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The scientific landscape is constantly evolving, marked by groundbreaking advance-
ments in imaging, sensing, and machine learning that expand the realms of possibility
across various disciplines. Today, deep learning-based computing technology plays a piv-
otal role in enhancing the quality and reliability of image recognition data. For instance, in
the realm of autonomous driving, deep learning-based fusion of data from front camera sen-
sors and radars enables the significant improvement of sensor performance. Additionally,
deep learning-driven computer vision technologies contribute to enhancing smartphone
camera applications, enabling functionalities such as face recognition, panorama photogra-
phy, depth/geometry detection, and high-quality magnification and detection. This Special
Issue, entitled “Deep Learning Technology and Image Sensing”, encompasses all topics
related to applications utilizing deep learning-based image and video sensing technologies.
In this editorial overview, we present eleven papers that are published in this Special Issue
that demonstrate innovative approaches and methodologies spanning diverse domains.
We divide the domains into applications across medical imaging and healthcare, image
enhancement, object detection, and innovation in image sensing technologies.

Several papers in the domain of medical imaging and healthcare applications focus
on medical imaging and its applications in healthcare. From liver segmentation and brain
tumor classification to the automated detection of optic cup and disc edges in glaucoma
patients, these studies demonstrate the power of deep learning frameworks in improving
the diagnostic accuracy and clinical decision-making.

Liver segmentation in MRI images poses challenges due to the variable characteristics
and lack of HoU-based preprocessing. To tackle this problem, in [1], the authors explore
state-of-the-art segmentation networks on T1-weighted MRI scans from a public dataset. A
novel cascaded network is proposed, achieving superior results with a DSC of 95.15% and
IoU of 92.10% on expert-labeled liver masks. The framework demonstrates high accuracy
and holds promise for medical imaging applications.

Rapid and accurate brain tumor detection is crucial for patient health. Despite recent
advancements in AI methods, precise diagnoses remain challenging. The work in [2],
entitled “A Novel Approach for Brain Tumor Classification Using an Ensemble of Deep and
Hand-Crafted Features”, proposes a novel approach using an ensemble of hand-crafted
features and deep features from VGG16. The ensemble improves discrimination, achieving
a 99% accuracy when classified using SVM or KNN. This method demonstrates reliability
for MRI-based tumor detection, offering robustness and potential real-world deployment.
Validation through cross-tabulated data confirms the model’s good performance.

The study in [3], entitled “Identifying the Edges of the Optic Cup and the Optic Disc
in Glaucoma Patients by Segmentation”, focuses on automating the detection of optic cup
and optic disc edges in fundus images of glaucoma patients, crucial for early diagnosis.
Utilizing a modified U-Net model, we evaluate the segmentation performance across mul-
tiple datasets. The postprocessing techniques utilized enhance visualization for improved
cup-to-disc ratio analysis. The results demonstrate a promising segmentation efficiency,
which is particularly beneficial for clinical applications.

Advancements in image enhancement techniques are evident in the papers exploring
image-to-image translation in astronomy, super-resolution imaging, and depth map super-
resolution. These studies leverage sophisticated algorithms to enhance the image quality,
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extract meaningful information, and address challenges in various imaging modalities.
In the work of [4], entitled “Hubble Meets Webb, Image-to-Image Translation in Astron-

omy”, the authors explore the translation of Hubble Space Telescope (HST) data into James
Webb Space Telescope (JWST) imagery using various techniques. The proposed method
emphasizes the importance of image registration and introduces uncertainty estimation to
enhance the translation reliability. This approach aids in preparatory strategies for JWST
observations, offering predictive insights when JWST data are unavailable, making it the
first attempt at sensor-to-sensor image translation in astronomy.

Meanwhile, the study in [5], entitled “Kernel Estimation Using Total Variation Guided
GAN for Image Super-Resolution”, addresses artifacts in image super-resolution. The
authors propose a Total Variation Guided KernelGAN focusing on structural details. Their
experimental results demonstrate this method’s effectiveness in accurately estimating ker-
nels, leading to improved super-resolution algorithm performance.

Another approach for super-resolution is descibed in the study entitled “Fully Cross-
Attention Transformer for Guided Depth Super-Resolution” [6], which presents a fully
transformer-based network for depth map super-resolution, addressing issues in existing
guided super-resolution methods. This approach utilizes a cascaded transformer module
with a novel cross-attention mechanism, seamlessly guiding the color image into the depth
upsampling process. Leveraging a window partitioning scheme ensures linear complexity
for high-resolution images and extensive experiments demonstrate the superiority of the
proposed method over state-of-the-art approaches.

Besides super-resolution, a low-light image enhancement technique has also been
proposed in the work in [7], entitled “Low-Light Image Enhancement Using Hybrid Deep-
Learning and Mixed-Norm Loss Functions”. The authors propose a method for enhancing
low-light images using a hybrid deep learning network and mixed-norm loss functions.
Their approach includes a decomposition-net to separate reflectance and illuminance, an
illuminance enhance-net to improve illuminance while reducing artifacts, and a chroma-
net to mitigate color distortion. YCbCr channels are utilized for training and restoration
to account for RGB channel correlations. Mixed-norm loss functions enhance stability
and reduce blurring by reflecting reflectance, illuminance, and chroma properties. The
experimental results show significant subjective and objective improvements compared to
state-of-the-art deep-learning methods.

The integration of artificial intelligence and object detection plays a pivotal role in
driving innovation across different fields. The papers in this category present real-time
action sensing and detection systems, weakly supervised object detection methods, and
novel approaches for brain–computer interfaces. These studies underscore the importance
of leveraging AI and ML techniques to automate tasks, improve efficiency, and enable
the development of new applications.

The work in [8] (“A Real-Time Subway Driver Action Sensing and Detection Based
on Lightweight ShuffleNetV2 Network”) proposes a lightweight two-stage model for the
real-time monitoring of subway drivers’ actions using surveillance cameras. Ensuring
subway train safety relies heavily on the actions of drivers. To this end, the model utilizes
MobileNetV2-SSDLite for driver detection and an enhanced ShuffleNetV2 network for
action recognition, achieving a superior performance over existing models and meeting
runtime requirements for practical deployment.

Meanwhile, the authors of [9] (“Instance-Level Contrastive Learning for Weakly Su-
pervised Object Detection”) propose instance-level contrastive learning (ICL) in order to
mine reliable instance representations from images via contrastive loss.They introduce
instance-diverse memory updating (IMU) to capture diverse instances and memory-aware
instance mining (MIM) to enhance object instance retrieval. Additionally, memory-aware
proposal sampling (MPS) is utilized to balance positive–negative sample learning. The
experimental results demonstrate significant gains in the detection accuracy compared to
the baselines, showcasing the effectiveness of the approach.

The final set of papers in this Special Issue explores groundbreaking innovations in
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sensing and imaging technologies. From non-line-of-sight imaging using echolocation to
quick-response eigenface analysis schemes for brain–computer interfaces, these studies
push the boundaries of what is possible in remote sensing, imaging, and neurotechnology.
By introducing novel methodologies and leveraging cutting-edge technologies, these pa-
pers pave the way for future advancements in sensing and imaging applications.

The work in [10], entitled “Deep Non-Line-of-Sight Imaging Using Echolocation”,
introduces a novel approach to non-line-of-sight (NLOS) imaging using acoustic equip-
ment inspired by echolocation. This paper offers a promising alternative to optical NLOS
imaging. Unlike optical systems, which rely on diffused light, our method leverages echoes
to visualize hidden scenes. Traditional acoustic NLOS methods suffer from noise and long
acquisition times. To address this, the authors propose simultaneous echo collection and
deep learning models to overcome interference challenges. The model successfully recon-
structs hidden object outlines, offering a promising alternative to optical NLOS imaging.

The work in [11], entitled “A Novel Quick-Response Eigenface Analysis Scheme for
Brain–Computer Interfaces”, introduces a novel quick-response eigenface analysis (QR-
EFA) scheme for motor imagery in brain–computer interfaces (BCIs). Leveraging EEG
signals in a standardized QR image domain, they combine EFA with a convolutional neural
network (CNN) for neuro image classification. To address non-stationary BCI data and
non-ergodic characteristics, they employ effective neuro data augmentation during train-
ing. QR-EFA enhances the classification accuracy by maximizing similarities in domain,
trial, and subject directions. QR-EFA enhances the classification accuracy by maximizing
similarities in domain, trial, and subject directions. The experimental results on BCI compe-
tition datasets demonstrate significant performance improvement over previous methods,
achieving classification accuracies of 97.87%.

Lastly, the authors of [12] aim to utilize technology to develop systems capable of
recognizing Arabic Sign Language (ArSL) through deep learning techniques. They propose
a hybrid model designed to capture the spatio-temporal aspects of sign language, including
both letters and words. This hybrid model incorporates a convolutional neural network
(CNN) to extract spatial features from sign language data and a Long Short-Term Memory
(LSTM) network to capture spatial and temporal characteristics for handling sequential
data, such as hand movements.

In conclusion, the diverse range of papers presented in this editorial overview high-
lights the interdisciplinary nature of research in deep learning-based imaging and sensing.
These studies not only showcase the latest advancements in this area of research but also
provide valuable insights and methodologies that have the potential to impact various
fields, from healthcare and astronomy to robotics and beyond.
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Article

A Novel Quick-Response Eigenface Analysis Scheme for
Brain–Computer Interfaces
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Abstract: The brain–computer interface (BCI) is used to understand brain activities and external
bodies with the help of the motor imagery (MI). As of today, the classification results for EEG 4 class
BCI competition dataset have been improved to provide better classification accuracy of the brain
computer interface systems (BCIs). Based on this observation, a novel quick-response eigenface
analysis (QR-EFA) scheme for motor imagery is proposed to improve the classification accuracy for
BCIs. Thus, we considered BCI signals in standardized and sharable quick response (QR) image
domain; then, we systematically combined EFA and a convolution neural network (CNN) to classify
the neuro images. To overcome a non-stationary BCI dataset available and non-ergodic characteristics,
we utilized an effective neuro data augmentation in the training phase. For the ultimate improvements
in classification performance, QR-EFA maximizes the similarities existing in the domain-, trial-, and
subject-wise directions. To validate and verify the proposed scheme, we performed an experiment
on the BCI dataset. Specifically, the scheme is intended to provide a higher classification output
in classification accuracy performance for the BCI competition 4 dataset 2a (C4D2a_4C) and BCI
competition 3 dataset 3a (C3D3a_4C). The experimental results confirm that the newly proposed QR-
EFA method outperforms the previous the published results, specifically from 85.4% to 97.87% ± 0.75
for C4D2a_4C and 88.21% ± 6.02 for C3D3a_4C. Therefore, the proposed QR-EFA could be a highly
reliable and constructive framework for one of the MI classification solutions for BCI applications.

Keywords: motor imagery classification; eigenface analysis; quick response neuro images; image
data augmentation; standardized and sharable quick response eigenfaces

1. Introduction

The brain–computer interface (BCI) is a continuously developing technology that
implement the brain’s thought to manipulate external bodies without thinking through the
human nerves to the hands or feet [1,2]. Thus, BCI systems are intended to generate new
communication channels for other human parts [3,4]. There are two types of justifications
available. One is uni-directional communication from a brain to a computer and the other
is bi-direction communication between a brain and computer, as well as brain-to-brain.
The current state of art technology for the BCI is bi-direction BCI technology or brain to
brain interface (B2BI) [5]. The B2BI functions via on one hand as a brain–computer interface
(BCI) to retrieve messages and, on the other hand, a computer-brain interface (CBI) [6].
The communication paths that do not go through human’s nerves could help people with
physical disabilities by controlling objects, such as a wireless mouse [7]. The signals that are
generated from the human brain are used to implement the systems, and they are extremely
complex; such signals are recorded in electronic system, i.e., an electroencephalogram
(EEG) [8]. In the beginning of EEG research, EEG measurement used invasive and painful
methods, in which several electrodes were inserted directly into the human skin [9]. The
non-invasive methods of attaching the electrodes to the human scalps have been used
because they are non-painful, user-friendly, and economical ways to obtain EEG signals [10].

Sensors 2022, 22, 5860. https://doi.org/10.3390/s22155860 https://www.mdpi.com/journal/sensors5
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In particular, the classification of motor imagery (MI) is researched because EEG signals are
shown when the right and left hands are related, respectively [11].

In the BCI systems, raw EEG signals need to be processed with filtering, extraction, and
classification techniques [12]. We describe the whole BCI workflow based on the OSI 7-layer
model; the OSI 7-layer model is a kind of the communication model. Therefore, it could
be useful for readers to understand the feature extraction and classification algorithms in
the signal processing workflow. In OSI 7-layer model, there are two types of disciplines.
One is a datagram for a layered network hierarchy, and the other is a conceptual model
for multistage processing. In the layered hierarchy model, there are the physical, medium
access control, network, transport, or routing, etc. In the conceptual model for multistage
processing, the focus is on multistage processing, such as the input, data acquisition,
preprocessing, decision/detection, and hypothesis test. In this article, based on the previous
literature of IEEE [11], we compared the similarity between the BCI dataflow and OSI 7-
layer in the conceptual model for better understanding of the signal progressing in BCIs.
According to N. Khadijah et al., in the previous related work [13], we used the open system
interconnection (OSI) layer, as shown in Figure 1. In the BCI model, we used a layer
architecture staring from data acquisition (layer 1), going through pre-processing (layer 2),
approaching at feature extraction (layer 3), and then ending at classification (layer 4).
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Figure 1. The BCI layer model compared to OSI network model.

In the signal processing steps, feature extraction was used; generally, a filter block
is applied before feature extraction [14–16]. There are several feature extraction methods,
such as wavelet transform, short-time Fourier transform (STFT), common spatial pattern
(CSP), regularized CSP (RCSP), common spatio-spectral pattern (CSSP), common sparse
spectral spatial pattern (CSSSP), etc. [8]. As a representative visualization method, short
time Fourier transform (STFT), spectrogram, wavelet, etc., were used [17]. Among those
methods, the CSP is one of the most widely accepted feature extraction methods [18].
However, the CSP method has overfitting problems when data are sparse in the domain.
The CSP method is also noise sensitive, so it is difficult to classify multi-class EEG signals.
Blankertz et al. focused how a CSP filter affected the EEG signals [19]. The combination of
CSP has been used by many researchers, including Lotte and Guan [20]. Their idea was
used to regularize CSP and substitute the normal CSP. The limitation is that the researchers
were required to use the full set of data for the training and testing sections. The training
data should have a larger number of data than the test data. The full set of data that were
used, especially the test data, may lead to an overestimation in performance because all
the information is being used. To classify the MI for a subject, the algorithms required the
use of other subjects, as well. Therefore, the algorithms are not suitable for classifying a
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single subject dataset. The extended algorithm of the CSP was used by Lemm et al. [10].
This algorithm is known as CSSP. The CSSP method introduced a delay to the system, so
that the spectral filter was included in the system. The simulation results, except for six
datasets, showed better accuracy than CSP.

In current EEG classification studies, linear discriminant analysis (LDA), support
vector machine (SVM), deep learning, etc., were used [21]. Deep learning (DL) is a ma-
chine learning (ML) method used in various fields, such as the voice and video processing
fields [22]. The DL works successfully on non-linear and non-stationary data, and it works
efficiently even in the fields that are difficult for humans to distinguish [23]. The convo-
lutional neural network (CNN) is one of the DL algorithms that is widely used for data
classification [24]. Due to CNN characteristics, there are attempts to apply CNN for EEG
signal classification. To use the CNN method specialized for image classification, various
methods to visualize EEG signal are being studied [25]. Visualization of these EEG signals
was used to help improve the classification performance of DL models using CNN algo-
rithms. Compared to those traditional classification algorithms, such as LDA and SVM, the
deep learning model requires the use of large numbers of the dataset [25]. Therefore, the
limited numbers of the dataset need to be increased using a data augmentation technique.
Considering the finite training data in BCIs, Huang et at.al proposed a data augmentation
scheme via a CNN [26]. The data augmentation has accomplished by mixing and recom-
bining the images. Lee et al. convers the lingering problem of zero-training by utilizing a
proposed CNN model connected to P300 information [27].

In the EFA method, the calculated eigenface coefficient was used as a feature for data
classification. In this case, it is possible to reconstruct the pictures using the eigenface coef-
ficients. We proposed a novel EEG signals classification method, called quick response EFA
(QR-EFA) utilizing deep knowledge in standardized and sharable QR image formulations.
The QR-EFA is subjected in the EEG signal preprocessing stage. Image reconstruction or
data augmentation using QR-EFA has been shown to generate QR image features suitable
for CNN algorithms. To overcome the constraints, such as the trial numbers and limited
BCI competition dataset in EEG, we proposed an innovative classification technique that
was organically designed for EFA and CNN based on data augmentation. After learning
the impulse response filter for the BCI competition IV dataset 2a (C4D2a_4c) [28] and
BCI competition III dataset 3a (D3D3a_4c) [29], using a seven-layer simple CNN model
(one input and output, one convolution, one pooling, and three fully connected), the test
EEG data classification performance was measured according to the transfer function. As
of today, the highest classification results for EEG 4 classes on BCI competition IV 2a is
85.4% [1]. Based on this observation, our proposed QR-EFA method could provide higher
accuracy performance of MI classification for competition dataset in BCIs.

2. Materials and Principles

The proposed EFA algorithm is a feature extraction method from EEG data that builds
up neuro images, emphasizing the discriminability of classes; the feature is a kind of tool.

The QR-EFA method was formulated based on the previous EFA result. From egien-
faces derived from the previous EFA, we will provide the description. First, the eigenface
is asymmetric in horizontal and vertical directions, and the image size is excessively bigger
than the size that CNN can process. Second, in BCI competition dataset, there are many
discrepancies in data sizes among number of classes, trials, and subjects. Based on this
fact, we proposed QR eigenface to provide a symmetrical, standardized, and sharable sizes
in images. In the framework level, QR-EFA consists of the parts, such as EFA, eigenface
restructuring, data augmentation, and CNN. Figure 2 shows the relationship between the
previous proposed EFA and proposed QR-EFA.
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Figure 2. Overall collaboration between QR-EFA and EFA.

The EFA is different PCA image recognition type for dimension reduction [30]. The
fundamental EFA method is depicted in Figure 3. The EEG data were preprocessed. As
shown in steps 1–3, EEG data were converted to image data to build up eigenface. From
eigenface, coefficients, which we called features, were extracted for training and testing
procedures. Afterwards, the classes were classified for the next step.

EEG data

Preprocessing

Convert
EEG data to image 

data

Build up
eigenface

Extraction

Classification

EFA

Step 1

Step 2

Step 3

Figure 3. The EFA algorithm procedure.

Let us define the next step of the data interpretation after EFA procedure. We also
used the same data interpretation techniques for classification.

Step 1: The three-dimensional (3D) converted EEG image data could be separated as
time, channels, and trials. The data were recognized in each separated 3D converted EEG
image data, and the generated data could be differentiated, depending on the viewpoint
for each 3D direction.

Step 2: From the differentiated 3D EEG image data, the covariance matrix must be
obtained. Afterwards, we could determine and build up the eigenfaces.

Step 3: The training data were projected to obtain the requested features. The dataset
was composed of, or represented with, ‘time (S)’, ‘channels (C)’, and ‘trials (N)’, as described
in Equation (1).

Dataset = time (S) × channels(C) × trials (N) (1)

EFA is a method to obtain the differentiated EEG data with different directions. The
EEG image data with the time, channels, and trials were combined into the dataset, which
is an infinite number (N) of the image data with the same manner as that illustrated in
Equation (2). In other words, we consider 3D data in two-dimensional (2D) images by
combining or concatenating ‘time’ and ‘channel’ data together as in T = SC (time × channel).
In fact, the derived tentative dataset, T is composed of ‘time’ and ‘channel’ components in
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series. The desired dataset or image matrix was obtained by rearranging the component
T in horizontal direction and component N in vertical direction as shown in Figure 4.
Consequently, Equation (2) shows the final dataset or 2D images.

 

Figure 4. Data analysis on the viewpoint direction.

Dataset = TN where T = SC (2)

The eigenface was then obtained from differentiated 3D EEG image, and newly ob-
tained image data Φ and value Ψ need to be calculated.

Φk =Datasetk − Ψk, k = 1, 2, . . . , N (3)

The covariance matrix extracted from the differentiated 3D EEG image data without
the mean value is obtained in Equation (4).

C =
1
L

L

∑
k=1

ΦkΦT
k (4)

Let us define the eigenvectors of X with eigenvalues of L of the covariance matrix C
after solving the following equation CX = kX. Among the vectors extracted from this matrix,
the k vectors were chosen. The eigenfaces must be extracted with only training eigenface
Гtrain. Subsequently, the training features were extracted from the training eigenface and
data. The extracted eigenface coefficients were projected in Equation (5).

Ωtrain= Φtrain Γtrain (5)

The weight coefficient Ωtrain was obtained to be a training feature. Equation (6) shows
how to obtain the feature coefficient Ωtest. The eigenspace was trained, and the EEG test
data can be classified as shown in Equation (6).

Ωtest= Γtrain Φtest (6)

3. QR-EFA

3.1. Idea Formulation for QR-EFA

The description of the procedure and flowchart for QR-EFA is shown. The proposed
QR-EFA procedure is given below.

1. Perform the process with channel direction.
2. Original image eigenface formulation.
3. Confine the number of eigenfaces, up to the number of classes required and trials in

common among subjects.
4. Adjust eigenface size horizontally with number of classes and vertically with number

of trials.
5. Modify image eigenface formulation by multiplying a brightness factor with steps 3

and 4.

9
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6. Obtaining training coefficients by projecting train images to the eigenface.
7. Implement QR neuro train images with the coefficients using the result of step 6.
8. Obtaining testing coefficients by projecting test images to the eigenface.
9. Implement QR neuro test images with the coefficients using the result of step 8.
10. Neuro image augmentation to diversify the limited neuro train images.
11. CNN training process with the results produced, using the result of step 10.

Figure 5 shows the flowchart of the procedure for QR-EFA, described above.

Figure 5. Overall flowchart for QR-EFA (solid line) including EFA (dashed line). Cross reference in
the above data flowchart for step 1~11.

3.2. Data Augmentation for the Limited Training Data

After we finished the EFA method for the C4D2a_4C and C3D3a_4C datasets, the
features were obtained. Based on the features, QR code-like brain neuro images will be
formulated. There are two different image types. One is for the training process, and the
other is for the testing process. The amount of training data set is definitely limited in BCI
competitions, so we need a data augmentation process to multiply the limited images to the
desired number of training images. To augment the limited training images, we adapted
a brightness control for the input training images, according to the following probability
model. For the given normal probability density distribution (PDF), with mean (μ) and
standard deviation (σ) x ~ N (μ, σ2), the statistical random data x[n] will be obtained as
follows in Equation (7) [31].

PDF : f (x) = 1√
2πσ

e−(x−μ)2/2σ2
,−∞ < x < ∞

x = μ + σ
(7)

The MATLAB code for training image data augmentation by Gaussian blur (brightness
and contrast implication or image bacteria culturing per pixel) is as follows (Box 1).
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Box 1. The MATLAB code for training image data augmentation by Gaussian brightness control.

rand_img = 1 + (0.7).* randn(is1,is2);
% 1/0.7 (example of is1,is2,is3: 18,16,30)
timg = trimages(:,:,j).* rand_img;
% neuro image culture by multiplication

The data augmentation per pixel was demonstrated to enhance the performance
of deep learning approaches by reducing overfitting problems. The overfitting or high
variance in ML models are produced if the dataset used to “teach” the model is greater
than the testing accuracy. The overfitting problems can be generated when the model
has very high errors in the testing dataset. According to the data science literature, CNN
needs a huge number of neuro images for the model to be trained effectively [32]. This
proposed technique could be helpful for increasing the performance of the model, thereby
reducing overfitting problems from the EEG data. Most BCI competition datasets for
classification and object detection datasets have a few hundred to thousands of neuro
images. Considering the rule of larger numbers or the invariance property of CNN, the
objects can even be classified when they are visible in different sizes, orientations, or
potentials on channels. Hence, we can take the limited neuro competition dataset of images
and transform the objects into different sizes by controlling for brightness, scaling in size,
rotating in orientation, or zooming in and out. Through this type data augmentation, we
can create intense and diverse neuro image datasets with the extent of variations.

3.3. Covolution Neural Network for QR-EFA

Compared to conventional classifiers, such as LDA, SVM, and multilayer perceptron
(MLP), the convolution neural network (CNN) is the most widely used multi-layered neural
network ML method for image classification [19]. A general CNN method learns an input
image through convolution, pooling, and fully connected layers, so it acts as a classifier [33].
The convolutional layer is composed of feature maps, with several different weight vectors;
each feature map is calculated from the input image. The CNN-based image classification
models, including ResNet and DarkNet, are widely known [33]. Using an appropriate
ML model and neural network structure, according to the target images to be classified,
is very important for obtaining high classification accuracy [34]. To better show that EEG
images are easily classified using the QR-EFA method, a simple CNN model using only
one convolutional layer, a pooling layer, and a fully connected layer was used.

In Figure 6, a simple one convolution and mean pooling are shown to reduce a
computation time and minimize the task burden. The size of input images is 12 × 10 and
then it goes through a convolution layer with kernel or filter size of 7 × 1. After the layer
process is done, it would be 6 × 10 output; then, it goes through 2 × 2 mean and max
pooling layers. After processing a fully connected layer, we finally obtained the output
with the class classification output for BCI dataset.

Figure 6 shows a CNN model that classifies the EEG images converted by the QR-EFA
method. The convolution layer of the CNN model, which consists of sixteen filters of
size 9 × 3 and a pooling layer of size 2 × 2, was used. Using softmax and cross entropy
methods, two class classification results are obtained. As hyper parameters, the learning
rate was set to 0.0001, and a batch size of 512 and momentum optimizer were used. The
CNN model was trained for sufficient learning, and training was set to finish early to
prevent overfitting problems.
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Figure 6. The CNN for neuro images in QR-EFA.

4. Experimental Results

The QR codes are widely used for quick response as matrix barcodes. Just as with
QR codes, we also obtained the images, so we called them QR images. After performing
QR image data, we need further steps. In obtaining QR images for training and testing
images, there are three factors to consider for better classification, in order to have accurate,
robust, and reliable results. First, let us define some terminologies, such as the domain-wise
similarity among domains, trial-wise similarity among trials, and subject-wise similarity
among subjects. Domain-wise similarity is the degree of similarity that indicates some com-
mon characteristics on the eigenfaces between the training and testing domains. Trial- and
subject-wise similarity were degrees of similarity among trials and subjects, respectively.
We could recognize the similarity from QR images. Our proposed QR-EFA algorithm maxi-
mizes the similarities, with the respect to domains, trials, and subjects. As result, it could
generate unique features per domain, so it is possible to discriminate the classes efficiently.

The background regarding EEG datasets from BCI competitions needs to be explained.
To validate the proposed method, we used two EEG datasets, such as the BCI competition
III dataset 3a (C3D3a_4C) and BCI competition IV dataset 2a (C4D2a_4C), for four classes.
Specifically, C3D3a_4C is dataset from three subjects or participants, and C4D2a_4C is
dataset from nine subjects, which are the off-line, publicly available, and open accessible
dataset of the BCI competition database. Hence, this article focuses on the C3D3a_4c and
C4D2a_4C. Table 1 shows the detailed number of trials per subject for the C3D4a_4C used
in this article.

Table 1. The C3D3a_4C dataset composed of three subjects and predefined number of
experimental trials.

Subject
Class (# of Trials)

Left (L) Right (R) Foot (F) Tongue (T)

1 45 45 45 45
2 30 30 30 30
3 30 30 30 30

The detailed information of the property for C3D3a_4C is given as follows (Box 2).
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Box 2. The detailed information of the property for C3D3a_4C.

comment1: ‘dataset: C3D3a_4C’
date: ‘2021.12.28’
madeby: ‘4C’
affiliation: ‘KNIT’
window: ‘offset: 3.5, length: 2’
subject: ‘subject #: 1’
prefiltering: ‘off’
s: 250 (sample/sec)
c: [1 × 60 cell]
x: [500 × 60 × 180 double]
y: [1 × 180 double]

The MI classification EEG images extracted with QR-EFA were classified for C3D3a_4C.
The data augmentation using Gaussian distribution was used for sufficient training of
the ML model and prevention of overfitting. From 10,800 augmented training images,
which come from the data augmentation of the original QR neuro images, in brightness
and without data augmentation, a total of 2592 non-augmented test images were used. As
a result of the final classification experiment, the accuracy was obtained for the test dataset
of 2592 sheets, as shown in Table 2.

Table 2. EEG analysis accuracy for C3D3a_4C using QR-EFA method.

Subjects

A1 A2 A3 Average

Accuracy
(%)

EFA_LDA,
two classes 52.22 46.67 63.33 54.07

QR-EFA 90.00 93.33 90.83 91.11

Figure 7 shows the examples of eigenfaces, formulated based on the QR code. Al-
though there are lots of QR-eigenfaces are available, we will confine only a small number of
eigenfaces, considering the number of classes and trials among the subjects. We chose the
eigefacecs reflecting the number of classes. We designed the first to left, second, right, the
third to feet, and the last to tongue classes. However, the order is subject to change as the
supervisory learning constrictions. This type of decision is related to the choice regarding
the approach between the supervised and unsupervised learning.

Figure 7. An original eigenface images of subjects for training data for 4 classes: left, right, feet, and
tongue after whitening (12 × 10: = 30 × 4) in C3D3a_4C.

Thus far, we obtained the training coefficients by projecting the training images to
the QR-eigenfaces and testing the coefficients by projecting the testing images to the QR-
eigenfaces. The next step is to conceive of new QR images for training and testing the
dataset. Subsequently, linear combinations of the QR eigenfaces, weighted by the relevant
coefficients, were used as QR images for training and testing data.

During the data augmentation process for overcoming the limited dataset problem
in the BCI competition, we modified the brightness of the recovered images based on the
Gaussian noise contamination equation. Although the grayscale and quantized images from
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the first to last appear similar, the real binary values of the images are different and unique,
and they can be used for classification. Because of ML or AI paradigm considerations, a
sufficiently large number of training images are needed to train CNNs and fine-tune the
logic. However, as the BCI training dataset and its QR images are finite and limited, we
need to amplify or diversify them by utilizing data augmentation in the brightness direction.
Figure 8 shows one of the EFA QR code implementation results after the brightness data
augmentation. Among four classes, considering its dominance and the activation region of
the brain, we only selected and data augmented four QR training images for the left and
tongue classes, as shown.

(a) 

(b) 

Figure 8. Some selected sample QR training images of data augmentation for the class of (a) left and
(b) tongue (12 × 10) in C3D3a_4C.

Because the BCI data are random signals, they must be treated in statistical signal-
processing domains. Figure 9 shows the typical neuro raw images considered for the
QR-EFA. The left image is for the first trial, and the right image is for the last trial.

Figure 9. Primitive raw images for EEG data signal for the selected first and last trials (80 × 60) in
C3D3a_4C.

Based on the QR-eigenfaces for left, right, feet, and tongue, we proposed considering
domain-, trial-, and subject-wise similarities. The detailed considerations are as follows.
First, subject-wide similarities among the subjects were checked. Second, domain-wise
similarity between the training and testing domains was considered. Finally, a trial-wise
similarity was investigated among the trials.
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Figure 10 shows the domain-wise similarity between the training and testing domains
for subject 1. Considering their importance and the degree of information, only the QR
images for subject 1 and trial 1 are shown among training or testing data and several trials.
There are many similarities between training and testing QR images. We observed the
trial-wise similarity of QR images between the first and last trials for subject 1. We also
examined subject-wise similarity of QR images between subjects in the same first trial. It
was confirmed that QR-EFA maximizes the three proposed similarities in domain, trials,
and subjects.

Figure 10. Training QR code realization of subject 1 at trial 1 for 4 classes: left, right, feet, and tongue
(12 × 10) in C3D3a_4C.

Using QR-EFA, a sample output of the CNN testing results for BCI competition III
dataset 3a (C3D3a_4C) is shown in Figure 11. As the number of epochs increases during
simulations, the cost or loss function decreases and reaches a limit.

Figure 11. Data graph of the CNN cost function evolution vs. number of epochs in C3D3a_4C.

The MATLAB code for a sample mean of C3D3a_4C data and its confidence interval,
when the sample size n = 10 is, as follows (Box 3).

The computation, simulation, verification, and validation on the proposed scheme
requires considerations of the confidence interval for the given number of trials (n) and
variance or standard deviations. Based on the nature of random seeds in statistical signal
processing, we consider a 95% confidence interval, due its variance and spread for data
augmentation, CNN layer initiations for kernel filters, and QR-eigenface selections for
training images.
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Box 3. The MATLAB code for a sample mean of C3D3a_4C.

% result set #1
x1(1) = 0.907143; x1(2) = 0.795238; x1(3) = 0.802381; x1(4) = 0.980952;
x1(5) = 0.919048; x1(6) = 0.859524; x1(7) = 0.921429; x1(8) = 0.904762;
x1(9) = 0.909524; x1(10) = 0.821429;
% result set #2
x1(1) = 0.857143; x1(2) = 0.930952; x1(3) = 0.928571; x1(4) = 0.926190;
x1(5) = 0.945238; x1(6) = 0.864286; x1(7) = 0.871429; x1(8) = 0.783333;
x1(9) = 0.928571; x1(10) = 0.952381;
SD1 = std(x1); % Standard deviation (SD)
SE1 = SD1/sqrt(length(x1)); % Standard error(SE)
ts1 = tinv([0.025 0.975],length(x1)−1);
% T-value/score for 95% CI (2.26)
CI1 = mean(x1) + ts1 * SE1;
% Confidence Intervals
>>mean(x1)
Ans = 0.8821
>>std(x1)
ans = 0.0602
>>CI1 % Confidence_Interval
CI1 = 0.8390 0.9252
>>CI1(2)-mean(x1) %Confidence Interval
Ans = 0.0431

From the above results, with a 95% confidence interval, the sample mean was estimated
to be 0.88, with a confidence interval of 0.0431. Note that, in this case, the Student’s t-
distribution is applicable for calculating the confidence interval and sample variance (s2),
because we do not have information regarding the variance or standard deviation (SD)
of the population distribution in BCI datasets (C3D3a_4C or C4D2a_4C both). Table 3
shows the 10 simulation results, as the random seeds changes uniformly for statistically
justification for confidence interval.

Table 3. Accuracy results of classification for 10 simulations, with changing random seeds uniformly
in C3D3a_2C.

# of Simulations
Subject (Failed/Trials)

Success Rate
1 2 3

1 26/180 15/120 19/120 0.857143
2 16/180 10/120 3/120 0.930952
3 11/180 13/120 6/120 0.928571
4 9/180 17/120 5/120 0.926190
5 5/180 12/120 6/120 0.945238
6 30/180 14/120 13/120 0.864286
7 27/180 9/120 18/120 0.871429
8 42/180 32/120 17/120 0.783333
9 10/180 15/120 5/120 0.928571
10 18/180 0/120 2/120 0.952381

To calculate a 95% confidence interval for the sample mean μ, an estimated coeffi-
cient value 2.26 was used [35]. Thus, the mean and confidence interval of accuracy were
88.21% ± 6.02%, with the confidence interval of 4.31, i.e., (83.90, 92.52). Consequently, the
probability for the same mean under the 95% confidence interval is given by Equation (8).
For a comparison, the latest and best classification accuracy reported thus far for EEG four
classes on BCI competition IV 2a was 85.4 [31].

P
(∣∣X − μ

∣∣ < 2.26σ/
√

n
)
= P

(∣∣∣∣X − μ

s/
√

n

∣∣∣∣ < 2.26
)
= 0.95 (8)
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Then, we compute the confidence interval using Equation (9).[
X − 2.26

s√
n

, X + 2.26
s√
n

]
= [83.90, 92.52] (9)

To validate and verify QR-EFA in a real dataset, with a comparison to C3D3a_4C, the
next section is for the result of C4D2a_4C. Table 3 shows the number of trials per subjects for
C4D2a_4C. The C4D2a_4C dataset is composed of nine subjects and the predefined number
of experimental trials. The number of trials for left, right, foot, and tongue classes in the
C4D2a_4C dataset, composed of nine subjects and the predefined number of experimental
trials, was 72.

The detailed information of the property for C4D2a_4C is given as follows (Box 4).

Box 4. The detailed information of the property for C3D2a_4C on MATLAB.

comment1: ‘dataset: C4D2a_4C’
date: ‘2021.02.12’
madeby: ‘4C’
affiliation: ‘KNIT’
window: ‘offset: 3.5, length: 2’
subject: ‘subject #: 1’
prefiltering: ‘off’
s: 250 (sample/sec)
y: [1 × 288 double]
x: [500 × 22 × 288 double]
c: [22 × 1 cell]

Using the designated CNN model, which is depicted in Figure 7, MI classification EEG
images extracted with QR-EFA were classified for C4D2a_4C. The accuracy was obtained
for the test dataset of 2592 sheets, as shown in Table 4.

Table 4. EEG analysis accuracy for C4D2a_4C, using QR-EFA method.

Subjects

1 2 3 4 5 6 7 8 9 Average

Accuracy
(%)

EFA_LDA,
two classes 53.47 52.08 55.55 55.55 54.16 45.13 58.33 47.72 51.38 52.55

QR-EFA 97.15 97.99 97.05 98.33 98.47 97.85 98.78 97.36 97.81 97.87

In Figure 12, the eigenfaces has been formulated. The eigenfaces reflecting the number
of classes were selected. Considering a supervisory learning limitation, we designed the
first to left, second, right, third to feet, and last to tongue classes.

Figure 12. An original eigenface images of subjects for training data for 4 classes: left, right, feet, and
tongue after whitening (18 × 16: = 72 × 4) in C4D2a_4C.

The training coefficients by projecting the training images to the QR-eigenfaces and
testing coefficients by projecting the testing images to the QR-eigenfaces were obtained. The
next step is to conceive of new QR images for the training and testing dataset. Afterwards,
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we will perform a liner combination of the QR-eigenface, depending on the relevant
coefficients. The results of the linear combination were the QR images for the training
and testing data. Figure 13 shows the results after brightness data augmentation in the
brightness direction. Among four classes, the selected and data augmented images for left
and tongue classes are shown.

(a) 

(b) 

Figure 13. Some selected sample QR training images of data augmentation for the classes of (a) left
and (b) tongue (18 × 16 in C4D2a_4C).

Figure 14 shows the typical neuro raw images. The left image was of the first trial
and the right was of the last trial for subject. First, we need to check the subject-wide
similarity among subjects. Secondly, we check the domain-wise similarity between training
and testing domain. Finally, we check the trial-wise similarity among trials.

Figure 14. Primitive raw images for EEG data signal for the selected first and last trials (50 × 50) in
C4D2a_4C.

Figure 15 shows the domain-wise similarity between training and testing domain for
subject 1 and trial 1. There were also similarities between the training and testing images.
Hence, we also maximized the similarities in the directions of domain, trials, and subjects.

Figure 15. Training QR code realization of subject 1 at trial 1 for 4 classes: left, right, feet, and tongue
(18 × 16) in C4D2a_4C.

In summary, it is clear that QR-EFA guarantees a distinguishable and discriminative
feature per class, as well as a higher similarity, with respect to domain-, trial-, and subject-
wise similarities. This unique novel scheme accelerates the improved accuracy in CNNs.
With QR-EFA, a sample output of CNN testing results for in C4D2a_4C is provided in
Figure 16. It also shows that the cost function reached the limit.
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Figure 16. Data graph of the CNN cost function evolution vs. number of epochs in C4D2a_4C.

The MATLAB code for a sample mean of in C4D2a_4C data and its confidence interval,
when the sample size n = 10 is, as follows (Box 5).

Box 5. The MATLAB code for a sample mean of in C4D2a_4C data.

% result set #1
x1(1) = 0.966435; x1(2) = 0.976852; x1(3) = 0.984954; x1(4) = 0.971065;
x1(5) = 0.969136; x1(6) = 0.983025; x1(7) = 0.986883; x1(8) = 0.985725;
x1(9) = 0.984182; x1(10) = 0.978395;
SD1 = std(x1); % Standard deviation (SD)
SE1 = SD1/sqrt(length(x1)); % Standard error(SE)
ts1 = tinv([0.025 0.975],length(x1)−1); % T-value/score for 95% CI (2.26)
CI1 = mean(x1) + ts1 * SE1; % Confidence Intervals
>>mean(x1)
Ans = 0.9787
>>std(x1)
ans = 0.0075
>>CI1 % Confidence_Interval
CI1 = 0.9733 0.9840
>>CI1(2)-mean(x1) %Confidence Interval
Ans = 0.0054

Table 5 shows the 10 simulation results, as the random seeds changes uniformly for
statistically justification for confidence interval.

Table 5. Accuracy results of classification for 10 simulations, with changing random seeds uniformly
in C4D2a_2C.

# of Simulations
Subject (Failed/Trials)

Success Rate
1 2 3 4 5 6 7 8 9

1 18/288 6/288 19/288 9/288 7/288 6/288 2/288 13/288 7/288 0.966435
2 7/288 9/288 3/288 5/288 4/288 8/288 6/288 6/288 12/288 0.976852
3 2/288 2/288 10/288 1/288 6/288 5/288 0/288 4/288 9/288 0.984954
4 19/288 8/288 10/288 7/288 1/288 9/288 7/288 8/288 6/288 0.971065
5 11/288 5/288 10/288 13/288 10/288 12/288 5/288 10/288 4/288 0.969136
6 6/288 4/288 7/288 5/288 3/288 2/288 2/288 8/288 7/288 0.983025
7 3/288 5/288 3/288 1/288 3/288 7/288 4/288 6/288 2/288 0.986883
8 3/288 4/288 5/288 0/288 3/288 4/288 7/288 5/288 6/288 0.985725
9 1/288 8/288 9/288 3/288 3/288 4/288 0/288 9/288 4/288 0.984182
10 12/288 7/288 9/288 4/288 4/288 5/288 2/288 7/288 6/288 0.978395
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From the above results, with a 95% confidence interval, we obtained a range of
estimates for a sample mean (0.98), and the confidence interval was 0.0054. The mean and
confidence interval of the accuracy was 97.87 ± 0.0075%, with a confidence interval of
0.0054, i.e., (97.33, 98.40). The latest and best classification result is shown below. Then, we
compute the confidence interval using Equation (10).[

X − 2.26
s√
n

, X + 2.26
s√
n

]
= [97.33, 98.40] (10)

5. Conclusions

In this study, we proposed the QR-EFA method for efficient motor-imaginary (MI)
EEG classification and showed that the EEG signal, when converted into a standardized
and sharable QR image, can be classified when using a simple CNN. To obtain a unique
feature per class, EEG signal data can be utilized with the concepts of domain-, trial-, and
subject- similarities. The EEG data measured from several subjects were used using the
BCI competition 3 dataset 3a (C3D3a_4C) and BCI competition 4 dataset 2a (C4D2a_4C).
Through QR-EFA method, the EEG signal was converted into EEG QR image, as formed
with the EFA method, and a data augmentation technique was applied to solve the limited
EEG image problem.

For optimum and best classification performance, QR-EFA maximizes the proposed
domain-, trial-, and subject-wise similarities. As far as we are concerned, none of the
literature in BCIs has considered the domain-, trial-, and subject-wise similarities so far.
Based on this observation, our proposed QR-EFA method was used to maximize the three
similarities in the directions of domains, trials, and subjects. Using a simple seven-layer
CNN model, data classification results showed an exceptional and remarkable accuracy
of 97.87% ± 0.75, with a confidence interval of 0.54, i.e., (97.33, 98.40) for the C4D2a_4C
and 88.21% ± 6.02, with a confidence interval of 4.31, i.e., (87.90, 92.52) for the C3D3a_4C.
Unlike the CSP method, which is only robust in the original two-class classification, the
proposed QR-EFA method is applicable to the classification of two multi-classes of EEG
signal; hence, it definitely advantages from the use of the QR-EFA algorithm. Because the
QR-EFA method extracts classification features and generates EEG QR images that are
well-differentiated between classes, it is suitable as training and testing input images for
further ML process and can greatly contribute to classification performance improvement.

Because the ML technique for image classification is becoming stronger with the
development of better performance models and hardware performance, QR-EFA’s flexible
EEG conversion method or frameworks, which should be applied to non-motor imaginary
(MI), such as word thinking, emotion detections, arithmetic calculation operations, and
multi-class classification, will be developed in the future. The application to a larger number
of classes, such as five or six categories, will be applied, with slight extensions in time.
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Abbreviations

The following abbreviations are used in this manuscript:

EFA Eigenface analysis
QR-EFA Quick eigenface analysis
BCI Brain computer interface
EEG Electroencephalogram
CSP Common spatial pattern
C3D3a_4C BCI competition III dataset IIIa for four classes
C4D2a_4C BCI competition IV dataset IIa for four classes
PCA Principal component analysis
ICA Independent component analysis
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Abstract: This study introduces a low-light image enhancement method using a hybrid deep-learning
network and mixed-norm loss functions, in which the network consists of a decomposition-net,
illuminance enhance-net, and chroma-net. To consider the correlation between R, G, and B channels,
YCbCr channels converted from the RGB channels are used for training and restoration processes.
With the luminance, the decomposition-net aims to decouple the reflectance and illuminance and to
train the reflectance, leading to a more accurate feature map with noise reduction. The illumination
enhance-net connected to the decomposition-net is used to enhance the illumination such that the
illuminance is improved with reduced halo artifacts. In addition, the chroma-net is independently
used to reduce color distortion. Moreover, a mixed-norm loss function used in the training process
of each network is described to increase the stability and remove blurring in the reconstructed
image by reflecting the properties of reflectance, illuminance, and chroma. The experimental results
demonstrate that the proposed method leads to promising subjective and objective improvements
over state-of-the-art deep-learning methods.

Keywords: low-light image enhancement; hybrid deep-learning; mixed-norm; halo artifact; color distortion

1. Introduction

The enhancement and miniaturization of image sensors make it possible to easily
obtain high-quality images. However, it still remains challenging to overcome external
environmental factors, which are the main causes of image degradation and distortion.
One such factor, low light, can be a bottleneck in the use of captured images in various
applications, such as monitoring, recognition, and autonomous systems [1,2]. A low-light
image can be enhanced by adjusting the sensitivity and exposure time of the camera;
however, it leads to a blurred image.

Many approaches have been exploited to enhance images in recent decades. Low-light
image enhancement can generally be classified into contrast ratio improvement, brightness
correction, and cognitive modeling methods. Histogram equalization has been widely
used to improve the contrast ratio, and gamma correction has been used to improve
image brightness information. However, these methods have limitations in performance
improvement because they use arithmetic or statistical methods without considering the
illuminance component of an image. Cognitive modeling-based methods correct low
illuminance and distorted color signals by dividing the acquired image into illuminance
and reflectance components using retinex theory [3]. Single-scale retinex (SSR) [4] and multi-
scale retinex (MSR) [5,6] methods have been used to reconstruct low-light images based on
retinex theory and random spray [7,8] and illuminance model-based methods [9–12] have
been developed as modified versions. Because methods based on the retinex model improve
the image by estimating the reflection component, there are problems that cause halo
artifacts and color distortion [13]. In addition, variational approaches using optimization
techniques have been proposed, but their performance depends on the choice of parameters,
and the computational cost is very high [14–16]. Recently, deep-learning-based image
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processing research has been actively conducted, and various deep-learning methods have
been exploited to enhance or reconstruct low-light images [17–22].

Deep-learning-based low-light image restoration methods have advantages and dis-
advantages depending on their structural characteristics [2]. Most deep-learning methods
apply the same architecture to the RGB channels. However, it has been shown that the
correlation between the R, G, and B channels is very low; therefore, different architectures
suitable to each channel or different color spaces would be more desirable to obtain more
satisfactory results. In addition, deep-learning approaches based on the retinex model have
been exploited to enhance low-light images. Most of them aim to decouple the reflectance
and illuminance components from an input image and enhance only the reflectance [20].
For example, MSR-net using a one-way convolutional neural network (CNN) structure
results in color distortion [18]. Retinex-net uses a decomposition neural network (DNN)
to decouple the reflectance and illuminance conforming to the retinex-model. However,
without considering the different characteristics of the RGB channels, each channel is
learned through the same structure, resulting in unstable performance and halo distortion.
MBLLEN [21] and KIND [22] attempt to simultaneously control low illuminance and blur
distortion using an auto-encoder structure. However, they lead to a loss of detailed image
information. Recently, unsupervised learning methods have been reported to solve an
over-fitting problem of deep-learning networks on paired images. For example, Enlight-
GAN uses generator and discriminator models to consider a more realistic environment.
Although it leads to promising results, it is tough to train the two models at the same
time [23]. In addition, Zero-DCE uses incisive and nonlinear curve mapping [24]. However,
unsupervised learning methods have a limitation on performance because a reference
image is not used in the loss function.

As described above, deep-learning-based low-light image restoration methods have
the problems such as (1) color distortion due to insufficient correlation between color
channels and (2) unstable performance and distortion due to the use of the same color
channel structure.

To address the above problems, the reflectance and illuminance components are decou-
pled from the luminance channel of the YCbCr space in this study because the luminance
histogram is more similar to the brightness histogram and chrominance channels are less
sensitive to additive noise. Based on the converted YCbCr channels, we propose a hy-
brid structure using decomposition-net, illuminance enhance-net, and chroma-net. The
decomposition-net decouples the reflectance and illuminance with the reduction in the
additive and shares the weight by extracting the feature map. The illuminance enhance-
net connected to the decomposition-net is used to enhance the decoupled illuminance by
reducing the halo artifact, which is the main distortion of the retinex-based approaches.
In addition, a chroma-net is independently utilized to enhance chroma signals by mini-
mizing color distortion. Moreover, a mixed norm loss function used in each training net
is introduced to minimize the instability and degradation of the reconstructed images by
reflecting the properties of the reflectance, illuminance, and chroma. The performance of
the proposed method is validated using various quantitative evaluators.

The remainder of the paper is organized as follows. Section 2 introduces the pro-
posed deep learning structure and mixed norm-based loss function for low-light image
reconstruction. The experimental results and analysis are described in Section 3, and the
conclusions are presented in Section 4.

2. Proposed Method

2.1. Hybrid Deep-Learning Structure

The retinex model is the most representative cognitive model for low-light image
enhancement, and it can be expressed as follows [3]:

S = R·L, (1)
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where S, R, and L represent the perceptual scene (intensity) of the human eye, reflectance,
and illuminance, respectively. Equation (1) is a model that experimentally demonstrates
that an object’s color varies with ambient illuminance in the human visual system.

This study introduces a hybrid neural network to simultaneously improve illumi-
nance and reflectance components. As mentioned, most deep-learning networks based
on the conventional retinex model lead to halo artifacts because they aim to enhance only
the reflectance component by decomposing the reflectance and illuminance components
from an observed low-light image. Additionally, many deep-learning methods based on
the retinex model suffer from color distortion owing to the lack of consideration of the
correlation between color channels [25]. To solve these problems, this study adopts a
decomposition network that decouples the illuminance and reflectance components and
enhances the reflectance in the YCbCr color space. It has been demonstrated that luminance
is highly effective in estimating illuminance [26]. Accordingly, illuminance and reflectance
are decomposed from the luminance channel, and each channel is used in the training
process. In this study, the luminance channel in the YCbCr space is used as an input of the
decomposition-net, such that Equation (1) can be rewritten as follows:

y = logY = r + l = logR + logL, (2)

where Y represents the luminance channel of an observed low-light image, and R and
L denote the reflectance and illuminance components of the Y channel, respectively. In
addition, the illuminance enhance-net and chroma-net are considered to enhance each
component in this study.

The deep-learning structure based on the retinex model should be able to effectively
reflect the characteristics of the illumination and reflectance components. In particular,
the local homogeneity and spatial smoothness of the illumination component should be
effectively decomposed, and the local correlation of the reflectance component should be
efficiently extracted [27–29]. Additionally, it is desirable for the network to be capable of
removing additive noise.

Figure 1 shows a conceptual diagram of the proposed decomposition network. As
shown in the figure, the reflectance and illuminance components decoupled from the
luminance channel share weights by extracting feature maps that conform to the model
by specifying a loss function for each output. In Figure 1, ylow, llow, and rlow represent
the low-light luminance, trained illuminance, and trained reflectance components, respec-
tively. In contrast, yGT , lGT , and rGT represent the paired ground-truth luminance, trained
illuminance, and trained reflectance, respectively.

As shown in Figure 2, the proposed deep-learning network consists of three stages:
(1) decomposition-net, (2) illuminance enhance-net, and (3) chroma-net. As previously
mentioned, the decomposition-net accurately decouples the reflectance and illuminance
components from the luminance channel. In addition, the illuminance enhance-net is
used to learn about the illuminance, and chroma-net is added to consider the chroma
characteristics.

The proposed decomposition-net considers the characteristics of each component
and composites the sub-network structure to facilitate training. Sub-neural networks
consist of a forward CNN, an auto encoder-based neural network, and a multi-scale-based
neural network using skip-connections. For illuminance, a multi-scale CNN structure
including various-sized receptive fields is used to decompose the local homogeneity and
spatial smoothness. This structure is capable of obtaining a feature extraction map that is
robust to various input images [2]. The reflectance component is easier to preserve and
learn detailed information and boundary information of the image than the illumination
component. Applying these characteristics, the reflectance component uses a forward
small-scale receptive field to facilitate learning the local correlation of the image. The
auto-encoder has a structure that combines learning feature maps of different sizes using a
skip- connection. It has been shown that this structure is easy to learn through structural
analysis of the image and that it is effective in removing additive noise in the image [30].
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As described above, to effectively remove the noise present in the low-light image, an
auto-encoder structure is used for the reflection component. Figure 3 shows the structural
diagrams for the multi-scale CNN (sub-net 1), forward CNN (sub-net 2), and auto-encoder
(sub-net 3) used in this study.

The parallel structure described above becomes structurally flexible by learning the
decomposition components, thereby shortening the learning time and clarifying the role
of each sub-network. In addition, illuminance enhance-net and chroma-net use a forward
CNN to enhance each component because illuminance and chroma include less additive
noise than reflectance, such that over-blurring can be avoided.

Figure 1. Conceptual diagram of proposed decomposition network.

Figure 2. Flowchart of proposed network.
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(b) 

 
(c) 

Figure 3. Architectures of sub-network: (a) multi-scale CNN (sub-net 1), (b) forward CNN (sub-net 2),
(c) auto-encoder (sub-net 3).

2.2. Mixed Norm-Based Loss Function

A loss function using the hybrid learning architecture is defined to effectively train
the input pair by minimizing the error of each learning system, i.e., the decomposition-net,
illuminance enhance-net, and chroma-net.

The decomposition-net accurately extracts the reflectance from the luminance, and the
loss function is defined as follows:

LossD = Ld + Lr + Ll , (3)

where Ld, Lr, and Ll represent the decomposition, reflectance, and illuminance loss func-
tions, respectively.

The decomposition loss function is a basic loss function using the retinex model and
can be written as follows:

Ld = ‖rlow − rGT‖1 + α1‖rlow + lGT − ỹGT‖2
2 + α2‖rlow + llow − ỹlow‖2

2, (4)

where ỹGT and ỹlow denote the normalized ground truth luminance channel and paired
low-light luminance, respectively, in which the elements of ỹGT and ỹlow are scaled to [0, 1].
For an M × N-sized image, each symbol is a lexicographically ordered MN × 1 column
vector. In Equation (4), each term represents the model-based loss function in which the
first term uses the L1 norm because it includes the details and boundary information of
the image.

