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Salinity Monitoring and Modelling at Different Scales: An Editorial Overview
Reprinted from: Land 2024, 13, 1890, https://doi.org/10.3390/land13111890 . . . . . . . . . . . . 1

Juan Herrero and Carmen Castañeda
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Fernando Monteiro Santos and Mohammad Farzamian

Comparison of Electromagnetic Induction and Electrical Resistivity Tomography in Assessing
Soil Salinity: Insights from Four Plots with Distinct Soil Salinity Levels
Reprinted from: Land 2024, 13, 295, https://doi.org/10.3390/land13030295 . . . . . . . . . . . . 86

Lorenzo De Carlo and Mohammad Farzamian

Assessing the Impact of Brackish Water on Soil Salinization with Time-Lapse Inversion of
Electromagnetic Induction Data
Reprinted from: Land 2024, 13, 961, https://doi.org/10.3390/land13070961 . . . . . . . . . . . . 103
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1. Introduction

Soil salinization is a significant abiotic process affecting arid, semi-arid, and sub-
humid regions worldwide. Estimates suggest that approximately 412 million ha of land are
impacted by salinity, while sodicity affects about 618 million ha [1]. Most of these areas
have a natural origin and play a crucial ecological role, significantly contributing to global
biodiversity. However, estimates also indicate that around one-third of the world’s irrigated
land—approximately 70 million ha—is affected by soil salinization [1], with an annual
expansion rate of about 1.0 to 2.0 million ha. This issue arises not only from human-induced
processes but also poses a serious threat to global food production, potentially leading to
hunger and exacerbating societal problems in salt-affected regions and beyond.

Due to the transient nature of the soil salinization process, which is influenced by
various factors including meteorological conditions, soil properties, crop tolerance to salin-
ity levels, and irrigation water management, effective monitoring is crucial for mitigating
the harmful effects of soil salinity in agricultural areas, often unnoticed until it is too late.
Conversely, in natural salt-affected regions, monitoring supports the characterization and
conservation of ecosystems. Therefore, establishing monitoring frameworks for rapid,
non-invasive, and cost-effective assessment of the spatial and temporal distribution of
salt-affected areas at various scales has emerged as a top priority for research [2].

In this Special Issue titled “Salinity Monitoring and Modeling at Different Scales”, we
aimed to compile articles that showcase a diverse range of approaches and methods for
monitoring soil salinity across various environments and scales. The 11 published articles
illustrate a variety of applications for characterizing both natural and human-induced
salt-affected areas. The articles focused on the characterization of natural salt-affected areas
provide valuable insights into the importance of wetland conservation. Meanwhile, the
articles addressing agricultural water management emphasize improving practices for soil
conservation and the sustainability of soil and water resources. Overall, this Special Issue
offers a wide range of perspectives on the theme of soil salinization.

2. Contributions to the Special Issue

The articles in this Special Issue come from researchers worldwide, presenting cutting-
edge research on salinity monitoring and management in various salt-affected regions.
The studies span work conducted in countries including Portugal, Spain, Italy, France,
Hungary, Türkiye, Tunisia, China, the USA, Australia, and Sudan. Collectively, these
articles offer a comprehensive overview of various techniques for soil salinity monitoring
and management, ranging from traditional sampling campaigns to advanced methods
like proximal and remote sensing for soil salinity mapping, as well as the application of
process-based modeling tools to predict salt transport in soil profiles and its impact on
crops and yields.
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Three contributions utilize traditional sampling campaigns to characterize landscape
soil salinity and its relationship with ecological status. Herrero and Castañeda (List of
Contributions) focus on small, ecologically significant wetlands in the Ebro Basin of north-
eastern Spain. They conducted soil monitoring to collect samples and assess key parameters,
including percent water saturation, equivalent calcium carbonate, gypsum content, soil
cations and anions, and soil salinity. Salinity was measured as electrical conductivity using
both a 1:5 soil-to-water ratio and saturation extracts in the laboratory. The article examines
critical factors limiting life in two inland saline marshes and provides baseline data for
guiding biodiversity protection. The findings emphasize the importance of comparing these
conditions with other wetlands to better understand species-specific environmental require-
ments. Additionally, the article highlights the necessity of using appropriate analytical
techniques for gypsum-rich soils to ensure accurate monitoring and effective conservation.

Similarly, Jiménez-Ballesta et al. (List of Contributions) investigate the relationship
between soil properties and the presence and abundance of sub-communities within a
saline pond in Castilla La Mancha, Spain. The authors characterized various top and
subsoil layers from several soil profiles in the region, focusing on properties such as soil
texture, electrical conductivity at a 1:5 soil-to-water ratio, and the concentrations of soil
cations and anions, among other characteristics. They present baseline data essential for
the conservation of local habitats, which include halophilous and gypsophilous vegetation.

In another study, Zhang et al. (List of Contributions) examine the impacts of agri-
cultural water management on soil conservation by analyzing the spatial variation in soil
salinity following autumn irrigation in the Hetao irrigation district of northern China. This
region experiences widespread soil salinization due to excessive irrigation and challenging
hydrogeological conditions. Autumn irrigation plays a crucial role in managing soil salinity
levels; however, its effectiveness is significantly influenced by the shallow depth of the
groundwater table in some areas. The study explored the distribution and variation in
soil moisture and salinity in locations that received autumn irrigation compared to those
that were not irrigated. Results indicated that autumn irrigation improved the uniform
distribution of soil water and salt profiles compared to non-irrigated fields, resulting in
higher leaching. However, unreasonable autumn irrigation raised groundwater levels,
increasing the risk of salt movement to the surface during freeze–thaw cycles, which could
negatively impact spring crop growth. These findings emphasize the need for effective
water resource management to mitigate soil salinization in cold, dry areas.

Three other contributions to this Special Issue underscore the growing importance
of electromagnetic induction (EMI) in soil salinity mapping and monitoring, highlighting
advancements in both technology and its applications. EMI is a non-invasive method that
measures apparent electrical conductivity without physical contact, making it ideal for
mapping and monitoring soil salinity at depth on a field scale. Petsetidi and Kargas (List
of Contributions) provide a comprehensive review of EM38 and EM38MK2 sensors, em-
phasizing their effectiveness in assessing soil salinity across various scales. By integrating
these sensors with machine learning and remote sensing, the authors propose a method
to more accurately predict spatiotemporal salinity variations, showcasing the potential of
these sensors for large-scale agricultural management and environmental sustainability.

Paz et al. (List of Contributions) offer a comparative analysis between EMI and
Electrical Resistivity Tomography (ERT) for predicting soil salinity in diverse environments.
While ERT provides high-resolution images of the subsurface, its requirement for electrode
installation and extensive cabling limits its application to field-scale investigations. Through
field surveys conducted at four sites in Portugal with varying salinity levels, the study
demonstrates that while ERT is more reliable in extreme salinity conditions, EMI offers a
faster and sufficiently accurate alternative in most scenarios. This finding is very relevant
for soil salinity management as it supports the practical implementation of EMI in large-
scale soil salinity assessments.

De Carlo and Farzamian (List of Contributions) utilize time-lapse EMI measurements
to monitor soil salinization under different irrigation strategies in tomato crops in Italy. By
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capturing changes in soil electrical conductivity over time, this study validates EMI as a
robust tool for tracking salinization trends, particularly in response to brackish irrigation
water. The ability to non-invasively collect data across extensive areas and in real-time
further establishes EMI as an effective method for monitoring salinity dynamics and
informing sustainable water management practices.

Three contributions to this Special Issue focused on remote sensing and the use of
manned aerial vehicle (UAV) technology and machine learning. Pásztor et al. (List of
Contributions) introduce an approach to indirectly assess salt-affected soil properties in
protected salt meadows using UAV imagery. Through a machine learning model based
on spectral indices and a digital elevation model, the researchers mapped soil indicators
(total salt content, Na, and pH) in five habitat types across Hungarian salt meadows. This
approach facilitates non-invasive environmental monitoring, allowing for the preservation
of sensitive habitats while accurately estimating soil conditions.

Sulieman et al. (List of Contributions) apply machine learning techniques to map
soil salinity in Sudan’s arid regions, utilizing both optical and radar satellite data. By
combining these data with digital elevation models as well as electrical conductivity
measurements from the saturation extracts of soil samples, the study transfers soil salinity
models across geographies with similar environmental conditions. The findings highlight
model transferability for spatial salinity classification and demonstrate a framework for
salinity assessment and land management planning in water-limited regions.

Offering a bibliometric overview, Yin et al. (List of Contributions) provide a compre-
hensive analysis of research trends in remote sensing applications for soil salinization from
2000 to 2023. The study tracks the field’s evolution, highlighting the contributions of key
authors, institutions, and nations. By detailing advancements in machine learning, UAV
technology, and hyperspectral imaging, this review identifies trends and future directions
of remote sensing applications for salinity management.

Lastly, two contributions to this Special Issue focused on using physical process-based
modeling to enhance irrigation water management in salt-affected areas. Several modeling
tools are now available to assess site-specific soil, water, and crop parameters while account-
ing for time-varying field conditions, including the timing and amount of irrigation as well
as variable soil salinity. Among the available vadose zone models, the HYDRUS software
package offers a range of state-of-the-art approaches for studying salinity dynamics in
agricultural fields [3]. In this context, Phogat et al. (List of Contributions) use the HYDRUS
(2D/3D) model to optimize irrigation management using brackish water in a vineyard in
Southern Australia. After calibration and validation, the model evaluated the impact of
irrigating with water of varying quality. The experiment involved blending and alternating
the use of brackish waters with fresh waters, as well as testing spring irrigation as a viable
method for salt leaching. The results indicate that leaching irrigation with high-quality
river water at the beginning of the growing season enhances salt leaching efficiency and
helps control salinity. Additionally, blending or alternating saline brackish water with
non-saline surface water reduces salt deposition. The study advocates for early-season
leaching irrigation as a strategic management option during droughts and emphasizes the
need for ongoing monitoring to ensure long-term resilience in irrigated viticulture.

Similarly, Kanzari et al. (List of Contributions) use the HYDRUS-1D model to explore
the combined effects of soil matric and osmotic potential stresses on water uptake by tomato
roots grown in pots and in a field in Tunisia. The experiment involved irrigating with water
of varying qualities, and the model played a crucial role in assessing how different salinity
levels impacted tomato growth to varying degrees. However, incorporating crop growth
models is necessary to expand the research to yield analysis.

3. Conclusions

The papers in this Special Issue offer a comprehensive overview of diverse methods
and approaches for monitoring soil salinity, ranging from traditional sampling techniques to
advanced methods such as proximal and remote sensing, which are used to characterize and
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map salt-affected areas across various global regions. Additionally, the articles showcase
applications of process-based vadose zone models aimed at enhancing irrigation water
management, particularly when using brackish waters.

By bringing together a wide array of studies, methodologies, and approaches related
to soil salinity monitoring and management, this Special Issue highlights the critical impor-
tance of these practices in addressing one of the most pressing abiotic stresses worldwide.
It is hoped that this collection will inspire more interdisciplinary research on soil salinity
and motivate researchers to pursue effective solutions to manage this growing challenge in
an increasingly water-scarce world.
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Abstract: Small (<1 km2) saline wetlands scattered across the landscape often go unnoticed or are
threatened by urbanization or other interventions, despite their role as biodiversity shelters. This
study is needed to show methods for monitoring this specific kind of wetland, and to guide the
selection of analytical techniques. We provide data and comparisons for salient soil traits of two quasi-
pristine gypsiferous and saline wetlands named Farrachuela (FA) and Agustín (AG). The soil charac-
teristics presented in this article are a more sensitive indicator of their ecological status than some
of the most used indicators, such as birds and plants. We found significant differences between the
two saladas in percent water saturation, equivalent calcium carbonate, gypsum content, and soil
salinity expressed as electrical conductivity both of 1:5 soil-to-water ratio and of saturation extracts.
The differences were also significant in the concentrations of Mg2+, Na+, and Cl−, while they were
non-significant for Ca2+, HCO3

2−, and SO4
2−. The mean contents of the six ions were lower in

FA than in AG. Both pH and sodium adsorption ratios were significantly different between the
two wetlands. The data are mainly examined and plotted by displaying their non-parametric statis-
tics, a synoptic approach that will allow us to monitor the evolution of the wetlands against both
traditional agricultural pressures and emerging green energy infrastructures. Last but not least, we
discuss the shortcomings of some standard laboratory methods when applied to gypsum-rich soils.

Keywords: arid land; athalassohaline; gypsum; Natura 2000 network; soil salinity

1. Introduction

European inland saline habitats have been quasi-eliminated [1], with many of the
surviving ones reduced in size or badly degraded. This is also the case in the arid Central
Ebro Basin, Spain [2]. The scarcity of regulations or incentives for protecting soil diversity
occurs in several European countries [3] and is more pronounced for inland saline wetlands
in general.

This scarcity also happens for the lands whose composition, color, vegetation or other
characteristics are due to an abundance of gypsum (CaSO4•2H2O). These whitish gypsum
soil landscapes, known by local people in NE Spain as chesas, occur mainly in warm
countries around the world [4], but also in cold regions with gyprock outcrops, e.g., [5,6].
Chesas have also been traditionally disdained due to their low agricultural production and
geotechnical characteristics. Irrigation of these lands, needed in dry areas for agricultural
production, is technically unfeasible by inundation due to the solubility of gypsum, and
only the pressurized application of water has alleviated the drawbacks. The disdain is
counteracted by the agricultural pressure and by the increasing attention of scientists
to the gypsophilous plants protected by environmental rules [7]. Thus, saline wetlands
located in gypseous soils pose a double challenge to life, and are therefore of twofold
interest to science. Moreover, the study and description of these saline wetlands face
methodological issues in their lab analyses—often overlooked in the literature—derived
from the abundance of gypsum [4,8].

The old judgment on both the wetlands and the gypseous soils based on their little
or no agricultural value is evolving towards legal protection due to the biodiversity they
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harbor and their role in ecological balances. In addition, insights into biodiversity and
ecosystem services raise the need to move beyond single-lake thinking [9] and to include
the small wetlands [10], a line of reasoning that also applies to gypseous soils. Together
with the coexistence with agriculture, including irrigation and intensive animal husbandry,
there now arise threats from the “green energy” sources with several kinds of impacts, such
as those recently reported in [11,12].

The Ebro Basin, located in northeastern Spain (Figure 1), has a dry climate and a high
presence of gypsum rocks 1.9 106 hectares of gypsiferous lithofacies [13] together with
many landscape evidences of salinity, such as saline ravines associated with springs or
oozing sources, and especially many endorheic saline wetlands and saline depressions.
Some of these wetlands had artisanal salterns until one century ago. Nowadays, these
athalassohaline wetlands —locally named saladas— are hot spots for nature conservation
due to the rare or singular habitats they host. Scientific interest in these wetlands can be
traced back to the 19th century. The data set [14] lists many works describing the physical
conditions, geology, soils, vegetation, and other features of the saladas of Sástago-Bujaraloz
in the Central Ebro Basin, an endorheic complex included in the RAMSAR list. Salada
Agustín is included in this complex. By contrast, salada Farrachuela located in the chesas of
the Barbastro Gypsum Formation, about 70 km NE of salada Agustín (Figure 1), is isolated
and went unnoticed by scientists until recently. This kind of wetland is found in areas with
arid or Mediterranean climates, but is also comparable to wetlands developed in gypsum
karst depressions in cold climates [6].

 

Figure 1. The shaded area is the Ebro Basin, where the two saline wetlands compared, Farrachuela
(FA) and Agustín (AG), are located on gypsiferous substrates.

Protection of the European saladas should be implemented throughout the Natura
2000 network of Special Conservation Areas (SCA). Farrachuela is located within SCA
“ES2410074 Yesos de Barbastro”, but the salada went unnoticed in the data form. Agustín,
located within SCA “ES2430082 Monegros”, has been protected by excluding it and its
surrounding lands from irrigation.

Several investigations, e.g., [15], ratify the traditional knowledge that salinity together
with intermittent flooding are the main conditioners of life in the saladas. On the other hand,
many published reports and investigations on saline wetlands overlook the shortcomings
of some routine concepts and methods unsuited for analyzing gypsum-rich materials, like
the soils or sediments of the saladas studied here.

This paper aims to: (i) compare certain compositional features, especially the contents
of the major ions relevant for life, at two gypseous and hypersaline wetlands located in
the Ebro Basin, NE Spain (Figure 1); and (ii) discuss the adequacy of some common basic
operations in the analytical determinations of the gypseous soils.

Beyond the scientific interest of the above objectives, we emphasize their usefulness
for defining the living conditions of the protected organisms harbored by these wetlands,
and monitoring for undesirable alterations.
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2. Materials and Methods

2.1. The Context of the Wetlands Studied

We compare the isolated wetland Farrachuela (FA) to Agustín (AG) which belongs
to the Sástago-Bujaraloz complex. The two hypersaline wetlands lie about 70 km apart
(Figure 1), and both of them occupy Quaternary depressions formed by dissolution of rocks
rich in gypsum and more soluble salts, with the remaining residuum in their bottoms. A
conspicuous network of surficial cracks appearing after each rain episode demonstrates
the inundation, while the fresh plant residues visible to the naked eye evidence the recent
biological activity in the soil. Contrariwise, the microcrystalline gypsum, i.e., the flour-like
gypsum described elsewhere [4], is not observed within the two saladas studied, but does
occur in the areas surrounding them. This fact mirrors the contrasting soil hydric regime of
the almost permanently dry soils in the Central Ebro Basin against the persistently moist or
wet soils in the enclaved saladas.

The two saladas occupy flat-bottomed valleys, which allows for preferential water
circulation and accumulation. FA stands isolated in the landscape at the outcrops of the
Barbastro Gypsum Formation from the Eocene–Oligocene age [16], whose dipping strata
facilitate deep percolation of rainfall. AG is part of the largest group of saline wetlands in the
Ebro Basin, with a total of 149 after the inventory of [17], a number that is in stark contrast
with the absence of wetlands around FA. The near-horizontal Miocene strata of gypsum and
limestone interbedded with lutites of the Bujaraloz Formation in Monegros [18] allow the
occurrence of karstic depressions aligned along flat-bottomed valleys and low-lying areas
hosting wetlands. Other differentiating factors are the presence of shallow saline aquifers
(aquitards) in Monegros [19], responsible for groundwater discharge into the intermittently
flooded depressions, and the wind regime that influences the excavation and shaping of
the playa lakes in this area.

Winter cereals were cultivated in the watersheds of both saladas (Figures A1 and A2
in the Appendix A) at the time of the samplings, i.e., July 2013 for Farrachuela; and
February, March, April, July, and August of the years 1979–1980 and 1999–2000 for Agustín.
The plants collected (Table 1) are well known as salinity and waterlogging tolerant or as
gypsophilous, and they illustrate the ecology of these wetlands. The floristic composition
has remained stable up to the present.

Table 1. Plants collected in Farrachuela [20] and in Agustín [21].

Farrachuela, 1981 Agustín, 2004 to 2007

Hornungia procumbens (L.) Hayek Aeluropus littoralis (Gouan) Parl.
Helianthemum salicifolium (L.) Mill. Artemisia herba-alba Asso

Frankenia pulverulenta L. Arthrocnemum macrostachyum (Moric.) Moris in Moris and Delponte
Lepidium subulatum L. Atriplex halimus L.

Phragmites australis (Cav.) Trin. ex Steud. Frankenia pulverulenta L.
Gypsophila struthium subsp. hispánica (Willk.) G. López

Farrachuela, 2013 Hordeum marinum Huds.

Suaeda spicata (Willd.) Moq. Kochia prostrata = Bassia prostrata (L.) Beck in Rchb.
Salsola soda L. Limonium sp. pl.

Puccinellia festuciformis (Host) Parl. Puccinellia fasciculata (Torrey) E.P. Bicknell
Frankenia pulverulenta L. Salsola vermiculata L.

Suaeda vera subsp. braun-blanquetii Castrov. and Pedrol

The aerial photographs from 1956 of both saladas attest that irrelevant anthropic inter-
ventions occurred prior to the years of the soil samplings presented in this study. We deem
AG representative of those saladas of Sástago-Bujaraloz that remained in an acceptable state
of conservation, even threatened by flooding with fresh water from forthcoming irrigation.
The land around FA, cleared more than two hundred years ago, bears barley and sparse
olive trees, with no irrigation planned.

8
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2.2. Climate

Climate data were obtained from the nearest automatic weather stations, in Tamarite,
located 11.5 km south of Farrachuela, and Valfarta located 8.5 km NNW of Agustín. Both
stations belong to the Spanish SIAR network. For the period 2004–2021, the mean annual
rainfall in the Farrachuela area was 350 mm, the mean temperature was 14 ◦C, and the
mean evapotranspiration rate was 1041 mm. The same mean temperature and precipita-
tion of 359 mm were obtained in Agustín area for the same period, with a higher mean
evapotranspiration rate (1258 mm).

Using the terminology of the Soil Survey Staff [22] and the data from the two weather
observatories, the soil moisture regime at both saladas is aquic and the most likely soil
temperature regimes are mesic for Farrachuela and thermic for Agustín.

2.3. Sampling

We collected soil samples by hand augering down to a depth of 2 m in Farrachuela, and
until reaching an impenetrable layer in Agustín. All the samples were examined visually,
including with a magnifying glass, and by touch both in the field and in the laboratory.
Then, the samples were air-dried and passed through a 2 mm sieving mill to obtain the
fine earth fraction, i.e., <2 mm Ø, used for further analyses. Table 2 shows details of the
augerings, and the number of analyses.

Table 2. Location and size of the two wetlands and data of their sampling.

Name of the Salada Farrachuela Agustín

Sheet name of the National Topographic Map of Spain at 1:25 000 scale Tamarite Bujaraloz
Geographical coordinates (N, E) 41.8845, 0.3742 41.4311, −0.1091

Surface area, ha 3.4 68.1
Elevation, meters above sea level 400 329

Number of augerings 4 24
Augering mean deep, cm 200 63

Number of soil samples for chemical analyses 32 133

2.4. Analyses

The official methods of the Agricultural Ministry of Spain [23] provided the methodol-
ogy for the chemical determinations. Calcium carbonate (CaCO3) equivalent (CCE) was
measured by gasometry, and gypsum was titrated as per [24].

All the determinations of electrical conductivity are reported as dS m−1 at 25 ◦C. We
measured the electrical conductivity (EC1:5) of the aqueous extracts at an earth-to-water
ratio weight:weight of 1:5. Moreover, we prepared water-saturated pastes of the fine
earth [25], recording the water saturation percentage (SP, %) and measuring the electrical
conductivity of the extract (ECe), and its pH (pHe). The major ions in the saturation extracts
were determined using the classical methods specified in [20].

We report the ionic contents (ionic-C, mmolc L−1) as the sum of cations + anions di-
vided by two in order to counterbalance the deviations to electroneutrality, frequent when
analyzing highly concentrated solutions. The sodium adsorption ratio SAR (mmolc L−1)0.5

is calculated from the concentrations in mmolc L−1 of Na+, Ca2+, and Mg2+ by the expres-
sion SAR = Na+/[(Ca2+ + Mg2+)/2]0.5.

2.5. Statistical Procedures

We display and analyze most of our data through graphical methods, representing the
measures of exploratory data analysis by means of the intuitive boxplots proposed by [26].
Our boxplots, drawn following [27], include the 95% confidence intervals for the medians
estimated as per [28]. Figure A3 in Appendix A sketches the meanings of all the parts of
the boxplot diagrams presented in this paper.
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We calculate the regression lines by the Ordinary Least Squares (OLS) method with
p = 0.05, and we check their equations with a non-parametric simple regression using
Theil’s method [29,30] in order to cope with the habitual non-Gaussian distributions of our
data, the frequent outliers, and the limited effectiveness of some data batches.

3. Results and Discussion

3.1. Saturation Percentages

The mean SP in the 16 samples from FA with this determination is 59.0%, far from
the 39.3% in the 133 samples from AG. The other statistics and the distributions of SP
also are very distinct between the two saladas (Figure 2). The use of SP to compare soil
characteristics is sounder than the classical particle size distribution (PSD) determinations,
which, in some materials, produce artifactual results, as argued in Section 3.9.
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Figure 2. Distribution and main statistics of SP in Farrachuela and Agustín. The red squares mark
the means; for the meaning of all parts, see Figure A3.

The saturated paste extraction approximates the field capacity of the soil much better
than other, more diluted, soil-to-water ratios, while making water extraction feasible with
simple equipment [31,32]. Thus, the extract of the saturated paste is broadly used [22,23,25]
to assess the salt tolerance of plants by measuring the electrical conductivity of the extract
(ECe). Also, eventually, its ionic composition is determined to appraise the effects of
individual ions or their co-occurrence, as is the case of the structural stability of the soil.
Many studies of soil salinity report SP because of its interest in understanding the hydric
behavior of the soil. The simplicity of the preparation of the saturated paste, based on the
skill of the operator, and the saturation point determined by feel and experience, together
with the use of few—if any—sophisticated laboratory tools, probably contribute to SP being
overlooked in some studies.

However, even if the composition of saturated extracts was not to be analyzed, the SP
is worth recording because SP can be a surrogate for textural composition, or “a quantitative
expression of soil texture” as noted by [33], and represents key functional soil properties,
like the available water capacity [34]. This is an old issue in soil science when “dealing with
single-valued expressions instead of trying to interpret the complex series of numbers repre-
sented by the mechanical analysis” [35], as in the class–moisture equivalent diagram of [36].
When dealing with soil salinity, SP has been used in recent attempts [37] at estimating ECe
from extracts at fixed dilution ratios. Also, SP is a relevant soil characteristic for precision
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agriculture, as noted in [38], with SP performing better than organic matter, CaCO3, ECe,
and pH for yield prediction. Furthermore, SP can help to check consistency over time in
sample preparation [32], which we also did successfully to compare two operators [39].

The surrogate role of SP for texture is especially useful in gypsum-rich soils where
the standard methods for PSD determination are unsuitable [4,40] and many substitute
methods are unfeasible in routine labs. In [8], hand textural class estimates were used to
check the proposed method for PSD determination. After the above considerations, we did
not determine PSD, and we claim SP as a strong indicator of hydric behavior and a reliable
surrogate for textural composition [40–42].

3.2. Major Mineral Components

The boxplots of calcium carbonate equivalent (CCE) and gypsum for each salada
(Figure 3) show their distribution along the samples, and the prominence of both compo-
nents. The mean percent rounded to the nearest integer for FA and AG are 24% and 10% for
CCE while for gypsum they are 30% and 62%, respectively. Then, the remaining material,
i.e., silica and silicates—including the mineralogical clays—plus organic components is
<50% on average. These compositions agree with the contrasting average SP of 59% in
FA, and 39% in AG (Figure 2), since gypsum and calcium carbonate have a much lower
water-holding capacity than the other minority components, like clay and organic matter.
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Figure 3. Boxplots of CCE and gypsum in the analyzed samples from Farrachuela and Agustín, with
the number (n) of samples computed. The red squares mark the means; for the meaning of all parts,
see Figure A3.

The abundance of gypsum in the soils and geological materials governs the chemistry
of the soil solution and the exchange complex due to their saturation in Ca2+. The contents
of gypsum (Figure 3) in the samples analyzed—with a minimum of 12.2% in FA and 9.5%
in AG—largely guarantee Ca2+ saturation, preventing clay dispersion.

3.3. Soil Salinity

In the present study, a common visual symptom of soil salinity is the white bright
efflorescences mostly produced by evapoconcentration during dry periods at the bottoms
and margins of both FA and AG. These efflorescences are often composed mainly of crystals
of gypsum and more soluble salts, as evidenced in the field by naked-eye and hand-lens
observations, as well as by taste. The halophilous vegetation also attests the soil salinity.
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The visual symptoms do not quantify the salt stock in the soils. Such stock is a key
indicator of the ecological status of the soil, which can be tracked by recording the changes
in the salt content through time. To establish this stock, the soil salt must be extracted at
fixed-ratio dilution, higher than the saturated paste [25,31] as is evident for hypersaline
soils [43]. To appraise the salt stock of the soil, we use the easy, unsophisticated, and
reproducible determinations of EC1:5 [25]. Such attributes make EC1:5 well-suited for
future comparative assessments.

The mean of EC1:5 in 32 extracts of FA was 7.18 dS m−1, versus 8.78 dS m−1 in
the 72 extracts from AG for which EC1:5 was analyzed (Figure 4). We consider these
conductivities a proxy for the total content of highly soluble salts that can allow tracking
the evolution of the soil’s salt stock. The 1.68 dS m−1 of the difference between the means
of EC1:5 seems moderate. However, AG is a more salt-stressing environment than FA, as
shown by the vegetation (Table 1) and by the mean ECe of 37.04 dS m−1 for FA against
68.58 dS m−1 for AG. The difference is more pronounced than in EC1:5, and the same is
true for the other statistics graphed in Figure 4. The longer range of the distributions in
AG seems sound if considering the 20-fold surface area of AG versus FA (Table 2), which
allows for more variable conditions in AG.
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Figure 4. Boxplots of EC1:5 and ECe for the two saladas compared. The red squares mark the means;
for the meaning of all parts, see Figure A3.

The much higher values of EC1:5 and ECe in AG than in FA (Figure 4) agree with
the species of halophytes recorded at both saladas (Table 1). The absence of Arthrocnemum
macrostachyum in FA is relevant because this plant lives in the more often inundated areas
of AG where ECe is >80 dS m−1, a soil salinity not reached in FA. The difference is also
pronounced if only the upper soil layer is considered, with about 37 dS m−1 in FA versus
85 dS m−1 in AG. Accordingly, A. macrostachyum, the most salinity perennial tolerant plant,
lives in AG and not in FA.

The scatterplot of ECe on EC1:5 (Figure 5) does not show the inflection associated
with gypsum [43] because all samples have EC > 2.25 dS m−1 in both EC1:5 and ECe. The
wide scattering of the values—seen in the plot—hampers the estimation of ECe from the
plain EC1:5. If desired, estimates of ECe can be made from EC1:5 by the method in [44]. In
this article, we apply the easy transformation of EC1:5 by SP as per [45], i.e., by calculating
regressions of the shape ECe = a + b × EC1:5 × (500/SP)q with empirical powers of q. The
best correlation coefficients (Table A1, in Appendix A) were 0.863 for FA, and 0.928 for AG.
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Figure 5. Scatterplot of ECe on EC1:5 for the two saladas.

For the present article, the equations allowed us to check the coherence between ECe
and EC1:5. The future studies of these wetlands will have to decide whether or not to
estimate ECe from EC1:5 with this kind of equation. The reason is that ECe is the standard
indicator of saline stress on plants, used to express a plant’s tolerance to soil salinity, a
key feature for crop feasibility [32]. The equations in Table A1 allowed us to check the
consistency between ECe and EC1:5 and will help to decide in future studies of these
wetlands whether or not to estimate ECe from EC1:5 with these kinds of equations.

3.4. Soil Classification

The inspection of the auger samples and their analyses for ECe and gypsum content
enabled us to identify the diagnostic horizons defined by the Soil Survey Staff [22] without
the need to open a trench, a much more soil disturbing procedure. According to the data of
the ECe and gypsum content, and following step-by-step the statements in [22], the soils
of FA and AG have the Salic and Gypsic horizon in conjunction. Thus, the soils of both
wetlands are Gypsic Aquisalids.

3.5. Ionic Contents of the Saturation Extracts

Bicarbonate, titrated in all the extracts, was always below the limits of detection.
Potassium contents are irrelevant. The pairs of boxplot diagrams in Figure 6 compare the
content of each of the ions Ca2+, Mg2+, Na+, HCO3

−, SO4
2−, and Cl− in the saturation

extracts of FA to AG. The range of all the distributions is broader for AG, which also
happens for the interquartile ranges.

Of note are: (i) the greater surface area of AG and the greater number of samples than
in FA, and (ii) the greater surface area of AG allowing for more diverse hydric conditions
including the redistribution of water by the wind. These conditions are mirrored by the
occurrence of the highly halophilic A. macrostachyum in AG. Both saladas are similar with
regard to the predominance of SO4

2− and Mg2+, but the concentrations of Cl− and Na+ are
significantly lower in Farrachuela, hence its lower salinity.

Figure 6 shows that the median concentrations are significantly lower in FA than in
AG for the six ions in question, but the difference is insignificant for sulfate. The mean
concentrations are also lower in FA than in AG for the ions analyzed. This happens
when computing all the analyses from AG extracts (Figure 6), and also if computing only
the extracts with the six ions analyzed (Table 3). This Table also shows numerically the
differences between the mean contents of each individual ion in the two saladas. The
greatest difference occurs in Cl−, followed by Na+ and SO4

2−, and then by Mg2+, with 594,
410, 317, and 224 mmolc L−1, respectively. We deem irrelevant the differences in Ca2+ and
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HCO3
−. The differences between the two wetlands for Mg2+, Na+, SO4

2−, and Cl− agree
with their distinct physical characteristics outlined in the second paragraph of Section 2.1.
Of note is the detection of magnesium by taste in the efflorescences of AG, agreeing with
the boxplot in Figure 6. The abundance of magnesium should be due to evapoconcentration
from the parental rocks of gypsum that contain this element.
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Figure 6. Pairs of boxplots for the six main ions in all the analyzed saturation extracts from Farrachuela
(FA) and Agustín (AG). The red squares mark the means, for the meaning of all parts, see Figure A3.

Table 3. Mean contents (mmolc L−1) of six major ions for: (a) the 16 saturation extracts from FA, (b)
all the analytical determinations from AG as shown in Figure 6, (c) differences between these means,
(d) means of the 76 extracts from AG with the six ions titrated, and (e) differences between the means
of all determinations from AG and the means of FA.

Ca2+ Mg2+ Na+ Cl− SO4
2− HCO3

−

mmolc L−1

(a) Farrachuela 18.9 492.3 113.0 40.7 503.1 2.2
(b) all determinations from Agustín * 29.0 734.0 546.4 646.4 820.6 16.7

(c) differences between saladas, (b) minus (a) 10.1 241.7 433.4 605.7 317.5 14.5

(d) Agustín, only the 76 samples with the six ions titrated 27.5 716.7 523.4 634.5 820.6 3.0
(e) differences, b minus d 1.5 17.3 23.0 11.9 --- 13.7

* The number of determinations in AG were 132 for Ca2+, Na+, and Cl−; 124 for Mg2+; and 76 for SO4
2−.

Table 3 also shows the consistency of the results obtained by computing all the avail-
able titrations or only the ones from the samples with the six ions analyzed. This feature is
interesting for long-term tracking, when the homogeneity of the number of ions analyzed
along successive campaigns cannot be guaranteed.
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3.6. SAR and pH

Due to their salinity and frequent inundation, the saladas are either bald or seasonally
populated by halophytes, and are unusable for the cash crops feasible in the Ebro Basin.
Notwithstanding, we present (Table 4) the statistics of SAR and pH of the saturation extracts
in both wetlands, showing their significant difference. The values of SAR in Farrachuela are
well below the classical threshold of SAR = 13 for clay dispersion in soils. By contrast, the
values of SAR in Agustín are largely in excess of 13, denoting the unfeasibility of cash crops.
The pH values are significantly different between the two wetlands (Table 4); however, pH
by itself should not be a problem for most plants, as it ranges from 7.28 to 8.44 in the two
saladas. These basic pH values are allowable for most plants. For the infiltration behavior,
SAR must be considered jointly with pH and salinity [45].

Table 4. Statistics of SAR and pH in the saturation extracts of samples from Farrachuela (FA) and
Agustín (AG).

Number of
Analyzed Samples

Minimum Maximum Median
95% Confidence Interval for The

Median

SAR (mmolc/L)0.5

FA 16 6.70 7.80 7.00 6.80 7.30
AG 124 10.41 45.08 27.96 26.80 28.94

pH

FA 16 7.92 8.44 8.26 8.17 8.36
AG 52 7.28 8.33 7.92 7.71 8.00

For SAR, it does not make sense to apply the commonly used threshold
SAR < 13 (mmolc L−1)0.5 to judge the sustainability of irrigation, since for most soil sam-
ples the ECe is >>20 dS m−1 (Table 4). Then, the SAR/EC ratios do not affect the clay
dispersion and no associated imperviousness would happen [45,46]. Moreover, the contents
of mineralogical clay are low, as the sum of the means of gypsum and calcium carbonate
equivalent are 54% for Farrachuela, and 72% for Agustín. The mineralogical clays are thus
in the minority, reducing the value of SAR to predict the hydrological behavior of these
gypsum-rich soils often saturated in water. More relevant to the hydraulic behavior is the
horizontal microstructure in FA and AG, similar to the layering described in other saladas
in Monegros.

3.7. Relationship between Ionic Concentration and ECe

Figure 7A shows the concordance between both saladas regarding the relation of ionic
contents (ionic-C, mmolc L−1) in the extracts, as defined in Section 2.4., versus ECe. The
tusk-shaped distribution in this figure illustrates the increase in the ratio of ions to ECe for
the high ionic concentrations, due to the occurrence of neutral and other ionic pairs [47].
The dilution of the more concentrated extracts, required for the analytical methods, also
contributes to the scattering of values in the high concentrations.

For the two saladas, the distributions approach a straight line after transforming
both variables using decimal logarithms (Figure 7B), as proposed in [48]. This reinforces
the consistency of the data. Table A2 in the Appendix A shows the regression equations
obtained from these transformations.

3.8. Relationship between the Concentration of Individual Ions and ECe

The saturation extracts of AG showed a good correlation coefficient (R) of the ions
between them as well as between the ECe and the ions (Table 5). These coefficients in AG
are higher than their counterparts in FA, except the correlation of ECe with SO4

2−, which is
slightly higher in FA than in AG.
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Figure 7. (A) Scatterplot of the ionic contents over ECe in the saturation extracts; (B) Log–log scatter
plot of the same parameters.

Table 5. Correlation coefficients between ECe and the main ions, and between them. The p-value is <
0.001, except if non-significance (n.s.) is indicated.

ECe Mg2+ Na+ SO4
2−

Farrachuela
Mg2+ 0.822
Na+ 0.792 0.815

SO4
2− 0.815 0.840 n.s.

Cl− n.s. n.s. n.s. n.s.
Agustín

Mg2+ 0.913
Na+ 0.936 0.901

SO4
2− 0.794 0.907 0.792

Cl− 0.945 0.888 0.957 0.723

For the saturation extracts of FA, the correlation of ECe was significant (p < 0.001) with
Mg2+, Na+, and SO4

2−, but not with Cl−. By contrast, in AG the correlation ECe/Cl− was
the highest, as shown in Table 5.

The coefficients of determination (R2) attained by the OLS regression of the average
ionic content versus ECe (Table 5) are the same as when using Theil calculations, while
the standard errors using the OLS regression are smaller than with Theil regressions. The
OLS method is thus recommended for estimating the ionic content from the ECe in the
saturation extracts of both saladas within the ranges indicated in Table 6. These equations
could help to streamline the environmental tracking of the saladas.
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Table 6. Regression equations of the shape “ionic-C = a + b × ECe” with the coefficient of determi-
nation (R2, %) and standard error (S) calculated for 16 and 76 soil samples from Farrachuela and
Agustín, respectively. The methods of calculation are ordinary least squares (OLS), and Theil using
the median of the interceptors.

Method a b
R2 S Range of Ionic-C

% mmolc L−1

Farrachuela
OLS −213.1 21.59 76.2 29.60

502.4 to 705.2Theil −200.4 21.33 76.2 32.71

Agustín OLS −620.6 30.30 88.8 218.8
147.8 to 2876.0Theil −629.6 29.50 88.8 281.1

3.9. The Specificity in the Analytics of Gypseous Materials

In fresh soil samples of the gypseous horizons of the soils studied, the abundant
gypsum crystals are bound together by fine material, the strength of which increases as
the moisture content decreases. This is a well-known characteristic of many soils [49]. The
coarse gypsum crystals are easily separated, intact, using the fingers when the sample is
wet, but when air dried, these crystals break easily —mostly along cleavage plains— before
becoming detached from the mass. The breaking happens even if a dry soil sample is
gently crushed between a wooden board and a wooden rolling pin, and, of course, in
mechanical shakers and sieving mills, until they eventually pass through the sieve. Milling
may result in the entire sample passing through the 2mm sieve, making the time at which
the operation is interrupted arbitrary. For this reason, the content of coarse gypsum crystals
and other gypsum fragments must be appraised before drying and sieving in the lab.

In gypsum-rich soils, the low hardness and cohesion of the gypsum crystals lessens the
value and significance of the particle size separates obtained after milling. Moreover, the
abundance of gypsum and its solubility (≈2.4 g L−1) immediately cause the sedimentation
of clays when being dispersed for particle size separations [4,8]. The judgments about other
methods for PSD determinations based on X–ray fluorescence, e.g., [50] or its combination
with FT-NIR spectroscopy, e.g., [51], or with Vis-NIR and pXRF [52] are unsound if these
methods are calibrated against either pipette or wet sieving and hydrometer, which do
not work in gypseous soils. The method proposed by [8], based on sonication in a 7:3
ethanol to water solution—a procedure available in few labs—allows dispersion of fine
earth, but the significance of the coarse and fine earth remains arguable in the soils studied.
In the common circumstances of gypsum-rich soils, the lab determination of PSD should
not be taken as representing the behavior of the undisturbed soil. These shortcomings led
to coining two terms in lieu of texture: “Coarse Gypsum Material” and “Fine Gypsum
Material” [49].

The issues discussed in the above two paragraphs indicate the non-sense of using
some routine analytical methods with gypseous sediments and soils. Then, [4] proposed
the elimination of PSD for assessing the hydric behavior of gypseous soils. Specifically, we
support considering saturation percentage as a sound and useful surrogate for textural
composition. Accordingly, we did not separate the clay fraction, whose determination
would also be impractical, cumbersome and probably irrelevant for future monitoring.

4. Conclusions

The article provides a snapshot of the main limiters to life in two inland saline marshes.
We hope it provides a baseline for protecting of these shelters of biodiversity. The intuitive
graphical procedures used in this article allow for a quick and detailed statistical compari-
son of the soil characteristics that are decisive for life in the saline wetlands studied. The
features compared are: (i) contents of gypsum and calcium carbonate; (ii) soil salinity as
EC1:5; (iii) saturation percentage; and (iv) pH, electrical conductivity and ionic contents in
the saturation extracts. The data will constitute a baseline —the only one at present— for
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tracking possible compositional changes in the two saladas studied. The calculation meth-
ods and graphical presentation are easily transposable to other saline wetlands, and may
allow for multiple comparisons in the future.

The characteristics studied herein ought to be contrasted with other saline wetlands
in order to delimit the environmental conditions for the life of specific plants, microbes,
or other organisms. Hopefully, the correlations presented in this article will support the
management and conservation measures to be implemented by environmental authorities
in charge of the wetlands.

In situ recording of variable soil parameters is advisable. For some of them, the
technology is available and is continuously improving. However, the implementation of
recording seems unlikely in the near future due to the limited capacity of the conservation
agencies responsible.

The misuse of analytical techniques that are wrong or unsound for gypsum-rich
soils, like the ones discussed in the present article, is a key point to be: (i) avoided when
conducting future analyses, and (ii) checked when scrutinizing heritage data.
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Appendix A

 

Figure A1. Farrachuela, 21 July 2013. In the foreground the gypsophilous vegetation, then a plowed
field and the salada bottom, partially inundated. In the background, the gyprock outcrops.
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Figure A2. Salada Agustín, 12 October 1979 at 4p.m. In the foreground, a plowed field, followed by
vegetation of Suaeda vera. Behind it the area covered by Arthrocnemum macrostachyum, often flooded,
around the bottom occupied by water.

Outlier

(Q3)
Third quartile

(Q1)
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Mean

of the median
Confidence interval

Q3 + 1.5 (Q3-Q1)
Highest value within the upper limit

Q1 - 1.5 (Q3-Q1)
Lowest value within the lower limit

Figure A3. Sketch of a boxplot.

Table A1. Pearson’s correlation coefficients (R) obtained with OLS regression equations of the shape
ECe = a + b × EC1:5 × (500/SP)q for several arbitrary values of q.

Farrachuela Agustín

q R

0 0.291 0.360
0.50 0.862 0.887
0.55 0.863 0.902
0.60 0.857 0.913
0.65 0.848 0.920
0.70 0.837 0.925
0.80 0.812 0.928
0.90 0.787 0.925

1 0.763 0.919
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Table A2. Regression equations of the shape log ionic-C = a + b × log ECe calculated by OLS and Theil
methods for 16 and 76 soil samples from Farrachuela and Agustín, respectively.

Salada Method a b R2, %

Farrachuela
OLS 0.659 1.34 75.4
Theil 0.701 1.32 75.4

Agustín OLS 0.541 1.42 95.5
Theil 0.302 1.54 95.5
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Abstract: In an attempt to boost the potential ecological viability of wetlands, this study aimed to
discover the relationship between soil salinity and vegetation composition in a quasi-pristine saline
pond, “El Hito Lagoon”. This wetland is situated in the largest continuous natural semi-arid steppe
land of western Europe (specifically in Castilla La Mancha, Central Spain). Several soil profiles and
a series of surface samples (0–10 cm) extracted from a systematic network throughout the saline
pond were described, sampled, and analyzed. The most significant results included the detection of
elevated levels of soil salinity, with distinctive sub-areas of extreme elevated surface salinity where
the pH reading peaked at 9.89 and the electrical conductivity was higher than 40 (dS/m). The very
high content of total available P displayed quite an irregular scatter within the soil profile. Specifically,
the range oscillated between 8.57 mg/kg and 388.1 mg/kg, several samples having values greater
than 100 mg/kg. An aspect that the abundant presence of Salsola soda, a plant frequently found
growing in nutrient-rich wetlands, was able to confirm.

Keywords: semi-arid environment; Natura 2000 network; halophytic flora; salt stress; soil salinity;
ecological environment; basin filling

1. Introduction

In semi-arid and arid regions, soil salinization and environmental problems go hand
in hand, due to the severe effects of salinity on agricultural productivity and long-term
sustainable development. Indeed, soil salinization normally produces severe effects on soil
quality through changes in soil structure and chemistry, soil biology, and crop productivity
and yield. Under such conditions, plants such as halophytes can survive and complete their
life cycle in the presence of significant concentrations of soluble salts. So, it is generally
accepted that identifying saline soils is of great importance for protecting land resources
and ecological niches and for sustainable agricultural development.

The issue of soil salinity is a result of both natural and anthropogenic causes. Salts are
naturally present in soil due to the weathering of parent minerals.

Although the soil-science community has generated abundant information on the
current state of soil salinity [1–5], the idea still persists that salt-affected soils of high salinity
are of low quality. Nevertheless, wetlands are among the most productive ecosystems on
Earth and provide various key ecosystem services for humans and other flora and fauna.
Hence, there exists a need for appropriate conservation policies and a more comprehensive
understanding of both wetland ecosystem services (especially saline ecosystems) and the
drivers behind their change.

Globally speaking, about 900 million ha of soil in over 100 countries has been affected
by salinization or sodification [6–8]. With that global perspective in mind, soil salinization
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management is vital to the achievement of “Zero Hunger” (SDG2) and “Life on Land”
(SDG15) among other sustainable development goals.

Generally, saline wetlands are important for the conservation of many endemic and
rare plant species and the migration of water birds, its salinity being a result of both
natural and anthropogenic causes [9–11] (Nachshon, 2018; Corwin, 2021; Stavi et al., 2021).
Halophytes are plants that can survive in saline wetlands where the salt concentration
exceeds 200 mM of NaCl (∼20 dS m−1) [12] (Flowers and T. D. Colmer). When the soil
has a shallow water table, then the salinity of the soil solution will be strongly affected
by the salinity of the groundwater. In this context, it is worth asking what are the main
soils’ properties as well as their edaphic and biogeochemical processes in geographic and
geological areas such as the El Hito saline wetland. The aim is to assess whether the use of
autochthonous species from saline environments may have advantages due to their better
tolerance to edaphoclimatic conditions, besides having several uses.

Salinity is a continuous and a complex global problem that cannot be solved simply.
And as is known, the salinity problem is increasing rapidly throughout the world. Hence,
in this study (necessary for monitoring this specific kind of wetland), the aim is to analyze
the compositional features, especially the contents of the main elements and ions relevant
to understanding the source of salinization and its spatial variability, and to design a
successful plant community. The specific questions concerned the following three points:
(1) whether different soil compositions will emerge as the primary variables for explaining
the presence and abundance of sub-communities within the saline pond; (2) whether there
are consistent patterns across surface horizon soil salinity levels; (3) which factors are
more than any other exerting a substantial influence on the structure of abundant and rare
sub-communities. With that in mind, the following specific objectives were addressed:
(1) to report relevant features such as pH, electrical conductivity, and other soil properties
of a hypersaline wetland located in the municipalities of El Hito-Montalbo; (2) to identify
and to evaluate the soil salinity of the study site with special emphasis on the relation
between soil salinity and plants; (3) to relate those parameters to the different types of
natural plants, in order to detect the main problems concerning salinity versus halophytes,
while investigating new proposals for conservation–rehabilitation measures.

2. Materials and Methods

2.1. Description of the Study Area

The study area is El Hito Pond (Cuenca, Spain), located between 39◦52′28′′ to 2◦42′06′′
North latitude and 39◦51′08′′ to 2◦40′56′′ South latitude (Figure 1). It is an endorheic,
palustral, ephemeral depression, with little topographic contrast, and a floodable lagoon
basin with an estimated volume of around 250–573 ha [13–15]. Dry and hot summer and
cold winter seasons are characterized by low levels of irregular precipitation, in which
potential evapotranspiration exceeds precipitation, with such high rates of evaporation
causing salts to accumulate on the soil surface. Mean annual precipitation stands at 587 mm
and the average temperature at 11.7 ◦C. The relief of the surrounding area is largely flat
and sometimes undulating, where the main soil types are Cambisols, Luvisols, Calcisols,
Regosols, and Leptsols [16].

