden compared with the CFL architecture.

48

Information 2024, 15, 379

3.4. Coalitions

The traditional FL framework treats all participants as equals, raising challenges in
efficiency and communication overhead. This section explores the concept of coalitions
in FL, a method for grouping agents based on specific criteria. These groupings, known
as coalitions, can be formed based on the semantic similarity of the data participants
manage or can be formed based on the geographic location and communication radius of
participants. Here, we explore these two key approaches to coalition formation:

3.4.1. Semantic-Based Formation

In semantic-based formation, agents are grouped based on the similarity of their data.
This ensures that participants within a coalition contribute data that share similar meanings
and underlying patterns. This approach can be further classified into:

Static Formation

Here, coalitions are formed based on pre-defined semantic criteria. This could involve
analyzing the metadata associated with the data held by each agent and initially classifying
the agents into clusters. With static coalitions, once agents are grouped together, these
coalitions remain fixed throughout the training process.

Dynamic Formation

Coalitions are formed or reformed continuously based on the semantic similarity
of the data itself. ML techniques like automatic semantic clustering, topic modeling, or
content analysis can be employed to dynamically assess data similarity and adjust coalition
membership accordingly.

3.4.2. Positional-Based Formation

Positional-based formation relies on the geographical proximity of agents and their
communication range. This approach is particularly relevant for scenarios where the agents
are in different locations and when agents are moving.

Static Formation

Agents within a specific geographical region with a fixed communication range or that
are neighbors in the communication graph are grouped into a coalition. In static coalitions,
after the initial formation of groups, the group memberships do not change over time.

Dynamic Formation

In dynamic formation, agents can form or leave coalitions based on real-time location
updates or changes to their communication range. This could be beneficial in scenarios
where data collection is ongoing and the spatial distribution of the agents is constantly
changing. Wireless ad hoc networks (WANETs) are examples of this scenario, where agents
join or leave groups based on their availability within the wireless range [25].

3.5. Data Distribution

FL deals with training a model collaboratively across multiple participants, each
holding their own private data. However, the data distribution across participants can be
imbalanced, leading to challenges.

One of FL’s major challenges lies in handling statistical heterogeneity within the data.
In this context, statistical heterogeneity refers to the non-IID nature of FL data, which devi-
ates from the assumption of identical data distributions across clients. Unlike traditional
centralized machine learning, where data are typically drawn from a single source, FL
data originates from diverse clients, each with its own unique data distribution. These
variations can impact the quality of local models and subsequently affect the performance
of the aggregated global model.

49

Information 2024, 15, 379

3.5.1. Label Distribution Skew

Label distribution skew refers to the unequal distribution of class labels within the
training data held by different clients. Some clients may possess a surplus of data belonging
to specific classes, while others may have a scarcity for the same classes. This imbalance
can significantly impact the performance of the model. Imagine that participant A pri-
marily has data for the class “cat” and very little for “dog”, while participant B has the
opposite distribution.

When the global model aggregates updates from clients with skewed label distri-
butions, it can become biased toward the over-represented classes. This phenomenon
occurs because local models trained on data-rich in certain classes heavily influence global
updates. Consequently, the federated model prioritizes learning these dominant classes
and neglects the underrepresented ones, leading to decreased accuracy for minority classes
and potentially even failing to recognize them altogether.

To address this challenge, exists a novel FL method called FedMGD [26]. FedMGD
aims to mitigate the performance degradation caused by label distribution skew. The key
innovation lies in introducing a global generative adversarial network (GAN). This GAN
operates without access to the raw local datasets, preserving data privacy. However, it can
still model the global data distribution by learning from the aggregated model updates
received from participants. This allows the global model to be trained using information
about the overall data distribution without compromising privacy.

3.5.2. Feature Distribution Skew

While label distribution skew focuses on class imbalance, this phenomenon arises
when the distribution of feature values for the same class differs significantly across client
datasets. Imagine client A possesses data primarily representing cats with long, white fur,
while client B’s cat data depicts mostly short-haired black cats. Even if the overall number
of cat images (labels) is balanced, the underlying feature distributions (fur length, color)
diverge. This disparity affects the model during the training phase.

The model struggles to learn a unified representation of the “cat” class due to the
conflicting feature portrayals across clients. This can lead to increased training difficulty
and ultimately result in a model with poorer generalization capabilities. The model might
perform well on data that resembles the specific feature distributions it encountered during
training, but it could struggle with unseen data that deviates from those distributions.

3.5.3. Quantity Skew

Quantity skew refers to the unequal distribution of data samples across participating
clients. In this scenario, some clients possess significantly more data points compared
to others.

Clients with abundant data exert a greater influence on the global model updates due
to the sheer volume of local updates they contribute. This can lead to the model becoming
biased toward the data distribution of clients holding more samples. Even if the label and
feature distributions are balanced globally, the model might prioritize learning patterns
specific to the dominant data source, potentially neglecting valuable information present in
smaller datasets from other clients.

This results in a model that performs well on data resembling the dominant client’s dis-
tribution but exhibits decreased performance on data from clients with less representation.

As presented in this section, a key obstacle in FL is training an effective model when
devices possess heterogeneous data, which cannot be directly exchanged. This includes
imbalances in label distribution (label skew), feature distribution (feature skew), and data
quantity (quantity skew) across devices. To address this issue, a method with a hierarchical
FL approach utilizing a hypernetwork (HN) aims to mitigate the negative influence of non-
IID data [27]. This method is presented in a landscape of Digital Twin in Industrial IoT. The
lower layer of this method leverages hypernetworks to generate local model parameters
for each device. The upper layer then refines these hypernetworks by aggregating the

50

Information 2024, 15, 379

model parameters from all devices. This approach decouples the number of parameters
transmitted between the upper and lower layers, leading to improved communication
efficiency, reduced computation costs, and ultimately, better model accuracy.

3.6. Model Aggregation

As highlighted, FL thrives in scenarios with heterogeneous data distributions across
devices. While this protects data privacy, it also presents the challenge of effectively com-
bining these diverse local models into a single, robust global model. This is where model
aggregation techniques come into play. These techniques aim to intelligently combine the
knowledge learned from individual devices, mitigating the negative effects of non-IID data
and leading to a well-performing global model.

3.6.1. Synchronous Aggregation

Synchronous aggregation offers advantages in terms of convergence guarantees and
ease of implementation. However, it can be susceptible to stragglers (devices that take
significantly longer to train the model locally), delaying the entire update process and
potentially hindering training efficiency. Additionally, communication overhead can be
high due to the waiting periods before updates are uploaded.

3.6.2. Asynchronous Aggregation

Asynchronous aggregation techniques offer an alternative approach to synchronous
aggregation, aiming to address limitations in scalability and efficiency. Unlike the coor-
dinated update scheme of synchronous aggregation, asynchronous aggregation allows
devices or institutions participating in FL training to upload their local model updates to
the central server as soon as they become available, without waiting for others to finish.
This eliminates delays caused by stragglers.

It avoids the communication bottlenecks associated with waiting periods in syn-
chronous methods but introduces complexities in ensuring convergence of the global
model, as participants contribute updates at varying times based on their local training
speeds. FedTAR is an example of an FL model that uses asynchronous aggregation to mini-
mize the sum energy consumption of all edge computing nodes of a wireless computing
power network (WCPN) [28]. There is also the AMA-FES (adaptive-mixing aggregation,
feature-extractor sharing) framework, which aims to mitigate the impact of the non-IID
data and reduce computation load in a practical scenario where mobile UAVs act as FL
training clients to conduct image classification tasks [29].

3.6.3. Hierarchical Aggregation

Hierarchical aggregation emerges as an optimization technique that addresses po-
tential communication bottlenecks in scenarios with large numbers of participants or
geographically distributed devices [30]. It also addresses privacy concerns by introducing
a layered approach to update aggregation between user devices and the central server.

Hierarchical aggregation mitigates the privacy risk by having devices send their
updates to intermediate servers first. These intermediate servers can then aggregate local
updates before forwarding them to the central server, reducing the amount of individual
data exposed. This approach is particularly valuable for the Industrial Internet of Things
(IIoT) where sensitive data from various devices are involved [31].

Participants are organized into groups, forming a hierarchical structure. Local updates
within a group are first aggregated, resulting in intermediate updates. These intermediate
updates are then sent upwards in the hierarchy for further aggregation until they reach the
central server.

Compared to directly sending individual updates to the central server, hierarchical
aggregation significantly reduces communication costs. Only a condensed version of the
updates travels through the network, alleviating bandwidth limitations and potentially
accelerating the training process.

51

Information 2024, 15, 379

The specific structure of the hierarchy (number of layers, group sizes) can significantly
impact efficiency. Additionally, techniques like selective aggregation, where only significant
updates propagate through the hierarchy, can further optimize communication costs.

While hierarchical aggregation reduces communication overhead, it introduces an
additional layer of information compression during the intermediate aggregation steps.
This compression might lead to a certain loss of accuracy in the final global model.

A novel hierarchical FL framework is proposed for cloud–edge–robot collaborative
training of deep learning models [32]. This framework allows robots to train the model for
quality defect inspection of civil infrastructures without sharing sensitive data among them-
selves. The system is designed for resource-constrained robots, employing a lightweight
model for efficient training and communication.

3.6.4. Robust Aggregation

As presented in Sections 3.2 and 3.5, FL models are susceptible to outliers within
participant datasets and even malicious actors injecting poisoned data to manipulate the
training process. Robust aggregation methods aim to detect and mitigate the influence of
such anomalies on global model updates.

Various approaches can be employed for robust aggregation. These include clipping
techniques that limit the magnitude of updates, outlier detection algorithms to identify and
down-weight suspicious contributions, and median filtering to prioritize central tendencies
within the updates [33,34].

A novel framework is secure and robust FL (SRFL), which is introduced to address
security vulnerabilities in existing methods [35]. SRFL tackles the issue of model parameter
leakage during aggregation using trusted execution environments (TEEs). This approach
safeguards sensitive model components on resource-constrained IoT devices, even in
situations with non-IID data. Evaluations demonstrate SRFL’s effectiveness in improving
accuracy and reducing backdoor attack success rates compared to traditional FL methods.

4. Main Practical Categories

Having explored the main theoretical trends across FL categories, we now delve into
the applications driving this field forward. This section focuses on areas where FL is
solving real-world problems. We will examine the distribution of research within these
categories, including neural networks, classification, blockchain, Internet of Things, and
edge computing. Through this analysis, we aim to identify the most promising and actively
researched practical applications of FL technology.

4.1. Data Analysis

FL research shows a clear interest in leveraging powerful ML models for practical
applications. The category of neural networks dominates the field, as Figures 5 and 6
depicted, with publications experiencing a staggering growth from 2019 to 2023. This
highlights the focus on utilizing complex models to achieve superior performance in FL
tasks. There is also a significant rise in classification, indicating a strong interest in using FL
for tasks like image categorization. The emergence of blockchain and IoT (2019 onward) as
prominent categories reflects the growing importance of integrating FL with secure and
distributed data architectures. Similarly, edge computing has gained traction as researchers
explore enabling FL on resource-constrained devices at the network edge.

52

Information 2024, 15, 379

2017

2018

2019

2020

2021

2022

2023

2024

0 500

1000

1500

2000

2500

3000

2017

2018

2019

0 10 20 30 40 50 60 70 80 90

neural networks

classification (of information)

blockchain

internet of things

edge computing

Figure 5. All practical keyword category groups.

2017 2018 2019 2020 2021 2022 2023 2024

0

200

400

600

800

1000

Category
neural networks
classification (of information)
blockchain
internet of things
edge computing

Year

N
um

be
r

of
 p

ap
er

s

Figure 6. Tendencies of the practical keyword groups over the years.

4.2. Neural Networks

As FL continues its ascent as a privacy-preserving approach to training ML models, the
role of neural networks (NNs) within this framework has become a focal point of research.
With a growing number of papers dedicated to this topic, it is important to mention the
relevant advancements in this field.

This section delineates NN architectures used under the FL framework, where data
remain distributed across decentralized nodes while facilitating collaborative model train-
ing. Deep neural network (DNN) models tailored for FL encompass convolutional neural
networks (CNNs), adept at feature extraction crucial for image processing tasks, and re-
current neural networks (RNNs), specialized in decoding sequential data and temporal
dependencies. Furthermore, generative adversarial networks (GANs) demonstrate promise
in generating realistic magnetic resonance imaging (MRI) images from undersampled data,
while Transformers, initially developed for natural language processing (NLP) tasks, are
repurposed to address image capture, information matching, and reconstruction challenges
within the FL framework [36].

4.2.1. Traditional DNNs in FL

This section explores the application of CNNs and RNNs for collaborative training
while preserving data privacy. We will explore specific use cases in domains like healthcare
and cybersecurity, showcasing how FL empowers distributed learning on sensitive data.

53

Information 2024, 15, 379

CNN (Convolutional Neural Network)

CNNs excel in image processing tasks. Their core strength lies in capturing low-level
to high-level features through convolutional operations. This makes them ideal for FL
scenarios involving image data, such as medical imaging analysis [37] or object recognition
in sensor networks [38]. CNNs can be trained on image data distributed across various
devices without compromising privacy. For instance, FL with CNNs can be used to train
models for disease detection in medical images without requiring hospitals to share the
raw patient data [39].

Stacked CNNs (SCNNs) also excel in the cybersecurity field. A novel intrusion
detection system (IDS) for wireless sensor networks (WSNs) based on the FL SCNN-Bi-
LSTM model exists, which addresses limitations of traditional methods allowing sensor
nodes to collaboratively train a central model without revealing their private data [40].
The SCNN-Bi-LSTM architecture analyzes both local and temporal network patterns to
effectively identify even sophisticated and unknown cyber threats.

RNN (Recurrent Neural Network)

RNNs are adept at handling sequential data and capturing temporal dependencies.
While not the primary choice for typical image processing tasks, RNNs can be valuable
in FL settings where dynamic adjustments are needed. RNNs in healthcare are used for
breast cancer detection, which allows hospitals to train an RNN on their mammogram data
without sharing the raw images. This study proposes a hybrid approach combining FL with
meta-heuristic optimization [41]. Another paper focuses on FL for pancreas segmentation,
where data heterogeneity across institutions can hinder performance. To address this, their
authors introduce FedRNN, a method that uses an RNN to adjust the aggregation weights
based on the past performance of each participating site [42].

4.2.2. Emerging Applications of NN in FL

This section explores how emerging applications of NN in FL offer a revolutionary
approach to training ML models while keeping data distributed across devices or servers.
We will explore how GANs and Transformers are being leveraged to unlock new potential
in FL applications.

GAN (Generative Adversarial Network)

A new approach called “federated synthesis” is emerging within FL. This technique
aims to create synthetic data with the same properties as real data but without any privacy
risks [43,44]. Researchers are exploring this method using GANs, to combine data from
multiple sources while keeping it private. GANs consist of two competing NNs: a generator
that creates new data, and a discriminator that tries to distinguish real data from generated
data. This adversarial training allows GANs to generate highly realistic synthetic data.

Traditional GAN training requires sending large amounts of data to a central server.
CAP-GAN is a novel framework that allows for collaborative training between cloud
servers, edge servers, and even individual devices [44]. To address challenges caused by
non-IID data, CAP-GAN incorporates a mix generator module that separates general and
personalized features, improving performance on highly personalized datasets.

Transformers

Originally developed for NLP tasks, Transformers are powerful architectures based
on the attention mechanism. This mechanism allows the model to focus on relevant parts
of the input data, making it well-suited for tasks requiring long-range dependencies.

A recent research tackles challenges in medical image analysis with a Transformer-
based FL framework. The method uses self-supervised pre-training with Transformers
directly on individual institutions’ data [45]. This approach overcomes limitations of data
sharing and limited labeled data. The study shows significant improvements in accuracy on

54

Information 2024, 15, 379

medical image classification tasks compared to traditional methods, even with variations
in data across institutions.

4.3. Classification (of Information)

The field of FL is actively exploring its potential for various classification tasks, in-
cluding image classification, object detection, and emotion recognition. This is particularly
appealing due to the vast amount of labeled data often residing on private devices, which
FL can leverage while preserving privacy.

A recent study [46] investigated a privacy-preserving approach to diagnosing skin
lesions using FL. While the FL model achieved comparable performance to a traditional
centralized model on data from a new hospital, it fell short when tested on data from
a different source. Overall, the findings suggest that FL shows promise for melanoma
classification while protecting patient privacy.

Another research proposes a new FL framework called FedCAE for fault diagnosis
in industrial applications [47]. Traditional approaches require sharing large amounts of
data, which can be impractical due to privacy concerns. FedCAE tackles this by using
convolutional autoencoders (CAEs) on local devices to extract features from the data. These
features are then uploaded to a central server for training a global fault diagnosis classifier,
without revealing the raw data itself. The trained classifier is then downloaded to all
devices for performing local diagnoses.

4.4. Blockchain

Blockchains enable secure, verifiable interactions between devices without a central
authority [48]. The field of FL with blockchain integration, also known as blockchain-based
FL (BCFL), is a rapidly evolving area [49]. Researchers are looking to leverage the strengths
of both technologies to address limitations in traditional FL.

Recent research proposes a new FL method for blockchain named loosely coupled local
differential privacy blockchain federated learning (LL-BCFL) that addresses data privacy
and efficiency concerns on federated sharing methods for massive data in blockchain [50].
Traditional blockchain storage can be slow and unsuitable for private data. LL-BCFL tackles
this by combining FL on user devices with blockchain storage. The system uses a client
selection mechanism to ensure data integrity and participant honesty. Additionally, a local
differential privacy mechanism protects against inference attacks during training.

To protect the FL process against poisoning attacks, two models have been developed
under BCFL, namely, centralized aggregated BCFL (CA-BCFL) and fully decentralized
BCFL (FD-BCFL) [24]. Both leverage secure off-chain computations to mitigate attacks
without compromising performance. The study demonstrates that BCFL effectively defends
against poisoning attacks while keeping operational costs low.

4.5. Internet of Things

FL has emerged as a powerful approach for the Internet of Things (IoT) domain. It
tackles the challenge of training ML models on data generated by vast numbers of resource-
constrained devices while preserving user privacy. The FL literature reflects this synergy,
highlighting several key areas of advancement.

A major focus is on addressing the limitations of resource-constrained IoT devices.
Traditional FL algorithms may not be suitable for devices with limited battery power,
storage, and processing capabilities. Researchers are developing techniques like model
compression (Section 5.3) and efficient communication (Section 3.3) mechanisms to reduce
the computational burden on these devices. This ensures participation from a wider range
of IoT devices in the FL algorithm process.

Another area of exploration is heterogeneity. IoT devices often generate data with
varying formats and qualities [51]. This heterogeneity can negatively impact the perfor-
mance of the model. Researchers are proposing data distribution (Section 3.5) techniques
to improve the performance and model aggregation methods (Section 3.6) that can handle

55

Information 2024, 15, 379

such inconsistencies. These techniques aim to improve the accuracy and robustness of the
collaboratively learned model.

4.6. Edge Computing

While both IoT and edge computing are related to FL, they represent distinct concepts.
IoT devices generate the data, while edge computing represents the layer of processing
power located at the network’s periphery, closer to the data source, and performs local
computations [28].

One of the primary research areas is optimizing model performance and resource
utilization in resource-constrained edge environments. In Section 5.3 techniques such
as quantization and knowledge transfer are exposed, which are tailored to minimize
the computational and memory requirements of FL models, making them suitable for
deployment on low-power edge devices with limited processing capabilities. Furthermore,
edge computing platforms with accelerators like GPUs and TPUs accelerate model inference
and training, enhancing the efficiency and scalability of the systems.

FL is well-suited for edge devices, where data processing occurs locally [30]. It enables
collaborative model training across devices at the network edge. CAP-GAN is a novel
framework using GANs (presented in Section 4.2) in network edge [52]. This research
tackles training GANs on devices at the network edge due to privacy and bandwidth
limitations. However, traditional GAN training methods struggle with data that is not
uniformly distributed across devices. To address this, CAP-GAN allows for parallel training
of data and models across devices, cloud servers, and the network edge, overcoming
isolated training issues. CAP-GAN introduced a mix generator module to handle highly
personalized datasets that are common at the edge. Experiments show that this framework
outperforms existing methods in handling non-uniformly distributed data.

5. Emerging Sub-Areas

Having explored the core theoretical categories and the practical application areas of FL
research, we now turn our attention to emerging sub-areas. These sub-areas represent new
lines of inquiry that have gained significant traction in recent years. Unlike the previously
established categories, these sub-areas are distinguished by their later emergence and they
are rapidly growing interest within the FL research community. This section delves into
five such sub-areas: biological system modeling, model compression, speech recognition,
real-time systems, and game theory.

5.1. Data Analysis

While all sub-areas show a clear rise in publications since 2019 and 2020, as Figure 7
depict, some demonstrate a more explosive growth trajectory. Figure 8 shows that biologi-
cal system modeling exhibits the most dramatic increase, with publications nearly tripling
from 2022 to 2023. This suggests a rapidly growing focus on applying FL to model complex
biological systems like brain–computer interfaces (BCIs). Model compression also shows a
steady and significant rise, highlighting the importance of reducing model size for deploy-
ment on resource-constrained devices in FL applications, like IoT or edge devices. Speech
recognition and real-time systems show a more moderate but consistent growth, indicating
a growing interest in integrating FL with these domains. Game theory, while experiencing a
steady rise, has a slightly lower overall number of publications, suggesting it is a relatively
new but promising sub-area exploring strategic interactions within FL systems.

56

Information 2024, 15, 379

2017

2018

2019

2020

2021

2022

2023

2024

0 100 200 300 400 500
2017

2018

2019

0 2 4 6 8 10 12 14

biological system modeling

model compression

speech recognition

real time systems

game theory

Figure 7. All emerging category groups over the years

2017 2018 2019 2020 2021 2022 2023 2024

0

20

40

60

80

100

120

140 Category
biological system modeling
model compression
speech recognition
real time systems
game theory

Year

N
um

be
r

of
 p

ap
er

s

Figure 8. Tendencies of the emerging keyword groups over the years

5.2. Biological System Modeling

Brain–computer interfaces (BCIs) create a bridge between the brain and external
devices by translating brain activity into commands [53]. These systems translate brain
activity, captured through electroencephalogram (EEG) signals, into commands for external
devices. However, a major hurdle in BCI development is the scarcity of data needed to
train high-performance models. This is where FL steps in.

FL offers a privacy-preserving approach to training models on distributed datasets
residing on individual devices. This eliminates the need for centralized data storage,
addressing security and privacy concerns that plague biological datasets.

One recent paper proposes a novel framework called hierarchical personalized FL
for EEG decoding (FLEEG) [54]. FLEEG tackles the challenge of device heterogeneity,
where BCIs collect data from various sources with potentially different formats. This
framework facilitates collaboration in model training across these diverse datasets, enabling
knowledge sharing and boosting BCI performance. The studies presented by its researchers
have shown that FLEEG can significantly improve classification accuracy, particularly for
smaller datasets.

Another paper investigates the application of FL in classifying motor imagery (MI)
EEG signals [37]. This approach utilizes a CNN on the PhysioNet dataset and compares
two aggregation methods (FedAvg and FedProx) within the FL framework to traditional
centralized ML approaches. The results demonstrate that FL can achieve classification
accuracy comparable to centralized methods, while significantly reducing the risk of data

57

Information 2024, 15, 379

leakage. This suggests that FL holds significant promise for MI-EEG signal classification in
BCI systems.

5.3. Model Compression

FL allows collaborative machine learning without compromising data privacy. How-
ever, training these models across distributed devices or servers presents a challenge: model
size. Large models can lead to slow communication and hinder the scalability of FL systems.
To address this, researchers are actively exploring various model compression techniques.

5.3.1. Quantization

The distributed nature of FL can lead to communication bottlenecks due to the large
size of model parameters. Here is where quantization emerges as a powerful technique
to address this challenge. Quantization reduces the number of bits required to represent
model parameters, significantly shrinking the model size. This translates to faster commu-
nication during the FL training process, making it more efficient and scalable. However,
accuracy degradation can occur during the quantization process and researchers are actively
developing methods to minimize this accuracy loss.

A recent study addresses communication efficiency in hierarchical FL, where model
training is distributed across devices, edge servers, and a cloud server [55]. While ex-
isting approaches leverage hierarchical aggregation and model quantization to reduce
communication costs, this study proposes an accurate convergence bound that considers
model quantization. This bound informs practical strategies for client-edge and edge-cloud
communication, such as dynamically adjusting aggregation intervals based on network
delays. The effectiveness of these strategies is validated through simulations.

Another prominent and recent area of study is the 1-bit quantization. A study proposes
a new scheme that uses 1-bit compressive sensing to significantly reduce the amount of
data transmitted during model updates [56]. To optimize this method, they analyze the
trade-off between communication efficiency and accuracy caused by data compression. The
researchers then formulate a solution to minimize these errors through scheduling devices
and adjusting transmission power. While an optimal solution exists, it is computationally
expensive for large networks. To address this, they develop a more scalable method suitable
for real-world applications with many devices. Simulations show this approach achieves
comparable performance to traditional FL with significantly less communication, making it
a promising technique for large-scale FL.

5.3.2. Knowledge Distillation

Another key approach is knowledge distillation. This technique involves training a
smaller, student model to mimic the behavior of a larger, pre-trained teacher model. The
student model learns from the teacher’s predictions, resulting in a compressed model with
comparable accuracy. Knowledge distillation is particularly useful in FL as it allows for
transferring knowledge from a powerful trained model to smaller models deployed on
user devices.

Recent research develops an intrusion detection method based on a semi-supervised
FL scheme via knowledge distillation [57]. The study proposes an intrusion detection
method in IoT devices. Existing FL methods for intrusion detection raise privacy concerns
and struggle with non-private data distributions. To address this, the authors developed
a method that leverages unlabeled data to improve detection accuracy while protecting
privacy. Their approach uses a special NN model to both classify traffic data and assess
the quality of labels generated by individual devices. This, combined with a hard-label
strategy and voting mechanism, reduces communication overhead.

5.3.3. Pruning

Another promising direction is pruning. Pruning techniques identify and remove
redundant or unimportant weights within a model. This process reduces the model’s

58

Information 2024, 15, 379

overall size without significantly impacting its performance. Advanced pruning algorithms
can identify weights with minimal influence on the final output, allowing for compression
while maintaining accuracy.

PruneFL is a new framework for FL that improves training efficiency on resource-
constrained devices [58]. FL trains models on distributed data while protecting privacy,
but edge devices often lack processing power and bandwidth. PruneFL tackles this by
dynamically reducing model size during training through a distributed pruning approach.
This reduces communication and computation requirements while maintaining accuracy.
The method involves an initial pruning step and further pruning throughout the FL process,
optimizing the model size for efficiency. Experiments on real-world datasets running on
devices like the Raspberry Pi demonstrate that PruneFL significantly reduces training time
compared to traditional FL and achieves comparable accuracy to the original model with a
smaller size.

5.3.4. Sparsification

Researchers are also exploring sparsification techniques. Here, the focus is on convert-
ing model weights from dense matrices to sparse ones, containing mostly zeros. Sparse
models require less memory and communication bandwidth, making them ideal for FL ap-
plications. Recent advancements involve combining sparsification with other compression
methods like pruning to achieve even more compact models.

GossipFL is a novel framework that utilizes sparsification and gossiping to optimize
bandwidth usage while ensuring training convergence. The authors designed a novel
sparsification algorithm that enables each client to communicate with only one peer using
a highly sparsified model [59]. Theoretical analysis and experiments using GossipFL
demonstrate that this framework significantly reduces communication traffic and time
compared to existing solutions while maintaining similar model accuracy.

5.4. Speech Recognition (SR)

SR is a technology that allows computers to translate spoken words into written text.
This is achieved by analyzing speech’s sound waves and identifying patterns corresponding
to specific words or phonemes, which are the basic units of sound in a language.

Traditional SR models require vast datasets centralized in one location for training.
This raises privacy concerns, especially for applications like forensic analysis, where data
sensitivity is paramount.

The fight against online child exploitation is an example, where European law enforce-
ment agencies (LEAs) require advanced tools to analyze the growing volume of audio data.
Recent research explores FL as a solution for training SR models in this domain [60]. While
the study compares the effectiveness of WAV2VEC2.0 and WHISPER models, the main focus
lies in leveraging FL to overcome data privacy concerns.

The results show that FL models achieve word error rates (WERs) comparable to those
trained in a traditional, centralized manner. This is particularly significant considering the
challenges of non-IID data distribution, where the data used have unique characteristics
due to languages, accents, or recording environments.

5.5. Real-Time Systems

The traditional approach of FL involves a central server aggregating updates from
participants periodically. This raises limitations for applications demanding real-time
performance. The research in FL delves into techniques for enabling real-time FL that
ensure low latency.

Traditional periodic updates can introduce delays that hinder real-time responsiveness.
Synchronous FL can lead to slow learning due to stragglers, which are devices that take
longer to process information. A novel approach that breaks away from the limitations
of synchronous FL uses scalable asynchronous FL for real-time surveillance systems [61].
Asynchronous FL allows devices to participate in the training process at their own pace,

59

Information 2024, 15, 379

eliminating the bottleneck created by stragglers. This makes asynchronous FL a more
suitable solution for large-scale, real-time applications where fast response is critical.

As it is presented in Section 3.2, security and privacy are paramount concerns in any
FL system, and real-time settings pose additional challenges. Researchers are actively
developing privacy-preserving communication protocols for real-time FL. Techniques
like differential privacy [11] are being explored to achieve this balance between real-time
performance and data security [62].

5.6. Game Theory

Game theory is a powerful mathematical field used to analyze situations where
multiple parties (agents or players) interact and make decisions that can impact each
other’s outcomes [63]. Imagine a game of chess, where each agent considers not only their
own possible moves but also how their opponent might respond. Game theory extends
this concept to any situation where competing actors make strategic decisions in a setting
with defined rules.

The core concept in game theory is the game itself, which acts as a model for the
interactive situation. Each agent is a rational entity with well-defined preferences and a set
of possible strategies they can employ. The key element is that an agent’s success depends
not only on their own choices but also on the strategies chosen by other players. A game
will define the players, their available strategies, and how these strategies influence the
final outcome for everyone involved.

Existing solutions based on game theory often assume perfect rationality in partici-
pants, so motivating participants to contribute to FL systems is an open field of research,
which is used for collaborative training. A new model based on evolutionary game theory
acknowledges participants’ non-perfect decision-making in the long run [64]. By analyzing
various scenarios, they identify strategies for parameter servers (coordinating the training)
to maintain a sustainable FL system where participants are incentivized to contribute.

As commented, a limitation in existing game theory-related FL frameworks is
the assumption of voluntary participation, but also it is the lack of defense against
malicious actors. To address this, researchers propose a new scheme based on privacy-
preserving techniques and game theory [62]. This scheme incentivizes participation
through truthful mechanisms and limits the influence of malicious clients, all while
achieving privacy guarantees.

6. Conclusions and Future Work

This study leverages advanced automated semantic keyword clustering techniques
to analyze trends, tendencies, and emerging areas within the growing field of FL. By
employing a transformer-based model, particularly the all-mpnet-base-v2 model, the
research identifies and groups 22,841 unique keywords of 7953 research articles based on
their semantic meaning, providing a comprehensive view of the current state and future
directions of the FL research landscape.

We present key research questions (RQs), revealing significant trends in security and
communication as dominant areas of interest. The surge in publications related to these
categories highlights the importance of addressing vulnerabilities and optimizing commu-
nication efficiency in FL systems. Furthermore, the analysis identifies the rising significance
of coalitions, data distribution strategies, and model aggregation techniques, which are
crucial for tackling challenges related to non-IID data and improving the performance of
global models.

Emerging sub-areas such as biological system modeling, model compression, speech
recognition, real-time systems, and the application of game theory present promising
avenues for future research. These sub-areas show the field’s dynamic nature and its
potential for interdisciplinary applications.

To conclude, the answers to the RQs provide a structured understanding of the
FL landscape: identifying the current trends (RQ1), examining their tendencies (RQ2),

60

Information 2024, 15, 379

exploring practical application domains (RQ3), analyzing the tendencies within these
domains (RQ4), uncovering emerging sub-areas (RQ5), investigating their tendencies
(RQ6), and predicting potential future trends (RQ7).

6.1. RQ1: What Are the Current Trends in FL?

This question focuses on identifying the theoretical dominant areas of interest in FL
research. FL is experiencing a period of significant research growth, as evidenced by the
substantial increase in publications across all categories analyzed in Section 3.1. The data
reveal several key trends that are shaping the current landscape of FL research: security,
communication, coalitions, data distribution, and model aggregations.

The most prominent trend is the surge of interest in security, with 498 publications
in 2023. This highlights a growing concern for addressing potential vulnerabilities in FL
systems, as data privacy is paramount when training models collaboratively. Similarly, the
rise in communication (382 publications in 2023) reflects the importance of optimizing com-
munication efficiency, especially as the number of participating devices and the complexity
of models increase.

6.2. RQ2: What Are the Tendencies of the Current Trends in FL?

This section delves deeper into RQ1 by analyzing the direction of the identified trends
in FL. The analysis of publication trends across the theoretical FL categories reveals not
only a surge in interest but also the trajectory of these trends.

The most notable observation is the explosive growth in both security and commu-
nication research since 2019. Coalitions show a consistent upward trend with a peak in
2023. This indicates a sustained interest in exploring how devices or institutions can group
together to optimize FL speed convergence and accuracy of the trained models. For data dis-
tribution and model aggregation categories, the substantial rise suggests a growing interest
in tackling challenges related to non-IID data and improving model aggregation techniques.

6.3. RQ3: What Are the Application Domains Where FL Techniques Are Applied?

This question explores the most relevant practical applications where FL techniques
are being utilized. The data presented in Section 4.1 reveals a diverse range of ap-
plication domains where FL techniques are finding utility. The most important key
trends are the dominance of neural networks (NNs) and the emergence of secure and
distributed architecture.

6.4. RQ4: What Are the Tendencies of the Application Domains?

As RQ2 delves deeper into RQ1, this RQ investigates the trends within the RQ3
identified domains.

Firstly, NNs stand out as the most prevalent category. This signifies a strong focus
on leveraging powerful ML models to achieve superior performance in FL tasks. The
significant and steady rise in publications suggests that researchers are actively exploring
how to adapt and optimize complex NNs for collaborative learning in FL systems.

Beyond NNs, the data highlight a growing interest in integrating FL with secure and
distributed data architectures. The rise of categories like blockchain and the Internet of
Things (IoT) reflects this trend.

6.5. RQ5: What Are the Emerging Sub-Areas within FL?

Recognizing the potential for further exploration, we propose additional research
questions that focus on under-researched areas of FL. This question aims to identify new or
niche areas that have received less attention but hold promise for future development.

The analysis in Section 5.1 reveals several promising sub-areas that have garnered
increasing attention in recent years. Among the most prominent emerging sub-areas are
biological system modeling and model compression. Speech recognition and real-time

61

Information 2024, 15, 379

systems are other emerging sub-areas with significant potential, with a close number of
publications to model compression in 2023.

6.6. RQ6: What Are the Tendencies of the Emerging Sub-Areas?

We analyze the identified sub-areas in RQ5 to understand their growth trajectory and
potential impact on the broader FL landscape.

Biological system modeling is the most rapidly growing sub-area with topics like
bioinformatics and brain–computer interfaces. Game theory, while not exhibiting the
most dramatic number of publications, also appears as an emerging sub-area with initial
exploration beginning around 2019. This sub-area investigates strategic interactions within
FL systems, which could be beneficial for areas like resource allocation or ensuring fairness
among participants.

6.7. RQ7: What Are the Potential Future Trends of FL?

Finally, to provide a more comprehensive picture, we introduce this additional ques-
tion, which looks ahead to predict potential future directions and areas of growth in
FL research.

The consistently increasing number of publications in NNs suggests a continued focus
on leveraging powerful models for FL tasks. Also, we can expect sustained research efforts
in core areas like security and communication efficiency, as the significant rise in publica-
tions until 2023 highlights their importance. Researchers might focus on developing more
robust security mechanisms to address evolving threats and optimizing communication
protocols for specific federated learning applications.

Another core area is data distribution, which is likely to see continued growth. With
the increasing interest in applying FL to real-world scenarios involving non-IID data,
researchers will likely explore more sophisticated techniques to handle data heterogeneity
and improve model performance.

6.8. Future Work

Future work will focus on expanding the software developed to include other database
sources and utilizing the software to experiment with the linkage method and the distance
metric of the agglomerative clustering algorithm and explore different clustering algorithms.

The results using Euclidean distance and Ward’s linkage are used in this research
article to group the keywords by their semantic meaning, offering significant insights into
FL research trends. In future work, experimenting with different parameter values will
enable us to assess the impact of different distance metrics, such as cosine similarity and
Manhattan distance, on the clustering results. Additionally, experimenting with various
linkage methods, including single linkage, complete linkage, and average linkage, will
allow us to compare strategies for forming thematic clusters.

Funding: This research was funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of
making Europe” grant number PID2021-123673OB-C31 and funded by VAE-VADEN UPV grant num-
ber TED2021-131295B-C32 and funded by GUARDIA grant number PROMETEO CIPROM/2021/077
and funded by Ayudas del Vicerrectorado de Investigacion de la UPV grant number PAID-PD-22.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

62

Information 2024, 15, 379

Appendix A

Table A1. The first 50 keyword groups ordered by the overall number of papers.

Rank Category Total 2017 2018 2019 2020 2021 2022 2023 2024

0 federated learning 7953 2 6 85 393 964 2027 3394 1082
1 learning systems 5028 2 3 42 238 571 1266 2184 722
2 privacy 4175 2 3 47 245 521 1035 1754 568
3 machine learning 3458 1 2 46 183 425 902 1446 453
4 neural networks 2592 2 3 28 137 327 657 1097 341
5 global models 1568 0 2 16 63 211 402 679 195
6 data models 1551 0 3 29 101 202 382 581 253
7 computational modeling 1460 0 1 9 74 145 336 645 250
8 classification (of information) 1292 0 1 10 65 172 321 536 187
9 blockchain 1281 1 0 21 68 147 340 515 189
10 modeling accuracy 1269 0 1 16 63 154 294 539 202
11 Internet of Things 1262 0 1 12 53 116 328 541 211
12 artificial intelligence 1262 1 2 18 80 154 318 509 180
13 decentralized 1233 1 2 19 78 145 308 523 157
14 performance 1183 0 0 8 57 155 302 495 166
15 state of the art 1177 0 1 19 80 183 296 473 125
16 learning frameworks 1163 0 2 24 73 188 302 442 132
17 edge computing 1142 0 0 16 73 158 325 417 153
18 personalizations 1115 0 2 18 59 148 307 461 120
19 communication 1110 1 1 20 84 182 300 382 140
20 poisoning attacks 1095 0 1 6 41 115 270 485 177
21 security 1076 1 1 7 43 110 255 498 161
22 job analysis 1065 0 2 18 46 126 271 416 186
23 large amounts 1055 0 1 15 55 139 276 417 152
24 computational efficiency 1014 1 1 18 68 145 257 395 129
25 distributed machine learning 1013 0 3 13 91 171 264 364 107
26 over the airs 967 0 1 7 35 81 255 448 140
27 coalition 942 1 1 8 77 104 297 355 99
28 centralized 934 0 1 7 27 108 263 393 135
29 servers 929 0 0 2 39 95 227 390 176
30 commerce 908 0 2 19 53 133 243 359 99
31 wireless networks 899 0 2 11 48 106 234 378 120
32 information management 894 0 1 12 46 99 217 397 122
33 optimizations 735 0 1 7 48 85 190 293 111
34 network architecture 704 0 1 10 51 93 182 299 68
35 numerical methods 687 0 1 5 47 88 177 267 102
36 budget control 673 0 0 10 31 80 185 267 100
37 data distribution 671 0 0 6 27 72 170 297 99
38 iterative methods 664 0 1 7 38 67 149 296 106
39 smart city 656 0 1 11 42 100 168 257 77
40 benchmarking 637 1 1 9 53 99 142 255 77
41 energy utilization 627 0 1 6 26 86 173 252 83
42 human 613 0 0 4 20 48 156 293 92
43 forecasting 611 0 0 7 26 82 159 239 98
44 cloud computing 605 0 1 10 35 68 165 244 82
45 transfer learning 596 0 1 6 21 56 153 253 106
46 distillation 596 0 1 5 25 69 135 263 98
47 health care 594 0 0 4 21 77 139 280 73
48 diseases 588 0 0 0 14 60 123 296 95
49 model aggregations 574 0 0 5 34 92 139 232 72

63

Information 2024, 15, 379

Table A2. The last 50 keyword groups ordered by the overall number of papers.

Rank Category Total 2017 2018 2019 2020 2021 2022 2023 2024

50 computer vision 572 0 1 6 32 64 140 251 78
51 task analysis 567 0 0 3 20 49 143 245 107
52 5g mobile communication systems 545 0 1 7 36 75 141 216 69
53 bandwidth 529 0 1 7 50 71 123 207 70
54 current 523 0 0 6 15 62 142 229 69
55 signal processing 510 0 0 5 36 78 129 190 72
56 antennas 499 0 0 3 29 71 130 197 69
57 quality of service 495 0 0 13 41 57 134 184 66
58 diagnosis 491 0 0 1 8 59 83 265 75
59 stochastic systems 487 0 1 5 28 67 118 201 67
60 image enhancement 487 0 0 3 20 51 132 208 73
61 decision making 486 0 0 7 24 59 134 199 63
62 resource allocation 480 0 2 6 22 63 128 190 69
63 inference attacks 476 0 0 1 28 60 101 209 77
64 convergence 468 0 0 3 20 54 101 210 80
65 vehicles 466 0 1 4 23 55 121 181 81
66 intelligent vehicle highway systems 458 0 0 2 18 54 110 203 71
67 digital storage 446 0 0 6 29 47 127 185 52
68 cryptography 438 1 0 9 31 48 92 181 76
69 matrix algebra 433 1 0 7 24 51 116 166 68
70 reinforcement learning 427 0 0 5 20 49 111 178 64
71 risk assessment 424 0 0 6 23 60 94 199 42
72 intrusion detection 416 0 0 1 13 46 108 189 59
73 iid data 403 0 0 2 12 44 114 180 51
74 large scales 397 0 0 3 18 52 112 160 52
75 medical imaging 369 0 0 1 12 34 85 172 65
76 incentive mechanism 352 0 0 7 32 47 92 118 56
77 clustering 350 1 0 2 11 44 92 153 47
78 channel state information 342 0 0 4 21 55 104 118 40
79 gradient methods 334 0 0 6 24 49 87 129 39
80 Industrial Internet of Things 301 0 0 2 19 51 71 121 37
81 biological system modeling 288 0 0 0 5 26 59 140 58
82 speech recognition 273 0 0 1 26 30 84 99 33
83 real-time systems 241 0 1 5 18 35 53 94 35
84 game theory 232 0 0 6 16 23 57 90 40
85 graph neural networks 195 0 0 1 1 18 41 97 37
86 machine design 180 0 1 1 27 34 37 55 25
87 unmanned aerial vehicles (UAV) 176 0 0 0 7 30 43 70 26
88 spatial-temporal 174 0 0 1 10 15 49 73 26
89 labeled data 174 0 0 2 9 25 41 75 22
90 traffic congestion 166 0 0 1 9 24 40 65 27
91 quantization 164 0 0 0 6 24 40 61 33
92 sensor nodes 156 0 0 3 10 21 27 70 25
93 model compression 143 0 0 3 15 23 24 60 18
94 data sample 138 0 0 2 13 20 28 59 16
95 tumors 132 0 0 0 5 11 32 67 17
96 hyperparameter 128 0 0 4 12 20 30 50 12
97 synchronization 121 0 0 1 4 20 28 55 13
98 leaf disease 118 0 0 1 0 3 16 85 13
99 web services 90 0 0 3 11 9 36 25 6

References
1. Konečný, J.; McMahan, H.B.; Yu, F.X.; Richtárik, P.; Suresh, A.T.; Bacon, D. Federated Learning: Strategies for Improving

Communication Efficiency. arXiv 2016, arXiv:1610.05492.
2. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In

Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, Red Hook, NY, USA, 4–9
December 2017; pp. 6000–6010.

64

Information 2024, 15, 379

3. Lo, K.; Wang, L.L.; Neumann, M.; Kinney, R.; Weld, D. S2ORC: The Semantic Scholar Open Research Corpus. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 4969–4983. [CrossRef]

4. Hashimoto, T.B.; Alvarez-Melis, D.; Jaakkola, T.S. Word embeddings as metric recovery in semantic spaces. Trans. Assoc. Comput.
Linguist. 2016, 4, 273–286. [CrossRef]

5. Fredrikson, M.; Jha, S.; Ristenpart, T. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, New York, NY, USA,
12–16 October 2015; pp. 1322–1333. [CrossRef]

6. Zhang, L.; Xu, J.; Vijayakumar, P.; Sharma, P.K.; Ghosh, U. Homomorphic Encryption-Based Privacy-Preserving Federated
Learning in IoT-Enabled Healthcare System. IEEE Trans. Netw. Sci. Eng. 2023, 10, 2864–2880. [CrossRef]

7. Schlegel, R.; Kumar, S.; Rosnes, E.; Amat, A.G.i. CodedPaddedFL and CodedSecAgg: Straggler Mitigation and Secure Aggregation
in Federated Learning. IEEE Trans. Commun. 2023, 71, 2013–2027. [CrossRef]

8. Asad, M.; Shaukat, S.; Javanmardi, E.; Nakazato, J.; Bao, N.; Tsukada, M. Secure and Efficient Blockchain-Based Federated
Learning Approach for VANETs. IEEE Internet Things J. 2024, 11, 9047–9055. [CrossRef]

9. Qiao, F.; Li, Z.; Kong, Y. A Privacy-Aware and Incremental Defense Method Against GAN-Based Poisoning Attack. IEEE Trans.
Comput. Soc. Syst. 2024, 11, 1708–1721. [CrossRef]

10. Zhou, J.; Wu, N.; Wang, Y.; Gu, S.; Cao, Z.; Dong, X.; Choo, K.K.R. A Differentially Private Federated Learning Model Against
Poisoning Attacks in Edge Computing. IEEE Trans. Dependable Secur. Comput. 2023, 20, 1941–1958. [CrossRef]

11. Dwork, C. Differential privacy. In Proceedings of the International Colloquium on Automata, Languages, and Programming,
Venice, Italy, 10–14 July 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–12.

12. Jiang, W.; Li, H.; Liu, S.; Ren, Y.; He, M. A flexible poisoning attack against machine learning. In Proceedings of the ICC
2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; IEEE: Piscataway, NJ,
USA, 2019; pp. 1–6.

13. Gupta, P.; Yadav, K.; Gupta, B.B.; Alazab, M.; Gadekallu, T.R. A Novel Data Poisoning Attack in Federated Learning based on
Inverted Loss Function. Comput. Secur. 2023, 130, 103270. [CrossRef]

14. Omran, A.H.; Mohammed, S.Y.; Aljanabi, M. Detecting Data Poisoning Attacks in Federated Learning for Healthcare Applications
Using Deep Learning. Iraqi J. Comput. Sci. Math. 2023, 4, 225–237. [CrossRef]

15. Li, S.; Ngai, E.; Voigt, T. Byzantine-Robust Aggregation in Federated Learning Empowered Industrial IoT. IEEE Trans. Ind. Inform.
2023, 19, 1165–1175. [CrossRef]

16. Yang, M.; Cheng, H.; Chen, F.; Liu, X.; Wang, M.; Li, X. Model poisoning attack in differential privacy-based federated learning.
Inf. Sci. 2023, 630, 158–172. [CrossRef]

17. Kalapaaking, A.P.; Khalil, I.; Yi, X. Blockchain-Based Federated Learning with SMPC Model Verification against Poisoning Attack
for Healthcare Systems. IEEE Trans. Emerg. Top. Comput. 2024, 12, 269–280. [CrossRef]

18. Wang, Z.; Huang, Y.; Song, M.; Wu, L.; Xue, F.; Ren, K. Poisoning-Assisted Property Inference Attack against Federated Learning.
IEEE Trans. Dependable Secur. Comput. 2023, 20, 3328–3340. [CrossRef]

19. Zhao, P.; Cao, Z.; Jiang, J.; Gao, F. Practical Private Aggregation in Federated Learning against Inference Attack. IEEE Internet
Things J. 2023, 10, 318–329. [CrossRef]

20. Gong, X.; Chen, Y.; Wang, Q.; Kong, W. Backdoor Attacks and Defenses in Federated Learning: State-of-the-Art, Taxonomy, and
Future Directions. IEEE Wirel. Commun. 2023, 30, 114–121. [CrossRef]

21. Lyu, X.; Han, Y.; Wang, W.; Liu, J.; Wang, B.; Liu, J.; Zhang, X. Poisoning with Cerberus: Stealthy and Colluded Backdoor Attack
against Federated Learning. Proc. AAAI Conf. Artif. Intell. 2023, 37, 9020–9028. [CrossRef]

22. Lai, Y.C.; Lin, J.Y.; Lin, Y.D.; Hwang, R.H.; Lin, P.C.; Wu, H.K.; Chen, C.K. Two-phase Defense against Poisoning Attacks on
Federated Learning-based Intrusion Detection. Comput. Secur. 2023, 129, 103205. [CrossRef]

23. Carrascosa, C.; Rincón, J.; Rebollo, M. Co-Learning: Consensus-based Learning for Multi-Agent Systems. In Proceedings of the
Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The PAAMS Collection,
L’Aquila, Italy, 13–15 July 2022; Dignum, F., Mathieu, P., Corchado, J.M., De La Prieta, F., Eds.; Springer: Cham, Switzerland, 2022;
pp. 63–75.

24. Thennakoon, R.; Wanigasundara, A.; Weerasinghe, S.; Seneviratne, C.; Siriwardhana, Y.; Liyanage, M. Decentralized Defense:
Leveraging Blockchain against Poisoning Attacks in Federated Learning Systems. In Proceedings of the 2024 IEEE 21st Consumer
Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 6–9 January 2024; pp. 950–955. [CrossRef]

25. Rebollo, M.; Rincon, J.A.; Hernández, L.; Enguix, F.; Carrascosa, C. Extending the Framework for Developing Intelligent Virtual
Environments (FIVE) with Artifacts for Modeling Internet of Things Devices and a New Decentralized Federated Learning Based
on Consensus for Dynamic Networks. Sensors 2024, 24, 1342. [CrossRef]

26. Sheng, T.; Shen, C.; Liu, Y.; Ou, Y.; Qu, Z.; Liang, Y.; Wang, J. Modeling global distribution for federated learning with label
distribution skew. Pattern Recognit. 2023, 143, 109724. [CrossRef]

27. Yang, J.; Jiang, W.; Nie, L. Hypernetworks-Based Hierarchical Federated Learning on Hybrid Non-IID Datasets for Digital Twin
in Industrial IoT. IEEE Trans. Netw. Sci. Eng. 2024, 11, 1413–1423. [CrossRef]

28. Sun, W.; Li, Z.; Wang, Q.; Zhang, Y. FedTAR: Task and Resource-Aware Federated Learning for Wireless Computing Power
Networks. IEEE Internet Things J. 2023, 10, 4257–4270. [CrossRef]

65

Information 2024, 15, 379

29. Li, J.; Liu, X.; Mahmoodi, T. Federated Learning in Heterogeneous Wireless Networks with Adaptive Mixing Aggregation and
Computation Reduction. IEEE Open J. Commun. Soc. 2024, 5, 2164–2182. [CrossRef]

30. Wu, Q.; Chen, X.; Ouyang, T.; Zhou, Z.; Zhang, X.; Yang, S.; Zhang, J. HiFlash: Communication-Efficient Hierarchical Federated
Learning with Adaptive Staleness Control and Heterogeneity-Aware Client-Edge Association. IEEE Trans. Parallel Distrib. Syst.
2023, 34, 1560–1579. [CrossRef]

31. Chen, J.; Xue, J.; Wang, Y.; Huang, L.; Baker, T.; Zhou, Z. Privacy-Preserving and Traceable Federated Learning for data sharing in
industrial IoT applications. Expert Syst. Appl. 2023, 213, 119036. [CrossRef]

32. Wu, H.T.; Li, H.; Chi, H.L.; Kou, W.B.; Wu, Y.C.; Wang, S. A hierarchical federated learning framework for collaborative quality
defect inspection in construction. Eng. Appl. Artif. Intell. 2024, 133, 108218. [CrossRef]

33. Uddin, M.P.; Xiang, Y.; Cai, B.; Lu, X.; Yearwood, J.; Gao, L. ARFL: Adaptive and Robust Federated Learning. IEEE Trans. Mob.
Comput. 2024, 23, 5401–5417. [CrossRef]

34. Yang, H.; Gu, D.; He, J. A Robust and Efficient Federated Learning Algorithm against Adaptive Model Poisoning Attacks. IEEE
Internet Things J. 2024, 11, 16289–16302. [CrossRef]

35. Cao, Y.; Zhang, J.; Zhao, Y.; Su, P.; Huang, H. SRFL: A Secure & Robust Federated Learning framework for IoT with trusted
execution environments. Expert Syst. Appl. 2024, 239, 122410. [CrossRef]

36. Hossain, M.B.; Shinde, R.K.; Oh, S.; Kwon, K.C.; Kim, N. A Systematic Review and Identification of the Challenges of Deep
Learning Techniques for Undersampled Magnetic Resonance Image Reconstruction. Sensors 2024, 24, 753. [CrossRef]

37. Ghader, M.; Farahani, B.; Rezvani, Z.; Shahsavari, M.; Fazlali, M. Exploiting Federated Learning for EEG-based Brain-Computer
Interface System. In Proceedings of the 2023 IEEE International Conference on Omni-Layer Intelligent Systems (COINS), Berlin,
Germany, 23–25 July 2023; pp. 1–6. [CrossRef]

38. Mehta, S.; Kukreja, V.; Gupta, A. Next-Generation Wheat Disease Monitoring: Leveraging Federated Convolutional Neural
Networks for Severity Estimation. In Proceedings of the 2023 4th International Conference for Emerging Technology (INCET),
Belgaum, India, 26–28 May 2023; pp. 1–6. [CrossRef]

39. Pandianchery, M.S.; Sowmya, V.; Gopalakrishnan, E.A.; Ravi, V.; Soman, K.P. Centralized CNN–GRU Model by Federated
Learning for COVID-19 Prediction in India. IEEE Trans. Comput. Soc. Syst. 2024, 11, 1362–1371. [CrossRef]

40. Bukhari, S.M.S.; Zafar, M.H.; Houran, M.A.; Moosavi, S.K.R.; Mansoor, M.; Muaaz, M.; Sanfilippo, F. Secure and privacy-
preserving intrusion detection in wireless sensor networks: Federated learning with SCNN-Bi-LSTM for enhanced reliability. Ad
Hoc Netw. 2024, 155, 103407. [CrossRef]

41. Kumbhare, S.; Kathole, A.B.; Shinde, S. Federated learning aided breast cancer detection with intelligent Heuristic-based deep
learning framework. Biomed. Signal Process. Control 2023, 86, 105080. [CrossRef]

42. Deng, Z.; Qureshi, T.A.; Javed, S.; Wang, L.; Christodoulou, A.G.; Xie, Y.; Gaddam, S.; Pandol, S.J.; Li, D. FedRNN: Federated
Learning with RNN-Based Aggregation on Pancreas Segmentation. In Proceedings of the Medical Imaging and Computer-Aided
Diagnosis, San Diego, CA, USA, 19–23 February 2023; Su, R., Zhang, Y., Liu, H., Frangi, A.F., Eds.; Springer: Singapore, 2023;
pp. 453–464.

43. Little, C.; Elliot, M.; Allmendinger, R. Federated learning for generating synthetic data: A scoping review. Int. J. Popul. Data Sci.
2023, 8. [CrossRef] [PubMed]

44. Cai, X.; Lan, Y.; Zhang, Z.; Wen, J.; Cui, Z.; Zhang, W. A Many-Objective Optimization Based Federal Deep Generation Model for
Enhancing Data Processing Capability in IoT. IEEE Trans. Ind. Inform. 2023, 19, 561–569. [CrossRef]

45. Yan, R.; Qu, L.; Wei, Q.; Huang, S.C.; Shen, L.; Rubin, D.L.; Xing, L.; Zhou, Y. Label-Efficient Self-Supervised Federated Learning
for Tackling Data Heterogeneity in Medical Imaging. IEEE Trans. Med Imaging 2023, 42, 1932–1943. [CrossRef] [PubMed]

46. Haggenmüller, S.; Schmitt, M.; Krieghoff-Henning, E.; Hekler, A.; Maron, R.C.; Wies, C.; Utikal, J.S.; Meier, F.; Hobelsberger, S.;
Gellrich, F.F.; et al. Federated Learning for Decentralized Artificial Intelligence in Melanoma Diagnostics. JAMA Dermatol. 2024,
160, 303–311. [CrossRef] [PubMed]

47. Yu, Y.; Guo, L.; Gao, H.; He, Y.; You, Z.; Duan, A. FedCAE: A New Federated Learning Framework for Edge-Cloud Collaboration
Based Machine Fault Diagnosis. IEEE Trans. Ind. Electron. 2024, 71, 4108–4119. [CrossRef]

48. Christidis, K.; Devetsikiotis, M. Blockchains and Smart Contracts for the Internet of Things. IEEE Access 2016, 4, 2292–2303.
[CrossRef]

49. Tang, Y.; Zhang, Y.; Niu, T.; Li, Z.; Zhang, Z.; Chen, H.; Zhang, L. A Survey on Blockchain-Based Federated Learning:
Categorization, Application and Analysis. Comput. Model. Eng. Sci. 2024, 139, 2451–2477. [CrossRef]

50. Wu, B.; Kang, H. Research on Federated Sharing Methods for Massive Data in Blockchain. In Proceedings of the Smart Grid and
Internet of Things; Deng, D.J., Chen, J.C., Eds.; Springer: Cham, Switzerland, 2024; pp. 12–27.

51. Sumitra; Shenoy, M.V. HFedDI: A novel privacy preserving horizontal federated learning based scheme for IoT device identifica-
tion. J. Netw. Comput. Appl. 2023, 214, 103616. [CrossRef]

52. Zhang, J.; Zhao, L.; Yu, K.; Min, G.; Al-Dubai, A.Y.; Zomaya, A.Y. A Novel Federated Learning Scheme for Generative Adversarial
Networks. IEEE Trans. Mob. Comput. 2024, 23, 3633–3649. [CrossRef]

53. Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain computer interfaces, a review. Sensors 2012, 12, 1211–1279. [CrossRef]
54. Liu, R.; Chen, Y.; Li, A.; Ding, Y.; Yu, H.; Guan, C. Aggregating intrinsic information to enhance BCI performance through

federated learning. Neural Netw. 2024, 172, 106100. [CrossRef]

66

Information 2024, 15, 379

55. Liu, L.; Zhang, J.; Song, S.; Letaief, K.B. Hierarchical Federated Learning with Quantization: Convergence Analysis and System
Design. IEEE Trans. Wirel. Commun. 2023, 22, 2–18. [CrossRef]

56. Fan, X.; Wang, Y.; Huo, Y.; Tian, Z. 1-Bit Compressive Sensing for Efficient Federated Learning over the Air. IEEE Trans. Wirel.
Commun. 2023, 22, 2139–2155. [CrossRef]

57. Zhao, R.; Wang, Y.; Xue, Z.; Ohtsuki, T.; Adebisi, B.; Gui, G. Semisupervised Federated-Learning-Based Intrusion Detection
Method for Internet of Things. IEEE Internet Things J. 2023, 10, 8645–8657. [CrossRef]

58. Jiang, Y.; Wang, S.; Valls, V.; Ko, B.J.; Lee, W.H.; Leung, K.K.; Tassiulas, L. Model Pruning Enables Efficient Federated Learning on
Edge Devices. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 10374–10386. [CrossRef]

59. Tang, Z.; Shi, S.; Li, B.; Chu, X. GossipFL: A Decentralized Federated Learning Framework with Sparsified and Adaptive
Communication. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 909–922. [CrossRef]

60. Vásquez-Correa, J.C.; Álvarez Muniain, A. Novel Speech Recognition Systems Applied to Forensics within Child Exploitation:
Wav2vec2.0 vs. Whisper. Sensors 2023, 23, 1843. [CrossRef]

61. Hagos, D.H.; Tankard, E.; Rawat, D.B. A Scalable Asynchronous Federated Learning for Privacy-Preserving Real-Time Surveil-
lance Systems. In Proceedings of the IEEE INFOCOM 2023—IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), New York, NY, USA, 17–20 May 2023; pp. 1–6. [CrossRef]

62. Zhang, L.; Zhu, T.; Xiong, P.; Zhou, W.; Yu, P.S. A Robust Game-Theoretical Federated Learning Framework with Joint Differential
Privacy. IEEE Trans. Knowl. Data Eng. 2023, 35, 3333–3346. [CrossRef]

63. Shoham, Y.; Leyton-Brown, K. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations; Cambridge University
Press: Cambridge, UK, 2008.

64. Luo, X.; Zhang, Z.; He, J.; Hu, S. Strategic Analysis of the Parameter Servers and Participants in Federated Learning: An
Evolutionary Game Perspective. IEEE Trans. Comput. Soc. Syst. 2024, 11, 132–143. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

67

Citation: Filippakis, P.; Ougiaroglou,

S.; Evangelidis, G. Prototype Selection

for Multilabel Instance-Based

Learning. Information 2023, 14, 572.

https://doi.org/10.3390/info14100572

Academic Editor: Peter Revesz

Received: 31 July 2023

Revised: 13 October 2023

Accepted: 17 October 2023

Published: 19 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Prototype Selection for Multilabel Instance-Based Learning †

Panagiotis Filippakis 1,* , Stefanos Ougiaroglou 1 and Georgios Evangelidis 2

1 Department of Information and Electronic Engineering, School of Engineering, International Hellenic
University, 57400 Thessaloniki, Greece; stoug@ihu.gr

2 Department of Applied Informatics, School of Information Sciences, University of Macedonia,
156 Egnatia Street, 54636 Thessaloniki, Greece; gevan@uom.gr

* Correspondence: filipana1@iee.ihu.gr
† This paper is an extended version of our paper published in 27th International Database Engineered

Application Symposium, IDEAS 2023, Heraklion, Greece, 5–7 May 2023.

Abstract: Reducing the size of the training set, which involves replacing it with a condensed set,
is a widely adopted practice to enhance the efficiency of instance-based classifiers while trying to
maintain high classification accuracy. This objective can be achieved through the use of data reduction
techniques, also known as prototype selection or generation algorithms. Although there are numerous
algorithms available in the literature that effectively address single-label classification problems,
most of them are not applicable to multilabel data, where an instance can belong to multiple classes.
Well-known transformation methods cannot be combined with a data reduction technique due to
different reasons. The Condensed Nearest Neighbor rule is a popular parameter-free single-label
prototype selection algorithm. The IB2 algorithm is the one-pass variation of the Condensed Nearest
Neighbor rule. This paper proposes variations of these algorithms for multilabel data. Through an
experimental study conducted on nine distinct datasets as well as statistical tests, we demonstrate
that the eight proposed approaches (four for each algorithm) offer significant reduction rates without
compromising the classification accuracy.

Keywords: data reduction techniques; instance reduction; multilabel classification; prototype
selection; instance-based classification; binary relevance; CNN; IB2; BRkNN

1. Introduction

Multilabel classification [1] involves predicting multiple potential classes or labels for
a single instance, while single-label classification focuses on assigning only one class to
each instance. Multilabel classification is commonly employed to classify diverse forms of
data, such as images, books, artists, music, videos and movies. For instance, a movie can
be classified as both “crime” and “adventure”, a text can cover many different topics and
a music track may encompass multiple genres or moods. Multilabel classification can be
characterized as a generalization of single-label classification, where a classifier is capable
of handling scenarios where multiple labels may be applicable to a single instance. This
extension allows for more versatile predictions as it accommodates cases where instances
can belong to multiple classes at the same time.

The k-Nearest Neighbors (k-NN) [2] classification algorithm serves as a typical illustra-
tion of a lazy or instance-based classifier. It operates by retrieving the k-nearest neighbors of
an unclassified instance and employing a majority voting approach to assign a classification.
In simpler terms, the unclassified instance is assigned to the most prevalent class among
the classes of the retrieved k-nearest neighbors. This classifier is renowned for its simplicity,
ease of implementation and robust classification performance, making it valuable for both
single-label and multilabel classification tasks. Nonetheless, it comes with a drawback of
high computational cost due to the need to calculate the distances between each unclassified
instance and all instances in the training set.

Information 2023, 14, 572. https://doi.org/10.3390/info14100572 https://www.mdpi.com/journal/information68

Information 2023, 14, 572

Hence, the size of the training set plays a vital role in instance-based classification.
While a large training set yields higher classification accuracy, it also entails increased
computational costs. To expedite the k-NN classifier, it becomes necessary to mitigate
its memory and CPU requirements by reducing the training set’s size. In single-label
classification tasks, one approach is to employ a data reduction technique (DRT) capable of
reducing either the number of training instances or attributes [3]. This paper specifically
focuses on DRTs from the perspective of instance reduction. The objective of this paper is
to achieve efficient k-NN classification on multilabel data by decreasing the training set’s
size without compromising accuracy.

DRTs encompass two categories, namely prototype selection (PS) [4] and prototype
generation (PG) [5]. In practical terms, these techniques serve as data pre-processing
tasks aimed at replacing the original training dataset with a smaller subset known as
the “condensing set”. Utilizing the condensing set enables the k-NN classifier to achieve
comparable accuracy to using the full training dataset but with significantly reduced
computational costs. PS algorithms choose specific instances, or prototypes, from the
original training set, whereas PG algorithms generate prototypes by summarizing similar
training instances belonging to the same class. The fundamental concept underlying many
DRTs is that only training instances in close proximity to class decision boundaries, in terms
of a Euclidean metric space, are crucial for classification tasks. Those training instances
situated within the “internal” area of a class, far away from decision boundaries, can
be safely removed without compromising classification accuracy. Consequently, DRTs
aim to select or generate an adequate number of prototypes that reside near the decision
boundary areas for each class. The majority of DRTs primarily focus on single-label
classification problems.

It is worth mentioning that a subcategory of PS algorithms focuses on noise removal
and operates differently from other PS and PG algorithms. These algorithms are designed
to eliminate noise and smooth the decision boundaries between discrete classes. As a result,
they create an edited training set that leads to accuracy gains in the classification process.

The label powerset (LP) transformation technique [1] offers a straightforward solution
for employing a DRT in multilabel classification tasks. LP transforms a multilabel dataset
into a single-label dataset by considering each label combination, or labelset, as a separate
class. However, it is important to acknowledge that LP is suitable only when the number
of labels and potential labelsets is limited and there are ample instances available for
each labelset. In situations where the number of label combinations becomes excessively
large, the reduction rate may not be sufficient, resulting in inadequate representation of
certain combinations. Moreover, the total count of distinct label combinations can grow
exponentially, giving rise to scalability issues.

Binary relevance (BR) is a popular transformation technique that addresses multilabel
classification problems by transforming them into single-label classification problems. Es-
sentially, BR involves converting the original multilabel problem into multiple independent
binary classification problems. In order to predict the labels associated with an unclassified
instance, a separate classifier is required for each available label. When BR is combined
with the k-NN classifier, it is referred to as BRkNN [6]. This combination proves effective
because the k-NN classifier is a lazy classifier that does not construct a classification model.
During the classification of an instance x using BRkNN, the algorithm searches for the
k-nearest neighbors to x, just like in the case of single-label k-NN. Subsequently, the voting
procedure of the nearest neighbors is repeated individually for each label.

When a data reduction technique (DRT) is applied before utilizing the k-NN classifier,
the classifier transitions from being lazy to eager. In such scenarios, the condensing set
becomes the classification model. However, in the context of multilabel classification, the
application of BR (binary relevance) to construct a condensing set for each label undermines
the objective of data reduction. On one hand, the goal of data reduction is not achieved.
On the other hand, since the k-NN classifier must search for nearest neighbors within each
specific condensing set to make predictions for individual labels, the computational cost

69

Information 2023, 14, 572

remains high. Hence, combining BR with a DRT becomes infeasible due to the presence
of multiple binary condensing sets. This highlights the necessity of modifying DRTs to
effectively handle multilabel datasets, which serves as the motivation for the current
research work.

The Condensed Nearest Neighbor (CNN) rule [7] stands as the oldest prototype
selection (PS) algorithm for single-label classification tasks. It operates by eliminating
training instances that reside far from the decision boundaries, and this is achieved by
running over the training data multiple times. Instance-Based Learning 2 (IB2) [8] is the
one-pass variation of CNN and has the same motivation with that of CNN. IB2 involves an
extremely low pre-processing computational cost to build the condensing set. Both CNN
and IB2 are popular parameter-free PS algorithms. However, they are inappropriate for
multilabel data.

The objective of the present paper is to extend the applicability of CNN and IB2 by
introducing variations suitable for multilabel classification problems. In [9], we proposed
three multilabel variations of CNN. Here, we extend the previous work by adding one
more variation of CNN, which is based on Levenshtein distance [10], and by introducing
the multilabel version of IB2 with the four variations. Thus, the contributions of the paper
are summarized as follows:

• We propose four variations of CNN and IB2 that are suitable for multilabel classifica-
tion problems.

• One of the variations uses a novel adaptation of Levenshtein distance for
multilabel instances.

• We conduct an experimental study using nine multilabel datasets and complement it
with corresponding statistical tests of significance. The study reveals that the proposed
variations offer significant reduction rates without compromising the
classification accuracy.

The rest of this paper is organized as follows. Section 2 presents the related work in
data reduction on multilabel datasets. Section 3 presents the CNN algorithm for single-label
classification problems. Section 4 presents the Instance-Based Two-Step (IB2) algorithm for
single-label classification problems. Section 5 describes the proposed variations of CNN
and IB2 for multilabel classification problems that use the BRkNN multilabel classifier.
Section 6 presents the experimental study that compares the proposed algorithms. Finally,
Section 7 concludes the paper.

2. Related Work

The majority of publications focused on multilabel problems tend to discuss classifica-
tion algorithms rather than approaches aimed at reducing computational costs associated
with large multilabel training sets. There are also many attempts to offer programming
APIs [11] and environments [12] specific for multilabel classification. Limited research is
available on data reduction techniques specifically tailored for such datasets. In this section,
we examine the scarce relevant literature.

In [13], the authors propose a PS algorithm designed for multilabel datasets. This
algorithm aims to eliminate noise during the editing process and achieve balanced class
decision boundaries. Inspired by the Edited Nearest Neighbor rule (ENN-rule) [14], the
authors suggest an under-sampling method for addressing imbalanced training sets.

Another article, [15], introduces a prototype selection editing algorithm based on ENN-
rule. The algorithm utilizes the Hamming loss metric to identify noisy training instances.
The concept is straightforward: instances with high Hamming loss are considered for
elimination due to their proximity to decision boundaries, similar to ENN-rule.

In [16], the authors make the first attempt to adapt PS algorithms to multilabel prob-
lems. Their proposed algorithms are based on local sets [17] and the LP transformation
technique [1]. In single-label problems, the local set of an instance refers to the largest set
of instances centered around it, all belonging to the same class. The authors argue that,
in multilabel datasets, a local set does not necessarily need to contain instances with the

70

Information 2023, 14, 572

exact same labelsets; they may have slightly different labelsets. The authors calculate the
Hamming loss over the labelsets to measure the differences, and the distance between two
instances is determined using the Hamming loss of their labelsets. If the distance exceeds a
specified threshold, the instances are classified as belonging to different “classes”.

The multilabel prototype selection with Co-Occurrence and Generalized Condensed
Nearest Neighbor (CO-GCNN) was proposed in [18]. CO-GCNN captures label correlation
by computing the co-occurrence frequency of label pairs and subsequently segregating the
initial data into positive and negative categories. The single-label generalized CNN [19]
is performed in order to produce the condensing set. In effect, CO-GCNN transforms the
multilabel classification problem into a single-label classification problem. It leverages
the benefit of incorporating pairwise label correlations as a constraint during the data
transformation step. The authors state that the incorporation of pairwise label correlations
enables the chosen prototypes to more accurately represent the original dataset.

In Ref. [20], a simple multilabel prototype selection algorithm based on clustering is
proposed. The proposed methodology uses a clustering algorithm as a PS algorithm and
then the well-known Multilabel k-Nearest Neighbor algorithm (ML-KNN) [21] performs
the labels prediction.

The article [22] explores the use of single-label prototype selection algorithms along
with binary relevance (BR), label powerset (LP) and other transformation techniques. For
BR and its variants, the proposed strategy generates individual single-label training sets
for different label types. Each training set undergoes a PS algorithm to create a condensing
set specific to each label. Instances receive votes each time they are selected, and the
accumulated votes form a single vector. Instances with votes surpassing a predefined
threshold are selected, resulting in a complete condensing set.

The work presented in [23] does not introduce a DRT. However, the proposed method
uses a PS algorithm as an intermediate step. The authors argue that PS leads to accuracy
loss. Their method aims to combine the classification accuracy of retaining the original
training set with the time efficiency of a PS method. More specifically, the authors propose
a three-phase strategy for multilabel classification: initially, a PS algorithm is employed
on the complete training set, generating a single-label condensed set. This operation is
performed once as a pre-processing step. When an instance x is presented and must be
classified, the proposed method selects a reduced set of labels as potential hypotheses,
considering only the condensed set. In effect, the condensing set works as a recommender
system that recommends the labels where x belongs to. The authors suggest picking the c
nearest classes to input x, where c is a user-specified parameter. The final classification is
performed by k-NN, employing a dynamically formed subset of the original training set
limited to the c labels identified in the previous step.

In [24], a data pre-processing technique to improve label distribution learning (LDL) [25]
algorithms is proposed. LDL is a general learning framework that assigns an instance to a
distribution over a set of labels. Specifically, the proposed method is called ProLSFEO-LDL
and combines prototype selection and label-specific feature learning. The paper proposes
an evolutionary algorithm adapted to the specificities of LDL, aiming to optimize the initial
solution to meet desired expectations.

In [26], the authors introduce an attempt to reduce multilabel datasets using homoge-
neous clustering. The algorithm, known as Multilabel Reduction through Homogeneous
Clusters (MLRHC), is an adaptation of the single-label prototype generation algorithm RHC.
MLRHC applies K-means clustering iteratively to produce homogeneous clusters, which
are then replaced by their center. In MLRHC, a cluster is considered homogeneous if all
instances within the cluster share at least one common label. The initial dataset is clustered
using the existing labels as initial means, with the number of clusters matching the number
of existing labels. Homogeneous clusters are replaced by their center, which is assigned
the common label along with any label appearing in at least half of the cluster’s instances.
Similarly, in [27], the authors extend their previous work by proposing a variant called
Multilabel Reduction by Space Partitioning (MLRSP3), which also relies on the concept of

71

Information 2023, 14, 572

homogeneity based on instances sharing at least one common label. MLRSP3 is based on
the RSP3 PG algorithm [28] and starts with a non-homogeneous cluster, selects the two
farthest instances and divides the training set into two clusters by assigning instances to
the closest farthest instance. This process continues until all clusters become homogeneous.
Like MLRHC, the center of each homogeneous cluster in MLRSP3 becomes a multilabel
prototype labeled with the common label and any label appearing in at least half of the
instances within the cluster.

Quite similar work is presented in [29]. More specifically, the authors propose adapta-
tions of the Chen and Jozwik multiclass PG algorithm [30] and of its descendants, RSP1,
RSP2 and RSP3 [28], to the multilabel case. The proposed adaptations are evaluated on
three multilabel NN-based classifiers using 12 datasets of varying domains and sizes, along
with artificially induced noise scenarios. The results show high efficiency and classification
performance, especially in noisy scenarios.

The paper presented in [31] does not introduce a PS or a PG algorithm. However,
it deals with the high computational cost in multilabel classification. Specifically, the
paper introduces a novel approach for multilabel classification by leveraging hypergraph
spectral learning. Hypergraphs, which generalize traditional graphs by allowing edges to
be arbitrary non-empty subsets of vertices, are employed to capture high-order relations
among labels. The proposed formulation leads to an eigenvalue problem, which may be
computationally expensive for large-scale datasets. To address this, the paper presents
an approximate formulation that reduces computational complexity while maintaining
competitive classification performance.

Figure 1 summarizes the presented works in a form of a hierarchy. More specifically,
the presented works can be categorized into three main categories. The first category
includes the paper related with the PS algorithms and the adaption of them. The works
related to adaptation of PG algorithms belong to the second category. The methods that
belong to the third category cannot be characterized as either PS or PG. However, they
are able to speed up the multilabel classification tasks, which is the goal of the PS and
PG algorithms.

Speed-up classifi-
cation methods for
Multilabel datasets

Adaptation of PS
algorithms and
Problem Trans-

formation for PS

ENN-based
algorithms (Charte
et al., 2014; Kanj

et al., 2015)

Condensing algorithms
(Álvar Arnaiz et al.,
2018; Li et al., 2023;

Suya et al., 2021;
González et al. 2020)

Adaptation of
PG algorithms

(Ougiaroglou et al.,
2021; Ougiaroglou
et al., 2023; Valero-

Mas et al., 2023)

Other speed-up methods
for multilabel classifica-
tion (Calvo-Zaragoza et
al. 2015; Sun et al. 2008)

Figure 1. Hierarchy of the presented algorithms and methods: Charte et al., 2014 [13]; Kanj et al.,
2015 [15]; Álvar Arnaiz et al., 2018 [16,22]; Li et al., 2023 [18]; Suya et al., 2021 [20]; González et al.,
2020 [24]; Ougiaroglou et al., 2021 [26]; Ougiaroglou et al., 2023 [27]; Valero-Mas et al., 2023 [29];
Calvo-Zaragoza et al., 2015 [23]; Sun et al., 2008 [31].

72

Information 2023, 14, 572

3. The Single-Label Condensed Nearest Neighbor Rule

In Section 1, the Condensed Nearest Neighbor (CNN) rule [7] is discussed as the first
and most widely utilized PS algorithm. CNN is a parameter-free single-label PS algorithm
that constructs its condensing set by iteratively examining the training data.

CNN involves two storage areas, namely the Condensing Set (CS) and the Training
Set (TS). Initially, the TS contains the entire training set while the CS is empty. The process
begins by randomly selecting an instance from the TS and transferring it to the CS. Each
instance x ∈ TS is then compared to the instances currently stored in the CS.

Specifically, for each instance x ∈ TS, CNN identifies its nearest neighbor (1-NN)
within the current CS using the Euclidean distance. If x is correctly classified by its nearest
neighbor in the CS, it remains in the TS. However, if x is misclassified, it is removed from
the TS and added to the CS. This process continues until all instances x ∈ TS have been
considered. Subsequently, the algorithm proceeds to the next scan of the TS.

The algorithm terminates when, during a complete scan of the TS, no instances are
transferred from the TS to the CS, indicating that all instances in the TS are correctly classi-
fied based on the content of the CS. Algorithm 1 provides the pseudo-code representation
of the CNN algorithm.

It is worth mentioning that, during the first algorithm iteration, CS is not empty.
It contains a randomly selected instance (see line 2 in Algorithm 1). Therefore, for all
examined instances of TS, there is always a nearest neighbor in CS.

Algorithm 1 CNN
Input: TS
Output: CS

1: CS← ∅
2: randomly pick an instance of TS and move it to CS
3: repeat
4: stop← TRUE
5: for each x ∈ TS do
6: NN ← nearest neighbor of x in CS using Euclidean distance
7: if NNclass 6= xclass then
8: CS← CS ∪ {x}
9: TS← TS− {x}

10: stop← FALSE
11: end if
12: end for
13: until stop == TRUE {no move during a pass of TS}
14: discard TS
15: return CS

The fundamental principle of the CNN algorithm is to include incorrectly classified
instances in the Condensing Set (CS) since they are considered border instances located
near decision boundaries. CNN ensures that each removed instance from the Training Set
(TS) can be correctly classified using the information contained in the CS set. CNN’s lack of
parameters is a significant advantage. The condensing set is built without the need of any
user-specified input parameter. Thus, costly computational parameter tuning procedures
are avoided. On the other hand, there are some disadvantages to consider:

• Variability in Results: Running the CNN algorithm multiple times on the same TS
may produce different condensing sets due to variations in the randomly selected
initial instance (line 2 of Algorithm 1) or differences in the order in which TS instances
are examined (line 5 of Algorithm 1).

• Memory Requirements: CNN is a memory-based algorithm, meaning that all instances
need to reside in main memory during its execution.

73

Information 2023, 14, 572

• Computational Cost: The CNN algorithm requires multiple passes over the train-
ing set.

In terms of quality, the CNN algorithm operates as follows: if the underlying densities
of different classes have minimal overlap, indicating a low Bayes risk, CNN tends to select
instances located close to the possibly fuzzy boundary between classes. Instances deeply
embedded within a class are unlikely to be transferred to the CS since they are correctly
classified. However, if the Bayes risk is high, the CS will essentially contain almost every
instance from the initial TS set, resulting in negligible sample size reduction.

4. The IB2 Algorithm

Aha et al. [8] introduced a set of instance-based learning algorithms. Among these al-
gorithms, IB1 (Instance-Based Learning) served as a baseline and was essentially equivalent
to the 1-NN algorithm.

The IB2 algorithm operates incrementally by initially having an empty set, CS, and
adding each instance from TS to CS if it is misclassified by the instances already present in
CS. Algorithm 2 provides the pseudo-code representation of the IB2 algorithm.

Algorithm 2 IB2
Input: TS
Output: CS

1: CS← ∅
2: randomly pick an instance of TS and move it to CS
3: for each x ∈ TS do
4: NN ← nearest neighbor of x in CS using Euclidean distance
5: if NNclass 6= xclass then
6: CS← CS ∪ {x}
7: TS← TS− {x}
8: end if
9: end for

10: discard TS
11: return CS

IB2 bears similarities to CNN-rule but it does not repeat the process after the first pass
through the training set. As a result, IB2 does not guarantee the correct classification of all
remaining instances in the TS. In effect, IB2 is a one-pass version of CNN.

Like CNN, IB2 aims to retain border instances in CS while eliminating internal in-
stances that are surrounded by instances belonging to the same class. Similar to the CNN
algorithm, IB2 is highly sensitive to noise because erroneous instances are often misclas-
sified, resulting in the preservation of noisy instances, while more reliable instances are
removed. The benefits and characteristics of IB2 algorithm are

• Since IB2 avoids multiple passes over training data, is quite faster than CNN.
• The condensing set obtained from IB2 is generally smaller than that of CNN, leading

to faster classification and reduced storage requirements.
• IB2 supports incremental learning, where new instances can be added to the condens-

ing set without requiring complete retraining of the algorithm.
• The decision boundary revision step allows IB2 to adapt to new instances and adjust

the reduced training set accordingly.

5. The Proposed Algorithms

As discussed in Section 1, traditional data reduction algorithms are not suitable for
use with the binary relevance transformation method in multilabel data. Applying data
reduction in conjunction with the binary relevance transformation would lead to the
creation of numerous condensing sets, one for each label.