The reflectance model loss function should contain detailed information regarding the
object. Therefore, the minimization terms for the gradient map and the error term for the
ground-truth image are included to reflect the property. The loss function for the reflection
model is expressed as follows:

Lr = β1‖∇rlow −∇ỹGT‖1 + β2‖rlow − ỹGT‖2
2, (5)
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where ∇ represents the gradient operator, and β1 and β2 denote the regularization parame-
ters to control the relative contribution of each term.

In general, illuminance is suitable for representing an object surface as a Lambertian
model [14]. Accordingly, the illuminance model loss function can be expressed as follows:

Ll = γ

[
∇llow

max(∇ỹlow, ε)
+

∇lGT
max(∇ỹGT , ε)

]
, (6)

where γ is the regularization parameter for the loss function, and ε is a small constant to
prevent the denominator from becoming zero.

The loss functions for training the illuminance component and chroma signals are
expressed as follows:

LossL = ‖l
enh
row − lGT‖2

2, (7)

where the initial vector is equal to llow, and

LossC = ‖Crow,i − C̃GT,i‖2
2 i ∈ {r, b}, (8)

where i denotes the chrominance channel index and C̃GT,i represents the normalized i-th
chrominance signal of the ground-truth image. An element of the chrominance takes
a value between −128 and 128; thus, it is normalized to [0, 1] for training. The Adam
method [31] was used to obtain the optimized solution of the loss functions, and 55 batch
sizes were applied in the training process.

As expressed above, the proposed decomposition loss function consists of various
functions; therefore, the convergence of the loss function depends on the choice of the
parameters. The selection of optimized parameters is beyond the scope of this work. In this
study, these parameters were experimentally determined. The regularization parameters
(α1 and α2) in Equation (4) are due to the retinex theory, and when they have low values,
the decomposition-net fails to extract an accurate feature map. It was observed that the
decomposition-net satisfactorily converged with α1, α2 > 0.1. In addition, it was confirmed
that as β1 in Equation (5) increases, detailed information, such as boundaries, is well
expressed in the feature map of the reflectance component. However, it was experimentally
confirmed that the parameter β2 for preserving the overall structure did not affect the results.
Additionally, it was verified that the spatial flatness of the feature map of the illuminance
component increased as γ increased. Figure 4 shows an example of the variation in the
feature map for various β1 and γ.

   
   

   
   

Figure 4. Variation of feature map for various β1 and γ.
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3. Experimental Results

3.1. Experimental Setup

Several experiments were conducted using various low-contrast images. The dataset
used for training consisted of a pair of ground-truth and low-light images. Overall,
1300 ground-truth images were selected from the LIVE [32], Google Image-net [33], NASA
ImageSet [34], and BSDS500 [35] datasets. The degraded images were generated from the
ground-truth images using two random variables. The random variables were as follows:

(1) gamma correction: Γ ∈ [2.5, 3.0],
(2) random spray Gaussian noise: random spray ratio (0.01%) and Gaussian std. ∈ [35.0, 45.0].

A total of 6500 degraded images using the variables were randomly generated, and
the average spatial resolution of the images was 884 × 654. In this work, we describe the
experimental results of 50 real low-light images and distorted images of 50 ground-truth
images that were not used for training. In addition, the parameters used in the loss function
were set as α1 = α2 = 1.0, β1 = β2 = 0.1, and γ = 0.01.

The proposed method compares the performance with MSR-net [18], Retienx-net [20],
MBLLEN [21], and KinD [22] in terms of various evaluations, such as the peak-to-signal
ratio (PSNR), lightness order error (LOE) [36], visual information facility (VIF) [37], per-
ceptual based image quality evaluator (PIQE) [38], structural similarity index measure
(SSIM) [39], and contrast per pixel (CPP) [40]. The LOE represents the number of pixels
in which the lightness alignment between the reference image and the comparison image
within a 50 × 50 window at the reference point deviates. The VIF is an evaluator that
determines the degree of improvement or inhibition compared to the reference image using
a statistically established index. In addition, PIQE, which does not require a reference
image, represents the degree of natural representation of the image, where a smaller value
indicates that the image is more natural from a cognitive perspective. On the other hand,
CPP represents the amount of change in contrast within a 3 × 3 window, such that there
is a limit to the evaluation of image quality improvement. However, it is suitable for
evaluating the similarity of the amount of contrast change with the ground-truth image.
An Intel E3-1276 3.6 GHz with 32 GB RAM and NVIDIA 1660Ti GPU were used to run the
algorithms with the TensorFlow 1.2 library of Python 3.0.

3.2. Analyses of Experimental Results

Table 1 shows the performance comparisons, where ↑ indicates a quantitative improve-
ment as the value increases. The results show that the proposed method outperforms other
methods in terms of PSNR, VIF, and PIQE. In particular, the PSNR, SSIM, VIF, and PIQE
improved by 1.7~6.2 dB, 0.02~0.13, 0.04~0.2, and 7~10 with respect to the comparative
methods, respectively. In contrast, MBLLEN dominates the others with respect to the LOE.
Because the LOE evaluates the match between the alignment of the reference image and
the corresponding comparative image as on/off, there is a limit to the accuracy of evalu-
ating the performance improvement. In addition, the retinex-net generated halo-artifact,
which is one of the main problems of retinex-based methods; further, it was confirmed
that this distortion was a factor that increased the CPP value. In addition, it was observed
that KinD outperforms the other comparative methods with respect to the PSNR, SSIM,
and VIF. However, the LOE is very high due to the halo artifact. Through the results of
the quantitative evaluations, it was confirmed that the proposed method reconstructed
the image closest to the ground-truth image, and similar results were confirmed for the
low-light image without the ground-truth image. In particular, the PIQE comparisons show
that the proposed method has the capability to reconstruct more natural images.
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Table 1. Performance comparisons (Blue: the best, Red: the second best).

Evaluator
Ground

Truth
Degraded

Image
MSR-

Net [18]
Retinex-
Net [20]

MBLLEN
[21]

KinD
[22]

Proposed
Method

with
reference

PSNR ↑ N/A 8.69 15.88 17.64 19.60 20.14 22.01
SSIM ↑ N/A 0.547 0.800 0.766 0.823 0.873 0.897
LOE ↓ N/A 282.90 210.94 374.09 202.57 327.84 208.04
VIF ↑ N/A 0.366 0.508 0.451 0.556 0.613 0.656

PIQE ↓ 36.94 39.83 37.60 47.47 47.41 51.17 30.96
CPP 35.98 15.07 29.36 47.50 25.82 30.03 31.27

without
reference

PIQE ↓ N/A 33.25 31.06 39.25 52.65 46.17 24.02
CPP N/A 13.93 19.64 35.66 14.44 20.01 20.63

Visual performance comparisons are shown in Figures 5 and 6. It was observed that
MSR-net is not promising with respect to luminance correction and color maintenance
because it uses only feedforward training. In addition, the retinex-net has the problem of
halo artifacts and color distortion. The halo artifact of the retinex-net is the main factor that
increases the LOE and CPP, which agrees with the results shown in Table 1. The results
verify that a different structure is applied to each channel due to insufficient correlation
between RBG channels. On the other hand, MBLLEN is effective in removing additive noise
using the convolutional neural layer based on an auto-encoder structure, but it is confirmed
that illuminance improvement is insufficient and over-blurring is caused by over-denoising.
KinD resulted in satisfactory illuminance improvement but led to color distortion and halo
artifacts in the reconstructed images. However, the proposed method resulted in promising
improvements. In particular, the experimental results show that the proposed method more
naturally reconstructs the image compared with the other methods through illuminance
improvement and color correction. As shown in Figure 6, similar results were obtained
with real low-light images having uneven brightness and multi-light sources. Through the
experimental results, it is confirmed that brightness correction, color maintenance, noise
suppression, and halo artifact reduction should be simultaneously considered in low-light
image enhancement. The experiments proved that the hybrid deep-learning structure and
mixed-norm loss functions yield subjectively and objectively promising results.
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Figure 5. Visual comparisons of with-ground-truth images: (from top to bottom) ground-truth image,
degraded image, MSR-net, retinex-net, MBLLEN, KinD, and proposed method. (a) test image1,
(b) partially zoomed-in view of (a), (c) test image2, and (d) partially zoomed-in view of (c).
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Figure 6. Visual comparisons of without-ground-truth images: (from top to bottom) real low-light
image, MSR-net, retinex-net, MBLLEN, KinD, and proposed method. (a) test image3, (b) partially
zoomed-in view of (a), (c) test image4, and (d) partially zoomed-in view of (c).

4. Conclusions

This study introduces a hybrid deep-learning network and mixed norm loss functions,
in which the hybrid net consists of a decomposition-net, illuminance enhance-net, and
chroma-net, each of which is defined to reflect the properties. To improve brightness and
reduce halo artifacts and color distortion, the YCbCr channels are used as inputs for the
hybrid network. Then, the illuminance and reflectance are decoupled from the luminance
channel, and the reflectance is trained by decomposition-net, such that the reflectance
is enhanced, and the additive noise is efficiently removed. In addition, an enhance-net
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connected to the decomposition-net is introduced, resulting in illuminance improvement
and reduction in halo artifacts. Moreover, the chroma-net is separately included in the
hybrid-net because the properties of chroma channels are different from those of luminance,
leading to a reduction in color distortion. In addition, a mixed norm loss function is
introduced to minimize the instability and degradation of the reconstructed images by
reflecting the properties of the reflectance, illuminance, and chroma.

The experiments confirmed that the proposed method showed satisfactory perfor-
mance in various quantitative evaluations compared with other competitive deep-learning
methods. In particular, it was verified that the proposed method could effectively enhance
brightness and reduce additive noise, color distortion, and halo artifacts. It is expected
that the proposed method can be applied to various intelligent imaging systems to obtain
a high-quality image. Currently, deep-learning methods for low-light videos are under
development. The newest methods are expected to reduce flickering artifacts between
frames and to achieve even better performance.
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Abstract: Weakly supervised object detection (WSOD) has received increasing attention in object
detection field, because it only requires image-level annotations to indicate the presence or absence
of target objects, which greatly reduces the labeling costs. Existing methods usually focus on the
current individual image to learn object instance representations, while ignoring instance correlations
between different images. To address this problem, we propose an instance-level contrastive learning
(ICL) framework to mine reliable instance representations from all learned images, and use the
contrastive loss to guide instance representation learning for the current image. Due to the diversity
of instances, with different appearances, sizes or shapes, we propose an instance-diverse memory
updating (IMU) algorithm to mine different instance representations and store them in a memory
bank with multiple representation vectors per class, which also considers background information to
enhance foreground representations. With the help of memory bank, we further propose a memory-
aware instance mining (MIM) algorithm that combines proposal confidence and instance similarity
across images to mine more reliable object instances. In addition, we also propose a memory-aware
proposal sampling (MPS) algorithm to sample more positive proposals and remove some negative
proposals to balance the learning of positive-negative samples. We conduct extensive experiments on
the PASCAL VOC2007 and VOC2012 datasets, which are widely used in WSOD, to demonstrate the
effectiveness of our method. Compared to our baseline, our method brings 14.2% mAP and 13.4%
CorLoc gains on PASCAL VOC2007 dataset, and 12.2% mAP and 8.3% CorLoc gains on PASCAL
VOC2012 dataset.

Keywords: weakly supervised object detection; instance-level contrastive learning; memory-aware
instance mining; memory-aware proposal sampling

1. Introduction

Object detection is a fundamental task in computer vision, which requires to identify
object categories and use bounding boxes to locate their complete region positions. With
the development of convolutional neural network (CNN) [1–3], some object detection
methods [4–13], such as Fast R-CNN [4], Faster R-CNN [5], SSD [6] and YOLO [7], have
made significant progress. However, these methods require fully supervised information,
i.e., instance-level annotations, which are time-consuming and labor-intensive to label. To
reduce the burden of annotations, weakly supervised object detection (WSOD) removes
bounding boxes and only requires image-level annotations, i.e., image tags, to indicate
whether object categories are present in an image.

Due to lack of object bounding box position supervision, most current WSOD meth-
ods [14–27] use multiple instance learning (MIL) [28] to mine object instances from pre-
generated proposals, and treat them as pseudo instance-level annotations to train weakly
supervised detectors. However, these methods only focus on a single image to learn object
representations without considering the internal relevance of various object instances across
images. When there are object appearance variations in the complex diverse image scenes,
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it is easy to cause false detection. For example, when a horse is occluded in Figure 1, it
focuses more on local feature representation, which is not enough to represent the whole
object, resulting in the learned object instance only covering the head of the horse.

(a)

(b)

Proposals
Learned

object instanceInput image

Mine

Learned
object instance

Input image

Semantic  correlation

Mine

Proposals

(a)

(b)

Proposals
Learned

object instanceInput image

Mine

Learned
object instance

Input image

Semantic  correlation

Mine

Proposals

Figure 1. Illustration of our motivation through data flow. (a) Most WSOD methods usually learn
object instances from region proposals of current input image. (b) Our method establishes instance
correlations with other images to guide instance representation learning for the current input image.

To deal with the problem, we propose an instance-level contrastive learning (ICL)
framework to store reliable instance representations from all learned images, and utilize
contrastive learning [29] mechanism to explicitly establish semantic correlations with other
image instances. It attempts to enhances the discriminative and robustness of object instance
representations in the current input image, pulling it close to the instance representations
of same class from all training images and pushing it away instance representations of
different classes. As shown in Figure 1b, owning to instance correlation with other images,
our method can effectively learn the instance representation for the whole horse.

To sufficiently represent diversity instances in all training data, we next propose an
instance-diverse memory updating (IMU) algorithm. It mines reliable instance represen-
tations from proposal features and builds a memory bank with multiple representation
vectors for each class to store them based on similarity, where background information
is also consider to enhance foreground representations. Based on the memory bank,
we further propose a memory-aware instance mining (MIM) algorithm. Unlike most
methods [14,15,20–22,26,27] that mine object instances only based on proposal confidence,
we also compute the similarity with stored diverse instances to evaluate the completeness
of proposals to mine more reliable object instances. Instead of selecting the top-scoring
proposal as an instance, we also consider the multi-instance case to mine more instances in
an image. During the training process of weakly supervised object detectors, we propose
a memory-aware proposal sampling (MPS) algorithm to alleviate the imbalance problem
between positive and negative samples. According to the similarity with instance represen-
tations, we select more positive proposals to increase the number of positive samples. Based
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on the similarity with the background information, we remove some negative proposals
with low similarity to reduce the number of negative samples.

To verify the effectiveness of our method, we conduct extensive experiments on the
PASCAL VOC2007 and VOC2012 datasets, which are widely used for weakly supervised
object detection. In this paper, we adopt typical WSOD method OICR [15] as our baseline,
which can be easily embedded into our ICL framework to further improve the performance.
On PASCAL VOC2007 dataset, our method improves detection performance and localiza-
tion accuracy by 14.2% and 13.4% in terms of mAP and CorLoc, respectively. On PASCAL
VOC2012 dataset, our method improves performance by 12.2% mAP and 8.3% CorLoc.

The contributions of this paper are summarized as follows:

• We propose an instance-level contrastive learning (ICL) framework to guide the weakly
supervised detector to learn instance representations. To the best of our knowledge,
we are the first to explore contrastive learning in weakly supervised object detection.

• We propose an instance-diverse memory update (IMU) algorithm to store reliable
instance representations into a memory bank, where multiple representation vectors
are used in each class to maintain the diversity of instance representations.

• With the help of memory, we further propose a memory-aware instance mining (MIM)
algorithm to efficiently mine object instances by combining proposal confidence and
instance similarity.

• With the help of memory, we also propose a memory-aware proposal sampling (MPS)
algorithm to alleviate the imbalance between positive and negative samples by finding
more positive proposals and removing some unreliable negative proposals.

2. Related Work

In this section, we present the two most relevant to this paper, weakly supervised
object detection and contrastive learning.

2.1. Weakly Supervised Object Detection

Since Hakan Bilen and Andrea Vedaldi proposed a weakly supervised deep detection
network (WSDDN) [20] to combine MIL and CNN into an end-to-end network, most WSOD
methods follow [14–19,21,22,26,27] this pipeline to train the weakly supervised detector. In
MIL, an image is treated as a bag of proposals. If the image contains an object class, this bag
is labelled as positive bag, i.e., at least containing one object instance of this class, otherwise
labelled as negative bag. Due to lack of instance-level annotations, MIL is tend to get stuck
in a local optimum to locate the most representative part of target objects. Subsequently,
most researchers have proposed promising approaches to alleviate this problem. For
instance, Kantorov et al. [14] proposed additional and contrastive context-aware guidance
models to improve localization by using the surrounding contextual region of proposals.
Tang et al. [15] proposed an online instance classifier refinement (OICR) method that
uses spatial correlations between proposals to refine mined instances. Wan et al. [21]
proposed continuation multiple instance learning (C-MIL) to alleviate the problem that MIL
is prone to falling into local optima, which uses some smooth loss function to approximate
the original non-convex loss function. Lin et al. [22] proposed object instance mining
(OIM) framework to build spatial and appearance graphs of proposals to mine all possible
object instances. Furthermore, some methods [16–19] introduce segmentation information
to assist instance mining. Shen et al. [16] proposed a recurrent guidance strategy for
weakly supervised detection and segmentation, where the detection module generates
seeds for semantic segmentation and the segmentation module provides prior information
for object detection. Yang et al. [17] proposed an objectness consistent representation
method to exploit segmentation map to mine more high-quality proposals. Wei et al. [18]
used segmentation context information around proposals to discover tight object bounding
boxes. Li et al. [19] leveraged the segmentation map to reweight proposals scores. However,
these methods only consider information from a single image, which are difficult to deal
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with diverse object instances. In this paper, our method explores the semantic correlation
beyond the input image to assist object instance mining.

2.2. Contrastive Learning

Contrastive learning [29] has been widely used in unsupervised representation learning
(e.g., SimCLR [30] and MoCo [31]), which compares positive and negative pairs to compress
together different view representations of the same image and separate view representations
of different images. In addition, contrastive learning-based methods [32–35] have also
achieved promising performance in other vision tasks. For instance, Yan et al. [33] proposed
a semantics-guided contrastive network that introduces contrastive learning into zero-shot
object detection to transfer available semantic information for unseen classes. Wu et al. [34]
proposed a contrastive learning-based robust object detection algorithm to detect objects
under smoky conditions, which applies contrastive learning to maximize the consistency
between different augmented views of the same smoke image. Li et al. [35] introduced
contrastive learning into remote sensing image semantic segmentation to learn global
and local image representations. However, these methods are difficult to directly apply
to WSOD that learns the detector based on image-level annotations. In this paper, we
introduce contrastive learning into weakly supervised object detection and propose an
instance-level contrastive learning framework. To our best knowledge, we are the first to
explore contrastive learning for weakly supervised object detection.

3. Method

In this section, we first describe our instance-level contrastive learning (ICL) frame-
work in detail. Then, we present the instance-diverse memory updating (IMU) algorithm,
memory-aware instance mining (MIM) algorithm and memory-aware proposal sampling
(MPS) algorithm.

3.1. Instance-Level Contrastive Learning

In Figure 2, we present the pipeline of the instance-level contrastive learning (ICL)
framework. Given an input image I and the corresponding proposals R generated by the
proposal generation methods [36–38], we first extract image features FI using convolutional
neural network. Based on the pre-generated proposals R, we convert image features FI to
proposal features FR through a RoI-pooling layer, and use two fully connected (FC) Layers
to obtain proposal vector representations FV . By mining reliable instance representations
from FV , we then perform contrastive learning (CL) and store them in the memory bank M.
In addition, FV is fed into several parallel detection heads, where a base head is supervised
by the image label Y = [y1, y2, . . . , yC]

T ∈ R
C×1 and K refined heads are supervised by the

output results of previous heads, where C is the number of classes. In this paper, we set
K = 3 to be the same as our baseline method [15].

Unsupervised representation learning [30,31] performs contrastive learning by aug-
menting image to different views, where views of the same image are pulled closer and
views of different images are pulled apart. In this paper, we introduce the contrastive
learning of object instance representations to guide the detector to learn the entire rep-
resentation of the instance. Specifically, we first denote all outputs of refined heads as
({ϕ1, ϕ2, . . . , ϕK}, {t1, t2, . . . , tK}). To mine more reliable instances, we average these out-
puts to obtain the proposal scores ϕ = 1

K ∑K
k=1 ϕk and the bounding box coordinate offsets

t = 1
K ∑K

k=1 tk. Applying the coordinate offset t to transform R, we obtain the transformed
proposal P. Then, we exploit non-maximum suppression (NMS) to mine as many object
instances as possible. For a positive class c, we use NMS to gradually select object instances
from the transpose proposal Pc according to the proposal score ϕc from high to low, and
remove redundant proposals. Then, we set a score threshold T1 to obtain more reliable
object instances D, and extract the corresponding instance feature representations FD from
FV . The detailed procedure can be seen in Algorithm 1. For each mined instance represen-
tation q ∈ FD, we utilize the memory instance representation M including all training data
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to assist each instance learning in current image. Assume that a positive representation
from memory bank k+ ∈ M represent the same class as q, and a negative representation
from memory bank k− ∈ M represent different classes. Then, we use the contrastive
loss [39] to pull q close to k+ of the same class while pushing it away from negative keys
k− of other classes, and thus enhance the discrimination and generalization of current
instance representation:

LCL = − 1
|D| ∑

q∈FD

ϕqlog
exp(q · k+/τ)

exp(q · k+/τ) + ∑k− exp(q · k−/τ)
, (1)

where we take ϕq as the loss weight and τ means the temperature hyperparameter.
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Figure 2. The pipeline of instance-level contrastive learning (ICL) framework. The upper part shows
the overall network structure, where only the blue arrows backpropagate the gradients. There are one
base head (Base-H) and three refined heads (R-H1, R-H2, R-H3). The base head is supervised by image
labels, while each refined head is supervised by the previous parallel head. Dashed arrows indicate
the supervision information. The detailed network structure of these heads can be found in the lower
boxes, where each box corresponds to a submodule in the pipeline. Three refined heads have the same
network structure but do not share parameters. The processes of memory-aware instance mining
(MIM) algorithm, memory-aware proposal sampling (MPS) algorithm and contrastive learning (CL)
are also shown in boxes.
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Algorithm 1 Instance representation mining algorithm.

Input: The pre-generated proposals R, the pre-defined score threshold T1, the
image label Y, the memory bank M, the outputs of instance refined heads
({ϕ1, ϕ2, ..., ϕK}, {t1, t2, . . . , tK}) and the proposal feature vectors FV .

(I) average proposal scores ϕ = 1
K ∑K

k=1 ϕk

(II) average coordinate offsets t = 1
K ∑K

k=1 tk

(III) obtain transformed proposals P by adding t to R
(IV) instance representations FD = ∅ and the corresponding confidences ϕFD = ∅

For c = 0 to C + 1
If yc == 1 or c == C + 1

(1) keep = NMS(Pc, ϕc)
(2) Pkeep = Pc[keep]
(3) ϕkeep = ϕ[keep]
(4) Dc = Pkeep[ϕkeep > T1]
(5) ϕDc = ϕkeep[ϕkeep > T1]
(6) FDc = FV [Dc]
(7) FD = FD ∪ FDc , ϕFD = ϕFD ∪ ϕDc

Output: FD, ϕFD .

Subsequently, we describe the training of heads. The base head has two parallel
branches. One branch uses an FC layer to generate a matrix xc ∈ R

C×|R| (|R| is the number

of proposals), which is then input to a class-wise softmax layer: [σ(xc)]ij =
e

xc
ij

∑C
q=1 e

xc
qj

. In

another branch, there is an FC layer and a proposal-wise softmax layer to generate another

normalized matrix σ(xr), where xr ∈ R
C×|R| and [σ(xr)]ij =

e
xr

ij

∑
|R|
q=1 e

xr
iq

. Then, element-wise

matrix multiplication is performed on these two matrices to generate proposal scores
xR = σ(xc)	 σ(xr). Finally, the image class score is calculated by summing all proposal
scores: φ = ∑

|R|
r=1 xR. According to the image label Y = [y1, y2, ..., yC]

T , the loss of base head
is computed by Equation (2).

Lb = −
C

∑
c=1

{yclogφc + (1 − yc)log(1 − φc)}. (2)

For K refined heads, their training process is consistent. Specifically, for the kth head,
there is a classifier and a regressor. In the classifier, an FC layer and a class-wise softmax
are used to generate proposals scores ϕk ∈ R

(C+1)×|R|, where C + 1 means background is
included. In the regressor, an FC layer is used to produce the coordinate offsets of proposals
tk ∈ R

4C×|R|, where 4 means the dimension of coordinate offsets (x1, y1, x2, y2). In order
to generate their supervision, we first use the memory-aware instance mining (MIM)
algorithm to mine multiple representative object instances Bk based on the score outputs
and offset outputs of previous head (ϕk−1, tk−1) and memory bank M. The details can be
seen in Section 3.3. Then, we use the memory-aware proposal sampling (MPS) algorithm
of Section 3.4 to sample negative and positive proposals (Rpos, Rneg) from proposals R and
assign labels for these proposals. For a positive class c, if a proposal p is selected as positive
sample, p is labeled as class c, i.e., yk

c,p = 1. All negative proposals Rneg are labeled as
background class C + 1. In this way, the classifier can be trained by a cross entropy loss:

Lk
cls = − 1

|Rpos|+ |Rneg| ∑
p∈Rpos∪Rneg

C+1

∑
c=1

ϕk
pyk

c,plogϕk
c,p, (3)
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where we also use the confidence ϕk
p as the loss weight. For the regressor, only positive

proposals Rpos are used to calculate loss by the smooth L1 loss [4]:

Lk
reg = smoothL1(tk, Tk), (4)

where Tk is the supervision of coordinate offsets.
In summary, our ICL framework can be end-to-end trained in Equation (5).

L = LCL + Lb +
K

∑
k=1

(Lk
cls + Lk

reg). (5)

3.2. Instance-Diverse Memory Updating Algorithm

In order to enable the network to memory the instance representations from previous
training images, we first initialize M ∈ R

(C+1)×N×L, where N means the number of stored
instance feature representations in each class and L represents the length of the feature
vector FV . Since instances of the same class differ in size, shape, and appearance, we use
multiple feature vectors to store richer instance representations instead of a single vector.
We first use the Algorithm 1 to obtain some reliable instance representations FD from FV .
For each instance representation fd,c ∈ FD, we calculate the similarity between fd,c and
with Mc = { fc,1, fc,2, . . . , fc,N} in Equation (6).

Sd,c = || fd,c|| × ||MT
c ||, (6)

where || · ||, × and T mean L2 normalization, matrix multiplication and transpose, respec-
tively. Then, we select the most similarity feature fc,j from Mc in Equation (7) to maximize
the assistance of the current instance.

j = argmax{Sd,c}, (7)

Finally, we update the feature vector fc,j according Equation (8) for the instance
contrastive learning of subsequent images.

fc,j = r ∗ fc,j + (1 − r) ∗ ϕ fd,c
∗ fd,c, (8)

where r is the momentum coefficient [31] and ϕ fd,c
is the confidence of instance representa-

tion, which aim to control the weight balance between previous instance representation
and current representation. The whole process can be seen in the Algorithm 2.

Algorithm 2 Instance-diverse memory updating algorithm.

Input: The pre-generated proposals R, the pre-defined score threshold T1, the
image label Y, the memory bank M, the outputs of instance refined heads
({ϕ1, ϕ2, . . . , ϕK}, {t1, t2, . . . , tK}) and the proposal feature vectors FV .

(I) obtain reliable instance representations FD using Algorithm 1
For each representation fd,c in FD

(a) compute the similarity between fd,c and with Mc in Equation (6)
(b) choose the most similarity feature fc,j from Mc in Equation (7)
(c) update fc,j in Equation (8)

Output: Updated memory M.

3.3. Memory-Aware Instance Mining Algorithm

With the help of memory bank M, we propose a memory-aware instance mining
(MIM) algorithm to effectively mine some reliable object instances. Different from our
baseline [15], which only selects the top-scoring proposal as pseudo instance annotations,
we comprehensively consider the confidence of proposals and the similarity between
proposal features and memory bank covering previous training data to effectively mine

41



Sensors 2022, 22, 7525

object instances. Specifically, we first calculate the similarity S between FV and M according
to Equation (9).

S = ||FV || × ||MT||. (9)

Then, we select the highest similarity along the N feature vectors and apply the
class-wise softmax to generate memory-base confidence ϕM through Equation 10.

ϕM = so f tmax(max
N

{S}). (10)

For the kth branch in instance refinement heads, we further calculate the combination
confidence ψk in Equation (11).

ψk = ϕk + μϕM, (11)

where μ is the combination coefficient. Next, we use the NMS algorithm to remove
redundant proposals and set a score threshold T2 to remove unreliable proposals. In this
way, we can obtain some reliable instances Bk. More details can be found in Algorithm 3.

Algorithm 3 Memory-aware instance mining algorithm.

Input: The pre-generated proposals R, the pre-defined score threshold T2, the image label
Y, the memory bank M, the outputs of kth instance refined head (ϕk, tk) and the proposal
feature vectors FV .

(I) obtain transformed proposals Rtk by adding tk to R
(II) calculate the memory-based confidence ϕM by Equation (10)
(III) compute the combination confidence ψk with Equation (11)
For c = 0 to C

If yc == 1
(1) keep = NMS(Rtk , ψk

c )
(2) R1 = Rtk [keep]
(3) ψ1 = ψk

c [keep]
(4) Bk = R1[ϕ1 > T2]
(5) ψk

Bk = ϕ1[ϕ1 > T2]

Output: Bk, ψk
Bk .

3.4. Memory-Aware Proposal Sampling Algorithm

After mining object instances, we further propose a memory-aware proposal sampling
(MPS) algorithm to effectively sample positive and negative proposals from R. Some
methods [15–19,26] simply divide R into two parts by computing the IoU with Bk: highly
overlapped proposals are taken as positive samples, and the rest are taken as negative sam-
ples, while ignoring the imbalance of positive and negative samples with overwhelmingly
negative proposals. To alleviate this problem, we leverage the memory bank to select more
positive proposals and remove some unreliable negative proposals. We first calculate the
IoU between Bk and R to separate R into two parts Rk

1 and Rk
2 in Equation (12).⎧⎨⎩ Rk

1 =
{

p ∈ R|∃b ∈ Bk, IoU(p, b) � 0.5
}

Rk
2 =

{
p ∈ R|∀b ∈ Bk, 0.1 < IoU(p, b) < 0.5

} (12)

Then, we extract the feature representations FRk
2

of Rk
2 from FV . For each positive class

c, we compute the similarity between FRk
2

and Mc, and use Equation (13) to choose the most
similar proposal pc into R1.

j = argmax(|FRk
2
| × |MT

c |). (13)
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For the remaining proposals in Rk
2, we compute the similarity SRk

2
= max

N
{|FRk

2
| ×

|MT
c |} between Rk

2 and background information MC+1 and sort SRk
2

according to similarity

from high to low. Finally, We removed the last low-similarity 1/λ proposals from Rk
2 to

obtain the negative samples. More details can be found in Algorithm 4.

Algorithm 4 Memory-aware proposal sampling algorithm.

Input: The pre-generated proposals R, the image label Y, the memory bank M, the mined
object instance (Bk, ψk

Bk ) and the proposal feature vectors FV .
(I) positive samples Rpos = ∅, negative samples Rneg = ∅

(II) calculate IoU(Bk, R)
(III) separate R into two parts Rk

1 and Rk
2 using Equation (12).

(IV) Rpos = Rpos ∪ Rk
1

(V) extract feature representations FRk
2

from FV

For c = 0 to C
If yc == 1

(1) calculate the similarity between FRk
2

and Mc

(2) select the most similar proposal pc from Rk
2 by Equation (13)

(3) Rpos = Rpos ∪ pc, Rk
2 = Rk

2/pc, FRk
2
= FRk

2
/Fpc

(VI) SRk
2
= max

N
{|FRk

2
| × |MT

c |}
(VII) sort SRk

2
from from high to low

(VIII) obtain Rneg by removing the last low-similarity 1/λ proposals from Rk
2

Output: Rpos, Rneg.

3.5. Test

After training, only the instance refined heads are used for testing. We perform the
same operations as our baseline method [15]. We average the outputs of all refined heads
to generate the final detection results.

4. Experiments

In this section, we first introduce experimental data and evaluation criteria, and
elaborate on experimental details. Then we validate the advantages of our method by
comparing with some recent methods. Finally, we conduct extensive ablation experiments
to demonstrate the effectiveness of our method.

4.1. Datasets and Evaluation Measures

We conduct experiments on PASCAL VOC2007 [40] and VOC2012 [41] datasets, which
are widely used in weakly supervised object detection setting [14–22,25–27]. In the PASCAL
VOC2007 dataset, there are 9962 images belonging to 20 categories. These images are
divided into three sets: train, val, test. According to the widely used WSOD setting,
the trainval set (5011 images) is used for training. The PASCAL VOC2012 dataset has
22531 images split into train, val and test sets. The trainval set has 11540 images for training.
It is important to note that all experiments have only image-level labels for training. For
evaluation, there are two evaluation measures mean average precision (mAP [40]) and
correct localization (CorLoc [42]). mAP is the standard PASCAL VOC protocol, which
first computes the average precision (AP) for each class and then averages over all classes.
AP for each class is obtained by calculating the area under the precision-recall curve. The
mAP is used to evaluate performance on the test set. The second metric CorLoc is used to
measure the localization accuracy of the trainval set. For each class, CorLoc is calculated as
the ratio of images where at least one object is correctly localized. Both mAP and CorLoc
are based on the PASCAL criterion. The object is considered to be successfully detected,
when the intersection over union (IoU) between the ground-truth and predicted boxes is
greater than 0.5.
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4.2. Experimental Details

All experiments are performed on the Detectron2 (https://github.com/facebookresearch/
detectron2) deep learning framework and 4 NVIDIA GTX 1080ti GPUs. Following our base-
line method OICR [15], we use the the VGG16 [2] model as our backbone, pre-trained on
the ImageNet dataset [43]. For pre-generated proposals, we use multiscale combinatorial
grouping (MCG) method [38] to generate approximately 2000 proposals per image. During
the training phase, we set the learning rate to 0.001 for the first 28 epochs and divide it by 10
for the next 12 epochs. In addition, we set the momentum and weight decay to 0.9 and 0.0005,
respectively. The mini-batch size is set to 4, i.e., an image is run by one GPU. Regarding the
data augmentation, we use 5 scales {480, 576, 688, 864, 1200} to randomly resize the shortest
side of the image and make the longest side no more than 2000, where the random horizontal
flips are also used. During the test stage, We average the output of all augmented data to
generate final detection results. For Hyperparameters in our method, we set K = 3, N = 5,
μ = 0.1, 1/λ = 1/4, and T1 = T2 = 0.5. All settings in the PASCAL VOC2007 and VOC2012
datasets are the same.

4.3. Comparison with Other Methods

On PASCAL VOC2007 and VOC2012 datasets, we compare our method with some
recent methods [14–22,25–27] to present our advantages.

For the PASCAL VOC2007 dataset, we present the detection performance (mAP) and
localization accuracy (CorLoc) in Tables 1 and 2, respectively. In terms of mAP, our method
ICL achieves a detection performance of 55.4%, which brings a significant improvement
(about 14.2%) compared to our baseline OICR [15] (41.2%). Our method also outperforms
methods [16–19] that exploit segmentation information to learn instance representation. For
example, compare with [17], our method has an advantage of about 4.8%. Furthermore, our
method also has some improvements (about 1.9%) compared to recent methods SLV[27]
and D-MIL [25]. In terms of CorLoc, our method ICL achieves 74.0% localization accuracy.
Compared with our baseline (60.6%), our method improves the performance by about
13.4%. Compared to the segmentation-assisted method WS-JDS [16] or SDCN [19], our
method improves the performance by more than 7.2%. In addition, our method also
shows significant advantages (more than 3%) compared to recent methods SLV [27] and
D-MIL [25].

Table 1. Comparison with other methods on Pascal VOC2007 test set. � means our baseline.

Method aer bik bir boa bot bus car cat cha cow tab dog hor mot per pla she sof tra tv mAP

WSDDN [20] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8
Kantorov et al. [14] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3
OICR [15] � 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2
PCL [26] 54.4 69.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0 43.5
C-MIL [21] 62.5 58.4 49.5 32.1 19.8 70.5 66.1 63.4 20.0 60.5 52.9 53.5 57.4 68.9 8.4 24.6 51.8 58.7 66.7 63.5 50.5
Lin et al. [22] 55.6 67.0 45.8 27.9 21.1 69.0 68.3 70.5 21.3 60.2 40.3 54.5 56.5 70.1 12.5 25.0 52.9 55.2 65.0 63.7 50.1
TS2C [18] 59.3 57.5 43.7 27.3 13.5 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6 44.3
WS-JDS [16] 52.0 64.5 45.5 26.7 27.9 60.5 47.8 59.7 13.0 50.4 46.4 56.3 49.6 60.7 25.4 28.2 50.0 51.4 66.5 29.7 45.6
SDCN [19] 59.8 67.1 32.0 34.7 22.8 67.1 63.8 67.9 22.5 48.9 47.8 60.5 51.7 65.2 11.8 20.6 42.1 54.7 60.8 64.3 48.3
Yang et al. [17] - - - - - - - - - - - - - - - - - - - - 50.6
SLV [27] 65.6 71.4 49.0 37.1 24.6 69.6 70.3 70.6 30.8 63.1 36.0 61.4 65.3 68.4 12.4 29.9 52.4 60.0 67.6 64.5 53.5
D-MIL [25] 60.4 71.3 51.1 25.4 23.8 70.4 70.3 71.9 25.2 63.4 42.6 67.1 57.7 70.1 15.5 26.6 58.7 63.3 66.9 67.6 53.5

ICL 61.9 73.0 44.0 33.3 32.9 75.3 74.7 73.8 2.6 70.6 62.0 60.8 72.2 71.3 26.0 25.4 57.3 57.7 72.7 60.9 55.4

For the PASCAL VOC2012 dataset, we show both detection performance (mAP) and
localization accuracy (CorLoc) in the Table 3. Our method achieves 50.1% mAP and 70.4%
CorLoc, which are 12.2% and 8.3% improvement over the baseline, respectively. Compare
to some recent methods [25,27], our method also bring some gains. In terms of mAP, our
method outperforms the methods [27] and [25] by 0.9% and 0.5%, respectively. In terms
of CorLoc, our method brings gains of 1.2% and 0.3%, respectively. These results further
demonstrate the effectiveness of our method.
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Table 2. Comparison with other methods on Pascal VOC2007 trainval set. � means our baseline.

Method aer bik bir boa bot bus car cat cha cow tab dog hor mot per pla she sof tra tv mean

WSDDN [20] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5
Kantorov et al. [14] 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1
OICR [15] � 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6
PCL [26] 79.6 85.5 62.2 47.9 37.0 83.8 83.4 43.0 38.3 80.1 50.6 30.9 57.8 90.8 27.0 58.2 75.3 68.5 75.7 78.9 62.7
C-MIL [21] - - - - - - - - - - - - - - - - - - - - 65.0
Lin et al. [22] - - - - - - - - - - - - - - - - - - - - 67.2
TS2C [18] 84.2 74.1 61.3 52.1 32.1 76.7 82.9 66.6 42.3 70.6 39.5 57.0 61.2 88.4 9.3 54.6 72.2 60.0 65.0 70.3 61.0
WS-JDS [16] 82.9 74.0 73.4 47.1 60.9 80.4 77.5 78.8 18.6 70.0 56.7 67.0 64.5 84.0 47.0 50.1 71.9 57.6 83.3 43.5 64.5
SDCN [19] 85.8 83.1 56.2 58.5 44.7 80.2 85.0 77.9 29.6 78.8 53.6 74.2 73.1 88.4 18.2 57.5 74.2 60.8 76.1 79.2 66.8
SLV [27] 84.6 84.3 73.3 58.5 49.2 80.2 87.0 79.4 46.8 83.6 41.8 79.3 88.8 90.4 19.5 59.7 79.4 67.7 82.9 83.2 71.0
D-MIL [25] 81.3 82.0 72.7 48.9 42.0 80.2 86.1 78.5 43.9 80.2 42.2 76.5 68.7 91.2 32.7 56.0 81.4 69.6 78.7 79.9 68.7

ICL 85.3 88.9 65.5 57.5 57.4 86.0 90.7 85.8 15.1 88.7 78.0 74.4 89.2 93.5 39.2 57.6 88.5 71.6 86.2 80.1 74.0

Table 3. Comparison with other methods on Pascal VOC 2012 dataset. � means our baseline.

Method mAP CorLoc

Kantorov et al. [14] 35.3 54.8
OICR [15] � 37.9 62.1
PCL [26] 40.6 63.2
C-MIL [21] 46.7 67.4
Lin et al. [22] 45.3 67.1
TS2C [18] 40.0 64.4
WS-JDS [16] 39.1 63.5
SDCN [19] 43.5 67.9
SLV [27] 49.2 69.2
D-MIL [25] 49.6 70.1

ICL 50.1 70.4

4.4. Ablation Study

In this part, we conduct extensive experiments to further discuss the effects of main
components of our method. Without loss of generality, all experiments are performed on
the PASCAL VOC2007 dataset.

The effect of IMU algorithm. We first analyze the effect of IMU algorithm on our
method ILC. In Table 4, after removing IMU, our method achieves 53.6% mAP and 72.9%
CorLoc, respectively. There are 1.8% performance reduction and 1.1% accuracy reduction
in terms of mAP and CorLoc, respectively, which proves the effectiveness of the instance-
diverse memory updating algorithm. Furthermore, we analyze the effect of the number
of feature vector N on the IMU algorithm in Figure 3. We can see that both mAP and
CorLoc first increase and then decrease as N increases. When N is too small, the memory
bank is difficult to store the diversity of instance representations well, and when N is
too large, it is easy to cause there are internal differences during the learning of instance
representations. In this paper, we recommend setting N = 5 to balance the number of
stored instance vectors.

Table 4. The contribution of each component of our method. Both PASCAL metrics and COCO
metrics are applied.

Method
PASCAL Metrics COCO Metrics

mAP CorLoc AP AP50 AP75 APS APM APL

Baseline 41.2 60.6 14.9 37.0 10.7 1.8 8.6 19.4

ICL 55.4 74.0 20.8 48.8 14.4 2.3 10.3 27.1
ICL w/o IMU 53.6 72.9 19.8 46.8 14.2 2.8 10.1 25.9
ICL w/o MIM 49.7 69.6 18.0 43.1 12.5 2.1 8.9 23.8
ICL w/o MPS 52.9 71.4 19.5 46.7 13.5 3.3 10.5 25.0
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Figure 3. The effect of number of vectors N.

The effect of MIM algorithm. As shown in the Table 4, MIM brings 5.7% and 4.4%
gains to ICL in mAP and CorLoc, which shows the effectiveness of memory-aware instance
mining algorithm (MIM). In addition, we also analyze the effect of memory on MIM by
setting different combination coefficients μ in Figure 4. During the change of μ from 0
to 1, we can see that both the detection performance and the localization accuracy are
the highest at μ = 0.1, which demonstrates that it is useful to introducing the similarity
between memory features of previous training data and proposal features for mining
effective instances. When μ becomes larger, the memory from previous images may hinder
the learning of new instances from the current image, resulting in performance degradation.
Therefore, we set μ = 0.1 in this paper.
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Figure 4. The effect of combination coefficient μ.

The effect of MPS algorithm. Removing MPS from ICL, our method achieves 52.9%
detection performance (mAP) and 71.4% localization accuracy (CorLoc). There are 2.5%
and 2.6% reductions in mAP and CorLoc, respectively, which shows the effectiveness of
the memory-aware proposal sampling algorithm. In addition, we analyze the effect of
the removal coefficient 1/λ on MPS in Table 5. We achieve the best performance when
1/λ = 1/4. Continuing to increase 1/λ may remove too many negative samples and
affect the training of the detector. When 1/λ is too small, it cannot achieve the purpose of
balancing positive and negative samples.

Table 5. The effect of the removal coefficient 1/λ.

1/λ mAP CorLoc

1/10 52.7 70.8
1/8 52.0 70.1
1/6 53.6 72.6
1/4 55.4 74.0
1/2 52.4 70.8

The performance of COCO metrics. In Table 4, we also analyze the contribution of
each component under the COCO metrics [44]. The performance of each component on AP,
AP50, and AP75 is similar to that under the PASCAL metrics. For APS, APM and APL, the
objects are divided into three sizes of small, medium and large for evaluation. Our method
ICL can achieve the best performance on large objects, while removing MPS algorithm
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can achieve better performance on small and medium objects. Compared with small and
medium-sized objects that are difficult to perceive, MPS algorithm is more conducive to
sampling region proposals of large objects.

The analysis of training process. In Figure 5, we further provide training loss curves
to verify the rationality of our method. We can see that the loss curves of refined heads rise
first and then decrease to convergence. The rising phase of the loss is due to the weight,
which is the confidence of mined object instances. At the beginning of training, the low
discrimination of the model makes the confidence of object instances very low (almost close
to 0). As model capabilities increase, the confidence starts to increase and so does the loss.
Since confidence range is [0, 1], the loss will reach the maximum value, and finally start to
decrease due to the enhanced model generalization until it converges. In Figure 6, we also
provide the performance of the model during training. Both mAP and CorLoc continue to
increase, which further demonstrates the effectiveness of our method.

LCLLCL

LbLb

Lcls1Lcls1

Lreg1Lreg1 Lreg2Lreg2 Lreg3Lreg3

Lcls2Lcls2 Lcls3Lcls3LCL

Lb

Lcls1

Lreg1 Lreg2 Lreg3

Lcls2 Lcls3

Figure 5. Training loss.

mAP CorLocmAP CorLoc

Figure 6. Model performance during the training process. Evaluations are performed every 10K
without data augmentation.

Qualitative results. In Figure 7, we provide qualitative results to more intuitively
compare the proposed ICL with our baseline. On the trainval set of PASCAL VOC2007
dataset, we compare the learned object instances in Figure 7a. For the simple image in the
first column, the baseline method can learn effective information about the car well. For
the horse in the second column and the cow in the third column, when the foreground and
background are relatively similar or the objects are occluded, the instances learned by the
baseline method may contain more background. Our method ICL can learn more reliable
object instances guided by instance correlations. On the test set, we compare the detection
results in Figure 7b. Since the baseline method is more easily disturbed by background
information during the training process, its detection results also contain more background
information, such as the first two columns. Our method can better locate the boundary of
the object. When there is interaction between objects, such as the third column, our method
can also provide better detection results. For a more comprehensive analysis of our method,
we present failure cases in the last column. For example, for the smaller aeroplane in
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Figure 7a, it is difficult for our method to learn its instance representation. Our method
also fails to detect the highly overlapping sheep and distant little sheep in Figure 7b.

Baseline

ICL

Baseline

ICL

(a) The learned object instances on trainval set

(b) Detection results on test set

Figure 7. Qualitative results on PASCAL VOC2007 dataset. Yellow boxes mean ground truths. Green
and red boxes represent correct and failed cases, respectively.

5. Conclusions

In this paper, we propose an instance-level contrastive learning (ICL) framework
to guide the weakly supervised detector to learning entire instance representations by
constructing instance correlations with other images. To store diverse object instance
representations in a memory bank, we propose an instance-diverse memory updating
(IMU) algorithm. With the help of memory, we further propose a memory-aware instance
mining (MIM) algorithm to effectively mine object instances. To alleviate the imbalance of
positive and negative proposals, we propose a memory-aware proposal sampling (MPS)
algorithm. We conduct extensive experiments on PASCAL VOC2007 and VOC2012 datasets
to verify the effectiveness of our method.

Our proposed method mines object instance representations from other images and
stores them in a memory bank to guide instance learning on the current image. If the
memory contains noisy representations, it will make the learned object instances inaccurate.
The performance of weakly supervised detectors is also limited by the quality of the stored
representations. In order to mine more reliable instance representations, our future studies
will explore contextual information of region proposals or segmentation information of
images to perceive object boundaries and locate object instances accurately.

Author Contributions: Conceptualization, M.Z.; methodology, M.Z.; software, M.Z.; validation,
M.Z.; formal analysis, M.Z.; investigation, M.Z.; resources, M.Z.; data curation, M.Z.; writing—
original draft preparation, M.Z.; writing—review and editing, B.Z.; visualization, M.Z.; supervision,
B.Z.; project administration, M.Z.; funding acquisition, B.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is supported in part by the National Natural Science Foundation of China under
Grant 61720106004, and in part by the 111 Projects under Grant B17008.

Institutional Review Board Statement: Not applicable.

48



Sensors 2022, 22, 7525

Informed Consent Statement: Not applicable.

Data Availability Statement: The PASCAL VOC2007 and VOC2012 datasets can be available in the
following link: http://host.robots.ox.ac.uk/pascal/VOC/.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the
Advances in Neural Information Processing Systems, Lake Tahoe, Spain, 3–8 December 2012; pp. 1097–1105.

2. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
3. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
4. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13–16 December

2015; pp. 1440–1448.
5. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings

of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.
6. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37.
7. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
8. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,

Venice, Italy, 22–29 October 2017; pp. 2961–2969.
9. Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE International

Conference on Computer Vision, Long Beach, CA, USA, 16–20 June 2019; pp. 9627–9636.
10. Qiu, H.; Li, H.; Wu, Q.; Shi, H. Offset bin classification network for accurate object detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–18 June 2020; pp. 13188–13197.
11. Zhao, H.; Zhou, Y.; Zhang, L.; Peng, Y.; Hu, X.; Peng, H.; Cai, X. Mixed YOLOv3-LITE: A lightweight real-time object detection

method. Sensors 2020, 20, 1861. [CrossRef] [PubMed]
12. Lian, J.; Yin, Y.; Li, L.; Wang, Z.; Zhou, Y. Small object detection in traffic scenes based on attention feature fusion. Sensors 2021,

21, 3031. [CrossRef] [PubMed]
13. Xiang, Y.; Zhao, B.; Zhao, K.; Wu, L.; Wang, X. Improved Dual Attention for Anchor-Free Object Detection. Sensors 2022, 22, 4971.

[CrossRef] [PubMed]
14. Kantorov, V.; Oquab, M.; Cho, M.; Laptev, I. Contextlocnet: Context-aware deep network models for weakly supervised

localization. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016;
pp. 350–365.

15. Tang, P.; Wang, X.; Bai, X.; Liu, W. Multiple instance detection network with online instance classifier refinement. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Venice, Italy, 22–29 October 2017; pp. 2843–2851.

16. Shen, Y.; Ji, R.; Wang, Y.; Wu, Y.; Cao, L. Cyclic guidance for weakly supervised joint detection and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 697–707.

17. Yang, K.; Zhang, P.; Qiao, P.; Wang, Z.; Dai, H.; Shen, T.; Dou, Y. Rethinking segmentation guidance for weakly supervised object
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA,
14–19 June 2020; pp. 946–947.

18. Wei, Y.; Shen, Z.; Cheng, B.; Shi, H.; Xiong, J.; Feng, J.; Huang, T. Ts2c: Tight box mining with surrounding segmentation context
for weakly supervised object detection. In Proceedings of the European Conference on ComputerbVision, Salt Lake City, UT,
USA, 18–23 June 2018; pp. 434–450.

19. Li, X.; Kan, M.; Shan, S.; Chen, X. Weakly supervised object detection with segmentation collaboration. In Proceedings of the
IEEE International Conference on Computer Vision, Long Beach, CA, USA, 16–20 June 2019; pp. 9735–9744.

20. Bilen, H.; Vedaldi, A. Weakly supervised deep detection networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2846–2854.

21. Wan, F.; Liu, C.; Ke, W.; Ji, X.; Jiao, J.; Ye, Q. C-mil: Continuation multiple instance learning for weakly supervised object
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20
June 2019; pp. 2199–2208.

22. Lin, C.; Wang, S.; Xu, D.; Lu, Y.; Zhang, W. Object instance mining for weakly supervised object detection. In Proceedings of the
AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 11482–11489.

23. Xu, Y.; Zhou, C.; Yu, X.; Xiao, B.; Yang, Y. Pyramidal multiple instance detection network with mask guided self-correction for
weakly supervised object detection. IEEE Trans. Image Process. 2021, 30, 3029–3040. [CrossRef] [PubMed]

24. Wu, Z.; Wen, J.; Xu, Y.; Yang, J.; Li, X.; Zhang, D. Enhanced Spatial Feature Learning for Weakly Supervised Object Detection.
IEEE Trans. Neural Netw. Learn. Syst. 2022. [CrossRef] [PubMed]

49



Sensors 2022, 22, 7525

25. Gao, W.; Wan, F.; Yue, J.; Xu, S.; Ye, Q. Discrepant multiple instance learning for weakly supervised object detection. Pattern
Recognit. 2022, 122, 108233. [CrossRef]

26. Tang, P.; Wang, X.; Bai, S.; Shen, W.; Bai, X.; Liu, W.; Yuille, A. Pcl: Proposal cluster learning for weakly supervised object detection.
IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 176–191. [CrossRef] [PubMed]

27. Chen, Z.; Fu, Z.; Jiang, R.; Chen, Y.; Hua, X.S. Slv: Spatial likelihood voting for weakly supervised object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–18 June 2020; pp. 12995–13004.

28. Dietterich, T.G.; Lathrop, R.H.; Lozano-Pérez, T. Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell.
1997, 89, 31–71. [CrossRef]

29. Hadsell, R.; Chopra, S.; LeCun, Y. Dimensionality reduction by learning an invariant mapping. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006; pp. 1735–1742.

30. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In
Proceedings of the International Conference on Machine Learning, Virtual Event, 13–18 July 2020; pp. 1597–1607.

31. He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–18 June 2020; pp. 9729–9738.

32. Sun, B.; Li, B.; Cai, S.; Yuan, Y.; Zhang, C. Fsce: Few-shot object detection via contrastive proposal encoding. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Virtual Event, 19–25 June 2021; pp. 7352–7362.

33. Yan, C.; Chang, X.; Luo, M.; Liu, H.; Zhang, X.; Zheng, Q. Semantics-guided contrastive network for zero-shot object detection.
IEEE Trans. Pattern Anal. Mach. Intell. 2022. [CrossRef]

34. Wu, W.; Chang, H.; Zheng, Y.; Li, Z.; Chen, Z.; Zhang, Z. Contrastive Learning-Based Robust Object Detection Under Smoky
Conditions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LO, USA, 21–24
June 2022; pp. 4295–4302.

35. Li, H.; Li, Y.; Zhang, G.; Liu, R.; Huang, H.; Zhu, Q.; Tao, C. Global and local contrastive self-supervised learning for semantic
segmentation of HR remote sensing images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5618014. [CrossRef]

36. Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective search for object recognition. Int. J. Comput. Vis. 2013,
104, 154–171. [CrossRef]

37. Zitnick, C.L.; Dollár, P. Edge boxes: Locating object proposals from edges. In Proceedings of the European Conference on
Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 391–405.

38. Arbeláez, P.; Pont-Tuset, J.; Barron, J.T.; Marques, F.; Malik, J. Multiscale combinatorial grouping. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 328–335.