The dominant species of the vegetation are all salt-tolerant. Fortunately, there is
detailed information on saline continental Mediterranean wetlands such as El Hito and their
plant characteristics [15,17–21]. Figures 2 and 3 show photographs of various halophilic
plant communities colonizing El Hito Pond.
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Figure 1. Orthophoto of the study area in Castilla La Mancha at (A) summer time; (B) winter time.

 

Figure 2. Puccinellia festuciformis formations now colonize extensive areas of the basin, as the pond
waters recede over increasingly shorter periods.

Among other species found in this wetland and of great biogeographical interest is
the endemic presence of Phanerogam Limonium soboliferum around the lagoon. Likewise,
numerous insects, including the orthopteroid Roseliana oporina, known as the “Cuenca
Meadow Bush-Cricket”, and the small crustacean Branchinecta orientalis, now threatened
with extinction, are also prevalent in the same location.

Regarding the conservation figures, we can mention that the natural area around El
Hito lagoon is included in the Natura 2000 Network (ZEPA-LIC-ZEC ES0000161) and in
the Ramsar List of Wetlands of International Importance.
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Figure 3. Salsola soda and Salicornia ramosissima communities at the edges of the flooded area. In
orange, Puccinellia festuciformis formations.

2.2. Soil Samples Collected

Soil selection for sampling was dependent on certain soil-related features, such as
drainage, presence or absence of salt crust at the soil surface, and especially vegetation type
and density (Figure 4). For example, during sampling, the epsomite efflorescences appeared
in the form of fibrous or hairlike acicular crust, while the structure of the hexahydrite
efflorescences tended to be columnar. The soil profiles were described and sampled, having
previously been opened up with a backhoe machine (Figure 5). Both the soil profiles and
the surface sampling points were geo-referenced using Global Positioning System (GPS)
coordinates. Probably, the most striking visual expressions of salinity at El Hito are, on one
hand, the efflorescence on the soil surface (in dry periods) and, on the other, the halophilous
vegetation (Figure 4). The samples were bagged, properly labelled, and transported to the
laboratory for analysis. In total, 49 final soil samples were collected, consisting of 18 from
several soil profiles and 31 from surface soil horizons.

 

Figure 4. Cont.
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Figure 4. Criteria for sampling: (A) grassland interspersed with formations of Lygeum spartum,
Puccinellia festuciformis, and Elymus curvifolius; (B) bare soil with dry remnants of formations of
Puccinellia festuciformis; (C) Puccinellia festuciformis; (D) Salsola soda, Hordeum marinum, and Puccinellia
festuciformis; (E) shrinkage cracks with a few examples of Salsola soda; (F) grassland of Puccinellia
festuciformis and annual plants of nitrified soils; (G) Lygeum spartum formations; (H) saline crust in
bare soil; (I) sparse grassland of Salicornia ramossisima; (J) grassland with Salsola soda and Salicornia
ramosissima.

27



Land 2024, 13, 449

  

Figure 5. All soil profiles for description and sampling purposes were dug with a backhoe machine.

2.3. Soil Sample Analysis

Soil samples were dried and sieved at 2 mm (separating out thick fragments and
roots from the remainder of the material). The same samples were then divided into two
parts: one to determine the general physico-chemical properties of the soil; the other to
determine the elemental spectrum via X-ray fluorescence (XRF) spectroscopy. Likewise, the
physico-chemical properties were determined with the techniques listed in Table 1.

Table 1. Methods used for the soil sample analysis.

Parameter Method References

Texture Touch [22]

pH pH meter measurements of 1:2.5 soil/water
suspension [23]

Electric conductivity (EC) Conductivity meter measurements of 1:5
soil/water suspension [24]

CaCO3 Bernard method with a calcimeter

Organic matter (OM) Dichromate digestion (Walkley and Black) [25]

CEC Percolation with ammonium acetate solution
at pH = 7 [26]

P The Olsen method [27]

N The Kjeldahl distillation method [28]

Ca2+, Mg2+, Na+, K+ Inductively coupled plasma optical emission
spectrometry (ICP-OES)

SO4
2−, Cl− Ion chromatography

Mineralogy X-ray diffraction

Elements X-ray fluorescence spectrometers

2.4. Statistical Analysis

Statistical analysis was performed with the Statistical Product and Service Solutions
(SPSS) 19.0 software package for Windows, SPSS Inc., IL, USA, with the institutional license
of the Fundación Global Nature (Spain). The following analyses were performed: mean,
minimum and maximum, median, standard deviation (SD), coefficient of variation (CV),
and kurtosis of pH and EC results.

3. Results

All the pedons under study were deep and had no shallow water table. The soil
profiling and field sampling results were in morphological terms monotonous; the mor-
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phology is of the Az-C type, with neither cambic (Bw) horizons nor, of course, argillic
(Bt) horizons detected, typical of the nearby environment that borders the lagoon [29].
Indeed, the pedons showed similar morphological characteristics emanating from similar
ecological conditions and modes of formation. No redoximorphic features (iron mottle due
to reductive/waterlogged soil conditions) were detected.

In general, the structure was weak to moderate, in subangular blocks alternating with
massive clods and with a single grain (with no structure); the weak structure or its complete
absence could be attributed to the presence of Na+ that acted as a dispersant, slowing down
hydraulic conductivity [26,27,30,31]. What was really happening, as previously explained
by He et al. [32], was that the suspended particles had the potential to clog the soil pores
and consequently to diminish the capillary effects within the soil. Indeed, little porosity
was detected (except in some sandier horizons) and no stoniness in each horizon of the
soil profiles. Dispersal of wet, clay particles within the soil was observed, covering the
macropores of the soil surface. The consequence was that root growth through the soil and
surface crust was blocked, restricting plant emergence and thereby limiting root growth in
salt-affected soils.

All the above contributed to the definition of “pedogenon” characteristics. Indeed,
following the concept of “genon”, defined by Boulaine [33] as “a soil volume comprising all
the pedons that have the same structure, the same characteristics and result from the same
pedogenesis”, the concept of “soil genoforms” has more recently appeared in the work of
Rossiter and Bouma [34], understood as “soil classes”, identified in the soil classification
system used for detailed soil mapping of local areas. Following the classification of soil
classes, the term “pedogenon” emerged, proposed as a conceptual soil taxon derived
from a set of quantitative state variables representing the soil-forming factors [35,36]. If
each pedogenon is characterized by a soil type formed under a dominant parent material
occupying a unique position in the landscape, then at El Hito there is a characteristic
pedogenon that can, finally, be used as a benchmark soil.

Table 2 presents the physico-chemical parameters of El Hito pedogenon. The general
morphology is the Az-C1-C1 type (and therefore poorly developed), where the A horizon
is resting upon C material. Referring to the Keys to Soil Taxonomy [37] (Soil Survey Staff,
2014), the pedogenon was classified as Aridisols, with Great group Aquisalids, correlating
to Solonchaks of the IUSS Working Group WRB [16].

Table 2. Physico-chemical properties of the pedogenon in the study area.

Pedogenon Horizon pH (H2O)
EC

(dS/m)
OC
(%)

N
(%)

C/N P (mg/kg)
CaCO3

(%)

El Hito

Az 9.06 10.38 1.10 0.16 1.9 155.31 10.5

C1 8.75 6.19 0.25 0.04 6.3 95.62 11.6

C2 8.69 8.12 0.23 0.03 7.6 41.31 4.8

With the above in mind, the pedogenon of El Hito lagoon can be characterized by
its dominant parent materials, silt, gypsum, and margogypsum, nurturing its natural
vegetation of Mediterranean salt meadows and grasslands growing on flat terrain. The soil
texture is heavy (clay silty), and the predominant soil color is whitish to greyish. Cracks,
crust, and efflorescence appear in the dry season. The soil class is Typic Aquilasids [33,37].
Soil pH peaked at a value of 9.06, which is highly alkaline in nature. Electrical conductivity
(EC1:5) was recorded at a value of 10.38 dS/m.

The dominant cations within salt-affected soils are sodium (Na+), calcium (Ca2+),
magnesium (Mg2+), and potassium (K+), and the dominant anions are chloride (Cl−),
sulphate (SO4

2−), carbonate (CO3
2−), bicarbonate (HCO−), and nitrates (NO3

−) [24]. Its
contents are high in the case study (Table 3). Based on the above values, it can be assumed
that Mg2+ and sometimes Ca2+ dominates, followed by Na+ and finally K+. Regarding
the anions, sulphate and chloride mainly dominate and, to a lesser extent, carbonate and
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bicarbonate; in that way, although carbonate concentration may not be negligible, Na+ is
probably responsible for the high pH values. In other words, sodium bicarbonate remains
within the water, producing trace amounts of soda that raises the pH.

Table 3. Results of the analyses of the paste saturation extract.

Pedogenon Horizon
Ca2+ Mg2+ Na+ K+ SO4

2− Cl− CO3H− CO3
2−

mg/kg

El Hito

Az 5621 6800 930 754 32,652 7110 138 147

C1 3627 5250 1150 503 18,017 7503 96 101

C2 3559 6350 1275 450 25,125 9750 106 113

Biomass accumulation is limited in many saline wetlands and soil organic matter is
unsurprisingly also limited at El Hito Pond. The high temperatures within the zone cause
fresh residual vegetation to decompose, which can therefore explain the low organic matter
(OM) value. The calcium content probably decreased, because of a competitive effect with
magnesium. Generally, soils are considered to be salinized when a soil saturation extract
has an ECe value of 4 dS/m or greater. As can be seen in the majority of the surface sample
results, the ECe values ranged between 1.39 and 41 dS/m (Table 4), clearly confirming that
El Hito site samples were highly salinized in 31 surface soil samples.

Table 4. Results of pH and electrical conductivity (ECe) analyses on 31 surface soil samples. The
characteristics of the type of vegetation/use are also shown.

Soil Surface Vegetation Type Coordinates pH (H2O) ECe (dS/m)

C1 Puccinellia festuciformis meadows 39.877087–2.701919 9.42 41.00

C2 Salsola soda meadows 39.876511–2.701869 9.48 30.70

C3 Bare soil with Salsola soda 39.872515–2.702211 9.61 32.70

C4 Puccinellia festuciformis meadows 39.870211–2.700909 9.71 16.26

C5 Aeluropus litoralis meadows 39.867876–2.698168 8.62 2.18

C6 Puccinellia festuciformis meadows 39.866100–2.695747 8.74 2.89

C7 Bare soil with Salsola soda 39.866407–2.692898 9.89 39.70

C8 Salsola soda and Salicornia ramosissima 39.869053–2.687970 9.71 4.99

C9 Lygeum spartum formations 39.871532–2.684968 8.78 2.58

C10 Grassland among Lygeum spartum 39.871252–2.684295 9.25 5.83

C11 Grassland among Lygeum spartum 39.875732–2.678837 8.54 1.39

C12 Fallow with Bassia scoparia 39.865365–2.673279 8.79 2.10

C13 Elymus repens meadows 39.866324–2.674148 8.68 4.00

C14 Aeluropus litoralis meadows 39.866599–2.674488 8.37 1.96

C15 Fallow 39.860569–2.678548 8.79 1.99

C16 Frankenia laevis and Plantago coronopus 39.860592–2.679418 9.65 27.40

C17 Salicornia ramosisima and Puccinellia caespitosa 39.862437–2.679445 9.54 12.97

C18 Bare soil 39.863784–2.682094 9.51 20.00

C19 Salsola soda meadows 39.863516–2.684056 9.46 8.00

C20 Grassland among Lygeum spartum 39.858481–2.686284 8.96 2.13

C21 Bare soil-fallow 39.858233–2.694175 8.93 3.94

C22 Grassland among Lygeum spartum 39.858594–2.699989 8.29 2.13
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Table 4. Cont.

Soil Surface Vegetation Type Coordinates pH (H2O) ECe (dS/m)

C23 Fallow with Salsola kali 39.860900–2.709894 8.42 2.33

C24 Fallow 39.867409–2.711967 8.64 2.06

C25 Fallow 39.872950–2.710535 8.92 0.74

C26 Bare soil-fallow 39.878496–2.709827 8.99 0.49

C27 Puccinellia caespitosa meadows 39.876401–2.695190 9.59 16.89

C28 Salsola soda meadows 39.874595–2.701872 9.60 9.50

C29 Bare soil with Salsola soda 39.872515–2.702211 8.53 8.06

C30 Puccinellia festuciformis meadows 39.866100–2.695747 8.44 2.69

C31 Bare soil with Salsola soda 39.866407–2.692898 9.67 21.30

Careful observation of the above data highlights the lateral anisotropy of soil salinity,
which was attributed to the temporal fluctuations of salt content following the appearance
and/or displacement of soluble salts within the soil. Those salinity variations constitute an
important driving factor of vegetation zonation.

The calculated statistics included mean, standard deviation (SD), coefficient of varia-
tion (CV), minimum, maximum, and kurtosis, as seen in Table 5. The saline soils of El Hito
Pond display high spatial variability in soil salinity at a field scale, caused by temporal and
spatial variations of external factors. It is worth noting that the SD of ECe (12.15) was larger
than that of the pH (H2O) (0.49), with the coefficient of variation (CV) of ECe (113%) larger
than that of the pH (H2O) (5%); a CV value lower than 10% indicated low variability. Both
data sets had large values of kurtosis with the ECah0 (6.64) larger than ECav0 (4.53), with
both being leptokurtic (value is greater than + 1.0) (Table 5).

Table 5. Basic summary statistics of the measured pH (H2O) and ECe (dS/m).

Variable Mean Median Min Max SD CV Kurtosis

pH (H2O) 9.08 8.96 8.29 9.89 0.49 0.05 −1.48

ECe (dS/m) 10.67 4.00 0.49 41.00 12.15 1.13 0.38

The graph in Figure 6 below represents the linear relationship between soil pH and
soil EC for the depth of 0–10 cm. Visual observation and statistical analyses indicated that
the soil pH had a significant positive relationship with the soil EC (pH = 5.403–0.152 EC).
The correlation coefficient was −0.88.

Figure 6. Linear relationship of soil pH versus soil ECe at 0–10 cm.
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The elemental spectrum of the pedogenon is presented in Table 6. The most abundant
element was S, whose presence ranged between 36.88 (%) and 27.94 (%), expressed as S03.
Ca came second in quantitative terms, ranging between 28.21 and 31.12 of CaO (%) and
then, in much smaller proportions, Mg, Si, Al, Na, K, Fe, and Cl, in descending order.

Table 6. Results of the chemical elemental analysis.

Pedogenon Horizon
SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O SO3 Cl PPC

(%)

El Hito

Az 4.15 1.02 0.27 30.63 4.02 0.33 0.24 36.88 0.19 21.74

C1 4.01 0.83 0.27 31.12 2.30 0.35 0.23 33.59 0.21 23.09

C2 6.45 1.28 0.48 28.21 9.34 0.40 0.31 27.94 0.25 24.56

Mineralogically, the three fundamental mineral components were gypsum, carbonates,
and more labile salts, i.e., epsomite (SO4Ca•7 H2O) and hexahydrite (SO4Ca•6 H2O).

Finally, if the five salinity classes established in 1983 by [34,38] (Table 7) are applied to
the samples, almost half may be considered extremely saline soils; around one third, very
saline soils; approximately 11%, moderately saline soil; only 4% can be considered slightly
saline soils; finally, only 4% can be termed non-saline soils.

Table 7. Classification of El Hito lagoon soils based on electrical conductivity (EC) following the
criteria of Duran [38]. Number of saline samples and percentage within the lagoon.

EC (dS/m) Salinity Classes Number of Soil Samples % Soil Samples

≤0.6 Non-saline soil 1 3.7

0.6 < EC ≤ 1 Slightly saline soil 1 3.7

1 < EC ≤ 2 Moderately saline soil 3 11.1

2 < EC ≤ 4 Very saline soil 9 33.3

>4 Extremely saline soil 13 48.2

The electrical conductivity values for the surface soils, which must be borne in mind
for ecological purposes, therefore indicated that a large portion of the total wetland area
was classified as saline soil.

4. Discussion

4.1. On the Origin of Soil Salinity in El Hito Saline Pond

El Hito saline pond occupies a flat-depressed zone, which favors preferential water
circulation and accumulation. As within other European salt steppes, the natural process of
soil formation shows specific patterns. Salts evidently accumulate, leading to salinization,
although temporal dynamics were observed within specific areas, which explains the
substantial variability of the data throughout the lagoon. In the opinion of Boettinger and
Richardson [39], wet soils and wetlands are in general not prevalent in dry and seasonally
dry climates, but their morphology and characteristics are considerably different from those
in more humid climates. Indeed, the major pedogenic process involved in the formation of
saline wetland soils in semi-arid climates, such as El Hito, is salinization.

The combined effects of high levels of evaporation together with insufficient leaching
leads to the accumulation of salts within the soil and consequently to the development
of salt-affected soils [40]. The only prerequisite is water with sufficient salts for further
accumulation. The levels of silt and clay favor drastic impermeability. Shao and Zhang [41]
suggested that an increase in silt content results in the thickening of the bound-water film
and a reduction in soil porosity.

El Hito saline pond is located within areas where water accumulates, closely related
to an endorheic basin (i.e., with little or no external drainage). There are briefly three
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factors or processes shaping the distribution and genesis of El Hito: geomorphology of
water concentration, lithological sources of sediments, and evapo-concentration of salts,
or in an environmental setting, pedogenesis. But globally speaking, a distinction is made
between the primary (natural) and secondary (human-induced) processes. In the primary
formation process, the nature of the parent geological material plays an important role,
alongside the natural climatic conditions (arid or semi-arid), i.e., a lack of precipitation
and an excess of evapotranspiration. On the contrary, the secondary process is caused by
human activities [4,42–44].

Indeed, El Hito Pond is filled with a shallow body of water (maximum depth 15–20 cm) [45]
for several months, approximately between November and May. Fundamentally, surface runoff
replenishes the water layer, favored by the depressed topography, so that it is only during the
rainy seasons when the lagoon retains water. Therefore, the primary drivers of soil salinization
are closely related to both the mineralogical and the chemical characteristics of the parent
materials and to both the topography and the type of climate. The process is well known: salty
water rising through the soil profile by capillary action contributes to the salts, which remain in
the soil when the water evaporates [46]. Given the topographic situation of the wetland, water
accumulation occurs. The summer evaporation rates are higher than the precipitation rates
within the region, so the normal pattern over many years is more or less rapid water evaporation.
The salinity levels therefore rise as evaporation continues, and the surrounding soil salinization
is continuous as water salinization gradually adds to soil salinity levels. Anthropic sources have
been cited in other areas of the world [4,10,43,47–49], as are also glimpses of anthropic effects
in the case of El Hito Pond. In any case, the evaporation process accelerates salt encrustation
and formation, and the salts rise by capillarity action to the surface of the soil where crusts may
even form.

4.2. Discussion on Halophyte Adaptation to Salt-Affected Soils

There is, to the best of our knowledge, limited research on soil salinity levels and
the specialized vegetation that can prosper under such conditions. Halophyte formations
generally reflect the chemical composition and the levels of soil salinity under natural con-
ditions quite accurately. Soil pH and EC, in particular, emerged as primary environmental
factors shaping the abundance of some plant species.

One of the identifying features of El Hito saline pond soils is their salt accumulation
levels, especially within the surface horizons. The origin of the salt must be linked to the
materials (gypsum and silt and gypsum marl) and their composition, as well as to the semi-
arid climatic conditions that facilitate the water evaporation and saline precipitation. The
following salt types were identified: epsomite (SO4Mg•7H2O), mirabilite (SO4Na2•10H2O),
bloedite [(SO4)2Na2Mg•4H2O], halites (ClNa), etc. [14]. Sometimes, together with those
saline accumulations, the same salts form crust-shaped accumulations (Figures 2–4), a type
of crusting layer that forms at different stages (between approximately 0–10 cm) where
salts accumulate at the onset of the dry summer season.

Soil salinity has a twofold influence on plant growth: high toxic ion concentrations
and negative water potential [50,51]. Simply mentioning the word salinity in the context of
soil can refer to problematic issues, since it negatively affects the growth of most plants.
However, the so-called halophytic plants are salt-tolerant plants, that can normally prosper
at levels of approximately 20 dS m−1 of EC [52,53]. Authors such as Rozema and Schats [54]
pointed out that plant growth could be stimulated within salinity ranges between 15 and
25 dS/m.

In general, plants growing under saline conditions have to adapt to three types of
stress: (a) water stress (caused by osmotic pressure); (b) mineral toxicity stress caused
by salt; and (c) alterations in mineral balance. Excess salts can inhibit water extraction
through plant roots, i.e., less water is available to the plant, with a consequent reduction in
soil productivity. Additionally, the salts provoke swelling and dispersion of the colloidal
particles (caused by an excess of exchangeable Na), which generates both water infiltration
and root penetration problems, as well as complicating the emergence of the seedlings.
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Finally, in the summer, coinciding with maximum evapotranspiration, capillary rise occurs,
generating saline crust formations on the surface.

The plants that colonize El Hito Pond are salt tolerant. The distribution of different
species is dependent upon the duration of flooding. In this regard, plant tolerance to
waterlogging can be summarized as follows: Lygeum < Frankenia < Puccinellia < Salicornia =
Salsola. Principio del formulario

Crops such as potatoes, wheat, Vitis vinifera, Citrus, Prunus, Lactuca, and Cucumis and
plants such as Lavandula and Calendula are damaged by soil salinization. In contrast, the
growth and the development of plants such as Salsola is, on one hand, common at El Hito
saline pond, which is nothing strange in itself given that its growth is not negatively affected
by salt stress; on the other hand, plants and crops commonly found within the environment
of El Hito Pond are negatively affected, because of the disruption of certain physiological
processes such as an imbalance in the ratios of macronutrients, nutritional deficiency, and
even Na phytotoxicity [55,56]. In fact, saline stress may somehow affect processes such as
photosynthesis and respiration, causing inhibition, wilting, drying, and the demise of entire
plant organs of most plants and vegetable crops [57,58]. Indeed, from the biological point
of view, soil salinization processes affect several ecological soil functions. Thus, respiration
and microbial activity are both worth mentioning, insofar as they interact with processes
related to organic matter, decomposition, and the N cycle, eventually affecting microbial
activity [53,59,60].

Globally speaking, soil salinity is an important variable that plays a relevant role in
reducing fertility levels. Soil salinization is therefore a very severe problem that is mainly
due to irrigation strategies and other intensive agricultural activities [61,62]. It becomes an
issue for agricultural productivity, but not within ecological niches where saline soils are
produced by natural processes.

4.3. Ecosystem Services of El Hito Saline Pond: Proposal for Conservation–Rehabilitation
Measures

Ecosystem services have become a prominent concept in international policy and
research agendas [63]. Wetlands are among the most diverse and productive and therefore
the most valuable ecosystems [64–68] in the world. Various ecosystem services can co-
exist within one ecosystem [69]. El Hito Pond constitutes a small iconic environment
representative of the most diverse and productive ecosystems within the Mediterranean
region. A fascinating result of interactions between aquatic and terrestrial ecosystems, it
provides a wide range of services and benefits to local inhabitants and visitors, including
climate regulation, water purification, and flood hazard reduction; although its recreational
and cultural value may be highlighted above all, they are in addition to its role as a natural
wildlife habitat.

There were until practically a few decades ago hardly any environmental concerns
voiced in the society over the importance of wetlands, much less so whether these are
saline in nature. In the latter case, they have rather been disdained, based on the fact that
they were practically useless for agricultural purposes. With that in mind, given that our
findings have demonstrated clearly varied levels of soil salinity and ionic compositions
across the lagoon, soil management may consider the spatial heterogeneity of saline soil
types. Our results therefore provide scientific guidance for soil management and restoration
of the lagoon. Future studies should address the quantification of temporal changes to soil
salt-affection patterns in and around El Hito Pond.

Halophytic plants, which are salt-tolerant species, can survive under values of EC of
20 dS/m [52], while [54] pointed out that plant growth can be stimulated within a salinity
range of 15 and 25 dS/m. This series of species is equipped with adaptive mechanisms to
survive in saline environments; they include biochemical, physiological, anatomical, and
morphological characteristics [52,70,71].

Some scholars [72–76] have maintained that halophytes were viable alternatives for
food, fodder, bioenergy, ornamental, and pharmaceutical uses. According to Duarte and
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Caçador [72], the benefits of halophyte ecosystems are acknowledged, insofar as they
improve soil health and ecosystem biodiversity and can store large amounts of carbon,
thereby increasing the ecosystem resilience to climate change and offering green solutions
to slow climate change. Both [77,78] pointed out that halophytes have long been used for
pharmaceutical purposes, in view of their bioactive compounds with medical properties.

Halophytes are considered precious natural resources with potential economic value
as grain, vegetable, fruit, medicine, animal feed, and biofuel feedstocks and in greening
and coastal protection [79]. In this way, plants from the genus Salsola are known to be
used in traditional medicine; for example, Halothamnus somalensis (N.E.BR.) Botsch (Salsola
somalensis N.E.Br.) has been used as hypotensive, antibacterial, and anticancer agents.
Salsola is a halophyte with succulent vegetative structures that can be defined as a successful
salt-absorbing species. The genus can also help with the restoration and reclamation of
degraded salty areas and saline soils [80]. A halophyte native to the Mediterranean basin,
Salsola soda L., is considered to be a “biodesalinating companion plant” to tomatoes and
peppers in the saline soils of central Italy [81]. The potential use of Salsola soda for the
phytostabilization of polluted areas has been shown by [79,82,83]. Recently, Ref. [84]
stated that planting halophytes in salt-affected areas can improve soil quality and restore
biodiversity. It also produces valuable products, such as animal feeds and renewable
energy sources. Therefore, the presence of Salsola soda at El Hito should be understood as a
paradigmatic example of a species to conserve, since it is perfectly adapted to a dominant
saline soil environment.

It is expected that as climate change brings drier and warmer conditions to the region,
sparser water resources will lower or completely exhaust El Hito lagoon water levels. It is
therefore necessary to propose conservation–remediation measures.

Lygeum spartum L. has recently been introduced into areas with high soil salinity
levels [85]. Popularly known as Albardín, Lygeum spartum is an herbaceous plant with
an extensive root system that shows spontaneous growth in saline soils and reduces soil
erosion, while enhancing soil phytostabilization. It is therefore used in landscape restoration
and for erosion control in the southeastern Iberian Peninsula according to [86], especially
in semi-arid areas.

However, Ref. [87] pointed out that the effect of salinity on germination varies con-
siderably with temperature regimes, while [88] through a field experiment concluded that
that L. spartum can be used as a bio-indicator of soil salt type. Ref. [89] demonstrated that
an increase in salinity induces both a reduction in the percentage of germinating seeds
and a delay in the initiation of the germination process. More recently, Refs. [90,91] stated
that salinity, temperature, and their interaction affected the germination percentage of
L. spartum seeds. According to our findings, late autumn and early winter sowings are
recommended when salinity and temperature stresses are reduced, when plant canopies do
not cover the soil, roots are insufficiently developed, and the soil has no protection against
erosion (Figure 7).
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Figure 7. The formations of esparto grass (Lygeum spartum) known as “albardinares” are typical of
the Iberian “steppes”, located in the highest area around El Hito saline pond that the waters leave
untouched. These formations protect the soil from erosion and delay siltation within the pond.

5. Conclusions

The different habitats of El Hito saline pond whose conservation is a priority interest
in the European Union are of high environmental value. It is a hypersaline wetland,
where salinity, hydric conditions, and halophilous vegetation contrast distinctly with the
surrounding non-saline gypseous land and its gypsophilous vegetation. It is nevertheless
evident that this wetland is fragile in nature, and a better understanding is therefore
required of how to promote and to adapt appropriate management strategies. In this paper,
useful baseline data have been presented for its conservation.
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Abstract: Autumn irrigation is a key measure for alleviating soil salinity and promoting sustainable
agricultural development in the Hetao Irrigation district; however, only a part of farmland is irrigated
in autumn during the non-growth period of crops, which leads to the redistribution of soil water
and salt between autumn-irrigated land (AIL) and adjacent non-autumn-irrigated land (NAIL) after
autumn irrigation. To explore the distribution and variation of soil water and salt in different positions
of AIL and NAIL after local autumn irrigation and reveal the interaction range between AIL and
NAIL, field experiments were carried out for two years in typical test areas. The results showed that
compared with non-autumn irrigation, autumn irrigation improved the distribution uniformity of
soil water and salt profiles in both horizontal and vertical directions; after autumn irrigation, the
water content of the soil at the nearest sampling point to the boundary in the AIL increased the least,
but the desalination rate was the greatest, while the water and salt contents of the soil within 45 m
from the sampling points to the boundary in the NAIL both increased significantly. NAIL received
the drainage of AIL and made the groundwater level after the rise in AIL fell quickly back, but
unreasonable autumn irrigation caused the groundwater level of AIL to remain at a high level before
freezing, exacerbating the risk of groundwater carrying salts to the surface soil during the freezing
and thawing period, detrimental to the growth of crops in the next spring. The research results are
of great significance to the rational use of farmland water resources and the improvement of soil
salinization in cold and dry areas.

Keywords: Hetao Irrigation District; autumn irrigation; dry drainage; water and salt movement

1. Introduction

Irrigation is a major use of water in agriculture. Thus far, about 70% of freshwater on
Earth is used for agriculture, of which about 90% is used for irrigation [1,2]. In arid and semi-
arid regions with insufficient precipitation, irrigation is essential to agricultural productivity.
It can not only meet the water demand of crops, increase food production, and provide
possibilities for regional and even global food security but also increase farmers’ income,
improve agricultural profitability, and promote economic prosperity [3–5]. However, the
use of saline irrigation water and chemical fertilizers increases soil salinity, and, combined
with improper irrigation water and drainage practices, this usually results in increased
soil salinization, threatening crop growth and reducing agricultural productivity [6,7].
According to statistics, more than 20% of irrigated land worldwide is impacted by soil
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salinization, and the total loss caused by irrigation-related salinity is USD 27.3 billion per
year. If left unattended, by 2025, the global irrigation area threatened by soil salinization
may expand to more than 50% [8–10]. Therefore, a correct and profound understanding of
the problem of soil salinization brought on by irrigation is essential for achieving sustainable
agricultural development.

The Hetao Irrigation District (HID) is one of the largest irrigation districts in China,
with an irrigated area of 570,000 ha, and it is an important grain and oil production
base in the country. Surface water flood irrigation is the common irrigation method
for the region, but, due to its location in arid and semi-arid regions, extremely high
evaporation precipitation ratios (about 10:1), shallow water table depths (the average
annual groundwater level is 1.5–2 m), long-term irrigation from the Yellow River (the
average amount of annual total dissolved salts in irrigation water is 0.5 g/L), and imperfect
drainage systems result in the severe salinization of soil in the root zone [11]. In order
to reduce the harm of soil salinization in the root zone to the growth of crops in the
following year and adjust the soil moisture in the field, every year, after harvesting the
crops in the autumn and before the soil freezes, the irrigation district uses water flood
irrigation via the Yellow River to leach out the soil salinity in the root zone. After a
long period of production practice, autumn irrigation has become an important local
irrigation method [12,13]. However, due to the wide range of autumn irrigation methods,
irrigation period concentration (October–November each year), and the large irrigation
quota (approximately one-third of annual water consumption), there has been a sharp
increase in groundwater levels after irrigation. In the case of poor drainage conditions,
groundwater levels easily remain high for a long time before freezing, which, in turn, leads
to the secondary salinization of soil and affects the spring sowing of crops in the following
year [14–16].

Dry drainage (also known as internal drainage) is a method that can alleviate sec-
ondary soil salinization in irrigated farmland. This method mainly discharges excess water
and salt from irrigated land to nearby fallow land (fallow land is land that has been perma-
nently or seasonally fallowed) through groundwater flow and then consumes water in the
soil under evaporation, while salt is stored in fallow land [17]. Compared with traditional
artificial drainage, this method has more advantages in cost and environmental protec-
tion [18]. In the past 30 years, dry drainage has been widely used in Pakistan, Iran, and
China [19–21]. Wu et al. [22] studied the effectiveness of dry drainage using a combination
of remote sensing, a conceptual model, and field experiments in HID and observed that ex-
cess water and salt in the irrigated land migrating to the fallow land through groundwater
and dry drainage was effective in controlling salt levels in the irrigated land. However, the
effect of dry drainage is easily affected by climatic conditions, the ratio of irrigated land to
fallow land, and the evaporation capacity of the land. To further prove the effectiveness
of dry drainage [23,24], Wang et al. [25] conducted field observations for five years in a
2900 ha experimental field at Yonglian Experimental Station in HID and found that fallow
land received excess water and salt from the surrounding irrigated cropland. Moreover, the
salt content of the soil profile increased significantly, and the salt accumulation of irrigated
cropland exhibited an accelerating trend with the weakening of the evaporative capacity
of fallow land. Liu et al. [26] investigated the water–salt migration between cropland
and adjacent wasteland during the growing season in HID, and the results showed that
during the irrigation period, irrigation (and precipitation) promoted the flow of water and
salt from cropland to wasteland. However, during the intervals of irrigation, when the
evapotranspiration of farmland was greater than that of wasteland, the lateral water and
salt flux was reversed. Although the above scholars revealed water and salt movement
between irrigated and fallow lands at different scales, these studies were conducted under
fully irrigated conditions (full irrigation means that all cropped lands are irrigated).
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In recent years, due to the national directive on water conservation, the average annual
water diversion of HID has been reduced from 5.2 billion m3 to 4.0 billion m3, based on
which, the irrigation district has adopted the measure of “partial autumn irrigation”, which
mainly means that farmlands planted with late-season crops, such as sunflower, are not
irrigated in autumn seasons, but are irrigated in spring after the soil melts the following
year [27,28]. Simultaneously, influenced by the planting structure and farmers’ willingness,
the area of non-autumn-irrigated land (NAIL) is increasing, while the area of autumn-
irrigated land (AIL) is relatively decreasing. AIL and NAIL are adjacent to each other and
distributed in an interleaved manner [29]. To a certain extent, the working principle of
NAIL is similar to that of fallow land under full irrigation. After irrigation, NAIL can
receive drainage from surrounding irrigated land, causing the water table in the nearby
irrigated land to fall back quickly, but, because the NAIL will be irrigated in the spring
during the following year, drainage water durations are much shorter compared to fallow
land. Peng et al. [30] studied the characteristics of water–salt movement in farmland after
local autumn irrigation conditions in HID and found that the salts that were washed out of
the AIL entered the NAIL through the flow of groundwater, increasing soil salt content in
the NAIL. Although the study revealed that water–salt movement between AIL and NAIL
was influenced by the proportion of AIL in the whole region, the scope of the interaction
of water–salt movement between AIL and NAIL was not clear. Therefore, the objective of
this study was as follows: to monitor changes in soil moisture, salinity, and groundwater
in different positions of AIL and NAIL before and after autumn irrigation; quantitatively
analyze the redistribution of water and salinity in different locations of AIL and NAIL
and the distance of interaction; and reveal the scope of mutual influence between AIL and
NAIL to provide scientific information for the better management of irrigation water and
the control of soil salinization in the future.

In response to the current situation of autumn irrigation in HID, we conducted field
monitoring of water and salt distributions at different distances between AIL and nearby
ANIL. Our objectives were to (1) reveal the distribution of and changes in soil water and salt
at different distances between AIL and NAIL before and after autumn irrigation, (2) find
the distances at which AIL and NAIL interacted with each other under dry drainage
conditions, and (3) provide a theoretical basis for rational autumn irrigation and soil
salinization prevention.

2. Materials and Methods

2.1. Study Area Description

The study area (40◦55′04′ ′ N, 108◦30′29′ ′ E, 985.9 m) is located in Xixiaozhao Town,
UradQianqi, Bayannur City, Inner Mongolia Autonomous Region, China, and belongs
to the Wulate Irrigation District of HID (Figure 1a,b). Its climate is classified as follows:
mid-temperate continental climate, dry and windy weather, sufficient sunshine, less precipi-
tation, substantial evaporation, and a short frost-free period. The annual mean temperature
of the research region is 6~8 ◦C; the average wind speed is 2.8 m/s; the average sunshine
hours is 3202 h; the annual precipitation is 200~250 mm, with the majority falling between
June and September (accounting for 79% of the annual precipitation); the annual pan
evaporation (E20) is 2173 mm [31]; the frost-free period is about 130 d; the annual average
groundwater depth is 1.8 m; and the maximum freezing depth is 1 m [32]. The soil texture
of the 0~200 cm soil stratum is mainly sandy loam, silty loam, and loamy sand. The specific
physical properties are shown in Table 1. The soil bulk density was determined via the
ring knife method. Soil texture was determined using a HELOS & RODOS fully automated
dry particle size analyzer (Sympatec GmbH, Dresden, Germany) to measure soil particle
gradation, in accordance with the soil texture triangle map of the United States Department
of Agriculture [33].
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(a) (b) 

Figure 1. The location of Hetao Irrigation District in Inner Mongolia, China, (a) and the location of
the study area (b).

Table 1. Soil physical properties of the study area from 0 to 200 cm.

Land Types
Soil Depth

(cm)

Particle Distribution (%) Soil Bulk
Density
(g cm−3)

Soil
Texture

Clay (<0.002 mm)
Silt

(0.002–0.05
mm)

Sand
(0.05–2 mm)

0–5 2.29 43.18 54.53 1.51 Sandy loam
5–20 2.45 43.30 54.25 1.55 Sandy loam

20–40 2.25 55.62 42.13 1.57 Silty loam
AIL 40–60 1.11 55.66 43.23 1.52 Silty loam

60–80 0.79 54.67 44.54 1.53 Silty loam
80–100 0.21 27.22 72.57 1.61 Loamy sand
100–150 0.21 21.34 78.45 1.62 Loamy sand
150–200 0.36 10.38 89.26 1.62 Loamy sand

0–5 2.68 40.11 57.21 1.50 Sandy loam
5–20 2.26 30.22 67.52 1.55 Sandy loam

20–40 3.75 60.60 35.64 1.60 Silty loam
NAIL 40–60 4.90 54.73 40.37 1.54 Silty loam

60–80 1.89 63.22 34.90 1.51 Silty loam
80–100 0.85 52.67 46.47 1.55 Silty loam
100–150 0.25 21.31 78.44 1.62 Loamy sand
150–200 0.27 20.55 79.18 1.63 Loamy sand

Notes: AIL is autumn-irrigated land and NAIL is non-autumn-irrigated land.

2.2. Experimental Design

The fields adjacent to the AIL and NAIL were selected as the test area and tested from
October to December 2021 and October to December 2022. The east side of the test area
belongs to Huaimu Village, which comprises AIL, and the west side belongs to Beigedu
Village, which comprises NAIL. AIL and NAIL are separated by the agricultural canal and
the field road (Figure 2). The average ground elevation of the test area was 985.89 m. The
ground elevation of the AIL was slightly higher than that of the NAIL, and the maximum
elevation difference was 5 cm. The shape of the test area was rectangular, measuring
378.6 m long from the east to the west and 30 m wide from the north to the south. The test
area covered about 11,360 m2, with a 50% share of AIL and a 50% share of NAIL. With the
exception of the interface between AIL and NAIL, the other three sides of the AIL were
irrigated land, while the other three sides of the NAIL were non-irrigated land. Before the
autumn harvest, the main crop planted in the experimental field was sunflower, and, after
the autumn harvest, the experimental field was not turned over and leveled. Six soil water
and salt sampling points (parallel to the boundary and 5, 20, 45, 92, 139, and 186 m from the
boundary) were set up in AIL and NAIL, respectively, and they were named with respect
to their distance from the boundary. The six sampling points in the AIL were named Q5,
Q20, Q45, Q92, Q139, and Q186 and each sampling point in NAIL was named W5, W20,
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W45, W92, W139, and W186. There were two replicates perpendicular to the boundary,
with a total of 24 sampling points. A total of five groundwater level observation wells were
laid out in the test area. Two observation wells, Q1 and Q2, were laid out from the west to
the east in the AIL and three groundwater observation wells, W1, W2, and W3, were laid
out from the east to the west in the NAIL. The canals on the east side of wells W1 and W3
are both diversion canals for NAIL. During autumn irrigation, the diversion openings of
these canals are closed, and no water passes through the canals.

 

Figure 2. Schematic diagram of the test site’s layout (AIL is autumn-irrigated land and NAIL is
non-autumn-irrigated land).

2.3. Data Collection and Measurement

The test area was irrigated with water from the Yellow River on 18–19 October 2021
and 16–18 November 2022, and the irrigation method was flood irrigation. The irrigation
water volume was determined using a trapezoidal water-measuring weir, which was
4600 m3/ha and 4200 m3/ha in 2021 and 2022, respectively, and the conductivity of the
irrigation water was determined using a DDS-307A conductivity meter (Hangzhou Qiwei
Instrument Co., Ltd., Hangzhou, China), which was 0.73 dS/m and 0.75 dS/m in the
two years, respectively. Before and after autumn irrigation, soil samples were gathered
at the set sampling points on 13 October and 25 November 2021 and 27 October and
15 December 2022, respectively. The soil sampling depth was 200 cm. There was a total of
8 layers: 2, 10, 30, 50, 70, 100, 150, and 200 cm. The soil samples were collected using soil
drills, and soil water content (SWC) and salinity were measured. The SWC was obtained via
the drying method, while soil salinity was described by means of soil electrical conductivity
(SEC) [21]. The soil samples were dried naturally and then fully ground; then, they were
passed through a 1 mm sieve to make a leaching solution with a soil–water ratio of 1:5,
and conductivity (conductivity at 25 ◦C) was determined using a DDS-307A conductivity
meter. Groundwater levels in all observation wells were automatically collected using
a TD-Diver (Model DI801) groundwater level monitor manufactured (Chengdu Yaohua
Technology Co., Ltd., Chengdu, China), and it was set to be collected at 1 h intervals. The
meteorological data of the test period were gathered from the China Meteorological Data
Network (http://data.cma.cn/ (accessed on 10 August 2023)), and these data were used to
compute the daily reference evapotranspiration (ETo) using the FAO-56 Penman–Monteith
equation [34]. The daily values of the temperature, reference evapotranspiration, and
precipitation during the two-year test period are shown in Figure 3. In 2021 and 2022,
the daily mean temperature continued to be lower than 0 ◦C from 29 November and
28 November, respectively, and the soil entered the freezing period. During the two-year
sampling period, the total precipitation was 6.4 mm and 9.4 mm and the total reference
evapotranspiration was 66 mm and 59 mm, respectively.
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Figure 3. Daily values of temperature, reference evapotranspiration (ETO), and precipitation during
the 2021 and 2022 experimental periods.

2.4. Research Methods
2.4.1. Changes in Soil Water Content

The variation in SWC was defined as the percentage of SWC variation after autumn
irrigation compared to before autumn irrigation. The calculation formula is as follows:

Δθ = (θ2 − θ1)× 100%/θ1 (1)

where Δθ is the variation rate of SWC (%), θ2 is the SWC after autumn irrigation (%), and
θ1 is the SWC before autumn irrigation (%). If Δθ > 0, this indicates an increase (%). If
Δθ < 0, this indicates a decrease (%).

2.4.2. Soil Desalination Rate

The soil desalination rate was defined as the percentage of soil salinity reduction
after autumn irrigation compared to before autumn irrigation. The calculation formula is
as follows:

ΔSEC = (SEC1 − SEC2)× 100%/SEC1 (2)

where ΔSEC is the desalination rate (%), SEC1 is the soil salinity before autumn irriga-
tion (dS/m), and SEC2 is the soil salinity after autumn irrigation (dS/m). If ΔSEC > 0,
desalination occurred (%). If ΔSEC < 0, salt accumulation occurred (%).

2.4.3. Estimation of Groundwater Table Depths at Soil Sampling Sites

Groundwater table depth was estimated at each sampling point in the NAIL according
to Darcy’s law:

J = ΔH/L (3)

Zs = Hsg − Hsw = Hsg − (Hi − JLi−s) (4)

where J is the hydraulic gradient between observation wells, ΔH is the groundwater level
elevation difference between observation wells (m), and L is the horizontal distance between
observation wells (m). Zs is the groundwater table at each soil sampling point (s = 5, 20,
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45, 92, 139, 186) in the NAIL (m), Hsg is the ground elevation of each soil sampling point
(m), Hsw is the water table elevation of each soil sampling point (m), Hi is the groundwater
level elevation at the observation wells closer to the boundary (i = w1, w2) (m), and Li−s is
the horizontal distance between the observation wells closer to the boundary and the soil
sampling point (m).

2.5. Data Processing Methods

The Kriging interpolation method in Surfer15.0 software was used to plot the spatial
and temporal distribution of soil water and salt and Origin2022 software was used to draw
the change in soil water and salt at different depths. SPSS19.0 software was applied to test
the differentiation of the data (one-way ANOVA).

3. Results

3.1. Distribution Characteristics of Water–Salt in the Soil Profiles
3.1.1. Distribution Characteristics of Water Content in the Soil Profiles

The distribution of SWC was similar for two years in AIL and NAIL before and after
autumn irrigation, as shown in Figure 4. Before autumn irrigation, the SWC of AIL and
NAIL exhibited a Z-shaped (Figure 4a,c) and an inverted C-shaped distribution (Figure 4e,g)
in the vertical direction, respectively. The maximum values appeared in the depth range
of 50 ± 20 cm and 70 ± 30 cm and the minimum values appeared in the 100 cm soil layer
and the surface layer (2 cm). The lowest value of SWC in AIL was not on the surface but
in the 100 cm soil layer, which was a result of the relatively large amount of sand in the
100 cm soil layer (Table 1), resulting in the poor water retention capacity of the soil layer.
The SWC of the 0~200 cm soil layer in AIL and NAIL changed between 9.7~20.3% and
14.3~22.6% in 2021 and between 16.3~25.7% and 16.3~28% in 2022, respectively. After
autumn irrigation, the vertical distribution of SWC in AIL and NAIL was basically the
same as that before autumn irrigation, and the SWC of all soil layers increased (except for
the 2 cm soil layer with a horizontal distance of 92~186 m from the boundary in the 2021
NAIL). However, compared with that before autumn irrigation, for two years, the vertical
maximum difference of SWC in AIL decreased by 13% and 37.4% (Figure 4b,d), while that
of NAIL increased by 61.3% and 12.4%, respectively (Figure 4f,h). This shows that autumn
irrigation improves the vertical distribution uniformity of SWC in AIL but reduces the
vertical distribution uniformity of SWC in NAIL.

In the horizontal direction, before autumn irrigation, there was no significant difference
in SWC at each distance sampling point in the AIL and NAIL (p > 0.05). The SWC varied
between 15~18.3% (Figure 4a) and 20.7~23.2% (Figure 4c) for two years at each sampling
site for the AIL and between 16.6~19.3% (Figure 4e) and 21.8~24.1% (Figure 4g) for NAIL.
After autumn irrigation, the SWC for two years for AIL increased to 25.4 ± 0.2% (Figure 4b)
and 27 ± 0.3% (Figure 4d), and the maximum difference was 84.2% and 67.6% lower than
that before autumn irrigation. For NAIL, the SWC at 5, 20, and 45 m from the boundary
was significantly higher than for the other three sampling points (there was no significant
difference between the other three sampling points) (p < 0.05). The SWC at the three
sampling sites within 45 m from the boundary in 2021 was higher than the mean values
of the other three sampling sites by 14.6, 13.6, and 11.9% (Figure 4f), and it was 13.2%,
13.1%, and 11.7% higher than in 2022 (Figure 4h). The closer the sampling point to the
boundary, the higher the SWC. Compared with before autumn irrigation, the maximum
difference of SWC in the two years increased by 41.1% and 57.6%, respectively. This shows
that autumn irrigation improved the horizontal distribution uniformity of SWC in AIL, but
the horizontal distribution uniformity of SWC in NAIL was worse.
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Figure 4. Distribution of soil water content in autumn-irrigated land (AIL, a–d) and non-autumn-
irrigated land (NAIL, e–h) before and after autumn irrigation in 2021 and 2022.
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3.1.2. Distribution Characterization of Salt in the Soil Profiles

The two-dimensional distribution of soil salinity in AIL and NAIL over two years
was basically the same, as shown in Figure 5. Before autumn irrigation, due to evapo-
transpiration during the time of crop growth, soil salinity in the top layer (0~10 cm) of
both AIL and NAIL was higher in the two years, ranging between 0.95~1.1 dS/m and
0.3~0.42 dS/m (Figure 5a,c) and between 0.68~0.86 dS/m and 0.41~0.54 dS/m (Figure 5e,g),
respectively. With the increase in soil depth, soil salinity decreased significantly in the
10~50 cm soil layer and gradually decreased in the 50~200 cm soil layer, with minimum
values of 0.25, 0.1 dS/m, and 0.29, 0.12 dS/m. The salts in the horizontal direction all
accumulated near 0~5 m from the boundary, and the farther the distance, the fewer the
salts. This may be a result of the accumulation of salt eluted from a distance away from
the boundary with drainage water to the vicinity of the boundary after the last irrigation.
After autumn irrigation, soil salts in the 0~50 cm soil layer exhibited a significant decrease
(Figure 5b,d) and increase (Figure 5f,h) in AIL and NAIL, respectively, and the changes in
soil salts in all other soil layers were small. For the entire profiles, the salinity of the AIL
was close in the horizontal direction, varying between 0.24~0.33 dS/m and 0.11~0.16 dS/m
in the two years, respectively, while the salinity of NAIL in the range of 0~45 m from the
boundary reached the level of moderate salinity (0.4~0.8 dS/m), especially in the surface
soil, which reached the level of severe salinity (0.8~1.6 dS/m). Compared with that before
autumn irrigation, the difference in soil salinity in the horizontal and vertical directions of
the AIL decreased after irrigation by 72.7% and 37.5% and by 67.1% and 71.9% in the two
years, while the difference in soil salinity in the NAIL increased by 66.7% and 55.6% and by
28.1% and 43.9%, respectively. It can be observed that the distribution uniformity of soil
salts in the horizontal and vertical directions of AIL improved after irrigation, while the
distribution of soil salts in the horizontal and vertical directions of the NAIL worsened.