74

Information 2023, 14, 572

In this section, we introduce variations of the CNN and IB2 algorithms that are
designed for multilabel datasets. These proposed algorithms are named

• Multilabel CNN Hamming Distance and Multilabel IB2 Hamming Distance (MLCNN-H
and MLIB2-H);

• Multilabel CNN Jaccard Distance and Multilabel IB2 Jaccard Distance (MLCNN-J and
MLIB2-J);

• Multilabel CNN Levenshtein Distance and Multilabel IB2 Levenshtein Distance
(MLCNN-L and MLIB2-L) and

• Multilabel CNN Binary Relevance and Multilabel IB2 Binary Relevance (MLCNN-BR
and MLIB2-BR).

5.1. MLCNN-H and MLIB2-H

The MLCNN-H algorithm is based on a similar principle to CNN, with the idea that
an instance with a significantly different labelset compared to its nearest neighbor should
be included in the multilabel condensing set. To achieve this, MLCNN-H requires a method
to measure the distance or difference between multilabel instances and a mechanism to
determine when two instances are considered different or similar.

For that purpose, MLCNN-H uses Hamming distance. The Hamming distance be-
tween two labelsets is the number of positions at which the corresponding labels do
not match.

Definition 1 (Hamming Distance). Given two labelsets u and v, each of length n, their Hamming
distance is the total number of positions where their labels do not match:

HD(u, v) = Cardinality({i : ui 6= vi, i = 1, . . . , n})

In MLCNN-H, the labelset of an instance is represented as a sequence of binary values
(0 or 1), where 0 indicates that the instance does not belong to the corresponding label and 1
indicates that it does. To compute the Hamming distance (HD) between two instances, the
labelsets are compared using an XOR operation to count the number of differing labels. To
express HD in the [0,1] interval, this count is then divided by the length of a labelset, which
represents the total number of labels in the dataset. Consequently, when HD is zero, the
two instances have identical labelsets, while an HD of one indicates completely different
labelsets. For example:

• HD(110001, 110001) = 0/6 = 0
• HD(110001, 001110) = 6/6 = 1
• HD(110001, 000010) = 4/6 = 0.33
• HD(110001, 100010) = 3/6 = 0.5

MLCNN-H incorporates the concept of label density in the dataset. The label density
is calculated as the average number of labels per instance divided by the number of distinct
labels in the dataset [32]. MLCNN-H considers the labelsets of examined instances to be
significantly different if their HD is greater than the dataset density.

Similar to the single-label CNN algorithm, MLCNN-H utilizes two sets: the Condens-
ing Set (CS) and the Training Set (TS). Initially, TS contains the complete training set, while
CS is empty. MLCNN-H randomly selects an instance from TS and transfers it to CS. For
each instance x ∈ TS, the algorithm finds the nearest neighbor (e.g., y) within the CS. Then,
MLCNN-H calculates the Hamming distance (HD) metric between x and y, quantifying
the difference in their labelsets. If HD is greater than the dataset density, x is removed
from TS and added to CS; otherwise, it remains in TS. Once all instances x ∈ TS have been
examined, the process continues with subsequent scans of the remaining instances in TS.
MLCNN-H terminates when no transfers from TS to CS are made during a complete pass
over TS. In each next scan over the remaining instances in TS, more instances move from
TS to CS.

75

Information 2023, 14, 572

Similar to MLCNN-H, the MLIB2-H algorithm follows exactly the same process as
the previous one, with the only difference being that the process stops after examining
all instances in TS in one pass. In effect, MLIB2-H is the one-pass version of MLCNN-H.
Therefore, MLIB2-H is quite faster and achieves higher reduction rates than MLCNN-H.

5.2. MLCNN-J and MLIB2-J

MLCNN-J and MLIB2-J employ the Jaccard distance for asymmetric binary attributes,
where the presence of a label is considered more important than its absence.

Definition 2 (Jaccard Distance for asymmetric binary attributes). Given two labelsets u and
v, each of length n, we define:

A = Cardinality({i : ui = vi = 1, i = 1, . . . , n})

B = Cardinality({i : ui = 1∧ vi = 0, i = 1, . . . , n})
C = Cardinality({i : ui = 0∧ vi = 1, i = 1, . . . , n})

D = Cardinality({i : ui = vi = 0, i = 1, . . . , n})
Then, their Jaccard distance for asymmetric binary attributes is the percentage of the number of
positions where their labels do not match over the total number of positions where at least one of the
labelsets has an appearing label. In other words, D is not taken into consideration:

JD(u, v) =
B + C

A + B + C

Thus, matching zeros (absent labels) are disregarded when calculating the distance
between two labelsets. For example:

• JD(110001, 110001) = 0/3 = 0
• JD(110001, 001110) = 6/6 = 1
• JD(110001, 000010) = 4/4 = 1
• JD(110001, 100010) = 3/4 = 0.75

MLCNN-J and MLIB2-J are variations of MLCNN-H and MLIB2-H, respectively. Both
are based on the idea of selecting instances with labelsets that significantly differ from their
nearest neighbors in the CS as prototypes. However, MLCNN-J and MLIB2-J differ from
MLCNN-H and MLIB2-H in two key aspects. Firstly, instead of using Hamming distance,
MLCNN-J and MLIB2-J employ Jaccard distance (JD) as the dissimilarity metric. Secondly,
MLCNN-J and MLIB2-J introduce a different JD threshold to determine the extent to which
two instances differ.

The JD threshold plays a crucial role in determining which instances are considered
different enough to be included in the CS. Initially, MLCNN-J and MLIB2-J consider
instances with fewer than half the labels in common (JD threshold of 0.5) as different. This
means that instances sharing at least half the labels are deemed similar and not added to
the CS. However, in order to increase the reduction rates, higher JD threshold values were
explored during experimentation. Ultimately, two JD threshold values were chosen for
testing: 0.5 and 0.75.

By employing Jaccard distance and adjusting the JD threshold, MLCNN-J and MLIB2-
J aim to identify instances that significantly differ from their nearest neighbors and include
them as prototypes in the CS. The choice of the JD threshold affects the reduction rates, with
higher thresholds potentially leading to greater reductions by considering more instances
as similar to their nearest neighbors and excluding them from the CS.

The MLIB2-J algorithm follows the exact same procedure as the MLCNN-J but with
a distinct difference: it conducts a single complete iteration on the training set and subse-
quently terminates. Thus, it achieves higher reduction rates than MLCNN-J.

76

Information 2023, 14, 572

5.3. MLCNN-L and MLIB2-L

MLCNN-L and MLIB2-L are the third pair of multilabel variations of CNN. MLCNN-L
and MLIB2-L utilize the Levenshtein distance metric. The Levenshtein distance serves as a
quantification of dissimilarity between two sets.

The Levenshtein distance represents the minimum number of edit operations needed
to convert one string into another. These edit operations encompass insertions, deletions
and substitutions. Among the family of distance metrics known as edit distance, the
Levenshtein distance stands out as one of the most widely used and popular metrics.

For instance, for the transformation of the string “COVID” to the string “MOVING”,
three operations are required. Hence, the Levenshtein distance between these two strings
is three. More specifically, C is substituted by M, D is substituted by N and, finally, G
is inserted.

Properties of the Levenshtein distance include:

1. Non-Negativity: The Levenshtein distance is always non-negative.
2. Symmetry: The distance between “S” and “T” is the same as the distance between “T”

and “S”.
3. Identity: The distance between a string and itself is always zero.
4. Triangle Inequality: For any three strings “S”, “T” and “W”, the distance from “S” to

“W” is no greater than the sum of the distances from “S” to “T” and from “T” to “W”.
5. Substructure Optimality: The optimal solution for the overall Levenshtein distance

can be obtained by combining optimal solutions to the subproblems (i.e., the prefix
substrings) of “S” and “T” [33].

MLCNN-L and MLIB2-L are modified versions of MLCNN-J and MLIB2-J that focus
on selecting instances with labelsets that exhibit substantial differences from their nearest
neighbors in the CS as prototype examples. However, MLCNN-L and MLIB2-L distinguish
themselves from MLCNN-J and MLIB2-J in two ways. Firstly, they replace the use of
Jaccard distance with Levenshtein distance as the dissimilarity metric. Secondly, MLCNN-L
and MLIB2-L introduce a distinct Levenshtein distance threshold to determine the degree
of dissimilarity between two instances. In MLCNN-L and MLIB2-L, the concept of label
cardinality is incorporated. Label cardinality (LC) of a dataset refers to the average number
of labels per instance in the dataset.

In MLCNN-L and MLIB2-L, the labelsets of examined instances are considered sig-
nificantly different if the Levenshtein distance between them exceeds half of the label
cardinality (LC). Therefore, MLCNN-L and MLIB2-L utilize the Levenshtein distance (LV)
and consider instances for which LV > LC

2 to differ significantly. The goal is to include
these instances as prototypes in the CS.

Let us now illustrate how the Levenshtein distance is computed for two instances.
Using the binary representation of the labelsets of the instances, we perform an on-the-fly
mapping to an ASCII string. This is accomplished by mapping label positions to a fixed
sorted sequence of ASCII characters. For example, assuming that there are six labels in
total, Positions 1–6 are mapped to characters A through F. Hence, 011010 is mapped to
BCE, whereas 111001 is mapped to ABCF. The examples below demonstrate the use of
Levenshtein distance on the mapped labelsets:

• LEV(110001, 110001) = LEV(ABF, ABF) = 0
• LEV(110001, 001110) = LEV(ABF, CDE) = 3
• LEV(110001, 000010) = LEV(ABF, E) = 3
• LEV(110001, 100010) = LEV(ABF, AE) = 2

We can take advantage of the fact that, by design, the resulting strings are sorted
sequences of characters and compute Levenshtein distances directly on the binary labelsets,
i.e., without mapping them to strings.

Like in the case of Jaccard distance for asymmetric binary attributes, our method for
mapping binary labelsets to strings disregards non-appearing labels, i.e., 0 to 0 matches.

77

Information 2023, 14, 572

We define a matching substring pair of two labelsets to consist of 1s only, whereas non-
matching substring pairs of two labelsets are all the remaining cases. For example, let
us take labelsets x = 11001001 and y = 11110001. We can express these two labelsets as
a sequence of matching and non-matching substring pairs as follows: (11, 11), (00100,
11000) and (1, 1). The first and third substring pairs are matching, whereas the second
substring pair is non-matching. It is obvious that matching substring pairs correspond to
identical strings, while non-matching substring pairs correspond to strings without a single
common character.

In our example, since mapped(x) = ABEH and mapped(y) = ABCDH, the correspond-
ing mapped substring pairs are (AB, AB), (E, CD) and (H, H). Observe that F and G are
missing from both mapped labelsets. By definition, the Levenshtein distance of identical
strings is zero and of strings without any common characters is the length of the longest
string. Thus, to calculate the Levenshtein distance of the mapped labelsets of our example,
we sum the Levenshtein distances of their non-matching substring pairs. In our example,
this is pair (E, CD) and the distance is 2. Using the original binary labelsets, the Levenshtein
distance of a non-matching substring pair is the maximum number of 1s among the two
substrings. In our example, the Levenshtein distance of (00100, 11000) is 2.

Like the previous presented variations, the MLIB2-L algorithm adheres to the same
procedure as MLCNN-L but with a distinction: it carries out a single full iteration on the
training set and then terminates.

5.4. MLCNN-BR and MLIB2-BR

MLCNN-BR and MLIB2-BR take a different approach compared to MLCNN-H and
MLIB2-H, MLCNN-J and MLIB2-J, MLCNN-L and MLIB2-L. Both MLCNN-BR and MLIB2-
BR begin by using the binary relevance transformation method to transform the multilabel
problem with |L| labels into |L| single-label problems. Each label of the training set
is processed separately using the CNN or IB2 algorithm. This results in the creation of
multiple CSs, with each set corresponding to a specific label. For example, if the initial
training set has ten labels, MLCNN-BR and MLIB2-BR generate ten CSs.

Each CS contains prototypes labeled as 1 (indicating that the instance belongs to the
corresponding label) or 0 (indicating that the instance does not belong to the corresponding
label). From each condensing set, MLCNN-BR and MLIB2-BR select only the prototypes
with a label value of 1, discarding the prototypes with a label value of 0. Finally, MLCNN-
BR and MLIB2-BR merge all the CS to create the final multilabel CS.

To illustrate how MLCNN-BR works, consider the example of running CNN or IB2
for each label on a two-dimensional training dataset with two labels. Suppose two CSs,
as shown in Tables 1 and 2, are derived. The first CS contains six prototypes labeled as
“1”, while the second CS contains four prototypes labeled as “1”. The final multilabel CS
constructed by MLCNN-BR or MLIB2-BR, as shown in Table 3, contains eight prototypes.

In the final multilabel CS, prototypes (1, 1), (1, 8), (4, 5) and (9, 1) originate exclusively
from the CS of the first label. Prototypes (5, 6) and (9, 9) originate exclusively from the CS
of the second label. Prototypes (3, 8) and (8, 4) are common in both CSs.

By applying the binary relevance transformation and utilizing CNN on each label
separately, MLCNN-BR constructs a final multilabel CS that includes prototypes with the
corresponding labels. The merging process ensures that the final CS captures relevant
prototypes from each label’s CS.

78

Information 2023, 14, 572

Table 1. Condensing set for the first label.

Instances First Label

(1, 1) 1

(1, 8) 1

(2, 7) 0

(3, 8) 1

(4, 5) 1

(7, 1) 0

(8, 4) 1

(9, 1) 1

Table 2. Condensing set for the second label.

Instances Second Label

(1, 1) 0

(2, 7) 0

(3, 8) 1

(5, 6) 1

(7, 5) 0

(8, 4) 1

(9, 9) 1

Table 3. Final merged condensing set.

Instances First Label Second Label

(1, 1) 1 0

(1, 8) 1 0

(3, 8) 1 1

(4, 5) 1 0

(5, 6) 0 1

(8, 4) 1 1

(9, 1) 1 0

(9, 9) 0 1

The MLIB2-BR algorithm shares the same procedure as the MLCNN-BR algorithm,
with the only difference being that it performs a single complete iteration on the training
set before terminating.

6. Experimental Study
6.1. Experimental Setup

In our experimentation, we utilized nine multilabel datasets provided by Mulan
dataset repository [11]. These datasets consisted of numeric features and contained a
minimum of five hundred (500) instances. The key characteristics of the used datasets are
summarized in Table 4. The last two columns of the table present the dataset cardinality
and density. Cardinality represents the average number of labels per instance, while density

79

Information 2023, 14, 572

is calculated by dividing the cardinality by the total number of labels. The domain of each
dataset is listed in the second column of Table 4.

Since the datasets encompass features with different value ranges, this can impact
the classification process as higher-valued features may dominate the distance calculation
between instances. To address this, we normalized the values of all features to the [0,1]
range. The normalization was performed using the MinMaxScaler from the scikit-learn
Python library [34].

Subsequently, the datasets were split into training and test sets using the stratified
5-fold cross-validation method [35]. This approach ensures that the estimates have reduced
variance and improves the generalization performance estimation of classification algo-
rithms. Stratified cross-validation guarantees that the proportion of the feature of interest
remains the same in the original data, training set and test set. This ensures that no values
are over- or under-represented in the training and test sets, providing a more accurate
evaluation of performance and error.

For the implementation of CNN and IB2 and the proposed variations of them, we used
Python 3.12.0 and employed Multiprocessing. The utilization of Multiprocessing allows
for the concurrent processing of multiple distinct parts of the same Python script by two
or more CPU threads. This not only improves processing speed but also enables handling
larger volumes of data.

Table 4. Dataset characteristics.

Datasets Domain Size Attributes Labels Cardinality Density

CAL500 (CAL) Music 502 68 174 26.044 0.150

Emotions (EMT) Music 593 72 6 1.869 0.311

Water quality (WQ) Chemistry 1060 16 14 5.073 0.362

Scene (SC) Image 2407 294 6 1.074 0.179

Yeast (YS) Biology 2417 103 14 4.237 0.303

Birds (BRD) Sounds 645 260 19 1.014 0.053

CHD49 (CHD) Medicine 555 49 6 2.580 0.430

Image (IMG) Image 2000 294 5 1.236 0.247

Mediamill (MDM) Video 43,907 120 101 4.376 0.043

The objective of data reduction is to selectively choose training instances to be used
as input for instance-based classifiers. This process involves identifying and potentially
eliminating redundant instances. The ultimate goal is to obtain smaller datasets that
effectively represent the original dataset. The aim is to simplify the dataset, improve
computational efficiency and potentially enhance classification performance [36]. It is
essential to ensure that the condensing set retains an acceptable amount of information
compared to the original dataset.

Therefore, we evaluate the performance of BRkNN when it runs over the initial training
set and over the condensing sets generated by the proposed algorithms. To measure
the effectiveness, we obtained the reduction rate and Hamming loss through a five-fold
stratified cross-validation framework. The reduction rate is calculated by comparing the
number of instances before and after the reduction process. Thus, a reduction rate of 90%
means that 90% of the original training set instances are discarded and the final condensing
set consists of 10% of the original instances.

The utilization of eager multilabel classifiers in the experimental study does not align
with the objective of the proposed variations, which aim to enhance the speed of instance-
based classifiers in multilabel domains. Thus, we do not include eager multilabel classifiers
in the experimental study.

80

Information 2023, 14, 572

As the computational cost of the BRkNN classifier is dependent on the size of the
training set utilized, our study does not report the CPU time required for classification.
Essentially, a higher reduction rate corresponds to a lower computational cost for the
BRkNN classifier during the classification process. The effectiveness of the predictions
is evaluated by computing the Hamming loss, which measures the ratio of incorrectly
predicted labels to the total number of labels. The Hamming loss is computed as follows:

HL =
1
m

m

∑
i=1

|Yi∆Zi|
|L|

Yi represents the set of actual labels for each instance, while Zi represents the set of
predicted labels for each instance. The total number of instances in the dataset is denoted
as m, and |L| refers to the total number of labels. The symmetric difference between two
sets, denoted as ∆, can be visualized as the XOR operation. In other words, |Yi∆Zi| is the
number of non-matching labels between the labelsets of the two instances.

For instance, let us consider a multilabel dataset with five labels and a testing instance
x1 with an actual label set of 11001 and a predicted label set of 11010. In this case, the
Hamming loss is calculated as 2

5 = 0.4 because two of the labels do not match (these are
fourth and fifth labels). Similarly, if another testing instance x2 has an actual label set of
00001 and a predicted label set of 11010, the Hamming loss is 4

5 = 0.8 because all but the
third label do not match. To calculate the Hamming loss for a testing set comprising these
two instances, we compute the average as 1

2 × (0.4 + 0.8) = 0.6.
Lastly, it is worth mentioning that, in accordance with established conventions in the

relevant literature (e.g., [4,5]), all experiments were conducted using k = 1.

6.2. Experimental Results

Table 5 presents the measurements of the experimental study, reporting the Hamming
loss (HL) and reduction rates (RR) achieved by MLCNN-H, MLCNN-J, MLCNN-BR,
MLCNN-L, MLIB2-H, MLIB2-J, MLIB2-BR and MLIB2-L for each dataset.

MLCNN-H achieved reduction rates ranging from 8.28% to 55.70%, MLCNN-J (JD > 0.5)
from 0.75% to 51.93%, MLCNN-J (JD > 0.75) from 19.45% to 60.62%, MLCNN-BR from 0%
to 58.18% and MLCNN-L from 0.10% to 43.05%. MLIB2-H achieved reduction rates ranging
from 14.26% to 73.23%, MLIB2-J (JD > 0.5) from 1.20% to 73.23%, MLIB2-J (JD > 0.75) from
26.28% to 84.67%, MLIB2-BR from 0% to 75.69% and MLIB2-L from 0.35% to 58.85%.

Figure 2 illustrates the reduction rates achieved on each dataset by each algorithm.
Instead of the reduction rate, we report the percentage of retained instances for each dataset
(in other words, we report 1—reduction_rate.

On average, we observe that MLIB2-J (JD > 0.75) achieves the highest reduction rate,
followed by MLIB2-H, MLCNN-J (JD > 0.75) and MLIB2-J (JD > 0.75). It is important to
note that the distribution of instances within the dataset greatly influence the reduction rate.
As the data are complex and not uniformly distributed in space, we observe significant
fluctuations in the reduction rate across different datasets. However, in general, we notice
that MLCNN-BR and MLIB2-BR exhibit less stable behavior in terms of the reduction rate
achieved for each dataset compared to other algorithms.

Additionally, in Table 5, we observe only small differences in Hamming loss be-
tween the BRkNN classifier that utilizes the initial training set and the BRkNN classifier
that employs the multilabel condensing sets created by MLCNN-H, MLCNN-J (JD > 0.5),
MLCNN-J (JD > 0.75), MLCNN-BR, MLCNN-L, MLIB2-H, MLIB2-J (0.5), MLIB2-J (JD > 0.75),
MLIB2-BR and MLIB2-L. In the following section, we provide a statistical analysis to further
explore the performance of the algorithms.

Furthermore, as expected, the MLIB2 algorithm achieves higher reduction rates in all
its versions than the corresponding versions of MLCNN. This is because IB2 performs one
pass on the data compared to the multiple passes performed by CNN, which move more
instances in the CS.

81

Information 2023, 14, 572

The proposed algorithms achieve instance reduction while maintaining high levels
of accuracy.

6.3. Statistical Comparisons

In line with the commonly employed approach in the domain of PS and PG algo-
rithms [4,5,37–41], we have supplemented the experimental study with a Wilcoxon signed
rank test [42]. This test serves to statistically validate the accuracy of the measurements pre-
sented in Table 5. By comparing all the algorithms in pairs based on their performance on
each dataset, the Wilcoxon signed rank test confirms their relative rankings. We performed
the Wilcoxon signed rank test using the PSPP 2.0.0 statistical software.

Figure 2. Percentage of retained instances per dataset (CAL, EMT, WQ, SC, YS, BRD, CHD, IMG,
MDM) and algorithm. Last figure reports the average percentage of retained instances over all
datasets and for each algorithm.

82

In
fo

rm
at

io
n

20
23

,1
4,

57
2

Ta
bl

e
5.

C
om

pa
ri

so
n

ta
bl

e
of

th
e

re
du

ct
io

n
ra

te
(R

R
(%

))
an

d
th

e
H

am
m

in
g

lo
ss

(H
L

(%
))

.

D
at

as
et

B
R

kN
N

M
LC

N
N

-H
M

LC
N

N
-J

M
LC

N
N

-J
M

LC
N

N
-B

R
M

LC
N

N
-L

M
LI

B
2-

H
M

LI
B

2-
J

M
LI

B
2-

J
M

LI
B

2-
B

R
M

LI
B

2-
L

(J
D

>
0.

5)
(J

D
>

0.
75

)
(J

D
>

0.
5)

(J
D

>
0.

75
)

C
A

L
H

L:
0.

19
0.

19
0.

19
0.

19
0.

19
0.

19
0.

19
0.

19
0.

19
0.

18
0.

19
R

R
:

-
8.

28
0.

75
19

.4
5

0.
0

0.
10

14
.2

6
1.

20
32

.9
2

0.
0

0.
35

EM
T

H
L:

0.
24

0.
26

0.
26

0.
25

0.
29

0.
24

0.
26

0.
26

0.
26

0.
30

0.
24

R
R

:
-

39
.8

8
40

.2
6

60
.6

2
26

.6
4

14
.6

7
51

.0
5

51
.6

4
69

.0
6

39
.9

7
21

.6
7

W
Q

H
L:

0.
33

0.
34

0.
33

0.
34

0.
36

0.
33

0.
35

0.
33

0.
34

0.
37

0.
33

R
R

:
-

45
.7

1
18

.9
9

54
.6

5
5.

33
12

.7
4

58
.1

6
26

.6
8

66
.2

0
10

.8
5

17
.7

3

SC
H

L:
0.

11
0.

12
0.

12
0.

12
0.

13
0.

12
0.

14
0.

14
0.

14
0.

17
0.

14
R

R
:

-
51

.9
3

51
.9

3
53

.0
3

50
.4

4
43

.0
5

70
.7

5
70

.7
5

74
.5

0
75

.6
9

58
.8

5

Y
S

H
L:

0.
24

0.
27

0.
26

0.
26

0.
30

0.
26

0.
27

0.
26

0.
27

0.
30

0.
26

R
R

:
-

48
.2

6
31

.2
7

54
.7

2
16

.6
1

33
.9

5
59

.0
9

39
.8

0
65

.0
7

24
.9

0
43

.6
1

BR
D

H
L:

0.
05

0.
06

0.
05

0.
05

0.
08

0.
05

0.
06

0.
05

0.
05

0.
08

0.
05

R
R

:
-

55
.7

0
15

.5
0

22
.7

1
58

.1
8

34
.8

1
61

.5
9

18
.8

0
26

.2
8

62
.8

7
40

.6
2

C
H

D
H

L:
0.

35
0.

36
0.

36
0.

38
0.

40
0.

37
0.

37
0.

37
0.

38
0.

40
0.

38
R

R
:

-
42

.1
8

32
.2

0
58

.6
4

14
.7

4
30

.9
8

57
.2

0
44

.9
7

70
.8

2
24

.8
9

45
.3

3

IM
G

H
L:

0.
20

0.
22

0.
22

0.
21

0.
23

0.
21

0.
25

0.
25

0.
25

0.
26

0.
22

R
R

:
-

42
.1

1
42

.1
1

44
.8

2
38

.4
3

26
.6

1
73

.2
3

73
.2

3
84

.6
7

63
.4

3
40

.4
7

M
D

M
H

L:
0.

03
1

0.
03

5
0.

03
2

0.
03

6
0.

04
2

0.
03

2
0.

03
7

0.
03

3
0.

03
9

0.
04

3
0.

03
3

R
R

:
-

48
.7

0
33

.1
9

54
.5

8
21

.7
6

31
.3

0
57

.0
8

39
.9

0
63

.4
3

30
.0

6
37

.6
1

83

Information 2023, 14, 572

We have also utilized the non-parametric Friedman test to rank the algorithms in-
dividually for each dataset. This test assigned a rank to each algorithm, with the best
performer receiving rank 1, the second best receiving rank 2 and so on. The PSPP statistical
software was employed to conduct the Friedman test that was executed twice, once for
each measured criterion.

6.3.1. Wilcoxon Signed Rank Test Results

The results of the Wilcoxon signed rank test for the Hamming loss (ACC) and Reduc-
tion Rate (RR) measurements are shown in Table 6. The column labeled “w/l/t” presents
the number of wins, losses and ties for each comparison test. The last column, labeled
“Wilc.”, indicates a numerical value that quantifies the significance of the difference between
the two compared algorithms. If this value is less than 0.05, it can be concluded that the
difference is statistically significant. In Table 6, the Wilc. values that is less than 0.05 are in
bold face.

The results indicate that there is no statistical difference in accuracy between the
BRkNN classifier and the proposed MLCNN-L and MLIB2-L. Therefore, the test proves that
the BRkNN classifier that operates on the CS generated by the proposed MLCNN-L and
MLIB2-L algorithms achieves a comparable level of accuracy to the conventional BRkNN
classifier that operates on the original training set.

Moreover, the test shows that there is a significant statistical difference in accuracy
between BRkNN and the remaining multilabel variations in CNN. Nevertheless, in certain
datasets, MLCNN-J (JD > 0.5) and MLIB2-J (JD > 0.5) achieve a comparable level of
accuracy to the “conventional” BRkNN classifier that operates on the original training
set. Moreover, MLCNN-L achieved the best Hamming loss in comparison to all other
algorithms and close to the one of BRkNN.

Furthermore, the test affirms that there is statistical difference in terms of accuracy
between the pairs MLCNN-L versus MLIB2-BR, MLIB2-J (JD > 0.5), MLIB2-L, MLCNN-H,
MLCNN-BR, MLIB2-H, MLIB2-J (JD > 0.75) and MLCNN-J (JD > 0.75). The version of
MLCNN-J (JD > 0.5) presents discrepancy in statistical terms of accuracy with the versions
MLCNN-H, MLCNN-BR, MLIB2-H, MLIB2-J (JD > 0.75) and MLIB2-BR.

According to the Wilcoxon test, we have statistical difference in terms of reduction rate
between the pairs MLIB2-H and the versions MLCNN-BR, MLCNN-H, MLIB2-J (JD > 0.5),
MLIB2-BR, MLCNN-L, MLIB2-L and MLCNN-J (JD > 0.5). Moreover, the pairs between
MLIB2-J (JD > 0.75) and the versions MLIB2-J (JD > 0.5), MLIB2-BR, MLCNN-L and
MLIB2-L have statistical difference in terms of reduction rate.

Table 6. Results of Wilcoxon signed rank test on ACC and RR measurements.

Methods
Accuracy Reduction Rate

w/l/t Wilc. w/l/t Wilc.

BRkNN vs. MLCNN-H 8/0/1 0.012 - -

BRkNN vs. MLCNN-J (JD > 0.5) 6/0/3 0.027 - -

BRkNN vs. MLCNN-J (JD > 0.75) 7/0/2 0.018 - -

BRkNN vs. MLCNN-BR 8/0/1 0.012 - -

BRkNN vs. MLIB2-H 8/0/1 0.012 - -

BRkNN vs. MLIB2-J (JD > 0.5) 6/0/3 0.026 - -

BRkNN vs. MLIB2-J (JD > 0.75) 7/0/2 0.018 - -

BRkNN vs. MLIB2-BR 8/1/0 0.011 - -

BRkNN vs. MLCNN-L 5/1/3 0.046 - -

BRkNN vs. MLIB2-L 5/1/3 0.046 - -

MLCNN-H vs. MLCNN-J (JD > 0.5) 1/6/2 0.028 6/1/2 0.028

MLCNN-H vs. MLCNN-J (JD > 0.75) 3/6/0 0.260 1/8/0 0.110

MLCNN-H vs. MLCNN-BR 1/8/0 0.011 8/1/0 0.015

84

Information 2023, 14, 572

Table 6. Cont.

Methods
Accuracy Reduction Rate

w/l/t Wilc. w/l/t Wilc.

MLCNN-H vs. MLIB2-H 8/1/0 0.011 0/9/0 0.008

MLCNN-H vs. MLIB2-J (JD > 0.5) 4/5/0 0.859 5/4/0 0.767

MLCNN-H vs. MLIB2-J (JD > 0.75) 7/2/0 0.066 1/8/0 0.086

MLCNN-H vs. MLIB2-BR 8/1/0 0.015 5/4/0 0.515

MLCNN-H vs. MLCNN-L 1/8/0 0.021 9/0/0 0.008

MLCNN-H vs. MLIB2-L 2/7/0 0.260 7/2/0 0.051

MLCNN-J (JD > 0.5) vs. MLCNN-J (JD > 0.75) 6/3/0 0.214 0/9/0 0.008

MLCNN-J (JD > 0.5) vs. MLCNN-BR 8/1/0 0.011 8/1/0 0.110

MLCNN-J (JD > 0.5) vs. MLIB2-H 9/0/0 0.008 0/9/0 0.008

MLCNN-J (JD > 0.5) vs. MLIB2-J (JD > 0.5) 8/1/0 0.011 0/9/0 0.008

MLCNN-J (JD > 0.5) vs. MLIB2-J (JD > 0.75) 9/0/0 0.008 0/9/0 0.008

MLCNN-J (JD > 0.5) vs. MLIB2-BR 8/1/0 0.011 6/3/0 0.859

MLCNN-J (JD > 0.5) vs. MLCNN-L 1/8/0 0.051 7/2/0 0.214

MLCNN-J (JD > 0.5) vs. MLIB2-L 3/6/0 0.678 4/5/0 0.314

MLCNN-J (JD > 0.75) vs. MLCNN-BR 8/1/0 0.011 8/1/0 0.051

MLCNN-J (JD > 0.75) vs. MLIB2-H 7/2/0 0.066 3/6/0 0.214

MLCNN-J (JD > 0.75) vs. MLIB2-J (JD > 0.5) 3/6/0 0.953 7/2/0 0.374

MLCNN-J (JD > 0.75) vs. MLIB2-J (JD > 0.75) 7/2/0 0.021 0/9/0 0.008

MLCNN-J (JD > 0.75) vs. MLIB2-BR 8/1/0 0.015 6/3/0 0.260

MLCNN-J (JD > 0.75) vs. MLCNN-L 0/9/0 0.008 8/1/0 0.015

MLCNN-J (JD > 0.75) vs. MLIB2-L 2/7/0 0.214 7/2/0 0.086

MLCNN-BR vs. MLIB2-H 3/6/0 0.139 0/9/0 0.008

MLCNN-BR vs. MLIB2-J (JD > 0.5) 3/6/0 0.066 1/8/0 0.110

MLCNN-BR vs. MLIB2-J (JD > 0.75) 3/6/0 0.173 1/8/0 0.015

MLCNN-BR vs. MLIB2-BR 8/1/0 0.038 0/8/1 0.012

MLCNN-BR vs. MLCNN-L 1/8/0 0.011 4/5/0 0.953

MLCNN-BR vs. MLIB2-L 2/7/0 0.021 2/7/0 0.139

MLIB2-H vs. MLIB2-J (JD > 0.5) 1/6/2 0.056 6/1/2 0.028

MLIB2-H vs. MLIB2-J (JD > 0.75) 5/4/0 1.000 1/8/0 0.110

MLIB2-H vs. MLIB2-BR 8/1/0 0.015 7/2/0 0.021

MLIB2-H vs. MLCNN-L 0/9/0 0.008 9/0/0 0.008

MLIB2-H vs. MLIB2-L 1/8/0 0.028 9/0/0 0.008

MLIB2-J (JD > 0.5) vs. MLIB2-J (JD > 0.75) 7/2/0 0.051 0/9/0 0.008

MLIB2-J (JD > 0.5) vs. MLIB2-BR 8/1/0 0.011 7/2/0 0.173

MLIB2-J (JD > 0.5) vs. MLCNN-L 1/8/0 0.011 8/1/0 0.051

MLIB2-J (JD > 0.5) vs. MLIB2-L 1/7/1 0.093 6/3/0 0.214

MLIB2-J (JD > 0.75) vs. MLIB2-BR 8/1/0 0.015 7/2/0 0.066

MLIB2-J (JD > 0.75) vs. MLCNN-L 0/9/0 0.008 8/1/0 0.011

MLIB2-J (JD > 0.75) vs. MLIB2-L 0/9/0 0.008 8/1/0 0.011

MLIB2-BR vs. MLCNN-L 1/8/0 0.011 4/5/0 0.374

MLIB2-BR vs. MLIB2-L 1/8/0 0.011 4/5/0 0.678

MLCNN-L vs. MLIB2-L 4/1/4 0.078 0/9/0 0.008

6.3.2. Friedman Test Results

The results of the Friedman test for the ACC and RR measurements are displayed in
Table 7. Notice that the RR ranks are inverted; i.e., the larger the number, the higher the
rank of the algorithm is. The Friedman test shows that

85

Information 2023, 14, 572

Table 7. Results of Friedman test on ACC and RR measurements.

Algorithm
Mean Rank

ACC RR

MLCNN-H 6.00 5.78

MLCNN-J (JD > 0.5) 4.22 4.00

MLCNN-J (JD > 0.75) 5.17 7.22

MLCNN-BR 9.00 2.28

MLCNN-L 3.67 2.67

MLIB2-H 7.72 8.33

MLIB2-J (JD > 0.5) 5.72 6.11

MLIB2-J (JD > 0.75) 7.44 9.22

MLIB2-BR 9.72 4.61

MLIB2-L 5.06 4.78

BRkNN 2.28 -

• MLCNN-L is the most accurate approach. MLCNN-J (JD > 0.5), MLCNN-J (JD > 0.75)
and MLIB2-L are the runners up.

• MLIB2-J (JD > 0.75) and MLIB2-H achieve the highest reduction rates. MLCNN-J
(JD > 0.75) and MLIB2-J (JD > 0.5) are the runners up.

7. Conclusions

The main objective of this paper is to address the issue of data reduction techniques
specifically tailored for multilabel datasets. Here, the focus is on reducing instances rather
than features. This type of reduction is crucial in the context of instance-based classification
as it helps mitigate the computational burden associated with large datasets. However, it
is important to note that most existing data reduction techniques are primarily designed
for single-label classification problems and are not well-suited for multilabel classification.
Additionally, these techniques cannot seamlessly integrate with problem transformation
methods such as binary relevance or label powerset, which are commonly used in multilabel
classification scenarios.

This paper presents novel algorithms focused on accelerating the instance-based clas-
sifiers in the context of multilabel classification. The study introduces four variations of
the well-known CNN-rule and four variations of IB2 specifically designed for multilabel
classification. The proposed MLCNN-H, MLCNN-J, MLCNN-L and MLCNN-BR algo-
rithms and the corresponding MLIB2-H, MLIB2-J, MLIB2-L and MLIB2-BR algorithms can
be considered as the first prototype selection algorithms for multilabel data condensing.

The proposed algorithms do not require any specific parameters. MLCNN-H and
MLIB2-H consider two neighboring instances to be different if their Hamming distance
exceeds the dataset density. MLCNN-J and MLIB2-J identify two neighboring instances as
distinct if their Jaccard distance surpasses a predefined threshold. MLCNN-BR and MLIB2-
BR construct separate prototypes for each label using the conventional CNN method and
subsequently merge them by combining different labels to form the final condensing sets.
Finally, in MLCNN-L and MLIB2-L, if the Levenshtein distance between two neighboring
instances exceeds half the cardinality of the dataset, they are considered as different.

Consequently, the proposed algorithms generate a multilabel condensing set. This
condensing set can be utilized by BRkNN to conduct multilabel prediction.

The experimental study demonstrated that switching from the initial training set
to the condensing sets produced by the proposed algorithms did not greatly affect the

86

Information 2023, 14, 572

accuracy achieved by BRkNN. However, it reduced the computational cost required for
the classification process. The new variations achieved a reduction of more than 50% in
computational costs.

Looking in more detail at the results of the experiments, it appears that, in terms of
the overall classification performance of the algorithms compared to BRkNN, the MLCNN-
L and MLCNN-J (JD > 0.5) outperformed the other variations. Further, regarding the
algorithms’ overall reduction rate performance, the MLIB2-J (JD > 0.75) and MLIB2-H
achieved superior results.

This study highlights the ongoing significance of data reduction in multilabel problems
within the domains of data mining and machine learning. Our goal is to extend popular data
reduction techniques, typically applied to single-label datasets, to the realm of multilabel
datasets. Additionally, our future work involves the development of novel parameter-free
data reduction methods, as well as scalable approaches for training set classification in the
context of multilabel problems.

Author Contributions: Conceptualisation, P.F., S.O. and G.E.; methodology, P.F., S.O. and G.E.;
software, P.F., S.O. and G.E.; validation, P.F., S.O. and G.E.; formal analysis, P.F., S.O. and G.E.;
investigation, P.F., S.O. and G.E.; resources, P.F., S.O. and G.E.; data curation, P.F., S.O. and G.E.;
writing—original draft preparation, P.F., S.O. and G.E.; writing—review and editing, P.F., S.O. and
G.E.; visualisation, P.F., S.O. and G.E.; supervision, S.O. and G.E.; project administration, P.F., S.O.
and G.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data can
be found here: https://mulan.sourceforge.net/datasets-mlc.html (accessed on 17 October 2023) and
https://www.uco.es/kdis/mllresources/ (accessed on 17 October 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DRT Data Reduction Technique
PS Prototype Selection
CNN Condensed Nearest Neighbor
IB2 Instance-Based Learning 2
CS Condensing set
TS Training set
MLCNN-H Multilabel Condensed Nearest Neighbor with Hamming Distance
MLCNN-J Multilabel Condensed Nearest Neighbor with Jaccard Distance
MLCNN-L Multilabel Condensed Nearest Neighbor with Levenshtein Distance
MLCNN-BR Multilabel Condensed Nearest Neighbor with Binary Relevance
MLIB2-H Multilabel Instance-Based Learning 2 with Hamming Distance
MLIB2-J Multilabel Instance-Based Learning 2 with Jaccard Distance
MLIB2-L Multilabel Instance-Based Learning 2 with Levenshtein Distance
MLIB2-BR Multilabel Instance-Based Learning 2 with Binary Relevance

References
1. Tsoumakas, G.; Katakis, I. Multi-label classification: An overview. Int. J. Data Warehous. Min. 2007, 3, 1–13. [CrossRef]
2. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
3. Liu, H.; Motoda, H. Feature Selection for Knowledge Discovery and Data Mining; Kluwer Academic Publishers: New York, NY,

USA, 1998.
4. Garcia, S.; Derrac, J.; Cano, J.; Herrera, F. Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study.

IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 417–435. [CrossRef] [PubMed]
5. Triguero, I.; Derrac, J.; Garcia, S.; Herrera, F. A Taxonomy and Experimental Study on Prototype Generation for Nearest Neighbor

Classification. Trans. Systems Man Cyber Part C 2012, 42, 86–100. [CrossRef]

87

Information 2023, 14, 572

6. Spyromitros, E.; Tsoumakas, G.; Vlahavas, I. An Empirical Study of Lazy Multilabel Classification Algorithms. In Proceedings of
the Artificial Intelligence: Theories, Models and Applications; Darzentas, J.; Vouros, G.A.; Vosinakis, S.; Arnellos, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 401–406. [CrossRef]

7. Hart, P.E. The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 1967, 18, 515–516.
8. Aha, D.W.; Kibler, D.; Albert, M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66. [CrossRef]
9. Filippakis, P.; Ougiaroglou, S.; Evangelidis, G. Condensed Nearest Neighbour Rules for Multi-Label Datasets. In Proceedings

of the International Database Engineered Applications Symposium Conference, Heraklion, Greece, 5–7 May 2023; pp. 43–50.
[CrossRef]

10. Levenshtein, V.I. Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 1965, 10, 707–710.
11. Tsoumakas, G.; Spyromitros-Xioufis, E.; Vilcek, J.; Vlahavas, I. Mulan: A Java Library for Multi-Label Learning. J. Mach. Learn.

Res. 2011, 12, 2411–2414.
12. Read, J.; Reutemann, P.; Pfahringer, B.; Holmes, G. MEKA: A Multi-label/Multi-target Extension to WEKA. J. Mach. Learn. Res.

2016, 17, 1–5.
13. Charte, F.; Rivera, A.J.; del Jesus, M.J.; Herrera, F. MLeNN: A First Approach to Heuristic Multilabel Undersampling. In Intelligent

Data Engineering and Automated Learning–IDEAL 2014; Springer: New York, NY, USA, 2014; pp. 1–9. [CrossRef]
14. Wilson, D.L. Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. IEEE Trans. Syst. Man Cybern. 1972,

SMC-2, 408–421. [CrossRef]
15. Kanj, S.; Abdallah, F.; Denœux, T.; Tout, K. Editing training data for multi-label classification with the k-nearest neighbor rule.

Pattern Anal. Appl. 2015, 19, 145–161. [CrossRef]
16. Arnaiz-González, Á; Díez-Pastor, J.F.; Rodríguez, J.J.; García-Osorio, C. Local sets for multi-label instance selection. Appl. Soft

Comput. 2018, 68, 651–666. [CrossRef]
17. Leyva, E.; González, A.; Pérez, R. Three new instance selection methods based on local sets: A comparative study with several

approaches from a bi-objective perspective. Pattern Recognit. 2015, 48, 1523–1537. [CrossRef]
18. Li, H.; Fang, M.; Li, H.; Wang, P. Prototype selection for multi-label data based on label correlation. Neural Comput. Appl. 2023.

[CrossRef]
19. Chou, C.H.; Kuo, B.H.; Chang, F. The Generalized Condensed Nearest Neighbor Rule as A Data Reduction Method. In

Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006;
Volume 2, pp. 556–559. [CrossRef]

20. Suyal, H.; Singh, A. Improving Multi-Label Classification in Prototype Selection Scenario. In Computational Intelligence and
Healthcare Informatics; Wiley: Hoboken, NJ, USA, 2021; pp. 103–119. [CrossRef]

21. Zhang, M.L.; Zhou, Z.H. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognit. 2007, 40, 2038–2048.
[CrossRef]

22. Arnaiz-González, Á.; Díez-Pastor, J.F.; Rodríguez, J.J.; García-Osorio, C. Study of data transformation techniques for adapting
single-label prototype selection algorithms to multi-label learning. Expert Syst. Appl. 2018, 109, 114–130. [CrossRef]

23. Calvo-Zaragoza, J.; Valero-Mas, J.J.; Rico-Juan, J.R. Improving kNN multi-label classification in Prototype Selection scenarios
using class proposals. Pattern Recognit. 2015, 48, 1608–1622. [CrossRef]

24. González, M.; Cano, J.R.; García, S. ProLSFEO-LDL: Prototype Selection and Label- Specific Feature Evolutionary Optimization
for Label Distribution Learning. Appl. Sci. 2020, 10, 3089. [CrossRef]

25. Geng, X. Label Distribution Learning. IEEE Trans. Knowl. Data Eng. 2016, 28, 1734–1748. [CrossRef]
26. Ougiaroglou, S.; Filippakis, P.; Evangelidis, G. Prototype Generation for Multi-label Nearest Neighbours Classification. In

Proceedings of the Hybrid Artificial Intelligent Systems; Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H.,
Corchado, E., Eds.; Springer: Cham, Germany, 2021; pp. 172–183.

27. Ougiaroglou, S.; Filippakis, P.; Fotiadou, G.; Evangelidis, G. Data reduction via multi-label prototype generation. Neurocomputing
2023, 526, 1–8. [CrossRef]

28. Sánchez, J. High training set size reduction by space partitioning and prototype abstraction. Pattern Recognit. 2004, 37, 1561–1564.
[CrossRef]

29. Valero-Mas, J.J.; Gallego, A.J.; Alonso-Jiménez, P.; Serra, X. Multilabel Prototype Generation for data reduction in K-Nearest
Neighbour classification. Pattern Recognit. 2023, 135, 109190. [CrossRef]

30. Chen, C.; Jóźwik, A. A sample set condensation algorithm for the class sensitive artificial neural network. Pattern Recognit. Lett.
1996, 17, 819–823. [CrossRef]

31. Sun, L.; Ji, S.; Ye, J. Hypergraph Spectral Learning for Multi-Label Classification. In Proceedings of the Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008;
pp. 668–676. [CrossRef]

32. Byerly, A.; Kalganova, T. Class Density and Dataset Quality in High-Dimensional, Unstructured Data. arXiv 2022. [CrossRef]
33. Zhang, S.; Hu, Y.; Bian, G. Research on string similarity algorithm based on Levenshtein Distance. In Proceedings of the 2017

IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 25–26
March 2017; pp. 2247–2251. [CrossRef]

34. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

88

Information 2023, 14, 572

35. Sechidis, K.; Tsoumakas, G.; Vlahavas, I. On the Stratification of Multi-label Data. In Proceedings of the Machine Learning and
Knowledge Discovery in Databases; Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 145–158. [CrossRef]

36. Czarnowski, I.; Jędrzejowicz, P. An Approach to Data Reduction for Learning from Big Datasets: Integrating Stacking, Rotation,
and Agent Population Learning Techniques. Complexity 2018, 2018, 7404627. [CrossRef]

37. Gallego, A.J.; Calvo-Zaragoza, J.; Valero-Mas, J.J.; Rico-Juan, J.R. Clustering-Based k-Nearest Neighbor Classification for
Large-Scale Data with Neural Codes Representation. Pattern Recogn. 2018, 74, 531–543. [CrossRef]

38. Ougiaroglou, S.; Evangelidis, G. RHC: Non-Parametric Cluster-Based Data Reduction for Efficient k-NN Classification. Pattern
Anal. Appl. 2016, 19, 93–109. [CrossRef]

39. Escalante, H.J.; Graff, M.; Morales-Reyes, A. PGGP: Prototype Generation via Genetic Programming. Appl. Soft Comput. 2016,
40, 569–580. [CrossRef]

40. Escalante, H.J.; Marin-Castro, M.; Morales-Reyes, A.; Graff, M.; Rosales-Pérez, A.; Montes-Y-Gómez, M.; Reyes, C.A.; Gonzalez,
J.A. MOPG: A Multi-Objective Evolutionary Algorithm for Prototype Generation. Pattern Anal. Appl. 2017, 20, 33–47. [CrossRef]

41. Calvo-Zaragoza, J.; Valero-Mas, J.J.; Rico-Juan, J.R. Prototype Generation on Structural Data Using Dissimilarity Space Represen-
tation. Neural Comput. Appl. 2017, 28, 2415–2424. [CrossRef]

42. Sheskin, D. Handbook of Parametric and Nonparametric Statistical Procedures; A Chapman & Hall Book; Chapman & Hall/CRC: Boca
Raton, FL, USA, 2011.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

89

Citation: Daggumati, S.; Revesz, P.Z.

Convolutional Neural Networks

Analysis Reveals Three Possible

Sources of Bronze Age Writings

between Greece and India.

Information 2023, 14, 227. https://

doi.org/10.3390/info14040227

Academic Editor: Xin Ning

Received: 7 February 2023

Revised: 4 April 2023

Accepted: 4 April 2023

Published: 7 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Convolutional Neural Networks Analysis Reveals Three
Possible Sources of Bronze Age Writings between Greece
and India †

Shruti Daggumati and Peter Z. Revesz *

School of Computing, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
sdaggumati@unl.edu (S.D.); revesz@cse.unl.edu (P.Z.R.)
* Correspondence: revesz@cse.unl.edu; Tel.: +1-402-421-6990
† This paper is an extended version of our paper published in the 23rd International Database Engineering and

Applications Symposium, IDEAS 2019, Athens, Greece, 10–12 June 2019.

Abstract: This paper analyzes the relationships among eight ancient scripts from between Greece
and India. We used convolutional neural networks combined with support vector machines to give a
numerical rating of the similarity between pairs of signs (one sign from each of two different scripts).
Two scripts that had a one-to-one matching of their signs were determined to be related. The result
of the analysis is the finding of the following three groups, which are listed in chronological order:
(1) Sumerian pictograms, the Indus Valley script, and the proto-Elamite script; (2) Cretan hieroglyphs
and Linear B; and (3) the Phoenician, Greek, and Brahmi alphabets. Based on their geographic
locations and times of appearance, Group (1) may originate from Mesopotamia in the early Bronze
Age, Group (2) may originate from Europe in the middle Bronze Age, and Group (3) may originate
from the Sinai Peninsula in the late Bronze Age.

Keywords: classification; epigraphy; neural networks; script family; support vector machine

1. Introduction

In this paper, we use data mining methods to analyze the relationships among eight
Bronze Age scripts from between Greece and India, namely the Brahmi script [1], Cretan
hieroglyphs [2], the Greek alphabet [3], the Indus Valley script [4–8], the Linear B syl-
labary [9], the Phoenician alphabet [10–12], the proto-Elamite script [13,14], and Sumerian
pictographs [15].

We are interested in testing the hypothesis that these eight scripts had a single origin.
This is probable given that the eight scripts originate from geographic locations along an
east–west line between India and Greece, as is shown in Figure 1.

We are going to test this hypothesis by applying data mining to the scripts. The data
mining method that we have chosen for this study is a convolutional neural networks
analysis. Convolutional neural networks have previously been applied to the recognition
of various signs, including alphabets, but they have not been used in a multiscript analysis.

The novel idea in our approach is to first train separate convolutional neural networks
to recognize various scripts (see Section 5.1 for a review of works that are related to
this first phase). Then, in the second phase, we pass one script’s signs into another’s
convolutional neural network. The sign ‘recognized’ by the convolutional neural network
can be considered the closest to the input sign. If the two scripts are related to each other,
then a one-to-one mapping may be found between the signs of the two scripts. If the two
scripts are not related to each other, then there will be no one-to-one mapping.

Our study is motivated by a desire to contribute to the decipherment of ancient, Bronze
Age scripts, especially the Indus Valley script [8]. Decipherment can be greatly facilitated
by understanding the precise relationships among these ancient scripts. A one-to-one

Information 2023, 14, 227. https://doi.org/10.3390/info14040227 https://www.mdpi.com/journal/information90

Information 2023, 14, 227

mapping of the signs of an undeciphered and a deciphered script would suggest phonetic
values for the signs of the undeciphered script because the visual forms and the phonetic
values of the signs tend to change simultaneously and gradually.

The outline of the paper is as follows. Section 2 introduces the eight ancient scripts
that are to be compared and classified. Section 3 presents the machine learning software
algorithms used to learn and group together the various signs. Section 4 describes the
major findings of our study. Section 5 analyses the results and compares them with related
work. Finally, Section 6 presents some open problems.

Information 2023, 14, x FOR PEER REVIEW 2 of 19

Our study is motivated by a desire to contribute to the decipherment of ancient,

Bronze Age scripts, especially the Indus Valley script [8]. Decipherment can be greatly

facilitated by understanding the precise relationships among these ancient scripts. A one‐

to‐one mapping of the signs of an undeciphered and a deciphered script would suggest

phonetic values for the signs of the undeciphered script because the visual forms and the

phonetic values of the signs tend to change simultaneously and gradually.

The outline of the paper is as follows. Section 2 introduces the eight ancient scripts

that are to be compared and classified. Section 3 presents the machine learning software

algorithms used to learn and group together the various signs. Section 4 describes the

major findings of our study. Section 5 analyses the results and compares them with related

work. Finally, Section 6 presents some open problems.

Figure 1. The approximate locations of the eight ancient scripts. The legend is as follows: B—Brahmi,

C—Cretan hieroglyphs, E—Elamite, G—Greek, I—Indus Valley, L ‐Linear B, P—Phoenician, and

S—Sumerian. Red indicates the three earliest scripts, orange the middle two scripts, and blue the

three most recent of the eight ancient scripts. Source of background map: https://upload.wiki‐

media.org/wikipedia/commons/f/f3/Map_of_Eurasia.png (accessed on 2 February 2023).

2. Data Source

We used the following ancient scripts as data sources.

1. Brahmi, which has an unknown origin, was an abugida script in India and was writ‐

ten left‐to‐right [1]. We used 34 of the signs from the Brahmi script, as shown in Fig‐

ure 2.

Figure 2. The 34 Brahmi signs used in this study.

Figure 1. The approximate locations of the eight ancient scripts. The legend is as follows: B—Brahmi,
C—Cretan hieroglyphs, E—Elamite, G—Greek, I—Indus Valley, L -Linear B, P—Phoenician, and
S—Sumerian. Red indicates the three earliest scripts, orange the middle two scripts, and blue the
three most recent of the eight ancient scripts. Source of background map: https://upload.wikimedia.
org/wikipedia/commons/f/f3/Map_of_Eurasia.png (accessed on 2 February 2023).

2. Data Source

We used the following ancient scripts as data sources.

1. Brahmi, which has an unknown origin, was an abugida script in India and was written
left-to-right [1]. We used 34 of the signs from the Brahmi script, as shown in Figure 2.

Information 2023, 14, x FOR PEER REVIEW 2 of 19

Our study is motivated by a desire to contribute to the decipherment of ancient,

Bronze Age scripts, especially the Indus Valley script [8]. Decipherment can be greatly

facilitated by understanding the precise relationships among these ancient scripts. A one‐

to‐one mapping of the signs of an undeciphered and a deciphered script would suggest

phonetic values for the signs of the undeciphered script because the visual forms and the

phonetic values of the signs tend to change simultaneously and gradually.

The outline of the paper is as follows. Section 2 introduces the eight ancient scripts

that are to be compared and classified. Section 3 presents the machine learning software

algorithms used to learn and group together the various signs. Section 4 describes the

major findings of our study. Section 5 analyses the results and compares them with related

work. Finally, Section 6 presents some open problems.

Figure 1. The approximate locations of the eight ancient scripts. The legend is as follows: B—Brahmi,

C—Cretan hieroglyphs, E—Elamite, G—Greek, I—Indus Valley, L ‐Linear B, P—Phoenician, and

S—Sumerian. Red indicates the three earliest scripts, orange the middle two scripts, and blue the

three most recent of the eight ancient scripts. Source of background map: https://upload.wiki‐

media.org/wikipedia/commons/f/f3/Map_of_Eurasia.png (accessed on 2 February 2023).

2. Data Source

We used the following ancient scripts as data sources.

1. Brahmi, which has an unknown origin, was an abugida script in India and was writ‐

ten left‐to‐right [1]. We used 34 of the signs from the Brahmi script, as shown in Fig‐

ure 2.

Figure 2. The 34 Brahmi signs used in this study.
Figure 2. The 34 Brahmi signs used in this study.

2. Cretan hieroglyphs also have an unknown origin. Cretan hieroglyphs were used
between 2100 to 1700 BCE [2], that is, mainly contemporaneously with Linear A, but
both were superseded by Linear B. We used 22 signs from the Cretan hieroglyphs, as
shown in Figure 3.

91

Information 2023, 14, 227

Information 2023, 14, x FOR PEER REVIEW 3 of 19

2. Cretan hieroglyphs also have an unknown origin. Cretan hieroglyphs were used be‐

tween 2100 to 1700 BCE [2], that is, mainly contemporaneously with Linear A, but

both were superseded by Linear B. We used 22 signs from the Cretan hieroglyphs, as

shown in Figure 3.

Figure 3. The 22 Cretan hieroglyphs used in this study.

3. Starting around 800 BCE, the ancient Greek alphabet had several variants according to

various local Greek dialects [3]. We used all 27 letters of the Greek alphabet, as shown

in Figure 4.

Figure 4. The 27 ancient Greek alphabet letters.

4. The Indus Valley script was in use in what is today Pakistan and India from around

2400 BCE to 1900 BCE [4–8]. Its writing direction was mainly right‐to‐left, although

there are some left‐to‐right and boustrophedon writing examples, too. Remarkably,

the Indus Valley script has over 700 different signs. Since only those signs that occur

at least three times seem significant, we used only the 23 most frequent Indus Valley

script signs, as shown in Figure 5.

Figure 5. The 23 Indus Valley script signs used in this study.

5. The Mycenaean Greeks used the Linear B script, which is an adaptation of the earlier

Linear A that was used by the Minoans. In 1952, Michael Ventris succeeded in deter‐

mining that Linear B was the older written form of the Greek language that was writ‐

ten using syllabic signs [9]. We used 20 signs from Linear B, as shown in Figure 6.

Figure 6. The 20 Linear B signs used in this study.

6. Beginning around 1200 BCE, the Phoenician alphabet was written on clay tablets [10].

According to some proposals, the Phoenician alphabet may be derived from

Figure 3. The 22 Cretan hieroglyphs used in this study.

3. Starting around 800 BCE, the ancient Greek alphabet had several variants according to
various local Greek dialects [3]. We used all 27 letters of the Greek alphabet, as shown
in Figure 4.

Information 2023, 14, x FOR PEER REVIEW 3 of 19

2. Cretan hieroglyphs also have an unknown origin. Cretan hieroglyphs were used be‐

tween 2100 to 1700 BCE [2], that is, mainly contemporaneously with Linear A, but

both were superseded by Linear B. We used 22 signs from the Cretan hieroglyphs, as

shown in Figure 3.

Figure 3. The 22 Cretan hieroglyphs used in this study.

3. Starting around 800 BCE, the ancient Greek alphabet had several variants according to

various local Greek dialects [3]. We used all 27 letters of the Greek alphabet, as shown

in Figure 4.

Figure 4. The 27 ancient Greek alphabet letters.

4. The Indus Valley script was in use in what is today Pakistan and India from around

2400 BCE to 1900 BCE [4–8]. Its writing direction was mainly right‐to‐left, although

there are some left‐to‐right and boustrophedon writing examples, too. Remarkably,

the Indus Valley script has over 700 different signs. Since only those signs that occur

at least three times seem significant, we used only the 23 most frequent Indus Valley

script signs, as shown in Figure 5.

Figure 5. The 23 Indus Valley script signs used in this study.

5. The Mycenaean Greeks used the Linear B script, which is an adaptation of the earlier

Linear A that was used by the Minoans. In 1952, Michael Ventris succeeded in deter‐

mining that Linear B was the older written form of the Greek language that was writ‐

ten using syllabic signs [9]. We used 20 signs from Linear B, as shown in Figure 6.

Figure 6. The 20 Linear B signs used in this study.

6. Beginning around 1200 BCE, the Phoenician alphabet was written on clay tablets [10].

According to some proposals, the Phoenician alphabet may be derived from

Figure 4. The 27 ancient Greek alphabet letters.

4. The Indus Valley script was in use in what is today Pakistan and India from around
2400 BCE to 1900 BCE [4–8]. Its writing direction was mainly right-to-left, although
there are some left-to-right and boustrophedon writing examples, too. Remarkably,
the Indus Valley script has over 700 different signs. Since only those signs that occur
at least three times seem significant, we used only the 23 most frequent Indus Valley
script signs, as shown in Figure 5.

Information 2023, 14, x FOR PEER REVIEW 3 of 19

2. Cretan hieroglyphs also have an unknown origin. Cretan hieroglyphs were used be‐

tween 2100 to 1700 BCE [2], that is, mainly contemporaneously with Linear A, but

both were superseded by Linear B. We used 22 signs from the Cretan hieroglyphs, as

shown in Figure 3.

Figure 3. The 22 Cretan hieroglyphs used in this study.

3. Starting around 800 BCE, the ancient Greek alphabet had several variants according to

various local Greek dialects [3]. We used all 27 letters of the Greek alphabet, as shown

in Figure 4.

Figure 4. The 27 ancient Greek alphabet letters.

4. The Indus Valley script was in use in what is today Pakistan and India from around

2400 BCE to 1900 BCE [4–8]. Its writing direction was mainly right‐to‐left, although

there are some left‐to‐right and boustrophedon writing examples, too. Remarkably,

the Indus Valley script has over 700 different signs. Since only those signs that occur

at least three times seem significant, we used only the 23 most frequent Indus Valley

script signs, as shown in Figure 5.

Figure 5. The 23 Indus Valley script signs used in this study.

5. The Mycenaean Greeks used the Linear B script, which is an adaptation of the earlier

Linear A that was used by the Minoans. In 1952, Michael Ventris succeeded in deter‐

mining that Linear B was the older written form of the Greek language that was writ‐

ten using syllabic signs [9]. We used 20 signs from Linear B, as shown in Figure 6.

Figure 6. The 20 Linear B signs used in this study.

6. Beginning around 1200 BCE, the Phoenician alphabet was written on clay tablets [10].

According to some proposals, the Phoenician alphabet may be derived from

Figure 5. The 23 Indus Valley script signs used in this study.

5. The Mycenaean Greeks used the Linear B script, which is an adaptation of the earlier
Linear A that was used by the Minoans. In 1952, Michael Ventris succeeded in
determining that Linear B was the older written form of the Greek language that was
written using syllabic signs [9]. We used 20 signs from Linear B, as shown in Figure 6.

Information 2023, 14, x FOR PEER REVIEW 3 of 19

2. Cretan hieroglyphs also have an unknown origin. Cretan hieroglyphs were used be‐

tween 2100 to 1700 BCE [2], that is, mainly contemporaneously with Linear A, but

both were superseded by Linear B. We used 22 signs from the Cretan hieroglyphs, as

shown in Figure 3.

Figure 3. The 22 Cretan hieroglyphs used in this study.

3. Starting around 800 BCE, the ancient Greek alphabet had several variants according to

various local Greek dialects [3]. We used all 27 letters of the Greek alphabet, as shown

in Figure 4.

Figure 4. The 27 ancient Greek alphabet letters.

4. The Indus Valley script was in use in what is today Pakistan and India from around

2400 BCE to 1900 BCE [4–8]. Its writing direction was mainly right‐to‐left, although

there are some left‐to‐right and boustrophedon writing examples, too. Remarkably,

the Indus Valley script has over 700 different signs. Since only those signs that occur

at least three times seem significant, we used only the 23 most frequent Indus Valley

script signs, as shown in Figure 5.

Figure 5. The 23 Indus Valley script signs used in this study.

5. The Mycenaean Greeks used the Linear B script, which is an adaptation of the earlier

Linear A that was used by the Minoans. In 1952, Michael Ventris succeeded in deter‐

mining that Linear B was the older written form of the Greek language that was writ‐

ten using syllabic signs [9]. We used 20 signs from Linear B, as shown in Figure 6.

Figure 6. The 20 Linear B signs used in this study.

6. Beginning around 1200 BCE, the Phoenician alphabet was written on clay tablets [10].

According to some proposals, the Phoenician alphabet may be derived from

Figure 6. The 20 Linear B signs used in this study.

6. Beginning around 1200 BCE, the Phoenician alphabet was written on clay tablets [10].
According to some proposals, the Phoenician alphabet may be derived from Egyptian
hieroglyphs [11], but its development may also have been influenced by Linear B [12].
Since the 22 Phoenician alphabet letters originally denoted only consonants, it is
classified as an abjad. Phoenician texts also usually run right-to-left. We used all
22 Phoenician alphabet letters, as shown in Figure 7.

92

Information 2023, 14, 227

Information 2023, 14, x FOR PEER REVIEW 4 of 19

Egyptian hieroglyphs [11], but its development may also have been influenced by

Linear B [12]. Since the 22 Phoenician alphabet letters originally denoted only conso‐

nants, it is classified as an abjad. Phoenician texts also usually run right‐to‐left. We

used all 22 Phoenician alphabet letters, as shown in Figure 7.

Figure 7. The 22 Phoenician alphabet letters used in this study.

7. The proto‐Elamite script existed primarily in the region that today is Iran during the

fourth millennium BCE [13]. The proto‐Elamite script had almost two thousand

signs, but most of those signs were used infrequently [14]. Currently, the proto‐Elam‐

ite script is currently undeciphered. We used 17 signs from the proto‐Elamite script,

as shown in Figure 8.

Figure 8. The 17 proto‐Elamite signs used in this study.

8. Sumerian pictograms were a novel development and were mostly logographic, ac‐

cording to researchers. They were formed in the fourth millennium BCE, but they

developed into cuneiform signs, which were used over several millennia until the

first century [15]. The Sumerian language is distantly related to the Dravidian and

Uralic languages [16,17]. We used 34 signs from the Sumerian pictograms, as shown

in Figure 9.

Figure 9. The 34 Sumerian Pictograms used in this study.

Figure 10 gives a timeline of the eight scripts mentioned above. The Sumerian picto‐

grams were used only for a few hundred years and then gradually developed into the

cuneiform script that was used by later cultures over three thousand years. It is important

to consider this timeline and the locations together with the similarity of the scripts in

order to identify ancestor–successor relationships. Figure 1 shows a map of the approxi‐

mate locations of the scripts compared in this paper. Neural networks can identify simi‐

larities in the scripts, but they are unaware of the timeline or the locations in which the

various scripts were used.

Another consideration is the orientation of the signs. For example, in the Sumerian

pictograms, the signs initially stood upright, while in later times they had been rotated 90

degrees. Figure 9 shows this later stage, after the signs had been rotated. This rotation is

obvious for some signs, such as the bird sign, which is the second from the right in the last

row of Figure 9. One of the advantages of neural networks is that they can learn to

Figure 7. The 22 Phoenician alphabet letters used in this study.

7. The proto-Elamite script existed primarily in the region that today is Iran during the
fourth millennium BCE [13]. The proto-Elamite script had almost two thousand signs,
but most of those signs were used infrequently [14]. Currently, the proto-Elamite
script is currently undeciphered. We used 17 signs from the proto-Elamite script, as
shown in Figure 8.

Information 2023, 14, x FOR PEER REVIEW 4 of 19

Egyptian hieroglyphs [11], but its development may also have been influenced by

Linear B [12]. Since the 22 Phoenician alphabet letters originally denoted only conso‐

nants, it is classified as an abjad. Phoenician texts also usually run right‐to‐left. We

used all 22 Phoenician alphabet letters, as shown in Figure 7.

Figure 7. The 22 Phoenician alphabet letters used in this study.

7. The proto‐Elamite script existed primarily in the region that today is Iran during the

fourth millennium BCE [13]. The proto‐Elamite script had almost two thousand

signs, but most of those signs were used infrequently [14]. Currently, the proto‐Elam‐

ite script is currently undeciphered. We used 17 signs from the proto‐Elamite script,

as shown in Figure 8.

Figure 8. The 17 proto‐Elamite signs used in this study.

8. Sumerian pictograms were a novel development and were mostly logographic, ac‐

cording to researchers. They were formed in the fourth millennium BCE, but they

developed into cuneiform signs, which were used over several millennia until the

first century [15]. The Sumerian language is distantly related to the Dravidian and

Uralic languages [16,17]. We used 34 signs from the Sumerian pictograms, as shown

in Figure 9.

Figure 9. The 34 Sumerian Pictograms used in this study.

Figure 10 gives a timeline of the eight scripts mentioned above. The Sumerian picto‐

grams were used only for a few hundred years and then gradually developed into the

cuneiform script that was used by later cultures over three thousand years. It is important

to consider this timeline and the locations together with the similarity of the scripts in

order to identify ancestor–successor relationships. Figure 1 shows a map of the approxi‐

mate locations of the scripts compared in this paper. Neural networks can identify simi‐

larities in the scripts, but they are unaware of the timeline or the locations in which the

various scripts were used.

Another consideration is the orientation of the signs. For example, in the Sumerian

pictograms, the signs initially stood upright, while in later times they had been rotated 90

degrees. Figure 9 shows this later stage, after the signs had been rotated. This rotation is

obvious for some signs, such as the bird sign, which is the second from the right in the last

row of Figure 9. One of the advantages of neural networks is that they can learn to

Figure 8. The 17 proto-Elamite signs used in this study.

8. Sumerian pictograms were a novel development and were mostly logographic, ac-
cording to researchers. They were formed in the fourth millennium BCE, but they
developed into cuneiform signs, which were used over several millennia until the
first century [15]. The Sumerian language is distantly related to the Dravidian and
Uralic languages [16,17]. We used 34 signs from the Sumerian pictograms, as shown
in Figure 9.

Information 2023, 14, x FOR PEER REVIEW 4 of 19

Egyptian hieroglyphs [11], but its development may also have been influenced by

Linear B [12]. Since the 22 Phoenician alphabet letters originally denoted only conso‐

nants, it is classified as an abjad. Phoenician texts also usually run right‐to‐left. We

used all 22 Phoenician alphabet letters, as shown in Figure 7.

Figure 7. The 22 Phoenician alphabet letters used in this study.

7. The proto‐Elamite script existed primarily in the region that today is Iran during the

fourth millennium BCE [13]. The proto‐Elamite script had almost two thousand

signs, but most of those signs were used infrequently [14]. Currently, the proto‐Elam‐

ite script is currently undeciphered. We used 17 signs from the proto‐Elamite script,

as shown in Figure 8.

Figure 8. The 17 proto‐Elamite signs used in this study.

8. Sumerian pictograms were a novel development and were mostly logographic, ac‐

cording to researchers. They were formed in the fourth millennium BCE, but they

developed into cuneiform signs, which were used over several millennia until the

first century [15]. The Sumerian language is distantly related to the Dravidian and

Uralic languages [16,17]. We used 34 signs from the Sumerian pictograms, as shown

in Figure 9.

Figure 9. The 34 Sumerian Pictograms used in this study.

Figure 10 gives a timeline of the eight scripts mentioned above. The Sumerian picto‐

grams were used only for a few hundred years and then gradually developed into the

cuneiform script that was used by later cultures over three thousand years. It is important

to consider this timeline and the locations together with the similarity of the scripts in

order to identify ancestor–successor relationships. Figure 1 shows a map of the approxi‐

mate locations of the scripts compared in this paper. Neural networks can identify simi‐

larities in the scripts, but they are unaware of the timeline or the locations in which the

various scripts were used.

Another consideration is the orientation of the signs. For example, in the Sumerian

pictograms, the signs initially stood upright, while in later times they had been rotated 90

degrees. Figure 9 shows this later stage, after the signs had been rotated. This rotation is

obvious for some signs, such as the bird sign, which is the second from the right in the last

row of Figure 9. One of the advantages of neural networks is that they can learn to

Figure 9. The 34 Sumerian Pictograms used in this study.

Figure 10 gives a timeline of the eight scripts mentioned above. The Sumerian pic-
tograms were used only for a few hundred years and then gradually developed into the
cuneiform script that was used by later cultures over three thousand years. It is important
to consider this timeline and the locations together with the similarity of the scripts in order
to identify ancestor–successor relationships. Figure 1 shows a map of the approximate
locations of the scripts compared in this paper. Neural networks can identify similarities
in the scripts, but they are unaware of the timeline or the locations in which the various
scripts were used.

Another consideration is the orientation of the signs. For example, in the Sumerian
pictograms, the signs initially stood upright, while in later times they had been rotated
90 degrees. Figure 9 shows this later stage, after the signs had been rotated. This rotation is
obvious for some signs, such as the bird sign, which is the second from the right in the last
row of Figure 9. One of the advantages of neural networks is that they can learn to recognize
signs regardless of their orientation. However, to achieve this rotation independence, the
training examples need to include several rotated versions of the same sign.

93

Information 2023, 14, 227

Information 2023, 14, x FOR PEER REVIEW 5 of 19

recognize signs regardless of their orientation. However, to achieve this rotation inde‐

pendence, the training examples need to include several rotated versions of the same sign.

Figure 10. A timeline of the eight ancient scripts analyzed in this study.

Another consideration is the vertical mirror symmetry of the signs. Many ancient

scripts were written in a boustrophedon style. This meant that the writer wrote the first

line from left‐to‐write, then reversed the direction to right‐to‐left in the second line, and

then kept switching the direction for each successive line of the inscription. As an aid to

the reader, the boustrophedon inscriptions often used a vertical mirror‐symmetric version

of the usual sign. For example, instead of an E, they might use an . These two forms of

the letter E are considered allographs of each other and should be treated as a single letter

during script comparisons. Neural networks can also learn to recognize mirror‐symmetric

signs if the training examples include mirror‐symmetric examples of the signs.

We took MNIST as a model for preprocessing the data and built a database [18]. We

used 780 training images and 120 validation images, a total of 900 hand‐drawn or com‐

puter‐distorted images for each sign. The size of each grayscale image was 50 × 50 pixels.

3. Experimental Design

3.1. Design of the CNN

Python and TensorFlow together with a Keras wrapper were used to build neural

networks with different accuracy levels depending on the learned script. We used a con‐

volutional neural network (CNN) architecture similar to the architecture of LeNet [19],

though with some changes that are illustrated below in Figure 11. The primary difference

between LeNet and our network is that a support vector machine (SVM) was added at the

end. The addition of an SVM was also effectively used in [20].

Figure 10. A timeline of the eight ancient scripts analyzed in this study.

Another consideration is the vertical mirror symmetry of the signs. Many ancient
scripts were written in a boustrophedon style. This meant that the writer wrote the first
line from left-to-write, then reversed the direction to right-to-left in the second line, and
then kept switching the direction for each successive line of the inscription. As an aid to
the reader, the boustrophedon inscriptions often used a vertical mirror-symmetric version
of the usual sign. For example, instead of an E, they might use an

Information 2023, 14, x FOR PEER REVIEW 5 of 19

recognize signs regardless of their orientation. However, to achieve this rotation inde‐

pendence, the training examples need to include several rotated versions of the same sign.

Figure 10. A timeline of the eight ancient scripts analyzed in this study.

Another consideration is the vertical mirror symmetry of the signs. Many ancient

scripts were written in a boustrophedon style. This meant that the writer wrote the first

line from left‐to‐write, then reversed the direction to right‐to‐left in the second line, and

then kept switching the direction for each successive line of the inscription. As an aid to

the reader, the boustrophedon inscriptions often used a vertical mirror‐symmetric version

of the usual sign. For example, instead of an E, they might use an . These two forms of

the letter E are considered allographs of each other and should be treated as a single letter

during script comparisons. Neural networks can also learn to recognize mirror‐symmetric

signs if the training examples include mirror‐symmetric examples of the signs.

We took MNIST as a model for preprocessing the data and built a database [18]. We

used 780 training images and 120 validation images, a total of 900 hand‐drawn or com‐

puter‐distorted images for each sign. The size of each grayscale image was 50 × 50 pixels.

3. Experimental Design

3.1. Design of the CNN

Python and TensorFlow together with a Keras wrapper were used to build neural

networks with different accuracy levels depending on the learned script. We used a con‐

volutional neural network (CNN) architecture similar to the architecture of LeNet [19],

though with some changes that are illustrated below in Figure 11. The primary difference

between LeNet and our network is that a support vector machine (SVM) was added at the

end. The addition of an SVM was also effectively used in [20].

. These two forms of
the letter E are considered allographs of each other and should be treated as a single letter
during script comparisons. Neural networks can also learn to recognize mirror-symmetric
signs if the training examples include mirror-symmetric examples of the signs.

We took MNIST as a model for preprocessing the data and built a database [18]. We
used 780 training images and 120 validation images, a total of 900 hand-drawn or computer-
distorted images for each sign. The size of each grayscale image was 50 × 50 pixels.

3. Experimental Design
3.1. Design of the CNN

Python and TensorFlow together with a Keras wrapper were used to build neural
networks with different accuracy levels depending on the learned script. We used a
convolutional neural network (CNN) architecture similar to the architecture of LeNet [19],
though with some changes that are illustrated below in Figure 11. The primary difference
between LeNet and our network is that a support vector machine (SVM) was added at the
end. The addition of an SVM was also effectively used in [20].

We first reduced the input images to 46 × 46 pixels by applying 5 × 5 filters. Second,
we further cut the size of the images to 23 × 23 pixels using a pooling layer. Third,
by another set of convolution filters, the images were reduced to 20 × 20 pixels. Fourth,
another pooling produced 10× 10 pixels. Fifth, the images passed a layer that had 1024 fully
connected neurons. The output of the neurons was fed into the SVM, which we further
detail in the next section.

We added to the convolution layers rectified linear unit (ReLU) activation functions,
which produced a linear value with a slope of one when x > 0. The 2 × 2 filters picked for

94

Information 2023, 14, 227

the feature map the maximum of the four quadrants’ values. Max pooling was applied by
the pooling layers.

Overfitting was avoided by a 0.4 drop rate. A small 0.001 learning rate was used by
the Adam optimizers [21] within the convolutional neural networks.

Information 2023, 14, x FOR PEER REVIEW 6 of 19

Figure 11. The classifier architecture.

We first reduced the input images to 46 × 46 pixels by applying 5 × 5 filters. Second,

we further cut the size of the images to 23 × 23 pixels using a pooling layer. Third, by

another set of convolution filters, the images were reduced to 20 × 20 pixels. Fourth, an‐

other pooling produced 10 × 10 pixels. Fifth, the images passed a layer that had 1024 fully

connected neurons. The output of the neurons was fed into the SVM, which we further

detail in the next section.

We added to the convolution layers rectified linear unit (ReLU) activation functions,

which produced a linear value with a slope of one when x > 0. The 2 × 2 filters picked for

the feature map the maximum of the four quadrants’ values. Max pooling was applied by

the pooling layers.

Overfitting was avoided by a 0.4 drop rate. A small 0.001 learning rate was used by

the Adam optimizers [21] within the convolutional neural networks.

3.2. Design of the SVM

We used a Python library package and Python for the development of the support

vector machine in the software architecture described in Figure 11. Within the last layer

of Figure 11, we used L2‐SVM for multiclass classification, which is considered better than

Softmax, which is a common alternative [22]. The L2‐SVM optimized the sum of the

squared errors using the following function, where the vector variable w has the dimen‐

sion N, ξi are the slack variables, and C is the penalty parameter.

Minimize:

1
2

|| 𝑤 ||ଶ
𝐶
2

 𝜉𝑖
2

ே

 ୀ ଵ

Subject to:

𝑦ሺ𝑥 ⋅ 𝑤 𝑏ሻ 1 െ 𝜉 𝑖 ൌ 1, …, N

where b is a bias term.

3.3. The Sign Classifier

Figure 12 shows the scheme according to which the trained and validated classifiers

for the eight scripts were used to test the similarity of any pair of scripts. Figure 12 specif‐

ically shows how the N signs of any one of the seven other scripts (called the ‘unknown

script’ in the diagram) can be compared with the 22 letters of the Phoenician alphabet.

Figure 11. The classifier architecture.

3.2. Design of the SVM

We used a Python library package and Python for the development of the support
vector machine in the software architecture described in Figure 11. Within the last layer
of Figure 11, we used L2-SVM for multiclass classification, which is considered better
than Softmax, which is a common alternative [22]. The L2-SVM optimized the sum of the
squared errors using the following function, where the vector variable w has the dimension
N, ξi are the slack variables, and C is the penalty parameter.

Minimize:
1
2
||w||2 + C

2

N

∑
i=1

ξ2
i

Subject to:
yi(xi · w + b) ≥ 1− ξi i = 1, . . . , N

where b is a bias term.

3.3. The Sign Classifier

Figure 12 shows the scheme according to which the trained and validated classifiers for
the eight scripts were used to test the similarity of any pair of scripts. Figure 12 specifically
shows how the N signs of any one of the seven other scripts (called the ‘unknown script’ in
the diagram) can be compared with the 22 letters of the Phoenician alphabet.

Information 2023, 14, x FOR PEER REVIEW 7 of 19

Figure 12. The scheme of comparing any ‘unknown script’ (which can be any of the other scripts

with N signs) with the letters of the Phoenician alphabet.

After passing in the ‘unknown scripts’ to each of the trained and validated script

classifiers, the scheme in Figure 12 yielded 56 N × M dimensional similarity matrices,

where N and M are the number of different signs in the two scripts. A strength measure

between a pair of scripts can be defined in either of the following two ways.

1. The average of all considers all the of signs by averaging the maximum probability

matches between the input signs and the trained script signs. If an input sign had a

low correlation with all of the trained signs, then the average of all value would be

lowered.

2. The selective average takes the average of only those pairs of signs which have a

higher than 75 percent (or other chosen threshold) similarity match.

There are two advantages to the second approach. The first advantage is that the

selective average yields a higher measure compared with the average of all. The second

advantage is that we can, if we want, also simultaneously obtain the number of input signs

which have a pair in the trained script with a similarity threshold above 75 percent.

3.4. Generation of Classification Dendrograms

As was described in Section 3.3, there are two different ways to obtain a strength

measure between a pair of scripts. Furthermore, it is convenient to consider the number

of input signs for which there is a trained sign with an above 75 percent similarity. The

different measures lead to two different algorithms for the generation of classification

trees or dendrograms.

1. Similarity classification dendrograms: The weighted pair group method with arith‐

metic mean (WPGMA) algorithm was used to create a dendrogram as follows. We

repeatedly merged those sets of scripts that were most similar according to the simi‐

larity matrix. The similarity matrix was updated after each merge. The update re‐

quires that the most similar script sets, x and y, are merged into the union x ∪ y of the

two sets. This means merging the corresponding two rows into one row and the cor‐

responding two columns into one column in the similarity matrix. In addition, the

distance to another set, z and x ∪ y, is updated using the following equation:

𝑑ሺ௫ ∪ ௬ሻ,௭ ൌ
𝑑௫,௭ 𝑑௬,௭

2
 (1)

The similarity is taken to be the negative of the distance.

2. Hierarchical classification dendrograms: In generating a hierarchal tree, it is assumed

that some scripts have an ancestor–descendant relationship. This requires a modifi‐

cation of the WPGMA algorithm, but must also consider the periods during which

the scripts were used. If x and y are the most similar to each other, that is, they can

be considered to be closest script pair, and x’s period of use preceded y’s period of

use, or vice versa, then we consider x to be an ancestor or parent of y. Algorithm 1

was built on this idea.

Figure 12. The scheme of comparing any ‘unknown script’ (which can be any of the other scripts
with N signs) with the letters of the Phoenician alphabet.