39. Oord, A. V. D.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive coding. arXiv 2018, arXiv:1807.03748.
40. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.

Comput. Vis. 2010, 88, 303–338. [CrossRef]
41. Everingham, M.; Eslami, S.M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes challenge: A

retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]
42. Deselaers, T.; Alexe, B.; Ferrari, V. Weakly supervised localization and learning with generic knowledge. Int. J. Comput. Vis. 2012,

100, 275–293. [CrossRef]
43. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL, USA, 20–25 June 2009; pp. 248–255.
44. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L. Microsoft coco: Common objects in context. In

Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755.

50



Citation: Jang, S.; Shin, U.-H.; Kim, K.

Deep Non-Line-of-Sight Imaging

Using Echolocation. Sensors 2022, 22,

8477. https://doi.org/10.3390/

s22218477

Academic Editors: Sukho Lee and

Dae-Ki Kang

Received: 13 October 2022

Accepted: 31 October 2022

Published: 3 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Deep Non-Line-of-Sight Imaging Using Echolocation

Seungwoo Jang 1, Ui-Hyeon Shin 1 and Kwangsu Kim 2,*

1 Department of Artificial Intelligence, Sungkyunkwan University, Suwon 16419, Korea
2 College of Computing and Informatics, Sungkyunkwan University, Suwon 16419, Korea
* Correspondence: kim.kwangsu@skku.edu

Abstract: Non-line-of-sight (NLOS) imaging is aimed at visualizing hidden scenes from an observer’s
(e.g., camera) viewpoint. Typically, hidden scenes are reconstructed using diffused signals that
emit light sources using optical equipment and are reflected multiple times. Optical systems are
commonly adopted in NLOS imaging because lasers can transport energy and focus light over long
distances without loss. In contrast, we propose NLOS imaging using acoustic equipment inspired by
echolocation. Existing acoustic NLOS is a computational method motivated by seismic imaging that
analyzes the geometry of underground structures. However, this physical method is susceptible to
noise and requires a clear signal, resulting in long data acquisition times. Therefore, we reduced the
scan time by modifying the echoes to be collected simultaneously rather than sequentially. Then, we
propose end-to-end deep-learning models to overcome the challenges of echoes interfering with each
other. We designed three distinctive architectures: an encoder that extracts features by dividing multi-
channel echoes into groups and merging them hierarchically, a generator that constructs an image
of the hidden object, and a discriminator that compares the generated image with the ground-truth
image. The proposed model successfully reconstructed the outline of the hidden objects.

Keywords: non-line-of-sight; acoustic sensing; depth estimation; deep learning

1. Introduction

Over the past few decades, various methods have been proposed to reconstruct hidden
scenes that are not visible from an observer’s (e.g., camera) perspective. A prominent
approach is to use optical equipment to emit a light source towards a relay wall and
analyze the scattered light reflected from the hidden scene. Optical equipment primarily
consists of a light source (e.g., pulsed laser, continuous laser, and modulated laser) and a
detector (e.g., striped camera, single-photon avalanche diode (SPAD), time-of-flight (ToF)
camera, and conventional camera). The visible light used by laser tends not to be diffracted
owing to its short wavelength. Non-diffractive visible light requires a one-to-one scan.
Therefore, more time is required if the size of the hidden scenes is enormous. These physical
limitations of visible light, incurring a long time to scan, make it challenging to apply NLOS
imaging in real-world scenarios.

Due to these data collection difficulties, applying deep learning models in NLOS
imaging is still at an early stage. In recent years, many studies have used synthesized data
to overcome the absence of datasets. Chen et al. [1] synthesized the data by rendering
diffuse three-bounce of a steady-state laser. Then, they used a U-Net structure to reconstruct
the hidden scene. Chopite et al. [2] generated a time histogram image of the photon and
used it for training. After that, they extracted features using a 3D → 2D encoder structure
and decoded them by upsampling. Tancik et al. [3] performed object positioning and
recognition with training data that rendered the flash’s reflections. In addition to the
above studies, most deep learning models use synthetic data centered on optical systems.
However, the synthesized data does not consider noise generated in real-world scenarios,
so the generalization performance is poor. To close this gap, we designed NLOS imaging
using acoustics and collected real-world datasets without soundproofing.
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In contrast to visible light, sound has a long wavelength and diffracts well, which
enables the perception of hidden objects. In nature, certain animals (e.g., bats, dolphins,
oilbirds, and swiftlets) have highly specialized auditory abilities [4] that enable them to see
beyond walls, which is called echolocation. They emit sound and perceive echoes reflected
from numerous objects in the environment. Subsequently, they obtain spatial information
by analyzing the relative intensity and arrival time delays in the received echoes.

Animals that use echolocation recognize a target’s direction, distance, size, and shape
based on spatial information. Furthermore, they can even perceive NLOS areas behind
obstacles. Recently, methods to reconstruct images or depth maps from echoes based on the
innate sound mechanisms of animals have been proposed. Batvision [5] used only echoes
for image reconstruction and depth map estimation. Gao et al. [6], and Parida et al. [7]
demonstrated that depth estimation is more accurate when used with echoes compared to
when using RGB image alone.

Lindell et al. [8] proposed acoustic NLOS (Figure 1) as a computational approach to
calculate the time-of-flight (ToF) of received echoes. They collected data with a single input,
multiple outputs (SIMO), wherein a single sound emitted sequentially from an array of
speakers and recorded from an array of microphones. The hidden object is reconstructed
by calculating the ToF of the recorded echoes in each array. Conventional physical models
require precise signals because they are susceptible to noise. Therefore, they required
several minutes to scan the hidden scenes.

Figure 1. Typical acoustic NLOS setup. Object hidden by the obstacles is not directly visible from
the observer’s point of view. The speakers emitted chirp signals toward the relay wall, and the
microphones recorded the signals reflected off the hidden object.

To reduce the data collection time, we used the MIMO (multiple input, multiple
outputs) methods that differ from the previous data collection method, such as SIMO
(single input, multiple outputs), as shown in Figure 2. Although the MIMO method
reduced the data collection time, using the existing physical model is not easy because
the signals interfere with each other. Therefore, we propose an end-to-end deep learning
approach that directly learns depth map representation from echoes.
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Figure 2. Comparison of the data collecting methods used by our acoustic system and the acous-
tic NLOS.

The acoustic system we designed collects 64 echoes from different locations. Unlike
a general feature extraction method that uses all the channels as input, we designed an
encoder for multichannel data to preserve the spatial information of each echo. Then,
we split the channels of the echoes and passed them through each encoder to extract the
hidden object features. The feature extracted from the encoder is a hierarchical structure that
merged with an adjacent channel and entered the encoder again. In this way, we effectively
extract features.

The major contributions of this work are as follows:

• We propose an end-to-end deep-learning model that reconstructs a depth map
from echoes.

• We designed a hierarchical feature extractor for acoustic NLOS imaging.
• To our knowledge, this is the first work that uses a deep-learning model for acoustic

NLOS imaging.

2. Related Work

2.1. Non-Line-of-Sight Image Reconstruction

NLOS imaging is a method for reconstructing hidden scenes that are not visible
from the observer’s point of view. This reconstruction of a hidden object is achieved by
analyzing diffused signals that are reflected several times. The diffused signal returns
through the relay wall-hidden object-relay wall. As the signal is reflected three times, it is
challenging for high-quality reconstruction because of the low SNR (signal-to-noise ratio).
Moreover, it is easy to be exposed to various noises. Methods that can increase the SNR
include improving hardware or reconstruction algorithms. In this paper, we focus on the
reconstruction algorithm.

Reconstructing hidden objects using signals can be divided into physical and deep-
learning models. Conventional physical approaches are promising for NLOS image recon-
struction because the diverse hardware, setup, and environment make it challenging to
produce large-scale datasets. Consequently, most deep-learning approaches use synthe-
sized data. By contrast, we collected real data because the synthesized data’s constraints
differ from those collected in the real world.

The physical model is reconstructed by inversely calculating the diffused signal re-
flected by the hidden object. Methods such as back-projection [9,10], inverse [11], surface
normal [12,13], and wave-base [14,15] are used to create an algorithm by analyzing the
collected signals. Despite the lack of benchmark datasets, deep-learning models are de-
veloping rapidly. Chen et al. [1] collected steady-state data using a conventional camera
and a continuous wave laser. Then, the 3D image of the hidden scene is reconstructed
using the end-to-end deep-learning network. In addition, static synthetic data has been
used to improve the model’s performance. Chopite et al. [2] used 3D and 2D encoders to
reconstruct the hidden scene. Other end-to-end deep-learning methods included extracting
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features from multiple layers using deep matrix factorization [16], deep inverse correlation
approach (deep inverse), deep matrix factorization, and deep inverse correlation approach.
Some studies [17] addressed the noise problem related to correlation using correlography,
and [18,19] proposed a feature embedding learning method suitable for hidden scene re-
construction. In addition, there are tasks for identification [20,21] and pose estimation [22]
in hidden scenes.

2.2. Acoustic Non-Line-of-Sight Imaging

Optical systems are mainly used for NLOS image reconstruction because they focus
on the signal of hidden objects. However, optical equipment that uses light sources, such
as lasers, requires specialized knowledge and is expensive. Therefore, Lindell et al. [8]
proposed using acoustic equipment to reconstruct the hidden scene.

For acoustic NLOS, a physical model inspired by a geotomography that analyzes the
time when the P- and S-waves of the seismic waves reach the observatory is designed.
The acoustic equipment emitted linear acoustic chirps (20 Hz–20 kHz) and recorded multi-
bounce sounds using speaker and microphone arrays. On the other hand, we simultane-
ously emitted signals, thus reducing the scanning time. Subsequently, we propose a deep
learning model suitable for interfered echoes.

2.3. Echo-Visual Learning

Existing audio-visual learning approaches use sounds passively. Echo-visual Learning,
in contrast, uses methods that actively generate sounds. This approach outperformed
the conventional audio-visual methods. Echo-visual methods use sounds in fields that
require spatial information, such as depth measurements, SLAM, and floor planning.
Visualechoes [6] enabled monocular depth estimation, surface normal estimation, and
visual navigation in 3D indoor scene environments. Parida et al. [7] estimated depth maps
using multi-modal data (RGB images, echoes, and materials of objects) from indoor scenes.
Purushwalkam et al. [23] reconstructed the floor plan of the invisible area using echoes.
Batvision [5] used both vision and echoes to train, and in the test phase, they estimated
depth using echoes only.

3. Approach

3.1. Dataset

We built an experimental environment hidden from the observer’s point of view for
data collection. Our data acquisition process and system are as follows. First, we mounted
8 speakers and microphone arrays in the linear stage. Then, The speakers emitted chirp
signals simultaneously. The echoes that bounce off a hidden object are recorded using
microphones. Subsequently, the acoustic signals are repeatedly acquired while moving
horizontally at 10 cm intervals at 8 positions. At the end of the collection process, we
obtained 64 echoes and the ground-truth depth map. We repeated the collection process by
adjusting the hidden object positions and angles.

The objects included a wooden alphabet, a sign, a plastic mannequin, and an iron
fire extinguisher, as shown in Figure 3. In the case of mannequins, the posture is changed,
or accessories are attached (e.g., backpacks, baskets). We collected a total of 5376 data
from 16 classes. For each class, 336 data are collected from various angles and positions.
We configured a speaker (SoundStream LX.402) that could output 70 Hz to 20 kHz and
an electret measurement microphone (Dayton Audio EMM-6) that could receive a wide
bandwidth and flat without emphasizing a specific band. In addition, an 8-channel audio
interface (Behringer UMC1820) and a 12-channel power amplifier (Dayton Audio MA1240a)
are used. The linear stage is made to order, as shown in Figure 4. The reflection is dispersed
if the reflective surface’s size is comparable to or less than the sound wave’s wavelength.
Therefore, rather than employing pure tones, we transmitted linear frequency chirp signals
with a duration of 0.1 s, ranging from 20 Hz to 20 kHz. We recorded 0.5 s at a sampling rate
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of 48 kHz. At a distance of 5 m, we measured the chirp signal volume as approximately
70 dB SPL. The total scan time is approximately 45 s.

Figure 3. Examples of objects used for data collection.

Figure 4. Illustration of our linear stage: a speaker and microphone arrays arranged vertically.

The experiment space is 6.52 m wide and 8.51 m long. The hidden objects are within
a 3 m × 3 m area. The minimum and maximum distances between the hidden objects
and acoustic equipment are 3 m and 6 m, respectively. We do not establish a soundproof
environment. Therefore, we recorded echoes reflected from the walls, floors, ambient noise,
and hidden objects. Following data collection, we used Turtle Bot 3 to move the object at
various distances and angles.

3.2. Observation Model

Echolocation is achieved by emitting short sounds and perceiving returning echoes.
It is similar to the mechanism of active sonar. We employed a frequency-modulated
continuous-wave sonar system with MIMO arrays. As a linear frequency sweep, the pro-
posed acoustic sonar transmitted signals g(t) are as follows:

g(t) = sin
[
φ0 + 2π

( c
2

t2 + f0t
)]

(1)

where φ is the initial phase at time t = 0 and c is the chirp rate, which is assumed to
be constant:

c =
f1 − f0

T
(2)
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where f0 is the starting frequency at time t = 0 and f1 is the final frequency T is the time to
sweep from f0 to f1.

The transmitted signals g(t) passed through the relay wall-hidden object-relay wall to
reach the microphones. The received r(t) signals can be expressed in terms of time delay,
noise, and transmission loss of the original signals, such that:

r(t) = ∑
i

αgi(t − Ti) + ni(t) (3)

where the attenuation transmission loss is denoted by α, the range delay time by T, and the
noise is by n(t).

3.3. Reconstruction Model

We aimed to reconstruct a depth map of an object hidden behind walls. We designed
a three-part module consisting of an encoder, generator, and discriminator to learn depth
map representation from echoes. Figure 5 illustrates the architecture of the proposed
model. The proposed model reconstructed the hidden object using echoes. Each echo is
collected at different locations. Thus, although they are related, each has independent data.
If the features of 64 echoes are extracted simultaneously, extracting the sparse information
required for object reconstruction would be difficult. Therefore, we extracted the features
necessary for reconstruction using a hierarchical encoder structure. The hierarchical encoder
extracted and merged the features by grouping them along the y-axis of the speaker and
microphone array. Then, the generator reconstructs the depth map of the hidden object
using extracted features, and the quality of the reconstructed depth map is enhanced using
a discriminator. Below, we provide details about the modules.

Figure 5. The model generates the depth map from the echoes. The encoder hierarchically extracts
hidden object features from the echoes. Then extracted features are concatenated and then reshaped.
The generator used the features extracted from the echoes to create a depth map. The discriminator
compares the generated depth map with the ground-truth.

3.3.1. Hierarchical Feature Extraction

The encoder learned the depth map representations from echoes. For depth map
reconstruction, 64 echoes are input. We divided the 64 echoes into 8 groups along the y-axis.
Each group then passed through the first encoder and merged with the adjacent groups to
form 4 groups. In this way, features are extracted by hierarchically merging the features in
the order of the 8-4-2-1 group.
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Each encoder has the same structure, consisting of CNN, convolutional block attention
module (CBAM) [24], and squeeze-and-excitation (SE-Net) attention module [25], as shown
in Figure 6. The CBAM is a channel and spatial attention module, and the formula is
expressed as follows:

Channel(X) = Sigmoid(MLP(AvgPool(X) + MLP(MaxPool(X)) (4)

Channel attention focused on what is important for a given input. The input feature
map X is reshaped into C × 1 × 1. Then, integrate the spatial information of the feature
map using average-pooling and max-pooling, respectively. Each pooling is passed to the
multilayer perceptron (MLP) to generate an attention map, following which the two are
integrated to create the final channel attention map.

Spatial(X) = Sigmoid(Conv(AvgPool(X); MLP(MaxPool(X)) (5)

The spatial attention module enabled focusing on the location of significant informa-
tion. In the feature map generated by multiplying the channel attention map with the
input feature map, we concatenated the two values generated by applying max-pooling
and average-pooling around the channels. Here, a convolution operation is applied to
generate a spatial attention map. The CBAM, which sequentially applied channel and
spatial attention, revealed what and where to focus and emphasized the channel with
important information in the entire channel while simultaneously focusing on the required
area on the feature map.

The SE-Net consisted of a block of squeeze operations, which extracted global informa-
tion by compressing feature map information, and excitation operation, which adjusted the
relative importance of each channel. The squeeze-and-excitation (SE) block is expressed
as follows:

SE(X) = Sigmoid(MLP(GlobalAveragePool(X))) (6)

The features extracted through the last encoder module are converted into one-
dimensional vectors through flattening. Then, we reshaped the encoded vectors H × W,
where H and W are the height and width of the desired output image, respectively.

Figure 6. Each encoder consisted of two convolutional layers, CBAM and SE-Net.

3.3.2. Generator

The generator created a depth map from the encoded vectors. We used attention
U-Net [26], which can bypass the bottleneck. We input encoded feature maps H × W into
the generator and estimated the depth map Di ∈ R

W×H . Attention, which reduces the
weight of the background by focusing on the hidden object, is applied to the expanding
path of the U-Net (Figure 7). It is defined as follows:

ql
att = ψT

(
σ1

(
WT

x xl
i + WT

g gi + bg

))
+ bψ (7)
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αl
i = σ2

(
ql

att

(
xl

i , gi; Θatt

))
(8)

where xl denotes the output of the contracting path, g denotes the gating signals, bg, and
bψ are the bias terms. The terms σ1 and σ2 denote ReLU and sigmoid, respectively. This
attention is performed immediately before the concatenation procedure.

Figure 7. Additive attention gate (AG) of UNet. The separate 1 × 1 × 1 convolutions are used for
the input features (xl) and the gating signal. Following that, the features are added and subjected to
several linear transformations, including ReLU activation (σ1), 1 × 1 × 1 convolution, and sigmoid
activation (σ2).

3.3.3. Discriminator

The discriminator is a network that determines whether an image generated as input is
real or fake by comparing it with the ground-truth depth map. The discriminator structure
of Pix2Pix [27] is used. The details of the layers are listed in Table 1.

Table 1. Discriminator layer configuration.

Layer # of Filters Filter Size Stride Padding

Conv1 64 4 2 1
Conv2 128 4 2 1
Conv3 256 4 2 1
Conv4 512 4 2 1
Conv5 1024 4 2 1
Conv6 1 4 2 0

3.3.4. Loss Function

The network is trained using the L1 errors. The loss is specified as follows:

min
G

max
D

1
2
LGAN(D) + LGAN(G) + λLL1(G) (9)

where λ is the weight factor. We disregard regions that are not defined on the ground-truth
depth map.

4. Experiments

4.1. Implementation Details

We used PyTorch to build the proposed model. Initial decays of β1 and β2 for the
Adam optimizer are 0.5, 0.999, and a learning rate of 0.0001, respectively. The training is
run for approximately one day with 100 epochs on a single NVIDIA V100. Input to the
model is converted into a spectrogram of 0.3 s. The input depth map images are resized
to 128 × 128. We used a window size of 64 and a fast Fourier transform the size of 512 for
all the experiments. In the 16 classes we collected, we used 11 classes for training and the
remaining 5 classes for testing unseen situations. We divided the training and validation
data into a ratio of 8:2.

4.2. Evaluation Metrics

We used evaluation methods frequently used for depth estimation and evaluation
methods for measuring the similarity of depth maps. The following p is a pixel, dp is a
ground-truth depth map, d̂p is a predicted depth map, and T is the total number of pixels
with both valid ground-truth and depth map outputs.
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• Structural Similarity Index Measure (SSIM) [28]:

SSIM(dp, d̂p) = I(dp, d̂p)× c(dp, d̂p)× s(dp, d̂p) (10)

where i, c, and s are luminance, contrast, and structure, respectively.
• Root Mean Square Error (RMSE) [29]:√

1
T ∑

p
(dp − d̂p)2 (11)

• Absolute Relative Error (Abs Rel) [30]:

1
T ∑

p

∣∣∣dp − d̂p

∣∣∣
dp

(12)

• Accuracy under threshold [31]:

max
(

d̂p

dp
,

dp

d̂p

)
= δ < threshold (13)

where the threshold is 1.25, 1.252, and 1.253, respectively.

4.3. Results

In acoustic NLOS, there is no existing method that uses deep learning. Furthermore,
it is difficult to compare the existing proposed physical model with any extant approach
because of our deployed unique data collection process. Thus, we compared the encoders
of the three structures, as shown in Figure 8 below. We compared three types of encoders:
plain, split, and hierarchical encoders. A plain encoder is a general structure that ex-
tracts features without separating the 64 channels of echoes. The split encoder divided
the 64 channels into eight groups to extract and merge the features. The hierarchical en-
coder is a structure that extracts features by dividing them into groups and hierarchically
merging them.

Figure 8. Encoder architecture comparison.
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4.3.1. Quantitative Results

Table 2 compares the three types of encoders. The models used in the plain encoder
structure included CNN, 3D CNN [32], ResNet [33], SE-ResNet [25], ResNext [34], and
Batvision [5]. The CNN model consisted of six convolutional layers and two fully connected
layers. The 3D CNN model consisted of eight layers and two fully connected layers, with
the y-axis where is the channel and the x-axis is the depth. ResNet, SE-ResNet, and ResNext
used 50 layers. Batvision is a model reconstruction using only echoes in a line-of-sight
situation. In the split encoder, echoes are grouped based on the y-axis, and CNN, 3D CNN,
and ResNet are used as models, and the structure is the same as that of the plain encoder.
In the hierarchical encoder, we compared the CNN with our proposed model. The structure
of the generator and discriminator is fixed.

Table 2. Quantitative results comparison.

Encoder Model SSIM (↓) RMSE (↓) Abs Rel (↓) δ < 1.25 (↑) δ < 1.252 (↑) δ < 1.253 (↑)

Plain

CNN 0.219 0.235 2.094 0.460 0.603 0.692

3DCNN 0.205 0.235 2.031 0.486 0.621 0.706

ResNet 0.222 0.257 2.324 0.452 0.590 0.677

SE-ResNet 0.230 0.249 2.282 0.456 0.595 0.682

ResNext 0.228 0.249 2.348 0.466 0.602 0.688

Batvision 0.216 0.236 2.519 0.453 0.594 0.681

Ours 0.224 0.251 2.187 0.457 0.595 0.682

Split

CNN 0.213 0.250 2.171 0.460 0.597 0.684

3DCNN 0.231 0.254 2.428 0.462 0.599 0.684

ResNet 0.221 0.256 2.402 0.473 0.612 0.698

Ours 0.217 0.263 2.690 0.462 0.595 0.678

Hierarchical
CNN 0.221 0.249 2.396 0.463 0.599 0.685

Ours 0.188 0.230 1.908 0.490 0.627 0.713

In the plain encoder, the 3D CNN model exhibited the best performance. These results
demonstrate that the 3D CNN, which can consider the spatial relationship, has superior
reconstruction performance compared to the other models. Then, the simple CNN model
performed better on the data than the other models, except for the 3D CNN. These results
show that the sparse information required for reconstruction disappeared as the layer
deepened. Generally, the performance of a model grows with increasing depth. However,
it can be observed that the performance of the other models degraded because the plain
encoder does not consider the data characteristics.

The performance of the 3D CNN model is worse with the split encoder than with the
plain encoder. The 3D CNN model can consider spatial relations without grouping the
echoes, but the split encoder structure does not consider the relationship between each
group by grouping the echoes. Thus, in this structure, CNN exhibited the best performance.
The split encoder used each group independently to extract and merge features. Therefore,
it is difficult to consider the spatial relationships of the other groups.

Our proposed hierarchical encoder structure and model outperformed all the other
models based on all the evaluation matrices. We showed that our attention model is
adequate compared to the CNN model in the hierarchy structure. Therefore, the pro-
posed method proved that the hierarchical structure and the proposed model, with its
64 independent echoes, are suitable for feature extraction.
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4.3.2. Qualitative Results

Figure 9 compares the depth maps generated by the model in each encoder architecture.
The 3D CNN model reconstruction of a plain encoder has an approximate shape but is less
detailed than the proposed method. For example, the lower part of L is not reconstructed
in the first row, and the mannequin in the third row has no arms. The image yielded by the
split encoder CNN model is only partially reconstructed. Our proposed method generated
more distinguishable shapes than the other encoder architecture models.

Figure 9. Comparison of image reconstruction according to encoder architecture.

In the test, as shown in Figure 10, the wooden L and N are reconstructed approximately
such that they are recognizable. However, owing to its relatively complex shape, S is not
recognizable. Mannequins are recognizable in all classes. However, if the details, arms,
and legs are slightly different, they are not accurately reconstructed. The symbol has
the shape of a square, hexagon, or circle. Signs at a close distance indicated the shape
better than they do at a distance. With increasing distance, the object’s reconstruction
is less precise. However, although mannequins’ small body parts (e.g., ears, finger) is
difficult to reconstruct, body parts with large surface areas are well reconstructed at a
distance. Furthermore, letters or symbols with a small surface area do not recover well as
the distance increases.

As shown in Figure 11, unseen data are not used in training. The data used in training
are similar but not the same (e.g., the letters N, L, and S are used for training, but O is
only used for unseen). When comparing unseen data that are not used in training, the
approximate shape of the object is reconstructed, but the details cannot be reconstructed.
The large-surface-area mannequins are reconstructed to be recognizable, but the small
alphabets and signs are not.
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Figure 10. Qualitative result of proposed method.

Figure 11. Depth prediction using data not included in the training dataset.

5. Conclusions

In this study, we designed an active sonar system inspired by echolocation, certain
animals’ innate ability to reconstruct an object’s image in a hidden scene. The acoustic
system emitted sound waves and used reflections to identify hidden object positions and
approximate shapes. Our system is designed using the MIMO method, which reduced
the required data collection time from 4.5 m, as required by the conventional method,
to 40 s. Furthermore, we do not use the sound-absorbing material used in the previous
method. It is challenging to reconstruct hidden objects from mutually interfering echoes
using conventional physical methods; therefore, we proposed a deep-learning approach.
Specifically, we created a hierarchical encoder and model to extract echoes effectively with
64 independent channels. Consequently, our model outperformed models of encoders with
other structures.
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Abbreviations

The following abbreviations are used in this manuscript:

NLOS Non-Line-of-Sight
SPAD Single-Photon Avalanche Diode
ToF Time-of-Flight
SIMO Single Input, Multiple Outputs
MIMO Multiple Inputs, Multiple Outputs
FMCW Frequency-Modulated Continuous-Wave
SNR Signal-to-Noise Ratio
FFT Fast Fourier Transform
CNN Convolutional Neural Networks
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Abstract: Modern depth sensors are often characterized by low spatial resolution, which hinders
their use in real-world applications. However, the depth map in many scenarios is accompanied
by a corresponding high-resolution color image. In light of this, learning-based methods have been
extensively used for guided super-resolution of depth maps. A guided super-resolution scheme
uses a corresponding high-resolution color image to infer high-resolution depth maps from low-
resolution ones. Unfortunately, these methods still have texture copying problems due to improper
guidance from color images. Specifically, in most existing methods, guidance from the color image
is achieved by a naive concatenation of color and depth features. In this paper, we propose a fully
transformer-based network for depth map super-resolution. A cascaded transformer module extracts
deep features from a low-resolution depth. It incorporates a novel cross-attention mechanism to
seamlessly and continuously guide the color image into the depth upsampling process. Using
a window partitioning scheme, linear complexity in image resolution can be achieved, so it can
be applied to high-resolution images. The proposed method of guided depth super-resolution
outperforms other state-of-the-art methods through extensive experiments.

Keywords: super-resolution; deep learning; depth maps; attention; multimodal; transformers

1. Introduction

High-resolution (HR) depth information of a scene plays a significant part in many
applications, such as 3D reconstruction [1], driving assistance [2], and mobile robots.
Nowadays, depth sensors such as LIDAR or time-of-flight cameras are becoming more
widely used. However, they often suffer from low spatial resolution, which does not always
suffice for real-world applications. Thus, ongoing research has been done on reconstructing
a high-resolution depth map from a corresponding low-resolution (LR) counterpart in a
process termed depth super-resolution (DSR).

The LR depth map does not contain the fine details of the HR depth map, so recon-
structing the HR depth map can be challenging. Bicubic interpolation, for example, often
produces blurry depth maps when upsampling the LR depth, which limits the ability to,
e.g., separate between different objects in the scene.

In recent years, many learning-based approaches based on elaborate convolutional neu-
ral network (CNN) architectures for DSR were proposed [3–7]. These methods surpassed
the more classic approaches such as filter-based methods [8,9], and energy minimization-
based methods [10–12] in terms of computation speed and the quality of the reconstructed
HR information. Although CNN-based methods improved the performance significantly
compared with traditional methods, they still suffer from several drawbacks. To begin
with, feature maps derived from a convolution layer have a limited receptive field, making
long-range dependency modeling difficult. Second, a kernel in a convolution layer operates
similarly on all parts of the input, making it content-independent and likely not the optimal
choice. In contrast to CNN, transformers [13] have recently shown promising results in
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several vision-related tasks due to their use of attention. The attention mechanism enables
the transformer to operate in a content-dependent manner, where each input part is treated
differently according to the task.

LR depth information is often accompanied by HR color or intensity images in real-life
situations. Thus, numerous methods proposed to use this HR image to guide the DSR
process [3,4,7,14–23] since the HR image might provide some additional information that
does not exist in the LR depth image, e.g., the edges of a color image can be used to identify
discontinuities in a reconstructed HR depth image. However, one major limitation, termed
texture-copying, still exists in these guided DSR methods. Texture copying may occur when
intensity edges do not correspond to depth discontinuities in-depth maps, for example,
a flat and highly textured surface. Consequently, the reconstruction of HR depth is then
degraded due to the over-transfer of texture information.

This paper proposes a novel, fully transformer-based architecture for guided DSR.
Specifically, the proposed architecture consists of three modules: shallow feature extraction,
deep feature extraction and fusion, and an upsampling module. In this paper, we term the
feature extraction and fusion module the cross-attention guidance module (CAGM). The
shallow feature extraction module uses convolutional layers to extract shallow features
from LR depth and HR color images, which are directly fed to the CAGM to preserve low-
frequency information. Next, several transformer blocks are stacked to form the CAGM,
each operating in non-overlapping windows from the previous block. Guidance from the
color image is introduced via a cross-attention mechanism. In this manner, guidance from
the HR color image is seamlessly integrated into the deep feature extraction process. This
enables the network to focus on salient and meaningful features and enhance the edge
structures in the depth features while suppressing textures in the color features. Moreover,
contrary to CNN-based methods, which can only use local information, transformer blocks
can exploit the input image’s local and global information. This allows learning of structure
and content from a wide receptive field, which is beneficial for SR tasks [24]. As a final
step, shallow and deep features are fused in the upsampling module to reconstruct HR
depth. Section 4 shows that the proposed architecture provides better visual results with
sharper boundaries and better root mean square error (RMSE) values than competing
guided DSR approaches. We also show how the proposed architecture helps to mitigate the
texture-copying problem of guided DSR. The proposed architecture is shown in Figure 1.
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Figure 1. The proposed FCTN architecture for guided depth SR with a 2× upsampling factor.

Our main contributions are as follows: (1) We introduce a transformer-based architec-
ture with a novel guidance mechanism that leverages cross-attention to seamlessly integrate
guidance features from a color image to the DSR process. (2) Linear memory constraints
make the proposed architecture applicable even for large inputs. (3) This architecture is not
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limited to a fixed input size, so it can be applied to a variety of real-world problems. (4)
Our system achieves state-of-the-art results on several depth-upsampling benchmarks.

The remainder of this paper is organized as follows. A summary of related work is
presented in Section 2. We describe our architecture for guided DSR in Section 3. Section 4
reports the results of extensive experiments conducted on several popular DSR datasets.
Additionally, an ablation study is conducted. We conclude and discuss future research
directions in Section 5.

2. Related Work

2.1. Guided Depth Map Super-Resolution

A number of methods for reconstructing the HR depth map only from LR depth have
been proposed in earlier works for single depth map SR. ATGV-Net was proposed by [5]
combining a deep CNN in tandem with a variational method designed to facilitate the
recovery of the HR depth map. Reference [25] modeled the mapping between HR and LR
depth maps by utilizing densely connected layers coupled with a residual learning model.
Auxiliary losses were tabulated at various scales to improve training.

However, it is pertinent to note that in most real-life scenarios, the LR depth image is
coupled with a HR intensity image. Recently, several methods have been proposed to im-
prove depth image quality, relying on the HR intensity image to guide the upsampling pro-
cess. We group these methods under four sub-categories: filtering-based methods [26–28],
global optimization-based methods [10–12,16,29–34], sparse representation-based meth-
ods [14,15], and deep learning-based methods [3,4,7,17–23,35–40], which are the focus of
this paper.

Notable amongst the more classical works are [10], which formulated the upsampling
of depth as a convex optimization problem. The upsampling process was guided by a
HR intensity image. A bimodal co-sparse analysis was presented in [14] to describe the
interdependency of the registered intensity and depth information. Reference [15] proposed
a multi-scale dictionary as a method for depth map refinement, where local patches were
represented in both depth and color via a combination of select basis functions.

Deep learning methods for SR of depth images have gained increasing attention due
to recent success in SR of color images. A fully convolutional network was proposed in [35]
to estimate the HR depth. To optimize the final result, this HR estimation was fed into
a non-local variational model. Reference [4] proposed an “MSG-Net”, in which both LR
(depth) and HR (color) features are combined within the high-frequency domain using a
multi-scale fusion strategy. Reference [3] proposed extracting hierarchical features from
depth and color images by building a multi-scale input pyramid. The hierarchical features
are further concatenated to facilitate feature fusion, whilst the residual map between the
reconstructed and ground truth HR depth is learned with a U-Net architecture. Refer-
ence [37] proposed another multi-scale network in which the LR depth map upsampling,
guided by the HR color image, was performed in stages. Global and local residual learning
is applied within each scale. Reference [17] proposed a cosine transform network in which
features from both depth and color images were extracted using a semi-coupled feature
extraction module. To improve depth upsampling, edges were highlighted by an edge at-
tention mechanism operating on color features. Reference [19] proposed to use deformable
convolutions [41] for the upsampling of depth maps, using the features of the HR guidance
image to determine the spatial offsets. Reference [42] also applied deformable convolutions
to enhance depth features by learning the corresponding feature of the high-resolution color
image. An adaptive feature fusion module was used to fuse different level features adap-
tively. A network based on residual channel attention blocks was proposed in [20], where
feature fusion blocks based on spatial attention were utilized to suppress texture-copying.
Reference [21] proposed a progressive multi-branch aggregation design that gradually
restores the degraded depth map. Reference [22] proposed separate branches for HR color
image and LR depth map. A dual-skip connection structure, together with a multi-scale
fusion strategy, allowed for more effective features to be learned. Reference [39] used a
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transformer module to learn the useful content and structure information from the depth
maps and the corresponding color images, respectively. Then, a multi-scale fusion strategy
was used to improve the efficiency of color-depth fusion. Reference [43] proposed explicitly
incorporating the depth gradient features in the DSR process. Reference [44] proposed
PDR-Net, which incorporates an adaptive feature recombination module to adaptively
recombine features from a HR color guidance image with features from the LR depth. Then,
a multi-scale feature fusion module is used to fuse the recombined features using multi-
scale feature distillation and joint attention mechanism. Finally, Reference [23] presented
an upsampling method that incorporates the intensity image’s high-resolution structural
information into a multi-scale residual deep network via a cascaded transformer module.

However, the methods above mostly fuse the guidance features with the depth features
using mere concatenation. Moreover, most of these methods rely on CNN for feature
extraction, which operates on a limited receptive field and lacks the expressive power of
transformers. At the same time, we propose using a CAGM module, which leverages
transformers to fuse and extract meaningful features from HR color and LR depth images,
resulting in superior results, as shown in Section 4.

2.2. Vision Transformers

Transformers [13] have gained great success across multiple domains recently. Con-
tributing to this success was their inherent attention mechanism, which enables them to
learn the long-range dependencies in the data. This success led many researchers to adopt
transformers to computer vision tasks, where they have recently demonstrated promis-
ing results, specifically in image classification [45–47], segmentation [47,48], and object
detection [49,50].

To allow transformers to handle 2D images, an input image I ∈ R
H×W×C is first

divided into non-overlapping patches of size (P, P). Each patch is flattened and projected
to a d-dimensional vector via a trainable linear projection, forming the patch embeddings
X ∈ R

N×d where H, W are the height and width of the image, respectively, C is the number
of channels, and N = H × W/P2 is the total number of patches. Finally, N is the effective
input sequence length for the transformer encoder. Patch embeddings are enhanced with
position embeddings to retain 2D image positional information.

In [13], a vanilla vision transformer encoder is constructed by stacking blocks of multi-
head self-attention (MSA) and MLP layers. A residual connection is applied after every block,
and layer normalization (LN) before every block. Given a sequence of embeddings X ∈ R

N×d

with dimension d as input, a MSA block produces an output sequence X̄ ∈ R
N×d via

Q = XWQ , K = XWK , V = XWV

A = Softmax(QKT/
√

d)

X̄ = AV

(1)

where WQ , WK , and WV are learnable matrices of size d × d that project the sequence X

into keys, queries, and values, respectively. X̄ is a linear combination of all the values in V

weighted by the attention matrix A. In turn, A is calculated from similarities between the
keys and query vectors.

Transformers derive their modeling capabilities from computing self-attention A and
X̄. Since self-attention has a quadratic cost in time and space, it cannot be applied directly
to images as N quickly becomes unmanageable. As a result of this inherent limitation,
modality-aware sequence length restrictions have been applied to preserve the model’s
performance while restricting sequence length. Reference [45] showed that a transformer
architecture could be directly applied to medium-sized image patches for different vision
tasks. The aforementioned memory constraints are mitigated by this local self-attention.

Although the above self-attention module can effectively exploit intra-modality rela-
tionships in the input image, in a multi-modality setting, the inter-modality relationships,
e.g., the relationships between different modalities, also need to be explored. Thus, a
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cross-attention mechanism was introduced in which attention masks from one modality
highlight the extracted features in another. Contrary to self-similarity, wherein query, key,
and value are based on similarities within the same feature array, in cross-attention, keys,
and values are calculated from features extracted from one modality, while queries are
calculated from the other. Formally, a MSA block using cross-attention is given by

Q = X̂WQ , K = XWK , V = XWV (2)

where X is the input sequence of one modality and X̂ is the input sequence of the second
modality. The calculation of attention matrix A and output sequence X̄ remains the same.

3. Proposed Method

3.1. Formulation

A guided DSR method aims to establish the nonlinear relation between corresponding
LR and HR depth maps. The process of establishing this nonlinear relation is guided by a
HR color image. We denote the LR depth map as DLR ∈ R

H/s×W/s and the HR guidance
color image as IHR ∈ R

H×W , where s is a given scaling factor. The corresponding HR depth
map DHR ∈ R

H×W can be found from:

DHR = F̂(DLR, IHR; θ) (3)

where F̂ represents mapping learned by the proposed architecture, and θ represents the
parameters of the learned network. Although the scaling factor s is usually an exponent of
2, e.g., s = 2, 4, 8, 16, our upsampling module can perform upsampling for other scaling
factors as well, making this architecture flexible enough for real applications.

3.2. Overall Network Architecture

Throughout the remainder of this paper, we denote the proposed architecture as the
fully cross-attention transformer network (FCTN). As shown in Figure 1, the proposed
architecture consists of three parts: a shallow feature extraction module, a deep feature
extraction and guidance module called the cross-attention guidance module (CAGM), and
an upsampling module. The CAGM extracts features from the LR depth image and guides
the HR intensity image simultaneously.

Before we elaborate on the structure of each module, some significant challenges in
leveraging transformers’ performance for visual tasks, specifically SR, need to be addressed.
First, in real-life scenarios, images can vary considerably in scale. Transformer-based
models, however, work only with tokens of a fixed size. Furthermore, to maintain HR
information, SR methods avoid downscaling the input as much as possible. Processing HR
inputs of this magnitude would be unfeasible for vanilla transformers due to computational
complexity as described in Section 2.2.

3.2.1. Shallow Feature Extraction Module

The proposed shallow feature extraction module extracts essential features to be fed to
the CAGM. Shallow features are extracted from LR depth and HR color images via a single
convolution layer with a kernel size of 3× 3, followed by an activation function of a rectified
linear unit (ReLU). In the experiments, we did not notice any noticeable improvement
by using more than a single layer for shallow feature extraction. For shallow feature
extraction, incorporating a convolution layer leads to more stable optimization and better
results [51–53]. Moreover, the input space can also be mapped to a higher-dimensional
feature space d easily.

Specifically, the shallow feature extraction module can be formulated as

I0 = σ(Conv3(IHR)) (4)

D0 = σ(Conv3(DLR)) (5)
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where σ is a ReLU activation function and Conv3(·) is a 3 × 3 kernel.

3.2.2. Deep Feature Extraction and Guidance Module

While shallow features primarily contain low frequencies, deep features recover lost
high frequencies. We propose a stacked transformer module that extracts deep features
from the LR depth image based on the work of [47]. Self(cross)-attention is computed locally
within non-overlapping windows, with complexity linear with image size. Working with
large and variable-sized inputs is made feasible due to the aforementioned linear complexity.
In addition, we shift the windows partitioning into consecutive layers. Overlapping of the
shifted and preceding layer windows causes neighboring patches to gradually merge, and
thus modeling power is significantly enhanced. Overall, the transformer-based module can
efficiently extract and encode distant dependencies needed for dense tasks such as SR.

In addition, motivated by [54], we employ global and local skip connections. By
using long skip connections, low-frequency information can be transmitted directly to the
upsampling module, helping the CAGM focus on high-frequency information and stabilize
training [51]. Furthermore, it allows the aggregation of features from different blocks by
using such identity-based connections.

Besides deep feature extraction, a practical guidance module is also required to en-
hance the deep features extracted from LR depth and exploit the inter-modality information
from the available HR color image. Traditionally, CNN-based methods extract features
from the color image and concatenate them with features extracted from the depth image
in a separate branch to obtain guidance from the color image. All features handled via this
guidance scheme are treated equally in both the spatial and channel domains. Furthermore,
CNN-derived feature maps have a limited receptive field, affecting guidance quality. In
comparison, we propose providing guidance from the HR color image by incorporating a
cross-attention mechanism to the aforementioned feature extraction transformer module.
Cross-attention is a novel and intuitive fusion method in which attention masks from one
modality highlight the extracted features in another. In this manner, both the inter-modality
and intra-modality relationships are learned and optimized in a unified model. Thus, in
the proposed CAGM, the feature extraction process from the LR depth and guidance from
the HR image are seamlessly integrated into a single branch. Guidance from the HR image
is injected into every block in the feature extraction module, providing multi-stage guid-
ance. In particular, guidance provided to the lower-level features passed through the long
skip connections ensures that high-resolution information is preserved and passed to the
upsampling module. Lastly, by incorporating the guidance in the form of cross-attention,
long-range dependencies between the LR depth patches and the guidance image patches
can be exploited for better feature extraction.

To exploit the HR information further, we feed the HR intensity image to a second
cascaded transformer module termed color feature guidance (CFG) to extract even more
valuable HR information. The CFG is based on self-attention only and aims to encode
distant dependencies in the HR image. These features are then used to scale the features
extracted from the CAGM by element-wise multiplication before feeding them to the
upsampling module.

We note that contrary to common practice in vision tasks, no downsampling of the
input is done throughout the network. This way, our architecture preserves as much
high-resolution information as possible, albeit at a higher computational cost.

Formally, given I0 and D0, provided by the shallow feature extraction module as input,
the CAGM applies K cross-attention transformer blocks (CATB). Every CATB is constructed
from L cross-attention transformer layers (CATL), and a convolutional layer and residual
skip connection are inserted at the end of every such block. Finally, a 3 × 3 convolutional
layer is applied to the output of the last CATB. This last convolutional layer improves
the later aggregation of shallow and deep features by bringing the inductive bias of the
convolution operation into the transformer-based network. Furthermore, the translational
equivariance of the network is enhanced. In addition, I0 is fed to the CFG comprised of L̂
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transformer layers with self-attention. The CFG output is scaled to [0, 1] using a sigmoid
function and then used to scale the CAGM output before the upsampling module

The CFG module is formulated as

Îi = TLi(Îi−1) , i = 1 . . . L̂ (6)

FCFG = Conv3(ÎL̂) + I0 (7)

where Î0 = I0 and TL stands for a vanilla transformer layer with self-attention. Finally, the
entire CAGM can be formulated as

(Ii, Di) = CATBi(Ii−1, Di−1) , i = 1 . . . K (8)

FCAGM = Conv3(CATBK)⊗ σ̂(FCFG) + D0 (9)

where ⊗ is element-wise multiplication, Conv3(·) is a convolution layer with a 3× 3 kernel
and σ̂ is a sigmoid function.

3.2.3. Cross-Attention Transformer Layer

The proposed cross-attention transformer layer (CATL) is modified from the standard
MSA block presented in [13]. The two significant differences are; First, we use a cross-
attention mechanism instead of self-attention. We demonstrate the effectiveness of using a
cross-attention mechanism in Section 4.4. Second, cross-attention is computed locally for
each window, ensuring linear complexity with image size, which makes it feasible for large
inputs to be handled, as is often the case in SR.

Given as input feature map F ∈ R
Ĥ×Ŵ×d extracted from either color or depth images,

we first construct Fwin ∈ R
ĤŴ/M2×M2×d by partitioning F into M × M non-overlapping

windows. Zero padding is applied during the partitioning process if necessary. Similarly
to [55], relative position embeddings are added to Fwin so that positional information can
be retained. In a similar manner, the process is performed for both color and depth feature
maps; we refer to this joint embedding as Z0

I and Z0
D for the color and depth, respectively.

In each CATL, the MSA module is replaced with a windows-based cross-attention
MSA (MSAca), while the other layers remain unchanged. By applying Equation (2) locally
within each M × M window, we avoid global attention computations. Moreover, keys and
values are calculated from the depth feature map, while the queries are calculated from the
color feature map. Specifically, as illustrated in Figure 2b, our modified CATL consists of
MSAca followed by a 2-layer MLP with GELU nonlinearity. Every MLP and MSAca module
is preceded by an LN layer, and each module is followed by a residual connection.
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Figure 2. (a) Cross-Attention Transformer Block. (b) Cross-Attention Transformer Layer.

To enable cross-window connections in consecutive layers, regular and shifted window
partitionings are used alternately. In shifted window partitioning, features are shifted by
M/2, M/2 pixels. Finally, the CATL can be formalized as
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Ẑ = MSAca(LN(Z0
I , Z0

D)) + Z0
D (10)

Z = MLP(LN(Ẑ1)) + Ẑ1 (11)

where Ẑ and Z denote the output features of the MSAca and MLP modules, respectively.

3.2.4. Upsampling Module

The upsampling module operates on the CAGM output, scaled via the CFG module,
as elaborated in Section 3.2.2. It aims to recover high-frequency details and reconstruct
the HR depth successfully. The CAGM output is first passed through a convolution layer
followed by a ReLU activation function to aggregate shallow and deep features from the
CAGM. Then, we use a pixel shuffle module [56] to upsample the feature map to the HR
resolution. Each pixel shuffle module can perform upsampling by a factor of two or three,
and we concatenate such modules according to the desired scaling factor. Finally, the
upsampled feature maps are passed through another convolution layer that outputs the
reconstructed depth. The parameters of the entire upsampling module are learned in the
training process to improve model representation.

Formally, given the output of the CAGM module FCAGM ∈ R
H/s×W/s, where s is the

scaling factor, the upsampling module performs an upsampling by a factor s to reconstruct
DHR ∈ R

H×W . The upsampling process for a given s can be formulated as follows:

FUS,0 = Conv3(FCAGM)

FUS,i = PixellShufflei(FUS,i−1) , i = 1 . . . log2(s)

DHR = Conv3(FUS,i) .

(12)

where Conv3(·) is a convolution layer with a 3 × 3 kernel. More implementation details
are given in Section 4.1.

4. Experiments

4.1. Training Details

We constructed train and test data similarly to [3,4,23,25] using 92 pairs of depth
and color images from the MPI Sintel depth dataset [57] and the Middlebury depth
dataset [58–60]. The training and validation pairs used in this study are similar to the
ones used in [4,23]. We refer the reader to [57,58] for further information on the data
included in the aforementioned datasets.

During training, we randomly extracted patches from the full-resolution images and
used these as input to the network. We used an LR patch size of 96 × 96 pixels to reduce
memory requirements and computation time since using larger patches had no significant
impact on training accuracy. Consequently, we used HR patches of 192 × 192 and 384 × 384
for upsampling factors of 2 and 4, respectively. Given that some full-scale images had a full
resolution of < 400, we used LR patch sizes of 48 × 48 and 24 × 24 for upsampling factors 8
and 16, respectively. In order to generate the LR patches, each HR patch was downsampled
with bicubic interpolation. As an augmentation method, we used a random horizontal flip
while training.

4.2. Implementation Details

We construct the CAGM module in the proposed architecture by stacking K = 6
CATBs. Each CATB is constructed from L = 6 CATL modules as described in Section 3.2.2.
These values for K and L provided the best performance to network size trade-off in the
experiments, and Section 4.4, we report results with other configurations. All convolution
layers have a stride of one with zero padding, so the features’ size remains fixed. Through-
out the network, in convolution and transformer blocks, we use a feature (embedding)
dimension size of d = 64. We output depth values from the final convolution layer, which
has only one filter. For window partitioning in the CATL, we use M = 12, and each MSA
module has six attention heads.
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We used the PyTorch framework [61] to train a dedicated network for each upsampling
factor s ∈ 2, 4, 8, 16. Each network was trained for 3 × 105 iterations and optimized using
the L1 loss and the ADAM optimizer [62] with β1 = 0.9, β2 = 0.999 and ε = 10−8. We
used a learning rate of 10−4, dividing the learning rate by 2 for every 1 × 105 iteration. All
the models were trained on a PC with an i9-10940x CPU, 128GB RAM, and two Quadro
RTX6000 GPUs.

4.3. Results

This section provides quantitative and qualitative evaluations of the proposed archi-
tecture for guided DSR. Our proposed architecture was evaluated on both the noise-free
and the noisy Middlebury datasets. Further, we conduct experiments on the NYU Depth v2
dataset in order to demonstrate the generalization capabilities of the proposed architecture.
We compare the results to other state-of-the-art methods, including global optimization-
based methods [10,32], a sparse representation-based method [14], and mainly state-of-the-
art deep learning-based methods [3,4,7,17,19–23,25,37,39,43,44]. We also report the results
of naive bicubic interpolation as a baseline.

4.3.1. Noise-Free Middlebury Dataset

The Middlebury dataset provides high-quality depth and color image pairs from
several challenging scenes. First, we evaluate the different methods for the noise-free
Middlebury RGB-D datasets for different scaling factors. In Table 1, we report the obtained
RMSE values. Boldface indicates the best RMSE for each evaluation, while the underline
indicates the second best. In Table 1, all results are calculated from upsampled depth maps
provided by the authors or generated by their code.

Clearly, from Table 1 we conclude that deep learning-based methods [3,4,7,17,19–23,25,37]
outperform the more classic methods for DSR. In terms of RMSE values, the proposed
architecture provides the best performance across almost all scaling factors. For large
scaling factors, e.g., 8, 16, which are difficult for most methods, our method provides
good reconstruction with the lowest RMSE error across all datasets. For scaling factors
x4/x8/x16, our method obtained 0.48/0.99/1.55 as the average RMSE for the entire test
set, respectively. Our results outperform the second-best results in terms of average RMSE
values by 0.01/0.09/0.16, respectively.

In Figures 3 and 4, we provide upsampled depth maps on the “Art” and “Moebius”
datasets and a scale factor of 8 for qualitative evaluation. Upsampled depth maps are gener-
ated from 5 state-of-the-art methods, which are MSG [4], DSR [3], RDGE [32], RDN [7] and
CTG [23]. We also provide bicubic interpolation as a baseline for comparison. Compared
with competing methods, the proposed architecture provides more detailed HR depth
boundaries. Additionally, our approach mitigates the texture-copying effect evident in
some other methods, as shown by the red arrow. A significant factor contributing to
these results is the attention mechanism built into the transformer model. This atten-
tion mechanism transfers HR information from the guidance image to the upsampling
process in a sophisticated manner. Moreover, the transformer’s ability to consider both
local and global information is key to improved performance at large scaling factors.
Finally, these evaluations indicate that our CAGM contributes significantly to the success
of depth map SR and enables accurate reconstruction even in complex scenarios with
various degradations.
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Table 1. An analysis of RMSE Values for different scaling factors on the noise-free Middlebury dataset.
Boldface indicates the best RMSE for each evaluation, while the underline indicates the second best.

Method

Art Books Laundry Dolls Moebius Reindeer

x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16

Bicubic 3.88 5.60 8.58 1.56 2.24 3.36 2.11 3.10 4.47 1.21 1.78 2.57 1.40 2.05 2.95 2.51 3.92 5.72

TGV [10] 4.06 5.08 7.61 2.21 2.47 3.54 2.20 3.92 6.75 1.42 2.05 4.44 2.03 2.58 3.50 2.67 4.29 8.80

JID [14] 1.92 2.76 5.74 0.71 1.01 1.93 1.10 1.83 3.62 0.92 1.26 1.74 0.89 1.27 2.13 1.41 2.12 4.64

RDGE [32] 3.26 4.31 6.78 1.53 2.18 2.92 2.06 2.87 4.22 1.49 1.94 2.45 1.44 2.21 2.79 2.58 3.24 4.90

MSG [4] 1.49 2.79 5.95 0.66 1.09 1.87 1.02 1.35 2.03 0.72 0.99 1.59 0.68 1.14 2.07 1.33 1.72 2.99

DSR [3] 1.21 2.23 3.95 0.60 0.89 1.51 0.75 1.21 1.89 0.81 1.10 1.60 0.67 0.96 1.57 0.96 1.57 2.54

PSR [25] 1.59 2.57 4.83 0.83 1.19 1.70 0.92 1.52 2.97 0.91 1.31 1.88 0.86 1.21 1.87 1.11 1.80 3.11

MFR [37] 1.54 2.71 4.35 0.63 1.05 1.78 1.11 1.75 3.01 0.89 1.22 1.74 0.72 1.10 1.73 1.23 2.06 3.74

RDN [7] 1.47 2.60 4.16 0.62 1.00 1.68 0.96 1.63 2.86 0.88 1.21 1.71 0.69 1.06 1.65 1.17 1.60 3.58

PMBA [21] 1.19 2.47 4.37 0.53 1.10 1.51 0.80 1.54 2.72 0.66 1.08 1.75 0.55 1.13 1.62 0.92 1.76 2.86

RYN [20] 0.98 2.04 3.37 0.36 0.73 1.37 0.64 1.21 2.01 0.59 0.97 1.37 0.50 0.81 1.37 0.74 1.41 2.22

CUN [22] 1.05 2.27 3.67 0.35 0.73 1.45 0.59 1.15 2.25 0.61 0.97 1.43 0.48 0.77 1.31 0.82 1.51 2.38

GDC [19] 1.09 2.04 3.58 0.38 0.68 1.41 0.64 1.13 2.13 0.63 0.97 1.44 0.49 0.79 1.37 0.84 1.51 2.43

TDTN [39] 1.24 2.45 – 0.48 0.86 – 0.68 1.29 – 0.76 1.15 – 0.61 0.91 – 0.95 1.75 –

MIG [43] 1.46 2.74 4.26 0.58 0.95 1.67 0.93 1.57 2.85 0.87 1.21 1.75 0.66 1.04 1.66 1.17 2.11 3.81

PDR [44] 1.59 2.57 4.83 0.83 1.19 1.70 0.92 1.52 2.97 0.91 1.31 1.88 0.86 1.21 1.87 1.11 1.80 3.11

CTG [23] 0.73 1.89 2.76 0.35 0.66 1.22 0.43 0.87 1.62 0.50 0.90 1.49 0.46 0.76 1.31 0.43 1.19 1.84

FCTN (Proposed) 0.71 1.71 2.56 0.34 0.68 1.12 0.47 0.79 1.43 0.45 0.81 1.40 0.46 0.68 1.18 0.47 1.12 1.64

Figure 3. A visual quality comparison for depth map SR at a scale factor of 8 on the noise-free “art”
dataset. (a) HR depth image, (f) HR color image, (b) extracted ground truth patch (marked by a red
square), and upsampled patches by (c) Bicubic, (d) MSG [4], (e) DSR [3], (g) RDGE [32], (h) RDN [7],
(i) CTG [23], (j) the proposed FCTN method (best viewed on the enlarged electronic version).