 

 
Figure 5. Cont.
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Figure 5. Distribution of soil salinity (EC1:5) in autumn-irrigated land (AIL, a–d) and non-autumn-
irrigated land (NAIL, e–h) in 2021 and 2022.

3.2. Changes in Soil Profile Water Salinity
3.2.1. Changes in Soil Profile Water Content

The changes in soil profile water content at each sampling point in AIL and NAIL
before and after autumn irrigation are shown in Figure 6. After autumn irrigation, the
average SWC in the root zone (0~50 cm) of the AIL increased by 33.1% and 29.2% in the
two-year test period, which was 58.7% lower (Figure 6a) and 37.7% higher (Figure 6b) than
that in the deeper layer (50~200 cm), respectively. In the second year, the increase in SWC
in the root zone was greater than that in the deep layer. The main reason for this was that
irrigation water did not fully infiltrate and froze in the top layer of the soil (0~10 cm). In
the NAIL, the average SWC in the root zone (0~50 cm) increased by 17% (Figure 6c) and
9.9% (Figure 6d) in two years, respectively, and this was smaller than the changes in the
deep SWC (42% and 14.8%), indicating that the water in the NAIL was more concentrated
in the deeper soil layers after irrigation. In the horizontal direction, the largest increase in
SWC among the AIL was in Q92, with increases of 67.7% and 30.2% in two years, and the
smallest increase was in Q5, with increases of 38.5% and 15.5% in two years, respectively.
The rest of the sampling sites changed in between. Under the influence of AIL irrigation,
the SWC of each sampling point in NAIL increased by 18.3~54.5% and 8.3~19.7% in the
two years, respectively, and the closer the sampling point to the boundary, the greater the
increase in SWC.
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Figure 6. Changes in soil water content at each sampling point in autumn-irrigated land (a,b) and
non-autumn-irrigated land (c,d) before and after autumn irrigation in 2021 and 2022.

3.2.2. Changes in Soil Profile Salinity

The changes in soil salinity in the 0~200 cm soil layer before and after autumn irri-
gation at each sampling point of AIL and NAIL are shown in Figure 7. As observed in
Figure 7a,b, the degree of soil desalination at each sampling point in AIL decreased with
an increase in vertical depth. The closer the sampling point to the boundary (Q5), the
greater the desalination rate of the soil profile, which was 54.5% and 45.3% in the two
years, respectively, while the desalination rates of the remaining sampling points were
between 34.5~51.8% and 21.6~33.2%, respectively. Salts washed from the AIL entered the
groundwater and migrated to the NAIL through lateral flow. Soil salts in the root zone
(0~50 cm) of the NAIL accumulated due to evaporation. The salt accumulation rates in
two years were 10.3% and 17.9%, respectively, which were about 2.9 and 2.8 times that
of the deeper soil (Figure 7c,d). All sampling points were affected by fluctuations in the
water table: the greater the depth of fluctuation, the greater the salt accumulation rates in
the soil profile. For example, in 2021, the W5, W20, W45, W92, W139, and W186 sampling
sites accumulated 14.8, 14, 11.7, 3.1, 3.1, and 1.2% salt after irrigation and, in 2022, they
accumulated 25, 24.4, 23.9, 6.3, 3.1, and 1.7% salt, respectively. Further analyses revealed
that the salt accumulation rate in the soil profile of the sampling points within 45 m from the
boundary was significantly higher than that of the sampling points beyond 92 m (p < 0.5),
which was about 5.5 and 6.6 times higher than the average salt accumulation rate of the
sampling points beyond 92 m. Therefore, there was a range limit for the effect of autumn
irrigation on soil salinity in the adjacent NAIL, which was between 45 and 92 m.
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Figure 7. Changes in soil salinity (EC1:5) at each sampling point in autumn-irrigated land (a,b) and
non-autumn-irrigated land (c,d) before and after autumn irrigation in 2021 and 2022 (the blue dotted
line is the highest influence depth line of groundwater levels after autumn irrigation).

3.3. Changes in Groundwater Levels and Salinity
3.3.1. Changes in Groundwater Levels

As illustrated in Figure 8, the change process of groundwater level in each observation
well during the two-year test period was the same, exhibiting a first increasing and then
decreasing change. Before autumn irrigation, the depths of the groundwater level in each
observation well were substantial and similar to one another, and they varied between
2.72–2.81 m and 2.42–2.59 m in the two years. The hydraulic gradient between the observa-
tion wells in AIL and NAIL was small and groundwater flow was weak (Figure 9). This was
mainly due to the study area not being irrigated since spring irrigation, long-term diving
evaporation, and the adjustment to the groundwater’s constant movement. After autumn
irrigation, the infiltration of irrigation water resulted in a rapid increase in groundwater
levels in AIL and reached a peak on the third day after irrigation, but, due to the obvious
water level differences between AIL and NAIL, the larger hydraulic gradient promoted the
groundwater’s continuous flow from AIL to NAIL. The groundwater level of AIL decreased
while the groundwater level of NAIL increased (Figure 9). On day 10, after irrigation, in
2021, the groundwater level of AIL and NAIL was between 0.01~0.42 m and 0.75~1.96 m,
respectively. In contrast, in 2022, it was between 0.01~0.28 m and 0.43~1.17 m (before soil
freezing), respectively. With time, the hydraulic gradient between the observation wells
became smaller, and the groundwater level decreased synchronously. Until the 30th day
after irrigation, the groundwater level varied between 1.52~1.6 m and 1.72~2 m (before soil
freezing) and between 1.91~1.94 m and 2~2.08 m for the two years in the AIL and NAIL,
respectively (Figure 8). The following could be observed: NAIL received the drainage
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of the AIL, which could cause the groundwater level after the rise of the AIL to quickly
decrease, but earlier autumn irrigation was more capable of ensuring that the groundwater
level of AIL fell below the designed critical depth of the HID before freezing (about 1.5) [35].

 
Figure 8. The change process of groundwater levels at each observation well in autumn-irrigated
land and non-autumn-irrigated land before and after autumn irrigation in 2021 and 2022.

 
Figure 9. The change process of the hydraulic gradient between observation wells in autumn-irrigated
land and non-autumn-irrigated land before and after autumn irrigation in 2021 and 2022.

3.3.2. Changes in Groundwater Salinity

As observed in Figure 10, the groundwater salinity of each observation well in the
two years had the same change rule, increasing at the beginning of autumn irrigation and
decreasing at the end of the autumn irrigation process. Before autumn irrigation, ground-
water salinity in each observation well for two years was between 0.75~0.89 dS/m and
0.83~1.15 dS/m. After autumn irrigation, groundwater salinity increased in all observation
wells, and the increase in groundwater salinity in NAIL was greater than that in AIL; this
may have been caused by the leaching of salts from AIL into the groundwater and their
flow toward NAIL through the horizontal flow and the further dissolution of salts in the
soil during the rise of the groundwater.

53



Land 2024, 13, 773

 
Figure 10. The change in groundwater salinity (EC1:5) at each observation well in autumn-irrigated
land and non-autumn-irrigated land before and after autumn irrigation in 2021 and 2022.

4. Discussion

4.1. Effect of Autumn Irrigation on Soil Moisture

In the study area, where the water table was shallow, soil moisture conditions in
different horizontal areas were influenced by irrigation, precipitation, evapotranspiration,
groundwater movement, and freeze–thaw cycles, with irrigation being the main driver
affecting the distribution and change in soil moisture in AIL and NAIL [36,37]. In this study,
after autumn irrigation, the infiltration of irrigation water resulted in smaller differences
in soil moisture between horizontal and vertical directions in AIL, which concurs with
the findings of Feng et al. [38]. The closer the sampling point to the boundary (Q5), the
stronger the hydrodynamic conditions (Figure 9), the faster the water movement, and the
greater the drainage (salt discharge). However, in NAIL, the continuous evaporation of
topsoil and the increase in deeper soil water increased the difference in soil moisture in
the vertical direction [30]. With the increase in the distance from the boundary, the water
content of the soil profile gradually decreased. For example, the SWC of W5, W20, and
W45 after irrigation was significantly higher than that of the other three positions (there
was no significant difference between the other three positions) (p < 0.05), similar to the
results of Yin et al. [39]. The autumn irrigation period in HID is short and is followed by a
freezing period. The freezing effect prompts the water in the deep soil to carry salt upward,
and the water moves and amasses within the frozen soil layer [14]. Following autumn
irrigation, the deeper soils of NAIL received increased leaching water recharge, which
increased the flow of water from deeper to shallower layers throughout the freezing period
and aggravated the salinization process of surface soil when the soil melted the next year.

4.2. Effect of Autumn Irrigation on Soil Salinity

Irrigation not only affects the distribution of water in soil but also changes the distri-
bution of salt in soil, especially in cold-arid regions [40,41]. In addition, irrigation water
may also introduce new salts to the soil [42]. In this study, the soil desalination rate of
the soil layer above 50 cm was significantly higher than that of the soil layer below 50 cm
in the AIL after irrigation, and the difference in soil salinity in the vertical direction was
decreased; in contrast, the further accumulation of salts in the surface soil of NAIL in-
creased the difference compared to that of the deeper soil layer. In terms of the entire soil
profile, the AIL as a whole exhibited desalination, while the NAIL as a whole exhibited
an accumulation of salts, which was consistent with the findings of Peng et al. [30]. Over
the two-year experimental period, although the time of soil sampling was different, the
precipitation and reference evapotranspiration caused by temporal difference was small
(Figure 3), and the groundwater level in both years had already dropped to 1.7~2.0 m and
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1.8~2.0 m by post-irrigation sampling (Figure 8). Therefore, different soil sampling times
had little effect on the change of water–salt in the soil profile (0~200 cm). In the horizontal
direction, there was no significant difference in soil profile salinity at different locations
in the AIL after autumn irrigation (p > 0.5), but soil salinity was significantly greater in
the proximal zone of NAIL (distance from the boundary of the NAIL was less than 45 m)
than in the distal zone (distance from the boundary of NAIL was more than 92 m). This is
a different conclusion compared to the study of Yuan et al. [43], which noted that the soil
profile’s salt in the near-distance zone of non-irrigated land after irrigation was less than
that in the far-distance zone. The cause for this distinction was the different topography of
the two test areas. Yuan et al.’s test area had a relatively large elevation difference, and the
larger elevation difference tended to make it easier for soil profiles with low topography to
become drenched with lateral water flow seepage from areas of high topography. It has
been shown [23,41,44] that there exists a critical value for the dry drainage control salt effect
of non-irrigated land when the critical value is exceeded: the drainage salt control ability of
some non-irrigated land is reduced or even has no effect. The results of the current study
are consistent with the above studies. This study observed the following: the influence
distance of AIL irrigation on adjacent NAIL was between 45 and 92 m from the boundary
of NAIL. As for the specific impact distance, further research is needed.

4.3. Effects of Autumn Irrigation on Groundwater

Groundwater levels and salinity are closely linked to soil water–salt conditions. When
the groundwater level and groundwater mineralization are more substantial, soil salinity in
the root zone is more severe [45,46]. Thus, controlling the groundwater table is essential in
order to prevent and control soil salinization. Substantial water infiltration after irrigation
will cause the groundwater level to increase sharply. Surface soil salts migrate to deeper
soils and groundwater due to leaching [12], while drainage is an important way to control
the dynamics and changes in the groundwater levels [47]. It has been shown that in HID,
the groundwater level is below the designed critical depth (about 1.5 m) before the freezing
period, which can prevent the salt in the surface soil from exceeding the crop salt tolerance
standard in the next spring period [35]. In this study, it was observed that after autumn
irrigation, NAIL received the drainage of AIL, which caused the groundwater level of AIL
to rapidly decrease below the groundwater-designed critical depth in the irrigation area
before the freezing period (in 2021); this is consistent with an earlier study [30]. However,
in the 2022 test results, it was further observed that the groundwater levels of AIL did
not decrease below the irrigation area designed critical depth before the freezing period.
The primary causes of this phenomenon are diverse. On the one hand, the larger autumn
irrigation quota and the proximity of the autumn irrigation time to the freezing period
resulted in the groundwater levels being higher in AIL before the freezing period, and the
groundwater did not have sufficient time to discharge; on the other hand, relatively low
air temperatures after autumn irrigation (Figure 3) resulted in low-temperature soil water,
high soil water viscosity, and slow movement, which resulted in a slow groundwater level
decrease rate. Therefore, in order to reduce the secondary salinization of soil, which is
caused by high groundwater levels before the freezing period, under the conditions of dry
drainage, determining a reasonable autumn irrigation system is particularly important for
controlling the depth of the water table in AIL before the freezing period, and methods for
determining this system form a new research area.

5. Conclusions

(1) Autumn irrigation improved the uniformity of soil water–salt distributions in AIL
but reduced the uniformity of soil water–salt distributions in adjacent NAIL. After
autumn irrigation, the maximum difference between the average values of two-year
soil water content (salinity) in the horizontal and vertical directions decreased by
75.9% and 25.2% (55.1% and 69.5%) for AIL, respectively, while it increased by 49.4%
and 36.9% (61.2% and 36%) for NAIL, respectively.
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(2) During the two-year experimental period, autumn irrigation increased the water
content of soil profiles in AIL by 38.5~67.7% and 15.5~30.2% and it decreased the salt
content by 34.5~54.5% and 21.6~45.3%, respectively. The closer the sampling point
to the boundary (Q5), the greater the drainage and salt discharge. In contrast, in
NAIL, the soil profile’s water (salt) content increased by 18.3~54.5% and 8.3~19.7%
(1.2~14.8% and 1.7%~25%) in the two years, respectively. The closer the sampling
point to the boundary, the greater the increase in water–salt content in the soil profile.

(3) After autumn irrigation, the W5, W20, and W45 sampling sites all exhibited large
increases in soil profile salinity, with increases of 11.7~14.8% and 23.9~25% within two
years, respectively. The average salt accumulation rate was about 5.5 and 6.6 times
that of the average salt accumulation rate of sampling points W92, W139, and W186.
It can be observed that there was a range limit of the effect of AIL irrigation on the
salinity of the soil in NAIL, which was between approximately 45 and 92 m from
the boundary. If the limit distance was exceeded, the dry salt discharge effect of the
increased NAIL was weakened.

(4) NAIL received drainage from AIL, causing post-irrigation AIL’s groundwater level to
decrease rapidly, especially from earlier autumn irrigation, which could reduce the
depth of AIL’s groundwater level before freezing to less than 1.5 m. This meets the
requirements for the groundwater-designed critical depth in HID. When the autumn
irrigation time is delayed to the eve of soil freezing, the depth of the groundwater
table in AIL is still above 1.5 m, which will aggravate the risk of salt presence in
surface soil during the freeze–thaw period.
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Abstract: Soil salinization and its detrimental agricultural, environmental, and socioeconomic impact
over extended regions represent a major global concern that needs to be addressed. The sustainability
of agricultural lands and the development of proper mitigation strategies require effective monitoring
and mapping of the saline areas of the world. Therefore, robust modeling techniques and efficient
sensors that assess and monitor the spatial and temporal variations in soil salinity within an area,
promptly and accurately, are essential. The aim of this paper is to provide a comprehensive and
up-to-date review of the modeling approaches for the assessment and mapping of saline soils using
data collected by the EM38 and EM38MK2 (MK2) sensors at different scales. By examining the
current and latest approaches and highlighting the most noteworthy considerations related to their
accuracy and reliability, the intention of this review is to elucidate and underline the role of the EM38
and the MK2 type in the recent needs of detecting and interpreting soil salinity. Another aim is to
assist researchers and users in selecting the optimal approach for future surveys and making well-
informed decisions for the implementation of precise management practices. The study’s findings
revealed that the integration of the EM38 and MK2 sensors with remote sensing data and advanced
methods like machine learning and inversion is a promising approach to the accurate prediction
and mapping of the spatiotemporal variations in soil salinity. Therefore, future research focused on
validating and expanding such sophisticated modeling applications to regional and global scales
should be increased.

Keywords: soil salinity; assessment; EM38; EM38MK2; ECe; models; remote sensing; monitoring;
mapping

1. Introduction

Soil salinization has been considered one of the most challenging global threats,
affecting large cultivated and irrigated areas all over the world. Its detrimental impacts on
environmental quality, agricultural productivity, and socioeconomic stability are about to
become even more pronounced in the coming years due to climate change [1]. The extent of
soil salinity along with the frequency of floods and duration of droughts, as a consequence
of climate change, are expected to be more intense and exacerbated in the arid and semi-
arid regions where the sustainability of natural resources is imperative [2]. Considering
the increasing demands for global food supplies and arable land, these effects necessitate
urgent control and mitigation. For this purpose, regular and accurate monitoring of soil
salinity distribution and its spatial variations across multiple scales is crucial for preventing
soil salinization hazards and preserving the long-term sustainability of agricultural and
environmental systems.

Successful monitoring of soil salinization requires rigorous modeling techniques and
advanced tools to reliably assess the soil salinity levels and interpret its severity in different
areas of the world. Recently, satellite remote sensing technology has been widely applied
as an effective tool for identifying and mapping the soil salinity of large-scale areas [3].
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However, the sensors are incapable of detecting the subsurface distribution of the soluble
salts and the highly spatial heterogeneities in the soil profile [4]. Thus, their implementation
is usually combined with other sensors or data for more accurate results [5].

On the other hand, proximal sensing (PSS) technology with ground-based, electro-
magnetic induction (EMI) sensors can quantify and characterize the spatial patterns of
soil salinity within the soil profile by measuring the soil’s apparent electrical conductivity
(ECa). Besides the popular EM38 sensor, a variety of commercial EMI devices have also
been developed, enabling the investigation of the solute’s variability at different soil layers
and allowing soil salinity mapping, particularly on the field scale [6].

Despite the accessibility of improved proximal sensing devices such as the EM38MK2
(MK2), an upgraded type of EM38, and the range of studies that evaluate various EMI
data conversion techniques for the soil salinity assessment [7–10], the choice of the most
suitable approach for each survey is still a challenging task. The uncertainties that emerge
with their application depend on a number of site-specific environmental factors, including
the complex interactions of soil properties that affect the ECa and distinct data processing
requirements, which can significantly impact the credibility of the results. Furthermore,
while the technical guidelines and considerations regarding the employment of EM38 in
soil salinization surveying have been well documented by existing reviews and scientific
publications [11–13], a concise compilation of the currently available approaches that
convert ECa measurements by the EM38- and the MK2-type sensors into soil salinity as
expressed in ECe has not yet been attempted.

In this respect, the objective of this paper is to provide a comprehensive and up-to-date
review of the modeling approaches for monitoring and mapping the saline soils using the
EM38 and the MK2 sensors. Through an examination of the approaches and techniques that
have been applied for ECe assessment and mapping using the obtained ECa measurements,
the aim of this review is to foster a deeper understanding of the sensor’s efficiency in the
recent and constantly rising demands of detection and monitoring soil salinity.

Specifically, in the following sections:

• The fundamental principles underlying the EM38 and MK2 probes are described, offer-
ing thorough insight into their operational mechanisms, capabilities, and constraints.

• Subsequently, the modeling approaches that utilize the EM38 and the MK2 data, for the
estimation, prediction, and interpretation of the ECe at different scales, are extensively
discussed. The various models and methods that have been developed and convert
the sensor’s ECa values into ECe are explored, highlighting the most noteworthy
considerations regarding their accuracy and reliability.

• Finally, the fusion of the EM38, MK2, and remote sensing data for monitoring and
mapping the saline soils is overviewed and followed by a brief summary of conclusions
and future directions.

By addressing these aspects, the aim of this review is to enrich the current field of soil
salinization research and elaborate on the potential of EM38 and MK2 sensors in the future
modeling and assessment of soil salinity and eventually in developing precise management
practices that will prevent land degradation and protect resources.

2. Materials and Methods

With the aim of obtaining a comprehensive and up-to-date overview of the model-
ing approaches that utilize the EM38 and MK2 data, we adopted an in-depth research
methodology. Initially, for the collection and the thorough examination of the literature
related to our objective, an online search using academic databases and search engines
was employed. These included Elsevier Scopus, ScienceDirect, MDPI, as well as Google
Scholar. The research criteria and the keywords that were applied in the selected electronic
resources were: (“EM38” OR “EM38MK2” OR “EMI”) AND (“salinity models” OR “soil
salinity”) OR (“Remote Sensors” AND “soil salinity”). The types of publications scoped for
our review were restricted to those written in English. This encompassed journal articles,
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research papers, review papers, book chapters, conference papers, theses, and technical
notes related to the principles and characteristics of the EM38 and MK2 sensors.

From searching all the databases, we retrieved a total of more than 300 articles. In
order to identify and acquire the most relevant literature from the gathered publications, we
reviewed their titles and abstracts. After excluding duplicates and less relevant publications,
the remaining articles were full-text reviewed. Ultimately, a total of 170 documents were
selected, analyzed, and cited in the present study.

3. Results

3.1. Fundamental Principles and Considerations of the EM38 and MK2 Sensors
3.1.1. Basic Operational Features of EM38 and MK2 Sensors

The deployment of electromagnetic induction (EMI) instruments has been consolidated
in agricultural science and soil surveying since the 1970s [14–16]. Owing to their low cost
and their capability to detect the spatial variations in edaphic properties and heterogeneities
within the field and at larger scales, in real time, and non-destructively [17,18], they have
been studied and used for numerous environmental and geophysical applications [12].

Unlike other geophysical methods such as TDR and GPR, the quantification of soil
salinity’s spatial variations by electrical resistivity (ER) and EMI devices has become a vital
component of precision management implementations [11,19]. This is mainly amplified by
the measurements of apparent electrical conductivity (ECa), which have been found to be
correlated with soil salinity estimates and can be used as an indirect indicator for many
soil properties [20]. Frequency domain reflectometry (FDR) technology, including WET
sensors, has also been successful in the appraisal of soil salinity in the laboratory [21–23]
and in situ [19,24] using ECa measurements. Nevertheless, the single utilization of these
probes might be exacting and locally restricted since they have a substantially smaller
measurement volume and are invasive, as their operation is based on contact with the soil
and its sublayers [24].

Over the years, commercial EMI sensors, such as the DUALEM (Dualem Inc., Milton,
ON, Canada), EM31, EM34 (Geonics Ltd., Mississauga, ON, Canada), and Profiler EMP-
400 (Geophysical Survey Systems, Inc., Salem, NH, USA) have been investigated for the
assessment of various soil properties, including soil salinity, and their performance has
been documented [25–27].

The ground conductivity meter EM38 (Geonics Ltd., Mississauga, ON, Canada), in-
troduced in 1980, was revolutionary in soil salinization surveys due to its light weight,
portability, and the large volume of ECa measurements taken in various types of soils
and fields, e.g., stony, which until then were difficult to acquire with electrode-based
devices [28,29]. Thus, it quickly gained the attention of the agricultural community and
became the most frequently applied tool for monitoring and mapping soil salinity [20]. The
adaptation of EM38 can also be attributed to the fact that it was intentionally designed
to support the assessment of near-surface variations in soil properties and specifically of
soluble salts that affect crops within the rooting zone [30,31].

The EM8 sensor is constructed with two coils, one transmitter and one receiver coil,
which are installed at the opposite ends of the instrument with a fixed spacing of 1 m, and
it operates at a 14.6 kHz frequency. The orientation of the coils determines the cumulative
depth response of the instrument associated with the ECa measurements. When located
in the horizontal configuration (EMh), the device’s signal corresponds to a depth range
of roughly up to 0.75 m, whereas in the vertical mode (EMv) the penetration depth is
approximately up to 1.5 m. The depth range of the instrument sufficiently covers the
root volume of most plants [32]. These depth-weighted responses of ECa, however, are
theoretical measuring depths that rely on a non-linear function in homogeneous soils. As a
result, the absolute depth values cannot be easily defined [33].

Since its release, the EM38 has undergone several modifications, updates, and tech-
nical improvements, including the addition of a GPS receiver, which allows for accurate
georeferencing of the data, and the development of user-friendly software for data analysis
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and visualization. The dual-dipole EM38 DD sensor is an example of these modifications.
This version consists of two EM38 units attached together and placed horizontally and
vertically for recording simultaneous EMh and EMv measurements [34,35].

In 2008, the EM38MK2 (Geonics Ltd., Mississauga, ON, Canada) was launched as an
updated version of the original EM38 instrument [30]. The MK2 type encompasses new
attributes and enhancements regarding the depth range response, stability, and facilitations
concerning the field survey and data acquisition. Compared to its predecessor, the MK2
has hardware and software that offer more automation in operation, easier processing, and
better interpretation of the raw data. In particular, it can simultaneously measure both soil
conductivity (Q/P) and magnetic susceptibility (I/P) within two discrete depth ranges. It
entails temperature compensation circuitry, which reduces the occurring temperature drifts
during the survey, and it supports automatic calibration without laborious adjustments.
This can be achieved through a wireless Bluetooth data logger, which enables the collection
of the data and the communication with the instrument conveniently from a relative
distance. Alternatively, data recording can be performed through a serial port. The duration
of field operations has also been enhanced with the addition of a power connector, which
allows for the use of an external rechargeable battery [36]. Both instruments are presented
in Figure 1.

 
Figure 1. The EM38-MK2 and EM38 devices. (a) The EM38 in horizontal mode. (b) The EM38 in
vertical mode (from Geonics Ltd., Catalano [37] and Siddique [38]).

Besides the technical advancements, the main fundamental difference between the two
sensor types lies in the second receiver coil of the MK2, which corresponds to an additional
depth range of measurements. The MK2 consists of one transmitter coil and two receiver
coils that are positioned at two fixed distances of 1 m and 0.5 m from the transmitter coil,
respectively. Hence, in the MK2, the effective depth range is determined by both the coil
separation and the dipole modes of horizontal and vertical orientation. Consequently, with
the new coil (0.5 m coil separation), measurements of ECa can be additionally taken at two
distinct depths: at 0.375 m depth when the device is placed in horizontal mode (EMh) and
at 0.75 m in the vertical mode (EMv) (Figure 2). This version allows users to detect and
investigate variations in shallower layers, which may be optimal for precise agriculture
practices [26,33]. Moreover, along with the rest of the depth ranges of the sensor, the profile
of soil salinity distribution up to a 1.5 m depth can be promptly acquired and evaluated.

62



Land 2023, 12, 1932

Figure 2. The EM38MK2 sensor in horizontal (H) and vertical (V) mode with the effective depth
range responses of ECa for coil separation of 1 m and 0.5 m when placed on the soil surface. T×
refers to the transmitter and R × 1, R × 2 to the two receiver coils.

The relative differences, advantages, and applicability of the EM38 and MK2 sensors
over various geophysical instruments in mapping of soil properties have been discussed in
a few studies [12,26,39,40]. Gebbers et al. [26], by comparing a variety of EMI and other
technology devices (ARP03, CM-138, EM38, EM38-DD, MK2, OhmMapper, Veris 3100),
concluded that the main disadvantage of EM38, EM38-DD, and CM138 sensors is their
sensitivity to deeper soil layers, which is irrelevant to the crop’s rootzone. On the other hand,
MK2, ARP03, OhmMapper, and Veris3100 were found to be more effective in detecting
shallower soil variations that are important for precision agriculture. Likewise, the EM31
and EM34 sensors, which have exploration depths of up to 6 and 60 m, respectively, may
also be considered inappropriate for detecting the variability in shallower soil layers [12].
In a study conducted by Dooltitle et al. [39], the use of EM38 and the multifrequency device
GEM 300 was investigated, revealing that both sensors provide reasonable estimates of soil
salinity. Moreover, Urdanoz et al. [40], by comparing the EM38 and the DUALEM sensor,
indicated that although EM38 tends to produce slightly higher horizontal ECa readings
than the DUALEM, both sensors can be used interchangeably. Generally, the EMI sensors
exhibit close similarities in their collected data, with the main differences attributed to the
different operational modes and sensing depths [30].

3.1.2. Principles of the EM38 and MK2 Operation

The operation of the EM38 and MK2 instruments is based on the principles of EMI
and has been established by McNeil [41,42]. Once the sensors are turned on and properly
calibrated for recording ECa measurements, the transmitter coil sends, at a frequency of
14.6 kHz, an alternating electrical current to the soil, generating a primary magnetic field
(Hp). When the primary field interacts with the subsurface, it induces electrical currents
(eddy currents) that, in turn, produce secondary magnetic fields (Hs). These secondary
fields interact with the receiver coils by inducing alternating currents in the coils. The sum
of the amplitude and phase of the induced voltages from the primary and secondary fields
is amplified in an output voltage, which is read by the user.

Accordingly, under low induction number (LIN) conditions, where Nb << 1 and
assuming homogeneity in the depth profile, the apparent electrical conductivity, ECa, is
sensed and expressed as the ratio of the primary (Hp) and the secondary magnetic fields
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(Hs) (Equation (1)), where f is the operating frequency (Hz), μo, the magnetic permeability
of free space (4π10−7 H m−1), s is the intercoil spacing (m), and ω = 2πf [41].

ECa =
4

2πfμ0s2

(
Hs

HP

)
(1)

Besides other factors, ECa readings by the EM38 and MK2 sensors for an investi-
gated depth range are influenced by the orientation and coil spacing of the instruments.
The relative ranging depths for the horizontal and vertical modes have been determined
by McNeil [41] in homogeneous soils as non-linear functions that describe the relative
contribution to the secondary magnetic fields in respect to normalized depth z.

Consequently, the depth-weighted response, which indicates the cumulative depth re-
sponse R(z) of the sensors, is a non-linear function that represents the relative contributions
of all soil electrical conductivities from a soil volume below a normalized depth z. The R(z)
equations, based on the horizontal and vertical orientation and expressed as a percentage
(%) of the measured signal, have been defined for 1 m (Equations (2) and (3)) and 0.5 m
(Equations (4) and (5)) coil separation [33,41]:
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where z (m) is the depth and RH(z) and Rv(z) are the cumulative relative ECa for horizontal
and vertical mode, respectively.

From the derived cumulative functions, the depth of investigation (DOI), which refers
to the depth from which more than 70% of the signal response derives, can be determined
for each sensor. Heil et al. [33] compared the two instruments and examined the effective
depth responses for each orientation and coil distance. The coil spacing of 0.5 and the
horizontal mode are generally influenced by near-surface variability, making them more
suitable for shallower depths. Instead, the 1 m spacing coil and the vertical mode seem to
have an increased sensitivity along with the depth. It is noteworthy that the EM38’s vertical
response decreases drastically at depths above 90 cm, in contrast to MK2. Practically, the
DOI of the sensors may vary under natural soil conditions due to existing heterogeneities
and the interrelations of ECa with subsurface soil features that affect the signal.

In addition to the effective depth ranges when placed on the ground surface, both
devices can be lifted at different heights above the soil surface to investigate interval depth
variations and model the distribution of salt content in the soil layers [43–45]. Also, they
are designed for handheld measurements or can be mounted on non-metallic sleds and
attached to vehicles for mobile measurements. The mobile and real-time collection of ECa
data by the EM38 and MK2 sensors is a simple process owing to their software and the
direct connection to the GPS. Thus, they can be an ideal option for monitoring and mapping
soil salinization at field scales [46–48].

3.1.3. Considerations in the EM38 and EMK2 Applications

One of the key factors in the employment of the EM38 and MK2 sensors is that on all
occasions of soil salinity surveying, either at field or larger scales, site-specific calibration is
required. Therefore, soil sampling for ground-truth data cannot be omitted [30].
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Another important consideration when using these probes for the collection of ECa
measurements is their susceptibility to metal and electrical interference, like fences and
power lines. In comparison to other technologies, such as capacitance sensors, the presence
of metallic objects in the study area can affect the signal, especially in the horizontal
configuration [36]. Although the detection of metals may be beneficial for archaeological
prospecting [49], for efficient soil salinity estimation and mapping, uniform, metal-free soils
are a prerequisite. Furthermore, as the manufacturer recommends, in the automatic mode
of ECa recording, more frequent calibrations might be needed to minimize any potential
effects from the drifts on the accuracy [50]. The drifts by temperature are stronger in the
original EM38 [20,33], while for the MK2, they are considered insignificant due to the
internal enhancements. An exception might arise in the case of near-surface measurements
with the 0.5 m spacing coil, where the effects from the drifts need to be managed [50].

Finally, one of the most concerning and constraining aspects of EM38’s utility for
determining solute distribution within the soil is its application under dry moisture con-
ditions or in fields where there is insufficient moisture through the penetration depths.
Conducting ECa surveys in fields where soil water content levels are less than those of
field capacity and reportedly under 50% [51] can lead to unreliable and biased results.
Likewise, ECa measurements in shallow and moderately deep soils above bedrock should
be avoided [30,52].

3.2. Modeling Approaches for the Assessment and Mapping of ECe Using the EM38 and MK2 Data

The conventional strategies for the assessment of soil salinity consist of soil sampling
and laboratory estimation of the electrical conductivity of saturated paste extract, ECe,
which is the standard method. These laborious, costly, and time-consuming methods tend
to be impractical for fields and large-scale areas since they are point-based and cannot
provide a sufficient number of measurements for extended monitoring [30,53]. The non-
invasive, cost-effective, and rapid measurements of ECa by the EM38 and the latest MK2
have become one of the most widely accepted and reliable alternatives for determining
the spatiotemporal variation in soil salinity in arid and semi-arid regions [54]. In practice,
the main benefit of these EMI instruments is that they allow quick and large numbers
of georeferenced ECa measurements, which can be significantly correlated to the spatial
variability of soil properties and especially soil salinity, providing information on the soil
quality of the croplands [30,55,56]. In addition, the obtained data can be efficiently utilized
to generate detailed maps of subsurface property spatial patterns and processes. These
high-resolution maps enable the design of field and large-scale sustainable management
decisions [10].

ECa is the weighted average of the vertical electrical conductivity distribution within
the soil volume as depicted in a one-dimensional (1D) earth model [57]. It is influenced
by various physical and chemical soil properties and their interrelations [19]. In this sense,
factors such as soil moisture, soil salinity, texture, mineralogy, and temperature affect the
EM38 signal and need to be considered when interpreting geospatial ECa measurements
with respect to a particular property survey [51,58].

In salt-affected areas where ECa values are higher than 2 ds m−1, the spatial variability
of solute concentration has been proven to be the dominant factor contributing to ECa, and
the provided soil moisture is close to field capacity across the research district [30,59]. In
this instance, EMI measurements can most likely be directly correlated with soil salinity
mapping [48]. In non-saline soils and soils with relatively low conductivity levels, however,
ECa is strongly related to a function of soil properties, which include soil water content,
the amount and type of clay, cation exchange capacity (CEC), organic matter (OM), and
soil temperature [20,60–64]. Among them, volumetric water content and clay proportion
have been reported as the major factors affecting the values of ECa [61–63,65,66]. In
most situations of ECa surveying, soil moisture and soil salinity are considered the most
influential factors, whereas the effect of other factors, like soil temperature, is weaker. It
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is worth mentioning that the strength of the effect of each soil property on ECa varies
depending on specific soil conditions.

The complex relationships between ECa and soil properties have been examined
in numerous site-specific management studies and described by various models. The
volumetric water content of the soil is the primary pathway for electric current flow [60,67],
thus exhibiting a strong positive relationship with ECa. When water content drops below a
threshold value, ECa decreases significantly and becomes negligible since the conductance
path ceases to exist. Moreover, like soil salinity, water content is considered a dynamic
property, meaning that after certain circumstances (e.g., rainfall, nonuniform irrigation
applications), it can gradually change across the field and soil profile, complicating the
interpretation of its effects on ECa [11]. Similarly, the high concentration of the dissolved
salts in the soil solution leads to an increase in ECa readings [60,62]. In non-saline soils,
the increase in soil moisture enhances the pathway for current to flow through the soil,
resulting in higher values of ECa. The contribution of soil texture to the spatial patterns of
ECa varies according to the particle sizes and the charge density of their surface area. ECa
values tend to be higher in fine-textured and clay-rich soils due to their larger surface area,
which allows them to absorb and retain more ions [62,68]. Conversely, in coarser-textured
soils, ECa tends to decrease and exhibit larger variations. Soil texture can influence the
water-holding capacity of the soil. Therefore, in uniform cropping systems, soils with
high clay and water content are likely to lead to an increase in ECa [60,62]. In conditions
with highly spatial texture variations, however, characterizing soil ECa variability becomes
difficult [69]. In addition, temperature fluctuations during the survey have a substantial
impact on field measurements. Due to the positive temperature dependency of ECa, which
increases by almost 2% for every 1 ◦C temperature rise, ECa readings are recommended
to be referenced at 25 ◦C using corresponding equations [41,64]. Finally, cation exchange
capacity (CEC) and organic matter (OM) also show a positive correlation with ECa [62,70].
Overall, various soil properties and their influence on ECa are summarized in Table 1.

Table 1. Different soil factors and their effect on ECa.

Factor Effect on ECa Values

Water Content Higher moisture levels increase ECa
Dry soils have lower ECa

Soil Salinity High salinity levels increase ECa

Texture Clay content: Higher proportion increases ECa
Silt, Sand Content: Higher proportion decreases ECa

Temperature Increasing temperature increases ECa
Cation Exchange Capacity (CEC) Higher CEC increases ECa

Organic Matter (OM) Higher percentage increases ECa

The depth-weighted average conductivity of ECa does not indicate the distribution of
the actual salt concentration with depth in the soil profile but rather reflects the average
cumulative response of the sensor, weighted according to respective soil depths [41,42].
Thus, a modeling approach to establish a relationship between ECa measurements and
true salinity levels like ECe, or EC1:5, at various depths is necessary for the prediction and
monitoring of soil salinization across different spatial and temporal scales. The conversion
of the EM38 data for soil salinity analysis encompasses a variety of simple or more advanced
statistical and mathematical procedures, integration with data and sources from other
technologies, as well as spatial modeling techniques. Among these, the preferred modeling
approach can be applied to estimate, predict, and map the soil salinity profile, leading to
precise rootzone management and mitigation of salinization impacts.

Based on the land use, the size of the study area (e.g., plot [71], field [7], landscape [72],
regional [10], urban greenery [73]), and the purpose of the salinity survey, several ap-
proaches applying the EM38 and MK2 sensors have been reported for assessing soil salinity
in terms of ECe and displaying its spatiotemporal characteristics.
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3.2.1. Deterministic and Stochastic Conversion of ECa

One of the initial considerations in the assessment of ECe using an EM38 sensor depends
upon the conversion of ECa through a stochastic or deterministic approach [70,74,75].

ECe values can be deterministically predicted from the in situ ECa data using geo-
physical models that have been developed based on the laws of EMI response to saturated
or unsaturated conditions [12,76]. In this non-geostatistical approach, ECa readings are
converted into ECe through theoretically or empirically determined formulas that incorpo-
rate physicochemical soil characteristics estimated or measured within the study area [35].
Well-established models such as Archie’s 1942 model [77] and the dual pathway parallel
conductance (DPPC) of Rhoades et al. [67,78] describe the ECa as a multiplicative function
of soil parameters under different porous media and soil circumstances. These and other
similar models [79] have been broadly examined for the detection and estimation of water
and solute concentrations in the soil profile.

While deterministic models acknowledge the significance of the complex interactions
between ECa and soil properties, their application in soil salinization monitoring is lim-
ited by their static nature. The requirement for precise information on additional soil
properties such as soil water content or texture and the dynamic process of soil salinity,
varying over space and time, makes this approach suitable mostly for local and short-term
simulations [80,81].

An alternative method to overcome the challenges in interpreting the spatiotemporal
variations in ECe with EM38 measurements is the stochastic or geostatistical approach [35]. This
modeling technique relies on the correlation of ECa data with ECe for the direct prediction of
soil salinity. This involves using soil sampling and geostatistical or spatial regression models.
During the ECa survey, a number of soil samples are collected from the measurement points
and analyzed to determine the corresponding ECe. The paired set of ECe and ECa values is
then used to establish an ECe = f (ECa) relationship with the aid of regression and geostatistical
analysis. Subsequently, this developed calibration equation is applied to predict the ECe values
from the remaining non-sampled ECa measurements [7,82].

The site-specific calibration between ECe and the simultaneous EM38 or MK2 measure-
ments, as a necessity for the accurate appraisal and mapping of soil salinity, has been the
center of attention in numerous studies [7,8,83–86]. Over the past decades, the calibration
of ECa data has been extensively explored and improved at field and local scales due to
advancements in geostatistics and data processing tools. However, uncertainties in the
generated maps of soil salinity still emerge from the employment of these techniques [87].
Furthermore, monitoring the spatial and temporal trends of soil salinity at a regional scale
demands continuous data and calibration parameters from different fields, which may not
always be available or easily accessible [88,89].

Geostatistical methods have been indispensable tools in soil salinity monitoring and
mapping, as they are applied to model and predict the spatiotemporal variability in large
salt-affected areas. Based on the spatial dependence and structure of the georeferenced
variables, techniques like kriging and variogram modeling offer the advantage of predicting
ECe values at unsampled locations [90], with relatively high accuracy [91]. They require
dense soil sampling with approximately more than 50 sampling points to ensure reliable
calibration with minimum errors [92]. Therefore, their application is not recommended for
field surveys [91].

Spatially referenced regression models, on the other hand, have gained great recogni-
tion due to their simplicity and the reduced need for soil sampling [53]. They are regression
equations with optional trend surface variables that assume an independent underlying
error structure. This error is related to the variations between ECa and estimated ECe
values. Despite their benefits, as regards their predictive efficacy, they cannot reach the
same degree of accuracy as the geostatistical models [7,93]. Nonetheless, the regression
modeling approach yields viable results in most cases of regional scales [94,95]; hence, it
remains one of the most appealing and preferable calibration techniques.
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These approaches are also adopted when applying ECa-directed soil sampling for
soil salinity mapping [11,35,51]. According to this concept, when a correlation between
measurements and soil salinity exists, geospatial ECa measurements can be used to con-
struct a directed sampling plan for the selection of the optimal soil sampling sites. This
method is accomplished either deterministically, through design-based sampling schemes,
or stochastically with model-based sampling designs.

Based on ECa-directed soil sampling, in fields where salinity is not the dominant soil
property influencing the EM38 measurements, the variations in ECa can act as a surrogate
for identifying the site locations that depict an adequate range and variability of the soil
salinity. The soil samples collected from these particular sites can then serve as ground-
truth data for the accurate calibration of ECa to ECe. The calibration model, in turn, results
in producing spatially reliable maps of soil salinity across multiple scales [48]. In saline
soils with uniform texture and water content conditions, however, the ECa variation is
mainly attributed to salt concentration; thus, it can be used as a soil salinity indicator.

The overall process of ECa-directed sampling for mapping the spatial distribution of
soil salinity may be expedited by the available commercial software packages. The ECe
Sampling Assessment and Prediction (ESAP) developed in USDA [96] is a conductivity
modeling software, which based on a response-surface sampling design, may generate the
minimum set of sampling points needed for the calibration of the EM38 measurements to
ECe. Additionally, it embraces both deterministic and stochastic methods for the prediction
of the spatial ECe values from the ECa survey data [71]. To date, several researchers
have used the ESAP programs with EM38 readings as a tool to delineate and map ECe
distribution at irrigated fields [71,97–99] and district scales [100]. Amezketa [71], using
customized ESAP software and EM38 data, assessed and displayed the spatial patterns of
soil salinity at an irrigated plot in Spain. The accuracy of the developed models for the
multiple-depth ECe values ranged from R2 = 0.38 in the topsoil (0–30 cm) to R2 = 0.90 in
the subsurface (30–60 cm). Also, based on the selected calibration models, the average ECe
profile (0–90 cm) was mapped. Slimane et al. [100], after obtaining EM38 readings from
a 240 ha region of Tunisia, imported the data into the ESAP to determine the appropriate
soil sampling locations and to estimate and map the spatial variability of the area’s ECe.
According to the study’s results, the average R2 of the prediction models for different soil
depths was approximately 0.78, (0.6 ≤ R2 ≤ 0.8) and the ECe variation maps showed that
salinity increased with depth.

Besides this general classification, the most common and current modeling approaches
for the conversion of EM38 and MK2 data into soil salinity are listed below. Each of these
models includes techniques that can be applied individually or in combination to achieve
the specific objectives they are intended for. Essentially, simple regression techniques
could be appropriate for ECe estimation in the field, but for mapping the spatiotemporal
variability of ECe in irrigated regional districts, more sophisticated procedures might be
necessary. The purpose of conducting a salinity survey with EM38-type sensors, whether
qualitative or quantitative, is of major importance in defining the level of accuracy and
the modeling approach to be utilized [101]. The following section focuses on the diverse
approaches that address the conversion of raw EM38 and MK2 data into ultimate ECe
values and their representations across a variety of scales and applications, as documented
in the existing literature. The categorization of the available modeling approaches serves
as a means to comprehend their fundamental characteristics and techniques and explore
the range of their consistency and weaknesses. It is important to note that the types of
models presented in the study are not rigidly distinct but may share common attributes.
The various categories are designed to provide guidance and facilitate the identification of
areas where the methods of soil salinity appraisal and mapping can be enhanced.
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3.2.2. Regression-Based Models (Linear, MLR, Simple Depth-Weighted Coefficients, Established
Coefficients, Modeled Coefficients, Mathematical Coefficients)

The earliest studies that were carried out for soil salinity assessment using the EM38
probe were entirely based on producing sets of regression equations and searching for
calibration coefficients for a specified range of depths at the site of interest. In order to
detect the salinity distribution within the field, the weighted ECa data are transformed
to determine the ECe profile by fitting linear or non-linear regression models at depth
intervals and calculating the coefficients for each depth range. This framework involves
the development of empirical calibrations relating the instrument’s horizontal and vertical
observations, either separately or in combination, to ECa measured with a probe at known
depth intervals [102–104]. The predicted equations of the probe’s ECa can then be recon-
structed to estimate the soil ECe. Alternatively, equations are developed to directly relate
the sensor’s measurements to a single weighted ECe value [83,105] or ECe at different
depth increments. Typically, in these approaches, the vertical profiling of ECe is derived
through a one- or two-step process that leverages the operational dipole modes of the
sensor and depends on the establishment of regression relationships between the obtained
and the ground-truth conductivity data. They utilize the field EM38 readings, taken on
the soil surface or at distinct heights above it, to define the ECa layering and the collection
of soil samples from corresponding depth increments for the construction of calibration
models [106].

The various published calibration model functions that have been retrieved mainly
through linear (LR) [83] and multiple linear (MLR) regression analysis [71,84,85,107] in-
clude known approaches such as depth-weighted coefficients [105]; established coefficients,
which are empirical-mathematical coefficients [108,109]; modeled coefficients [103]; mathe-
matical coefficients based on the theoretical EMI depth response function [110]; and the
logistic profile model [85]. Johnston et al. [111] compared several of the developed calibra-
tion approaches to evaluate their performance in soil salinity estimation. As they reported,
the established coefficients of Corwin and Rhoades [108,109] and the modeled coefficients
of Slavich [103], which predict the probe ECa, exhibited results with low bias but with
significant errors. Also, the depth-weighted coefficients model of Wollenhaupt et al. [105],
which determines the weighted ECe, was observed to perform poorly with high error
values (RMSE = 5.33). Furthermore, Triantafilis et al. [85] indicated that the logistic pro-
file, which consists of a mixed nonlinear model, can provide smoother and less erratic
prediction profiles than the established coefficients and the multiple-regression coefficients
model [104].

The common trait of the proposed models and approaches is that they all use regres-
sion parameters that are site-specific and time-dependent to a significant degree [112].
Hence, they will not perform at the same level of accuracy when applied in dissimilar soil
conditions to those they have been developed in. The fluctuations in the prediction results
can be attributed to the variations in soil volumetric water content and soil texture across
different locations [111,113] and to misleading homogeneous assumptions [85]. This arises
from the fact that the calibrations of ECa measurements are being established, assuming
that soil salinity is the only soil property affecting the response of the EM38, thus excluding
the influence of other soil factors in the equation. In these instances, a strong relationship
between EM38 data and ECe values can be confirmed [12]. Additionally, since most of these
calibration models rely on linear equations, they use a best fit line through the data, usually
an ordinary least-squares (OLS) regression, a technique that is accompanied by certain
attributes. This prediction method is associated with key assumptions such as the normality
and independence of errors and homoscedasticity for obtaining valid coefficients [93,114].
Therefore, deviations from meeting these criteria can compromise the reliability of the
coefficients and result in inaccurate predictions and potentially biased conclusions for the
salt-affected area.
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3.2.3. Geostatistical Models

The comprehension and characterization of soil salinity spatial distribution constitutes
a fundamental element of the sustainable management practices and prevention of soil
salinization [7,115,116]. Due to the need for high spatial resolution data and expanding
coverage, determining and mapping the spatial variations in soil salinity at the land and
regional scales by soil sampling appears unfeasible [30,117].