95

Information 2023, 14, 227

After passing in the ‘unknown scripts’ to each of the trained and validated script
classifiers, the scheme in Figure 12 yielded 56 N × M dimensional similarity matrices,
where N and M are the number of different signs in the two scripts. A strength measure
between a pair of scripts can be defined in either of the following two ways.

1. The average of all considers all the of signs by averaging the maximum probability
matches between the input signs and the trained script signs. If an input sign had a
low correlation with all of the trained signs, then the average of all value would be
lowered.

2. The selective average takes the average of only those pairs of signs which have a
higher than 75 percent (or other chosen threshold) similarity match.

There are two advantages to the second approach. The first advantage is that the
selective average yields a higher measure compared with the average of all. The second
advantage is that we can, if we want, also simultaneously obtain the number of input signs
which have a pair in the trained script with a similarity threshold above 75 percent.

3.4. Generation of Classification Dendrograms

As was described in Section 3.3, there are two different ways to obtain a strength
measure between a pair of scripts. Furthermore, it is convenient to consider the number
of input signs for which there is a trained sign with an above 75 percent similarity. The
different measures lead to two different algorithms for the generation of classification trees
or dendrograms.

1. Similarity classification dendrograms: The weighted pair group method with arith-
metic mean (WPGMA) algorithm was used to create a dendrogram as follows. We
repeatedly merged those sets of scripts that were most similar according to the similar-
ity matrix. The similarity matrix was updated after each merge. The update requires
that the most similar script sets, x and y, are merged into the union x ∪ y of the two sets.
This means merging the corresponding two rows into one row and the corresponding
two columns into one column in the similarity matrix. In addition, the distance to
another set, z and x ∪ y, is updated using the following equation:

d(x∪y),z =
dx,z + dy,z

2
(1)

The similarity is taken to be the negative of the distance.

2. Hierarchical classification dendrograms: In generating a hierarchal tree, it is assumed
that some scripts have an ancestor–descendant relationship. This requires a modifi-
cation of the WPGMA algorithm, but must also consider the periods during which
the scripts were used. If x and y are the most similar to each other, that is, they can be
considered to be closest script pair, and x’s period of use preceded y’s period of use,
or vice versa, then we consider x to be an ancestor or parent of y. Algorithm 1 was
built on this idea.

Algorithm 1 Time-Based Descendant Tree

1: Create parent node P
2: Create a node for each script
3: for all Closest Script Pairs Sx and Sy do
4: if Sx.Time > Sy.Time then
5: Parent of Sx is P
6: Parent of Sy is Sx
7: else
8: Parent of Sy is P
9: Parent of Sx is Sy
10: for all Singleton Scripts Sz do
11: Parent of Sz is P
12: return Tree

96

Information 2023, 14, 227

4. Experimental Results

The three main ideas that we have presented above are the creation of the dataset,
the design of the classifiers for each script and their use in a scheme to generate a script
similarity matrix, and the algorithm for the generation of the hierarchical dendrograms.
These three components must all work smoothly together to create a satisfying result.
Table 1 shows the accuracy of the individual classifiers for each script. The classifiers of
each script reached over 97 percent accuracy at 100 epochs.

Table 1. Validation accuracy for the eight scripts after 25, 50, 75, and 100 epochs of training.

Script 25 50 75 100

Brahmi Script 95.09 98.15 98.24 99.35

Cretan Hieroglyphs 91.09 92.84 94.47 97.53

Greek Alphabet 93.49 96.26 97.23 98.63

Indus Valley Script 93.50 95.70 96.85 98.23

Linear B Script 91.19 93.15 96.42 99.48

Phoenician Alphabet 93.18 94.77 95.36 97.52

Proto-Elamite Script 91.93 94.55 97.05 99.09

Sumerian Pictograms 90.79 93.21 96.94 97.40

To validate the automatic identification of ancestor–descendant relationships, we
conducted an experiment in which scripts were grouped as follows: Known Origin, i.e.,
scripts that are used for validation by showing that we can reproduce established re-
sults, and Unknown Origin. Below are some specific examples that fall within these two
categorizations.

1. Known Origin: It is well-known that the Phoenician alphabet was adopted by the
ancient Greeks, who extended it by four letters that are specific to the Greek alphabet,
as is shown in Table 2. It is also known to be an ancestor of Aramaic, which is
an ancestor of Brahmi. By transitivity, Phoenician is an ancestor of Brahmi too. In
addition, Cretan hieroglyphics are often said to be an ancestor of the Linear B script.

2. Unknown Origin: Sumerian pictographs have no known ancestors. A similar situation
holds for the proto-Elamite and Indus Valley scripts.

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek
alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice
versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.
The heatmaps were generated from the similarity matrices and show high similarities along
the main diagonal. This proves that there is an almost perfect one-to-one function between
the letters of the Phoenician and Greek alphabets. Moreover, this mapping matches our
original expectations.

After this validation step, we were able to continue with confidence to test the re-
lationship between other pairs of scripts with an unknown relationship. Whenever our
CNN+SVM finds an almost one-to-one mapping between two scripts, we can be confident
that the two scripts have an ancestor–descendant relationship such as that between the
Phoenician and Greek alphabets. Table 3 records the number of signs which have over
75 percent correlation from among the pairs of the eight scripts.

97

Information 2023, 14, 227

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

aleph

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

alpha

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

beth

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

beta

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

giml

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

gamma

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

daleth

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

delta

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

he

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

epsilon

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

waw

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

or

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

digamma or upsilon

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

zayin

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

zeta

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

heth

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

eta

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

teth

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

theta

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

yodh

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

iota

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

kaph

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

kappa

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

lamedh

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

lambda

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

mem

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

mu

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

nun

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

nu

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

samekh

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

xi

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

ayin

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

omicron

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

pe

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

pi

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

sade

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

san

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

qoph

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

koppa

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

res

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

rho

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

sin

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

sigma

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

taw

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

tau

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

phi

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

chi

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

psi

Information 2023, 14, x FOR PEER REVIEW 9 of 19

Table 2. Adaptation of the Phoenician alphabet to the Greek alphabet, including four extra letters.

Phoenician Letter Phoenician Name Greek Letter Greek Name

 aleph alpha

 beth

beta

 giml

gamma

 daleth delta

 he epsilon

 waw or digamma or upsilon

 zayin zeta

 heth eta

 teth

theta

 yodh

iota

 kaph

kappa

 lamedh lambda

 mem

mu

 nun

nu

 samekh

xi

 ayin omicron

 pe

pi

 sade san

 qoph

koppa

 res

rho

 sin

sigma

 taw tau

phi

chi

psi

omega

We can validate Phoenician as the ancestor of Greek by passing the letter of the Greek

alphabet into the classifier that was trained to recognize the Phoenician alphabet, or vice

versa. Figures 13 and 14 show the heatmaps for the Phoenician and the Greek alphabets.

The heatmaps were generated from the similarity matrices and show high similarities

along the main diagonal. This proves that there is an almost perfect one‐to‐one function

between the letters of the Phoenician and Greek alphabets. Moreover, this mapping

matches our original expectations.

After this validation step, we were able to continue with confidence to test the rela‐

tionship between other pairs of scripts with an unknown relationship. Whenever our

CNN+SVM finds an almost one‐to‐one mapping between two scripts, we can be confident

that the two scripts have an ancestor–descendant relationship such as that between the

omega

98

Information 2023, 14, 227

Table 3. The number of signs with over 75 percent correlation between pairs of various scripts.

Brahmi Cretan
Hieroglyphs Greek Indus

Valley Linear B Phoenician Proto-Elam. Sumerian
Pictograms

Brahmi 34 2 9 8 3 9 2 6

Cretan Hieroglyphs 2 22 4 5 20 6 2 6

Greek 9 4 26 9 7 22 2 7

Indus Valley 8 5 9 23 4 9 4 20

Linear B 3 20 7 4 20 9 0 5

Phoenician 9 6 22 9 9 22 3 7

Proto-Elamite 2 2 2 4 0 3 17 3

Sumerian
Pictograms 6 6 7 20 5 7 3 39

Information 2023, 14, x FOR PEER REVIEW 10 of 19

Phoenician and Greek alphabets. Table 3 records the number of signs which have over 75

percent correlation from among the pairs of the eight scripts.

Our CNN+SVM predictor method discovered some previously unrecognized ances‐

tor–descendant relationships. The heatmap in Figure 15 illustrates that there is also an

almost perfect one‐to‐one function between Sumerian pictograms and Indus Valley signs.

Figure 13. The heatmap generated when Greek letters were passed into the Phoenician letter classi‐

fier.

Figure 13. The heatmap generated when Greek letters were passed into the Phoenician letter classifier.

99

Information 2023, 14, 227

Information 2023, 14, x FOR PEER REVIEW 11 of 19

Table 3. The number of signs with over 75 percent correlation between pairs of various scripts.

 Brahmi
Cretan

Hieroglyphs
Greek

Indus

Valley
Linear B Phoenician Proto‐Elam.

Sumerian

Pictograms

Brahmi 34 2 9 8 3 9 2 6

Cretan Hieroglyphs 2 22 4 5 20 6 2 6

Greek 9 4 26 9 7 22 2 7

Indus Valley 8 5 9 23 4 9 4 20

Linear B 3 20 7 4 20 9 0 5

Phoenician 9 6 22 9 9 22 3 7

Proto‐Elamite 2 2 2 4 0 3 17 3

Sumerian Picto‐

grams
6 6 7 20 5 7 3 39

Figure 14. The heatmap generated when Phoenician letters were passed into the Greek letter classi‐

fier.
Figure 14. The heatmap generated when Phoenician letters were passed into the Greek letter classifier.

Our CNN+SVM predictor method discovered some previously unrecognized ancestor–
descendant relationships. The heatmap in Figure 15 illustrates that there is also an almost
perfect one-to-one function between Sumerian pictograms and Indus Valley signs.

100

Information 2023, 14, 227Information 2023, 14, x FOR PEER REVIEW 12 of 19

Figure 15. The heatmap generated when Sumerian pictograms were passed into the trained Indus

Valley script classifier.

5. Discussion of the Results

Figures 16 and 17 show the classifications and the hierarchical dendrograms that

were generated from among the scripts using the similarity matrices.

Figure 15. The heatmap generated when Sumerian pictograms were passed into the trained Indus
Valley script classifier.

101

Information 2023, 14, 227

5. Discussion of the Results

Figures 16 and 17 show the classifications and the hierarchical dendrograms that were
generated from among the scripts using the similarity matrices.

Information 2023, 14, x FOR PEER REVIEW 13 of 19

Figure 16. Classification dendrogram generated using the WPGMA algorithm.

Figure 17. Hierarchical dendrogram generated by considering ancestor–descendant relationships.

In addition to verifying the known origins, the classification dendrogram reveals

some new information. The most interesting seems to be that shown by the two main

branches in Figure 16. The first branch is composed of proto‐Elamite, Sumerian picto‐

graphs, and the Indus Valley script, while the second major branch is composed of the

remaining scripts.

The hierarchical tree of Figure 17 takes into consideration the time intervals during

which the scripts were used. Figure 17 considers Greek to be a Phoenician descendant,

while Linear B is a descendant of Cretan hieroglyphs. Interestingly, Sumerian pictographs

are identified as ancestors of the Indus Valley script signs. Figure 17 shows no known

ancestor for proto‐Elamite or Brahmi. The most tentative aspect of Figures 16 and 17 is the

assumption of a common origin of all the scripts. This is only because the algorithm is

designed to draw the best tree to explain the development of these eight scripts from a

single source. The existence of a single source is only a hypothesis built into the algorithms

that generated the classification trees. In fact, it is rather unlikely that a single unidentified

source would spread independently in five different directions, as is shown in Figure 17.

It is more plausible that the unknown source spread in two separate directions, as indi‐

cated by the two main branches of Figure 16.

A possible criticism of the above methodology is that the scripts are assumed to be

related a priori. Of course, that may not necessarily be the case. There could have been

Figure 16. Classification dendrogram generated using the WPGMA algorithm.

Information 2023, 14, x FOR PEER REVIEW 13 of 19

Figure 16. Classification dendrogram generated using the WPGMA algorithm.

Figure 17. Hierarchical dendrogram generated by considering ancestor–descendant relationships.

In addition to verifying the known origins, the classification dendrogram reveals

some new information. The most interesting seems to be that shown by the two main

branches in Figure 16. The first branch is composed of proto‐Elamite, Sumerian picto‐

graphs, and the Indus Valley script, while the second major branch is composed of the

remaining scripts.

The hierarchical tree of Figure 17 takes into consideration the time intervals during

which the scripts were used. Figure 17 considers Greek to be a Phoenician descendant,

while Linear B is a descendant of Cretan hieroglyphs. Interestingly, Sumerian pictographs

are identified as ancestors of the Indus Valley script signs. Figure 17 shows no known

ancestor for proto‐Elamite or Brahmi. The most tentative aspect of Figures 16 and 17 is the

assumption of a common origin of all the scripts. This is only because the algorithm is

designed to draw the best tree to explain the development of these eight scripts from a

single source. The existence of a single source is only a hypothesis built into the algorithms

that generated the classification trees. In fact, it is rather unlikely that a single unidentified

source would spread independently in five different directions, as is shown in Figure 17.

It is more plausible that the unknown source spread in two separate directions, as indi‐

cated by the two main branches of Figure 16.

A possible criticism of the above methodology is that the scripts are assumed to be

related a priori. Of course, that may not necessarily be the case. There could have been

Figure 17. Hierarchical dendrogram generated by considering ancestor–descendant relationships.

In addition to verifying the known origins, the classification dendrogram reveals some
new information. The most interesting seems to be that shown by the two main branches
in Figure 16. The first branch is composed of proto-Elamite, Sumerian pictographs, and the
Indus Valley script, while the second major branch is composed of the remaining scripts.

The hierarchical tree of Figure 17 takes into consideration the time intervals during
which the scripts were used. Figure 17 considers Greek to be a Phoenician descendant,
while Linear B is a descendant of Cretan hieroglyphs. Interestingly, Sumerian pictographs
are identified as ancestors of the Indus Valley script signs. Figure 17 shows no known
ancestor for proto-Elamite or Brahmi. The most tentative aspect of Figures 16 and 17 is
the assumption of a common origin of all the scripts. This is only because the algorithm
is designed to draw the best tree to explain the development of these eight scripts from a
single source. The existence of a single source is only a hypothesis built into the algorithms
that generated the classification trees. In fact, it is rather unlikely that a single unidentified
source would spread independently in five different directions, as is shown in Figure 17. It

102

Information 2023, 14, 227

is more plausible that the unknown source spread in two separate directions, as indicated
by the two main branches of Figure 16.

A possible criticism of the above methodology is that the scripts are assumed to be
related a priori. Of course, that may not necessarily be the case. There could have been
independent developments in writing taking place in various regions of the world. By
dropping the built-in assumption that there must be a single source for all eight ancient
scripts, it is possible to obtain an alternative classification that is consistent with the timeline
of use of these scripts and all the script similarity information that we obtained, but which
allows for three different inventions and the spreading of ancient writing as shown in
Figure 18. Figure 18 shows a classification forest with three roots instead of a classification
tree with only one root.

Information 2023, 14, x FOR PEER REVIEW 14 of 19

independent developments in writing taking place in various regions of the world. By

dropping the built‐in assumption that there must be a single source for all eight ancient

scripts, it is possible to obtain an alternative classification that is consistent with the time‐

line of use of these scripts and all the script similarity information that we obtained, but

which allows for three different inventions and the spreading of ancient writing as shown

in Figure 18. Figure 18 shows a classification forest with three roots instead of a classifica‐

tion tree with only one root.

Figure 18. A modified classification that does not insist on a single source for all eight scripts.

The three groups that we obtained correspond to the red, orange, and blue set of

scripts shown in Figure 10. The red scripts are the earliest scripts and are located near each

other, as is shown in Figure 10. These correspond to the first group in Figure 18. It is pos‐

sible that ancient traders spread the Sumerian script to the Indus Valley via a sea route.

There are also many similarities between the two locations, such as in architecture and

food production [23]. Moreover, Sumerian inscriptions called the Indus Valley Civiliza‐

tion Meluhha. This name may be related to the present‐day region of Baluchistan [8].

The orange scripts are the middle two scripts in Figure 10, and these correspond to

the second group in Figure 18. The location of Cretan hieroglyphs and Linear B overlap.

It is possible that Cretan hieroglyphs developed into Linear A, which was also used by

the Minoan civilization, and then Linear A developed into Linear B after the Mycenaean

conquest of Crete. The Linear B script may then have spread to other Mycenaean areas.

Finally, the blue scripts are the three most recent scripts in Figure 10, and these cor‐

respond to the third group in Figure 18. The locations of the ancient Greek alphabet, the

Phoenician alphabet, and the Brahmi script are farther apart. Of these three, the Phoeni‐

cian alphabet is the oldest and may have originated in the Bronze Age as a descendant of

proto‐Sinaitic, which was invented in the Sinai Peninsula under the influence of Egyptian

hieroglyphs [11]. The Phoenician alphabet could also have been spread by traders [24].

The analysis of ancient weight measures shows that there was an ancient version of the

Silk Road between Greece and India in the Bronze Age [25].

Clearly, the smaller values in Table 3 mean that there are fewer pairs of signs with a

one‐to‐one match between the two scripts. Since there is no established threshold value

for saying that two scripts are related, we presented different possible solutions in Figures

16–18. Nevertheless, if script S1 is an ancestor of script Sn, then there has to be a chain of

Figure 18. A modified classification that does not insist on a single source for all eight scripts.

The three groups that we obtained correspond to the red, orange, and blue set of
scripts shown in Figure 10. The red scripts are the earliest scripts and are located near
each other, as is shown in Figure 10. These correspond to the first group in Figure 18. It is
possible that ancient traders spread the Sumerian script to the Indus Valley via a sea route.
There are also many similarities between the two locations, such as in architecture and
food production [23]. Moreover, Sumerian inscriptions called the Indus Valley Civilization
Meluhha. This name may be related to the present-day region of Baluchistan [8].

The orange scripts are the middle two scripts in Figure 10, and these correspond to
the second group in Figure 18. The location of Cretan hieroglyphs and Linear B overlap.
It is possible that Cretan hieroglyphs developed into Linear A, which was also used by
the Minoan civilization, and then Linear A developed into Linear B after the Mycenaean
conquest of Crete. The Linear B script may then have spread to other Mycenaean areas.

Finally, the blue scripts are the three most recent scripts in Figure 10, and these
correspond to the third group in Figure 18. The locations of the ancient Greek alphabet, the
Phoenician alphabet, and the Brahmi script are farther apart. Of these three, the Phoenician
alphabet is the oldest and may have originated in the Bronze Age as a descendant of
proto-Sinaitic, which was invented in the Sinai Peninsula under the influence of Egyptian
hieroglyphs [11]. The Phoenician alphabet could also have been spread by traders [24]. The
analysis of ancient weight measures shows that there was an ancient version of the Silk
Road between Greece and India in the Bronze Age [25].

103

Information 2023, 14, 227

Clearly, the smaller values in Table 3 mean that there are fewer pairs of signs with a one-
to-one match between the two scripts. Since there is no established threshold value for say-
ing that two scripts are related, we presented different possible solutions in Figures 16–18.
Nevertheless, if script S1 is an ancestor of script Sn, then there has to be a chain of temporally
overlapping scripts Si and Si+1 for 1 <= i <= n, such that Si is an ancestor of Si+1. The red
scripts have this overlap. The orange scripts do not have this overlap, but we obtain an
overlap if we add the missing Linear A script. Finally, the blue scripts also have an overlap.

However, there appears to be a time gap between the latest red and the earliest orange
script, and no additional script is known to have existed that can bridge this time gap.
Hence, the red and the orange scripts seem to be independent developments. Similarly,
there is a time gap between the latest orange and the earliest blue scripts in Figure 1.
Therefore, these also appear to be independent developments. Hence, Figure 18 seems to
be the best solution.

To better analyze the relationships among the eight scripts, we introduced a new
assumption. We assumed that if script x’s maximum connection is to another script, y,
then x and y are related scripts. The relationship could be either because of an ancestor–
descendant relationship or because of a common ancestor. The reason for this assumption
is that while some scripts change significantly over time, they always stay most like those
scripts with which they share a recent common ancestor. Implicitly, being closest to a
particular script matters more than the actual number of similarities between the scripts.

As an example, suppose that Table 4 is a simple estimate of vocabulary similarities
among six languages ranging from 10 (most similar) to 1 (least similar). To aid the analysis,
the maximum value in each column and row is highlighted by a color. Our assumption
allows the grouping together of Arabic and Hebrew, which are Semitic languages, English
and German, which belong of the Germanic branch of the Indo-European languages, and
Finnish and Hungarian, which are Uralic languages that diverged thousands of years ago.
Hence, our assumption led to a grouping that corresponds to the usual classification of
language families. The clustering algorithm ignored some values that may have arisen due
to word borrowings such as the value 4 between Hebrew and German.

Table 4. Grouping of six languages highlighting maximal non-diagonal values in each column and
row. Semitic languages are highlighted in green, Indo-European languages in blue, and Uralic
languages in yellow.

Arabic Hebrew English German Finnish Hungarian
Arabic 8 2 1 1 1
Hebrew 8 2 4 1 1
English 2 2 9 2 1
German 1 4 9 2 3
Finish 1 1 2 2 4
Hungarian 1 1 1 3 4

Similarly, the existence of three separate sources for the eight scripts is implied by a
rearrangement of Table 3, as is shown in Table 5. In Table 5, the maximum non-diagonal
values in each column and row are highlighted. The columns and rows highlighted in
red form the cluster that is associated with the first branch in Figure 18, the columns and
rows highlighted in orange form the cluster that is associated with the second branch in
Figure 18, and the columns and rows highlighted in blue form the cluster that is associated
with the third branch in Figure 18. The red scripts may have originated in Mesopotamia and
were likely logographic, the orange scripts may have originated in Europe, and the blue
scripts may be traced back to the Egyptian hieroglyphs, which is likely to have influenced
the development of the proto-Sinaitic script that is an ancestor of the Phoenician alphabet.
Figure 18 seems to present a logical explanation of the development of writing originating
from three different locations, although some cross-influence among the three groups
cannot be ruled out. These cross-influences would include such things as word borrowings.

104

Information 2023, 14, 227

Table 5. Highlighting of the maximal non-diagonal values in each column and row of Table 3.
The Phoenician alphabet and its descendants are highlighted in blue, the Cretan-origin scripts are
highlighted in orange, and the Mesopotamian-origin scripts are highlighted in red.

Brahmi Greek Phoenician Cretan
Hieroglyphs Linear B Indus

Valley Proto-Elam. Sumerian
Pictograms

Brahmi 9 9 2 3 8 2 6
Greek 9 22 4 7 9 2 7
Phoenician 9 22 6 9 9 3 7
Cretan Hieroglyphs 2 4 6 20 5 2 6
Linear B 3 7 9 20 4 0 5
Indus Valley 8 9 9 5 4 4 20
Proto-Elamite 2 2 3 2 0 4 3
Sumerian Pictograms 6 7 7 6 5 20 3

The grouping of the scripts is not intended to imply that the languages are related.
For example, the Latin alphabet is used to write many different modern languages that
belong to complete different language families. Therefore, similarity between languages
is independent from the similarity of the scripts. Only after a decipherment can we say
whether the languages are related to each other.

There are some even more advanced character-recognition algorithms beyond our
convolutional neural networks. However, the convolutional neural network we used was
already able to accurate perform character recognition. The main problem addressed in
this paper was the comparison of characters from different scripts, rather than character
recognition within a single script. The character comparison also gave high similarity
measures for related signs, as is shown in the heat maps of Figures 14–16. Low character
comparison values were obtained only when the signs were not related to each other.

5.1. Related Work

Sir Alexander Cunningham assumed that the Indus Valley seals were imports. He and
other scholars also thought that Brahmi may have been a descendant of the Indus Valley
Script [26,27] and that it may have expressed a Dravidian language [8,28,29].

A weakness of these proposals is the large time gap between the latest Indus Valley
and the earliest Brahmi script inscriptions, which are likely from the time of Ashoka’s
Empire in the 3rd century BCE, although some authors assume around 500 BCE for the
beginning of this script. Salomon [30] has proposed a Phoenician alphabet origin of the
Brahmi script. This latter proposal agrees more closely with our proposal in Figure 16,
where Brahmi and Phoenician are placed in the same branch of the script evolution tree.

The proto-Elamite script also reflects a Dravidian language, according to the Elamo–
Dravidian hypothesis. McAlpin [31] thinks that the Elamo–Dravidian language family also
includes the underlying language of the Indus Valley script. McAlpin’s theory agrees with
our proposal in Figure 16, which places the proto-Elamite script, the Indus Valley script,
and Sumerian pictograms in the same branch of the script evolution tree. Relationships
among these three are also suggested by archaeological evidence of connections among the
Elamite, Indus Valley, and Sumerian civilizations [8,24].

Farmer et al. [32] question whether the Indus Valley Script reflects a language. They
propose that it is more like the clan names/signs on heraldic coats of arms or the symbols of
various gods. Regardless of whether it is a language, its apparent similarity to the Sumerian
pictographs suggests that it is a descendant of the latter. Since the Indus Valley script
inscriptions are rather short, they may not represent a full language. That is also the case
for the proto-cuneiform writing in Mesopotamia dating from about 3300 BCE. In these
proto-cuneiform inscriptions, the signs record calculations concerning products such as
beer, and various occupations.

105

Information 2023, 14, 227

5.2. Machine Learning

Convolutional neural networks have been used for a long time for optical character
recognition [33]. Convolutional neural networks and support vector machines have been
applied to an increasing number of scripts. For example, Elleuch et al. [20] applied another
combination of CNN and SVM to the recognition of Arabic letters. He et al. [34] and Yang
et al. [35] used CNNs for handwritten Chinese character recognition. Arora et al. [36]
compared neural networks and support vector machines using the Devanagari script,
which is a Brahmi descendant. However, these earlier works did not apply CNNs to
generate various script classification dendrograms, as in the current paper, and in the
preliminary conference papers of the authors [37,38]. The authors also applied non-neural
network-based techniques to identify allographs within the Indus Valley script [39].

Some recent works have used a feature vector-based analysis instead of neural net-
works to decipher Cretan hieroglyphic [40], Linear A [41], and Old Hungarian inscrip-
tions [42], and to investigate the reading direction of the Phaistos Disk [43]. Other promising
computer-based methods for the analysis of scripts are described in [44,45]. It remains to
be seen whether neural networks can also be used for the decipherment of scripts.

6. Conclusions and Open Problems

The invention of writing was a major milestone, although the exact time and circum-
stances, as well as the details of its early spread, remain mostly a mystery. In this paper,
we have presented some strong arguments for several surprising ancestor–descendant
relationships among some of the oldest known scripts. We plan to expand this work to
many more scripts to explore ancient script families. Future work will go beyond the region
of the Near East and the Mediterranean Sea to other likely independent script families in
America, East Asia, and other regions.

Author Contributions: Conceptualization, S.D. and P.Z.R.; methodology, S.D. and P.Z.R.; investi-
gation, S.D. and P.Z.R.; writing—original draft preparation, S.D. and P.Z.R.; writing—review and
editing, S.D. and P.Z.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Salomon, R. Indian Epigraphy: A Guide to the Study of Inscriptions in Sanskrit, Prakrit, and the other Indo-Aryan Languages; Oxford

University Press: Oxford, UK, 1998.
2. Olivier, J.-P. Cretan writing in the second millennium BCE. World Archaeol. 1986, 17, 377–389. [CrossRef]
3. Cook, B.F. Greek Inscriptions; University of California Press: Berkeley, CA, USA, 1987; Volume 5.
4. Mahadevan, I. The Indus Script: Texts, Concordance and Tables, Memoirs; Archaeological Survey of India: Delhi, India, 1977;

Volume 77.
5. Joshi, J.P.; Parpola, A. Corpus of Indus Seals and Inscriptions. vol. 1, Collections in India. In Annales Academiae Scientiarum

Fennicae; Series B; Suomalainen Tiedeakatemia: Helsinki, Finland, 1987; Volume 239.
6. Shah, S.G.M.; Parpola, A. Corpus of Indus Seals and Inscriptions, vol 2. Collections in Pakistan. In Annales Academiae Scientiarum

Fennicae; Series B; Suomalainen Tiedeakatemia: Helsinki, Finland, 1991; Volume 240.
7. Parpola, A.; Pande, B.M.; Koskikallio, P. Corpus of Indus Seals and Inscriptions, Vol. 3. New Material, Untraced Objects, and Collections

Outside India and Pakistan; Suomalainen Tiedeakatemia: Helsinki, Finland, 2010.
8. Parpola, A. Deciphering the Indus Script; Cambridge University Press: Cambridge, UK, 2009.
9. Chadwick, J. The Decipherment of Linear B; Cambridge University Press: Cambridge, UK, 1958.
10. Fischer, S.R. History of Writing; Reaktion Books: London, UK, 2004.
11. Colless, B.E. The origin of the alphabet: An examination of the Goldwasser hypothesis. Antig. Oriente 2014, 12, 71–104.
12. Revesz, P.Z. Bioinformatics evolutionary tree algorithms reveal the history of the Cretan Script Family. Int. J. Appl. Math. Inform.

2016, 10, 67–76.

106

Information 2023, 14, 227

13. Englund, R.K. The Proto-Elamite script. In The World’s Writing Systems; Daniels, P.T., Bright, W., Eds.; Oxford University Press:
Oxford, UK, 1996; pp. 160–164.

14. Dahl, J.L. Complex graphemes in Proto-Elamite. Cuneif. Digit. Libr. J. 2005, 4. Available online: https://cdli.mpiwg-berlin.mpg.
de/articles/cdlj/2005-3 (accessed on 3 April 2023).

15. Labat, R.; Malbran-Labat, F. Manuel D’épigraphie Akkadienne: Signes, Syllabaire, Idéogrammes, Librairie Orientaliste Paul Geuth-
ner; Enlarged édition (1 avril 2002). Available online: https://www.amazon.fr/Manuel-dépigraphie-akkadienne-Syllabaire-
Idéogrammes/dp/2705335838 (accessed on 3 April 2023).

16. Parpola, S. Etymological Dictionary of the Sumerian Language. J. Indo-Eur. Stud. 2022, 3, 247–252.
17. Revesz, P.Z. Sumerian contains Dravidian and Uralic substrates associated with the Emegir and Emesal dialects. WSEAS Trans.

Inf. Sci. Appl. 2019, 16, 8–30.
18. LeCun, Y.; Cortes, C.; Burges, C. MNIST Handwritten Digit Database. Available online: http://yann.lecun.com/exdb/mnist/

(accessed on 5 April 2019).
19. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2324. [CrossRef]
20. Elleuch, M.; Tagougui, N.; Kherallah, M. A novel architecture of CNN based on SVM classifier for recognizing Arabic handwritten

script. Int. J. Intell. Syst. Technol. Appl. 2016, 15, 323–340.
21. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning

Representations, San Diego, CA, USA, 7–9 May 2015.
22. Yann, M.L.; Tang, Y. Learning deep convolutional neural networks for X-ray protein crystallization image analysis. In Proceedings

of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; AAAI Press: Palo Alto, CA,
USA, 2016; pp. 1373–1379.

23. Collon, D. Mesopotamia and the Indus: The evidence of the seals. In The Indian Ocean in Antiquity; The British Museum and
Kegan Paul International: London, UK; New York, NY, USA, 1996; pp. 209–225.

24. Howard, M.C. Transnationalism in Ancient and Medieval Societies: The Role of Cross-Border Trade and Travel; McFarland: Jefferson, NC,
USA, 2014.

25. Revesz, P.Z. Data science applied to discover ancient Minoan-Indus Valley trade routes implied by common weight measures. In
Proceedings of the 26th International Database Engineered Applications Symposium (IDEAS), Budapest, Hungary, 22–24 August
2022; ACM Press: New York, NY, USA, 2022; pp. 150–155.

26. Rao, R.P.; Yadav, N.; Vahia, M.N.; Joglekar, H.; Adhikari, R.; Mahadevan, I. Entropic evidence for linguistic structure in the Indus
script. Science 2009, 324, 5931. [CrossRef] [PubMed]

27. Rao, R.P.; Yadav, N.; Vahia, M.N.; Joglekar, H.; Adhikari, R.; Mahadevan, I. A Markov model of the Indus Script. Proc. Natl. Acad.
Sci. USA 2009, 106, 13685–13690. [CrossRef] [PubMed]

28. Wells, B.K. Epigraphic Approaches to Indus Writing; Oxbow Books: Oxford, UK, 2011.
29. Zide, A.R.; Zvelebil, K.V. (Eds.) The Soviet Decipherment of the Indus Valley Script: Translation and Critique. In Janua Linguarum.

Series Practica; de Gruyter Mouton: Berlin, Germany, 1976; Volume 156. [CrossRef]
30. Salomon, R. On the origin of the early Indian scripts. J. Am. Orient. Soc. 1995, 115, 271–279. [CrossRef]
31. McAlpin, D.W. Proto-Elamo-Dravidian: The evidence and its implications. Trans. Am. Philos. Soc. 1981, 71, 1–155. [CrossRef]
32. Farmer, S.; Sproat, R.; Witzel, M. The collapse of the Indus-script thesis: The myth of a literate Harappan civilization. Electron. J.

Vedic Stud. 2016, 11, 19–57.
33. Jaderberg, M.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Reading text in the wild with convolutional neural networks. Int. J.

Comput. Vis. 2016, 116, 1–20. [CrossRef]
34. He, M.; Zhang, S.; Mao, H.; Jin, L. Recognition confidence analysis of hand-written Chinese character with CNN. In Proceedings

of the 13th International Conference on Document Analysis and Recognition, Nancy, France, 23–26 August 2015; IEEE: Piscataway,
NJ, USA, 2015; pp. 61–65.

35. Yang, W.; Jin, L.; Liu, M. Chinese character-level writer identification using path signature feature, DropStroke and deep CNN. In
Proceedings of the 13th International Conference on Document Analysis and Recognition, Nancy, France, 23–26 August 2015;
IEEE: Piscataway, NJ, USA, 2015; pp. 546–550.

36. Arora, S.; Bhattacharjee, D.; Nasipuri, M.; Malik, L.; Kundu, M.; Basu, D.K. Performance comparison of SVM and ANN for
handwritten Devnagari character recognition. arXiv 2010, arXiv:1006.5902.

37. Daggumati, S.; Revesz, P.Z. Data mining ancient script image data using convolutional neural networks. In Proceedings of the
22nd International Database Engineering and Applications Symposium, Villa San Giovanni, Italy, 18–20 June 2018; ACM Press:
New York, NY, USA, 2018; pp. 267–272.

38. Daggumati, S.; Revesz, P.Z. Data mining ancient scripts to investigate their relationships and origins. In Proceedings of the 23rd
International Database Engineering and Applications Symposium, Athens, Greece, 10–12 June 2019; ACM Press: New York, NY,
USA, 2019; pp. 209–218.

39. Daggumati, S.; Revesz, P.Z. A method of identifying allographs in undeciphered scripts and its application to the Indus Valley
Script. Humanit. Soc. Sci. Commun. 2021, 8, 50. [CrossRef]

40. Revesz, P.Z. A translation of the Arkalochori Axe and the Malia Altar Stone. WSEAS Trans. Inf. Sci. Appl. 2017, 14, 124–133.

107

Information 2023, 14, 227

41. Revesz, P.Z. Establishing the West-Ugric language family with Minoan, Hattic and Hungarian by a decipherment of Linear, A.
WSEAS Trans. Inf. Sci. Appl. 2017, 14, 306–335.

42. Revesz, P.Z. Decipherment challenges due to tamga and letter mix-ups in an Old Hungarian runic inscription from the Altai
Mountains. Information 2022, 13, 422. [CrossRef]

43. Revesz, P.Z. Experimental evidence for a left-to-right reading direction of the Phaistos Disk. Mediterr. Archaeol. Archaeom. 2022, 22,
79–96.

44. Hosszú, G. Scriptinformatics: Extended Phenetic Approach to Script Evolution; Nap Kiadó: Budapest, Hungary, 2021.
45. Tóth, L.; Hosszú, G.; Kovács, F. Deciphering Historical Inscriptions Using Machine Learning Methods. In Proceedings of the 10th

International Conference on Logistics, Informatics and Service Sciences, Beijing, China, 23 February 2020; Liu, S., Bohács, G., Shi,
X., Shang, X., Huang, A., Eds.; Springer: Singapore, 2020; pp. 419–435. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

108

Citation: Revesz, P.Z. Archaeogenetic

Data Mining Supports a

Uralic–Minoan Homeland in the

Danube Basin. Information 2024, 15,

646. https://doi.org/10.3390/

info15100646

Academic Editor: Haridimos

Kondylakis

Received: 26 August 2024

Revised: 7 October 2024

Accepted: 10 October 2024

Published: 16 October 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Archaeogenetic Data Mining Supports a Uralic–Minoan
Homeland in the Danube Basin †

Peter Z. Revesz

School of Computing, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
peter.revesz@unl.edu; Tel.: +1-402-421-6990
† This paper is an extended version of a paper published in the 25th International Database Engineering and

Applications Symposium, IDEAS 2021, Montreal, QC, Canada, 14–19 July 2021.

Abstract: Four types of archaeogenetic data mining are used to investigate the origin of the Mi-
noans and the Uralic peoples: (1) six SNP mutations related to eye, hair, and skin phenotypes;
(2) whole-genome admixture analysis using the G25 system; (3) an analysis of the history of the U5
mitochondrial DNA haplogroup; and (4) an analysis of the origin of each currently known Minoan
mitochondrial and y-DNA haplotypes. The uniform result of these analyses is that the Minoans and
the Uralic peoples had a common homeland in the lower and middle Danube Basin, as well as the
Black Sea coastal regions. This new result helps to reconcile archaeogenetics with linguistics, which
have shown that the Minoan language belongs to the Uralic language family.

Keywords: admixture; archaeogenetics; data mining; haplogroup; Minoan; mitochondria; Uralic

1. Introduction

Archaeogenetic and linguistic studies give contradictory results regarding the origins
of the Minoan civilization, which flourished on the island of Crete in the Bronze Age. An
influential whole-genome archaeogenetic study by Lazaridis et al. [1] concluded that

“Minoans and Mycenaeans were genetically similar, having at least three-quarters of
their ancestry from the first Neolithic farmers of western Anatolia and the Aegean,
and most of the remainder from ancient populations related to those of the Caucasus
and Iran.”

In contrast, recent linguistic studies by Revesz [2–4] have indicated that the Minoan
language belongs to the Uralic language family, which had a homeland near the Ural
Mountains [5], the Northern Black Sea region [6], or the Carpathian Basin [7]—or more
generally, the Danube Basin [8]. According to the traditional view, the Uralic language
family originated about 7000 to 10,000 years ago [9]. It contains both Finno-Ugric and
Samoyedic languages, and the Finno-Ugric languages have two main branches: the Finno-
Permic branch—which includes Finnish, Estonian, Saami, and other languages—and the
Ugric branch—which includes Hungarian, Khanty, and Mansi [10].

Revesz [2–4] identified Minoan as an extinct member of the Ugric branch based
on translating thirty-one Minoan inscriptions as Proto-Ugric language documents. This
linguistic classification was strengthened recently [11] (pp. 208–212) by showing regular
sound changes between Pre-Greek origin Greek words identified by Beekes [12] and
Proto-Uralic, Proto-Finno-Ugric, and Proto-Ugric words reconstructed by Rédei [13]. The
overwhelming number of Pre-Greek words shows a uniformity that implies borrowings
from a single source [14] (p. 45). Since the Minoan culture preceded the Greek-speaking
Mycenaean culture on the islands of Crete and Santorini [15], the Pre-Greek words are
likely to be borrowings from the Minoan language. Furthermore, demonstrating regular
sound changes is the primary way to prove linguistic relationships among languages and
is also used in Indo-European linguistics [16]. Bernal [17], Best [18], Campbell-Dunn [19],

Information 2024, 15, 646. https://doi.org/10.3390/info15100646 https://www.mdpi.com/journal/information109

Information 2024, 15, 646

Gordon [20], Kvashilava [21], La Marle [22], and other authors who proposed a different
linguistic affiliation of the Minoan language did not show regular sound changes.

The aim of the present paper is to reconcile the archaeogenetic and linguistic data and
to show that they are compatible with a Danube Basin homeland of the Uralic languages.
The Danube Basin includes the Danube Delta area from which the Minoans could have
sailed south to the Aegean Sea via the Bosporus strait, while the rest of the Uralic language
speakers could have migrated eastward along the Northern Black Sea coast and then
northward along the major rivers as described by Wiik [6]. Figure 1 shows the hypothetical
dispersal of the Uralic language family based on Krantz [7] and extended by an Ugric-
Minoan link by Revesz [8]. Hence, the primary focus of the reconciliation proposed in this
paper is to show that the archaeogenetic data support a Uralic-Minoan homeland in the
Danube Basin.

Information 2024, 15, x FOR PEER REVIEW 2 of 21

is also used in Indo-European linguistics [16]. Bernal [17], Best [18], Campbell-Dunn [19],
Gordon [20], Kvashilava [21], La Marle [22], and other authors who proposed a different
linguistic affiliation of the Minoan language did not show regular sound changes.

The aim of the present paper is to reconcile the archaeogenetic and linguistic data
and to show that they are compatible with a Danube Basin homeland of the Uralic lan-
guages. The Danube Basin includes the Danube Delta area from which the Minoans could
have sailed south to the Aegean Sea via the Bosporus strait, while the rest of the Uralic
language speakers could have migrated eastward along the Northern Black Sea coast and
then northward along the major rivers as described by Wiik [6]. Figure 1 shows the hypo-
thetical dispersal of the Uralic language family based on Krantz [7] and extended by an
Ugric-Minoan link by Revesz [8]. Hence, the primary focus of the reconciliation proposed
in this paper is to show that the archaeogenetic data support a Uralic-Minoan homeland
in the Danube Basin.

Figure 1. A hypothetical dispersal of the Uralic languages from a Danube Basin homeland based on
Krantz [7] with the Ugric to Minoan link added by Revesz [8].

This rest of this paper is organized as follows. Section 2 discusses SNP mutations
related to eye, hair, and skin phenotypes. Section 3 discusses whole-genome G25 admix-
ture analysis. Section 4 presents an analysis of U5 mtDNA haplotypes. Section 5 presents
an analysis of the origin of all Minoan mtDNA and y-DNA haplotypes. Section 6 summa-
rizes the results of the analyses given in Sections 2–4 and provides a discussion of the
results. Finally, Section 7 gives some conclusions and directions for further work.

Figure 1. A hypothetical dispersal of the Uralic languages from a Danube Basin homeland based on
Krantz [7] with the Ugric to Minoan link added by Revesz [8].

This rest of this paper is organized as follows. Section 2 discusses SNP mutations
related to eye, hair, and skin phenotypes. Section 3 discusses whole-genome G25 admixture
analysis. Section 4 presents an analysis of U5 mtDNA haplotypes. Section 5 presents an
analysis of the origin of all Minoan mtDNA and y-DNA haplotypes. Section 6 summarizes
the results of the analyses given in Sections 2–4 and provides a discussion of the results.
Finally, Section 7 gives some conclusions and directions for further work.

110

Information 2024, 15, 646

2. Method and Experiment 1: SNP Mutations Related to Eye, Hair and Skin Phenotypes
2.1. Method of Analyzing Archaeogenetic Phenotype Data

Human eye, hair, and skin phenotypes are genetically determined by various alleles.
The lighter eye, hair, and skin phenotypes have some selective advantages at higher
latitudes. Hence, they are spread widely among Eurasian populations. Table 1 shows some
data regarding six alleles that affect eye, hair, or skin pigmentation.

Table 1. Genetic loci associated with lighter eye, hair, or skin color.

Gene Loci Allele Mutation Phenotype

HERC2 rs12913832 A > G Blue Eye
SLC24A4 rs2402130 G > A Light Hair
SLC24A5 rs1426654 G > A Light Skin
SLC45A2 rs28777 C > A Low Melanin
SLC45A2 rs16891982 C > G Light Skin
TYR rs1042602 C > A Light Skin

Table 2 lists the eleven archaeological cultures that we considered in this paper. The
first nine archaeological cultures preceded the Minoan civilization. Hence, these nine
archaeological cultures were considered possible ancestors of the Minoan civilization. The
Mycenaean civilization largely followed the Minoan civilization and was included as a
comparison with the Minoan civilization. The comparison would reveal whether the
Minoans and Mycenaeans had different ancestors.

Table 2. Archaeological cultures with their periods based on the estimates or sample dates in
the references.

Name Abbreviation Period References

Caucasian Hunter-Gatherers CHG 15,000–8000 BP [23]
Eastern-European Hunter-Gatherers EHG 10,000–7000 BP [23,24]
Western-European Hunter-Gatherers WHG 15,000~5000 BP [23]
Lower-Danube Mesolithic
Hunter-Gatherers L_Danube_ME 9075–8435 BP [25]

Fertile Crescent Neolithic Farmers FertileC_NE 8300–7800 BP [23,25–27]
Aegean Early Neolithic Farmers Aegean_NE 8438–8030 BP [28]
Körös Neolithic Körös_NE 7800–7300 BP [29]
Hungarian Middle Neolithic Farmers Hungary_MN 7310–6950 BP [29]
Hungarian Bronze Age Hungary_BA 3900–3450 BP [30]
Minoan Civilization (Early and Middle) Minoan 5100–3450 BP [1,31]
Mycenaean Civilization Mycenaean 3750–3050 BP [1,31]

After collecting loci mutation and allele data from samples from these archaeological
cultures, we computed the percentage of the various alleles. Then, we computed the root
mean square error (RMSE) between every pair of archaeological cultures x and y, where
x 6= y using the following formula:

RMSE(x, y) =

√√√√∑k=n
k=1 (p x,k − py, k

)2

n
(1)

where n is the number of genetic loci considered, and px,k is the percentage of the kth allele
associated with lighter eye, hair, or skin pigmentation among the samples from x. A lower
RMSE value indicates a greater overall genotypic similarity between the populations of
two cultures.

111

Information 2024, 15, 646

2.2. Experiment with Archaeogenetic Phenotype Data

Table 3 records the SNP variations data we could collect from 48 samples from the
eleven archaeological cultures in Table 2. The 48 samples are listed in the second column of
Table 3, and their locations are shown in Figure 2. For each culture, the boldface row gives
the percentages for each of the six alleles of Table 1 that were associated with a lighter eye,
hair, or skin pigmentation.

Table 3. Six eye, hair, skin alleles found in the samples from eleven ancient cultures.

Culture Sample Location Ref. rs12913832 rs2402130 rs1426654 rs28777 rs16891982 rs1042602

CHG Kotias Kotias, Georgia [23] AA AA AA CC CC CC
CHG Satsurblia Satsurblia, Georgia [23] AG AA AA CC CC CC

CHG 0.25 G 1.00 A 1.00 A 0.00 A 0.00 G 0.00 A

EHG Ukr_HG1 Vasil’evka, Ukraine [24] AA - AA - GG -
EHG SVP44 Samara Oblast, Russia [23] GG AA AA - GG CC
EHG UzOO77 Yuzhnyy Oleniy, Russia [23] AA AA AA AC CG CC

EHG 0.33 G 1.00 A 1.00 A 0.50 A 0.83 G 0.00 A

WHG Braña Braña, Spain [23] GG AG GG CC CC CC
WHG Loschbour Loschbour, Luxemburg [23] GG AG GG CA CC CC
WHG Bichon Bichon, France [23] AG AA GG CC CC CC
WHG Villabruna Villabruna, Italy [23] GG AG GG CC CC CC

WHG 0.88 G 0.63 A 0.00 A 0.13 A 0.00 G 0.00 A

L_Danube_ME SC1 Schela Cladovei, Romania [25] AG AA GG CA CC CC
L_Danube_ME SC2 Schela Cladovei, Romania [25] AA AA GG AA CC CC
L_Danube_ME OC1 Ostrovul Corbului, Romania [25] AG GA GG CC CC CC

L_Danube_ME 0.33 G 0.83 A 0.00 A 0.50 A 0.00 G 0.00 A

FertileC_NE WC1 Wezmeh cave, Iran [32] AG AA GA CC CC CC
FertileC_NE AH1 Tepe Abdul Hosein, Iran [32] - AA GA - - CC
FertileC_NE AH2 Tepe Abdul Hosein, Iran [32] AA AA GG CC - -
FertileC_NE AH4 Tepe Abdul Hosein, Iran [32] - AA AA - - -
FertileC_NE GD13a Ganj Dareh, Iran [26] AA GG AA CC CC CC
FertileC_NE Bon004 Boncuklu, Turkey [27] AA - AA - CC CC
FertileC_NE Bon014 Boncuklu, Turkey [27] AG - AA - CC -
FertileC_NE Bon001 Boncuklu, Turkey [27] GG - AA - CC CC
FertileC_NE Bon002 Boncuklu, Turkey [23] AG - AG - - -

FertileC_NE 0.36 G 0.80 A 0.72 A 0.00 A 0.00 G 0.00 A

Aegean_NE Bar8 Barcin, Turkey [28] AA GA AA CA CG CC
Aegean_NE Bar31 Barcin, Turkey [28] AA AA AA AA CG CC
Aegean_NE Rev5 Revenia, Greece [28] AA - AA - CC CC

Aegean_NE 0.00 G 0.25 A 1.00 A 0.75 A 0.33 G 0.00 A

Körös_NE KO1 Tiszaszőlős, Hungary [29] GG GA AG CC CC CC
Körös_NE KO2 Berettyóújfalu, Hungary [29] AG AA AG CA CG CC

Körös_NE 0.75 G 0.75 A 0.50 A 0.25 A 0.25 G 0.00 C

Hungary_MN NE1 Polgár-Ferenci-hát, Hungary [29] AG AA AG CA CC CC
Hungary_MN NE2 Debrecen Tócópart, Hungary [29] AA GA AA CC CC CA
Hungary_MN NE3 Garadna, Hungary [29] AG GG AA CA CG CA
Hungary_MN NE4 Polgár-Ferenci-hát, Hungary [29] GG GA AA CA CG CC
Hungary_MN NE5 Kompolt-Kigyósér, Hungary [29] AG AA AA CA CC CA
Hungary_MN NE6 Apc-Berekalja I., Hungary [29] GG GA AA CA CC CC

Hungary_MN 0.58 G 0.58 A 0.92 A 0.42 A 0.17 G 0.25 A

Hungary_BA BR1 Kompolt-Kigyósér, Hungary [29] AG GA AA CA CG CC
Hungary_BA BR2 Ludas-Varjú-dűlő, Hungary [29] AG GA AA AA GG CC
Hungary_BA S11 Balatonkeresztúr, Hungary [30] GG GG - - CC CC
Hungary_BA S14 Balatonkeresztúr, Hungary [30] AG GG - AA - CC
Hungary_BA S21 Balatonkeresztúr, Hungary [30] GG - AA - - AA

Hungary_BA 0.70 G 0.25 A 1.00 A 0.84 A 0.50 G 0.20 A

Minoan Pta08 Petras Siteia, Greece [31] AA GG AA - CG -
Minoan I0070 Charalambos Cave, Greece [1] AA AA AA - GG AA
Minoan I0071 Charalambos Cave, Greece [1] AA AA AA CC CC CA
Minoan I0073 Charalambos Cave, Greece [1] AA AA AA AA GG -
Minoan I0074 Charalambos Cave, Greece [1] AA AG AA AA GG -
Minoan I9005 Charalambos Cave, Greece [1] AA AA AA - GG CA
Minoan I9130 Odigitria, Greece [1] - - - - GG CC

Minoan 0.00 G 0.75 A 1.00 A 0.67 A 0.79 G 0.50 A

Mycenaean I9006 A. Kyriaki, Salamis, Greece [1] AA GG AA - GG AA

Mycenaean I9010 Galatas Apatheia, Greece [1] - GG AA - GG AA
Mycenaean I9033 Peristeria Tryfilia, Greece [1] AA GG AA - CG AA
Mycenaean I9041 Galatas Apatheia, Greece [1] AG AG AA AA CG CA
Mycenaean Log02 Logkas Elati, Greece [31] AA GA AA CA CC -

Mycenaean 0.13 G 0.20 A 1.00 A 0.75 A 0.60 G 0.88 A

112

Information 2024, 15, 646

Information 2024, 15, x FOR PEER REVIEW 4 of 21

2.2. Experiment with Archaeogenetic Phenotype Data
Table 3 records the SNP variations data we could collect from 48 samples from the

eleven archaeological cultures in Table 2. The 48 samples are listed in the second column
of Table 3, and their locations are shown in Figure 2. For each culture, the boldface row
gives the percentages for each of the six alleles of Table 1 that were associated with a
lighter eye, hair, or skin pigmentation.

Figure 2. Locations of the archaeological samples listed in Table 3.

We calculated the RMSE between each pair of archaeological cultures using Equation
(1), with n = 6. A lower RMSE value indicates a greater overall genotypic similarity be-
tween the populations of two cultures. For example, Figure 3 shows an RMSE value of
0.15 between the CHG and the FertileC_NE cultures. This indicates that the two cultures
had similar genotypes and presumably also had similar phenotypes regarding eye, hair,
and skin pigmentation. For more discussion of the results, see Section 6.

Figure 2. Locations of the archaeological samples listed in Table 3.

We calculated the RMSE between each pair of archaeological cultures using Equation (1),
with n = 6. A lower RMSE value indicates a greater overall genotypic similarity between the
populations of two cultures. For example, Figure 3 shows an RMSE value of 0.15 between the
CHG and the FertileC_NE cultures. This indicates that the two cultures had similar genotypes
and presumably also had similar phenotypes regarding eye, hair, and skin pigmentation. For
more discussion of the results, see Section 6.

Information 2024, 15, x FOR PEER REVIEW 6 of 21

Figure 3. The root means square error values between each pair of archaeological cultures. The lower
values (red) indicate a stronger genotypic connection, while the higher values (blue) indicate a
weaker genotypic connection.

3. Method and Experiment 2: A G25 Admixture Analysis of Archaeogenetic Data
3.1. Method of Identifying the Ancestors of the Minoans Using the G25 System

Given a set of archaeological cultures S1, S2, …, Sn, and T, an admixture analysis finds
an apportionment among the S1, S2, …, Sn cultures, which are called the source cultures,
that seems to best explain the archaeological culture T, which is called the test culture. For
example, Lazaridis et al. [1] used the popular qpADM admixture analysis system with S1

= CHG, S2 = Anatolia_N, and T = Minoan_Odigitria, that is, all the samples from the Mi-
noan site of Moni Odigitria. The qpADM admixture analysis system returned the result
that the Minoan_Odigitria culture is composed of 14.4 percent CHG and 85.6 percent An-
atolia_N.

Unfortunately, the qpADM system is limited to 2 or 3 possible sources in most ar-
chaeogenetic publications. This creates a severe limitation, because hundreds of archaeo-
logical cultures located on the coastal areas of the Mediterranean Sea, the Black Sea, and
the Atlantic Ocean could be possible genetic sources of the Minoans to some extent. Hence,
we would need to simultaneously compare hundreds of possible sources for a completely
fair apportionment among all those archaeological cultures. Luckily, the G25 genome ad-
mixture analysis system, which is available at https://www.dnagenics.com/prod-
ucts/g25studio (accessed on 30 July 2021), can compare hundreds of possible sources. The
G25 system describes each archaeological culture by a numerical vector of length 25,
which summarizes thousands of SNPs.

3.2. Experiment with the G25 System
The G25 system listed 271 different Neolithic, Mesolithic, and Paleolithic cultures in

Africa, Asia, and Europe. We considered these 271 cultures as potential sources. While the
Minoan civilization flourished on the island of Crete, many of the other Aegean islands
were part of the Cycladic culture (c. 5100–3000 BP) [15], which we included in this exper-
iment for comparison. We separately tested the Cycladic samples from Koufonisia island
(Kou01 and Kou03) and the Minoan samples from the Charalambos Cave (I0070, I0071,
I0073, I0074, I9005), Moni Odigitria (I9129, I9130, I9131), and Petras (Pta08).

Figure 4 shows the G25 admixture analysis results based on [33] with a listing of only
those rows that had some non-zero value for at least one of the eleven tested samples.
Figure 4 presents the data by grouping together the archaeological culture sources into
five main regions: (1) Africa, (2) Greece and Macedonia, (3) Danube Basin, (4) Caucasus,
Russia and Ukraine, and (5) Fertile Crescent and Iran.

The G25 analysis found a previously completely overlooked genetic connection be-
tween the Odigitria I9129 sample and a hunter-gatherer from the Shum Laka rock shelter
in Cameroon about 8000 years ago. One hypothesis to explain the connection is that a
common source population once lived in the Sahara. When the Sahara dried up, some
people moved north into Europe and reached the island of Crete, while others from the

Figure 3. The root means square error values between each pair of archaeological cultures. The
lower values (red) indicate a stronger genotypic connection, while the higher values (blue) indicate a
weaker genotypic connection.

113

Information 2024, 15, 646

3. Method and Experiment 2: A G25 Admixture Analysis of Archaeogenetic Data
3.1. Method of Identifying the Ancestors of the Minoans Using the G25 System

Given a set of archaeological cultures S1, S2, . . ., Sn, and T, an admixture analysis
finds an apportionment among the S1, S2, . . ., Sn cultures, which are called the source
cultures, that seems to best explain the archaeological culture T, which is called the test
culture. For example, Lazaridis et al. [1] used the popular qpADM admixture analysis
system with S1 = CHG, S2 = Anatolia_N, and T = Minoan_Odigitria, that is, all the sam-
ples from the Minoan site of Moni Odigitria. The qpADM admixture analysis system
returned the result that the Minoan_Odigitria culture is composed of 14.4 percent CHG and
85.6 percent Anatolia_N.

Unfortunately, the qpADM system is limited to 2 or 3 possible sources in most archaeo-
genetic publications. This creates a severe limitation, because hundreds of archaeological
cultures located on the coastal areas of the Mediterranean Sea, the Black Sea, and the
Atlantic Ocean could be possible genetic sources of the Minoans to some extent. Hence, we
would need to simultaneously compare hundreds of possible sources for a completely fair
apportionment among all those archaeological cultures. Luckily, the G25 genome admixture
analysis system, which is available at https://www.dnagenics.com/products/g25studio
(accessed on 30 July 2021), can compare hundreds of possible sources. The G25 system
describes each archaeological culture by a numerical vector of length 25, which summarizes
thousands of SNPs.

3.2. Experiment with the G25 System

The G25 system listed 271 different Neolithic, Mesolithic, and Paleolithic cultures in
Africa, Asia, and Europe. We considered these 271 cultures as potential sources. While the
Minoan civilization flourished on the island of Crete, many of the other Aegean islands were
part of the Cycladic culture (c. 5100–3000 BP) [15], which we included in this experiment
for comparison. We separately tested the Cycladic samples from Koufonisia island (Kou01
and Kou03) and the Minoan samples from the Charalambos Cave (I0070, I0071, I0073, I0074,
I9005), Moni Odigitria (I9129, I9130, I9131), and Petras (Pta08).

Figure 4 shows the G25 admixture analysis results based on [33] with a listing of only
those rows that had some non-zero value for at least one of the eleven tested samples.
Figure 4 presents the data by grouping together the archaeological culture sources into five
main regions: (1) Africa, (2) Greece and Macedonia, (3) Danube Basin, (4) Caucasus, Russia
and Ukraine, and (5) Fertile Crescent and Iran.

The G25 analysis found a previously completely overlooked genetic connection be-
tween the Odigitria I9129 sample and a hunter-gatherer from the Shum Laka rock shelter
in Cameroon about 8000 years ago. One hypothesis to explain the connection is that a
common source population once lived in the Sahara. When the Sahara dried up, some
people moved north into Europe and reached the island of Crete, while others from the
same group moved south to Cameroon. These hypothetical movements could explain the
linguistic connections between African and European mountain names [34].

The G25 analysis also reveals large differences among the various Cycladic and Minoan
groups that were overlooked by previous admixture analysis publications. Figure 4 shows
that there are great differences between the Charalambos Cave and the Moni Odigitria
samples. The Charalambos Cave’s primary source is the Greek Neolithic (62.2 percent),
and the secondary sources are the Danube Basin (19.4 percent), the Caucasus (15.1 percent),
and the Fertile Crescent (3.2 percent). In contrast, the Moni Odigitria’s primary source
is the Danube Basin (72.1 percent), and the secondary sources are the Fertile Crescent
(15.1 percent), the Greek Neolithic (9.5 percent), the Caucasus (3.1 percent), and Africa
(0.2 percent) on average. Hence, the two cultures are very different in origin and possibly
came to Crete at different times as well. The Cyclades’ primary source is the Greek Neolithic
(42 percent). Hence, the Cyclades and the Charalambos Cave samples form a natural cluster.
The Petras’ primary source is the Danube Basin. Hence, the Moni Odigitria and the Petras
samples also form a natural cluster.

114

Information 2024, 15, 646

Figure 5 shows some hypothetical population movements based on the above analysis.
The map suggests that while the Anatolian and Fertile Crescent Neolithic culture reached
Crete, major population movements to the island only happened later.

Information 2024, 15, x FOR PEER REVIEW 8 of 21

Figure 4. The sources (rows) for various Cycladic samples (columns 2–3) and Minoan samples (col-
umns 4–12), as well as some averages (columns 13–15) according to the G25 admixture analysis
system. The sources have been grouped into five regions (column 1).

Figure 5. The Greek and Macedonian Neolithic cultures are the primary sources of the Cycladic and
the Minoan Charalambos samples (red), while the Danube Basin Neolithic cultures are the primary
sources of the Minoan Odigitria and Petras samples (blue) according to the G25 admixture analysis.
The red and dark blue lines show hypothetical migrations.

Figure 4. The sources (rows) for various Cycladic samples (columns 2–3) and Minoan samples
(columns 4–12), as well as some averages (columns 13–15) according to the G25 admixture analysis
system. The sources have been grouped into five regions (column 1).

Information 2024, 15, x FOR PEER REVIEW 8 of 21

Figure 4. The sources (rows) for various Cycladic samples (columns 2–3) and Minoan samples (col-
umns 4–12), as well as some averages (columns 13–15) according to the G25 admixture analysis
system. The sources have been grouped into five regions (column 1).

Figure 5. The Greek and Macedonian Neolithic cultures are the primary sources of the Cycladic and
the Minoan Charalambos samples (red), while the Danube Basin Neolithic cultures are the primary
sources of the Minoan Odigitria and Petras samples (blue) according to the G25 admixture analysis.
The red and dark blue lines show hypothetical migrations.

Figure 5. The Greek and Macedonian Neolithic cultures are the primary sources of the Cycladic and
the Minoan Charalambos samples (red), while the Danube Basin Neolithic cultures are the primary
sources of the Minoan Odigitria and Petras samples (blue) according to the G25 admixture analysis.
The red and dark blue lines show hypothetical migrations.

115

Information 2024, 15, 646

One of the major population movements was from the Peloponnese Peninsula. This
movement reached both the Cyclades and Central Crete, including the Lassithi Plateau,
where the Charalambos Cave is located. Another major movement was from the Danube
Basin. This movement reached eastern Crete, including the town of Petras and southern
Crete, where Moni Odigitria can be found near Phaistos.

Figure 6 shows on the x and y axes the 1st and 2nd principal components of the
principal component analysis generated by the G25 system. The principal component
analysis shows that the Moni Odigitria samples (the red triangle) are directly below the
Middle Neolithic Linear Pottery culture samples from Hungary (HUN_LBK_MN). The
Petras sample (GRC_Minoan_EBA) is located directly below the Moni Odigitria samples.
In contrast, the Hagia Charalambos samples from the Lassithi Plateau (the green pentagon),
the two Cycladic samples (the dashed brown line), and the Mycenean samples (purple
quadrangle) are located below the Moni Odigitria samples and most to its left or right.
Hence, the principal component analysis in Figure 6 supports the analysis in Figure 4.

Information 2024, 15, x FOR PEER REVIEW 9 of 21

Figure 6. Principal component analysis of archaeogenetic samples, including Minoan samples from
the Charalambos Cave on the Lassithi Plateau (green pentagon), Moni Odigitria (red triangle), and
Mycenaean samples (purple quadrangle).

4. Method and Experiment 3: Analysis of the Origin of the Minoan U5a1 Haplogroup
4.1. Method of Analyzing the Origin of the Minoan U5a1 Haplogroup

The method of analyzing the origin of the Minoan U5a1 Haplogroup relies on the
available data from the Ancient DNA Database [35]. We found where U5, U5a1 and
U5a1d2b samples are found at times before the arrival of Indo-Europeans to Europe. If
these are found exclusively in Europe, then these haplogroups cannot originate from other
continents and could not have been brought to Europe by Indo-Europeans.

The motivation to focus on the U5 haplogroup is that it is known to be associated
with Uralic speakers. Table 4 shows that the U5 mtDNA haplogroup percentages are al-
most always higher among the Uralic speakers than among their Indo-European neigh-
bors according to Simoni et al. [36], who examined more than 2600 mtDNA sequences
from current European populations. For example, the U5 mtDNA haplogroup percentage
is 48 percent among the Saami, while it is only 11.4 percent among the Norwegians, their
Indo-European speaking neighbors.

While some caution is warranted because there are still relatively few ancient
mtDNA samples from Greece, they show the same trend, with the U5a1 haplotype re-
ported for 2 out of 11 of Minoan samples by Lazaridis et al. [1] (sample I0071 from the
Charalambos Cave and sample I9123 from the Late Minoan cemetery at Armenoi, Crete),
and the U5 haplotype reported for 1 out of 40 Mycenaean samples by Skourtanioti et al.
[37]. This suggests that Proto-Uralic speakers had a high percentage of the U5 mtDNA
haplogroup, and Proto-Indo-European speakers had no U5 mtDNA haplogroup initially.
However, the percentage decreased among the Uralic speakers and increased among their
Indo-European neighbors due to millennia of genetic admixture.

Figure 6. Principal component analysis of archaeogenetic samples, including Minoan samples from
the Charalambos Cave on the Lassithi Plateau (green pentagon), Moni Odigitria (red triangle), and
Mycenaean samples (purple quadrangle).

4. Method and Experiment 3: Analysis of the Origin of the Minoan U5a1 Haplogroup
4.1. Method of Analyzing the Origin of the Minoan U5a1 Haplogroup

The method of analyzing the origin of the Minoan U5a1 Haplogroup relies on the
available data from the Ancient DNA Database [35]. We found where U5, U5a1 and
U5a1d2b samples are found at times before the arrival of Indo-Europeans to Europe. If
these are found exclusively in Europe, then these haplogroups cannot originate from other
continents and could not have been brought to Europe by Indo-Europeans.

The motivation to focus on the U5 haplogroup is that it is known to be associated with
Uralic speakers. Table 4 shows that the U5 mtDNA haplogroup percentages are almost

116

Information 2024, 15, 646

always higher among the Uralic speakers than among their Indo-European neighbors
according to Simoni et al. [36], who examined more than 2600 mtDNA sequences from
current European populations. For example, the U5 mtDNA haplogroup percentage is
48 percent among the Saami, while it is only 11.4 percent among the Norwegians, their
Indo-European speaking neighbors.

While some caution is warranted because there are still relatively few ancient mtDNA
samples from Greece, they show the same trend, with the U5a1 haplotype reported for 2
out of 11 of Minoan samples by Lazaridis et al. [1] (sample I0071 from the Charalambos
Cave and sample I9123 from the Late Minoan cemetery at Armenoi, Crete), and the U5
haplotype reported for 1 out of 40 Mycenaean samples by Skourtanioti et al. [37]. This
suggests that Proto-Uralic speakers had a high percentage of the U5 mtDNA haplogroup,
and Proto-Indo-European speakers had no U5 mtDNA haplogroup initially. However, the
percentage decreased among the Uralic speakers and increased among their Indo-European
neighbors due to millennia of genetic admixture.

Table 4. mtDNA haplogroup U5 within Uralic language speaking and neighboring populations.

Uralic Speakers U5 Percent Indo-European
Neighbors U5 Percent Source

Saami 48 Norway 11.4 Simoni et al. [36]
Finland 20.7 Sweden 12.1 Simoni et al. [36]
Moksha 18.9 Russia 10.4 Bramanti et al. [38]
Minoan 18.2 Mycenaean 2.5 [1], Skourtanioti et al. [37]
Mordovians 15.7 Russia 10.4 Simoni et al. [36]
Mari 14 Russia 10.4 Simoni et al. [36]
Estonia 13.3 Latvia 10 Simoni et al. [36]
Basques 11.7 Spain 8.1 Simoni et al. [36]
Udmurt 8.9 Russia 10.4 Simoni et al. [36]
Hungary 7.4 Romania 7.2 Simoni et al. [36]

4.2. Experiment with U5, U5a1, and U5a1d2b Haplogroup Data

We used the Ancient DNA Database [35] to map all the U5 haplogroup samples before
8000 BP (Figure 7 top), the U5a1 haplogroup samples before 6000 BP (Figure 7 middle), and
the U5a1d2b haplogroup samples before 5500 BP (Figure 7 bottom).

Figure 7 (top) shows (purple symbols) that the U5 haplogroup appeared first among
Gravettian hunter-gatherers in present-day Dolní Věstonice, Czechia, around 30,800 BP [39]
spread to other areas of Europe but not to other continents by 8000 BP.

Figure 7 (middle) shows (dark blue symbol) that the U5a1 mtDNA haplogroup ap-
peared first in the Iron Gates gorges area in the lower Danube Basin around 10,530 BP. The
U5a1 haplogroup was concentrated in the Danube Basin, as well as some areas that are
considered to have been long inhabited by Uralic speakers such as the Baltic Sea region
and the middle Volga region.

Figure 7 (bottom) shows the distribution of the even more specific haplogroup U5a1d2b
before 5500 BP. The Baltic Sample, Tamula22, is from the Combed Ware culture in Estonia,
and the other sample, MUR019, from Murzikhinsky II, Russia, is associated with the
Eneolithic Volga-Kama culture. These cultures are commonly associated with early Uralic
speakers. In addition, three ‘early Hungarian’ U5a1d2b samples, BAL23.6B, NTHper1, and
VPBoer51, from 1000 to 1000 CE are also known [35].

The U5, U5a1, and U5a1d2b haplogroups do not have an Indo-European origin because
these haplogroups are native to Europe, while the Indo-Europeans came to Europe only
around 5300 BP according to the Kurgan Hypothesis of Indo-European origin [16]. However,
these haplogroups were absorbed by the Mycenaeans and other Indo-Europeans after their
arrival to Europe, as shown by the Mycenaean U5a1d2b sample from Aidonia, northern
Greece, that was found by Skourtanioti et al. [37].

117

Information 2024, 15, 646Information 2024, 15, x FOR PEER REVIEW 11 of 21

Figure 7. Location of samples based on [35], accessed on 20 September 2024: (top) U5 before 15,000
BP (purple), 15,000–10,000 BP (dark blue), and 10,000–8000 BP (light blue); (middle) U5a1 before
10,000 BP (dark blue), and 10,000–6000 BP (light blue); and (bottom) U5a1d2b before 5500 BP.

Figure 7. Location of samples based on [35], accessed on 20 September 2024: (top) U5 before
15,000 BP (purple), 15,000–10,000 BP (dark blue), and 10,000–8000 BP (light blue); (middle) U5a1
before 10,000 BP (dark blue), and 10,000–6000 BP (light blue); and (bottom) U5a1d2b before 5500 BP.

118

Information 2024, 15, 646

5. Method and Experiment 4: Analysis of Maximal Minoan Haplogroups

The previous experiment showed that the U5a1 haplogroup, which was found in two
Minoan samples, had to come from the Danube Basin from where it originated. The next
experiment investigates the origin of all the mtDNA and y-DNA haplogroups that were
observed in the Minoan samples.

5.1. Method of Analyzing Maximal Minoan Haplogroups

We start by giving a definition to better describe the experiment in this section.

Definition 1. Given a set S = {S1, . . ., Sn} of mtDNA (or y-DNA) haplogroups, any Si is a
maximal mtDNA (or y-DNA) haplogroup in S if there is not another Sj ∈ S such that Si is a prefix
or beginning of Sj.

For example, if S = {U5, U5a1, U5a1d2b} is a set of mtDNA haplogroups, then U5 is
not a maximal haplogroup in S, because U5 is the prefix or beginning of U5a1, which is
also in S. However, U5a2d2b is a maximal mtDNA haplogroup.

Clearly, the maximal haplogroups carry the most valuable information, because they
can be found in fewer places than the non-maximal haplogroups. Hence, to make our
search efficient, it is enough to focus on identifying the origin of those Minoan mtDNA and
y-DNA haplogroups that are maximal.

Hence, the method is to find for each maximal Minoan mtDNA and y-DNA from which
the following three regions it could possibly come from: (1) the western Mediterranean
coastal regions, (2) the Black Sea coastal regions, or (3) the Fertile Crescent. We searched
for samples with the same haplogroup or even a more specific haplogroup from these
three regions from a time before 3700 BP. If we found several samples, then we picked the
one that was closest to Crete. If we found no samples, then we wrote down N/A for ‘not
available’. At the end of the process, we found the total number of N/As for each of these
three regions. The higher the number of N/As for a region, the less likely that the Minoans
came from that region.

5.2. Experiment with Maximal Minoans Haplogroups

We only analyzed the Early Minoan and Middle Minoan samples from Aposelemis,
Charalambos, Odigitria, and Petras because some later samples from the other sites could
be Mycenaean samples, meaning that due to the Mycenaeans’ occupation of the island
Crete during the Late Minoan period [15]. All the Minoan samples that we considered are
dated to 3700 BP or earlier.

Table 5 lists and Figure 8 shows the Minoan mtDNA and y-DNA samples and their
closest matches to Mediterranean, Black Sea region, and Fertile Crescent samples.

The second column of Table 5 gives the sample ID and reference to the source for each
y-DNA and mtDNA haplogroup sample. If there are no 3700 BP samples in the database,
then a ‘not available’ (N/A) is shown.

We revised some of the reported mtDNA haplogroups of Hughey et al. [40], because
their earlier classifications were sometimes not as specific as possible. The revisions are
indicated by ‘(rev)’ in the first column of Table 5. Some revisions were already given by
Revesz [41], but the ones listed in Table 6 are further improvements.

The revisions use Hughey et al. [40]’s reported mutations with respect to the rCRS
reference sequence. The reported mutations are shown in black in the last column of Table 6.
Unfortunately, the technique used by Hughey et al. [40] can miss many mutations, because
only fragments of the mtDNA are scanned. It appears that the mutations shown in red
were missed, because they were needed on a path from the root to the new haplogroup in
the PhyloTree [42] used for mtDNA haplogroup classification. For example, the reported
mutation 14055T implies that the haplogroup classification should be H41a1a, even though
the red ones are missing in the second row.

119

Information 2024, 15, 646
Information 2024, 15, x FOR PEER REVIEW 15 of 21

Figure 8. Location of the archaeological samples listed in Table 5.

Another problem with Hughey et al. classifications [40] is that since they reported
the mutations with respect to rCRS, which belongs to haplogroup H2a2a1, some muta-
tions with respect to RSRS cannot be expected to be reported if there is an agreement on
these rCRS mutations between the analyzed sample and the rCRS. These not-expected-to-
be-reported mutations could be assumed to be present in the third sample because it also
has the mutation 16172C, which indicates that its haplogroup classification is most likely
H2a2a1d, although H66a is also a possible classification based on the 2706A and 16172C
mutations

Table 6. Updating the mtDNA haplogroup classifications of Hughey et al. [40]. The sample IDs are
from the European Nucleotide Archive database, which is available online:
https://www.ebi.ac.uk/ena/browser/home (accessed on).

 mtDNA
Sample ID Old New Mutations with Respect to RSRS

HM022275 H H41a1a
15617A (H41), 262T, 5460A, 10124C, 14118G (H41a), 16362T! (H41a1), 14055T
(H41a1a)

HM022291 U5a U5a1f1
16192T, 16270T (U5), 3197C, 9477A, 13617C (U5a�b), 14793G, 16256T (U5a), 15218G,
16399G (U5a1), 6023A (U5a1f), 5585A, 7569G, 16311C! (U5a1f1)

HM022294 H H2a2a1d
2706A, 7028C (H), 1438A (H2), 4769A (H2a), 750A (H2a2), 8860A, 15326A (H2a2a),
263A (H2a2a1), 16172C (H2a2a1d)

HM022303 T T2e6 11812G, 14233G, 16296T (T2), 150T (T2-a), 16153A (T2e), 16240C (T2e6)

HM022308 U U8b1b4 9698C (U8), 3480G (U8b�c), 9055A, 14167T (U8b), 195C!, 16189C!, 16234T (U8b1),
1811A!, 5165T, 16324C (U8b1b), 16290T (U8b1b4)

Figure 8. Location of the archaeological samples listed in Table 5.

Table 5. mtDNA and y-DNA (blue) haplotypes shared by DNA samples (1st–3rd columns) from
Minoan, Mediterranean, Black Sea, and Fertile Crescent locations (4th–7th columns). N/A means
there are no non-Minoan samples from at least 3700 BP.

mtDNA/y-DNA Sample ID BP Minoan Mediterranean Region Black Sea Region Fertile Crescent

G2a2b2a1a1 Pta08 [43] 4685 Petras
N/A

G2a2b2a1a1c2 PIE015 [44] 6534 Pietrele, Romania
N/A

H1bm I0073 [35] 4000 Charalambos
N/A

H1bm I8531 [35] 5050 Geoksyur, Turkmenistan
N/A

H2a2a1d (rev) 8H [40] 3700 Charalambos
N/A

N/A
H2a2a1d CCH290 [35] 8590 Çatalhöyük, Turkey

H4a1 HGC005 [37] 4178 Charalambos
H4a1a CRE14 [35] 6302 Béziers, France
H4a1 PIE048 [44] 6586 Pietrele, Romania

N/A

H5 HGC017 [37] EMBA Charalambos
H5 I4565 [35] 4915 Galls Carboners, Cat., Spain
H5 I0679 [35] 7617 Krepost, Bulgaria

N/A

H7 12AH [40] 3700 Charalambos
H7c I5072 [35] 7551 Kargadur, Croatia
H7 PIE014 [44] 6455 Pietrele, Romania

N/A

H13a1a I0070 [1] 4000 Charalambos
N/A

H13a1a1 BOY009 [44] 4799 Boyanovo, Bulgaria
N/A

H41a1a (rev) 6AH [40] 3700 Charalambos
N/A

H41a BOL003 [35] 4408 Bolshnevo, Tver, Russia
N/A

H102 HGC041 [37] EMBA Charalambos
H102 I14689 [45] 4568 Çinamak, Albania

N/A
N/A

HV-b HGC018 [37] EMBA Charalambos
N/A

HV-b PIE057 [44] 6421 Pietrele, Romania
N/A

120

Information 2024, 15, 646

Table 5. Cont.

mtDNA/y-DNA Sample ID BP Minoan Mediterranean Region Black Sea Region Fertile Crescent

I1 HGC040 [37] 4134 Charalambos
I1 Neolithic 5 [35] 5200 Camí de Can Grau, Spain
I1a1 MAJ008 [44] 6110 Majaky, Ukraine

N/A

I5a HGC024 [37] 3700 Charalambos
N/A

I5a PIE063 [44] 6460 Pietrele, Romania
N/A

J1a2a1a2~ HGC001 [37] EMBA Charalambos
N/A

J1a2a1a2d2b2b2~ I16120 [45] 3390 Dzori Gekh, Armenia
J1a2a1a2d2b2 ETM012 [35] 4470 Ebla, Syria

J2a1a1a2b1b2 HGC006 [37] EMBA Charalambos
N/A

J2a1a1a2b1b ART020 [45] 5177 Arslantepe, Turkey
N/A

J2b1a1 ERS1770867 [1] 3895 Odigitria
J2b1a1 I8153 [35] 4650 Sima del Ángel, Luc., Spain
J2b1a1b I23210 [43] 3900 Vojvodina, Serbia

N/A

K1a2 ERS1770871 [1] 3895 Odigitria
K1a2a CB13 [35] 7345 Cova Bonica, Cat., Spain
K1a2 I2532 [35] 7614 Cot,atcu, Romania

N/A

K1a4 HGC027 [37] EMBA Charalambos
N/A

K1a4 PIE065 [44] 6568 Pietrele, Romania
K1a4 Ash129 [35] 10093 Aşıklı, Turkey

K2b1 APO023 [37] 3558 Aposelemis
K2b1 I4065 [35] 6815 Fossato di Stretto Partana, IT
K2b1c POP06 [43] 6450 Popova, Croatia

N/A

T1 9H [40] 3700 Charalambos
N/A

T1a VAR016 [44] 6452 Varna, Bulgaria
T1a2 I1727 [35] 10050 ‘Ain Ghazal, Jordan

T2b25 HGC008 [37] 4219 Charalambos
T2b 584 [35] 4950 Treilles cave, France
T2b PIE008 [44] 6422 Pietrele, Romania

N/A

T2c1d HGC020 [37] EMBA Charalambos
T2c1d1 I15946 [35] 5968 Anghelu Ruju, Sardinia
T2c1d1 PIE030 [44] 6259 Pietrele, Romania

N/A

T2e6 (rev) 21H [40] 3700 Charalambos
T2e Bar10 [35] 4710 Barranc d’en Rifà, Spain
T2e I0700 [35] 7912 Malak Preslavets, Bulgaria
T2e CCH311 [35] 8520 Çatalhöyük, Turkey

U1a1a-a HGC010 [37] EMBA Charalambos
N/A

U1a1a3a* PG2002 [43] 4361 Progress 2, Russia
N/A

U3b3 I9130 [35] 3895 Odigitria
N/A

U3b3 KTL005 [44] 4905 Kartal, Ukraine
N/A

U5a1f1 (rev) 4H [40] 3700 Charalambos
N/A

U5a1f1 MAJ020 [44] 5871 Majaky, Ukraine
N/A

U7b HGC053 [37] EMBA Charalambos
N/A

U7b* SA6001 [43] 5444 Sharakhalsun 6, Russia
N/A

U8b1b4 (rev) M4 [40] 3700 Charalambos
N/A

U8b1b4 I2378 [35] 7050 Hejőkürt, Hungary
N/A

W 6H [40] 3700 Charalambos
N/A

W3b PIE022 [44] 6392 Pietrele, Romania
W1c4* MK308703.1 [43] 8365 Çatalhöyük, Turkey

X2b (rev) M8 [40] 3700 Charalambos
X2b Rev5 [35] 8316 Revenia, Greece
X2b USV005 [44] 5588 Usatove, Ukraine
X2b4* MK308702.2 [43] 8365 Çatalhöyük, Turkey

-- Total N/As -- 17 2 21

-- Percent N/As -- 58.6 6.9 72.4

Another problem with Hughey et al. classifications [40] is that since they reported
the mutations with respect to rCRS, which belongs to haplogroup H2a2a1, some muta-
tions with respect to RSRS cannot be expected to be reported if there is an agreement on
these rCRS mutations between the analyzed sample and the rCRS. These not-expected-

121

Information 2024, 15, 646

to-be-reported mutations could be assumed to be present in the third sample because it
also has the mutation 16172C, which indicates that its haplogroup classification is most
likely H2a2a1d, although H66a is also a possible classification based on the 2706A and
16172C mutations.