74



Sensors 2023, 23, 2723

Figure 4. A visual quality comparison for depth map SR at a scale factor of 8 on the noise-free
“Moebius” dataset. (a) HR depth image, (f) HR color image, (b) extracted ground truth patch (marked
by a red square, and upsampled patches by (c) Bicubic, (d) MSG [4], (e) DSR [3], (g) RDGE [32], (h)
RDN [7], (i) CTG [23], (j) the proposed FCTN method (best viewed on the enlarged electronic version).

4.3.2. Noisy Middlebury Dataset

We further demonstrate the robustness of the proposed architecture on the noisy
Middlebury dataset. We added Gaussian noise to the LR training data, simulating the case
where depth maps are corrupted during acquisition, in the same way as [3,7,23,37]. All the
models were retrained and evaluated on a test set corrupted with the same Gaussian noise.
For the noisy dataset, we report the RMSE values in Table 2.

Table 2. An analysis of RMSE values for different scaling factors on the noisy Middlebury dataset.
Boldface indicates the best RMSE for each evaluation, while the underline indicates the second best.

Method

Art Books Laundry Dolls Moebius Reindeer

x8 x16 x8 x16 x8 x16 x8 x16 x8 x16 x8 x16

Bicubic 6.74 9.04 4.68 5.30 5.35 6.53 4.51 4.90 4.54 5.02 5.71 7.12

TGV [10] 7.26 12.05 2.88 4.73 4.45 8.06 2.82 5.14 3.01 6.11 4.65 9.03

MSG [4] 4.24 7.42 2.48 4.19 3.31 4.88 2.53 3.41 2.47 3.76 3.36 4.95

MFR [37] 3.97 6.14 2.13 3.17 2.82 4.57 2.25 3.30 2.13 3.33 3.01 4.86

RDN [7] 4.09 6.62 2.11 3.36 2.88 5.11 2.33 3.59 2.18 3.69 3.09 4.93

DSR [3] – 6.96 – 5.66 – 7.54 – 4.28 – 3.39 – 5.25

RYN [20] 3.47 – 1.88 – 2.47 – 1.97 – 1.87 – 2.68 –

GDC [19] 3.31 4.77 1.69 2.46 2.20 3.36 1.89 2.59 1.72 2.68 2.57 3.44

JIIF [40] 3.87 7.14 1.75 2.47 – – – – 2.03 3.18 – –

MIG [43] 3.95 6.15 2.10 3.17 3.00 4.88 2.21 3.51 2.12 3.51 3.04 4.97

CTG [23] 3.26 4.72 1.61 2.96 1.63 3.47 1.64 2.16 1.63 2.24 1.79 3.59

FCTN (Proposed) 3.01 4.55 1.54 2.66 1.61 3.15 1.59 2.32 1.27 2.09 1.81 3.17

Our first observation is that noise added to the LR depth maps significantly affects the
reconstructed HR depth maps regardless of the method or scaling factor used. However,
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the proposed architecture still generates clean and sharp reconstructions and outperforms
competing methods in terms of RMSE.

An even more realistic scenario is that data acquired by both the depth and color
sensors are corrupted by noise. Our method was further tested by adding Gaussian noise
with a mean of 0 and a standard deviation of 5 to the HR guidance images. This was done
both in training and in testing. We again retrained the models and report the obtained
average RMSE values in Table 3. In Table 3, we observe that the added noise in the HR
guidance image did not significantly affect the performance of our method, compared to
only adding noise to LR depth. According to our results, the proposed CAGM is somewhat
insensitive to noise added to the guidance image.

Table 3. An Analysis of the average RMSE values for different noise schemes.

Middlebury Dataset Version x4 x8 x16

Noise-Free 0.48 0.99 1.55
Depth Noise 1.17 1.80 2.99

Depth and Color Noise 1.35 2.01 3.19

4.3.3. NYU Depth v2 Dataset

In this section, the proposed architecture is tested on the challenging public NYU
Depth v2 [63] dataset as a means of demonstrating its generalization ability. There are
1449 high-quality RGB-D images of natural indoor scenes in this dataset, with apparent
misalignments between depth maps and color images. We note that data from NYU Depth
v2 are very different from the Middlebury Dataset and were not included in the training
data of our models.

We report the average RMSE value across the entire dataset in Table 4. Boldface
indicates the best RMSE value. As a baseline, we report the results of Bicubic interpolation
as well as the results of competing guided SR approaches; ATGV-Net [5], MSG [4], DSR [3],
RDN [7], RYN [20], PMBA [21], DEAF [42], JIIF [40], DCT [17], and CTG [23]. The proposed
architecture achieves the lowest average RMSE, demonstrating the proposed method’s
generalization ability and robustness.

Table 4. Quantitative comparisons of the ablation experiments. Reported results are average RMSE
on the noise-free Middlebury dataset for scaling factors 4, 8, and 16. Boldface indicates the best RMSE
for each evaluation, while the underline indicates the second best.

Method Average RMSE on NYU Depth v2 Dataset

Bicubic 2.36
ATGV-Net [5] 1.28

MSG [4] 1.31
RDN [7] 1.21
DSR [3] 1.34

RYN [20] 1.06
PMBA [21] 1.06
DEAF [42] 1.12

JIIF [40] 1.37
DCT [17] 1.59
CTG [23] 0.95

FCTN (Proposed) 0.91

4.3.4. Inference Time

For a DSR method to applyto real-world applications, it is often required to work
in a close-to-real-time performance. Thus, we report the inference time of the proposed
architecture compared to other competing approaches. Inference times were measured

76



Sensors 2023, 23, 2723

using an image of size 1320 × 1080 pixels and the setup described in Section 4.2. We report
our results in milliseconds in Table 5

Table 5 shows that compared to traditional methods, the proposed architecture, as well
as other deep learning-based methods, provide significantly faster inference times. Moreover,
the proposed method is comparable to competing methods and achieves lower RMSE values.
In contrast, References [10,12,32] require multiple optimization iterations to obtain accurate
reconstructions, leading to slower inference times. Some methods, such as [3,32], upsample the
LR depth as an initial preprocessing step before the image is fed to the model. As a result, they
show very similar inference times regardless of the scaling factor.

Table 5. Average inference times (milliseconds) for different scaling factors.

Method x2 x4 x8 x16

Bicubic 10 10 10 10
TGV [10] 45,730 49,780 46,340 46,200
AR [12] 158,010 157,730 157,950 158,770

RDGE [32] 68,070 67,690 68,450 68,170
MSG [4] 260 300 380 420
DSR [3] 220 230 230 230

RYN [20] 460 630 720 880
CTG [23] 150 380 480 530

FCTN (Proposed) [23] 140 304 420 490

4.4. Ablation Study

In the ablation study, we test the effects of the CATB number in the CAGM and
CATL number in each CATB on model performance. Results are shown in Figure 5a,b,
respectively. It is observed that the RMSE of the reconstructed depth is positively correlated
with both hyperparameters until it becomes eventually saturated. As we increase either
hyperparameter, model size becomes increasingly prominent, and training\inference time
and memory requirements are negatively impacted. Thus, to balance the performance
and model size, we choose 6 for both hyperparameters as described in Section 4.2. CATL
numbers were evaluated with a configuration of K = 6 CATBs.

(b)(a)

Figure 5. Ablation study on different configurations of the proposed CAGM. Results are the average
RMSE on the noise-free Middlebury dataset for scaling factor 8. (a) The effect of the CATB number in
the CAGM, and (b) the effect of CATL number in each CATB.

The impact of each component in our design is evaluated via the following exper-
iments: (1) Our architecture without any guidance from the color image, denoted as
“Depth-Only”. (2) Our architecture without shifted windows in the CATL, denoted “w/o
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shift”. (3) Our architecture without the CFG module, denoted “w/o CFG”. (4) Our architec-
ture without the use of cross-attention for guidance. In this setting, we replaced the CATL
with a similar design using only self-attention with depth features as input. Features from
the color image were concatenated after every modified CATL to provide guidance. We
denote this setting as “w/o cross-attention”.

We evaluate the different designs on the Middlebury test set at scaling factors 4, 8,
and 16. We use the same CATB and CATL configuration as described in Section 4.2 in
these experiments. We summarize the results in Table 6 and observe that: (1) As expected,
using only the LR depth for DSR without guidance from a color image provides inferior
results. (2) As also observed in [47], incorporating shifted window partitioning into our
CATL improves the performance. Using shifted windows partitioning enables connections
among windows in the preceding layers, improving the representation capability of each
CATL. (3) Our CFG module provides additional high-frequency information directly to the
upsampling module. As a result, the upsampling module can reconstruct a higher quality
HR depth, and we observe that performance improves slightly. (4) We observe that using a
simple concatenation of features instead of the proposed cross-attention guidance leads to
inferior results. Incorporating the guidance from the color image via cross-attention allows
the color feature to interact elaborately with the depth features and to encode long-distant
dependencies between the two modalities.

Table 6. An analysis of the average RMSE values for different ablation experiments on the noise-free
Middlebury dataset. Boldface indicates the best RMSE for each evaluation.

Design Depth-Only w/o Shift w/o CFG w/o Cross-Attention FCTN (Proposed)

Scale Factor x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16

RMSE 0.65 1.39 3.01 0.52 1.14 1.90 0.51 1.06 1.79 0.59 1.28 2.17 0.48 0.99 1.55

5. Conclusions

We introduce a novel transformer-based architecture with cross-attention for guided
DSR. First, a shallow feature extraction module extracts meaningful features from LR
depth and HR color images. These features are fed to a cascaded transformer module
with cross-attention, which extracts more elaborate features while simultaneously incorpo-
rates guidance from the color features via the cross-attention mechanism. The cascaded
transformer module is constructed by stacking transformer layers with shifted window
partitioning, which enables interactions between windows in consecutive layers. Using
such a design, the proposed architecture achieves state-of-the-art results on the DSR bench-
marks. At the same time, model size and inference time remain comparably small, making
our architecture usable for real-world applications.

Our future work will explore more realistic depth artifacts (e.g., sparse depth values,
misalignment between guidance and depth images, etc.). Moreover, we will examine the
proposed architecture on additional real-world continuous data acquired from sensors
mounted, e.g., on an autonomous robot.

Author Contributions: Conceptualization, I.A.; Methodology, I.A. and I.C.; Writing—original draft,
I.A.; Writing—review & editing, I.C.; Supervision, I.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the PMRI—Peter Munk Research Institute-Technion.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data
can be found here: MPI Sintel Dataset—[http://sintel.is.tue.mpg.de/, accessed on 15 February
2023]. Middlebury Stereo Datasets—[https://vision.middlebury.edu/stereo/data/, accessed on 15
February 2023].

Conflicts of Interest: The authors declare no conflict of interest.

78



Sensors 2023, 23, 2723

References

1. Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli, P.; Shotton, J.; Hodges, S.; Freeman, D.; Davison, A.; et al.
KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera. In Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology, Santa Barbara, CA, USA, 16–19 October 2011; pp. 559–568.

2. Schamm, T.; Strand, M.; Gumpp, T.; Kohlhaas, R.; Zollner, J.M.; Dillmann, R. Vision and ToF-based driving assistance for a
personal transporter. In Proceedings of the 2009 International Conference on Advanced Robotics, Munich, Germany, 22–26 June
2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–6.

3. Guo, C.; Li, C.; Guo, J.; Cong, R.; Fu, H.; Han, P. Hierarchical features driven residual learning for depth map super-resolution.
IEEE Trans. Image Process. 2018, 28, 2545–2557. [CrossRef]

4. Hui, T.W.; Loy, C.C.; Tang, X. Depth map super-resolution by deep multi-scale guidance. In Proceedings of the European
Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany,
2016; pp. 353–369.

5. Riegler, G.; Rüther, M.; Bischof, H. Atgv-net: Accurate depth super-resolution. In Proceedings of the European Conference on
Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 268–284.

6. Song, X.; Dai, Y.; Qin, X. Deeply supervised depth map super-resolution as novel view synthesis. IEEE Trans. Circuits Syst. Video
Technol. 2018, 29, 2323–2336. [CrossRef]

7. Zuo, Y.; Fang, Y.; Yang, Y.; Shang, X.; Wang, B. Residual dense network for intensity-guided depth map enhancement. Inf. Sci.
2019, 495, 52–64. [CrossRef]

8. He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1397–1409. [CrossRef] [PubMed]
9. Yang, Q.; Yang, R.; Davis, J.; Nistér, D. Spatial-depth super resolution for range images. In Proceedings of the 2007 IEEE

Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, 17–22 June 2007; IEEE: Piscataway, NJ, USA, 2007;
pp. 1–8.

10. Ferstl, D.; Reinbacher, C.; Ranftl, R.; Rüther, M.; Bischof, H. Image guided depth upsampling using anisotropic total generalized
variation. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013;
pp. 993–1000.

11. Jiang, Z.; Hou, Y.; Yue, H.; Yang, J.; Hou, C. Depth super-resolution from RGB-D pairs with transform and spatial domain
regularization. IEEE Trans. Image Process. 2018, 27, 2587–2602. [CrossRef]

12. Yang, J.; Ye, X.; Li, K.; Hou, C.; Wang, Y. Color-guided depth recovery from RGB-D data using an adaptive autoregressive model.
IEEE Trans. Image Process. 2014, 23, 3443–3458. [CrossRef]

13. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you
need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

14. Kiechle, M.; Hawe, S.; Kleinsteuber, M. A joint intensity and depth co-sparse analysis model for depth map super-resolution. In
Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 1545–1552.

15. Kwon, H.; Tai, Y.W.; Lin, S. Data-driven depth map refinement via multi-scale sparse representation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 159–167.

16. Park, J.; Kim, H.; Tai, Y.W.; Brown, M.S.; Kweon, I. High quality depth map upsampling for 3d-tof cameras. In Proceedings of the
2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: Piscataway, NJ, USA, 2011;
pp. 1623–1630.

17. Zhao, Z.; Zhang, J.; Xu, S.; Lin, Z.; Pfister, H. Discrete cosine transform network for guided depth map super-resolution. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 5697–5707.

18. Lutio, R.d.; D’aronco, S.; Wegner, J.D.; Schindler, K. Guided super-resolution as pixel-to-pixel transformation. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 8829–8837.

19. Kim, J.Y.; Ji, S.; Baek, S.J.; Jung, S.W.; Ko, S.J. Depth Map Super-Resolution Using Guided Deformable Convolution. IEEE Access
2021, 9, 66626–66635. [CrossRef]

20. Li, T.; Dong, X.; Lin, H. Guided depth map super-resolution using recumbent y network. IEEE Access 2020, 8, 122695–122708.
[CrossRef]

21. Ye, X.; Sun, B.; Wang, Z.; Yang, J.; Xu, R.; Li, H.; Li, B. Pmbanet: Progressive multi-branch aggregation network for scene depth
super-resolution. IEEE Trans. Image Process. 2020, 29, 7427–7442. [CrossRef]

22. Cui, Y.; Liao, Q.; Yang, W.; Xue, J.H. RGB Guided Depth Map Super-Resolution with Coupled U-Net. In Proceedings of the 2021
IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July 2021; IEEE: Piscataway, NJ, USA,
2021; pp. 1–6.

23. Ariav, I.; Cohen, I. Depth Map Super-Resolution via Cascaded Transformers Guidance. Front. Signal Process. 2022, 3.. [CrossRef]
24. Zhang, K.; Zuo, W.; Gu, S.; Zhang, L. Learning deep CNN denoiser prior for image restoration. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3929–3938.
25. Huang, L.; Zhang, J.; Zuo, Y.; Wu, Q. Pyramid-Structured Depth Map Super-Resolution Based on Deep Dense-Residual Network.

IEEE Signal Process. Lett. 2019, 26, 1723–1727. [CrossRef]

79



Sensors 2023, 23, 2723

26. He, K.; Sun, J.; Tang, X. Guided image filtering. In Proceedings of the European Conference on Computer Vision, Heraklion,
Crete, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–14.

27. Liu, M.Y.; Tuzel, O.; Taguchi, Y. Joint geodesic upsampling of depth images. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 169–176.

28. Lu, J.; Forsyth, D. Sparse depth super resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2245–2253.

29. Dong, W.; Shi, G.; Li, X.; Peng, K.; Wu, J.; Guo, Z. Color-guided depth recovery via joint local structural and nonlocal low-rank
regularization. IEEE Trans. Multimed. 2016, 19, 293–301. [CrossRef]

30. Ham, B.; Cho, M.; Ponce, J. Robust image filtering using joint static and dynamic guidance. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4823–4831.

31. Ham, B.; Min, D.; Sohn, K. Depth superresolution by transduction. IEEE Trans. Image Process. 2015, 24, 1524–1535. [CrossRef]
[PubMed]

32. Liu, W.; Chen, X.; Yang, J.; Wu, Q. Robust color guided depth map restoration. IEEE Trans. Image Process. 2016, 26, 315–327.
[CrossRef] [PubMed]

33. Park, J.; Kim, H.; Tai, Y.W.; Brown, M.S.; Kweon, I.S. High-quality depth map upsampling and completion for RGB-D cameras.
IEEE Trans. Image Process. 2014, 23, 5559–5572. [CrossRef]

34. Yang, J.; Ye, X.; Li, K.; Hou, C. Depth recovery using an adaptive color-guided auto-regressive model. In Proceedings of the
European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 158–171.

35. Riegler, G.; Ferstl, D.; Rüther, M.; Bischof, H. A deep primal-dual network for guided depth super-resolution. arXiv 2016,
arXiv:1607.08569.

36. Zhou, W.; Li, X.; Reynolds, D. Guided deep network for depth map super-resolution: How much can color help? In Proceedings
of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9
March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1457–1461.

37. Zuo, Y.; Wu, Q.; Fang, Y.; An, P.; Huang, L.; Chen, Z. Multi-scale frequency reconstruction for guided depth map super-resolution
via deep residual network. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 297–306. [CrossRef]

38. de Lutio, R.; Becker, A.; D’Aronco, S.; Russo, S.; Wegner, J.D.; Schindler, K. Learning Graph Regularisation for Guided Super-
Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
18–24 June 2022; pp. 1979–1988.

39. Yao, C.; Zhang, S.; Yang, M.; Liu, M.; Qi, J. Depth super-resolution by texture-depth transformer. In Proceedings of the 2021 IEEE
International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July 2021; IEEE: Piscataway, NJ, USA, 2021;
pp. 1–6.

40. Tang, J.; Chen, X.; Zeng, G. Joint implicit image function for guided depth super-resolution. In Proceedings of the 29th ACM
International Conference on Multimedia, Virtual Event, China, 20–24 October 2021; pp. 4390–4399.

41. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773.

42. Liu, P.; Zhang, Z.; Meng, Z.; Gao, N. Deformable Enhancement and Adaptive Fusion for Depth Map Super-Resolution. IEEE
Signal Process. Lett. 2021, 29, 204–208. [CrossRef]

43. Zuo, Y.; Wang, H.; Fang, Y.; Huang, X.; Shang, X.; Wu, Q. MIG-net: Multi-scale Network Alternatively Guided by Intensity and
Gradient Features for Depth Map Super-resolution. IEEE Trans. Multimed. 2021, 24, 3506–3519. [CrossRef]

44. Liu, P.; Zhang, Z.; Meng, Z.; Gao, N.; Wang, C. PDR-Net: Progressive depth reconstruction network for color guided depth map
super-resolution. Neurocomputing 2022, 479, 75–88. [CrossRef]

45. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

46. Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions. arXiv 2021, arXiv:2102.12122.

47. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17
October 2021.

48. Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.; et al. Rethinking semantic segmentation
from a sequence-to-sequence perspective with transformers. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, Nashville, TN, USA, 19–25 June 2021; pp. 6881–6890.

49. Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable detr: Deformable transformers for end-to-end object detection. arXiv
2020, arXiv:2010.04159.

50. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 213–229.

51. Haris, M.; Shakhnarovich, G.; Ukita, N. Deep back-projection networks for super-resolution. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1664–1673.

80



Sensors 2023, 23, 2723

52. Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2472–2481.

53. Xiao, T.; Singh, M.; Mintun, E.; Darrell, T.; Dollár, P.; Girshick, R. Early convolutions help transformers see better. Adv. Neural Inf.
Process. Syst. 2021, 34, 30392–30400.

54. Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301.

55. Hu, H.; Zhang, Z.; Xie, Z.; Lin, S. Local relation networks for image recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3464–3473.

56. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883.

57. Butler, D.J.; Wulff, J.; Stanley, G.B.; Black, M.J. A naturalistic open source movie for optical flow evaluation. In Proceedings of
the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 611–625.

58. Scharstein, D.; Hirschmüller, H.; Kitajima, Y.; Krathwohl, G.; Nešić, N.; Wang, X.; Westling, P. High-resolution stereo datasets
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Abstract: Various super-resolution (SR) kernels in the degradation model deteriorate the performance
of the SR algorithms, showing unpleasant artifacts in the output images. Hence, SR kernel estimation
has been studied to improve the SR performance in several ways for more than a decade. In particular,
a conventional research named KernelGAN has recently been proposed. To estimate the SR kernel
from a single image, KernelGAN introduces generative adversarial networks(GANs) that utilize the
recurrence of similar structures across scales. Subsequently, an enhanced version of KernelGAN,
named E-KernelGAN, was proposed to consider image sharpness and edge thickness. Although
it is stable compared to the earlier method, it still encounters challenges in estimating sizable and
anisotropic kernels because the structural information of an input image is not sufficiently considered.
In this paper, we propose a kernel estimation algorithm called Total Variation Guided KernelGAN
(TVG-KernelGAN), which efficiently enables networks to focus on the structural information of
an input image. The experimental results show that the proposed algorithm accurately and stably
estimates kernels, particularly sizable and anisotropic kernels, both qualitatively and quantitatively.
In addition, we compared the results of the non-blind SR methods, using SR kernel estimation
techniques. The results indicate that the performance of the SR algorithms was improved using our
proposed method.

Keywords: kernel estimation; generative adversarial networks; super-resolution; self-similarity; total
variation; KernelGAN; structural information

1. Introduction

High-resolution (HR) images are required in various applications, for example, medi-
cal or satellite imaging, wherein specific objects must be distinguished or patterns must
be recognized. However, the observed images often have low resolution (LR) because of
the physical limitation of the small image sensor or the image acquisition environments.
Single image super-resolution (SISR) algorithms for recovering HR images from LR images,
have been extensively studied for decades. By overcoming the limitations of the observed
LR image, the desired information can be exploited, or the hardware cost efficiency can be
achieved. The LR image observation model, also referred to as the degradation model, is
described as follows [1]:

y = DBMx + n, (1)

where y represents the LR image, x represents the HR image, DBM is the degradation
operation comprising the downsampling matrix D, blurring matrix (blurring kernel, SR
kernel, point spread function; PSF) B, and warping matrix M while n represents the additive
white noise. Image super-resolution (SR) reconstruction is generally a severely ill-posed
problem because the information from an LR image is usually insufficient and the blurring
matrix B is typically unknown.

To overcome above inherent physical limitations and obtain an accurate HR image,
numerous methods have been proposed in two branches: (i) classical approaches [2–8], and
(ii) deep-learning-based approaches [9–16]. In the classical SISR, studies have generally
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focused on addressing the ill-posedness resulting from insufficient information in the
LR image and inaccurate registration by using methods based on regularizing the im-
age prior [2–5] or exploiting the recurrence property of the internal image patches [6–8].
However, the blurring matrix B in these methods is usually assumed to be known from
measurements or simple blurring such as a Gaussian kernel or bicubic kernel. Early deep-
learning-based approaches [9–15], HR images were degraded using a Gaussian or bicubic
kernel to generate LR-HR dataset pairs. However, this dataset generation method is insuffi-
cient for representing natural LR images because the blurring matrix B varies depending
on the image acquisition environment. Because only a single image is given in SISR, the
information that can be used for the SR is limited to B or the image priors. A comparison
between the SISR results using the assumed kernel and the estimated kernel is shown in
Figure 1. The SISR result using the assumed kernel in Figure 1b shows a blurry result
without any resolution improvement. However, when the estimated kernel is used, the
resolution of the SISR result is improved, evident through the clear visibility of whiskers
and patterns of fur in Figure 1c. Therefore, the blurring kernels in the SR process have to
be considered to improve the performance of the SISR algorithms.

(a) (b) (c) (d)

Figure 1. Comparison of SISR results for scale factor of ×2 using [13]. (a) input LR image degraded
with ground truth(GT) blurring kernel. (b) SISR result with a kernel assumed as Gaussian kernel.
(c) SISR result with an estimated kernel. (d) GT image.

A multitude of methods has been proposed to address this issue in real-world
SISR [17–19]. Ji et al. [16] proposed a method inspired by KernelGAN [20] that constructs a
kernel pool from a high-quality source image using kernel estimation techniques before
generating an LR image through degradation. This demonstrates that the degradation pro-
cess, particularly the blurring process, can be effectively modeled using kernel estimation
methods. Despite its advantages, KernelGAN may exhibit inconsistencies or instabilities
owing to the inherent randomness of GAN. Liang et al. [21] introduced a kernel-pool gen-
eration method, flow-based kernel prior (FKP), which exploits invertible mapping between
a random variable and a kernel using several flow blocks. It achieved stable kernel estima-
tion performance. However, their method required pre-training and could not estimate an
accurate kernel if the desired kernel was not included in the kernel pool. Kim et al. [22]
proposed an enhanced version of KernelGAN that exploits the distinctive properties of
LR-HR image pairs. Their method demonstrated improved performance compared to
KernelGAN, but still encountered challenges in estimating sizable and anisotropic kernels.

For this study, we proposed a kernel estimation method that addresses the challenge
of accurately estimating sizable and anisotropic kernels. The proposed method is guided
by a total variation map, which emphasizes the edge regions of the image where detailed
information is most prevalent, and exploits self-similarity to a greater extent than previous
methods. The main contributions of the study are summarized as follows:

• The proposed method adopts a total variation map and uses it as a guide for the
network to focus on the structural information of the image.

• Compared to previous methods, the proposed method is cost- and memory-efficient.
• We demonstrate that the proposed method exhibits superior performance, particu-

larly in accurately estimating sizable and anisotropic kernels, compared to conven-
tional methods.
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The remainder of the paper is organized as follows: In Section 2, a summary of the
relevant background work is provided. The proposed method is described in detail in
Section 3. The experimental results are presented in Section 4, and the conclusions are
presented in Section 5.

2. Background

As mentioned in the previous section, the blurring matrix B is generally assumed to be
a Gaussian or a bicubic kernel in various SISR studies. However, owing to environmental
factors such as camera shaking, rapid movement, and weather conditions, the blurring
kernel may not be identical even if the same imaging system is used. For SISR, accurately
estimating the blurring kernel is crucial because an inaccurately assumed kernel often
produces reconstructed images with ringing or blurring artifacts.

Michaeli et al. [7] proposed an SR kernel estimation method for a single image using
the self-similarity property of natural images, in which similar structures are repeated across
scales. In their method, patches with explicit structural similarities were matched, and the
SR kernel was estimated using maximum a posteriori (MAP) optimization. KernelGAN,
proposed by Bell-Kligler et al. [20], is a pioneering work that introduced a deep linear
network for SR kernel estimation. Although having the same fundamental background, it
employs a distinct optimization tool, GAN. In KernelGAN, the generator G generates a fake
patch by downscaling a patch randomly picked from the input image, and the discriminator
D determines whether it is a fake or real patch of the input image. KernelGAN is trained
to create a downscaled fake patch with the same statistics as a real patch, maximizing
self-similarity, such that the network reproduces the degradation process of the given input
image and extracts the optimal SR kernel. KernelGAN demonstrated that the network
could successfully estimate the SR kernels.

Kim et al. [22] noted that KernelGAN did not consider image sharpness and the differ-
ence in edge thickness between HR and LR images and proposed Enhanced-KernelGAN
(E-KernelGAN). They consider the image’s sharpness using ‘degradation and ranking
comparison’, which indirectly utilizes the structural information of the image and improves
the kernel estimation stability by excluding unsuitable candidates from the kernel space. In
addition, they proposed the ‘kernel correction’ module as a post-processing step to refine
the estimated kernel variance and resize it. This post-processing step, which considers edge
thickness, also indirectly uses structural information. E-KernelGAN successfully improves
the SR kernel estimation stability and accuracy, but fails to fully exploit the self-similarity
property that is fundamental to SISR kernel estimation. Consequently, the estimation of
sizable and anisotropic SR kernels is limited. In the next section, we propose Total Varia-
tion Guided KernelGAN (TVG-KernelGAN), which efficiently utilizes self-similarity by
weighting the input image.

3. Proposed Method

3.1. Challenging Kernels and SR

Classical SR methods typically estimate HR images by solving the optimization prob-
lem as follows:

x̂ = argmin
x

{
‖y − DBMx‖2

2 + λ‖∇x‖p
p

}
. (2)

x̂ is the optimal HR image that minimizes the given cost function. The first term is the
data fidelity term, and the second term is the p-norm regularization term, which imports
various image priors to suppress noise. λ is the regularization parameter that determines
how much the regularization term contributes to the optimization process. In SISR, M
is not considered because the given image can be located at arbitrary coordinates. D
is a downsampling matrix the inverse of which is generally interpreted as an arbitrary
interpolator, such as a bilinear or bicubic interpolator. The remaining factors that affect the
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SR performance are B and the regularization term. Meanwhile, deep-learning-based SR
methods typically use Equation (3) to predict HR images.

x̂ = F

[
argmin

Θ

{
∑i ‖F(Θ, yi)− xi‖2}, y

]
,

where, yi = DBMxi + n.

(3)

F is the SR network output with the network parameter Θ and input image y. Data
pairs (xi, yi) are prepared using the degradation model in Equation (1). In general, the
blurring kernel B is assumed to be bicubic or Gaussian, which limits the generalization
performance of the network. To investigate the effects of different blurring kernels on the
SR results, we degraded the same input image using four differently shaped kernels and
applied the SR methods as shown in Figure 2. When the input image was degraded with a
small round kernel, the resulting SR image showed relatively weak ringing artifacts and
blurring artifacts, as shown in the first column of Figure 2b. The ringing and blurring
artifacts became more severe in the second column of Figure 2b with the change to an
anisotropic kernel. With a sizable kernel in the third column of Figure 2b, the SR results
show severe blurring artifacts without any noticeable resolution enhancement. In the case
of a sizable and anisotropic kernel in the fourth column of Figure 2b, severe blurring and
ringing artifacts can be found. These results show that more sizable and anisotropic kernels
severely deteriorate the SR performance; the focus of this study is this kind of kernel. As
shown in Section 4, previous work on kernel estimation failed to estimate these sizable and
anisotropic kernels. In this paper, we propose a method that successfully estimates these
challenging kernels.

(a) (b)

Figure 2. SR results comparison using blurring kernels in scale factor ×2. (a) GT, (b) the first row
shows the results of solving Equation (2) and the second row shows the results of [13]. The input
images of each column are degraded, respectively, from GT using the different blurring kernels
shown in the middle of each columns. However, in the SR process, both SR methods assumed the
same Gaussian kernel as a blurring kernel to investigate the effects of different kernels.

3.2. Total Variation Weight Map

When a given input image is severely blurred, the network has difficulty extracting
meaningful features from the given patch to distinguish between real and fake patches.
Consequently, the network may converge to a meaningless local minimum. To estimate
the sizable and anisotropic kernels successfully in such situations, we focused on the
edges of the images. Several studies on SR and kernel estimation have used edges that
contain rich structural information [15,23–25]. In particular, Cho and Lee [24] estimated
an extremely directional and sharp kernel, generally known as a motion-blurring kernel,
using a strong edge prior. This implies that strong edges that remain after the blurring
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process are still present when the same blurring process is applied. Inspired by this edge
prior, we incorporated the edges of the input image into the kernel estimation process.

The proposed method aims to maximize self-similarity efficiently by weighting the
edge region of the input image such that the network can focus on structural information
and successfully estimates more challenging SR kernels. Because we are interested in the
edge region rather than the edge itself, we require a relatively smooth weight around
the edges. Farsiu et al. [2] proposed total variation using four directions, including two
diagonal directions, to regularize the noise. They demonstrated that this regularization
suppressed noise while preserving the edges, meaning that the total variation smoothly
and gradually highlighted the edges and details.

There are several options for highlighting the edges, as shown in Figure 3. The weight
maps were normalized using the maximum values of each map. Consistent with [2],
Figure 3e showed the smoothest edge map with the smallest weight difference between the
strong and weak edges. Therefore, we used the following four-direction total variation map:

mapTV =
1

∑
a=0

1

∑
b=−1︸ ︷︷ ︸

a+b≥0

||y − Pa
n1Pb

n2y||1,

w = mapTV + c,

(4)

where P is the shift operator in the vertical direction n1 and horizontal direction n2, and
a and b are the order of P. We focus on the edge region of the input image; however,
this does not mean that the plane region has no information. Therefore, we added a
constant c to mapTV so that the plane region is not completely discarded from the kernel
estimation process.

(a) (b) (c) (d) (e)

Figure 3. Normalized weights map examples, (a) GT, (b) Using forward difference for two directions
and L2 norm, (c) Using Sobel filtering and L1 norm, (d) Using forward difference for two directions
and L1 norm, (e) Using forward difference for four directions and L1 norm.

3.3. TVG-KernelGAN

The structure of the proposed method is shown in Figure 4. The input image is
first weighted by the total variation map and used as an input patch for G and D. By
incorporating the total variation map as a weight, the network directly utilizes the structural
information of the input image and focuses on the edge region. The weighted input is not
used during the entire training process but is instead used at certain iterations, i.e.,

ŷ =

{
w ∗ y, if mod(t,s) = 0
y, otherwise,

(5)

where ŷ is the input for G and D at iteration t, and s is the ratio parameter that determines
the frequency of using the weight map w. In the same context as the addition of the
constant c to mapTV in Equation (4), this switching scheme ensures that the information
in the plane region is not completely discarded. Furthermore, the total variation guide
scheme is applied after several tens of iterations when a general bicubic kernel shape is
sufficiently formed.
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Figure 4. Structure of TVG-KernelGAN.

Finally, the TVG-KernelGAN loss function is given by

LTVG-KernelGAN = |D(ŷ)− 1|+ |D(G(ŷ))|+ RB. (6)

Here, RB is the kernel regularization term as in [20], and RB is given as follows:

RB = αKenergy + βKboundary + γKsparse + δKcenter. (7)

K terms represent the kernel losses that force the kernel extracted from G to be mean-
ingful. Kenergy make the kernel conserve the energy of the input data; Kboundary and Ksparse
make the kernel not be an over-smoothing kernel; and Kcenter centers the kernel. α, β, γ,
and δ are the regularization parameters of K terms, respectively. Because the total variation
guiding scheme requires only simple calculations on the input image and no additional
network, the proposed method efficiently improves the kernel estimation performance
with less additional cost and memory than KernelGAN and E-KernelGAN.

4. Experimental Results

We evaluated our method using three datasets: DIV2KRK, Flickr2KRK and DIV2KSK.
The DIV2KRK dataset consists of 100 validation images from DIV2K [26] degraded with
random kernels that were generated in [20] to follow an anisotropic Gaussian random
distribution and applied by multiplicative noise. Similarly, Flickr2KRK was generated using
the first 100 images in Flickr2K [27] by applying the same kernel generation process. In both
datasets, we shuffled 100 kernels and used them to degrade and downsample the ground
truth (GT) images for scale factors of ×2 and ×4. However, these datasets lack sufficiently
sizable and anisotropic kernels, and have meaningless kernels with several isolated peaks.
To evaluate the performance of the kernel estimation on sizable and anisotropic kernels,
we generated a new dataset named the DIV2KSK (DIV2K Synthetic Kernel). We randomly
selected 15 validation images from DIV2K [26], and degraded and downsampled them
using 16 synthetic kernels for scale factors of ×2 and ×4, respectively, to produce total
240 input images.

We implemented our algorithm using the Python PyTorch library and trained it using
an NVIDIA GeForce RTX 3090 GPU. For training, we set the initial learning rate to 2 × 10−4

and trained the network for 3000 iterations using the ADAM optimizer with β1 = 0.5 and
β2 = 0.999. The parameters c and s were set to 0.6 and 2, respectively.
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4.1. Kernel Estimation Results

We evaluated our method by comparing it with the conventional kernel estimation
algorithms; KernelGAN [20], FKP-KernelGAN [21], E-KernelGAN [22] and E-KernelGAN-
DIP. The E-KernelGAN-DIP utilizes a deep image prior (DIP) [28] network to estimate
more reasonable kernels. To quantitatively evaluate the estimated kernels, we used two
metrics: kernel error(KE) and kernel similarity(KS), as follows:

KE = ‖BGT − B̂‖2
2,

KS =
BGT · B̂

‖BGT‖2‖B̂‖2
.

(8)

KE is the sum of the difference squares between the GT kernel BGT and the estimated
kernel B̂. KE represents the errors of the values of B̂ to those of BGT . However, it tends to
be low when B̂ is a round shape and large enough. To address this limitation, we introduce
a metric KS similar to that proposed in [29] to evaluate the shape similarity between BGT

and B̂. To ensure a fair comparison, all kernels, including the ground truth kernels, are
moved for their center of mass to be centered because we do not consider image shift. In
addition, to analyze the relationship between the kernel estimation performance of the
algorithms and the GT kernel size, we introduce the kernel size r as follows:

MT =

{
1, if Bi > T,
0, otherwise,

where i ∈ B, T =
max(B)

30
,

r =
∑i MT

i
N1N2

.

(9)

MT is a binary mask where the elements of B greater than the threshold T are marked,
i is the location of the kernel space, and (N1, N2) is the kernel space size, that is, (17, 17) in
the case of a scale factor ×2. The region marked by MT captures most of the kernel energy
of a given kernel (at least 95 percent of the total kernel energy).

First, a qualitative comparison of kernel estimation results on the DIV2KRK and
Flickr2KRK datasets for scale factor of ×2 is shown in Figures 5 and 6, respectively. Kernel-
GAN often fails to estimate the direction and overall shape of a kernel, including its length
and thickness. FKP-KernelGAN(FKP) attempted to estimate the kernel as closely to the
GT kernel as possible, but it had clear limitations, as it could not present kernels on which
it had not previously been trained. In the case of E-KernelGAN and E-KernelGAN-DIP,
although they could stably estimate the kernel direction, the shape of the estimated kernels
tended to be relatively small, round-shaped, and short compared to the GT kernels. Our
proposed method, TVG-KernelGAN, estimates kernels that approximate the GT kernels,
regarding both the kernel direction and overall shape. However, for small and sharp
kernels such as the kernel in the 4th row of Figure 6f, TVG-KernelGAN tended to estimate
kernels thicker than the GT kernel. Next, a qualitative comparison of the kernel estimation
results on the DIV2KSK dataset for the scale factor of ×2 is shown in Figure 7. The kernel
estimation tendencies were similar to those of the two previous two datasets. KernelGAN
was unstable and inaccurate, FKP had obvious limitations, and the results of E-KernelGAN
and E-KernelGAN-DIP still had insufficient length. By contrast, TVG-KernelGAN out-
performed the other conventional methods, as the GT kernels were large and anisotropic.
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(a) (b) (c) (d) (e) (f)

Figure 5. Qualitative results of the kernel estimation for scale factor of ×2 for DIV2KRK dataset.
(a) KernelGAN [20], (b) FKP [21], (c) E-KernelGAN [22], (d) E-KernelGAN-DIP [22], (e) TVG-
KernelGAN, (f) GT.

A quantitative comparison of the kernel estimation results for the entire dataset and
for the scale factors of ×2 and ×4 is shown in Table 1. A lower value of KE and a higher
value of KS indicate better performance. The numbers in red indicate the first-highest
scores. For the DIV2KRK dataset, E-KernelGAN-DIP achieved the highest scores for both
KE and KS, followed by E-KernelGAN, which achieved a score almost identical to that of
E-KernelGAN-DIP. TVG-KernelGAN achieved the third-highest score. For the Flickr2KRK
dataset, TVG-KernelGAN achieved the highest score for KE and the second-highest score
for KS, whereas E-KernelGAN-DIP achieved the second-highest score for KE and the
highest score for KS. E-KernelGAN achieved the third-highest score for both KE and KS.
The E-KernelGAN, E-KernelGAN-DIP, and TVG-KernelGAN scores differ little for the two
datasets. However, for the DIV2KSK dataset, TVG-KernelGAN achieved a significantly
higher score than the other conventional methods. This quantitative comparison was
consistent with the qualitative comparison presented above. In addition, Figure 8a,b,
respectively, show the mean of KE and KS of all three dataset samples according to kernel
size r, and Figure 8c shows examples of kernels of various sizes and the corresponding r
values. TVG-KernelGAN achieved the highest scores for both KE and KS except for the
smallest kernel size. These results suggest that the proposed method is more accurate and
stable than conventional methods for estimating sizable and anisotropic kernels.
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(a) (b) (c) (d) (e) (f)

Figure 6. Qualitative results of the kernel estimation for scale factor of ×2 for Flickr2KRK dataset.
(a) KernelGAN [20], (b) FKP [21], (c) E-KernelGAN [22], (d) E-KernelGAN-DIP [22], (e) TVG-
KernelGAN, (f) GT.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 7. Qualitative results of the kernel estimation for scale factor of ×2 for DIV2KSK dataset.
(a,g) KernelGAN [20], (b,h) FKP [21], (c,i) E-KernelGAN [22], (d,j) E-KernelGAN-DIP [22], (e,k) TVG-
KernelGAN, (f,l) GT.
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(a) (b)

(c)

Figure 8. KE and KS curves according to the kernel sizes r. (a) KE, (b) KS, (c) the kernel examples
and the corresponding kernel sizes r.

Table 1. Comparison of the kernel estimation results in terms of quantitative score, kernel error (KE)
and kernel similarity (KS).

KernelGAN FKP
E-

KernelGAN
E-KernelGAN-DIP

TVG-
KernelGAN

DIV2KRK
×2 KE 0.0067 0.0072 0.0043 0.0043 0.0046

KS 0.9294 0.9239 0.9574 0.9579 0.9543

×4 KE 0.00088 0.00080 0.00062 0.00062 0.00070
KS 0.9537 0.9537 0.9698 0.9699 0.9680

Flickr2KRK
×2 KE 0.0087 0.0106 0.0081 0.0080 0.0077

KS 0.8989 0.8833 0.9094 0.9100 0.9097

×4 KE 0.00111 0.00093 0.00090 0.00089 0.00089
KS 0.9391 0.9392 0.9550 0.9550 0.9552

DIV2KSK
×2 KE 0.0051 0.0072 0.0058 0.0057 0.0043

KS 0.9446 0.9138 0.9426 0.9431 0.9547

×4 KE 0.00088 0.00100 0.00083 0.00083 0.00074
KS 0.9478 0.9419 0.9577 0.9579 0.9593

4.2. Non-Blind Super-Resolution Results

In this subsection, we conducted experiments on two branches of SISR, the classical
approach and the deep-learning-based approach, to show that the SISR results are im-
proved by using the kernels estimated by the proposed method, particularly for sizable and
anisotropic kernels. First, we employed ZSSR [13] as the deep-learning-based approach.
Briefly explained, it downscales the input image with a given blurring kernel and then
upscales it using a deep-learning upscaling network. It imitates the inverse of the down-
scaling process for the upscaling network to predict the output SR image after the training
session. In this process, the more accurate the blurring kernel is for the downscaling, the
higher the SR performance. Next, we employed Equation (2) as a classical approach, by
optimizing it using the conjugate gradient descent method. We set λ = 1 × 10−6, p = 0.8
and ∇ in the regularization term as a forward difference derivative operator.
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Qualitative comparisons of the SR results obtained using the two SR methods for
the scale factor of ×2 are shown in Figures 9 and 10, and that for the scale factor of ×4
are shown in Figures 11 and 12. We observed that wrongly estimated kernels result in
artifacts in the SR results. First, when the estimated kernels were small, the SR results
exhibited both the ringing and blurring artifacts as shown in Figures 9d and 10d. Second,
when the estimated kernels had the incorrect anisotropic direction or round shapes, the
SR results exhibited ringing artifacts as shown in Figures 10c,e,f, 11c,e,f and 12c. Lastly,
when the estimated kernels had the correct anisotropic direction but insufficient length,
the SR results again exhibited ringing artifacts as shown in Figures 9e,f and 10d, or the
slightly blurry artifacts as shown in Figure 12e,f. In contrast, the SR results using the
kernels estimated by the proposed method showed resolution enhancement with much
less or no ringing artifacts as shown in Figures 9g, 10g, 11g and 12g. For a quantitative
comparison, we also measured PSNR and SSIM between the GT images and the SR results
images for the entire dataset and the scale factor of ×2 as shown in Table 2. E-KernelGAN
and E-KernelGAN-DIP achieved superior or similar scores with TVG-KernelGAN for the
first two datasets. However, TVG-KernelGAN achieved superior scores for the DIV2KSK
dataset with more sizable and anisotropic kernels. These results are consistent with that
in Section 4.1, showing that the performance of the SR algorithms using the sizable and
anisotropic kernels estimated by the proposed method has been improved.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 9. SR results of the 95th image of DIV2KRK dataset using the estimated kernels for scale factor
of ×2. The first row is the ZSSR results and the second row is the results of solving Equation (2).
From (c) to (g), the estimated kernels are shown in the middle of each column. (a) GT image and
kernel, (b) LR, (c) KernelGAN [20], (d) FKP [21], (e) E-KernelGAN [22], (f) E-KernelGAN-DIP [22],
(g) TVG-KernelGAN, (h) GT.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 10. SR results of the 8th image degraded by the 12th kernel of DIV2KSK dataset using the
estimated kernels for scale factor of ×2. The first row is the ZSSR results and the second row is the
results of solving Equation (2). From (c) to (g), the estimated kernels are shown in the middle of each
column. (a) GT image and kernel, (b) LR, (c) KernelGAN [20], (d) FKP [21], (e) E-KernelGAN [22],
(f) E-KernelGAN-DIP [22], (g) TVG-KernelGAN, (h) GT.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 11. SR results of the 34th image of Flickr2KRK dataset using the estimated kernels for scale
factor of ×4. The first row is the ZSSR results and the second row is the results of solving Equation (2).
From (c) to (g), the estimated kernels are shown in the middle of each column. (a) GT image and
kernel, (b) LR, (c) KernelGAN [20], (d) FKP [21], (e) E-KernelGAN [22], (f) E-KernelGAN-DIP [22],
(g) TVG-KernelGAN, (h) GT.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 12. SR results of the 14th image degraded by the 1st kernel of DIV2KSK dataset using the
estimated kernels for scale factor of ×4. The first row is the ZSSR results and the second row is the
results of solving Equation (2). From (c) to (g), the estimated kernels are shown in the middle of each
column. (a) GT image and kernel, (b) LR, (c) KernelGAN [20], (d) FKP [21], (e) E-KernelGAN [22],
(f) E-KernelGAN-DIP [22], (g) TVG-KernelGAN, (h) GT.

Table 2. Comparison of PSNR and SSIM scores of the SR results using estimated kernels.

Bicubic KernelGAN FKP
E-

KernelGAN

E-
KernelGAN-

DIP

TVG-
KernelGAN

GT

DIV2KRK
ZSSR PSNR 28.6953 28.7329 28.3635 29.3803 29.3544 29.0642 29.8799

SSIM 0.8035 0.8360 0.8413 0.8472 0.8470 0.8416 0.8656

Equation (2) PSNR 28.6953 30.0237 28.9431 30.3637 30.3741 30.3425 31.5232
SSIM 0.8035 0.8516 0.8329 0.8573 0.8576 0.8562 0.8801

Flickr2KRK
ZSSR PSNR 28.0653 28.4859 27.5576 28.7836 28.7809 28.5700 29.4258

SSIM 0.7897 0.8230 0.8281 0.8297 0.8296 0.8281 0.8500

Equation (2) PSNR 28.0653 29.2672 28.5526 29.3507 29.3542 29.2909 29.0367
SSIM 0.7897 0.8385 0.8222 0.8404 0.8406 0.8406 0.8341

DIV2KSK
ZSSR PSNR 24.5548 25.3626 24.7414 25.4244 25.4294 25.4313 26.2298

SSIM 0.6874 0.7507 0.7514 0.7499 0.7496 0.7529 0.7921

Equation (2) PSNR 24.5548 25.9113 25.1470 25.7892 25.7525 25.9618 26.8826
SSIM 0.6874 0.7608 0.7300 0.7566 0.7563 0.7629 0.7975

4.3. Memory and Cost Efficiency

We evaluated the cost and memory efficiency of the KernelGAN series, including
KernelGAN, E-KernelGAN, E-KernelGAN-DIP, and TVG-KernelGAN, by measuring the
parameter numbers and run-time for 3000 iterations at a scale factor of ×2. The results of
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these measurements are presented in Table 3. First, owing to the use of a large D network,
E-KernelGAN had parameters that were 2.5 times more than that of KernelGAN, and
required several times more run-time for kernel estimation than KernelGAN. Furthermore,
as E-KernelGAN-DIP utilizes the DIP network, it has significantly more parameters and
requires a much longer time, as shown in Table 3. However, because we did not construct
any additional networks, TVG-KernelGAN has the same parameter numbers as KernelGAN
and takes same time as KernelGAN, making it much more time-efficient than E-KernelGAN
and E-KernelGAN-DIP. These results suggest that the TVG-KernelGAN can efficiently
leverage self-similarity in the input image with a simple modification.

Table 3. Run-time for scale factor of ×2 and the network parameters of KernelGAN series.

KernelGAN E-KernelGAN
E-KernelGAN-

DIP
TVG-KernelGAN

Network
parameters 181 k 464 k 2824 k 181 k

Run-time 57 s 356 s 930 s 57 s

4.4. Limitation

As shown in Sections 4.1 and 4.2, TVG-KernelGAN performed better in estimating
sizable and anisotropic kernels. However, it achieved lower scores of KE and KS for
the smallest kernel size r as shown in Figure 8, achieving even lower scores than those
of KernelGAN. In a comparison of PSNR and SSIM scores in Table 2, TVG-KernelGAN
showed lower scores than those of the E-KernelGAN series, particularly on the DIV2KRK
dataset because the DIV2KRK dataset has many small-size kernels compared to the other
two datasets. To our knowledge, TVG-KernelGAN fails to estimate the small-size kernels
because we emphasized the edge region of the input image rather than the edge itself
to estimate sizable and anisotropic kernels. The input image is less blurry when the
degradation blurring kernel is small. Then, the small kernel from G can easily minimize the
GAN loss by utilizing the relatively sharp edge of the original input image. On the contrary,
weighting the edge region makes the original edge thicker, preventing G from estimating
the small kernel. Therefore, we expect that an adaptive algorithm that utilizes the edge
weighting scheme according to the degree of smoothness will help solve this problem.

5. Conclusions

In this study, we proposed a kernel estimation method for image super-resolution
using GAN guided by a total variation map. We simply weighted the input image using its
total variation, which includes four directions, to emphasize the edge region, which has
prevalent structural information for the network efficiently to maximize the self-similarity
of the given input image. The experimental results, including the qualitative and quanti-
tative evaluations, demonstrate that the proposed method estimates the SR kernels more
accurately and stably than conventional methods, particularly for sizable and anisotropic
kernels. The super-resolution results further show that the proposed method is superior
to the compared methods. In addition, the network parameter numbers and run-time
measurements demonstrate the efficiency of the proposed method, which simply modifies
the input data.
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Abstract: With recent advancements in artificial intelligence, fundus diseases can be classified
automatically for early diagnosis, and this is an interest of many researchers. The study aims to detect
the edges of the optic cup and the optic disc of fundus images taken from glaucoma patients, which
has further applications in the analysis of the cup-to-disc ratio (CDR). We apply a modified U-Net
model architecture on various fundus datasets and use segmentation metrics to evaluate the model.
We apply edge detection and dilation to post-process the segmentation and better visualize the optic
cup and optic disc. Our model results are based on ORIGA, RIM-ONE v3, REFUGE, and Drishti-GS
datasets. Our results show that our methodology obtains promising segmentation efficiency for
CDR analysis.

Keywords: segmentation; edge; detection; eye; diseases; glaucoma

1. Introduction

Fundus images are routinely used to detect eye diseases. Ophthalmologists used
to analyze these images via a non-automated process, and it is a heavy burden for any
ophthalmologist to read and explain the fundus images during the diagnosis of the ocular
diseases [1]. Glaucoma is one of the major ocular diseases that causes visual impairment [2].
According to the World Health Organization (WHO), it has affected millions of people
globally, and the early detection of glaucoma can prevent vision loss. The optic nerve
transfers signals from the retina to the brain, whereby ganglion cell axons converge at
the optic disc and exit the eye to form the optic nerve. The optic disc has a cup-shaped
structure at the center, called the optic cup, which has a different color than the optic disc.
In individuals with glaucoma, the size of the optic cup increases due to the death of the
ganglion cells caused by the increase in intraocular pressure (IOP) and/or the loss of blood
flow to the optic nerve. Therefore, the cup-to-disc ratio (CDR) is a main index for the early
diagnosis of glaucoma and for the quantitative evaluation of the severity of glaucoma. The
normal CDR is less than 0.5. A CDR less than 0.4 without an abnormally small optic disc size
indicates a normal optic disc. In this stage, glaucoma must be diagnosed by IOP or other
methods. If the CDR is between 0.5 and 0.8, it is considered the moderate stage of glaucoma.
If the CDR is higher than 0.8, it is considered the severe stage of glaucoma [3]. With
recent advancements in artificial intelligence, fundus images with different diseases can be
classified automatically for the early diagnosis of diseases. The most widely used method
in image classification networks is the application of convolutional neural networks. Many
previous studies have used various pre-trained network architectures for the classification
of images and various other methods to obtain the edges of the optic cup and the optic
disc in fundus images. In the current study, several datasets of glaucoma fundus images
were segmented and compared using our proposed deep learning methodology. U-Net
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is particularly effective for biomedical image segmentation tasks, such as cell and tissue
segmentation [4]. U-Net outperforms other CNN architectures, such as VGG and ResNet,
in these applications affirming its potential utility for the current task [4].