In contrast, this process can be accomplished by using the EM38 and MK2 instruments
and performing spatial predictions at the field and land scales [30,55]. The promptly
collected ECa data can be employed with geostatistical methods, enabling the quantification
and interpretation of the spatial variability of ECe over large areas [118,119]. Soil salinity
severity maps may also be generated to support the proper decision-making for crop and
land management [120].

The geostatistical models, in the context of conversion, refer to a set of geostatistical
methods and tools, such as interpolation and variogram analysis, which are implemented
as a means of modeling, predicting, and mapping the spatial variations [92] of soil salinity
from the sensor’s data. The geostatistical processes can be carried out by appropriate
software packages.

More specifically, the models are constructed to analyze the spatial patterns of the data
and also predict values for the variable at unsampled locations, diminishing the weakness
of point measuring from proximal sensing and creating a constant spatial coverage [73,121].
Considering the scientific concern and practical constraints in characterizing the distribu-
tion of soil salt in a continuous space, the contribution of geostatistics, which identifies the
spatial variation structure and predicts unsampled data, is significant.

The analysis, definition, and quantification of the variance structure of soil salinity can
be achieved with variogram calculations, whereas the prediction of the spatial variability
of ECe for generating informative salinity maps is obtained with an interpolation method.

The spatial prediction and mapping of ECe, based on geostatistics, can be potentially
adopted in two different ways. The ECa measurements can be initially interpolated for
the prediction of unsampled ECa values, and the amount of spatial ECa data can then
be calibrated for the estimation of ECe and eventually analyzed with a variogram. This
approach has proven to have controversial results depending on the interpolation method
and the density of the EM38 data [8,119].

The second and most established method prioritizes the prediction of ECe by de-
veloping a relationship between ECa measurements and ECe values, usually with linear
regression analysis [94,122,123]. Thereafter, variogram analysis and interpolation tech-
niques can be applied to the predicted ECe for mapping and evaluating the spatial patterns
of soil salinity across the study area. The accuracy of this modeling approach depends
on various factors that need to be taken into account. Aside from ensuring the quality
of the EM38 data, the primary aspect is associated with the selection of the interpolation
technique and the distinct sampling design that they require [7]. In a similar sense, the
sampling scheme is essential for the reliability of the variograms [92]. Moreover, different
and more sophisticated approaches than linear regression for calibrating ECa data might
perform with higher accuracy [120].

To date, there is a diversity of geostatistical interpolation methods available, several of
which have been examined and compared using the EM38 and MK2 sensors for the predic-
tion and mapping of the spatial variability of ECe at the landscape [124], district [8,120],
and regional scales [94,123]. They extend from basic kriging to more contemporary tools,
such as ordinary kriging [123], universal kriging, and hybrid interpolation techniques
that integrate different technologies, like regression kriging, co-kriging [7], indicator krig-
ing [122], or 3D kriging [94]. All geospatial procedures, including variogram analysis,
interpolation methods, and spatial data visualization, can be executed with commercially
available software packages, such as Geostatistics Software GS+ [123], Golden Software
Surfer [97], ESRI ArcGIS [122] and ArcMap [120], and Geo R [82]. Yet, despite the variety
of these spatial estimation tools, there has not been a single optimal method reported for
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the interpolation of the data [73]. For example, Jantaravikorn et al. [120], after identifying
a strong ECa–ECe correlation for both modes of EM38 (r = 0.86 and r = 0.87), examined
the accuracy of four distinct spatial interpolation methods for soil salinity prediction on
categorized validation datasets using ESRI ArcMap and SAGA software. The predicted
horizontal and vertical ECa data were then classified to create soil salinity severity maps.
ordinary co-kriging was found to be an accurate interpolation method for predicting soil
salinity when using the horizontal data of the sensor (R2 = 0.85), while the deterministic
inverse distance weighting (IDW) was found to be more suitable for the vertical mode
(R2 = 0.83).

The applicability of these methods has been investigated mostly for the prediction
and interpretation of the spatial distribution of soil salinity at a point in time. Recently,
Xie et al. [123], based on ECa data using the MK2 and the geostatistical methods of semivar-
iograms and ordinary kriging, which were conducted with the aid of Geostatistics Software
(GS + 7.0) and ArcMap 10.2, respectively, quantified and interpreted the spatiotemporal
distribution and variations in regional soil salinity across several years. The satisfactory
results of the linear prediction model, which was conducted with ECa measurements for
the topsoil (R2 > 0.90), indicate the use of the MK2 in the assessment and mapping of the
spatiotemporal variability of soil salinity and foster the potential for further applications
under similar soil conditions.

In the field, changes in solute distribution on a spatial and temporal scale have been
characterized and evaluated in three dimensions using the MK2 and the non-geostatistical
interpolation method of inverse distance weighting (IDW) [125]. In this work, multivariate
linear models were established for the relationship of ECe with ECa in various soil layers
and times. The predicted ECe values were then interpolated using the deterministic 3D
IDW technique. Besides the high model reliability (0.82< R2 < 0.99), the 3D IDW was also
proven to predict the three-dimensional spatiotemporal variations in soil salinity with good
accuracy and R2 values ranging from 0.76 to 0.77.

Regardless of the option of a deterministic or geostatistical interpolation method, map-
ping the spatiotemporal characteristics of solute distribution by the geostatistical modeling
approach comes with certain limitations. The existence of a strong relationship between
ECe and ECa measurements is a basic requirement [11]. In addition, the accumulation of
high-quality data following specific distributional assumptions for the prediction of unsam-
pled values is necessary. Finally, since these methods are based on the spatial dependence
of the variables, they may not be suitable for processing and predicting more complex and
non-spatial relationships.

3.2.4. Inversion Models

Monitoring and mapping of the vertical extent of salinity within the soil profile using
the EM38 probes has been remarkably improved by the inversion approach [126]. Inversion
modeling is an evolving and steadily increasing applied process for the estimation and
mapping of depth-specific soil salinity from EMI data [48,127]. It consists of various
complex algorithms and calculation methods that enable the conversion of the recorded
ECa data to depth-specific estimates of electrical conductivity. The inverted data are then
modeled using calibration techniques for the prediction of ECe at any depth [128,129] or
depth increments [130], and the production of multidimensional (1D, 2D, 3D) maps of the
salinity profile for the investigated district [131]. The rapid and efficient assessment of solute
distribution with depth is essential for acquiring an accurate and real-time quantitative
interpretation of the salt dynamics in the profile and especially in the rootzone [112,132].

Recently, the growing interest in inversion procedures for the spatiotemporal analysis
of soil salinity has been associated with the development of multi-coil (e.g., CMD-Mini
Explorer) and multi-frequency (e.g., GEM 2) EMI sensors, which are designed to take
simultaneous measurements at multiple depth ranges [132–134]. However, the cost and
limited access to these instruments [126] make the application of EM38 and MK2 an
attractive alternative.
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Several inversion approaches that employ EM38 data have been explored for modeling
the vertical patterns of solutes. Some of the initial attempts were linear [135] and non-
linear models [136], which included the Tikhonov regularization to invert the ECa data.
The data in these cases were obtained by taking multi-height EM38 measurements in the
horizontal and vertical orientations at different sites. Second-order Tikhonov regularization
is a mathematical method suggested for reducing possible data errors and stabilizing the
inversion process. It is applied as a technique to overcome the “ill-posedness” and the “non-
uniqueness” that are encountered in the inversion. These problems entail measurement or
data errors that can induce significant changes in the outcome and the fact that there might
be more than one solution for different ECa profiles [117,137]. In addition to these issues,
the 1D inversion models, as mentioned above, though applicable, characterize only the
vertical distribution with depth, thus providing limited information on the actual transfer
of salt within the soil profile [131,138].

Other approaches, in order to predict the estimates of soil salinity in discrete soil
layers, joined the EM38 measurements with ECa data from different EMI sensors, like the
EM31 [139] or EM34 [140], and inverted them with a 1D algorithm with 2D smoothness
constraints to display the vertical and lateral variations in soil salinity in the subsurface
along transects [139]. Moghadas et al. [141] proposed a joint inversion of the horizontal
and vertical EM38 data using a probabilistic optimization algorithm. The derived one-
dimensional inversion models were merged to generate a 3D image of the subsurface
distribution of soil salinity at a regional scale. To evaluate the robustness of the models,
the inverted data were calibrated to ground-truth ECe values using linear regression for
certain depths. As observed, the models exhibited a good prediction (R2 = 0.67) for the
shallow layers (30 cm), while for the deeper soil layers (60, 90 cm) the discrepancies were
attributed to the high clay content of the study area.

The efficient models that have been developed during the last decade rely on advanced
inversion strategies that can extract 2D or 3D electromagnetic conductivity images (EMCIs)
of the spatial distribution of soil salinity from the ECa data [131]. Software packages like
EM4Soil have been released to assist in the process of inversion of ECa data directly in
1D [72], 2D [128,142,143], or quasi-3D [126,129] layered conductivity values and generate
EMCIs by applying inversion parameters. The prediction of ECe from the inverted EM38
readings can be achieved with high accuracy by establishing simple calibration equations,
such as linear regression (LR) [128–130]. Farzamian et al. [126], addressing the need for
affordable and easily accessible monitoring tools as an alternative to non-available multi-
coil instruments, proposed the use of multi-height EM38 data and a quasi-3D inversion
algorithm for the development of ECe maps in the landscape. They indicated that by
collecting multiple ECa measurements at different heights, a single regional calibration
equation (LR) instead of discrete depth-specific calibrations may predict the ECe at any
desired depth.

By these means, detailed maps of the spatial patterns of ECe across various depths
in large and landscape-irrigated areas can be efficiently produced. Also, the quasi-3D
inversion models of ECe can be combined with remote sensing to create a 3D map and
illustrate the quantitative and qualitative spatial distribution of soil salinity in the survey
area [130]. The application of inverse modeling to the three-dimensional distribution of soil
salinity is an important evolutionary step for characterizing and interpreting the lateral and
vertical variations within the soil profile. This contribution might be particularly prominent
in mapping the local 3D patterns of the solutes variability in more complicated irrigation
schemes, such as micro-irrigation systems [99].

Moreover, the temporal distribution of soil salinity with depth has been examined
most recently by using time-lapse inversion of ECa measurements with multiconfiguration
systems [132,144,145]. Time-lapse inversion of ECa data by EM38 and MK2 instruments is
a challenging approach that has not been investigated for soil salinity assessment [146,147]
and only with a strictly limited scope for moisture content distribution, which involves
measurements from the electrical resistivity tomography (ERT) [145,146,148]. The difficulty
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is ascribed to the complex dynamics of solutes, which can vary significantly within the
soil profile. Therefore, the method requires multiple local soil data and measurements to
be repeated over time for the determination of the solute’s temporal trend [48]. A recent
attempt has been made by Paz et al. [127], who collected repeated measurements by the
EM38 sensor at specific locations and dates and inverted them to obtain time-lapse EMCIs
of the vertical profiling of the layered estimates of electrical conductivity. By using a pre-
constructed calibration model of ECe for the same area, the layered conductivity estimates
were converted to predict ECe. The prediction model was found to be adequately precise
(R2 = 0.88) in depicting the spatiotemporal variations in soil salinity with depth and across
the study area.

While the inversion modeling approach yields positive outcomes in the spatiotemporal
mapping of soil salinity, it should be mentioned that the credibility and the accuracy of
its application depend on the quality of the acquired data and regularization factors [148].
Therefore, thorough validation using datasets independent of those employed in the
prediction process is pivotal for minimizing uncertainties in the results [127] and ensuring
the credibility of the survey. Furthermore, when using time-lapse inversion at regional
scales, the establishment of precise local-specific calibrations needs to be taken into account.
High temporal variations in dynamic soil properties, such as water content, can have a
substantial impact on the assessment of the solute variations and consequently misdirect
soil treatment decisions [127].

3.2.5. Machine-Learning-Based Models

Lately, a new modeling approach has been introduced for characterizing and quantify-
ing the spatial variations and depth distribution of soil salinity with data from EM38 and
MK2 devices. This encompasses the integration of ECa measurements, remote sensing data,
and environmental variables with machine-learning (ML) technology to generate digital
soil maps (DSMs) of ECe in large arid zones [4,52,149,150]. According to this approach,
the prediction and mapping of salt-affected areas can be substantially improved when
proximal sensed data and multi-spectral information from remote sensing imagery are
incorporated [54], and advanced machine-learning algorithms are utilized to assess and
model the relationship of ECe with these multiple variables [4,150].

Plenty of modeling methods have been elaborated and extensively used in DSM
applications for various soil properties [151], including soil salinity. However, advanced
methods that utilize various machine-learning algorithms with EMI and the EM38 and
MK2 probes in particular for the prediction of soil salinity are currently being explored.
The growing interest in machine-learning modeling is attributed to its ability to process
huge volumes of datasets and identify the complex and non-linear interactions between
soil properties and various environmental features [152]. For soil salinity assessment,
the models use a composite of statistical and mathematical formulas through which they
capture and “learn” the relationship between the spatial variations in ECa data and input
variables. After successful training, they can predict the unknown spatial patterns of soil
salinity at large scales [4].

Contrary to geostatistical models, machine-learning models employ a more computa-
tional operation for the prediction of soil salinity’s spatial variability. While geostatistical
modeling relies on the spatial dependency structure of the data, machine-learning-based
models use algorithms that detect the relations and patterns between soil properties and
the variables.

There are many machine-learning algorithms available for the prediction and digital
mapping of soil properties, with varying principles, complexity, and overall performance.
Some of them include decision trees (DTs), random forest (RF), support vector machines
(SVMs), genetic programming (GP), and artificial neural networks (ANNs). Among them,
random forest has been proven to be a reliable and robust option for developing predic-
tion models of soil salinity and producing explicit digital soil maps, particularly in arid
areas [10]. Ding et al. [4], based on the dipole mode of the portable MK2, established a
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random forest model with ECa measurements, auxiliary variables from remote sensing, and
environmental products for predicting the spatial variations in different land types of the
oasis agroecosystems in China. The good relationship between the horizontal and vertical
ECa data with ECe at all depth increments indicated ECa as a valid predictor for modeling
the spatial variations in soil salinity. The application of random forest models with ECa
measurements and auxiliary data was found to have high accuracy, with R2 ranging from
0.77 to 0.84 for all coil configurations. Furthermore, according to the results for various land
uses, the derived RF prediction models of ECa seemed to perform better for the deeper soil
layers and the bare lands, with an R2 range from 0.84 to 0.91. Slightly different results for
all depth intervals (0.61 < R2 < 0.65) were demonstrated in the same regional area when RF
models of ECe were constructed with the involvement of MK2 measurements and remote
sensing imagery as covariates [150].

Owing to the implementation of machine-learning-based models with the use of the
MK2 probe, fine-resolution maps of soil salinity in large areas may be produced [150,153].
Moreover, the magnitude of influence the diverse soil, environmental, or other site-related
variables have in the prediction of soil salinity can easily be exhibited and evaluated [149].
Their capability to provide complex non-linear interrelations between soil properties and
a vast amount of existing data without making any distributional assumptions may offer
great opportunities in future surveys of soil salinity mapping.

Despite the inspiring benefits, their application is associated with practical weaknesses.
The prediction of subsurface soil salinity using machine-learning techniques is primarily
driven by the diverse variables that are utilized as inputs for their training. Thus, collecting
and employing accurate and relevant attributes from the available resources require some
level of data expertise. Also, given that the efficiency of these models depends on the
quality of the input data, there cannot be a unique algorithm for assessing the spatial and
temporal variability of soil salinity in all soil and site circumstances with the same accuracy.

3.2.6. Hybrid Models

The nature of soil salinity comprises alterations over time and space. The diverse
changes, which extend from the complex distribution in the rootzone to spatial variations
across the field and larger scales, are crucial to determine in order to interpret and control
the sources of soil salinization. These issues, however, need to be reconciled with rapid
and resilient methods, as precise irrigation systems and soil sustainability strategies at
the regional and global levels are imperative. The application of individual modeling
techniques like simple regression-based models may fail to adapt to all these requirements.
To this end, hybrid models have emerged, which combine different methods and data
sources for estimating and mapping the spatial variations in soil salinity at different
scales [101].

The hybrid modeling approach is presented as a broader category of models that
encompasses the integration of multiple techniques with data obtained by proximal EM38
and MK2 devices and additional data mainly derived from remote sensing.

These models incorporate geostatistical, machine learning, and empirical methods to
leverage the strengths and advantages of each approach and overcome the constraints or
weaknesses that they might have as individual models in soil salinity assessment [154].
Particularly for the detection and mapping of the spatial distribution of solutes within
the profile and across a large area, the hybrid models based on EM38, MK2, and remote
sensing data integrate advanced hybrid geostatistical techniques like regression kriging
with machine-learning algorithms, such as random forest or Cubist. This fusion of ap-
proaches and data sources can identify and predict the complex relationships of solutes
with different variables within the profile and, at the same time, determine the soil salinity’s
spatial variations in the study area.

This innovative and promising modeling approach could potentially lead to more
accurate predictions of spatiotemporal patterns of soil salt content and eventually to a
better understanding and representation of soil salinity dynamics at a regional level. To
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date, however, few studies have examined its efficiency in monitoring and mapping soil
salinity using the EM38 and MK2 probes.

The hybrid modeling approach of Taghizadeh-Mehrjardi et al. [149] combined remote
sensing and MK2 data with hybrid geostatistical methods and machine learning. They
applied regression kriging for the spatial prediction and digital mapping of horizontal and
vertical ECa using auxiliary data at certain depth intervals. Then, the advanced machine-
learning algorithm Cubist (regression tree) was applied to the set of variables to model the
spatial distribution of ECe values at the standard depths. As they documented, the predic-
tion models of ECe in the arid region of Arkadan had varying accuracy (0.11 < R2 < 0.78),
with the spatial distribution performing better in the upper soil (0–30 cm).

Another hybrid approach for modeling and mapping the spatial variations in soil
salinity is the combination of multi-spectral data from high-resolution remote imagery with
measurements from the MK2 and the use of partial least-squares regression (PLSR) [101].
As was reported, the constructed spectral-PLSR-based prediction models could reliably
(R2 = 0.67) detect and monitor the variations in soil salinity in the oasis region of the Keriya
River in China.

In an attempt to explore methods for integrating new sources of soil data as inputs
in DSMs, Zare et al. [52] compared three approaches using MK2 measurements and ECe
data collected from a region near the saline Maharlu Lake in Iran. They concluded that the
approach involving the combination of machine learning, quantile random forest model,
and regression co-kriging on the residuals, with R2 values up to 0.79, can be effectively used
for the prediction of ECe. Also, the MK2 data were found to be a reliable and meaningful
input for digitally mapping the soil salinity variations, especially in cases where there is a
lack of appropriate remote sensing data.

Nonetheless, the hybrid modeling approach, in order to be applicable, requires a
correlation between the input variables. Specifically for generating soil salinization maps,
a strong relationship between ECa measurements and ground-truth data of ECe needs
to be valid. In addition, the selection of the appropriate modeling techniques according
to the existing survey data plays a significant role in the reliability and accuracy of the
results [154].

A summary of the documented modeling approaches for the assessment and mapping
of soil salinity by the EM38 and MK2 measurements is presented in Table 2. Each modeling
approach is accompanied by the various techniques or methods that have been employed
within it. Referenced studies for each case are also shown for further exploration.

3.3. Fusion of the EM38, MK2, and Remote Sensing Data for Soil Salinity Monitoring and Mapping

To mitigate the global impacts of soil salinization, there is an urgent need to retrieve
accurate information on its status in arid and semi-arid regions quickly and consistently.
This has prompted researchers to gradually develop more robust approaches that integrate
multiple data and technologies to interpret the changes in soil salt content and preserve
the agricultural sustainability of the irrigated systems in these areas [155,156]. In the last
few years, these efforts have focused on the combination of remote sensing data with
ground-based EMI sensors for complementary and potentially high-precision monitoring
and mapping of soil salinity variability at different scales [1,54,56,149,157].

Remote sensing, by providing repetitive, current, and prompt high-resolution im-
ages like those of WorldView 2, has become a valuable tool for identifying and mapping
the solutes’ spatiotemporal variations across the surface of large and severely saline ar-
eas [158,159]. The capability, however, of the available multi-spectral satellite data is
restricted to the detection and assessment of surface soil salinity [160], disregarding the
three-dimensional spatial distribution of salt content in the soil profile. Moreover, spectral
reflectance can be problematic in regions with slightly low to moderate salinity levels
and limited or no visible salt features due to interference from other site factors, such as
vegetation cover or soil type [159,161].
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Table 2. Short summary of the modeling approaches and methods that have been used for the
assessment and mapping of soil salinity in terms of ECe using EM38 or EM38 MK2 measurements, at
different scales.

Model Methods Reference Studies

Regression-Based
(Calibration Models)

Linear, multiple linear [104,107]
Simple depth-weighted

coefficients [105]

Established coefficients [108,109]
Modeled coefficients [103]

Mathematical coefficients [110]

Geostatistical

Interpolation methods
(OK 1, CO-K 2, OCK 3, universal kriging,

indicator kriging, 3D kriging) [8,94,98,120,122,123]

Semi/variogram analysis

Deterministic Spatial
Interpolation 3D IDW [125]

Inversion

Tikhonov regularization [135,136]
Joint inversion [72,139,141]
2D algorithms [128,142,143]

Quasi-3D algorithms [126,129]

Machine-Learning-
Based Random forest [4,150]

Hybrid

Cubist (ML), regression kriging [149]
Partial least-squares regression, spectral index [101]

Quantile random forest (ML),
regression co-kriging [52]

1 OK: ordinary kriging, 2 CO-K: co-kriging, 3 OCK: ordinary co-kriging.

On the contrary, the EM38 and MK2 sensors have been broadly employed and eval-
uated for the quantification and characterization of soluble salt distribution within the
subsurface and the rootzone. The fusion of EM38 and MK2 field measurements with
multi-temporal [162,163] and multi-spectral [73,101,124,150] remote sensing datasets has
been documented in a few soil salinity surveys, which vary from agricultural and urban
greenery systems to different soil crops, irrigation schemes, and scales. In most circum-
stances, particularly in bare lands and large arid or semi-arid areas, it has been suggested
as an effective, inexpensive, and time-efficient method for predicting and monitoring the
spatiotemporal variations in soil salinity with relative accuracy [54,101,149,163].

For instance, Wu et al. [162], based on acquired MK2 field measurements and ECe from
soil sampling, used multi-temporal remote sensing (vegetation indices) data to develop
salinity models of the severely salinized region of Dujaila in Iraq. The derived multi-year
maxima-based models, which were applied for mapping and tracking the spatiotemporal
changes in the salt-affected areas, achieved high accuracy in predicting soil salinity, with
R2 reaching a value of 82.5. Vegetation indices such as the NDVI that are utilized in remote
sensing tend to become a significant innovative tool for mapping the entire rootzone salinity
at the regional scale and potentially in the field and landscape as well [48]. However, they
need to be calibrated. Thus, even though the process of ground-truth data collection can
be considerably reduced owing to the MK2 measurements [52], it remains a necessity
for appropriate field calibration [160]. Ding and Yu [54] constructed regression models
using EM38 readings and various spectral indices from satellite images for the prediction
and evaluation of seasonal and spatial variations in soil salinity in the Delta Oasis of the
Tarim Basin, China. They also examined three interpolation techniques for assessing the
distribution patterns of salt concentration within the region. According to their findings,
the fusion of EM38 data with salinity indices from remote sensing images can provide the
assessment of salinity at a regional scale for both dry and wet seasons with fairly high
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accuracy. Moreover, the results indicate the importance of EM38 measurements in designing
rapidly and simply the most suitable soil sampling strategy for the survey. Additional soil
sampling is needed for the interpolation’s accuracy. Among universal kriging, spectral
index regression, and regression kriging, the regression kriging with nested spherical model
was found to have the closest fit to the measured ECa (R2 > 0.90).

On other occasions, however, the combination of the sensors seems to need further re-
search. By employing an EM38 sensor and using data from remote sensing, Nouri et al. [73]
investigated the soil salinity in urban greenery spaces of the Adelaide Parklands in Aus-
tralia. In order to predict the variations in solutes at different spatial and temporal scales,
regression models for the EM38 were developed with various vegetation and salinity
indices from high-resolution satellite images. The EM38 data were validated with ECe
values from soil samples. As the authors observed, although the soil-adjusted vegeta-
tion index (SAVI) was found to be a good predictor, the proximal sensor was considered
more efficient than the spectral indices in predicting soil salinity in urban landscapes in
semi-arid climates. Additionally, Gharsallah et al. [124] observed that, in large arid lands
that are densely planted, such as an irrigated olive orchard, multivariate models of EM38
data with soil spectral indices from low-resolution images may exhibit poor accuracy in
predicting and mapping the soil salinity distribution (R2 < 0.12). Nonetheless, in these
models, the integration of vegetation indices and high-resolution images may resolve the
influence of the dense tree canopy on the remote sensing reflectance and improve the
overall reliability [124].

The fusion of field EM38 and MK2 data with remote sensing techniques, including
high-quality satellite data and selected indicators like vegetation indices, can contribute to
more thorough and concordant maps of soil salinity. Monitoring the spatial and temporal
distribution of solutes through field EMI surveys and remote sensing can be sufficiently
accomplished without excessive soil sampling. This can accelerate the understanding of
soil salinization severity at multiple scales and lead to rapid remediation measures.

4. Discussion

From the results of the research, it was observed that the approaches utilizing the
EM38 and MK2 data for soil salinity assessment and mapping have been centered around
regression-based (calibration) models, geostatistical methods, deterministic interpolation
methods, inversion models, machine-learning algorithms, and hybrid modeling.

According to the reviewed literature, the developed calibration models exhibit limited
applicability since they use entirely site-specific equations and regression coefficients that
cannot be accurately applied in different locations [48,85,111,112]. Moreover, these models
rely on distributional and subsurface homogeneous assumptions, which exclude from their
equations the impact of influential soil properties, such as soil texture and soil water content,
on ECa measurements [63]. Nevertheless, linear regression can be employed as a viable,
easy, and simple calibration technique in conjunction with the geostatistical [94,122,123] and
the inversion [126–130] modeling approaches. The geostatistical models have contributed
significantly to the prediction and interpretation of soil salinity spatial variations over
the years. With a diversity of classic and more advanced interpolation methods available,
they have been proven to provide relatively accurate estimations of ECe on a range of soil
scales [94,120,123]. However, since their application depends on the spatial structure of the
collected data, their solitary use is not suggested in circumstances where more complex and
non-spatial relationships among the variables need to be assessed. As was observed from
the findings, the inversion modeling approach has gained wide acceptance in the scientific
community, and its applications in salinity surveys using the EM38 and MK2 sensors
are increasing and evolving. The benefit of these methods lies in the easy conversion of
multiple ECa measurements through software to determine ECe at different depths and
generate detailed multidimensional (2D, 3D) images of the soil salinity profile with high
accuracy [118–120,126,128,142,143]. Besides the variety of studies that characterize the
spatial variations using the EM38 and MK2, recent studies have made efforts to assess
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the temporal variability of solutes, yielding good results [127]. In all cases, the inversion
prediction models require rigorous validation with independent datasets to be credible [127].
Machine-learning-based models have also emerged as a powerful approach in the current
field of soil salinity monitoring and mapping. Their capability to process immense amounts
of data and capture complex, non-linear interrelations between the sensor’s ECa data and
a plethora of input variables is considered their major advantage over other modeling
techniques. The findings from the literature demonstrated that the implementation of
machine-learning techniques combined with MK2 data, auxiliary data from remote sensing,
and environmental variables can predict with significant accuracy the spatial and temporal
variability of soluble salts on the large scale of arid zones and generate fine-resolution
maps [4,52,149,150]. Recently, an increasing number of studies have focused on developing
such integrating approaches and coupling them with hybrid techniques of geostatistical
interpolation and machine learning. These approaches have been found to produce reliable
soil salinity predictions and DSMs, particularly in the arid regions of the world [52,149], but
caution is needed in the selection of the proper techniques. In a similar sense, the review’s
findings highlighted the fusion of the EM38 and MK2 data with high-quality satellite data
and vegetation indices from remote sensing as an effective, rapid, and promising method
for the prediction and mapping of the spatiotemporal variations in soil salinity in large arid
areas [54,101,149,162,163].

5. Conclusions and Future Directions

By exploring the latest modeling approaches for the assessment and mapping of soil
salinity using the EM38 and MK2 sensors, we attempted to enrich and enhance the current
research field of soil salinization monitoring and mitigation through this review. Specifically,
through a comprehensive summary of the applied approaches and methods, the paper
intended to elucidate and underline the role of EM38 and MK2 in the detection and
interpretation of soil salinity and facilitate researchers and users in making well-informed
decisions concerning future salinity surveys and agricultural treatments.

The advantage of the EM38 and MK2 sensors in soil salinity surveys is their capability
to collect rapid and effortlessly numerous field ECa measurements that can be conveniently
related to soil salinity, especially in high-salt-affected areas. By applying simple or more
sophisticated modeling approaches, the ECa data can be converted to salinity estimates of
ECe, revealing valuable insights into the spatiotemporal patterns and depth distribution of
solutes at various scales and land types. Due to the complicated interactions of soil salinity
with various soil properties and factors and its continuous changes over time and space, the
measurements by EM38 and MK2 sensors are pivotal for the subsurface mapping of saline
soils in a timely manner. The enhanced ground conductivity meter MK2, which is easy to
operate and cost-effective compared to the latest multi-coil sensors, can be significantly
useful in subsurface salinity mapping, especially in cases where other soil data sources,
such as remote sensing, are unavailable.

To date, despite the research and technological progress, there is not a universally
approved and applicable modeling approach for the assessment and monitoring of soil
salinization. Therefore, the construction of efficient salinity models using the EM38 and
MK2 probes should be carried out considering the available approaches and their adap-
tation under different soil and environmental conditions. It is essential to have a full
understanding of the current modeling options and their techniques so the optimal method
can be selected and the spatiotemporal characteristics of the salt-affected areas can be
accurately identified and interpreted.

In this sense, by using the sensor’s field readings at various depths and employing
an inverse modeling technique, the spatial and temporal variability of soil salinity at large
irrigated farms can be predicted and quantified in 3D maps. This enables the detailed
monitoring of soil salt variations within the field and the design of proper soil management
practices. Moreover, advanced approaches like hybrid models, which combine EM38 and
MK2 readings with multiple site-specific datasets and methods like machine learning and
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interpolation, may overcome the limitations of single model applications and increase the
accuracy of ECe predictions. Subsequently, the interpretation of the complex soil salinity
dynamics across the study area can be fulfilled. Finally, the recent trend of integrating
georeferenced EM38 and MK2 measurements with remote sensing data indicates great
opportunities in delineating the soil salinity distribution within the rooting zone and across
large arid regions. This approach can improve the implementation of precise and timely
sustainable strategies and substantially reduce the need for excessive soil sampling.

Consequently, further exploration of such promising methods at multiple scales is
crucial for generating reliable and up-to-date salinity maps. More attention should be
directed toward extending and validating the inverse modeling at a regional scale and in
distinct irrigation systems to create consistent 3D maps of the spatiotemporal variability
of soil salinity. In addition, efforts to incorporate machine-learning algorithms with multi-
period remote sensing data, auxiliary variables, and EMI data should be intensified to track
and map the long-term variations in soluble salt depositions at the regional level, refine the
method, and expand it toward global-scale predictions. Furthermore, a deeper investigation
of the diverse environmental, topographic data, and spectral indices as covariates is needed
to identify and optimize the predictor variables of soil salinity mapping in different soil
conditions and cultivation systems.

Ultimately, the validation of robust, sophisticated approaches that combine field mea-
surements using sensors like the EM38MK2 and contemporary technologies can potentially
minimize the time, labor, and cost of ground-truth data and render a fundamental basis for
the efficient prediction and real-time monitoring of soil salinization at the field, regional,
and global scales.
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Abstract: Electromagnetic induction (EMI) and electrical resistivity tomography (ERT) are geophysi-
cal techniques measuring soil electrical conductivity and providing insights into properties correlated
with it to depths of several meters. EMI measures the apparent electrical conductivity (ECa, dS m−1)
without physical contact, while ERT acquires apparent electrical resistivity (ERa, ohm m) using
electrodes. Both involve mathematical inversion to obtain models of spatial distribution for soil
electrical conductivity (σ, mS m−1) and electrical resistivity (ρ, ohm m), respectively, where ρ is
the reciprocal of σ. Soil salinity can be assessed from σ over large areas using a calibration process
consisting of a regression between σ and the electrical conductivity of the saturated soil paste extract
(ECe, dS m−1), used as a proxy for soil salinity. This research aims to compare the prediction abilities
of the faster EMI to the more reliable ERT for estimating σ and predicting soil salinity. The study con-
ducted surveys and sampling at four locations with distinct salinity levels in Portugal, analysing the
agreement between the techniques, and obtained 2D vertical soil salinity maps. In our case study, the
agreement between EMI and ERT models was fairly good in three locations, with σ varying between
50 and 500 mS m−1. However, this was not the case at location 4, where σ exceeded 1000 mS m−1

and EMI significantly underestimated σ when compared to ERT. As for soil salinity prediction, both
techniques generally provided satisfactory and comparable regional-level predictions of ECe, and
the observed underestimation in EMI models did not significantly affect the overall estimation of
soil salinity. Consequently, EMI demonstrated an acceptable level of accuracy in comparison to ERT
in our case studies, supporting confidence in utilizing this faster and more practical technique for
measuring soil salinity over large areas.

Keywords: electromagnetic induction; electrical resistivity tomography; soil salinity

1. Introduction

Electromagnetic induction (EMI) and electrical resistivity tomography (ERT) are two
near-surface geophysical techniques that allow the electrical conductivity of soil to be
measured and therefore for properties that are correlated with it to be monitored to depths
that can reach up to several meters. These properties can be soil salinity [1–6], soil sod-
icity [7], soil water content [8–15], particle size distribution [16–19], soil cation exchange
capacity [20–23], and organic matter [24].
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EMI implies the acquisition of apparent electrical conductivity (ECa, dS m−1) using
a device that does not touch the surface of the soil, while ERT involves the acquisition of
apparent electrical resistivity (ERa, ohm m), which is the reciprocal of ECa, using a device
that takes measurements in electrodes placed at the surface of the soil. Both EMI and ERT
techniques involve the mathematical inversion of the apparent data [25] to obtain models
of the spatial distribution of the soil electrical conductivity (σ, mS m−1), and of the soil
electrical resistivity (ρ, ohm m), respectively. Different inversion methods (e.g., [26–28])
and software (e.g., [29,30]) have been developed to estimate the distribution of σ based
on measured ECa data. Similarly, various inversion codes are available to estimate the
distribution of ρ based on measured ERa data (e.g., [31–33]). ρ is the reciprocal of σ, so it
can be easily converted to σ.

While the fundamental physical principles differ (induction versus galvanic phenom-
ena), and the volume of ground investigated by the two techniques is also different, both
could yield similar electrical conductivity values under specific assumptions. Theoretically,
adopting low-frequency signals (f < 105 Hz) and the absence of metallic objects in the
subsoil should result in comparable outcomes for ERT and EMI techniques. However, it is
important to note that ERT is more sensitive to strong resistors, while EMI is more sensitive
to strong conductors [34].

Soil salinization is a process of soil degradation that limits agricultural productivity
and can lead to desertification and land abandonment. Salinization also decreases bio-
diversity, affects ground- and surface water, and degrades infrastructures. Such effects
represent major negative economic, environmental, and social impacts. According to the
Global Map of Salt-Affected Soils [35], salt-affected soils are distributed globally, but about
two thirds of the area is located in arid and semi-arid climatic zones. FAO ([35]) estimates
that 4.4% of the topsoil (0–30 cm) and more than 8.7% of soil at depths of 30–100 cm of the
total land area is salt-affected. Given this threat, it is very important to be able to monitor
soil salinity in agricultural areas. The monitoring of soil salinity along the soil profile is
key to understanding the specific processes related to salinization and to defining and
implementing measures to counter it and its impacts [36,37].

Soil salinity can be assessed from σ over large areas through a calibration process
consisting of a regression between σ and the electrical conductivity of the saturated soil
paste extract (ECe, dS m−1), used as a proxy for soil salinity, and the conversion of the σ

models into salinity maps using the obtained calibration equation (e.g., [21,38,39]). While
both EMI and ERT offer non-invasive, rapid, and cost-effective analysis, EMI stands out
for its capacity to cover extensive areas in a very short timeframe. However, several
studies (e.g., [40–46]) have highlighted that EMI may not provide precise estimations of σ
distribution and may require the prior calibration of ECa data against ERT or time domain
reflectometry (TDR) measurements to account for expected shifts and offsets to obtain
more representative ECa measurements. However, the calibration process is site-specific,
time-consuming, and may not be feasible in many cases.

In this study, we explore the prediction ability of EMI in assessing soil salinity without
prior calibration, comparing the outcomes to equivalent results derived from the ERT data.
The aim is to assess whether satisfactory prediction results can be achieved without a prior
EMI calibration process. Given that many applications of EMI in soil salinity assessment
often skip such a calibration step due to its time-consuming nature or the unavailability of
necessary geophysical equipment, this case study offers insights into potential uncertainties
associated with the absence of calibration. To achieve our goal, we conducted EMI and ERT
surveys, along with soil sampling, at four locations with varying salinity levels from non-
saline to severely saline soils in the Lezíria de Vila Franca de Xira, an alluvial agricultural
area in Portugal. The selection of locations aimed to encompass a range of soil salinity
levels, also ensuring a great variability of σ, expected when conducting EMI surveys over
saline soil across the globe. To this aim, we generated 2D vertical σ models and analysed
the agreement between the two techniques in estimating σ at the same subsurface points.
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Then, we obtained one calibration equation for each technique, compared their abilities to
predict ECe from the σ models, and generated 2D vertical soil salinity maps.

2. Materials and Methods

2.1. Study Area

The investigation was conducted in Lezíria de Vila Franca, situated 10 km northeast of
Lisbon, Portugal (see Figure 1). It is a 130-square-kilometer alluvial peninsula bounded
by the Tejo and Sorraia rivers. The climate is classified as temperate with hot and dry
summers, according to the Köppen classification. In the northern region, the soils exhibit
a fine to very fine texture and are categorized as Fluvisols, and in the southern region
they are categorized as Solonchaks, based on the Harmonized World Soil Database [47].
There is a gradient of soil salinity that increases from north to south that affects the land
use distribution. This gradient is a combination of (1) primary salinization [48], attributed
to the regional presence of marine sediments and the saline influence of the estuary on
groundwater in the southern part of the study area; and (2) secondary salinization [48],
attributed to the irrigated farming that, using good quality water, has washed the soil in
the northern part of the region. In fact, in this region, land use primarily comprises mainly
irrigated annual crops in the north and rainfed pastures in the south.

 
Figure 1. Location of Lezíria, the study area, details of the four locations with the geophysical
transects and soil sampling sites, and images of the electromagnetic induction (EMI) and electrical
resistivity tomography (ERT) instruments used in geophysical acquisition. © Google Earth.

For the comparative assessment, four distinct locations with varying salinity levels
were selected within the study area (see Figure 1). According to the soil salinity classification
defined by [49], location 1 exhibited non-saline conditions (ECe < 2 dS m−1), location 2 was
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slightly saline (2–4 dS m−1), location 3 was moderately to highly saline (4–16 dS m−1), and
location 4 was severely saline, surpassing 16 dS m−1 at the time of the experiment [4,7,38].

Moreover, previous studies conducted by our team at this study area [4,7,38] have
provided a detailed description of the soil’s physico-chemical properties. We have deter-
mined the pH, cation exchange capacity, and exchangeable sodium percentage. From this
analysis, we know that all locations have a pH above 8 at depths below 30 cm, and that
the exchangeable sodium percentage is above 15% in the subsoil at locations 2, 3, and 4.
The latter indicates a high concentration of sodium in the soil exchange complex in relation
to those of calcium and potassium. The principal component analysis showed that the
soil electrical conductivity in this study area is mainly influenced by soil salinity [7]. This
correlation is attributed to the significant north–south gradient of soil salinity, which pre-
dominates in influencing soil salinity impact, coupled with the limited variability observed
in other soil properties like soil texture.

During the surveys, location 1 featured drip-irrigated tomatoes, and locations 2 and 3
centred on pivot irrigated maize, with no irrigation occurring on survey days. Location 4 is
a rainfed natural pasture that had not been ploughed for at least the past decade.

2.2. Electromagnetic Induction

Electromagnetic induction (EMI, Figure 1) data were gathered, employing the EM38
instrument. The instrument comprises two coils housed in a case—one for transmiting the
electromagnetic signal and the other for receiving it—positioned 1 m apart. The instrument
can be oriented vertically (horizontal dipole mode) for a maximum depth of investigation
of 1.5 m or horizontally (vertical dipole mode) for a maximum depth of 0.75 m. EMI
surveys were conducted in the dry seasons of 2017 (locations 1 and 4) and 2018 (locations 2
and 3). ECa measurements were collected at 1 m intervals along a 20 m transect at each
location (refer to Figure 1) and at two heights from the soil surface (0.15 and 0.4 m) in both
horizontal and vertical dipole orientations. This positioning was facilitated by placing the
EM38 on a custom-built cart for precision [38].

The inversion of ECa data to derive σ was executed using EM4SOIL software (V-
3.05) [29]. The ECa responses in the model were determined through forward modelling
based on the complete solution of the Maxwell equations [50]. The subsurface model
employed in the inversion consisted of a series of 1-D models distributed according to
the ECa measurement positions. Each subsurface model at a measurement position was
influenced by neighbouring models, enabling algorithm use in regions characterized by
high conductivity contrast. The inversion of ECa data employed an approach grounded in
Occam regularization [51]. Data from all four locations were inverted, applying a five-layer
earth initial model with an electrical conductivity of 100 mS m−1 and a fixed layer thickness
of 0.30 m. The algorithm’s parameters, including the inversion algorithm type, number of
iterations, and smoothing factor (λ) controlling model roughness, were chosen according
to the methodology outlined in [38]. With the evenly distributed inverted data across the
modelled area, 2D vertical σ models were generated for each location utilizing triangulation
with linear interpolation.

2.3. Electrical Resistivity Tomography

Electrical resistivity tomography (ERT, Figure 1) data were acquired using a 4-point
light 10 W system (LIPPMANN, Schaufling, Germany). The technology of this system is
based on the measurement of voltage between two reading electrodes installed on the soil
surface, when direct current is injected into two other electrodes, to calculate subsurface
electrical resistivity. In this system, the disposition of the electrodes changes according to
the array used, so that a grid of subsoil ERa values is obtained. The maximum depth of
investigation and resolution vary with electrode spacing and the array configuration. ERT
surveys were carried out at the same transects as EMI surveys, on the same dates, with
electrode spacings of 1 m at location 1 and 0.75 m at locations 2, 3, and 4. ERa data were
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collected using the Wenner array, known for effective mapping in areas with significant
vertical gradients of σ and a superior signal-to-noise ratio [31].

The inversion of ERa data to derive σ was performed using RES2DINV software
(V-3.71) (Geotomo Software, Penang, Malaysia). Given the pronounced vertical salinity
gradients due to saline groundwater in the region, robust inversion and mesh refinement
to half of the electrode spacing were implemented to address anticipated strong resistivity
contrasts. In robust inversion, the objective function aimed to minimize the absolute change
in resistivity values, yielding models with well-defined interfaces between regions with
varying resistivity values [31]. Since the inverted data were evenly distributed over the
modelled area, 2D vertical σ models were produced for each location using triangulation
with linear interpolation.

2.4. Soil Salinity

Soil samples were collected simultaneously as the geophysical surveys, in the medium
point of each profile, as shown in Figure 1. There, five soil samples were collected between
a depth of 0.15 m and 1.35 m representing topsoil (0–0.3 m), subsurface (0.3–0.6 m), upper
subsoil (0.6–0.9 m), intermediate subsoil (0.9–1.2 m), and lower subsoil (1.2–1.5 m). It is
noteworthy that the number of soil samples was limited to one borehole in each plot. This
was because of the short length of the transects and the relatively small lateral variability of
σ, suggesting that a single borehole could adequately represent soil properties. Further-
more, during the 18-month monitoring period at these four locations, a larger number of
boreholes were drilled, and laboratory analysis confirmed the limited lateral variability
of soil properties [4,7,38]. In the laboratory, ECe was determined using a conductivity
meter (WTW 1C20-0211 inoLab) on liquid extracts obtained by suction filtering of the
soil saturation paste derived from 300 g of air-dried and 2 mm sieved soil samples. The
methodology employed for ECe measurement followed the procedures by [52], and soil
samples’ salinity was classified according to [49], as described in Section 2.1.

Two regional calibrations were developed to predict ECe from all locations together,
one using σ obtained from the inversion of EMI data and the other using σ obtained from
the inversion of ERT data. The prediction ability of these calibrations was analysed through
cross-validation, using the leave-one-out cross-validation in R language [53] through the
function train(). In this method, one sample is removed and a calibration is established
based on the remaining samples to predict the ECe of the removed sample. This procedure
is iteratively repeated for each sample, until all 19 samples have been removed. The
prediction ability of the calibrations was evaluated by calculating the root mean square
errors (RMSE), and the mean errors (ME). RMSE evaluates matching between measured
and predicted data, indicating more precise predictions when closer to zero. ME evaluates
whether the predicted data are overestimated (negative ME) or underestimated (positive
ME). RMSE and ME were calculated according to the following equations:

RMSE =

√√√√∑n
i=1

(
mECei − pECei

)2

n
(1)

ME =
∑n

i=1

(
mECei − pECei

)
n

(2)

where mECe indicates measured ECe and pECe indicates predicted ECe.
The two regional calibrations were then used to estimate ECe from σ (obtained from

either EMI or ERT). Since the estimated ECe data were evenly distributed over the mapping
area, 2D vertical soil salinity classification maps were produced for each location using
triangulation with linear interpolation.
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2.5. Agreement Analysis

Agreement analysis was performed for EMI and ERT techniques in estimating σ

and ECe on the same points of the subsurface, based on the methodology described
in [54]. In this methodology, the agreement is analysed using the differences between
measurements made by two techniques on the same subject. In this study, we considered
the subsurface position as the subject. However, both EMI and ERT data surveys and
inversion processes produced subsurface σ grids that were not entirely coincident in space
(Figure 2). To overcome this issue, σ grids obtained from EMI and ERT modelling results
were ordered in data pairs selected for being distanced less than 0.22 m horizontally
and 0.05 m vertically. This criterion was looser in the horizontal direction to maintain
a statistically significant number of selected points, and it could be accepted because it
was known from the previous studies [4,7,38] that the subsurface was highly horizontally
stratified. The position attributed to each data pair was the position of the corresponding
EMI measurement. These data pairs were then used for a comparison of EMI and ERT
techniques in estimating σ, represented by (σERT, σEMI).

 

Figure 2. Comparison of electromagnetic induction (EMI) and electrical resistivity tomography (ERT)
σ grids for location 1, Lezíria, Portugal.

For the comparison of EMI and ERT techniques in predicting ECe, the data pairs used
were composed by predicted ECe using ERT and predicted ECe using EMI, (pECe ERT,
pECe EMI), and were located at the position of the soil samples, as a result of the procedure
for the calibration development.

To visualize the agreement of σ, data pairs were represented through σEMI against
σERT plots, and modified Bland–Altman plots [54]. In the latter type of plot, the difference
between each data pair value is plotted against the mean between the two values, which
represents the most approximate value to the true value being studied [54]. However, in
this case, we used σERT in the y-axis, as we considered it to be the σ reference and true
value. A reference interval within which fall most differences between the data is also
included, and it is called the 95% limit of agreement [54]. The 95% limit of agreement
can be calculated in different ways, depending on the differences between the data pair
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values following a normal distribution or not [54], which was investigated using the qqPlot
function of R language [53].

When the normal distribution of the differences between the data pair values was
verified, the 95% limits of agreement were calculated using the mean difference (MD) and
the standard deviation (SD) of the differences as MD ± 1.96SD agreement [54]. MD and SD
were calculated according to the following equations:

MD =
∑n

i=1
(
σEMIi − σERTi

)
n

(3)

SD =

√
∑n

i=1
(
σEMIi − σERTi − MD

)2

n − 1
(4)

When the normal distribution of the differences between the data pair values was not
verified, the 95% limits of agreement were defined using the median (MeD), the 5 percentile
(p5), and the 95 percentile (p95) of the differences [54].

To visualize the agreement between measured ECe and predicted ECe for each tech-
nique, data pairs were represented through another modification of the Bland–Altman plot,
in which the difference between measured ECe and predicted ECe for each technique was
plotted against the measured ECe.

Spearman’s rank correlation coefficient (RCC) between (i) the differences between σERT
and σEMI, and σERT, for σ data, and (ii) the differences between measured ECe and predicted
ECe, and the measured ECe, for ECe data, were calculated using the SpearmanRho()
function of R language [53]. Spearman’s RCC always returns a value placed between −1
and 1. In this case, it would indicate if the differences between the values being compared
are related to the magnitude of the property being estimated. A Spearman’s RCC closer
to 1 means that the differences are closely related to the magnitude of the property being
estimated [54].