Table 6. Updating the mtDNA haplogroup classifications of Hughey et al. [40]. The sample IDs are
from the European Nucleotide Archive database, which is available online: https://www.ebi.ac.uk/
ena/browser/home (accessed on).

mtDNA
Sample ID Old New Mutations with Respect to RSRS

HM022275 H H41a1a 15617A (H41), 262T, 5460A, 10124C, 14118G (H41a),
16362T! (H41a1), 14055T (H41a1a)

HM022291 U5a U5a1f1
16192T, 16270T (U5), 3197C, 9477A, 13617C (U5a’b),
14793G, 16256T (U5a), 15218G, 16399G (U5a1),
6023A (U5a1f), 5585A, 7569G, 16311C! (U5a1f1)

HM022294 H H2a2a1d
2706A, 7028C (H), 1438A (H2), 4769A (H2a), 750A
(H2a2), 8860A, 15326A (H2a2a), 263A (H2a2a1),
16172C (H2a2a1d)

HM022303 T T2e6 11812G, 14233G, 16296T (T2), 150T (T2-a), 16153A
(T2e), 16240C (T2e6)

HM022308 U U8b1b4
9698C (U8), 3480G (U8b’c), 9055A, 14167T (U8b),
195C!, 16189C!, 16234T (U8b1), 1811A!, 5165T,
16324C (U8b1b), 16290T (U8b1b4)

HM022312 X X2b
6221C, 6371T, 13966G, 14470C, 16189C!, 16278T! (X),
153G (X1’2’3), 195C!, 1719A (X2), 225A (X2-a),
13708A (X2b’d), 8393T, 15927A (X2b)

We explain some of the regional classifications as follows. The rare mtDNA H1bm
sample from Geoksyur, Turkmenistan was counted as ‘Black Sea region’ for regional
classification in Table 5 because of likely ancient migration from the Caspian Sea area via
the Volga and the Don to the Black Sea area. These regions were connected by trade routes
since at least the Bronze Age [46].

The rare mtDNA H41a sample from Bolshnevo, Tver, Russia, which is part of the
Fatyanovo culture, was also counted as ‘Black Sea region’ because the Fatyanovo culture
resulted from a migration from the Middle-Dnieper culture [47].

Finally, the rare y-DNA J2a1a1a2b1b sample from Arslantepe, Turkey was counted
as the ‘Black Sea region’ because the Kura-Araxes culture moved south from the north of
the Caucasus to Arslantepe around 3000 BCE, when there was widespread burning and
destruction, after which Kura–Araxes culture pottery appeared in the area [48]. More-
over, this J2a1a1a2b1b sample, ART20, had blue eyes according to Lazaridis et al. [45]
(supplement Table 5), further implying that this individual was part of the Kura–Araxes
migration to the south.

6. Results and Discussion
6.1. Summary of the Results

Section 2 showed that six SNP mutations associated with light eyes, hair, and skin
phenotypes and originating in Europe or Eurasia have a very high presence among the
Minoan samples. The SNP mutations analysis showed that the Eastern-European Hunter-
Gatherer culture (EHG) was closest to the Minoans, because Minoans had the lowest
distance, 0.27, to the EHGs according to the root mean square error measure. Since the area
of EHGs included present day Ukraine, the proximal genetic source of the Minoans was
likely the northern Black Sea coastal region.

122

Information 2024, 15, 646

Section 3 presented a G25 admixture analysis that showed that the Minoan samples
from Odigitria and Petras likely have a Danube Basin origin, while the Minoan Charalambos
samples likely have a Greek mainland origin.

Section 4 showed that the U5, U5a1, and U5a1d2b mtDNA haplogroups are native to
Europe. The U5 mtDNA haplogroup is frequent among Uralic speakers and could be found
among several Minoans, whereas the U5 haplogroup was absent in Neolithic Anatolia.

Section 5 traced back the origins of each known Minoan mtDNA and y-DNA hap-
logroup. The analysis involved looking at the most specific haplogroups that can be
identified based on the current PhyloTree [42] classification. Table 5 listed 29 different Mi-
noan mtDNA and y-DNA haplotypes. The bottom row showed that out of these 29 Minoan
haplotypes 17, or 58.6 percent, could not have come from the Mediterranean region, and 21,
or 72.4 percent, could not have come from the Fertile Crescent, while only 2, or 6.9 percent,
could not have come from the Black Sea region. This also seems to suggest that the proximal
genetic source of the Minoans was overwhelmingly the Black Sea region.

6.2. Discussion on the Phenotypes

Blue eyes, which are associated with the HERC2 rs12913832-A allele, likely originated
about 42,000 years ago among the WHGs, where it has the highest frequency [49]. This
allele spread widely and can be found among hunter-gatherers, as well as farmers, except
the Aegean early Neolithic farmers and the Bronze Age Minoans.

Light skin color is associated with the SLC45A2 rs28777-A and the SLC45A2 rs16891982-G
alleles among other alleles. Both alleles can be found among the EHGs with a high percentage,
and the second allele was also found in a Paleolithic hunter-gatherer (Kostenki14) in the Don
River area [23]. Hence, these alleles seem ancient in the area where EHGs also lived. These
alleles apparently spread from the EHGs to the WHGs at Loschbour, to the Lower Danube
Mesolithic hunter-gatherers, and to European Neolithic and Bronze Age cultures, except the
Fertile Crescent Neolithic culture [23].

The SLC24A4 rs2402130-A allele is associated with light hair, and the SLC24A5
rs1426654-A allele is associated with light skin. These alleles are present in all CHG and
EHG samples. Hence, these alleles likely originated in a common ancestor of these hunter-
gatherers around the Caucasus area and spread to other regions, except the rs1426654-A
allele did not reach the Mesolithic Lower Danube and the WHG cultures.

The TYR rs1042602-A allele is also associated with light skin and a lower occurrence
of freckles. This allele is absent from both hunter-gatherers and the early farmers of the
Fertile Crescent, the Aegean, and the Körös River area. It seems to first have occurred in
the Hungarian Middle Neolithic culture around 5000 BC in three samples (NE2, NE3, and
NE5) [29]. This allele continued in the Hungarian Bronze Age and has been found among
the Minoans and the Mycenaeans. This allele apparently spread from the Danube Basin
southward to the Aegean area.

Hence, the SLC45A2 rs28777-A, SLC45A2 rs16891982-G, SLC24A4 rs2402130-A, and
SLC24A5 rs1426654-A alleles suggest a genetic connection between the EHGs and the
Minoans. The TYR rs1042602-A allele suggests another genetic connection between the
Hungarian Middle Neolithic farmers and the Minoans. Furthermore, the lack of the HERC2
rs12913832-A allele makes it unlikely that either WHGs or FertileC_NE farmers reached
Crete in significant numbers. While farming spread to Crete during the early phase of the
Neolithic, the lack of the HERC2 rs12913832-A allele suggests that farming reached Crete
from the Aegean_NE culture, which also lacks this allele, rather than directly from the
FertileC_NE, where the allele is present in a significant percentage of the samples. While
the Aegean_NE culture learned farming from the FertileC_NE culture, a likely genetic
admixture with local Aegean hunter-gatherers who lacked the HERC2 rs12913832-A allele
may have diluted this allele to an insignificant percentage before reaching Crete.

The genetic admixture between hunter-gatherers and early farmers is most noticeable
in the Körös_NE culture. In fact, KO1 did not cluster together with early European farmers
according to a study by Gamba et al. [29]. The genetic admixture between hunter-gatherers

123

Information 2024, 15, 646

and farmers is also well-documented at the Iron Gates gorges area [50], where the Danube
crosses the Carpathian Mountains. Most early farmers likely passed through the Iron Gates
before entering the Carpathian Basin, where the early Neolithic Körös_NE and the Middle
Neolithic Hungary_MN cultures also flourished.

A common problem in archaeogenetics is the low sample size, which may cause
statistical errors. For example, we have only twelve Minoan allele samples (two allele
samples from six individuals) regarding the rs12913832 genetic locus. While none of these
allele samples had the mutation that causes blue eye color, there is still a certain probability
that a blue-eyed Minoan sample will be found later.

6.3. Discussion on the G25 System

The results of the G25 admixture analysis system need to be handled with caution,
because the reliability of the system is not yet well-tested. However, the main result of a
movement from the Danube Basin to Crete is also supported by some studies on climate
change and the spread of agriculture.

The exact time and reason for these population movements shown in Figure 5 is
unknown currently. However, the second movement may be related to the 4.2 kiloyear BP
aridification event [51] that dried out the Danube Basin and made agriculture infeasible
there. That may have caused the Danube Basin farmers to move to the Messara Plain in
southern Crete, which may have provided better agricultural and fishing opportunities.
The distinguishing of these two major population movements has major implications
regarding the languages spoken in different areas of Crete and the decipherment of the
Minoan scripts.

These hypothetical migrations are also supported by the presence of millet grains at
the Minoan sites such as Chania, Knossos and Zominthos starting from the Neopalatial
period [52]. Livarda and Kotzamani [52] speculate that millet had reached Crete from
Bronze Age Central Europe, where it was commonly cultivated.

6.4. Discussion on U5, U5a1, and U5a1d2b Haplogroups

Some of the Gravettian hunter-gatherers found refuge in the lower Danube Basin
and the northern Pontic coastal areas during the subsequent Ice Age. The Proto-Uralic
language likely developed in this refuge area during the Ice Age and broke up sometime
during the Mesolithic period when some of the Uralic speakers went northeast. These early
Uralic speakers may have followed the mammoth herds, which also moved from this area
north to the Baltic and southern Scandinavia, where remains were found between 17 and
12 thousand years ago [53].

The U5 mtDNA haplogroup is strongly associated with Uralic language speakers,
because the Uralic language speakers had matrilineal cultures in the past. Since the
husband moves to the village of the wife in a matrilineal society, their children will speak
the mother’s language. Hence, in matrilineal societies the mother’s language is passed on in
parallel to the mother’s mtDNA. In contrast, the Yamnaya and other early Indo-European
cultures were patrilineal. Since the wife moves to the village of the husband in a patrilineal
culture, their children will speak the father’s language. Hence, Indo-European language
speakers are more commonly associated with the R1 y-DNA haplogroup [54].

6.5. Discussion on the Minoan Maximal Haplogroups

While the U haplogroup was the dominant European hunter-gatherer haplogroup,
other haplogroups arrived from the Fertile Crescent and the Caucasus. Despite the new
haplogroups, the Neolithic Old European Civilization (Gimbutas [55,56]) or the Danube
Civilization (Haarmann [57]) was likely Uralic speaking, because the neolithization of the
Danube Basin was a slow process taking place over thousands of years. Hence, those who
came earlier from the Anatolia may have learned the local Uralic language, and they and
their descendants may have taught it to those who came later from Anatolia. Hence, while

124

Information 2024, 15, 646

the incoming Anatolian famers’ total genetic effect on the local population was considerable
after several millennia, their linguistic effect may have been small.

The geography of the Carpathian Basin may have helped in the process of unifying the
spoken language there. If one follows the Danube River, then entering the Carpathian Basin
requires going through the Iron Gates gorge, which is a natural geographic barrier. The Iron
Gates barrier likely slowed down the inward movement of any wave of newcomers. Since
it is a defensible barrier, passing through it may have required cultivating friendly relations
with the locals, and that likely resulted in intermingling between the local population and
the newcomers.

Brami et al. [50] found evidence of this intermingling studied at the site of Lepenski
Vir, near the Iron Gates gorge. Brami at al. [50] found one individual with only hunter-
gatherer genes, three individuals with some genetic admixture between hunter-gatherers
and Aegean farmers, and two individuals with only Aegean farmer genes between 6100
and 6000 BCE. In addition, two individuals had only hunter-gatherer genes, and three
individuals had only Aegean farmer genes before this transition period. Furthermore,
out of the three admixed individuals, two belonged to the U5 and one to the H mtDNA
haplogroup. These two haplogroups were already present in the hunting-gathering period
before 7400 BCE. This suggests that Aegean farmers moving into the Lepenski Vir commu-
nity married local hunter-gatherer women. Moreover, if such an intermingling happened at
the Iron Gates area between hunter-gatherers and Aegean farmers, then it likely happened
with even greater ease later between the already neolithic local Iron Gates population and
later Aegean farmer newcomers. This suggests that the local hunter-gatherer language did
not change with the arrival of Aegean farmers. Therefore, the Old European mtDNA and
y-DNA haplogroups can be associated with Uralic languages.

7. Conclusions and Further Work

Four different experiments of Sections 2–5 suggest that the proximal sources of the
Minoans were the Danube Basin and the Black Sea coastal area, which overlap in the
Danube Delta area, providing easy migration opportunities between them. Future work
needs to look at the rapidly increasing ancient DNA data to be able to make a statistically
stronger conclusion and to further narrow down the proximal source of the Minoans.

Lazaridis et al. [1] presented the first whole-genome sequences for Minoan samples.
That is a lasting contribution to archaeogenetics, but their data analysis is flawed, because
they overlooked the Danube Basin and the Black Sea coastal area as a possible proximal
source. Hence, their claim that the proximal source of the Minoans was Anatolia or the
Fertile Crescent has to be abandoned. This correction regarding the origin of the Minoans
helps to reconcile archaeogenetics with linguistic work that links the Minoan language to
the Uralic language family. The reconciliation of archaeogenetics and linguistics would
follow, because the Danube Basin and the northern Black Sea coastal areas were identified
by some researchers as potential Uralic speaking areas before the arrival of the Yamnaya
people, who are believed to have spoken an Indo-European language [6,7]. The arrival of
the Yamnaya may have prompted the Minoans to sail to Crete. It also may have prompted
other Uralic peoples to move away from the Steppe, although the precise route and timing
of their migrations remains an open problem.

Unfortunately, furthering the incorrect view that the proximal source of the Minoans
was Anatolia or the Fertile Crescent would continue to lead linguists to suspect that the
Minoan language is related to Near Eastern or African languages [17–22]. A search in those
regions for language connections with Minoan did not yield any result for over a century.
Both the sequencing and the data mining of archaeogenetic data have to be correct to aid
instead of hinder linguistic discoveries.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

125

Information 2024, 15, 646

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the author.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Lazaridis, I.; Mittnik, A.; Patterson, N.; Mallick, S.; Rohland, N.; Pfrengle, S.; Furtwängler, A.; Peltzer, A.; Posth, C.; Vasilakis, A.;

et al. Genetic origins of the Minoans and Mycenaeans. Nature 2017, 548, 214–218. [CrossRef] [PubMed]
2. Revesz, P.Z. Establishing the West-Ugric language family with Minoan, Hattic and Hungarian by a decipherment of Linear A.

WSEAS Trans. Inf. Sci. Appl. 2017, 14, 306–335.
3. Revesz, P.Z. A translation of the Arkalochori Axe and the Malia Altar Stone. WSEAS Trans. Inf. Sci. Appl. 2017, 14, 124–133.
4. Revesz, P.Z. A computer-aided translation of the Phaistos Disk. Int. J. Comput. 2016, 10, 94–100.
5. Hajdú, P. Über die alten Siedlungsraume der uralischen Sprachfamilie. Acta Linguist. Hung. 1964, 14, 47–83.
6. Wiik, K. The Uralic and Finno-Ugric phonetic substratum in Proto-Germanic. Linguist. Ural. 1997, 33, 258–280. [CrossRef]
7. Krantz, G. Geographical Development of European Languages; P. Lang: New York, NY, USA, 1988.
8. Revesz, P.Z. Was the Uralic Homeland in the Danube Basin? Magyarok Világszövetsége: Budapest, Hungary, 2021.
9. Harms, R.T. Uralic Languages, In: Encyclopaedia Britannica; Oxford University Press: Oxford, UK, 2024.
10. Syrjänen, K.; Honkola, T.; Korhonen, K.; Lehtinen, J.; Vesakoski, O.; Wahlberg, N. Shedding more light on language classification

using basic vocabularies and phylogenetic methods: A case study of Uralic. Diachronica 2013, 30, 323–352. [CrossRef]
11. Revesz, P.Z. A tale of two sphinxes: Proof that the Potaissa Sphinx is authentic and other Aegean influences on early Hungarian

inscriptions. Mediterr. Archaeol. Archaeom. 2024, 24, 79–96.
12. Beekes, R.S.P. Etymological Dictionary of Greek; Brill NV: Leiden, Netherlands, 2009.
13. Rédei, K. (Ed.) Uralisches Etymologisches Wörterbuch; Akadémiai Kiadó: Budapest, Hungary, 1988.
14. Beekes, R.S.P. Pre-Greek Phonology, Morphology, Lexicon; Brill NV: Leiden, The Netherlands, 2014.
15. Manning, S. Chronology and Terminology. In The Oxford Handbook of the Bronze Age Aegean; Cline, E., Ed.; Oxford University

Press: Oxford, UK, 2012; pp. 11–28.
16. Clackson, J.P.T. Indo-European Linguistics: An Introduction; Cambridge University Press: Cambridge, UK, 2007.
17. Bernal, M. Black Athena: The Afroasiatic Roots of Classical Civilization; Rutgers University Press: New Brunswick, NJ, USA, 1991;

Volume 2.
18. Best, J.G.P. Some Preliminary Remarks on the Decipherment of Linear A.; A.M. Hakkert Publishing: Las Palmas, Spain, 1972.
19. Campbell-Dunn, G. Who were the Minoans? An African Answer; Author House: Bloomington, IN, USA, 2006.
20. Gordon, C.H. Evidence for the Minoan Language; Ventnor Publishing: Ventnor, NJ, USA, 1966.
21. Kvashilava, G. On Reading Pictorial Signs of the Phaistos Disk and Related Scripts; Ivane Javakhishvili Institute of History and

Ethnology: Tbilisi, Georgia, 2010.
22. La Marle, H. Reading Linear A: Script, Morphology, and Glossary of the Minoan Language; Geuthner: Paris, France, 2010.
23. Günther, T. Population genomics of Mesolithic Scandinavia: Investigating early postglacial migration routes and high-latitude

adaptation. PLoS Biol. 2018, 16, e2003703. [CrossRef]
24. Paraskevi, K. Meta-Analysis of Phenotypic Traits in Prehistoric European Populations from Paleogenetic Analysis Data. Ph.D.

Dissertation, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2022. Appendix data table.
25. González-Fortes, G.; Jones, E.R.; Lightfoot, E.; Bonsall, C.; Lazar, C.; Grandal-d’Anglade, A.; Garralda, M.D.; Drak, L.; Siska, V.;

Simalcsik, A.; et al. Paleogenomic evidence for multi-generational mixing between Neolithic farmers and Mesolithic hunter-
gatherers in the Lower Danube Basin. Curr. Biol. 2017, 27, 1801–1810. [CrossRef]

26. Llorente, M.G. The Origins and Spread of the Neolithic in the Old World Using Ancient Genomes. Ph.D. Dissertation, Cambridge
University, Cambridge, UK, 2017.

27. Feldman, M.; Fernández-Domínguez, E.; Reynolds, L.; Baird, D.; Pearson, J.; Hershkovitz, I.; May, H.; Goring-Morris, N.; Benz,
M.; Gresky, J.; et al. Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia. Nat. Commun.
2019, 10, 1218. [CrossRef] [PubMed]

28. Hofmanová, Z.; Kreutzer, S.; Hellenthal, G.; Sell, C.; Diekmann, Y.; Díez-del-Molino, D.; Van Dorp, L.; López, S.; Kousathanas, A.;
Link, V.; et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl. Acad. Sci. USA 2016, 113,
6886–6891. [CrossRef] [PubMed]

29. Gamba, C.; Jones, E.R.; Teasdale, M.D.; McLaughlin, R.L.; Gonzalez-Fortes, G.; Mattiangeli, V.; Domboróczki, L.; Kővári, I.; Pap,
I.; Anders, A.; et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 2014, 5, 5257.
[CrossRef] [PubMed]

30. Gerber, D.; Szeifert, B.; Székely, O.; Egyed, B.; Gyuris, B.; Giblin, J.I.; Horváth, A.; Palcsu, L.; Köhler, K.; Kulcsár, G.; et al.
Interdisciplinary Analyses of Bronze Age Communities from Western Hungary Reveal Complex Population Histories. Mol. Biol.
Evol. 2023, 40, msad182. [CrossRef] [PubMed]

31. Clemente, F.; Unterländer, M.; Dolgova, O.; Amorim, C.E.G.; Coroado-Santos, F.; Neuenschwander, S.; Ganiatsou, E.; Dávalos,
D.I.C.; Anchieri, L.; Michaud, F.; et al. The genomic history of the Aegean palatial civilizations. Cell 2021, 184, 2565–2586.
[CrossRef]

126

Information 2024, 15, 646

32. Broushaki, F.; Thomas, M.G.; Link, V.; López, S.; Van Dorp, L.; Kirsanow, K.; Hofmanová, Z.; Diekmann, Y.; Cassidy, L.M.;
Díez-del-Molino, D.; et al. Early Neolithic genomes from the eastern Fertile Crescent. Science 2016, 353, 499–503. [CrossRef]

33. Revesz, P.Z. Data mining autosomal archaeogenetic data to determine Minoan origins. In Proceedings of the 25th International
Database Engineering and Applications Symposium; Desai, B.C., Ed.; ACM: New York, NY, USA, 2021; pp. 46–55.

34. Revesz, P.Z. Spatio-temporal data mining of major European river and mountain names reveals their Near Eastern and African
origins. In Proceedings of the 22nd European Conference on Advances in Databases and Information Systems; Benczúr, A., Thalheim, B.,
Horváth, T., Eds.; Springer: New York, NY, USA, 2018; Lecture Notes in Computer Science series; Volume 11019, pp. 20–32.

35. Ancient DNA Database. Available online: https://haplotree.info/maps/ancient_dna (accessed on 15 March 2024).
36. Simoni, L.; Calafell, F.; Pettener, D.; Bertranpetit, J.; Barbujani, G. Geographic patterns of mtDNA diversity in Europe. Am. J. Hum.

Genet. 2000, 66, 262–728. [CrossRef]
37. Skourtanioti, E.; Ringbauer, H.; Gnecchi Ruscone, G.A.; Bianco, R.A.; Burri, M.; Freund, C.; Furtwängler, A.; Gomes Martins, N.F.;

Knolle, F.; Neumann, G.U.; et al. Ancient DNA reveals admixture history and endogamy in the prehistoric Aegean. Nat. Ecol.
Evol. 2023, 7, 290–303. [CrossRef]

38. Bramanti, B.; Thomas, M.G.; Haak, W.; Unterländer, M.; Jores, P.; Tambets, K.; Antanaitis-Jacobs, I.; Haidle, M.N.; Jankauskas,
R.; Kind, C.J.; et al. Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers. Science 2009, 326,
137–140. [CrossRef]

39. Malyarchuk, B.; Derenko, M.; Grzybowski, T.; Perkova, M.; Rogalla, U.; Vanecek, T.; Tsybovsky, I. The peopling of Europe from
the mitochondrial haplogroup U5 perspective. PLoS ONE 2010, 5, e10285. [CrossRef]

40. Hughey, J.R.; Paschou, P.; Drineas, P.; Mastropaolo, D.; Lotakis, D.M.; Navas, P.A.; Michalodimitrakis, M.; Stamatoyannopoulos,
J.A.; Stamatoyannopoulos, G. A European population in minoan Bronze age crete. Nat. Commun. 2013, 4, 1861. [CrossRef]
[PubMed]

41. Revesz, P.Z. Minoan archaeogenetic data mining reveals Danube Basin and western Black Sea littoral origin. Int. J. Biol. Biomed.
Eng. 2019, 13, 108–120.

42. PhyloTree, mtDNA Tree Build 17. Available online: https://www.phylotree.org (accessed on 15 March 2024).
43. Yfull Database. Available online: https://www.yfull.com (accessed on 15 March 2024).
44. Penske, S.; Rohrlach, A.B.; Childebayeva, A.; Gnecchi-Ruscone, G.; Schmid, C.; Spyrou, M.A.; Neumann, G.U.; Atanassova, N.;

Beutler, K.; Boyadzhiev, K.; et al. Early contact between late farming and pastoralist societies in southeastern Europe. Nature 2023,
620, 358–365. [CrossRef] [PubMed]

45. Lazaridis, I.; Alpaslan-Roodenberg, S.; Acar, A.; Açıkkol, A.; Agelarakis, A.; Aghikyan, L.; Akyüz, U.; Andreeva, D.; Andrijašević,
G.; Antonović, D.; et al. The genetic history of the Southern Arc: A bridge between West Asia and Europe. Science 2022,
377, eabm4247. [CrossRef]

46. Revesz, P.Z. Data Science Applied to Discover Ancient Minoan-Indus Valley Trade Routes Implied by Common Weight measures.
In Proceedings of the 26th International Database Engineered Applications Symposium; Desai, B.C., Revesz, P.Z., Eds.; ACM: New York,
NY, USA, 2022; pp. 150–155.

47. Saag, L.; Vasilyev, S.V.; Varul, L.; Kosorukova, N.V.; Gerasimov, D.V.; Oshibkina, S.V.; Griffith, S.J.; Solnik, A.; Saag, L.;
D’Atanasio, E.; et al. Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. Sci. Adv. 2021,
7, eabd6535. [CrossRef]

48. Frangipane, M. Different types of multiethnic societies and different patterns of development and change in the prehistoric Near
East. Proc. Natl. Acad. Sci. USA 2015, 112, 9182–9189. [CrossRef]

49. Hanel, A.; Carlberg, C. Skin colour and vitamin D: An update. Exp. Dermatol. 2020, 29, 864–875. [CrossRef]
50. Brami, M.; Winkelbach, L.; Schulz, I.; Schreiber, M.; Blöcher, J.; Diekmann, Y.; Burger, J. Was the fishing village of Lepenski Vir

built by Europe’s first farmers? J. World Prehistory 2022, 35, 109–133. [CrossRef]
51. de Menocal, P.B. Cultural responses to climate change during the late Holocene. Science 2001, 292, 667–673.
52. Livarda, A.; Kotzamani, G. The archaeobotany of Neolithic and Bronze Age Crete: Synthesis and prospects. Annu. Br. Sch. Athens

2013, 108, 1–29. [CrossRef]
53. Ukkonen, P.; Aaris-Sørensen, K.; Arppe, L.; Clark, P.U.; Daugnora, L.; Lister, A.M.; Lougas, L.; Seppä, H.; Sommer, R.S.; Stuart,

A.J.; et al. Woolly mammoth (Mammuthus primigenius Blum.) and its environment in northern Europe during the last glaciation.
Quat. Sci. Rev. 2011, 30, 693–712. [CrossRef]

54. Klyosov, A.A.; Rozhanskii, I.L. Haplogroup R1a as the Proto Indo-Europeans and the legendary Aryans as witnessed by the DNA
of their current descendants. Adv. Anthropol. 2012, 2, 1–13. [CrossRef]

55. Gimbutas, M. The Prehistory of Eastern Europe; Peabody Museum: Cambridge, MA, USA, 1956.
56. Gimbutas, M. The Civilization of the Goddess: The World of Old Europe; HarperCollins: San Francisco, CA, USA, 1991.
57. Haarmann, H. The Mystery of the Danube Civilisation: The Discovery of Europe’s Oldest Civilisation; Marix: Wiesbaden,

Germany, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

127

Citation: Bergami, G.; Appleby, S.;

Morgan, G. Quickening Data-Aware

Conformance Checking through

Temporal Algebras. Information 2023,

14, 173. https://doi.org/10.3390/

info14030173

Academic Editor: Peter Revesz

Received: 14 November 2022

Revised: 3 March 2023

Accepted: 5 March 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Quickening Data-Aware Conformance Checking through
Temporal Algebras †

Giacomo Bergami * , Samuel Appleby and Graham Morgan

School of Computing, Faculty of Science, Agriculture and Engineering, Newcastle University,
Newcastle Upon Tyne NE4 5TG, UK
* Correspondence: giacomo.bergami@newcastle.ac.uk
† This paper is an extended version of our paper: Appleby, S.; Bergami, G.; Morgan, G. Running Temporal

Logical Queries on the Relational Model. In Proceedings of the IDEAS’22, 26th International Database
Engineered Applications Symposium, Budapest, Hungary, 22–24 August 2022.

Abstract: A temporal model describes processes as a sequence of observable events characterised by
distinguishable actions in time. Conformance checking allows these models to determine whether any
sequence of temporally ordered and fully-observable events complies with their prescriptions. The
latter aspect leads to Explainable and Trustworthy AI, as we can immediately assess the flaws in the
recorded behaviours while suggesting any possible way to amend the wrongdoings. Recent findings
on conformance checking and temporal learning lead to an interest in temporal models beyond the
usual business process management community, thus including other domain areas such as Cyber
Security, Industry 4.0, and e-Health. As current technologies for accessing this are purely formal and
not ready for the real world returning large data volumes, the need to improve existing conformance
checking and temporal model mining algorithms to make Explainable and Trustworthy AI more
efficient and competitive is increasingly pressing. To effectively meet such demands, this paper
offers KnoBAB, a novel business process management system for efficient Conformance Checking
computations performed on top of a customised relational model. This architecture was implemented
from scratch after following common practices in the design of relational database management
systems. After defining our proposed temporal algebra for temporal queries (xtLTLf), we show that
this can express existing temporal languages over finite and non-empty traces such as LTLf. This
paper also proposes a parallelisation strategy for such queries, thus reducing conformance checking
into an embarrassingly parallel problem leading to super-linear speed up. This paper also presents
how a single xtLTLf operator (or even entire sub-expressions) might be efficiently implemented
via different algorithms, thus paving the way to future algorithmic improvements. Finally, our
benchmarks highlight that our proposed implementation of xtLTLf (KnoBAB) outperforms state-of-
the-art conformance checking software running on LTLf logic.

Keywords: logical artificial intelligence; knowledge bases; query plan; temporal logic; conformance
checking; temporal data mining; intraquery parallelism

1. Introduction

(Temporal) conformance checking is increasingly at the heart of ARTIFICIAL INTELLI-
GENCE activities: due to its logical foundation, assessing whether a sequence of distin-
guishable events (i.e., a trace) does not conform to the expected process behaviour (process
model) reduces to the identification of the specific unfulfilled temporal patterns, represented
as logical clauses. This leads to Explainable AI, as the process model’s violation becomes
apparent. Clauses are the instantiation of a specific behavioural pattern (i.e., template) that
expresses temporal correlation between actions being carried out (activations) and their
expected results (targets). These, therefore, differ from traditional association rules [1], as
they can also describe complex temporal requirements: e.g., whether the target should

Information 2023, 14, 173. https://doi.org/10.3390/info14030173 https://www.mdpi.com/journal/information128

Information 2023, 14, 173

immediately follow (ChainResponse) or precede (ChainPrecedence) the activation, if the
former might happen any time in the future (Response), or if the target should have never
happened in the past (Precedence). These temporal constraints can be fully expressed in
a LINEAR TEMPORAL LOGIC OVER FINITE TRACES (LTLf) and its extensions; this logic
is referred to as linear as it assumes that, in a given sequence of events of interest, only
one possible future event exists immediately following a given one. This differs from
stochastic process modelling, where each event is associated with a probabilistic distribu-
tion of possibly following events [2,3]. Such a formal language can be extended to express
correlations between activations and targets through binary predicates correlating data
payloads. Events are also associated with either an action or a piece of state information
represented as an activity label. Collections of traces are usually referred to as log.

Despite its theoretical foundations, state-of-the-art conformance checking techniques
for entire logs expose sub-optimal run-time behaviour [4]. The reasons are the following:
while performing conformance checking over relational databases requires computing
costly aggregation conditions [5], tailored solutions do not exploit efficient query planning
and data access minimisation, thus requiring scanning the traces multiple times [6]. Effi-
ciency becomes of the uttermost importance after observing that conformance checking’s
run-time enhancement has a strong impact on a whole wide range of practical use case sce-
narios (Section 1.1). To make conformance checking computations efficient, we synthesise
temporal data derived from a system (be it digital or real) to a simplified representation in
the Relational Database model. In this instance, we use xtLTLf, our proposed extension
of LTLf, to represent process models. While the original LTLf merely asserts whether a
trace is conformant to the model, our proposed algebra returns all of the traces satisfying the
temporal behaviour, as well as activated and targeted events. As a temporal representation
in the declarative model provides a point-of-relativity in the context of correctness (i.e.,
time itself may dictate if traces maintain correctness throughout the logical declarations
expressed by the model), the considerations of such temporal issues significantly increase
the checking requirement. This is due to a need to visit logical declarations for correctness
in the context of each temporal instance.

This paper extends our previous work [4], where we clearly showed the disruptiveness
of the relational model for efficiently running temporal queries outperforming state-of-the-
art model checking systems. While our original work [4] provided just a brief rationale
behind the success of KnoBAB (The acronym stands for KNOWLEDGE BASE FOR ALIGN-
MENTS AND BUSINESS PROCESS MODELLING). The Business Process Mining literature often
uses the term Knowledge Base differently from customary database literature: while in the
former, the intended meaning is a customary relational representation for trace data, in the
latter, we often require that such representation provides a machine-readable representation
of data in order to infer novel facts or to detect inconsistencies., this paper wants to dive
deep into each possible contribution leading to our implementation success.

1. As an extension from our previous work, we fully formalise the logical data model
(Section 3.1) and characterise the physical one (Section 4) in order to faithfully repre-
sent our log. This will prelude the full formalisation of the xtLTLf algebra;

2. Contextually, we also show for the first time that the xtLTLf algebra (Section 3.2) can
not only express declarative languages such as Declare [7] as in our previous work
but can express the semantics of LTLf formula by returning any non-empty finite trace
satisfying the latter if loaded in our relational representation (see Appendix A.2). We
also show for the first time a formalisation for data correlation conditions associated
with binary temporal operators;

3. Differently from our previous work, where we just hinted at the implementation of
each operator with some high level, we now propose different possible algorithms for
some xtLTLf operators (Section 6), and we then discuss both theoretically (Supplement
II.2) and empirically (Section 7.1) which might be preferred under different trace length
ε or log size |L| conditions. This leads to the definition of hybrid algorithms [8];

129

Information 2023, 14, 173

4. Our benchmarks demonstrate that our implementation outperforms conformance
checking techniques running on both relational databases (Section 7.2) and on tailored
solutions (Section 7.5) when customary algorithms are chosen for implementing
xtLTLf operators;

5. Finally, this paper considerably extends the experimental section from our previous
work. First, we show (Section 7.3) how the query plan’s execution might be paral-
lelised, thus further improving with super-linear speed-up our previous running time
results. Then, we also discuss (Section 7.4) how different data accessing strategies
achievable through query rewriting might affect the query’s running time.

Figure 1 provides a graphical depiction of this paper’s table of contents, with the
mutual dependencies between its sections. Appendices and Supplements start from p. 50.

§1. Introduction

§2. Preliminaries (p. 9)

§3. Logical Model

§3.1 Model Definition (p. 17)

§3.2 eXTended LTLf

Algebra (p. 19)

§4. Physical Database
Design (p. 24)

§5. Query Processing and
Optimization (p. 26)

§6. Algorithmic Implementations
(p. 34)

§7. Results and Discussion (p. 39)

§8. Conclusions (p. 49)

M
at

er
ia

ls
an

d
M

et
ho

ds

Figure 1. Table of Contents.

Figure 2 provides a bird-eye view of the overall KnoBAB architecture: in the upper
half, we show how a log is loaded in our business process management system as a
series of distinct tables providing some activity statistics (CountingTable) and full payload
information (AttributeTable) in addition to reconstructing the unravelling of the events
as described by their traces (ActivityTable). On the other hand, the lower half shows the
main steps of the query engine transforming a declarative model into a DAG query plan
accessing the previously-loaded relational tables. The most recent version of our system
is on GitHub (https://github.com/datagram-db/knobab as accessed the 5 March 2023).
When not explicitly stated, all the links were last accessed the 5 March 2023.

130

In
fo

rm
at

io
n

20
23

,1
4,

17
3

M
ax

-S
AT

 Q
ue

ry

D
ec

la
re

 M
od

el
 (𝓜

)

R
es

po
ns

e(
Re

fe
rr
al

, C
A

_1
5-

3
>=

 2
3.

5,
 F
ol
lo
w
U
p,

 C
A

_1
5-

3
 <

 2
3.

5)
 w

he
re

 R
ef
er
ra
l.C

A
_1

5-
3

>
Fo

llo
w
U
p.

C
A

_1
5-

3

Su
cc

es
si

on
(R

ef
er
ra
l,

C
A

_1
5-

3
>=

 2
3.

5,
 F
ol
lo
w
U
p,

 C
A

_1
5-

3
 <

 2
3.

5)
 w

he
re

 R
ef
er
ra
l.C

A
_1

5-
3

>
Fo

llo
w
U
p.

C
A

_1
5-

3

C
ho

ic
e(
M
as
te
ct
om

y,
 C

A
_1

5-
3

>=
 5

0
&

&
 b

io
ps

y
=

tru
e,

Lu

m
pe

ct
om

y,
 C

A
_1

5-
3

>=
 5

0
&

&
 b

io
ps

y
=

tru
e)

Atomization Pipeline

LT
Lf

 M
od

el
 (𝓜

)

R
es

po
ns

e(
𝒫

2,
 𝒫

3)
 w

he
re

 R
ef
er
ra
l.C

A
_1

5-
3

>
Fo

llo
w
U
p.

C
A

_1
5-

3

Su
cc

es
si

on
(𝒫

2,
 𝒫

3)
 w

he
re

 R
ef
er
ra
l.C

A
_1

5-
3

>
Fo

llo
w
U
p.

C
A

_1
5-

3

C
ho

ic
e(
𝒫

8,
 𝒫

12
)

A
to

m
ℒ

,τ (
𝒫

2)
A

to
m

ℒ
,τ T

(𝒫
3)

A
to

m
ℒ

,τ (
𝒫

3)
A

to
m

ℒ
,τ A

(𝒫
2)

A
nd

Fu
tu

re
Θ

O
rτ

A
to

m
ℒ

, τ A
(𝒫

2)
O

rτ

O
rτ

N
ot

U
nt

il

A
to

m
ℒ

,τ A
(𝒫

8)
O

r

O
r

A
nd

Ⓐ

M
ax

-S
AT

Ⓑ

Lo
g

Tr
ac

e
Pa

yl
oa

d
{

lo
c_

po
 =

 "L
N

",
p_

id
 =

 "0
01

A
" }

R
ef

er
ra

l {
 C

A
_1

5-
3

=
69

 }

M
as

te
ct

om
y

{
C

A
_1

5-
3

=
69

, b
io

ps
y

=
tru

e
}

Fo
llo

w
U

p
{

C
A

_1
5-

3
=

10
 }

Tr
ac

e
Pa

yl
oa

d
{

lo
c_

po
 =

 "N
E"

,
p_

id
 =

 "0
02

A
" }

R
ef

er
ra

l {
 C

A
_1

5-
3

=
20

 }

Tr
ac

e
Pa

yl
oa

d
{

lo
c_

po
 =

 "Y
O

",
 p

_i
d

=
"0

03
A

" }

R
ef

er
ra

l {
 C

A
_1

5-
3

=
61

 }

Lu
m

pe
ct

om
y

{
C

A
_1

5-
3

=
61

, b
io

ps
y

=
tru

e
}

Fo
llo

w
U

p
{

C
A

_1
5-

3
=

55
 }

C
ou

nt
in

g
Ta

bl
e

A
ct

iv
ity

Id
Tr

ac
e

C
ou

nt

__
tra

ce
__

pa
yl

oa
d

1
1

__
tra

ce
__

pa
yl

oa
d

2
1

__
tra

ce
__

pa
yl

oa
d

3
1

R
ef

er
ra

l
1

1

R
ef

er
ra

l
2

1

R
ef

er
ra

l
3

1

M
as

te
ct

om
y

1
1

M
as

te
ct

om
y

2
0

M
as

te
ct

om
y

3
0

Fo
llo

w
U

p
1

1

Fo
llo

w
U

p
2

0

Fo
llo

w
U

p
3

1

Lu
m

pe
ct

om
y

1
0

Lu
m

pe
ct

om
y

2
0

Lu
m

pe
ct

om
y

3
1

A
ct

iv
ity

 T
ab

le

ID
A

ct
iv

ity
Id

Tr
ac

e
E

ve
nt

Pr
ev

N
ex

t
#1

__
tra

ce
__

pa
yl

oa
d

1
1

N
U

LL
#4

#2
__

tra
ce

__
pa

yl
oa

d
2

1
N

U
LL

#5

#3
__

tra
ce

__
pa

yl
oa

d
3

1
N

U
LL

#6

#4
R

ef
er

ra
l

1
2

#1
#7

#5
R

ef
er

ra
l

2
2

#2
N

U
LL

#6
R

ef
er

ra
l

3
2

#3
#1

0

#7
M

as
te

ct
om

y
1

3
#4

#8

#8
Fo

llo
w

U
p

1
4

#7
N

U
LL

#9
Fo

llo
w

U
p

3
4

#1
0

N
U

LL

#1
0

Lu
m

pe
ct

om
y

3
3

#6
#9

A
tt

ri
bu

te
 T

ab
le

 [C
A

15
-3

]

A
ct

iv
ity

Id
Va

lu
e

O
ff

se
t

R
ef

er
ra

l
20

#5

R
ef

er
ra

l
61

#6

R
ef

er
ra

l
69

#4

M
as

te
ct

om
y

69
#7

Fo
llo

w
U

p
10

#8

Fo
llo

w
U

p
55

#9

Lu
m

pe
ct

om
y

61
#1

0

A
tt

ri
bu

te
 T

ab
le

 [l
oc

at
io

n]

A
ct

iv
ity

Id
Va

lu
e

O
ff

se
t

__
tra

ce
_p

ay
lo

ad
"L

N
"

#1
__

tra
ce

_p
ay

lo
ad

"N
E"

#2

__
tra

ce
_p

ay
lo

ad
"Y

O
"

#3

D
at

a
Lo

ad
in

g
+

In
de

xi
ng

IN
PU

T
D

AT
A

 (H
U

M
A

N
 R

EA
D

A
B

LE
)

C
O

LU
M

N
-B

A
SE

D
 R

el
at

io
na

l D
at

ab
as

e

Q
U

ER
Y

 P
LA

N
 §
S.
2

A
to

m
s

A
to

m
Pr

ed
ic

at
es

(A
,p

)
𝒫

1
Re

fe
rr
al

(-
∞

 ≤
 C

A
_1

5-
3

<
23

.5
)

𝒫
2

Re
fe
rr
al

(2
3.

5
≤

C
A

_1
5-

3
<

∞
)

𝒫
3

Fo
llo

w
U
p(

-∞
 ≤

 C
A

_1
5-

3
<

23
.5

)
𝒫

4
Fo

llo
w
U
p(

23
.5

 ≤
 C

A
_1

5-
3

<
∞

)
𝒫

5
M
as
te
ct
om

y(
bi

op
sy

 =
 fa

ls
e
∧

-∞
 ≤

 C
A

_1
5-

3
<

50
)

𝒫
6

M
as
te
ct
om

y(
bi

op
sy

 =
 fa

ls
e
∧

50
 ≤

 C
A

_1
5-

3
<

∞
)

𝒫
7

M
as
te
ct
om

y(
bi

op
sy

 =
 tr

ue
 ∧

 -∞
 ≤

 C
A

_1
5-

3
<

50
)

𝒫
8

M
as
te
ct
om

y(
bi

op
sy

 =
 tr

ue
 ∧

 5
0

≤
C

A
_1

5-
3

<
∞

)
𝒫

9
Lu

m
pe

ct
om

y(
bi

op
sy

 =
 fa

ls
e
∧

-∞
 ≤

 C
A

_1
5-

3
<

50
)

𝒫
10

Lu
m
pe

ct
om

y(
bi

op
sy

 =
 fa

ls
e
∧

50
 ≤

 C
A

_1
5-

3
<

∞
)

𝒫
11

Lu
m
pe

ct
om

y(
bi

op
sy

 =
 tr

ue
 ∧

 -∞
 ≤

 C
A

_1
5-

3
<

50
)

𝒫
12

Lu
m
pe

ct
om

y(
bi

op
sy

 =
 tr

ue
 ∧

 5
0

≤
C

A
_1

5-
3

<
∞

)

xtLTLf Compiler

G
lo

ba
lly

M
od

el
 A

to
m

oi
za

tio
n

§5
.1

.1

A
to

m
ℒ

,τ A
(𝒫

12
)

A
tt

ri
bu

te
 T

ab
le

 [p
at

ie
nt

]

A
ct

iv
ity

Id
Va

lu
e

O
ff

se
t

__
tra

ce
_p

ay
lo

ad
"0

01
A

"
#1

__
tra

ce
_p

ay
lo

ad
"0

02
A

"
#2

__
tra

ce
_p

ay
lo

ad
"0

03
A

"
#3

① ② ③

(§
4)

A
tt

ri
bu

te
 T

ab
le

 [b
io

ps
y]

A
ct

iv
ity

Id
Va

lu
e

O
ff

se
t

M
as

te
ct

om
y

tru
e

#7
Lu

m
pe

ct
om

y
tru

e
#1

0

Ⓐ Ⓑ Ⓒ

Ⓐ Ⓑ Ⓒ

(§
5.

1.
2

-
§5

.1
.3
)

Ⓒ

E
xi

st
s{

1,
𝒫

3}

(O
rτ tr

ue

(A
to

m
ℒ

,τ (
𝒫

)
 |
𝒫

 ∈
 {
𝒫

1,
 𝒫

4-
𝒫

12
})

)

A
nd

O
r

Fi
gu

re
2.

K
no

B
A

B
A

rc
hi

te
ct

u
re

fo
r

B
re

as
t

C
an

ce
r

p
at

ie
nt

s.
E

ac
h

tr
ac

e
À

–Â
re

p
re

se
nt

s
on

e
si

ng
le

p
at

ie
nt

’s
cl

in
ic

al
hi

st
or

y,
re

p
re

se
nt

ed
w

it
h

u
ni

qu
e

co
lo

u
ri

ng
,

w
hi

le
ea

ch
D

ec
la

re
cl

au
se

A
–

C
pr

es
cr

ib
es

a
te

m
po

ra
lc

on
d

it
io

n
th

at
su

ch
tr

ac
es

sh
al

ls
at

is
fy

.P
le

as
e

ob
se

rv
e

th
at

th
e

at
om

is
at

io
n

pr
oc

es
s

d
oe

s
no

tc
on

si
d

er
d

at
a

di
st

ri
bu

ti
on

bu
tr

at
he

r
pa

rt
it

io
ns

th
e

da
ta

sp
ac

e
as

de
sc

ri
be

d
by

th
e

da
ta

ac
ti

va
ti

on
an

d
ta

rg
et

co
nd

it
io

ns
.I

n
th

e
qu

er
y

pl
an

,g
re

en
ar

ro
w

s
in

di
ca

te
ac

ce
ss

to
sh

ar
ed

su
b-

qu
er

ie
s

as
in

[9
],

an
d

th
ic

k
re

d
el

lip
se

s
in

di
ca

te
w

hi
ch

op
er

at
or

s
ar

e
un

ti
m

ed
.

131

Information 2023, 14, 173

1.1. Case Studies

The present section shows a broad-ranging set of real case studies requiring efficient confor-
mance checking computations in LTLf. This, therefore, motivates the need for our proposed approach
in a practical sense.

1.1.1. Cyber Security

Intrusion detection for cyber security aims at auditing an environment for identifying
potential flaws that can be remedied and fixed later. While anomaly-based approaches raise
an alarm if the observed behaviour differs significantly from the expected one, signature-
based approaches check whether attack patterns might be recognised from the environment.
The latter are often used to mitigate the high false-alarm rates of the former [10]. Expected
behaviour might be encoded as process models expressed in LTLf, which, when violated,
lead to the detection of an attack: such a language can be directly exploited to represent
several different kinds of attacks, such as Denial Of Service, Buffer Overflows, and Pass-
word Guessing [10]. In his dissertation [11], Ray shows how malware can be detected
by determining LTLf formulae discriminating between system–calls patterns generated
by malicious software from expected run-time behaviour. Recent developments [12,13]
showed that it is possible to perform prediction (and therefore reasoning) on potentially
infinite sequences by analysing a finite subsequence of the overall behaviour within a
sliding window; Buschjäger et al. [12] predict future events not covered by the sliding
window by correlating them to the patterns observed in such a window. By associating a
positive label to each finite subsequence preceding or containing an attack, and a negative
one otherwise, we can also extract temporal models detecting subsequences containing
attacks [14]. This entails that real-time verification boils down, to some extent, to offline
monitoring, as we guarantee that it is sufficient to analyse currently-observed behaviours
to predict and detect an attack. The learned model, once validated, can be exploited in the
aforementioned real-time verification systems [10].

Example 1. The Cyber Kill Chain® framework (https://www.lockheedmartin.com/en-us/capabilitie
s/cyber/cyber-kill-chain.html as accessed the 5 March 2023) allows the identification and prevention
of intrusion activities on computer systems. This framework is based on a military tactic simply
known as a kill chain (https://en.wikipedia.org/wiki/Kill_chain, 5 March 2023), which breaks down
the attack into the following phases: target identification, marshalling and organizing forces towards
the target, starting an attack, and target neutralisation. Lockheed Martin reformulated these steps
to be transferred to the IT world and redirected the attack against a virtual target. These phases were
reformulated as follows:

Reconnaissance (rec): An attacker observes the situation from the outside in order to identify
targets and tactics. As the attacker mainly collects information regarding the system’s vulnerabilities,
this is the hardest part to detect.

Weaponisation (weap): After gathering the information, the cybercriminal implements his strat-
egy through a software artefact. This detection will have greater chances of success in the future
after post-mortem analysis, when either a temporal model is mined over the collected attack data or
the strategy is directly inferred from available artefacts (e.g., malaware).

Payload or Delivery (del): The cybercriminal devises a way to infiltrate the host system that
hides the previously produced artefact (e.g., a Trojan). This must sound as harmless as possible to
fool the system.

Exploitation (expl): The cybercriminal exploits the system’s vulnerabilities and infiltrates it
through the previous “cover”. At this stage, the defensive system should raise the alarm if any kind
of unusual behaviour is detected while increasing the security level.

Installation (inst): The weapon escapes the payload and gets installed into the host computer
system. At this point, any kind of suspected behaviour might be detected by malicious system calls.

132

Information 2023, 14, 173

Command & Control (comm): The weapon establishes a communication with the cybercriminal
for receiving orders from the attacker. The system should detect any kind of suspicious network
communication and should attempt to break the communication channel.

Action (act): The intruder starts the attack on the system. At this stage, the attack should be
more evident, and the Industrial IoT Shields (iiot_sh), such as network devices protection, should
be activated.

Figure 3a describes the actions (and therefore activity labels) of interest. Having defined the
actions that should be monitored, records of activities can be stored as traces within a log. This is
represented in Figure 3b, where we define three distinct attacks as distinct traces (σ1, σ2, σ3). Each
trace contains the event information leading up to the completion of an attack attempt (which may
be (un)successful). Data payload information is also considered, and here this is provided as the
unique timestamp (ts) associated with each event. Trace payload information is not simulated here
but is described and applied in Example 2.

WeaponisationPayloadExploitation

Installation Command and Control Action

Reconnaissance

(a)

(b)
Figure 3. We can express a cyber-security scenario by considering (a) possible situations in a Cyber
Kill Chain, than are then (b) represented in the activity labels’ names associated to the events.

A temporal model might describe a completely successful attack. The occurrence of the afore-
mentioned phases can be described through a temporal declarative language Declare [7], where
each constraint is an instantiated Declare clause (see Table 1). Our declarative language should
be able to state the following requirements: A all reconnaissance events should be followed by a
weaponisation, B there should be no IoT shields in place, and C either command and control or
action should occur.

On blockchains, each trace event represents a proper blockchain event, thus including function
or event invocations issued by one or more smart contracts. In particular, smart contracts are sets
of conditions specified in self-executing programs [15], which include protocols within which the
parties will fulfil some promises [16]. Given that smart contracts can also be seen as postconditions
activated upon the occurrence of specified pre-conditions [17], they are also exploited as security
measures reducing malicious and accidental exceptions [15]. As per previous considerations, we can
directly encode the smart contract premises in LTLf, as well as represent the whole smart contract
as a whole LTLf formula under the assumption that the blockchain guarantees its execution [17].
Therefore, we can perform post-mortem analysis checking whether a given run-time abides by the
rules imposed by the system.

133

Information 2023, 14, 173

Table 1. Declare templates illustrated as exemplifying clauses. A ∧ p (B ∧ q) represents the activation
(target) condition, A (B) denotes the activity label, and p (q) is the data payload condition.

Type Exemplifying Clause (cl) Natural Language Specification for Traces LTLf Semantics (JclK)

Si
m

pl
e

Init(A, p) The trace should start with an activation A ∧ p

Exists(A, p, n) Activations should occur at least n times

{
3(A ∧ p ∧©(JExists(A, p, n− 1)K)) n > 1
3(A ∧ p) n = 1

Absence(A, p, n + 1) Activations should occur at most n times ¬JExists(A, p, n + 1)K
Precedence(A, p, B, q) Events preceding the activations should not satisfy the target ¬(B ∧ p)W (A ∧ p)

(M
ut

ua
l)

C
or

re
la

tio
n

ChainPrecedence(A, p, B, q) The activation is immediately preceded by the target. �(©(A ∧ p)⇒ (B ∧ q))
Choice(A, p, A′, p′) At least one of the two activation conditions must appear. 3(A ∧ p) ∨3(A′ ∧ p′)
Response(A, p, B, q) The activation is either followed by or simultaneous to the target. �((A ∧ p)⇒ 3(B ∧ q))
ChainResponse(A, p, B, q) The activation is immediately followed by the target. �((A ∧ p)⇒ ©(B ∧ q))
RespExistence(A, p, B, q) The activation requires the existence of the target. 3(A ∧ p)⇒ 3(B ∧ q)
ExclChoice(A, p, A′, p′) Only one activation condition must happen. JChoice(A, p, A’, p′)K∧ JNotCoExistence(A, p, A’, p′)K
CoExistence(A, p, B, q) RespExistence, and vice versa. JRespExistence(A, p, B, q)K∧ JRespExistence(B, q, A, p)K
Succession(A, p, B, q) The target should only follow the activation. JPrecedence(A, p, B, q)K∧ JResponse(A, p, B, q)K
ChainSuccession(A, p, B, q) Activation immediately follows the target, and the target immedi-

ately preceeds the activation.
�((A ∧ p)⇔ ©(B ∧ q))

AltResponse(A, p, B, q) If an activation occurs, no other activations must happen until the
target occurs.

�((A ∧ p)⇒ (¬(A ∧ p) U (B ∧ q)))

AltPrecedence(A, p, B, q) Every activation must be preceded by an target, without any other
activation in between

JPrecedence(A, p, B, q)K∧�((A ∧ p)⇒ ©(¬(A ∧ p)W (B ∧ q))

N
ot

. NotCoExistence(A, p, B, q) The activation nand the target happen. ¬(3(A ∧ p) ∧3(B ∧ q))
NotSuccession(A, p, B, q) The activation requires that no target condition should follow. �((A ∧ p)⇒ ¬3(B ∧ q))

1.1.2. Industry 4.0

Smart factories enable the collection and analysis of data through advanced sensors
and embedded software for better decision-making. These enable monitoring each phase
of the entire production process in both real-time and domain-specific applications where
the safety of both autonomous cyber-physical systems as well as human workers is at
stake [18]. This is of the uttermost importance, as both humans and machines cooperate in
the same environment where a minimal violation of safety requirements might damage the
overall production process, thus reflecting in maintenance costs. This calls for logical-based
formal methods providing correctness guarantees [19]. Run-time verification [19] and
prediction [13] have started gaining momentum against customary static analysis tools: in
fact, real complex systems such as factories are often hard to predict and analyse before
execution. As run-time verification can be deployed as a permanent testing condition on the
environment, Mao et al. [19] show that this approach is complete, thus reducing the compli-
cated model-checking problem into a simpler conformance checking one. PROGRAMMABLE

LOGIC CONTROLLERS (PLC) are at the heart of this mechanism, where controllers can make
decisions over previously-observed events. PLC work is similar to smart contracts in the
previous scenario: at each “scan cycle”, the controllers perceive through sensors the status
change of the environment (e.g., variations of temperature and pressure). This information
is then fed to the internal logic, which, on the other hand, might decide to intervene directly
in the environment by sending signals to some actuators (e.g., controlling the pressure
and temperature on the system). Due to the similarity of PLC to smart contracts, these
might also exploit LTLf for determining security requirements: when a safety condition
is violated, the PLC might activate an alarm while ensuring that the system works within
safe operation ranges [19]. Please observe that ptLTL, also defined in [19], is a version of
LTL allowing reasoning on past events so as to avoid semi-decidable computations for
traces of infinite length, might be still represented through an equivalent LTLfformula
evaluated over a finite sliding window [13] bounded by the first and the latest event. Please
observe that the difference between LTL and LTLf is that only the latter considers traces of
finite length.

In some other industrial scenarios, we might be interested in detecting unexpected
variations in time series reflecting the fluctuation of some perceived variables (e.g., varia-
tions in temperature and pressure). The latest developments [13] showed that (industrial)
time series could also be represented as traces: we might assign to each event an activity
label v if the current event has a data payload whose values upper bound the ones from

134

Information 2023, 14, 173

immediately preceding event’s payload, and ¬v otherwise. Consequently, we can encode
disparate data variation patterns in LTLf reflecting different types of data volatility or steep
increases/decreases [13]. This shows how LTLf can also represent anomaly-based problems
by reducing them to the identification of anomaly patterns [20].

1.1.3. Healthcare

A medical process describes clinical-related procedures as well as organisational man-
agement ones (e.g., registration, admission, and discharge) [21]. The renowned openEHR
(https://www.openehr.org/ accessed the 5 March 2023) standard distinguishes the former
in four main archetypes: an observation, recording patients’ clinical symptoms (e.g., body
temperature, blood pressure); an evaluation, providing preliminary diagnosis and assessing
the patient’s health based on the former results; and an instruction, the execution of the
treatment plan proposed by a physician (e.g., prescribing, examining, and testing). An
action describes the way to intervene or treat medical patients according to the treatment
plan (e.g., drug administration, blood matching). Once encoded as such, each process
representing an instantiation of a medical process, i.e., a patient’s clinical course, can be
then collected and represented in a log. As such, each action is going to be represented as a
distinct activity label of a given event [22] that might contain relevant payload information
recording the outcome of the clinical procedures, as well as demographical information
related to the patient [21] for future socio-clinical analyses [23].

Declarative temporal languages such as Declare can then be exploited to provide a
descriptive approach specifying temporal constraints among activities without strictly
enforcing their order of completion, thus restricting the order of application of a specific
set of activities [21]. As these models come with temporal semantics expressed in LTLf,
these are, for all intents and purposes, process models. As such, these might be applied to
detect discrepancies between clinical guidelines, expressed by the aforementioned model,
and the actual process executions collected in a log. This is of the utmost concern as often
deviations represent errors compromising the patient recovery [22], which, if efficiently
and identified in advance, lead to an increased patient satisfaction as well a reduction of
healthcare costs (e.g., due to mismanagement) [21].

Example 2. To minimise costs and unrequired procedures, only ill patients should receive treatment.
Thus, sufferers not receiving treatment (false negatives) and non-sufferers receiving treatment (false
positives) need to be minimised. Figure 2 proposes a simplified scenario where we consider two
event payload keys: CA 15-3 (cancer antigen concentration in a patient’s blood) and biopsy
(biopsies should be taken before any procedure is acted upon). Our model targets only breast cancer
patients with successful therapies that describe a medical protocol and the desired patients’ health
condition at each step. C states that two possible surgical operations for breast tumours are
mastectomy or lumpectomy if the biopsy is positive and the CA-13.5 is way above (≥ 50) the guard
level, being 23.5 units per mL, and A – B any successful treatment should decrease the CA-13.5
levels, which should be below the guard level; such correlation data condition is expressed via a
Θ condition (introduced by a where). A twinned negative model (not in Figure) might better
discriminate healthy patients from patients where the therapy was unsuccessful. Novel situations
can be represented as a log. For example, in Figure 2, we have three patients: À a cancer patient with
a successful mastectomy, Á a healthy patient, and Â an unsuccessful lumpectomy, thus suggesting
that the patient might still have some cancerous cells. Given the aforementioned model, patient
À will satisfy the model as the surgical operation was successful, Á will not satisfy the model
because neither a mastectomy nor a lumpectomy was required (M is only fulfilled for successful
procedures), and Â will not satisfy the target condition, even though the correlation condition
was met. Our model of interest should only return À as an outcome of the conformance checking
process.

135

Information 2023, 14, 173

2. Preliminaries

eXtensible Event Stream (XES). This paper relies on temporal data represented as
a temporally ordered sequence of events (trace or streams), where events are associated
with at most one action described by a single activity label [24]. In this paper, we formally
characterize payloads as part of both events and traces while, in our previous work, we
only considered payloads from events [25].

Given an arbitrarily ordered set of keys K and a set of values V, a tuple [26] is a finite
function p : K → V (also p ∈ VK), where each key is either associated with a value in V or
is undefined. After denoting ⊥ as a null element missing from the set of values (⊥ /∈ V),
we can express that κ is not associated with a value in p as p(κ) = ⊥, thus κ /∈ dom(p). An
empty tuple ε has an empty domain.

(Data) payloads are tuples, where values can represent either categorical data or nu-
merical data. An event σi

j is a pair 〈a, p〉 ∈ Σ×VK, where Σ is a finite set of activity labels,

and p is a finite function describing the data payload. A trace σi is an ordered sequence
of distinct events σi

1, . . . , σi
n, which is distinguished from the other traces by a case id i; n

represents the trace’s length (n = |σi|). If a payload is also associated with the whole trace,
this can be easily mimicked by adding an extra initial event containing such a payload
with an associated label of __trace_payload. A log L is a finite set of traces

{
σ1, . . . , σm }.

In this paper, we further restrict our interest to the traces containing at least one event,
as empty traces are meaningless as they are not describing any temporal behaviour of
interest. Finally, we denote as β : Σ ↔ { 1, . . . , | Σ| } the bijection mapping each activity
label occurring in the log to an unique id.

Example 3. The log L in Figure 2 comprises three distinct traces L =
{

σ1, σ2, σ3 }. In particular,
the second trace comprises two events σ2 = σ2

1 σ2
2 , where the first event represents the trace payload,

and therefore σ2
1 = 〈__trace_payload, p〉 having p(loc_po) = NE and p(p_id) = 002A. The

other event is σ2
2 = 〈Referral, p̃〉, where payload p̃ is only associated with the CA-13.5 levels as

p̃(CA-13.5) = 20. Similar considerations can be carried out for the other log traces.

Linear Temporal Logic over finite traces (LTLf). LTLf is a well-established extension
of modal logic considering the possible worlds as finite traces, where each event represents
a single relevant instant of time. The time is thereby linear, discrete, and future-oriented.
This entails that that the events represented in each trace are totally ordered and, as LTLf
quantifies only on events reported in the trace, all the events of interest are fully observable.
The syntax of an well-formed LTLf formula ϕ is defined as follows:

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | ©ϕ | �ϕ | 3ϕ | ϕ U ϕ′ (1)

where a ∈ Σ. Its semantics is usually defined in terms of First Order Logic [27] for a given
trace σi at a current time j (e.g., for event σi

j) as follows:

• An event satisfies the activity label a iff. its activity labels is a: σi
j � a⇔ σi

j = 〈a, p〉;
• An event satisfies the negated formula iff. the same event does not satisfy the non-

negated formula: σi
j � ¬ϕ⇔ σi

j 6� ϕ;

• An event satisfies the disjunction of LTLf sub-formulæ iff. the event satisfies one of
the two sub-formulæ: σi

j � ϕ ∨ ϕ′ ⇔ σi
j � ϕ ∨ σi

j � ϕ′;

• An event satisfies the conjunction of LTLf formulæ iff. the event satisfies all of the
sub-formulæ: σi

j � ϕ ∧ ϕ′ ⇔ σi
j � ϕ ∧ σi

j � ϕ′;

• An event satisfies a formula at the next step iff. the formula is satisfied in the incoming
event if present: σi

j � ©ϕ⇔ i < |σj| ∧ σi
j+1 � ϕ;

• An event globally satisfies a formula iff. the formula is satisfied in all the following
events, including the current one: σi

j � �ϕ⇔ ∀j ≤ x ≤ |σi|.σi
x � ϕ;

136

Information 2023, 14, 173

• An event eventually satisfies a formula iff. the formula is satisfied in either the present
or in any future event: σi

j � 3ϕ⇔ ∃j ≤ x ≤ |σi|.σi
x � ϕ;

• An event satisfies ϕ until ϕ′ holds iff. ϕ holds at least until ϕ′ becomes true, which
must hold at the current or a future position: σi

j � ϕ U ϕ′ ⇔ ∃j ≤ y ≤ |σi|.σi
y �

ϕ′ ∧
(
∀x ≤ z < y.σi

z � ϕ
)

Other operators can be seen as syntactic sugar: Weak-Until is denoted as
ϕ W ϕ′ := ϕ U ϕ′ ∨�ϕ, while the implication can be rewritten as ϕ ⇒ ϕ′ := (¬ϕ) ∨
(ϕ ∧ ϕ′). Generally, binary operators bridge activation and target conditions appearing in
two distinct sub-formulæ. The semantics associated with activity labels, consistently with
the literature on business process execution traces [25], assumes that, in each point of the
sequence, one and only one element from Σ holds. We state that a trace σi is conformant
to an LTLf formula iff. it satisfies it starting from the first event: σi � ϕ⇔ σi

1 � ϕ, and is
deviant otherwise [25]. The Declare language described in the next paragraph provides an
application for such logic. As relational algebra describes the semantics for SQL [28,29],
LTLf is extensively applied [30] as a semantics for formally expressing temporal and
human-readable declarative constraints such as Declare.

At the time of the writing, different authors proposed several extensions for represent-
ing data conditions in LTLf. The simplest extensions are compound conditions a∧ q, which
are the conjunction of data predicate q ∈ Prop to the activity label a [25]. Nevertheless,
this straightforward solution is not able to express correlation conditions in the data which
might be relevant in business scenarios [31], as representing correlations as single atoms
requires decomposing the former into disjunctions of formulae [32]. Despite prior attempts
to define a temporal logic expressing correlation conditions, no explicit formal semantics
on how this can be evaluated was provided [6]. This poses a problem to the current practi-
tioner, as this hinders the process of both checking formally the equivalence among two
languages expressing correlation conditions, as well as providing a correct implementation
of such an operator. We, on the other hand, propose a relational representation of xtLTLf,
where the semantics of all of the operators, thus including the ones requiring correlation
conditions, is clearly laid out and implemented.

Declare. Temporal declarative languages pinpoint highly variable scenarios, where
state machines provide complicated graph models that can be hardly understandable by the
common business stake-holder [33]. Among all possible temporal declarative languages, we
constrain our interest to Declare, originally proposed in [7]. Every single temporal pattern
is expressed through templates (i.e., an abstract parameterised property: Table 1 column 2),
which are parametrised over activation, target, or correlation conditions. Template names
induce the semantic representation in LTLf JclK of each model clause cl . Therefore, a trace
σi is conformant to a Declare clause iff. it satisfies its associated semantic representation
in LTLf (σi � cl ⇔ σi � JclK). At this stage, activation (and target) conditions are predicates
A ∧ p (and B ∧ q) in such a clause asserting required properties for the events’ activity
label (A and B) and payload (p and q). An event in a given trace activates (or targets) a
given clause if they satisfy the activation (or target) condition. Please observe that neither
activation nor target conditions postulate the temporal (co)occurrence between activating
or targeting events, as this is duty is transferred to the specific LTLf semantics of the clause.
A trace vacuously satisfies a clause if the trace satisfies the clause despite no event in the
trace satisfied the activation condition. After this, we state that a trace non-vacuously satisfies
the declarative clause if the trace satisfies the clause and one of the following conditions
is satisfied:

• The clause provides no target condition and it exists at least one activating event;
• The clause provides a target condition but no binary (payload) predicate Θ, and the

declarative clause establishes a temporal correlation between (at least one) activating
event and (at least one) targeting one;

• The clause provides both a target condition and a binary predicate Θ, while the
activating and targeting events satisfying the temporal correlation as in the previous

137

Information 2023, 14, 173

case also satisfy a binary Θ predicate over their payloads; in this situation, we state
that the activating and targeting event match as they jointly satisfy the correlation
condition Θ.

Finally, the presence of activating events is a necessary condition for non-vacuous
satisfiability.

We can then categorize each Declare template from [30] through these conditions
and the ability to express correlations between two temporally distant events happening
in one trace: simple templates (Table 1, rows 1–3) only involving activation conditions;
(mutual) correlation templates (rows from 4 to 15), which describe a dependency between
activation and target conditions, thus including correlations between the two; and negative
relation templates (last 2 rows), which describe a negative dependency between two events
in correlation. Despite these templates possibly appearing quite similar, they generate
completely different finite state machines, thus suggesting that these conditions are not
interchangeable (http://ltlf2dfa.diag.uniroma1.it/, 5 March 2023). Figure 4 exemplifies the
behavioural difference between two clauses differing only on the template of choice.

C A D A B

Response (A, true, B, true)

B D A B

A B A C C

C A D A B

Precedence (A, true, B, true)

B D A B

A B A C C

Figure 4. Two exemplifying clauses distinguishing Response and Precedence behaviours. Traces are
represented as temporally ordered events associated with activity labels (boxed). Activation (or
target) conditions are circled here (or ticked/crossed). Ticks (or crosses) indicate a (un)successful
match of a target condition. For all activations, there must be an un-failing target condition; for
precedence, we shall consider at most one activation. These conditions require the usage of multiple
join tests per trace.

A Declare Model is composed of a set of clausesM = { cl }l≤n,n∈N which have to
be contemporarily satisfied in order to be true. A trace σi is conformant to a model
M iff. such a trace satisfies each LTLf formula JclK associated with the model clause
cl ∈ M. Consequently, a Declare model can be represented as a finitary conjunction of
the LTLf representation of each of its clauses, JMK :=

∧
cl∈MJclK: for this, the MAXIMUM-

SATISFIABILITY PROBLEM (Max-SAT) for each trace counts the ratio between the satisfied
clauses over the whole model size. This consideration can be extended later on to also data
predicates through predicate atomisation [25], as discussed in the next paragraph.

Relational Models and Algebras. The relational model was firstly introduced by
Codd [34] to compactly operate over tuples grouped into tables. Such tables are rep-
resented as mathematical n-ary relations < that can be handled through a relational algebra.
Upon the effective implementation of the first RELATIONAL DATABASE MANAGEMENT SYS-
TEMS (RDBMS), such algebra expressed the semantics of the well-known declarative query
language, SQL. The rewriting of SQL in algebraic terms allowed the efficient execution

138

Information 2023, 14, 173

of the declarative queries through abstract syntax tree manipulations [28]. Our proposed
xtLTLf (Section 3.2) takes inspiration from this historical precedent, in order to run confor-
mance checking and temporal model mining queries over an relational representation of
the log via relational tables (Section 3.1).

More recently, column-oriented DBMS such as MonetDB [35] proposed a new way to
store data tables: instead of representing these per row, these were stored by column.
There are several advantages to this approach, including better access to data when
querying only a subset of columns (by eliminating the need to read columns that are not
relevant) as well as discarding null-valued cells. This is achieved by representing each
relation <(id, A1, . . . , An) in the database schema as distinct binary relations <Ai (id, Ai)
for each attribute Ai in <. As this decomposition guarantees that the full-outer natural
join ./ 1≤i≤n<Ai over the decomposed tables is equivalent to the initial relation <, we can
avoid representing NULL values in each single binary relation, thus limiting our space
allocation to the values effectively present in the data. We therefore took inspiration
from this intuition for representing the payload information, thus storing one single
table per payload attribute. To further optimise the query engine, it is also possible
to boost the query performance by guaranteeing that the results always have a fixed
schema, mainly listing the record ids satisfying the query conditions [36]. As we will see
while introducing our temporal operators (Section 3.2), we will also guarantee that each
operator returns the output in the same schema, thus guaranteeing time and memory
optimality.

Finally, the nested relational model [37] extends the relational model by relaxing its
first normal form (1NF), thus allowing table cells to contain tables and relations as values.
Relaxing this 1NF allows for storing data in a hierarchical way in order to access an
entire sub-tree with a single read operation. We will leverage this representation for
our intermediate result representation, in order to associate multiple activation, target,
or correlation conditions to one single event, thus including any relevant future event
occurring after it.

Common Subquery Problem. Query caching mechanisms [38] are customary solu-
tions for improving query runtime by holding partially-computed results in temporary
tables referred to as materialised views, under the assumption that the queries sharing
common data are pipelined [39]. Recently, Kechar et al. [9] proposed a novel approach
that can also be run when queries are run contemporarily: it is sufficient to find the shared
subqueries before actually running them so that, when they are run, their result is stored
into materialised views thus guaranteeing that these are computed at most once.

Example 4. Figure 2 shows how this idea might be transferred to our use case scenario requiring
running multiple declarative clauses: RESPONSE is both a subquery of SUCCESSION as well as
a distinct declarative clause of interest. Green arrows indicate operators’ output shared among
operators expressed in our proposed xtLTLf extension of xtLTLf. Please also observe that operators
with the same name and arguments but marked either with activation, target, or no specification are
considered different as they provide different results, and therefore are not merged together. This
includes distinctions between timed and untimed operators, which will be discussed in greater detail
in Section 3.2.

To further minimize tables’ access times, it is possible to take this reasoning to its
extreme by minimising the data access per data predicate in order to avoid accessing the
same table multiple times. In order to do so, we need to partition the data space according
to the queries at our disposal as in our previous work [25]. This process can be eased if we
assume that each payload condition p and p′ for the declarative clauses within a modelM
is represented in Disjunctive Normal Form (DNF) [40]: in this scenario, data predicates q are
in DNF if they are a disjunction of one or more conjunctions of one or more data intervals
referring to just one payload key.

139

Information 2023, 14, 173

Example 5. The model illustrated in Figure 3a and discussed in former Example 1 comes
with data conditions associated with neither activation nor target conditions. Therefore, no
atomisation process is performed. Thus, each event in a log might just be distinguished by its
activity label [25].

Given an LTLf expression ϕ containing compound conditions, we denote Dϕ as the
set of distinct compound conditions in ϕ. We refer to the items in Dϕ as atoms iff. for each
pair of distinct compound conditions in it, they never jointly satisfy any possible payload
p (More formally, ∀p.∀a ∈ Σ.∀a ∧ q, a ∧ q′ ∈ Dϕ.(q 6= q′) ⇒ (q(p) ⇒ ¬q′(p))). Ref. [25]
shows a procedure showing how any formula ϕ can be rewritten into an equivalent one ϕ′

by ensuring that Dϕ′ contains atoms. This can be achieved by constructing Dϕ′ first from
ϕ (Algorithm 1), and then converting each compound conditions in ϕ as disjunctions of
atoms in Dϕ′ , thus obtaining ϕ′.

Algorithm 1 Atomisation: Dϕ-encoding pipeline.
1: global µ← {}; ad← {}; ak← {}

2: procedure COLLECTINTERVALS(a, DNF) . DNF:=
∨

1≤i≤n
∧

1≤k≤m(i) lowi,k ≤ ki,k ≤ upi,k
3: for all conj ∈ DNF and low ≤ k ≤ up ∈ conj do
4: µ(a, k).put([low, up])
5: end for

6: procedure COLLECTINTERVALS(M) .M :=
∧

1≤i≤|M| clausei(A, p,B, p′)
7: for all clausei(A, p,B, p′) ∈ M do
8: if p 6= True then COLLECTINTERVALS(A, p)
9: if p′ 6= True then COLLECTINTERVALS(B, p′)

10: end for

11: procedure Dϕ-ENCODING()
12: for all a ∈ Σ do
13: for all k ∈ K do
14: µ(a, k)←SEGMENTTREE(µ(a, k))
15: end for
16: for all partition ∈×k∈K µ(a, k).elementaryIntervals() do . partition := (lowk ≤ k ≤ upk)k∈K
17: pi ←new atom()
18: pi := a∧ partition
19: ak(a).put(pi)
20: for all lowk ≤ k ≤ upk ∈ partition do
21: ad(a, lowk ≤ k ≤ upk).put(pi)
22: end for
23: end for
24: if ak(a) = ∅ then
25: ak(a)← {a}
26: end if
27: end for

We collect all the conjunctions referring to the same payload key into a map µ(a, κ)
(Line 4). After doing so, we can construct a Segment Tree [41] from the intervals in µ(a, κ),
thus identifying the elementary intervals partitioning the collected intervals (Line 14). These
elementary intervals also partition the payload data space associated with events for each
activity label a. This can be achieved by combining each elementary interval in each
dimension κ for a (Line 16) and then associating it with a new atom representing such a
partition (Line 18) that is then guaranteed to be an atom by construction. This entails that
each interval lowκ ≤ κ ≤ upκ will be characterised by the disjunction of all of the atoms pi
comprising such interval (Line 21). Given this, we can then associate to each activation
condition A that is associated with an activation payload condition p the disjunction of
atoms that are collected by the following formula:

140

Information 2023, 14, 173

Atomµ,ad(A, p) :=
⋃

conj∈p

⋂

(low≤κ≤up)∈conj

⋃

I∈µ(A,κ).findElementaryIntervals(low,up)

ad(A, I) (2)

If we assume that the dimension of µ(a, κ) for each a ∈ Σ and κ ∈ K is at most m, our
implementation available at https://github.com/datagram-db/knobab/blob/main/incl
ude/yaucl/structures/query_interval_set/structures/segment_partition_tree.h (5 March
2023) builds such trees in ∑1≤i≤m log(i) + m ∈ O(m · log(m)) time, as we first insert the
intervals into the data structure and then we guarantee to minimise the tree representation,
requiring a linear visit cost to the whole tree data structure. The time complexity of
Dϕ-ENCODING() is m|K|(1 + log m + |Σ|) ∈ O(m|K||Σ|).

Example 6. Each distinct payload conditions associated with either activation or target conditions
in Figure 2 can be expressed as one single atom, as there are no overlapping data conditions associated
with the same activity label, and each data condition can be mapped into one single elementary
interval associated with an activity label. The next example will provide another use case example
and a different model on the same dataset leading to a decomposition of payload conditions into a
disjunction of several atoms. Table 2 shows the partitioning of the data payloads associated with
each activity label in the log by the elementary interval of interest.

Table 2. Definition of the atoms from Figure 2 in terms of partitioning over the elementary intervals.

Referral CA-15.3 < 23.5 CA-15.3 ≥ 23.5

p1 p2

Mastectomy CA-15.3 < 50 CA-15.3 ≥ 50

biopsy = false p5 p6
biopsy = true p7 p8

FollowUp CA-15.3 < 23.5 CA-15.3 ≥ 23.5

p3 p4

Lumpectomy CA-15.3 < 50 CA-15.3 ≥ 50

biopsy = false p9 p10
biopsy = true p11 p12

Example 7. Let us suppose to return all the false negative and false positive Mastectomy cases
that are not caused by data imputation errors. For this, we want to obtain all of the negative biopsies
having CA15.3 levels greater than the guard level of 50 and positive biopsies having CA15.3 below
the same threshold. Under the assumption that biopsy values were imputed through numerical
numbers thus leading to more imputation errors, we are ignoring cases where both CA15.3 and
biopsy values are out of scale, that is, we want to ignore the data where CA15.3 levels are negative
or above 1000, and where the biopsy values are neither true (1.0) nor false (0.0). For this, we can
outline the following model:

M′ = {Choice(Mastectomy, biopsy = 0.0∧ CA15.3 ≥ 50,Mastectomy, biopsy = 1.0∧ CA15.3 < 50),

Absence(Mastectomy, CA15.3 > 1000∨ CA15.3 < 0),

Absence(Mastectomy, biopsy 6= 1.0∨ biopsy 6= 0.0)}
(3)

This implies that we are interested in decomposing the intervals pertaining to both CA-15.3
and biopsy into elementary intervals: Table 3a shows that only CA-15.3 < 50 and CA-15.3 ≥ 50
are decomposed into two elementary intervals, as the former also includes the range CA-15.3 < 0,
while the latter also includes CA-15.3 > 1000. Elementary intervals not occurring in the initially
collected ones are not reported in this graphical representation. Table 3b shows the partitioning

141

Information 2023, 14, 173

of the Mastectomy data payload induced by the elementary intervals of interest; the former data
conditions can be now rewritten after Equation (2) in the Supplement as follows:

1.
∨

Atomµ,ad(Mastectomy,biopsy=0.0∧CA15.3≥50) = p12 ∨ p17

2.
∨

Atomµ,ad(Mastectomy,biopsy=1.0∧CA15.3<50) = p4 ∨ p9

3.
∨

Atomµ,ad(Mastectomy,CA15.3>1000∨CA15.3<0) = p1 ∨ · · · ∨ p5 ∨ p16 ∨ · · · ∨ p20

4.
∨

Atomµ,ad(Mastectomy,biopsy 6=0.0∨biopsy 6=1.0) = p1 ∨ p3 ∨ p5 ∨ p6 ∨ p8 ∨ p10 ∨ p11 ∨ p13 ∨ p15 ∨ p16 ∨
p18 ∨ p20

where each atom is defined as a conjunction of compound conditions defined upon the previously
collected elementary intervals. Some examples are then the following:

• p1 := biopsy < 0∧ CA-15.3 < 0
• p2 := biopsy = 0∧ CA-15.3 < 0

This decomposition will enable us to reduce the data access time while scanning the tables
efficiently.

Table 3. Intermediate steps to generate distinct atoms for the Referral data predicates from Example 7.

(a) Interval decomposition in basic intervals µ(Mastectomy, ·).
µ(Mastectomy, CA-15.3)

CA-15.3 < 0 CA15.3 < 0
CA-15.3 < 50 CA15.3 < 0, 0 ≤ CA-15.3 < 50
CA-15.3 ≥ 50 50 ≤ CA15.3 ≤ 1000, CA-15.3 > 1000

CA-15.3 > 1000 CA15.3 > 1000

µ(Mastectomy, biopsy)

biopsy = 0 biopsy = 0
biopsy = 1 biopsy = 1
biopsy 6= 0 biopsy < 0, 0 < biopsy < 1, biopsy = 1, biopsy > 1
biopsy 6= 0 biopsy < 0, biopsy = 0, 0 < biopsy < 1, biopsy > 1

(b) Atom generation by partitioning the data space×κ∈K µ(Mastectomy, κ).elementaryIntervals() with K = { biopsy, CA-15.3 }.
biopsy < 0 biopsy = 0 0 < biopsy =< 1 biopsy = 1 biopsy > 1

CA15.3 < 0 p1 p2 p3 p4 p5
0 ≤ CA15.3 < 50 p6 p7 p8 p9 p10

50 ≤ CA15.3 ≤ 1000 p11 p12 p13 p14 p15
CA15.3 > 1000 p16 p17 p18 p19 p20

Further Notation. We represent relational tables as a sequence of records indexed by
id as per the physical relational model: given a relational table T, T[i] represents the i-th
record in T counting from 1. We denote f = [x 7→ y, z 7→ t] as a finite function such that
f (x) = y and f (z) = t. Table 4 collects the notation used throughout the paper.

142

Information 2023, 14, 173

Table 4. Table of Notation for symbols χ ∈ T defined as (χ := E) or characterised by (E(χ)) E .

Symbol (χ) Definition (E) Type (T) Comments

Set Theory
∅ Set An empty set contains no items.