In this paper, we propose a new method to visualize the contours of the optic cup and
disk. We implemented a modified U-Net for segmenting the optic cup and optic disc of the
glaucoma images, later applying edge detection and dilation using the Canny edge filter.
Our model is evaluated on four publicly available datasets namely ORIGA, RIM-ONE v3,
REFUGE, and Drishti-GS. Our approach achieves a good performance measured using
popular image segmentation metrics (IOU and Dice) in detecting early-stage CDR.

2. Related Work

Several studies have aimed to segment fundus images. Among them, Cheng et al. are
the first to utilize a clustering-based approach for the segmentation of both the optic disc
and optic cup [5]. Sarkar et al. proposed the threshold-based approach for the segmentation
of both the optic disc and optic cup on the RIM-ONE dataset [6]. Sun et al. used a deep
object detection network for the joint localization and segmentation of the optic cup and
disc on the ORIGA dataset [7]. Thakur et al. used a level-set based approach to adaptively
regularize Kernel-based intuitionistic Fuzzy C means (LARKIFCM) for optic cup and disc
segmentation on RIM-ONE and Drishti-GS datasets [8]. Sevastopolsky et al. used a modi-
fied U-Net for disc and cup segmentation on RIM-ONE-V3 and DRISHTI-GS datasets [9].
Kim et al. used an FCN (fully connected network) on the RIGA dataset [10]. Yu et al. uses
Modified U-net from ResNet-34 for segmentation on Messidor and RIGA datasets [11].
Al-Bande et al. used Fully conventional Dense-Net for disc and cup segmentation [12].

Some recent studies consider adopting the state-of-the-art deep vision architectures.
Guo et al. segmented the optic cup and optic disc of glaucoma images using segmentation
models, such as DeepCDR, Wavelet, and their proposed modified U-Net++ [13]. Fu et al.
segmented the disc and cup in glaucoma using polar transformation and the deep learning
architecture named M-net. That network solves the segmentation of the optic disc and the
optic cup in a single-stage multi-layer input and is shown to perform better on the ORIGA
and SCES datasets compared to other segmentation models, such as U-net, Superpixel,
LRR, etc. [14]. Bajwa et al. used G1020, a large publicly available dataset with 1020 fundus
images for glaucoma classification. They obtained an accuracy of approximately 80%
using the Inception V3 architecture [15]. Anitha et al. classified and segmented the
glaucoma images using a trained DenseNet-201 classifier and U-Net segmentation model.
They show their models perform better than other deep learning models, such as VGG19,
Inception, ResNet, etc., on ORIGA dataset [16]. Juneja et al. segmented the optic disc and
cup using a modified version of the U-Net architecture and tested on the DRISHTI-GS
dataset [17]. Pascal et al. developed a model that simultaneously learns the segmentation
and classification and tested on REFUGE [18]. Jiang et al. used a region-based convolutional
neural network for joint optic cup and optic disc segmentation, which was shown to
outperform other methods on the ORIGA dataset [19]. Gu et al. proposed a context
encoder network, which gathered high-level data and saved them as spatial data for
segmentation and was shown to perform better on DRIVE datasets [20]. Liu et al. proposed
a multi-layer edge attention network that utilizes the edge information in the encoding
stage [21]. Bajwa et al. evaluated the disc localization on the ORIGA dataset, which
resulted in a 2.7% relative improvement over the state-of-the-art results on the ORIGA
dataset [22]. Xie et al. proposed a novel fully convolutional network called SU-Net, which
combines with the Viterbi algorithm to jointly decode the segmentation boundary [23].
Gao et al. developed a Recurrent Fully Convolution Network (RFC-Net) for the automatic
joint segmentation of the optic disc and the optic cup, which can capture more high-level
information and subtle edge information [24]. Hervella et al. developed a simultaneous
classification of glaucoma and segmentation of the optic disc and cup by taking advantage
of both pixel-level and image-level labels during network training. Additionally, the
segmentation results allowed the extraction of relevant biomarkers such as the cup-to-
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disc ratio. They have evaluated the model using REFUGE and DRISHTI-GS datasets [25].
Parkhi et al. utilized DeepLabv3 and ensemble models to perform the segmentation of the
optic disc and cup [26]. Zhou et al. developed a one-stage network named EfficientNet
and Attention-based Residual Depth-Wise Separable Convolution (EARDS) for joint OD
and OC segmentation [27]. Wu et al. developed a transformer-based conditional U-Net
framework and a new Spectrum-Space Transformer to model the interaction between
noise and semantic features. This architectural improvement leads to a new diffusion-
based medical image segmentation method called MedSegDiff-V2 [28]. Sun et al. used
ResFPN-Net to learn the boundary features and the inner relation between OD and OC
for automatic segmentation [29]. Xue et al. used hybrid level set modeling for disc
segmentation [30]. Zaaboub et al. proposed a two-stage (OD localization and segmentation)
approach to detect the contour of the OD [31]. Liu et al. proposed a novel unsupervised
model based on adversarial learning to perform the optic disc and cup segmentation [32].
Xiong et al. proposed a weak label-based Bayesian U-Net exploiting Hough transform-
based annotations to segment the optic disc in fundus images. To achieve this, they built a
probabilistic graphical model and explored a Bayesian approach with the state-of-the-art U-
Net framework [33]. Wang et al. extended the EfficientNet-based U-Net, named EE-U-Net,
for OD and OC segmentation [34].

3. Materials and Methods

3.1. Dataset

In this study, we introduce a modified U-Net model to perform edge segmentation
and dilation (boundary thickening) using various datasets with different image resolutions:
ORIGA (2499 × 2048), RIM-ONE v3 (1300 × 1100), REFUGE (2124 × 2056), and Drishti-GS
(2049 × 1751) (Table 1). Datasets consist of images and masks, which are binary images
consisting of zero-valued RGB pixels as background and RGB values greater than or equal
to [128, 128, 128] at each pixel index i for objects of interest, keeping in mind the presence
of gray and white labels.

Table 1. Glaucoma segmentation datasets.

Dataset Description Reference

Drishti-GS [35,36]
It contains a total of 101 images.

“http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-
dataset2/Home.php (accessed on 19 March 2023)”

[11,37–40]

ORIGA

It has a total of 650 retinal images that are available
publicly on Kaggle.

“https://www.kaggle.com/datasets/arnavjain1
/glaucoma-datasets?select=ORIGA

(accessed on 19 March 2023)”

[38,40–43]

RIM-ONE-V3 [44]

RIM-ONE is a publicly available dataset of 74 colored
fundus images.

“http://medimrg.webs.ull.es/research/downloads/
(accessed on 19 March 2023)”

[37,38,40,45]

REFUGE [46]

It comprises 1200 colored retinal images with 400 images
each for testing, validation, and training purposes.
“https://www.kaggle.com/datasets/arnavjain1

/glaucoma-datasets?select=REFUGE
(accessed on 19 March 2023)”

[41]

3.2. Architecture

We use U-Net to extract features from the input fundus images and then convert the
features into a high-level visual representation, which are processed for edge detection and
dilation. The U-Net consists of an encoder and decoder. The encoder creates a compact
representation of the input image (low dimension representation) to extract features via
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the convolution and pooling layers. The image is upsampled using the decoder, which
reconstructs an image from the low dimensional representation. It too consists of the
convolution block but has deconvolution layers to increase image dimensionality. The
skip connections are the connections between the encoder and decoder that pass earlier
features to the decoder. This helps the network capture the input an image’s low-level
and high-level features. The skip connections are achieved by concatenating the encoder’s
feature maps with the decoder’s corresponding feature maps at the same spatial resolution
after the deconvolution [3]. After the initial convolution, the number of channels increases
to 64. After the transposed convolution, the image is upsized from 28 × 28 × 1024 to
56 × 56 × 512 and concatenated with the contraction path skip connection image. The final
layer is a 1 × 1 convolution to decrease the number of channels without affecting the image
resolution (Figure 1). We limit the number of kernels to three for each layer convolution
and implement a few pre-processing resizings to downsample the image and improve
processing time.

Figure 1. The network architecture of U-Net [3], including the input layer and convolution layer. Due
to the size of the figure, the feature dimension is not scaled.

3.3. Evaluation Criteria

Two widely used performance metrics were used for evaluating the segmentation
results of the proposed model: (a) Dice Coefficient/F1 Score; (b) Jaccard Score/Intersection
over union. The IoU represents the overlapping ratio between the segmentation results
and ground truth mask. Both (a) and (b) are positively correlated.

(a) Dice Coefficient: Twice the area of the overlap divided by the total number of the
pixels in both images (A and B).

DC =
2TP

2TP + FP + FN
=

2|A ∩ B|
2|A ∩ B|+|B\A|+|A\B| (1)

where a true positive is represented by TP, a false positive by FP, and a false negative by
FN [27].

(b) Jaccard Score: The area of overlap between the predicted image and the ground truth
is divided by the area of union between the predicted image (A) and ground truth
image (B).

JAC =
TP

TP + FP + FN
=

|A ∩ B|
|A|+|B|−|A ∩ B| (2)

where a true positive is represented by TP, a false positive is represented by FP, and a false
negative is represented by FN [27].
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3.4. Edge Detection

Canny is an edge detection operator that uses a multistage algorithm. It is composed
of five steps: noise reduction, gradient calculation, non-maximum suppression, double
threshold, and edge tracking by hysteresis. Noise is removed from the image by applying
Gaussian blur via Gaussian kernels. Edges correspond to pixel intensity changes, which
are detected by applying filters that highlight intensity changes in different directions
(x,y). Non-max suppression is used to thin out the edges by going through all the points
in the matrix ((i, j − 1), (i, j + 1), (i + 1,j), and (i − 1,j)) and suppressing (zeroing) non-
max pixels. Double thresholding categorizes pixels into strong, weak, and other using a
bounding threshold. The hysteresis will then transform weakly categorized pixels into
strong ones [47] (Figure 2). Our method then applies a dilation on the resultant image to
brighten the Canny generated edge. This entails convolving an image with a kernel that
has a defined center. The max overlap pixel overlapped by the kernel is added to the image
pixel at the kernel center position, thereby increasing the brightness [47].

Figure 2. Sample result of Canny without dilation.

4. Experimental Results

In this section, we present the various pre-processing steps and final output results
from the different datasets. We carry out the experiments on an Intel California, USA
manufactured Intel Xeon Platinum 8268 CPU @ 2.90 GHz running CentOS Stream 8 system
with four Nvidia RTX 3090 GPUs having 24 GB of RAM. Each model is run for 300 epochs
with a batch size of 4 using an Adam optimizer with a learning rate of 1 × 10−4.

4.1. Pre-Processing

Datasets of various image dimensions are first resized to 256 × 256 for faster GPU
processing. The ORIGA and REFUGE fundus images contained masks that have the cup
and disc represented together. Since we are applying segmentation separately without
having the cup segmentation hinder the disc or vice versa, the images are separated by
changing the pixel values. White pixels are given the gray pixels’ values to form the disc
images, and vice versa, to generate the cup images (Figure 3). This process was performed
with the training, validation, and testing having an 80–10–10% data split, respectively.

Data masks consist of RGB pixel values [0, 0, 0] for the background, and since we have
white as cup and grey as disc, the model treats pixels greater than or equal to [128, 128, 128]
as object labels (Figure 3).

To avoid overfitting on all datasets, training images were augmented with a random
crop generated using the window width and height generated from a normal distribution,
Gaussian blur, and random flip. All training, validation, and testing images were then
normalized with pixel values between [−1, 1] after first resizing the image to 128 × 128 for
model input.

4.2. Segmentation Results

We visualize the loss decrease over the training epochs and the accuracy (Jaccard
Score) function curves for each dataset (Figures 4 and 5, respectively). The loss steadily
decreases except for the RIM-ONE-V3 dataset, which only consists of 74 images. This is the
same result for the accuracy measure over 300 epochs.
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Figure 3. Pre-processing of the mask of the combined ORIGA and REFUGE datasets into separate
cup and disc masks.

Table 2 presents the Dice and IoU scores for each dataset using our model consisting of
training parameters. Our model has 5,680,865 trainable parameters with 0 untrainable pa-
rameters and no frozen/dropped network nodes. On the Drishti-GS dataset, our approach
achieves 0.058 and 0.117 for the best validation loss for the disc and cup, respectively. On
the RIM-One-V3, it achieves 0.093 and 0.249 for the disc and cup, respectively. ORIGA
achieves 0.037 and 0.137 for the disc and cup, respectively. Lastly, on the REFUGE dataset,
validation loss achieves a minimal of 0.035 and 0.102 for disc and cup, respectively.

With the Drishti-GS dataset, our approach achieves a 0.943 Dice and 0.893 IoU for OD
segmentation. For OC segmentation, it achieves 0.889 Dice and 0.801 IoU. Using the RIM-
One-V3 dataset, it obtains 0.910, 0.838 for Dice and IoU, respectively for OD segmentation,
and it obtains 0.649, 0.77 for OC segmentation. With the ORIGA dataset, it achieves 0.962
and 0.928 for Dice and IoU, respectively for OD segmentation, and it obtains 0.871, 0.773
for OC segmentation. Lastly, with the REFUGE dataset, it acquires the scores of 0.965 and
0.933 (Dice and IoU respectively) for OD segmentation. This is followed by 0.902 and 0.824
for OC segmentation.

For visualizing the segmentation results, we randomly select images for all testing
outputs from Drishti-GS, RIM-One-V3, ORIGA, and REFUGE. Refer to Figures 6 and 7.
Figure 6 shows the raw segmentation results without Canny and dilation applied. The
first column is the prediction, followed by the ground truth, and the original image is to
the right. The optic cup and disc segmentations have separate visualizations. Figure 7
shows the same results from Figure 6 with Canny and dilation applied to the resultant raw
segmentation from our model output.
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Figure 4. Loss function curves on various datasets (epoch vs. log Dice loss). Orange is the training
loss and yellow is the validation loss.
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Figure 5. Accuracy (Jaccard Score) function curves on various datasets (epoch vs. Dice coefficient).
Cyan is the train accuracy and blue is the validation accuracy.
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Table 2. Dice and Jaccard evaluation metrics for various datasets.

Dataset Optic Disc Segmentation Optic Cup Segmentation

Dice/F1 Score
Jaccard

Score/IoU
Dice/F1 Score

Jaccard
Score/IoU

Drishti-GS 0.943 0.893 0.889 0.801

RIM-ONE-V3 0.910 0.838 0.649 0.770

ORIGA 0.962 0.928 0.871 0.773

REFUGE 0.965 0.933 0.902 0.824

Figure 6. U-Net optic cup and disc segmentations without Canny and dilation for various datasets.

From Table 3, we achieved a ~94% Dice in OD segmentation and an 89% Dice in OC
segmentation. In addition, we achieved a 0.89 Jaccard score in OD segmentation and a
0.8 Jaccard score in OC segmentation with the Drishti-GS dataset. Using the RIM-ONE-V3
dataset, we achieved a 91% Dice in OD segmentation and a 64% Dice in OC segmentation.
Additionally, we achieved a 0.83 Jaccard for OD segmentation and a 0.77 Jaccard for OC
segmentation. Our model achieved an approximate 97% Dice in OD segmentation and a
90% Dice in OC segmentation with the REFUGE dataset. The model also had a 0.93 Jaccard
score OD segmentation and a 0.82 Jaccard score in OC segmentation with the REFUGE
dataset. Lastly, using the ORIGA dataset, the model delivered a ~96% Dice and an ~87%
Dice for OD and OC segmentation, respectively. Additionally, it delivered a 0.928 Jaccard
and 0.773 Jaccard for OD and OC segmentation, respectively.
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Figure 7. U-Net optic cup and disc segmentations with Canny and dilation for various datasets.

Table 3. OD and OC segmentation results on Drishti-GS and REFUGE datasets.

Datasets Methods OD Segmentation OC Segmentation

DC JAC DC JAC

REFUGE M-Net [12] 0.943 - 0.831 -

M-Ada [25] 0.958 - 0.882 -

EARDS [27] 0.954 0.914 0.887 0.801

pOSAL [48] 0.946 - 0.875 -

Multi-Model [49] - 0.922 - 0.790

CFEA [50] 0.941 - 0.862 -

Two-Stage Mask R-CNN [51] 0.947 - 0.854 -

Ours 0.965 0.933 0.902 0.824

ORIGA Deep object detection
Network [7] 0.845 - 0.845 -

JointRCNN [19] 0.937 - 0.794 -

SS-DCGAN [38] 0.901 - - -

Ours 0.962 0.928 0.871 0.773

Drishti-GS U-Net [3] 0.950 - 0.800 -

[11] 0.973 0.949 0.887 0.804

FC-DenseNet [12] 0.949 0.904 0.828 0.711

M-Net [14] 0.959 - 0.866 -
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Table 3. Cont.

Datasets Methods OD Segmentation OC Segmentation

DC JAC DC JAC

M-Ada [25] 0.971 - 0.910 -

EARDS [27] 0.974 0.949 0.915 0.849

ResFPN-Net [29] 0.976 - 0.896 -

WRoIM [52] 0.960 - 0.890 -

WGAN [53] 0.954 - 0.840 -

pOSAL [48] 0.965 - 0.858 -

GL-Net [54] 0.971 - 0.905 -

Multi-Model [49] 0.960 0.924 0.902 0.822

Ours 0.943 0.893 0.889 0.801

RIM-ONE
-V3 Hybrid [8] 0.930 0.910 0.910 0.880

Modified U-Net [9] 0.950 0.890 0.820 0.690

ECSD [32] 0.860 0.760 0.800 0.680

EE-U-Net [34] 0.950 0.880 0.860 0.760

pOSAL [48] 0.860 - 0.787 -

Ours 0.910 0.830 0.640 0.770

5. Discussion

In this section, we start by comparing our U-Net model evaluation to those state-of-
the-art approaches referenced in Table 3. While simple, our model performs on par with the
presented models in the same datasets and performs slightly worse given Drishti-GS and
RIM-ONE-V3 datasets due to the lack of image data. This is true for both the OD and OC
segmentation results. On the other hand, our method performs slightly better than the other
state-of-the-art models when run over the REFUGE and ORIGA datasets. Table 3 shows the
related Dice and Jaccard metrics for both OD and OC segmentation, although most of the
models do not run Jaccard for either OD or OC segmentation. Figures 6 and 7 show results
that are correlated with the model evaluation in Tables 2 and 3. With the model performance
being competitive, our representation of the edge detection and dilation deliver optimal
results for CDR analysis for glaucoma. Concerning the results from the Drishti-GS dataset,
FC-DenseNet [12] has a similar performance to our model for OD segmentation when we
consider the Dice (0.949) and Jaccard (0.904) scores. For the OC segmentation, the multi-
model [52] is also very similar in performance in terms of Dice (0.902) and Jaccard (0.822)
scores. The results using the RIM-ONE-V3 dataset were comparable for OD segmentations.
Both Drishit-GS and RIM-ONE-V3 have very small datasets. Our results for the ORIGA
and REFUGE datasets are much higher with none of the existing models being comparable.
We speculate that the reason for this is twofold: (1) both the REFUGE and ORIGA datasets
have many images (650 and 1200, respectively) to scatter across training, validation and
testing; (2) there is a clear color boundary that helps define the optic cup and optic disc,
clearly helping the model better distinguish between them. The consistency in the sizes of
masks in both datasets is indicative of this.

6. Conclusions

The work outlined herein displayed an end-to-end separative OD and OC segmenta-
tion approach. We first employ a modified U-Net encoder to find the features map and then
a decoder to upsample the image back. The output is fed into an edge detector that gives a
thin boundary around the edge. Dilation is next applied to thicken the edge boundary for a
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better visual representation. These results indicate that the boundary is accurate and can
be subsequently used for analyzing CDR in instances of glaucoma. Based on these results,
our model is as competent as the existing state-of-the-art models and performs better using
both the ORIGA and REFUGE datasets even with a simple network architecture.

Further work should be directed towards having a CDR detector that optimizes (fixes)
our segmentation results according to the correct ratio requirement. Although our model
achieves robust results even with a slightly modified U-Net pipeline, it remains to be seen
how changing the model and using various backbone training methods would impact
performance. This includes the ensemble models that would average pixel classifications
for the most accurate detection. It is also possible to first apply object detection to crop the
data prior to segmentation. Note that the current studies are limited by the use of 2D data;
the prospect of processing 3D fundus images would be an extension that provides spatial
data for segmentation, potentially yielding better results because of the greater definition
between disc and cup pixels. In summary, we have developed a simple novel architecture
that performs as well as, and sometimes better than, existing methods that automate the
processing of fundus images for assisting the analysis of CDR in instances of glaucoma.
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Abstract: One of the most severe types of cancer caused by the uncontrollable proliferation of brain
cells inside the skull is brain tumors. Hence, a fast and accurate tumor detection method is critical
for the patient’s health. Many automated artificial intelligence (AI) methods have recently been
developed to diagnose tumors. These approaches, however, result in poor performance; hence,
there is a need for an efficient technique to perform precise diagnoses. This paper suggests a novel
approach for brain tumor detection via an ensemble of deep and hand-crafted feature vectors (FV).
The novel FV is an ensemble of hand-crafted features based on the GLCM (gray level co-occurrence
matrix) and in-depth features based on VGG16. The novel FV contains robust features compared
to independent vectors, which improve the suggested method’s discriminating capabilities. The
proposed FV is then classified using SVM or support vector machines and the k-nearest neighbor
classifier (KNN). The framework achieved the highest accuracy of 99% on the ensemble FV. The
results indicate the reliability and efficacy of the proposed methodology; hence, radiologists can
use it to detect brain tumors through MRI (magnetic resonance imaging). The results show the
robustness of the proposed method and can be deployed in the real environment to detect brain
tumors from MRI images accurately. In addition, the performance of our model was validated via
cross-tabulated data.

Keywords: brain tumor; artificial intelligence; GLCM; KNN; VGG16

1. Introduction

The brain is an important organ that oversees entire bodily functions and is a vital
organ that is a central part of the nervous system. It can be affected by one of the most
lethal brain diseases, called a brain tumor, caused by an unusual growth of cell proliferation
within the brain. These tumors cause brain damage and dysfunctions, which can be
very lethal if left untreated for a long time. The World Health Organization (WHO) has
predicted an annual 5% increase in brain tumors [1]. Another report declares brain tumors
the 10th leading cause of mortality among humans. According to estimates, at least 18,600
individuals will die from a deadly brain or central nervous system (CNS) tumor this year [2].
Thus, on-time and accurate tumor diagnosis can increase the patient’s chances of survival.

The patient’s health depends on a prompt and precise diagnosis of a brain tumor
because the stage and kind of tumor influence the course of treatment. As tumors differ
in size, location, and shape, identifying one can be challenging. An inaccurate or delayed
diagnosis may lower the likelihood of a patient surviving a brain tumor. Medical pro-
fessionals have historically used visual evaluation of medical imaging and precise tumor
location tracing to diagnose brain tumors. These medical images are from MRIs, computed
tomography (CT), and positron emission tomography (PET). Radiologists and medical
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experts frequently utilize MRI scans to identify brain tumors because they produce high-
quality images of soft tissues [3]. Because of the surrounding healthy tissues, the tumor
margins are frequently hazy when manually detecting tumors through optical inspection.
Because of this, manually identifying tumors takes a long time and usually results in
incorrect tumor diagnosis. Images that are noisy for various reasons, such as medical image
acquisition techniques or variations in imaging equipment, are another cause of tumor
misidentification [4]. Usually, biopsies are carried out to ascertain whether the tissue is
malignant or benign. Determining the cancer is a painful and time-consuming technique.
Consequently, automated technologies are replacing traditional approaches due to the
complexity of current approaches [5–7].

Recognizing and categorizing brain tumors early for a patient to receive the proper
treatment is crucial. Thanks to technological advancements, professionals may treat patients
properly using automated healthcare systems. More research is being presented to address
the challenges in medical image identification as machine learning and artificial intelligence
technologies improve [8]. These automated methods effectively diagnose brain tumors and
aid medical personnel in deciding appropriate treatment procedures [9]. Given that the
human eye cannot distinguish between the numerous shades of grey in MRI images, these
systems are extremely useful for detecting even the slightest color changes. A persistent
problem in medical image analysis is storing and evaluating large amounts of medical
data. However, the existing systems cannot effectively manage the noticeable increase in
data volume in the medical sector. Currently, contemporary machine learning algorithms
frequently utilize big data approaches to analyze medical image data. The development of
new technologies, especially machine learning and artificial intelligence, has substantially
impacted the medical industry because it has provided medical departments with an
essential tool to get second opinions with much higher precision. The robust automated
frameworks work best where radiologists want to minimize the possibility of biopsy or
inspect tumor depth or type [10].

Although numerous works have been proposed for the effective recognition of brain
tumors, there is room for performance improvement. Employing only deep learning
algorithms demands vast quantities of labeled data, while the supervised approach to
classifying a brain tumor has much potential; however, it takes specialized knowledge to
extract the best characteristics and selection methods. The paper proposes a novel and
fully automated brain tumor identification and classification method that combines hand-
engineered and deep features to fill this gap. The novel FV is an ensemble of hand-crafted
features based on the GLCM (gray level co-occurrence matrix) and deep features based on
VGG16. These FVs, when combined, increase the discriminating ability of the proposed
system, allowing for accurate tumor detection even in the presence of backgrounds, ill-
defined tumor boundaries, skulls, and other MRI artifacts. The proposed FV is then
classified using SVM or support vector machines and the k-nearest neighbor classifier
(KNN). The suggested framework performs better than the existing methods at quickly
and accurately detecting brain cancers. The following are the primary contributions of the
suggested system:

• We present a novel method based on an ensemble of deep and hand-crafted features
to classify brain tumors in MR images.

• Per our knowledge, this is the first-ever study based on a feature-level ensemble of
VGG16 and GLCM features to classify brain tumors.

• Our framework consists of three main core steps: deep feature extraction via CNN, that
is, through the VGG16 model, hand-crafted feature computation via GLCM, creating
an ensemble vector of these FVs, and finally, classification using SVM and KNN.

• The proposed method effectively classifies brain tumors because the fusion of the
GLCM and deep FV computes an effective set of image features, resulting in better
discrimination of tumor and normal images.

• The results indicate the efficacy of the presented approach as compared to
existing methodologies.
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2. Related Work

Early tumor detection and classification of brain tumors are required for efficient
patient therapy. Thanks to impressive technological advancements, specialists may treat
patients more effectively using automated healthcare systems. Researchers have recently
developed several methods for classifying brain tumors that use ML and DL-based al-
gorithms. New artificial intelligence and deep learning technologies have substantially
impacted medical picture processing, notably in an illness diagnosis. This section examines
the research on methods for classifying brain tumors using ML and DL-based algorithms.
Anaraki et al. [7] used Genetic Algorithms to perform brain tumor categorization in the
pituitary, glioma, and meningioma malignancies from MRI images. The system attained
94.2% accuracy. However, the algorithm could not identify an ideal CNN design, leading
to poor performance. Using the complete volumetric T1-Gado MRI sequence from the
Brats 2018 dataset, Mzoughi et al. [11] presented DL architectures to grade glioma tumors
based on severity. The authors, in their framework, incorporated local and global fea-
tures with lower weights by using small kernels that resulted in an accuracy score of 96%.
Sejuti et al. [12] presented a CNN-SVM-based method to identify and classify brain tumors
in MRI images and attained 97.1% accuracy. Whereas the authors of Abiwinanda et al. [13]
designed five different CNN frameworks to detect tumors in the brain. The system obtained
84.1% accuracy. However, it is worth mentioning that relatively basic CNNs cannot extract
complex high-level features, leading to mediocre overall accuracy. Due to this, the CNNs
in [11–13] have resulted in poor performance because of very simple architectural designs.

To identify an ideal CNN design with lower computation costs for the classification of
brain tumors, a hierarchical deep learning-based brain tumor classification technique was
presented by Khan et al. [14]. The study obtained 92% accuracy on the Kaggle database.
However, the system must be evaluated rigorously to view its efficacy in real-case scenarios.
Alanazi et al. [15] demonstrated a brain tumor detection system composed of 22 layers,
resulting in 96.8% accuracy. However, only a few imaging samples are used to conduct the
study; hence, a thorough evaluation is crucial. Afshar et al. [16] used capsule networks
that achieved an accuracy of 90.8%. However, one of the limitations of capsule networks is
their sensitivity to image backgrounds. These architectures tend to perform much better
in the case of segmentation image input. Noureen et al. [17] fine-tuned the Inception-v3
and Xception models for deep CNN features extraction, whereas an ensemble of different
classifiers, i.e., SVM, KNN, and random forest (RF), was used to classify the images. The
system obtained 93.3% overall accuracy. In another study, the authors of Swati et al. [6]
trained and evaluated transfer-learned AlexNet architecture to identify brain tumors from
MR images, resulting in 89.9% overall accuracy. However, due to low overall accuracy, the
systems in [6,17] must be evaluated before deploying in real-world scenarios.

Kang et al. [18] presented a feature ensemble method using vectors obtained from
DenseNet169, Inception-v3, and ResNeXt50. The system resulted in 98.5% accuracy. In
another study, the authors of Waghmere et al. [19] developed a brain tumor classification
method using VGG16 architecture. The system resulted in 95.7% accuracy on preprocessed
and augmented MRI images. However, the studies mentioned in [18,19] are computa-
tionally complex. Some of the authors also proposed segmentation before classification
methods. For instance, . Naser et al. [20] employed a U-Net architecture to segment the
tumors and VGG16 to perform classification. The study was performed on the TCIA
dataset and achieved almost 92% accuracy. Masood et al. [21] employed Mask RCNN to
classify brain tumors. In the first stage, they localized the tumor region using bounding
boxes, and in the next stage, they classified the tumor. A multimodal tumor classification
system built on CNN was developed by Sajjad et al. [22]. They used input cascade CNN to
first segment the MRIs, then classified them with 94.5% accuracy using a tuned VGG-19.
However, the systems are computationally expensive as they perform segmentation before
the classification phase.

On the other hand, various researchers have proposed ML-based algorithms to detect
brain tumors using hand-crafted feature extraction and classification. Amin et al. [23]
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extracted and classified hand-crafted features using GLCM and SVM, respectively, and
obtained 97% accuracy. Kaplan et al. [24] used Local Binary Pattern (LBP) for feature ex-
traction KNN for classification. They achieved 95.5% overall accuracy. Bahadure et al. [25]
segmented the tumor region and extracted hand-crafted features using GLCM. The system
obtained 96.5% accuracy via SVM. Garg et al. [26] applied the Otsu threshold to MRI
images and extracted GLCM features. They performed classification via SVM and KNN
with 97.3% accuracy. Minz et al. [27] extracted GLCM features from segmented images
and performed classification via AdaBoost. The system obtained the highest accuracy
of 89.9%. However, these systems require manual segmentation of tumor regions before
the feature extraction and classification phase, thus increasing the system’s complexity.
Raja et al. [28] used information-theoretic measures and Bayesian fuzzy clustering tech-
niques to segment images, whereas the nonlocal mean filter for image de-noising and
scattering transform. They used Tsallis entropy as feature extractors. Finally, a hybrid
DAE approach was deployed for the classification of tumors. However, the computation
required for this method is time-consuming and inefficient. Ali et al. [29] proposed an
approach by employing two deep learning approaches named the GoogleNet and YOLO
models to recognize the brain tumors from the MRI samples. They attained the highest
accuracy of 97% with the first model. Another approach was proposed in [30] that linked
RoB and different AI-based architectural clusters in various DL frameworks to investigate
them and attain improved analysis results.

In brain tumor segmentation, the k-nearest neighbor algorithm is an object classifica-
tion technique using the closest learning instances in the problem space. However, KNN is
one type of instance-based learning, or lazy learning, in which the function is only locally
approximated, and all computations are deferred until classification. The k-nearest neigh-
bor algorithm is one of the simplest machine learning algorithms: an object is classified by
a majority vote of its neighbors, with the object assigned to the most frequent class among
its k-nearest neighbors. The k-NN algorithm functions as follows:

• Compute the Euclidean or Mahalanobis distance between the target and sampled plots.
• Arrange samples according to the calculated distances.
• Select the optimal k-nearest neighbors heuristically based on the RMSE obtained by

the cross-validation technique.
• Compute a weighted average of the inverse distance to the k multivariate

nearest neighbors.

The support vector machine was selected because it is an interesting framework from
a machine-learning perspective. Specifically, SVM is a linear or non-linear classifier, a
mathematical function capable of distinguishing two different types of objects. Such objects
are divided into classes, which should not be confused with an implementation [23–27].
Ref. [31] proposed the classification of a brain tumor in brain MRI images using an image
mining technique. The median filtering and features preprocessed the MRI images have
been extracted using the texture feature extraction technique. Decision tree classification
and the interclass relationship in text classification are used to improve the efficiency of
traditional mining methods. The system used an SVM classifier, which gives 83% accuracy.
Classification of brain tissues through MRI using a hybrid approach of GA and SVM is
proposed by Ahmed Kharrat et al. [32]. The features are extracted by the spatial gray
level dependence method called SGLDM. The proposed system gives a good accuracy of
about 85.22% [33], and proposed morphological operations to the image, then extracted
the features. Analysis result from MLPNN and SVM shows these operations can improve
classification results in symmetry and grayscale features but reduce results in texture
features. Using SVM, the system gets a better result than MLPNN and RBFNN. Because of
the brain’s symmetrical structure, symmetrical features have better accuracy, and texture
features have lower accuracy.
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3. Proposed Methodology

This section discusses the proposed brain tumor classification framework in detail. The
proposed methodology consists of 4 main steps (as shown in Figure 1): image preprocessing,
deep and hand-crafted feature extraction, feature level ensemble of extracted FVs, and
finally, tumor classification. Initially, the dataset images are scaled to 225 × 225 to match
CNN’s input layer size. We extracted hand-engineered and deep features in the feature
extraction phase using GLCM and VGG-16, respectively. We presented a feature ensemble
methodology that combines both FVs (hand-crafted + deep), which is then classified via
SVM and KNN. Feature ensemble combines features from multiple architectures in a single
FV, thus eliminating the requirement to use a single FV obtained from low performing
model. Feature ensemble leads to better classification outcomes as the new FV is more
elaborate and informative than a single one. This method can, thus, aid in developing an
efficient model for precisely detecting and classifying brain tumors, which radiologists can
use to get a second opinion.

Figure 1. Block diagram of the proposed method indicating all the steps in detail.

3.1. Feature Extraction

Feature extraction collects shape, texture, and color-related information from an image
vital for representation. Obtaining optimal features from MRI is a very challenging task [34].
Feature extraction converts raw data into numerical representations while retaining the
original information, which is then processed. These features can be extracted using auto-
mated techniques (i.e., DL) or manual methods (i.e., hand-engineered feature extraction).
However, manual feature extraction requires a detailed understanding of extracting only
those significant features for a certain issue. A firm understanding of the context or domain
can frequently help decide which attributes might be beneficial. Scientists and researchers
have spent years researching strategies for extracting and selecting optimal features from
images, signals, audio/video, or text.

On the contrary, DL frameworks automate the feature extraction process without
human intervention [35]. The proposed framework extracts hand-crafted features via
GLCM and deep CNN features from the fully connected (FC7) layer of VGG16 architecture.
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We extracted both hand-engineered and deep features, which are later fused to form a
robust, more discriminative feature vector than the independent vector. The details of
extracted feature vectors are provided below:

3.1.1. Deep Feature Extraction Using VGG-16

Deep learning is a subset of ML that uses multiple layers of neurons with complex
architecture or non-linear processes to simulate high-level data abstractions. With the
expansion in data volume and computational capacity, neural networks with more com-
plicated topologies have received attention from academia to industry. Application-wise,
deep learning has made significant strides in voice and image categorization, advancing
artificial intelligence and human-computer interaction [36].

One of the widely used DL frameworks in a convolutional neural network (CNN)
is a feed-forward ANN that employs convolutions in at least one of its layers. It drew
inspiration from biological brain networks. CNNs combine ANN with discrete convolu-
tions to extract robust features from the database. These architectures are very effective
in identifying and classifying 2D data, i.e., images and videos. These networks take input
directly from data (usually images/videos) and automate feature extraction/classification
phases, thus saving time compared to conventional image recognition methods. Moreover,
exploring robust deep features is crucial in precisely and accurately identifying images
(including brain tumors). Due to their benefits, CNNs are known to achieve a state-of-the-
art performance when used as deep feature extractors because of the capability to notice
minute changes in images and capturing in the form of features [37,38].

In this paper, we used VGG-Net as our deep feature extractor. The framework was
presented in 2014 by Karen Simonyan and Andrew Zisserman. The architecture comprised
138 million parameters and was ranked second in ILSVRC in 2014 [39]. The framework is
widely employed in image classification due to its robust feature extraction and lightweight
architecture [39]. The architecture of VGG-16 is illustrated in Figure 2. The first layer
of the framework holds an input image of size 224 × 224. Next to the input layer is a
convolution layer (CL) composed of different convolution filters responsible for convolving
input images with kernels to obtain feature maps. Multiple stacked-up CLs improve the
ability to learn hidden features. CLs are usually followed by an activation function (usually
ReLU) that is applied to saturate the generated output. The next layer in this architecture is
the pooling layer (PL) which aims to reduce the size of the feature maps to decrease the
computational load to the next stages. The FC layer is responsible for producing the class
scores from the activations for classification. The VGG-16 architecture comprises 13 CLs
with multiple filters of size 3 × 3 throughout the entire network and 5 max-pooling layers.
The last three FC layers result in 4096, 4096, and 1000 features [40–42]. The motivation
behind using VGG-16 is that the CLs have a kernel size of 3 × 3 with a stride of 1 throughout
the network, unlike other CNN models (such as ZF-Net, AlexNet) with a kernel size of
7 × 7 and 11 × 11 with 4 to 5 strides in the initial layers. Usually, the larger strides ignore
important patterns in the MR images, whereas a larger kernel size increases the number
of parameters.

Figure 2. Architectural details of the VGG16 model.
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3.1.2. Hand-Crafted Feature Extraction Using GLCM

We also extracted hand-engineered features using GLCM. The main difference between
deep features and hand-engineered feature vectors is that hand-crafted features are created
in advance by humans and extract a specific set of desired features. In contrast, architecture
learns CNN-based features from the provided data [43]. It may be noted that we extracted
texture-based hand-crafted features (GLCM) that examine the spatial correlation of pixels
among each other. These features are robust in determining a slight change in pixel
intensities and can precisely differentiate between tumorous tissues and healthy tissues.

Harlick or GLCM [44] are texture-based features that extract second-order statistical
texture features from gray-level images. These features focus on a specific position of
the pixels relative to the other pixel, as the image texture usually contains important
information regarding the structural arrangement of surfaces. GLCM is proven to produce
robust results in different fields, including medical image diagnosis [45], as they can help
diagnose brain tumors from MRIs by detecting minor changes in pixel variations. We
extracted 7 textural features from MRI images using GLCM: energy, contrast, entropy,
homogeneity, shade, and prominence. The hand-crafted features are discussed in this
section. We extracted energy which measures the number of pixel repetitions in an image.
When the image is homogenous, energy values will be higher, indicating textural uniformity.
Energy is computed as in Equation (1). Here m and n denote the size of the GLCM matrix,
whereas pixels are represented by x, y

Energy =

√√√√m−1

∑
x=0

n−1

∑
y=0

f 2(x, y) (1)

Another feature extracted from the GLCM matrix is contrast, which measures the
intensity variation of a pixel and its neighboring pixels in an image. The contrast value will
be higher when there is a large variation in image pixels. It can be defined as in Equation (2).
Here GLCM matrix is denoted by m and n, whereas image pixels are represented by x and y.

Contrast =
m−1

∑
x=0

n−1

∑
y=0

(x − y)2 f (x, y) (2)

We also calculated entropy which measures the randomness of pixel values in a
textural image. Homogenous images possess a higher entropy value than inhomogeneous
images, which have a lower entropy value. Entropy can be calculated as in Equation (3).
The pixel intensities are represented by x and y, whereas m and n indicate the GLCM matrix.

Entropy = −
m−1

∑
x=0

n−1

∑
y=0

f (x, y)log2 f (x, y) (3)

Inverse difference moment (IDM) determines the similarity and closeness between the
pixels of an image to check if the image is textured or non-textured. The IDM’s value will
be higher in the homogenous images than in non-homogenous images. It can be calculated
as in Equation (4)

IDM =
m−1

∑
x=0

n−1

∑
y=0

1

1 + (x − y)2 f (x, y) (4)

Standard deviation (SD) describes probability distribution in an observed population.
A higher SD value signifies better contrast and intensity in an image. It can be defined as in
Equation (5). Here x and y denote pixel values of MRI images, whereas m and n determine
the GLCM matrix size.

SD =

√√√√(
1

mxn

) m−1

∑
x=0

n−1

∑
y=0

( f (x, y)− M2) (5)
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Skewness measures symmetry between image pixels. It will possess lower values
when an image is less asymmetric. It is calculated in Equation (6). Pixel intensities are
depicted using x and y. In contrast, the GLCM matrix is denoted by m, n.

Skewness =
(

1
mxn

)
∑ ( f (x, y)− M3

∂3 (6)

Correlation defines the spatial dependencies or relations between a pixel and its
neighborhood. It can be calculated as in Equation (7), where x and y denote pixel intensities,
whereas m and n show the size of the GLCM matrix.

Correlation =
∑m−1

x=0 ∑n−1
y=0(x, y) f (x, y)− Mx My

∂x∂y
(7)

3.2. Feature Ensemble

Because the performance of an ML classifier is strongly dependent on the input FV,
establishing an approach to create a discriminative FV from MRIs is critical for effective
tumor classification. Ensemble learning improves the system’s performance by merging
several FVs in a single predictive FV. It also helps avoid the risk of utilizing an individual FV
obtained from one model with poor performance. Depending on the integration, ensemble
learning falls into two specific categories, i.e., feature-level ensemble and classifier-level
ensemble. At the classifier level, ensemble integration is performed on output sets obtained
from classifiers using voting methods to determine the final result. On the contrary, in
a feature-level ensemble, the FVs are integrated and fed to the classifiers for the final
result. This type of integration yields far better results since the FVs obtained from varying
architectures are concatenated, which is much more informative than individual ones
because of various features that determine boundaries, edges, shapes, and changes in
intensities. Hence, we used this study’s feature-level ensemble method to combine deep
and hand-engineered FVs. Independent FV acquired via GLCM is defined in Equation (8)
which shows the 7 textural features extracted from MRI images, whereas Equation (9)
shows 4096 deep features obtained from MRI images using VGG16. These features are then
integrated into a novel FV mathematically given in Equation (10). Equation (10) shows the
concatenation of both feature vectors computed with the GLCM, and VGG16 models, which
results in a novel FV called ensemble vector (EV) comprised of 4103 features representing 2
classes, i.e., normal and tumor.

FVGLCM (2×7) = (GLCM2×1, GLCM2×2, . . . , GLCM2×7) (8)

FVVGG16(2×4096) = (VGG162×1 , VGG162×2, . . . VGG162×4096) (9)

EV2x4103 =
2

∑
i=1

(FVVGG16, FVGLCM ) (10)

3.3. Classification

Finally, EV is classified via ML-based classifiers, i.e., KNN and SVM. SVM belongs
to the family of generalized linear classifiers that avoid overfitting data by maximizing
its performance. It is a supervised learning approach developed by Vladimir Wapnik in
1992 [46]. KNN, on the contrary, was developed by Thomas Cover, a supervised learning
algorithm deployed in problems related to regression and classification [47]. The algorithm
is usually helpful in scenarios with little or no prior knowledge regarding data distribution.
The classifier computes the distance between an individual training sample with specified
(k) training samples and votes for the most frequent label in those k samples [48]. Both
classifiers are adopted in classification and regression tasks because of promising results.
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4. Results

4.1. Dataset

We conducted this study using two publicly available datasets of brain MR images
for brain tumor classification. Both datasets are composed of normal and tumor MRIs. For
ease, we named the first dataset BT-small [49] to conduct Study I and the second dataset
BT-large to conduct Study II. The BT-small dataset comprises 253 MRI images, of which
155 are tumorous while the rest of the 98 images are normal. BT-large [50] is composed of
1500 normal images and 1500 tumor images. The sample images obtained from both
datasets are displayed in Figure 3. We used 70% of the MRI samples to train the models
and the remaining 30% of the samples for validation. Table 1 discusses the dataset in detail.

 

Figure 3. MRI samples from the employed datasets.

Table 1. Dataset Distribution.

Method Dataset Training Samples Validation Samples

Study I BT-small 177 76

Study II BT-large 2100 900

4.2. Evaluation Parameters

Since the aim of detection frameworks is to predict unexpected data, successfully
assessing the model’s performance is crucial when developing automated systems. Thus,
training and test sets evaluation illustrate the framework’s generalization abilities. The
most common method for assessing a classification model is performed via a confusion
matrix (CM), a simple cross-tabulation of the actual and classified data for each class.
Accuracy, F1-score, recall, and precision are a few classification metrics based on the CM
used to assess the model’s performance in this study. The F1-score is an effective tool for
combining precision and recall in a single benchmark that contains features from both
metrics. It is widely used in cases of data imbalance. The metrics used in this study,
i.e., precision, recall, accuracy, and F1-score, are defined in Equations (11)–(14), respectively.

Precision = TP/(TP + FP) (11)

Recall = TP/(TP + FN) (12)
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Accuracy = (TP + TN)/(TP + TN + FP + FN) (13)

F1 − Score = (TP)/(TP +
1
2
(FP + FN)) (14)

TP, TN, FP, and FN stand for true positive, true negative, false positive, and false
negative, respectively.

4.3. Results Obtained from the Proposed Framework

In this section, we highlight the results obtained from the proposed method on two
datasets, i.e., BT-small (Study I) and BT-large (Study II). Table 2 compares the proposed
method performance for individual FVs and EVs. The results show that the classifiers
performed better on the novel FV than on single-model FVs. In Study I, KNN classified the
novel FV with 96% accuracy, whereas SVM obtained 93.3% accuracy. On the other hand,
in Study II, SVM achieved a 99% classification accuracy, whereas KNN obtained 98.7%
accuracy. Figures 4 and 5 present precision, recall, and F1-score values obtained on EV for
Study I and Study II, respectively.

Table 2. Proposed method results in terms of accuracy.

FV
Study I Accuracy % Study II Accuracy %

SVM KNN SVM KNN

VGG16 92.1 88.1 98.0 97.8

GLCM 72.0 84.0 96.1 96.0

GLCM + VGG16 93.3 96.0 99.0 98.7

Figure 4. Study I Results in terms of PRE, REC, and F1-Score.

The classification performance of the proposed approach is shown in the CM in terms
of actual and expected classes. The CM of the proposed FV obtained from Study I is
presented in Figure 6. Here, (a) presents the CM obtained via KNN, while (b) shows the
classification results for SVM. Study I obtains a classification accuracy of 96.0 using KNN
and 93.3% using SVM, whereas, Figure 7 presents the CM of Study II. Part (a) denotes the
CM obtained via KNN, and part (b) displays CM obtained via the SVM classifier. Study
II obtains a classification accuracy of 98.7 using KNN and 99.0% using SVM. Study II
achieved better performance due to a relatively larger database. These metrics demonstrate
the reliability of our suggested strategy despite class imbalance because of a novel FV that
contains discriminative and informative characteristics than an independent FV for the
task of brain tumor classification.
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Figure 5. Proposed method results in terms of PRE, REC, and F1-Score.

Figure 6. Confusion matrix obtained for Study I (a) KNN (b) SVM.

Figure 7. Confusion matrix obtained for Study II (a) KNN (b) SVM.

Figures 8 and 9 show Reciever Operating Curves (ROC) obtained from BT-Small and
BT-Large databases, respectively. The original purpose of the ROC analysis was to examine
radar signal noise during World War II [51]. Over the past few decades, ROC curves
have gained prominence as a tool for evaluating the effectiveness of medical diagnostic
systems. The curve depicts the trade-off between sensitivity and specificity. The model
is more accurate when ROC is positioned at the top left corner. It is worth mentioning
fluctuations do not affect that accuracy index due to arbitrarily defined thresholds [52].
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The area determines the discriminative capacity of a framework under the curve (AUC),
demonstrating how effectively it operates in a specific scenario. A robust model will have
almost one AUC [53]. It can be seen that the proposed framework succeeded in achieving
efficient results as the AUC nears one on the BT-Small database, whereas AUC = 1 in the
case of the BT-Large database due to the presence of more images.

 

Figure 8. ROC Curve results obtained on BT-Small Dataset.

 

Figure 9. ROC Curve results obtained on BT-Large Dataset.

4.4. Cross-Dataset Validation

We investigated the cross-dataset detection capability of our suggested technique. The
primary goal of testing the model on cross-dataset scenarios is to assess the generalization
potential of the suggested technique. We used BT-Small and BT-large datasets to train our
approach, and we tested Study I’s performance using Study II’s dataset and vice versa.
Detailed results of cross-dataset validation in terms of accuracy are presented in Table 3.
Technique in Study I obtained 92% accuracy via SVM and 90.0% accuracy via KNN on
the MRI images acquired from the BT-Large dataset. At the same time, Study II obtained
99.2% accuracy via KNN and 99.6% accuracy via SVM on MRI images from the BT-Small
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dataset. The classifiers in Study II performed better than those in Study I due to a larger
MRI dataset. The results also show that our suggested methods can detect brain cancer in
unseen MRI samples. This leads to the conclusion that the suggested strategy is reliable
and effective for locating and classifying brain malignancies from MRI data.

Table 3. Cross Dataset Validation.

Classifiers/Method
Accuracy %

Study I Study II

SVM 92.0 99.6

KNN 90.0 99.2

4.5. Comparison with Existing Approaches

Recent medical image processing software developments have made it easier for
medical professionals to identify ailments early on. These developments are helping them
in some medical specialties, including disease diagnosis, as well as decision-making for
clinical applications. Healthcare centers generate tons of medical records daily. Doctors and
scientists looking for the best ways to utilize these ever-growing volumes of data effectively
are helped by medical informatics research [54,55]. Early discovery and adequate treatment
choices are critical for effectively treating brain tumor disorders. These treatment options
are based on the type of tumor and its stage during detection time. The traditional identifi-
cation methods use simple ML-oriented algorithms that only extract a few features [56].
This study introduces a unique feature ensemble-based method for precisely classifying
brain cancers from MR images.

This paper presents a unique FV-based ensemble of hand-engineered and deep features
for brain tumor classification. We investigated the usefulness of the proposed model
by comparing our approach to existing brain tumor classification techniques in Table 4.
Irsheidat et al. [57] proposed a method for detecting brain tumors using artificial CNNs.
They trained a deep CNN on a dataset of MRI images to differentiate between normal and
tumor images. The proposed method employed data augmentation techniques to increase
the training dataset’s size and improve the model’s generalization. The authors reported
an accuracy of 96.9% in detecting brain tumors using their proposed deep CNN model.
However, the system attained lower accuracy than the proposed method.

Table 4. Comparison with existing techniques.

Reference Technique ACC(%)

Irsheidat et al. [32] CNN 96.7

Kesav et al. [33] Two Channel CNN 98

Tazin et al. [57] Mobile Net V2 92

Sharma et al. [56] VGG-19 94.7

Masood et al. [21] Mask RCNN 98.3

Proposed Study I
VGG16 + GLCM

96.0

Proposed Study II 99.0

On the contrary, Mask RCNN was employed by Masood et al. [21] to detect brain
malignancies in MRI images. They used bounding boxes to pinpoint the tumor site in
the first stage and then classified the tumors. Due to the need for tumor segmentation
before the classification phase, this technique is computationally intensive. Kesav et al. [33]
proposed an architecture for detecting and classifying brain tumors using a combination
of region-based CNN and two-channel CNN. The proposed architecture used RCNN to
identify regions of interest in MRIs and then fed these regions into a two-channel CNN
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for classification. The two-channel CNN comprises two separate CNN models, one for
the segmentation of the tumor region and the other for the classification of the segmented
tumor. However, the system is computationally expensive. Sharma et al. [56] used the
concept of transfer learning for brain tumor detection. They employed VGG-16 architecture
that attained 94.&% accuracy on the Kaggle database. Compared to previous methods, our
suggested method is efficient, using a hybrid feature set consisting of deep features and
GLCM features to identify and categorize brain tumors. Moreover, the proposed framework
does not require segmentation before categorization. The ensemble of FVs obtained from
deep and statistical methods results in a more discriminative feature representation than a
single model FV. The proposed EV achieved the highest accuracy of 96% in Study I and
99% in Study II. From the results, it is evident that the proposed structure is robust and
provides better classification results compared to existing studies.

5. Conclusions

This paper proposes a novel brain tumor detection and classification method using
ensemble learning that integrates hand-crafted and deep features in a single FV. The hand-
crafted are computed via GLCM, whereas the deep features are extracted from VGG-16.
Both the independent FVs are then serially combined, resulting in a single FV (called EV)
that is more discriminate and informative because of the concatenation of textural and
deep features. EV is then supplied to well-known classification frameworks such as SVM
and KNN. Our method is individually trained and validated on two benchmark databases
and obtained maximum accuracy of 96% on the BT-Small dataset and 99% on the BT-Large
database. We also validated the performance of our model via cross-dataset validation
and compared the proposed technique with the existing systems. The results show the
robustness of the proposed method and can be deployed in the real environment to detect
brain tumors from MRI images accurately. In the future, we will gather medical images of
other modalities and employ other CNN architectures to make the system more efficient.
Furthermore, we are willing to test the proposed approach to perform the distinctive
category-wise distribution of brain MRI images to determine the specific type of tumors
as well.
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Abstract: The human liver exhibits variable characteristics and anatomical information, which is
often ambiguous in radiological images. Machine learning can be of great assistance in automatically
segmenting the liver in radiological images, which can be further processed for computer-aided
diagnosis. Magnetic resonance imaging (MRI) is preferred by clinicians for liver pathology diagnosis
over volumetric abdominal computerized tomography (CT) scans, due to their superior representation
of soft tissues. The convenience of Hounsfield unit (HoU) based preprocessing in CT scans is not
available in MRI, making automatic segmentation challenging for MR images. This study investigates
multiple state-of-the-art segmentation networks for liver segmentation from volumetric MRI images.
Here, T1-weighted (in-phase) scans are investigated using expert-labeled liver masks from a public
dataset of 20 patients (647 MR slices) from the Combined Healthy Abdominal Organ Segmentation
grant challenge (CHAOS). The reason for using T1-weighted images is that it demonstrates brighter
fat content, thus providing enhanced images for the segmentation task. Twenty-four different state-
of-the-art segmentation networks with varying depths of dense, residual, and inception encoder and
decoder backbones were investigated for the task. A novel cascaded network is proposed to segment
axial liver slices. The proposed framework outperforms existing approaches reported in the literature
for the liver segmentation task (on the same test set) with a dice similarity coefficient (DSC) score and
intersect over union (IoU) of 95.15% and 92.10%, respectively.