3. Results and Discussion

3.1. Soil Electrical Conductivity Obtained from EMI vs. ERT

Figure 3 shows the 2D vertical σ models obtained by EMI and by ERT techniques for
locations 1 to 4. For both techniques, a general increasing trend of σ is evident from the north
to the south of the peninsula, accompanying the known soil salinity gradient, illustrating
the strong correlation of σ with ECe in the region, as verified previously in [4,7,38]. Also,
both techniques show that σ increases with depth at locations 2, 3, and 4, which correlates
well with groundwater depth and salinity in these locations. However, this trend is not
observed at location 1, possibly due to irrigation and the deeper positioning of the saline
groundwater at this site, making it less prone to capillary rise. Location 1 exhibits the
lowest σ values, ranging from 50 to 160 mS m−1, followed by slightly higher σ values at
location 2 (i.e., 60–460 mS m−1). Location 3 displays a greater variability in σ compared to
the other two locations, featuring a minimum σ of 30 mS m−1 and a higher maximum of
530 mS m−1. The σ gradient at location 4, however, is the most substantial, with an extreme
maximum σ of over 1600 mS m−1.

To compare the EMI model with ERT, Figure 4 shows the plots that support the agree-
ment analysis between EMI and ERT σ estimations. At location 1, a normal distribution of
the differences between σERT and σEMI data was verified, so the 95% limits of agreement
were calculated using the mean difference (MD) and the standard deviation of the differ-
ences (SD), as explained in the Materials and Methods section. It could be verified that most
differences between σERT data and σEMI data fell in the −14.98 mS m−1 to 32.16 mS m−1

interval. The mean difference was 8.59 mS m−1, and, since it was a positive value, indi-
cated that, at this location, the EMI model tended to underestimate σ compared to the
ERT model. This mean difference value was relatively low compared to the range of σERT
data (82.20–143.10 mS m−1, Table 1). In terms of depths, agreement was generally good in
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topsoil (0–0.3 m), subsurface (0.3–0.6 m), and upper subsoil (0.6–0.9 m). However, the agree-
ment diminished in the intermediate subsoil (0.9–1.2 m) and lower subsoil (1.2–1.5 m), as
evidenced by the distance of points to the 1:1 line in the σEMI against σERT plot. Differences
between σEMI and σERT data in the topsoil, subsurface, and upper subsoil were the closest
to the 0-horizontal line in the Bland–Altman plot. The Bland–Altman plot indicates that, at
this location, agreement increased with σ and decreased with depth. In comparison to the
ERT model, there was an obvious tendency for the EMI model to underestimate σ in the
lower subsoil (1.2–1.5 m). Spearman’s RCC of −0.34, as observed in location 1, indicates
that generally the differences between σEMI and σERT are not related to the magnitude of σ.

 

Figure 3. Two-dimensional vertical soil electrical conductivity (σ) models obtained from electromag-
netic induction (EMI, left) and electrical resistivity tomography (ERT, right) techniques for locations
1 to 4.
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Figure 4. Agreement of soil electrical conductivity (σ) obtained from electromagnetic induction (EMI)
and electrical resistivity tomography (ERT) techniques for locations 1 to 4: σEMI against σERT plots
with the 1:1 line (left), and modified Bland–Altman plots with the 95% limits of agreement (right).
Plots include the number of data (n) (left), Spearman’s rank correlation coefficient (RCC), mean
difference (MD), standard deviation (SD), median (MeD), the 5 percentile (p5), and the 95 percentile
(p95) (right).
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Table 1. Statistics of soil’s electrical conductivity obtained from electrical resistivity tomography
(σERT), and measured soil salinity (mECe): minimum, maximum, range, and amount of data, at
locations 1 to 4 and at all locations together, respectively.

Unit Location Minimum Maximum Range
Amount of

Data

σERT mS m−1 1 82.20 143.10 60.90 80
2 126.70 446.20 319.50 252
3 107.40 427.50 320.10 252
4 356.40 1640.00 1283.60 196

mECe dS m−1 all 0.75 37.10 36.75 19
σERT is soil electrical conductivity obtained by electrical resistivity tomography. mECe is measured soil salinity
obtained from saturated soil paste extract (ECe).

At locations 2 to 4, a normal distribution of the differences between σEMI and σERT
data was not verified, so the 95% limits of agreement were calculated using the median
(MeD), the 5 percentile (p5), and the 95 percentile (p95) of the differences (see Section 2.5).

At location 2, most differences between σERT and σEMI data fell in the −24.88 mS m−1

to 77.19 mS m−1 interval. The median was 9.72 mS m−1, which indicates that, in general,
at this location the EMI model similarly tended to underestimate σ, compared to the ERT
model. Also, this value was low compared to the range of σERT data (126.70–446.20 mS m−1,
Table 1). In terms of depth, agreement was generally good in the upper subsoil (0.6–0.9 m)
and lower subsoil (1.2–1.5 m), which could be verified by the distance of points to the 1:1
line in the σEMI against σERT plot. Also, differences between σEMI data and σERT data in
the upper and lower subsoil were the closest to the 0-horizontal line in the Bland–Altman
plot. At this location, agreement increased with σ and with depth. This contrasted with the
observations at location 1, where the most significant disagreement was noted in the lower
subsoil (1.2–1.5 m). However, the distribution of σ at location 1 differed significantly from
the variability observed in the other three locations, as σ decreased with depth at location 1.
Spearman’s RCC of −0.54 indicates that generally, the differences between σEMI and σERT
tend to slightly decrease when σ increases.

At location 3, most of the differences betweenσERT andσEMI data fell in the−126.62 mS m−1

to 107.34 mS m−1 interval. The median was 16.90 mS m−1, which indicates that, similar to
locations 1 and 2, and in general, at this location the EMI model tended to underestimate
σ, compared to the ERT model. Also, this value was low compared to the range of σERT
data (107.40–427.50 mS m−1, Table 1). In terms of depth, agreement was generally good in
the subsurface (0.3–0.6 m) and upper subsoil (0.6–0.9 m), as evidenced by the proximity
of points to the 1:1 line in the σEMI against σERT plot and to the 0-horizontal line in the
Bland–Altman plot. Spearman’s RCC of −0.65 indicates that the differences between σEMI
and σERT slightly decrease when σ increases.

At location 4, most differences between σERT and σEMI data fell in the 291.90 mS m−1

to 1179.60 mS m−1 interval. This interval was totally above the 0-horizontal line in the
Bland–Altman plot, which, together with a median of 667.72 mS m−1, indicated that at this
location, the EMI model tended to drastically underestimate σ, compared to the ERT model.
Also, this value was significantly high in the range of σERT data (356.40–1640.00 mS m−1,
Table 1). In terms of depth, there was no significant agreement between σERT and σEMI, as
evidenced by the lack of proximity of points to the 1:1 line in the σEMI against the σERT plot
and to the 0-horizontal line in the Bland–Altman plot. Spearman’s RCC of 0.57 indicates
that the differences between σEMI and σERT slightly increase when σ increases.

Comparing the results between locations suggests that the EMI models tend to under-
estimate σ when compared to the ERT models in all four locations. However, in locations
1, 2, and 3, with σ variability inferred from the ERT model in the 50–500 mS m−1 range,
the underestimation of the EMI model was not significant, suggesting that the obtained
EMI models were in good and acceptable agreement with those inferred from detailed ERT
investigation. This was not the case at location 4, as the underestimation tendency was
quite drastic at this location, where the σ variability inferred from the ERT model fell in the
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range of 500–1600 mS m−1. This is likely linked to the relationship between the quadrature
component of the EMI signal and σ in superconductive soil at location 4, which may exhibit
a non-monotonic behaviour [33]. In such situations, obtaining more representative ECa
values may need the use of both the in-phase and quadrature components of the EMI
signal [55]. However, the in-phase component has to be adequately calibrated, as it is sus-
ceptible to signal instability and offsets [56], which was not considered in this study. This
presents a significant challenge when estimating σ in highly saline soil, where conductivity
is anticipated to be extremely high. In this context, the robust ECa estimation approach,
proposed by [57], may enhance the reliability of ECa estimation over superconductive areas.
Alternatively, ERT (e.g., [44]) or TDR (e.g., [45]) measurements carried out along the same
transects can be used to calibrate ECa data to obtain more representative ECa values.

3.2. Soil Salinity Obtained from EMI vs. ERT

Figure 5 shows the two regional calibrations that were developed to predict ECe, one
using the σ obtained from the inversion of EMI data and the other using σ, obtained from
the inversion of ERT, and their prediction results. Both models had a strong R2, with
EMI (0.86) being higher than ERT (0.75). The leave-one-out cross-validation resulted in
acceptable and comparable RMSE and ME results. The obtained RMSE of 3.96 dS m–1 for
EMI, and of 4.72 dS m–1 for ERT, were low in the measured ECe range (0.75–37.1 dS m–1,
Table 1) and comparable between them. ME of 3.22 dS m–1 for EMI, and 2.32 dS m–1 for
ERT, mean a comparable underestimation of the predicted data for both techniques.

Figure 5. Measured soil salinity (mECe) versus soil electrical conductivity (σ) obtained from electro-
magnetic induction (EMI) and electrical resistivity tomography (ERT) techniques for the regional
calibrations (left), and predicted soil salinity (pECe) obtained from the leave-one-out-cross-validation
of the calibrations (right). Plots include calibrations and their coefficient of determination (R2) (left),
and their root mean square error (RMSE) and mean error (ME).

Figure 6 shows the plot of the differences between measured ECe and predicted
ECe, for each technique, against the measured ECe. The proximity of the points to the
0-horizontal line indicates that there is good agreement between measured and predicted
ECe. Points above the line indicate underestimation, while points below the line indicate
overestimation. In the non-saline classification interval of soil salinity, both techniques
showed good agreement between measured and predicted ECe. In the slightly saline
classification interval, EMI provided mostly overestimated predictions but also some
underestimated predictions, whereas ERT showed good agreement between measured
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and predicted ECe. In the moderately saline classification interval, EMI provided one
overestimated prediction, while ERT underestimated that same ECe measurement. In the
very saline classification interval, EMI provided one underestimated prediction, while ERT
overestimated that same ECe measurement. In the highly saline classification interval, the
same happened as in the previous interval, except for one ECe measurement, which was
underestimated by both techniques, but still classified as highly saline, for both techniques.
Spearman’s RCC calculated for EMI (0.24) indicated that there was an underestimation
tendency as the magnitude of ECe (soil salinity) increased. In the case of ERT, Spearman’s
RCC of −0.12 indicated a slight overestimation tendency as the soil salinity grew.

Figure 6. Agreement of measured soil salinity (mECe) and predicted soil salinity (pECe) obtained
using electromagnetic induction (EMI) and electrical resistivity tomography (ERT) techniques, with
Spearman’s rank correlation coefficient (RCC).

A thorough examination of the calibrations reveals that, despite the EMI model signifi-
cantly underestimating σ in the superconductive zone at location 4, resulting in a distinct
linear regression slope between ECe and σ (EMI vs. ERT), this issue did not adversely affect
the overall predictive capability of the regional calibration when compared to the results
obtained from ERT. This is attributed to the fact that, although EMI underestimated σ at
location 4, the pattern of σ distribution and its variations with depth aligned with those
obtained from the ERT model.

To provide a better insight into the prediction ability of both methodologies in different
locations, Figure 7 depicts the 2D vertical maps of soil salinity classification obtained from
the conversion of σ obtained by EMI and ERT for locations 1 to 4, using the corresponding
calibration. The filled-in circles in the maps represent the position and classification of the
soil samples (measured ECe).

At location 1 there is total agreement between the predicted classification and the
actual classification obtained from the samples, for both techniques. At location 2 soil
salinity is overestimated by EMI at intermediate (0.9–1.2 m) and lower subsoil (1.2–1.5 m),
while it is also overestimated by ERT but only in lower subsoil (1.2–1.5 m). At location
3, soil salinity is underestimated by EMI at the subsurface (0.3–0.9 m) and overestimated
at intermediate (0.9–1.2 m) and lower subsoil (1.2–1.5 m), while it is underestimated by
ERT at the subsurface (0.3–0.9 m) and upper subsoil (0.6–0.9 m). At location 4, soil salinity
is underestimated by EMI from topsoil to upper subsoil (0–0.9 m), while there is total
agreement between the predicted classification and the actual classification by ERT.
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Figure 7. Two-dimensional vertical soil salinity classification maps obtained by electromagnetic
induction (EMI, left) and electrical resistivity tomography (ERT, right) techniques for locations 1 to 4.
The filled circles represent the position and classification of the soil samples (measured ECe).

As anticipated, the salinity maps obtained from EMI and ERT are acceptably compara-
ble, although EMI generally underestimated σ. Both techniques displayed similar levels of
underestimations and overestimations, indicating a comparable level of prediction accuracy.
The underestimation or overestimation of soil salinity based on σ is not only related to the
geophysical approach but also influenced by the variability of other soil properties along
the transects, such as soil texture, moisture content, salinity type, and temperature. For
instance, in our previous study in the same study area, we observed that at location 2 the
presence of slightly higher clay content in the subsoil, combined with the lower range of soil
salinity (compared to locations 3 and 4), made it challenging to estimate ECe from EMI data
and regional calibration [38]. Also, in the same study area, a relatively larger variability
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of moisture content and soil temperature in the topsoil at all locations was a major factor
limiting ECe prediction in the topsoil [4]. Addressing such variability in soil properties
may require location-specific calibration to consider soil texture and moisture variations,
as discussed in [38]. Additionally, developing multiple regression models can account for
the influence of other parameters on σ and soil salinity prediction. Nevertheless, since all
measurements were conducted simultaneously at each location, we expect that comparable
effects of other soil properties on both ERT and EMI techniques will not significantly impact
the comparison between these two methodologies in assessing soil salinity, as they should
have a similar effect on both.

4. Conclusions

In this study, EMI and ERT surveys and soil sampling were carried out at four locations
with different salinity levels across the study area of Lezíria de Vila Franca, in dry season
conditions, to analyse the agreement between the two techniques in estimating soil electrical
conductivity and compare their ability in predicting soil salinity. While ERT may not offer
a precise subsurface conductivity distribution of the subsoil (as no indirect method can
achieve that), it stands out as one of the most reliable techniques for imaging the subsurface
conductivity distribution. Conversely, EMI measurements are highly sensitive to various
factors, including ground coupling, thermal drifts, and EM noise. Hence, it is sensible
to consider an ERT inversion as a reference model that the EMI inversion should strive
to approximate.

Based on the obtained results in this study, there was a reasonable agreement between
the EMI and ERT models in three locations, where σ ranged from 50 to 500 mS m−1. In
contrast, at location 4, where σ surpassed 1000 mS m−1, EMI notably underestimated σ in
comparison to ERT. However, EMI models could still predict the increasing trend of σ well
with depth. This suggests that the obtained EMI model may substantially underestimate σ

in an extremely saline area given the very high level of soil conductivity, which exhibits a
non-monotonic relationship between the quadrature component of the EMI signal. Under
this condition, the σ values inferred from EMI modelling cannot be used alone to assess
the soil salinity level without a location-specific regression or by applying a more robust
approach to obtain a more representative ECa value. Further case studies across different
soil types and salinity levels will offer more insights into the circumstances under which
EMI performs optimally.

The regional calibrations based on both EMI and ERT demonstrated similar predictive
capabilities. Despite the EMI model significantly underestimating σ in the superconductive
zone at location 4, leading to a distinct regression linear slope between ECe and σ, this issue
did not markedly affect the overall predictive performance of the regional calibration when
compared to the results from ERT. This is because despite the underestimation of σ by EMI
at location 4, the distribution pattern and depth-related variations in σ similarly mirrored
those obtained from the ERT model, resulting in comparable prediction abilities.

Our case study was limited to four plots with distinct soil salinity levels, but with
the same soil type. In addition, the number of soil samples was relatively limited, with
one borehole for each location. Additional case studies across areas with different soil
types and high conductivities are necessary to further evaluate the precision of EMI in
soil salinity assessments. Specifically, EMI vs. ERT studies across sites with inverted soil
salinity gradient in depth, where there is a superconductive zone over a more resistive zone,
are particularly needed to assess the prediction ability of EMI in contrasting conditions,
compared to this study. Larger numbers of boreholes and soil samples can also enhance
the soil salinity prediction ability and the evaluation of the EMI prediction ability.

Lastly, we advise caution to EMI practitioners when working with superconductive
soils. While it is not feasible to establish a definitive limit based solely on a single experiment
using specific EMI equipment and across a study area with a similar soil type, our experi-
ment indicated a significant underestimation σ in ranges above approximately 500 mS m−1.
It is important to note that this finding may vary in different experiments across diverse
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soil and salinity types, as well as when using different EMI sensors. However, this does not
diminish the concern regarding the challenge of using EMI in superconductive soil.
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Abstract: Over the last decade, electromagnetic induction (EMI) measurements have been increas-
ingly used for investigating soil salinization caused by the use of brackish or saline water as an
irrigation source. EMI measurements proved to be a powerful tool for providing spatial information
on the investigated soil because of the correlation between the output geophysical parameter, i.e.,
the electrical conductivity, to soil moisture and salinity. In addition, their non-invasive nature and
their capability to collect a high amount of data over broad areas and in a relatively short time makes
these measurements attractive for monitoring flow and transport dynamics, which are otherwise
undetectable with conventional measurements. In an experimental field, EMI measurements were
collected during the growth season of tomatoes and irrigated with three different irrigation strategies.
Time-lapse data were collected over three months in order to visualize changes in electrical conduc-
tivity associated with soil salinity. A rigorous time-lapse inversion procedure was set for modeling
the soil salinization induced by brackish irrigation water. A clear soil response in terms of an increase
in electrical conductivity (EC) in the upper soil layer confirmed the reliability of the geophysical tool
to predict soil salinization trends.

Keywords: soil salinization; apparent electrical conductivity; electromagnetic induction measurements;
time-lapse inversion

1. Introduction

Soil salinization has become one of the major environmental and socioeconomic
issues globally, and this is expected to be exacerbated further by projected climatic change.
Salinity is one of the main soil threats that reduces soil fertility and affect crop production
because it can decrease plant growth and water quality, resulting in lower crop yields and
degraded stock water supplies [1–4]. Soil salinization increases when the overexploitation
of groundwater in coastal areas leads to pumping from a brackish or saline irrigation source
due to saltwater intrusion. In addition, treated wastewater, increasingly used in water-
scarce environments to tackle climate change, can have a significant salt concentration,
depending on the treatment strategy. In such conditions, it is crucial to develop soil
monitoring systems that are able to capture spatial and temporal dynamics with a high
degree of accuracy.

Sensors typically used for agricultural purposes are installed in a few sparse points
at no more than two or three previously defined depths. Likewise, it is unrealistic to
collect over time a high number of soil samples for deriving the electrical conductivity of a
saturated soil extract (ECe), which is the most useful and reliable measure of soil salinity.
In the last decade, apparent electrical conductivity, defined as ECa, has been increasingly
used for investigating soil properties. ECa is a measure of the bulk electrical conductivity
of the soil and is influenced by various factors, such as soil porosity, the concentration of
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dissolved electrolytes, texture, the quantity and composition of colloids, organic matter,
and water content in the soil [5]. ECa is an apparent value because it has the equivalent
electrical conductivity of a homogeneous half-space whose measured response depends
not only on the mentioned soil properties but also on instrumental configurations.

Geospatial ECa measurements are very fast and easy to collect because they do not
require ground contact and, for this reason, they allow a range of spatial coverage from a few
meters to several hectares at different depths, depending on the target to be investigated
and the electromagnetic sensor to be used. In addition, collecting ECa data over time
along the same transects allows temporal variations in the ECa to be correlated with soil
properties that change over time. Over time, the ECa parameter has been widely used as a
proxy for investigating soil salinity, as recent studies confirm. Corwin et al. [6] improved
guidelines to broaden the scope of the application of ECa-directed soil sampling to map
field-scale salinity on orchards under drip irrigation. Vanderlinden et al. [7] highlighted the
potential of ECa to perform salinity monitoring at the field or farm scale. Emmanuel et al. [8]
validated the potential of extending the electromagnetic induction (EMI) to characterize
wetland soil properties, such as salinity, improving sampling plans, and interpolating soil
property estimates to unsampled regions. Scudiero et al. [9] performed the ECa survey
to identify locations that can be repeatedly sampled to infer the frequency distribution
of soil salinity. Rodrıguez-Perez et al. [10] evaluated the usefulness of apparent electrical
conductivity (ECa) data to identify variations in soil chemical and physical properties and
moisture content. Lesch et al. [11] documented the spatial salinity mapping using EM
survey data. Herrero and Hudnall [12] proved the value of electromagnetic induction (EMI)
to map the salinity of the rootable layer.

Although ECa is widely used in agronomic applications, its precise indication remains
somewhat unclear. What does ECa mean? Is it really representative of the soil properties?
Can ECa be effectively related to the saturated past extract of ECe?

ECa is a depth-weighted parameter giving limited information about the variation in
the conductivity with depth. In fact, ECa does not provide a rigorous correlation between
the Earth’s electrical conductivity (EC) structure and measured responses, which are
affected by several factors, such as coil distance and orientation, sensitivity, and data error.

In the last few years, an inversion procedure has been implemented in order to
produce a reliable soil EC model. The use of inversion codes has grown rapidly as the
need for an effective EC distribution in the subsoil has become crucial. Several inversion
methods [13–15] and software tools [16,17] have been created to estimate the distribution
of soil EC from measured ECa data. These codes solve the complex equations of Maxwell’s
electromagnetism to generate forward models used to minimize an objective function and
derive models from apparent raw data.

Jadoon et al. [18] identified a quantitative distribution pattern of soil salinity by the
joint inversion of multicomponent EMI measurements. Paz et al. [19] highlighted time-
lapse EMI as a reliable tool for evaluating the risk of soil salinization and supporting the
evaluation and adoption of proper agricultural management strategies. Farzamian et al. [20]
inverted ECa data to model the salinity of an oasis in Tunisia, which may affect agricultural
productivity and the sustainability of crop production. Dakak et al. [21] produced soil
salinity maps at various depths through EMI inversion. Shaukat et al. [22] used EMI
inversion as a robust and effective method for the risk assessment of new shrub plantations.
A benefit of the inversion technique lies in its capacity to predict the depth-wise distribution
of EC. This facilitates linking laboratory soil samples obtained from different depths at
specific sites with the corresponding EC values at those depths. As emphasized by [20], this
method permits the incorporation of all soil samples into a single calibration/validation
procedure, leading to a more accurate calibration at any chosen depth. Furthermore,
employing a larger number of soil samples for calibration and validation enhances the
reliability of the outcomes. Many of these references show a high correlation between ECa
or inverted EC against ECe, confirming their potentiality in agricultural applications.
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In the proposed case study, a time-lapse inversion approach was tested on ECa data
collected on an experimental field in the South of Italy where different irrigation strategies
were applied during the growing season of the tomato. The primary objective of time-
lapse inversion is to accurately detect variations in conductivity at specific locations across
different time intervals. While independent data inversions can be conducted individually,
providing insight into changes in modeling results over time through the subtraction of
pixel-by-pixel values from a reference dataset, it is important to recognize that temporal
changes in conductivity values may not exclusively reflect actual changes in subsurface
conductivity depending on the data noise level and inversion artifacts. This is particularly
true without considering the reference model and prior information [23].

Raw ECa maps, as well as those detailed on the experimental setup and soil properties,
have already been published [24]. In this paper, we focused on the inversion of ECa data,
both as a single snapshot and time-lapse imaging. For the proposed case study, a 2D
reference transect was extracted from three different plots subjected to different irrigation
strategies (irrigation with freshwater and agro-industrial treated wastewater).

The aim of the paper was (a) to highlight the capability of the inversion tool to
produce a detailed 2D EC soil distribution; (b) to image the spatio-temporal EC evolution
distribution over an irrigation season; and (c) to assess the impact of brackish water on soil
salinization in the short term.

2. Materials and Methods

2.1. Basics of ECa Parameter

ECa is a sensor-based indirect measurement that is strictly affected by some physi-
cal and chemical properties, such as soil salinity, soil moisture, clay content, and cation
exchange capacity (CEC). Archie [25] and Rhoades et al. [26] developed a theoretical basis
for the relationship between ECa and soil properties, such as the soil water content, the
electrical conductivity of the soil water, soil bulk density, and the electrical conductivity of
the soil particles.

According to these premises, over the last few decades, ECa has been widely used as a
soil quality indicator [27–29].

Over time, several devices have been manufactured both in the time and frequency
domain for measuring ECa according to the electromagnetic induction (EMI) theory. Since
only frequency domain measurements were used in this work, a brief description of this
method was reported. An EMI sensor is made of two coils, including a transmitter and
a receiver.

A time-varying current (IP) circulating in the loop coil T, named the transmitter
coil, generates a time-varying magnetic field, which is in phase with the current and
with the same rate of change according to Ampere’s law. This field, referred to as the
primary magnetic field (HP), induces electric currents in a conductive body, thus generating
secondary EM fields. A receiver coil records a signal that is the sum of the primary and
secondary fields (Figure 1).

The measured resulting field has an imaginary part of the signal, also called out-
of-phase or quadrature (Q), and a real part of the signal, the in-phase (Ph) component.
Under simplified conditions, typically defined as a low induction number (LIN), the EMI
sensors directly provide the subsurface apparent electrical conductivity (ECa) through
Equation (1) [30]:

ECa =
2

πfs2μ0

(
Hs

Hp

)
Qu

(1)

where f is the frequency (Hz), s is the coil separation (m), μ0 is the magnetic permeability
of free space (4π × 10−7 H/m), and (HS/HP) Qu is the Qu component of the secondary HS
to the primary HP magnetic field coupling ratio.
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Figure 1. Basics of ECa measurements.

Conversely, the real part or the in-phase component of the measured signal is mainly
affected by the magnetic permeability of the subsoil.

The ground response depends not only on the soil’s electrical conductivity but also on
instrumental factors, such as coil distance, coil orientation, and frequency. In particular,
the coil distance and orientation affect the depth of penetration of the electromagnetic
signal. Placing the coil in a vertical position (VCP coil configuration), the topsoil layers are
investigated while rotating 90◦ of the coils along the main axis (HCP coil configuration),
and the signal investigates deeper layers.

The instrumental configuration affects the soil response, as the analysis of the cu-
mulative sensitivity (CS) function shows. This function, defined as the ratio between
the variation in the output and the variation in the input [31], quantifies how much the
complex electromagnetic response recorded by the device is affected by a variation in the
conductivity and/or permeability of a particular point (area or section) of the subsurface.

Figure 2a,b plots the CS distribution against depth as a function of coil and orientation
distances for the CMD-Mini-Explorer (GF Instrument s.r.o, Brno), which is the EMI sensor
used for collecting field data, made of a cylindrical tube that is 1.3 m long, with a 30 kHz
transmitter coil and three receiver coils with 0.32 m, 0.71 m, and 1.18 m offsets, respectively.
As clearly observed, the sensitivity changes significantly for three different coil distances
and coil orientations.

According to [30], given a specific configuration and under LIN conditions, the effec-
tive penetration depth of an EMI sensor corresponds to CS = 0.3. Therefore, ECa-derived
depths are purely indicative because they depend not only on soil properties but also on
instrumental factors.

On the basis of the aforementioned considerations, the assumption that ECa cannot
be used to provide quantitative information about the soil properties confirms the need to
invert raw data in order to obtain a reliable EC distribution in the subsoil.
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Figure 2. Normalized cumulative sensitivity (CS) for the three Mini-Explorer sensors S1, S2, and S3:
(a) VCP configuration and (b) HCP coil configuration.

2.2. Time-Lapse ECa Dataset

The dataset used for time-lapse inversion was collected during the growing season
of a tomato crop belonging to a farm located in the South of Italy. The experimental field
was randomized with three different irrigation treatments: (a) plots A and B were irrigated
with agro-industrial-treated wastewater with different levels of fertigation; (b) plot C was
irrigated with fresh water and conventional fertigation. Pre-transplant, fertilizers were
applied to the soil in all investigated plots by distributing 30 kg ha−1 N and 35 kg ha−1 P.
Throughout the crop cycle, for plots B and C, 75 kg ha−1 N, 40 kg ha−1 P, and 72.5 kg ha−1 K
were added through fertigation. Instead, 75 kg ha−1 N and 40 kg ha−1 P were added
through fertigation in plot A. The EC of the irrigation water was about 2000–2500 μS/cm
for plots A and B and 500 μS/cm for plot C. Tomato plants were covered with an anti-hail
net and grown in a net house structure. Shading nets protect the plants from sunlight,
thus allowing no significant soil temperature changes throughout the irrigation season.
Irrigation water was supplied every two days through an underground irrigation system.

ECa data were collected at five time points approximately in the same conditions,
i.e., soon before each irrigation event, thus ensuring a homogeneous and equalized moisture
distribution across the nine parcels. The initial measurement was taken before the start
of the irrigation season (26th June), which served as a reference time for recording the
conductivity changes. The other four datasets were collected with time intervals of about
2 weeks (10th July, 24th July, 6th August, and 31st August) during the irrigation season. The
data were collected in continuous measurement mode by selecting a time of measurement
equal to 1 s, meaning that the conductivity and in-phase values were measured as the
average of the values measured during the selected measuring period. The measurements
were collected by hand, keeping the device as close as possible to the ground, almost
trailing it on the ground, in order to minimize the air layer below the sensor.

During the last EMI campaign, on 31st August, six soil samples were collected at three
points, each belonging to a single plot at two different depths, 0–0.2 m and 0.2–0.4 m, from
the ground surface in order to provide the ground truth for soil salinity. EC was measured
with a multi-range Cryson-HI8734 electrical conductivity meter (Crison Instruments, S.A.,
Barcelona, Spain). Details of the sampling procedure and soil analysis are described in [24].
In this paper, only the ECe values were extracted in order to provide a correlation function
with the inverted EC. In order to test the inversion procedure and compare the findings,
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nine different 2D EMI transects corresponding to the locations of soil sampling (see Figure 3)
were extrapolated from the three plots.

Figure 3. Distribution of ECa data collected in the experimental field. The soil sampling was carried
out on 31st August during the last EMI campaign.

2.3. Time-Lapse Inversion Procedure

The time-lapse inversion procedure is aimed at estimating the electrical conductivity vari-
ations over time along the reference transects. The EM4Soil v4.5 software package [16], based
on Occam’s regularization [32], was used to invert the ECa data. The code uses a quasi-2D in-
version, assuming that below each measured location, a 1-dimensional variation in calculated
soil conductivity (EC, dS/m) is constrained by variations under neighboring locations [13].

In the time-lapse inversion procedure, the choice of some parameters is crucial for
providing accurate inversion models: (a) the starting model for solving the inverse problem;
(b) the inversion algorithm to be used; (c) the spatial damping factor (λ); and (d) the
temporal damping factor (α) [33].

Two inversion algorithms, S1 and S2 [34], provide a different level of constraint to the
model parameters. In the S1 algorithm, the corrections to the model parameters at each
iteration were calculated by solving the system of equations:

(J TJ+λCT C) δp= JTb (2)

where δp is the vector comprising the corrections of the parameters (logarithm of conductiv-
ities, pj) of an initial model; b is the vector containing the differences between the logarithm
of the observed and calculated apparent conductivities. J is the Jacobian matrix, and λ is
the aforementioned damping factor.

Conversely, the S2 option has one more constraint (Equation (3)) and can produce
smoother results than S1.

(J TJ+λCT C) δp = JTb + λCT C (p − p0) (3)

where p0 refers to a reference model.
The spatial smoothing or damping factor λ [35] determines the amplitude of the

parameter corrections in the space domain, which controls the balance between the data
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fit and model roughness. The selection of λ is determined either through the “L curve”
method [36] or through trial and error to determine the value that most accurately repre-
sents the expert expectations based on the study site and data fit. A smaller damping factor
tends to refine more detailed model parameters, especially in areas with larger expected
spatial variability [37]. The temporal damping factor α is a regularization factor that gives
the weight for minimizing the temporal changes in the conductivity along the time [33].
As the α value increases, the resulting reference models from the inversion become more
similar. A value of zero indicates that no temporal constraints are applied, resembling a
traditional independent inversion.

A linear solution, based on the ECa cumulative response (CF) and a non-linear solution
(FS), was used for forward calculations in order to convert depth-profile EC to ECa [30]. In
our study case, both CF and FS modeling, as well as S1 and S2 algorithms, were tested with
no substantial differences observed in the model output. The outputs obtained with CF
modeling and the S2 algorithm are shown in the section Results section. A uniform starting
model considering the average ECa value for each plot (ECa = 1.00 dS/m for plots A and B;
ECa = 0.60 dS/m for plot C) was considered to solve the inversion problem, while λ and α

parameters were set to 0.07 and 0.05, respectively. These parameter sets were selected after
conducting several tests and comparing the results in terms of inversion misfit.

In the pre-processing stage, a single dataset containing all the ECa readings obtained
over space and time was defined as input for the EM4SOIL code.

3. Results

The inversion was performed for the nine selected EMI transects. As the findings
of the inversion results were consistent with the plots subjected to the same irrigation
strategies, for simplicity, we show a single time-lapse EMI inversion for plots A, B, and C.

The inversion results were visualized as static 2D EC images and normalized time-
lapse EC differences. For a clear comparison of the soil response to different irrigation
strategies, both results are scaled with the same color range.

Figure 4 shows the inverted EC for the transect corresponding to plot A, irrigated with
brackish water, at five different time points.

At the reference time t1 (26th June), a two-layer model was identified as follows: (a) a
low conductive top layer (EC < 0.60 dS/m at z < 0.5 m from ground surface); (b) a high
conductive bottom layer (0.20 < EC < 0.60 dS/m). During the irrigation season, the top
resistive layer was conductive, while the bottom conductive layer experienced a decrease
in conductivity.

Variations in EC over time are clearly observed in Figure 5. After two weeks from the
start of irrigation (Figure 5a), slight changes could be observed, with positive changes in
the yellow area and negative changes in the green area. Over time, EC increasing in the
topsoil layer and decreasing in the bottom layer became more prevalent, as observed in
Figure 5b. This trend intensifies in Figure 5c, which corresponds to the EC distribution
after 41 days from the start of irrigation and persists until the end of the irrigation season
(Figure 5d).

To evaluate the accuracy of the inverted model, the observed vs. calculated fit was
visualized for each coil configuration at every observation point. (Figure 6). The RMSE
between calculated and observed data provides the error model. Generally, the datasets
align along the fit line, although some misfits are evident. This trend is not surprising
given the level of accuracy of the ECa data. In fact, the estimated RMSE of the geophysical
model is 0.15 dS/m, which is the misfit between the observed data (field data) and the
theoretical one (calculated data). In terms of percentage value, it is roughly equivalent to
about 16%, expressed as the ratio between the RMSE in dS/m and the average value of
the observations.
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Figure 4. Inverted EC for the transect corresponding to plot A at five different time points: (a) 26th
June; (b) 10th July; (c) 24th July; (d) 6th August; and (e) 31st August.

Figure 5. Inverted EC differences over time for plot A after (a) 14 days; (b) 28 days; (c) 41 days; and
(d) 66 days.
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Figure 6. Observed vs. calculated data for each time point observation for plot A: (a) 26th June;
(b) 10th July; (c) 24th July; (d) 6th August; and (e) 31st August.

Similar trends were recorded in the transect belonging to plot B. Figures 7 and 8
correspond to the static 2D images and normalized time-lapse EC differences, respectively.
Small differences are visualized in the bottom layer, where a markedly lower decrease
is recorded. In addition, the main increase in EC in the top layer occurs in Figure 7d,
corresponding to the EC distribution after 66 days and, hence, later compared to plot A.

According to the same procedure used for plot A, the RMSE was estimated through
the misfit between observed and calculated data, corresponding roughly to about 16%.

On the other hand, a different soil response was observed in plot C, irrigated with
freshwater. Figures 9 and 10 show less marked variations in EC, both positive and negative.
Given the poor salinity in the freshwater used for irrigation, the surficial increase can
be attributed solely to the increase in moisture content in the soil during the irrigation
season, while the decrease in EC observed in the cross-section can be attributed to the root
water uptake.

The estimated RMSE for plot C is 9 dS/m, corresponding to about 17%.
Figure 11 shows the calibration function of inverted EC vs. EC, whose values are

derived from [24]. To plot this graph, we extracted the inverted EMI values for all nine EMI
transects. Only one EC point was removed from the dataset due to an unexplained drift
from the general trend, probably as an error in soil sampling analysis.
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Figure 7. Inverted EC for the transect corresponding to plot B at five different time points: (a) 26th
June; (b) 10th July; (c) 24th July; (d) 6th August; and (e) 31st August.

Figure 8. Inverted EC differences over time for plot B after (a) 14 days; (b) 28 days; (c) 41 days; and
(d) 66 days.
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Figure 9. Inverted EC for transect belonging to plot C at five different time points: (a) 26th June; (b)
10th July; (c) 24th July; (d) 6th August; and (e) 31st August.

Figure 10. Inverted EC differences over time for plot C after (a) 14 days; (b) 28 days; (c) 41 days; and
(d) 66 days.
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Figure 11. Inverted EC vs. ECe calibration function. Statistically significant at p-value significance
level: *** 0.001 levels of significance.

Some differences between the two datasets can be observed. For low salinity values
(less than 1.2 dS/m), EMI overestimates Ece, while for high salinity values, EMI slightly
underestimates ECe. This is not surprising because, in soils with low salinity, other factors
can increase the EMI signal (clay content, soil moisture, etc). On the other hand, overes-
timation could be due to data noise or inversion artifacts that could mainly affect the EC
distribution for very shallow soil.

Apart from these differences, the correlation is clear, confirming the assumption that
the inversion process improves the soil modeling.

4. Discussion

This study was conducted on tomato plants moderately tolerant to salinity [38,39].
Nevertheless, different levels of salt in the soil or in the irrigation water can induce changes in
plant morphology and physiology and address severe consequences on crop yield [40–42]. In
addition, the trend of accumulating salts during the irrigation season may have negative
implications not only for soil health but also for groundwater quality. In fact, excess salt
can be removed by winter rainfalls and pushed into the vadose zone until the aquifer is
reached, causing the oversalinization of the water as a resource [43]. With these premises,
the implementation of effective tools capable of monitoring the salinization dynamics in
the soil plays a crucial role.

Two weeks after the start of the irrigation, slight changes in EC were observed
(Figures 5a, 8a and 10a). The positive changes identified the soil-wetting effects caused by
the increase in soil moisture. Conversely, decreases in EC observed below the top layer
could be correlated to the root water uptake, which causes negative conductivity changes,
as observed in previous works [44–47].

The changes in EC emphasize the soil–plant–water interaction during the irrigation
season, as Figure 5, Figure 8, and Figure 10 highlight. In particular, at the end of the
irrigation season, the inversion of the ECa data clearly distinguished the salt accumulation
in the topsoil layer in plots irrigated with brackish water (plots A and B) and the root water
uptake in the bottom layer of the three plots (Figure 12). For the higher EC differences
observed in plots A and B compared with the observations in plot C, those irrigated with
fresh water (plot C) had reduced root water uptake activity due to the high osmotic pressure
that inhibits the water flow from the soil to the plant, as observed in [48–52]. In the context
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of saline or brackish groundwater management, this evidence should be taken into account
in order to balance water requirement and consumption and, hence, to increase water
saving and protect the soil. The lower the salt water required, the lower the accumulation
of salts while preserving the crop yield.

Figure 12. Changes in EC at the end of the irrigation season for (a) plot A; (b) plot B; and (c) plot C.

The model error recorded in the three plots reflects a certain level of noise in the raw
ECa data. Such noise cannot be estimated with the CMD Mini-Explorer when the most
commonly “continuous mode” of the measurement is used, i.e., the ECa data are collected
when the instrument moves in the field. This is a critical aspect when the visualization of
the results is based on ECa maps. Although ECa produces a rapid and fast visualization
of the soil properties, it includes undetermined systematic or random errors. Conversely,
inverting data allowed us to estimate a model error, remove spikes or noisy channels,
and invert again the filtered datasets. In addition, as ECa is a depth-weighted parameter,
it could not be correlated with the ECe or EC obtained through other sensors due to
the different resolutions, depth of investigation, and sensitivity. In fact, according to the
manufacturer’s indications, the upper soil layer (0–0.50 m) is potentially investigated with
three ECa measurements (VCP0.32m, VCP0.71m, and HCP0.32m), leading to an ambiguous
correlation function.

On the other hand, using the inverted EC data allowed us to plot a single EC vs. ECe
calibration function because the inverted model provides an estimation of EC distribution
at different depths. This is essential when a limited number of soil samples are available as
“ground truth” because all inverted EC data can be used in a single calibration function,
such as the proposed case study. It is worth mentioning that no temperature correction
was applied either on the modeling results after the inversion procedure or over the raw
data. For a more precise soil salinity assessment, such an option should be considered in
future studies.

5. Conclusions

This study made use of ECa data collected and processed using time-lapse methods
to assess the impact of brackish water used as an irrigation source during the tomato
growth season. In three plots where different irrigation strategies were used, repeated ECa
data were collected at five time points. This approach provided promising answers to the
research questions highlighted in the aims of the study. These findings have highlighted
how inverted EC allows us to accurately identify soil salinization when different irrigation
strategies are used.
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In fact, a clear soil response to different irrigations of water, brackish and freshwater,
was observed.

Compared with the traditional raw ECa visualization, the processing of the data
through time-lapse inversion allowed for a higher level of detail in the soil properties to
be visualized. Although this study was conducted in the short term of a single irrigation
season, a significant increase in EC in the upper layer could have strong implications in
terms of the accumulation of salt. At the same time, the activity of water uptake from
the roots was imaged, confirming the versatility of the geophysical tool in the agronomic
investigation. The inversion of the ECa allowed for a single correlation function, EC vs.
ECe, to be defined, although based on a few points, by comparing the EC data extracted
in correspondence to the sampling points. Depending on the extension of the area to be
investigated, a significant number of data points can strengthen the calibration function in
order to accurately convert the geophysical outcome into hydrological properties of interest.

The capability of producing an accurate correlation function through the inverted model
represents an added value with respect to the use of the ECa, which is a depth-weighted
parameter and could address meaningless correlations with point scale measurements.

As electromagnetic data are increasingly widespread in the scientific landscape, it is
strongly recommended that the inversion procedure be routinely used in the comprehension
of soil properties and dynamics.
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Abstract: Salt meadows, protected within National Parks, cannot be directly surveyed, yet under-
standing their soil condition is crucial. Our study indirectly estimates soil parameters (Total Salt
Content (TSC), Na, and pH) related to salinization/sodification/alkalinization using spectral indices
and UAV survey-derived elevation model, focusing on continental lowland salt meadows. A vegeta-
tion map was created using 16 spectral indices and a Digital Elevation Model calculated from RGB
orthophotos using photogrammetry. Field observations helped define habitat types based on the
General National Habitat Classification System (Hungary), and quadrats with complete coverage
of specific plant species were identified. Machine learning was employed on 84 training quadrats
to develop a prediction algorithm for vegetation patterns. Five saline habitat types, representing
variations in soil properties and topography, were identified. Spectral and topomorphometric indices
derived from UAV were key to the spatial prediction of soil properties, employing random forest
and co-kriging methods. TSC, Na, and pH data served as indicators of salt-affected soils (SAS), and
thematic maps were generated for each indicator (57 samples). Overlapping with the vegetation
map, the probability range of estimated SAS indicator values was determined. Consequently, a
model-based estimation of soil pH, TSC, and Na conditions is provided for habitat types without
disturbing protected areas.

Keywords: protected salt meadows; vegetation map; machine learning methods; UAV; spectral
indices; SAS indicator prediction

1. Introduction

Natural semi-arid saline steppes and salt marshes, which are mostly protected as
part of National Parks, are ecologically valuable ecosystems that play a crucial role in
maintaining biodiversity and providing various ecosystem services [1–3]. Preserving these
habitats is of high importance in the European Union ([4], Natura 2000 network of protected
areas) [5]. However, due to their protected status, direct surveys such as disturbance of
surface of these areas with excavations are often restricted, making it challenging to assess
their soil condition. As a consequence of the current variable climatic conditions, the
hydrological and soil formation conditions are also changing [6], thus understanding and
monitoring the soil parameters related to salinization [7], sodification, and alkalinization is
essential for effective management and conservation of these sensitive habitats.

Digital soil mapping (DSM, [8]) has emerged as a valuable tool providing spatial soil
information across a wide range of soil-related applications [9], including precision agri-
culture, hydrology, environmental sciences, conservation biology, or spatial planning [10].
DSM approach offers an alternative to conventional mapping methods for the spatial
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assessment of soil properties such as soil salinity [11,12]. In DSM, a wide range of spatial
data is collected, integrated, and analyzed using geostatistical methods and/or machine
learning techniques for inferring the spatial variability of soil characteristics [13–16].

Remote sensing provides a wealth of information about land surface, with improving
spatial, temporal, and spectral resolutions, which can be used in assessing the spatial
variability of soil properties in different ways. (i) Bare surface soil characteristics can
be directly obtained by remote sensing. Spectral reflectance features in the visible, near-
infrared, and shortwave infrared spectrum can be used as a direct indicator for soil surface
salinity [12,17]. Increased reflectance can be observed particularly in the blue band [18,19].
Surface soil salinity does not necessarily reflect actual salinity levels of the whole profile [20],
but (ii) indirect information about subsurface salinity conditions can be gathered through
vegetation type and plant growth as these are controlled by root zone soil properties [17].
(iii) Remote sensing based environmental covariates such as digital elevation models
(DEM) and its derivatives (e.g., slope, aspect, and topographic wetness index), spectral
band data, vegetation indices, land use, and land cover maps are proved to be useful in
DSM for characterizing the most relevant environmental variables representing the soil
forming factors [18,21].

Remote sensing is also a valuable, fast, and non-destructive tool to overcome the
limitations of direct surveys for monitoring and assessing inaccessible areas such as wet-
lands [22,23] or protected areas [24]. In recent years, the application of aerial surveys using
Unmanned Aerial Vehicles (UAVs) has shown great potential in the spatial assessment of a
wide range of features in agriculture and soil science such as vegetation patterns [25,26],
monitoring invasive plants [27], peat soil properties [28], soil erosion mapping [29], soil
productivity [30], or soil water content mapping [31]. UAV-based data applications have
shown their utility also in improving accuracy and providing more insights into soil
salinity mapping [19,20,32,33].

In this study, we aim to indirectly estimate soil parameters, specifically Total Salt
Content (TSC) [34], sodium (Na) concentration, and pH, by utilizing spectral indices
calculated from RGB sensor based orthomosaic and DEM.

The database was derived from aerial surveys in Europe’s largest continuous natu-
ral semi-arid steppe (in total 82,000 ha, of which 100 ha area was studied) in Hortobágy
(Hortobágy National Park) which is a special part of the Great Hungarian Plain. According
to our concept, distinct saline habitat types (vegetation patches) differentiated based on
various vegetation colors, can be determined using spectral indices derived from orthopho-
tos captured in the visible spectrum (RGB) [35]. As halophytic plant communities exhibit
distinct elevation zones ranging from wet salt meadows to dry closed steppes [36,37],
surface elevation plays a critical role [38]. Therefore, in our study, we utilized DEMs in
conjunction with spectral indices [39] for vegetation mapping on the test area. This article
describes the altitude-based distribution of saline habitats and estimates pH, TSC, and Na
concentration value categories using a model constructed based on field-validated points
for the distinct habitat types. The applied predictive model employing machine learning
methods, namely random forest combined with kriging [40–42] was developed, to provide
a reliable estimation of these salt affected soil indicator properties, namely pH, TSC, and Na
concentration. Thus, indirect estimation of soil properties using remote sensing data and
machine learning techniques has significant implications for the monitoring, management
and conservation of these ecologically important habitats. The findings of this study will
contribute to a better understanding of the soil condition in salt meadows, despite their
protected status.

2. Materials and Methods

2.1. Study Site

The study site is a protected salt marsh, which is a part of the largest contiguous
natural saline grassland area in Europe, located in the Eastern region of Hungary, in Hor-
tobágy National Park (Hortobágy NP) (Figure 1). The sampling plot has a rectangular
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shape (corner coordinates of 47◦22′10.67′′ N 21◦04′27.02′′ E; 47◦22′39.83′′ N 21◦04′28.14′′ E;
47◦22′39.08′′ N 21◦05′10.98′′ E; 47◦22′09.91′′ N; 21◦05′09.86′′ E) fitting to a 1 km2 grid in the
Hungarian National Grid System (EOV/HD72—EPSG:23700) and belongs to the Central
Tisza Region, microregion of Hortobágy according to [43]. The sample area is a plain
lying between 85.9 and 87.5 m a.m.s.l. and covered with fine-grained sediments (clay,
silt) [44]. Despite the relatively low relief, the area is rich in pedological and geomorpho-
logic features [45]. The River Tisza has deposited silt into the loess-silt surface depres-
sions, which had salinization/sodification process with various types of salts, including
NaHCO3, NaCl, Na2SO4, and MgSO4, as documented by [46,47]. The area is character-
ized by deep saline, sodic soils, which make up a mosaic spatial structure with diverse
saline soil complexes. Largest area is dominated by Meadow solonetz {Hungarian official
nomenclature} soils (Solonetz according to [48]) with a clay loam texture utilized as saline
pastures. Smaller areas are covered with Steppe meadow solonetz (Chernozems or Solonetz
according to [48]) soil and Solonetzic meadow soils (Gleysol or Vertisol according to [48]) as
well [43,49]. Groundwater level is between 2 and 4 m, chemically rich in sodium [46,47],
which has contributed to the salinization of the soil in the sample area. Salt- and drought-
tolerant plant communities live on these salt affected soils and the flora of the landscape is
also extremely diverse. Even a decimeter difference in surface elevation also results in a
different vegetation pattern, which is closely related to changes in soil salinity and moisture
content [50,51]. The microregion of the study area has moderately warm, dry climate; the
value of aridity index is 1.30–1.35. The annual precipitation average ranges from 510 to
550 mm with high temporal and spatial variability. Total annual solar radiation ranges
between 1900–1940 h, whereas long-term mean annual temperature is 10.0–10.2 ◦C [43].
Although networked by many channels, the area has a negative water balance.