(�, S)
A partially ordered set (poset) is a relational structure for which �
is a partial ordering over S [40]. � over S might be represented as
a lattice, referred to as the Hasse diagram.

>S ∀a ∈ S.a � >S S Given a poset (�, S), >S is the unique greatest element of S.

{C U\C Set Complement set: given an universe U , the complement returns all
of the elements that do not belong to C.×κ∈K

f (κ) f (κ1)× · · · × f (κn) dom(f)|K| Generalised cross product for ordered sets K where κ1 ≺ · · · ≺ κn

|C| ∑c∈C 1 N The cardinality of a finite set indicates the number of
contained items.

℘(C) {T|T ⊆ C} Set The powerset of C is the set whose elements are all of the subsets of
C.

XES Model & LTLf
Σ Set Finite set of activity labels
K Set Finite set of ordered (payload) keys, κ
V Set Finite set of (payload) values
p [κ1 7→ v1, . . .] VK Tuple (or finite function) mapping keys κ1 ∈ K to values in v1 ∈ V
⊥ ⊥ /∈ V NULL value
σi

j 〈p, a〉 Σ×VK Event
σi σi

1, . . . , σi
n Sequence Trace, sequence of temporarily ordered events.

L {σ1, . . . , σm} Set Log, set of traces.
β Σ↔ {1, . . . , |Σ|} Bijection mapping each activity label to its unique identifier.
ϕ Equation (1) Expression An LTLf expression.
� Γ � ϕ denotes that ϕ is satisfied for the world/environment Γ.

xtLTLf
ψ Section 3.2 Expression eXTended LTLf Algebra expression.

A(k)/T(k)/M(h, k) ω Marks associated with activation/target/matching conditions.

ρ { 〈i, j, L〉 , . . . } Ω = {℘(N×N× S)|S ∈
℘(ω)} Intermediate representation returned by each xtLTLf operator

T[i] T[i] ∈ T Accessing the i-th record of a sequence T.
Θ(x, y) Binary Predicate Correlation condition between activated and targeted events.

Θ−1(y, x) Θ(x, y) Binary Predicate Inverted/Flipped correlation condition.
True Binary Predicate Always-true binary predicate.

Ei
Θ(M1, M2) Equation (S1) Algorithm 7 Existential matching condition for which there exists at least one

event in M1, M2 providing a match.

Ai
Θ(M1, M2) Equation (S2) Algorithm 9 Universal matching condition returning a non-empty set if each

event expressed in the maps M1, M2 provides a match.

T F,i
Θ (M1, M2) Equation (S3) T F,i

Θ (M1, M2) ∈
℘(ω) ∪ {False}

Testing functor returning False iff., despite the maps containing
activated and targeted events, the matching condition Fi

Θ(M1, M2)

is empty. It returns Fi
Θ(M1, M2) otherwise.

Pseudocode
↑ Null pointer or terminated iterator.

Iterator(ρ) POINTER On ρ non-empty, it returns the iterator pointing to the first record
in ρ

current(it) DEREFERENCE Element pointer by the pointer/iterator it.

LOWERBOUND(d, b, e, ν) BINARY SEARCH

Given a beginning b and end e iterator range within a sequential
and sorted data structure by increasing order, LOWERBOUND
returns either the first location in this range pointing at a value
greater or equal to ν or e otherwise.

UPPERBOUND(d, b, e, ν) BINARY SEARCH

Given a beginning b and end e iterator range within a sequential
and sorted data structure by increasing order, UPPERBOUND
returns either the first location in this range pointing to a value
strictly less to ν or e otherwise.

Time Complexity
ε N Maximum trace length.

` N Maximum length of the third component of the intermediate
representation.

https://en.cppreference.com/w/cpp/algorithm/lower_bound as accessed the 5 March 2023. https://en.cpprefe
rence.com/w/cpp/algorithm/upper_bound as accessed the 5 March 2023.

3. Logical Model

Differently from our previous work [4], we provide a full definition of the (logical) model, thus
describing the relational schema and how such tables are instantiated in order to fully represent the
original log L (Section 3.1). This is a required preliminary step, as this will provide the required
background to understand the definitions for the xtLTLf operators (Section 3.2). These operators,

143

Information 2023, 14, 173

differently from the LTLf ones, are defined over the aforementioned model and assess the satisfiability
of multiple traces loaded in such a model.

The discussion on how such tables are loaded and indexed is postponed when discussing the
physical model (Section 4), as well as the different algorithms associated with the different operators
(Section 6).

3.1. Model Definition

KnoBAB provides a tabular (i.e., relational) representation of the log L, in order to effi-
ciently query it through tailored relational operators (xtLTLf). If the log does not contain data
payloads, the entire log can be represented in two relational tables, CountingTableL(Activity,
Trace,Count) and ActivityTableL(Activity,Trace,Event,Prev,Next). While the former can
efficiently assess how many events in the same given trace share the same activity label,
the latter allows a faithful reconstruction of the activity label associated with the traces. In
particular, we use the former to assess whether a trace contains a given activity label at all.
Such tables are then defined as follows:

Definition 1 (CountingTable). Given a log L, the CountingTableL(Activity,Trace,Count)
counts for each trace in L how many times each activity label occurs. More formally:

CountingTableL =
[
〈β(a), i, |{σi

j ∈ σi|σi
j = 〈a, p〉}|〉

∣∣∣ a ∈ Σ, σi ∈ L
]

A record 〈β(a), i, n〉 states that the i-th trace from the log σi ∈ L contains n occurrences of
a-labelled events with id β(a).

Definition 2 (ActivityTable). Given a logL, the ActivityTable (Activity,Trace,Event,Prev,Next)
lists all of the possible events occurring in each log trace, where Prev (π) and Next (φ) are offsets
pointing to the row representing the immediately preceding or following event in the trace if any.
More formally:

ActivityTableL =
[
〈β(a), i, j, π, φ〉

∣∣ a ∈ Σ, σi ∈ L, σi
j ∈ σi, σi

j = 〈a, p〉
]

A record 〈β(a), i, j, π, φ〉 states that the j-th event of the i-th log trace (σi
j ∈ σi, σi ∈ L) has

an activity label a and that its preceding and following events (if any) are respectively located on the
π-th and φ-th record of the same table. Each record of this table should also satisfy the following
integrity constraints:

• (j = 1∧ π = ⊥) ∨ (∃h, π′, φ′. 〈h, i, j− 1, π′, φ′〉 ∈ ActivityTableL[π]);
• (j = |σi| ∧ φ = ⊥) ∨ (∃h, π′, φ′. 〈h, i, j + 1, π′, φ′〉 ∈ ActivityTableL[φ])

Please observe that Prev and Next are computed after bulk inserting while loading and
indexing the data (see LOADINGANDINDEXING from Algorithm 2). If a log is associated
with either trace or event payloads, we must store for each payload the values associated
with keys k in an AttributeTablek

L(Activity,Value,Offset), where Offset points to the
event described in the ActivityTableL.

Definition 3 (AttributeTable). Given a log L, for each attribute κ ∈ K associated with at least
one value in a payload, we define a table AttributeTableκ

L(Activity,Value,Offset) associating
each value to the pertaining event’s payload as follows:

AttributeTableκ
L =

[
〈β(a), p(κ), π〉

∣∣ σi ∈ L, σi
j ∈ σi, σi

j = 〈a, p〉 , p(κ) 6= ⊥
]

A record 〈β(a), v, π〉 states that the event σi
j = 〈a, p〉 stored in the ActivityTable associated

with the π-th offset contains a payload p associating κ to a value v (p(κ) = v).

Please observe that, similarly to the former table, the offset π is also computed while
loading and indexing the data: this is discussed in greater detail in Section 4.2.2.

144

Information 2023, 14, 173

Algorithm 2 Populating the Knowledge Base (Section 4.2)

1: procedure BULKINSERTION(L)
2: Σ, K ← ∅
3: for all σi ∈ L do
4: Σ← Σ ∪ {a}
5: for all σi

j = 〈a, p〉 ∈ σi do
6: CountBulkMap[β(a)][i] = CountBulkMap[β(a)][i] + 1
7: ActToEventBulkVector[β(a)].put(〈i, j〉)
8: TraceToEventBulkVector[i][j] = j
9: for all κ ∈ dom(p) do

10: K ← K ∪ {κ}
11: AttBulkMapk[β(a)][p(κ)].put(〈i, j〉)
12: end for
13: end for
14: end for

15: procedure LOADINGANDINDEXING(L)
16: actTableOffset← 1
17: for all β(a) ∈ {1, . . . , |Σ|} do
18: ActivityTableL.primary_index[β(a)]← actTableOffset
19: for all σi ∈ L do
20: CountingTableL.load(〈β(a), i, CountBulkMap[β(a)][i]〉)
21: end for
22: for all 〈i, j〉 ∈ ActToEventBulkVector[β(a)] do
23: ActivityTableL.load[〈β(a), i, j, ↑, ↑〉]
24: TraceToEventBulkVector[i][j] = actTableOffset
25: actTableOffset← actTableOffset+ 1
26: end for
27: end for
28: for all κ ∈ K and β(a) ∈ {1, . . . , |Σ|} do
29: begin← |AttributeTableκ

L|, map← {}
30: for all 〈ν, lst〉 ∈ AttBulkMapk[β(a)] and 〈i, j〉 ∈ lst do . σi

j = 〈a, p〉 with ν = p(κ)
31: offset← TraceToEventBulkVector[i][j]
32: AttributeTableκ

L.load(〈β(a), ν, offset〉)
33: AttributeTableκ

L.secondary_index[offset]← |AttributeTableκ
L|

34: end for
35: AttributeTableκ

L.primary_index[β(a)]← 〈begin, |AttributeTableκ
L|〉

36: end for
37: for all σi ∈ L and σi

j ∈ σi do
38: curr← TraceToEventBulkVector[i][j]
39: if j = 1 then
40: ActivityTableL.secondary_index[i]← 〈curr, TraceToEventBulkVector[i][|σi|]〉
41: else
42: ActivityTableL[curr](Prev)← TraceToEventBulkVector[i][j− 1]
43: end if
44: if j < |σi| then
45: ActivityTableL[curr](Next)← TraceToEventBulkVector[i][j1]
46: end if
47: end for

48: function RECONSTRUCTLOG(L)
49: L′ ← ∅
50: for all 〈i, 〈begin, end〉〉 ∈ ActivityTableL.secondary_index do
51: ςi ← []; j← 1
52: repeat
53: r ← ActivityTableL[begin]
54: a← β−1(r(Activity))
55: p← {}
56: for all κ ∈ K s.t. ∃o. 〈begin, o〉 ∈ AttributeTablek.secondary_index do
57: p(κ)← AttributeTablek[o](Value) . AttributeTablek[o](Offset) = begin
58: end for
59: ςi

j ← 〈a, p〉 ; σi.put(ςi
j)

60: begin← r(Next); j← j + 1
61: until begin 6=↑
62: L′.put(ςi)
63: end for
64: return L′

Example 8. Figure 2 provides a graphical depiction of the tables storing our data. The records
are also sorted by ascending order induced by the first three cells of each record, as required by our
Physical Database Design (Section 4). For representation purposes, the first cell of each row shows
the activity label a rather than its associated unique id β(a).

145

Information 2023, 14, 173

3.2. eXTended LTLf Algebra (xtLTLf)

We extend the operators provided in our previous work [4] into more minimal ones, thus
better describing the data access on the relational model. Furthermore, we provide a full formal
characterisation for each of these operators via their access to the aforementioned relational tables.
Please observe that, similarly to the relational algebra, each xtLTLf operator might come with
different possible algorithms [42], which are discussed in Section 6.

Our operators, assessing the behaviour of non-empty traces, come in two flavours:
timed and untimed. While the former are marked by a τ and return all of the traces’ events
for which a given condition holds, the latter guarantee that such a condition will hold any
time from the beginning of the trace. Furthermore, these operators assess the satisfiability
of all the log traces simultaneously and not only one trace at a time as per LTLf.

Each xtLTLf operator returns a nested relational table ρ with schema IntermediateResult(
Trace, Event, MarkList(Mark)) implemented as an ordered set of triplets 〈i, j, L〉, where
each triplet states that an event σi

j from trace σi satisfies a condition specified by the

returning operator. If L (MarkList(Mark)) is not empty, the current event σi
j might have

observed events σi
k and σi

h satisfying either an activation (A(k) ∈ L, k ≥ j), a target
(T(k) ∈ L, k ≥ j), or a correlation condition (M(h, k) ∈ L, k, h ≥ j). The nested relation L is
implemented as a vector ordered by mark type and referenced event id. ρ is implemented as
a vector and sorted by increasing Trace and Event id, as sorted vectors guarantee efficient
intersection and union operations, as well as efficient event counting within the same trace
through linear scanning. Binary operators associated with a non-True binary predicate Θ
return matching/correlation conditions M(h, k) ∈ L if at least one activation and one target
condition were matched, depending on the definition of the operator. As we are going to
see next, if the output comes from a base operator, as defined in the next section, L might
contain a single activation or target corresponding to the immediately returned event.

3.2.1. Base Operators

First, we discuss the base operators directly accessing the tables. These might have an
associated marker specifying whether the event of interest is considered an activation (A)
or a target (T) condition; if none is required, the mark can be omitted from the operator.
The Activityτ(a)LA/T operator lists all of the events associated with an activation label a. As
the ActivityTableL directly provides this information, this operator is defined as follows:

ActivityL,τ
A/T(a) = { 〈i, j, {A/T(j)}〉 | ∃π, φ. 〈β(a), i, j, π, φ〉 ∈ ActivityTableL }

We can also make similar considerations for single elementary interval representable
as an LTLf compound condition a ∧ lower ≤ κ ≤ upper, which can be run as a single range
query over an AttributeTableκ

L. As each of its records has an offset π to the ActivityTableL,
this resolves the trace id and event id information required for the intermediate result. This
operator can therefore be formalised as follows:

CompoundL,τ
A/T(a, κ, [lower, upper]) =

{
〈i, j, {A/T(j)}〉

∣∣∣ ∃π, π′, φ, v. lower ≤ v ≤ upper, 〈β(a), v, π〉 ∈ AttributeTableκ
L,

ActivityTableL[π] = 〈β(a), i, j, π′, φ〉
}

If we want to list all of the initial (or terminal) events of a trace, we can directly access
the ActivityTable and provide a linear scan over the number of the possible traces through
its associated secondary index. If we are not interested in whether the trace starts with a
specific activity label, then we can define the FirstL,τ

A (and LastL,τ
A) operators as follows:

FirstL,τ
A = { 〈i, 1, {A(1)}〉 | ∃a, φ. 〈β(a), i, 1,⊥, φ〉 ∈ ActivityTableL }

LastL,τ
A =

{
〈i, |σi|, {A(|σi|)}〉

∣∣∣ ∃a, π. 〈β(a), i, |σi|, π,⊥〉 ∈ ActivityTableL
}

146

Information 2023, 14, 173

On the other hand, Init (and Ends) are the specific refinements of the former operators
if we are also interested in retrieving events with a specific activity label. These can be
defined as follows:

InitLA(a) = { 〈i, 1, {A(1)}〉 | ∃φ. 〈β(a), i, 1,⊥, φ〉 ∈ ActivityTableL }

EndsLA(a) =
{
〈i, 1, {A(|σi|)}〉

∣∣∣ ∃π. 〈β(a), i, |σi|, π,⊥〉 ∈ ActivityTableL
}

Given a natural number n, Exists(a, n)LA lists the traces containing at least n events
with an activity label a. As Absence(a, n)LA is the substantial negation of the former, this lists
the traces containing at most n− 1 events with an activity label a. Please observe that these
operators directly provide the formal semantics for the homonym Declare template. As
the CountingTable precisely contains the counting information required to solve this query,
these operators can be formalised as follows for n ∈ N>0:

ExistsLA(a, n) = { 〈i, 1, {A(1)}〉 | ∃m ≥ n. 〈β(a), i, m〉 ∈ CountingTableL }

AbsenceLA(a, n) = { 〈i, 1, {A(1)}〉 | ∃m < n. 〈β(a), i, m〉 ∈ CountingTableL }
The following paragraph shows how these last two operators can be generalised

for counting the salient event information returned by any sub-expression returning an
operand ρ.

3.2.2. Unary Operators

The unary xtLTLf operators come in two flavours: the first ones extend some of the
former operators for compound conditions or atoms not necessarily associated with activity
labels, while the second ones directly extend the unary operators from LTLf.

Base Operators’ generalisations. We extend the definition of Init/Ends or Exists/Absence
for any possible set of events of interest listed in an intermediate result ρ, not necessarily
associated with the same activity label. We first define Exists and Absence operator as such:
instead of exploiting the counting table, we now actually need to count the events returned
in ρ for each trace and return an intermediate result triplet iff. they satisfy the counting
condition. These can be then defined as follows for n ∈ N>0:

Existsn(ρ) =
{
〈i, 1,∪〈i,j,Lj〉∈ρLj〉

∣∣∣ n ≤ |{〈i, j, L′〉 ∈ ρ}|
}

Absencen(ρ) =
{
〈i, 1,∪〈i,j,Lj〉∈ρLj〉

∣∣∣ n > |{〈i, j, L′〉 ∈ ρ}|
}

Similarly, while the operators accessing the CountingTable (Exists/Absence) return the
result by linearly scanning such a table, their generalised counterparts require scanning
their operand ρ as returned from a subexpression of choice, and then creaming them off
depending on how many events per trace were in ρ. As we might observe, we might exploit
the previously provided operators when we want to evaluate conditions only associated
with activity labels, while we might need to exploit the former if we are interested in results
associated with compound conditions whose evaluation is returned in ρ.

Finally, we refine Init and Ends for a given operand ρ, to keep only the events at the
beginning or end of a given trace:

Init(ρ) = { 〈i, j, L〉 ∈ ρ | j = 1 }

Ends(ρ) =
{
〈i, 1, L〉

∣∣∣ 〈i, |σi|, L〉 ∈ ρ
}

Further details on our intended notion of these operators’ generality if compared to
the corresponding base operators can be found in Appendix A.1.

LTLfextensions. The unary xtLTLf operators work differently from the corresponding
ones in LTLf: while the latter compute the semantics from the first occurring operator

147

Information 2023, 14, 173

appearing in the formula towards the leaves, the former assume to receive intermediate
results from the leaves.

This structural difference also imposes an explicit distinction between timed and un-
timed operators. This is required as each operator is completely agnostic from the semantics
associated with the upstream operator, and therefore the downstream operator has to com-
bine the incoming intermediate results appropriately. This motivates why LTLf operators
do not have to provide such an explicit distinction from their syntactical standpoint.

Such a premise motivates the counter-intuitive definition of the timed Nextτ operator
if compared to the homonym in LTLf: as this needs to return the events for which desired
temporal constraints happen immediately after them, it needs to assume that the desired
forthcoming temporal behaviour is the one received as an input ρ, for which all the events
preceding the ones listed in ρ are the ones of interest. As per the previous statement, it also
follows that this operator shall never possess an equivalent untimed flavour. From these
considerations, Nextτ is formally defined as follows:

Nextτ(ρ) = { 〈i, j− 1, L〉 | 〈i, j, L〉 ∈ ρ, j > 1 }

where L fulfils the role of preserving the information of the events satisfying an activation,
target, or correlation condition independently from the event stated in the second compo-
nent of the intermediate representation record. Therefore, 〈i, j, L〉 shall be interpreted as
follows: σi

j witnesses the satisfaction of any activation, target, or correlation condition by
the events collected in L.

We now discuss the definition of “globally”. As per previous considerations, checking
that all of the events in a trace satisfy a given condition corresponds to retrieving all of the
events satisfying such a condition, for then counting if the length of the returned events
corresponds to the trace length. Similarly, the timed version of the same operator shall test
the same condition for each possible event and return the points in the trace after which
the desired condition always happens in the future. These operators are therefore defined
as follows:

Globallyτ(ρ) =

 〈i, j,∪ j≤k≤|σi |

〈i,k,Lk〉∈ρ

Lk〉

∣∣∣∣∣∣
〈i, j, Lj〉 ∈ ρ, |σi| − j + 1 =

∣∣∣{〈i, k, Lk〉 ∈ ρ|j ≤ k ≤ |σi|}
∣∣∣

Globally(ρ) =
{
〈i, 1,∪〈i,j,Lk〉∈ρLk〉

∣∣∣ |σi| =
∣∣∣{〈i, k, Lk〉 ∈ ρ}

∣∣∣
}

The operators expressing the eventuality that a condition shall happen in the future
undergo similar considerations, with the only difference that these do not require to test
that all of the trace events from a given point in time will satisfy a given condition, as it
suffices that at least one event will satisfy it. The Future operator with its timed counterpart
are then formally defined as follows:

Futureτ(ρ) =

 〈i, j,∪ j≤k≤|σi |

〈i,k,Lk〉∈ρ

Lk〉

∣∣∣∣∣∣
∃h ≥ j, L. 〈i, h, L〉 ∈ ρ

Future(ρ) =
{
〈i, 1,∪〈i,k,Lk〉∈ρLk〉

∣∣∣ ∃j, L. 〈i, j, L〉 ∈ ρ
}

Timed and untimed negations are implemented dissimilarly by design. While the
timed negation returns all of the events that are in the log but which were not returned in
the previous computation ρ, the untimed version returns the traces containing no events
associated with the provided input. These operators are therefore defined as follows:

Notτ(ρ) = { 〈i, j, ∅〉 | (@L. 〈i, j, L〉 ∈ ρ) ∧ ∃α, π, φ. 〈α, i, j, π, φ〉 ∈ ActivityTableL }

Not(ρ) = { 〈i, 1, ∅〉 | (@j, L. 〈i, j, L〉 ∈ ρ) ∧ ∃α, j, π, φ. 〈α, i, j, π, φ〉 ∈ ActivityTableL }

148

Information 2023, 14, 173

3.2.3. Binary Operators

Differently from the LTLf binary operators, the xtLTLf binary operators are specifically
tailored to express data correlation conditions Θ between activation and target payloads.
This requires that one of the two operands, either ρ or ρ′, returns activated events while the
other provides targeted ones. Supplement I discusses the formal definition of predicates
assessing whether an event 〈i, j, L〉 ∈ ρ matches with another event 〈i, j′, L′〉 ∈ ρ′ on the
basis of their matched and activated events in L and L′. After this, we have the definition
of our required binary operators.

The until operators work similarly to the other LTLf-derived unary operators. The
timed until returns all of the events within the trace satisfying the until condition, expressed
by returning all of the “activated” events σi

j listed in the right operand (as they trivially

satisfy the until condition) alongside all of the “targeted’ events σi
j from the left operand

with k < j at a distance j − k + 1 from the second operand’s event while guaranteeing
that all the events in σi

k, . . . , σi
j−1 appear in the first operand while satisfying the matching

condition within this temporal window. The untimed version of this operator performs
such considerations only from the beginning of the trace. These are defined as follows:

UntilτΘ(ρ1, ρ2) =ρ2∪{
〈i, k, τ〉

∣∣∣∃j > k. 〈i, j, L〉 ∈ ρ2, (∀k ≤ h < j. 〈i, h, L〉 ∈ ρ1),

τ := T A,i
Θ ([k 7→ L]k≤h<j, [h 7→ Lh]k≤h<j,〈i,h,Lh〉∈ρ1

), τ 6= False
}

UntilΘ(ρ1, ρ2) ={ 〈i, j, L〉 ∈ ρ2 | j = 1 }∪
{
〈i, 1, τ〉

∣∣∣ ∃j > 1, L. 〈i, j, L〉 ∈ ρ2, (∀1 ≤ k < j. 〈i, k, Lk〉 ∈ ρ1),

τ := T A,i
Θ ([k 7→ L]i≤k<j, [k 7→ Lk]i≤k<j,〈i,k,Lk〉∈ρ1

), τ 6= False
}

where T A,i
Θ performs (Please see Supplement I for more details.) the correlation tests and

returns the set of the matches if any and, if no match was successful, it returns False.
Differently from UntilτΘ and UntilΘ, the rest of the binary operators assume to receive
“activated” (or “targeted”) events from the left (right) operand. The timed conjunction
states that a join condition effectively happens in a given event σi

j if both operands return
such an event and their associated activation and target conditions match. Thus, we only
care for activation and target conditions at the same event σi

j . For its untimed counterpart,
we state that a trace satisfies the conjunction of events if at least one activation condition
from the left operand matching with a target from the right operand, if any, exists; this
corresponds to coalescing the activations and target conditions on the first event while
requiring that at least one of them occurs. These two operators can then be defined
as follows:

Andτ
Θ(ρ1, ρ2) =

{
〈i, j, τ〉

∣∣∣ ∃L1, L2. 〈i, j, L1〉 ∈ ρ1, 〈i, j, L2〉 ∈ ρ2, τ := T E,i
Θ ([j 7→ L1], [j 7→ L2]), τ 6= False

}

AndΘ(ρ1, ρ2) =
{
〈i, 1, τ〉

∣∣∣ ∃j, j′, L, L′.(〈i, j, L〉 ∈ ρ1 ∧ 〈i, j′, L′〉 ∈ ρ2),

τ := T E,i
Θ ([1 7→ ∪{Lj| 〈i, j, Lj〉 ∈ ρ1}], [1 7→ ∪{Lj| 〈i, j, Lj〉 ∈ ρ2}]),

τ 6= False
}

The disjunctive version of the timed conjunctive operator returns either the result of
the conjunctive operator or the events that did not temporally match from each respective

149

Information 2023, 14, 173

operator. The only difference with its untimed version is that the latter merges all potential
activation or target conditions from either of the two operands:

Orτ
Θ(ρ1, ρ2) = Andτ

Θ(ρ1, ρ2) ∪
{
〈i, j, L〉 ∈ ρ1

∣∣ @L′. 〈i, j, L′〉 ∈ ρ2
}

∪
{
〈i, j, L〉 ∈ ρ2

∣∣ @L′. 〈i, j, L′〉 ∈ ρ1
}

OrΘ(ρ1, ρ2) = AndΘ(ρ1, ρ2) ∪
{
〈i, 1,∪{L|∃j. 〈i, j, L〉 ∈ ρ1}〉

∣∣ @j, L′. 〈i, j, L′〉 ∈ ρ2
}

∪
{
〈i, 1,∪{L|∃j. 〈i, j, L〉 ∈ ρ2}〉

∣∣ @j, L′. 〈i, j, L′〉 ∈ ρ1
}

As we will see, the choice of characterizing Or with an Ei
Θ match while coalescing the

activation and target conditions on the first trace event allows us to express the Choice tem-
plate from Declare with one single operator while preserving its expected LTLf semantics.

3.2.4. Derived Operators

Similarly to relational algebra, we can now compose some frequently occurring opera-
tors together for enhancing the overall time complexity associated with the execution of
frequently appearing subqueries in Declare.

Appendix A.3 will show that computing these operators is equivalent to computing
their semantically equivalent xtLTLf expression containing multiple operators.

AndFutureτ
Θ(ρ1, ρ2) =

{
〈i, j, τ〉

∣∣∣ ∃L. 〈i, j, L〉 ∈ ρ1, (∃L′, k ≥ j. 〈i, k, L′〉 ∈ ρ2),

τ := T E,i
Θ ([j 7→ L], [j 7→ ∪h≥j,〈i,h,Lh〉∈ρ2

Lh]), τ 6= False
}

AndGloballyτ
Θ(ρ1, ρ2) =

{
〈i, j, τ〉

∣∣∣ ∃L. 〈i, j, L〉 ∈ ρ1, (∀|σi| ≥ k ≥ j.∃L′. 〈i, k, L′〉 ∈ ρ2),

τ := T A,i
Θ ([j 7→ L], [j 7→ ∪h≥j,〈i,h,Lh〉∈ρ2

Lh]), τ 6= False
}

For easing the pseudocode readability, we can also define an AtomL,τ
A/T(pi) operator

computing the conjunction of all of the compound conditions characterizing each atom:

AtomL,τ
A/T(pi) = Andτ

True
κ∈K

CompoundL,τ
A/T(a, κ, [lowκ , upκ]) s.t. pi := a∧

∧

κ∈K
lowκ ≤ κ ≤ upκ

Properties of the xtLTLf Algebra. We furnish the previous definitions with some
formal proofs, which, so as not to burden the reader, are postponed to the Appendix A. We
show that xtLTLf is as expressive as traditional LTLf, as we can show that each LTLf expres-
sion evaluated over a finite and non-empty trace σ corresponds to an xtLTLf expression
evaluated over the representation of such a trace within the proposed logical model; as the
proofs of Lemmas A5 and A6 in Appendix A.2 are constructive, they show the translation
process from LTLf formulæ to equivalent xtLTLf expressions.

Next, we also show that the timed and untimed operators correspond to the intended
semantics: that is, for each timed operator having a corresponding untimed operator if the
former states that the timed formula is satisfied by the i-th trace starting from time j, it
follows that the sub-trace of i starting from time j will satisfy the corresponding untimed
formula. This shows the correctness of the untimed operators concerning their timed
definitions (Lemma A7).

In Appendix A.3, we show that the Declare template Choice can be fully implemented
by exploiting an untimed Or operator (Corollary A1) while the latter still abides to the
rules of LTLf semantics. We also motivate the need of the derived operators in terms of
equivalence to the intended xtLTLf expressions (Lemmas A9 and A10) as well as in terms
of improved computational complexity (Section 6.4) and run time (Section 7.1). The latter

150

Information 2023, 14, 173

is discussed after describing the physical model in more detail alongside the algorithms
associated with each operator, which is introduced in the following section.

4. Physical Database Design

This section shows how the defined model (Section 3.1) is represented in primary memory in
terms of indices and data structures (Section 4.1). We also illustrate the algorithm loading a log in
such representation of choice (Section 4.2).

4.1. Primary Memory Data Structures

At the time of the writing, KnoBAB is primarily an in-memory database. This is a
common assumption in the conformance checking domain where most of the log datasets
are quite compact and nicely fit in primary memory.

In order to be both memory and time efficient in our operations, the sub-record
referring to the first three columns of both the CountingTableL and the ActivityTableL are
fully stored in primary memory as an unsigned 64-bit unsigned integer, while the Prev and
Next are more efficiently stored as pointers to the table records rather than being an offset.
After sorting the CountingTableL, we directly obtain the occurrence of each activity label a
within the log by accessing the records in the range [|L| · (β(a)− 1) + 1, |L| · β(a)].

Indexing data structures, on the other hand, eases the access to the ActivityTableL,
as different traces might have different lengths, and activity labels might be differently
distributed among the traces. Therefore, we exploit a clustered and sparse primary index
for determining which is the first event associated with a given activity label; as the traces in
such a table are represented as a doubly linked list, its secondary index maps each trace-id
to a block that, in turn, points to the head (first event of the trace) and the tail (last event of
the trace) of such a doubly linked list.

The deduplication of trace and event payloads in distinct AttributeTableκ
L for each key

κ follows the prescriptions of the query and memory-efficient representation of columnar-
based storages [35]. In our implemnetation, such tables are sorted in ascending order
by their three first columns. Each AttributeTableκ

L is also associated with two indices:
the clustered and sparse primary index maps each activity label’s id β(a) to the records
referring to values contained in a-labelled events, and a dense secondary index associates
an ActivityTableL record offset to an AttributeTableκ

L record offset if and only if the event
described in ActivityTableL has a payload containing a value associated with a key κ.
While data range queries leverage the former, the latter is used for reconstructing the
payload associated with a given event when identified by its offset in the ActivityTableL. A
relevant use case for doing so is the reconstruction of the event payload information while
performing the Θ correlation condition, as well as reconstructing the original log leading to
the loading of the internal database. RECONSTRUCTLOG function in Algorithm 2 shows the
computation of the latter.

Example 9. With reference to Figure 2, let us consider some events with activity label Mastectomy
associated with an unique id β(Mastectomy) = 3. The offsets for accessing the records in the
CountingTableL defining the number of events per trace with such a label is [3 · (3− 1) + 1, 3 · 3] = [7, 9].

The ActivityTableL’s primary index allows the access to the first record within the table
recording a Mastectomy event, i.e., ActivityTableL.primary_index[β(Mastectomy)] = 7 ; the
index implicitly returns the last event associated with such an activity label by decreasing the
offset to the following activity label by one, i.e., ActivityTableL.primary_index[β(Mastectomy) +
1] − 1 = 7: please remember that, if the activity label is such that β(a) = |Σ|, then the final
offset to be considered corresponds to the ActivityTableL size. This indicates that there exists only
one event throughout the whole log associated with such an activity label. We will exploit this
mechanism for returning the events associated with ActivityL,τ

A/T(Mastectomy). As the seventh

record of such a table refers to the third event of the first trace, ActivityL,τ
A (Mastectomy) will then

return { 〈1, 3, {A(3)}〉 }.

151

Information 2023, 14, 173

Finally, we discuss how we can leverage AttributeTableκ
L’s primary indices for returning

results associated with an AtomL,τ
A/T operator. Let us consider atom p12: we can see that this is

associated with the elementary intervals Lumpectomy ∧ biopsy = true and Lumpectomy ∧ 50 ≤
CA_15.3 < +∞. By definition of the operator of interest, we then have that:

AtomL,τ
A (p12) = Andτ

True(CompoundL,τ
A (Lumpectomy ∧ biopsy = true),

CompoundL,τ
A (Lumpectomy ∧ CA_15.3 ≥ 50))

The first Compound operator will access the primary index from AttributeTablebiopsy
L while

the second one will access the one from AttributeTableCA_15.3
L . Then, the primary index of each ta-

ble maps each activity to the offsets of the first and last record: AttributeTablebiopsy
L .primary_index

[β(Lumpectomy)] = 〈2, 2〉 and AttributeTableCA_15.3
L .primary_index[β(Lumpectomy)] = 〈7, 7〉.

Then, within these returned record offsets, we perform range queries respectively looking for records
satisfying biopsy = true and 50 ≤ CA_15.3 < +∞. All of the ActivityTableLκ’s records satisfying
these conditions point to the tenth record of the ActivityTableL referring to the third event of the
third trace. Therefore, AtomL,τ

A (p12) returns { 〈3, 3, {A(3)}〉 }.

4.2. Populating the Database

We discuss two subsequent steps for loading a log in our proposed relational model: we
preliminarily sort the data by activity label id, event id, and values (Section 4.2.1) for then loading
the sorted record in the tables while generating their primary and secondary indices (Section 4.2.2).
These are computed in quasi-linear time with respect to the full log size.

4.2.1. Bulk Insertion

KnoBAB uses BULKINSERTION to pre-load the tables’ data into an intermediate repre-
sentation by pre-sorting it according to the ascending order induced by the first column of
the tables of interest. Algorithm 2 shows the loading of the following three maps referring
to the aforementioned tables. (i) CountBulkMap counts the occurrence of each activity label
per track, implying that the absence of a trace identifier for a given β(a) value presupposes
the absence of a given activity label a within a trace; as the name suggests, we use this
to later on populate the CountingTable. (ii) The ActToEventBulkVector prepares the inser-
tion of sorted data in ActivityTableL by associating an activity label to each event and its
associated trace containing it. (iii) Similarly to the ActToEventBulkMap, the AttBulkMapk
associates to each key κ the values p(κ) for each event σi

j with payload p and activity label
a, in order to prepare the insertion of sorted records in AttributeTableκ

L. Please observe that,
by construction, the set of pairs associated with each activity id β(a) is already sorted by
increasing trace and event id.

We also pre-allocate a TraceToEventBulkVector map (represented as a vector of vec-
tors) which will later associate each event trace to an offset on the ActivityTableL where such
event is stored. KnoBAB will later use this to calculate Prev and Next in the ActivityTable.
After this, KnoBAB knows the number of the traces within the log |L|, the length |σj|
for each trace σj, and the number of distinct activity labels |Σ| is known, as well as their
associated unique id β(a) for each a ∈ Σ. We can show that this procedure might be
computed in quasi-linear time with respect to the full log size (Lemma S1).

4.2.2. Loading and Indexing

We continue our discussion with LOADINGANDINDEXING. First, we can iterate over
the activity labels in ascending order of appearance (Line 17). All the tables including the
CountingTableL have activity ids β(a) as their first cell: by further iterating by increasing
trace id, we can immediately orderly store the records in CountingTableL (Line 20).

Second, we start populating the ActivityTableL (Line 23) where each record is associated
with an increasing offset of the table (Line 25). We can populate its primary index in order to
point at the record representing the first event of the first trace with the currently considered

152

Information 2023, 14, 173

activity label. We store such information in the pre-allocated traceToEventBulkVector
(Line 24), in order to later set the currently null pointer (↑) Next and Prev fields.

Third, we start populating each AttributeTableκ
L for each key κ ∈ K associated with at

least one value in a payload: as per the previous discussion, each record associates the
offset of event σi

j = 〈a, p〉 in the ActivityTableL with a value ν = p(κ) and the activity label
id β(a) (Line 32). We also populate its secondary index by associating each event offset in
the ActivityTableL to the current position in the AttributeTableκ

L (Line 33). The last iteration
finally populates each ActivityTableL’s secondary index (Line 50) and sets the Next (Line 45)
and Prev (Line 42) fields through the offset via TraceToEventBulkVector. After this, the
relational database is fully loaded in primary memory. The overall time complexity grows
linearly to the whole log representation (Lemma S2).

5. Query Processing and Optimisation

This section shows how a declarative model M is compiled to a query plan consisting of
xtLTLf operators (Section 5.1) so it can be run (Section 5.2) on top of the primary memory data
described in the previous section.

5.1. Query Compiler

The conversion of a declarative modelM into its corresponding xtLTLf query plan is struc-
tured into three main phases. First, the atomisation pipeline calls the preliminary Dϕ-encoding
from [25] for rewriting the data predicates appearing in each declarative clause as a disjunction
of mutually exclusive atoms (Section 5.1.1). Second, we (ii) rewrite each Declare constraint as a
xtLTLf formula from which we obtain a preliminary query plan represented as a DIRECT ACYCLIC

GRAPH (DAG) (Section 5.1.2). Third, we compute the scheduling order for the operators’ exe-
cution over the DAG, thus preparing the execution to a potential parallel evaluation of the query
(Section 5.1.3).

5.1.1. Atomisation Pipeline

The atomisation pipeline (Algorithm 3) represents each activation and target con-
dition as a set of disjunct atoms or activity labels. KnoBAB can always be configured
in two ways: to either fully represent each possible activation (or target) condition with
activity label a as a disjunction of atoms (or activity labels) if there exists at least one
declarative clause where a is also associated with a non-trivial payload condition (strat-
egy=AtomizeEverything), or to restrict atomisation to data conditions appearing in a
clause (strategy=AtomizeOnlyOnDataPredicates). Both can be set through the Atomisation-
Pipeline procedure in Algorithm 3. The Dϕ-encoding step guarantees that each activation or
target condition will be associated with at least one atom or activity label. While the former
approach will maximise the access to the AttributeTableL, the latter will maximise the access
to the ActivityTableL. Correlation conditions do not undergo this rewriting step. We discuss
the effects of each different strategy on the query runtime via empirical benchmarks in
Section 7.4. We can show that this step has a polynomial complexity with respect to the
model, key set, and element intervals’ maximum size (Lemma S3).

Example 10. With reference to Figure 3a, we might observe that, as no activation or target is ever
associated with payload conditions, the atomisation pipeline will never express each activation or
target condition as a disjunction of atoms, as no elementary interval is collected. Therefore, these
will be only associated with activity labels.

Example 11. With reference to Example 6, Figure 2 shows the atomised version of the declarative
model, where each activation and target condition is associated, in this case, with just one atom.

153

Information 2023, 14, 173

Algorithm 3 Atomisation Pipeline (Section 5.1.1)
1: procedure ATOMISATIONPIPELINE(M, strategy)
2: COLLECTINTERVALS(M) . See Algorithm 1
3: Dϕ-ENCODING() . See Algorithm 1
4: for all clausel(A, p,B, p′) where Θ ∈ M do
5: if p=True and (strategy=AtomizeOnlyOnDataPredicates or ak(A) = {A}) then . Defining SA for clausel
6: clausel .left← {A}
7: else
8: clausel .left← ak(A) ∩ Atomµ,ad(A, p) . Equation (2)
9: end if

10: if p’=True and (strategy=AtomizeOnlyOnDataPredicates or ak(B) = {B}) then . Defining ST for clausel
11: clausel .right← {B}
12: else
13: clausel .right← ak(B) ∩ Atomµ,ad(B, p′) . Equation (2)
14: end if
15: end for

Example 12. Continuing with Example 7, where we discussed the outcome of the Dϕ-encoding
phase for a modelM′ in Equation (3), we obtain the following atomisation:

{Choice1(left = {p12, p17}, right = {p4, p9}),
Absence2(left = {p1, . . . , p5, p16, . . . , p20}, n = 1),

Absence3(left = {p1, p3, p5, p6, p8, p10, p11, p13, p15, p16, p18, p20}, n = 1)}

5.1.2. Query Optimiser

The query optimiser consists of three steps: (i) loading the xtLTLf formulæ associated with
each declarative clause at warm-up, (ii) exploiting the outcome of the Atomisation Pipeline to
instantiate the xtLTLf formulæ, (iii) and coalescing the single xtLTLf into one compact abstract
syntax DAG. Our query plan will not be represented as a tree as we merge as many nodes computing
the same result as possible, thus computing the same sub-expression at most once.

First, we load the translation map xtTemplates (Table 5) at warm-up through an
external script providing the temporal semantics associated with the clauses of interest
via partially-instantiated xtLTLf expressions. Such representation also supports negated
activation or target conditions, thus avoiding the need to compute a Not operator stripping
the information of either activation or target conditions. These are marked in the previous
table via set complementation, {. At the time of the writing, the scripts provide the
xtLTLf semantics for Declare templates. Future investigations will express other temporal
declarative languages such as [43] in xtLTLf, as well as other LTLf extensions including
“past” operators [17,19].

Second, we exploit the aforementioned map to convert each declarative clause into its
xtLTLf semantics ψ. If the clause is met for the first time, we proceed with its instantiation
by recursively visiting ψ until the leaves are reached: at this level, we potentially replace
the activation and target placeholders with the associated set of atoms. Disjunctions of
atoms and activity labels associated with leaf nodes as returned by the previous pipeline
are minimised by ensuring that each shared OrTrue computation across all of the atoms
and activity labels is computed at most once. If an atom is met, we decompose it into its
defining compound conditions (Line 14), thus guaranteeing that each compound condition
is evaluated via CompoundL,τ

A/T at most once across all of the atoms occurring in the xtLTLf
formula when running the query (Section 5.2.1).

Third, we complete the process by coalescing shared disjunct sub-expressions via a
map (queryCache) guaranteeing that all of the equivalent sub-expressions are all replaced by
just one instance of these. Finally, we associate each sub-expression referring to each clause
to the final query operator representing the expression’s root (queryRoot), either presenting
an aggregation or a conjunctive query.

154

Information 2023, 14, 173

Table 5. Declare templates illustrated as their associated xtLTLf semantics. SA (and ST) denote the
disjunction of collected atoms and activity labels (represented as sets) associated with the activation
(and target) condition. The Atomisation Pipeline will return these sets. For declarative clauses that
can be directly represented as xtLTLf operators, we might have two different possible operators
depending on the atomisation result.

Exemplifying Clause (cl)
xtLTLf Semantics

SA = {A}, ST = {B} A,B ∈ Σ Otherwise (e.g., Atomisation)

Init(SA) InitLA(A) Init(SA)
Exists(SA, n) ExistsLA(A, n) Existsn(SA)

Absence(SA, n + 1) AbsenceLA(A, n) Absencen+1(SA)
Precedence(SA, S′) OrTrue(Until({S′, SA), Absence(S′, 1))
ChainPrecedence(SA, ST) where Θ Globally(Orτ

True(Orτ
True(LastL,τ , Nextτ({ST)), Andτ

Θ(Nextτ(SA), ST)))
Choice(SA, SA′) OrTrue(SA, SA′)
Response(SA, ST) where Θ Globally(Orτ

True({SA, AndFutureτ
Θ(SA, ST)))

ChainResponse(SA, ST) where Θ Globally(Orτ
True({SA, Andτ

Θ(SA, Nextτ(ST))))
RespExistence(SA, ST) where Θ OrTrue(Absence(SA, 1), AndΘ(SA, ST))
ExclChoice(SA, SA′) AndTrue(OrTrue(Exists(SA, 1), Exists(SA′ , 1)), OrTrue(Absence(SA, 1), Absence(SA′ , 1)))
CoExistence(SA, ST) where Θ AndTrue(RespExistence(SA, ST) where Θ, RespExistence(SA′ , ST′) where Θ−1) s.t. SA′ = ST and ST′ = SA
Succession(SA, ST) where Θ AndTrue(Precedence(SA, S′), Response(SA, ST) where Θ) s.t. S′ = ST
ChainSuccession(SA, ST) where Θ Globally(Andτ

True(Orτ
True(Orτ

True(LastL,τ , Nextτ({ST′)), Andτ
Θ−1 (Nextτ(SA′), ST′)),

Orτ
True({SA , Andτ

Θ(SA , Nextτ(ST))))) s.t. SA′ = ST and ST′ = SA
AltResponse(SA, ST) where Θ Globally(Orτ

True({SA, Andτ
Θ(SA, Nextτ(UntilτTrue({SA, ST))))))

AltPrecedence(SA, ST) where Θ AndTrue(Precedence(SA, ST), Globally(Orτ
True({SA, Andτ

Θ(SA, Nextτ(Orτ
True(Untilτ({SA, ST), Globallyτ({SA)))))))

NotCoExistence(SA, ST) where Θ Not(AndΘ(SA, ST))
NotSuccession(SA, S′) Globally(OrTrue({SA, AndGloballyτ

True(SA, {ST)))

Example 13. The model in Figure 3a, when compiled and associated with a conjunctive query,
might produce the following xLTLf expression:

AndTrue

(
Globally

(
Orτ(Notτ(ActivityL,τ(rec)), AndFutureτ

True(ActivityL,τ
A (rec)), ActivityL,τ

T (weap))
))

,

AndTrue

(
Absence(iiot_sh, 1),

OrTrue(ActivityL(comm), ActivityL(act))
))

We might observe that this expression cannot be further minimised, as there are neither shared
atoms nor sub-expression in common. This can neither be achieved by rewriting Notτ(ActivityL,τ(rec))
as Orτ

True a∈Σ,
a 6=rec

ActivityL,τ(a), as the comm and act atoms associated with the choice clause are

untimed, while the former rewriting only included timed Activity operators. As these two different
flavours of operators do not necessarily return the same result, these nodes are not merged.

Example 14. With reference to Example 11 and Table 1, as the Response clause was associated with
the same activation and target condition to Succession, the former is indeed a subquery of the latter.
For this reason, these queries are fused together, thus guaranteeing that the result for Response is
computed at most once. As the query root requires the computation of Max-SAT, this one is always
going to be linked to the sub-expression being the representation of an original declarative clause.
Green arrows in Figure 2 indicate operators’ output shared among operators.

Example 15. This last example shows the effect of the reduction of the number of shared timed
union operators at the leaf level. By recalling the atomised model discussed in Example 12, we need
to represent each set of atoms as a timed disjunction of Atom operators. While doing so, we observe
that Choice and the first Absence condition share atoms p4 and p17, while the two Absence clauses
share all the atoms in {p1, p3, p5, p16, p18, p20}. Not ensuring that the timed unions associated with
these last elements are computed only once will result in both multiple data access to our relational
tables, as well as a considerable increase in run time as union operations are run twice. The detection
and minimisation of such kind of shared sub-queries cannot be merely computed through a simple

155

Information 2023, 14, 173

caching mechanism, thus requiring a more sophisticated algorithm for determining the maximal
common subset shared among all of the possible sets of atoms (and potentially activity labels).

Algorithm 4 provides additional details on the implementation of such an approach.
Line 11 refers to the first phase and shows the point in the code where we associate each
negated leaf with the complementary set of atoms appearing after the decomposition
process. With respect to the second phase, Line 65 shows the rewriting of the Declare clause
into an intermediate xtLTLf by recursively visiting it in each of its operands until the leaves
are reached (Line 5). If during this visit we meet a binary operator marked as being the
“tester” for the correlation condition, we associate to it the Θ coming from the declarative
clause (Line 4); otherwise, the operator keeps the default True. Concerning the leaves,
for unary clauses, we consider the sole activation condition, while for binary clauses, we
might also consider target conditions. If the leaf node is associated with an SA (or ST)
containing more than one activity label or atom, we need to keep track of all of these while
representing such a leaf as a disjunction of such atoms

(Lines 18–25). Next, we optimize each disjunction of atoms and activity labels in order
to minimize the number of shared union computations (Line 48); such optimisation is
performed after fully visiting the xtLTLf expression, thus ensuring that each appearing
disjunction is actually collected (Line 69).

Line 14 shows where we collect atoms representing compound conditions while
guaranteeing that its associated CompoundL,τ

A/T operator is computed only once, as well as
decomposing it in its constituent compound conditions.

Finally, the method PUTINCACHE extends the queryCache map by guaranteeing that
each distinct disjunction of atoms is also represented at most once within the query plan.

Example 16. Figure 5 showcases the result of the application of such an algorithm while generating
unique xtLTLf expressions. Such an algorithm also guarantees the non-repetition of single-leaf
operators appearing in different clauses. Its upper box shows a query plan where common union
operations are shared across sub-trees by representing each sub-tree at most once. These are actually
represented in the query plan as opposed to the evaluation associated with the atoms, which is
discussed in Supplement III.1.

AtomL,τ (p12)

OrτTrue

AtomL,τ (p9)

OrτTrue

AtomL,τ (p4) AtomL,τ (p17) A B C

OrτTrue OrτTrue

OrτTrue

OrτTrue

Absence1OrTrue Absence1

ConjunctiveQuery

Orτ
True

AtomL,τ (p1) Orτ
True

AtomL,τ (p3) Orτ
True

AtomL,τ (p5) Orτ
True

AtomL,τ (p16) Orτ
True

AtomL,τ (p18) AtomL,τ (p20)

Figure 5. In-depth representation of the query plan associated with the model described in Example 15.

156

Information 2023, 14, 173

Algorithm 4 Query Optimiser
1: global declare2xtLTLf ← {}; queryCache← {}; collectUnions← {}; Q ← {}; atomQ← ∅
2: global keyToLabelToSortedIntervals← {}; SΣ ← {}; Results← {}

3: function INSTANTIATE(ψ, Θ, SA, ST)
4: if ψ.hasTheta then ψ.theta← Θ
5: if ψ.arg= ∅ then . ψ is a leaf
6: if ψ.isActivation or ψ.isNeither then
7: ψ.atom← SA
8: else if ψ.isTarget then
9: ψ.atom← ST

10: end if
11: if ψ.negated then ψ.atom← { ψ.atom . Complementing the atoms from the universe set upon negation
12: for all atom ∈ ψ.atom do
13: if atom ∈ ⋃a∈Σ ak(a) then . The atom is generated from Dϕ-encoding
14: RETRIEVEINTERVALS(atom)
15: else atomQ.put(atom)
16: end if
17: end for
18: if |ψ.atom| > 1 then
19: disj← ∅
20: for all atom ∈ ψ.atom do
21: ψ′ ←new xtLTLf ()
22: ψ′.atom = {atom}
23: disj.put(atom)
24: end for
25: collectUnions[disj].put(ψ)
26: else
27: end if
28: else
29: for all arg ∈ ψ do
30: arg←INSTANTIATE(arg, Θ, SA, ST)
31: end for
32: end if

33: procedure COLLECTUNIONS() . DAG over the leaves undergoing union operations.
34: for all 〈atomSet, ψ′〉 ∈ FINITARYSETOPERATIONS(collectUnions, OrTrue) do . Algorithm S4
35: for all ψ ∈ collectUnions[atomSet] do
36: queryCache[ψ]← ψ′

37: end for
38: end for

39: procedure PUTINCACHE(ψ)
40: if ∃ψ′. 〈ψ, ψ′〉 ∈ queryCache then
41: return ψ′

42: else
43: for all arg ∈ ψ.args do
44: arg←PUTINCACHE(arg)
45: end for
46: ψ′ ← new xtLTLf ()
47: ψ′ ← ψ
48: queryCache[ψ]← ψ′

49: return ψ′

50: end if

51: procedure RETRIEVEINTERVALS(pi) . pi := a∧ partition
52: for all lowκ ≤ κ ≤ upκ ∈ partition do . pi =

∧
κ∈K lowκ ≤ κ ≤ upκ

53: if ∃h. 〈lowκ ≤ κ ≤ upκ , h〉 ∈ keyToLabelToSortedIntervals[κ][a] then
54: SΣ[pi].put(h)
55: else
56: Results.put(∅)
57: SΣ[pi].put(|Results|)
58: keyToLabelToSortedIntervals[κ][a].put(〈lowκ ≤ κ ≤ upκ , |Results|〉)
59: end if
60: end for

61: function QUERYOPTIMISER(M,queryRoot)
62: for all clausel(A, p,B, q) where Θ ∈ M do
63: if ∃ψ : xtLTLf. 〈clausel(A, p,B, q) where Θ, ψ〉 ∈ declare2xtLTLf then Q.push(ψ)
64: else
65: ψ← INSTANTIATE(xtTemplates[clausel], Θ, clausel .left, clausel .right)
66: Q.push(ψ)
67: end if
68: end for
69: COLLECTUNIONS()
70: queryRoot.args← { PUTINCACHE(ψ) | ψ ∈ Q }
71: return queryRoot

157

Information 2023, 14, 173

5.1.3. Enabling Intraquery Parallelism

The query scheduler (Algorithm 5) takes as an input the query compiled in the
previous phase and returns the scheduling order for achieving intraquery parallelism [42].
The previously generated expression might not be considered as an abstract syntax tree,
rather than an abstract syntax DIRECT ACYCLIC GRAPH (DAG) rooted in the entry-point
operator queryRoot, as we guarantee that sub-expressions appearing multiple times are
replaced by unique instances of them.

Therefore, we can freely represent the query plan as a DAG G in our pseudocode
notation, where each root operator in ψ is a single node while edges connect parent
operators to the siblings’ (ψ.args) root operator. Graph edges induce the execution order,
where any ancestor node needs to be run after all of its immediate siblings. A reversed
topological sort (Line 3) induces the order in which the operations should be run. To
know which of these operators can be run contemporarily (i.e., scheduled together [44])
as they share no interdependencies, we compute for each node its maximum distance
from queryRoot (Line 6). This generates a layering [45] guaranteeing that all of the nodes
at the same levels share no mutual dependencies (Line 10). This enables the level-wise
parallelisation of the tasks’ execution (also referred to as Intraquery Parallelism [42]), thus
showing how such a problem can be reduced into an embarrassingly parallel problem by
parallelising the computation of each operator in the same given layer. This procedure
runs in linear time with respect to the number of operators appearing in the xtLTLf query
plan (Lemma S4). We benchmark query plan parallelisation with different task scheduling
policies in Section 7.3.

Algorithm 5 Query Scheduler (Section 5.1.3)

1: function QUERYSCHEDULER(G)
2: layer← {}
3: V ← REVERT(TOPOLOGICALSORT(G))
4: for all ψ ∈ V do
5: for all ψ′ ∈ ψ.args do
6: ψ′.distance← max(ψ′.distance, ψ.distance+ 1)
7: end for
8: end for
9: for all ψ ∈ V do

10: layer[ψ.distance].put(ψ)
11: end for
12: return layer

Example 17. The DAG in Figure 2 depicts a query plan, where operators’ dependencies are
suggested as arrows starting from the ancestors. The graph is also already represented as a layered
graph, as all of the nodes having the same maximum distance from the query root are aligned
horizontally. We might observe that none of the nodes within each layer shares dependencies.

5.2. Execution Engine

The execution engine (Algorithm 6) runs the previously compiled query (Section 5.1) on top of
the relational model populated from the XES log (Section 4.2). The computation will start from the
DAG query leaves directly accessing the relational database (Section 5.2.1) for then propagating the
results until the root of the DAG is reached (Section 5.2.2). At this point, we can perform the final
conjunctive or aggregation queries (Section 5.2.3).

At each stage, we exploit a functor A associating to each xtLTLf operator an algorithm which
will take the result from the ψ’s operands as an input while returning the expected output by formal
definition in an intermediate result ρ. This abstraction enables the separation between xtLTLf
syntax and multiple possible algorithmic implementations. Some algorithmic implementations for
such operators are discussed in Section 6.

158

Information 2023, 14, 173

Algorithm 6 Execution Engine (Section 5.2)

1: function EXECUTIONENGINE(layer,L,A)
2: for all ψ ∈ atomQ (parallel) do ψ.result← A(ψ)
3: RUNDϕ-ENCODINGATOMS(L) . Algorithm S5
4: for all 〈distance, Ψ〉 ∈ layer do
5: for all ψ ∈ Ψ (parallel) do
6: if ψ.atom = {pi} and pi ∈

⋃
a∈Σ ak(a) then

7: ψ.result←A(AtomL,τ
·)(ψ) . Algorithm S5

8: else if ψ.atom = {a} ∧ a ∈ Σ then
9: continue . Already run in Line 2

10: else
11: ψ.result← (A(ψ))({ψ′.result|ψ′ ∈ ψ.args})
12: end if
13: end for
14: end for
15: queryRoot← layer[0]
16: return queryRoot.result

For this step, we will not discuss the computational complexity of evaluating the query plan as
this is heavily dominated by the computation of every single operator, the model of choice, and the
log size. For this reason, we only conducted empirical analysis by benchmarking the run time of the
whole execution engine, where models either only contain ActivityL,τ

A/T (Section 7.2) operators or

mainly AtomL,τ
A/T ones (Section 7.5).

5.2.1. Basic Operators’ Execution

Among all of the possible DAG node leaves, we first (Line 2) execute the leaves either
(i) directly associated with an activity label, or (ii) First and Last. For the former (i), each
activity label a is run through its correspondent ActivityL,τ

A/T(a) operator, whether either A
or T or none are going to be set depending on the fact that such atom refers to an activation
(ψ.isActivation) or target (ψ.isTarget) condition, or whether the associated result should
be ignored as a whole (ψ.isNeither). For the latter (ii), we directly access the data tables
and retrieve the data from them. As the tables are already sorted by trace and event id,
no further post-processing besides the insertion of activation or target label in the nested
component L of the intermediate representation is required.

Next, we evaluate the intermediate result associated with each atom generated by
the Dϕ-encoding (Line 3). Intuitively (Please refer to Supplement III.1 for a more in-depth
discussion with pseudocode.), this requires three subsequent phases. First, we obtain the
compound conditions grouped by key and activity label as collected at query compile time,
and we exploit them to pipeline multiple range queries over each AttributeTablek

L. The
associated results are cached. Second, we compute the results for each atom by intersecting
the previously cached results before actually computing the actual AtomL,τ

A/T . This also
guarantees that shared intersections are run at most once across all of the previously cached
results. Third, we exploit the former result to compute the AtomL,τ

A/T operator at the leaf
level on our DAG, while associating either an activation or a target mark in L depending
on the prior definition of our leaf-level operator.

5.2.2. Results Propagation

After running the basic operators and their derived counterparts (e.g., AtomL,τ
A/T), the

only xtLTLf operators that KnoBAB runs are the ones not accessing the relational tables.
KnoBAB implements three different A-s which are only sharing the implementation for
the aforementioned operators: one set is either strictly abiding by the formal definition
and completely ignoring the fact that the intermediate results are provided as an ordered
set of tuples or providing slower algorithms overall, one will leverage appropriate data
representation, thus outperforming the former operations, while the other will implement
hybrid algorithms for selecting the best performant implementation depending on the
data conditions through hybrid algorithms. An in-depth discussion of how different
operators might have different algorithmic implementations is postponed to a specific
section (Section 6).

159

Information 2023, 14, 173

While computing these, we associate a temporary primary-memory cache (We can
completely free each intermediate cache if we are not computing a CONFIDENCE query
and if the furthest ancestor has already accessed it, or if the cache is unassociated with any
activation required by CONFIDENCE.) to each intermediate representation being computed
(ψ.result).

5.2.3. Conjunctive and Aggregation Queries

The first version of KnoBAB supports the CONJUNCTIVE QUERY of the model as well
as three aggregation queries: MAX-SAT, CONFIDENCE, and SUPPORT. While the former
requires a further untimed AndTrue among all the intermediate results associated with the
computation to each clause, the aggregation requires just an iteration over the provided
results. The conjunctive query is formulated as follows:

CONJUNCTIVEQUERY(ρ1, . . . , ρn) = AndTrue(ρ1, . . . AndTrue(ρn−1, ρn))

The Max-SAT will calculate the ratio of the intermediate results ρl associated with
each clause cl , over the total number of model clauses |M|. ActLeaves(ρl) is the untimed
union of the intermediate results yielded by activation conditions for the Declare clause
cl ∈ M. For cl , the CONFIDENCE represents the ratio between the number of traces
returned by ρl and the total number of traces that contain activation conditions. When the
same numerator is on the other hand divided by the total log traces, we have SUPPORT.
Following the computation of each ρl per clause cl , the aggregation functions can be
expressed as follows:

Max-SAT(ρ1, . . . , ρn) =

(|{ l | ∃j, L. 〈i, j, L〉 ∈ ρl }|
|M|

)

σi∈L

CONFIDENCE(ρ1, . . . , ρn) =

(|{ i | ∃j, L. 〈i, j, L〉 ∈ ρl }|
|ActLeaves(ρl)|

)

cl∈M

SUPPORT(ρ1, . . . , ρn) =

(|{ i | ∃j, L. 〈i, j, L〉 ∈ ρl }|
|L|

)

cl∈M

The execution of such queries is performed in a non-parallel way, as each aggregation
query will appear at the top of the query plan, and this will be associated with the latest
execution run of the scheduler (Line 15). We then return and prompt the result associated
with the root node of our query plan (Line 16).

Example 18. As per previous discussions, the satisfaction of a model requires the satisfaction of
all constituent clauses. The model described as the bottom table in Figure 6 is the result of further
elaborating on the requirements from Example 1. This is only one example of a myriad of possible
solutions, which can either be manually defined (as here), or generated through mining/learning
techniques. Such model can be now used to compute the degree to which the model is satisfied, or per
trace, each requiring different metrics. An example of a trace-wise metric is Max-SAT while Support
and Confidence values can be computed per clause. By providing the trace metrics, we are able to
analyse the scenarios with respect to the model, and therefore help provide insight into the exhibits of
any backdoors in the software. On the contrary, providing model metrics allows us to establish the
suitability of a model and its constituent clauses; for example, clauses with low Support but high
Confidence may indicate a correlation between events. Finally, a conjunctive query will return all
the traces satisfying all the model clauses. From Figure 6, it is evident that the only trace where
a successful attack occurred is σ1, as returned by the Conjunctive Query, providing the grounds
that we have a suitable model. By exploiting the previous formulæ, we can compute the metrics as
Table 6. These metrics may provide some insight of correlations between events. For example, clause
B had Support(Confidence) values as 1.0, while clause C had 1/3 (1.0). This therefore indicates
that the activation of the latter occurred much less than that of the former; however, every time the
activation occurred, the clause was always fulfilled. Conclusions such as these can help to identify

160

Information 2023, 14, 173

any weaknesses/strengths within the model and the system itself (here, the metrics obtained from C
may suggest that comm/act contain a correlation that needs investigating).

Figure 6. Assessing a high-level use case of an intrusion attack on a software system through a
declarative model.

Table 6. Conjunctive and Aggregation queries for Figure 6.

(a) Metric calculations per trace.

Trace MAX-SAT in Conjunctive Query

σ1
|{ c1,c2,c3 }|
|M| = 1.0 true

σ2
|{ c2 }|
|M| = 1/3 false

σ3
|{ c1,c2 }|
|M| = 2/3 false

(b) Metric calculations per clause.

Clause Support Confidence

A |{ σ1,σ3 }|
|L| = 2/3

|{ σ1,σ3 }|
|{ σ1,σ2,σ3 }| =

2/3

B |{ σ1,σ2,σ3 }|
|L| = 1.0 |{ σ1,σ2,σ3 }|

|{ σ1,σ2,σ3 }| = 1.0

C |{ σ1 }|
|L| = 1/3

|{ σ1 }|
|{ σ1 }| = 1.0

6. Algorithmic Implementations

In this section, we show how the relational model and the proposed intermediate result repre-
sentation enable the definition of different operators boosting the query performance compared to an
equivalent xtLTLf expression obtained through the straightforward translation procedure entailed
by the lemmas in Appendix A.2 (LTLf-rewriting). Each subsection is going to discuss different
possible algorithms for implementing some operators, as well as discussing its associated pseudocode
and computational complexity.

6.1. Timed and Untimed Or/And

Algorithm 7 shows the implementation of the timed version of the Andτ
Θ (Line 27) and

Orτ
Θ (Line 28) operators, for then generalising this concept for the implementation of the

untimed AndΘ. We omit the discussion related to the implementation of the untimed OrΘ
operator for the sake of conciseness.

161

Information 2023, 14, 173

As we see from their formal definition, any binary xtLTLf operator supports Θ condi-
tions. And (and Or) resembles a sorted set intersection (or union, Line 11), where we use
both trace (i) and event (j) id information from the intermediate result triplet as preliminary
equality condition for the match. We also use a Θ binary predicate to be tested over the
activated and targeted events in the third component (L). The event shared among the
operands is returned if either Θ is always true (Line 7) or, from this point in time, if there
exists one activated future activated event (in a L coming from the left operand) as well as
a targeted one (in a L coming from the right operand) satisfying the correlation (Line 4).
The match is then represented as a marked correlation condition M(h, k), which is then
collected in the L associated with the returned event (Line 5).

For the untimed AndΘ operator, we require to return one single trace i as 〈i, 1, L〉 if
either Θ is true and each operator has an event from σi, or if there exists at least one event
per operand from the same trace performing the match. This can be implemented in two
different ways: we can either group the records by trace id (Lines 31 and 32) and then
scan the intermediate results’ records (Line 38) associated with the same trace id (Line 36,
SLOWUNTIMEDAND) or straightforwardly scan them by trace id without exploiting the
preliminary aggregation (FASTUNTIMEDAND). This latter implementation is possible as the
intermediate results records are already sorted, thus allowing the results’ aggregation while
scanning the intermediate results without the need for any preliminary aggregation. We
show that the faster version is always faster than computing it with its slower counterpart
in Corollary S1.

Similar considerations can be also applied for the untimed Or operation, for which we
implemented equivalent SLOWUNTIMEDOR and FASTUNTIMEDOR, as we only need to
pay an additional linear scan for the unmatched traces.

6.2. Choice and Untimed Or

We prelude our analysis of derived operators by firstly discussing the difference in
computational complexity between providing the straightforward translation from LTLf to
xtLTLf and to exploiting equivalent expression rewriting in xtLTLf. We remind the reader
that the definition of Choice (see Table 1) states that either one condition or another should
occur anytime in the trace.

This requirement can be interpreted in two distinct ways: by either returning all the
traces satisfying the first condition or the second separately and then merging them, or
instead collecting all of the events satisfying either the former or the latter condition while
jointly scanning both operands, and then returning the traces where any one of them is
met. After observing (Please also refer to the experiments in Section 7.1 for the empirical
evidence of such theoretical claims.) that the SLOWUNTIMEDOR is actually slower than
FASTUNTIMEDOR and that the latter actually implements the Choice declarative clause
(Corollary A1), the time complexity of computing the LTLf rewriting of Choice in its
LTLf-rewriting is almost equivalent to the time complexity of FASTUNTIMEDOR, as we
can have an asymptotic constant speed-up in the best case scenario (Corollary S3). As
the untimed OrΘ behaves by computing a Future operator (Algorithm 8) on each of its
operands, the computation of an additional Future operator for each of its operands becomes
an omittable overhand.

6.3. Untimed Until(s)

We show how different data access policies for scanning the intermediate results affect
the overall computational complexity as well as their associated run time. Algorithm 9
provides two possible variants for the untimed until:

162

Information 2023, 14, 173

Algorithm 7 xtLTLf pseudocode implementation for AndΘ and OrΘ operators
1: function T E,i

Θ (L, L′)
2: L′′ ← ∅; hasMatch← Θ = True . (Explicitly) computing T E,i

Θ
3: if Θ 6= True and L 6= ∅ and L′ 6= ∅ then
4: for all A(m) ∈ L and T(n) ∈ L′ s.i. Θ(m, n) do
5: L′′ ← L′′ ∪ {M(m, n) }; hasMatch← true
6: end for
7: else
8: L′′ ← L′′ ∪ L′ ∪ L
9: end if

10: if hasMatch then return L′′ else return False

11: function TIMEDINTERSECTIONΘ(ρ, ρ′, isUnion)
12: it←Iterator(ρ), it′ ←Iterator(ρ′)
13: while it 6=↑ and it′ 6=↑ do
14: 〈i, j, L〉 ← current(it), 〈i′, j′, L′〉 ← current(it′)
15: if i = i′ and j = j′ then
16: tmp← T E,i

Θ (L, L′)
17: if tmp 6= False then yield 〈i, j, tmp〉
18: next(it); next(it′);
19: else if i < i′ or (i = i′ and j < j′) then
20: if isUnion then yield 〈i, j, L〉 end if
21: next(it)
22: else
23: if isUnion then yield 〈i′, j′, L′〉 end if
24: next(it′)
25: end if
26: end while

27: function ANDτ
Θ(ρ, ρ′) TIMEDINTERSECTIONΘ(ρ, ρ′, false)

28: function ORτ
Θ(ρ, ρ′) TIMEDINTERSECTIONΘ(ρ, ρ′, true)

29: function SLOWUNTIMEDANDΘ(ρ, ρ′)
30: leftOperand← {}; rightOperand← {}
31: for all 〈i, j, L〉 ∈ ρ do rightOperand[i].put(〈i, j, L〉)
32: for all 〈i, j, L〉 ∈ ρ′ do rightOperand[i].put(〈i, j, L〉)
33: it←Iterator(leftOperand), it′ ←Iterator(rightOperand)
34: while it 6=↑ and it′ 6=↑ do
35: 〈i, R〉 ← current(it); 〈i′, R′〉 ← current(it′)
36: if i = i′ then
37: L′′ ← ∅; hasMatch← Θ = True
38: for all 〈i, j, L〉 ∈ R and 〈i, j′, L′〉 ∈ R′ do
39: tmp← T E,i

Θ (L, L′)
40: if tmp 6= False then
41: hasMatch← true; L′′ ← L′′ ∪ tmp
42: end if
43: end for
44: if hasMatch then yield 〈i, 1, L′′〉;
45: else if i < i′ then next(it)
46: else next(it′)
47: end if
48: end while

49: function FASTUNTIMEDANDΘ(ρ, ρ′)
50: it←Iterator(ρ), it′ ←Iterator(ρ′)
51: while it 6=↑ and it′ 6=↑ do
52: 〈i, ι, λ〉 ← current(it); 〈i′, ι′, λ′〉 ← current(it′)
53: if i = i′ then
54: L′′ ← ∅; canOptimize← false
55: it∗ ← it
56: while it∗ 6=↑ do
57: 〈i, j, L〉 ← current(it∗); it′∗ ← it′

58: if not canOptimize then
59: while it′∗ 6=↑ do
60: 〈i′, j′, L′〉 ← current(it′∗)
61: tmp← T E,i

Θ (L, L′)
62: if tmp 6= False then
63: hasMatch← true; L′′ ← L′′ ∪ tmp
64: end if
65: next(it′∗)
66: end while
67: if Θ = True then canOptimize← true
68: elseL′′ ← L′′ ∪ L
69: end if
70: next(it∗)
71: end while
72: if hasMatch then yield 〈i, 1, L′′〉;
73: it← it∗; it′ ← it′∗;
74: else if i < i′ then next(it)
75: else next(it′)
76: end if
77: end while

163

Information 2023, 14, 173

Algorithm 8 xtLTLf pseudocode implementation for Future and Globally

1: function FUTURE(ρ) . O(|L|ε2)
2: for all 〈i, j, L〉 ∈ ρ do yield 〈i, j,

⋃{ L′ | 〈i, j′, L′〉 ∈ ρ and j′ ≥ j }〉
3: end for

4: function GLOBALLY(ρ)
5: for all 〈i, j, L〉 ∈ ρ do
6: E← { j′ | 〈i, j′, L′〉 ∈ ρ and j′ ≥ j }
7: if |E| = `t − j then yield 〈i, j,

⋃{ L′ | 〈i, j′, L′〉 ∈ ρ and j′ ∈ E }〉 end if
8: end for

All optimisations happen when the activation condition coming from the second
operand does not occur at the beginning of a trace (Lines 34 and 61). In the first variant,
we calculate, for all of the events in the first operand starting from the beginning of the
trace (Line 29, and Line 51 for the second variant), the position of the last activated event
preceding the current target condition with a logarithmic scan with respect to the length
of the first operand (Line 34). On the other hand, the second variant directly discards the
traces not starting with a target condition (Line 59) and, otherwise, it moves the scan of
the first operand—from that initial position—by an offset equal to the distance from the
event preceding activation (Line 61): if that position does not correspond to an activation
condition preceding the current activation condition, then we completely discard the
trace (Line 65). The matching conditions between activations and target are implemented
similarly (Lines 37–40 and 67–69). Lemma S7 shows that the second variant is better
asymptotically only for bigger datasets.

6.4. Derived Operators

Our previous observation for the untimed OrΘ led us to the definition of additional
derived operators with the hope of easing the overall computational complexity. We walked
in the same footsteps of relational algebra, where it was customary to merge multiple
operators into one single new operator if the latter might be implemented through a more
performant algorithm than computing an equivalent expression being the straightforward
translation of LTLf formulae into LTLf (LTLf rewriting).

For example, we can implement TIMEDANDFUTURE by extending the fast imple-
mentation of the timed AND operator, and considering all of the trace events from the
second operand succeeding the events from the first operand within the same trace. Similar
considerations can be carried out with TIMEDANDGLOBALLY, where in the former we
need to count whether all of the events from the current time until the end of the trace are
present in the rightmost operand, while in the latter we also need to skip the matched event
from the rightmost operand and start scanning from the following ones.

For simplicity’s sake, we postpone the discussion of these operands’ pseudocode as
well as the discussion of their computational complexity in Supplement II.2, where we
show that these two operators might come with two different algorithms, for which there
always exists one of them having a lower running time with respect to the equivalent
xtLTLf expression containing no derived operators. We can show formally that, while the
first implementation (variant) works better for smaller datasets, the second works better for
reasonably long traces when the number of the traces is upper bounded by an exponential
number of events (Corollary S2).

164

Information 2023, 14, 173

Algorithm 9 Two implementations for the untimed xtLTLf UntilΘ.
1: function Ai

Θ(〈it′, bEnd〉 , 〈it, aEnd〉)
2: 〈i′, j′, L′〉 ← current(it′); L′′ ← ∅;
3: if Θ 6= True and L′ 6= ∅ then
4: for all A(k), M(k, k′) ∈ L′ do
5: aBeg← it
6: while aBeg 6=aEnd do
7: 〈i, j, L〉 ← current(aBeg)
8: if L = ∅ then L′′ ← L′′ ∪ L
9: else

10: anyMatch← false
11: for all T(h) ∈ L s.t. Θ(σi

k, σi
h) do anyMatch← true; L′′ ← L′′ ∪ {M(k, h)}

12: end for
13: if not anyMatch then return False
14: end if
15: end while
16: end for
17: else
18: while aBeg 6=aEnd do
19: 〈i, j, L〉 ← current(aBeg++); L′′ ← L′′ ∪ L
20: end while
21: L′ ← L′′ ∪ L′

22: end if
23: return L′′

24: function UNTIMEDUNTIL1
Θ(ρ, ρ′)

25: it←Iterator(ρ), it′ ←Iterator(ρ′)
26: while it′ 6=↑ do
27: 〈i′, j′, L′〉 ← current(it′); bend← UPPERBOUND(ρ′, it′, ↑, 〈i′, |σi′ |+ 1, ∅〉)
28: it← LOWERBOUND(ρ, it, ↑, 〈i′, 1, ∅〉)
29: atLeastOneResult← false; L′′ ← ∅
30: while it’ < bend do
31: if j′ = 1 then
32: atLeastOneResult← true; L′′ ← L′′ ∪ L; it′++
33: else
34: aEnd← UPPERBOUND(ρ, it, ↑, 〈i′, j′ − 1,>Ω〉)
35: if it = aEnd or DISTANCE(aEnd− 1, it) + 1 6= j′ − 1 then break
36: else . i = i′. Computing partial T A,i

Θ
37: tmp← Ai

Θ(〈it′, bend〉 , 〈it, aEnd〉)
38: atLeastOneResult← atLeastOneResult or tmp 6= False
39: if tmp 6= False then L′′ ← L′′ ∪ tmp;
40: it′++
41: end if
42: end if
43: end while
44: if atLeastOneResult then yield 〈i, 1, L′′〉
45: it′ ← bend
46: end while

47: function UNTIMEDUNTIL2
Θ(ρ, ρ′)

48: it←Iterator(ρ), it′ ←Iterator(ρ′)
49: while it′ 6=↑ do
50: 〈i′, j′, L′〉 ← current(it′); bend← UPPERBOUND(ρ′, it′, ↑, 〈i′, |σi′ |+ 1, ∅〉)
51: it← LOWERBOUND(ρ, it, ↑, 〈i′, 1, ∅〉)
52: atLeastOneResult← false; L′′ ← ∅
53: while it’ < bend do
54: if j′ = 1 then
55: atLeastOneResult← true; L′′ ← L′′ ∪ L; it′++
56: else if it =↑ then break
57: else
58: 〈i, j, L〉 ← current(it);
59: if j > 1 then break
60: else
61: aEnd← MOVEFORWARD(it, j′ − 1); . (it) + j′ − 1
62: if aEnd =↑ then break
63: else
64: 〈ie, je, Le〉 ← current(aEnd)
65: if ie > i′ or je 6= j′ − 1 then break
66: else . i = i′ = ie. Computing partial T A,i

Θ
67: tmp← Ai

Θ(〈it′, bend〉 , 〈it, aEnd〉)
68: atLeastOneResult← atLeastOneResult or tmp 6= False
69: if tmp 6= False then L′′ ← L′′ ∪ tmp;
70: it′++
71: end if
72: end if
73: end if
74: end if
75: end while
76: if atLeastOneResult then yield 〈i, 1, L′′〉
77: it′ ← bend
78: end while

165

Information 2023, 14, 173

Table 7 shows the range of datasets used for benchmarking.

Table 7. Range of datasets used for benchmarking.

Competitor Dataset Traces |L| Events Distinct Activities |Σ|

SQL Miner

BPIC 2011 (original) 1143 150,291 624
BPIC 2011 (10) 10 2613 158

BPIC 2011 (100) 100 12,195 276
BPIC 2011 (1000) 1000 133,935 607

Declare Analyzer BPIC 2012 (original) 13,087 262,200 24

7. Results and Discussion

Our benchmarks exploited a Razer Blade Pro on Ubuntu 20.04: Intel Core i7-10875H
CPU @ 2.30 GHz–5.10 GHz, 16GB DDR4 2933 MHz RAM, 450 GB free disk space. All of
our datasets used for benchmarking (synthetic data generation (Section 7.1), BPIC_2011
(Sections 7.2 and 7.3), BPIC_2012 (Sections 7.4 and 7.5) and our proposed cancer example
(Section 1.1) are publicly available (https://dx.doi.org/10.17605/OSF.IO/2CXR7). Table 7
summarises these datasets’ features.

7.1. Comparing Different Operators’ Algorithms

We advocate that the choice of representing the intermediate representation as an ordered record
set allows the exploitation of efficient algorithms through which we might avoid costly counting and
aggregation operations [46]. From these comparisons, the operators fully assuming that the data are
sorted greatly outperform naïve operators. Walking in the footsteps of relational algebra, we show
that the computational complexity of so-called derived operators outperforms the computation of
an equivalent expression evaluated through either naïve or fast algorithms. The experiments are
discussed in order of presentation of the algorithms in the previous section.

To create a suitable testing environment, we synthetically generate data-less logs,
where the trace and log lengths are increased 10-fold at a time from 101–104 , with the
resulting sets |L| ∈ { 10, 100, 1000, 10, 000 } ε ∈ { 10, 100, 1000, 10, 000 }, with the most
extreme log consisting of 108 events. In some cases, we exceeded 16 GB of primary memory
on the testing machine; in the following results (Figure 7–10), M+ denotes an out of
memory exception. We chose to generate our data in place of using existing real-world
logs (https://dx.doi.org/10.17605/OSF.IO/2CXR7) , as the controlled scenario allows for
identifying the location and extent of any possible speed-ups. These data were up-sampled,
guaranteeing that a given log configuration was always a subset of the larger. The data
generation randomly assigned events from the universal alphabet (Σ = { A, B, C, D, E }),
up to the maximum length for the set in consideration, and we stored the resulting logs as
tab-separated files.

Our operators consider correlations between timed events A and B, where the computed
speed-up is per operator. Given this, we denote ρ1 = ActivityL,τ

A (A), ρ2 = ActivityL,τ
T (B), prior

to benchmarking, and we ignore the time required for accessing the data on the knowledge
base, as the focus of the present benchmarks is solely on the operators. Details of how
the custom clauses/derived operators are run are demonstrated in Table 8, while singular
operators are run sequentially.

Table 8. Proposed operator semantics vs. traditional.

Operator LTLf Rewriting Optimised

Choice OrΘ(Future(ρ1), Future(ρ2)) OrΘ(ρ1, ρ2)

TIMEDANDFUTURE AndΘ(ρ1, Futureτ(ρ2)) AndFutureτ
Θ(ρ1, ρ2)

TIMEDANDGLOBALLY AndΘ(ρ1, Globallyτ(ρ2)) AndGloballyτ
Θ(ρ1, ρ2)

166

Information 2023, 14, 173

AND OR

101 101.5 102 102.5 103 103.5 104 101 101.5 102 102.5 103 103.5 104

10−2

100

102

104

�L�

E
xe

cu
tio

n
T

im
e

(m
s)

ε 10 100 1000 10000 Algorithm FAST SLOW

M+

M+

M+

M+

Figure 7. Results for the fast set operations Section 6.1 against the traditional logical implementation.

Untimed Or/And . The first group of experiments aim to challenge different possible
algorithms for the same xtLTLf operators, AndTrue and OrTrue, as discussed in Section 6.1.
The outcome of such experiments is given in Figure 7: our experiments reveal that, in every
case, the FAST- operators are always more performant than their logical counterparts. Our
benchmark confirms the cost of overhead encumbered by the SLOW- implementation, which
conforms linearly to increased log size, almost polynomially with trace length. This aggre-
gation is upper bounded with a quadratic with respect to trace length ε (Lines 31 and 32);
in the most extreme case (ε = 104), the cost is over one order of magnitude versus the
algorithm without aggregation. From now on, we always exploit our FAST- operators
in place of the SLOW- equivalent for representing non-derived xtLTLf operators, which
usually suffer the cost caused by the preliminary aggregation as per previous experiments.

CHOICE

101 101.5 102 102.5 103 103.5 104
10−3

10−2

10−1

100

101

102

�L�

E
xe

cu
tio

n
T

im
e

(m
s)

ε 10 100 1000 10000 Algorithm OPTIMIZED LTLf REWRITING

M+
M+

Figure 8. Results for the custom declarative clause implementations Section 6.2 against the traditional
logical implementation.