Keywords: deep learning; automated liver segmentation; MRI; diagnostic radiology; T1-weighted contrast

1. Introduction

Over the past decade, remarkable advancements in deep learning (DL) algorithms
have led to a rapid transformation in the field of radiology. DL-aided diagnostics have
achieved exceptional accuracy in detecting abnormalities in various domains such as
ophthalmology, respiratory, and breast imaging. In some cases, multimodal DL solutions
now exhibit accuracy levels comparable to expert radiologists. The high performance and
clinically satisfactory outcomes achieved through computer-aided diagnostic radiology
were previously considered inconceivable [1–3].
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Semantic segmentation is a prerequisite for any DL-driven diagnostic task, as it allows
the model to learn from the region of interest. Formerly, for semantic segmentation tasks in
radiology/medical imaging, distinct mathematical models were implemented, but such
approaches often lacked a generalized solution. Deep learning-based segmentation tasks
outperform conventional mathematical modeling-based approaches. Segmentation has al-
ways helped in improving the performance of computer-aided diagnosis [4,5]. Q. Dou et al.
present a unique 3D deeply supervised network (3D DSN) explicitly designed for liver
segmentation from CT data [6]. The network incorporates deep supervision to enhance
optimization and discrimination capabilities during the learning process, resulting in com-
petitive segmentation results compared to state-of-the-art approaches, along with improved
processing speeds. In another study, C. Chen et al. propose an innovative method for
lung lesion segmentation in CT scans of COVID-19 patients. Their approach involves
region-of-interest extraction and employs a 3D network with attention mechanisms to
enhance segmentation accuracy [7]. Additionally, C. Chen et al. introduce a rapid and pre-
cise lung segmentation technique, utilizing the edge-weighted random walker algorithm
with spatial and clustering information to achieve a heightened accuracy and reduced
segmentation time [8]. Similarly, P. Hu et al. develop a liver segmentation framework by
integrating a 3D convolutional neural network (CNN) with globally optimized surface
evolution. Their approach demonstrates effective segmentation outcomes suitable for
clinical applications [9]. Together, these contributions significantly enhance the field of
automated organ segmentation, offering valuable insights for medical imaging research
and clinical implementations.

However, such a segmentation task in an anatomical paradigm, i.e., the identification
and delineation of an anatomical area or structure in magnetic resonance imaging (MRI),
encounters a colossal amount of complexity. The complexity can be due to topology,
spatial distance, location, relative motion, texture, geometrical structure, and other varying
anatomical information. As a consequence, anatomical segmentation has always been a
demanding task. In particular, compared to other anatomical structures, very few significant
works can be found that focus on liver segmentation [10–12].

For any deep learning-based liver disease diagnosis system, precise automated liver
segmentation is indispensable. However, similar to any anatomical segmentation task, it
is extensively challenging. This is due to the fact that, compared with other abdominal
organs, its anatomy can noticeably differ with patients and clinical conditions. Additionally,
the liver’s proximity to contiguous abdominal organs (the spleen and kidneys) generates
substantial ambiguity [13,14].

However, recent research has demonstrated excellent results for deep neural network
(DNN)-based liver segmentation tasks from volumetric abdominal computed tomography
(CT) images. Tang et al. [15] achieved a dice similarity coefficient (DSC) of 98% in the
liver segmentation task from a plain CT scan using a modified multiscaled convolutional
neural network (CNN). Hu et al. [9] used a three-dimensional CNN for the same task and
achieved a high performance of around a 97.25% dice similarity coefficient. These works
utilized Hounsfield unit (HoU) scaling as a hyperparameter for image enhancement in
the preprocessing stage [16]. The review by Xiang et al. [17] observed that, in terms of
liver segmentation from magnetic resonance imaging (MRI) scans, high performance could
not be achieved and also very little significant work exists in this domain. Owing to the
absence of such homogeneous HoU-based image enhancement convenience, in terms of
automated liver segmentation from volumetric abdominal MR scans, achieving a similarly
high performance to CT images is challenging.

Moreover, MRI scans are extensively adopted by clinicians for liver pathology inves-
tigation, due to their superior contrast and spatial resolution for soft tissues compared
to CT scans [18,19]. CT scans can provide solid anatomical information. On the contrary,
MRI demonstrates high signal intensity in comparison to CT scans. As a result, both
anatomical and physiological information can be derived from MRI scans. In particular,
both CT and MRI can provide accurate anatomical information about the liver lesion or
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haemangioma; however, MRI scans can provide a further important basis for screening
benign or malignant types [20–22].

The above studies demonstrate the significance of liver segmentation, specifically from
volumetric MRI scans, as this modality is favored by clinicians in relation to pathological
diagnosis. In this regard, liver segmentation from MRI scans holds significant importance.
A. Mostafa et al. investigated a whale optimization algorithm for liver segmentation from
MRI scans [23]. A. Hänsch et al. studied multimodal training and three-dimensional CNN
for the task [24]. X. Zhong et al. used deep action learning with a 3D UNet [25], and P.
Pandey et al. investigated contrastive semisupervised learning for the liver segmentation
task [26] on the CHAOS abdominal MRI dataset [27]. D. Mitta et al. implemented a
weighted UNet with attention gates for the liver segmentation task [28] on the same dataset,
and J. Hong et al. achieved a slightly better performance using a source-free unsupervised
UNet [29]. X. Wang et al. investigated a bidirectional search of the neural net for the
task [30]. Additionally, S. Mulay et al. used a geometric edge enhancement-based mask
R-CNN [31]. The more recent work of L. Zbinden et al. achieved better performance than
previous research for liver segmentation on the same testing set by implementing nnUNet
on T1-weighted MRI slices [32].

In this research, we investigated 24 state-of-the-art segmentation networks for liver
segmentation tasks from T1-weighted MR scans using a publicly available dataset, which
annotated ground truths for the liver segmentation of 20 patients. The prospect of predicting
a precise mask from T1-weighted MR scans is higher as fat (and protein) contents are
brighter and more distinguishable in such a group. The investigation explores state-of-
the-art segmentation networks, such as UNet, UNet++, and feature pyramid network
(FPN) segmentation networks with varying dense encoder backbones, along with various
image enhancement techniques in the preprocessing stage. The proposed cascaded network
showed superior performance to many high-performance state-of-the-art approaches on the
same test set. Finally, we developed a software prototype by deploying our proposed DL
model in a cloud server for public usage. The cross-platform software is open source and
can be accessed from http://130.211.209.103/projects/the-big-mri-project-beta, accessed on
9 August 2023.

The main contributions of the research are listed below.

• This research extensively investigates state-of-the-art approaches for precise liver
segmentation from T1-weighted abdominal MR scans to facilitate clinicians with
AI-driven assistance for liver pathology diagnosis;

• This research investigates the effects of multiple image enhancement techniques for
automated liver segmentation tasks from MR scans;

• This research proposes a novel cascaded network for the liver segmentation task that
demonstrated state-of-the-art performance compared to the literature;

• The proposed model was deployed in a cloud server for demonstration purposes so
that clinicians can directly benefit from the results of this investigation.

2. Materials and Methods

The brief methodology of the research is explained in Figure 1. The methodology will
be discussed in detail in the following section.

2.1. Dataset

The dataset was collected from the Combined Healthy Abdominal Organ Segmen-
tation (CHAOS) grant challenge [27]. The public portion of the CHAOS dataset includes
computed tomography (CT) and magnetic resonance imaging (MRI) abdominal scans of
20 patients, in the Digital Imaging and Communications in Medicine (DICOM) format.
The ground truths (GT) were provided from the source, which includes masks for the right
kidney, left kidney, liver, and spleen. The ground truth masks were annotated by certified
radiologists. All scans are of healthy patients. The MRI scans include T1-weighted in-phase
and out-phase, along with T2-weighted scans, which are discussed in the next subsection.
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Each T1 scan includes 26 to 56 slices; for 20 patients the total number of T1-weighted slices
is 647 [27].

Figure 1. Flow diagram explaining methodology for automated liver segmentation from T1-weighted
MRI scans.

2.2. Selecting Task-Specific Contrast Group

Among different contrast-enhanced groups (in-phase T1-weighted, out-phase
T1-weighted, and T2-weighted), specific groups were chosen by analyzing the relevant
abdominal anatomy and attributes of the available contrast-enhanced groups.

2.2.1. Relevant Abdominal Anatomy

The supplied masks (left kidney, right kidney, liver, and spleen) lie in close proximity
to each other in the abdominal region, leading to a colossal amount of ambiguity in
distinguishing any of the organs. The anatomy of these organs is briefly visualized in
Figure 2 [33]. The superior part of the liver (left lobe) lies within the epigastric and left
hypochondriac regions. It is in close proximity to the spleen and rests in front of the spleen
in terms of the axial plane. The middle part of the liver resides above the umbilical region.
The inferior part of the liver is just in front of the upper pole of the right kidney, which
occupies the right lumbar region. The left kidney lies in the left lumbar region just below
the spleen. Therefore, such close proximity generates an enormous amount of complexity
and obscurity in automated abdominal organ segmentation tasks using machine learning.

2.2.2. T1- and T2-Weighted Images

The T1 and T2 parameter represents relaxation time for longitudinal (Mz) and trans-
verse (Mt) magnetization components for each proton. T1 is noted as the spin–spin relax-
ation phenomenon, and T2 is noted as the spin–lattice relaxation phenomenon. When the
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macroscopic magnetizing vector for each voxel is Mo, then the relationship among the
magnetization components and T2, T1 is denoted as [34]

Mt(t) = Mo sin αe
−t
T2 (1)

Mz(t) = Mo cos αe
−t
T1 + Mo(1 − e

−t
T1 ) (2)

where α denotes the flip angle, which represents a rotation in net magnetization. Character-
istically, the T1 tissue relaxation time is always larger than T2. The relaxation times vary
broadly with tissue attributes and characteristics. These varying intervals can also be used
to distinguish between healthy and abnormal tissues. Table 1 denotes T1 and T2 values for
relevant abdominal tissues [35].

Figure 2. Superficial visualization of relevant abdominal anatomy for describing underlying ambigu-
ity in the segmentation task.

Table 1. Average T1 and T2 relaxation time (msec) for 1.5 T and 3.0 T MRI scans.

Tissue
1.5 T 3.0 T

T1 (msec) T2 (msec) T1 (msec) T2 (msec)

Kidney 966–1412 85–87 1142–1545 76–81
Liver 586 46 809 34

Spleen 1057 79 1328 79
Lipid 343 58 382 68
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The relation among the image intensity of each voxel I(x, y), the tissue density ρ(x, y),
the echo time (TE), and the repetition time (TR) can be denoted as

I(x, y) = ρ(x, y)
(1 − e

TR
T1 ) sin α

1 − e
TR
T1 cos α

e
TE
T2 (3)

In Equation (3), α is optimized by following

αErnst = cos−1 e
TR
T1 (4)

when TE � T2, and either α ∼ αErnst or TR ∼ T1, then the image is defined as T1-weighted.
Moreover, the image is defined as T2-weighted when TE > T2, and either α � αErnst or
TR � T1 [36].

In accordance with its definitions, fat (and protein) content in T1-weighted MRI scans is
brighter. Owing to such characteristics, the liver is more distinguishable in T1-weighted MRI
scans. Figure 3 shows sample T1- and T2-weighted slices of different axial views. It is clear
from the figure that for T1-weighted in-phase scans, the liver is far more distinguishable
(even in the slices where the liver is small) in the inferior part of the liver, and the superior
part of the liver in the axial view. In the MRI slices where the liver is larger (i.e., the
middle part of the liver), both in-phase and out-phase T1-weighted scans can be used. As
T1-weighted out-phase scans represent out-of-phase protons, a darker boundary can be
noticed around regions of varying intensities. As a result, unwanted artifacts are introduced
in these slices.

Figure 3. Visualization of MRI slices from (a) upper pole of the kidney, (b) inferior part of the liver,
(c) middle part of the liver, and (d) superior part of the liver for different types of data available in
the dataset.

Due to such attributes among different contrast-enhanced MRI scans, in-phase
T1-weighted contrast-enhanced scans were selected for the liver segmentation task. Such
groups provide initially enhanced images, which can contribute to boosting the perfor-
mance of deep neural networks.

2.3. Dataset Preprocessing

Firstly, in-phase T1-weighted 647 DICOM slices were converted to PNG format in
order to optimize the preprocessing and processing steps. In the ground truth mask,
there are multiple organs (right kidney, left kidney, liver, and spleen) present. Binary

132



Sensors 2023, 23, 8890

masks are generated for the liver alone. Each slice and GT mask pair is then resized to
256 × 256 dimensions from their original 512 × 512 dimensions. Reducing the size of the
dataset offers notable benefits in terms of enhancing computational efficiency during the
training process of segmentation networks.

In order to ensure the data are ready for the machine learning investigation, there are
important steps that include fold creation from the preprocessed dataset. Fold creation
invovles dividing the data into the training set, validation set, and testing set for five folds.
In order to avoid biases during training, it is important to make sure that the dataset is
balanced; this is achieved by the augmentation of the training set. Finally, the authors
investigated different image enhancement techniques for each of the created folds. Figure 4
represents techniques for fold creation and augmentation, which performed following the
literature in [37–39]. Image enhancement techniques are demonstrated in Figure 5.

Figure 4. Flow diagram explaining the methodology for fold creation and augmentation in the
training set.

Figure 5. Visualization of image enhancement techniques.
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2.3.1. Fold Creation

The methodology follows five-fold cross-validation techniques for validating the net-
work performances. From the preprocessed dataset, five folds were created. In each fold
training, validation, and testing set ratios were 70%, 10%, and 20%, which corresponds to 453,
65, and 129 DICOM slices, respectively. This was done to make sure that the performance
metric represents the performance of the trained network on the complete dataset.

2.3.2. Augmentation

The training set for each fold was augmented using geometrical spatial transformation of
coordinates (rotation and translation). Geometric spatial transformations represent a widely
recognized and efficient technique for processing topographic imaging datasets [40,41].

The affine matrix for rotation Irotation and for translation Itranslation can be denoted as

Irotation =

⎡⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤⎦ (5)

Itranslation =

⎡⎣ 1 0 0
0 1 0
tx ty 1

⎤⎦ (6)

where the values of θ are defined by the set:

θ = {±5◦,±10◦,±15◦,±20◦, ...,±90◦} (7)

and the values (tx, ty) are defined by the set:

(tx, ty) = {(−10, 10), (+10,−10), (−10,+10), (10, 10)} (8)

The validation and testing sets were not augmented. After augmentation, each training
fold consisted of around 6700 slices. The validation set was used to avoid overfitting, which
is a common problem in machine learning model development [42,43].

2.3.3. Image Enhancement

Image enhancement includes gamma correction for each fold. For each of the pixels
f (x, y), the gamma correction can be denoted as [44]

g(x, y) = 255
(

f (x, y)
255

) 1
λ

(9)

where g(x,y) denotes the gamma corrected pixel value, and the value of λ is considered
to be 0.5 in this study. And, for all f (x, y) > 200, f (x, y) is considered to be 255 to
enhance the targeted region. Another image enhancement technique called contrast-limited
adaptive histogram equalization (CLAHE) was used in the three-channel (or RGB) image
construction technique. If in a histogram kth, the intensity value is rk, and the number of
pixels with the rk intensity value is nk, then for an M × N dimensional image, the equalized
histogram can be represented by

p(rk) =
nk

M × N
(10)

CLAHE is an adaptive histogram equalization technique that undergoes transforma-
tion over local regions. Here, a matrix of 8 × 8 dimension was used for local histogram
equalization. The output histogram from the CLAHE transformed image follows the
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Rayleigh distribution. Gamma correction was applied to the CLAHE-enhanced image, and
finally, the image was complemented. The image compliment f−1(x) can be expressed as

f−1(x) = 255 − f (x) (11)

The three-channel (or RGB) image was constructed by concatenating the original
image, the gamma-corrected CLAHE enhanced image, and the complement of the gamma-
corrected CLAHE enhanced image.

2.4. Deep Neural Networks

UNet-like architectures with pretrained deep dense, residual, and inception encoder
backbones previously showed high performance in both classification and segmentation
tasks for 2D chest X-rays [45]. UNet++ with deep dense blocks showed benchmark per-
formance in segmenting lung content from volumetric CT scans [46]. These segmentation
networks also performed well in solving complex problems such as detecting intracranial
hemorrhages [47]. These studies inspired us to investigate these UNet-like architectures
with pretrained encoder backbones for liver segmentation tasks from MR scans. UNet,
UNet++, and feature pyramid network (FPN) segmentation networks were investigated
with varying depths of dense, residual, and inception encoder backbones. The network
architectures are shown in Figure 6. The encoder backbones were pretrained dense, resid-
ual, and inception blocks (marked in light orange). The decoder (light blue) uses transpose
convolution blocks for upscaling the vector output from the bottleneck (marked in dark
blue) output to construct the segmentation mask. The yellow blocks in UNet++ and FPN
represent both concatenation and convolution blocks.

Figure 6. Network architectures of different segmentation networks and investigation frameworks.
The varying depth of pretrained dense, residual, and inception encoder backbones were investigated
for UNet++, UNet, and FPN segmentation network architectures.

2.4.1. UNet

UNet architecture consists of an encoder and a decoder part. The encoder part reduces
the input image size in each of the convolutional blocks through max pooling. In the final
encoder block, the two-dimensional original image matrix is reduced to a vector array.
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The decoder part upscales the converted vector array in each block through convolutional
blocks and upconvolution layers. Lastly, the skip connections among encoder–decoder
blocks transfer weights for localizing the region of interest. These skip connections are
similar to the attention mechanism [48].

2.4.2. UNet++

UNet++ is an extension of the UNet and wide UNet architecture. It utilizes the concept
of deep supervision. UNet++ also introduces nested convolutional blocks inside each
skip pathway, and such blocks enhance the quality of feature spaces that are passed to the
decoder blocks [49,50].

2.4.3. Feature Pyramid Network (FPN)

In the FPN network, weight connections from the UNet decoder blocks are fed through
skip connections to feature pyramid blocks. Further, the output from each feature pyramid
block is fed into a single convolutional block. Finally, the output from the convolutional
block is fed into a rectilinear unit (ReLU) activation layer for generating the predicted
masks [51].

2.4.4. Pretrained Backbones

The concept of transfer learning is utilized to enhance the segmentation performance
and reduce the training time. Several pretrained encoders (variants of dense, residual, and in-
ception networks), which were trained on the ImageNet computer vision database [52], were
used as the backbones. For each backbone variant, three varying depths were investigated.
The variants of DenseNets were DenseNet201, DenseNet161, and DenseNet121 [52–54], while
the variants of residual networks were ResNet152, ResNet50, and ResNet18 [55]. InceptionV4
and InceptionResNet were the variants of the inception backbones [56].

2.5. Experiments

Two major experiments were carried out in this study: (i) the generalized model and
(ii) the specialized network for handling anatomical ambiguity.

2.5.1. Generalized Model

In this experiment, MRI slices with different liver sizes were used in training and
evaluation and the model was generally not specific to any particular liver size. Then, the
effects of image enhancement on the generalized model were investigated. A total of
24 networks (three architectures with eight backbones) were tested on three versions of
MRI images (i.e., original, gamma-corrected, and 3-channel view) to segment the liver.

2.5.2. Specialized Network for Handling Anatomical Ambiguity

To enhance the performance of the segmentation network in segmenting the liver
region from the MRI slices where the liver shape varies, multiple segmentation networks
needed to be trained to segment the liver region reliably. A total of 90 slices from the
inferior part of the liver and the upper right pole of the kidney were trained separately.
Exact preprocessing and processing steps were followed for this set of slices, which was
discussed previously. For this specific task, only varying depths of the ResNet encoder–
decoder backbones with UNet++, UNet, and FPN were investigated as the ResNet showed
better performance in the preliminary study. Three variants of ResNet and Inception-
ResnetV2 with three architectures (a total of 12 experiments) were investigated specifically
for the slices with small liver contents.

2.5.3. Cascaded Network

Since the liver size varies in the MRI volume, every single generalized model proposed
in the literature fails to generalize. Therefore, we propose a cascaded model using a decision
function to improve the performance of the segmentation network. The architecture of the
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cascaded network is depicted in Figure 7. The volumetric MRI scan is fed into the network
slice by slice. At first, a liver mask is predicted from the generalized network. From the first
predicted mask, the number of predicted white pixels is calculated. The following equation
is used to decide the potential shape of the liver mask in the slice under investigation,
where k represents the white pixel count:

Liver_Content =

⎧⎪⎨⎪⎩
Absent, if k = 0
Small, if 1 ≤ k ≤ 750
large, if k > 750

(12)

Figure 7. Cascaded network for handling anatomical ambiguity: the generalized network predicts
an initial mask; if the pixel count for the predicted mask refers to a constrained or null liver content,
then the input slice is fed into the specialized network.

If the number of white pixels is zero, there is no liver in the slice and so the mask is
completely black. However, if the decision function identifies a number between 1–750, the
slice is again fed into the specialized network for producing the final mask. However, if the
number is higher than 750, the mask generated by the generalized model is used as the
final liver mask.

The sets of large, small, and absent liver contents are created on the basis of the
topographic visualization of the abdominal anatomy, which was described earlier in
Section 2.2.1. The liver content is maximum in the axial views from the middle part
of the liver. Moreover, the liver content is medium and constrained in the axial views from
the superior part of the liver and the inferior part of the liver, respectively. In the axial
view from the upper part of the kidney, the liver content is absent. In this perspective,
the set of large liver content is constructed with the axial views from the middle part and
superior part of the liver. The axial views from the inferior part of the liver are represented
in the set of small liver content. Lastly, the set of absent liver content is formed by the axial
views from the upper part of the right kidney. The threshold values are then determined
by analyzing the pixel counts in each of the sets.

Generally, the axial views from the superior part and inferior part of the liver have
significant liver content and the liver area can be comfortably segmented. However,
ambiguity arises for the axial views from the inferior part of the liver and the upper part
of the right kidney, as the liver portion is significantly constrained. In such a perspective,
segmentation performance may improve if slices from these two complicated axial views
are handled with a separate network, which is only trained with such cases. Thus, such a
cascaded approach was investigated.
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2.6. Loss Function

Binary cross-entropy (BCE) loss is typically used for classification tasks. As any
semantic segmentation task can be considered as a classification task at the pixel level, this
loss is also effective for segmentation. BCE loss can be expressed by [57,58]

Loss(BCE) =
1
N

N−1

∑
i=0

−(yi log(ŷi) + (1 − y) log(1 − ŷi)) (13)

The dice coefficient is used to calculate the similarity index between ground truth and
predicted masks for segmentation tasks. Dice loss is a region-based loss function and it is
introduced in [59]. Dice loss can be expressed by

Loss(DICE) = 1 −

N−1
∑

i=0
yiŷi

N−1
∑

i=0
y2

i +
N−1
∑

i=0
ŷ2

i + ε

(14)

In Equations (13) and (14), N represents the total number of pixels, yi represents the
ith pixel in the ground truth mask, and ŷi represents the ith pixel

Initially, both the mentioned loss functions were investigated to find the optimum
solution. However, the detailed investigation was carried out with the BCE loss, as it
demonstrated superior performance over dice loss in the initial investigation.

2.7. Training Parameters

In order to conduct a uniform comparison among the network performances, it was
indispensable to use the same training parameters for all the networks. All the training was
conducted in an NVIDIA Tesla P100-PCIE graphics processing unit (GPU) with 16 gigabytes
(GB) og memory. The initial learning rate was set to 0.0001 with a learning factor LR of
0.02. If the validation loss did not show significant changes in 10 epochs, the learning
rate was reduced by 1

LR . The maximum epoch number was set to be 100 for each fold,
but if the validation loss was constant for 20 epochs, the training was terminated. Z-score
normalization was used, which uses the standard deviation and mean of the raw MRI slices
for normalizing each image. For optimizing the process of gradient descent, in each of the
epochs, the ADAM optimization algorithm was used as it showed superior performance
over stochastic gradient descent (SGD) in the initial investigation [60,61].

2.8. Evaluation Metrics

For evaluating the performance of each investigated network, the accuracy, dice
similarity coefficient (DSC) (i.e., F1-score), and intersection of union (IoU) were computed.
For each network, the average metrics for each ground truth mask and predicted mask
pairs were calculated. Accuracy, DSC, and IoU can be expressed by

Accuracy =
TP + TN

2 × TP + TN + FP + FN
(15)

DSC =
2 × TP

2 × TP + FP + FN
(16)

IoU =
TP

2 × TP + FP + FN
(17)

In Equations (15), (16), and (17), TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative, respectively.
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2.9. Cloud Deployment

A cloud-based application for real-time liver segmentation from MRI images was
deployed. The deep learning model was deployed in the cloud back-end server, which
runs on an 8-core, 32 GB Memory Apache Linux instance hired from Google Cloud Per-
form (GCP). The back-end server was connected to a SQL database for storing the MRI
images. The application is cross-platform compatible and users can access the application
anytime via a web browser from any edge device. The cloud-based application can be
remotely connected with a Picture Archiving System (PACS) for assisting radiologists in
liver pathology investigations. In order to provide more convenient remote access for
clinicians, an Android application was also developed. Figure 1 superficially describes the
cloud application. To ensure the robustness of the segmentation network, an automated
self-learning scheduler was implemented in the back-end server following the concept
discussed [62]. The scheduler automatically retrains the deployed model with the incoming
new data provided by the user, and such an approach boosts the network’s performance
on unseen real-world data.

3. Results and Discussion

The results from different investigations are discussed in this section. Later, a perfor-
mance comparison is presented, which compares the efficiency of the proposed approach
with the reported high-performance techniques in the literature for liver segmentation on
the same MRI test set. In the following section, the performance of the generalized model,
specialized model, and cascaded models are presented.

3.1. Generalized Model

The Table 2 summarizes the network performance for segmenting the liver region in
the MR slices using a generalized model. Deep networks showed superiority in perfor-
mance in comparison to shallow networks. On the nonenhanced images (original image),
UNet++ with dense backbones showed the top performance. UNet++ with a DenseNet201
backbone showed the best performance with a DSC and IoU of 94.3% and 91.00%, respec-
tively. On the nonenhanced images, UNet with different DenseNet backbones exhibited a
similar performance.

For the three-channel image set, networks with DenseNet backbones demonstrated
slightly better performance compared to other networks. Among the variants of the
DenseNet model, DenseNet161 performed the best for this specific image set. Both FPN and
UNet with DenseNet161 backbones achieved a DSC of over 93%. Among the investigated
image enhancement techniques, the gamma-enhanced image set performed the worst.

The liver content is maximum in the slices showing the middle part of the liver and
also significantly larger in the superior part of the liver. For these two specific types of
slices, all of the DenseNet backbones showed excellent performances. Figure 8a shows the
predicted liver masks for the slices from the middle part of the liver. The figure shows that
all of the networks can segment the liver region accurately.

3.2. Effects of Image Enhancement for Generalized Model

It can be observed that the network performances were slightly decreased when image
enhancement techniques were implemented (Table 2). This is due to the ambiguity that arises
from the slices where the liver content varies widely. Though image enhancement was very
effective for the slices where the liver portion was significant, the performance dropped when
the liver size was minimum in the slice of investigation. Figure 8b shows such a sample liver
slice with the ground truth mask and the masks predicted by different models.

Due to this ambiguity, finding a generalized image enhancement technique for such a
complex and varying anatomy is very challenging.
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3.3. Limitation of the Generalized Model

In the case of the slices of the middle part of the liver, all ResNet and inception
backbones demonstrated satisfactory performance. Figure 9 shows the predicted masks
from top-performing networks for the middle part of the liver (large liver content), inferior
part of the liver (small liver content), and upper pole of the kidney (no liver content) for
the original T1-weighted images. Figure 9 shows that the generalized model performed
well for the slices with large liver content and for the slices where the liver was absent.
However, when the liver content was small, the generalized model struggled to locate the
liver area precisely.

Table 2. Summary of the investigated network performances from the generalized approach. UNet++
with DenseNet201 encoder exhibited the best performance.

Networks Original Three Channel Gamma Corrected

Architecture Backbone Acc. (%) IoU (%) DSC
(%) Acc. (%) IoU (%) DSC

(%) Acc. (%) IoU (%) DSC
(%)

UNet++ DenseNet201 99.73 91.00 94.30 99.60 88.95 92.35 99.42 89.28 91.91
DenseNet161 99.68 89.78 93.06 99.71 89.60 92.95 99.66 87.00 90.30
DenseNet121 99.43 89.17 92.57 99.66 90.08 93.40 99.56 87.58 90.92

ResNet152 99.70 89.79 93.13 99.67 87.97 91.34 99.70 89.00 92.33
ResNet50 99.70 90.42 93.81 99.68 89.54 92.98 99.66 88.13 91.64
ResNet18 99.70 89.73 93.08 99.70 89.63 93.01 99.63 84.55 88.50

Inception-resnet-v2 99.71 89.16 92.57 99.65 88.31 92.10 99.70 89.60 91.98
inception-v4 99.70 87.98 91.29 99.68 89.23 92.62 99.70 89.79 92.16

UNet DenseNet201 99.76 89.98 93.22 99.72 88.77 92.13 99.78 88.74 92.18
DenseNet161 99.57 90.48 93.84 99.43 90.08 93.60 99.45 87.58 90.92
DenseNet121 99.43 89.88 93.27 99.66 89.48 92.90 99.64 87.04 90.31

ResNet152 99.69 89.46 92.97 99.67 88.66 92.25 99.67 88.91 92.35
ResNet50 99.68 87.48 90.93 99.66 85.49 89.01 99.68 88.79 92.36
ResNet18 99.67 88.16 91.83 99.67 86.83 90.38 99.68 88.77 92.31

Inception-resnet-v2 99.66 87.68 91.41 99.68 88.20 91.80 99.70 87.81 91.32
inception-v4 99.68 88.64 92.34 99.70 90.68 93.47 99.62 87.89 91.71

FPN DenseNet201 99.65 89.45 92.83 99.36 89.50 92.97 99.47 88.33 91.87
DenseNet161 99.70 89.38 92.77 99.66 89.32 93.00 99.53 88.11 91.85
DenseNet121 99.47 87.52 91.08 99.47 89.39 92.94 99.71 86.91 90.49

ResNet152 99.66 88.49 92.08 99.67 88.90 92.59 99.68 87.85 91.46
ResNet50 99.69 89.01 92.52 99.65 88.15 91.88 99.66 88.76 92.40
ResNet18 99.68 88.33 91.91 99.66 88.10 91.95 99.67 88.58 92.33

Inception-resnet-v2 99.61 87.03 91.46 99.67 88.17 92.08 99.65 88.52 92.39
inception-v4 99.62 85.52 90.85 99.66 88.64 92.55 99.66 88.64 92.55

Figure 8. Visualization of the predicted masks from the networks with DenseNet backbones for a
sample axial slice showing the middle part of the liver (a) and the inferior part of the liver (b).
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A more detailed picture is shown in Table 3. The table illustrates the fold-wise slice
distribution and the observed DSC for each of the different groups of liver shapes for the
top-performing UNet++ model with the DenseNet201 backbone. Though the percentage of
slices from the middle part of the liver was the minimum for all the folds, the DSC value
for the best-performing model was still over 95% for each fold. Slices with medium liver
content occurred the most and the DSC value for each fold was around 95%. The network
also efficiently handled slices where the liver content is absent.

However, the model performance was greatly reduced for the slices where liver content
was small. It is worth mentioning that the number of such slices in the training set was
also insignificant. Our hypothesis was that handling such slices by a separate model may
improve the overall segmentation performance, which is explored in this study.

Figure 9. Visualization of the predicted masks from selected networks for a sample slice in (a) middle
part of the liver (large liver content), (b) inferior part of the liver (small liver content), and (c) upper
pole of the kidney (no liver content).

Table 3. Distribution of slices of distinct axial views in train set and test set, along with the observed
DSC. Slices depicting axial view from the inferior part of the liver holds a constrained liver content
and exhibits anatomical ambiguity.

Fold No

Middle Part of Liver Superior Part of Liver Inferior Part of Liver Upper Part of Kidney
(Liver Content: Large) (Liver Content: Medium) (Liver Content: Small) (Liver Content: Absent)

Train Set Test Set
DSC (%)

Train Set Test Set
DSC (%)

Train Set Test Set
DSC (%)

Train Set Test Set
DSC (%)Slice % Slice % Slice % Slice % Slice % Slice % Slice % Slice %

1 7.74% 19.38% 97.03% 45.63% 34.89% 95.33% 12.71% 16.28% 81.95% 34.12% 29.46% 100.00%

2 7.73% 11.63% 95.75% 44.36% 41.86% 95.11% 13.25% 11.63% 82.64% 34.66% 34.88% 95.55%

3 6.69% 17.83% 96.17% 43.43% 41.86% 95.20% 11.79% 12.40% 78.13% 35.85 % 30.23% 97.43%

4 7.67% 10.85% 95.70% 43.26% 42.63% 95.23% 14.90% 9.30% 80.20% 34.18% 37.21% 97.91%

5 6.86% 16.79% 97.35% 44.25% 38.17% 93.90% 14.15% 9.16% 82.46% 34.75% 35.88% 94.78%

3.4. Specialized Network for Handling Anatomical Ambiguity

Table 4 illustrates the performance of the specialized models trained with different
architectures and different backbones in comparison to the best-performing generalized
model in segmenting the MR slices with a small liver content.

The UNet with ResNet18 encoder backbone showed superior performance over the
other investigated networks, with an IoU and DSC of 77.00% and 86.22%, respectively.
For UNet++, the Inception-resnet-V2 encoder backbone showed better performance over
the varying depths of ResNet backbones with an IoU and DSC of 75.58% and 84.03%,
respectively. The shallow ResNet18 backbone performed better for the FPN architecture
over other pretrained encoder backbones with an IoU and DSC of 71.20% and 82.04%,
respectively. Each of the top-performing encoder backbones for UNet, UNet++, and
FPN performed better than the top-performing generalized network for this task, which
demonstrated an IoU and DSC of 70.74% and 80.88%, respectively. Lastly, the shallow
networks performed better compared to deep networks for this specific task, as the liver
content in the slice was small.

141



Sensors 2023, 23, 8890

3.5. Cascaded Network

Figure 10 shows the predicted masks from the proposed cascaded network. It can
be observed that such an approach enhances the mask quality for slices with a small
liver content. Combining both the generalized and specialized network enhances the
performance of the network for segmenting the liver region. Table 5 summarizes the
performance metrics for the generalized network and the cascaded network. Cascading
both the networks improves the overall DSC score (from 94.3 to 95.15%).

Figure 10. Comparison of the predicted masks from the generalized and specialized networks for
sample MR slices with small liver content.

Table 4. Summary of the investigated network performance for the slices with small liver content
using different specialized models and the best-performing generalized model. UNet with ResNet18
backbone showed improved performance for the task.

Networks Metrics (Specialized Network) Metrics ( Best-Performing Generalized Network)

Architecture Backbone Acc. (%) IoU (%) DSC (%) Acc. (%) IoU (%) DSC (%)

UNet ResNet18 99.64 77.00 86.22
ResNet50 99.81 72.06 80.94

ResNet152 99.78 70.00 79.73
Inception-resnet-v2 99.70 72.73 81.72

UNet++ ResNet18 99.78 71.71 78.38
ResNet50 99.76 71.62 80.96

ResNet152 99.80 71.89 81.02 99.76 70.74 80.88
Inception-resnet-v2 99.78 75.58 84.03

FPN ResNet18 99.80 71.20 82.04
ResNet50 99.77 69.75 79.77

ResNet152 99.78 71.86 81.20
Inception-resnet-v2 99.80 70.92 80.41

Table 5. Performance metrics for the best-performing generalized and cascaded network. Here, the
results of the cascaded network are marked in gray.

Experiments Acc. (%) IoU (%) DSC (%)

Generalized Network 99.73% 91.00% 94.30%
Cascaded Network 99.70% 92.10% 95.15%

3.6. Discussion

The performance comparison of our proposed framework with all of the existing
high-performance networks (using the same test for evaluation) is summarized in Table 6.
X. Zhong et al. [25] investigated deep action learning for abdominal organ segmentation
tasks from volumetric MRI images. Their proposed network demonstrated superiority
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over 3D UNet in terms of overall performance, and achieved a DSC of 80.6% for the liver
segmentation task. P. Pandey et al. [26] explored a contrastive semisupervised approach for
the same task, and it achieved a DSC of 85.9%. The proposed method generates patches for
each slice, which enhances the feature space. Mitta et al. [28] achieved a DSC of 88.12% on
the test set by using W-Net with attention gates. J. Hong et al. [29] and X. Wang et al. [30]
used source-free unsupervised learning and bidirectional searching for the segmentation
task, respectively. By using geometric edge enhancement, S. Mulay et al. [31] boosted the
performance of the mask R-CNN for the liver segmentation task on this test set. L. Zbinden
et al. [32] achieved a DSC of 93.60% by implementing nnUNet on T1-weighted MRI slices.

Our proposed cascaded framework outperforms all of these existing high-performance
techniques by a large margin with a DSC of 95.15%. As discussed previously, the size of
the liver content in an arbitrary MRI slice depends on its axial view source. Any gener-
alized segmentation network can perform comparatively better when the liver content is
significant in the given MRI slice (axial view from the middle part of the liver). On the
contrary, the network faces ambiguity when the liver content is reduced for the given MRI
slice (axial view from the upper pole of the kidney, the inferior pole of the kidney, and
the superior part of the liver). As a result, the network performance drops significantly
for these specific groups of slices where the liver content is small. This specific cause for
reduced segmentation performance is overlooked in all of the previous studies. Our pro-
posed framework separately handles this specific group of slices with a small liver content,
which generates ambiguity through a specialized network, thus enhancing the overall
segmentation performance.

Table 6. Comparison of the proposed method (marked in gray) with existing studies that used the
same testing set.

Authors Methodology and Approach Metric (DSC)

X. Zhong et al. [25] Deep action learning with 3D UNet 80.60 ± 5.30%
P. Pandey et al. [26] Contrastive Semi Supervised Learning Approach with UNet 85.90%
D. Mitta et al. [28] W-Net with attention gates 88.12%
J. Hong et al. [29] Source Free Unsupervised UNet 88.40%
X. Wang et al. [30] Bidirectional Searching Neural Net 89.80%
S. Mulay et al. [31] Mask R-CNN 80.00%

Geomatric Edge Enhancement based Mask R-CNN 91.00%
L. Zbinden et al. [32] nnUNet 93.60%

Proposed Cascaded Network for Handling Anatomical Ambiguity 95.15%

4. Conclusions

Abdominal organ segmentation is a challenging task due to the complexity of the
anatomy of the abdominal area and the close proximity of multiple organs. Ambiguity in
the segmentation of the liver arises due to the variance in its anatomical shape in the MRI
volume. The MRI modality is favored by clinicians for liver pathology diagnosis. However,
automated liver segmentation from MRI scans is a demanding task. In this research, we
proposed a novel cascaded network for liver segmentation from T1-weighted MR images.
The proposed network treats each axial view distinctly and achieved a DSC of 95.15% on
the publicly available CHAOS MRI dataset. Such an approach can also be investigated for
other abdominal organ segmentation tasks, such as those involving the kidneys and spleen.
The proposed network was also deployed as an open-source application in a cloud server
for demonstration purposes. This application can later be integrated with PACS for clinical
usage. Lastly, we also investigated the effects of different image enhancement techniques
for liver segmentation tasks from MR scans.
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Abstract: The driving operations of the subway system are of great significance in ensuring the
safety of trains. There are several hand actions defined in the driving instructions that the driver
must strictly execute while operating the train. The actions directly indicate whether equipment is
normally operating. Therefore, it is important to automatically sense the region of the driver and
detect the actions of the driver from surveillance cameras to determine whether they are carrying
out the corresponding actions correctly or not. In this paper, a lightweight two-stage model for
subway driver action sensoring and detection is proposed, consisting of a driver detection network
to sense the region of the driver and an action recognition network to recognize the category of
an action. The driver detection network adopts the pretrained MobileNetV2-SSDLite. The action
recognition network employs an improved ShuffleNetV2, which incorporates a spatial enhanced
module (SEM), improved shuffle units (ISUs), and shuffle attention modules (SAMs). SEM is used to
enhance the feature maps after convolutional downsampling. ISU introduces a new branch to expand
the receptive field of the network. SAM enables the model to focus on important channels and key
spatial locations. Experimental results show that the proposed model outperforms 3D MobileNetV1,
3D MobileNetV3, SlowFast, SlowOnly, and SE-STAD models. Furthermore, a subway driver action
sensoring and detection system based on a surveillance camera is built, which is composed of a
video-reading module, main operation module, and result-displaying module. The system can
perform action sensoring and detection from surveillance cameras directly. According to the runtime
analysis, the system meets the requirements for real-time detection.

Keywords: action recognition; deep learning; driver detection; railway; action sensoring and detection

1. Introduction

With the development of computer technology, researchers apply advanced artificial
intelligence technology in the field of transportation, such as traffic sign detection in the
field of road traffic [1,2], railway surface [3–6] and fastener [7,8] defect detection in the
field of rail transit. With the rapid development of urban rail transit, the subway system
has become the preferred mode of public transportation, which undoubtedly raises higher
requirements for the safety of trains. However, there is limited research on subway driver
action sensoring and detection based on surveillance cameras. Subway drivers play a
crucial role in the safe operation of trains. They need to confirm each step to ensure
that no step is missed. The actions of drivers indicate that the current equipment is
normally operating. Currently, the monitoring of driver actions is mainly carried out by
two surveillance cameras installed in the driver cab. The manual inspection of surveillance
videos is used to determine whether the driver has performed the corresponding actions.
This method is both inefficient and costly. Therefore, it is of great significance to conduct
research on the action sensoring and detection of subway drivers based on surveillance
cameras to realize the real-time automatic detection of driver action categories. It can help

Sensors 2023, 23, 9503. https://doi.org/10.3390/s23239503 https://www.mdpi.com/journal/sensors147



Sensors 2023, 23, 9503

reduce costs, enhance the operational safety of trains, and improve the intelligence level of
urban rail transit monitoring systems.

Subway driver action sensoring and detection (SDASD) belongs to spatial–temporal
action detection (STAD), which aims to detect the spatial positions of individuals in the
current frame and determine their action categories. In the past, complex handcrafted
features have been used, such as spatial–temporal interest points, motion trajectories, etc.,
for video action recognition [9–13]. These methods achieved good results for simple actions.
However, due to the complexity of designing and computing handcrafted features, these
methods suffer from slow recognition speed and are not suitable for practical applications.

In recent years, with the rapid development of deep learning, scholars have started to
utilize deep neural networks for STAD, which can be categorized into two-stage methods
and one-stage methods. The mainstream approach is the two-stage method, where the
first stage uses pre-trained object detectors [14–16] to generate human region proposals
in the current frame. In the second stage, an action recognition network, often utilizing
3D CNNs to extract spatial–temporal features from video clips, is used for action recog-
nition [17]. Gu et al. [18] introduce an AVA dataset and propose a STAD approach. The
region proposal network adopts ResNet50, and the action recognition network uses the
I3D network [19], which integrates RGB and optical flow, and finally performs action classi-
fication. Subsequently, several models are proposed to improve the performance of STAD,
such as ACRN (Actor-Centric Relation Network) [20], STEP (Spatio-TEmporal Progres-
sive) [21], LFB (Long-term Feature Banks) [22], SlowFast [23], Context-Aware RCNN [24],
ACARN (Actor–Context–Actor Relation Network) [25] and so on. These two-stage models
achieve high accuracy, but the human region detection and action recognition are inde-
pendent, making these models inefficient. In recent studies, several one-stage models are
proposed, where a single network is used for both human region detection and action
recognition. These models include WOO (Watch Only Once) [26], SE-STAD (Simple and
Efficient Spatial–Temporal Action Detector) [27], and DOAD (Decoupled one-stage action
detection network) [28]. However, one-stage models face challenges, such as unsatisfied
precision. Deep learning-based algorithms have significantly improved the accuracy of
STAD, but the deep convolution network models often have a large number of parameters
and computation cost, leading to a slow detection speed that does not meet the real-time
detection requirements.

To enable deep neural networks to run on devices with limited computational re-
sources, some lightweight networks have been proposed, such as MobileNet [29–31] and
ShuffleNet [32,33]. ShuffleNetV2 [33] reduces the number of parameters and model size
significantly by introducing depthwise separable convolutions. It incorporates channel split
and channel shuffle to facilitate information exchange between channels. ShuffleNetV2 [33]
strikes a good balance between speed and precision.

As of now, there are no reported studies specifically focusing on SDASD based on
surveillance cameras. Some researchers have conducted studies on driver action recognition.
For instance, Hu et al. [34] propose the RepC3D model, which combines C3D [35] and
RepVGG [36] for recognizing subway driver actions. Suo et al. [37] introduce an improved
dense trajectory algorithm for driver action recognition. These studies primarily focus
on video-level action recognition, where video clips are used for action classification,
without explicitly detecting the region of drivers. Different from the above works, our
main objective is to apply advanced artificial intelligence technology in the field of subway
driver action detection, which is less relevant research work at present. We propose
appropriate improvements on the basis of the existing model to further improve the
detection performance. And then based on the improved model, we build a real-time
driver action detection system to realize real-time video reading from the surveillance
camera to carry out action detection, which makes it possible to deploy the system in the
subway cab in the future.

This paper aims to achieve real-time sensing of the region of the subway driver and
recognition of their action category based on surveillance cameras. For this purpose, a two-
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stage model for subway driver action sensoring and detection is proposed. In the first stage,
the region of the driver is localized by employing a pre-trained lightweight network called
MobileNetV2-SSDLite. The network generates driver candidate region proposals along
with confidence scores, which are used for subsequent action recognition. In the second
stage, an improved ShuffleNetV2 is proposed to extract the spatial–temporal features of
the video clips and recognize the category of actions. To boost the performance of network,
a spatial enhanced module is introduced to compensate for spatial information loss caused
by downsampling. A new branch with larger convolutional kernels is added to expand the
receptive field of the network and a shuffle attention module is used to help the network
focus the attention on important channels and spatial positions. Experimental results show
that the proposed model outperforms other models, achieving a mAP of 72.44%, 4.87%
higher than the baseline. Furthermore, a subway driver action sensoring and detection
system based on surveillance cameras is built, which performs real-time action detection
directly by reading video from surveillance cameras. It is composed of a video-reading
module, main operation module and result-displaying module. The performance of the
system shows that it meets the requirements for real-time detection. The main contributions
are summarized as follows:

1. A real-time subway driver action sensoring and detection model is proposed, which
consists of a driver detection network and an action recognition network. The driver
detection network is used to locate the region of the driver in the images, and the
action recognition network is employed to recognize the category of the action.

2. A spatial enhanced module is introduced after the first convolution downsampling
layer, compensating for the loss of spatial information and enhancing the spatial
positions of the feature map. In addition, a dataset specifically for subway driver
action sensoring and detection is constructed.

3. A new branch with a large convolutional kernel in the shuffle units is proposed to
expand the receptive field, which is crucial for the subsequent action recognition. In
addition, the shuffle attention module is introduced to help the network focus the
attention on important channels and spatial positions.

4. A real-time subway driver action sensoring and detection system based on surveil-
lance cameras is built, which reads video from surveillance cameras and performs
SDASD directly. According to the runtime analysis, the system meets the requirements
for real-time detection.

The rest of this paper is organized as follows. Section 2 introduces the problems
studied in this paper. In Section 3, a lightweight two-stage model for subway driver action
sensoring and detection is proposed. Section 4 introduces the detailed experiments and
results. In Section 5, a subway driver action sensoring and detection system is introduced.
Section 6 summarizes the conclusions and presents an outlook for future work.

2. Problem Statements

Subway drivers play a crucial role in ensuring the safe operation of urban rail transit.
They need to confirm each step with their fingers to ensure that no step is missed. The
actions of the driver can be used to determine whether the equipment is normally operating
or not. Currently, the monitoring of driver actions and their states is primarily performed
through the installation of two surveillance cameras in the driver cab (one located at the
bottom left corner and the other at the top right corner). The action monitoring uses manual
inspection of the recorded videos to check the actions of driver. This manual approach is
inefficient and costly.

With the trend of intelligent development in urban rail transit, more and more ad-
vanced artificial intelligence algorithms are being applied to detection tasks. However,
there is limited research on monitoring subway driver actions. Existing studies mostly
focus on classifying driver actions from 2D images, namely recognizing the action category
in a single image. Such methods can only identify simple actions without temporal relation-
ships and do not achieve comprehensive action recognition. An action is often composed
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of multiple consecutive frames with temporal dependencies, and relying on a single image
is insufficient for recognizing actions with temporal relationships. Suo et al. [37] study
subway driver action recognition by video clips from the perspective of the video level.
The actions can be categorized as arrival confirmation, departure confirmation, interval
confirmation, platform closing confirmation, and no action. An improved dense trajectory-
based method has been proposed for recognizing driver gesture actions. While this method
achieves high accuracy, it suffers from slow speed and is used for pre-cropped action
video clips; thus, it cannot provide the real-time localization of the driver region and the
recognition of driver actions.

In this paper, the action sensoring and detection of subway drivers based on surveil-
lance cameras is studied, aiming to sense the region of the driver and recognize their current
actions from surveillance videos. According to surveillance videos in subway driver cabs,
driver actions and states are categorized into 11 classes as shown in Figure 1, including
sitting (Sit), standing inside the cab (StinCab), standing outside the cab (StoutCab), walking
from inside to outside (WafrI2O), walking from outside to inside (WafrO2I), pointing to
the instrument and screen (Po2InSc), pointing to the front window (Po2FrWin), pointing
to the lower left instrument (Po2LLin), pressing the door button (PrDoBu), pushing the
instrument (PuIn), and no action (None). For the task of driver region localization, the
lightweight object detection algorithm MobileNetv2-SSDLite is employed to locate the
region of the driver in the image, and the coordinates and confidence scores are obtained.
These coordinates and scores are used as regions of interest (ROIs) and fed to the action
recognition network. For driver action recognition, an improved lightweight ShuffleNetv2
is proposed to extract spatial–temporal features from multiple frames of input. The ROIs
from the driver region localization task are mapped onto the final feature map, followed
by ROI pooling to generate fixed-size features for ROIs, and then processed through fully
connected layers for action recognition. To evaluate the real-time performance of the pro-
posed model, a subway driver action sensoring and detection system based on surveillance
cameras is built, consisting of three parts: video-reading module, main operation module,
and result-displaying module. The video-reading module stores the video streams in a
reading queue, the main operation module samples frames from the queue and performs
driver region localization and driver action recognition on the sampled frames, and the
result-displaying module renders the results on the frames and composes the video for
display on the screen. A surveillance camera is installed, and the system can perform action
sensoring and detection on the video streams from the surveillance camera. According to
the runtime of each module, the system achieves real-time detection.

Figure 1. Action categories. The images in the first rows are from the surveillance video of the driver
cab, and the images in the second rows are from simulated video.

3. Methodology

3.1. Overall Framework

The overall framework of the model is shown in Figure 2. The model is composed
of the driver detection network and the action recognition network. The driver detection
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network generates proposals of the driver region, and the action recognition network
recognizes the current action category of the driver. To achieve fast and accurate detection,
lightweight networks are employed for both tasks. For the driver detection network, a
pre-trained MobileNetV2-SSDLite [30] is utilized, which has a small number of parameters
and model size, allowing it to quickly and accurately detect the region of the driver. For the
action recognition network, an improved ShuffleNetV2 is proposed. The network also has
a small number of parameters and model size, enabling the fast and accurate recognition
of actions.

3.2. Driver Detection Network

In this paper, the pre-trained MobileNetv2-SSDLite is adopted for the driver detection
network. It aims to sense and locate the region of the driver in the image and obtain the
coordinates and confidence scores. The SSD [16] is a classic one-stage object detection
algorithm that can simultaneously perform object localization and classification in a single
stage. It combines the advantages of the anchor-based mechanism from region proposal
algorithms and the regression-based algorithm in one-stage methods, resulting in high
accuracy and fast detection speed. The original SSD uses VGG16 as a base network.
However, the large number of parameters in the VGG16 makes it unsuitable for running
on resource-limited embedded devices and mobile devices. To address this issue, the
SSDLite object detection network based on MobileNetV2 is proposed, which reduces
the number of parameters and computation. Specifically, the VGG16 is replaced with
MobileNetV2 for feature extraction. Additionally, instead of using regular convolutions,
the extra convolution layers in SSDLite utilize depthwise separable convolutions (DWConv)
as the basic structure. The input size of image is 320 × 320. Predictions are made by using
six different-sized feature maps when detecting, and proposals of the driver region along
with confidence scores are obtained. These proposals are then selected by non-maximum
suppression (NMS) to obtain the final proposals, used for subsequent action recognition.

Figure 2. The overall framework of the model.

3.3. Action Recognition Network
3.3.1. ShuffleNetV2

Three-dimensional ShuffleNetV2 [33] is a lightweight network with small number of
parameters and computation. The shuffle units of 3D ShuffleNetV2 are shown in Figure 3.
When the stride is one, the channels are split into two branches. Branch 1 does not have
any operations, while branch 2 adopts DWConv. The outputs of branch 1 and branch 2 are
concatenated, followed by a channel shuffle module. When the stride is two, the input is
processed by two branches. The outputs of branch 1 and branch 2 are concatenated. The
channel shuffle operation allows for information exchange between channels. The channel
shuffle module is shown in Figure 4. For a given feature map with a specific number of
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channels, the channels are first divided into G groups. Then, the groups are transposed
and rearranged to obtain the shuffled feature map. The channel shuffle operation does not
introduce any parameters and achieves channel-wise information exchange through simple
grouping and transposition operations.

Figure 3. The structure of the shuffle units.

Figure 4. The structure of the channel shuffle.

3.3.2. Spatial Enhanced Module (SEM)

When the network performs convolutional downsampling, the size of the feature
maps decreases. Though this allows for capturing high-level features, downsampling
leads to spatial information loss. To reduce the information loss, a SEM is added after
the first convolution to enhance the spatial representation capability of network. The
specific structure is shown in Figure 5. Firstly, the global average pooling and global max
pooling are adopted. The resulting feature maps are then concatenated and processed
by a 3D convolution to extract features. An activation function is applied to enhance the
representation ability of the network, and the feature maps are multiplied element-wise
with the original feature maps to obtain the enhanced feature maps. The formulas are
denoted as follows :

MSA = σ(conv([AvgPool(X); MaxPool(X)])) (1)

X
′
= X ⊗ MSA (2)
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Figure 5. The structure of the spatial enhanced module.

3.3.3. Improved Shuffle Units (ISUs)

The receptive field of the network can be expanded by using large convolution kernels,
which is crucial for subsequent tasks. Inspired by it, a new branch with a 5 × 5 × 5 kernel
size is added to the ShuffleNet units as shown in Figure 6. When the stride is 1, branch 3 is
added to obtain a larger receptive field. The rest of branch 3 is the same as branch 2. To
ensure that the final concatenation has the same number of channels, the output channels of
the last convolution in branch 2 and branch 3 are set to 1/4 of the input channels. Branch 1,
branch 2, and branch 3 are then concatenated to obtain feature maps, followed by a channel
shuffle module. When the stride is 2, branch 3 and branch 4 are added with a bigger kernel
size. The output channels of the last convolution in all branches are set to 1/4 of the input
channels. Branch 1, branch 2, branch 3, and branch 4 are then concatenated to obtain the
final feature maps, followed by a channel shuffle module. The introduction of improved
shuffle units increases the number of computations, about 1.5 times to 2 times as much as
the original shuffle units. The detailed calculation procedure is shown in Appendix A.

Figure 6. The structure of the improved shuffle units.