Summarizing the sedimentological, pedological, climatic and water-holding condi-
tions of the sample area, it can be stated that this area presents a very diverse, mosaic
picture, where the vegetation zones on saline soils reflect the spatial variation in soil salinity
and moisture in correlation with the surface elevation.

2.2. Field Survey and Laboratory Analysis

In order to capture small scale spatial heterogeneity of the salt and textural pattern
of the study site, both in situ field measurements and ex situ laboratory measurements
were implemented during the research. In situ measurements included vegetation survey.
Aerial assessment was conducted to collect imagery information by using UAV. These
non-destructive methods can also be applied on soil surface of protected nature saline areas
where invasive approaches are not permitted.

2.2.1. Soil Sampling

For taking undisturbed soil samples for further laboratory analysis, 100 sampling
points were designated on the 1 km2 sample area, in a 100 × 100 m regular grid. Due to
accessibility problems in the waterlogged parts of the site, and the difficulty of drilling
through impenetrable hard near-surface layers on other parts of the site, 57 of the planned
100 points were drilled (Figure 1b), with motorized hand drill down to 1 m depth. Undis-
turbed soil sample columns were collected in plastic tubes having 10 cm in diameter for
further analysis. Beyond, at 0–30 cm depth, composite soil samples were also taken in
April 2020. In addition, at 3 characteristic locations of the sample area, soil profiles were
excavated for soil sampling and soil classification in July 2020. Ex situ laboratory measure-
ments were carried out, and numerous soil parameters were determined. In this study, total
salt content (TSC), reaction (pH), and Na concentration of the soil (Na)—as parameters
related to salinization/sodification/alkalinization—were investigated as predictors for
thematic mapping.
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Figure 1. Location and characteristics of the study area. (a) Topography; (b) sampling sites on
RGB orthomosaic background; (c) salt meadow; (d) transition of a bare spot (in the foreground)
to Artemisia steppe (in the background); (e) bare spot with Matricaria chamomilla surrounded by
Puccinellia limosa plants.

2.2.2. Vegetation Survey

The 1 km2 sample area was divided into 1-hectare sections. Within each hectare, vege-
tation was assessed using the 10 × 10 m quadrat method. This resulted in 100 vegetation
quadrats (Figure 1b), where the spatial percentage cover of each vegetation type within
the quadrat was determined. The vegetation in each quadrat was then classified into
habitat types according to the Hungarian General National Habitat Classification System
(Á-NÉR; [52,53]), based on the occurring plant species ([52,53], Table 1).
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Table 1. Habitat types present on the study area.

Habitat Code Description of Habitat Type Note

B6 Salt marshes
F1b Achillea steppes on Meadow solonetz
F2 Salt meadows
F5 Annual salt pioneer swards of steppes and lakes “padkásszik” (microerosional mound)

F5bs 1 Annual salt pioneer swards of steppes and lakes “vakszik” (bare spot)
H5a Closed steppes on loess
U9 Standing waters

1 Added by the Authors, it is not part of the Á-NÉR system.

For habitat type F5, we have separated the “vakszik” (bare spot in vegetation of
annual and perennial plants of usually small alkali mud surfaces) and the “padkásszik”
(microerosional mound) types, because there is no surface height difference in the extent
of the bare spot, while for the microerosional mound there can be a height difference of
several cm, which can be an important difference for mapping. Therefore, the F5bs category
was established solely for the bare spot in this study, and the genuine F5 was kept for the
vegetation of microerosional mound habitat.

2.2.3. Proximal Soil Sensing

Aerial survey was conducted at the study site in April 2020, using UAV with a visible
range (RGB) camera onboard. A 24 MP Fuji X-T20 camera was applied for the survey
having an APS-C sensor; focal length of 14 mm; angle of view: 91◦; automatic ISO speed;
automated exposure time based on the sharpness, color saturation, and brightness of
input images. Aerial survey was performed in a fully automatic flight mode with image
overlap of 80% and sidelap of 60% for helping the proper photogrammetric processing.
In terms of focal length and resolution, altitude of 120 m was found to be sufficient for
recording and separating vegetation patches. Nine ground control points (GCP) were
placed at the soil surface of the study site and were measured with a South Galaxy G1 type
real-time kinematic correction GPS unit, having a nominal 1 cm horizontal and vertical
accuracy. These GCPs were used to transform raw images into the Hungarian National
coordinate system (EOV/HD72–EPSG:23700). During the photogrammetrical processing
(orthorectification) of raw images, the RGB orthomosaic and DEM of the study area were
generated. The whole workflow was performed in Agisoft Metashape Professional (Version
1.6.1). At the end, both datasets were transformed into the EOV/HD72 coordinate system
and exported at 0.5 m spatial resolution.

As ancillary data, additional co-variable layers were calculated based on both datasets
(RGB mosaic and DEM). With the help of the “uavRst” R package [54] 16 spectral indices
were generated using the red, green, and blue bands of the mosaic. The different spectral
indices can estimate different properties of vegetation and in some cases soil surface
of salt affected soils, e.g., brightness index—bare spots, open water surfaces; redness
index—biomass estimation and stand health. The combined use of the calculated spectral
indices can help to complement multidimensional information and achieve more reliable
results, thus increasing the accuracy of the vegetation map. Secondly, 20 topomorphometric
layers were calculated using the SAGA GIS [55] Channels, Hydrology, and Morphometry
libraries. The detailed description of all environmental co-variables can be found in Table 2.
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Table 2. List of environmental co-variables used in vegetation mapping and spatial modelling of
soil properties.

Environmental Co-Variable Reference

Sp
ec

tr
al

in
di

ce
s

Red band (R)
Green band (G)
Blue band (B)

Visible Vegetation Index (VVI) [56]
Visible Atmospherically Resistant Index (VARI) [57]
Normalized Difference Turbidity Index (NDTI) [58]

Redness Index (RI) [59]
Soil Color Index (SCI) [60]
Brightness Index (BI) [61]

Spectral Slope Saturation Index (SI) [61]
Hue Index (HI) [61]

Triangular Greeness Index (TGI) [62]
Green Leaf Index (GLI) [63]

Normalized Green Red Difference Index (NGRDI) [64]
Green Leaf Area Index (GLAI) [54]

Overall Hue Index (HUE) [65]
Coloration Index (CI) [65]

Overall Saturation Index (SAT) [65]
Shape Index (SHP) [65]

To
po

m
or

ph
om

et
ri

c
in

di
ce

s

DEM
Slope [66]

Aspect [66]
Topographic Position Index (TPI) [67]
Terrain Ruggeddness Index (TRI) [68]

Surface roughness (SR) [69]
Flow direction (flowdir) [70]
Catchment area (carea) [70]

Modified catchment area (mcarea) [71]
General curvature (GC) [70]

Diurnal anisotropic heating (DAH) [72]
LS factor (LS) [73]

Mass Balance Index (MBI) [74]
Multi-resolution Ridge Top Flatness (MRRTF) [75]

Multi-resolution Valley Bottom Flatness (MRVBF) [75]
Real Surface Area (RSA) [66]

Stream Power Index (SPI) [73]
SAGA Wetness Index (SAGAWI) [71]

Vertical distance to channel network (vd2cn) [66]
Channel network base level (cnbl) [66]
Topographic Wetness Index (TWI) [76]

2.2.4. Laboratory Measurements

The collected groundwater samples were analyzed for pH and electrical conductivity
(EC), furthermore, cation composition was measured according to the Hungarian standards
(summarized in Table 3) in order to determine the sodium adsorption ratio (SAR).

pH and EC of groundwater were measured with Multi Line P4, WTW Multi 350i
combined electrode and conductometer, respectively.

Reaction of groundwater was determined using direct potenciometry, following the
Hungarian standard Nr. 1484-22:2009 (Table 3, Note 1).
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Table 3. List of Hungarian standards of the measured groundwater and soil parameters.

Hungarian Standard
of the Measurement

Parameter Unit Instrument Accuracy Nr. of Data

MSZ 1484-22:2009
(Note 1) pH of groundwater -

Multi Line P4,
WTW Multi 350i, Xylem
Analytics Germany Sales
GmbH & Co. KG, WTW,

Weilheim, Germany

0.004 5

MSZ EN 27888:1998
(Note2)

Electrical conductivity of
groundwater dS/m

Multi Line P4,
WTW Multi 350i, Xylem
Analytics Germany Sales
GmbH & Co. KG, WTW,

Weilheim, Germany

1 μS/cm 5

MSZ 1484-3:2006
(Note 3)

Calcium and Magnesium ion
concentration of ground water mg/L

Ultima-2 type ICP OES,
Horiba Jobin Yvon SAS.,

Longjumeau, France
0.5 μg/L 5

MSZ 1484-3:2006
(Note 3)

Sodium and Potassium ion
concentration of groundwater mg/L

Ultima-2 type ICP OES,
Horiba Jobin Yvon SAS,

Longjumeau, France

0.5 (Mg),
1.0 (Na) μg/L 5

MSZ-08-0206-2:1978,
2.1 section (Note 4) Reaction of the soil pH

Radelkis OP-300,
Radelkis

Elektroanalitikai
Műszergyártó

Kft, Budapest, Hungary,
digital pH measuring

device, Sentron Europe
B.V., Leek, The

Netherlands

±0.05 57

MSZ-08-0206-2:1978,
2.4 section (Note 4) Total salt content of soil w/w%

Radelkis OK-102/1
conductometer, Radelkis

Elektroanalitikai
Műszergyártó Kft,

Budapest, Hungary

5–7.5 rel.% 57

MSZ 20135:1999, 5.1
(Note 5) Na concentration of soil mg/kg

iCAP 7400 ICP-OES
Analyzer Thermo

Scientific Duo View,
Thermo Fisher Scientific

(Praha) s.r.o., Praha,
Czech republic

4–7.5 rel.% 57

The laboratory measurement data are the results of averaging three parallel measurements. Note 1: “Water quality.
Part 22: Detemination of pH and pH in equilibrium state.” MSZ 1484-22:2009. 2009. (in Hungarian); Note 2:
“Water quality. Determination of electrical conductivity” MSZ EN 27888:1998 (ISO 7888:1985). 1998 (in Hungarian);
Note 3: “Testing of waters, Part 3: Determination of dissolved, suspended and total metals in water by AAS and
ICP-OES” MSZ 1484-3:2006. 2006 (in Hungarian); Note 4: “Evaluation of some chemical properties of the soil.
Laboratory tests (pH value, phenolphtaleine alkalinity expressed in soda, all water soluble salts, hydrolite /y1
value/ and exchanging acidity /y2-value/” MSZ-08-0206-2:1978. 1978 (in Hungarian), Note 5: “Determination of
the soluble nutrient element content of the soil” MSZ 20135:1999. 1999 (in Hungarian), The Hungarian standards
are available via the following website: http://szabvanykonyvtar.mszt.hu/ (accessed on 29 June 2023).

Direct potenciometry relies on measuring the potential on the surface of an electrode
submerged in an electrolyte solution. This potential is measured by calculating the voltage
difference between the measuring electrode (glass electrode) and the reference electrode
(e.g., Ag/AgCl). The glass electrode surface has a well-defined potential relative to the
surrounding aqueous solution, which is linearly related to the pH of the solution. A
combined electrode was used for pH measurement, integrating both the measuring and
reference electrodes. This electrode consists of a double-walled glass tube containing a
buffer solution inside and the reference electrode outside. Essentially, the electrode acts
as a membrane that, upon contact with an aqueous solution, absorbs water and swells,
establishing an ion exchange equilibrium with the solution’s protons to be measured. The
potential across the membrane is determined by the concentration ratio of H+ ions on each
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side. The buffer solution inside the glass sphere ensures a constant concentration of H+,
allowing the electrode potential to depend solely on the external H+ concentration, which
is directly proportional to the pH of the solution.

Hungarian standard No. 27888:1998 (Table 3, Note 2) was used for determining
water quality, specifically providing guidelines for measuring the electrical conductivity of
water. The standard is fully aligned with the European standard EN 27888:1993. Electric
conductivity measures the water’s ability to conduct electricity, which is determined by the
quantity and quality of water-soluble salts present. A higher conductivity value indicates
a higher concentration of dissolved salts in the water. The conductometric measurement
methodology is based on determining the resistance (electrical resistivity) of the solution
between two electrodes, either flat or cylindrical, separated by a fixed distance. Electrical
conductivity can be calculated as the reciprocal of electrical resistivity.

Hungarian standard No. 1484-3:2006 (Table 3, Note 3) specifies the possibility of
measuring the dissolved Ca, Mg, Na, and K content of groundwater—among other
elements—by inductively coupled plasma optical emission spectroscopy (ICP-OES). ICP-
OES allowing the simultaneous detection and a sensitive, accurate quantification of
70–80 different elements.

The collected groundwater samples were filtered through a 0.45 μm pore mesh mem-
brane filter. Then, it was sprayed inside the equipment, using argon as carrier gas. The
components of the sample evaporate at a temperature of 6000 K inside the chamber, atom-
ize, the resulting free atoms are excited. The excited atoms, as they transition to a lower
energy level, emitting photons at wavelengths characteristic of the given element. We
spectrally resolve the plasma light emission and measure the intensity of each element
in a specific wavelength spectral line using detectors. The quantities of the investigated
elements (Ca, Mg, Na, and K) are determined through calibration using a series of solutions
with known element concentrations.

SAR is a water quality parameter used in soil science to express sodicity hazard of
ground water by showing the relative activity of sodium ions in the exchange reactions
with the soil relative to calcium and magnesium. SAR value was calculated according to
Equation (1):

SAR =
Na+√

1
2

(
Ca2+ + Mg2+

) (1)

where Na, Ca, and Mg are ion concentrations all displayed in meq/L.
SAR is widely used in the irrigation management of sodium-affected soils, and have

to be assessed combined with EC, according to the interpretive guidelines of [77].
Soil chemical analysis was conducted on composite soil samples from the experimental

site, from the depth of 0–30 cm. In the laboratory, pH, TSC, and Na concentration was
measured according to the actual Hungarian standards (see Table 3).

pH was measured from 1:2.5 proportioned (6 g soil: 15 mL n KCl) suspension with
Radelkis OP-300 digital pH-meter, using potenciometry method according to Hungarian
standard No. 08-0206-2:1978, 2.1 section (Table 3, Note 4). The pH measurement is con-
ducted using a procedure similar to that used for groundwater analysis, with the exception
that the chemistry of a soil suspension is evaluated. To ensure accurate results, it is nec-
essary to allow a minimum of 12 h for the ionic balance of the soil suspension to stabilize
before the measurement is taken. It is important to note that the suspension should not be
filtered prior to the pH assessment.

To determine the Total Salt Content (TSC), soil paste saturated with water up to its
plasticity limit was used. The measurements were conducted using the Radelkis OK-
102/1 conductometer, following the guidelines of Hungarian standard No. 08-0206-2:1978,
2.2.4 section (Table 3, Note 4). A known-capacity immersion electrode was carefully inserted
into the soil paste. The resistance of the soil paste was measured, allowing the device to
calculate the specific conductivity and the total salt content (%) based on the provided
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calibration table. The verification of electrode capacity was carried out using known
concentration KCl solutions.

The determination of the soluble nutrient content of soil, including the measurement of
sodium (Na) concentration available for plant uptake, is described in Hungarian standard
No. 20135:1999 (Table 3, Note 5). In this method, the Na concentration in the soil was
extracted using a solution of ammonium-lactate (AL) in a soil-to-solution ratio of 1:20. The
extract was then filtered, and the Na concentration was determined using an ICP OES
instrument, specifically the Thermo Scientific iCAP 7400 Duo View type.

2.3. Methods
2.3.1. Vegetation Mapping

Based on the environmental co-variable dataset, the classification of the sample area
was performed using the habitat type survey as training areas, where the same habitat
type covered the whole quadrat. Unfortunately, there was no information about the actual
spatial coverage of the different habitat types present inside the polygon for quadrats with
mixed habitats, only their ratio, therefore they were removed from the dataset. Artificial
quadrats of classes standing water (3) and bare spot (9) were added manually in the same
spatial size as the habitat quadrats (10 × 10 m). In total 72 field and 12 additional quadrats
were used as training areas.

Values of pixels falling under the quadrat polygons from all spectral and topographic
layers were extracted (33,600 data points), later used as training and testing data (divided
in 70/30 ratio in a balanced way regarding the number of pixels of each class present in
the study area) for the classification. Class separability analysis was performed using the
extracted data showing water as a completely separate category, bare spot as a slightly
overlapping class with all other vegetation related categories. Latter ones have major
overlaps to each other in general; however, they can be separated based on their average
heights in the DEM and using the topomorphometric layers as well. The “ranger” machine
learning R package (v0.15.1 [78]) was used to build up a random forest based classifier,
the hyperparameters were optimized with the help of the “caret” package (v6.0-94 [79]) to
find the optimal set, where min.node.size was held constant at a value of 1 and two other
parameters (mtry and splitrule) were 40 and extratrees, respectively. Any other hyperpa-
rameter was defined on their default values. At the end, the raster dataset containing all
mentioned environmental co-variables in layers was classified with the trained model.

For any further analysis, this map was considered as the vegetation and habitat type
map of the study site.

2.3.2. Spatial Modelling of Soil Properties

A hybrid machine learning and geostatistical approach was used for topsoil (0–30 cm)
property estimations. In DSM random forest combined with kriging (RFK) is considered to
be a new “workhorse” [13]. In this case, at first the spatial variation in soil properties was
modelled with random forest (RF, [80]) based on the environmental covariates, which were
generated from the DEM and RGB orthophoto (Table 2). RF is one of the most popular
machine learning algorithms in DSM [81], which is a bagging type ensemble learning
method [14]. The advantages of RF over other regression methods are (i) it does not require
normally distributed soil data [13], (ii) it can fit complex non-linear relationships between
soil data and auxiliary variables, and (iii) and the correlation between environmental
covariates is not a limiting factor [40]. Then, at second part we used a geostatistical
modelling method (ordinary kriging, OK) to spatially extend the derived residuals from
RF model [82]. The outcome of the estimation is the sum of the RF model result and the
kriged residuals.
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2.3.3. Validation of Soil Property Estimations

To assess the performance of the spatial estimation of soil properties a 5-fold cross
validation was applied. The following common validation measures were computed: (i) mean
error (or bias, ME—Equation (2)) and (ii) root mean square error (RMSE—Equation (3))

ME =
1
n

n

∑
i=1

(Pi − Oi) (2)

RMSE =

√
1
n

n

∑
i=1

(Pi − Oi)
2 (3)

where n is the number of observations; Pi and Oi are the predicted and observed soil
property for observation location, respectively.

The methodological steps of data processing are summarized in Figure 2.

 

Figure 2. Methodological flowchart of the research work.
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3. Results

3.1. Vegetation Map

Figure 3 represents the final vegetation/habitat type map (Table S1). Generally, it
resembles the DEM of the area: Achillea steppes (F1b) and closed steppes (H5a) can
be found on the highest levels (eastern side and southwestern corner), salt marshes (B6)
surrounded by salt meadows (F2) in their foregrounds dominates the lower levels (southern
and center part). The intermediate, transitional zones are covered by the annual salt pioneer
swards of steppes and lakes (F5) class where the surface is dissected by small canals (on
the southern and northern side of the center area). The patches of bare spot can be found in
these latter areas.

 

Figure 3. Classified habitat type map.

Analyzing the most important co-variables of the developed classifier model, it in-
dicates the importance of morphometric variables (CNBL, DEM, MRRTF, and MRVBF;
Table 2) in the top four position (Figure 4), followed by spectral variables of red, green,
and blue bands and BI, VVI, and GLI. In summary, the morphometric variables can be
useful to differentiate between habitats located on different altitude levels, RGB bands, and
vegetation related spectral indices to separate various plant types and finally brightness
index can highlight the bare spot because of their greyish-white surfaces. The bare spots
are covered by Solonetz soils, where the Natric horizon is located either immediately on
the surface or in close proximity. These spots remain bare due to the aggregate-dispersing
effect caused by high sodicity, measured right at the surface. As Natric horizons exhibit the
highest salt accumulation within the soil profile, their exposure leads to the highest salinity
levels observed within the study site.

Furthermore, the map was tested against the test dataset also, with an average accuracy
of 0.988 together with a Kappa value of 0.985 According to the detailed, by class accuracy
metrics, the built-up classifier performed a very good classification in each habitat type
class with balanced accuracy, precision, and recall values higher than 0.95.
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Figure 4. Variable importance of co-variables of the developed classifier model applied in vegetation
mapping.

The standing water (U9) class had a perfect classification with balanced accuracy,
precision, and recall values of 1.000 thankfully to its completely distinct characteristics and
because it was over-represented in the training dataset compared to its spatial coverage
on the study site (Table 4). The closed steppes on loess (H5a) had the same values, except
balanced accuracy of 0.999. However, the H5a class is located strictly on the higher levels
of altitude, making the class again a very distinct one. From the salt-related categories
salt marshes (B6) were misclassified only with salt meadows (F2): 2 F2 data points as
false positives to B6 salt marshes and 15 B6 test data as false negative to F2 salt meadows.
While latter ones are generally located around salt marshes, both type of misclassifications
could have happened on their mating edges. Because of the spectral similarity of the
vegetation in the middle of spring, F2 points were also classified to F1b Achillea steppes (8)
and F5 annual salt pioneer swards of steppes (5) habitat types; however, with 2341 true
positive predictions, they still result in a balanced accuracy value of 0.995. Achillea steppes
areas (F1b) are cross-misclassified with salt meadows (F2) and annual salt pioneer swards
(F5) but the number of both false predictions are twice to the latter category than to F2
class. The reason behind this can be that F1b covered areas are “trapped” between these
two habitats. However, despite of adjacent neighborhood with H5a closed steppes habitat
in the eastern side of study site, there is no mixed classification with this class probably
because of the completely different altitude levels what F1b (mean value: 86.86 m) and H5a
(mean value: 87.16 m) habitats are occupied. Regarding the annual salt pioneer swards (F5)
to bare spots (F5bs), latter is misclassified with only the F5 class in 36 test points, falsely
predicted as F5 class and 11 F5 points falsely classified to F5bs class. The ratio of false
predictions shows that F5bs misclassification to F5 category is three times more likely than
in the other direction, resulting in the underestimation and underrepresentation of bare
spots in the study area. The reason behind this can be that bright color of spots is very
distinct compared to other classes (e.g., various kinds of green vegetation and dark water
surfaces) but in topomorphometric properties, it is similar to F5 thus they are overlapping
with each other in this domain.

The complete confusion matrix and detailed accuracy metrics of habitat type classes
can be found in the Supplementary Materials (Tables S2 and S3).
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Table 4. Area ratios of habitat categories in the study area according to the classified vegetation map.

Habitat Code Area (m2) Percent (%)

B6 82,825.25 8.28
F1b 102,861.25 10.29
F2 314,694.75 31.47
F5 439,985.75 44.00

F5bs 24,518.50 2.45
H5a 34,991.75 3.50
U9 122.75 0.01

3.2. Thematic Soil Maps

Figure 5 represents the results of soil property predictions for the study area. Soil prop-
erties were estimated independently, but the expected relationship between soil properties
is clearly shown in the maps; areas with higher Na concentration also exhibit elevated TSC
and increased (even alkaline) pH levels (Table S4).

 

Figure 5. Soil property maps. (a) Na concentration; (b) pH; (c) total salt content.

The findings of variables importance of this study indicate that spectral indices found
to be more informative than topomorphometric indices. Among the various spectral
indices examined, including SHP, BI, TGI, GLI, VVI, RI, SI, B, CI, and SAT, these indices
consistently ranked within the top 15 for every soil property under investigation (Figure 6).
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The difference with the important variables of the classification in the previous section
can be noted. While ranger is also random forest based algorithm [78], it can sort the
covariates by importance summing the individual trees. Our examination showed that
morphometric variables can separate the most distinct habitat types (e.g., water, salt
marshes, and vegetation related habitats) at first on higher level of trees and on lower
levels (on the leaves) vegetation related indices and spectral bands are more important to
differentiate between various saline vegetation habitats. However, predicting a continuous
numerical value is quite the opposite: in case of the three saline related parameters the
fine spatial transitions in values indicated by changing which plant types (highlighted by
vegetation indices) received the most importance, supplemented by topographic layers
(DEM, CNBL, MRVBF, ASPECT, SPI, SAGAWI, SR, TWI, TRI, SL, and SLOPE) for the
sudden changes (mostly found on areas with microerosional mounds).

 

Figure 6. Variable importance. (a) Na; (b) pH; (c) TSC.

Validation results were assessed by a 5-fold cross validation and summarized in
Table 5.

Table 5. Validation results of soil property estimations.

Delete Column Na pH TSC

ME 19.10 0.03 −0.00
RMSE 971.45 0.88 0.09

The mean Na concentration is 1959 mg/kg for the whole study area. The northwest
part demonstrates a significant concentration of Na, but smaller patches of high Na content
observed in the northeastern and southern parts as well. The average pH value for the study
area is 5.76. Similar to Na content, more alkaline pH levels are predominantly observed in
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the northwest with mosaic-like distribution in the south and northeast. The mean TSC is
0.14 w/w%. In case of TSC, larger areas with higher-than-average TSC values can be found
in the southern part, accompanied by smaller spots in the west and the northeast.

Overlapping the three thematic soil maps (Na, pH, and TSC) with the vegetation map,
we obtained predicted statistics of soil parameters for each distinct habitat type (Figure 7).

 

Figure 7. Boxplots of SAS parameters separated according to habitat types. (a) Na; (b) pH; (c) TSC.
Legend: codes of Á-NÉR system: B6: salt marshes; F1b: Achillea steppes on Meadow solonetz; F2: salt
meadow; F5: annual salt pioneer swards of steppes and lakes (“padkásszik” = microerosional mound);
F5bs: annual salt pioneer swards of steppes and lakes, bare spot (“vakszik”); H5a: closed steppes
on loess.

Salt marshes (B6), covering 8% of the area (Table 4), are intrazonal habitats generally
characterized by strongly saline soils (Solonchaks) and vegetation coverage with saline
water for a significant period of the growing season [52]. A significant portion of the water
that provides moisture to the habitat may originate from the groundwater, which is also
the source of the salts causing salinity. In our case, since the water in the area was partly
derived from precipitation during the sampling period, the salts—that were previously
present in the area in large quantities in the soil—were diluted and leached out. Therefore,
the salt content is lower, categorizing it in the moderately saline range (0.075–0.13 w/w%).
The relatively high sodium concentration indicates that a significant portion of the salts is
sodium-based (1322–1976 mg/kg). These facts are consistent with the observation of [83],
stating that compared with other salt lakes and marshes of the world, the alkaline lakes in
Hungary are characterized by lower salt content but higher alkalinity. The formation and
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persistent existence of the habitat are linked to high groundwater levels and evaporative
water management.

Achillea steppe in Meadow solonetz (F1b) (Endoprotocalcic Epistagnic Solonetz (Albic,
Katoclayic) (Table S5) classified according to [48]) are steppe-like communities, which
depend on adequate water supply and moderately saline soil conditions [52,53]. It occu-
pies 10% of the total sampling area (Table 4) and characterized by species that tolerate
long summer droughts and heavy textured soils. Since sodium-rich groundwater (Na
1170 mg/kg, SAR 26.5, EC 5.8 dS/m, Table S6) is present at shallow depths (3.3 m)
and due to its mid-elevation position within the vegetation zone, this habitat type is
the most exposed to salt accumulation in the groundwater fluctuation zone. A total of
1444–2264 mg/kg adsorbed sodium was detected in the soil (TSC: 0.11–0.18 w/w%), which
tend to accumulate in higher amounts in the deeper layers, resulting in 5.4–5.8 pH in the
topsoil. These habitats form a transition between meadows and loess grasslands in terms
of water balance, dominated by generalist plant species.

The appearance of salt meadows (F2) (31.5% coverage, Table 5) requires adequate
water supply and moderately saline soil. They are tall grasslands that are temporarily
covered with water during the initial stages of the growing season (Figure 1c). They
develop on wet areas and variously Saline meadow or Solonchak soils [52,53], in this case
it was formed on Endoprotocalcic Protostagnic Solonetz (Albic, Epiloamic, Katoclayic)
classified according to [48]. These habitats are widespread on saline soils throughout the
Great Hungarian Plain and in many other countries in Europe as well. The soil of salt
meadows is often less calcareous, with the upper 5–10 cm layer having higher organic
matter content, resulting in 5.3–5.7 pH. While they are typically found on Solonetz soils, the
characteristics of both Solonetz and Solonchak soils often coexist, resulting in transitional
phenomena. Therefore, compared to other parts of the sampling area, sodium concentration
is moderate (1086–1747 mg/kg). Ground water level of the soil of this habitat is 3.6 m
depth, having 9.58 SAR value and 1.4 dS/m EC carrying moderate sodification effect (based
on [77]). Salt meadows are situated between salt marshes and Festuca pseudovina-saline
steppes, often alternating with salt pans in a fully developed zonation [52].

The areas of microerosional mound (F5) surrounding the bare spots are the vegetation
zone with the largest extent (~44%, Table 3) in the sample area. The highs and lows
show a regular repeating pattern of several plant communities that make up a mosaic.
The soil chemistry is more variable than in other habitat types, with a pH ranging from
5.69 to 6.34. In terms of salt content, it can be clearly distinguished from bare spots, which
contain on average 0.1% more salt (TSC: 0.13–0.18 w/w%). The Na content of the soil is
2067–2764 mg/kg, which is lower than that of the bare spot, but higher than that of the soils
in other surrounding habitats. Annual salt pioneer swards of steppes and lakes evolved
on Endoprotocalcic Solonetz (Albic, Katoclayic, Humic) soil classified according to [48],
having a groundwater depth of 4.39 m, and SAR value of groundwater 11, which represents
sodic hazard in the deeper soil layers.

Based on the boxplots shown in Figure 7, the bare spot (F5bs) exhibits the high-
est pH value (6.91–7.39), total salt content (0.22–0.28 w/w%), and sodium concentration
(3100–3800 mg/kg) inside the study area, followed by the microerosional mound (F5),
indicating a correlation between the soils of these interconnected habitats. These findings
are consistent with the descriptions by [52,53]. Bare spots on the salt steppe vegetation
cover the smallest percentage of the overall sample area (2.45%, Table 3). However, this
feature is the most distinctive characteristic of the habitat, typically found in drier sections
of the saline slope and saline zone at mid-elevation positions. The presence of bare spots is
closely associated with areas with evaporative water management, contributing to their
persistence. The habitat type found on bare spots is primarily shaped by the intensive ef-
fects of trampling, including herd paths and herding routes. They form small patches with
low species diversity, in each and every instance displaying bare soil surfaces, making them
reliably estimable using spectral indices [84–86]. Bare spot serves as distinctive elements of
the saline vegetation zonation, holding significant landscape importance characterized by
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strong patches and mosaic-like patterns. Due to bare spot forming small patches inside
the landscape, spatial resolution of our vegetation map was 0.5 m in order to accurately
represent this habitat type alongside other, more extensive saline habitats.

The closed steppes on loess (H5a), representing 3.5% of the sampling area (Table 5),
occur on loess or other soft bedrock-derived soils [52], in our case, on elevated ridges
protruding from the saline steppes. As shown in Figure 8, the highest elevations within
the study area are occupied by closed steppes on loess, based on the DEM created for the
sampling area. Originally, these habitats are characteristic of areas with higher organic
matter content and prone to erosion. Therefore, the sodium content (1128–1793 mg/kg)
and salt content (0.09–0.14 w/w%) are moderate, while the pH (5.34–5.66) is lower than the
average value typical for the area.

 

Figure 8. The arrangement of habitats by surface elevation (maBl) based on DEM. Legend: codes
of Á-NÉR system: B6: salt marshes; F1b: Achillea steppes on Meadow solonetz; F2: salt meadow; F5:
annual salt pioneer swards of steppes and lakes (“padkásszik” = microerosional mound); F5bs: annual
salt pioneer swards of steppes and lakes, bare spot (“vakszik”); H5a: closed steppes on loess; U9:
standing waters.

We conducted statistical analysis using boxplots to examine the relationship between
thematic maps of salt affected soil indicators (pH, Na, and TSC) and habitat map patterns.
Through our model-based estimation, we achieved successful indirect estimation of these
SAS indicators for each specific habitat type, establishing characteristic thresholds for the
soil parameters (Table 6, Figure S1).

Table 6. Summary table of the vegetation map-based SAS indicator estimation of the soils of the
different Á-NÉR habitats.

Habitat Types Á-NÉR
Codes

TSC (w/w%) Na (mg/kg) pH

Threshold

Low High Low High Low High

Salt marshes B6 0.08 0.13 1322.74 1976.77 5.18 5.60
Achillea steppes on Meadow solonetz F1b 0.11 0.18 1444.19 2264.35 5.40 5.80

Salt meadow F2 0.08 0.14 1085.91 1747.34 5.32 5.79
Annual salt pioneer swards of steppes

and lakes (microerosional mound) F5 0.13 0.18 2067.34 2763.57 5.69 6.34

Annual salt pioneer swards of steppes
and lakes (bare spot) F5bs 0.22 0.28 3126.08 3776.23 6.91 7.39

Closed steppes on loess H5a 0.09 0.14 1128.18 1793.46 5.35 5.66
Standing waters U9 0.09 0.15 861.18 1639.39 4.86 5.45
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4. Discussion

Several studies have been carried out on remote sensing of salt affected soils and its
applicability, e.g., for estimating plant cover [87], for monitoring [88,89], combining with salt
movement modelling [90], or testing salinity indices [91]. The applied method, UAV-based
multispectral imagery is widespread, but is mostly used to solve problems in precision
agriculture [92], e.g., estimate vegetation quality [93], nitrogen content of crops [94,95], or
monitoring crop diseases [96]. Our approach involves the creation of a SAS vegetation
map using 16 different spectral vegetation indices (VVI, VARI, NDTI, RI, SCI, BI, SI, TGI,
GLI, NGRDI, GLAI, HUE, CI, HI, SHP, and SAT) and the calculation of a DEM from RGB
orthophoto mosaics as a result of aerial survey using a UAV. Through field observations,
we identified distinct habitat types based on the General National Habitat Classification
System of Hungary [52], with quadrats representing specific plant species providing crucial
data for our predictive model development. By integrating topomorphometric and spectral
indices and applying random forest [97] and co-kriging methods [98], we estimated soil
properties and generated thematic maps of salt-affected indicators (pH, TSC, and Na),
validated using 57 soil samples from the field. Boxplots were generated in order to estimate
the pH, TSC and Na concentration range in the soil under different vegetation patterns.

In the Hortobágy microregion, as well as in numerous other European salt steppes [99],
the natural process of soil formation exhibits diverse patterns [100]. In certain instances,
there is a gradual accumulation of salts, leading to progressive salinization, while in
others, leaching and desalinization occur [5,101]. These processes not only manifest in
spatial variations but, as described by [102,103], they also display temporal dynamics
within specific areas. The alternation of leaching and salt accumulation is influenced by
environmental conditions (e.g., hydrological conditions and texture [104] and shapes the
characteristics of the developing saline soils [105].) Our research, as indicated by the
boxplots at Figure 6, also demonstrates substantial variability and dispersion in soil salinity,
sodium content, and pH within specific habitats. For instance, in bare spot (F5bs), there is
a prevailing accumulation of salts in the topsoil, resulting in higher salinity and pH, and
also sodium content due to Na-salts [106,107]. Conversely, in elevated and more exposed
areas, e.g., closed steppes on loess (H5a) (Figure 8), as well as in Solonetz soils, the salinity,
sodium content, and pH of the topsoil are all lower [108,109]. In these cases, the influence
of humus content is also apparent.

The zonation of saline habitats, as determined by the increase in surface elevation,
follows the sequence of salt meadow (F2) < salt marshes (B6) < annual salt pioneer swards
of steppes and lakes, bare spots (F5bs) < annual salt pioneer swards of steppes and lakes
(F5) = Achillea steppes on Meadow solonetz (F1b) < closed steppes on loess (H5a) (see
Figure 8). This order of zonation aligns with the findings of [110,111]. The highest salt
content, sodium content, and pH, considering the zonation of the area, are observed in the
soils of vegetation belts located in the intermediate positions [112,113].

The novelty of our work is to employ a cost-effective and straightforward approach
utilizing multispectral RGB imaging to produce a highly accurate (98.8%) vegetation map
of the salt steppe.

Habitat types in the Hungarian General National Habitat Classification System (Á-
NÉR [52]) are associated with specific soil types. Our research introduces a novel aspect by
offering threshold values for salinity, sodicity, and alkalinity indicators (Na, TSC, and pH)
corresponding to the saline habitat types in Á-NÉR. To estimate these values, we utilized a
model combining the random forest and kriging (RFK) methods.

The study area we investigated is situated within Europe’s largest continuous natural
semi-arid steppe, which represents extensive Eurasian steppes with similar characteristics.
Our modelling method can form the basis for the proximal, non-invasive surveying of
protected saline areas and the model estimation of salinity indicators.
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5. Conclusions

• The analysis of the classifier model’s (“ranger” machine learning) most important
co-variables in case of preparing vegetation map, highlights the significance of mor-
phometric variables (CNBL, DEM, MRRTF, and MRVBF) in the top four positions,
followed by spectral variables (red, green, blue bands, BI, VVI, and GLI). Morpho-
metric variables differentiate habitats based on altitude levels, while RGB bands and
vegetation-related spectral indices separate different plant types. The BI is particularly
useful in identifying bare spots with greyish-white surfaces. The applied geostatistical
model demonstrated high accuracy (0.9889) and a Kappa value of 0.9857 when tested
against the dataset. The classification performance for each habitat type was excellent,
with balanced accuracy, precision, and recall values exceeding 0.95.

• Correlation analysis of thematic maps of SAS indicators (pH, Na, and TSC) and habitat
map patterns was carried out applying boxplots. Our model-based estimation was
successful to indirectly estimate these SAS indicators for every distinct habitat type,
defining characteristic thresholds for the soil parameters.

• For UAV-based RGB orthophotos, it was found that spectral indices (SHP, BI, TGI,
GLI, VVI, RI, SI, B, CI, and SAT) provided more comprehensive information compared
to topomorphometric indices when considering the importance of the variables in
estimating all SAS parameters.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land12081516/s1, Table S1: Summary table of the quadrat vegeta-
tion survey, forming the base data for the vegetation map. Table S2: Confusion matrix of test dataset
with reference (columns) and predicted (rows) comparison. Table S3: Detailed accuracy metrics by
class. Table S4: Laboratory measured soil parameters applied in thematic mapping. Table S5: Site
Soil Investigation Reports of the 3 soil Profiles. Table S6: Groundwater chemistry data. Figure S1: 3D
scatterplot of the represented habitat types in the light of the three mapped soil salinity parameters.
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In Proceedings of the Talajtani Vándorgyűlés, Sárvár, Hungary, 25 September 2020.

51. Tóth, T.; Rajkai, K. Soil and Plant Correlations in a Solonetzic Grassland. Soil Sci. 1994, 157, 253–262. [CrossRef]
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Abstract: A comprehensive understanding of soil salinity distribution in arid regions is essential for
making informed decisions regarding agricultural suitability, water resource management, and land
use planning. A methodology was developed to identify soil salinity in Sudan by utilizing optical and
radar-based satellite data as well as variables obtained from digital elevation models that are known
to indicate variations in soil salinity. The methodology includes the transfer of models to areas where
similar conditions prevail. A geographically coordinated database was established, incorporating a
variety of environmental variables based on Google Earth Engine (GEE) and Electrical Conductivity
(EC) measurements from the saturation extract of soil samples collected at three different depths (0–30,
30–60, and 60–90 cm). Thereafter, Multinomial Logistic Regression (MNLR) and Gradient Boosting
Algorithm (GBM), were utilized to spatially classify the salinity levels in the region. To determine the
applicability of the model trained at the reference site to the target area, a Multivariate Environmental
Similarity Surface (MESS) analysis was conducted. The producer’s accuracy, user’s accuracy, and
Tau index parameters were used to evaluate the model’s accuracy, and spatial confusion indices
were computed to assess uncertainty. At different soil depths, Tau index values for the reference
area ranged from 0.38 to 0.77, whereas values for target area samples ranged from 0.66 to 0.88,
decreasing as the depth increased. Clay normalized ratio (CLNR), Salinity Index 1, and SAR data
were important variables in the modeling. It was found that the subsoils in the middle and northwest
regions of both the reference and target areas had a higher salinity level compared to the topsoil.
This study highlighted the effectiveness of model transfer as a means of identifying and evaluating
the management of regions facing significant salinity-related challenges. This approach can be
instrumental in identifying alternative areas suitable for agricultural activities at a regional level.

Keywords: dryland; digital soil mapping; environmental similarity; Google Earth Engine; remote
sensing; SAR; Sentinel 2 MSI; salinization; transfer learning

1. Introduction

The majority of salt-affected soils globally are located in arid and semi-arid climate
zones [1]. Saline soils can be formed naturally by the effects of soil formation factors, and
their formation can be accelerated as a result of anthropogenic factors [2]. Specifically, soil
salinity is a major soil constraint that threatens soil fertility, agricultural sustainability, and
food security in arid and semi-arid regions [3–10]. The acceleration of the process of soil
salinization constitutes a significant threat to crop production and can reduce agricultural
productivity at regional, national, and even local scales [11].
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Since 2015, when the Sustainable Development Goals (SDGs) [12] were announced,
half of the time needed to achieve the 2030 SDGs has now passed. Food security and
sustainability of agriculture, especially in rain-fed or irrigated areas in arid regions, are
under significant pressure from soil constraints such as salinity [2,13–15]. To assess the
impact of salinization on agriculture, especially in the mentioned regions, there is a need
for useful spatial information on the salinity levels in the topsoil and effective root zone
that can be integrated into decision-support processes. As is well known, to achieve SDG′-2
and SDG′-15, it is essential to spatially accurately identify the variations of soil constraints
to allow for the best management of soils [16–18]. Rapid and reliable determination of
the current levels of soil salinity, its edaphological suitability for crop cultivation, or the
constraints it presents can help identify salinity management strategies to reduce the
vulnerability of crops to salt content.

Over the last quarter century, the science of pedometry has made significant advances
by combining remote sensing, geographic information systems, and advanced statistical
and mathematical spatial modeling applications for soil mapping [19,20]. Of course, this
branch of science has been supported by the increasing number of satellites and sensors
from public and private initiatives, as well as the increasingly open-access global availability
of Earth Observation (EO) data. Indeed, the increasing digital representation of the spatial
distribution of soil formation factors has led to initiatives that can be integrated into
policymaking and decision-support systems [21–23].

Machine learning algorithms (MLAs) have been effectively used in the spatial mapping
of a soil constraint such as soil salinity with a pedometric approach [24,25]. While salinity
indicators determined quantitatively in the laboratory can be modeled with regression-
based ML algorithms [26] in continuous data types, discrete data classified according to
certain criteria (salinity classes in our study) can be effectively spatially modeled with
classification-based ML algorithms. Kaplan et al. [27] emphasized that the European Space
Agency’s (ESA) optical Sentinel 2 remote sensing data and MLAs can effectively map EC
(dS/m) in hyper arid areas in continuous data types. ESA’s new generation Sentinel 1 synthetic
aperture radar (SAR) data, which has a higher capacity to penetrate the soil surface [5], is
emphasized as an important data source in determining the salinity level of soils [28–32].

Traditional approaches to the determination of soil salinity levels, especially field-
work, are costly and time-consuming. Nowadays, EO data have been robustly demon-
strated to be essential tools for accurately estimating soil salinity in different parts of the
world [33,34]. These developments have been widely used in studies, especially in vegeta-
tion, soil, and salinity indices, which are very different in their effectiveness while offering
great potential for regions of the world where vegetation cover is reduced or seasonally
absent [24,27,32,35]. Another important aspect concerns developments in processing al-
gorithms such as MLAs [5]. Supervised learning algorithms make it possible to model
the relationships and dependencies between the target prediction output [36] and input
data/features to predict salinity constraint output values in new areas by learning from the
data from areas where salinity threats exist.

The pedometric approach and digital soil mapping (DSM) have enabled regional [2],
continental [33], and global [1] applications of soil salinity mapping at various spatial and
temporal scales. However, most of the DSM research in the specific area of salinity threats
focuses on modeling soil properties at a specific site. Kaya et al. [2] spatially mapped
the threat of soil salinity in an area with complex land uses in the Mediterranean region
using a random forest (RF) and support vector regression (SVR) algorithm. Guo et al. [37]
presented an unsupervised approach to generating salinity management zones in coastal
Central China. Konyushkova et al. [38] successfully utilized remote sensing data to improve
assessment and decision support for sustainable management of soil and water resources
in salt-affected croplands. Golestani et al. [39] systematically compared decision tree
(DT), artificial neural network (ANN), RF, and SVR algorithms to spatially map salinity
during the winter and summer seasons in Sirjan Playa, Iran. Kabiraj et al. [40] used the
RF algorithm for spatial mapping of salinity classes in the Gulf of Mannar, India, and

143



Land 2023, 12, 1680

Lekka et al. [41] effectively used the logistic regression algorithm to assess spatial patterns
of soil salinity in agricultural fields in Lesvos Island, Greece.

The principle that similar soil-forming factors lead to similar soils has found an
important place in the DSM on a global scale [42]. Regionally, indeed, areas with similar
soil-forming factors develop similar soils over time [42]. In line with this assumption, there
may be a possibility that a categorical or continuous soil model learned in one area may
be transferable to a similar area. Of course, this possibility is based on the availability of
digital data on existing soil formation factors in the area where the model was learned and
in the transferred area. This application is organized in such a way that quantitative digital
data are similarly measured for the target and the reference area. In the specific case of our
study, this process is an opportunity to reduce the relatively high costs and time required
to produce soil salinity maps in an arid region by focusing the transfer of models learned
from a reference area to the target area.

Sudan is a country with agricultural areas, abundant water, two branches of the Nile
River, and high agricultural potential [43]. Sudan, one of the largest countries in Africa,
has over 80 million hectares of arable land, of which only 20 percent have been cultivated
so far [44]. With direct diversion from rivers and groundwater, many industrial crops can
be produced in Sudan [44]. However, it is necessary to manage the risk of soil salinization
during the first 10–15 years of irrigated agricultural production in arid areas. In addition, the
need to map existing saline areas and identify appropriate salinity management strategies
is necessary to develop methods and approaches to identify, monitor, and assess the extent
of salt-affected soils in Sudan, contributing to the development of strategies to help mitigate
climate change impacts.

Transfer learning is the process of applying the model learned from a reference area to
a target area [45]. The transfer learning approach has been demonstrated to be applicable in
pedometrics, especially in studies on the prediction of soil properties by creating and using
spectral reflectance libraries [45–47]. By integrating the transfer learning approach, relevant
DSM studies were conducted, such as the parent material [48], organic carbon at the local
scale [49], USDA Soil Taxonomy at the sub-group level [50], USDA Soil Taxonomy at the soil
great group level [51], soil organic carbon in cropland soils [52], and soil particle fractions [53].

The spatial variability of soil salinity constraints is one of the most important causes of
variability in crop production and is important information for spatial planning according
to the sensitivity and tolerance level of the plant to be grown. Although there have been
many field-based studies on the spatial prediction of salinity in drylands by integrating RS
and ML [2,27,35,39], no studies on the transferability of the models have been carried out.

This study was the first to integrate “transfer learning” into mapping soil salinity levels
in an arid region. Hence, we hypothesized that the utilization of transfer learning-based
MLAs in conjunction with open-access EO data within this study can offer opportunities
for mapping soil salinity within an arid region. The present research deals with the
transferability of salinity class models derived from a reference area to a target area whose
spatial similarity is quantified by a similarity index. In particular, the objectives of the study
were: (i) to develop a classification model for the salinity of soils at three different depths
in Eastern Sudan, (ii) to demonstrate the effectiveness of the Multivariate Environmental
Similarity Surface (MESS) technique in applying the model learned from the reference site
to the target site, and (iii) to evaluate the importance of the environmental variables used in
the modeling within the soil scientist framework and to identify environmental variables
that could be used in similar study areas.

2. Materials and Methods

Section 2.1 provided general information about the study area, and Section 2.2 pro-
vided detailed information about the soil sampling methodology and design. Section 2.3
presented information about the analyses performed on soil samples. Section 2.4 details the
various environmental variables produced by the Google Earth Engine. Section 2.5 explains
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the modeling process and the transfer learning process. Section 2.6 details the importance
of digital variables in modeling, accuracy, and uncertainty assessments of models.