167

Information 2023, 14, 173

UNTIL

101 101.5 102 102.5 103 103.5 104

10−1

10−0.5

100

100.5

�L�

E
xe

cu
tio

n
T

im
e

(m
s)

ε 10 100 1000 10000 Algorithm OPTIMIZED LTLf REWRITING

M+

M+

Figure 9. Results for the UNTIL operator (Section 6.3).

Choice and Untimed Or. The next set of experiments is to evaluate the customary
declarative clause implementation, where we hypothesise reformulating the semantics
associated with Choice to provide performance gains from the absence of preliminary
aggregations via the UntimedFuture operator. In fact, the proposed optimisation derives
from the omittance of the Future operators for ρ1, ρ2, which formally comply with the
logical definition. For the untimed Future Section 3.2.2 operator, bounded scans can be
exploited, as the data are sorted with respect to trace id, and all the events that satisfy ρ for
the current trace id are included in the result. Therefore, we expect an overhead that grows
linearly with log size. Figure 8 shows that, in the best case (ε = 10), we gain 0.5 orders
of magnitude in performance. The findings affirm that log size has a greater influence on
computational overhead than trace length. For ε ≥ 103, the overhead resulting from the
Future operators steadily increases while both the trace length ε and the log size |L| grows,
albeit this is negligible in the logarithmic scale.

TIMED AND FUTURE TIMED AND GLOBALLY

101 101.5 102 102.5 103 103.5 104 101 101.5 102 102.5 103 103.5 104

10−2

100

102

104

�L�

E
xe

cu
tio

n
T

im
e

(m
s)

ε 10 100 1000 10000 Algorithm VARIANT−1 VARIANT−2 LTLf REWRITING

M+

M+ M+

M+

M+

M+

M+

Figure 10. Results for the derived operators TIMEDANDFUTURE and TIMEDANDGLOBALLY

Section 6.4. We include both variants of the fast implementations to analyse the environments
where each thrive.

168

Information 2023, 14, 173

Untimed Until(s). Benchmarks from Figure 9 show that the first variant is almost
always more performant than the second one for considerably short traces, while the
latter becomes more efficient when ε increases. With significant increases to log size, the
latter becomes more performant; when |L| = 104, all cases show improved running times,
regardless of ε. The plots also show that the operator’s running time is polynomial with
respect to the number of traces in the log, as a consequence of the increased scans within
every single trace.

Derived Operators. The final set of experiments is to test whether the newly proposed
derived operators achieve more optimised results than those from their LTLf rewriting coun-
terpart (Table 8). For example, TIMEDANDGLOBALLY can be optimised with the customary
algorithms replacing one single operator with the execution of multiple pipelined operators.
Computations from LTLf rewriting demonstrate worse performance than the derived coun-
terparts across all operators; in the most extreme case TIMEDANDGLOBALLY, there is over
101.5 speed-up for ε = 104. We were able to conclude that different impersonations to the in-
ternal data storage of the optimised algorithm may provide better results depending on the
log size. As for UntimedUntil, we provide two implementations for TIMEDANDGLOBALLY

and TIMEDANDFUTURE, VARIANT-1 (Algorihtm S1) and VARIANT-2 (Algorihtm S2), with
the latter exploiting bounded reversed scans on the data.

TIMEDANDGLOBALLY: by merging the AND join operation with Globally, we only
consider elements within the same trace after the first operand. The logical implementation
performs these operations separately, and so cannot reap the benefits of a merged join [47].
Figure 10 shows that, in most cases, there is a linear performance gain with log size.
VARIANT-2 aims to exploit potential gains from a reversed scan of a trace while VARIANT-
1 provides a forwards scan for every activation. By performing a reverse scan, the latter is
able to prune further events from any activations happening in the past, as the condition
did not hold for the current time. For smaller trace lengths (ε ≤ 101), the VARIANT-
1 demonstrates better performance than VARIANT-2. With increased trace length, the latter
operators outperform the former, sometimes by over an order of magnitude (ε = 104).
In some cases, the VARIANT-1 performs slower than their LTLf-rewriting counterparts
(ε ≥ 103).

TIMEDANDFUTURE: the principal optimisation gains from this operator follow the
same reasoning as TIMEDANDGLOBALLY; however, the implementations of the variants
follow a unique approach. By exploiting the allocation of intermediate data structures in re-
verse, VARIANT-2 also provides improved performance for larger |L|. As with TIMEDAND-
GLOBALLY, VARIANT-1 outperforms the former for smaller trace lengths.

We conclude that VARIANT-1 (VARIANT-2) of TIMEDANDFUTURE and TIMEDAND-
GLOBALLY outperform each other for small (large) trace lengths. In addition, the first
variant of Until proves to be more performant than our second variant for smaller log
lengths. We design a mechanism for always running the fastest algorithm under the
previously-observed circumstances. We then need to calculate the average trace length
and the log size at data loading time (this only needs to happen once per log). Then,
at query time, the most optimal operator is chosen based on these values. We define
a HYBRID TRACE QUERY THRESHOLD γ of 102/2 (Lines 5 and 9) and a HYBRID LOG
QUERY THRESHOLD η of 103/2 (Line 1); values exceeding these thresholds will execute
the operators more tailored towards large trace (log) sizes. The pseudocode provided
as Algorithm 10 demonstrates how two different variants can be engulfed in one single
parametric algorithm.

169

Information 2023, 14, 173

Algorithm 10 Hybrid Algorithms

1: function HYBRIDUNTIMEDUNTIL
η
Θ(ρ, ρ′)

2: if |L| ≥ η then return UNTIMEDUNTIL2
Θ(ρ, ρ′) . Algorithm 9

3: else return UNTIMEDUNTIL1
Θ(ρ, ρ′) . Algorithm 9

4: end if

5: function HYBRIDANDFUTURE
γ
Θ(ρ, ρ′)

6: if ε > γ then return ANDFUTURE2
Θ(ρ, ρ′) . Algorithm S1

7: else return ANDFUTURE1
Θ(ρ, ρ′) . Algorithm S2

8: end if

9: function HYBRIDANDGLOBALLY
γ
Θ(ρ, ρ′)

10: if ε ≥ γ then return ANDGLOBALLY2
Θ(ρ, ρ′) . Algorithm S1

11: else return ANDGLOBALLY1
Θ(ρ, ρ′) . Algorithm S2

12: end if

7.2. Relational Temporal Mining

We now move from synthetic data, required to tune hybrid algorithms and thoroughly test our
operators, towards real data benchmarks with no data payload conditions. We contextualise our
experiments for data-intensive model mining operations that can also be run on a relational model.
While doing so, we compare our runtimes both with hybrid operators with the one from the previous
paper [4], as well as run times from the relational model with traditional SQL queries.

SQLMiner, provided by Schonig et al. [5], utilises database architectures for declara-
tive process mining. We chose to test our hypothesis of engineering a custom database
architecture against state-of-the-art traditional relational databases (PostgreSQL 14.2). For
this set of experiments, we exploited the BPIC 2011 (Dutch academic hospital log) dataset
(https://dx.doi.org/10.17605/OSF.IO/2CXR7), as used in [5]. This log contained data
payload information, though the queries executed as [5] were comprised of data-less events.
The original dataset was sampled into sub-logs containing 10, 100, and 1000 traces, and the
sampling approach adopted the same behaviour as the synthetic dataset from the previous
set-up, where each sub-log is guaranteed to be a subset of the greater ones. Increased sizes
of datasets exhibited exponential increases in primary memory requirements and thus
justifies our sampling approach. Schönig [48] provides the templated implementations for
mining eight declarative clauses. As these are only templates, the models were instantiated
from the resulting combinations of the five most occurring events. Therefore, we generated
eight models, each consisting of 25 clauses. SQLMiner simulated this by creating a sec-
ondary Actions table, with each row containing the instantiated Declare template. SQLMiner
provides the Support values associated with each clause. We extend this to also provide
trace information, where each clause also contains the traces satisfying it. We also want to
test our hypothesis that our proposed hybrid operator pipeline (Section 7.1) can outperform
the pipeline set up from our previous work [4] that does not exploit the potential gains that
can be made from picking the best algorithm according to the data conditions, and only
uses our defined VARIANT-1 operators. The outcomes of these experiments are shown in
Figure 11, where each plot represents the execution times for a given elected template, with
the more complex queries located on the first row.

SQLMiner results. In the worst case, our running time is comparable with SQLMiner
(Response). Even for this case, SQLMiner returns only the Support information, while
KnoBAB also returns (for the same execution time) trace information. In SQL, providing
the least possible query alterations to provide the trace information causes 101.5 run
time increase, thus demonstrating that we are more performant on the same conditions.
Conversely, in the best case, we outperform SQLMiner by over five orders of magnitude.
By exploiting efficient database design, our custom query plan can minimise data access
and our computation avoided explicit computations of aggregations. In addition, guaran-
teeing that the intermediate results are always sorted allows for linear scanning cost for
counting operations. Responded Existence is a clear candidate for demonstrating the gains

170

Information 2023, 14, 173

from custom database design: with access to our proposed CountingTableL, our solution
requires only a table look-up, while SQLMiner requires an aggregation requiring an entire
scan of the Log table. Combining this with the extended xtLTLf operators allows for
much more optimised query times; this is shown in the results, where KnoBAB is con-
sistently at least two orders of magnitude more performant with queries returning trace
information. As |L| increases beyond 102, the more complex queries were unable to finish
to completion for SQLMiner, exceeding the 16 GB primary memory of the benchmarking
machine.

Not Succession Precedence Responded Existence Response

Alternate Precedence Alternate Response Chain Precedence Chain Response

10 100 1000 10 100 1000 10 100 1000 10 100 1000

1e+01

1e+03

1e+05

1e+07

1e+01

1e+03

1e+05

1e+07

Log Size

E
xe

cu
tio

n
T

im
e

(m
s)

KnoBAB + MAX−SAT [HYBRID]

KnoBAB + MAX−SAT [VARIANT−1]

KnoBAB + Support [HYBRID]

KnoBAB + Support [VARIANT−1]

SQLMiner + Support

SQLMiner + Trace Info

M+ M+ M+ M+

Figure 11. Results for relational temporal mining Section 7.2.

Pipeline results. The execution times for KnoBAB + Support and KnoBAB + Max-
SAT are comparable, while there is much greater variation for SQLMiner + Support and
SQLMiner + Trace Info. As support requires only an aggregation over intermediate results
(Section 5.2.3), we guarantee that we suffer at most a cost proportional to the model size,
so we expect a constant overhead based on model size. The large fluctuation in results for
SQLMiner is a culprit of the query rewriting provided by the PostgreSQL query engine;
in some cases, returning trace information yielded better results. In these experiments,
we combined the alternate ensemble methods with our proposed HYBRID operators. The
results demonstrate that, for most operators, there is a marginal improvement in time
complexity. For NotSuccession and Response, the improvement is more apparent, with
the former, for |L| = 10 providing 20% improvement against VARIANT-1. The reader is
encouraged to refer back to Figure 10 to explain this. The faster operators thrive with
|L| > 103, while, for traces within the region of 102, the gain is much less apparent. The
BPIC_2011 dataset has a corresponding average trace length of ∼220: exploiting the
VARIANT-2 operators within this region will therefore yield lesser benefit than much
larger |L|.

7.3. Query Plan Parallelisation

By keeping the immediately preceding experimental setting while considering the whole log as
well as extending the model size, we now benchmark our solution in a multithreaded environment,

171

Information 2023, 14, 173

where we perform intra-query parallelism by running each operator laying in the same layer in
parallel as per previous discussions.

The correctness of our proposed parallelisation approach is guaranteed by the fact that
each thread in a given layer can operate independently with no interdependencies requiring
costly mutual exclusions. In place of directly using the pthread C++ library on multiple
tasks, we utilised a thread pool proposed by [49], to minimise the thread creation overhead,
while feeding the pool with the tasks denoted by for . . . (parallel) do statements in our
pseudocode Algorithm 6. We extended the library to support both static and dynamic
scheduling approaches proposed by the OpenMP specifications [50]; these are:

• BLOCKED STATIC : aims to balance the chunk sizes per thread by distributing any
leftover iterations;

• BLOCK-CYCLIC STATIC. Does not utilise balancing as the former. Instead, work
blocks are cyclically allocated over the threads;

• GUIDED DYNAMIC: aims to distribute large chunks when there is a lot of work still
to be completed; tasks are split into smaller chunks as the work load diminishes;

• MONOTONIC DYNAMIC: uses a single centralised counter that is incremented when
a thread performs an iteration of work. The schedule issues iterations to threads in an
increasing manner.

In addition to these, we also implemented two different scheduling policies splitting
the tasks to be run in parallel while estimating the running time that each operator will
take depending on the size of its associated operands (if any).

• TASK SIZE PREDICTION BLOCK STATIC provides an estimation of work required
per chunk. Then, these chunks are sorted in ascending work load, with the last
providing the greatest amount of computation. Threads are then assigned chunks
through a distribution algorithm, distributing the first and last chunk of the sorted
work to the first thread, the second and penultimate to the second, etc.. The algorithm
aims to distribute equal amounts of work to each thread, though assumes that the
workload is strictly increasing while workload sizes are evenly distributed;

• TASK SIZE PREDICTION UNBALANCED DYNAMIC: unlike the former, we as-
sume that the incoming work is not balanced. Instead, a chunk is taken, its work
size estimated and assigned to a thread. Then, the next thread will recursively re-
ceive chunks until the summed work load is approximate to that of the former. The
next thread is then pulled from the pool and the process repeated until all chunks
are assigned.

For this set of experiments, we exploited the full BPIC 2011 (Dutch hospital log) dataset.
We want to determine how varying the total number of threads affects execution time,
and therefore use only the original dataset with no sampling. This also demonstrates the
performance against the real-world scenario. Similarly to the previous mining approach
in Section 7.2, we generated models from the most occurring events labels. Here, we
extended the model size to consider the top 15 events for the same eight Declare templates,
thus resulting in 225 clauses. Extending the model size as such allows a better scalability
analysis on the large; in fact, a smaller model size would not be able to reap the benefits of
the dissected query plan, as it becomes more likely that there will not be enough work to
allocate; as more threads might be left idle in the pool, no speed-up can be achieved.

The results of our experiments are shown in Figure 12. Across all instances, the paral-
lelisation pipeline (line with data-points) proves more performant than any single threaded
executions (horizontal vertical bar). There also appears to be a great variation in speed-up
for different scheduling policies; MONOTONIC DYNAMIC, TASK SIZE PREDICTION UN-
BALANCED DYNAMIC, and GUIDED DYNAMIC consistently perform worse than all others.
In addition to this, the former schedules grant almost no gain with trace number, indicating
that dynamic scheduling is not only less performant than static in our use case scenario,
but also bears no potential gains by through thread scalability. This is especially true in
the case of Alternate Precedence, where all static policies have improved performance by

172

Information 2023, 14, 173

at least an order of magnitude. Schedules also show different degrees of speed-ups. For
the dynamic and BLOCK-CYCLIC STATIC schedules, increasing the number of threads
has little effect on performance. In fact, adding threads proves to be detrimental in some
cases (BLOCK-CYCLIC STATIC & Chain Precedence). Conversely, the other static schedules
(BLOCKED STATIC and TASK SIZE PREDICTION BLOCK STATIC) achieve a super-linear
speed-up [51–53], as the thread count increases. The greatest gains in performance were
found for Alternate Precedence and Alternate Response with thread sizes of eight; there
are over two orders of magnitude improvement against a single threaded instance, and
almost the same speed up compared with the static schedules. As our problem is heavily
bounded on data access and on the size of it, reducing the task allocation size will create an
overall increase of cache misses, while these are minimised by associating each thread with
a greater amount of tasks.

Not Succession Precedence Responded Existence Response

Alternate Precedence Alternate Response Chain Precedence Chain Response

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

101

102

103

104

101

102

103

104

|ω|

E
xe

cu
tio

n
T

im
e

(m
s)

BLOCK−CYCLIC STATIC

BLOCKED STATIC

GUIDED SCHEDULE

MONOTONIC:DYNAMIC

TASK SIZE PREDICTION BLOCKED STATIC

TASK SIZE PREDICTION UNBALANCED DYNAMIC

Figure 12. Results for parallelisation Section 7.3. ω indicates the set of threads in the thread pool, and
the red dashed horizontal lines indicate running times for single threaded instances.

7.4. Dϕ-Encoding Atomisation Strategies

We now want to test how distinct query atomisation strategies affect the query run time.
For this, we exploit a different dataset while we hardcoded some models suitable for highlighting
such differences.

While the AtomizeEverything strategy guarantees that all activation and targets
undergo the atomizaiton step if a clause is found that contains a data payload predicate, the
AtomizeOnlyOnDataPredicate atomises only those conditions containing a data payload
and considers the others as activity labels. As a consequence, the former is expected to
have more weighted access to AttributeTableL, while the latter to ActivityTableL. We analyse
the execution times over the same models M1–M5, where each model differs from the other
in the number of clauses as well as in data conditions.

For these experiments, we exploited the full BPIC 2012 (Dutch loan company) dataset.
This contained event/trace payload information and was comprised of activities occurring
for a loan transaction. The models exploited are visualised in Supplement Table S1a. We
define four models, increasing by five clauses, where each is a sub-model of the latter.

173

Information 2023, 14, 173

These clauses consisted of both data and data-less payload conditions, in order to adhere to
our benchmarking hypothesis.

Results are shown in Figure 13 for both configurations, where there is a positive corre-
lation between model size and execution time, with a constant increase with each additional
set of clauses. For the smaller model size, AtomizeEverything outperforms AtomizeOn-
lyOnDataPredicate, though the former exhibits greater increases in running time as more
clauses are added. This therefore suggests that accessing the ActivityTableL becomes more
expensive than the AttributeTableL as the number of activation/target conditions increases.
To explain this, the reader is encouraged to refer back to Supplement Table S1a, which
defines the clauses that are added to each model, and therefore the new activities and atoms
that may require decomposition. With increased model sizes, AtomizeOnlyOnDataPredi-
cate suffers from duplicated memory access; as some events (e.g., A_SUBMITTED) are
accessed in both tables: while returning the events satisfying an atom requires the access to
the AttributeTablek

L for any given attribute k of interest, returning all of the events having a
given activity label requires accessing the ActivityTableL. The data access for the atomised
queries may duplicate access to the ActivityTableL, which becomes more costly as our model
size increases. Conversely, AtomizeEverything will atomize A_SUBMITTED from q1, as
clauses q2 and q3 contain payload conditions. Therefore, these queries only ever access the
AttributeTableL, and the duplication of data access is removed. For the smaller model size
M1, this gain is less apparent as the duplicated data access becomes negligible.

0

50

100

150

200

M1 M2 M3 M4

Model

E
xe

cu
tio

n
T

im
e

(m
s)

Atomization Type Atomize Everything Atomize Only on Data Predicate

Figure 13. Running times over different models (Table S1a) for different atomisation strategies.

7.5. Data-Aware Conformance Checking

We now consider another state-of-the-art solution, Declare Analyzer [6] for conformance
checking with payload information. This solution is tested against two different sets of models of
increasing sizes, with each of them providing either the worst or the best case scenario for KnoBAB.
These experiments exploit the same dataset as in the former experimental set-up, and also used in [6].

We represented the log for Declare Analyzer via MapDB (https://mapdb.org/), thus
reflecting a relational model representation. The authors do not consider trace payloads,
and therefore propose injecting trace payload as an extension of each event payload. On

174

Information 2023, 14, 173

the other hand, KnoBAB injects the trace payload as a unique event at the beginning of
the trace (Section 2), thus reducing the overhead of testing an activation/target condition
per event while minimising data loading time. We wanted to investigate our solution’s
performance among the best/worst cases regarding the clauses of choice. Therefore, we
provide two scenarios. The first scenario (SCENARIO 1), also described in our seminal
paper [4], provides our worst case scenario models (Table S1a) where each additional set of
clauses consist of entirely novel activity labels and clauses and, within each sub-model, each
clause is distinguished by data payload conditions. Consequently, the query plan cannot
exploit gains made from data access minimisation as every condition is considered a unique
disjunction of atoms. Conversely, the second (SCENARIO 2) novel scenario describes our
best case. We encourage the reader to refer to this, where activation and target conditions
appear several times in different clauses (Table S2). Thus, there are many more instances
where data access can be minimised; for example, the model q1 ∧ q2 ∧ q3 ∧ q4 ∧ q5 considers
the activity label A_SUBMITTED across five instances. Following strategies such as in [9],
this can be reduced to one access. SCENARIO 1 (SCENARIO 2) results are shown from
Figure 14a (Figure 14b). For either scenario, we average 2–3 orders of magnitude more
performant than Declare Analyzer; even in the worst case (M4), we are over an order
of magnitude more performant. For both scenarios, we compute the following metrics:
Conjunctive Query (CQ) and Support, to analyse any variations between the ensemble
methods. KnoBAB + CQ outperforms KnoBAB + Support in all cases, where the cost
increase is linear with model size.

SCENARIO 1. For Declare Analyzer, increases in model size results in a constant
slope of 3.47× 102 ms per model size, while our solution demonstrates an initial slope of
2× 101 ms per model size, followed by a constant slope of 6× 100 ms per model size. To
explain this abrupt behaviour, the reader is encouraged to refer to Supplement Table S1a and
the query plan from Figure 2. KnoBAB thrives when data access is minimised; if this cannot
be achieved (due to the addition of novel activation/target conditions), potential gains
cannot be exploited. Every clause from M2 contains new activation/target labels/payload
conditions compared to M1. As a result, the number of atoms and leaves in the query plan
is doubled. However, M3 contains the activity label O_CANCELLED. This atom has already
been considered in the previous model, and so data access is optimised. Therefore, the
time increase from M2 to M3 is much less than that of the former. Subsequently, as M3 is
a sub-model of M4, the same gains are seen here (M4 contains entirely novel conditions).
Overall, the results show that we are not bounded by model size unlike Declare Analyzer,
which must perform an entire log scan per clause, while we can ignore irrelevant traces via
bounding/indexing across our tabular representation available to the relational model. Still,
our running times reflect the formal definition stated in Section 5.2.3, where queries still
need to scan each model clause and therefore their expected running time is proportional
to the model size.

SCENARIO 2. We now want to test whether clauses providing similar queries lead
to lower running times. Here, the model sizes are smaller than the previous example,
so as to demonstrate the potential optimisation from even small examples. The former
contains only a single clause, while the latter consists of seven clauses. The slope between
these models is 3.3× 100 ms per model size, an order of magnitude less than the worst
case scenario. To clarify the results, the reader is encouraged to compare the models q1 vs.
q1 ∧ q2 ∧ q3 ∧ q4 ∧ q5. All atoms in the former are included in the latter, so we can have much
greater data access minimisation, which these results confirm. Of course, a hand-made
model is unlikely to contain such overlapping elements, but these results demonstrate the
potential gains to be made, even for less bespoke scenarios such as data mining, where a
huge amount of overlap might still occur while testing multiple clauses’ combinations.

175

Information 2023, 14, 173

100

101

102

103

104

M1 M2 M3 M4

Model

E
xe

cu
tio

n
T

im
e

(m
s)

Atomization Type KnoBAB + CQ KnoBAB + Support Declare Analyzer

(a) Scenario 1 (Table S1a).

0

25

50

9000

12000

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

Model

E
xe

cu
tio

n
T

im
e

(m
s)

Atomization Type KnoBAB + CQ KnoBAB + Support Declare Analyzer

(b) Scenario 2 (Table S2).
Figure 14. Running times for data-aware conformance checking.

8. Conclusions

By summarizing the contributions of our paper, we showed how to express temporal
logic through ad hoc temporal algebra (xtLTLf) based on the relational model. The latter,
defined both in its logical and physical model, has been suitably extended for log and
operators’ result representation. We showed how it is possible to load data on this model
using suitable algorithms and how it is possible to represent a sequence of operations with
a parallelisable query plan providing super-linear speed-up. As a new contribution to our
previous work, we have also shown different implementations for the xtLTLf operators,
thus showing how there is always a faster non-trivial implementation exploiting both
the properties of the intermediate result representation as well as query rewriting. Our
proposed solution, KnoBAB, leverages all of the aforementioned features, thus providing
higher performance than current conformance checking and mining solutions, be it data or
data-less.

This work encourages future KnoBAB developments and implementations, including
more efficient data model mining algorithms and the use of views to reduce further the cost
of allocating intermediate results. Furthermore, secondary memory representation of the

176

Information 2023, 14, 173

log according to the percepts of Near Data Processing is in its infancy. Future developments
will explore the possibility of using KnoBAB to learn temporal models from data and the
ability to fully support trace repair operations in order to make deviant traces compliant
to the given model. For this, we will consider the possibility of integrating our relational
system with the BCDM relational model [54], thus fully supporting operations such as
insertions, updates, and deletions required for trace repairs in conformance checking [25].
Finally, our future work will also consider vectorial data as a specific data representa-
tion [32,55]: this will enable KnoBAB to fully support spatial data representation, thus
aiming for full spatio-temporal representation [56,57]. This, along with more advanced
model mining algorithms, will enable us to efficiently mine spatio-temporal patterns from
logs. Finally, we will also investigate the possibility of transferring the definition of such
algebraic operators when logs are represented as graphs [58,59], thus further improving
the efficiency of graph-based query languages.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/info14030173/s1.

Author Contributions: Conceptualisation, S.A. and G.B.; methodology, G.B.; software, S.A. and G.B.;
validation, S.A. and G.B.; formal analysis, G.B.; investigation, S.A.; resources, G.B. and G.M.; data curation,
S.A.; writing—original draft preparation, S.A. and G.B.; writing—review and editing, G.B. and G.M.;
visualisation, S.A.; supervision, G.B. and G.M.; project administration, G.B.; funding acquisition, G.B. All
authors have read and agreed to the published version of the manuscript.

Funding: Samuel Appleby’s work is supported by Newcastle University.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset associated with the presented experiments was available
online the 5 March 2022: https://dx.doi.org/10.17605/OSF.IO/2CXR7.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: The most up-to-date version of KnoBAB is available on GitHub: https://gith
ub.com/datagram-db/knobab (5 March 2022).

Abbreviations
The following abbreviations are used in this manuscript:

DAG Direct Acyclic Graph
KnoBAB KNOwledge Base for Alignments and Business process modelling
LTLf Linear Temporal Logic over finite traces
RDBMS Relational Database Management System
XES eXtensible Event Stream
xtLTLf eXTended Linear Temporal Logic over finite traces

Appendix A

We now show some equivalence and correctness lemmas.

Appendix A.1

First, we want to show the equivalence of some unary operators as generalisations
of some of the base operators. We now show that InitLA/T or EndsLA/T can be subsumed by
appropriate combinations of Init or Ends with ActivityL,τ

A/T . As the former set of operators

cannot express data conditions for the events while the former can by replacing ActivityL,τ
A/T

with an arbitrary sub-expression with AtomL,τ
A/T , we can trivially conclude that the former

are less general than the latter.

Lemma A1.
∀a ∈ Σ. InitLA/T(a) = Init(ActivityL,τ

A/T(a))

177

Information 2023, 14, 173

Proof. We can expand the definition of the left-hand side of the equation for any a ∈ Σ
as follows:

InitLA/T(a) = { 〈i, 1, {A/T(1)}〉 | ∃φ. 〈β(a), i, 1,⊥, φ〉 ∈ ActivityTableL }

The right-hand side of the equation can be rewritten as follows:

Init(ActivityL,τ
A/T(a)) = { 〈i, 1, {A/T(1)}〉 | ∃π, φ. 〈β(a), i, 1, π, φ〉 ∈ ActivityTableL }

The goal is immediately closed by choosing π = ⊥, as any first event will have always an
empty Prev pointer.

Lemma A2.
∀a ∈ Σ. EndsLA/T(a) = Ends(ActivityL,τ

A/T(a))

Proof. We can expand the definition of the left-hand side of the equation for any a ∈ Σ
as follows:

EndsLA/T(a) =
{
〈i, 1, {A/T(|σi|)}〉

∣∣∣ ∃π. 〈β(a), i, 1, π,⊥〉 ∈ ActivityTableL
}

The right-hand side of the equation can be rewritten as follows:

Ends(ActivityL,τ
A/T(a)) =

{
〈i, 1, L〉

∣∣∣ 〈i, |σi|, L〉 ∈ ActivityTableL
}

=
{
〈i, 1, {A/T(|σi|)}〉

∣∣∣ ∃π. 〈β(a), i, |σi|, π,⊥〉 ∈ ActivityTableL
}

The goal is immediately closed by choosing π = ⊥, as any first event will always have
an empty Prev pointer.

On the other hand, as the ExistsLA/T and AbsenceLA/T operators discard the activation
and target marks of the associated events for the purposes of efficiency, we need to relax
their notion of equivalence by ignoring the result being provided by the third component.
Still, we can observe that they compute the same result trace-wise. Even in this scenario, as
the former operators merely access the counting table for the purposes of efficiency, they
cannot be generally exploited when the expression of data conditions is also required.

Lemma A3.

∀a ∈ Σ.∀σi ∈ L.∃L, L′. 〈i, 1, L〉 ∈ ExistsLA/T(a, n)⇔ 〈i, 1, L′〉 ∈ Existsn(ActivityL,τ
A/T(a))

Proof.

〈i, 1, L〉 ∈ ExistsLA/T(a, n)⇔ 〈i, 1, L′〉 ∈ Existsn(ActivityL,τ
A/T(a))

∃m ≥ n. 〈β(a), i, m〉 ∈ CountingTableL ⇔ n ≤ |
{
〈i, j, L′〉 ∈ ActivityL,τ

A/T(a)
}
|

∣∣∣
{

σi
j ∈ σi

∣∣∣ σi
j = 〈a, p〉

}∣∣∣ ≥ n⇔ n ≤ |{ 〈β(a), i, j, π, φ〉 ∈ ActivityTableL }|

Lemma A4.

∀a ∈ Σ.∀σi ∈ L.∃L, L′. 〈i, 1, L〉 ∈ AbsenceLA/T(a, n)⇔ 〈i, 1, L′〉 ∈ Absencen(ActivityL,τ
A/T(a))

178

Information 2023, 14, 173

Proof. By simply replacing the m ≥ n and n ≤ |S| for any set S conditions in the former
lemma to m < n and n > |S|. This boils down to:

〈i, 1, L〉 ∈ AbsenceLA/T(a, n)⇔ 〈i, 1, L′〉 ∈ Absencen(ActivityL,τ
A/T(a))

∃m < n. 〈β(a), i, m〉 ∈ CountingTableL ⇔ n > |
{
〈i, j, L′〉 ∈ ActivityL,τ

A/T(a)
}
|

∣∣∣
{

σi
j ∈ σi

∣∣∣ σi
j = 〈a, p〉

}∣∣∣ < n⇔ n > |{ 〈β(a), i, j, π, φ〉 ∈ ActivityTableL }|

Appendix A.2

Next, we want to show that xtLTLf is at least as expressive as LTLf. To support this
claim, we need to prove the two following lemmas where, as LTLf does not support explicit
activation and target conditions with Θ correlation conditions over the payload data, we
are always going to assume Θ = True and that the atomic operators are never associated
with an activation/target label, thus always returning an empty third component of the
intermediate result. As we might observe, the following lemma entails that, differently
from standard LTLf semantics applied to each event trace at a time, xtLTLf semantics
returns all of the events for which the given temporal condition holds. This becomes very
relevant for minimising the data access while scanning our relational representation of the
log, as well as allowing better intermediate result reuse for any incoming sub-expression.
The following lemma also entails a correspondence between timed xtLTLf operators and
LTLf formulae.

Lemma A5. For each LTLf formula ϕ, a timed xtLTLf expression ψτ evaluated over an intended
relational model representing a log L of finite and non-empty traces exists for which the latter
returns 〈i, j, L〉 iff. σi

j � ϕ. More formally:

∀σi
j ∈ σi, σi ∈ L. ∀ϕ ∈ LTLf. ∃ψτ : timed xtLTLf.(〈i, j, L〉 ∈ ψτ ⇔ σi

j � ϕ)

Proof. The constructive proof proceeds by structural induction over ψτ . We first need to
consider a rewriting lemma stating that 〈β(a), i, j, π, χ〉 ∈ ActivityTableL iff. a p exists such
that σi

j = 〈a, p〉. Now, we can start the proof by induction.

ϕ = a: By applying the aforementioned rewriting lemma (from now on simply referred to
as by construction of ActivityTable), we can immediately close the goal by choosing
ψτ = Activityτ(a) as the model will only return data associated with the log of
choice:

〈i, j, L〉 ∈ Activityτ(a)⇔ ∃p.σi
j = 〈a, p〉 ⇔ σi

j � a

ϕ = a∧ q: If the compound condition is also atomic for which q can be expressed as an
interval query low ≤ κ ≤ up for some payload key κ, we can follow a similar
proof from the former case and choose the atom ψτ = Compoundτ(a, κ, low, up), thus
closing the goal as follows:

〈i, j, L〉 ∈ Compoundτ(a, κ, [low, up])⇔ ∃p.σi
j = 〈a, p〉 ∧ low ≤ p(κ) ≤ up

⇔ σi
j � a∧ (low ≤ κ ∧ κ ≤ up)

ϕ = ©, ϕ′: by inductive hypothesis, we know the ρ xtLTLf expression returning ρ, which
contains 〈i, j + 1, L〉 when σi

j+1 � ϕ′. For this, we choose as ψτ = Nextτ(ρ), which

179

Information 2023, 14, 173

also guarantees that j never exceeds the trace’s length (j ≤ |σi|). We can therefore
expand the definition of our proposed operator by obtaining:

〈i, j, L〉 ∈ Nextτ(ρ)⇔ 〈i, j + 1, L〉 ∈ ρ ∧ 1 < j + 1 ≤ |σi|
IH⇔ σi

j+1 � ϕ ∧ 0 < j < |σi|
⇔ ϕi

j � ©, ϕ

ϕ = �ϕ′: The application of the induction is similar to the former and, similarly to the
former case, we also proceed by expanding the definition of the relational operator.
We can hereby choose ψτ = Globallyτ(ρ) where the induction is applied over ρ and
ϕ′. We can close the goal as follows:

〈i, j, L〉 ∈ Globallyτ(ρ)⇔ 〈i, j, Lj〉 ∈ ρ ∧ |σi| − j + 1 = |{〈i, k, Lk〉 ∈ ρ|j ≤ k ≤ |σi|}|
⇔ ∀j ≤ k ≤ |σi|. 〈i, k, Lk〉 ∈ ρ

IH⇔ ∀j ≤ k ≤ |σi|.σi
k � ϕ′

⇔ σi
j � �ϕ′

ϕ = 3ϕ′: Similarly to globally, we obtain ψτ = Futureτ(ρ) for a ρ corresponding to ϕ′ by
inductive hypothesis.

ϕ = ¬ϕ′: Similarly to the previous unary operators, we choose as xtLTLf operator
ψτ = Notτ(ρ) where the inductive hypothesis links ρ to ϕ′. We can therefore
close the goal as follows:

〈i, j, L〉 ∈ Notτ(ρ)⇔ σi
j ∈ σi ∧ σi ∈ L ∧ 〈i, j, L〉 6∈ ρ

IH⇔ σi
j ∈ σi ∧ σi ∈ L ∧ σi

j � ¬ϕ

⇔σi
j � ¬ϕ

This is doable as stating 〈i, j, L〉 ∈ ψτ ⇔ σi
j � ϕ is equivalent to 〈i, j, L〉 6∈ ψτ ⇔

σi
j 6� ϕ where the latter can be rewritten as σi

j � ¬ϕ.

ϕ = ϕ′ ∧ ϕ′′: As we have that two inductive hypotheses associate ρ′ and ρ′′ respectively
to ϕ′ and ϕ′′, we choose the xtLTLf formula ψτ = Andτ

True(ρ
′, ρ′′) to be associated

with ϕ′ ∧ ϕ′′ . For this xtLTLf operator, we can state that a result 〈i, j, `〉 is returned
by such an operator if and only if 〈i, j, ∅〉 ∈ ρ′ and 〈i, j, ∅〉 ∈ ρ′′ per definition of
operators never returning explicit activation or target condition. We close the goal
as follows:

〈i, j, L〉 ∈ Andτ
True(ρ, ρ′)⇔ 〈i, j, ∅〉 ∈ ρ ∧ 〈i, j, ∅〉 ∈ ρ′

IH⇔ σi
j � ϕ ∧ σi

j � ϕ′

⇔σi
j � ϕ ∧ ϕ′

ϕ = ϕ′ ∨ ϕ′′: We can firstly observe that (A ∧ B) ∨ (A ∧ ¬B) ∨ (¬A ∧ B) in the classical
semantics is equivalent to A ∨ B for any possible proposition A and B (OrRwLem).
After observing that the current operator is defined by extension of the previously
proved one, we can exploit the previous one as a rewriting lemma. As we have
that two inductive hypothesis associating ρ′ and ρ′′ respectively to ϕ′ and ϕ′′, we
choose the xtLTLf formula ψτ = Orτ

True(ρ
′, ρ′′) to be associated with ϕ′ ∨ ϕ′′. We

close the goal as follows:

180

Information 2023, 14, 173

〈i, j, L〉 ∈ Orτ
True(ρ, ρ′) IH⇔ 〈i, j, L〉 ∈ Andτ(ρ, ρ′) ∨ (σi

j � ϕ ∧ σi
j 6� ϕ′) ∨ (σi

j � ϕ′ ∧ σi
j 6� ϕ)

⇔σi
j � ϕ ∧ ϕ′ ∨ (σi

j � ϕ ∧ σi
j 6� ϕ′) ∨ (σi

j � ϕ′ ∧ σi
j 6� ϕ)

OrRwLem⇔ σi
j � ϕ ∨ ϕ′

ϕ = ϕ′ U ϕ′′: as both the results from the third element of the intermediate results are
always empty by construction and preliminary assumption, and we have inductive
hypothesis associating ρ and ρ′ respectively to ϕ and ϕ′, we can immediately close
the goal after choosing the xtLTLf formula ψτ = UntilτTrue(ρ

′, ρ′′) to be associated
with ϕ = ϕ′ U ϕ′′.

The next lemma is required for closing the generic lemma stated at the beginning of
this sub-section, as LTLf starts assessing the formulae from the beginning of each trace.
We need to show that the former lemma applies to xtLTLf operators in a stricter version,
which is the following one:

Lemma A6. For each LTLf formula ϕ satisfied from the beginning of the trace, it exists an xtLTLf
expression ψ returning a 〈i, 1, L〉, thus highlighting that the condition holds from the beginning of
the trace. More formally:

∀σi ∈ L.∀ϕ : LTLf.∃ψ ∈ xtLTLf.(σ
i � ϕ⇒ ∃L. 〈i, 1, L〉 ∈ ψ)

Proof. Similarly to the previous lemma, as LTLf cannot express activation and target
conditions to be tested in Θ correlation conditions, we always choose Θ = True, and we
decide to use base xtLTLf operators where none of these conditions is returned. Differently
from the previous lemma, we now have to go by inductive structure over the LTLf formulae
rather than on the xtLTLf ones. We can therefore consider the following inductive cases:

ϕ = a: By definition of the Init operator, it is sufficient to consider ψ = Init(a);

ϕ = a∧ p: Under the assumption that the compound condition corresponds to an atomic
query with p := low ≤ κ ≤ up, we can formulate the former as follows: ψ =
Init(CompoundL,τ(a, κ, low, up));

ϕ = ©, ϕ′: By rewriting this definition, this implies to prove that ϕi
2 � ϕ′. As the Nextτ

operator is a timed one and we cannot assess ϕ′ from the beginning of the trace, we
cannot exploit the inductive hypothesis for ϕ′, but we need to apply the previously
proven lemma for the conditions happening at any point in the trace. From the
application of the previous lemma, we have that ϕi

2 � ϕ ⇔ 〈i, 2, L〉 ∈ ρ for some
xtLTLf expression returning ρ. From this, it follows that 〈i, 1, L〉 ∈ Nextτ(ρ). By its
definition, Nextτ returns all events preceding the ones stated in ρ, while, for σi � ©, ϕ,
we are only interested in restricting all of the possible results of Nextτ to the ones also
corresponding to the beginning of the trace. For this reason, we need to consider ψ as
Andτ(Firstτ , Nextτ(ρ));

ϕ = �ϕ′: Similarly to the previous operator, ϕ′ is timed and should be checked for all
events σi

j of interest within the trace σi. Even in this case, we need to apply the previ-
ous lemma for ϕ′, thus guaranteeing that an xtLTLf expression ρ exists containing
〈i, j, L〉 whenever σi

j � ϕ′. As globally requires that all of the events satisfy ϕ′, we
have that Globally(ρ) responds by the intended semantics, and therefore we choose
this as our ψ;

ϕ = 3ϕ′: Similarly to the previous operator, we choose Future(ρ) when ρ is linked to the
evaluation of ϕ′ for any possible trace event by the previous lemma;

181

Information 2023, 14, 173

ϕ = ¬ϕ′: In this other scenario, we can directly apply the previous lemma, as the eval-
uation of ϕ′ will always start from the beginning of the trace. After recalling that
@x.P(x)⇔ ∀x.¬P(x), we rewrite the definition of ϕ while applying the inductive
hypothesis for the present lemma over some ρ semantically linked to ϕ′ as follows:

σi � ¬ϕ⇔ σi
1 6� ϕ′ IH⇔ ∀L. 〈i, 1, L〉 /∈ ρ

Per inductive hypothesis, ρ contains all of the records 〈i, 1, L〉 for which σi
1 � ϕ′; as

the untimed negation will return a record 〈ι, 1, ∅〉 if and only if there is no event
associated with the trace ι in the provided operand, we can choose ψ = Not(ρ) and
close the goal as follows:

〈i, 1, ∅〉 ∈ Not(ρ)⇔ ∀j, L. 〈i, j, L〉 /∈ ρ⇔ ∀L. 〈i, 1, L〉 /∈ ρ

ϕ = ϕ′ U ϕ′′: Similarly to the former operators, both ϕ′ and ϕ′′ required a timed evalua-
tion of the events along the trace of interest, for which we need to exploit the former
lemma, thus obtaining timed xtLTLf expressions ρ′ and ρ′′. We can immediately close
the lemma by choosing ψ = UntilTrue(ρ

′, ρ′′);

ϕ = ϕ′ ∧ ϕ′′: Similarly to the negation operator, we can directly apply the inductive hy-
pothesis on ϕ′ and ϕ′′, as these sub-operators will also be assessed from the beginning
of a trace; these will be associated respectively to the xtLTLf expressions ρ′ and ρ′′

having 〈i, 1, ∅〉 ∈ ρ′ and 〈i, 1, ∅〉 ∈ ρ′′ as we exploit neither activation nor target
conditions. As per construction ρ′ and ρ′′ will contain no record 〈i, j + 2, L〉 for some
natural number j ≥ 0, we chose ψ = AndTrue(ρ

′, ρ′′);

ϕ = ϕ′ ∨ ϕ′′: By exploiting similar consideration from the former operator, we chose
ψ = OrTrue(ρ

′, ρ′′) for some ρ′ and ρ′′ respectively associated by inductive hypothesis
to ϕ′ and ϕ′′.

As a corollary of the two given lemmas, we have that xtLTLf is at least as expressive
as LTLf, as any LTLf formula can always be computed through an equivalent xtLTLf
formula. This validates the decision from our previous work [4] where we expressed the
semantics of each template in Declare through a correspondent xtLTLf expression. These
were also checked through automated testing Appendix A.2. At this stage, we also want
to ascertain that the untimed and timed operators work as expected, that is, that we can
mimic the outcome of the timed operators over the timed ones if, for each event 〈i, j, L〉,
we evaluate the corresponding untimed operator over the suffix σi

j , . . . , σi
|σi |. This can be

proven as follows:

Lemma A7. For each timed xtLTLf operator ψτ containing a result 〈i, j, L〉 over a relational
representation ofL, generate a log of suffixesL′ = {σi⊕j}, where σi⊕j := σi

j , . . . , σi
|σi | of σi, and each

event is defined as σ
i⊕j
k := σi

j+k−1 for each 1 ≤ k ≤ |σi| − j + 1. For this, an xtLTLf expression
ψ evaluated over the relational representation of L′ always exists such that 〈i⊕ j, 1, L〉 ∈ ψ.

Proof. We prove the lemma by induction over ψτ by considering all of the timed operators
having an untimed counterpart. Please observe that we discard the negation Not from our
considerations, as we have previously mentioned that the timed and untimed versions of
this serve different purposes. We also provide an implementation (https://github.com/dat
agram-db/knobab/blob/main/tests/ltlf_operators_test.cpp, 5 March 2023) of such proofs
via automated testing.

ψτ = ActivityL,τ
A/T(a) : This can be trivially closed by choosing InitL

′
A/T(a);

182

Information 2023, 14, 173

ψτ = CompoundL,τ
A/T(a, k, low, up) : This can be trivially closed by choosing

Init(CompoundL
′

A/T(a, k, [low, up]));

ψτ = Globallyτ(ρ): After observing that |σi⊕j| = |σi| − j + 1, we obtain the following
condition by operator’s expansion, where ρ′ is evaluated over L′ as per inductive
hypothesis:

〈i, j, L〉 ∈ Globallyτ(ρ)⇔ L := ∪ j≤k≤|σi |,
〈i,k,Lk〉∈ρ

Lk ∧ |σi| − j + 1 =
∣∣∣{〈i, k, Lk〉 ∈ ρ|j ≤ k ≤ |σi|}

∣∣∣

⇔ L := ∪1≤k≤|σi⊕j |,
〈i⊕j,k,Lk〉∈ρ

Lk ∧ |σi⊕j| =
∣∣∣{〈i⊕ j, k, Lk〉 ∈ ρ|1 ≤ k ≤ |σi⊕j|}

∣∣∣

⇔ L := ∪〈i⊕j,k,Lk〉∈ρLk ∧ |σi⊕j| =
∣∣∣{〈i⊕ j, k, Lk〉 ∈ ρ}

∣∣∣
⇔ 〈i⊕ j, 1, L〉 ∈ Globally(ρ′);

ψτ = Futureτ(ρ): By following similar consideration as per the former operator, we have:

〈i, j, L〉 ∈ Futureτ(ρ)⇔ L := ∪ j≤k≤|σi |
〈i,k,Lk〉∈ρ

Lk ∧ ∃h ≥ j, L. 〈i, h, Lh〉 ∈ ρ

⇔ L := ∪ 1≤k≤|σi⊕j |
〈i⊕j,k,Lk〉∈ρ

Lk ∧ ∃h ≥ 1, L. 〈i, h, Lh〉 ∈ ρ

⇔ L := ∪〈i⊕j,k,Lk〉∈ρLk ∧ ∃h, L. 〈i, h, Lh〉 ∈ ρ

⇔ 〈i⊕ j, 1, L〉 ∈ Future(ρ′);

ψτ = Andτ
Θ(ρ1, ρ2): By rewriting the definition of the timed And operator, we obtain

the following:

〈i, j, L〉 ∈ Andτ
Θ(ρ1, ρ2)⇔ ∃L1, L2. 〈i, j, L1〉 ∈ ρ1 ∧ 〈i, j, L2〉 ∈ ρ2∧

L := T E,i
Θ ([j 7→ L1], [j 7→ L2]) ∧ L 6= False

If And contains for both of its operands an event σi
j , it follows that there should be at

least one match σ
i⊕j
1 over the corresponding untimed operator AndΘ(ρ

′, ρ′′) evaluated
over L′. For the latter operator, we can therefore ensure that a j exists and a j′ being
j = j′ = 1 and L as well as L′ for which the following condition holds:

〈i, j, L〉 ∈ Andτ
Θ(ρ1, ρ2)⇒ ∃L1, L2. 〈i⊕ j, 1, L1〉 ∈ ρ′ ∧ 〈i⊕ j, 1, L2〉 ∈ ρ′′∧

L := T E,i
Θ ([1 7→ {Lj| 〈i, j, Lj〉 ∈ ρ′}], [1 7→ {Lj| 〈i, j, Lj〉 ∈ ρ′′}])∧

L 6= False

⇔ 〈i⊕ j, 1, L〉 ∈ AndΘ(ρ
′, ρ′′);

ψτ = Orτ
Θ(ρ1, ρ2): As this operator is derived from the definition of Andτ

Θ, we can directly
close the goal by the previous inductive step if the result represents a match between
the elements of the first and second operand. If there were no events that might have
been matched, the data come either from the first or from the second operand. As the
two cases are symmetric, we just provide proof for the former case. In this situation,
we have a 〈i, j, L〉 ∈ Orτ

Θ(ρ1, ρ2) corresponding to a 〈i, j, L〉 ∈ ρ1 for which there is no
L′ such that 〈i, j, L′〉 ∈ ρ2. If there still exists a j′ and L′ such that 〈i, j′, L′〉 ∈ ρ2 for
which there might be a match between L and L′, then this case falls under the untimed
AndΘ over L′, and we still have some τ for which the latter returns 〈i⊕ j, 1, τ〉; if
match is never possible or no of such j′ exists, then the untimed OrΘ operator will
return a 〈i⊕ j, 1,∪{L|∃k. 〈i⊕ j, k, L〉 ∈ ρ2}〉 by definition;

183

Information 2023, 14, 173

ψτ = Untilτ(ρ1, ρ2): This is a mere rewriting exercise, as the untimed version of Until is a
mere instantiation of the latter where only the case k = 1 is considered.

Appendix A.3

At this stage, we provide some rewriting lemmas motivating the introduction of
derived operators. First, we want to show that the untimed AndΘ(ρ, ρ′) operator can also be
exploited to compute AndΘ(Future(ρ), Future(ρ′)), thus motivating the peculiar definition
of such operator with an existential interpretation over all of the possible matches in the
future. We can formally prove this as follows:

Lemma A8.
∀ρ, ρ′.AndΘ(Future(ρ), Future(ρ′)) = AndΘ(ρ, ρ′)

Proof. By expanding the definition of the operators, we obtain:

〈i, 1, L′′〉 ∈ AndΘ(Future(ρ), Future(ρ′))⇔ ∃L, L′. 〈i, 1, L〉 ∈ Future(ρ) ∧ 〈i, 1, L′〉 ∈ Future(ρ′)

L′′ := T E,i
Θ ([1 7→ ∪{Lj| 〈i, j, Lj〉 ∈ ρ1}], [1 7→ ∪{Lj| 〈i, j, Lj〉 ∈ ρ2}]),

L′′ 6= False

⇔ ∃j, j′, L, L′. 〈i, j, L〉 ∈ ρ ∧ 〈i, j′, L′〉 ∈ ρ′

L′′ := T E,i
Θ ([1 7→ ∪{Lj| 〈i, j, Lj〉 ∈ ρ1}], [1 7→ ∪{Lj| 〈i, j, Lj〉 ∈ ρ2}]),

L′′ 6= False

⇔ 〈i, 1, L′′〉 ∈ AndΘ(ρ, ρ′)

Please remember that the untimed And operator is also compliant with the LTLf seman-
tics as per our previous lemmas. We can therefore exploit the versatile definition of such
operation to reduce the computational overhead provided by the additional and unrequired
aggregation provided by Future. Given the previous lemma, we have as a Corollary that
the semantics associated with the Choice Declare clause, i.e., OrΘ(Future(ρ), Future(ρ′)),
can equivalently be computed by OrΘ(ρ, ρ′). The following proof motivates the choice of
exploiting Ei

Θ as a correlation matching semantics for both AndΘ and OrΘ.

Corollary A1.
∀ρ, ρ′.OrΘ(Future(ρ), Future(ρ′)) = OrΘ(ρ, ρ′)

Proof. By expanding the definition of the untimed OrΘ, we obtain:

OrΘ(Future(ρ), Future(ρ′)) = AndΘ(Future(ρ), Future(ρ′)) ∪
{
〈i, 1,∪{L|∃j. 〈i, j, L〉 ∈ Future(ρ)}〉

∣∣ @j, L′. 〈i, j, L′〉 ∈ Future(ρ′)
}

∪
{
〈i, 1,∪{L|∃j. 〈i, j, L〉 ∈ Future(ρ′)}〉

∣∣ @j, L′. 〈i, j, L′〉 ∈ Future(ρ)
}

For the previous lemma, this becomes:

OrΘ(Future(ρ), Future(ρ′)) = AndΘ(ρ, ρ′) ∪
{
〈i, 1,∪{L|∃j. 〈i, j, L〉 ∈ Future(ρ)}〉

∣∣ @j, L′. 〈i, j, L′〉 ∈ Future(ρ′)
}

∪
{
〈i, 1,∪{L|∃j. 〈i, j, L〉 ∈ Future(ρ′)}〉

∣∣ @j, L′. 〈i, j, L′〉 ∈ Future(ρ)
}

At this stage, we only need to test the contribution of the second component of the
union, as the third one is symmetrical (ρ and ρ′ are just inverted). As the elements of the
second component of the union come from Future operators, we can rewrite such as follows:

{
〈i, 1,∪{L| 〈i, 1, L〉 ∈ Future(ρ)}〉

∣∣ @L′. 〈i, 1, L′〉 ∈ Future(ρ′)
}

We can also observe that 〈i, 1, L〉 ∈ Future(ρ) for a given L if there exist a j and
L′′ for which 〈i, j, L′′〉 ∈ ρ. Similar considerations come from the negated counterpart
(〈i, 1, L〉 /∈ Future(ρ)). For this expansion, we can therefore close our goal.

184

Information 2023, 14, 173

The remaining lemmas show the correctness of the logical formulation of the derived
operators, thus motivating their adoption when possible. These lemmas were also tested in
our implementation (See the end of https://github.com/datagram-db/knobab/blob/m
ain/tests/until_test.cpp, 5 March 2023). The supplementary materials (Section II) show
that it is possible to implement such derived operators so that they are faster than their
corresponding LTLf rewriting counterpart.

Lemma A9.
∀ρ, ρ′.Andτ

Θ(ρ1, Futureτ(ρ2)) = AndFutureτ
Θ(ρ1, ρ2)

Proof.

〈i, j, L〉 ∈ Andτ
Θ(ρ1, Futureτ(ρ2))⇔ ∃L1, L2. 〈i, j, L1〉 ∈ ρ1 ∧ 〈i, j, L2〉 ∈ Futureτ(ρ2)∧

L := T E,i
Θ ([j 7→ L1], [j 7→ L2]) ∧ L 6= False

⇔ ∃L1, L2. 〈i, j, L1〉 ∈ ρ1 ∧ ∃h ≥ j, L. 〈i, h, L〉 ∈ ρ2∧
L := T E,i

Θ ([j 7→ L1], [j 7→ ∪ j≤k≤|σi |
〈i,k,Lk〉∈ρ

Lk]) ∧ L 6= False

⇔ 〈i, j, L〉 ∈ AndFutureτ
Θ(ρ1, ρ2)

Lemma A10.
∀ρ, ρ′.Andτ

Θ(ρ1, Globallyτ(ρ2)) = AndGloballyτ
Θ(ρ1, ρ2)

Proof.

〈i, j, L〉 ∈ Andτ
Θ(ρ1, Globallyτ(ρ2))⇔ ∃L1, L2. 〈i, j, L1〉 ∈ ρ1 ∧ 〈i, j, L2〉 ∈ Globallyτ(ρ2)∧

L := T E,i
Θ ([j 7→ L1], [j 7→ L2]) ∧ L 6= False

⇔ ∃L1. 〈i, j, L1〉 ∈ ρ1 ∧ 〈i, j, Lj〉 ∈ ρ2∧
|σi| − j + 1 =

∣∣∣{〈i, k, Lk〉 ∈ ρ|j ≤ k ≤ |σi|}∧

L := T E,i
Θ ([j 7→ L1], [j 7→ ∪ j≤k≤|σi |

〈i,k,Lk〉∈ρ

Lk]) ∧ L 6= False

⇔ ∃L1. 〈i, j, L1〉 ∈ ρ1 ∧ ∀j ≤ k ≤ |σi|.∃L′. 〈i, k, Lk〉 ∈ ρ2∧
L := T E,i

Θ ([j 7→ L1], [j 7→ ∪ j≤k≤|σi |
〈i,k,Lk〉∈ρ

Lk]) ∧ L 6= False

⇔ 〈i, j, L〉 ∈ AndGloballyτ
Θ(ρ1, ρ2)

References
1. Agrawal, R.; Imieliński, T.; Swami, A. Mining Association Rules between Sets of Items in Large Databases. SIGMOD Rec. 1993,

22, 207–216. [CrossRef]
2. Bergami, G.; Maggi, F.M.; Montali, M.; Peñaloza, R. Probabilistic Trace Alignment. In Proceedings of the 2021 3rd International

Conference on Process Mining (ICPM), Eindhoven, The Netherlands, 31 October–4 November 2021; pp. 9–16. [CrossRef]
3. Schön, O.; van Huijgevoort, B.; Haesaert, S.; Soudjani, S. Correct-by-Design Control of Parametric Stochastic Systems. In

Proceedings of the 2022 IEEE 61st Conference on Decision and Control, Cancun, Mexico, 6–9 December 2022.
4. Appleby, S.; Bergami, G.; Morgan, G. Running Temporal Logical Queries on the Relational Model. In Proceedings of the

International Database Engineered Applications Symposium (IDEAS’22), Budapest, Hungary, 22–24 August 2022; pp. 222–231.
5. Schönig, S.; Rogge-Solti, A.; Cabanillas, C.; Jablonski, S.; Mendling, J. Efficient and Customisable Declarative Process Mining with

SQL. In Advanced Information Systems Engineering, Proceedings of the 28th International Conference, CAiSE 2016, Ljubljana, Slovenia,
13–17 June 2016; Springer: Berlin/Heidelberg, Germany, 2016.

6. Burattin, A.; Maggi, F.M.; Sperduti, A. Conformance checking based on multi-perspective declarative process models. Expert
Syst. Appl. 2016, 65, 194–211. [CrossRef]

185

Information 2023, 14, 173

7. Pesic, M.; Schonenberg, H.; van der Aalst, W.M.P. DECLARE: Full Support for Loosely-Structured Processes. In Proceedings of
the 11th IEEE International Enterprise Distributed Object Computing Conference, Annapolis, MA, USA, 15–19 October 2007;
pp. 287–300.

8. Musser, D.R. Introspective Sorting and Selection Algorithms. Softw. Pract. Exp. 1997, 27, 983–993. [CrossRef]
9. Bellatreche, L.; Kechar, M.; Bahloul, S.N. Bringing Common Subexpression Problem from the Dark to Light: Towards Large-Scale

Workload Optimizations. In Proceedings of the 25th International Database Engineering & Applications Symposium, Montreal,
QC, Canada, 14–16 July 2021.

10. Naldurg, P.; Sen, K.; Thati, P. A Temporal Logic Based Framework for Intrusion Detection. In Proceedings of the Formal
Techniques for Networked and Distributed Systems—FORTE 2004: 24th IFIP WG 6.1 International Conference, Madrid, Spain,
27–30 September 2004; Núñez, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3235, pp. 359–376.

11. Ray, I. Security Vulnerabilities in Smart Contracts as Specifications in Linear Temporal Logic. Master’s Thesis, University of
Waterloo, Waterloo, ON, Canada, 2021.

12. Buschjäger, S.; Hess, S.; Morik, K. Shrub Ensembles for Online Classification. In Proceedings of the the AAAI Conference on
Artificial Intelligence 2022, Virtual, 22 February–1 March 2022; pp. 6123–6131.

13. Huo, X.; Hao, K.; Chen, L.; song Tang, X.; Wang, T.; Cai, X. A dynamic soft sensor of industrial fuzzy time series with propositional
linear temporal logic. Expert Syst. Appl. 2022, 201, 117176. [CrossRef]

14. Bergami, G.; Francescomarino, C.D.; Ghidini, C.; Maggi, F.M.; Puura, J. Exploring Business Process Deviance with Sequential and
Declarative Patterns. arXiv 2021, arXiv:2111.12454.

15. Zhou, H.; Milani Fard, A.; Makanju, A. The State of Ethereum Smart Contracts Security: Vulnerabilities, Countermeasures, and
Tool Support. J. Cybersecur. Priv. 2022, 2, 358–378. [CrossRef]

16. Szabo, N. Smart contracts: Building blocks for digital markets. Extropy J. Transhumanist Thought 1996, 18 , 28.
17. Fionda, V.; Greco, G.; Mastratisi, M.A. Reasoning About Smart Contracts Encoded in LTL. In Proceedings of the AIxIA 2021—

Advances in Artificial Intelligence: 20th International Conference of the Italian Association for Artificial Intelligence, Virtual
Event, 1–3 December 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 123–136.

18. Bank, H.S.; D’souza, S.; Rasam, A. Temporal Logic (TL)-Based Autonomy for Smart Manufacturing Systems. Procedia Manuf.
2018, 26, 1221–1229. [CrossRef]

19. Mao, X.; Li, X.; Huang, Y.; Shi, J.; Zhang, Y. Programmable Logic Controllers Past Linear Temporal Logic for Monitoring
Applications in Industrial Control Systems. IEEE Trans. Ind. Informatics 2022, 18, 4393–4405. [CrossRef]

20. Boniol, P.; Linardi, M.; Roncallo, F.; Palpanas, T.; Meftah, M.; Remy, E. Unsupervised and scalable subsequence anomaly detection
in large data series. Vldb J. 2021, 30, 909–931. [CrossRef]

21. Xu, H.; Pang, J.; Yang, X.; Yu, J.; Li, X.; Zhao, D. Modeling clinical activities based on multi-perspective declarative process mining
with openEHR’s characteristic. BMC Med. Inform. Decis. Mak. 2020, 20-S, 303. [CrossRef]

22. Rovani, M.; Maggi, F.M.; de Leoni, M.; van der Aalst, W.M.P. Declarative process mining in healthcare. Expert Syst. Appl. 2015,
42, 9236–9251. [CrossRef]

23. Bertini, F.; Bergami, G.; Montesi, D.; Veronese, G.; Marchesini, G.; Pandolfi, P. Predicting Frailty Condition in Elderly Using
Multidimensional Socioclinical Databases. Proc. IEEE 2018, 106, 723–737. [CrossRef]

24. De Giacomo, G.; Maggi, F.M.; Marrella, A.; Patrizi, F. On the Disruptive Effectiveness of Automated Planning for LTLf -Based
Trace Alignment. In Proceedings of the AAAI Conference on Artificial Intelligence 2017, San Francisco, CA, USA, 4–9 February
2017.

25. Bergami, G.; Maggi, F.M.; Marrella, A.; Montali, M. Aligning Data-Aware Declarative Process Models and Event Logs. In Business
Process Management; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 235–251.

26. Bergami, G. A Logical Model for joining Property Graphs. arXiv 2021, arXiv:2106.14766.
27. Zhu, S.; Pu, G.; Vardi, M.Y. First-Order vs. Second-Order Encodings for LTLf-to-Automata Translation. arXiv 2019,

arXiv:1901.06108.
28. Ceri, S.; Gottlob, G. Translating SQL Into Relational Algebra: Optimization, Semantics, and Equivalence of SQL Queries. IEEE

Trans. Software Eng. 1985, 11, 324–345. [CrossRef]
29. Calders, T.; Lakshmanan, L.V.S.; Ng, R.T.; Paredaens, J. Expressive power of an algebra for data mining. ACM Trans. Database

Syst. 2006, 31, 1169–1214. [CrossRef]
30. Li, J.; Pu, G.; Zhang, Y.; Vardi, M.Y.; Rozier, K.Y. SAT-based explicit LTLf satisfiability checking. Artif. Intell. 2020, 289, 103369.

[CrossRef]
31. Petermann, A.; Junghanns, M.; Müller, R.; Rahm, E. FoodBroker-Generating Synthetic Datasets for Graph-Based Business

Analytics. In Proceedings of the 5th International Workshop, WBDB 2014, Potsdam, Germany, 5–6 August 2014.
32. Bergami, G. On Declare MAX-SAT and a finite Herbrand Base for data-aware logs. arXiv 2021, arXiv:2106.07781.
33. Pichler, P.; Weber, B.; Zugal, S.; Pinggera, J.; Mendling, J.; Reijers, H.A. Imperative versus Declarative Process Modeling Languages:

An Empirical Investigation. In Proceedings of the BPM 2011 International Workshops, Clermont-Ferrand, France, 29 August 2011;
pp. 383–394.

34. Codd, E.F. A Relational Model of Data for Large Shared Data Banks. Commun. ACM 1970, 13, 377–387. [CrossRef]
35. Idreos, S.; Groffen, F.; Nes, N.; Manegold, S.; Mullender, K.S.; Kersten, M.L. MonetDB: Two Decades of Research in Column-

oriented Database Architectures. IEEE Data Eng. Bull. 2012, 35, 40–45.

186

Information 2023, 14, 173

36. Boncz, P.A.; Manegold, S.; Kersten, M.L. Database Architecture Evolution: Mammals Flourished long before Dinosaurs became
Extinct. Proc. VLDB Endow. 2009, 2, 1648–1653.

37. Roth, M.A.; Korth, H.F.; Silberschatz, A. Extended Algebra and Calculus for Nested Relational Databases. ACM Trans. Database
Syst. 1988, 13, 389–417. [CrossRef]

38. Wang, J.; Ntarmos, N.; Triantafillou, P. GraphCache: A Caching System for Graph Queries. In Proceedings of the International
Conference on Extending Database Technology (EDBT) 2017, Venice, Italy, 21–24 March 2017; pp. 13–24.

39. Keller, A.M.; Basu, J. A Predicate-based Caching Scheme for Client-Server Database Architectures. VLDB J. 1996, 5, 35–47.
[CrossRef]

40. Davey, B.A.; Priestley, H.A. Introduction to Lattices and Order, 2nd ed. ; Cambridge University Press: Cambridge, UK, 2002.
41. de Berg, M.; Cheong, O.; van Kreveld, M.J.; Overmars, M.H. Computational Geometry: Algorithms and Applications, 3rd ed.; Springer:

Berlin/Heidelberg, Germany, 2008.
42. Elmasri, R.; Navathe, S.B. Fundamentals of Database Systems, 7th ed.; Pearson: Upper Saddle River, NJ, USA, 2015.
43. Polyvyanyy, A.; ter Hofstede, A.H.M.; Rosa, M.L.; Ouyang, C.; Pika, A. Process Query Language: Design, Implementation, and

Evaluation. arXiv 2019, arXiv:1909.09543.
44. Coffman, E.G.; Graham, R.L. Optimal Scheduling for Two-Processor Systems. Acta Inform. 1972, 1, 200–213. [CrossRef]
45. Sugiyama, K.; Tagawa, S.; Toda, M. Methods for Visual Understanding of Hierarchical System Structures. IEEE Trans. Syst. Man.

Cybern. 1981, 11, 109–125. [CrossRef]
46. Bergami, G. On Efficiently Equi-Joining Graphs. In Proceedings of the 25th International Database Engineering & Applications

Symposium 2021, Montreal, QC, Canada, 14–16 July 2021.
47. Dittrich, J. Patterns in Data Management: A Flipped Textbook; CreateSpace Independent Publishing Platform: Charleston, SC,

USA, 2016.
48. Schönig, S. SQL Queries for Declarative Process Mining on Event Logs of Relational Databases. arXiv 2015, arXiv:1512.00196.
49. Shoshany, B. A C++17 Thread Pool for High-Performance Scientific Computing. arXiv 2021, arXiv:2105.00613.
50. Klemm, M.; Cownie, J. 8 Scheduling parallel loops. In High Performance Parallel Runtimes; De Gruyter Oldenbourg: Berlin,

Germany; Boston, MA, USA, 2021; pp. 228–258.
51. Ristov, S.; Prodan, R.; Gusev, M.; Skala, K. Superlinear speedup in HPC systems: Why and when? In Proceedings of the

2016 Federated Conference on Computer Science and Information Systems (FedCSIS), Gdańsk, Poland, 11–14 September 2016;
pp. 889–898.

52. Yan, B.; Regueiro, R.A. Superlinear speedup phenomenon in parallel 3D Discrete Element Method (DEM) simulations of
complex-shaped particles. Parallel Comput. 2018, 75, 61–87. [CrossRef]

53. Nagashima, U.; Hyugaji, S.; Sekiguchi, S.; Sato, M.; Hosoya, H. An experience with super-linear speedup achieved by parallel
computing on a workstation cluster: Parallel calculation of density of states of large scale cyclic polyacenes. Parallel Comput. 1995,
21, 1491–1504. [CrossRef]

54. Anselma, L.; Bottrighi, A.; Montani, S.; Terenziani, P. Extending BCDM to Cope with Proposals and Evaluations of Updates.
IEEE Trans. Knowl. Data Eng. 2013, 25, 556–570. [CrossRef]

55. Bergami, G.; Bertini, F.; Montesi, D. Hierarchical embedding for DAG reachability queries. In Proceedings of the IDEAS 2020:
24th International Database Engineering & Applications Symposium, Seoul, Republic of Korea, 12–14 August 2020; Desai, B.C.,
Cho, W., Eds.; ACM: New York, NY, USA, 2020; pp. 24:1–24:10.

56. Revesz, P.Z. Introduction to Databases—From Biological to Spatio-Temporal; Texts in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2010.

57. Revesz, P. Geographic Databases. In Introduction to Databases: From Biological to Spatio-Temporal; Springer: London, UK, 2010;
pp. 81–109.

58. Zaki, N.M.; Helal, I.M.A.; Awad, A.; Hassanein, E.E. Efficient Checking of Timed Order Compliance Rules over Graph-encoded
Event Logs. arXiv 2022, arXiv:2206.09336.

59. Rost, C.; Gómez, K.; Täschner, M.; Fritzsche, P.; Schons, L.; Christ, L.; Adameit, T.; Junghanns, M.; Rahm, E. Distributed temporal
graph analytics with GRADOOP. VLDB J. 2022, 31, 375–401. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

187

Citation: Bergami, G. Streamlining

Temporal Formal Verification over

Columnar Databases. Information

2024, 15, 34. https://doi.org/

10.3390/info15010034

Academic Editor: Peter Revesz

Received: 8 December 2023

Revised: 4 January 2024

Accepted: 5 January 2024

Published: 8 January 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Streamlining Temporal Formal Verification over
Columnar Databases
Giacomo Bergami

School of Computing, Faculty of Science, Agriculture and Engineering, Newcastle University,
Newcastle upon Tyne NE4 5TG, UK; giacomo.bergami@newcastle.ac.uk

Abstract: Recent findings demonstrate how database technology enhances the computation of formal
verification tasks expressible in linear time logic for finite traces (LTLf). Human-readable declarative
languages also help the common practitioner to express temporal constraints in a straightforward and
accessible language. Notwithstanding the former, this technology is in its infancy, and therefore, few
optimization algorithms are known for dealing with massive amounts of information audited from
real systems. We, therefore, present four novel algorithms subsuming entire LTLf expressions while
outperforming previous state-of-the-art implementations on top of KnoBAB, thus postulating the
need for the corresponding, leading to the formulation of novel xtLTLf-derived algebraic operators.

Keywords: temporal formal verification; columnar databases; verified artificial intelligence; linear
time logic for finite traces

1. Introduction

Grounded in formal methods, verified artificial intelligence [1] is concerned with
defining, designing, and verifying systems represented mathematically. In context-free
data, this focuses on a system S to be verified through properties described in Φ, while the
model of the environment E is neglected. In this regard, a formal verification task ascertains
whether a given system complies with a specification S � Φ. In the context of business
process management, we can consider model [2], conformance [3], or compliance [4,5] checking
as all synonyms of the former. Concerning temporal data, we focus our attention on systems
described as logs, a collection of temporally ordered records (i.e., traces) of observed and
completed (or aborted) labelled activities unravelling one possible run of a process. These
real-world processes might include the auditing of malware in terms of system calls being
invoked [6,7], records describing patients’ hospitalization procedures [8–10], as well as
transactions between producers and retailers through a brokerage system [11]. As an
example, each trace of a log can describe three distinct patient registration events at an
emergency department (ED) [12] as given by the following log expressed in terms of the
activity labels associated to our events:

S = { 〈registration, examination, discharge〉 ,

〈registration, redirection, clinical test,

examination, discharge〉,
〈registration, redirection, examination,

discharge〉}

(1)

In all these contexts, a formal verification task returns whether the current instances
of the processes being collected as traces of a log S abide by specific temporal quality
requirements Φ while determining which temporal constraints in Φ are explicitly violated.
Linear Temporal Logic over Finite traces (LTLf, Section 2.1) [13] can be used to express
these temporal specifications Φ. This logic is defined as linear since it assumes there is only

Information 2024, 15, 34. https://doi.org/10.3390/info15010034 https://www.mdpi.com/journal/information188

Information 2024, 15, 34

one future possible event immediately following a given event in a sequence of events of
interest. Such low-level semantics are then exploited to give the semantics of temporal
templates, expressing occurring temporal correlations of interest; the present paper will
discuss Declare [14].

The emerging area of temporal big data analytics, having data with time as a first-class
citizen, makes the need to efficiently process the aforementioned tasks more pressing [15,16].
In such real scenarios, adopting relational databases provides an ideal setting for dealing
with such temporal data [17]. This also includes the storage and querying of numerical
time series [18], or considering different versions in time of entities and relationships
represented in the relational model [19–22]. In recent years, researchers have demonstrated
that time series can be represented as traces via time series segmentation by discretizing
the variation in time series into discrete, observable, linear events that are distinct from
each other, enabling identification of a system’s transitional states [23] as well as variations
in the values associated with time series [24]. As a result of such segmentation, pattern
searches can now be run using streamlined approaches. LTLf has now been applied to
a widespread set of applications in real use case scenario contexts, such as controlling
actuation upon sensing the environment in Industry 4.0 settings [25] as well as for the
verification of smart contracts [26], for which this technology proved to be effective for
verified artificial intelligence. The large adoption of such formal language pushes us to
focus on this well-known and consolidated language [13,27].

In the context of formal specification tasks expressed in LTLf, recent research clearly
remarked on the inadequacy of off-the-shelf row-based relational databases and SQL as a
query language for expressing LTLf temporal constraints, as it clearly showed that a cus-
tomized relational algebra for expressing formal specification (eXTended LTLf, xtLTLf [28])
and query plan minimizing the running of sub-queries [29] running on customized column-
based storage (KnoBAB [28,30]) outperformed the previous solution. The main benefit of
this approach is that any LTLf can be directly expressed in terms of xtLTLf, while high-
level and human-readable temporal constraints expressed through temporal clauses can
be directly specified in a semantics query at warm-up, thus allowing the support of any
declarative temporal language (queryplan in Figure 1). As this line of research is in its
infancy, very few algorithms for efficiently running xtLTLf are known. We now remark on
two use cases addressed for the first time in the present paper.

〈A,B,C,B〉
〈A,B,A〉
〈A,D,B〉
〈C,B,A〉

Log

A. T. C.

A 0 1
A 1 2
A 2 1
A 3 1
B 0 2
B 1 1
B 2 1
B 3 1
C 0 1
C 1 0
C 2 0
C 3 1
D 0 0
D 1 0
D 2 1
D 3 0

A. T. E. P. N.

A 0 0 NULL 5
A 1 0 NULL 7
A 1 2 7 NULL
A 2 0 NULL 12
A 3 2 9 NULL
B 0 1 0 10
B 0 3 10 NULL
B 1 1 1 2
B 2 2 12 NULL
B 3 2 11 4
C 0 2 5 6
C 3 0 NULL 9
D 2 1 3 8

Columnar Data-Storage

Loading

Indexing

AltResponse(A,B)

Specification

queryplan

Act
ivit

y A(
A)

Act
ivit

y T(
B)

Or
Glo

bal
ly

Not

And
AltF

utu
re

Act
ivit

y A(
A)

Act
ivit

y T(
B)

Not

Unt
il

Nex
t

AndOr
Glo

bal
ly

Original

Pr
op

os
ed

model-check

model-check

result

result

Figure 1. High-level representation of the KnoBAB query plan for running a AltResponse(A, B) for
different specifications over a pre-loaded log within a columnar data-storage. After loading and
indexing some traces stored as a log, we obtain a columnar data storage. At warm-up time, we can
specify a queryplan which, at formal verification (model-check) time, converts a Declare specification
into a xtLTLf query plan. As KnoBAB supports multiple queryplans at once, we can run the same
formal verification task over different resulting query plans.

189

Information 2024, 15, 34

First, due to their formulation, some of the logical operators such as the timed until
operator UNTILτ

True(ϕ, ϕ′) (ϕU ϕ′ in LTLf) are associated with very high computational
complexity, as it prescribes that the occurrence of at least one future event matching a ϕ′

condition per trace shall always be preceded by events matching ϕ. Under the occasions
that this temporal post-condition shall be considered only after determining the occurrence
of a first event ϕ′′, this could drastically reduce the amount of computation associated with
the overall task. This is not taken into account in our previous implementation in KnoBAB,
as it computed a union between the cases where ϕ′′ does not occur and the ones where ϕ′′

occurs, for which the evaluation of UNTILτ
True(ϕ, ϕ′) is extended to any event occurring of

the trace. Walking in the footsteps of relational algebra, where θ-joins are expressed as the
combination of natural joins [31] or cross-products [32] with θ-selections and join operations
can be streamlined through cogrouping [33], we then propose similarly derived operators,
combining the matching of a given pre-condition with the subsequent requirement that all
the intermediate events should meet the alternance requirements dictated by UNTILτ

Θ. This
paper will then contextualize the need for such derived operators for two specific Declare
temporal templates, AltPrecedence and AltResponse, thus substantiating the interest in these
temporal patterns from the current literature (Table 1).

Table 1. Declare templates as exemplifying clauses. A (B) represents the activation (target) condition
as an activity label.

Exemplifying Clause (cl) Natural Language Specification for Traces LTLf Semantics (JclK)

ChainPrecedence (A, B) The activation is immediately preceded by the target. �(©A⇒ B)

In
th

is
pa

pe
r ChainResponse (A, B) The activation is immediately followed by the target. �(A⇒ ©B)

AltResponse (A, B) If activation occurs, no other activations must happen until
the target occurs.

�(A⇒ ©(¬A U B))

AltPrecedence (A, B) Every activation must be preceded by a target without any
other activation in between

¬BW A ∧�(A⇒ ©(¬AW B))

N
ot

su
bj

ec
tt

o
op

tim
iz

at
io

n
in

th
is

pa
pe

r

Init (A) The trace should start with an activation A

Exists (A, n) Activations should occur at least n times ♦(A ∧©(JExists(A, n− 1)K)n>0)

Absence (A, n + 1) Activations should occur at most n times ¬JExists (A, n + 1)K
Precedence (A, B) Events preceding the activations should not satisfy the

target
¬BW A

Choice (A, A′) One of the two activation conditions must appear. ♦A ∨♦A′

Response (A, B) The activation is either followed by or simultaneous to the
target.

�(A⇒ ♦B)

RespExistence (A, B) The activation requires the existence of the target. ♦A⇒ ♦B

ExlChoice (A, A′) Only one activation condition must happen. JChoice(A, A’)K∧ JNotCoExistence(A, A’)K
CoExistence (A, B) RespExistence, and vice versa. JRespExistence(A, B)K∧ JRespExistence(B, A)K
Succession (A, B) The target should only follow the activation. JPrecedence(A, B)K∧ JResponse(A, B)K
ChainSuccession (A, B) Activation immediately follows the target, and the target

immediately preceeds the activation.
�(A⇔ ©B)

NotCoExistence (A, B) The activation nand the target happen. ¬(♦A ∧♦B)

NotSuccession (A, B) The activation requires that no target condition should
follow.

�(A⇒ ¬♦B)

Legend: Globally: �φ, Next: ©φ, Implication: φ⇒ φ′, Until: φ′ U φ, Weak Until: φW φ′, Future: ♦φ.

Example 1. AltResponse(A, B) requires that, when A occurs, B shall occur anytime in the fu-
ture while no other A shall occur in between. In xtLTLf, this can be expressed as �(¬A ∨ (A ∧
©(¬A U B))) (Original in Figure 1). On the other hand, the present paper shows that, by replacing
A ∧ ©(¬A U B) with a single operator, we obtain a significant reduction in running time by
reducing the amount of result scans and data allocations. This is possible by providing a different
(Proposed) xtLTLf queryplan while implementing AndAltFuture as a novel operator. This difference
is remarked in the two resulting query plans in Figure 1.

Second, temporal constraints requiring that events abiding by a ϕ specification shall
always precede (or follow) other events abiding by ϕ′ are currently implemented in KnoBAB
by equi-joining all the events matching ϕ with the ones matching ϕ′, while the predicate is
i = i′ ∧ j = j− 1 (or i = i′ ∧ j = j′ + 1), where i (or i′) and j (or j′) are, respectively, referring

190

Information 2024, 15, 34

to the trace id and event id associated to a record coming from the first (or second) operand
(see Andτ

Θ xtLTLf in Section 2.2.2). Even this implementation can be further boosted by
minimizing the data table access to just one operator (e.g., ϕ) for directly accessing the
immediately preceding or following events within the relational database and checking
whether they abide by ϕ′. Even this second observation is motivated by the existence
of ChainResponse and ChainPrecedence Declare templates, thus requiring the definition of
novel derived operators for performance purposes.

To support our research claims, we extend (https://github.com/datagram-db/knobab/
releases/tag/v2.3, accessed on 3 January 2024) the current implementation of KnoBAB [34],
a column-oriented main memory DBMS supporting formal verification and specification
mining tasks by defining relational operations for temporal logic and customary mining
algorithms. Despite this being a main memory engine, it currently supports intra-query
parallelism and hybrid algorithms (Section 2.2.1). To our knowledge, no other database
management system for temporal formal verification over LTLf provides these features,
for which we choose to extend such a system. Furthermore, KnoBAB already proved
to consistently outperform previous state-of-the-art algorithms on both tasks [35], thus
including competing approaches interpreting the same temporal constraints over SQL
and row-oriented relational database architecture [17]. After providing a brief literature
overview on the landscape of formal verification for temporal data (Section 2), we outline
the following main contributions leading to the our performance analysis result for our
newly proposed xtLTLf operators:

• We formally introduce the novel temporal operators optimizing the aforementioned
scenarios in the context of Declare as a declarative language for formal verification
(Section 3).

• We describe the implementation of the aforementioned operators over the KnoBAB
architecture leveraging columnar-oriented main memory storage (Section 4).

• We present experimental results to evaluate the effectiveness of such newly introduced
operators in the context of formal verification in Declare (Section 5).

2. Related Works
2.1. Languages for Temporal Formal Specifications
2.1.1. LTLf

Taking the possible worlds as finite traces, LTLf is a well-established extension of
modal logic with modalities referring to time; it assumes that all the events of interest are
fully observable and therefore deterministic and that, for each occurring event, they should
be immediately followed by at most one event. This entails that the i-th trace σi in a log S

can be considered as a sequence of n totally ordered events σi
0 . . . σi

n−1, where each event
σi

j is associated to a single activity label λ(σi
j) ∈ Σ [3]. When events are associated to a

payload represented as a key-value association ς(σi
j), we refer to such logs as dataful and

as dataless otherwise. In the eventuality of the former, such payloads can be represented
as finite functions VK, where K is the set of the keys and V is the overall set of non-NULL
values. Concerning our datasets of interest, we only consider ones where trace events are
not associated with a data payload, and therefore even such logs can be considered as
dataless. On the other hand, with reference to Equation (1), event payloads can store patient
information, thus registering the recorded medical condition being observed [28]; in the
context of good brokerage, such payload might contain the relevant contract information
between the supplier and the customer which are required to be respected (e.g., delivery
times), as well as the location of the goods, their number, and quality [11].