3.3.4. Shuffle Attention Module (SAM)

The attention module allows the network to focus on important features and suppress
unimportant features. There are two main types of attention mechanisms: channel attention
and spatial attention. Channel attention focuses on “what”, while spatial attention focuses
on “where”. In this paper, to boost the representation ability in both the spatial and channel
dimensions of the feature maps, the shuffle attention module (SAM) [38] is added after each
improved shuffle stage. The structure of SAM is shown in Figure 7. First, the feature maps
are divided into g groups along the channel dimension. Each group is further divided into
two branches, namely, the channel attention branch and the spatial attention branch. These
branches are responsible for generating different channel and spatial importance weights.

Channel attention branch: Instead of using the traditional SE [39] module, which
introduces a large number of parameters, a simple combination of global average pooling,
scale, and sigmoid is adopted. Firstly, global average pooling is used to embed global
information, generating s ∈ R

c
2g ×1×1×1.

s = Fgp(Xk1) =
1

T × H × W

T

∑
i=1

H

∑
j=1

W

∑
k=1

Xk1(i, j, k) (3)
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X
′
k1 = σ(Fc(s)) · Xk1 = σ(W1s + b1) · Xk1 (4)

Spatial attention branch: Unlike the channel attention branch, spatial attention focuses
on the spatial dimension. Firstly, Group Norm (GN) is used to obtain statistical information
along the spatial dimensions. Then, Fc(.) is applied to enhance the spatial attention. The
formula is denoted as follows:

X
′
k2 = σ(W2 · GN(Xk2) + b2) · Xk2 (5)

Aggregation: After obtaining the channel attention weights and spatial attention
weights, it is necessary to aggregate them. Firstly, a simple concatenation operation is
adopted. Then, inter-group information exchange is performed by channel shuffle module.

The computation of the grouping operation in SAM is about 1
4g2 of that of the non-

grouping operation. The detailed calculation procedure is shown in Appendix B.

3.3.5. Network Structure

After a detailed introduction of each component of the network, the complete action
recognition network is presented along with its structure and specific parameters in Table 1.
The network consists of two standard convolutions, one max pooling, one global average
pooling, one SEM module, three improved shuffle stages, three SAM modules, one ROI
Align and Pooling, and one fully connected layer. In Table 1, T represents the number of
input frames, and there is no downsampling in the temporal dimension.

Figure 7. The structure of the shuffle attention module.

154



Sensors 2023, 23, 9503

Table 1. Structure and parameters of the action recognition network.

Operator Output Size KSize Stride Rep. Output Channels

Frames T × 256 × 256 - - - 3
Conv1 T × 128 × 128 3 × 3 × 3 (1,2,2) 1 24

MaxPool T × 64 × 64 3 × 3 × 3 (1,2,2) 1 24
SEM T × 64 × 64 - - - 24

Improved Shuffle
Stage2 T × 32 × 32 - (1,2,2), (1,1,1) 1, 3 116

SAM T × 32 × 32 - - - 116
Improved Shuffle

Stage3 T × 16 × 16 - (1,2,2), (1,1,1) 1, 7 232

SAM T × 16 × 16 - - - 232
Improved Shuffle

Stage4 T × 16 × 16 - (1,1,1) 4 464

SAM T × 16 × 16 - - - 464
Conv5 T × 16 × 16 1 × 1 × 1 (1,1,1) 1 1024

ROI Align & Pool 1 × 8 × 8 - - - 1024
Global Average

Pool 1 × 1 × 1 - - - 1024

Fully Connected - - - - 12

KSize represents kernel size, Rep. represents repeat number.

4. Experiments

4.1. Dataset Preparation

The videos of the driver cab used in the experiment are from Beijing Metro Line 9,
with a video resolution of 1280 × 720. The simulation video is recorded by the surveillance
camera installed in the lab, with a video resolution of 1920 × 1080. Each raw surveillance
video is about an hour long, and if it is fed directly into the model, it requires a huge
amount of memory and computing resources. Therefore, in order to better sense and detect
the category of the subway driver action, 328 video clips are cropped with a duration of
10 s from the original driver cab videos and simulation videos, of which 163 clips are from
the actual surveillance video and 165 clips are from laboratory simulation videos. Each
clip contains two action labels. The action labels includes sitting (Sit), standing inside
the cab (StinCab), standing outside the cab (StoutCab), walking from inside to outside
(WafrI2O), walking from outside to inside (WafrO2I), pointing to the instrument and screen
(Po2InSc), pointing to the front window (Po2FrWin), pointing to the lower left instrument
(Po2LLin), pressing the door button (PrDoBu), pushing the instrument (PuIn), and no
action (None). The number of labeled actions is shown in Table 2. The driver detection
network does not require additional datasets. As the proposed model works, the frames
for the driver detection network are sampled from the input video clip and no additional
datasets are required.

The annotation method refers to the AVA dataset format [18]. First, the video is
extracted into a series of frames with an FPS of 30. The AVA dataset format does not label
all frames but annotates 1 frame per second. Therefore, in the spatial–temporal detection
dataset of the subway driver action, the first frame per second is annotated [40]. Since
the first and last 2 s of the videos are not involved in detecting, only images with indexes
of 61, 91, 121, 151, 181, 211, 241 are labeled for each video clip with a duration of 10 s.
In order to quickly label the region of the driver, the pre-trained YOLOv5 [41] is used to
detect the region of the driver, and the coordinates and confidence scores of the proposals
are obtained as rough labeling, and then the rough labeling is imported into the VIA [42]
labeling tool for action category labeling. The annotation process is shown in Figure 8.
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Table 2. The number of labeled actions.

Action Training Set Testing Set Total

Sit 953 402 1355
StinCab 157 89 246

StoutCab 326 147 473
WafrI2O 82 25 107
WafrO2I 91 23 114
Po2InSc 109 31 140

Po2FrWin 62 21 83
Po2LLin 61 22 83
PrDoBu 98 58 156

PuIn 268 150 418
None 465 181 646
Total 2672 1149 3821

Figure 8. The annotation process.

The detailed process by which MobileNetV2-SSDLite results are used by improved
shuffleNetV2 to drive the action classification task is as follows.

Taking a cropped video clip for example, the first and last 2 s of the videos are not
involved in detecting (AVA dataset format), and the index of 61, 91, 121, 151, 181, 211, and
241 frames are labeled. Therefore, taking these seven frames as the center, and sampling
eight frames each, we can obtain seven clips for the model training, where each clip has
eight frames.

Taking the frame with index 61 as an example, with 61 as the center and an interval of
8, a total of 8 frames are sampled, that is, the index corresponding to the sampled frames
is (29, 37, 45, 53, 61, 69, 77, 85), and the action label is the same as the label of the frame
with index 61. For the driver detection network, these eight frames are input in sequence to
obtain the driver proposals (namely anchors) in the eight frames. Then, the non-maximum
suppression (NMS) is then used to filter invalid anchors that exceed a fixed threshold. The
retained anchors after NMS are then mapped on the feature map of the last convolution
layer of the improved ShuffleNetV2 (namely the output feature map of conv5, as shown
in Figure 1). For the action recognition network, these eight frames are taken as an input.
The region of the driver on the feature map, namely the region of interest (ROI), can be
obtained, and then the ROIs which have different sizes are transformed into fixed sizes
by ROI pooling, and finally the fixed size features are sent to the fully connected layer for
action classification.
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4.2. Evaluation Indicators and Experimental Details

The purpose of subway driver action sensoring and detection is to sense and locate
the region of the driver and recognize the category of the action, paying more attention
to driver action recognition. A common evaluation indicator is mAP (mean Average
Precision), which is the average of AP in all action categories.

In this paper, all the models are implemented by PyTorch and trained on 1 NVIDIA
A6000 GPU. The CPU is Inter(R) Xeon(R) silver 4314 @2.4 GHz.

The input of the model is eight frames, which are sampled at equal intervals. The
interval in this paper is set to eight, that is, one frame is sampled every eight frames. When
model training, eight images are scaled to 256 × 256 after sampling, and horizontal flip is
introduced to augment the dataset. For model testing, the height of the image is scaled to
256, and the width is scaled proportionally. The parameters are set as follows: the optimizer
is SGD, the initial learning rate is 0.01, the weight momentum is 0.00003, and the learning
rate decay strategy is cosine annealing, where warmup_iters is 500, warmup_ratio is 0.1,
the minimum learning rate is 0.00001, and the training epoch is 200.

4.3. Experimental Results

For the driver detection network, the Intersection over Union (IoU) threshold is set
to 0.5. For the action recognition network, the prediction score threshold is set to 0.9. The
experimental results are shown in Table 3. The baseline is the original 3D ShuffleNetV2 [33].
As can be seen from Table 3, SEM, ISU, and SAM can improve the performance of the
model. ISU brings the most obvious gain; the mAP can increase 4.13%, and the number of
parameters is smaller than the baseline. When all modules are added to the network, the
mAP increases to 72.44%, 4.87% higher than the baseline.

Table 3. Ablation experiments.

Baseline SEM ISU SAM mAP

� 0.6757
� � 0.6842
� � 0.7170
� � 0.7114
� � � � 0.7244

Table 4 shows the AP of each action. It can be seen that the introduction of SEM,
ISU and SAM improve the AP of most action categories, among which walking from
inside to outside has the most obvious improvement, from 0.5143 to 0.8309, improved by
31.66%, followed by pressing the door button, which increases from 0.2172 to 0.3276, an
improvement of 11.04%. Though the AP of walking from outside to inside, pointing to the
instrument and screen, and pushing the instrument decrease slightly, other categories of
actions have different amplitudes of increment. It can be concluded that the introduction
of SEM, ISU and SAM improve the performance of the model. In addition, it is seen that
the AP of pressing the door button action is low, owing to the small number of action
instances in the actual surveillance video, and this action is not simulated due to the
constraints of the operation console, which further leads to a smaller number of actions
than other actions, resulting in the model not learning the feature of action well. Figure 9
shows the confusion matrix for the recognition results of the proposed model. The action
recognition network can almost accurately classify all kinds of actions; only seven actions
are classified incorrectly. Of these seven actions, one StinCab and one StoutCab are classified
as Sit because the driver is close to the seat in the two video clips, leading to the wrong
classification. One StinCab is classified as WafrI2O because the StinCab occurs at the
junction where the two actions occur, resulting in a classification error. Two WafrO2I are
classified as StoutCab because these actions are both outside the cab and the action after
StoutCab is WafrO2I. One WafrI2O is classified as WafrO2I because at the door, WafrI2O
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is similar to WafrO2I. One WafrO2I is classified as PuIn because in the real cab video, the
action behind WaFrO2I is PuIn, resulting in a recognition error at the action connection.
Overall, it can be seen that the proposed model can well recognize the action categories of
the driver.

Table 4. The AP of actions.

Action Baseline +SEM +ISU +SAM +SEM+ISU+SAM

Sit 0.8760 0.8672 0.8804 0.8680 0.8817
StinCab 0.7865 0.8090 0.8315 0.8090 0.8315

StoutCab 0.8231 0.8503 0.8360 0.8298 0.8296
WafrI2O 0.5143 0.8696 0.8783 0.8200 0.8309
WafrO2I 0.8239 0.7826 0.8261 0.7712 0.7666
Po2InSc 0.5839 0.4073 0.6144 0.4315 0.5823

Po2FrWin 0.5714 0.6190 0.5159 0.6667 0.6122
Po2LLin 0.7727 0.7246 0.7702 0.7727 0.8182
PrDoBu 0.2172 0.1724 0.2165 0.3575 0.3276

PuIn 0.7967 0.7463 0.8240 0.8047 0.7865
None 0.6670 0.6774 0.6936 0.6940 0.7013
mAP 0.6757 0.6842 0.7170 0.7114 0.7244 (+4.87%)

In order to prove that the SAM module is better than the SE module, we carried out a
comparative experiment. Table 5 shows the comparison results. It can see that the SAM
has fewer parameters and better performance than the SE module.

Table 5. Comparison between SE and SAM.

Model Model Size Parameters GFlops mAP

+SEM+ISU+SE 10.50 M 1,329,416 6.36 0.7230
+SEM+ISU+SAM 10.26 M 1,294,740 6.36 0.7244

Figure 9. The confusion matrix of improved ShuffleNetV2.
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In order to evaluate the performance of the proposed network, 3D MobileNetV1 [29],
3D MobileNetV3 [31], SlowFast-R50 [23], SlowOnly-R50 [23], and SE-STAD [27] are selected
for comparison. The experimental results are shown in Table 6. The results show that the
proposed network has a higher mAP and a smaller number of parameters and model size
than the compared networks. Table 7 shows the AP of each action. It can be seen that the
APs of the proposed model are better than the compared models in most action categories,
and the proposed network reaches the state of the art.

Table 6. Comparison with other networks.

Model mAP Parameters Model Size GFlops

3D MobileNetV1 [29] 0.6164 3,310,284 25.43 M 14.60
3D MobileNetV3 [31] 0.7189 1,165,964 9.07 M 3.39

SlowFast-R50 [23] 0.6095 33,671,220 257.46 M 193.57
SlowOnly-R50 [23] 0.6630 31,659,084 241.91 M 166.08

SE-STAD [27] 0.7068 40,650,557 310 M 213.65
ours 0.7244 1,294,740 10.26 M 6.36

Table 7. The AP of actions.

Action 3D MobileNetV1 [29] 3D MobileNetV3 [31] SlowFast-R50 [23] SlowOnly-R50 [23] SE-STAD [27] Ours

Sit 0.8742 0.8737 0.8753 0.869 0.9801 0.8817
StinCab 0.7978 0.8427 0.7978 0.8539 0.8202 0.8315
StoutCab 0.8298 0.8299 0.8639 0.8502 0.9048 0.8296
WafrI2O 0.76 0.8345 0.64 0.781 0.4 0.8309
WafrO2I 0.5652 0.7826 0.3913 0.6957 0.3478 0.7666
Po2InSc 0.4649 0.5755 0.5066 0.5145 0.7041 0.5823
Po2FrWin 0.1905 0.6444 0.4459 0.4238 0.7963 0.6122
Po2LLin 0.7273 0.7727 0.5455 0.6364 0.8636 0.8182
PrDoBu 0.1552 0.1551 0.1207 0.1207 0.1034 0.3276

PuIn 0.7929 0.8174 0.8266 0.8259 0.9267 0.7865
None 0.6231 0.7789 0.6906 0.7222 0.9282 0.7013
mAP 0.6164 0.7189 0.6095 0.663 0.7068 0.7244

Figure 10 shows the driver action detection results from the actual surveillance video
in the driver cab. It can be seen that the model can precisely locate the region of the driver
and recognize the category of action.

Figure 10. Cont.
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Figure 10. The action sensoring and detection result of the subway driver.

5. Subway Driver Action Sensoring and Detection System

5.1. System Structure

Based on the proposed model, a subway driver action sensoring and detection system
(SDASD) is built, aiming to read the video from the surveillance camera in real-time
and conduct SDASD directly. The system structure is shown in Figure 11. The system
is composed of a video-reading module, main operation module and result-displaying
module.

Figure 11. The structure of subway driver action sensoring and detection system.

5.1.1. Video-Reading Module

The real-time video is read from the surveillance camera, and video frames are stored
in the reading queue for the main operation module.

5.1.2. Main Operation Module

Frames are sampled from the reading queue according to the given sampling strategy
(that is, sampling 1 frame at an interval of 8, and sampling 8 frames in total). The eight
frames are sent to the driver detection network to predict the region of the driver, and the
coordinates and confidence scores of the proposals are obtained. The region proposals are
drawn in the frames, which are taken as the ROIs in the subsequent action recognition. In
addition, the eight frames are pre-processed for the action recognition network. In the last
layer of convolution, the ROIs in the driver detection network are mapped on the feature
map, and finally the ROI pooling is carried out to obtain the fixed-size feature map. Finally,
the action categories and corresponding confidence scores are predicted through the fully
connected layer.

160



Sensors 2023, 23, 9503

5.1.3. Result-Displaying Module

The result-displaying module mainly draws the action recognition results on the
frames, including the action category and its corresponding confidence score, then synthe-
sizes the video at a fixed frame rate, and finally displays it on the screen.

5.2. Performance Evaluation

To evaluate the performance of the system, experiments are conducted on a personal
laptop with a Core (TM) i5-12500H 2.5 GHz CPU and an NVIDIA RTX 2050 (4 GB) GPU.
Since the input images are sampled from 64 frames (about 64/30 = 2.13 s), that is, the model
needs to complete the whole process (video-reading module, main operation module,
and result-displaying module) within 2.13 s to meet the real-time detection requirements.
Table 8 shows the time consumed of each module. It can be seen that the complete runtime
of our model is between 0.6 s and 0.75 s, which is much less than 2.13 s. Compared with the
other models, our model is better regarding total runtime. Therefore, it is concluded that
the model meets the requirements of real-time action detection from surveillance cameras.
The results of the real-time detection system are shown in Figure 12.

Table 8. The runtime of each module.

Model
Video-Reading

Module
Main Operation

Module
Result-Displaying

Module
Total

3D MobileNetV1 [29] 280–350 ms 120–180 ms 300–350 ms 700–880 ms
3D MobileNetV3 [31] 250–350 ms 100–180 ms 280–350 ms 630–880 ms

SlowFast-R50 [23] 280–350 ms 360–450 ms 380–450 ms 1020–1250 ms
SlowOnly-R50 [23] 280–350 ms 220–280 ms 250–300 ms 750–930 ms

ours 250–300 ms 100–150 ms 250–300 ms 600–750 ms

Figure 12. The results of real-time detection system.

6. Conclusions

In this paper, a lightweight two-stage model for subway driver action sensoring
and detection based on surveillance cameras is proposed. It consists of the driver detec-
tion network and the action recognition network. The driver detection network adopts
MobileNetV2-SSDLite, with the purpose of locating the region of the driver. The action
recognition network employs the improved ShuffleNetV2 to extract spatial–temporal fea-
tures and recognizes the category of action. The proposed network has a smaller number
of parameters and model size than the compared networks. The experimental results show
that the proposed network outperforms the compared networks, with a mAP of 72.44%,
4.87% higher than the baseline. Then a subway driver action sensoring and detection
system is built based on the proposed model to realize real-time detection from surveillance
cameras. The system runs on a personal laptop; according to the runtime of the system, it
takes 0.6 to 0.75 s for a whole process, which is less than the video duration of 2.13 s. It can
be seen that the system meets the real-time detection requirements.
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In the future research, we will further optimize our system, expand the dataset, and
improve the performance. In addition, the action statistics function is taken into account for
the subway driver action sensoring and detection to count the number of actions completed
by the driver.
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Appendix A

The additional computation resulting from the improved shuffle unit (ISU) is calcu-
lated as follows.

When the stride is one, the input shape is X ∈ R
C×T×H×W , and the output shape is

X
′ ∈ R

C×T×H×W . The structures of the original shuffle units and improved shuffle units
are shown in Figure A1.

Figure A1. The structures of the original shuffle units and improved shuffle units (stride = 1).

The computation of 3D ShuffleNetV2 (stride = 1):

Comput_original1 = (2 × C
2
× 1 × 1 × 1 − 1)× C

2
× T × H × W

+ (
2 × C

2
× 3 × 3 × 3

C
2

− 1)× C
2
× T × H × W

+ (2 × C
2
× 1 × 1 × 1 − 1)× C

2
× T × H × W

=
C
2
× T × H × W × (2C + 51)

(A1)
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The computation of improved 3D ShuffleNetV2 (stride = 1):

Comput_improved1 = (2 × C
2
× 1 × 1 × 1 − 1)× C

2
× T × H × W

+ (
2 × C

2
× 3 × 3 × 3

C
2

− 1)× C
2
× T × H × W

+ (2 × C
2
× 1 × 1 × 1 − 1)× C

4
× T × H × W

+ (2 × C
2
× 1 × 1 × 1 − 1)× C

2
× T × H × W

+ (
2 × C

2
× 5 × 5 × 5

C
2

− 1)× C
2
× T × H × W

+ (2 × C
2
× 1 × 1 × 1 − 1)× C

4
× T × H × W

=
C
2
× T × H × W × (3C + 299)

(A2)

It can be seen that when the stride is one, the introduction of improved shuffle units
increases the number of computations, about 1.5 times as much.

When the stride is two, the input shape is X ∈ R
C×T×H×W , and the output shape is

X
′ ∈ R

C×T× H
2

×W
2 . The structures of the original shuffle units and improved shuffle units

are shown in Figure A2.

Figure A2. The structures of original shuffle units and improved shuffle units (stride = 2).

The computation of 3D ShuffleNetV2 (stride = 2):

Comput_original2 = (2 × C × 1 × 1 × 1 − 1)× C × T × H × W

+ 2 × (
2 × C × 3 × 3 × 3

C
− 1)× C × T × H

2
× W

2

+ 2 × (2 × C × 1 × 1 × 1 − 1)× C
2
× T × H

2
× W

2

= C × T × H
2
× W

2
× (10C + 101)

(A3)

The computation of improved 3D ShuffleNetV2 (stride = 2):
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Comput_improved2 = 2 × (2 × C × 1 × 1 × 1 − 1)× C × T × H × W

+ 2 × (
2 × C × 3 × 3 × 3

C
− 1)× C × T × H

2
× W

2

+ 2 × (
2 × C × 5 × 5 × 5

C
− 1)× C × T × H

2
× W

2

+ 4 × (2 × C × 1 × 1 × 1 − 1)× C
4
× T × H

2
× W

2

= C × T × H
2
× W

2
× (18C + 595)

(A4)

It can be seen that the introduction of four branches increases the number of computa-
tions, about twice as much.

Appendix B

The computation of the grouping operation and non-grouping operation is calculated
as follows.

The computation of the grouping operation: (g groups)
(1) The computation of channel attention:

(2 × C
2g

× 1 × 1 × 1 − 1)× C
2g

× T × H × W (A5)

(2) The computation of spatial attention:

(2 × C
2g

× 1 × 1 × 1 − 1)× C
2g

× T × H × W (A6)

(3) The total computation of grouping operation:

2 × (2 × C
2g

× 1 × 1 × 1 − 1)× C
2g

× T × H × W (A7)

The computation of the non-grouping operation:
(1) The computation of channel attention:

(2 × C × 1 × 1 × 1 − 1)× C × T × H × W (A8)

(2) The computation of spatial attention:

(2 × C × 1 × 1 × 1 − 1)× C × T × H × W (A9)

(3) The total computation of non-grouping operation:

2 × (2 × C × 1 × 1 × 1 − 1)× C × T × H × W (A10)

The computation ratio of grouping and non-grouping operation:

group
non_group

=

2 × (2 × C
2g

× 1 × 1 × 1 − 1)× C
2g

× T × H × W

2 × (2 × C × 1 × 1 × 1 − 1)× C × T × H × W
≈ 1

4g2 (A11)

It can see that the grouping operation can reduce the number of computations. The
computation of grouping operation is about 1

4g2 of that of the non-grouping operation.
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Abstract: This work explores the generation of James Webb Space Telescope (JWSP) imagery via
image-to-image translation from the available Hubble Space Telescope (HST) data. Comparative
analysis encompasses the Pix2Pix, CycleGAN, TURBO, and DDPM-based Palette methodologies,
assessing the criticality of image registration in astronomy. While the focus of this study is not on the
scientific evaluation of model fairness, we note that the techniques employed may bear some limita-
tions and the translated images could include elements that are not present in actual astronomical
phenomena. To mitigate this, uncertainty estimation is integrated into our methodology, enhancing
the translation’s integrity and assisting astronomers in distinguishing between reliable predictions
and those of questionable certainty. The evaluation was performed using metrics including MSE,
SSIM, PSNR, LPIPS, and FID. The paper introduces a novel approach to quantifying uncertainty
within image translation, leveraging the stochastic nature of DDPMs. This innovation not only bol-
sters our confidence in the translated images but also provides a valuable tool for future astronomical
experiment planning. By offering predictive insights when JWST data are unavailable, our approach
allows for informed preparatory strategies for making observations with the upcoming JWST, poten-
tially optimizing its precious observational resources. To the best of our knowledge, this work is the
first attempt to apply image-to-image translation for astronomical sensor-to-sensor translation.

Keywords: image-to-image translation; denoising diffusion probabilistic models; uncertainty
estimation; satellite image generation; image registration

1. Introduction

In this paper, we explore the problem of predicting the visible sky images captured
by the James Webb Space Telescope (JWST), hereafter referred to as ‘Webb’ [1], using the
available data from the Hubble Space Telescope (HST), hereinafter called ‘Hubble’ [2].
There is much interest in this type of problem in fields such as astrophysics, astronomy, and
cosmology, encompassing a variety of data types and sources. This includes the translation
of observations of galaxies in visible light [3] and predictions of dark matter [4]. The
data registered from different sources may be acquired at different times, by different
sensors, in different bands, with different resolutions, sensitivities, and levels of noise. The
exact underlying mathematical model for transforming data between these sources is very
complex and largely unknown. Thus, we will try to address this problem based on an
image-to-image translation approach.

Despite the great success of image-to-image translation in computer vision, its adop-
tion in the astrophysics community has been limited, even though there is a lot of data
available for such tasks that might enable sensor-to-sensor translation, conversion between
different spectral bands, and adaptation among various satellite systems.

Before the launch of missions such as Euclid [5], the radio telescope Square Kilometre
Array [6], and others, there has been a significant interest in advancing image-to-image
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translation techniques for astronomical data to: (i) enable efficient mission planning due to
the high complexity and cost of exhaustive space exploration, allowing for the prioritization
of specific space regions using existing data; and (ii) generate sufficient synthetic data for
machine learning (ML) analysis as soon as the first real images from new imaging missions
are available in adequate quantities.

We focus on the images collected by both the Hubble and the Webb telescopes, taken at
different times, as illustrated in Figure 1. Thus, we present our work as a proof-of-concept
for image-to-image translation, aiming to predict Webb telescope images using those from
Hubble. This technique, once validated, could inform the planning of future missions
and experiments by enabling the prediction of Webb telescope observations from existing
Hubble data.

We assume that, despite the time lapse between Hubble’s and Webb’s data acquisition,
the astronomical scenes of interest have remained relatively stable, conforming to the slow-
changing physics of the observed phenomena. However, there is a substantial disparity in
the imaging technologies of the two telescopes, affecting not only resolution and signal-to-
noise ratio but also the visual representation of the phenomena due to different underlying
physical principles and the images being taken at various wavelengths.

xz gθ x̃

Figure 1. Image-to-image astronomical setup under study. Given two imaging systems, Hubble
and Webb, characterized by different bands, resolutions, orbits, and time of image acquisition, the
problem is to predict the Webb images x̃ as close as possible to the original Webb images x from the
Hubble ones z using a learnable model gθ . The considered setup is paired but is characterized by
inaccurate geometrical synchronization between the paired images.

Our study reveals that Hubble and Webb data are typically dis-synchronized by ap-
proximately 3–5 pixels, a discrepancy mainly attributed to synchronization with respect
to celestial coordinates during Webb’s data pre-processing and differing resolutions. Al-
though this misalignment is subtle to the naked eye, we found that it significantly impairs
the accuracy of paired image-to-image translation, highlighting the critical need for precise
data alignment. To address this problem, we introduce two synchronization methods using
computer vision keypoints and descriptors: (a) global synchronization applies a single
affine transformation to the entire image; (b) local synchronization divides the image into
patches and computes individual affine transformations for each patch. We compare the
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impact on the performance of image-to-image translation when using these synchronization
methods against provided synchronization with respect to celestial coordinates.

We compare several types of image-to-image translation methods: (i) fully paired
methods such as Pix2Pix [7] and their variations; (ii) fully unpaired methods such as
CycleGAN [8]; (iii) hybrid methods that can be used for both fully paired setups, fully
unpaired setups, or setups where part of the data is paired, and part of the data is unpaired,
as advocated by the TURBO approach [9]; (iv) denoising diffusion probabilistic models
(DDPM) [10] based image-to-image translation method Palette [11]. We investigate the
influence of pairing and different types of synchronization for the above methods. We
demonstrate that paired methods produce results superior to unpaired ones. At the same
time, the paired methods Pix2Pix and TURBO are subject to the accuracy of synchronization.
Local synchronization produces the most accurate translation results, according to several
metrics of performance.

Furthermore, we show that there is a high potential for uncertainty in the estimation
when using DDPM models for image-to-image translation since they can produce multiple
outputs for one input. This stochastic translation enabled us to establish the regions that
appear to be very stable in each run and the ones that are characterized by high variability.

In summary, we run experiments for image-to-image translation on non-synchronized,
globally synchronized, and locally synchronized Hubble–Webb pairs. We report the re-
sults using multiple metrics: MSE, SSIM [12], PSNR, LPIPS [13], and FID [14]. We use
computer vision-based metrics since we are working with telescope images represented as
RGB images.

The main focus of this paper is not on the scientific inquiry into the fairness of pre-
dictive models. We acknowledge that our results, generated through the image-to-image
translation technique, are subject to limitations inherent to such approaches. The data
and methods utilized may not be exhaustive or infallible, and the results should therefore
be interpreted with caution, as they are not immune to inaccuracies and may contain
hallucinated elements which do not correspond to real astronomical phenomena.

Therefore, to enhance the integrity of the image-to-image translation provided in this
study, we incorporate uncertainty estimation into our methodology. This feature is designed
to assist astronomers by delineating areas within the translated images where the model’s
predictions are reliable from those where the certainty of prediction remains questionable.
Such delineation is crucial in guiding astronomers to discern between regions of high
confidence and those that require further scrutiny or could potentially mislead them.

The proposed approach, with its ability to estimate uncertainty, may serve as an instru-
mental tool for planning future astronomical experiments. In scenarios where observational
data from the Webb telescope are not yet available, our model can offer predictive insights
based on existing Hubble Space Telescope data. This capability acts as a provisional glimpse
into the future, enabling researchers to strategize upcoming observations with the Webb
telescope, potentially optimizing the allocation of its valuable observational time.

Our contributions include: (i) the introduction of image-based synchronization for
astrophysics data in view of image-to-image translation problems; (ii) a comparison of
the image-to-image translation methods for Hubble to Webb translation, and a study of
the effect of synchronization on different models; (iii) the introduction of an innovative
way of uncertainty estimation in probabilistic inverse solvers or translation methods based
on denoising diffusion probabilistic models. In summary, our main contribution is: the
demonstration of the potential of using deep learning-based image-to-image translation in
astronomical imaging, exemplified by Hubble to Webb image translation.

2. Related Work

2.1. Comparison between Webb and Hubble Telescopes

In Figures 2 and 3, the same part of the sky captured by the Hubble and Webb
telescopes is shown in the RGB format. The main differences between the Hubble and
Webb telescopes are: (i) Spatial resolution—The Webb telescope, featuring a 6.5-m primary
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mirror, offers superior resolution compared to Hubble’s 2.4-m mirror, which is particularly
noticeable in infrared observations [15]. This enables Webb to capture images of objects up
to 100 times fainter than Hubble, as evident in the central spiral galaxy in Figure 3.

(ii) Wavelength coverage— Hubble, optimized for ultraviolet and visible light (0.1 to
2.5 microns), contrasts with Webb’s focus on infrared wavelengths (0.6 to 28.5 microns) [16].
While this differentiation allows Webb to observe more distant and fainter celestial objects,
including the earliest stars and galaxies, it is crucial to note that the IR emission captured by
Webb differs inherently from the UV or visible light observed by Hubble. The distinction is
not solely in the resolution or sensitivity between the Hubble Space Telescope (HST) and
the James Webb Space Telescope (JWST) but also in the varying absorption of light by dust
within different galaxy types. However, our proposed image-to-image translation method
does not aim to delve into these observational differences. Instead, our focus is to explore
whether image-to-image translation can effectively simulate Webb telescope imagery based
on the existing data from Hubble. This approach seeks to leverage the available Hubble
data to anticipate and interpret the observations that Webb might deliver, without directly
analyzing the spectral and compositional differences between the images captured by the
two telescopes.

(iii) Light-collecting capacity—Webb’s substantially larger mirror provides over six
times the light-collecting area compared to Hubble, essential for studying longer, dimmer
wavelengths of light from distant, redshifted objects [15]. This is exemplified in Webb’s
images, which reveal smaller galaxies and structures not visible in Hubble’s observations,
highlighted in yellow in Figure 3.

Figure 2. Hubble photo of Galaxy Cluster SMACS 0723 [17].
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Figure 3. Webb image of Galaxy Cluster SMACS 0723 [18].

2.2. Image-to-Image Translation

Image-to-image translation [19] is the task of transforming an image from one domain
to another, where the goal is to understand the mapping between an input image and an
output image. Image-to-image translation methods have shown great success in computer
vision tasks, including transferring different styles [20], colorization [21], superresolu-
tion [22], visible to infrared translation [23], and many others [24]. There are two types of
image-to-image translation methods: unpaired [25] (sometimes called unsupervised) and
paired [26]. Unpaired setups do not require fixed pairs of corresponding images, while
paired setups do. In this paper, we also introduce a hybrid method for image-to-image
translation, called TURBO [9], which is a generalization of the above-mentioned paired
and unpaired setups and provides an information–theoretic interpretation of this method.
For the completeness of our study, we also consider newly introduced denoising diffusion
probabilistic models (DDPM) as image-to-image translation models [11].

2.3. Image-to-Image Translation in Astrophysics

Image-to-image translation has been used in astrophysics for galaxy simulation [3],
but these methods have mostly been used for denoising [27] optical and radio astrophysical
data [28]. The task of predicting the images of one telescope from another using image-to-
image translation remains largely under-researched.

2.4. Metrics

The following metrics were used to evaluate the quality of the generated images:

• Mean square error (MSE) between the original and the generated Webb images;
• To address an issue that the MSE is not highly indicative of the perceived similarity of

images, we calculate the Structural Similarity Index (SSIM) [12] between the original
and generated Webb images;

• Fréchet Inception Distance (FID): proposed in [14]. Instead of a simple pixel-by-pixel
comparison of images, FID estimates the mean and standard deviation of one of the
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deep layers in the pretrained convolutional neural network. It has become one of the
most widely used metrics for the image-to-image translation task;

• Peak Signal-to-Noise Ratio (PSNR): This metric evaluates the quality of the generated
images by comparing the maximum possible power of a signal (original images) to
the power of the same images after distortion (generated images). PSNR is often used
as a measure of reconstruction quality in image compression and restoration tasks;

• Learned Perceptual Image Patch Similarity (LPIPS): proposed in [13]. LPIPS measures
the perceptual similarity between images by using deep features extracted from a
pretrained neural network. It is designed to better reflect human perception of image
similarity compared to traditional metrics like MSE or PSNR.

3. Proposed Approach

3.1. Dataset

We use images from the Hubble and Webb telescopes as the dataset. In particular,
we use images of Galaxy Cluster SMACS 0723 [29]. An example of the image is shown
in Figure 2. For the Webb, we use post-processed NIRCam images [30], available as RGB
images, provided by ESA/NASA/STScI. Webb images are available publicly at [17]. We
then select the corresponding Hubble images [18]. Since the Hubble images are smaller than
Webb images, we upsampled them using bicubic interpolation for comparison purposes.

3.2. Image Registration

Image registration or synchronization is needed to ensure that pixels in different data
sources represent the same position in observed space. Even though astronomical data are
generally synchronized, there is always room for synchronization improvement, especially
at the local level. In this section, we compare three synchronization setups for Hubble
to Webb translation: synchronization with respect to celestial coordinates, algorithmic or
automated global synchronization, and local synchronization, as schematically shown in
Figure 4.

xz

A

A1

AT

Figure 4. Synchronization setups under investigation in paired image-to-image translation problems:
synchronization with respect to celestial coordinates; global synchronization, when images are
matched via a global affine transform A; and local synchronization, when images are divided into
local blocks and matched via a set of local affine transforms Ai, 1 ≤ i ≤ T.

Synchronization with respect to celestial coordinates. In this setup, the data are
used directly with the provided synchronization with respect to celestial coordinates.
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Global synchronization. The data are synchronized using SIFT [31] feature descrip-
tors and the RANSAC [32] matching algorithm. The feature descriptors are computed for
the entire image from both the Hubble and Webb telescopes.

Local synchronization. The data are synchronized using SIFT feature descriptors and
the RANSAC matching algorithm, with the feature descriptors being computed from image
patches. Specifically, input images from both the Hubble and Webb telescopes are divided
into a grid made of nine patches, arranged in a three × three configuration both vertically
and horizontally, before the cropping process.

The non-synchronized and synchronized Webb and Hubble images can be viewed in
our demo: hubble-to-webb.herokuapp.com (accessed on 8 February 2024).

3.3. TURBO
3.3.1. Mathematical Interpretation

The TURBO framework [9] is based on an auto-encoder (AE) structure and is repre-
sented by an encoder qφ(z|x) and a decoder pθ(x|z) that are deep networks parametrized
by the parameters φ and θ, respectively. A block diagram for the TURBO system is shown
in Figure 5.

Figure 5. TURBO scheme: direct (left) and reverse (right) paths.

According to the framework we used, given a pair of data samples (Hubble and Webb
images) (x, z) ∼ p(x, z), where z is a Hubble image and x is a Webb image, the system
maximizes the mutual information between x and z for both encoder and decoder in direct
and reverse paths.

Two approximations of the joint distribution can be defined as follow:

qφ(x, z) := qφ(z|x)

real
data︷︸︸︷
p(x) = qφ(x|z)

synthetic
data︷ ︸︸ ︷

q̃φ(z) , (1)

pθ(x, z) := pθ(x|z)︸ ︷︷ ︸
known

networks

p(z) = pθ(z|x)︸ ︷︷ ︸
unknown
networks

p̃θ(x) , (2)

the marginal distributions are approximated through reparametrizations involving un-
known networks. These are represented as q̃φ(z) =

∫
qφ(x, z)dx and p̃θ(x) =

∫
pθ(x, z)dz,

relating to the synthetic variables in latent spaces. Furthermore, in our work, we also
utilize two approximated marginal distributions for the reconstructed synthetic variables
in spaces, denoted as q̂φ(z) =

∫
p̃θ(x)qφ(z|x)dx and p̂θ(x) =

∫
q̃φ(z)pθ(x|z)dz.

The variational approximation is considered for the direct path of the TURBO system
based on the maximization of two bounds on mutual information for the latent space and
the reconstruction space:

I(X; Z) = Ep(x,z)

[
log

p(x, z)

p(x)p(z)

]
≥ Ep(x,z)

[
log qφ(z|x)

]︸ ︷︷ ︸
−Lz̃(z,z̃)

− DKL
(

p(z)‖q̃φ(z)
)︸ ︷︷ ︸

Dz̃(z,z̃)

,
(3)
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Iφ(X; Z̃) = Eqφ(x,z)

[
log

qφ(x, z)

p(x)q̃φ(z)

]
≥ Eqφ(x,z)[log pθ(x|z)]︸ ︷︷ ︸

−Lx̂(x,x̂)

− DKL(p(x)‖ p̂θ(x))︸ ︷︷ ︸
Dx̂(x,x̂)

.
(4)

Thus, the network is trained in such a way to maximize a weighted sum of (3) and (4) in
order to find the best parameters φ and θ of the encoder and the decoder, respectively. This
is achieved in the direct path by minimising the Ldirect loss, representing the left network
shown in Figure 5:

Ldirect(φ, θ) = Lz̃(z, z̃) +Dz̃(z, z̃) + λDLx̂(x, x̂) + λDDx̂(x, x̂), (5)

where z is real Hubble image, x is real Webb image, z̃ predicted Hubble image generated
by qφ(z|x) from real Webb image x, x̂ is Webb image reconstructed from generated Hubble
image z̃, Lz̃(z, z̃) reconstruction loss between real and generated Hubble images, Dz̃(z, z̃)
discriminator loss for generated Hubble images, Lx̂(x, x̂) present cycle reconstruction
loss between real and reconstructed Webb images, Dx̂(x, x̂) is discriminator loss in the
reconstructed Webb images, and λD is a parameter controlling the trade-off between the
terms in (3) and (4).

The variational approximation for the reverse path is:

I(X; Z) = Ep(x,z)

[
log

p(x, z)

p(x)p(z)

]
≥ Ep(x,z)[log pθ(x|z)]︸ ︷︷ ︸

−Lx̃(x,x̃)

− DKL(p(x)‖ p̃θ(x))︸ ︷︷ ︸
Dx̃(x,x̃)

,
(6)

Iθ(X̃; Z) = Epθ(x,z)

[
log

pθ(x, z)

p̃θ(x)p(z)

]
≥ Epθ(x,z)

[
log qφ(z|x)

]︸ ︷︷ ︸
−Lẑ(z,ẑ)

− DKL
(

p(z)‖q̂φ(z)
)︸ ︷︷ ︸

Dẑ(z,ẑ)

.
(7)

The reverse path loss Lreverse(φ, θ) is represented by the right network shown in
Figure 5:

Lreverse(φ, θ) = Lx̃(x, x̃) +Dx̃(x, x̃) + λRLẑ(z, ẑ) + λRDẑ(z, ẑ), (8)

where x̃ is a Webb image, generated by pθ(x|z) from a real Hubble image z, ẑ is a Hubble
image reconstructed from generated Webb image x̃, Lx̃(x, x̃) is reconstruction loss between
the real and generated Webb images, Dx̃(x, x̃) is discriminator loss in the generated Webb
images, Lẑ(z, ẑ) is cycle reconstruction loss between real and reconstructed Hubble images,
Dẑ(z, ẑ) discriminator loss in the reconstructed Hubble images, and λR is a parameter
controlling the trade-off between (6) and (7).

A detailed derivation and analysis of TURBO can be found in [9].
The TURBO method is versatile and adaptable to various setups. It supports a fully

paired configuration, utilizing direct and reverse path losses, provided above, which are
applicable when data pairs are fully accessible during training. In cases where such pairs
are unavailable for training, an unpaired configuration is viable. Additionally, a mixed
setup can be employed, combining both paired and unpaired data. This method imposes
no constraints on the architecture of the encoder and decoder, offering a broad range of
architectural choices.

3.3.2. Paired Setup: Pix2Pix as Particular Case of TURBO

Pix2Pix [7] image-to-image translation method can be viewed as a paired case of
TURBO approach, with only reverse path, where λR = 0 in (9):

LPix2Pix(θ) = Lx̃(x, x̃) +Dx̃(x, x̃). (9)
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Thus, the direct path is not used as the training of the encoder–decoder pair and
Pix2Pix uses uses the deterministic decoder x̃ = gθ(z).

3.3.3. Unpaired Setup: CycleGAN as Particular Case of TURBO

The CycleGAN [8] image-to-image translation method can be viewed as a particular
case of the TURBO approach, with both a direct and reverse path, with cycle reconstruction
losses and discriminator losses for predicted images, with:

LCycleGAN (φ, θ) = Dz̃(z, z̃) + λDLx̂(x, x̂) + λTDx̃(x, x̃) + λTλRLẑ(z, ẑ), (10)

CycleGAN does not have paired components in the latent space in comparison
to TURBO.

3.4. Denoising Diffusion Based Image-to-Image Translation

Conditional denoising diffusion probabilistic models [10] for image-to-image transla-
tion apply a denoising process that is conditioned on the input image [11]. Image-to-image
diffusion models are conditional models of the form pθ(x|z), where x is a generated Webb
image, and z is a Hubble image, used as a condition. In fact, the DDPM models are derived
from the Variational Autoencoder [33] with the decomposition of the latent space of z as a
hierarchical Markov model zT → zT−1 → · · · → z0 [34].

In practice, the conditional image is concatenated to the input noisy image. During
training, detailed in Algorithm 1, we use a simple DDPM training loss (11):

LDDPM(θ) = Et,z,x0,ε

[∥∥∥ε − εθ

(√
ᾱtx0 +

√
1 − ᾱtε, z, t

)∥∥∥2
]

, (11)

where x0 is Webb image, z is the input Hubble image, used in conditioning, ε is Gaussian
zero mean unit variance noise added at step t, εθ is conditional DDPM, and ᾱt is noise scale
parameter, added at step t.

Algorithm 1 Training a denoising model εθ

1: Define noise schedule β1, β2, . . . , βT
2: Compute ᾱt for t = 1 to T using ᾱt = ∏t

s=1(1 − βs)
3: repeat
4: (x, z) ∼ p(x, z)
5: ε ∼ N (0, I)
6: t ∼ 1 . . . T
7: Take a gradient descent step on ∇θ

∥∥ε − εθ

(√
ᾱtx0 +

√
1 − ᾱtε, z, t

)∥∥2

8: until converged

In the inference phase of the conditional denoising diffusion probabilistic model, de-
tailed in Algorithm 2, the model starts with an initial noisy sample xT from a Gaussian
distribution N (0, I); then, the model utilizes a learned denoising function εθ , which incor-
porates the conditioning Hubble image x, to iteratively denoise the image at each timestep
t. The image is updated according to (12):

xt−1 =
1√
ᾱt

(
xt − 1 − ᾱt√

1 − ᾱt
εθ(xt, z, t)

)
+
√

1 − ᾱtε, (12)

where ε is sampled from Gaussian noise. This denoising process is repeated for T steps
until the final image x0 is obtained.
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Algorithm 2 Inference in T iterative refinement steps

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: ε ∼ N (0, I) if t > 1, else ε = 0
4: xt−1 = 1√

ᾱt

(
xt − 1−ᾱt√

1−ᾱt
εθ(xt, z, t)

)
+
√

1 − ᾱtε

5: end for
6: return x0

4. Uncertainty Estimation

In this section, we show how denoising diffusion probabilistic models can be used
for the prediction of uncertainty maps. By design, DDPMs are stochastic generators at
each sampling step, so it is possible to generate multiple predictions for the same input.
The ensemble of predictions allows us to compute the pixel-wise deviation maps that
visualize the uncertainty of the predictions. In Figure 6, we display the true uncertainty

map U, computed as
√

∑N
i=1(x̂i−x)2

N , where x is the target Webb image, x̂i is the i-th predicted
Webb image, ¯̂x is the averaged predicted image estimated from x̂i, and N is the number
of generated images. In our experiments, we have used 100 generations to compute the

estimated uncertainty map Û, computed as

√
∑N

i=1(x̂i−x̂)
2

N .
The uncertainty map can be used for analyzing and evaluating the DDPM results

by indicating the regions of low and high variability as a measure of uncertainty in each
experiment. It is remarkable that this approach is very discriminating for the different
types of space objects: point objects (shown in Figures 7–9), galaxies (shown in Figure 8),
and stars (shown in Figure 9). Furthermore, we have found that the method is able to
detect the presence of point source objects in the estimated uncertainty maps, while such
objects were not usually directly detectable in the Hubble images or in the predicted Webb
images (highlighted with orange boxes in Figures 7 and 9). The point sources that were
not present in the Hubble images were not completely predicted in the Webb images when
considering these images independently. However, the use of an uncertainty map allowed
us to spot their presence in the uncertainty maps, which are highlighted with red boxes in
the above-mentioned figures. To further evaluate the performance, we introduce the Peak

Signal-to-Uncertainty Ratio (PSUR), computed as PSUR = 10 · log10

(
MAX2

x

mean(Û)

)
dB, where

MAXx is the maximum possible pixel value of the image. This metric, analogous to PSNR
but using the uncertainty map instead of MSE, offers a measure of how distinguishable the
true signal is from the uncertainty inherent in the prediction process. We compute PSUR
value for every uncertainty map, shown in Figures 6–9.

Figure 6. Uncertainty map visualization. (a) x target Webb image, (b) ¯̂x predicted image, averaged
from x̂i, (c) true uncertainty, (d) estimated uncertainty. The estimated PSUR: 28.99 dB.
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Figure 7. Uncertainty map for point sources: (a) target Webb image; (b) predicted Webb image;
(c) true uncertainty; (d) estimated uncertainty. The point sources, that were missed, and for which
there is no sign in the uncertainty map, are highlighted with a red box. The point sources are missed,
but for which there is a sign in the uncertainty map, are highlighted with an orange box. The
estimated PSUR: 26.72 dB.

Figure 8. Uncertainty map for the galaxy: (a) target Webb image; (b) predicted Webb image; (c) true
uncertainty with respect to the target image; (d) estimated uncertainty without the target image that
reflects the variability in the generated images. The estimated PSUR: 28.99 dB.
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Figure 9. Uncertainty map for the star: (a) target Webb image; (b) predicted Webb image; (c) true
uncertainty; (d) estimated uncertainty. The point sources, that were missed, and for which there is
no sign in the uncertainty map, are highlighted with a red box. The point sources are missed in the
predicted Webb, but there is a sign of one in the uncertainty map, which means it was present in
some of the predictions. The estimated PSUR: 24.44 dB.

5. Implementation Details

We use PyTorch 1.12 [35] deep learning framework in all our experiments.
Data. We use crops from Hubble and Webb images of size 256 × 256 pixels in

each experiment. All of the images used in training and validation are available at
github.com/vkinakh/Hubble-meets-Webb, (accessed on 8 February 2024). We apply
random horizontal and vertical flipping to each image pair of Hubble–Webb images as
augmentation.

Pix2Pix and CycleGAN. In the experiments with Pix2Pix and CycleGAN, we use a
convolutional architecture consisting of two convolutional layers for downsampling, nine
residual blocks, and two transposed convolutional layers for upsampling for both the
encoder and decoder. As discriminators, we use PatchGAN [7] with LSGAN loss [36], as
provided in the original implementations. During training, we use an Adam [37] optimizer
with a learning rate of 2× 10−4 and a linear learning rate policy weight decay every 50 steps.
Each model is trained for 100 epochs with a batch size of 64. For the experiments, we have
used NVIDIA RTX 2080Ti GPU.

TURBO. In the experiments with TURBO [9], we use the same convolutional architec-
tures for the encoder and decoder as in the Pix2Pix and CycleGAN experiments. TURBO
consists of two convolutional generators: the first, qφ(x, z), generates Webb images from
Hubble ones, and the second, pθ(x|z), generates Hubble images from Webb ones. We
use four PatchGAN [7] discriminators: one for generated Webb samples Dxx̃(x̃), one for
reconstructed Webb samples Dxx̂(x̂), one for generated Hubble images Dzz̃(z̃), and one for
reconstructed Hubble images Dzẑ(ẑ). Alternatively, the TURBO model can only use two
discriminators: the first Dz for generated and reconstructed Webb images, and the second
Dx for generated and reconstructed Hubble images. The results using two discriminators
are shown in the ablation study in Table 1. As estimation and cycle losses, we use the
�1-metric. We use the LSGAN discriminator loss [36], as in the Pix2Pix and CycleGAN
experiments. Similarly, we use the Adam optimizer with a learning rate of 2 × 10−4 and a
linear learning rate policy with decay every 50 steps. The model is trained for 100 epochs
with a batch size of 64. For the experiments, we have used NVIDIA RTX 2080Ti GPU.

DDPM (Palette). In the experiments, we use a DDPM image-to-image translation
model proposed in [11]. We use a UNet [38]-based noise estimator, with self-attention [39].
During training, we use a linear beta schedule with 2000 steps, 10−6 start, and 0.01 end.
During inference, we use a DDPM scheduler with 1000 steps, 10−6 start, and 0.01 end. The
model is trained for 1000 epochs with a batch size of 32. For the experiments, we have used
NVIDIA A100 GPU.
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During inference, since our images exceed 256 × 256 pixels, we employ a method
known as stride prediction to predict patches of size 256 × 256 using a selected stride value.
This method works systematically across the image: starting from the top-left corner at
position (0, 0), we predict the first patch, then move horizontally by stride s to predict
the next, proceeding row by row until the entire image is covered. If the bottom or right
edge is reached, the next row begins just below the starting point or back at the left edge,
respectively. After predicting all patches, we save the images and track the prediction count
for each pixel. The final pixel value is determined by averaging across all predictions for
that pixel, ensuring a seamless image reconstruction.

Table 1. Ablation studies on paired models Pix2Pix and TURBO on locally synchronized data. All
results are obtained on Galaxy Cluster SMACS 0723. The label “TURBO same D” corresponds to an
approach, when the same discriminator is used for generated and reconstructed Webb and Hubble
images. The label “LPIPS” denotes adding perceptual similarity loss.

Method MSE ↓ SSIM ↑ PSNR ↑ LPIPS ↓ FID↓
L1 0.002 0.93 26.94 0.47 83.32
L2 0.002 0.93 26.98 0.47 76.03

L1 + L2 0.002 0.93 26.93 0.47 82.71
L1+ LPIPS 0.002 0.93 26.68 0.44 72.84

Pix2Pix 0.002 0.93 26.78 0.44 54.58
Pix2Pix +

LPIPS 0.003 0.93 27.02 0.44 58.86

TURBO 0.003 0.92 25.88 0.41 43.36
TURBO +

LPIPS 0.003 0.92 25.91 0.39 50.83

Lreverse 0.002 0.93 26.15 0.45 70.51
Lreverse +

LPIPS 0.002 0.93 26.13 0.46 67.52

TURBO same
D 0.002 0.92 26.04 0.4 55.29

TURBO same
D + LPIPS 0.002 0.92 26.13 0.39 55.88

6. Results

In this section, we report image-to-image translation results for the prediction of Webb
telescope images based on Hubble telescope images. In Table 2, we report results for
four setups: (a) unpaired setup; (b) paired setup with the synchronization with respect to
celestial coordinates, where images were synchronized by hand; (c) paired setup with global
synchronization, where the full image was synchronized using a single affine transform;
and (d) paired setup with local synchronization, where the images were split into multiple
patches and then each of the Hubble and Webb patches were synchronized individually.
For each setup, we have defined a training set that covers approximately 80% of the input
image of the galaxy clusters SMACS 0723, and the rest is used as a validation set for results.
We make sure that the training and validation set cover different parts of the sky and never
overlap even for a single pixel. When generating images for evaluation, since the validation
images are larger than 256× 256, we have used the stride prediction described above with a
stride of f our. It is shown in Table 2 that the synchronization of the data is very important,
as all of the considered models perform best when the data are locally synchronized. This
fact was not well addressed in previous studies, to the best of our knowledge. Also, we
show that the DDPM-based image-to-image translation model outperforms the CycleGAN,
Pix2Pix, and TURBO models in terms of MSE, SSIM, PSNR, FID and LPIPS metrics. The
only downside of the DDPM model is its inference time, which is 1000 times longer than
the inference time of Pix2Pix, CycleGAN and TURBO. This might be a serious limitation in
practice, considering the size and number of astronomical images.
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Table 2. Hubble-to-Webb results. All results are obtained on a validation set of Galaxy Cluster
SMACS 0723.

Method MSE ↓ SSIM ↑ PSNR ↑ LPIPS ↓ FID ↓
unpaired

CycleGAN 0.010 0.83 20.11 0.48 128.12
paired: synchronization with respect to celestial coordinates

Pix2Pix 0.007 0.87 21.37 0.5 102.61
TURBO 0.008 0.85 20.87 0.49 98.41
DDPM

(Palette) 0.003 0.88 25.36 0.43 51.2

paired: global synchronization

Pix2Pix 0.003 0.92 25.85 0.46 55.69
TURBO 0.003 0.91 25.08 0.45 48.57
DDPM

(Palette) 0.002 0.94 28.12 0.45 43.97

paired: local synchronization

Pix2Pix 0.002 0.93 26.78 0.44 54.58
TURBO 0.003 0.92 25.88 0.41 43.36
DDPM

(Palette)
0.001 0.95 29.12 0.44 30.08

In Table 3, we compare parameter counts and inference times for a 256 × 256 image
from the models considered in the study. The DDPM model is particularly noteworthy
for its extensive parameter count, with both trainable and inference parameters reaching
62.641 Mio. It also necessitates 1000 generation steps, contributing to a longer inference time
of approximately 42.77 seconds. Conversely, Pix2Pix, CycleGAN, and Turbo demonstrate a
more streamlined parameter structure. These models employ generators with a uniform
parameter count of 11.378 Mio and discriminators with 2.765 Mio parameters. Pix2Pix
operates with one generator and one discriminator, CycleGAN with two of each, and Turbo
with two generators and four discriminators. Despite the architectural differences, these
models maintain compact trainable parameters, ranging from 14.143 Mio to 33.816 Mio,
and achieve notably swift inference times, clocked at around 0.07 seconds. The inference
time is averaged over 100 generations for each model on a single RTX 2080 Ti GPU with a
batch size of one.