2.1. Study Area

This study was conducted at the lower Atbara Nile, which extends about 270 km SE
of Atbara town in River Nile State and nearly 288 km from Khartoum, the capital of Sudan.
The study area is located between 16◦44′ N and 16◦55′ N Latitude and 34◦50′ E and 35◦2′ E
Longitude and covers a total area of about 7600 ha (distributed as 4200 ha for the reference
area and 3400 ha for the target area). The study area falls within the desert climatic zone
of the country, with an average annual precipitation of 63.2 mm (mainly between July and
August), an average annual temperature of 29.6 ◦C, and an average annual relative humidity
of 28.3%. The soil is characterized by hyper-thermic and aridic soil temperature and moisture
regimes, respectively. The soil is classified as Aridisols according to soil taxonomy [54,55].

2.2. Field Study and Sampling Strategy

A semi-detailed soil survey was used to perform this study using a scale of 1:45,000.
We used a grid design to determine the targeted sample locations. The total auger locations
for reference and target areas were 202 and 144 sites, respectively. We used a handheld GPS
(Garmin Montana 680t) to determine the precise sites of the auger samples. Figure 1A shows
the geographical location of the study area overlaid on the Sentinel 2 MSI natural color
band combination map. Figure 1B presents the field distribution of auger samples on the
DEM map. Soil samples were taken from a three-depth systematic sampling design [55] at
450 m intervals at both studied areas: 0–30 cm, 30–60 cm, and 60–90 cm, with approximately
0.5 to 1 kg of soil material gathered from each depth. The total number of samples collected
was 1041 (608 from the reference area and 432 from the target area).

 

Figure 1. Spatial distribution of soil sampling points overlaid on Sentinel 2 MSI natural color band
combination map (A) and digital elevation model (DEM) (B), including reference area (C) and target
area (D). The polygons define the study areas, while the green dots define the soil sampling points.

2.3. Sample Analysis

Soil samples were air dried at ambient room temperature (≈25 ◦C), ground, and passed
through a 2 mm sieve to isolate soil material from rock fragments. Electrical conductivity
(ECe) as an indicator of salinity was determined in the extracts of the soil paste [56] using a
digital EC meter (Jenway, 4510, UK). According to the FAO salinity classification [34,57]
electrical conductivity data (dS m−1) are classified into three classes: None (<2 dS m−1),
Moderate (between 2 and 4 dS m−1), and Strong (> 4 dS m−1).

2.4. Environmental Covariates via Google Earth Engine

To estimate salinity variations along the soil depth direction in the study area, relevant
environmental covariates were selected due to their influence on salinity levels. Salinity,
vegetation, and soil indices based on Sentinel 2 MSI [58], as well as horizontal transmit
and vertical receive (HV) and horizontal transmit and horizontal receive (HH) polarization
mode backscattering coefficient data from PALSAR-2 [59], along with derived digital
elevation model derivatives, were generated using the Google Earth Engine (GEE) data

145



Land 2023, 12, 1680

catalog and platform [60]. All digital covariates were extracted from GEE to be aligned on
a 10 × 10 m grid and subsequently utilized for mapping purposes.

2.4.1. Synthetic Aperture Radar Data

Since no available images could be obtained in the frames of the Sentinel 1 SAR
satellite for the study area, Global PALSAR-2/PALSAR Yearly Mosaic [61,62], version 2
data were transferred from the GEE data catalog to the GEE code editor section [60], taking
into account the years closest to the soil sampling dates. The PALSAR/PALSAR-2 mosaic
was acquired at 25 m resolution [61]. This dataset is a seamless global SAR image created
by mosaicking SAR images from PALSAR/PALSAR-2. In this study, 2018, 2019, and 2020
image collections in HH and HV polarization were then cropped according to the study
area scope using the “.filterBounds” script in the GEE code editor [60]. Finally, using the
“.mean” script, the mean of their collections was calculated for the study area to reduce
data volume and for faster analysis. Polarization data can be obtained as 16 bit digital
numbers (DN) and converted to backscatter coefficient values in decibel units (dB) using
the following equation [61,63]:

γ0 = 10log10(DN2) − 83 (1)

where −83.0 is the calibration factor (dB) for the PALSAR-2 mosaics.
This equation was executed in ArcGIS 10.8—Arctoolbox—Spatial Analyst Tools—Map

Algebra—Raster Calculator [64].

2.4.2. Multispectral Satellite Data

Sentinel-2 MSI: MultiSpectral Instrument, Level-2A product was called from the GEE
catalog, and 180 images were taken from the catalog by running the “.filter(‘CLOUDY_PIXEL
_PERCENTAGE < 5’)” script within 1 year close to the soil sampling date. Using the study
area shapefile and the “.filterBounds” script, the satellite image collection was clipped.
Again, using the “.mean” script to reduce data volume and for faster analysis, mean
synthesis images were calculated for Band 2, Band 3, Band 4, Band 8, Band 11, and Band 12
using all image collections among the respective dates. Salinity, vegetation, and soil indices
in Table 1 were generated and used as environmental covariates.

2.4.3. Digital Elevation Model Data

NASADEM Merged DEM Global 1 arc second V001 data [65] was called from the GEE
catalog and cut using the “.filterBounds” script according to the study area shapefile. In
addition to the elevation data, the slope in degrees was used as an environmental covariate
produced by the “ee.Terrain.slope” script.

Table 1. Environmental covariates are used for predicting soil salinity levels.

Remote Sensing (RS) (Sentinel 2) OPTICAL-Based Covariates Equations [27,32,35,58,66]

Band 2 Blue (Central Wavelength: 490 nm)
Band 3 Green (Central Wavelength: 560 nm)
Band 4 Red (Central Wavelength: 665 nm)
Band 8 NIR (Central Wavelength: 842 nm)
Band 11 SWIR1 (Central Wavelength: 1610 nm)
Band 12 SWIR1 (Central Wavelength: 2190 nm)
Normalized Difference Vegetation Index (NDVI) (NIR − Red /NIR + Red)
Carbonate Normalized Ratio (CNR) (Red − Green / Red + Green)
Clay Normalized Ratio (CLNR) (SWIR1 − SWIR2 / SWIR1 + SWIR2)
Ferrous Normalized Ratio (FNR) (SWIR1 − NIR / SWIR1 + NIR)
Iron Normalized Ratio (INR) (Red − SWIR2 / Red + SWIR2)
Normalized Difference Moisture Index (NDMI) (NIR − SWIR1/NIR + SWIR1)
Rock Outcrop Normalized Ratio (RONR) (SWIR1 − Green / SWIR1 + Green)
Green-Red vegetation index (GRVI) (Green − Red /Green + Red)
Saturation index (SatInd) (Red − Blue / Red + Blue)
Green Normalized Difference Vegetation Index (GNDVI) (NIR − Green/NIR + Green)
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Table 1. Cont.

Remote Sensing (RS) (Sentinel 2) OPTICAL-Based Covariates Equations [27,32,35,58,66]

Salinity Index 1
√

Blue × Red
Salinity Index 2

√
Green × Red

Salinity Index 3 (Blue − Red/Blue + Red)
Salinity Index 4 (Green × Red)/(Blue)
Salinity Index 5 (Blue × Red)/(Green)
Salinity Index 6 (NIR × Red)/(Green)

Remote Sensing (RS) (PALSAR/PALSAR-2 mosaic) synthetic aperture RADAR-based covariates [59,61]

AVG_HH_dB-polarization backscattering coefficient For horizontal transmit and horizontal receive
AVG_HV_dB-polarization backscattering coefficient For horizontal transmit and vertical receive

DEM-based primary covariates at NASA JPL [65]

Elevation m unit
Slope Degree unit

NIR: Near infrared, SWIR: Shortwave infrared.

 

Figure 2. Flowchart of the methodology.

2.5. Modelling Salinity Levels and Transferability of Models

This study followed the DSM framework and involved several steps in the modeling
process: (1) enabling and curating soil data; (2) obtaining environmental covariates from
open sources; (3) extracting georeferenced sample points from the digital covariate data
and preparing geodatabases [67]; (4) selecting environmental covariates through the use of
“findCorrelation” functions to identify and eliminate highly correlated covariates; (5) per-
forming classification-based modeling of salinity levels; and (6) transferring the models.
The flowchart of the study is depicted in Figure 2.

The “findCorrelation” function in the “caret” package [68] was run to identify highly
correlated covariates that could also compromise the performance of the model. Covariates
with Spearman correlation coefficients above 0.8 were removed (Figure A1) [69,70].

To build a statistical model between environmental covariates and the predicted
soil salinity classes, 2 different mathematically-based ML algorithms were systematically
compared: Multinomial Logistic Regression [71,72] and Gradient Boosting Machine [73,74].

In the study, soil salinity classes are the outcome variables. In the process of data
import in R core environment software [75], the categories of salinity classes were coded
alphabetically as 1 (None), 2 (Moderate), and 3 (Strong). Specifically, two logit functions
are needed in the three-outcome category model. The modeler can decide which outcome
category to use as the reference, for which the class “1 (None)” was chosen in numerical
order. Logit functions comparing the other 2 classes with the reference were created. All
these processes were carried out with the “multinom” function in the “caret” package [68].
Due to the nature of the multinomial logistic regression algorithm, a pixel can belong to all
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three different soil salinity classes with given probabilities [76]. However, the salinity class
with the highest probability is assigned to the pixel.

The Gradient Boosting Machine (GBM) is one of the most powerful MLAs for clas-
sification problems [77] involved in our study. Like tree-based learners in RF, GBM is an
ensemble method based on decision trees [78]. However, unlike RF, this method generates
trees serially, with each tree attempting to improve the prediction by correcting the errors
of the previous one.

The hyperparameters of each ML algorithm were set using their respective packages
“nnet” [72] and “gbm” [74] (Table 2). Using R Core Environment software (Version 4.2.1) [75]
and RStudio IDE [79], soil salinity classes at 3 different depths in the reference study area
and CLNR, FNR, NDVI, AVG_HH_dB, AVG_HV_dB, Elevation, Slope, and Salinity Index
1 were selected and estimated using these environmental covariates.

Table 2. Parameters for the machine learning algorithms used and final environmental covariates
included for predicting soil salinity levels.

Selected Covariates
Target

Soil Variable
Algorithm Tuning Hyperparameter

AVG_HH_dB, AVG_HV_dB,
CLNR, Salinity index 1, FNR,

NDVI, Slope, Elevation

0–30 cm EC class
MNLR decay = 0.0001

GBM shrinkage: 0.1, interaction.depth: 1,
n.minobsinnode: 10, n.trees: 50

30–60 cm EC class
MNLR decay = 0.1

GBM shrinkage: 0.1, interaction.depth: 1,
n.minobsinnode: 10, n.trees: 50

60–90 cm EC class
MNLR decay = 0.1

GBM shrinkage: 0.1, interaction.depth: 1,
n.minobsinnode: 10, n.trees: 50

Abbreviations. GBM: Gradient Boosting Machine, MNLR: Multinomial Logistic Regression, AVG_HH_dB: for
horizontal transmit and vertical receive, AVG_HV_dB: for horizontal transmit and horizontal receive, CLNR: Clay
Normalized Ratio, FNR: Ferrous Normalized Ratio, NDVI: Normalized Difference Vegetation Index.

Descriptive statistical parameters were computed for the values of the eight chosen
digital covariates within both the reference and target regions. Furthermore, Multivariate
Environmental Similarity Surfaces were calculated [80] to compare the compatibility of
the values of environmental variables in the dataset in the reference area with those in the
target area to be transferred. This method can be used to measure the similarity between
the selected covariates at the location of the training samples and the target area to be
transferred [81,82]. Values lower than zero indicate prediction locations in both feature and
geographic areas that are not explained by the training samples [82]. The MESS map for
the target region was generated using the “mess” function in the “dismo” package [80].

2.6. Importance of Used Covariates in Models, Accuracy, and Uncertainty Evaluations

The relative importance levels of different digital environmental variables in the
prediction models of salinity classes were calculated using the “varImp” function in the
caret package [68].

In digital soil mapping, user accuracy (UA) and producer accuracy (PA) are used to
validate the performance of different algorithms in both reference and target areas [66].
The “cvms” R package [83] was used to estimate the performance measures of the classi-
fication models through the confusion matrix, while the Tau index, whose performance
on unbalanced datasets is emphasized by Rossiter et al. [84], was calculated using the
“tauW” function in the “aqp” package [85]. When the value of the Tau index approaches 1,
it indicates a strong indication of perfect agreement. In the study, both algorithms calculate
probability values for each salinity class on a pixel basis, and for uncertainty evaluation,
the confusion index (CI) is calculated, which spatially measures the confusion between the
most probable salinity class and the second most probable class [86,87].
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3. Results

Section 3.1 provides descriptive statistics on continuous and categorical soil salinity
data. While Section 3.2 presents the performance measures of two different algorithms,
Section 3.3 contains findings on the transfer of models to the target area. Section 3.4
includes maps of soil salinity classes and confusion index maps produced by two different
algorithms at three depths. Section 3.5 contains information about the importance of
environmental variables used in models.

3.1. Results of Measured Electrical Conductivity and Assessment of Salinity Classes

Descriptive statistics and histograms of the reference area and target area sample sets
taken from three different depths are shown in Figure A2. The distribution of reference area
and target area samples according to salinity classes was relatively unbalanced (Figure 3a,b).
Both in the reference region and in the target region, the number of observations of the
“strong” salinity class increased with depth, while the “None” salinity class decreased
(Figure 3a,b).

 

Figure 3. Distribution of observations by salinity classes in the reference (a) and target (b) area. The
y axis is the number of samples.

3.2. Performance of the Different Classification Algorithms

The validation statistics of soil salinity classes for each algorithm are presented in
Table 3. The results of the confusion matrix from which the table was generated are
presented in Figure A3. The highest Tau index values were obtained for both the reference
area and the target area in the 0–30 cm samples, which can be considered surface samples
(Table 3). The decrease in Tau index values followed a linear trend as the depth increased
(Table 3). MNLR and GBM algorithms indeed provided very close performance measures
when Tau index values were considered (Table 3).

In the surface samples (0–30 cm), the user’s accuracy values for the “none” class were
above 90% for the target area (Table 3). However, in both models, the remaining two classes
failed to be predicted. After a careful examination of the confusion matrix (Figure A3), the
models assigned the “strong” and “moderate” classes to the “none” classes.

Considering the distribution of the number of classes at different depths (Figure 3),
this may be due to the fact that these models do not have enough observations to learn the
classes. As a matter of fact, the user’s accuracy values for the “strong” class could compute
an increase in depth (30–60 cm and 60–90 cm). As the depth increased, the number of
observations of the “strong” class also increased.
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Table 3. Summary of machine learning algorithms performance criteria for reference area and
transferred area.

Depth (cm) Soil Salinity
Levels

Model

Reference Area Target Area

Producer’s
Accuracy

User’s
Accuracy

Tau
Index

Producer’s
Accuracy

User’s
Accuracy

Tau
Index

0–30

None
MNLR 94 86

GBM: 0.75
MNLR: 0.77

100 92

GBM: 0.88
MNLR: 0.88

GBM 95 89 100 93

Moderate
MNLR 0 NaN * 0 NaN

GBM 0 NaN 0 NaN

Strong
MNLR 24 67 0 NaN

GBM 53 43 34 50

30–60

None
MNLR 98 75

GBM: 0.61
MNLR: 0.61

96 85

GBM: 0.72
MNLR: 0.72

GBM 97 76 96 85

Moderate
MNLR 5 100 0 NaN

GBM 0 NaN 0 NaN

Strong
MNLR 39 74 8 17

GBM 44 68 8 17

60–90

None
MNLR 90 67

GBM: 0.38
MNLR: 0.47

98 79

GBM: 0.66
MNLR: 0.66

GBM 100 59 100 78

Moderate
MNLR 0 NaN 0 NaN

GBM 0 NaN 0 NaN

Strong
MNLR 40 59 10 34

GBM 0 NaN 0 NaN

* NaN indicates unpredicted classes. GBM: Gradient Boosting Machine, MNLR: Multinomial Logistic Regression.

3.3. Transferability of Models according to Multivariate Environmental Similarity Surface

Since eight environmental variables were used in the modeling process, the selected
variables in Table 2 were used for similarity analysis during the transfer of the models.
Descriptive statistics of selected radar, optic-based, and terrain covariates at the sampling
locations in the reference and target areas are shown in Table 4. The minimum values of the
radar-based covariates are quite close for both areas (Table 4). A similar situation was found in
the optical-based FNR, NDVI, and CLNR covariates (Table 4). In particular, the distributions
of the land covariates are also basically similar across the regions, and the standard deviation
values are quite close to each other (Table 4).

Table 4. Descriptive statistics for environmental variables for both reference and target areas.

Covariate Area Minimum Mean Median Maximum
Standard
Deviation

AVG_HH_dB
Reference −30.07 −26.35 −26.63 −18.31 1.97

Target −30.67 −25.47 −25.86 −12.27 3.02

AVG_HV_dB
Reference −39.77 −36.71 −36.92 −25.33 1.41

Target −38.86 −36.22 −36.27 −31.34 1.35

CLNR
Reference 0.005 0.015 0.016 0.023 0.004

Target 0.010 0.018 0.019 0.025 0.003

Salinity index 1 Reference 2555.61 2809.86 2823.33 3252.18 113.83
Target 2557.05 2874.53 2887.32 3237.19 102.14

FNR
Reference 0.037 0.061 0.060 0.085 0.006

Target 0.030 0.054 0.054 0.073 0.007
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Table 4. Cont.

Covariate Area Minimum Mean Median Maximum
Standard
Deviation

NDVI
Reference 0.034 0.042 0.041 0.060 0.004

Target 0.033 0.041 0.040 0.057 0.005

Slope Reference 0.00 4.62 4.017 24.62 2.97
Target 0.00 4.45 4.016 12.52 2.53

Elevation
Reference 365.0 380.15 380.0 395.0 3.71

Target 375.0 384.24 384.0 398.0 3.74

According to the environmental variable values of the observations in the reference
area and the MESS results of the target region (Figure 4), the models can be effectively
transferred for regions with values above 0. However, MESS values below 0 in the southeast
of the target area are associated with the accumulation of wind-borne materials. Again, the
partial excavation of the surface soil in the central part of the study area proves that this area
does not have similar environmental variable values (smaller than 0) to the reference region.

 

Figure 4. Multivariate Environmental Similarity Surfaces (MESS) for the target area, calculated with
the selected covariates according to the reference area.

3.4. Spatial Prediction of Soil Salinity Levels in Reference and Target Areas

Digital maps of the salinity classes of the 0–30 cm samples are presented in Figure 5
for the reference and target areas by applying MNLR and GBM. The “strong” class was
mapped with high probability by the models in the reference area (Figure 5i,j). In the surface
samples, MNLR and GBM models produced maps with similar salinity class patterns for
both reference and target areas (Figure 5i,j).
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Figure 5. Digital maps of salinity classes (0–30 cm). Generated by applying the MNLR (a) and GBM
(b) models for the reference area as well as the MNLR (c) and GBM (d) models for the target area. For
the reference area, confusion index maps for MNLR (e) and GBM (f) as well as MNLR (g) and GBM
(h) for the target area. Probability map of the “Strong” salinity class in the reference area obtained by
applying the MNLR model (i) and the GBM model (j) as well as the MNLR model (k) and the GBM
model (l) for the target area.
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Digital maps of the salinity classes of the 30–60 cm samples are presented in Figure 6
for the reference and target areas by applying MNLR and GBM. Unlike the 0–30 cm maps,
the presence of the “strong” salinity class increased in the northwest of the reference area
(Figure 6a,b). The “strong” class was mapped with a higher probability by the GBM model in
the reference area (Figure 6j). In the 30–60 cm samples, the MNLR and GBM models do not
seem to be effective in spatially predicting the “strong” salinity class for the target area. The
CI values, which show the difference between the probability values of the most probable and
2nd most probable classes, are higher at 30–60 cm compared to the surface samples (0–30 cm)
(Figure 6e–h).

 

Figure 6. Digital maps of salinity classes (30–60 cm). Generated by applying the MNLR (a) and GBM
(b) models for the reference area as well as the MNLR (c) and GBM (d) models for the target area. For
the reference area, confusion index maps for MNLR (e) and GBM (f) as well as MNLR (g) and GBM
(h) for the target area. Probability map of the “Strong” salinity class in the reference area obtained by
applying the MNLR model (i) and the GBM model (j) as well as the MNLR model (k) and the GBM
model (l) for the target area.

153



Land 2023, 12, 1680

Digital maps of the salinity classes of the 60–90 cm samples are presented in Figure 7
for the reference and target areas by applying MNLR and GBM. Unlike the previous
two depth maps, the presence of the “strong” salinity class increased northwest of the
reference area at 60–90 cm, where the deepest sampling occurred (Figure 7a,b). In the
60–90 cm samples, the MNLR and GBM models were not effective in spatially predicting
the “strong” salinity class for the target area. The CI values, which show the difference
between the probability values of the most probable and 2nd most probable classes, are
higher at 60–90 cm compared to the two depth maps (Figure 7e–h).

Figure 7. Digital maps of salinity classes (60–90 cm). Generated by applying the MNLR (a) and GBM
(b) models for the reference area as well as the MNLR (c) and GBM (d) models for the target area. For
the reference area, confusion index maps for MNLR (e) and GBM (f) as well as MNLR (g) and GBM
(h) for the target area. Probability map of the “Strong” salinity class in the reference area obtained by
applying the MNLR model (i) and the GBM model (j) as well as the MNLR model (k) and the GBM
model (l) for the target area.
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Considering the three different depths of soil salinity classes in the digital maps
(Figures 5–7), the presence of a “strong” class increases with depth in the northwest of the
reference area, both in the samples taken and in the predicted maps. The current salinity
risk in the northwest region of the reference area was found to be high, and high-resolution
(10 m) digital maps can play an effective role in defining the management zones for salinity.

3.5. Importance of Environmental Variables

Figure 8 shows the relative importance of the environmental variables used in mod-
eling soil salinity classes at the three different depths. In both models, the salinity class
of surface soils is determined by the indices produced from optical-based satellite images
(Figure 8a,d). In the MNLR model, the relative importance of SAR data increased in the
modeling of 30–60 and 60–90 samples (Figure 8b,c). In the GBM model, the increase is not
as noticeable as in MNLR (Figure 8e,f). In arid areas, salinity and soil-based indices seem
to be relatively more important for the models than vegetation indices.

 

Figure 8. Importance of environmental variables in predicting soil salinity classes using different
algorithms. 0–30 cm (a), 30–60 cm (b), and 60–90 cm (c) for MNLR (Multinomial Logistic Regression).
0–30 cm (d), 30–60 cm (e), and 60–90 cm (f) for GBM (Gradient Boosting Machine).

4. Discussion

The most accurate spatial determination and subsequent monitoring of soil salinity are
crucial for sustainable agriculture and food security [3,6]. Up-to-date, reliable, and accurate
assessments of soil salinity are important for land use planners and managers. In our
study, a three-class estimation process was carried out, and Tau index values were found
to be very similar to the Tau value of 0.74 reported by Omuto et al. [57] in Northwestern
Sudan. Differences in the relative overall accuracy or Tau index values in the literature
comparisons of classification results may be due to the number of salinity classes. For
example, Kumar et al. [88] mapped the salt-affected areas with the logistic regression model
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in their study in the part of the Indo–Gangetic plain affected by soil salinity, with an overall
accuracy of 81%.

Since soil salinity is a dynamic environmental problem, it is critical to monitor temporal
and spatial changes [57]. Considering the temporal variability of soil salinity, the use of
advanced sensor technologies for precision agriculture applications in the future [89], both
in the study area and in similar regions, can be used to optimize the growing conditions [90].
Especially in arid regions where irrigated agriculture is practiced, Zhu et al. [91] emphasized
the importance of creating soil salinity maps in terms of changes in soil salinity during the
irrigated or non-irrigated period to understand the main mechanisms causing soil salinity.

Two ML algorithms that make predictions based on relatively different mathematical
calculations presented the results of a comparative study in an arid region of Sudan to
assess the transferability of salinity classes using selected covariates. The majority of
misclassified and unpredicted cases were found within the moderate salinity class in
both the reference and target areas. However, the primary objective of this study is not
centered around maximizing the predictive accuracy of the models; rather, it aims to
provide initial insights into the transferability of soil salinity models with relevance to
agronomic applications. Although the reference and target areas are characterized by
very similar climates and topographies [92], there may be concerns about quantifying the
degree of similarity between them based on more quantitative results just before model
transfer. Therefore, it is recommended for future studies to present comparative results
of different mathematical bases such as the Gower similarity index [93] and dissimilarity
index [94]. Enhancing the predictive accuracy of transferability related to soil salinity can
involve the exploration of specific geographical stratifications [53], such as physiography
or topography (slope-aspect categories), as well as the consideration of land use factors.

The low variation in elevation and the homogeneity of the climate in the study area
may have caused the elevation digital covariate to be ineffective in the modeling. The
effectiveness of optical satellite-based salinity indices [27,32,35,95] and SAR data are consis-
tent with the literature [5,29]. Nevertheless, our effort has been to leverage remote sensing
data for the purpose of transferring salinity class models to research areas characterized by
quantified similarity analysis. The study outcomes have revealed the substantial transfer-
ability of satellite-based radar and optical environmental variables within an arid region,
substantiating their potential for generating beneficial outputs. For transferability of soil
salinity levels in arid regions using ML algorithms, the PlanetScope satellite [96] can offer
important opportunities to capture the spatial variability of salinity [97].

The ultimate aim is to produce useful insights as a result of the models. Among
the salinity class maps resulting from the study, special attention should be paid to the
spatial distribution of the “strong” class. Our study includes not only defining the problem
but also searching for solutions. In this regard, Soil-Improving Cropping Systems, which
aim to prevent, mitigate, or ameliorate the adverse effects of soil salinity and improve
associated soil functions and ecosystem services related to agricultural production, should
be given importance [98]. Sugarcane, which is an important crop in Sudan [44,99], is a very
sensitive plant to salinity in terms of cultivation [8,100]. In this study, the cultivation of
this deep-rooted plant in areas with increasing “strong” class probability and especially in
areas where the danger of salinity increases with depth may experience negative effects. It
is important to select plants with relatively high resistance in saline environments [101,102].
As a matter of fact, the study area right next to the Atbara River should be subjected to
evaluations such as irrigated land classification [103,104] in a wider perspective for its
effective use in irrigated agriculture activities.

Future work should center on assessing the temporal and spatial transferability of
remote sensing, including its capability to detect fluctuations within soil salinity classes.
While the determination of large-scale soil limitations with DSM methodology is an impor-
tant objective, ML models are increasingly being used for this purpose. However, it is well
known that tree-based algorithms are sensitive to extrapolation, i.e., transferability [105].
In tree-based learners (GBM in our study), any split threshold within the nodes for the
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“y” (dependent) variable is limited by the minimum and maximum value range of the
particular feature in the training dataset [105]. Therefore, when the algorithm encounters
a value of “y” that is outside the bounds of the training dataset, it applies the closest
corresponding dependent variable value from the training dataset in the mathematical pre-
diction process. Therefore, it will be more difficult to extrapolate regression-based estimates
of transferability for tree-based learners. Soil scientists skilled in the mathematics of the
models are important at the point of applicability of ML to soil data [106]. It enables more
applicable methodologies for transferability by harmonizing the EC values into salinity
classes (categorical data) that adhere to international standards for continuous data types.

Furthermore, future studies should focus on measuring the transferability risk associ-
ated with MLAs for soil salinity prediction while also focusing on research that will help
assess the reliability of their predictions [107]. These studies can reveal valuable information
regarding the integration of ML model predictions into the decision/support system [108].
It can be recommended in research for predictive models to provide information at the
reconnaissance scale [109].

5. Conclusions

In this study, we integrated indices generated from long-term optical Sentinel data
and PALSAR-2 radar imagery through GEE for digital mapping of high-resolution regional-
scale soil salinity classes in Sudan. We also addressed the transferability of ML-based soil
salinity classes in arid areas and used MESS before transferring from the reference area to
the target area. This paper presents transfer learning techniques for fast and accurate soil
salinity mapping using open-access digital data and machine learning algorithms. In this
process, soil scientists should be well-skilled in the mathematical basis of algorithms for
integrating soil data to be transferred by modeling into the ML. The spatial information
on soil salinity generated in this study can provide remarkable insights into decision-
making processes that are compatible with the growing need for soil information for future
sustainable development goals.
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Appendix A

 

Figure A1. Spearman correlation analysis of environmental variables. Blue color indicates a positive
correlation, while red color exhibits a negative correlation at p < 0.05. Empty boxes indicate no
correlation between parameters.

158



Land 2023, 12, 1680

 

Figure A2. Histograms of measured EC at reference and target sites and some descriptive statistics.
0–30 cm (a), 30–60 cm (b), and 60–90 cm (c) for the reference area. 0–30 cm (d), 30–60 cm (e), and
60–90 cm (f) for the target area.

 

Figure A3. Confusion matrix results of the classification performances of the models for reference
and target areas. Confusion matrices of 0–30 cm (a), 30–60 cm (b), 60–90 cm (c) maps produced
by applying the MNLR model for reference area and 0–30 cm (d), 30–60 cm (e), 60–90 cm (f) maps
produced by applying the GBM model. Confusion matrices of 0–30 cm (g), 30–60 cm (h), 60–90 cm
(i) maps produced by applying the MNLR model and 0–30 cm (j), 30–60 cm (k), 60–90 cm (l) maps
produced by applying the GBM model for the target area.
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Abstract: Tracing the historical development of soil salinization and monitoring its current status are
crucial for understanding the driving forces behind it, proposing strategies to improve soil quality,
and predicting future trends. To comprehensively understand the evolution of research on the
remote sensing inversion of soil salinity, a scientific bibliometric analysis was conducted on research
from the past two decades indexed in the core scientific databases. This article analyzes the field
from various perspectives, including the number of publications, authors, research institutions and
countries, research fields, study areas, and keywords, in order to reveal the current state-of-the-art
and cutting-edge research in this domain. Special attention was given to topics such as machine
learning, data assimilation methods, unmanned aerial vehicle (UAV) remote sensing technology,
soil inversion under vegetation cover, salt ion inversion, and remote sensing model construction
methods. The results indicate an overall increase in the volume of publications, with key authors such
as Metternicht, Gi and Zhao, Gengxing, and major research institutions including the International
Institute for Geoinformatics Science and Earth Observation and the Chinese Academy of Sciences
making significant contributions. Notably, China and the USA have made substantial contributions
to this field, with research areas extending from Inner Mongolia’s Hetao irrigation district to the
Mediterranean region. Research in the remote sensing domain focuses on various methods, including
hyperspectral imaging for salinized soil inversion, with an increasing emphasis on machine learning.
This study enriches researchers’ knowledge of the current trends and future directions of remote
sensing inversion of soil salinization.

Keywords: remote sensing technology; soil salinity; machine learning; data assimilation; summarize;
bibliometric analysis

1. Introduction

The global map of saline soils published by the Food and Agriculture Organization
of the United Nations (FAO) in 2021 estimates that saline soils are widespread in more
than 100 countries and regions of the world, covering more than 833 million hectares, or
8.7% of the Earth’s surface, most of which are found in naturally arid or semi-arid zones
in Asia, Africa, and Latin America. Presently, the situation of arable land resources is
dire, with low land quality. Soil salinization and secondary salinization have emerged as
primary contributors to the desertification and degradation of land [1]. Consequently, due
to various factors, portions of arable land have experienced phenomena such as salt and
alkali accumulation, leading to severe land degradation and abandonment [2]. Thus, for
agriculture to flourish sustainably, the accurate prediction and effective monitoring of soil
salinity and alkalinity at a broad regional scale are crucial.

Soil salinization is a global issue, and traditional field soil sampling methods require
a lengthy process of data accumulation and handling, often lagging behind the cyclical
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natural processes and failing to meet the demands of agricultural research. Since remote
sensing technology is always evolving, using it to monitor and study saline–alkaline
soil ensures the availability of information needed for both the sustainable growth of
agriculture and the management of this type of land. One of the main methods used to
monitor soil salinization is remote sensing [3]. International efforts to monitor soil salinity
using remote sensing began in the 1970s [4–6]. Satellite remote sensing technology has
acquired nearly 40 years of observational data, laying the foundation for the mapping,
quantitative inversion, and dynamic monitoring of soil salinity. These observational data
record solar reflection signals (visible and near-infrared bands), thermal infrared emission
signals (thermal infrared bands), and microwave emission and radar scattering signals
(microwave bands) from the land surface. These signals contain complex information such
as soil moisture, vegetation cover, and surface roughness. Separating the soil salinity signal
from this information is the main task of remote sensing inversion. With the support of
ground sampling data, various methods for soil salinity inversion have been developed.
China started employing visible-light bands from remote sensing in the 1980s to reverse the
salinity of soil. Because spectral reflectance and saline alkaline soil characteristics have a
complicated and nonlinear relationship [7], artificial neural networks have gradually been
used to determine the saline alkaline parameters [8–10]. Based on the salt content value and
radar backscatter coefficient, Liu et al. [11] constructed a quantitative inversion model for
soil salt content in the Jiefangzha irrigation district using a back propagation artificial neural
network (BP ANN), which was consistent with the ground validation results. Sun [12]
took the Songnen Plain in western Jilin Province as the study area, and after the Box Cox
transform of the measured EC of the sampled soils satisfied the normal distribution, the
optimal spectral parameters were constructed based on the correlation between the spectral
reflectance of EC and Sentinel-2 MSI in various bands, and then, a support vector machine
(SVM) was used to build the linear regression model, while regression tree (RT), Gaussian
process regression (GPR), and ensemble tree (ET) methods were used to build the EC
inversion models. The test results of the model on the validation set showed that the GPR
model performed optimally (R2 = 0.66, RMSE = 0.48 m S/cm, MAE = 0.52 m S/cm), and
the R2 was improved by 29.04% compared with the traditional linear regression model.
There is currently a dearth of thorough literature that summarizes and analyzes the state
of the research in this field as well as the dynamic shifts in remote sensing inversion of
soil salinity, both domestically and internationally. Traditional literature summarization
methods such as one-by-one reading, tracing back, and qualitative summarization reveal
low efficiency, low timeliness, and serious deficiencies in objectivity and intuitiveness when
facing massive literature targets [13,14].

Bibliometric analysis is a kind of cross-science that applies mathematical and statistical
methods to quantitatively analyze all knowledge carriers; it integrates several disciplines,
such as mathematics, statistics, and bibliography, to form a comprehensive knowledge
system focusing on quantification. The main measurement objects of bibliometric analysis
include the volume of literature (including various publications, especially journal articles,
and citations), the number of authors (including individuals, collectives, or groups), and the
vocabulary (various literature markers, such as narratives, etc.). The essential feature of this
method of analysis is that its output must be “quantitative”, i.e., when studying the use of a
particular teaching methodology, it is necessary to collect a wide range of relevant literature
and to count the number of such documents, their sources, etc. This refers to the analytical
method of researching the collected literature on a particular aspect in order to determine
the nature and condition of the subject of study and to derive one’s own viewpoints from it,
so as to provide a systematic and comprehensive account and commentary on the research
results and progress of a certain discipline or topic within a certain period of time, after
summarizing, organizing, analyzing, and identifying them [15]. Bibliometric analysis is
a powerful tool that can help researchers gain a deeper understanding and analyze the
development of knowledge domains from a quantitative perspective. Citation management
software tools for information visualization are primarily used to measure and analyze
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data from the scientific literature [16]. They can also be used to identify important literature,
hot research topics, and frontier directions in a particular scientific field, as well as to draw
knowledge maps of how science and technology have developed, and to intuitively display
information panoramas of scientific knowledge fields [17]. The mapping methods used
in bibliometric analysis mainly rely on a variety of visualization tools and techniques that
can present complex bibliographic data in an intuitive and easy-to-understand graphical
form. The following are some common mapping methods for bibliometric analysis: citation
network analysis, co-occurrence analysis, cluster analysis, temporal order analysis, and
word cloud analysis, to name but a few. In order to carry out these mapping operations,
researchers can use a variety of professional bibliometric analysis software platforms or
tools; for example, CiteSpace and VOSviewer are professional bibliometric information
analysis software platforms that can be combined with SPSS and other software to analyze
the main authors of the research in relevant fields, along with the issuing organizations,
keywords, and other information, which can be used to understand the focus of the research
in related fields through keyword clustering analysis. These tools usually have powerful
data import, cleaning, analysis, and visualization functions, which can help researchers
easily complete the mapping work needed for bibliometric analysis.

When conducting scientific research, scientists must sift through a vast volume of
material. The first challenge to be addressed before beginning any research is how to
identify the research hotspots within the literature. CiteSpace and VOSviewer, as a main-
stream software for knowledge graph analysis and bibliometric mining, plays a vital role
in domestic and foreign review research. They can show the relationships between papers
as a scientific knowledge graph, which can be used to both organize the history of previous
studies and show the links between documents. Additionally, it can help give us a rough
idea of the potential for future study. Many scholars, at home and abroad, have conducted
detailed studies and overviews from different perspectives, scales, and regions, but there
is a lack of overview studies on the remote sensing inversion of soil salinity based on
bibliometric analysis.

In order to fulfill our research objectives, we asked the following research questions:
Q1. What are the trends in the scientific literature on the remotely sensed inversion of soil
salinity? Q2. What are the future research trends? The specific objectives of this study were
as follows: (1) to obtain bibliometric information on scientific studies extracted from the
Web of Science (WoS) Core Collection database as a data source; (2) to use bibliometric
analysis methods to transform and analyze the quantitative data of the selected articles;
(3) to use the total number of citations to identify the main authors, countries, institutions,
etc., in this field of study; and (4) to use keywords to analyze the research history and
current research hotspots. The remainder of this paper is organized as follows: Section 2
describes the data and methods used in the bibliometric analysis. Section 3 describes the
basic features and research hotspots of remote sensing inverse soil salinization studies.
Section 4 discusses the research hotspots in the field of the remote sensing inversion of soil
salinization and discusses future trends based on the analysis.

2. Materials and Methods

2.1. Methods

(1) This work presents a visual analysis of the past 20 years of research on soil salinity
inversion from remote sensing by examining keywords, author groups, institutions, and
publication volume, among other things; it makes use of data mining and knowledge
mapping with analytical tools such as CiteSpace and VOSviewer to visually display the
emergence of knowledge clusters and disclose the structural dynamics of this sector [18,19].
The cartographic method is detailed in [20].

(2) Analysis of the authors of publications: The core author group refers to a collection
of authors who have published a considerable number of influential papers in the field’s
relevant journals [21]. The core author group serves as a compass and the foundation of
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the literature flow. The following formula was used to determine the number of papers
published by core authors in accordance with Price’s hypothesis [22]:

N = 0.747
√

Nmax (1)

where N represents the minimum number of papers that a core author should have pub-
lished, while Nmax represents the maximum number of papers published by an author
during the study period.

Only authors who have published at least N papers can be considered to be core authors.
(3) Keyword analysis: The clustering of knowledge graphs in this study was conducted

using the VOSviewer [21] software, while the layout was carried out using the Pajek [22]
software. Different colors are used in this study to represent the average year of appearance
of a particular keyword. The calculation of the average year T is as follows:

T =
∑
(
year·Cyear

)
∑ Cyear

(2)

where year represents the year of the keyword’s appearance, and while Cyear represents
the frequency of the keyword’s appearance in that year.

(4) Keyword emergence method: The term “emergence” describes a quick rise that
occurs over time. One can comprehend the evolution and shifts in research hotspots, trends,
and frontiers over a certain period of time by detecting keyword emergence. In order
to identify emergent words with high-frequency change rates and rapid growth rates,
emergent word analysis looks at the temporal distribution of keywords. This allows for the
investigation of the discipline’s frontier areas and development patterns.

2.2. Data Sources

The Web of Science database provided the data, which were retrieved between 1
January 2000 and 31 December 2023. A search was conducted in the WOS core database
using “salt”, “remote sensing”, and “soil” as the main themes, with the language set
to English. After refining and filtering the retrieved data, all records were exported to
a plain text file, including “full records and cited references”. Following deduplication
upon importation into the analysis software, a total of 300 relevant and valid documents
pertaining to the focus of this study were obtained.

3. Analysis of the Fundamental Characteristics of Research on Remote Sensing
Inversion of Soil Salinization

A summary of bibliometric statistics was provided by the preliminary results of the
bibliometric analysis. Subsequently, we delved into the details of the literature, including
authors, institutions, journals, and countries of origin.

3.1. Descriptive Bibliometric Analysis

The overall direction of research and the advancement of academic issues can be
reflected in the fluctuations in the number of publications over time [23]. An essential
measure of a research direction’s development process and potential future trends is its
annual publication volume. The pattern of variations in cumulative publication output can
be used to determine the phases of development and potential future directions for research.

Figure 1 presents the scientific achievements during the study period. From 2000 to
2007, the research was in its initial stages, with few achievements. Then, there was a period
of erratic growth from 2008 to 2014. There were 227 publications in the ten years following
2014, accounting for 75.67% of all publications.
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Figure 1. Number of scientific publications on remote sensing inversion of soil salinity from 2000
to 2023.

Regression analysis of the data from 2000 to 2023 yielded a well-fitting index curve of
y = 0.0141x3 + 0.2426x2 + 0.1063x + 0.7578 (R2 = 0.9995). The fitting curve indicates that the
field of remote sensing inversion of soil salinization is still in its early stages and is predicted
to expand quickly in the coming years. A growing number of academics are beginning
to concentrate on the topic of remote sensing monitoring of soil salinization, which has
been growing actively and is in a comparable developmental stage. The pattern of studies
indicates that future publications will continue to be published in greater numbers.

3.2. Analysis of Primary Authors

According to the statistics, the maximum number of publications by an author is eight,
denoted by Nmax = 8. Hence, N = 2.11 articles, rounded to the nearest integer (3), define
authors who have published at least three articles as core authors in this field. Therefore,
36 authors were identified as core contributors to this research.

From the author collaboration network diagram (Figure 2) and the top 10 authors by
publication volume, it can be observed that the three authors with the largest nodes are
Zhao, Gengxing with eight papers; Zhang, Fei with six papers; and Wu, Jingwei with five
papers, all hailing from China. Based on the optimization of the cooperation network [24]
using pathfinding algorithms, the main groups of authors consist of three concentrated
author clusters: the Zhao, Gengxing team; the Zhang, Fei and Ding, Jianli team; and the Wu,
Jingwei team. Among them, the research area of Zhao, Gengxing’s team mainly focuses
on the Yellow River Delta in China [25], Ding, Jianli’s team primarily focuses on Xinjiang,
China [26], and Wu, Jingwei’s team concentrates on the Hetao Plain in China. There are
also many cooperation networks composed of small nodes and scattered independent
authors, indicating that the concentration of authors is not high and the research teams are
dispersed. The loose connections between different research teams suggest weak citation
relationships among them, which could lead to academic barriers over time, adversely
affecting sustainable development research.
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Figure 2. Collaborative network of authors.

The top ten authors by citation frequency are listed in Table 1. Ding Jianli has the
highest citation frequency and can be considered the most influential author. Among the
ten most influential researchers, three are from China, and the rest are from Australia,
Germany, Poland, India, Tunisia, and the United States. The two authors with the most
publications—Zhao Gengxing (eight papers) and Wu, Jingwei (five papers)—are not listed
in Table 1, because of their comparatively low citation counts.

Table 1. Top ten authors ranked by citation frequency.

Author TA TC Country

Metternicht, Gi 2 729 Australia
Atzberger, C. 2 437 Netherlands

Farifteh, J. 2 437 Netherlands
Van Der Meer, F. 2 437 Netherlands

Ding, Jianli 4 381 China
Kumar, Lalit 4 336 Australia

Nicolas, Herve 2 313 France
Walter, Christian 2 313 France

Allbed, Amal 2 302 Australia
Zhang, Fei 6 260 China

Abbreviations: TA stands for total article count; TC stands for Web of Science Core Collection times cited count.

3.3. Research Institutions and Countries

Research institutions with more than two published papers were selected as the
research objects to identify the top ten institutions by citation frequency, as shown in Table 2.
The three institutions with the highest citation frequencies are the International Institute
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for Geoinformatics Science and Earth Observation, Curtin University of Technology, and
Xinjiang University. Among the top ten, five institutions are based in China, indicating
a significant contribution of Chinese research in the field of saline alkaline land, both
nationally and globally. Globally, China, the Netherlands, the United States, Australia, and
Egypt are the leading nations in the field of remote sensing soil salinity research, setting the
stage for future research endeavors. Although institutions such as Shandong Agricultural
University (with 11 publications and 176 citations) and China Agricultural University (with
8 publications and 176 citations) have relatively few citations compared to the top ten, their
substantial publication outputs have exerted significant influence on this research. The
visualization of the institutions (Figure 3) reveals a network where larger core institutions
connect with smaller ones, indicating close collaborations among Chinese institutions.

Table 2. The institutions ranked in the top ten by publication volume.

Institution TA TC Country

International Institute for
Geoinformatics Science and

Earth Observation
2 1006 Netherlands

Curtin University of
Technology 2 729 Australia

Xinjiang University 18 701 China
Chinese Academy of Sciences 41 651 China
Wageningen University and

Research 2 417 Netherlands

University of Chinese
Academy of Sciences 20 390 China

University of New England 4 336 USA
Tel Aviv University 2 315 Israel

Beijing Normal University 6 313 China
Wuhan University 12 246 China

Abbreviations: TC stands for total citations; TA stands for total articles.

Figure 3. The visual representation of institutional networks.

According to the analysis (Figure 4), China ranks first in publication output, contribut-
ing 28% of the total publications. Given China’s vast saline alkaline lands and considerable
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development potential, along with the intensifying trend of land salinization in some
regions, numerous studies reflect that the highest research output in this field is from
Chinese institutions and scholars, showcasing China’s growing research prowess. The
United States ranks second in publication output, accounting for 11%, followed by India
and Australia in the third and fourth positions, both at 5%. The countries with the highest
citation frequencies are China (2884 citations), the Netherlands (2040 citations), Australia
(1778 citations), the United States (1703 citations), and Germany (1070 citations). An analy-
sis of country relationships (Figure 5) indicates close collaborations between China and the
United States with various other countries, particularly with Australia and Italy, among
others. Considering both publication output and citation frequency at the national and
institutional levels, China and the United States are the leaders in the research field of
remote sensing for soil salinity.

Figure 4. Pie chart of document volume by country.

Figure 5. Graph depicting international collaboration among nations.
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3.4. The Most Influential Journals

The top ten journals by citation frequency published 105 papers (35%), as shown in
Table 3. The five journals with the highest citation frequencies are “Geoderma” (publishing
14 papers), “Remote Sensing” (publishing 47 papers), and the “Remote Sensing of Envi-
ronment” (publishing three papers). These journals played significant roles in research on
remote sensing for soil salinity retrieval.

Table 3. The top ten journals presented by citation frequency.

Sources TC TA

Geoderma 1591 14
Remote sensing 1110 47

Remote sensing of environment 1019 3
Science of the total environment 629 6

Ecological indicators 389 7
International journal of remote sensing 356 14

Land degradation & development 349 5
Advances in agronomy 293 1

Journal of arid environments 218 2
International journal of applied earth

observation and geoinformation 184 6

Abbreviations: TC stands for total citations; TA stands for total articles.

3.5. Field of Research

When conducting research field analysis in CiteSpace, the software categorizes re-
search areas based on the features the of literature data, such as Web of Science categories
and research directions. In the knowledge graph of research fields, one can observe the
frequency of occurrence of 39 research areas and the cross-connections between them
(Figure 6 and Table 4). Among these, environmental science has the highest frequency of
publications and intermediary centrality, which is related to the predominant focus of this
field on environmental issues such as soil salinization—a topic relevant to the remote sens-
ing monitoring of soil salinity. Remote sensing ranks second in publication frequency but
exhibits relatively lower intermediary centrality, indicating limited connections with other
fields. Water resources and instruments and instrumentation show higher intermediary
centrality, suggesting closer connections with other research domains. Since changes in soil
moisture significantly affect soil salinity, it is reasonable that water resources—ranking sec-
ond in intermediary centrality, with a value of 0.37—are closely associated with the study
of soil salinity. The other top 10 research fields include chemistry, analytics, geosciences,
and multidisciplinary, among others.

Table 4. The top 10 research fields ranked by citation frequency and their intermediary centrality.

Research Field Number of Published Papers Centrality

Environmental sciences 154 0.43
Remote sensing 102 0.11

Imaging science and photographic
technology 82 0.11

Geosciences, multidisciplinary 76 0.23
Soil science 41 0.15

Water resources 26 0.37
Engineering, electrical and electronic 19 0.43

Agronomy 15 0.16
Chemistry, analytical 15 0.26

Biodiversity conservation 12 0.01
Abbreviations: TA and TC stand for total articles and citations, respectively.
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Figure 6. The main areas of study for soil salinization and its relationships via remote sensing monitoring.

3.6. Study Region

With the increasing trend of global warming, the problem of soil salinization in
middle- and low-latitude regions will become more and more obvious, becoming especially
pronounced in China, the United States of America, Hungary, and Australia, as well as
becoming more serious in the north and east of Africa, South America, the Middle East,
Central Asia, and South Asia. Global soil salinization hotspots include numerous Central
and West Asian nations, as well as Pakistan, China, the United States, India, Argentina,
and Sudan [27]. The three primary saline alkaline zones on Earth are the Songnen Plain in
China, Victoria in Australia, and California in the United States.