LTLf semantics is usually defined in terms of First-Order Logic [36]; more informally,
Next (©φ) requires φ to occur from the subsequent temporal step, Globally (�φ) that φ
always holds from the current instant of time, Future (♦φ) that φ must eventually hold,
and Until φ U φ′ that φ must hold until the first occurrence of φ′ does. Weak Until is a
derived operator for ϕWϕ′ := ϕU ϕ′ ∨�ϕ, while the logical implication can be rewritten

191

Information 2024, 15, 34

as ϕ ⇒ ϕ′ := (¬ϕ) ∨ (ϕ ∧ ϕ′). Please observe that LTLf does not provide full support
for handing data correlation conditions between operands of binary operations, as it only
supports the declaration of data conditions that can be applied to one single event [3].
To the best of our knowledge, xtLTLf (Section 2.2.2) is the only extension of this language
supporting data payload correlation across events matched by both arguments of the binary
operator, thus providing a complete dataful support.

2.1.2. Declare

Declare [14,37] provides a human-readable declarative language on top of LTLf (first
column of Table 1), where each template is associated with a specific LTLf formula (third
column), which can be instantiated with arbitrary activity labels. We refer to the instanti-
ation of such templates via activity labels in a finite set Σ as (declarative) clauses. Declare
circumscribes the set of all the possible behaviors expressible in LTLf to the ones of interest
over a set of possible Σ; Table 1 recalls some of the most used templates while remarking
on the four templates of interest optimized in the present paper.

At the time of writing, Declare expresses specifications Φ as a set of clauses cl being
usually associated with an LTLf semantics Jcl]]; in this context, a trace σ ∈ S satisfies a
Declare specification Φ if it jointly satisfies all the clauses associated to the specification.
If these clauses can be characterized by a precondition which, if satisfied by some event,
imposes the occurrence of a post-condition, then we refer to these as activation and target
conditions, respectively. Please observe that post-conditions are considered as such merely
in terms of causal implication (i.e.,⇒) and not necessarily in temporal terms, e.g., while
ChainResponse requires the target to immediately follow any existing activation, ChainPrece-
dence requires that the targeted event shall instead precede the activation. Please consider
that Declare clauses do not necessarily reflect association rules, as the latter do not provide
temporal constraints correlating the activation of activation and target conditions. In this
paper, we focus on Declare clauses only predicating over the events’ activity labels, which
are then referred to as dataless; on the other hand, dataful Declare clauses can express data
payload conditions over both activation and target conditions, as well as representing Θ
payload correlation conditions between activating and targeted conditions [28]. Thus, both
clauses and logs are referred to dataful otherwise.

Despite the fact that the four clauses of interest in Table 1 might appear to express
similar behavior, they express substantially different concepts. Table 2 provides four traces
distinguishing the behavior of such four templates, the validity of which can be easily
controlled by transforming the associated LTLf formulæ into a DFA (http://ltlf2dfa.diag.
uniroma1.it/dfa, accessed on 3 January 2024).

Table 2. Traces from the Log in Figure 1 distinguishing the temporal behavior of the Declare clauses
of interest in this paper, where each trace σi

0 . . . σi
n−1 is expressed in terms of their associated activity

labels, 〈λ(σi
0), . . . , λ(σi

n−1)〉. 3(and 7) remarks a trace satisfying (violating) a corresponding clause.

Traces ChainResponse(A,B)ChainResponse(A,B)ChainResponse(A,B) ChainPrecedence(B,A)ChainPrecedence(B,A)ChainPrecedence(B,A) AltResponse(A,B)AltResponse(A,B)AltResponse(A,B) AltPrecedence(B,A)AltPrecedence(B,A)AltPrecedence(B,A)

〈A,B,C,B〉 3 7 3 7
〈A,B,A〉 7 3 7 7
〈A,D,B〉 7 7 3 7
〈C,B,A〉 7 7 7 3

2.2. KnoBAB and xtLTLf

We now summarize our previous contributions on temporal formal verification tasks run over
our proposed main memory columnar database, KnoBAB.

2.2.1. KnoBAB

KnoBAB [28,34] is a column database store tailored for both loading dataful logs being
represented in XES [38] and dataless ones described as a tab-separated file. This outper-

192

Information 2024, 15, 34

formed the previous state of the art in terms of both specification mining [39] and formal
verification [35] tasks on tailored non-database solutions.

Logical and Physical Model

The resulting column-based relational database is then represented through some
tables having fixed schema independently from its data representation. As the present paper
focuses on dataless datasets, we describe in this paper just two of those; Table 3 describes the
relational representation of the log presented in Equation (1). The ActivityTable (Table 3a)
lists each trace event of a given log, where records are sorted in ascending order for activity
label, trace id, and event id. Cells under the Prev (and Next) column store a pointer to the
record representing the immediately preceding (and following) event in the same trace if
any. After mapping each existing activity label in the log a to a unique natural number
β(a), we can define a primary dense and clustered index that can be accessed in O(1) time
as it is an array of offset pointers. We also define a secondary index structured as a block
of two records, associating each trace in the log to the first and last trace event; given that
all the traces are associated with a unique natural number, this index can also be accessed
on O(1) time by trace id. The CountTable (Table 3b), also created at loading time like the
previous, merely lists the number of occurrences of each activity label per trace and can be
used to determine the absence or presence of an event with a given activity label per trace.

Formal Verification Tasks over Query Plans

In spite of the ActivityTable also appearing in SQLMiner’s log representation [17]
(except for the Prev and Next columns), this still used an off-the-shelf relational database
engine and a translation of Declare specification into SQL for carrying out formal verifica-
tion tasks over a dataless log. KnoBAB showed a new pathway for enhancing temporal
queries over customary main memory relational database through the combined provision
of both ad hoc relational operators expressing LTLf over relational tables (xtLTLf) and
the definition of a query plan represented as a rooted DAG where shared subqueries are
computed only once [29]. This was sensibly different from competing approaches [40,41]
also relying on main memory engines where, instead, the query plan associated to a formal
verification task is always expressed in terms of trees, thus not allowing the detection of
shared sub-expressions to be merged to avoid wasteful recomputations. As vertices for a
DAG can be sorted topologically, we can obtain for free the scheduling order in which the
operators must be executed and, by associating each node a maximum distance value from
the root, we can safely run in parallel all the operators laying at the same depth level, as all
the previously called operators will pertain their information in an intermediate cache, thus
achieving intraquery parallelism as a free meal [28]. This parallelization approach greatly
differs from straightforward parallelization algorithms known in the Business Process Man-
agement area, where they simply run each declarative clause occurring in the specification
in a separate thread [35]. In addition to the former, KnoBAB guarantees efficient access
to the tables through the provision of specific indexing data structures such as primary
indices for directly accessing the blocks of the table concerning a specific activity label as
well as the provision of secondary indices mapping a specific trace id i and event id j for σi

j
into a table offset. KnoBAB outperformed SQLMiner run over PostgreSQL within two to
five orders of magnitude, thus demonstrating the inadequacy of using customary relational
operators for computing temporal tasks over relational databases.

193

Information 2024, 15, 34

Table 3. KnoBAB representation for the dataless log in Equation (1). (a) ActivityTable; (b) CountTable.

(a)

ActivityLabelActivityLabelActivityLabel TraceIdTraceIdTraceId EventIdEventIdEventId PrevPrevPrev NextNextNext

Clinical Test 1 2 7 5
Discharge 0 2 4 NULL
Discharge 1 4 5 NULL
Discharge 2 3 6 NULL
Examination 0 1 9 1
Examination 1 3 0 2
Examination 2 2 8 3
Redirection 1 1 10 0
Redirection 2 1 11 6
Registration 0 0 NULL 4
Registration 1 0 NULL 7
Registration 2 0 NULL 8

(b)

ActivityLabelActivityLabelActivityLabel TraceIdTraceIdTraceId CountCountCount

Clinical Test 0 0
Clinical Test 1 1
Clinical Test 1 0
Discharge 0 1
Discharge 1 1
Discharge 2 1
Examination 0 1
Examination 1 1
Examination 2 1
Redirection 0 0
Redirection 1 1
Redirection 2 1
Registration 0 1
Registration 1 1
Registration 2 1

KnoBAB enables the specification of user-defined template names in terms of xtLTLf
operators through a queryplan “semanticsname” {. . .} query, thus allowing the co-
presence of multiple possible definitions of declarative clauses. Then, we can select the most
appropriate semantics while carrying out the formal verification task by specifying such a
name, e.g., model-check . . .plan “semanticsname” . . . This then enables us in this paper
to test multiple possible specifications of Declare clauses without necessarily recompiling
the database’s source code.

Walking in the footsteps of the BAT algebra for columnar databases [42], each of
the novel temporal operands for xtLTLf (Section 2.2.2) not requiring direct data access to
the aforementioned KnoBAB tables both accepts as an input and returns a uniform data
representation ρ with schema:

IntermediateRepresentation(TraceId, EventId, Witnesses(Tag)) (2)

where the first (and second) argument refers to the trace (and event) id matching a specific
temporal condition of choice, while witnesses represents the relevant activated or targeted
conditions occurring from the position EventId in a given TraceId trace onwards via a
tagged extension of semiring provenance [43]; such tags mainly refer to the distinction
between activated and targeted events, respectively A and T. Dataful matching occurring
between witnessed activated A(i) and targeted events T(j) certified via a Θ binary predicate

194

Information 2024, 15, 34

are represented as M(i, j). Matches can be represented as semiring products, while the
listing of all the activated, targeted, and matched events can be represented as a semiring
sum; the latter is simply rendered as a list. As the table is sorted by trace id and event id
by design for any given activity label, such intermediate representation also returns trace
entities sorted by ascending trace id and event id.

2.2.2. xtLTLf

We now discuss some xtLTLf operators of relevance for the current paper. By using KnoBAB
as a computational model, we can also discuss the time complexity associated with such operators.
While LTLf operators can mainly be used to establish a yes/no question about whether a
single trace abides by some temporal specification, an xtLTLf expression returns all the
traces in the log conforming to a temporal specification by composing the trace events as
records through temporal operations. Furthermore, the latter can also be directly exploited
to express confidence, maximum satisfiability, and support metrics similar to association
rules. So to better support future explainable temporal AI tasks, xtLTLf also carries out
information concerning activated/targeted events justifying the algorithmics’ outcome,
while the cache associated to the leaves can be analyzed so as to check which events were
activated/targeted without necessarily satisfying the temporal requirements computed
through xtLTLf.

Table Access (“Leaf”) Operators

We determine all the events being associated with a specific activity label through the
ActivityLabel’s primary block index and express the outcome of this retrieval in terms of
intermediate representation:

ActivityS,τ
A/T(a) = {〈i, j, {A/T(j)}〉 |∃π, φ. 〈a, i, j, π, φ〉 ∈ ActivityTable}

where A/T provides the optional tags for remarking the matching event of interest as being
part of an activation/target condition. By associating each activity label a with a unique
natural number β(a), we can now seek the presence of events with label a in O(1) time and
retrieve all the events #a � |S| associated to such a label. If, on the other hand, we are
interested in events matching a specific data predicate q, we define the following operator:

AtomS,τ
A/T(B, q) = {〈i, j, A/T(j)〉 | q(σi

j) ∧ λ(σi
j) = B}

Despite the fact that this might appear as a simple selection operation, the atomization
of a predicate into mutually exclusive data conditions required for both minimizing the
data access to the tables holding the key-value payload associations within the dataful
events and merging multiple equivalent sub-expressions into one makes both its associated
query plan and its actual formal definition quite convoluted. As describing this is not the
major purpose of the paper, we refer to [28] for any further information. By accessing the
secondary index of the ActivityTable, we can collect the last events for each trace in linear
time over the log’s size O(|S|) using the following operator:

LastS,τ
A = {〈i, |σi|, {A(|σi|)}〉 |∃a, π. 〈β(a), i, |σi|, π, NULL〉 ∈ ActivityTable}

Unary Operators

We discuss the main difference between operators’ execution in xtLTLf from corre-
sponding ones in LTLf; the latter computes semantics from the first occurring operator
appearing in the formula towards the leaves, whereas the former assumes intermediate
results coming from the leaves. In this, the downstream operator is completely agnostic
about the semantics associated with the upstream operator, so it must combine the interme-
diate results appropriately. Therefore, the Next(ρ) (timed) xtLTLf unary operator returns
all the events σi

j witnessing the satisfaction of an activation, target, or correlation condition
being returned by a downstream operator as an intermediate result ρ, while ©ϕ will simply

195

Information 2024, 15, 34

increment the internal time counter over ϕ, thus determining the time from which to assess
the specification in ϕ.

Due to this structural discrepancy in the order of computation, xtLTLf must distin-
guish timed operators (assessing the occurrence of a specification sub-expression anytime
in the trace) from the untimed operators (determining the properties holding from the
beginning of the trace). The aforementioned xtLTLf operator can therefore be expressed
as follows:

Nextτ(ρ) = { 〈i, j− 1, L〉 | 〈i, j, L〉 ∈ ρ, j > 0 }
This operator can then be computed in linear time over the size of the input, i.e., O(|ρ|).
On the other hand, the timed negation operator Notτ(ρ) subtracts from the universal
relation, being all the events occurring in any trace, the ActivityTables events appearing in ρ
while still guaranteeing the return of the records in ascending order for trace and event id.
Given ε, the maximum trace length, this operator takes at most O(|S|ε) time by assuming
|ρ| � |S|ε. The globally timed operator prescribes to return a 〈i, j, L〉 ∈ ρ if also all the
subsequent events within the same trace are in ρ, and can be computed in O(|ρ| log |ρ|)
time by starting scanning the events from the last occurring in the trace.

Binary Operators

We now stress further differences between xtLTLf and LTLf in terms of binary op-
erators. While xtLTLf can express dataful matching conditions between activation and
target conditions, LTLf can only express properties associated with one single event at a
time through atoms. In these regards, timed logical conjunction (Andτ

Θ(ρ, ρ′)) extending
the logical conjunction in LTLf with a binary match condition Θ over the event’s payloads
can be expressed as a nested Θ-join returning the records from both operands having the
same trace id and event id, while all the pairs of witnessed events satisfying an activation
A(i) and target T(j) conditions from the matching record shall satisfy the Θ matching
condition when provided; the matching is then registered with M(i, j). Timed logical dis-
junction (Orτ

Θ(ρ, ρ′)) can be similarly expressed through a full outer Θ-join. Given that the
ActivityTable is pre-sorted at indexing time, we can efficiently implement such algorithms
through sorted joins. As these can be computed with a joint linear scan of both operands,
both operators have at most a time complexity in O(|ρ|+ |ρ′|). The timed until operator
(UntilτTrue(ρ, ρ′)) for Θ = True is defined similarly to the corresponding LTLf operator; it
returns all the events within a given log trace in the second operand and the events from
the first operand if all the immediately following events until the first occurrence of an
event in the second operand also belong to the first:

UntilτTrue(ρ, ρ′) = ρ′ ∪
{
〈i, k, L ∪ L′〉

∣∣ ∃j > k. 〈i, j, L〉 ∈ ρ′, (∀k ≤ h < j. 〈i, h, L′〉 ∈ ρ)
}

This can be computed in O(|ρ|2|ρ′|) time in its worst-case scenario. The in-depth discussion
concerning the formal definition of such an operator when matching a non-trivially true
matching condition Θ is deferred due to its technicalities and can be retrieved from the
original paper [28].

2.3. Algebraic Specification for Queries

We now compare xtLTLf with other long-standing definitions of temporal operators regarding
database temporal representations.

Current research [17] outlined the possibility of loading logs composed of multiple
traces within row-based relational databases while providing a direct translation of data-
less Declare-driven formal verification and specification mining tasks into SQL [44]. Our
previous research remarked on the inefficiency of directly expressing temporal formal veri-
fication tasks on top of off-the-shelf relational databases, thus motivating the definition of a
novel query plan specification directly exploiting temporal algebra operators, xtLTLf [28].
As SQL queries are translated into query plans where each operator expresses an imple-
mentation of a relational algebra operator, this demonstrates the overall inefficiency of

196

Information 2024, 15, 34

exploiting traditional relational algebra for representing temporal queries. Please observe
that LTLf temporal requirements cannot be expressed in traditional relational algebra
without aggregation operators while not naturally assuming a columnar database storage.
Therefore, traditional relational algebra cannot be directly exploited to predicate about the
necessity or the eventuality of a given event to occur without any further extension.

For all these considerations, our proposed algebra more resembles BAT from Mon-
etDB [42,45], where the intermediate result output for each operator records the table’s
record being selected, without necessarily carrying out values stored within the specific
row. Given the specificity of our scenario, our intermediate results carry the trace id and
the event id as unique record identifiers. We further had to extend this representation
to possibly carry out the activated and targeted events as witnesses of the computation’s
correctness, providing explainable justifications for the computation, and correctly express-
ing Θ predicates over dataful logs. xtLTLf then provides a required extension of such a
representation for new computation needs.

Concerning Allen’s algebra for temporal intervals [46], we can first see that such
algebra considers events as temporal intervals that might also be overlapping, while
xtLTLf inherits the same assumptions from LTLf and considers events as pointwise and
non-overlapping activities. Secondly, while the former only supports conditions on the
activity labels, xtLTLf also supports predicating on the conditions for the payload values
(expressed as key-value pairs) associated with the specific events [28], as well as supporting
binary predicates to be tested across activated and targeted conditions similarly to θ-joins.
Recent extensions of Allen’s algebra aimed at supporting single data conditions over single
events [40]. Thirdly, such algebra only expresses temporal correlations between two single
events, albeit expressed with a duration and a termination time, and can predicate natively
neither the eventuality nor the necessity of some properties to occur in a trace (e.g., globally
and future) from a given instant in time.

Concerning the temporal relational algebra [22] defined over temporal relational
databases [47] (also referred to as temporal modules [21]), it mainly proposes timestamp
transformation operations currently supported by Oracle Cloud [48] as well as windowing
functions, thus retaining the entities and relationships occurring within a window time
frame. This allows the slicing of a temporal module into a finite sequence of finite database
states, where such a snapshot sequence can be ascribed to a single trace and each event
can be mapped to a single database state [49]. Despite time being considered as a first
citizen within these operators, no operator of such an algebra temporally correlates entities
at different timestamps while also requiring the eventuality or the necessity for a specific
condition within a given lapse of time. An orthogonal contemporary approach attempted
at mapping LTLf to TSQL2 [50], a de facto extension of SQL for querying temporal mod-
ules [51]. Differently from the approach mentioned above, this preserved LTLf temporal
operators such as Until (U); as the authors preceded the definition of LTLf extensions
considering data payload conditions [3,28], these are not considered in their transformation.
Furthermore, as these temporal modules represent one single distinct trace as a result of
temporal snapshotting of a single database into multiple distinct states, they cannot be
effectively used to run a single formal verification task over numerous traces as per our
proposed approach, as this would require running a single TSQL2 query over multiple
databases, one for each log trace. In fact, our solution can assess multiple traces simulta-
neously by leveraging an extended relational representation to the one initially described
in [17].

3. Proposed Derived Operators

Similarly to the definition of the derived operators in relational algebra, we now provide the
definition of our proposed operators extending xtLTLf by expressing those in terms of the ones
already known in such a temporal algebra. These are then defined in Equations (3), (5), (7) and (9).

197

Information 2024, 15, 34

3.1. AndAltFuture

We want this operator to seek all the instants of time when an event activates the
Declare clause while the target follows anytime in the future, while requiring that no
further activation occurs between these two events. This operator aims to optimize the
AltResponse(A,B) clause and can be then expressed in terms of basic xtLTLf operators
as follows:

AndAltFutureτ
Θ(ρ, ρ′) def

== Andτ
Θ

(
ρ, Next

(
UntilτTrue

(
Notτ(ρ), ρ′

)))
(3)

By implementing this operator from scratch, we want to avoid running the costly
computation of the timed Untilτ unless the activation condition associated with the interme-
diate result returned as ρ is satisfied. Furthermore, we want to avoid explicitly computing
the negation of the activation condition and express this by explicitly checking that, given
any activating event in σi

j in ρ with an immediately following targeting one σi
k in ρ′ with

|σi| > k > j, no other events σi
j+h in ρ with j + h < k shall occur. We can then express the

aforementioned Declare clause in terms of the recently defined operator as follows:

Globallyτ
(
Orτ

True
(
Notτ(ρ), AndAltFutureτ

True(ρ, ρ′)
))

(4)

where ρ = ActivityS,τ
A (A) and ρ′ = ActivityS,τ

T (B) under the dataless assumption.

Example 2. With reference to the log in Equation (1), AltResponse(redirect, examine) requires
that a patient redirected to a given department shall be examined before being further redirected. This
constraint satisfies all the traces within that equation. By considering only the events from the second
trace, in our previous xtLTLf solution we have intermediate results ρ = ActivityA(redirect) =
{〈1, 1, [A(1)]〉} for the activation condition and ρ′ = ActivityT(examine) = {〈1, 3, [T(3)]〉} for
the target one. The timed Until ρ′′ = UntilτTrue(¬ρ, ρ′) returns:

{〈1, 0, [T(1)]〉 , . . . , 〈1, 3, [T(3)]〉 , 〈1, 4, []〉}

as each event in xtLTLf can only witness a future event, and ρ′′′ = Nextτ(ρ′′) returns:

{〈1, 1, [T(3)]〉 , . . . , 〈1, 2, [T(3)]〉 , 〈1, 3, []〉}

Hence, Andτ
True(ρ, ρ′′′) returns just f = {〈1, 1, [M(1, 3)]〉}, while witnessing that, from that

time onwards, both activation A(1) and target T(3) condition will occur from the same event 1.
The rest of the events will be returned via ¬ρ, which are finally grouped-by temporally via untimed
Globally. Before running it, we previously ran the timed Until operator independently from the
occurrence of ρ′′ in a trace.

On the other hand, our new AndAltFuture operator directly returns f after taking as an
argument ρ and ρ′; this scans the events in ρ′ occurring after each occurrence of events in ρ while
immediately discarding the events in ρ containing another redirect event in between. This reduces
the memory footprint and the number of scans from our previous query plan.

3.2. AndAltWFuture

Reflecting upon the definition of AltPrecedence(A,B) which this operator is aiming to
optimize, we can observe that implementing an ad hoc operator AndAltWFuture for this
might provide even greater optimization, as we might as well avoid checking the global
absence of A-labelled events if no B occurs in a trace after an A. Therefore, this operator acts
as an extension of the former by either requiring an alternate occurrence between activation

198

Information 2024, 15, 34

and target condition, as previously, or requiring the absence of any future activation if no
targeting event is expected to occur. AndAltWFutureτ

Θ(ρ, ρ′) can be then defined as follows:

Andτ
Θ

(
ρ, Next

(
Orτ

True

(
UntilτTrue

(
Notτ(ρ), ρ′

)
, Globallyτ(Notτ(ρ)

)))
)

(5)

We can now express AltPrecedence(A,B) by replacing, in the original xtLTLf Declare se-
mantics, the previous equation with the currently introduced operator, thus obtaining:

Orτ
True

(
Untilτ

(
Notτ(ρ′), ρ

)
, Globallyτ

(
Orτ

True

(
Notτ(ρ), AndAltWFutureτ

True(ρ, ρ′)
))

(6)

3.3. AndNext

This operator aims to optimize the ChainResponse operator by reducing the data access
by accessing the ActivityTable just for the activation condition. This makes this operator
intrinsically unary, as the target condition, both in terms of data predicate and activity label,
has to be provided as additional arguments for the operator alongside the Θ correlation
condition for dataful scenarios. To check whether the target condition occurs immediately
after the operand’s current event, we need to check whether it is associated with an activity
table and whether it satisfies a predicate q. This can be then expressed in xtLTLf in terms
of the following derived operator:

AndNextτ
B,q,Θ(ρ)

def
== Andτ

Θ

(
ρ, Nextτ(AtomS,τ

T (B, q))
)

(7)

At this stage, we can then express the semantics associated to the Declare template ChainRe-
sponse(A,B) as follows:

Globallyτ
(
Orτ

True

(
Notτ(ρ), AndNextS,τ

B,True,True(ρ)
))

(8)

where ρ = ActivityS,τ
A (A) in a dataless scenario.

3.4. NextAnd

The second operator aims at optimizing ChainPrecedence(A,B) similarly to the previous
one, but with a swapped temporal occurrence. Please observe that negating the fact that an
event shall occur after another can be expressed in terms of all the events occurring at the
end of a trace and all of the events not matching the activation condition a when occurring
in a non-first position. So, ChainPrecedence is usually represented as:

Globallyτ

(
Orτ

True

(
Orτ

True

(
LastS,τ , Nextτ(Notτ(ρ))

)
, Andτ

True

(
Nextτ(ρ), ρ′

)))

where ρ = ActivityS,τ
A (A) and ρ′ = ActivityS,τ

T (B) in a dataless scenario. After compactly
representing the subexpression in the second row of the previous definition, as follows:

NextAndτ
B,q,Θ(ρ)

def
== Andτ

Θ

(
Nextτ(ρ), AtomS,τ

T (B, q)
)

(9)

we aim to optimize this last declarative clause by using this last introduced operator by
rewriting the semantics associated to ChainPrecedence(A,B) as such:

Globallyτ

(
Orτ

True

(
Orτ

True

(
LastS,τ , Nextτ

(
Notτ(ρ)

))
, NextAndτ

B,True,True(ρ)

))
(10)

199

Information 2024, 15, 34

Please observe that the intended optimization induced by these operators can be considered
as non-trivial, as these do not directly subsume the entire xtLTLf semantics associated to a
template, rather than optimizing a specific part.

4. Algorithmic Implementation

We discuss the implementation of the previously introduced operators outlined in Algorithm 1,
thus justifying their definition as novel derived operators. For each of them, we briefly discuss their
computational complexity and compare it to the expected theoretical speed-up not considering the
cost of memory allocation and page-faults.

Algorithm 1 Newly proposed xtLTLf operators.
1: function ANDALTFUTUREτ

Θ(ρ, ρ′)
2: for all 〈i, j, L〉 , 〈i, k, L′〉 ∈ (ρ× ρ′) s.t. j < k do
3: if 6 ∃h > 0. 〈i, j + h, L〉 ∈ ρ s.t. j + h < k then
4: if L′ 6= ∅ and L 6= ∅ and Θ 6= True then
5: L′′ ← {M(j′, k′)|Θ(σi

j′ , σi
k′), A(j′) ∈ L, T(k′) ∈ L′}

6: if L′′ 6= ∅ then yield 〈i, j, L′′〉
7: else yield 〈i, j, L ∪ L′′〉
8: end if
9: end if

10: end for

11: function ANDALTWFUTUREτ
Θ(ρ, ρ′)

12: for all 〈i, j, L〉 ∈ ρ do
13: for all 〈i, k, L′〉 ∈ ρ′ s.t. j ≤ k do
14: if 6 ∃h > 0. 〈i, j + h, L〉 ∈ ρ s.t. j + h < k then
15: if j = |σi| − 1 continue;
16: if L 6= ∅ and L′ 6= ∅ and Θ 6= True then
17: L′′ ← {M(j′, k′)|Θ(σi

j′ , σi
k′), A(j′) ∈ L, T(k′) ∈ L′}

18: if L′′ 6= ∅ then yield 〈i, j, L′′〉
19: else yield 〈i, j, L ∪ L′′〉
20: end if
21: end if
22: end for
23: if 6 ∃k, h. 〈i, k, L′〉 ∈ ρ′ ∧ 〈i, h, L′′〉 ∈ ρ ∧ j < k, j < h then
24: yield 〈i, j, L〉
25: end if
26: end for

27: function ANDNEXTτ
B,q,Θ(ρ)

28: if 6 ∃σi ∈ S, σi
j ∈ σi.λ(σi

j) = B then return ∅

29: for all 〈i, j, L〉 ∈ ρ s.t. j < |σi| − 1 and λ(σi
j+1) = B do

30: L′ ← L ∪ {T(j + 1)}
31: if Θ 6= True then
32: if L 6= ∅ and 6 ∃A(k) ∈ L.θ(σi

k, σi
j+1) then continue

33: else L′ ← {M(k, j + 1)|A(k) ∈ L}
34: end if
35: if q 6= True∨ q(σi

j+1) then yield 〈i, j, L′〉
36: end for

37: function NEXTANDτ
B,q,Θ(ρ)

38: for all 〈i, j + 1, L〉 ∈ ρ s.t. j ≥ 0 and λ(σi
j) = B do

39: L′ ← L ∪ {T(j)}
40: if Θ 6= True then
41: if L 6= ∅ and 6 ∃A(k) ∈ L.θ(σi

k, σi
j) then continue

42: else L′ ← {M(k, j)|A(k) ∈ L}
43: end if
44: if q 6= True∨ q(σi

j) then yield 〈i, j + 1, L′〉
45: end for

4.1. AndAltFuture

As all the intermediate results in the KnoBAB pipeline are always sorted by ascending
trace and event id, we can scan all the events within the same trace where the targets follow
the activations in linear time similarly to the timed and operator, despite this being expressed
in pseudocode with a cross product for simplifying the overall notation (Line 2). We then
consider all the events in the same trace having no immediate subsequent event in ρ prior
to the occurrence of the next event in ρ′; this can be simply checked in ρ by determining that

200

Information 2024, 15, 34

the next record appearing in ρ after 〈i, j, L〉 has an event id less than k (Line 3). If there is a
non-trivially true Θ predicate, we also impose that at least one activation occurring after or
at σi

j and at least one target occurring after or at σi
k matches with Θ (Line 6). Otherwise, we

compute no match, and we straightforwardly collect the activation and target conditions
from both events (Line 7). In the code, we explicitly injected an early-stopping condition
avoiding testing subsequent events in ρ′ within the same trace as soon as we detect one
event in ρ, invalidating the condition at Line 3. By considering the time complexities for
each xtLTLf operator in Section 2.3, we can argue that the time complexity associated with
computing this operator as in the previous section without the aforementioned computation
is totalled to O(|ρ|+ (||S|| − |ρ|)2|ρ′|+ 2((||S|| − |ρ|) + |ρ′|)), where ||S|| = |S|ε. On the
other hand, by assuming to always scan each trace quadratically of length ε for each event
in ρ, we obtain the time complexity of O(|ρ|ε2/2 + |ρ′|) for the derived operator when
implemented as per the previous discussion. If we assume that ρ and ρ′ are associated
with a single activity label, as per the scenario in Declare, where the number of events and
the activity labels are uniformly distributed such that #a ≈ |S|ε/|Σ| for each a ∈ Σ, we can
derive that the provided algorithm always provides a positive speed-up if compared to the
original formulation in Equation (3).

4.2. AndAltWFuture

This algorithm works similarly to the previous, where we relax the until condition
with a weak until, thus also admitting an absence of activation conditions after the first
occurrence (of an activation) if no further target events are present (Line 23). Even in this
scenario, we have a similar time complexity to the previous, while the original formula-
tion in Equation (5) introduced an additional overhead to the previous by computing an
additional timed disjunction and the global computation over the negation of the possibly
activating events. Therefore, we expect an even greater speed up for this latest operator.

4.3. AndNext

As previously observed in the formal definition of this operator, we transformed this
into an unary operator where, instead of retrieving two sets of events associated with two
activity labels, we just scan one of the two. Before starting any form of scan, we immediately
return if, after a O(|S|) scan of the CountTable, we detect that no event is associated with
the target condition (Line 28). Otherwise, we consider only events both coming from traces
containing an event with activity label B and not being at the end of the trace, and for which
the immediately next event is associated to an activity label B as a target condition (T(j + 1),
Line 29); we implementationally further enhanced this by completely skipping any test
whether the event resides in a trace where no B event resides. If Θ 6= True, then we also
have to guarantee that each activation condition appearing in ρ should match with the
target event at time j + 1 (Line 33) and, upon provision of q, the target condition should also
match with this (Line 35). The computational complexity of this operator is in O(|ρ|+ |S|)
and, if we are taking into account the accessing time to the immediately following event,
if any, we obtain a time in 2|ρ|+ |S|. If compared to the time complexity of Equation (7)
of |ρ| + 2|ρ′|, we then obtain a positive speed up, i.e., |ρ|+2|ρ′ |

2|ρ|+|S| > 1, for |ρ′| > |ρ|/2 and
0 < |S| < 2|ρ′|+ |ρ|.

4.4. NextAnd

This other operator works similarly to the previous, where we are checking instead
the immediately preceding event instead of looking at the immediately following one,
thus requiring that each element of interest in ρ shall never be at the beginning of the
trace. The same considerations over speed-up and time complexity follow from the previ-
ous algorithm.

After associating each of the novel operators in the aforementioned algorithmic im-
plementation, Equations (4), (6), (8) and (10) will then provide the semantics generating

201

Information 2024, 15, 34

the query plan as Proposed in this current paper, while the direct translation of the LTLf
expressions in Table 1 to the operators outlined in Section 2.2.2 provides the Original
formulation of the query plan also in [28], where none of the previous algorithms are used.

5. Empirical Evaluation

Given that the aim of our derived operators is to enhance formal verification tasks conducted
over temporal clauses expressed in Declare, we compare the different running times of carrying
out formal verification tasks over our previous set of operators as well as by replacing those with
our currently proposed derived ones, while focusing on benchmarking formal verification tasks
over specifications written in Declare. We discard from our evaluation the benchmark of the single
operator, as this is insufficient to remark on their adequacy in enhancing formal verification tasks in
Declare. Thus, we compare different query plans being generated from different Declare semantics
being specified at runtime through the queryplan “name” { . . .} query. With this, achieving a
positive speed-up in Declare formal verification tasks as in our previous work [28] by using the
proposed operators will tell us that, under specific data conditions, the original xtLTLf query plan
associated with the declarative clauses available in KnoBAB constitutes the major computational
bottleneck. Having a negligible speed-up will likely remark other components in the query plan
dominating the overall running time, while having a negative speed-up only on specific data
conditions will motivate some future work on hybrid algorithms, thus allowing us to choose between
different algorithms for specific temporal operators depending on the data distribution within the
loaded dataset [52].

Our benchmarks exploited a Dell Mobile Precision Workstation 5760 on Ubuntu
22.04: Intel® Xeon(R) W-11955M CPU @ 2.60 GHz × 16, 64 GB DDR4 3200 MHz RAM.
We took two real-world datasets and a synthetic one for our experiments, both being
dataless. The first real dataset (Hospital) monitors the patient flow and different medical
procedures to which the patients in question were subjected; each trace tracks a single
patient from his hospitalization to dismissal, and each activity label describes the name
associated to such phases [10]. The second one (Cybersecurity) provides the auditing
step of different malware, where each trace represents a single malware being audited,
while each activity label identifies one single system call event being audited as invoked
by the malware [6,7]. The synthetic dataset was derived from temporal graphs gener-
ated by FoodBroker [11] while describing trades and shipments of goods mediated by a
brokerage company. For each GraphTransaction, we sort all the vertices describing an
event occurring at a specific date, thus also including creation timestamps. For vertices
describing a ticket being filed by a client raising a complaint, we return an activity label
associated with the type of complaint (problem); otherwise, we keep the original vertex
label. We then collect the set of temporally ordered activity labels and represent those as
log traces. The updated FoodBroker codebase for generating event logs is also available
online (https://github.com/jackbergus/foodbroker/, accessed on 3 January 2024).

For each dataset, we then obtain the sampled trace length distribution, and we sample
sub-logs of various sizes while trying to abide by the trace distribution from the original
dataset, notwithstanding their skewness. For the first and third (or second) datasets, we
sample the logs so that their sizes are powers of ten (or nine) while always guaranteeing
that each sub-log |Sh| = 10h (or |Sh| = 9h) is always a subset of any larger sub-log. We
also keep the original log as the last sample dataset. This random sampling mechanism is
required to better assess the scalability of the proposed operator’s implementation while
guaranteeing an approximation of the original trace length distribution across the board to
guarantee similar running time conditions. Figure 2 reports the sample PDF trace length
for each of the sampled logs alongside the size of each sample. The FoodBroker synthetic
dataset contains the shorter traces (Figure 2a); all the sampled logs except the first one
have a maximum trace length of 24, while the first sublog has a maximum trace length
of 21. On the other hand, the first two smaller log samples of the real-world Hospital
dataset (Figure 2b) have traces with a maximum length of 1200, while the remaining two
have a maximum trace length of 1814. The Cybersecurity dataset (Figure 2c) contains the

202

Information 2024, 15, 34

longest traces, having a maximum trace length of 1.23× 106 for the smaller two sub-logs
and of 1.76× 106 for the remaining ones. This information will soon become relevant while
conducting our following analysis of the algorithmic speed-ups given by our proposed
derived operators while performing formal verification over the models described in the
following paragraph.

(a)

(b)

(c)

Figure 2. Sampled probability density function associated with the length of the traces for each
sub-log extracted from each original dataset: (a) FoodBroker, (b) Hospital, and (c) Cybersecurity.

Given that we aim to test these newly introduced xtLTLf operators in the context of
a Declare-based formal verification task when xtLTLf is used to represent its semantics,
we generate four specifications Φc

1, . . . , Φc
4 for each declarative clause of interest c, AltPrece-

dence, AltResponse, ChainPrecedence, and ChainResponse, where each Φc
i contains exactly

i binary clauses determined by instantiating an activity label among the most frequently
occurring ones within the smaller sub-log. We then use the same specifications generated
for the smaller log and the greater sub logs, thus comparing the running times for each
sub-log over the same Declare specifications. We then use the specifications to conduct a
formal verification task via a model-check. . . query. The resulting logs and specifications
are freely available online (https://osf.io/6y8cv/, accessed on 3 January 2024).

Last, as our previous work already showed that computing such queries on top of
relational databases such as PostgreSQL with shorter traces leads to a greater running time
than running similar queries over KnoBAB, we just focus on comparing the results from our
previous implementation with the ones after applying the changes discussed in this paper.

203

Information 2024, 15, 34

With reference to Figure 3, AndAltS operators can be deemed responsible for evi-
dently outperforming the proposed query plan if compared to the one from the previous
implementation, as they lead to an associated speed-up always strictly greater than one.
Our previous definition of the Declare operators is greatly affected by the number of clauses
within the model, which becomes even more apparent when the maximum and average
trace length ε per sampled log increases. On the other hand, running our former formal
verification query plan for AndAltS clauses over the Cybersecurity dataset always took
more than one 1H (3.6× 106 ms), thus demonstrating an increased running time for the
original query plan strategy when longer traces occur. We stopped recording the run-
ning time, as the overhead introduced by the intermediate operators for carrying out the
actual matching between activation and target conditions was strikingly evident, while
our proposed operators could instead carry out the formal verification task within one
minute. Although no out-of-memory exceptions were observed before the timeout, these
were clearly observed in larger specifications and log sizes, thus clearly demonstrating
KnoBAB’s limits as a main memory engine by not maintaining the query intermediate
results in secondary memory. Despite the code allowing the clearing of intermediate caches
to be run to free extra memory, this only partially addresses the out-of-memory failure
for larger specifications. Overall, this demonstrates that this proposed extension for An-
dAltS operators outperforms our previous query plan definition, as also expected from
our previous analysis concerning the overall theoretical time complexity.

(a)

(b)

(c)

Figure 3. Cont.

204

Information 2024, 15, 34

(d)

Figure 3. Comparing the proposed implementation of the derived operators with the previous
implementation given in KnoBAB. (a) FoodBroker dataset; (b) Hospital dataset; (c) Cybersecurity
dataset. (d) Datasets’ speed-up: (left) FoodBroker, (center) Hospital, and (right) Cybersecurity.

ChainS operators provide a more convoluted scenario to be examined carefully. First,
we observe a clear trend correlating datasets with longer traces with an overall increase in
speed-up. In fact, the Hospital datasets exhibit more speed-ups compared to the FoodBroker
one, where the recently proposed operators yield comparable or underperforming running
times. Notwithstanding the former, we can clearly observe that the recently proposed
operators consistently outperform our previous solution over the Cybersecurity dataset.
Differently from our previous set-up, we can now observe that the original formulation of
the declarative clauses without the currently presented operators now runs out of memory
before hitting the 1H timeout for the larger sample, being the full dataset, while our solution
still manages to carry out some temporal formal verification tasks over specifications
containing fewer clauses. Last, we consistently observe that such operators still provide
greater speed-ups over datasets with smaller log sizes, thus providing theoretical validation
to our speed-up equations for such operators. This postulates the need for such operators
while dealing with massive datasets, while advocating the usage of hybrid algorithms for
switching between the previous solution and the currently proposed one.

6. Conclusions and Future Works

This paper proposes an extension to our previous work on KnoBAB by optimizing
our previously proposed query plan by introducing novel algebraic temporal operators
expressing formal verification tasks on column database storages in main memory. As a con-
sequence, we extended our temporal algebra xtLTLf with four novel operators, subsuming
entire xtLTLf expressions which before could only be represented in terms of combinations
of costly basic operators. Preliminary results over such operators provide non-negligible
speed-up to the formal verification tasks over realistic datasets, where several events are
audited and collected in a larger collection of traces.

Despite these experiments demonstrating the efficiency of carrying out formal ver-
ification computations on columnar databases implemented as a main memory engine,
the consistent out-of-memory faults that we experienced over larger collections of data
containing more events (i.e., longer traces) encourage us to store the intermediate query
results in secondary memory, as customary for off-the-shelf databases such as PostgreSQL.
We see this as the last required step for fully supporting real data alongside the orthogonal
operator optimization, as discussed in the present paper. Despite the fact that putting this
solution in place will come at the detriment of overall performance, this will guarantee
the carriage of the entire formal verification computation. This drawback might be allevi-
ated by determining at runtime whether to represent intermediate results in primary or
secondary memory depending on the log and trace size. Another possible way to alleviate
such a problem is to re-implement the overall pipeline using a pull-based strategy [33]
when operations are not run concurrently. Another way to challenge this primary memory
limitation would be migrating the proposed architecture over Oracle Cloud [48], which
already supports traditional time-transactional database operations compatible with the
aforementioned temporal modules. While doing so, we will be walking in the footsteps

205

Information 2024, 15, 34

of previous literature [50] by attempting to rewrite dataful xtLTLf specifications into the
supported temporal extension of SQL.

The current experiment noted the optimality of the proposed operators when dealing
with datasets with longer traces (i.e., greater ε). Future work will consider the possibility
of defining hybrid algorithms [27] over the operators, optimizing ChainS clauses by
empirically determining the table size threshold over which we prefer the derived operators
over the original. As an orthogonal approach, we will also define the “dual” operators for
ANDNEXT and NEXTAND so as to start scanning from the target condition while moving
backwards towards any existing activation condition when the number of targets is deemed
to be fewer than the activations. Our future works will also aim to further benchmark these
operators in the context of dataful logs, where events are also associated with a payload
expressed as a key-value pair as in customary semi-structured data formats. These works
will then outline the overhead required to compute a Θ correlation condition between
activation and target event.

Previous research on temporal modules demonstrated the possibility of expressing
LTLf specifications when traces have multiple events occurring at one specific point in
time [50]; the current theoretical literature on conformance checking suggests that this is
actually possible by representing each single event as a conjunction of multiple mutually ex-
clusive events, thus obtaining the characterization of composite events. However, realizing
this in practice for events with distinct labels would require a drastic overhaul of KnoBAB’s
relational representation, as the current architecture is focused on the linear representation
of each individual trace. Future work will therefore contemplate the possibility of extending
the current relational model with an object-oriented one [53], better supporting the nesting
and composition of objects, a feature also required for coalescing multiple events in a single
instant in time.

Finally, an interesting outcome of these observations on relational databases would
be the application of such an algebra in the context of temporal graphs [54], thus enabling
the efficient temporal verification under this different data representation. Despite the
recent attempt at representing logs as temporal graphs [55], the aforementioned is still
a desideratum, as no graph temporal operator for expressing formal verification tasks
is currently known. Differently from the previously pursued approach [56], this will
then require us to define tailored temporal operators for graph query languages similarly
to xtLTLf.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset is available at https://osf.io/6y8cv/, accessed on 3 Jan-
uary 2024.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Seshia, S.A.; Sadigh, D.; Sastry, S.S. Toward verified artificial intelligence. Commun. ACM 2022, 65, 46–55. [CrossRef]
2. Baier, C.; Katoen, J. Principles of Model Checking; MIT Press: Cambridge, MA, USA, 2008.
3. Bergami, G.; Maggi, F.M.; Marrella, A.; Montali, M. Aligning Data-Aware Declarative Process Models and Event Logs. In

Proceedings of the Business Process Management-19th International Conference, BPM 2021, Rome, Italy, 6–10 September 2021;
Lecture Notes in Computer Science; Polyvyanyy, A., Wynn, M.T., Looy, A.V., Reichert, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2021; Volume 12875, pp. 235–251.

4. Awad, A.; Decker, G.; Weske, M. Efficient Compliance Checking Using BPMN-Q and Temporal Logic. In Proceedings of
the Business Process Management, 6th International Conference, BPM 2008, Milan, Italy, 2–4 September 2008; Lecture Notes
in Computer, Science; Dumas, M., Reichert, M., Shan, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5240,
pp. 326–341.

206

Information 2024, 15, 34

5. Weidlich, M.; Polyvyanyy, A.; Desai, N.; Mendling, J.; Weske, M. Process compliance analysis based on behavioural profiles. Inf.
Syst. 2011, 36, 1009–1025. [CrossRef]

6. Catak, F.O.; Ahmed, J.; Sahinbas, K.; Khand, Z.H. Data augmentation based malware detection using convolutional neural
networks. PeerJ Comput. Sci. 2021, 7, e346. [CrossRef] [PubMed]

7. Yazi, A.F.; Çatak, F.Ö.; Gül, E. Classification of Methamorphic Malware with Deep Learning (LSTM). In Proceedings of the 27th
Signal Processing and Communications Applications Conference, SIU 2019, Sivas, Turkey, 24–26 April 2019; IEEE: Piscataway, NJ,
USA, 2019; pp. 1–4.

8. Zheng, W.; Du, Y.; Wang, S.; Qi, L. Repair Process Models Containing Non-Free-Choice Structures Based on Logic Petri Nets.
IEEE Access 2019, 7, 105132–105145. [CrossRef]

9. Xu, H.; Pang, J.; Yang, X.; Yu, J.; Li, X.; Zhao, D. Modeling clinical activities based on multi-perspective declarative process mining
with openEHR’s characteristic. BMC Med. Inform. Decis. Mak. 2020, 20-S, 303. [CrossRef] [PubMed]

10. van Dongen, B. Real-Life Event Logs-Hospital Log. 2011. Available online: https://data.4tu.nl/articles/_/12716513/1 (accessed
on 3 January 2024).

11. Petermann, A.; Junghanns, M.; Müller, R.; Rahm, E. FoodBroker-Generating Synthetic Datasets for Graph-Based Business
Analytics. In Proceedings of the Big Data Benchmarking-5th International Workshop, WBDB 2014, Potsdam, Germany, 5–6
August 2014; Revised Selected Papers; Lecture Notes in Computer Science; Rabl, T., Sachs, K., Poess, M., Baru, C.K., Jacobsen, H.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8991, pp. 145–155.

12. Petsis, S.; Karamanou, A.; Kalampokis, E.; Tarabanis, K. Forecasting and explaining emergency department visits in a public
hospital. J. Intell. Inf. Syst. 2022, 59, 479–500. [CrossRef]

13. Giacomo, G.D.; Vardi, M.Y. Linear Temporal Logic and Linear Dynamic Logic on Finite Traces. In Proceedings of the IJCAI 2013,
Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013; Rossi, F., Ed.;
AAAI Press: Menlo Park, CA, USA, 2013; pp. 854–860.

14. Pesić, M.; Schonenberg, H.; van der Aalst, W.M. DECLARE: Full Support for Loosely-Structured Processes. In Proceedings of the
11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007), Annapolis, MD, USA, 15–19 October
2007; p. 287.

15. Cuzzocrea, A. Temporal Big Data Analytics: New Frontiers for Big Data Analytics Research. In Proceedings of the 28th
International Symposium on Temporal Representation and Reasoning (TIME 2021), Klagenfurt, Austria, 27–29 September 2021;
Combi, C., Eder, J., Reynolds, M., Eds.; Leibniz International Proceedings in Informatics (LIPIcs): Dagstuhl, Germany, 2021;
Volume 206, pp. 4:1–4:7.

16. Amer-Yahia, S.; Palpanas, T.; Tsytsarau, M.; Kleisarchaki, S.; Douzal, A.; Christophides, V. Temporal Analytics in Social Media. In
Encyclopedia of Database Systems, 2nd ed.; Liu, L., Özsu, M.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2018. [CrossRef]

17. Schönig, S.; Rogge-Solti, A.; Cabanillas, C.; Jablonski, S.; Mendling, J. Efficient and Customisable Declarative Process Mining with
SQL. In Advanced Information Systems Engineering, Proceedings of the 28th International Conference, CAiSE 2016, Ljubljana, Slovenia,
13–17 June 2016; Lecture Notes in Computer, Science; Nurcan, S., Soffer, P., Bajec, M., Eder, J., Eds.; Springer: Berlin/Heidelberg,
Germany, 2016; Volume 9694, pp. 290–305.

18. Huang, S.; Zhu, E.; Chaudhuri, S.; Spiegelberg, L. T-Rex: Optimizing Pattern Search on Time Series. Proc. ACM Manag. Data 2023,
1, 130:1–130:26. [CrossRef]

19. Anselma, L.; Bottrighi, A.; Montani, S.; Terenziani, P. Extending BCDM to Cope with Proposals and Evaluations of Updates.
IEEE Trans. Knowl. Data Eng. 2013, 25, 556–570. [CrossRef]

20. Kaufmann, M.; Vagenas, P.; Fischer, P.M.; Kossmann, D.; Färber, F. Comprehensive and Interactive Temporal Query Processing
with SAP HANA. Proc. VLDB Endow. 2013, 6, 1210–1213. [CrossRef]

21. Wang, X.S.; Jajodia, S.; Subrahmanian, V.S. Temporal Modules: An Approach Toward Federated Temporal Databases. Inf. Sci.
1995, 82, 103–128. [CrossRef]

22. Wang, X.S. Algebraic Query Languages on Temporal Databases with Multiple Time Granularities. In Proceedings of the CIKM
’95, 1995 International Conference on Information and Knowledge Management, Baltimore, MD, USA, 28 November–2 December
1995; Pissinou, N., Silberschatz, A., Park, E.K., Makki, K., Eds.; ACM: New York, NY, USA, 1995; pp. 304–311.

23. Wang, C.; Wu, K.; Zhou, T.; Cai, Z. Time2State: An Unsupervised Framework for Inferring the Latent States in Time Series Data.
Proc. ACM Manag. Data 2023, 1, 17:1–17:18. [CrossRef]

24. Huo, X.; Hao, K.; Chen, L.; Tang, X.; Wang, T.; Cai, X. A dynamic soft sensor of industrial fuzzy time series with propositional
linear temporal logic. Expert Syst. Appl. 2022, 201, 117176. [CrossRef]

25. Mao, X.; Li, X.; Huang, Y.; Shi, J.; Zhang, Y. Programmable Logic Controllers Past Linear Temporal Logic for Monitoring
Applications in Industrial Control Systems. IEEE Trans. Ind. Inform. 2022, 18, 4393–4405. [CrossRef]

26. Fionda, V.; Greco, G.; Mastratisi, M.A. Reasoning about Smart Contracts Encoded in LTL. In Proceedings of the AIxIA, Milan,
Italy, 1–3 December 2021; pp. 123–136.

27. Pnueli, A. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science
(sfcs 1977), Providence, RI, USA, 31 October–2 November 1977; pp. 46–57. [CrossRef]

207

Information 2024, 15, 34

28. Bergami, G.; Appleby, S.; Morgan, G. Quickening Data-Aware Conformance Checking through Temporal Algebras. Information
2023, 14, 173. [CrossRef]

29. Bellatreche, L.; Kechar, M.; Bahloul, S.N. Bringing Common Subexpression Problem from the Dark to Light: Towards Large-Scale
Workload Optimizations. In Proceedings of the IDEAS, Montreal, QC, Canada, 14–16 July 2021; ACM: New York, NY, USA, 2021.

30. Appleby, S.; Bergami, G.; Morgan, G. Running Temporal Logical Queries on the Relational Model. In Proceedings of the 26th
International Database Engineered Applications Symposium, Budapest, Hungary, 22–24 August 2022.

31. Atzeni, P.; Ceri, S.; Paraboschi, S.; Torlone, R. Database Systems—Concepts, Languages and Architectures; McGraw-Hill Book
Company: New York, NY, USA, 1999.

32. Elmasri, R.; Navathe, S.B. Fundamentals of Database Systems, 7th ed.; Pearson: London, UK, 2015.
33. Dittrich, J. Patterns in Data Management: A Flipped Textbook; CreateSpace Independent Publishing Platform: Scotts Valley, CA,

USA, 2016.
34. Bergami, G.; Appleby, S.; Morgan, G. Specification Mining over Temporal Data. Computers 2023, 12, 185. [CrossRef]
35. Burattin, A.; Maggi, F.M.; Sperduti, A. Conformance checking based on multi-perspective declarative process models. Expert

Syst. Appl. 2016, 65, 194–211. [CrossRef]
36. Zhu, S.; Pu, G.; Vardi, M.Y. First-Order vs. Second-Order Encodings for \textsc ltl_f -to-Automata Translation. In Theory and

Applications of Models of Computation, Proceedings of the 15th Annual Conference, TAMC 2019, Kitakyushu, Japan, 13–16 April 2019;
Lecture Notes in Computer, Science; Gopal, T.V., Watada, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11436,
pp. 684–705.

37. Li, J.; Pu, G.; Zhang, Y.; Vardi, M.Y.; Rozier, K.Y. SAT-based explicit LTLf satisfiability checking. Artif. Intell. 2020, 289, 103369.
[CrossRef]

38. Acampora, G.; Vitiello, A.; Stefano, B.N.D.; van der Aalst, W.M.P.; Günther, C.W.; Verbeek, E. IEEE 1849: The XES Standard: The
Second IEEE Standard Sponsored by IEEE Computational Intelligence Society [Society Briefs]. IEEE Comput. Intell. Mag. 2017,
12, 4–8. [CrossRef]

39. Maggi, F.M.; Bose, R.P.J.C.; van der Aalst, W.M.P. Efficient Discovery of Understandable Declarative Process Models from Event
Logs. In Advanced Information Systems Engineering; Springer: Berlin/Heidelberg, Germany, 2012; pp. 270–285.

40. de Murillas, E.G.L.; Reijers, H.A.; van der Aalst, W.M.P. Data-Aware Process Oriented Query Language. In Process Querying
Methods; Polyvyanyy, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 49–83. [CrossRef]

41. Kammerer, K.; Pryss, R.; Reichert, M. Retrieving, Abstracting, and Changing Business Process Models with PQL. In Process
Querying Methods; Polyvyanyy, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 219–254. [CrossRef]

42. Idreos, S.; Groffen, F.; Nes, N.; Manegold, S.; Mullender, K.S.; Kersten, M.L. MonetDB: Two Decades of Research in Column-
oriented Database Architectures. IEEE Data Eng. Bull. 2012, 35, 40–45.

43. Green, T.J.; Karvounarakis, G.; Tannen, V. Provenance Semirings. In Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, New York, NY, USA, 11–13 June 2007; pp. 31–40. [CrossRef]

44. Schönig, S. SQL Queries for Declarative Process Mining on Event Logs of Relational Databases. arXiv 2015, arXiv:1512.00196.
45. Boncz, P.A.; Manegold, S.; Kersten, M.L. Database Architecture Evolution: Mammals Flourished long before Dinosaurs became

Extinct. Proc. VLDB Endow. 2009, 2, 1648–1653. [CrossRef]
46. Allen, J.F. Maintaining Knowledge about Temporal Intervals. Commun. ACM 1983, 26, 832–843. [CrossRef]
47. Revesz, P.Z. Introduction to Databases—From Biological to Spatio-Temporal; Texts in Computer Science; Springer: Berlin/Heidelberg,

Germany, 2010.
48. Kvet, M. Developing Robust Date and Time Oriented Applications in Oracle Cloud: A Comprehensive Guide to Efficient Date and Time

Management in Oracle Cloud; Packt Publishing: Birmingham, UK, 2023.
49. Tuzhilin, A.; Kedem, Z. Using Temporal Logic and Datalog to Query Databases Evolving in Time; New York University: New York, NY,

USA, 1989.
50. Böhlen, M.H.; Chomicki, J.; Snodgrass, R.T.; Toman, D. Querying TSQL2 databases with temporal logic. In Advances in Database

Technology—EDBT ’96, Proceedings of the 5th International Conference on Extending Database Technology, Avignon, France, 25–29 March
1996; Apers, P., Bouzeghoub, M., Gardarin, G., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 325–341.

51. Snodgrass, R.T. TSQL2. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer: Boston, MA, USA, 2009;
pp. 3192–3197. [CrossRef]

52. Musser, D.R. Introspective Sorting and Selection Algorithms. Softw. Pract. Exp. 1997, 27, 983–993. [CrossRef]
53. van der Aalst, W.M.P. Object-Centric Process Mining: Unraveling the Fabric of Real Processes. Mathematics 2023, 11, 2691.

[CrossRef]
54. Rost, C.; Gómez, K.; Täschner, M.; Fritzsche, P.; Schons, L.; Christ, L.; Adameit, T.; Junghanns, M.; Rahm, E. Distributed temporal

graph analytics with GRADOOP. VLDB J. 2022, 31, 375–401. [CrossRef]

208

Information 2024, 15, 34

55. Khayatbashi, S.; Hartig, O.; Jalali, A. Transforming Event Knowledge Graph to Object-Centric Event Logs: A Comparative Study
for Multi-dimensional Process Analysis. In Proceedings of the 42nd International Conference on Conceptual Modeling, Lisbon,
Portugal, 6–9 November 2023.

56. Zaki, N.M.; Helal, I.M.A.; Hassanein, E.E.; Awad, A. Efficient Checking of Timed Ordered Anti-patterns over Graph-Encoded
Event Logs. In Model and Data Engineering: Proceedings of the 11th International Conference, MEDI 2022, Cairo, Egypt, 21–24 November
2022; Lecture Notes in Computer Science; Fournier-Viger, P., Yousef, A.H., Bellatreche, L., Eds.; Springer: Berlin/Heidelberg,
Germany, 2022; Volume 13761, pp. 147–161.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

209

Citation: Ajayi, J.; Xu, Y.; Li, L.;

Wang, K. Enhancing Flight Delay

Predictions Using Network

Centrality Measures. Information

2024, 15, 559. https://doi.org/

10.3390/info15090559

Academic Editors: Arkaitz Zubiaga

and Peter Z. Revesz

Received: 31 July 2024

Revised: 6 September 2024

Accepted: 9 September 2024

Published: 10 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Enhancing Flight Delay Predictions Using Network
Centrality Measures
Joseph Ajayi, Yao Xu * , Lixin Li and Kai Wang

Department of Computer Science, Georgia Southern University, Statesboro, GA 30458, USA;
ja20859@georgiasouthern.edu (J.A.); lli@georgiasouthern.edu (L.L.); kwang@georgiasouthern.edu (K.W.)
* Correspondence: yxu@georgiasouthern.edu

Abstract: Accurately predicting flight delays remains a significant challenge in the aviation industry
due to the complexity and interconnectivity of its operations. The traditional prediction methods
often rely on meteorological conditions, such as temperature, humidity, and dew point, as well as
flight-specific data like departure and arrival times. However, these predictors frequently fail to
capture the nuanced dynamics that lead to delays. This paper introduces network centrality measures
as novel predictors to enhance the binary classification of flight arrival delays. Additionally, it
emphasizes the use of tree-based ensemble models, specifically random forest, gradient boosting, and
CatBoost, which are recognized for their superior ability to model complex relationships compared
to single classifiers. Empirical testing shows that incorporating centrality measures improves the
models’ average performance, with random forest being the most effective, achieving an accuracy
rate of 86.2%, surpassing the baseline by 1.7%.

Keywords: flight delay prediction; network centrality; machine learning; random forest; gradient
boosting; CatBoost

1. Introduction

In the realm of aviation, the efficiency of flight operations significantly hinges on
the ability to anticipate and mitigate delays. As the Federal Aviation Administration
(FAA) reports, its Air Traffic Organization (ATO) orchestrates the movement of over 45,000
flights daily, servicing 2.9 million passengers across an expansive airspace exceeding
29 million square miles [1]. This volume is projected to swell by 4.9% annually over
the next two decades, underscoring a pressing need for robust predictive models that
can adeptly forecast flight delays, thereby enabling airlines to optimize scheduling and
resource allocation [2]. Despite the proliferation of predictive methodologies ranging from
traditional statistical techniques to advanced machine learning algorithms like decision
trees (DTs), random forests (RFs), Bayesian networks (BNs), and linear regression (LR),
the quest for high-accuracy predictions remains largely unfulfilled. This challenge is
compounded by the unpredictable nature of many delay-inducing factors, such as adverse
weather conditions, and the computational demands posed by the voluminous and growing
datasets of airline operations [3].

In recent years, deep learning methods have shown promise in various prediction
tasks due to their ability to model complex non-linear relationships in large datasets [4–6].
However, these models often require extensive computational resources and large amounts
of data for training, which can limit their applicability in certain scenarios. In contrast, the
traditional machine learning techniques, such as support vector machine (SVM), DT, RF,
and gradient boosting (GB), offer robust performance while being less resource-intensive
and more interpretable [7–9]. Given these advantages, this paper introduces a novel
approach to predict whether a flight will be delayed or not, leveraging network centrality
measures within a binary classification framework.

Information 2024, 15, 559. https://doi.org/10.3390/info15090559 https://www.mdpi.com/journal/information210

Information 2024, 15, 559

By constructing a network model wherein airports serve as nodes and flight routes
as edges, this study integrates centrality metrics to enhance the predictive capabilities of
tree-based ensemble models. These models are renowned for their efficacy in capturing
complex non-linear relationships that elude the traditional base classifiers. This integration
aims to shed light on how the structural properties of the airport network can influence
delay propagation and, by extension, the overall network performance.

The motivation for this research is twofold: Firstly, flight delays are a pervasive is-
sue that undermines operational efficiency and diminishes passenger satisfaction, with
a notable 20% of flights in 2023 experiencing delays across the United States alone [10].
Secondly, the existing predictive models often fall short of the accuracy needed for effec-
tive planning and resource management, partly due to their reliance on a limited set of
predictors that may not fully encapsulate the intricacies of the aviation system [3]. By
incorporating network centrality measures into the predictive models, this study aspires to
bridge this gap, offering a more comprehensive and nuanced understanding of the factors
that contribute to flight delays.

The primary research question addressed in this study is whether the inclusion of
network centrality measures can improve the accuracy of flight delay predictions. The
innovation of this study lies in the novel integration of network centrality measures into ma-
chine learning models for flight delay prediction, which, to the best of our knowledge, has
not been explored in the literature. This approach provides new insights and improves the
predictive accuracy beyond the traditional methods. Specifically, the study examines how
these centrality measures affect the performance of traditional machine learning models,
including RF, GB, and CatBoost (CB). It also explores which network centrality measures,
such as degree, betweenness, and closeness centrality, contribute most significantly to
enhancing the predictive accuracy of these models.

The rest of the paper is organized as follows: It begins with a literature review of
the current landscape of flight delay prediction methodologies. The subsequent sections
describe the methodology employed in constructing the network model and integrating
centrality measures into the ensemble predictive models. The Results section presents
a comparative analysis of the model performances, highlighting the enhanced accuracy
achieved through the inclusion of centrality measures. Finally, the conclusion reflects on the
implications of these findings for airline operations and potential future research directions.

2. Literature Review

Flight delay prediction has been extensively studied due to its critical implications
for airline operations and passenger satisfaction. The early approaches primarily relied
on traditional statistical models such as linear regression and time series analysis. For
instance, Hsiao and Hansen [11] utilized econometric models to assess the impact of
morning queuing delays, while Zou et al. [12] explored the relationship between flight
delays, capacity investment, and social welfare, underscoring the importance of strategic
investments.

The advent of machine learning (ML) technologies introduced more sophisticated
methods for delay prediction, capturing complex non-linear relationships in data. Re-bollo
and Balakrishnan [13] applied RF algorithms to integrate temporal and spatial delay states,
improving the prediction accuracy. Kim et al. [4] leveraged convolutional neural networks
(CNNs) with historical flight and weather data, achieving higher accuracy. Choi et al. [8]
emphasized the importance of weather data in improving predictions through various
ML algorithms, while Nigam et al. [14] showcased the efficiency of cloud-based logistic
regression in real-time delay prediction.

Later work has further integrated deep learning models with traditional ML tech-
niques. Yin et al. [15] utilized reinforcement learning for predicting taxi-out times, opti-
mizing airport operations. Pamplona, et al. [16] introduced a supervised neural network
incorporating multiple factors, and Yu et al. [5] combined deep belief networks with sup-
port vector regression, demonstrating effective delay prediction at Beijing International

211

Information 2024, 15, 559

Airport. Gui et al. [17] and Liu et al. [18] also explored big data analytics, using DT, RF, and
GB for large-scale delay prediction.

Network centrality measures have increasingly been recognized for their potential in
delay prediction. However, the prior studies primarily utilized these measures for structural
analysis rather than as direct input features for prediction models. Cai et al. [6] and
Wu et al. [19] applied deep learning models to time-evolving graphs and spatiotemporal
data, respectively, focusing on network dynamics without directly integrating centrality
measures as predictive features. Li et al. [20] advanced this area by combining CNNs and
LSTM networks to capture spatial and temporal dependencies, although they did not use
centrality metrics as input variables.

Comparative and cluster-based methodologies have also been explored. Güvercin, Fer-
hatosmanoglu, and Gedik [21] proposed the Clustered Airport Modeling (CAM) approach
using network features and REG-ARIMA models to predict delays. Paramita et al. [22]
demonstrated the effectiveness of RF algorithms in a cluster computing environment,
while Wei et al. [23] introduced a BiLSTM-Attention network to predict delays across
airport clusters.

Finally, studies on the structural properties of air transportation networks have offered
key insights into delay prediction. Cheung and Gunes [24] used complex network metrics
to reveal small-world characteristics and assess the network’s resiliency to disruptions.
Anderson and Revesz [25] developed algorithms for MaxCount and threshold operators on
moving objects, applicable in monitoring airplane congestion, a factor in delay prediction.

While significant advancements have been made in flight delay prediction, a notable
gap remains in the use of network centrality measures as direct input features in predictive
models. Previous studies have largely focused on structural analysis without fully lever-
aging these measures to improve prediction accuracy. This study addresses that gap by
directly integrating network centrality measures into machine learning models, offering a
novel approach that enhances the accuracy of flight delay predictions.

3. Preliminaries
3.1. Network Centrality Measures

Network centrality measures are crucial for identifying the most influential nodes
within a network, such as airports in an air transportation network. In this study, we focus
on three key centrality measures: degree centrality, betweenness centrality, and closeness
centrality. Given a network of N nodes, representing airports in this study, the definitions
of the three centrality measures are as follows.

Degree Centrality: This centrality measure quantifies the number of direct connections
a node has [26]. It is calculated as

Cd(v) =
deg(v)
N − 1

, (1)

where deg(v) is the degree of node v, that is, the total number of nodes directedly connected
to v. High degree centrality indicates that an airport is a major hub with numerous direct
flights, making it a critical point for delay propagation.

Betweenness Centrality: This metric reflects the number of times a node acts as a
bridge along the shortest path between two other nodes [26]. It is calculated as

Cb(v) = ∑s 6=v 6=t
σst(v)

σst
, (2)

where σst represents the total number of shortest paths from node s to node t, and σst(v)
is the number of those paths that pass through node v. Airports with high betweenness
centrality are crucial in the flow of air traffic and are more likely to influence delays across
the network.

212

Information 2024, 15, 559

Closeness Centrality: This is a measure of the average shortest distance between a
node and all other reachable nodes, indicating how close a node is to all other nodes in the
network [26,27]. It is calculated as

Cc(v) =
r(v)

N − 1
� r(v)

∑t d(v, t)
, (3)

where r(v) is the total number of nodes v can reach, and d(v, t) is the shortest distance
between nodes v and t. Airports with high closeness centrality can quickly disseminate
delays throughout the network, affecting overall network performance.

3.2. Machine Learning Models

The machine learning methods employed in this study include RF, GB, and CB. These
models were selected for their ability to handle complex non-linear relationships and large
datasets typical of air transportation networks.

Random Forest (RF): This ensemble learning method constructs multiple decision
trees during training and combines their outputs, either by taking the mode for classifi-
cation tasks or the mean for regression tasks [28]. By using multiple trees, RF effectively
reduces overfitting and enhances the model’s generalization, making it robust for various
predictive tasks.

Gradient Boosting (GB): An iterative ensemble technique that builds models sequen-
tially, where each new model corrects errors made by the previous ones [29,30]. GB is
particularly effective in handling high-dimensional data and capturing complex interactions
between features, making it a powerful tool for improving predictive accuracy.

CatBoost (CB): A high-performing variant of GB, which is specifically designed to
handle categorical data with minimal preprocessing [31]. It addresses overfitting through
ordered boosting, which prevents information leakage by using a permutation of the
training data, making it particularly effective for datasets with categorical features.

4. Data and Methodology
4.1. Data Collection and Preparation

The data used in this research were obtained from the US Bureau of Transportation
Statistics (BTS) TranStats database [32], which is publicly available. The dataset we used
in this study is from the database named “Airline On-Time Performance Data”, which
contains detailed records of on-time arrivals and departures for non-stop domestic flights.
For this study, the initial dataset included 7,107,203 flights connecting 370 airports from
July 2022 to June 2023.

Data preprocessing involved handling missing data by excluding records with null or
missing values to maintain dataset integrity. The final dataset comprised 6,955,805 flights. Key
features selected for the analysis included flight information such as ORIGIN_AIRPORT_ID,
DEST_AIRPORT_ID, DEP_TIME, and ARR_TIME and delay information like DEP_DELAY
and ARR_DELAY, along with DISTANCE as an operational factor. Among all the features,
ORIGIN_AIRPORT_ID and DEST_AIRPORT_ID were converted to categorical features for
model training. Table 1 displays the key attributes of the dataset after data preprocessing.

Table 1. Key attributes of the dataset.

Attribute Name Description Type

ORIGIN_AIRPORT_ID Origin airport Categorical

DEST_AIRPORT_ID Destination airport Categorical

DEP_TIME Scheduled departure time Numerical

DEP_DELAY Flight delay (in minutes) Numerical

ARR_DELAY Arrival delay (in minutes) Numerical

213

Information 2024, 15, 559

4.2. Methodology

This study focuses on integrating network centrality measures into machine learning
models to improve the accuracy of flight delay predictions. The methodology encompasses
constructing the airport network, calculating centrality measures, and applying machine
learning models for prediction.

4.2.1. Airport Network Construction and Centrality Integration

A directed graph representing the airport network was constructed to compute the
network centrality measures. Airports were represented as vertices, with flights between
them forming the edges, and edge weights were determined by the distances between
airports. This graph enabled the calculation of degree centrality, betweenness centrality,
and closeness centrality, as defined by Equations (1)–(3).

Figure 1 presents the top 20 airports ranked by their degree, betweenness, and close-
ness centrality scores, highlighting their structural importance within the US air transporta-
tion network. DFW (Dallas/Fort Worth), DEN (Denver), and ATL (Atlanta) top the list for
degree centrality, indicating their extensive connectivity as major hubs. For betweenness
centrality, DFW, DEN, and ORD (Chicago O’Hare) rank highest, reflecting their critical
roles as key transfer points in air traffic flow. Closeness centrality is also led by DFW, DEN,
and ORD, demonstrating their central positions within the network. These centrality mea-
sures align with the real-world functions of these airports, confirming their effectiveness in
understanding network dynamics and predicting flight delays.

Figure 1. Cont.

214

Information 2024, 15, 559

Figure 1. Top 20 airports by degree, betweenness, and closeness centrality scores.

The centrality values were incorporated into the flight dataset as additional features
corresponding to the origin and destination airports of each flight. Since each airport has its
own computed degree, betweenness, and closeness centrality scores, six additional features
were added to the dataset: three for the origin airport and three for the destination airport.
Table 2 displays the key attributes of the updated dataset.

Table 2. Key attributes of the dataset after integrating network centrality measures.

Attribute Name Description Type

ORIGIN_AIRPORT_ID Origin airport Categorical

DEST_AIRPORT_ID Destination airport Categorical

DEP_TIME Scheduled departure time Numerical

DEP_DELAY Flight delay (in minutes) Numerical

ARR_DELAY Arrival delay (in minutes) Numerical

Origin_Degree_Centrality Degree centrality of origin airport Numerical

Dest_Degree_Centrality Degree centrality of destination airport Numerical

Origin_Betweenness_Centrality Betweenness centrality of origin airport Numerical

Dest_Betweenness_Centrality Betweenness centrality of destination airport Numerical

Origin_Closeness_Centrality Closeness centrality of origin airport Numerical

Dest_Closeness_Centrality Closeness centrality of destination airport Numerical

4.2.2. Machine Learning Model Training

This study implements three machine learning models, specifically RF, GB, and CB,
to predict flight delays. These models were selected for their ability to effectively manage
complex relationships within large datasets.

The target variable for prediction was arrival delay, which originally comprised both
positive values (indicating delays) and negative or zero values (indicating on-time or early
arrivals). To facilitate binary classification, these values were transformed into categorical
variables: delays exceeding 15 min were coded as 1, while delays within 15 min, on-time,
or early arrivals were coded as 0.

For model training, two distinct datasets were prepared. The first dataset included
only baseline features, such as origin and destination airports, scheduled departure time,
and departure delay. The second dataset extended the baseline features by incorporating
network centrality measures to evaluate their additional predictive value. Departure delay
is included in both datasets to assess whether centrality measures provide better predictions

215

Information 2024, 15, 559

of delay propagation within the network, even when traditional features like departure
delay are used. Both datasets were split into training and testing sets using an 80/20 ratio,
ensuring a robust evaluation of the models’ performance.

5. Results

This section presents the evaluation of the three machine learning models applied, em-
phasizing the impact of integrating network centrality measures into the prediction framework.
The analysis covers feature importance assessments and model performance comparisons.

5.1. Permutation Feature Importance

Permutation feature importance (PFI) was employed to evaluate the contribution of
each feature to the predictive performance of the models. The importance is determined by
measuring the decline in model performance when the values of a particular feature are
randomly shuffled, which disrupts its relationship with the target variable.

Figure 2 shows the PFI for the RF model. It ranks destination and origin betweenness
centrality as the most important features, followed by degree centrality for both origin and
destination airports. These centrality measures outperformed DEP_DELAY, highlighting
the value of network-based features.

Figure 2. Permutation feature importance for RF.

Figure 3 shows the PFI for the GB model. It ranks ORIGIN_AIRPORT_ID as the top
feature, with destination betweenness centrality also showing high importance. While
traditional features like airport IDs and DEP_TIME are dominant, centrality measures still
play a significant role.

Figure 4 shows the PFI for the CB model. It ranks DEST_AIRPORT_ID and origin
degree centrality as the most critical features, with centrality measures consistently proving
influential. DEP_DELAY is less impactful, further emphasizing the importance of network
centrality in predictions.

Although DEP_DELAY might seem like an obvious predictor, since a delayed depar-
ture often leads to a delayed arrival, it remains in our feature set for the following reasons.
Not all delayed departures result in delayed arrivals; factors like air traffic control, weather,
and efficient operations can mitigate delays. While DEP_DELAY captures immediate op-
erational delays, centrality measures offer a broader understanding of how the network
structure influences delays. Including DEP_DELAY allows us to assess whether centrality
metrics provide unique predictive insights beyond simple delay variables. This comparison
helps to determine if centrality measures can more effectively predict the delay propagation
within the network, even when traditional features like DEP_DELAY are considered.

216

Information 2024, 15, 559

Figure 3. Permutation feature importance for GB.

Figure 4. Permutation feature importance for CB.

Across all the models, the network centrality measures, particularly betweenness and
degree centrality, are consistently ranked among the top features, indicating their critical
role in improving flight delay prediction. These results highlight the importance of integrat-
ing network structure insights into machine learning models for more accurate predictions.

5.2. Comparison with Baseline Models

The comparison between those models trained with and without network centrality
measures reveals notable improvements in performance across all the metrics: accuracy,
precision, recall, and F1-score, as shown in Figure 5.

Accuracy measures the proportion of correctly predicted instances out of the total
predictions. As shown in the figure, the inclusion of centrality measures increases the
accuracy for all the models: RF improves from 84.5% to 86.2%, GB from 85.1% to 85.8%,
and CB from 85% to 85.6%.

Precision indicates the proportion of true positive predictions among all the positive
predictions. Precision also improves with the addition of centrality features: RF’s precision
increases from 86.3% to 86.9%, GB from 87.6% to 88.8%, and CB maintains a high precision
with a slight improvement from 88.5% to 88.5%.

Recall (also known as sensitivity) measures the proportion of actual positive instances
correctly identified by the model. The figure shows an increase in recall for all the models:
RF from 72.9% to 74.2%, GB from 74% to 74.6%, and CB from 87% to 88%.

217

Information 2024, 15, 559

Figure 5. Performance comparison of RF, GB, and CB models trained with and without network
centrality measures, evaluated using accuracy, precision, recall, and F1-score.

F1-score is the harmonic mean of precision and recall, providing a balance between
the two metrics. The F1-scores reflect an overall improvement, with RF rising from 79 to
81.2, GB from 79.8 to 80.8, and CB from 79.5 to 80.3.

The results clearly demonstrate that incorporating network centrality measures into
the models enhances their predictive performance. This improvement is evident across
all the evaluated metrics, confirming that the integration of network structure insights
contributes to more accurate and reliable flight delay predictions.

6. Discussion

The results from the permutation feature importance analyses indicate that network
centrality measures significantly enhance the performance of flight delay prediction mod-
els. These measures, particularly betweenness and degree centrality, consistently ranked
among the most important features across all the models. This finding underscores the
relevance of network structure in understanding and predicting delays within the complex
air transportation system.

While traditional features such as scheduled departure and arrival time, departure
delay, and airport IDs remain crucial, the inclusion of centrality measures adds a valuable
layer of predictive insight. This suggests that the structural properties of the airport
network, including the connectivity and centrality of the airports within the network, play
a critical role in the propagation of delays.

Previous studies have also applied RF or GB for flight delay prediction with varying
degrees of success. For example, Choi et al. [8] implemented DT, RF, AdaBoost, and k-
Nearest-Neighbors, achieving the highest accuracy of 83.4% with RF using data from BTS.
Our model, also using RF on BTS data, achieved a higher accuracy of 86.2%. Another
study [17] applied RF for large-scale delay prediction, achieving a 90.2% accuracy in
binary classification. However, this study used a completely different dataset from China,
which was created with a proprietary big data platform and included weather information.
Similarly, Liu et al. [18], using the same big data platform, applied GB and obtained an

218

Information 2024, 15, 559

accuracy of 87.72%. In comparison, our accuracies of 86.2% with RF and 85.8% with GB are
slightly lower, but this difference can be attributed to the use of different data sources.

Despite the promising results, there are limitations to this study. The current model
does not predict the duration of delays, which is crucial for practical applications. Future
research should explore the use of alternative predictors, including real-time data, and
consider the impact of other factors such as weather conditions.

Finally, while the results are encouraging, further validation on different datasets and
with more complex models, such as deep learning models, is necessary.

7. Conclusions

This study integrated network centrality measures into machine learning models to
enhance the accuracy of flight delay predictions. The models, including RF, GB, and CB,
showed improved performance with the inclusion of the centrality measures. The accuracy
increased from an average of 84.5% to 86.2% for RF, 85.1% to 85.8% for GB, and 85.0% to
85.6% for CB. The precision, recall, and F1-scores also improved, highlighting the value
of the centrality features. The importance of these measures, especially betweenness and
degree centrality, was confirmed through feature importance analysis.

The innovation of this study lies in the novel integration of network centrality mea-
sures into machine learning models for flight delay prediction, which, to the best of our
knowledge, has not been explored in the literature. This approach provides new insights
and improves the predictive accuracy beyond the traditional methods.

However, the study’s limitations, including the focus on binary classification and
the use of departure delay as a predictor, suggest several directions for future research.
The future work should explore predicting the duration of delays, considering additional
features like weather conditions, incorporating real-time data, and comparing the results
with those of published studies using the same datasets. Expanding the methodology
to include other ensemble learning methods and applying it to different transportation
networks could further enhance the prediction accuracy and robustness.

In conclusion, while this study makes significant strides in improving flight delay
predictions, ongoing research and refinement are necessary to fully realize the potential of
network centrality measures in this domain.

Author Contributions: Methodology, Y.X.; Formal analysis, J.A.; Resources, J.A.; Writing – original
draft, J.A.; Writing – review & editing, Y.X., L.L. and K.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Federal Aviation Administration (FAA). Air Traffic by the Numbers. Available online: https://www.faa.gov/airtraffic/air-traffic-

numbers (accessed on 22 August 2024).
2. Boeing. Boeing Forecasts Demand for Nearly 44,000 New Airplanes Through 2043 as Air Travel Surpasses Pre-Pandemic

Levels. Available online: https://investors.boeing.com/investors/news/press-release-details/2024/Boeing-Forecasts-Demand-
for-Nearly-44000-New-Airplanes-Through-2043-as-Air-Travel-Surpasses-Pre-Pandemic-Levels/default.aspx (accessed on 22
August 2024).

3. Dai, M. A hybrid machine learning-based model for predicting flight delay through aviation big data. Sci. Rep. 2024, 14, 4603.
[CrossRef] [PubMed]

4. Kim, Y.J.; Choi, S.; Briceno, S.; Mavris, D. A deep learning approach to flight delay prediction. In Proceedings of the 2016
IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, USA, 25–29 September 2016; pp. 1–6.

219

Information 2024, 15, 559

5. Yu, B.; Guo, Z.; Asian, S.; Wang, H.; Chen, G. Flight delay prediction for commercial air transport: A deep learning approach.
Transp. Res. Part E Logist. Transp. Rev. 2019, 125, 203–221. [CrossRef]

6. Cai, K.; Li, Y.; Fang, Y.P.; Zhu, Y. A deep learning approach for flight delay prediction through time-evolving graphs. IEEE Trans.
Intell. Transp. Syst. 2021, 23, 11397–11407. [CrossRef]

7. Esmaeilzadeh, E.; Mokhtarimousavi, S. Machine learning approach for flight departure delay prediction and analysis. Transp. Res.
Rec. 2020, 2674, 145–159. [CrossRef]

8. Choi, S.; Kim, Y.J.; Briceno, S.; Mavris, D. Prediction of weather-induced airline delays based on machine learning algorithms. In
Proceedings of the 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, USA, 25–29 September
2016; pp. 1–6.

9. Khan, R.; Akbar, S.; Zahed, T.A. Flight delay prediction based on gradient boosting ensemble techniques. In Proceedings of the 2022
16th International Conference on Open Source Systems and Technologies (ICOSST), Lahore, Pakistan, 14–15 December 2022; pp. 1–5.

10. KXAN. Which Airports Had the Most Delays and Cancellations in 2023? Available online: https://www.kxan.com/news/
national-news/which-airports-had-the-most-delays-and-cancellations-in-2023/ (accessed on 22 August 2024).