Table 3. Analysis of parameter complexity and inference time in image-to-image translation models.

Model Trainable Params Inference Paras Inference Time

DDPM (1000 steps) 62.641 Mio 62.641 Mio 42.77 ± 0.18 s
Pix2Pix 14.143 Mio 11.378 Mio 0.07 ± 0.004 s

CycleGAN 28.286 Mio 11.378 Mio 0.07 ± 0.004 s
TURBO 33.816 Mio 11.378 Mio 0.07 ± 0.004 s

In Table 1, we perform ablation studies on the paired TURBO and Pix2Pix image-to-
image translation models. We compare these models trained under various conditions:
(a) with the L1 loss, which is the mean absolute error, (b) with the L2 loss, which is the
mean squared error, (c) with both L1 and L2 losses, (d) with L1 loss and the Learned
Perceptual Image Patch Similarity (LPIPS) loss using a VGG encoder [13]. We also explore
Pix2Pix configurations, such as Pix2Pix with L1 loss plus a discriminator, Pix2Pix com-
bined with LPIPS loss and a VGG encoder, along with variations of the TURBO model:
TURBO with LPIPS loss, TURBO operating only in reverse pass, and TURBO using the
same discriminator for both generated and reconstructed images. Models are trained and
evaluated on data synchronized locally. As Table 1 indicates, Pix2Pix models and those
without a discriminator perform better on paired metrics (MSE, PSNR, SSIM), whereas
TURBO-based methods excel in image quality metrics (LPIPS, FID). Notably, the DDPM-
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based image-to-image translation method outperforms other methods discussed in the
ablation study.

7. Conclusions

In this paper, we have proposed the use of image-to-image translation approaches for
sensor-to-sensor translation in astrophysics for the task of predicting Webb images from
Hubble. The novel TURBO framework serves as a versatile tool that outperforms existing
GAN-based image-to-image translation methods, offering better quality in generated Webb
telescope imagery and information-theoretic explainability. Furthermore, the application of
DDPM for uncertainty estimation introduces a probabilistic dimension to image translation,
providing a robust measure of reliability previously unexplored in this context. We show
the importance of synchronization in paired image-to-image translation approaches.

This research not only paves the way for improved astronomical observations by
leveraging advanced computational techniques but also advocates for the application of
these methods in other domains where image translation and uncertainty estimation are
crucial. As we continue to venture into the cosmos, the methodologies refined here will
undoubtedly become instrumental in interpreting and maximizing the utility of the data
we collect from advanced telescopes.

8. Future Work

Out future research will include an approach to refine and enhance the methodologies
discussed in this paper. A particular focus will be directed towards improving the TURBO
model, which, while being computationally efficient, currently lags behind DDPM in terms
of performance. TURBO model improvement will be mostly focused on architectural
improvements of generators. In parallel, we plan to undertake a thorough investigation
into the resilience of our applied methods against various data preprocessing techniques,
including different forms of interpolation. This study aims to ensure the robustness and
adaptability of our models across a spectrum of data manipulation scenarios. Moreover, the
exploration of existing sampling techniques within DDPMs will be pursued with the goal
of expediting inference times. This focus is expected to significantly improve the models’
efficiency, rendering them more suitable for real-time applications.

The current research specifically focuses on the analysis of RGB pseudocolor images.
A significant portion of our future work will be dedicated to the meticulous training
and evaluation of the proposed models on raw astrophysical data. This will involve the
integration of specialized astrophysical metrics designed to align with the unique properties
of such data, thereby assuring that our models are not only statistically sound but also
truly resonate with the practical demands and intricacies of astrophysical research. We
aspire to bridge the gap between theoretical robustness and real-world applicability, setting
the stage for transformative developments in the field of image-to-image translation in
astrophysical data analysis.
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Abbreviations

The following abbreviations are used in this manuscript:

GAN Generative adversarial network
DDPM Denoising diffusion probabilistic model
MSE Mean squared error
PSNR Peak signal to noise ratio
LPIPS Learned perceptual image patch similarity
FID Fréchet inception distance
RGB Red, green, blue
AE Auto-encoder
SSIM Structural similarity index measure
TURBO Two-way Uni-directional Representations by Bounded Optimisation
HST Hubble Space Telescope
JWST James Webb Space Telescope
LSGAN Least Squares Generative Adversarial Network
SIFT Scale-Invariant Feature Transform
RANSAC Random Sample Consensus
ESA European Space Agency
NASA National Aeronautics and Space Administration
STScI Space Telescope Science Institute
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Abstract: Sign language is an essential means of communication for individuals with hearing dis-
abilities. However, there is a significant shortage of sign language interpreters in some languages,
especially in Saudi Arabia. This shortage results in a large proportion of the hearing-impaired
population being deprived of services, especially in public places. This paper aims to address this
gap in accessibility by leveraging technology to develop systems capable of recognizing Arabic
Sign Language (ArSL) using deep learning techniques. In this paper, we propose a hybrid model
to capture the spatio-temporal aspects of sign language (i.e., letters and words). The hybrid model
consists of a Convolutional Neural Network (CNN) classifier to extract spatial features from sign
language data and a Long Short-Term Memory (LSTM) classifier to extract spatial and temporal
characteristics to handle sequential data (i.e., hand movements). To demonstrate the feasibility of
our proposed hybrid model, we created a dataset of 20 different words, resulting in 4000 images for
ArSL: 10 static gesture words and 500 videos for 10 dynamic gesture words. Our proposed hybrid
model demonstrates promising performance, with the CNN and LSTM classifiers achieving accuracy
rates of 94.40% and 82.70%, respectively. These results indicate that our approach can significantly
enhance communication accessibility for the hearing-impaired community in Saudi Arabia. Thus,
this paper represents a major step toward promoting inclusivity and improving the quality of life for
the hearing impaired.

Keywords: deep learning; real-time detection; Arabic sign language recognition; CNNs; LSTM

1. Introduction

Sign language is a communication method utilized by deaf individuals and encom-
passes a series of hand gestures and symbols [1]. It is also employed by hearing individuals
to facilitate communication with the deaf community. Predominantly, sign language is
concept-based, with each gesture or symbol representing a distinct idea or concept. It uses
four major manual components that comprise (1) finger configuration, (2) hand movement,
(3) hand orientation, and (4) hand location relative to the body [2,3]. Compared to other
gestures, sign language is the most structured. On the one hand, it has a large set of
signs where each sign has a specific meaning [4]. On the other hand, this contrasts with
word-based communication systems. Nonetheless, certain words and names lack direct
equivalents in sign language. To address this, the deaf community often resorts to using
a hand (i.e., finger) alphabet to spell out such words, ensuring clarity and precision in
communication. This approach highlights the adaptability and inclusivity of sign language
as a communication tool [5].

The Kingdom of Saudi Arabia is home to a sizable deaf population of about 229,541,
many of whom are not provided with appropriate care in public venues because of a lack of
interpreters, as the General Authority for Statistics has shown in recent years [6]. According
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to the Center for Strategic and International Studies (CSIS) [7], in the state of California,
the ratio of sign language interpreters to hearing-impaired individuals is approximately
1:46. This indicates a relatively high availability of interpreters for the deaf community.
In contrast, Saudi Arabia presents a starkly different scenario, with the ratio being approxi-
mately 1:93,000. This vast disparity highlights significant differences in the availability of
sign language interpretation services between the two regions, underscoring a potential
area of concern in terms of accessibility and support for the hearing-impaired population
in Saudi Arabia. Moreover, most current research utilizes either only letters/alphabets to
translate Arabic Sign Language (ArSL) or sensors to facilitate this process [4,8,9]. Thus,
there is a need to conduct further research on ArSL [9,10].

In addressing the shortage of sign language interpreters, the role of technology, partic-
ularly machine-based communication methods, becomes crucial in bridging this gap. Ad-
vances in machine learning have led to the development of automated sign language trans-
lation systems. These systems employ sophisticated algorithms and gesture recognition
technologies to translate sign language into spoken and written language, and vice versa.
Such technological solutions offer a promising path to alleviate interpreter scarcity, par-
ticularly in areas such as the Kingdom of Saudi Arabia, where the ratio of interpreters
to hearing-impaired individuals is exceedingly low. Machine-based communication can
provide real-time, on-demand translation services, making communication more accessible
and inclusive for the deaf community.

Furthermore, contemporary technological approaches, such as Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTM), are instrumental in enhancing
the efficacy of automated ASL translation systems. CNNs can process and interpret visual
information, making them highly suitable for recognizing and analyzing the intricate hand
gestures and facial expressions inherent in sign language [11–14]. LSTM networks, a form
of recurrent neural network, excel in handling sequential data, thus effectively capturing
the dynamic and temporal aspects of sign language [13–16]. Hence, in this paper, both
CNNs and LSTMs were employed to develop the proposed model.

The novelty and main contribution of this paper focus on tackling a critical societal
issue: the lack of sign language interpreters in the Kingdom of Saudi Arabia, which
has left a significant hearing-impaired population without adequate support in public
spaces. This research highlights the importance and versatility of Arabic Sign Language
(ArSL) as a communication tool and leverages technology such as artificial intelligence to
improve accessibility for the deaf community in Saudi Arabia. The key contributions of
this paper include:

• Identifying the Accessibility Gap: This research comprehensively analyzes the ac-
cessibility gap faced by the hearing-impaired population in Saudi Arabia compared
to regions with more interpreters such as California, USA. By highlighting the stark
contrast in interpreter ratios, this paper sheds light on a crucial issue that requires
attention and action.

• Leveraging Deep Learning: We propose a novel hybrid model to capture the spatio-
temporal aspects of sign language. The hybrid model consists of a CNN classifier
to extract spatial features from sign language data and an LSTM classifier to extract
spatial and temporal characteristics to handle sequential data. This hybrid model
facilitates the process of automatic sign language recognition in real time from either
spoken or written language, addressing the shortage of qualified interpreters.

• Building a Custom Annotated Dataset: We create a dataset of 20 different universal
words, resulting in 4000 images for ArSL. It consists of 10 static gesture words and
500 videos for 10 dynamic gesture words. The dataset can be used to train and evaluate
ASL recognition models.

• Validation: We conduct a comprehensive evaluation of the hybrid model on our
dataset and compare its performance on 20 different words (i.e., 10 static gesture
words and 10 dynamic gesture words).
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The remainder of this paper is organized as follows. The related works are covered
in Section 2. Section 3 reviews the system architecture and the hybrid model. Section 4
describes the proposed model’s implementation, and Section 5 discusses the experimental
results. Section 6 presents the concluding remarks and discusses future work.

2. Related Works

The issue of sign language recognition has recently attracted the attention of many
researchers. Several survey articles have been specifically written to draw attention to the
problems in the field of sign language recognition [1,10,17–19]. Some researchers have
focused on ArSL recognition. For example, in [20], the researchers developed a real-time
system for ArSL recognition using You Only Look Once (YOLO), in particular, the YOLOv5
model. The process began with a dataset of 5600 images of 28 ArSL signs, which was
expanded to 15,088 images through augmentation techniques, including resizing, normal-
ization, Gaussian blur, noise addition, affine transformations, and grayscale conversion.
Three versions of the YOLOv5 model (small, medium, and large) were trained and eval-
uated, with the YOLOv5-large version achieving the best performance, with 99.5% in
precision, 99.4% in recall, and 99.4% in mean average precision (mAP@.5). The YOLOv5s
model, however, was identified as the most suitable for real-time recognition due to its
high speed, with an average of 121 FPS and satisfactory mAP results.

In [21], the authors developed an Alphabet Recognition System for ArSL using a faster
Region-based Convolutional Neural Network (RCNN). They collected a non-depth camera
dataset of 15,360 images, containing hand movements against different backgrounds,
captured using standard phone cameras to evaluate the system. The data were divided in
such a way that 60% was used for training. Meanwhile, 20% of the total image collection
was allocated for 3-fold cross-validation. The remaining 20% was set aside for testing.
The proposed approach achieved 93% accuracy.

In [22], the authors developed a recognition system for Arabic, specifically Egyptian
Sign Language (ESL), to improve communication with people with hearing impairment.
It was implemented in a video-based system to serve the local deaf community in Egypt,
utilizing two different neural network architectures: the first was a Convolutional Neural
Network (CNN) to extract spatial features, and the second consisted of a CNN followed by
Long Short-Term Memory (LSTM) to extract spatio-temporal features. The authors created
a dataset by capturing videos under different lighting conditions, angles, and camera
positions. The dataset consisted of nine classes, with videos recorded by two signers
at five different locations. Each location contributed 20 videos, resulting in a total of
100 videos per chapter. Thus, the entire dataset included 900 videos. The researchers
evaluated the performance of the two architectures. Using only the CNN, they achieved
up to 90% accuracy. However, when they combined the CNN with LSTM, the accuracy
dropped to 72%.

In [23], the authors developed a system to recognize ArSL letters. They used a CNN
classifier to extract the exact position of the hand. The authors used an external dataset
containing 1160 images of 416 × 416 pixels and merged it with a dataset they created
containing 28 classes, where each category contained about 135 images describing an
Arabic letter. The dataset was split, with 60% of the data used for training, 20% for testing,
and 20% for validation. Their system achieved an accuracy of 97.07%.

Unlike previous research studies that focus solely on either image-based or video-
based ArSL recognition, in this paper, we propose a hybrid model that can recognize ArSL
in both forms. Furthermore, unlike previous research works that train their models on the
28 Arabic alphabet letters or only train their models on 9 Arabic words, our hybrid model
is trained on 20 different Arabic words for videos and images using our dataset containing
4000 images and 500 videos.
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Some researchers have focused on the recognition of other sign languages, such as
English, Indian, Japanese, Bangla, Indonesian, Korean, Indian (Assamese), and Turkish.
For example, [24] focuses on American-English Sign Language Translation (ASLAT),
where various datasets and YOLO network models were utilized to enhance the accuracy
and efficiency of sign language recognition. The open-access ASL alphabet dataset was
partially used, with 24,000 images out of a total of 87,000, covering 26 ASL alphabet
letters, excluding “J” and “Z”, and included additional signs for SPACE, DELETE,
and NOTHING, though specific accuracy figures for this dataset were not mentioned.
Another key component was the ASLYset dataset, comprising 5200 images and featuring
24 ASL alphabet signs (also excluding “J” and “Z”) and two extra signs, “SP” and “FN”.
The testing dataset contained 1300 images with 50 images per sign, excluding “J” and
“Z”. In terms of YOLO network models, two architectures, namely A1 and A2, were
tested (A1 based on YOLOv3-tiny and A2 based on YOLOv3) with input image sizes of
288 × 288, 352 × 352, and 416 × 416 pixels. The highest mAP achieved by one of the
YOLO models was 81.76%, although specific accuracy details for each model were not
provided. The Bidirectional LSTM for Spelling Correction trained on a dataset based on
235 English sentences and expanded to 11,750 training sentences through noisy word
generation showed a training accuracy of 98.07%.

In [25], the research aimed at classifying Indian Sign Language gestures, and an image
database was created with images of hands of varying sizes and complexions. These
images, originally sized at 768 × 1024, were pre-processed and resized to 256 × 256 to
facilitate dimensionality reduction, which is crucial for faster classification. Principal
Component Analysis (PCA) was employed for this purpose, not only reducing the time
and storage space required but also improving the performance of the machine learning
model by removing multi-collinearity and making the data easier to visualize. The study
utilized two machine learning techniques to train the system: the K-Nearest Neighbor
(KNN) algorithm and the backpropagation algorithm. The dataset comprised 220 images
of double-handed and 800 images of single-handed Indian Sign Language alphabets,
representing English letters and numbers. Using the KNN technique with K = 1, a 100%
pattern recognition rate was accomplished, whereas the backpropagation technique yielded
a recognition rate between 94 and 96%.

In [26], a sophisticated system for Japanese Sign Language (JSL) recognition was
introduced, leveraging the Microsoft Kinect v2 sensor to capture sign motion feature
parameters. The system utilizes a JSL dictionary, which encompasses a comprehensive
vocabulary of approximately 2600 signs to categorize a variety of hand poses. An integral
component of the system is its adoption of a contour-based technique for hand pose
recognition, innovated by Keogh, which is particularly adept at handling situations where
fingers are partially occluded. The experimental phase of the research involved the analysis
of 892 samples, derived from 223 distinct signs, each performed by two interpreters and
repeated twice, although the number of images was unspecified. These samples were
instrumental in capturing the nuances of sign motion and hand positions. The findings
from these experiments highlighted an improvement in recognition rates, with an increase
in the number of wedges utilized. Despite a recognition accuracy of 33.8% for signs not
previously included in the training data, the paper did not detail the dataset sizes for the
employed models, such as Hidden Markov Models (HMMs) and Gaussian Mixture Models
(GMMs), which were used for recognizing hand movement and position. This research
marks a significant step forward in the domain of sign language recognition by presenting
a real-time system that seamlessly integrates the elements of motion, position, and pose for
JSL recognition.
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In [27], the authors proposed a hand gesture recognition system, where a webcam was
employed to collect a dataset comprising 2000 images of American-English Sign Language
(ASL) gestures, specifically focusing on 10 static alphabet signs (A, B, C, D, K, N, O, T,
Y), captured under various lighting conditions to ensure robustness. The system lever-
ages advanced image processing techniques, including HSV color extraction for effective
background removal, alongside segmentation and morphological operations to refine the
quality of the images. These pre-processed images are then fed into a Convolutional Neural
Network (CNN), which is trained on 1600 of these images, with the remaining 400 images
reserved for testing, adhering to an 80:20 training-to-testing ratio. The result is a highly
accurate gesture recognition system, evidenced by a remarkable 100% prediction accuracy
rate achieved by the CNN model, showcasing its capability to accurately identify gestures
from images. This system not only demonstrates the potential of CNNs in image-based
recognition tasks but also highlights the importance of comprehensive data collection and
meticulous pre-processing in developing effective recognition algorithms. The dataset
comprised only 2000 photos, averaging 200 images for each gesture.

In [28], the researchers analyzed and interpreted Indian Sign Language using LSTM
networks, employing a dataset representing 40 different actions, with 30 videos for each
action, each containing 30 frames, ensuring diversity in gender and signing capabilities.
The videos were recorded using high-resolution cameras in controlled environments to
guarantee the quality and realistic representation of the data. The data underwent multiple
stages, including video processing and feature extraction, utilizing techniques such as
Principal Component Analysis (PCA) and wavelet analysis, paving the way for the appli-
cation of LSTM networks to learn the temporal patterns of the signs. Despite challenges
and limitations related to the dataset’s size and the full representation of sign language
diversity, the study achieved a training accuracy of 87%, indicating the model’s ability to
accurately classify the signs. In [29], the authors proposed an approach to train and detect
Bengali Sign Language using deep learning. The authors used a CNN classifier to train
each sign individually. The system was trained on samples containing different signs used
in Bengali Sign Language. They captured their dataset using an Intel RealSense webcam.
They labeled 90 classes in total, and each class represented one label. The data were split
into 80% for training and the remaining 20% for testing and validation. The accuracy of
their model reached 78%.

In [30], the authors proposed a YOLOv3 method for Indonesian Sign Language
recognition. The authors developed a system that can automatically translate sign
language into text to facilitate communication between deaf individuals and those who
do not understand sign language. The system was designed to process video data
inputs in real time using an object detection method, such as YOLOv3, based on a CNN
classifier. The dataset used in this research was collected and captured independently
by the authors under different conditions and based on Indonesian Sign Language, and
it consisted of images and videos representing 24 categories of sign language gestures.
The dataset contained approximately 160 to 220 pictures, representing the letters A to
Z, excluding J and R. When using image data, the data were split into 80% for training
and 20% for testing. Their system achieved 100% accuracy. When using video data, the
system achieved 72.97% accuracy.

In [31], the authors developed a video data input processing system for Korean Sign
Language recognition by using human key points extracted from the face, hand, and body
parts as input for a recurrent neural network (RNN). They presented a dataset consisting
of 10,480 high-resolution, high-quality video clips. They trained and tested their model
using a dataset of 1000 videos, each recording 100 different sign language sentences.
The system achieved a classification accuracy of 89.5% for 100 sentences that could be used
in emergencies. This suggests that the system can be particularly useful in critical situations
where clear communication is essential.
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To overcome the difficulties in sign language recognition, the authors of [32] proposed
an end-to-end skeleton-based multi-feature multi-stream multi-level information sharing
network (TMS-Net). Combining joint information with global features, bone features with
local features, and angle features with scale invariance allows TMS-Net to improve input
richness. Comprehensive extraction and exploitation of skeleton feature information are
ensured by its multi-stream structure and multi-level information-sharing mechanism.
Based on a single modality input, the experimental results demonstrated that TMS-Net
outperformed state-of-the-art approaches on the WLASL-2000 (56.4%), AUTSL (96.62%),
and MSASL (65.13%) datasets. Furthermore, the practical efficiency of TMS-Net was
demonstrated in an SLR-based Human–Robot Interaction (HRI) experiment, underscoring
its potential for real-world applications.

In [33], the authors proposed the Natural Language-Assisted Sign Language Recogni-
tion (NLA-SLR) framework as a solution to the issue of visually indistinguishable signs
(VISigns) in sign languages. They introduced language-aware label smoothing, which
generates soft labels with smoothing weights based on normalized semantic similarities
among glosses, to improve training for VISigns with similar semantic meanings. They pro-
vided an inter-modality mix-up approach that combines vision and gloss data for VISigns
with different semantic meanings, improving separability under blended label supervision.
Moreover, a unique backbone, the video-keypoint network, extracts knowledge from sign
videos across various temporal receptive fields by modeling both RGB films and human
body key points. The empirical findings revealed that NLA-SLR is effective in enhancing
the accuracy of sign language recognition, achieving state-of-the-art performance on the
MSASL, WLASL-2000, and NMFs-CSL datasets, achieving an average accuracy of 61.26%
on the WLASL-2000 dataset. Unlike previous research that proposed NLA-SLR, achieving
61.26% accuracy, this study offers a hybrid approach for Arabic Sign Language (ArSL),
achieving an average accuracy of 88.55% for both sub-models.

In [34], the authors presented two deep neural network-based model designs to ad-
dress the challenges in gesture recognition and Audio-Visual Speech Recognition (AVSR).
The main innovations in AVSR are the end-to-end model that utilizes three modality fu-
sion approaches—prediction-level, feature-level, and model-level—as well as the method-
ologies for fine-tuning both visual and audio features. The deep neural network-based
model consists of two architectures: (i) a visual model architecture that leverages Two-
Dimensional Convolutional Neural Networks and Bidirectional Long Short-Term Memory
(2DCNN+BiLSTM), Three-Dimensional Convolutional Neural Networks (3DCNN), or
Three-Dimensional Convolutional Neural Networks and Bidirectional Long Short-Term
Memory (3DCNN+BiLSTM), and (ii) an audio model architecture that leverages Residual
Networks (ResNets), Visual Geometry Group (VGG), or Pretrained Audio Neural Networks
(PANNs). The novel aspect of gesture identification lies in a distinct set of spatio-temporal
features (STF), which take lip articulation information into account. The experimental
results showed the performance of the models on two large-scale corpora, obtaining an
AVSR accuracy of 98.76% on the LRW dataset and a gesture recognition rate of 98.56% on
the AUTSL dataset, despite the lack of combined task datasets. Unlike previous research
that focused on Audio-Visual Speech Recognition (AVSR), this study focuses on Arabic
Sign Language (ArSL).

In [35], the authors focused on the issue of conventional machine learning techniques
requiring significant data collection and classification. They presented a novel deep learn-
ing architecture, namely 3D-CLDNN, that makes use of sEMG signals and depth vision.
By automatically classifying depth data using a self-organizing map and predicting ges-
tures using only sEMG data, it simplifies the procedure. With its 84.4% accuracy rate
and fast processing time, the approach is appropriate for real-time applications involving
human–machine interaction.

189



Sensors 2024, 24, 3683

In [36], the authors developed a method for recognizing Indian (Assamese) Sign
Language. They prepared a dataset of 2D and 3D images of Assamese gestures containing
nine Assamese alphabets captured using a Microsoft Kinect sensor and an RGB webcam.
They used the MediaPipe framework to detect landmarks in images and trained them using
a feedforward neural network. Their model achieved up to 99% accuracy. However, there
was no mention of the size of the dataset used. Unlike previous research works that focus
on the recognition of other sign languages such as English, Indian, Japanese, Bangla, etc.,
in this paper, we focus on the recognition of Arabic Sign Language (ArSL). Moreover,
unlike previous research works that focused on either image-based or video-based sign
language recognition, in this paper, we propose a hybrid model that can recognize ArSL in
both forms.

In [37], the authors addressed the issue of clearly delineating boundaries for sign
words in systems for Continuous Sign Language Recognition (CSLR) and Sign Language
Translation (SLT). They observed that traditional methods based on pre-trained models are
less flexible and computationally demanding, but intermediate gloss prediction greatly im-
proves SLT performance. In response to these problems, they suggested the Sign2Pose gloss
prediction transformer, which lowers processing overhead and increases accuracy by using
manually developed posture feature extraction techniques. To effectively detect key frames
in sign movies, the authors used the Euclidean distance technique and a modified version
of the HD algorithm. By including YOLOv3 to accurately detect hand movements, their
model outperformed current pose-based techniques by 15–20% in accuracy. Their model
achieved a new standard for accuracy and efficiency by outperforming other methods on
the word-level ASL data corpus. Unlike previous research that proposed the Sign2Pose
gloss prediction transformer model, which scored 80.90% in accuracy, this study offers
a hybrid approach for Arabic Sign Language (ArSL), achieving an average accuracy of
88.55% for both sub-models.

In [38], the authors concentrated on the issue of large vocabulary in practical contexts
for recognizing sign language. The authors presented a large-scale multi-modal Turk-
ish Sign Language dataset, namely Ankara University Turkish Sign Language (AUTSL),
which included baseline and benchmark models for evaluating performance. The dataset
consisted of 226 signs executed by 43 signers, for a total of 38,336 isolated sign video
clips. Microsoft Kinect v2 was used to record the RGB, depth, and skeleton modalities
for each sample. The authors trained multiple deep learning models using CNNs for
feature extraction and both unidirectional and bidirectional LSTMs to capture temporal
information, which was then improved by feature-pooling modules and temporal attention.
They also created benchmark training and testing sets for user-independent evaluations.
The reported results on the AUTSL and Montalbano datasets were competitive, with accu-
racies of 96.11% and 95.95%, respectively. The limitations inherent in the user-independent
benchmark dataset were highlighted, with the best baseline model achieving an accuracy
of 62.02%. The authors focused on recognizing Turkish Sign Language, whereas our paper
concentrates on the recognition of Arabic Sign Language (ArSL).

3. System Architecture and the Hybrid Model

To overcome the lack of Arabic interpreters for people with hearing impairment,
especially in Saudi Arabia, an architecture for sign language recognition is presented in
this work that enables automatic real-time translation between sign language and spoken
or written language. The architecture is shown in Figure 1 and consists of four layers: the
data acquisition layer, the mobile network layer, the cloud layer, and the sign language
recognition layer.
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Figure 1. Real-time ArSL system architecture.

3.1. Architecture Layers

Each layer of the architecture is responsible for a set of tasks and interacts with the
other layers. The architecture uses a streamlined pipeline design to make communication
accessible and intuitive. The architecture layers are as follows:

1. Data Acquisition Layer: This layer gathers the sign language data that require
translation using images collected from cameras (e.g., webcams, smartphone cameras,
wearable gadget cameras, etc.) or videos collected from cameras, which are broken into
frames. The images and frames are then sent through the mobile network layer and the sign
language recognition layer for processing.

2. Mobile Network Layer: This layer connects the data acquisition layer and the sign
language recognition layer. It is made up of several Wireless Access Points (WAPs), Base
Transceiver Stations (BTSs), and satellites to enable communication. The information that
is provided includes the ID of the camera and the images or video frames that contain
the hand landmark or gesture sequence that needs to be translated. This layer makes
communication easy and straightforward through a streamlined pipeline design.

191



Sensors 2024, 24, 3683

3. Cloud Layer: For the other layers, this layer offers Infrastructure as a Service (IaaS)
and Software as a Service (SaaS), making it possible for data to be stored and shared across
layers via the Internet. It also gives the system security, scalability, and dependability.
By employing a hybrid model for processing the deep learning models, including the
training and learning phases, we use SaaS, a cloud computing model that does not require
management of the underlying infrastructure. The management and storage of data,
including training and recognition data for upcoming training, are achieved using the
IaaS cloud computing architecture. With this computing approach, resources like servers,
storage, and networks can grow as needed without needing to be managed.

4. Sign Language Recognition Layer: This layer utilizes the proposed hybrid model on
each image or video frame that comes from the data acquisition layer, which contains a
hand landmark or gesture sequence to be translated. The hybrid model consists of two deep
learning models, namely Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM), each of which consists of several modules:

• Image/Frame Pre-processing: This module employs the Google MediaPipe frame-
work (https://developers.google.com/mediapipe/framework, accessed on 23 Febru-
ary 2024) to extract hand landmarks or gesture sequences from a set of images or
frames. The images or frames are organized into separate directories, each represent-
ing a unique category. For every image or frame, the coordinates of detected hand
landmarks or gesture sequences are captured and flattened into a list. These lists are
then compiled into a ’data’ list while corresponding category labels are added to the
’labels’ list. The entire dataset, consisting of hand landmarks or gesture sequences and
their associated labels, is stored in a pickle file (i.e., in the cloud layer).

• Data Sampling: This module is a crucial aspect of deep learning, particularly when
dealing with data that require training and testing for their models. It randomly splits
the data into 80% for training and 20% for testing. This division ensures that both
models (i.e., CNN and LSTM in the hybrid model) learn patterns and relationships
from a diverse range of examples during the training phase while also assessing their
performance on unseen data during testing. The training set, comprising 80% of the
data, is used to train the models, which allows them to learn from a large variety of
hand gestures and their corresponding landmarks. On the other hand, the remaining
20% of the data reserved for testing serves as an independent validation set to evaluate
both models’ performance and generalization ability on new, unseen examples.

• CNN Training: The CNN sub-model of our hybrid model is designed to detect human
hands by leveraging the Google MediaPipe framework to identify the hand’s 21 3D
landmarks. These landmarks are crucial for understanding hand gestures and move-
ments. To train the CNN sub-model, we utilize pre-processed data stored in a pickle
file (i.e., in the cloud layer), where the hand landmarks and corresponding labels are
organized. We then employ the Random Forest Classifier (RFC) to predict the output of
these landmarks. The RFC is an ensemble learning algorithm that constructs multiple
decision trees during training. It outputs the mode of the classes (i.e., classification) or
the mean prediction (i.e., regression) of the individual trees. Each decision tree in the
ensemble is trained on a random subset of the training data. During prediction, each
tree contributes a decision, with the final output determined by a majority or averaging
mechanism. This combined approach helps the CNN sub-model to accurately detect
and interpret human hand gestures in real-time applications.

• LSTM Training: The LSTM sub-model of our hybrid model uses an approach that
focuses on capturing sequential patterns in time-series data, particularly in the context
of hand gesture sequences. To train the LSTM sub-model, we utilize pre-processed
data stored in a pickle file (i.e., in the cloud layer), where the features and corresponding
labels of the hand gesture sequences are organized. The features are then organized
into sequences of frames, with each frame representing a window of historical data of
the hand gesture sequence. We utilize the LSTM architecture, a type of recurrent neural
network (RNN) designed to effectively model long-term dependencies in sequential
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data. During training, the LSTM sub-model learns to capture intricate patterns and re-
lationships within the hand gesture sequences. We employ techniques such as dropout
regularization to prevent overfitting and optimize the model’s generalization ability.

• Sign Language Recognition: This module is responsible for predicting the hand
gestures based on the training information from both the CNN and LSTM models
(i.e., hybrid model). Further details on the hybrid model are elaborated in Section 3.2.

3.2. Hybrid Model

Our proposed architecture is designed to gather the ArSL data that require translation
using images or videos collected from cameras, displaying the corresponding text transla-
tion on screen in real time. We propose a hybrid model that consists of a CNN classifier
to extract spatial features from ArSL data and an LSTM classifier to extract spatial and
temporal characteristics to handle sequential data. To enable the user to use both images
and videos, we created a function called “Sign Language Recognition Decision” to give
our system the flexibility to use either images or videos. This function essentially chooses
between the image processing sub-model (CNN) and the video processing sub-model
(LSTM) depending on the input type. By integrating the strengths of CNNs and LSTMs,
the system can leverage both spatial and temporal information simultaneously. The CNN
extracts relevant visual features, and the LSTM processes these features in a sequential
manner, capturing the dynamic aspects of sign language communication. This allows users
to communicate naturally using gestures. More details on CNN and LSTM models are
elaborated in the following subsection.

3.2.1. Convolutional Neural Network (CNN)

The CNN sub-model of our hybrid model is designed to detect human hands by lever-
aging the Google MediaPipe framework to identify the hand’s 21 3D landmarks. These
landmarks are crucial for understanding hand gestures and movements. For the proposed
CNN sub-model, we utilized LeNet-5, a well-known CNN architecture frequently em-
ployed for image recognition tasks. This architecture comprises several layers: it begins
with two convolutional layers, each followed by max-pooling layers, and concludes with
three fully connected (linear) layers. As shown in Figure 2, the input to LeNet-5 is a
grayscale image with dimensions of 32 × 32 × 1, where the “1” denotes a single channel
for grayscale intensity. The first convolutional layer applies six filters of size 5 × 5 to the
input image, producing an output shape of [−1, 6, 28, 28]. The subsequent max-pooling
layers halve the spatial dimensions, resulting in feature maps of sizes [−1, 6, 14, 14] and
[−1, 16, 5, 5], respectively. The final three linear layers have output shapes of [−1, 120],
[−1, 84], and [−1, 10], with the last layer representing the output classes. LeNet-5 con-
sists of 61,706 parameters in total, including weights and biases, distributed across the
convolutional and linear layers.

Figure 2. CNN model structure.

To train the CNN sub-model, we utilized pre-processed data stored in a pickle file. We
then employed the Random Forest Classifier (RFC) to predict the output of these landmarks.
Bootstrapping was used to sample a random subset of data and features used to train each
tree in the forest. An aggregation of the predictions produced by every single decision tree
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results in the final RFC predictions. The final RFC prediction for hand gesture γ taking on
sign language word class σ in the tree is explained in Equation (1):

Pτ [σ|γ, Ω, π] = ∑
λ∈Λ

πλσμλ(γ, Ω), (1)

where Ω denotes the parameter of the decision function δ, π denotes the class label distri-
bution of all leaf nodes, Λ denotes a set of leaf nodes, πλσμλ denotes the probability that
the hand gesture belongs to a sign language word class σ given by leaf node λ, and (γ, Ω)
denotes the probability of routing the hand gesture until leaf node λ. Ultimately, we can
interpret this probability value as a weighted sum of the class distribution if we treat the
possibility of reaching the leaf node as a weight. The decision function δ for split node ν is
defined in Equations (2) and (3):

δν(γ; Ω) = β( fν(γ; Ω)), (2)

β(γ) =
(
1 + e−γ

)−1, where fν(.; Ω) : Γ → R (3)

where β(γ) denotes the sigmoid function, whose output can be used to calculate the
possibility of moving to the left or right sub-tree in the RFC, and fν(.; Ω) denotes the
real-valued function parametrized by Ω.

The model’s ability to learn hand landmarks is encoded by the parameter Ω. The pa-
rameters of a deep CNN, which are used to automatically train an appropriate hand
landmark representation from incoming images, are represented by Ω in this paper. Every
function fν can be thought of as a deep network’s linear output unit. The final prediction
of the CNN model, delivered by the forest F = {τ1, τ2, . . . , τγ} for the hand landmark γ, is
calculated as shown in Equation (4):

PF[σ|γ] = 1
x

X

∑
n=1

Pτn [σ|γ], (4)

where γ denotes the hand gesture, σ denotes the sign language word class, x denotes the
number of trees in the forest, and Pτn represents the probability that the hand gesture
belongs to sign language word class σ given by the nth tree. The average of the prediction
made by each tree in the forest eventually determines the final prediction.

3.2.2. Long Short-Term Memory (LSTM)

LSTM is a type of recurrent neural network (RNN) designed to effectively model
long-term dependencies in sequential data [39–41]. For the proposed LSTM sub-model,
we employ a stack structure, which involves arranging multiple LSTM layers in sequence,
where the output of each LSTM layer serves as the input for the next. This deep architecture
allows for capturing more intricate patterns in sequential data by utilizing both LSTM and
dense layers. As illustrated in Figure 3, the first LSTM layer has 64 units, returns sequences,
and uses the hyperbolic tangent function (tanh) for activation. The second LSTM layer
includes 128 units, returns sequences, and also uses tanh for activation. The third LSTM
layer, with 64 units, does not return sequences and performs tanh activation. Following the
LSTM layers are the dense layers: the first dense layer has 64 units and uses tanh activation,
the second dense layer has 32 units with tanh activation, and the final dense layer has units
equal to the number of actions, employing the Softmax function to constrain the outputs
between 0 and 1, ensuring their sum is always 1.
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Figure 3. LSTM model structure.

During training, the LSTM sub-model learns to capture intricate patterns and rela-
tionships within the hand gesture sequences. In this paper, LSTM model is employed to
learn hand gesture sequences and to recognize the correspondent sign language translation.
leveraging the Google MediaPipe framework to extract input representations, the structure
of LSTM is expressed in the following manner:

A form of RNN called LSTM architecture is intended to efficiently model long-term
dependencies in sequential data [15,42,43]. During training, the LSTM sub-model picks up
on the complex correlations and patterns found in the hand gesture sequences. To learn
hand gesture sequences and recognize the corresponding sign language translation, this
paper uses an LSTM model. Exploiting Google MediaPipe framework to extract input
representations, the structure of LSTM consists of several gates including the input gate,
the forget gate, the output gate, and the cell input vector. The input gate is described in
Equation (5) as follows:

αt = ψ(ωα · [ht−1, xt] + bα), (5)

where the input gate, denoted as α, is controlled by the time step, denoted as t. ψ denotes
the logistic sigmoid function. The last hidden state, denoted as h[t − 1], and the current
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input, denoted as xt, are weighted using the matrix weight ω. bα denotes the biases of the
input gate. The forget gate is described in Equation (6), as follows:

ϕt = ψ(ωϕ · [ht−1, xt] + bϕ), (6)

where the forget gate, denoted as ϕ, is controlled by the time step, denoted as t. Similar
to the input gate, ψ denotes the logistic sigmoid function. The last hidden state, denoted
as ht−1, and the current input, denoted as xt, are weighted using the matrix weight ω. bϕ

denotes the biases of the forget gate. As we can observe, the input gate’s mechanism is
identical to this one, but it uses a completely different set of weights. The output gate is
expressed in Equation (7), as follows:

βt = ψ(ωβ · [ht−1, xt] + bβ), (7)

where the output gate, denoted as β, is also controlled by the time step, denoted as t.
Similar to the input and forget gates, ψ denotes the logistic sigmoid function. The last
hidden state, denoted as ht−1, and the current input, denoted as xt, are weighted using the
matrix weight ω. bϕ denotes the biases of the output gate. The cell input vector is shown in
Equations (8) and (9), as follows:

εt = ϕt 	 εt−1 + ti 	 tanh(ωε · [ht−1, xt] + bε), (8)

ht = βt 	 tanh(εt), (9)

where tanh denotes the tangent function used to transform the data into a normalized
encoding of the data. 	 represents the element-wise product of two vectors.

4. Implementation

For the implementation, we utilized Google Cloud Computing Services (Google
Cloud) (https://cloud.google.com/, accessed on 28 February 2024). Within this envi-
ronment, we deployed virtual machines running the Ubuntu Operating System version
20.04, sourced from the Ubuntu OS Cloud Marketplace (https://console.cloud.google.com/
marketplace/product/ubuntu-os-cloud/ubuntu-focal, accessed on 28 February 2024).
These virtual machines were configured with the Docker platform (https://cloud.google.
com/compute/docs/containers, accessed on 28 February 2024) to execute the application
container. In particular, we employed the standard c3d-Standard-4 configuration on
Google Cloud, with each virtual machine featuring 4 VCPUs and 16 gigabytes (GB) of
memory. Our system architecture consisted of three such virtual machines, each assigned
distinct responsibilities for each layer in our architecture, including the data acquisition,
sign language recognition, and cloud layers, as illustrated in Figure 1. Leveraging Google
Cloud facilitated the setup and management of our system architecture, providing reli-
ability, speed, and scalability. Additionally, Google Cloud offers a range of services and
features tailored to our system architecture requirements and use cases. We also leveraged
Google Cloud’s security and governance services to safeguard our data and applications
against unauthorized access and potential threats. The configuration parameters and corre-
sponding values chosen for setting up and managing our system architecture on Google
Cloud are detailed in Table 1.
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Table 1. List of configuration parameters and values.

Parameter Value

Cloud service provider Google Cloud
Instance type Ubuntu 20.04
Operating system CentOS Linux
CPU Intel Xeon Platinum 8481C Processor
RAM 16 GB
Disk size 32 TB

Upon initiating the c3d-Standard-4 instance, we proceeded to install Docker version
4.28.0 on the virtual machine (https://docs.docker.com/desktop/release-notes/#4280,
accessed on 29 February 2024). Subsequently, we established three containers utilizing
Arch Linux via Docker. Each container served a distinct purpose within our system ar-
chitecture: the first container managed the data acquisition layer, the second container
handled the sign language recognition layer, and the third container oversaw the cloud
layer functionality. The data acquisition layer was responsible for gathering images
or videos from various sources such as webcams, smartphone cameras, and wearable
gadget cameras. The sign language recognition layer processed these data to interpret
hand gestures. These containers were equipped with a Python interpreter version 3.12.2
(https://www.python.org/downloads/release/python-3122/, accessed on 1 March 2024)
and NodeJS version 20.11.1 (https://nodejs.org/en/blog/release/v20.11.1, accessed on
1 March 2024), enabling us to develop and execute code for both the data acquisition
and sign language recognition layers. Python facilitated the creation of concise and com-
prehensible code capable of handling intricate tasks and data structures. Meanwhile,
NodeJS permitted the utilization of JavaScript for both front-end and back-end develop-
ment, streamlining our codebase and enhancing performance. The final container utilized
a Docker Compose file comprising an image for MySQL to effectively manage and store
the data (https://hub.docker.com/_/mysql, accessed on 29 February 2024).

4.1. Dataset Description

In this paper, we employed a hybrid model that leverages deep learning techniques to
achieve high performance and accuracy in gesture recognition tasks. To accomplish this,
we utilized a large-scale dataset consisting of images and videos captured using built-in
webcams with a resolution of 480p. For the CNN model, we collected 400 images for
each of the 10 targeted words. Each image has dimensions of 640 × 480 pixels, ensuring a
detailed representation of hand gestures. Additionally, for the LSTM model, we obtained
50 videos for each word (i.e., 10 words), totaling 500 videos. These videos, recorded
with the same 480p webcam, provide dynamic visual sequences for temporal analysis.
We used the most universal and commonly used words for sign language, like hello,
water, teacher, work, etc. The translations of these words were taken from the Handspeak
website (https://www.handspeak.com/, accessed on 12 February 2024) and the Saudi
Sign Language website (https://sshi.sa/, accessed on 12 February 2024). The Handspeak
website is an online resource for sign language, and the Saudi Sign Language website is
a platform affiliated with the Saudi Society for Hearing Impairment. The diverse nature
and scale of our dataset enabled robust training and evaluation of the hybrid model for
accurate gesture recognition tasks.

4.2. Data Labeling and Model Training

We divided the dataset into 80% for training and 20% for testing to validate the
proposed hybrid model.

4.2.1. CNN Sub-Model

The dataset for training the CNN sub-model comprised images we captured, each
depicting a specific hand gesture. We utilized MediaPipe to extract hand features from
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these images, focusing on 21 hand landmarks. These features were saved as .npy files in
directories corresponding to each of the 10 distinct gesture labels in our dataset. Each label
category contained 400 images, resulting in a balanced dataset of 4000 images. Of these,
3200 hand landmark images were manually labeled and categorized based on the selected
10 words (as shown in Table 2) to train the CNN sub-model of the proposed hybrid model.
The remaining 800 hand landmark images were used to evaluate the CNN sub-model.
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Table 2. CNN data labeling.

Label Name Gesture

0 Hello/ ������

1 No/�

2 Agree/ 	
 ��	
�
�

3 Awesome/�� ���

4 Good/�����

5 You/ 	��
�
�

6 Bad/ �����

7 Question/�� ���

8 Not sure/��
�
�	�� 	���

9 Excellent/ ���	���
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As detailed in Table 3, the CNN sub-model was trained using the following hyperpa-
rameters: a learning rate of 0.001 to ensure stable convergence, a batch size of 32 to balance
memory usage and training speed, and a total of 50 epochs to allow for thorough training
and convergence. We used the Adam optimizer, known for its efficiency and adaptive
learning rates, and employed cross-entropy loss as the loss function, which is suitable
for our classification task. To prevent overfitting and enhance the model’s generalization
ability, we incorporated a dropout rate of 0.5. Dropout is a regularization technique that
involves randomly ignoring selected neurons during training, which helps the model avoid
relying too heavily on specific features or neurons and promotes robustness.

Table 3. CNN sub-model hyperparameter and loss function settings.

Hyperparameter Value

Learning Rate 0.001
Batch Size 32
Number of Epochs 50
Optimizer Adam
Loss function Cross-Entropy
Dropout Rate 0.5
Data Augmentation No

4.2.2. LSTM Sub-Model

The dataset comprised recorded sequences of actions stored in directories corresponding
to each specific action. It included 10 actions, each represented by 50 videos. Each sequence
consisted of 30 frames, with each frame represented by a 1662-dimensional feature vector.
These files were loaded into memory, and the sequences and their labels were compiled into ar-
rays. We captured the videos in this dataset; 400 of the collected hand gesture sequence videos
were manually labeled and categorized according to 10 selected words (as shown in Table 4)
to train the LSTM sub-model of the proposed hybrid model, which was trained for 50 epochs.
Additionally, 100 hand gesture sequence videos were used to test the LSTM sub-model.

Table 5 provides details of the LSTM sub-model’s training, including the parameters for
the LSTM layers and dense layers. The first LSTM layer outputs a shape of (None, 30, 64)
with 442,112 parameters, followed by a second LSTM layer with an output shape of (None,
30, 128) and 98,816 parameters. The third LSTM layer produces an output shape of (None,
64) with 49,408 parameters. This is followed by three dense layers: the first dense layer has
an output shape of (None, 64) with 4,160 parameters, the second dense layer has an output
shape of (None, 32) with 2,080 parameters, and the third dense layer has an output shape
of (None, 10) with 330 parameters. In total, the model has 596,906 parameters.

Table 4. LSTM data labeling.

Label Name Gesture

0 Peace be upon you/ !��"# $%���

1 My name/&� '()
�
�

2 I want/���
�
�
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Table 4. Cont.

Label Name Gesture

3 An exercise/ �*��' 	+

4 Hungry/,��-�

5 Work/�.#

6 Book//� �	��

7 Water/0��

8 Teacher/ 12�

9 Teaches/3���

Table 5. LSTM sub-model’s layers and parameter setup.

Layer (Type) Output Shape Param. #

Lstm 1 (LSTM) (None, 30, 64) 442,112
Lstm 2 (LSTM) (None, 30, 128) 98,816
Lstm 3 (LSTM) (None, 64) 49,408
Dense 1(Dense) (None, 64) 4160
Dense 2 (Dense) (None, 32) 2080
Dense 3 (Dense) (None, 10) 330
Total params: 596,906

5. Experimental Results

To demonstrate our proposed hybrid model’s applicability, we conducted several
experiments to evaluate the performance of each sub-model of our proposed hybrid
model, including the Convolutional Neural Network (CNN) and Long Short-Term Memory
(LSTM) models.

5.1. Evaluation Metrics

In this section, we outline the evaluation criteria used to gauge the effectiveness of
the hybrid model, which includes the Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM) models. Specifically, we examine important metrics such as
accuracy, precision, recall, F1 score, confusion matrix, and loss. These metrics are essential
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for gaining a comprehensive understanding of the hybrid model’s predictive abilities
and the sub-models’ ability to generalize. Alongside the traditional performance metrics,
assessing loss provides insights into the optimization process and the convergence of
the sub-models. It is worth emphasizing that all metrics were assessed using a distinct
validation dataset, separate from the training data, to ensure the robustness and reliability
of the hybrid model performance assessment.

5.2. CNN Evaluation Metrics

Figure 4 illustrates the results of the performance of the CNN sub-model on the
10 words listed in Table 2. For this experiment, we trained the CNN sub-model using
3200 images (i.e., for hand landmark images) and validated it using 800 images. The accu-
racy of the CNN sub-model was 94.40% (see Figure 4a). The reason for this is the adequate
amount of data for training, where the model could understand the hand gestures using
the hand landmarks. The main purpose for setting the number of epochs to 50 was to leave
room for the CNN sub-model to understand the targeted hand gestures. Additionally, the
CNN sub-model achieved a precision of 95.00% (see Figure 4b) and recall and F1 scores of
94.40% and 94.90%, respectively, as shown in Figure 4c,d. The accuracy, precision, recall,
and F1 scores consistently fell within the range of 91.00% to 95.00%. This uniformity in
performance across these metrics indicates balanced model behavior. The similarity in
accuracy, precision, recall, and F1 score can be attributed to the balanced nature of the
dataset, where each class is adequately represented, facilitating equitable performance
evaluation across all classes.

(a) (b)

(c) (d)

Figure 4. CNN sub-model performance evaluation. (a) CNN sub-model accuracy; (b) CNN sub-model
precision; (c) CNN sub-model recall; (d) CNN sub-model F1 score.

Figure 5 presents the confusion matrix derived from the validation results of the
CNN sub-model. This matrix offers a comprehensive visual representation of the CNN
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sub-model’s classification performance, highlighting the distribution of true positive, true
negative, false positive, and false negative predictions across 10 different classes (i.e., the
10 labels for the 10 words listed in Table 2). Examining the confusion matrix provides
crucial insights into the CNN sub-model’s ability to accurately classify instances within
each class. As we can see, the true positives fell within the range of 82 to 97 when the CNN
sub-model predicted the targeted word correctly. We can make an interesting observation
from the confusion matrix: the CNN sub-model scored 89 and 92 TPs for labels 3 and
8, respectively. This is an indication that the CNN sub-model’s recognition performance
was affected by viewing different angles. Furthermore, Figure 6 shows the loss evaluation
for the training and validation of the CNN sub-model. The observed discrepancy in loss
between the training and validation phases indicates that during the validation phase, the
CNN sub-model became increasingly confident in interpreting hand gestures using hand
landmarks as the number of epochs progressed.

Figure 5. CNN sub-model confusion matrix.

Figure 6. CNN sub-model validation loss.
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5.3. LSTM Evaluation Metrics

Figure 7 illustrates the results of the performance of the LSTM sub-model on the
10 words listed in Table 4. For this experiment, we trained the LSTM sub-model using
400 videos (i.e., for hand gesture sequences) and validated it using 100 videos. As we
can see, the accuracy of the LSTM sub-model was 82.70% (see Figure 7a). The reason for
this is the adequate amount of data for training, where the model could understand the
hand gesture sequences. For this experiment, we also used 50 epochs to allow the LSTM
sub-model to understand the targeted hand gesture sequences. We can also observe that
the LSTM sub-model reached a precision of 84.20% (see Figure 7b) and recall and F1 scores
of 82.50% and 82.70%, respectively, as shown in Figure 7c,d. The accuracy, precision, recall,
and F1 scores consistently fell within the range of 78.50% to 82.70%. The consistency in
performance across these metrics suggests well-balanced model behavior. The similarity in
accuracy, precision, recall, and F1 score can be attributed to the balanced composition of
the dataset, ensuring sufficient representation of each class. This balanced representation
enabled fair evaluation of performance across all classes.

(a) (b)

(c) (d)

Figure 7. LSTM sub-model performance evaluation. (a) LSTM sub-model accuracy; (b) LSTM sub-model
precision; (c) LSTM sub-model recall; (d) LSTM sub-model F1 score.

Figure 8 presents the confusion matrix derived from the validation results of the
LSTM sub-model. This matrix offers a comprehensive visual representation of the LSTM
sub-model’s classification performance, highlighting the distribution of true positive, true
negative, false positive, and false negative predictions across 10 different classes (i.e., the
10 labels for the 10 words listed in Table 4). Examining the confusion matrix provides
crucial insights into the LSTM sub-model’s ability to accurately classify instances within
each class. As we can see, the true positives fell within the range of 56 to 95 when the LSTM
sub-model correctly predicted the targeted word. Furthermore, Figure 9 shows the loss
evaluation for the training and validation of the LSTM sub-model. We can see fluctuations
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in the loss outcomes between the training and validation phases, which can be attributed to
the LSTM sub-model’s focus on extracting temporal features, such as motion signs, rather
than spatial features, such as static signs, as observed in the CNN sub-model. Additionally,
the loss results in the validation phase of the CNN sub-model (see Figure 6) exhibit superior
performance compared to those of the LSTM sub-model, primarily due to this distinction
in feature extraction.

Figure 8. LSTM sub-model confusion matrix.

Figure 9. LSTM sub-model validation loss.

6. Conclusions and Future Work

We examined the issue of the pronounced deficiency of sign language interpreters in
the Kingdom of Saudi Arabia, highlighting the notable gap in the ratio of interpreters to
individuals with hearing impairments compared to other regions like California, USA. This
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study revealed that this scarcity presents a significant obstacle in delivering services to the
deaf community in public spaces. In this paper, we propose a hybrid model designed to
capture both spatial and temporal elements of sign language. This hybrid model comprises
a CNN classifier to extract spatial features from sign language data and an LSTM classifier to
capture both the spatial and temporal characteristics essential for sequential data processing.
By automating ArSL translation in real time between sign language and spoken or written
language, this hybrid model aims to address the interpreter shortage.

To demonstrate the viability of our proposed hybrid model, we created a dataset of
20 different words, comprising 4000 images for 10 static gesture words and 500 videos for
10 dynamic gesture words. Our hybrid model showcased promising performance, with the
CNN and LSTM classifiers achieving accuracy rates of 94.40% and 82.70%, respectively.
One implication of our research is the superior performance of the CNN compared to
LSTM, attributed to LSTM’s emphasis on extracting temporal features. At the same time,
the CNN focuses on spatial features, such as static signs. In future work, we aim to expand
the number of words in the datasets for both models in terms of both images and videos
and use different viewing angles to enhance the performance of the sub-models utilized
in our hybrid model. This research work holds the potential to enhance the availability of
translation services, catering to the needs of the deaf community, thereby fostering effective
communication, enhancing accessibility, and promoting solidarity with this significant
segment of society.
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