11. Hsiao, C.Y.; Hansen, M. Econometric analysis of US airline flight delays with time-of-day effects. Transp. Res. Rec. 2006,
1951, 104–112. [CrossRef]

12. Zou, B.; Hansen, M. Flight delays, capacity investment and social welfare under air transport supply-demand equilibrium. Transp.
Res. Part A Policy Pract. 2012, 46, 965–980. [CrossRef]

13. Rebollo, J.J.; Balakrishnan, H. Characterization and prediction of air traffic delays. Transp. Res. Part C Emerg. Technol. 2014,
44, 231–241. [CrossRef]

14. Nigam, R.; Govinda, K. Cloud based flight delay prediction using logistic regression. In Proceedings of the 2017 International
Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 7–8 December 2017; pp. 662–667.

15. Yin, J.; Hu, Y.; Ma, Y.; Xu, Y.; Han, K.; Chen, D. Machine learning techniques for taxi-out time prediction with a macroscopic
network topology. In Proceedings of the 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), London, UK, 23–27
September 2018; pp. 1–8.

16. Pamplona, D.A.; Weigang, L.; De Barros, A.G.; Shiguemori, E.H.; Alves, C.J.P. Supervised neural network with multilevel input
layers for predicting of air traffic delays. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN),
Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–6.

17. Gui, G.; Liu, F.; Sun, J.; Yang, J.; Zhou, Z.; Zhao, D. Flight delay prediction based on aviation big data and machine learning. IEEE
Trans. Veh. Technol. 2019, 69, 140–150. [CrossRef]

18. Liu, F.; Sun, J.; Liu, M.; Yang, J.; Gui, G. Generalized flight delay prediction method using gradient boosting decision tree. In
Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–5.

19. Wu, Y.; Yang, H.; Lin, Y.; Liu, H. Spatiotemporal propagation learning for network-wide flight delay prediction. IEEE Trans.
Knowl. Data Eng. 2023, 36, 386–400. [CrossRef]

20. Li, Q.; Guan, X.; Liu, J. A CNN-LSTM framework for flight delay prediction. Expert Syst. Appl. 2023, 227, 120287. [CrossRef]
21. Güvercin, M.; Ferhatosmanoglu, N.; Gedik, B. Forecasting flight delays using clustered models based on airport networks. IEEE

Trans. Intell. Transp. Syst. 2020, 22, 3179–3189. [CrossRef]
22. Paramita, C.; Supriyanto, C.; Syarifuddin, L.A.; Rafrastara, F.A. The Use of Cluster Computing and Random Forest Algoritm for

Flight Delay Prediction. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 2022, 20, 19–22.
23. Wei, X.; Li, Y.; Shang, R.; Ruan, C.; Xing, J. Airport Cluster Delay Prediction Based on TS-BiLSTM-Attention. Aerospace 2023,

10, 580. [CrossRef]
24. Cheung, D.P.; Gunes, M.H. A complex network analysis of the United States air transportation. In Proceedings of the 2012

IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Istanbul, Turkey, 26–29 August 2012;
pp. 699–701.

25. Anderson, S.; Revesz, P. Efficient MaxCount and threshold operators of moving objects. Geoinformatica 2009, 13, 355–396.
[CrossRef]

26. Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [CrossRef]
27. Wasserman, S. Social Network Analysis: Methods and Applications; The Press Syndicate of the University of Cambridge: Cambridge, UK, 1994.
28. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
29. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
30. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
31. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. In

Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2–8 December
2018; pp. 6639–6649.

32. Bureau of Transportation Statistics (BTS). TranStats Database. Available online: https://www.transtats.bts.gov/ (accessed on 22
August 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

220

Citation: Alfian, M.; Yuhana, U.L.;

Pardede, E.; Bimantoro, A.N.P.

Correction of Threshold

Determination in Rapid-Guessing

Behaviour Detection. Information

2023, 14, 422. https://doi.org/

10.3390/info14070422

Academic Editor: Gennady Agre

Received: 13 June 2023

Revised: 13 July 2023

Accepted: 20 July 2023

Published: 21 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Correction of Threshold Determination in Rapid-Guessing
Behaviour Detection
Muhammad Alfian 1, Umi Laili Yuhana 1, Eric Pardede 2,* and Akbar Noto Ponco Bimantoro 1

1 Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; ini.muhalfian@gmail.com (M.A.);
yuhana@if.its.ac.id (U.L.Y.); akbarnotopb@gmail.com (A.N.P.B.)

2 Department of Computer Science and Information Technology, La Trobe University,
Melbourne, VIC 3000, Australia

* Correspondence: e.pardede@latrobe.edu.au

Abstract: Assessment is one benchmark in measuring students’ abilities. However, assessment results
cannot necessarily be trusted, because students sometimes cheat or even guess in answering the
questions. Therefore, to obtain valid results, it is necessary to separate valid and invalid answers by
considering rapid-guessing behaviour. We conducted a test to record exam log data from undergrad-
uate and postgraduate students to model rapid-guessing behaviour by determining the threshold
response time. Rapid-guessing behaviour detection is inspired by the common k-second method.
However, the method flattens the application of the threshold, thus allowing misclassification. The
modified method considers item difficulty in determining the threshold. The evaluation results show
that the system can identify students’ rapid-guessing behaviour with a success rate of 71%, which is
superior to the previous method. We also analysed various aggregation techniques of response time
and compared them to see the effect of selecting the aggregation technique.

Keywords: rapid-guessing behaviour; threshold determination; response time

1. Introduction

In fact, assessment plays a very important role in the learning process [1]. Assessment
is a process of evaluating knowledge, the ability to understand, and achievement of
test takers’ skills [2]. Assessment is used to measure students’ abilities with the aim
of selecting students for new admissions, measuring the level of understanding of post-
learning material, and as a determinant of graduation. In addition, one of the benefits of
conducting an assessment is as a reference for determining student learning flows. An
example is the determination of material according to students’ abilities [3] and determining
the next material they need to study [4]. In addition, student assessments can streamline
the allocation of resources needed to increase student learning competencies [5].

As test-takers, we often do not know whether these students’ answers are valid or not,
and whether they are taking it seriously or cheating. As students, we also sometimes come
across questions that are very difficult, forcing us to answer to obtain the best grades even
though we do not know the answers. This behaviour is called rapid-guessing behaviour.
According to ref. [6], rapid-guessing behaviour occurs when test takers answer questions
quicker than usual in a speeded test. However, assessment results can be invalid because
students cheated or rapidly guessed the answer to the question [6]. Ref. [7] states that,
therefore, to obtain the ideal assessment results, it is necessary to differentiate assessment
results based on student behaviour, whether they answer by guessing (rapid-guessing
behaviour) or answer seriously (solution behaviour). This rapid-guessing behaviour causes
biased scores and unreliable tests, so it should be ignored.

Schnipke was the first to discover rapid-guessing behaviour when mapping the re-
sponse times of the Graduate Record Examination Computer-Based Test (GRE-CBT). In
her research, each question was mapped to its response time distribution as shown in

Information 2023, 14, 422. https://doi.org/10.3390/info14070422 https://www.mdpi.com/journal/information221

Information 2023, 14, 422

Figure 1. Response time is taken from how long it takes students to read to answer a
question. In practice, to distinguish rapid-guessing behaviour and solution behaviour, we
need to determine the threshold time.

Information 2023, 14, x FOR PEER REVIEW 2 of 13

her research, each question was mapped to its response time distribution as shown in
Figure 1. Response time is taken from how long it takes students to read to answer a ques-
tion. In practice, to distinguish rapid-guessing behaviour and solution behaviour, we need
to determine the threshold time.

Figure 1. Example of RT distribution.

Several studies investigated how to determine the threshold time. Schnipke use vis-
ual inspection to determine threshold and distinguish both behaviours. A similar ap-
proach was carried out by DeMars [8], Setzer et al. [9], and Pastor et al. [10]. However,
detecting rapid-guessing behaviour becomes more difficult using this approach when the
RT distribution has the same RT peak. Students who answered by guessing and students
who answered seriously both made overlapping response time distributions. Other re-
searchers used the k-second method to determine the RT threshold, in which the fixed
threshold value is generally set between three to five seconds [7]. K-second is the simplest
threshold method. It does not require information about each item’s surface features or
response time distribution and is particularly useful with large item pools. Its one-size-
fits-all nature, however, will often result in variations in misclassification across items [7-
10].

Some other researchers use the surface features method to distinguish between the
two behaviours. Surface features determine the RT threshold using several item features.
Silm et al. [11] considered the test subject and item length in determining the RT threshold.
Wise and Kong [12] considered the number of characters and whether there were tables
or images. However, in both studies, the results of evaluating students’ rapid guessing
behaviour were not explicitly detailed. In contrast to methods that use time thresholds,
Lin [13] processes the student’s ability score (l) and item difficulty index (i) based on the
Rasch model to determine guessing behaviour. They argue that if there is a large differ-
ence between the student’s ability and the item difficulty index, then it is rapid-guessing
behaviour.

This study aims to propose a correction to the determination of time thresholds as
part of the identification of rapid-guessing behaviour in assessment. The correction we
provide is that the determination of the threshold is not simply about how to choose the
right number to be used as a threshold, but also needs to pay attention to how difficult the
question and how the data processing technique is. We tried several data aggregation
techniques such as sum, average, and maximum. We adopted the concept of k-seconds
and combined it with the features of item response theory (IRT)to create a new approach

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fe
qu

en
cy

Response Time in seconds

Right Wrong

Figure 1. Example of RT distribution.

Several studies investigated how to determine the threshold time. Schnipke use visual
inspection to determine threshold and distinguish both behaviours. A similar approach was
carried out by DeMars [8], Setzer et al. [9], and Pastor et al. [10]. However, detecting rapid-
guessing behaviour becomes more difficult using this approach when the RT distribution
has the same RT peak. Students who answered by guessing and students who answered
seriously both made overlapping response time distributions. Other researchers used
the k-second method to determine the RT threshold, in which the fixed threshold value
is generally set between three to five seconds [7]. K-second is the simplest threshold
method. It does not require information about each item’s surface features or response
time distribution and is particularly useful with large item pools. Its one-size-fits-all nature,
however, will often result in variations in misclassification across items [7–10].

Some other researchers use the surface features method to distinguish between the
two behaviours. Surface features determine the RT threshold using several item features.
Silm et al. [11] considered the test subject and item length in determining the RT threshold.
Wise and Kong [12] considered the number of characters and whether there were tables
or images. However, in both studies, the results of evaluating students’ rapid guessing
behaviour were not explicitly detailed. In contrast to methods that use time thresholds,
Lin [13] processes the student’s ability score (l) and item difficulty index (i) based on
the Rasch model to determine guessing behaviour. They argue that if there is a large
difference between the student’s ability and the item difficulty index, then it is rapid-
guessing behaviour.

This study aims to propose a correction to the determination of time thresholds as
part of the identification of rapid-guessing behaviour in assessment. The correction we
provide is that the determination of the threshold is not simply about how to choose the
right number to be used as a threshold, but also needs to pay attention to how difficult
the question and how the data processing technique is. We tried several data aggregation
techniques such as sum, average, and maximum. We adopted the concept of k-seconds and
combined it with the features of item response theory (IRT)to create a new approach in
determining the time threshold for each item category. The questions were divided into
three categories based on their difficulty according to IRT features. Data was obtained
from online exams during lectures on campus. Response time is obtained from how long
students work on questions (calculated from the time of opening to answering questions).

222

Information 2023, 14, 422

The expected benefit of this research is that the question maker can know which answers
are given seriously by students and which are given fraudulently, so that the scores can be
differentiated. This research is part of our larger research on computer adaptive assessment.

2. Related Works

Rapid-guessing behaviour is a phenomenon when students answer items rapidly
without serious thought. In other words, students randomly guess the answers to the
items. Rapid-guessing behaviour usually occurs in multiple choice tests. We discussed how
rapid-guessing behaviour is detected in exams. There have been several variables used to
detect rapid-guessing behaviour. The most popular approach is rapid-guessing detection
based on response time (RT). Other variables include student ability, item difficulty, and
response accuracy (RA). In the next section we discuss our proposed method and our
contribution to rapid-guessing behaviour detection.

2.1. Detection Based on Response Time (RT)

Schnipke [6] is one of the first researchers that used RT thresholds as the basis for
detecting rapid-guessing behaviour. Visual inspection was carried out on RT distributions
of 17,415 students that took a computer-based Graduate Record Examinations Computer-
based Test (GRE-CBT). The RT of correct and wrong responses for each item were separately
plotted to visualize the distribution of RT of each item. In this study, rapid-guessing
behaviour towards an item is indicated by a larger number of fast wrong responses in the
RT distribution of the item. Figure 1 shows the distribution of two items, in which wrong
responses are indicated by the red lines. In the first distribution, the RT for majority of
the students is relatively short, and the number of wrong responses exceed the number
of correct responses. While in the second distribution, the RT for majority of the students
is relatively long and the number of correct responses exceeds the number of wrong
responses. Therefore, the first distribution is classified as rapid-guessing behaviour and the
second distribution is classified as solution behaviour (students fully consider the answer).
Furthermore, in the second distribution that is classified as solution behaviour, the fastest
RT of a correct response is five seconds; therefore, a RT under five seconds is rapid-guessing
behaviour.

A similar approach was carried out by DeMars [8], Setzer et al. [9], and Pastor et al. [10].
However, detecting rapid-guessing behaviour becomes more difficult using this approach
when RT distributions classified as rapid-guessing behaviour and solution behaviour
possess similar peaks of RT. This is because the time needed to correctly answer items is
indeed short.

Other researchers used the k-seconds method to determine the RT threshold, in which
the fixed threshold value is generally set between three to five seconds [7]. The threshold
value was then used to determine the response time effort (RTE) of the students. Wise [7]
evaluated the proposed RTE model on students that were given mathematics and reading
tests in varying times, days, seasons, and age groups. From the experimental results, it was
indicated that RTE is influenced by several factors, namely gender, age, contents of an item,
and time.

2.2. Detection Based on Combination of RT and Other Variables

Surface features is a method used to determine the RT threshold using several item
features. Unlike the k-seconds method that sets the same RT threshold value to all the
items, in the surface features method, each item is given an RT threshold based on its
features. The features include the number of characters in an item, whether an item consists
of tables and figures, and the subject being evaluated by the item. Several features that
were used in previous studies and the resulting RT threshold values are shown in Table 1.
Silm et al. [11] considered the subject of the test and item length in determining the RT
threshold as shown in Table 1. Wise and Kong [12] took into consideration the number of
characters and whether an item consisted of a table or figure in the determination of the RT

223

Information 2023, 14, 422

threshold. However, in both studies, the results of rapid-guessing behaviour evaluation on
the students were not explicitly detailed.

Table 1. Surface Feature Threshold.

Criteria Threshold

Math/spatial reasoning problem 5 s
<200 characters 3 s

200–1000 characters 5 s
>1000 characters 10 s

Pastor et al. [10] used latent class analysis (LCA) to investigate whether there was
a difference in solution behaviour patterns across three tests differing in content. They
implemented the RT threshold value resulting from visual inspection of RT distributions
into the LCA model. From the experiment that was carried out on undergraduate students,
it was found that the results of the proposed method were similar to that of Wise et. al. [14],
in which the solution behaviour pattern is consistent in all the tests differing in content.
The experimental results were validated using the BCH approach (Bolck, Croon, and
Hagenaars [15]), which involves performing a weighted ANOVA, with weights that are
inversely related to the classification error probabilities [16].

Another study, proposed by Lee and Jia [17] combined RT and RA to determine
the time threshold. Time thresholds were determined based on the participants’ RTs for
test 1 and test 2, as shown in Figure 2. The RT results of each test were then combined
to be analysed manually using either common k-seconds or visual inspection of the RT
distribution. The test was conducted on approximately 8400 junior high school students
in mathematics with a composition of 40% students in a multistage test (MST) sample
and 60% students in control sample. The proposed method is evaluated manually by the
authors with expert inspection of the questions, such as the presence of tables or figures
and the complexity of the questions.

Information 2023, 14, x FOR PEER REVIEW 5 of 13

(a)

(b)

Figure 2. Test scenario using multistage test (MST) (a) and control test (b).

In contrast to the method that uses a time threshold, Lin [13] processed the value of
the student’s ability (l) and the difficulty index (i) based on the Rasch model to determine
guessing behaviour. Student’s ability (l) refers to the measure of how proficient a student
is, and difficulty index (i) refers to the measure of how hard an item (question) is. They
argue that if there is a big difference between the logit ability and the difficulty index of
the question, it should be rapid-guessing behaviour. They classified the answers as rapid-
guessing behaviour if 𝑙 − 𝑖 ≤ 2. Answers that were classified as rapid-guessing behavior
were removed from the dataset and used as the final test model on the language test of
sixth-grade elementary school students. From the tests carried out, they found that the
assessment of high-ability students had better precision.

Based on previous literature studies, no research has developed and corrected time
threshold determination utilising IRT features and considering variations in data aggre-
gation. Therefore, this study aims to combine the k-second method with IRT features to
recognize the difficulty level of each question and utilise multiple data aggregation meth-
ods to distinguish rapid-guessing behaviour and solution behaviour. We compared the
proposed method with previous methods such as the common k-second, surface, and nor-
mative. We pay attention to the data aggregation technique, because in the classification
process it is not only about how to determine the right threshold value, but also the ag-
gregation technique is also important. Some of the aggregation techniques we used in-
clude average, sum, and maximum. Then, the model is evaluated using accuracy, preci-
sion, recall, and F1 score parameters. The next section will describe this method in more
detail.

3. Methods
This section details the methodology used for detecting rapid-guessing behaviour.

As shown in Figure 3, this research consists of two main processes: a conventional test
and rapid-guessing modelling.

Figure 2. Test scenario using multistage test (MST) (a) and control test (b).

224

Information 2023, 14, 422

In contrast to the method that uses a time threshold, Lin [13] processed the value of
the student’s ability (l) and the difficulty index (i) based on the Rasch model to determine
guessing behaviour. Student’s ability (l) refers to the measure of how proficient a student
is, and difficulty index (i) refers to the measure of how hard an item (question) is. They
argue that if there is a big difference between the logit ability and the difficulty index
of the question, it should be rapid-guessing behaviour. They classified the answers as
rapid-guessing behaviour if l − i ≤ 2. Answers that were classified as rapid-guessing
behavior were removed from the dataset and used as the final test model on the language
test of sixth-grade elementary school students. From the tests carried out, they found that
the assessment of high-ability students had better precision.

Based on previous literature studies, no research has developed and corrected time
threshold determination utilising IRT features and considering variations in data aggre-
gation. Therefore, this study aims to combine the k-second method with IRT features
to recognize the difficulty level of each question and utilise multiple data aggregation
methods to distinguish rapid-guessing behaviour and solution behaviour. We compared
the proposed method with previous methods such as the common k-second, surface, and
normative. We pay attention to the data aggregation technique, because in the classification
process it is not only about how to determine the right threshold value, but also the aggre-
gation technique is also important. Some of the aggregation techniques we used include
average, sum, and maximum. Then, the model is evaluated using accuracy, precision, recall,
and F1 score parameters. The next section will describe this method in more detail.

3. Methods

This section details the methodology used for detecting rapid-guessing behaviour. As
shown in Figure 3, this research consists of two main processes: a conventional test and
rapid-guessing modelling.

Information 2023, 14, x FOR PEER REVIEW 6 of 13

Figure 3. System design for detecting rapid-guessing behaviour.

3.1. Gathering Data from Conventional Test
One of the advantages of computer-based tests (CBTs) is that data on the student’s

activities from the start to the end of the test can be easily obtained. The data is accessible,
provides meaningful information, and is unambiguous because every student has their
own accounts and all activities of students are recorded. This study focuses on analysing
user behaviour data from the system log, without taking into consideration demographic
factors such as age, gender, and ethnicity of the students which may cause the proposed
model to become biased towards these factors.

This study analyses student daily test data in a specific course. The examinees of the
daily test are university students that are technologically literate. The students were first
given a conventional test. The conventional test consisted of 40 items. The questions were
multiple choice with one correct answer. All students worked on the same questions at
the same time. This was so as to evaluate the comprehensive ability of the students in
understanding the study material. Furthermore, the results of the comprehensive test are
used to calculate item difficulty of each item in the test.

The platform used for this test is a web-based “i-assessment” software accessed
through smartphones. The “i-assessment” software records student activity during the
test and the answers of the students and stores the data in a database. The time a student
accesses a question and the time the student answers the question is stored in the Answer
Log table. Furthermore, the time a student navigates between questions is stored in the
Move Log table. Every time a student gives an answer to each question, a pop up appears
in the system asking, “Are you sure about your answer?”. We use this data as a reference
to distinguish answers that are guessing and not.

3.2. Conventional Test Information
The tests were administered to students of a widely recognized university in Indone-

sia. The students were given an end-of-semester daily test (quiz) by the lecturer. The de-
tailed information is shown in Table 2. The test data was collected from two courses,
namely software project management (SPM) and software engineering (SE). The SPM
course is an undergraduate course, while the SE course is a postgraduate course. The

Figure 3. System design for detecting rapid-guessing behaviour.

225

Information 2023, 14, 422

3.1. Gathering Data from Conventional Test

One of the advantages of computer-based tests (CBTs) is that data on the student’s
activities from the start to the end of the test can be easily obtained. The data is accessible,
provides meaningful information, and is unambiguous because every student has their
own accounts and all activities of students are recorded. This study focuses on analysing
user behaviour data from the system log, without taking into consideration demographic
factors such as age, gender, and ethnicity of the students which may cause the proposed
model to become biased towards these factors.

This study analyses student daily test data in a specific course. The examinees of the
daily test are university students that are technologically literate. The students were first
given a conventional test. The conventional test consisted of 40 items. The questions were
multiple choice with one correct answer. All students worked on the same questions at
the same time. This was so as to evaluate the comprehensive ability of the students in
understanding the study material. Furthermore, the results of the comprehensive test are
used to calculate item difficulty of each item in the test.

The platform used for this test is a web-based “i-assessment” software accessed
through smartphones. The “i-assessment” software records student activity during the
test and the answers of the students and stores the data in a database. The time a student
accesses a question and the time the student answers the question is stored in the Answer
Log table. Furthermore, the time a student navigates between questions is stored in the
Move Log table. Every time a student gives an answer to each question, a pop up appears
in the system asking, “Are you sure about your answer?”. We use this data as a reference
to distinguish answers that are guessing and not.

3.2. Conventional Test Information

The tests were administered to students of a widely recognized university in Indonesia.
The students were given an end-of-semester daily test (quiz) by the lecturer. The detailed
information is shown in Table 2. The test data was collected from two courses, namely
software project management (SPM) and software engineering (SE). The SPM course is
an undergraduate course, while the SE course is a postgraduate course. The duration of
the conventional test was 90 min and consisted of 40 multiple-choice items, in which each
item presented five answers to choose from. The average scores of each course showed
that students in the SPM course had a fairly high score, as seen from the average score of
65.89. In contrast to students in SE courses, students have fewer high scores, as seen from
the average score of 44.58. Even though the standard deviation of the SPM test scores was
higher than that of the SE test scores, the minimum and maximum score were higher for the
SPM test. However, these data alone are insufficient to adequately assess the educational
evaluation process. Further analysis needs to be carried out with respect to the test items
and other underlying factors of the students.

Table 2. Data summary.

Course and Duration Class Member Level Score

SPM
90 min 45 students Undergraduate

Mean = 65,89
Std = 15
Min = 38
Max = 93

SE
90 min 45 students Graduate

Mean = 44,58
Std = 11,82
Min = 27,5
Max = 75

3.3. Rapid-Guessing Modelling

The first step in rapid-guessing modelling is data aggregation. This stage combines
data from several tables into a single unit. Both the Answer Log table and the Move Log

226

Information 2023, 14, 422

table possess a relationship with the Participant table and the Question table. The Answer
Log table stores information on when students open a question, and when they answer the
question. Meanwhile, the Move Log table stores information on when students moved from
one question to another, regardless of when they answered the question. After gathering
the relevant data, the Log Aggregation table is generated to store a summary of data of
both the Answer Log and Move Log tables based on the key attributes of the log tables.
This transformation process is called data aggregation. Data aggregation is the process
of finding and gathering data and visualizing the data in a summarized format for an
easier statistical analysis of the data. The Log Aggregation table possesses columns that are
produced from the aggregation process, including sum, maximum, minimum, and average
values as shown in Figure 4. The Log Aggregation table is then split with respect to the
purpose of the data analysis based on questions, participants, and a combination of both.

Information 2023, 14, x FOR PEER REVIEW 8 of 13

Figure 4. Aggregation table diagram.

The second step is calculating item difficulty. Item difficulty (𝑏ሻ is defined as the
proportion of examinees that were able to correctly answer the item [18]. Item difficulty
in item response theory(IRT) is derived from the z-score measurement method. Therefore,
item difficulty is calculated by dividing the number of examinees that were unable deliver
correct answer to item i (𝑛) by the total number of examinees that submitted a response
item i (𝑁) minus the number of examinees that were unable to submit (false answer) a
response to item i (𝑛). The resulting value is then normalized using the natural logarithm
to decrease the distribution value [19], as shown in Equation (1). 𝑏 ൌ ln ቆ 𝑛𝑁 − 𝑛ቇ (1)

After that, from the question difficulty values, we categorised the questions into three
labels, namely easy, medium, and difficult, based on the question difficulty parameters in
IRT. We labelled them using the fuzzy logic inference method. Figure 5 shows the member
function of item difficulty. The y-axis shows the fuzzy inference value, while the x-axis
value shows the item difficulty value. The range of item difficulty values is from −3 to 3.
For this question, we directly divided it into three labels. The easy label is given if the item
difficulty ranges from −3 to 0. Meanwhile, the medium label is given if the item difficulty
ranges from −1 to 2. And finally, the difficult label is given if the item difficulty level is
above 1. These three different labels are to categorise student responses, and then deter-
mine the threshold for each item label.

Figure 4. Aggregation table diagram.

The second step is calculating item difficulty. Item difficulty (bi) is defined as the
proportion of examinees that were able to correctly answer the item [18]. Item difficulty in
item response theory(IRT) is derived from the z-score measurement method. Therefore,
item difficulty is calculated by dividing the number of examinees that were unable deliver
correct answer to item i (n f i) by the total number of examinees that submitted a response
item i (Ni) minus the number of examinees that were unable to submit (false answer) a
response to item i (n f i). The resulting value is then normalized using the natural logarithm
to decrease the distribution value [19], as shown in Equation (1).

bi = ln

(
n f i

Ni − n f i

)
(1)

After that, from the question difficulty values, we categorised the questions into three
labels, namely easy, medium, and difficult, based on the question difficulty parameters in

227

Information 2023, 14, 422

IRT. We labelled them using the fuzzy logic inference method. Figure 5 shows the member
function of item difficulty. The y-axis shows the fuzzy inference value, while the x-axis
value shows the item difficulty value. The range of item difficulty values is from −3 to
3. For this question, we directly divided it into three labels. The easy label is given if the
item difficulty ranges from −3 to 0. Meanwhile, the medium label is given if the item
difficulty ranges from −1 to 2. And finally, the difficult label is given if the item difficulty
level is above 1. These three different labels are to categorise student responses, and then
determine the threshold for each item label.

Information 2023, 14, x FOR PEER REVIEW 9 of 13

Figure 5. Item difficulty member function.

The third step is determining the threshold. We are inspired by the common k-sec-
onds [7] method to determine the threshold. While the common k-seconds method sets all
questions with the same threshold, we have a different approach. We categorize items into
three labels based on their difficulty level, namely easy, medium, and hard. Each question
label has its own threshold. The determination of the threshold is the same as the prede-
cessor method, which is that we use a common value and then match with the dataset
which value is the best. The value we agreed on was 3 s for questions with the hard label,
and 2 s for questions with the easy and medium labels.

The last step is evaluation. We evaluate the model by calculating the evaluation ma-
trix. We compare our proposed method with previous methods. In addition, we also com-
pare various aggregation techniques, so that we can find out the effect of different aggre-
gation techniques on the classification results.

4. Results and Discussion
We conducted experiments on students during lecture hours. Some of the steps were

aggregating data, calculating item difficulty, determining threshold, and evaluation. The
first step is to perform data aggregation. We collect data from the Answer Log and Move
Log tables to be aggregated in an aggregation table according to the design. However, the
parameters we use here are only time-related parameters, including avg_duration,
max_duration, min_duration, stdev_duration, avg_move, and total_move. However, con-
sidering the processing time, we chose three main parameters to compare, namely
avg_duration, max_duration, and total_move.

The second step is to calculate item_difficulty. We use the equation from IRT to cal-
culate the item difficulty. Then, we assign labels to it using the inference method of fuzzy
logic. Following the completion of the conventional tests by the students, the answer log
was used in the RT-based guessing model. The guessing model proposed in this study
only uses one parameter, namely time. Further analysis on the answer log data indicated
several different behaviours exhibited by the students in giving responses to the presented
items. These behaviours occurred due to the duration of the test (90 min), which is long
for a multiple-choice test that consists of 40 items. The first behaviour exhibited by the
students was that several students used the remaining time to reconsider doubtful re-
sponses after they had given responses to all the items. The second behaviour exhibited
by the students was that several students spent a lot of time reading items that they
deemed difficult, then they skipped the item without giving a response. After giving re-
sponses to the other items, the students then came back to the items they deemed difficult
and gave a quick response. Due to these exhibited behaviours, we investigated the use of
several parameters to define RT in the proposed guessing model. The first parameter that
we used to define RT was the time spent by the students to initially read an item and give
a response, which we named duration. The second parameter was the accumulation of
time spent on an item even after giving a response, which we named total move. The last
parameter, named max time, was derived from the duration parameter, which was the
longest time spent to initially read an item and give a response among all the students.

Figure 5. Item difficulty member function.

The third step is determining the threshold. We are inspired by the common k-
seconds [7] method to determine the threshold. While the common k-seconds method
sets all questions with the same threshold, we have a different approach. We categorize
items into three labels based on their difficulty level, namely easy, medium, and hard. Each
question label has its own threshold. The determination of the threshold is the same as
the predecessor method, which is that we use a common value and then match with the
dataset which value is the best. The value we agreed on was 3 s for questions with the hard
label, and 2 s for questions with the easy and medium labels.

The last step is evaluation. We evaluate the model by calculating the evaluation matrix.
We compare our proposed method with previous methods. In addition, we also compare
various aggregation techniques, so that we can find out the effect of different aggregation
techniques on the classification results.

4. Results and Discussion

We conducted experiments on students during lecture hours. Some of the steps were
aggregating data, calculating item difficulty, determining threshold, and evaluation. The
first step is to perform data aggregation. We collect data from the Answer Log and Move
Log tables to be aggregated in an aggregation table according to the design. However,
the parameters we use here are only time-related parameters, including avg_duration,
max_duration, min_duration, stdev_duration, avg_move, and total_move. However,
considering the processing time, we chose three main parameters to compare, namely
avg_duration, max_duration, and total_move.

The second step is to calculate item_difficulty. We use the equation from IRT to
calculate the item difficulty. Then, we assign labels to it using the inference method of fuzzy
logic. Following the completion of the conventional tests by the students, the answer log
was used in the RT-based guessing model. The guessing model proposed in this study only
uses one parameter, namely time. Further analysis on the answer log data indicated several
different behaviours exhibited by the students in giving responses to the presented items.
These behaviours occurred due to the duration of the test (90 min), which is long for a
multiple-choice test that consists of 40 items. The first behaviour exhibited by the students
was that several students used the remaining time to reconsider doubtful responses after
they had given responses to all the items. The second behaviour exhibited by the students
was that several students spent a lot of time reading items that they deemed difficult, then
they skipped the item without giving a response. After giving responses to the other items,
the students then came back to the items they deemed difficult and gave a quick response.

228

Information 2023, 14, 422

Due to these exhibited behaviours, we investigated the use of several parameters to define
RT in the proposed guessing model. The first parameter that we used to define RT was the
time spent by the students to initially read an item and give a response, which we named
duration. The second parameter was the accumulation of time spent on an item even after
giving a response, which we named total move. The last parameter, named max time, was
derived from the duration parameter, which was the longest time spent to initially read
an item and give a response among all the students. We compared the performance of the
guessing model with the use of these different parameters.

Table 3 shows the evaluation matrix of threshold determination for the SPM course
and SE course. At a glance, the accuracy value of SE course is higher than that of SPM
course. This difference is because the number of students taking the exam is not the same.
There are more students in the SPM course compared to students in the SE course. This
certainly affects the accuracy of the model. The more samples, the greater the potential for
outlier behaviour. Therefore, outlier detection [20] is necessary to reduce bias.

Table 3. Evaluation of Threshold Determination Methods.

Couse Parameter Method Accuracy Precision Recall F1

Software Project
Management

(SPM)

avg_duration

Common k-second 66.57% 16.67% 5.27% 8.34%

Surface 65.32% 16.67% 9.60% 13.78%

Normative 67.01% 18.85% 4.33% 7.04%

Modified k-second 68.36% 16.88% 2.44% 4.27%

total_move

Common k-second 71.14% - 0.00% -

Surface 71.03% 0.00% 0.00% -

Normative 71.14% - 0.00% -

Modified k-second 71.14% - 0.00% -

max_duration

Common k-second 69.62% 26.67% 03.01% 05.41%

Surface 68.58% 28.44% 05.84% 09.69%

Normative 70.11% 28.89% 02.45% 04.51%

Modified k-second 70.87% 39.13% 01.69% 03.25%

Software Engineering
(SE)

avg_duration

Common k-second 84.72% 16.67% 1.96% 3.51%

Surface 84.72% 16.67% 1.96% 3.51%

Normative 83.33% 17.86% 4.90% 7.69%

Modified k-second 85.28% 16.67% 0.98% 1.85%

total_move

Common k-second 85.83% - 0.00% -

Surface 85.83% - 0.00% -

Normative 85.83% - 0.00% -

Modified k-second 85.83% - 0.00% -

max_duration

Common k-second 85.83% 50.00% 0.98% 1.92%

Surface 85.83% 50.00% 0.98% 1.92%

Normative 85.13% 27.27% 2.94% 5.31%

Modified k-second 85.83% - 0.00% -

Each table displays the evaluation matrix of our proposed methods compared to
other threshold determination methods. In addition, each table is compared with various
aggregation parameters. In general, the guessing model that used the modified k-seconds
method to determine the RT threshold outperformed the other models in terms of accuracy.
In the SPM course, using the avg_duration, the accuracy was 68% aggregation parameter,

229

Information 2023, 14, 422

outperforming the other methods. Meanwhile, on the SE course, the accuracy was 85%,
outperforming the other methods. Further analysis of modified k-seconds method revealed
that the model performed better with the use of the total move and max time parameters.
With the use of the total move parameter, the model achieved a higher accuracy. However,
this model obtained a recall value of 0. This indicates that the model was unable to detect
rapid-guessing behaviour. As a result of the recall metric having a value of 0, the precision
and F1 score values were not able to be calculated.

Furthermore, the evaluation of the models based on the F1 score metric revealed
that the guessing model that used the surface features method along with the guessing
model that used the normative method to determine the RT threshold achieved the best
performance. Further analysis of these two models revealed that the performance of both
models was more stable with the use of the duration parameter.

Our experiments show that our proposed method, modified k-second, has superior ac-
curacy compared to other methods in both courses. In addition, this study also proves that
there is a difference in accuracy along with the difference in aggregation techniques. Aggre-
gation using total_move has higher accuracy than using avg_duration or max_duration
parameters. Therefore, further research needs to try other aggregation parameters, one
of which is sum_duration. However, when viewed from the F1 score evaluation, the
best method is the surface feature. Although in terms of accuracy, modified k-second
recorded the highest value, this method has a very low recall value, because the count of
students who guessed is very little (data imbalance). This causes the model to be biased,
so that the model cannot properly accommodate class with little data [21]. For further
research, several techniques need to be conducted to handle data imbalance, such as mod-
ifying preprocessing techniques, algorithmic approaches, cost sensitivity, and ensemble
learning [21].

5. Conclusions

Assessment is used to measure students’ abilities with the aim of selecting students
for new admissions, measuring the level of understanding of post-learning material, and
as a determinant of graduation. However, the results of the assessment may be invalid be-
cause the students cheated or rapidly guessed the answer to the question. Rapid-guessing
behaviour is a phenomenon where students answer items rapidly without serious thought.
Several researchers have conducted studies on how to detect rapid-guessing behaviour by
analysing processing time with a certain threshold. However, existing methods have no
developed and corrected time threshold determination utilising IRT features and consid-
ering variations in data aggregation. Therefore, this study aims to combine the k-second
method with IRT features to recognize the difficulty level of each question and utilise
multiple data aggregation methods to distinguish rapid-guessing behaviour and solution
behaviour. We compared the proposed method and the data aggregation technique. Some
of the aggregation techniques we used include average, sum, and maximum. Then, the
model is evaluated using accuracy, precision, recall, and F1 score parameters.

This study proves that the correction of threshold determination that we proposed,
modified k-second, succeeded in detecting guessing with an accuracy better than the other
methods. In SPM courses, modified k-second has an accuracy of 68.36%, superior to other
methods using the avg_duration parameter. This research also proves that the selection of
aggregation techniques also greatly affects the level of accuracy. Total move is an aggregation
parameter that has high accuracy. Meanwhile, average duration is an aggregation parameter
that has lower accuracy. However, when viewed from the F1 score evaluation, the best
method is the surface feature. Although in terms of accuracy, modified k-second recorded
the highest value, this method has a very low recall value, because the count of students
who guessed is very little (data imbalance). This causes the model to be biased, so that the
model cannot properly accommodate class with little data. For further research, several
techniques need to be conducted to handle data imbalance, such as modifying preprocessing
techniques, algorithmic approaches, cost sensitivity, and ensemble learning.

230

Information 2023, 14, 422

Author Contributions: Conceptualization, U.L.Y. and A.N.P.B.; methodology, U.L.Y. and A.N.P.B.;
software, A.N.P.B.; validation, A.N.P.B. and M.A.; formal analysis, M.A. and E.P.; investigation,
A.N.P.B.; resources, A.N.P.B.; data curation, M.A. and E.P.; writing—original draft preparation,
M.A.; writing—review and editing, E.P.; visualization, M.A.; supervision, U.L.Y. and E.P.; project
administration, U.L.Y.; funding acquisition, U.L.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Institut Teknologi Sepuluh Nopember (ITS) for WCP-Like
Grant Batch 2, grant number 1855/IT2/T/HK.00.01/2022.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, M.A., upon reasonable request.

Acknowledgments: This work is part of the “i-assessment project”, an adaptive testing-based test
application.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

Notation and Acronym
RA Response accuracy
RT Response time
RTE Response time effort
IRT Item response theory
SE Software engineering
SPM Software project management
bi Item difficulty
Ni The number of examinees that submitted a response item i
n f i The number of examinees that were unable to submit (false answer) a response to item i
l Student’s ability
i Rasch model

References
1. Scottish Qualifications Authority Guide to Assessment; Scottish Qualifications Authority: Glasgow, UK, 2017; pp. 3–9.
2. Kennedy, K.J.; Lee, J.C.K. The changing role of schools in Asian societies: Schools for the knowledge society. In The Changing Role

of Schools in Asian Societies: Schools for the Knowledge Society; Routledge: Oxfordshire, UK, 2007; pp. 1–228.
3. Hwang, G.J.; Sung, H.Y.; Chang, S.C.; Huang, X.C. A fuzzy expert system-based adaptive learning approach to improving

students’ learning performances by considering affective and cognitive factors. Comput. Educ. Artif. Intell. 2020, 1, 100003.
[CrossRef]

4. Hwang, G.-J. A conceptual map model for developing intelligent tutoring systems. Comput. Educ. 2003, 40, 217–235. [CrossRef]
5. Peng, S.S.; Lee, C.K.J. Educational Evaluation in East Asia: Emerging Issues and Challenges; Nova Science Publishers: Hauppauge, NY,

USA, 2009.
6. Schnipke, D.L. Assessing Speededness in Computer-Based Tests Using Item Response Times. Ph.D. Thesis, Johns Hopkins

University, Baltimore, MD, USA, 1995.
7. Wise, S.L. Rapid-Guessing Behavior: Its Identification, Interpretation, and Implications. Educ. Meas. Issues Pract. 2017, 36, 52–61.

[CrossRef]
8. Demars, C.E. Changes in Rapid-Guessing Behavior Over a Series of Assessments. Educ. Assess. 2007, 12, 23–45. [CrossRef]
9. Setzer, J.C.; Wise, S.L.; van den Heuvel, J.R.; Ling, G. An Investigation of Examinee Test-Taking Effort on a Large-Scale Assessment.

Appl. Meas. Educ. 2013, 26, 34–49. [CrossRef]
10. Pastor, D.A.; Ong, T.Q.; Strickman, S.N. Patterns of Solution Behavior across Items in Low-Stakes Assessments. Educ. Assess.

2019, 24, 189–212. [CrossRef]
11. Silm, G.; Must, O.; Täht, K. Test-taking effort as a predictor of performance in low-stakes tests. Trames 2013, 17, 433–448. [CrossRef]
12. Wise, S.L.; Kong, X. Response time effort: A new measure of examinee motivation in computer-based tests. Appl. Meas. Educ.

2005, 18, 163–183. [CrossRef]
13. Lin, C.K. Effects of Removing Responses With Likely Random Guessing Under Rasch Measurement on a Multiple-Choice

Language Proficiency Test. Lang. Assess. Q. 2018, 15, 406–422. [CrossRef]
14. Wise, S.L.; Ma, L.; Kingsbury, G.G.; Hauser, C. An investigation of the relationship between time of testing and test-taking effort.

Natl. Counc. Meas. Educ. 2010, 1–18. Available online: https://eric.ed.gov/?id=ED521960 (accessed on 12 June 2023).

231

Information 2023, 14, 422

15. Vermunt, J. Latent Class Modeling with Covariates: Two Improved Three-Step Approaches. Political Anal. 2017, 18, 450–469.
[CrossRef]

16. Bakk, Z.; Vermunt, J.K. Robustness of stepwise latent class modeling with continuous distal outcomes. Struct. Equ. Model. 2016,
23, 20–31. [CrossRef]

17. Lee, Y.H.; Jia, Y. Using response time to investigate students’ test-taking behaviors in a NAEP computer-based study. Large-Scale
Assess. Educ. 2014, 2, 8. [CrossRef]

18. Ebel, R.L.; Frisbie, D.A. Essentials of Educational Measurement, 5th ed.; Prentice-Hall of India Private Limited: New Delhi, India,
1991; ISBN 0-87692-700-2.

19. Purushothama, G. Introduction to Statistics. In Nursing Research and Statistics; Jaypee Brothers Medical Publishers (P) Ltd.: New
Delhi, India, 2015; p. 218. [CrossRef]

20. Singh, K.; Upadhyaya, S. Outlier Detection: Applications And Techniques. IJCSI Int. J. Comput. Sci. Issues 2012, 9, 307.
21. Ali, H.; Najib, M.; Salleh, M.; Saedudin, R.; Hussain, K. Imbalance class problems in data mining: A review. Indones. J. Electr. Eng.

Comput. Sci. 2019, 14, 1552–1563. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

232

Citation: Shahbazian, R.; Trubitsyna,

I. DEGAIN: Generative-Adversarial-

Network-Based Missing Data

Imputation. Information 2022, 13, 575.

https://doi.org/10.3390/

info13120575

Academic Editor: Peter Revesz

Received: 20 October 2022

Accepted: 8 December 2022

Published: 12 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

DEGAIN: Generative-Adversarial-Network-Based Missing
Data Imputation
Reza Shahbazian *,† and Irina Trubitsyna *,†

Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria,
87036 Rende, Italy
* Correspondence: reza.shahbazian@unical.it (R.S.); i.trubitsyna@dimes.unical.it (I.T.)
† These authors contributed equally to this work.

Abstract: Insights and analysis are only as good as the available data. Data cleaning is one of the
most important steps to create quality data decision making. Machine learning (ML) helps deal
with data quickly, and to create error-free or limited-error datasets. One of the quality standards for
cleaning the data includes handling the missing data, also known as data imputation. This research
focuses on the use of machine learning methods to deal with missing data. In particular, we propose
a generative adversarial network (GAN) based model called DEGAIN to estimate the missing values
in the dataset. We evaluate the performance of the presented method and compare the results with
some of the existing methods on publicly available Letter Recognition and SPAM datasets. The
Letter dataset consists of 20,000 samples and 16 input features and the SPAM dataset consists of
4601 samples and 57 input features. The results show that the proposed DEGAIN outperforms the
existing ones in terms of root mean square error and Frechet inception distance metrics.

Keywords: machine learning; data cleaning; missing data; data imputation; generative networks

1. Introduction

Data cleaning is the process of fixing or removing incorrect, corrupted, incorrectly
formatted, duplicate, or incomplete data within a dataset. There are many factors for data
to be duplicated or mislabeled, especially when multiple data sources are combined. If
data are incorrect, outcomes and algorithms are unreliable, or even the results are incorrect.
The exact steps in the data cleaning process is highly dependent on the dataset; however, it
is possible to establish a generalized conceptual data cleaning process [1,2] as described in
the following:

1. Removing duplicate or irrelevant data: When datasets from multiple sources, clients,
etc., are combined, the chance of duplicate data creation increases. Additionally, in
some analyses, the irrelevant data could also be removed. Any information that does
not pertain to the issue that we are attempting to solve is considered irrelevant.

2. Fixing structural errors: Structural errors occur when conventions, typos, or incorrect
capitalization is observed due to the measurement or data transfer. For instance, if “N/A”
and “Not Applicable” both appear, they should be analyzed as the same category.

3. Filtering unwanted outliers: If an outlier proves to be irrelevant for analysis or is a
mistake, it needs to be removed. Some outliers represent natural variations in the
population, and they should be left as is.

4. Handling missing data: Many data analytic algorithms cannot accept missing values.
There are a few methods to deal with missing data. In general, missing data rows
are removed or the missing values are estimated according to the existing data in the
dataset. These methods are also known as data imputation.

5. Data validation and quality assurance: After completing the previous steps, it is
needed to validate the data and to make sure that the data have sufficient quality for
the considered analytics.

Information 2022, 13, 575. https://doi.org/10.3390/info13120575 https://www.mdpi.com/journal/information233

Information 2022, 13, 575

In this paper, we study the algorithms that are capable of handling the missing data as
an important step of data cleaning. Different reasons can lead to missing values during the
data collection phase, including, but not limited to, the faulty clinical data registration of
patients [3], and sensor damages [4]. One basic method to handle this problem is to remove
incomplete data. However, removing the data can diminish the number of samples when
the dataset contains many samples with missing values [5]. Therefore, many researchers
have tried to employ efficient and effective algorithms to handle the missing values. The
effect of the missing data handling methods mainly depends on the missing mechanism.
The missing data are categorized as follows [6]:

• Missing completely at random (MCAR): It means that the probability of missing
data does not depend on any value of attributes.

• Missing at random (MAR): Meaning that the probability of missing data does not
depend on its own particular value, but on the values of other attributes.

• Not missing at random (NMAR): Meaning that the missing data depend on the
missed values.

In general, the missing data handling methods could be categorized as data deletion,
statistical methods, and machine learning (ML) based approaches. Among the ML based
algorithms, generative adversarial networks (GANs) have attracted many researchers in
recent years. The GAN has many applications, mostly with a focus on generating synthetic
data. The missing value estimation could be considered synthetic data generation. There-
fore, it is possible to use such networks in handling the missing data problem. However,
the performance of the algorithms is dependent on many variables, such as data type, for
instance, if the data belong to the category of an image, clinical dataset, energy dataset, etc.
Accordingly, many variations of the GAN are introduced in the literature.

In this study, we conduct a literature review on missing data handling. We present
the fundamentals of GAIN [7], a GAN-based algorithm and propose an improved version
of GAIN called DEGAIN. In our method, we improve the GAIN by applying the idea of
network deconvolution [8]. Convolutional kernels usually re-learn redundant data because
of the strong correlations in many image-based datasets. The deconvolution strategy is
proven to be effective on images; however, it has not been applied to the GAIN algorithm.
DEGAIN is capable of removing the data correlations. We evaluate the performance of the
proposed DEGAIN with the publicly available Letter Recognition dataset (Letter dataset,
for short) and SPAM dataset. In particular, we use root mean square error (RMSE) and
Frechet inception distance (FID) metrics and compare the performance of the proposed
DEGAIN with the GAIN, the auto-encoder [9] and the MICE [10] algorithms.

The remainder of this paper is organized as follows: In Section 2, we shortly review
the related works. In Section 3, we introduce the system model with mathematical relations
and describe the proposed DEGAIN algorithm. The performance evaluation is presented
in Section 4. Finally, Section 5 concludes the paper.

2. Related Works

In this section we start with a brief overview of incomplete information management
perspectives. Next, we focus our attention on the techniques that replace missing values
with the concrete ones and provide a brief review of the existing literature on the missing
data handling problem.

2.1. Incomplete Information

Incomplete information arises naturally in many database applications, such as data in-
tegration, data exchange, inconsistency management, data cleaning, ontological reasoning,
and many others [11].

In some applications, it is natural to allow the presence of incomplete data in the
database and to support this circumstance using the proper approaches. The use of null
values is the commonly accepted approach for handling incomplete data, and the databases

234

Information 2022, 13, 575

containing null values are usually called incomplete database. Some recent proposals in this
direction can be found in [11–16].

Intuitively, whenever the database has a structure defined a priori (as in the case of
relational databases), some data (for instance, a fax number for a person) to be inserted
could be missing. This situation occurs according to the following situations:

1. We are sure that the value exists but it is unknown for us;
2. We are sure that this value does not exist;
3. We do not know anything.

In the relational databases, the unique value, Null, is used in all three situation
described before. However, in different applications null values are interpreted as unknown
values. In cases like this, we will consider the null values as missing values.

The recent study of [17] that analyzed the use of null values in widely used relational
database management systems evidenced that null values are ubiquitous and relevant in
real-life scenarios; however, the SQL features designed to deal with them cause multiple
problems. While most users accept the SQL behavior for simple queries (positive fragments
of relational algebra), many are dissatisfied with SQL answers for more complex queries
involving aggregation or negation.

For instance, in some circumscriptions, SQL can miss some tuples that should be
considered answers (false negatives); in other cases, SQL can return some tuples that
should not be considered answers (false positives). The first situation can be considered an
under-approximation of the results and is acceptable in different scenarios. The second one
is more critical, as the result might contain incorrect answers. The experimental analysis
in [18] showed that false positive are a real problem for queries involving negation. In the
observed situations, they were always present and sometimes they constituted almost 100%
of the answers.

Theoretical frameworks allow multiple null values in incomplete databases, and the
use of labeled nulls provides a more accurate depiction of unknown data. Certain answers,
i.e., query answers that can be found from all the complete databases represented by an
incomplete database, are a commonly accepted semantics in this paradigm. Unfortunately,
the computation of certain answers is a coNP-hard problem [19], which restricts the practical
usefulness. A possible solution is to use polynomial time evaluation algorithms computing
a sound but possibly an incomplete set of certain answers [11,18,20]. The corresponding
prototypes are described in [21,22].

In different applications, missing values cannot be tolerated and must be replaced by
the concrete values. It should be noted that in some research works, the authors use the
missing data as a feature for other decision makings such as error estimation. For instance
the authors in [23] estimate the physical-layer transmission errors in cable broadband
networks by considering the missing values. In one of the recent research studies, the
authors proposed a new multiple imputation MB (MimMB) framework for causal feature
selection with missing data [24]. However, in this paper, we assume that the missing
value needs to be handled for further processing activities. The available strategies for
handling missing data can be divided into traditional methods and ML-based algorithms,
summarized in Figure 1 and described below.

235

Information 2022, 13, 575

Missing Data
Handling

Machine Learning

Clustering

KNN-based

Gaussian
Process

Regression

Support
Vector

Machine
(SVM)

Long
Short-Term

Memory
(LSTM)

Decision
Tree-based

Random Forest

Auto-Encoder

Expectation
Maximization

(EM)

Generative
Adversarial

Network
(GAN)

Data Deletion

Statistical
Methods

Mean

Median

Mode

Principle
Component

Analysis
(PCA)

Singular
Value

De-composition
(SVD)

Figure 1. The categorization of traditional and machine learning based algorithms used for missing
data handling.

2.2. Traditional Methods

Some of known traditional methods on missing data handling, including the case
deletion, mean, median, mode, principal component analysis (PCA) and also singular value
decomposition (SVD) are described in the following:

• Case deletion (CD): In CD, missing data instances are omitted. The method has two
main disadvantages [25]:

1. Decreasing the dataset size;
2. Since the data are not always MCAR, bias occurs on data distribution and corre-

sponding statistical analysis.

• Mean, median and mode: In these methods, the missing data are replaced with
the mean (numeric attribute) of all observed cases. Median is also used to reduce
the influence of exceptional data. The characteristic of the original dataset will be
changed by using constants to replace missing data, ignoring the relationship among
attributes. As an alternative similar solution, we may use the mode of all known
values of that attributes to replace the missing data [25]. Mode is usually preferred for
categorical data.

• Principal component analysis (PCA): This method is well-known in statistical data
analysis and can be used to estimate the data structure level. Traditional PCA cannot
deal with the missing data. Upon the measure of variance within the dataset, data will
be scored by how well they fit into a principal component (PC). Since the data points
will have a PC (the one that best fits), PCA can be considered a clustering analysis.
Missing scores are estimated by projecting known scores back into the principal space.
More details can be found in [26].

236

Information 2022, 13, 575

• Singular value decomposition (SVD): In this method, data are projected into another
space where the attributes have different values. In the projected space, it is possible
to re-construct the missing data.

One of the main differences of the traditional methods and the machine learning
based methods to handle the missing data is the capability of the optimization in ML. The
ML-based methods follow an optimization process. ML-based methods can also extract the
relation between data points, and therefore more precise estimation on the missing values.

2.3. Machine Learning Methods

Machine learning algorithms are categorized into supervised, semi-supervised and
unsupervised [27]. Some of the main ML-based methods are clustering algorithms [28],
k-nearest neighbors (KNN) [29], Gaussian process regression (GPR) [30], support vector
machine (SVM) [31], long short-term memory (LSTM) [32], decision trees (DT) [33], random
forests (RF) [34], auto-encoder (AE) [35], expectation maximization (EM) [36] and generative
adversarial networks (GAN) [7].

• Clustering: These unsupervised learning algorithms group the samples with similar
characters. To replace the missing value, the distance between the centroid of clusters
with the sample is calculated, and the missing value of chosen cluster is replaced with
the obtained value [28]. The minimum distance could be calculated by a variety of
distance functions. One common function is l2-norm [37]. The l2-norm calculates the
distance of the vector coordinate from the origin of the vector space.

• k-nearest neighbors (KNN): This supervised algorithm replaces the missing value
by the mean (or weighted mean) of the k nearest samples. These neighbor samples
are identified by calculating the distance of the missing value with the available sam-
ples [28]. Currently, many variations of the original KNN have been proposed in the
literature, including the SKNN, IKNN, CKNN, and ICKNN. KNN-based algorithms
require heavy calculations to find the nearest neighbors [29]. Some of the common dis-
tance functions used in KNN are the Euclidean-overlap metric [38], Value Difference
Metric [38] and mean Euclidean distance [38].

• Gaussian process regression (GPR): GPR algorithms predict the output’s variance
based on non-linear probabilistic techniques. GPR-based algorithms estimate a prob-
abilistic region for the missing values instead of point estimation. The performance
of GRP-based algorithms is dependent on the used kernel function. This kernel is
chosen according to the data type and the effective algorithms might use a combina-
tion of different kernels. Similar to KNN, the GRP-based algorithms also need heavy
calculations, which is not the ideal case for large-scale datasets [30].

• Support vector machine (SVM): SVM has applications in both classification and
regression. SVM-based algorithms are non-linear and map the input to a high-
dimensional feature space. SVM-based algorithms also use different kernels such as
GPR [30].

• Long short-term memory (LSTM): LSTM is a deep learning (DL) algorithm. As a
subcategory of recurrent neural networks, DL shows improvement for time series
compared with conventional ML algorithms. The training phase of the LSTM might
be complex due to the vanishing gradient problem [32].

• Decision tree (DT): DT-based algorithms partition the dataset into groups of samples,
forming a tree. The missing data are estimated by the samples associated with the
same leaves of the tree. Different variations of DT algorithms have been proposed by
researchers, including the ID3, C4.5, CRAT, CHAILD and QUEST [39]. DT algorithms
do not require prior information on the data distribution [33].

• Random forest (RF): RF consists of multiple DTs in which the average value of the
DT estimation is considered the missing value [34].

• Auto-encoder (AE): As a class of unsupervised DL algorithms, AE learns a coded
vector from the input space. The AE generally consists of three layers, including the
input, hidden, and output. The objective in AE is to map the input layer to the hidden

237

Information 2022, 13, 575

layer and then reconstruct the input samples through the hidden vector. The elements
of input attributes can be missed randomly in the training phase. Therefore, it is
expected that the vectors in the input space consist of randomly missing vectors, and
the output layer has the complete set of vectors. Performing this task, the AE will learn
how to complete the missing data. Different versions of AEs have been introduced,
such as VAE, DAE, SAE, and SDAE [35].

• Expectation maximization (EM): EM algorithms are capable of obtaining the local
maximum likelihood of a statistical model. These models entail latent variables besides
the observed data and unknown parameters. These latent variables can be missing
values among the data. The EM-based algorithms guarantee that the likelihood will
increase. However, the price is slow convergence rate [36].

Generative Adversarial Networks

The supervised algorithms need labeled data for the optimization process. However,
the data collection for these algorithms is complex. Generative adversarial networks
(GANs) can produce synthetic data samples based on a limited set of the collected data.
GANs are semi-supervised learning algorithms and generate synthetic data with a small set
of collected data. The generated data are not the same as the collected data; however, they
are very similar. GANs are among the foremost essential research topic within different
research fields, including image-to-image translation, fingerprint localization, classification,
speech and language processing, malware detection and video generation [27].

In this section, we introduce the main structure of the GAN, firstly proposed by
Goodfellow et al. in 2014 [7]. The GAN consists of two components, the generator (G) and
the discriminator (D) as shown in Figure 2. In the training phase, the noise and real data are
the input and output of the G component. The dominant goal of the G is to alter the noise
to the realistic data. The D component learns to discriminate the real and generated data.

DG

Real Data

Noise

Real/Fake

Fake

Data

Figure 2. The general structure of GAN proposed by Goodfellow.

The training process of these two components are based on the pre-defined cost
function as presented in Equation (1).

min
G

max
D

L(D, G) = Ex∼pr(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z))] (1)

The G and D are two functions and can be denoted by a multi-layer perceptron (MLP).
The G learns to alter the noise z ∼ pz(z) to the real data. It can be represented by G(z;θg)
as a function, whose inputs are noise and outputs are generated synthetic data, in which
θg indicates the parameters of the G component. The D component learns to discern the
real and fake data. This component can be represented by D(x;θd), whose inputs are
real and synthetic data and outputs are class labels, in which θd indicates the parameters
of the D component. The cost function of the D and G components are presented in
Equations (2) and (3), respectively:

L(θd) = Ex∼pr(x)[log D(x;θd)] + Ez∼pz(z)
[
log(1− D(G(z;θg))

]
(2)

238

Information 2022, 13, 575

L(θg) = Ez∼pz(z)
[
log(1− D(G(z;θg))

]
(3)

where (θd and θg) are updated until convergence is reached. When the real and synthetic
data cannot be recognized by the D, the system has reached convergence. Mathematically
specking, the convergence occurs when D(x;θd) = 0.5. After the training phase, the G is
ready to be utilized for producing the synthetic samples.

3. Proposed Method
3.1. System Model

A GAN-based data imputing method, called generative adversarial imputation nets
(GAIN), was introduced in [7]. In GAIN, the generator component G takes real data
vectors, imputes the missing values conditioned on the really observed data, and gives a
completed vector. Then, the discriminator component D obtains a completed vector and
tries to determine which element is really observed and which one is synthesized. To learn
the desired distribution in the G component, some additional information is deployed
for the discriminator D in the form of a hint vector. The hint vector shows the pieces
of information about the missing quality of the real data to the D component, and D
concentrates its heed on the quality of imputation for particular missing values. In other
words, the hint vector assures the G component to be learned for generating data based on
the actual data distribution [7].

Convolution, which applies a kernel to overlapping sections shifted across the data,
is a crucial operation in many convolutional neural networks. Although utilizing CNN
to synthesize images is not required in GANs, it is frequently done in order to learn
the distribution of images [40]. The generator architecture is typically composed of the
following layers:

• Linear layer: The noise vector is fed into a fully connected layer, and its output is
reshaped into a tensor.

• Batch normalization layer: Stabilizes learning by normalizing inputs to zero mean
and unit variance, avoiding training issues, such as vanishing or exploding gradients,
and allowing the gradient to flow through the network.

• Up sample layer: Instead of using a convolutional transpose layer to up sample, it
mentions using upsampling and then applying a simple convolutional layer on top of
it. Convolutional transpose is sometimes used instead.

• Convolutional layer: To learn from up-sampled data, the matrix is passed through a
convolutional layer with a stride of 1 and the same padding as it is up sampled.

• ReLU layer: For the generator because it allows the model to quickly saturate and
cover the training distribution space.

• TanH Activation: TanH enables the model to converge more quickly.

Convolutional kernels are in fact relearning duplicate data because of the high correla-
tions in real-world data. The convolution makes the neural network training difficult. In
the following, we review the mathematical presentation of GAIN.

3.2. Problem Formulation

In a d-dimensional spaceX = X1× · · · ×Xd the X = (X1, . . . , Xd) is a random variable
taking values in X with distribution P(X). M = (M1, . . . , Md) is a random variable in
{0, 1}d. The X is called the data vector, and M is called the mask vector.

A new space X̃i = Xi ∪ {∗} is defined for i ∈ {1, . . . , d} where the start, ∗ does not
belong to any Xi, and represents an unobserved value. Defining X̃ = X̃1 × · · · × X̃d The
variable X̃ = (X̃1, . . . , X̃d) ∈ X̃ is presented in Equation (4):

X̃i =

{
Xi, if Mi = 1
∗, otherwise

(4)

239

Information 2022, 13, 575

where M indicates which components of X are observed. The M could be recovered from
X̃. In missing data re-construction, n independent and identically distributed copies of X̃
are realized, denoted by x̃1, . . . , x̃n and defined in the dataset D = {(x̃i, mi)}n

i=1, where mi

is simply the recovered realization of M corresponding to x̃i. The goal is to estimate the
unobserved values in each x̃i. The samples are generated according to P(X|X̃ = x̃i), that is,
the conditional distribution of X given X̃ = x̃i for each i to fill in the missing data points
in D.

The generator, G, takes as input X̃, M and a noise variable Z, and outputs X̄, where
X̄ is a vector of synthetic data. Let G : X̃ × {0, 1}d × [0, 1]d → X be a function, and
Z = (Z1, . . . , Zd) be d-dimensional noise (independent of all other variables) [7]. The
random variables X̄, X̂ ∈ X are defined by Equations (5) and (6).

X̄ = G(X̃, M, (1−M)� Z) (5)

X̂ = M� X̃ + (1−M)� X̄ (6)

where � denotes element-wise multiplication. X̄ corresponds to the vector of estimated
values and X̂ corresponds to the completed data vector.

The discriminator, D will be used to train G. However, unlike the standard GAN where
the output of the generator is either real or synthetic, the output of GAIN is comprised of
some components that are real and some that are synthetic. Rather than identifying that an
entire vector is real or synthetic, the discriminator attempts to distinguish which are real
(observed) or synthetic. The mask vector M is pre-determined by the dataset. Formally, the
discriminator is a function D : X → [0, 1]d with the i-th component of D(x̂) corresponding
to the probability that the i-th component of x̂ was observed. The D is trained to maximize
the probability of correctly predicting M and G is trained to minimize the probability of D
predicting M. The quantity V(D, G) is defined as presented in Equation (7).

V(D, G) = EX̂,M,H

[
MT log D(X̂, H) + (1−M)T log

(
1− D(X̂, H)

)]
, (7)

where log is an element-wise logarithm and dependence on G is through X̂. The goal of
GAIN is presented in Equation (8):

min
G

max
D

V(D, G). (8)

where the loss function L : {0, 1}d × [0, 1]d → R is defined as presented in Equation (9):

L(a, b) =
d

∑
i=1

[
ai log(bi) + (1− ai) log(1− bi)

]
. (9)

3.3. Proposed Algorithm: DEGAIN

The proposed DEGAIN is originated from GAIN [7]. The main idea behind the
DEGAIN is to use deconvolution in the generator and discriminator. Convolution applies
a kernel to overlapping regions shifted across the data. However, because of the strong
correlations in real-world data, convolutional kernels are in effect re-learning redundant
data. This redundancy makes the neural network training challenging. The deconvolution
can remove the correlations before the data are fed into each layer. It has been shown in [8]
that the deconvolution can be efficiently calculated at a fraction of the computational cost
of a convolution layer. The deconvolution strategy has proven to be effective on images;
however, it has not been applied to GANs, including the GAIN.

Given a data matrix XN×F, where N is the number of samples and F is the number of
features, the covariance matrix is calculated as Cov = 1

N (X− µ)T(X− µ).
An approximated inverse square root of the covariance matrix could be calculated as

D = Cov−
1
2 multiplied with the centered vectors (X− µ) · D. Accordingly, the correlation

240

Information 2022, 13, 575

effects could be removed. If computed perfectly, the transformed data have the identity
matrix as covariance: DT(X− µ)T(X− µ)D = Cov−0.5 · Cov · Cov−0.5 = I.

The process to construct X and D ≈ (Cov + ε · I)−
1
2 is presented in Algorithm 1,

where ε · I improves the stability. The deconvolution operation is further applied via matrix
multiplication to remove the correlation between neighboring pixels. The deconvolved data
are then multiplied with w. The architecture of proposed method is depicted in Figure 3.
When the training phase is completed, the G component is able to impute the dataset. There
are two main loops for updating the parameters of the G and D components in Algorithm 1.
First, batch samples from the noise and samples of real data are presented to the inner loop
for updating the parameters of the D component. The cost function of the D component is
then calculated by the given samples. Then, the D component’s parameters are updated
based on the initiated rate.

G D
random noise matrix

1

0

1

hint generator

real data with

missing values

real data matrix

mask matrix

imputed matrix

by generator

hint matrix

estimated probabilites

Figure 3. The general structure of DEGAIN.

Algorithm 1 (The DEGAIN algorithm: deconvolution and then training).

1: Input: N channels of input features [x1, x2, . . . , xN], Number of epochs e;
Number of Iteration of inner loop n; Updating rates (αg and αd);

2: for i ∈ {1, . . . , N} do
3: Xi = im2col(xi)
4: X = [X1, . . . , XN]
5: X = Reshape(X)
6: Cov = 1

M XtX %[xi] has M rows

7: D ≈ (Cov + ε · I)− 1
2

Training of G and D
8: for (i = 0; i < e; i++) do
9: for j = 0; j < n; j++ do

10: batch samples from noise Z ∈ RB×L ∼ pz(z);
11: batch samples from noise X ∈ RB×M;
12: L(θd) =

1
B ΣB

b=1logD(Xb, θd) + log(1− D(G(2Zb), θg));
13: ξd = δ

δθd
L(θd);

14: θ
j+1
d = θt

d + αdξd
15: batch samples from noise Z ∈ RB×L ∼ pz(z);
16: L(θd) =

1
B ΣB

b=1log(1− D(G(Zb, θg)))

17: ξd = δ
δθd

L(θd);

18: θi+1
g = θt

g − αgξg;

4. Performance Evaluation

We evaluate the performance of the DEGAIN and compare the results with MICE [10],
GAIN [7] and AE [9]. Multivariate imputation by chained equations (MICE) has emerged in
addressing missing data. The chained equations approach can handle variables of varying
types, for instance, the continuous or binary as well as complexities such as bounds. MICE
is also a software package presented in R [10]. In multiple imputation algorithms such as

241

Information 2022, 13, 575

AE, multiple copies of the dataset are replaced by slightly different imputed values in each
copy. In this method, the variability is modeled into the imputed values [9].

We perform each experiment 10 times, and within each experiment, we use 5-cross
validations in terms of RMSE, which directly measures the error distance, and FID, which
takes the distribution of imputed values into account. We use the Letter and SPAM datasets
for comparing algorithms, and samples are missed with the rate of 20%.

4.1. Evaluation Metrics

In our experiments we consider the root-mean-square error (RMSE) and Frechet
inception distance (FID) metrics to evaluate the performance of the proposed DEGAIN
on handling the missing data. It should be noted that besides RMSE and FID, several
other metrics are introduced in the literature including, but not limited to, mean absolute
error (MAE), area under ROC curve or AUC score and F1-score. These metrics perform
in different datasets or operations. For example, the F1-score is mostly used for binary
classification. MAE is similar to RMSE; however, RMSE is more common in the literature.
Comparing our method with GAIN, AE and MICE, we chose the related RMSE and FID
metrics. Remember that RMSE is used for continuous values and measures the error
between real values and imputed values for an incomplete dataset. FID converts a group
of imputed samples to a feature space using a particular inception net layer. Assuming
the converted layer as a continuous multivariate Gaussian distribution, the mean and
covariance are predicted for both the imputed and real samples.

The mathematical presentation is shown in Table 1, where N̂ is the number of missing
values, yi is the real missing value, and ŷi is the imputed value. Additionally, the m1 and
m2 denote the mean of the real and imputed data, respectively. C1 and C2 indicate the
covariance of real and imputed data, respectively.

Table 1. Evaluation metrics used to assess the proposed algorithm’s performance.

Metric Formula

RMSE RMSE =

√
1
N̂

N̂
∑

i=1
(yi − ŷi)

2

FID d2((m1, C1)(m2, C2)) = ‖m1 −m2‖2
2 + Tr(C1 + C2 − 2(C1C2)

1
2)

4.2. Dataset

Here we use the Letter and SPAM datasets. Letter is publicly available in the UC Irvine
Machine Learning Repository and can be accessed through https://archive.ics.uci.edu/
(accessed on 20 July 2022). In this dataset, the objective is to identify each of a large number
of black-and-white rectangular pixel displays as one of the 26 capital letters in the English
alphabet. The character images are based on 20 different fonts and each letter within these
20 fonts is randomly distorted to produce a file of 20,000 unique stimuli. Typically, the first
16,000 items are used for training and then the resulting model is capable of predicting the
letter category for the remaining 4000. The SPAM dataset consists of 4601 samples and 57
input features. In this dataset, the goal is to predict spam emails based on input features.
SPAM is also publicly available at http://archive.ics.uci.edu/ml/datasets/Spambase/
(accessed on 10 August 2022). These datasets have no missing values and therefore, we use
a 20% rate of missed samples.

4.3. Results

The evaluation are performed in Google Colab, on Python 3 with 12 GB of RAM. We
used the base codes of GAIN [7] publicly accessible in https://github.com/jsyoon0823/
GAIN (accessed on 10 July 2022). We modified the code and added the deconvolution to the
Generator and Discriminator. The results are presented in Table 2 and illustrated in Figure 4.
As can be seen in Table 2 and Figure 4, the performance of GAN-based algorithms, both

242

Information 2022, 13, 575

GAIN and DEGAIN perform much better than the auto-encoder (AE) [9] and MICE [10].
The DEGAIN is slightly better compared with the GAIN. The main advantage of the
DEGAIN could be explored running on correlated large datasets of images. Therefore, as
expected, the GAIN and proposed DEGAIN can be the most profitable in image datasets.

Table 2. Performance evaluations of proposed DEGAIN, GAIN [7], AE [9], MICE [10] in terms of
RMSE and FID metrics.

Proposed DEGAIN GAIN [7] AE [9] MICE [10]

RMSE (Letter dataset) 0.096 0.101 0.142 0.166

Normalized FID
(Letter dataset) 0.492 0.513 0.826 1

RMSE (SPAM dataset) 0.047 0.050 0.064 0.068

Normalized FID
(SPAM dataset) 0.898 0.946 0.973 1

Figure 4. Illustration of evaluation results on RMSE and FID metrics for proposed DEGAIN, GAIN [7],
AE [9] and MICE [10] on Letter dataset.

5. Conclusions

In this paper, we studied the traditional and machine learning based algorithms
that could handle the missing data problem in data cleaning process. We reviewed the
architecture of generative adversarial network (GAN) based models and their performance
on missing data handling. We proposed an algorithm called DEGAIN to estimate the
missing values in the dataset. The DEGAIN is based on the known GAIN algorithm
that is already used in missing data imputation. We added deconvolution to remove
the correlation between data. The evaluated performance of the presented method was
performed on publicly available datasets, called Letter and SPAM. The RMSE and FID
metrics on the results confirmed that the GANs are effective on re-constructing the missing
values compared with the earlier auto-encoder or MICE algorithms. Additionally, the
proposed DEGAIN performed well and improved the performance of GAIN. We believe
that the main advantages of DEGAIN could be explored running on large image datasets,
although it showed improvement even on our chosen datasets. This paper addresses one of
many aspects of data quality: missing information. Inconsistent information, which could
be handled using methods such as arbitration [41], is still an open issue that GAN-based
methods and the proposed DEGAIN need to address in future works.

243

Information 2022, 13, 575

Author Contributions: Conceptualization, R.S. and I.T.; Methodology, I.T.; Software, R.S.; Supervision,
I.T.; Validation, R.S. and I.T.; Visualization, R.S.; Writing—original draft, R.S. and I.T.; Writing—review
and editing, R.S. and I.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by MISE Project True Detective 4.0.

Data Availability Statement: The datasets used in this paper are publicly available at https://
archive.ics.uci.edu/ml/datasets/letter+recognition (accessed on 20 July 2022) and http://archive.ics.
uci.edu/ml/datasets/Spambase/ (accessed on 10 August 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AE Auto-Encoder
CD Case Deletion
DT Decision Tree
DL Deep Learning
EM Expectation Maximization
FID Frechet Inception Distance
GRP Gaussian Process Regression
GAN Generative Adversarial Network
KNN k-Nearest Neighbors
LSTM Long Short-Term Memory
ML Machine Learning
MAE Mean Absolute Error
MAR Missing At Random
MCAR Missing Completely At Random
MLP Multi-Layer Perceptron
NMAR Not Missing At Random
PCA Principal Component Analysis
RF Random Forest
RMSE Root Mean Square Error
SVD Singular Value Decomposition
SVM Support Vector Machine

References
1. Ilyas, I.F.; Chu, X. Data Cleaning; Morgan & Claypool: San Rafael, CA, USA, 2019.
2. O’Brien, A.D.; Stone, D.N. Yes, you can import, analyze, and create dashboards and storyboards in Tableau! The GBI case. J.

Emerg. Technol. Account. 2020, 17, 21–31. [CrossRef]
3. Luo, Y. Evaluating the state of the art in missing data imputation for clinical data. Briefings Bioinform. 2022, 23, bbab489.

[CrossRef] [PubMed]
4. Li, Y.; Bao, T.; Chen, H.; Zhang, K.; Shu, X.; Chen, Z.; Hu, Y. A large-scale sensor missing data imputation framework for dams

using deep learning and transfer learning strategy. Measurement 2021, 178, 109377. [CrossRef]
5. Platias, C.; Petasis, G. A Comparison of Machine Learning Methods for Data Imputation. In Proceedings of the 11th Hellenic

Conference on Artificial Intelligence, Athens, Greece, 2–4 September 2020; pp. 150–159.
6. Austin, P.C.; White, I.R.; Lee, D.S.; van Buuren, S. Missing data in clinical research: A tutorial on multiple imputation. Can. J.

Cardiol. 2021, 37, 1322–1331. [CrossRef] [PubMed]
7. Yoon, J.; Jordon, J.; Schaar, M. Gain: Missing data imputation using generative adversarial nets. In Proceedings of the International

Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5689–5698.
8. Ye, C.; Evanusa, M.; He, H.; Mitrokhin, A.; Goldstein, T.; Yorke, J.A.; Fermüller, C.; Aloimonos, Y. Network deconvolution. arXiv

2019, arXiv:1905.11926.
9. Gondara, L.; Wang, K. Multiple imputation using deep denoising autoencoders. arXiv 2017, arXiv:1705.02737.
10. Van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2011, 45, 1–67.

[CrossRef]
11. Greco, S.; Molinaro, C.; Trubitsyna, I. Approximation algorithms for querying incomplete databases. Inf. Syst. 2019, 86, 28–45.

[CrossRef]
12. Calautti, M.; Console, M.; Pieris, A. Benchmarking approximate consistent query answering. In Proceedings of the 40th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Virtual Event, China, 20–25 June 2021; pp. 233–246.

244

Information 2022, 13, 575

13. Calautti, M.; Caroprese, L.; Greco, S.; Molinaro, C.; Trubitsyna, I.; Zumpano, E. Existential active integrity constraints. Expert Syst.
Appl. 2021, 168, 114297. [CrossRef]

14. Calautti, M.; Greco, S.; Molinaro, C.; Trubitsyna, I. Query answering over inconsistent knowledge bases: A probabilistic approach.
Theor. Comput. Sci. 2022, 935, 144–173. [CrossRef]

15. Calautti, M.; Greco, S.; Molinaro, C.; Trubitsyna, I. Preference-based Inconsistency-Tolerant Query Answering under Existential
Rules. Artif. Intell. 2022, 312, 103772. [CrossRef]

16. Calautti, M.; Greco, S.; Molinaro, C.; Trubitsyna, I. Querying Data Exchange Settings Beyond Positive Queries. In Proceedings of
the 4th International Workshop on the Resurgence of Datalog in Academia and Industry (Datalog-2.0), Genova, Italy, 5 September
2022; Volume 3203, pp. 27–41.

17. Toussaint, E.; Guagliardo, P.; Libkin, L.; Sequeda, J. Troubles with nulls, views from the users. Proc. VIDB Endow. 2022,
15, 2613–2625. [CrossRef]

18. Guagliardo, P.; Libkin, L. Making SQL queries correct on incomplete databases: A feasibility study. In Proceedings of the 35th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, San Francisco, CA, USA, 26 June–1 July 2016;
pp. 211–223.

19. Abiteboul, S.; Kanellakis, P.C.; Grahne, G. On the Representation and Querying of Sets of Possible Worlds. Theor. Comput. Sci.
1991, 78, 158–187. [CrossRef]

20. Libkin, L. SQL’s three-valued logic and certain answers. ACM Trans. Database Syst. (TODS) 2016, 41, 1–28. [CrossRef]
21. Fiorentino, N.; Greco, S.; Molinaro, C.; Trubitsyna, I. ACID: A system for computing approximate certain query answers over

incomplete databases. In Proceedings of the International Conference on Management of Data (SIGMOD), Houston, TX, USA,
10–15 June 2018; pp. 1685–1688.

22. Fiorentino, N.; Molinaro, C.; Trubitsyna, I. Approximate Query Answering over Incomplete Data. In Complex Pattern Mining;
Springer: Berlin, Germany, 2020; pp. 213–227.

23. Hu, J.; Zhou, Z.; Yang, X. Characterizing Physical-Layer Transmission Errors in Cable Broadband Networks. In Proceedings of
the 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), Renton, WA, USA, 4–6 April 2022;
USENIX Association: Renton, WA, USA, 2022; pp. 845–859.

24. Yu, K.; Yang, Y.; Ding, W. Causal Feature Selection with Missing Data. ACM Trans. Knowl. Discov. Data 2022, 16, 1–24. [CrossRef]
25. Peng, L.; Lei, L. A review of missing data treatment methods. Intell. Inf. Manag. Syst. Technol 2005, 1, 412–419.
26. Folch-Fortuny, A.; Arteaga, F.; Ferrer, A. PCA model building with missing data: New proposals and a comparative study.

Chemom. Intell. Lab. Syst. 2015, 146, 77–88. [CrossRef]
27. Mirtaheri, S.L.; Shahbazian, R. Machine Learning: Theory to Applications; CRC Press: Boca Raton, FL, USA, 2022.
28. Nagarajan, G.; Babu, L.D. Missing data imputation on biomedical data using deeply learned clustering and L2 regularized

regression based on symmetric uncertainty. Artif. Intell. Med. 2022, 123, 102214. [CrossRef]
29. Emmanuel, T.; Maupong, T.; Mpoeleng, D.; Semong, T.; Mphago, B.; Tabona, O. A survey on missing data in machine learning. J.

Big Data 2021, 8, 1–37.
30. Ma, Y.; He, Y.; Wang, L.; Zhang, J. Probabilistic reconstruction for spatiotemporal sensor data integrated with Gaussian process

regression. Probabilistic Eng. Mech. 2022, 69, 103264. [CrossRef]
31. Camastra, F.; Capone, V.; Ciaramella, A.; Riccio, A.; Staiano, A. Prediction of environmental missing data time series by Support

Vector Machine Regression and Correlation Dimension estimation. Environ. Model. Softw. 2022, 150, 105343. [CrossRef]
32. Saroj, A.J.; Guin, A.; Hunter, M. Deep LSTM recurrent neural networks for arterial traffic volume data imputation. J. Big Data

Anal. Transp. 2021, 3, 95–108. [CrossRef]
33. Cenitta, D.; Arjunan, R.V.; Prema, K. Missing data imputation using machine learning algorithm for supervised learning. In

Proceedings of the 2021 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India,
27–29 January 2021; pp. 1–5.

34. Tang, F.; Ishwaran, H. Random forest missing data algorithms. Stat. Anal. Data Mining: Asa Data Sci. J. 2017, 10, 363–377.
[CrossRef] [PubMed]

35. Ryu, S.; Kim, M.; Kim, H. Denoising autoencoder-based missing value imputation for smart meters. IEEE Access 2020, 8, 40656–40666.
[CrossRef]

36. Nelwamondo, F.V.; Mohamed, S.; Marwala, T. Missing data: A comparison of neural network and expectation maximization
techniques. Curr. Sci. 2007, 93, 1514–1521.

37. Eirola, E.; Doquire, G.; Verleysen, M.; Lendasse, A. Distance estimation in numerical data sets with missing values. Inf. Sci. 2013,
240, 115–128. [CrossRef]

38. Santos, M.S.; Abreu, P.H.; Wilk, S.; Santos, J. How distance metrics influence missing data imputation with k-nearest neighbours.
Pattern Recognit. Lett. 2020, 136, 111–119. [CrossRef]

39. Rokach, L.; Maimon, O. Decision trees. In Data Mining and Knowledge Discovery Handbook; Springer: New York, NY, USA, 2005;
pp. 165–192.

40. Benjdira, B.; Ammar, A.; Koubaa, A.; Ouni, K. Data-efficient domain adaptation for semantic segmentation of aerial imagery
using generative adversarial networks. Appl. Sci. 2020, 10, 1092. [CrossRef]

41. Revesz, P.Z. On the semantics of arbitration. Int. J. Algebra Comput. 1997, 7, 133–160. [CrossRef]

245

MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Information Editorial Office
E-mail: information@mdpi.com

www.mdpi.com/journal/information

Disclaimer/Publisher’s Note: The title and front matter of this reprint are at the discretion of the

Guest Editor. The publisher is not responsible for their content or any associated concerns. The

statements, opinions and data contained in all individual articles are solely those of the individual

Editor and contributors and not of MDPI. MDPI disclaims responsibility for any injury to people or

property resulting from any ideas, methods, instructions or products referred to in the content.

Academic Open
Access Publishing

mdpi.com ISBN 978-3-7258-2753-4