China has a diverse range of saline soils with abundant resources spread across vast
territories. For the study of saline soils in China, there are many different types to consider,
including coastal saline soils in the eastern low plains, soda saline soils in the Songnen
Plain in Northeast China, oasis saline soils in Xinjiang, silty saline soils in the irrigation
area of the Hebei Plain (Figure 6), tidal saline soils in the Huang-Huai-Hai Plain, alkaline
saline soils in the Hexi Corridor, acidic sulfate saline soils in the southern coastal areas, and
saline soils in the extremely arid regions of Qinghai and Xinjiang [28].

Saline soils in China are mainly distributed in the northern arid and semi-arid areas,
with a total area of 36.3 million hectares, accounting for nearly 4.88% of China’s available
land area—significantly higher than the global average [29]. Among them, saline alkaline
land covers 7.6 million hectares of arable land, accounting for 6% of the arable land area,
and is widely distributed in coastal and inland areas. A large part of this saline alkaline
land, serving as reserve land, remains undeveloped. Through an analysis of research
the literature, Inner Mongolia’s Hetao irrigation district [30], Shandong’s Yellow River
Delta [31], the oasis and Aibi Lake in the Weigan River Kuqa River Basin in Xinjiang [32],
Yinchuan in Ningxia [33], and the Songnen Plain in Northeast China were identified among
the areas of high research interest, with secondary salinization being a hot topic. This is
consistent with the findings of the China Geological Survey’s 2020 distribution survey
of saline alkaline land in China. For further information, see the distribution map of
China’s saline alkaline land in the He Jin article “The Earth’s Misery—Saline-Alkali Land”
on the China Geological Survey’s website (http://www.chegs.cgs.gov.cn/, accessed on 1
January 2024).

Outside of China, research areas include the Aral Sea in Central Asia [34], the Nile
River Basin in East Africa [35], the Mediterranean coast of Europe (affected by factors
such as groundwater extraction and rising sea levels), and Western Australia, which are
consistent with the most influential countries. For more details, view the 2021 World
Soil Salinization Distribution Map from the Food and Agriculture Organization of the
United Nations.
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3.7. Keyword Co-Occurrence Analysis

The keyword co-occurrence analysis method uses terms or noun phrases that appear
together in a body of literature to determine the relationships between various topics
in the field of reference. An association network composed of topic term pairs can be
constructed by calculating their frequency of occurrence in a specific document within
a corpus of literature. The number of nodes in the graph represents the total number of
keywords, while the number of edges in the graph represents the number of links between
keywords. A relationship exists between two keywords as long as they are found in the
same document. Figure 7 illustrates the clustering results of keywords in this research over
the past 20 years, where keywords belonging to the same cluster are arranged in vertical
columns. Moreover, the color gradient, from blue to yellow, represents the keywords’
average year of occurrence, from old to new, aiding in identifying the evolution of research
hotspots within each cluster.

Figure 7. Co-occurrence graph of keywords.

Based on the color characteristics of the keyword co-occurrence graph for the WoS
database, the key terms that appeared during the initial phase from 2000 to 2007 included
remote sensing, saline soil, Landsat, geographic information system (GIS), reflectance
spectroscopy, etc. The amount of salt present in soil serves as a significant indicator of its
salinization level, and remote sensing technology has increasingly been used to track soil
salinization. During this period, the main focus was on identifying saline soils using optical
satellites and GIS methods to understand the extent, area, and degree of soil salinization
in a particular region. Among them, the main node was “remote sensing”, followed by
“soil salinity”. Remote sensing extends several prominent paths from the node, with close
connections to vegetation indices, spectral indices, factor analysis, and spectral reflectance,
which are used in remote sensing studies for retrieving soil salinity information. Particularly
emphasized is the keyword “water”. Significant differences in commonly used spectral
indices over various moisture gradients are caused by the influence of soil moisture content
on spectral reflectance in the near-infrared and infrared bands. Thus, soil moisture is seen
as an important factor influencing the accuracy of soil salinity monitoring [36]. During
the period from 2007 to 2017, which was characterized by development, high-frequency
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keywords included vegetation, model, index, indices, spectroscopy, reflectance, salinity
index, land degradation, vegetation index, water, area, Yellow River Delta, biomass, etc. The
research started to shift from qualitative to quantitative during this time, and studies began
looking at the connections between soil salinity, hyperspectral data, and land satellite data.
During this time, researchers began examining the connection between spectral reflection
characteristics and soil’s physico-chemical qualities (e.g., salinity index, conductivity), with
the goal of using remote sensing images to dynamically monitor soil salinity. Alternative
remote sensing indices for determining soil salinity in agricultural fields have been those
linked to water stress or vegetation health. Plants’ health is hampered by salt stress, which
in manifests symptoms akin to those of a water shortage. Significant growth patterns,
spectral characteristics of salt-tolerant plants, or salt crusts and efflorescence that might be
present in bare soil can all be used to infer high salt concentrations. A variety of salinity
indices are available for the detection and mapping of soil salinity using multispectral and
hyperspectral satellite sensors, much like vegetation indices. On the other hand, the color,
roughness, salinity, and soil moisture all have significant impacts on surface reflectivity.
Choosing one index may not be appropriate in every situation, because these indices do not
always produce outcomes. In summary, the normalized difference vegetation index (NDVI),
a reliable and error-free indicator, appears to be able to quickly evaluate the spatial patterns
of vegetation health. Statistical techniques can be applied to link soil parameters with
various indicators based on this criterion. Moreover, there are drawbacks when describing
the productivity of saline alkaline soils in various locations using the productivity indicators
obtained from remote sensing. During the period from 2018 to 2023, which experienced
rapid development, high-frequency keywords included random forest, Sentinel 2, machine
learning, climate change, moisture, etc. This indicates that machine learning and random
forest methods combined with Sentinel-2 data are being applied in the remote sensing
monitoring of soil salinity.

3.8. Analysis of Emerging Trends in Frontier-Stage Research

Keyword emergence analysis, aided by the burst detection function of CiteSpace
software, divides time into one-year intervals to identify burst keywords. The red range
indicates the period with the greatest frequency change, during which the keywords have
the most significant impact [37]. Figure 8 displays the first appearance year (Year), burst
strength (Strength), burst start year (Begin), burst end year (End), and their positions on
the timeline (with the red portion indicating the burst year). The keywords are arranged in
chronological order according to their burst start time, with burst strength arranged from
largest to smallest.

From Figure 8, it can be observed that, for a rather long portion of the early and quite
long period of research, soil salinity was inferred using remote sensing satellites such as
Landsat. In 2014, the Yellow River Delta emerged as the main research area and entered
the spotlight. In this section, the focus is on the keywords emerging in recent years, with
the aim of identifying the research frontier. In order to increase the accuracy of inference,
researchers in this phase started to account for the impact of external factors such as surface
vegetation, soil moisture, and climate change on the outcomes of a remote sensing soil
salinity retrieval. This is indicated by the appearance of keywords such as “biomass”,
“moisture”, and “climate change” in 2016, 2018, and 2021, respectively. The term “machine
learning” began to appear in 2021–2023, which suggests the developing trends and frontier
dynamics of applying machine learning techniques to the remote sensing monitoring of
soil salinization. It is clear from the keyword emergence analysis that machine learning
and remote sensing are gradually becoming more and more important in research on
remote sensing soil salinity inference. Among the keywords, those that appeared earlier but
emerged in recent years may correspond to the emergence of new technologies or methods.
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Figure 8. Keyword burst graph (The red part is the year in which the keyword appears).

3.9. The Most Influential Articles

Based on the quantity of citations, the most important works from 2000 to 2023 are
listed in this section. Interestingly, the top ten papers by number of citations in all databases
match those that are exclusive to the Web of Science (WoS) database.

According to Table 5, the paper by Metternicht and Zinck, which ranks first in citation
count, discusses the potential and limitations of the remote sensing inversion of soil salinity.
In this field of study, its early publication date has drawn attention. The article reviews a
variety of sensors and techniques for the remote identification and mapping of salt-affected
areas, including aerial photography, satellites, airborne multispectral sensors, microwave
sensors, video imaging, airborne geophysics, hyperspectral sensors, and electromagnetic
induction meters [38]. The spectral behavior of salts, their spatial distribution on the
terrain surface, temporal fluctuations in salinity, vegetation interference, and spectral
confusion with other terrain surfaces are the difficulties associated with employing remote
sensing data to map areas affected by salt. Spectral decomposition, maximum likelihood
classification, fuzzy classification, band ratios, principal component analysis, and pertinent
equations are some of the techniques that are covered. Finally, the paper presents an
integrated method to simulate the spatiotemporal variability of salinity using various data
fusion and data integration techniques. Daliakopoulos et al. [27] outlined the drivers and
pressures of soil salinity, key indicators, and the latest advances in monitoring, modeling,
and mapping methods. Their report discusses how salinization affects soil functions, and
it concludes by outlining Europe’s salinization situation. In order to support policies and
strategies for safeguarding European soils, future research in the field of soil salinization
should concentrate on the carbon dynamics of saline soils, further investigate soil properties
through remote sensing, and coordinate and enhance soil salinity maps throughout Europe.

Farifteh et al. [5] explored the possibility of predicting the soil’s salt concentration
using partial least squares regression (PLSR) and artificial neural networks (ANNs) at three
different scales, employing different datasets in four distinct study areas. The findings
show that there is considerable potential for both approaches in terms of mapping and
quantifying soil salinity. Performance measures indicate strong similarities between the
two approaches, with PLSR showing a minor advantage. This implies that a linear function
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can be used to approximate the relationship between soil salinity and soil reflectance.
Douaoui et al. [39] analyzed the logistic regression method by combining remote sensing
data with European Community ground measurement data in a plain plot in Algeria.
Compared to pure regression methods, this approach significantly improved the accuracy
of salinity estimation. By integrating remote sensing data with a ground monitoring
network, this method allows for the more precise spatiotemporal monitoring of soil salinity
in arid regions. Ben-Dor [40] primarily expressed the potential and possibilities of using
hyperspectral remote sensing technology for the quantitative analysis of soil properties,
while also discussing the challenges faced and their possible resolution strategies. Through
specific case studies, the paper validated the application value of this technology for
monitoring soil salinity and other key soil properties, while also expressing expectations
and directions for future technological developments in this field. Farifteh et al. [4] outlined
a conceptual framework for a method that combines optical remote sensing data with
simulation models and geophysical survey results to economically and effectively predict
different degrees (low, medium, severe) of salinization/alkalization. In this integrated
method, combining data not only categorizes existing saline soils but also tracks salinization
as a soil-forming process. Since the goal of this approach is to integrate data of various
scales and types, data fusion and upgrading are crucial. Fan et al. [41] studied the Yellow
River Delta area, assessing the distribution maps of salinized soil over the previous 20 years
by combining spatial models, field data obtained at three different times, and remote
sensing imagery. Using the Kriging interpolation method, they analyzed the spatiotemporal
dynamics of groundwater levels and total dissolved solids (TDSs) over nearly 20 years.
The Kriging method, utilizing random subsamples of observations as a basis for validation,
significantly improved the accuracy of the soil salinity predictions. An examination of
spatial data correlation revealed a close relationship between groundwater dynamics and
the distribution and evolution of salinized soil, with a higher TDS and rising groundwater
levels being associated with worsening soil salinization.

Allbed et al. [42] focused on an oasis in eastern Saudi Arabia, establishing various
vegetation indices and soil salinity indices. The methods that worked best for determining
the salinity of soil in heavily vegetated farmed fields were the soil-adjusted vegetation
index (SAVI), the normalized difference salinity index (NDSI), and the salinity index (SI-
T). The NDSI and SI-T had the strongest association connection with salinity in regions
with less plant density and bare ground. The salinity of the soil in the area was effectively
determined using vegetation and soil salinity indices that were taken from IKONOS satellite
photography. Wang et al. [43] examined the potential for utilizing Sentinel-2 MSI spectral
bands and generated spectral indices to forecast the soil salinity of wetlands affected by
salt in the Xinjiang region around Aibi Lake. The study found significant correlations
between the newly proposed NDI and TBI4 spectral indices and soil salinity. By applying
different algorithms, such as the random forest partial least squares regression model, the
study successfully constructed high-accuracy soil electrical conductivity (EC) prediction
model and produced high-resolution soil salinity maps. Abbas et al. [44] focused on the
upper Indus River basin in Pakistan, creating and utilizing salinization indices (S1–S4)
based on remote sensing data and categorizing photos using the maximum likelihood
approach. The majority of the salt-affected soil types in the region were saline soils. Poor
irrigation channel management not only led to water resource waste but also caused soil
degradation, with soil salinization causing irreversible losses to agricultural productivity
and the regional economy.

The first and second papers primarily review the issues and developments in remote
sensing inversion of soil salinity, while the seventh, ninth, and tenth papers focus on
vegetation indices or salinity indices. Other papers primarily use different methods and
remote sensing data to invert soil salinization information in various locations.
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Table 5. Top ten cited papers.

Paper DOI Year
Times Cited, WoS

Core
Times Cited, All

Databases

Metternicht, GI;
Remote sensing of environment [38] 2003 698 885

Daliakopoulos, IN;
Science of the total environment [27] 2016 402 433

Farifteh, J;
Remote sensing of environment [5] 2007 306 385

Douaoui, AEK; Geoderma [39] 2006 302 344
Ben-Dor, E; Advances in agronomy [40] 2002 291 334

Farifteh, J;Geoderma [4] 2006 204 262
Allbed, A; Geoderma [42] 2014 199 259

Fan, X;
Land degradation and development [41] 2011 175 195

Wang, JZ; Geoderma [43] 2019 170 191
Abbas, A;

Physics and chemistry of the earth [44] 2013 159 189

4. Discussion

Since the 1990s, soil salinity retrieval by remote sensing has undergone tremendous
developments. Initially, satellite remote sensing technology was utilized to provide evi-
dence for the on-site measurements of soil salinization [45]. Subsequently, advancements
were made in utilizing optical satellite band information, spectral reflectance, and other
remote sensing data for retrieval purposes. Additionally, retrieval accuracy has been fur-
ther improved by integrating several remote sensing sources, such as microwave radar
satellites and drones, and by improving the models and algorithms [46,47]. A bibliometric
analysis of the literature related to the remote sensing retrieval of soil salinity indicated that
universities and research institutions in China are leading in this field, with high research
activity. In this section, we explore the research hotspots from six perspectives based on the
keywords identified in Section 3.

4.1. Utilizing Machine Learning Methods for Soil Salinity Retrieval

Machine learning has outstanding advantages in screening soil salt sensitive variables
and mining hidden information in massive data. Researchers have begun to pay extensive
attention to the application of machine learning in the remote sensing monitoring of soil
salinization, which is consistent with the research results of Wang et al. [48]. Currently,
the machine learning methods used for soil salinity retrieval primarily include BP neural
networks and random forests [49]. Machine learning methods have been employed to
construct estimation models for spectral characteristic parameters obtained by unmanned
aerial vehicles (UAVs). The models with the best estimation accuracy were those that
combined the elastic net regression algorithm with the extreme learning machine algorithm
at a depth of 10–20 cm [50]. The results indicated that their root-mean-square-error (RMSE)
was 0.141% and their highest cross-validation coefficient of determination (R2) was 0.783.
Meanwhile, R2 was 0.66 and the relative percent difference (RPD) was 2.59 for an inversion
model based on the first-order fractional differentiation of optical remote sensing spectral
bands [51]. Additionally, a machine learning method combined with microwave data was
utilized to flip the soil salinity model at a 0–10 cm depth, with the cubist model exhibiting
the highest accuracy, with a validation set R2 of 0.822 and an RMSE of 3.064 [52]. The
inversion of diverse remote sensing data can achieve a maximum inversion depth of 40 cm.
In order to predict soil salinity in the Fraser Valley of British Columbia, Canada, Heung
et al. [53] assessed and contrasted machine learning algorithms, such as artificial neural
networks, random forests, support vector machines, and multivariate logistic regression.
Their study found that these machine learning models have advantages in predicting soil

178



Land 2024, 13, 659

salinity, with the support vector machine algorithm achieving the highest accuracy of
72% for the large ROS group. In areas with abundant vegetation and mild-to- moderate
salinization, machine learning techniques have proven to be dependable for the digital
mapping of soil salinity [54]. Particularly, the random forest regression model produced
better estimation accuracy results [55], with a validation set R2 of 0.86, an RMSE of 1.83,
and an RPD of 2.7. It is important to remember that machine learning depends on a huge
number of training samples. Overfitting is a condition in which the training samples’
fitness is noticeably higher that of validation samples, and this must be taken into account
when choosing the model and structural parameters. The advantages of machine learning
in data fitting allow the quantitative relationship between soil salinity and multi-source
remote sensing and GIS data to be fitted using suitable models. This will increase the
accuracy of soil salinity assessment. Subsequent investigations may concentrate on the
ongoing integration of machine learning with several remote sensing data sources for
inversion [56,57].

4.2. Soil Salinity Retrieval Based on UAV Remote Sensing

For unmanned aerial vehicle (UAV) data, object-oriented classification methods can
be employed to improve classification accuracy. Soil salinity may now be estimated in
this way due to advances in quantitative remote sensing. The primary technique for
determining soil salinity is the use of spectral indices, which have proven effective in
removing background and noise effects, minimizing interference from internal and external
sources, and improving the extraction of spectral absorption features. They also play an
important role in fully and accurately exploiting spectral information and constructing high-
precision, robust models [58]. Yao et al. [59] used machine learning to invert mulch-covered
farmland using multispectral UAV data. With a validation set R2 of 0.717 and an RMSE of
0.171, the model built with an extreme learning machine to measure surface soil salinity
content at a depth of 0–20 cm fared the best. To create spectral indices for soil salinity at
a depth of 0–10 cm, UAV spectral properties were divided into different degrees of mild,
moderate, and severe salinization [60]. The optimal model, based on grey relational analysis
and a support vector machine, achieved an R2 of 0.692 and an RMSE of 8.562. Zhang er
al. [61] utilized UAV satellite remote sensing using the dominant variable weighting method
and multiscale transformation through multiple linear regression models to effectively
improve the monitoring accuracy of surface soil salinity at a depth of 0–10 cm, with an R2

of 0.420 and an RMSE of 0.219, achieving fusion inversion from UAV to airborne remote
sensing. Chen, et al. [62] created an improved TsHARP scale transformation approach to
accomplish the upscale UAV satellite remote sensing monitoring of soil salinization. The
model was based on GF-1 satellite remote sensing data and UAV multispectral remote
sensing data. Most studies focus on surface soil, with a maximum inversion depth of up
to 60 cm. Multiple linear regression models were used by Ivushkin, et al. [63] to identify
connections between vegetation indices, canopy temperature, and plant height derived
from three separate UAV sensors that measured salinity, stomatal conductance, and real
plant height, but the overall R2 was low at 0.46. Utilizing UAV electromagnetic interference
technology in conjunction with the random forest approach, Hu, et al. [64] quantitatively
evaluated the salinity of surface soil at a depth of 0–20 cm. The results showed that the
prediction model established employing data from UAVs exceeded the model using GF-2
data, with an RMSE of 1.40 and RPD of 2.98.

In the future, the integration of comprehensive stereo satellites, drones, and ground-
based data for surface information monitoring will be explored. Continuous experimental
research can be conducted through an unmanned aerial vehicle remote sensing to infer soil
salinity, salt ions, machine learning parameters, and model optimization under different
vegetation classifications.
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4.3. Soil Salinity Inversion Based on Data Assimilation

Data assimilation is one of the crucial methods for improving forecast accuracy by
incorporating physical mechanisms. By assimilating the multiple sources of remote sensing
and ground observation data into soil water/salt models, the simulation process can adjust
the model parameters in a timely manner, correct the model trajectories in real-time, and
obtain spatiotemporally consistent soil salinity data, thereby reducing the accumulated
model errors and better representing the spatiotemporal variations in soil salinization.
On the one hand, model simulation compensates for the limitations of remote sensing
data, which can monitor but not predict. On the other hand, remote sensing data can
provide more accurate input parameters for the model. Leveraging satellite remote sensing
technology coupled with data assimilation principles can aid in rapidly determining the
crop salinity conditions at the irrigation district scale and further assessing the regional soil
salinization levels.

Articles on soil salinity inversion based on data assimilation have been published in
recent years. Lin Lin [65], who established equations for simulating solute transport in soil,
including convection dispersion equations, proposed the earliest studies on the mechanism
of water and salt transport in soil, both domestically and globally. A set of models that can
accurately simulate the movement of salt and water in saturated and unsaturated porous
media based on different solute transport equations, such as MODFLOW, MODPATH,
SWAP, and HYDRUS, has been widely applied in different types of research [66].Using
data assimilation methods, with soil water/salt transport models as model operators and
large-scale observation data as driving data, observational data are incorporated into
the model using assimilation algorithms. For example, Yao et al. [67] utilized ensemble
Kalman filter algorithms to assimilate electromagnetic induction data into the HYDRUS-1D
model, improving the spatiotemporal dynamic estimation accuracy of soil salinity. Ding
Jianli et al. used ensemble Kalman filter methods to assimilate MODIS and Landsat TM
data information into HYDRUS-1D. Assimilating remote sensing data for the HYDRUS-1D
model and ensemble Kalman filter [68] was superior to the single inversion of the HYDRUS-
1D model or ensemble Kalman filter alone, but the assimilation effectiveness decreased
with increasing soil sampling depth, with the best assimilation effect at 0–20 cm, and the
depth of soil inversion could reach up to 60 cm below ground.

Currently, research on the scale transformation of the soil salinity movement is still im-
mature, mainly because salt migration is based on soil’s hydrological processes, which are
complex and have temporal and spatial dependencies. Future research should strengthen
the integration of observation data at different scales, construct universal scale transfor-
mation functions, optimize the construction of assimilation systems [69], and introduce
machine learning to improve the models’ accuracy, and continuously study the coupling of
multiple assimilation algorithms.

4.4. Remote Sensing Retrieval of Soil Salinity under Vegetation Cover

Current research on soil salinity inversion is mostly focused on bare soil, which can
be inverted using various salinity indices via microwave remote sensing with penetration
capability [70]. However, as the distribution and health of vegetation can act as indicators
of soil salinity levels, plant cover has an impact on soil salinity monitoring. Studies have
shown that vegetation indices can be used to indirectly measure the salinity of soil [71]. By
analyzing the spectral information of vegetation under salt stress [72], the optimal model
for estimating soil salinity at depths of 0 to 60 cm was found to be the quantile regression
model, with an R2 of 0.636 and an RMSE of 0.249. Using particle filtering algorithms based
on different vegetation cover percentages [73], the optimal depth for indirect soil salinity
inversion was found to be 20–40 cm, with an RMSE of 0.0422. The maximum depth of soil
inversion reached 60 cm below ground. Subdividing the vegetation cover significantly
improves the accuracy of soil salinity prediction. The best model for soil salinity inversion
utilizing vegetation indicators for agricultural land with vegetation cover was determined
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to be the BPNN (back-propagation neural network) model, with a validation set R2 of 0.836,
an RMSE of 0.027, and an RPD of 2.100 [47].

Different regions have different soil environments and varying degrees of vegetation
cover, which pose challenges to the universality of models. Studies have shown that
soil salinity inversion models suitable for the city of Yichun, Jilin Province, may not be
suitable for saline–alkali paddy fields in Hotan County, Xinjiang [74]. Rice fields, wheat
fields, vegetable plots, and orchards are mainly distributed in areas with low salinity [75],
while drylands, dominated by cotton planting, are distributed in areas with higher salinity.
Additionally, research indicates that vegetation cover has a greater impact on reflectance
spectra than soil moisture. Furthermore, a number of other variables affect the soil’s salinity,
including the amount and types of salt minerals present, soil color, surface roughness, soil
texture, amount of organic matter, depth of groundwater, groundwater mineralization,
geography [76], and climate.

4.5. Reversal of Soil Salinity Ions

Not only can soil salinity be inversely estimated as a whole, but the individual ions
responsible for the soil’s salinity can also be inferred. Zhang et al. [77] conducted field-based,
in situ spectral measurements of the soil and combined them with laboratory-determined
pH values, EC, and soluble salt ion measurements. Based on the selection of spectral
reflectance sensitive to various salt indicators and the optimal transformation methods,
they used partial least squares regression modeling and stepwise regression analysis. The
results showed similar patterns in the spectral characteristics of the soils with different
types and amounts of salinization in the study area. They achieved the analysis of different
salt ions, with the predictive model for SO4

2− based on sensitive bands in the 0–5 cm
layer reaching an R2 of 0.9676 using partial least squares regression. However, this study
was limited to the bare surface soil. For various soil salt ions, the same inversion model’s
accuracy varies. Research indicates that soil salinity prediction models yield satisfactory
results for total salt content, EC values, and Na+, K+, and Cl− ions, but the accuracy of
predicting pH values and Ca2+ ions is not high, and the prediction accuracy for Mg2+ ions
groundwater depth, groundwater mineralization, topography, and climate is insignificant.

4.6. Monitoring Soil Salinization Using Remote Sensing Model Building Techniques

At the moment, the high-precision monitoring of soil salinization within regions is
possible using remote sensing models for soil salinization inversion, which has also pro-
duced a wealth of research findings [78]. The contents of such research mainly include
the establishment of new spectral indices [79], the coordinated use of different types of
remote sensing data and scale conversion [80], the improvement of mathematical modeling
methods, and the optimization of model parameters. In order to characterize soil saliniza-
tion within regions and reflect the interrelationships between the soil salinization status
and its influencing factors, the development of remote sensing models for soil salinization
monitoring will remain a research hotspot in the field. The establishment of the model typi-
cally includes steps such as obtaining measured soil salinity data, acquiring remote sensing
images, extracting and selecting modeling factors, establishing the model, and verifying its
accuracy, although there may be differences between different studies. The pixel values
obtained from remote sensing product data are an important source of modeling factor
data. Remote sensing data, climate factors, soil physicochemical properties, terrain factors,
spatial locations, and vegetation factors used for modeling can be obtained through band
calculation and corresponding remote sensing data acquisition. Gorji et al. [81] used 25 re-
mote sensing images to monitor agricultural land near Lake Tuz in Turkey over multiple
time periods, producing a distribution map of soil salinity. They assessed the EC values of
soil samples in the field, created five remote sensing indices of soil salinity, and then utilized
regression analysis to link the measured data with the salinity indices produced from the
remote sensing photos. The findings show how crucial remote sensing technology is for
tracking and forecasting land salinization, which supports and ensures agricultural output.
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In the modeling process, different factors can be divided into different sets according to
the modeling requirements. Their methods for model construction mainly include linear
regression models and machine learning models. It is essential to consistently research and
develop new model algorithms in order to increase the accuracy of model construction,
which needs to be implemented through the corresponding modules of different mathe-
matical analysis software platforms. Numerous research findings show that the modeling
accuracy of machine learning models is often higher than that of linear models and that the
accuracy of various models varies significantly between experimental trials. Future studies
will concentrate on expanding these models’ applicability, making them more capable of
reflecting the conditions of vegetation cover, and gathering data on the salinity of deep soil.
This is consistent with the findings of Wang et al. [82].

The following challenges will affect the development of the remote sensing inver-
sion of soil salinity in the future, as determined by the examination and discussion of the
six research hotspots in this section—(1) Machine learning-based soil salinity inversion:
Large numbers of training samples are necessary for machine learning, and overfitting—a
situation in which the training samples’ fitness greatly surpasses that of the validation
samples—must be taken into account when choosing the model and its structural param-
eters; (2) Efficiency and scale of UAV-based remote sensing: UAV-based remote sensing
for soil salinity inversion is efficient, more accurate, and cost-effective. Nevertheless, it
is limited by problems specific to UAVs, which make it challenging to satisfy the de-
mands of extensive area surveillance; (3) Soil salinity inversion based on data assimilation
methods—Research on the scale conversion of soil salinity movement based on data assim-
ilation methods is immature. This is primarily due to the complexity and spatiotemporal
dependency of the driving factors of salt migration, which are based on soil hydrological
processes; (4) Remote sensing inversion of soil salinity under vegetation cover: Variations
in vegetation cover across different regions pose obstacles to the universality of models;
(5) Remote sensing inversion of soil salinity ions: Current methods mainly focus on surface
soil, and the accuracy of inversion varies for different salt ions. Although some salt ions
have ideal results, the accuracy of inversion for certain ions remains unsatisfactory; (6) Con-
struction of soil salinization monitoring models based on remote sensing: The applicability
of models is affected by factors such as the research area or season, and a large number of
modeling parameters can lead to significant errors. In general, future research priorities
will include combining multi-element and multi-scale “space-ground” observation data of
soil salinization, removing the impact of variables such as vegetation cover, and applying
machine learning algorithms for multi-data fusion assimilation to create high-precision
remote sensing models. This will help deduce the spatiotemporal evolution process of
salinization and reveal the driving mechanisms behind it.

5. Conclusions and Outlook

5.1. Conclusions

This study utilized bibliometric visualization software to construct a knowledge map,
providing a visual analysis of research on remote sensing inversion of soil salinity from
2000 to 2023. To comprehend the advancements in the remote sensing monitoring of
soil salinization, a number of factors were visually analyzed, including the number of
publications, authors, institutions, research fields, and keywords. In-depth discussions
were conducted on the research hotspots identified through the keyword analysis, leading
to the following conclusions:

(1) The overall trend of publication quantity in remote sensing inversion of soil salinity is
increasing over time. Zhao, Gengxing was identified as the author with the highest
publication quantity, while Metternicht, Gi was the most cited author.

(2) Regarding publication institutions, the International Institute for Geoinformatics
Science and Earth Observation and the Chinese Academy of Sciences emerged as
the primary publishing institutions. Notably, the United States and China have
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made major contributions. Influential journals in this field include “Remote Sensing”
and “Geoderma”.

(3) Many fields have conducted research on the remote sensing monitoring of soil salin-
ization, with the environmental field publishing the most frequently. This aligns
with the environmental focus of the remote sensing monitoring of soil salinization,
primarily addressing the environmental issue of soil salinization. Major research areas
include the Hetao irrigation district in Inner Mongolia, Xinjiang, the Yellow River
Delta, the Nile River Basin in Egypt, and the Mediterranean coast.

(4) Looking at development trends, keywords such as remote sensing and saline soil ap-
peared with the highest frequency, primarily focusing on the identification, mapping,
inversion, and prediction of soil salinity. The main objective is to propose a response
mechanism for soil salinization issues. Furthermore, the emergence of keywords
indicates a shift in the research frontier towards areas such as machine learning.

5.2. Outlook

Global soil degradation is primarily caused by soil salinization and secondary saliniza-
tion, which are both influenced by climate change and human activity. Using bibliometric
analysis, we found that since the year 2000, remote sensing technology has been crucial in
tracking past changes, providing early warning, and keeping an eye on soil salinization—all
of which have produced positive outcomes. Nevertheless, it must be acknowledged that
there are still a number of significant gaps in our understanding of how salt affects soil
inversion. Specifically, there are still a number of pressing problems that need to be resolved
in order to obtain high-precision real-time data and the lengthy historical time series of
soil salinity. The following are the future development directions for the remote sensing
inversion of soil salinity, driven by advancements in computer modeling approaches and
remote sensing technology:

(1) Unmanned aerial vehicle (UAV) technology: The advantages of UAV-based remote
sensing include great mobility and high spatial resolution. Equipped with various sen-
sors, UAVs can conduct real-time observations in key areas to obtain high-resolution
and high-precision soil salinization monitoring data. Meanwhile, by integrating UAV
hyperspectral data, near-ground hyperspectral data, and satellite remote sensing,
salinization information can be comprehensively extracted to achieve the dynamic,
large-scale, and accurate monitoring of soil salinization over extensive regions.

(2) Multivariate collaborative inversion of soil salinity: A more accurate representation
of the spatiotemporal distribution of soil salinization can be achieved through the
effective integration of visible near-infrared remote sensing, thermal infrared remote
sensing, microwave remote sensing, topography, and meteorological data.

(3) Remote sensing has limited penetration depth. Currently, the deep soil’s salinity is
mainly estimated through modeling using conductivity meters and surface remote
sensing observation data. Surface soil salinity estimated by remote sensing can serve
as the upper boundary condition to accurately predict the soil’s salinity profile based
on soil hydrodynamics models. Additionally, variations in land types, soil wetness,
groundwater depth, and soil types should be taken into consideration in studies on
the possible use of remote sensing data for predicting soil salinity.

(4) The mechanisms behind variations in soil salinity can be uncovered by the use of
long-term time-series soil salinity data. In order to investigate the origins of soil
salinity and analyze its seasonal and interannual fluctuations, long-term time series
data are essential.

(5) Using platforms such as Google Earth Engine (GEE, USA) and Pixel Information
Expert Engine (PIE-Engine, China), it is now possible to monitor soil salinization on a
broad spatial and temporal scale due to the advent of remote sensing cloud platforms.

(6) Future research paths for the dynamic monitoring and prediction of soil salinization
will be made possible by combining remote sensing monitoring models of salinization
with models of soil water and salt transport.
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(7) To satisfy the demands of large-scale monitoring, unified quantitative inversion
models of soil salinity at national or even worldwide scales must be established.

However, this study still has certain shortcomings. Firstly, the reliance on electronic
databases as data sources may have resulted in the omission or the erroneous selection of
literature, even when combined with WoS. To address this, it may be beneficial to incor-
porate more databases and utilize improved screening software. Secondly, the clustering
and summarization of topics via the bibliometric software still require subjective judgment.
Therefore, there is a need to improve intelligent algorithms to reduce the subjectivity of
summarization. Additionally, increasing the flexibility of parameter settings in the visual-
ization process of knowledge graphs is essential for enhancing the quality of the analysis.
At the same time, the keyword network used in the bibliometric analysis of the research can
be strengthened through the application of deep learning and natural language processing
technology, the continuous development of which may help make the construction and
analysis of the keyword networks more automated and precise in the future. Deep learning
models can help identify keywords in the text and use them to construct the network
structure, which in turn reveals the correlation between the documents.
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Abstract: Water scarcity and quality are critical impediments to sustainable crop production. In this
study, HYDRUS-2D was calibrated using field measurements of water contents and salinities in the
soil under wine grapes irrigated with river water (Rw, 0.32 dS/m). The calibrated model was then
used to evaluate the impact of (a) four different water qualities ranging from 0.32 (Rw) to 3.2 dS/m
(brackish water, Gw) including blended (Mix) and monthly alternating (Alt) irrigation modes; (b) two
rainfall conditions (normal and 20% below normal); and (c) two leaching options (with and without
30 mm spring leaching irrigation) during the 2017–2022 growing seasons. Irrigation water quality
greatly impacted root water uptake (RWU) by wine grapes and other water balance components.
Irrigation with brackish water reduced average RWU by 18.7% compared to river water. Irrigation
with blended water or from alternating water sources reduced RWU by 8.8 and 7%, respectively.
Relatively small (2.8–8.2%) average annual drainage (Dr) in different scenarios produced a very low
(0.05–0.16) leaching fraction. Modeling scenarios showed a tremendous impact of water quality
on the salts build-up in the soil. The average electrical conductivity of the saturated soil extract
(ECe) increased three times with Gw irrigation compared to Rw (current practices). Blended and
alternate irrigation scenarios showed a 21 and 28% reduction in ECe, respectively, compared to Gw.
Irrigation water quality substantially impacted site-specific actual basal (Kcb act) and single (Kc act)
crop coefficients of grapevine. Threshold leaching efficiency estimated in terms of the salt mass
leached vs. added (LEs; kg/kg) for salinity control (LEs > 1) was achieved with LFs of 0.07, 0.12, 0.12,
and 0.15 for the Rw, Mix, Alt, and Gw irrigations, respectively. Applying annual leaching irrigation
(30 mm) before bud burst (spring) in the Mix and Alt with Rw and Gw scenarios was found to be the
best strategy for managing irrigation-induced salinity in the root zone, lowering the ECe to levels
comparable to irrigation with Rw. Modeling scenarios suggested that judicious use of water resources
and continuous root zone monitoring could be key for salinity management under adverse climate
and low water allocation conditions.

Keywords: grapevine; water quality; water balance; soil salinity; leaching; crop coefficients; drought
seasons rainfall; leaf area index; HYDRUS-2D

1. Introduction

Water scarcity is a common occurrence and severely impacts irrigated agriculture in
arid and semi-arid regions where rainfall totals are far less than the evapotranspiration
demand. This skewed relationship is further widened by rapid population growth, indus-
trialization, and increased living standards that compete directly with irrigated agriculture
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for supplementary water sources [1–3]. Water scarcity is increasing and is expected to be-
come more severe with an unabated rise in greenhouse gas emissions, rising temperatures,
frequent droughts, and changing precipitation patterns [4]. A rise in temperatures, for
instance, could lead to soil moisture deficits and a growing risk of vegetation desiccation
due to increased evapotranspiration [5,6], requiring more irrigation water for crop produc-
tion [7,8] and reaching yield potentials [9]. Agroecological and economic consequences of
climate change are expected to vary widely [10–12], and uncertainty in water availability
will remain a crucial factor influencing irrigated agriculture, which already consumes 69%
of freshwater resources on the planet [13].

Water allocations for irrigation in the river basins worldwide depend on rainfall, run-
off generation, and resulting flows in the river system. Climate variability and uncertainty
in irrigation water allocations can severely impact irrigated crops’ sustainability, including
viticulture. For example, in Australia, water allocations for irrigation during the Millennium
drought (2002–2009) were severely reduced to as low as 18% of normal allocations, severely
affecting the sustainable production and resilience of vineyards and other irrigated crops.
Similar conditions of unreliable and limited water availability for irrigation also occur in
other arid and semi-arid regions worldwide. Judicious integration of other water sources,
such as brackish water, into irrigation schedules would enhance water security and increase
the resilience of cropping systems to climate variability, resulting in long-term sustainability
and economic viability of irrigated production systems. This additional natural resource is
often poorly understood, undervalued, mismanaged, or abused [14].

Irrigation with marginal quality and brackish water has been practiced on various
crops with varied impacts on yield and associated environments depending on site-specific
climate, soil, water quality, crop sensitivity, and management practices [15–22]. Numer-
ous wine-grape growing regions use groundwater or recycled water of varying quality
(0.8–3.5 dS/m) for irrigation [23–26]. Saline/brackish water irrigation with unsuitable
management practices can increase soil salinity [21,25–28]. Pitt and Stevens [29] reported
that rootzone electrical conductivity of the soil saturation extract (ECe) in the soil under
the vine was four times higher than mid-row (1.5 dS/m) in a vineyard that has received
long-term groundwater irrigation. Other studies also reported the development of saline
and sodic conditions in the soil under grapevines [27,30,31] and other crops [15,18,32–34],
which negatively impacts the soil physicochemical conditions and the growth and yield
of crops. However, judicious site-specific use of brackish water following appropriate
ameliorative management techniques can help reduce the harmful impacts on soils and
provide long-term sustainable production of irrigated crops [21].

Grapevine growth, yield, and berry composition are affected to a varied extent by the
degree and duration of salinity stress imposed by saline and brackish water irrigation [35].
Adverse impacts of high salinity on grapevines are two-pronged [36]: (a) reduced water
uptake due to high osmotic pressure [35,37] and (b) vine mortality induced by high Na+

and Cl− concentrations in the leaves. Numerous studies have reported high Na+ and Cl−
concentrations in leaves, juice, and wine [23,25,26,38], depending on the cultivar, rootstock,
salt concentrations, and exposure time to saline conditions. High salt concentrations
in the wine can exceed maximum residue limits, preventing sales in specific markets
and producing adverse sensory outcomes [39]. However, Martínez-Moreno et al. [40,41]
reported that deficit irrigation of grapevine with chloride- and sulfate-dominated saline
water of 5 dS/m over five years showed an insignificant impact on vine growth and yield.
Additionally, the wine received the best sensory scores in well-drained soil, highlighting
the importance of drainage for salinity control. They concluded that site-specific soil type,
climate, and drainage conditions created a favorable environment for rapid leaching of
salts and reduced the detrimental impact on vine performance.

The use of saline water for irrigation can be managed through appropriate leaching of
salts from the root zone depending on the level of crop salt tolerance [42]. The traditional
irrigation management strategy is to provide extra water so that the ratio of the actual
drainage depth to the irrigation depth, i.e., the leaching fraction (LF), satisfies the leach-
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ing requirement (LR) [42], maintaining the root zone salinity below the crops’ tolerance
threshold. Due to the complexities of the interactions between water, soil, and plant uptake,
estimating and matching LF with LR is not always straightforward [43]. The unavailability
of good-quality water and the complexity of implementing proper LR strategies for salinity
control under drip irrigation systems may lead to enormous amounts of salt deposition in
the soils [27,44].

Numerous studies describe multiple approaches to maintain the root zone salinity
below the crop threshold, such as (a) the intra/inter-seasonal or physiological stage alter-
nated use of fresh and saline waters for irrigation [26,31,45,46], (b) blending waters from
multiple water sources [47–49], and (c) applying additional leaching irrigation if rainfall
is insufficient to manage excessive salts [27,43,44,50]. Typically, these options have varied
responses for managing the accumulation of salts in the root zone and require site-specific
approaches, which are a function of soil type, climate, crop, and the composition of the
irrigation water. Complex soil heterogeneity, widespread stratification (as it exists in Aus-
tralian grapevine growing areas), and poor drainage conditions may further confound the
efforts to ward off the salts buildup in the crop root zone [27,51,52].

Long-term field experiments involving numerous variables under varied soil, water,
and climate conditions are expansive and labor-intensive. Mathematical models are excel-
lent, cost-effective tools for studying the impact of climate, soil, water, and crop variables
on water and solute transport in the soil [21]. Among available agro-hydrological models,
HYDRUS (2D/3D) [53] has been widely used to simulate the water movement and salinity
dynamics under drip irrigation [27,54–58]. The model became popular because of its flexi-
bility to accommodate different types of complex boundary conditions, consider root water
uptake, and account for the coupled impact of water and salinity stresses and its ease of
use due to its user-friendly graphical interface.

The objectives of this investigation are two-pronged, viz., (1) to estimate the water
balance components and actual single crop (Kc act), basal crop (Kcb act), and evaporation
(Ke) coefficients for improving site-specific irrigation practices; and (2) to optimize the
integration of brackish water in the irrigation schedule of wine grapes while managing
the root zone salinity for sustainable production. To achieve these objectives, HYDRUS-
2D was first calibrated for water balance and salinity dynamics in the soil under wine
grapes during one season (2021–22). The calibrated model was then used to evaluate the
impact of sixteen scenarios involving two qualities of irrigation water (river water—Rw,
ECiw = 0.4 dS/m and brackish water Gw, ECiw = 3.2 dS/m); two modes of application
[blended Rw and Gw in a 1:1 ratio, ECiw = 1.87 dS/m and monthly alternate use of Rw
and Gw)]; two types of rainfall occurance [normal (n) and 20% reduced (d) annual rainfall];
and two leaching irrigation options [no leaching irrigation and annual leaching irrigation
(l, 30 mm)] over multiple seasons (2017–2022) in heterogeneous soil. Subsequently, the
model-predicted water and salt balance components were used to estimate the leaching
fractions (LF) and leaching efficiency (LE) under different scenarios. Thus, the assessment
of the entire growing system and potential water quality options aims to evaluate the
incorporation of brackish water in the wine grapes’ irrigation schedule while controlling
soil salinization to maintain sustainable production with effective leaching strategies.

2. Materials and Methods

2.1. Description of the Experimental Site

An experimental site was established at Kimbolton Wines (Lat −35.32681, Long
139.06178) in the Langhorne Creek (LHC) Geographic indication in South Australia, be-
tween the Mount Lofty Ranges and Lake Alexandrina in the flood plains of the Angas
and Bremer rivers. The Cabernet Sauvignon wine grapes were planted in 2001 on the
Teleki 5C rootstock at a spacing of 2 m between vines and 3 m between vine lines. The
vineyards were trained on a single wire double cordon spur pruned system. Vineyard rows
are oriented in a North-South direction, facilitating better absorption of photosynthetically
active radiation. A drip irrigation system was laid out to irrigate the wine grapes, placing
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a dripline along the vine line with pressure-compensated emitters spaced at 75 cm with
a discharge rate of 2.4 L/h. Irrigation was scheduled based on the estimated soil water
regime and local climate conditions in the Langhorne Creek region. Measurements of soil,
water, and crop parameters were carried out over the entire growing season (July 2021 to
June 2022) as described in the following sections.

Climate data were obtained from the nearest Landscape SA weather station (Langhorne
Creek Central). Rainfall during the simulation period (2017–18 to 2021–22) varied from
283 to 504 mm, with an average of 372 mm, which is close to the long-term average rain-
fall (390 mm) at Langhorne Creek [59]. Most rain events during this period were smaller
than 5 mm, which tended to wet the soil surface only and evaporate back into the atmo-
sphere. Above-normal rainfall years potentially generate precipitation surplus during
winter months when most rainfall occurs because the LHC region has a Mediterranean
climate with hot and dry summers and cool and moist winters. Large rain events (>20 mm)
play a key role in regulating the salts in the crop root zone. There were 1, 2, 5, 3, and 0 rain-
fall events of >20 mm during the 2017–18, 2018–19, 2019–20, 2020–21, and 2021–22 growing
seasons, respectively. Seasonal reference crop evapotranspiration (ET0) values estimated
by a modified Penman-Monteith approach [60] varied in a narrow range (1015–1096 mm),
showing small year-to-year variation.

2.2. Soil Water and Canopy Growth Measurements

Soil water distributions were monitored using in situ calibrated capacitance probes
installed close to an emitter in the vine row by the vineyard manager with sensors every
10 cm to a depth of 120 cm. The soil moisture probe was installed to support irrigation
scheduling for the vineyard. Soil solution extractors were installed at 30, 60, and 90 cm
depths at two locations in the vine row near the lateral and adjoining the moisture probe.
Soil solutions were collected at fortnightly intervals to estimate soil solution electrical
conductivity (ECsw). Soil solution samples could not be collected during the summer
when deficit irrigation was imposed. Alternatively, salinity (EC) in the 1:5 soil-to-water
solution was measured on soil samples collected from 0–15, 15–30, 30–60, and 60–90 cm
soil depths near the extractors during the summer season. These measurements were used
to supplement the calibration of the model.

A high-definition (1080 p) time-lapse camera was installed between two vines to
monitor the canopy growth (Figure 1a). The camera was located at ground level and
orientated upward to ensure that the sky was equally visible on each side of the image.
Images were collected during the early morning to avoid overexposure of the image sections
by the sun. Collected images were stored on an SD card and emailed using the 4G network
so that the camera operations could be confirmed.

Figure 1. Grapevine canopy images (a,b) taken by an HD camera and (c) leaf area index (LAI)
estimated by image analysis.

Images were analyzed using the ImageJ software (https://imagej.nih.gov/ij/index.
html version 1.53k/Java1.8.0_172; accessed 27 August 2021). The canopy size for the
entire growing season was indirectly assessed as the leaf area index (LAI), improving the
methodology described in previous studies [61–64]. The algorithm used in these studies
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defines three fractions, which are the fractions of foliage of the projective cover (ff), the
crown cover (fc), and the crown porosity (Φ). The field view of the full canopy captured by
the image is shown in Figure 1a. However, as the canopy keeps growing, the field view of
the canopy eventually outgrows the vertical field view of the camera (Figure 1b). Under
such conditions, fractional covers (ff and fc) are not estimated correctly using the partial
image of the canopy and are usually ignored in the LAI analysis [61]. For such situations,
an approximate correction factor for the crown cover can be applied, assuming the ff/fc
ratio of the extended canopy is similar to the measurements of the field view by the camera.
Therefore, Equation (A3) in [63] can be rewritten as

LAIM = − fc
lnΦ

k

(
Wcci
Wc

)
(1)

where Wc is the width of the field view of the canopy captured by the camera, Wcc is
the maximum width of the canopy measured at the cordon, Wcci is the daily interpola-
tion of width protruding the field view of the camera, and LAIM is the measured LAI,
which corresponds to the ground area covered by the vertical projection of the foliage and
branches [62,63]. LAIM was further corrected to obtain the effective LAI (LAIe), as reported
in previous studies [61–63]. However, the estimated LAIe deviates from the usual definition
of grapevine LAI, defined as the ratio of total green surfaces (leaves, shoots, and fruits when
present) to the unit of the land area allocated to each vine [65,66]. Therefore, the second
correction factor was applied to the LAIe to obtain corrected LAI for the vine spacing (LAIes)
as given below:

LAIes = LAIe

(
Wcc

Wr

)
(2)

where Wr is the width between vine rows. LAIes estimated using Equation (2) indicated
a continuous canopy growth from bud burst to harvest (Figure 1c). These methodology
modifications reduced the average LAIes of mid to late grapevine season by half of LAIe,
measured using the previous method. The LAI values were comparable to those estimated
by the Plant Canopy Analyser (LAI-2200C, LI-COR Biosciences, Lincoln, NE, USA). The
LAI values for other seasons (2017–18 to 2020–21) were estimated from the NDVI drawn
from the Datafarming portal (https://www.datafarming.com.au/about-us/(accessed 27
August 2021)). A linear relationship (Y = 4.07X; R2 = 0.83) was fitted between NDVI and
measured LAI during the 2021–22 season. This conversion was applied to the NDVI values
from the other seasons (2017–18 to 2020–21) for estimating LAI. Similar relationships have
been reported for the vineyards across various regions [63] and vineyards in other parts of
the globe [67].

The LAI data and other soil, climate, and plant parameters were used to estimate
the daily values of potential evaporation and transpiration following the FAO-56 dual
crop coefficient approach [60,68]. These values served as inputs for the numerical model
HYDRUS-2D [53], which was used to simulate the water and salinity dynamics in the soil.

2.3. Irrigation Application and Water Quality

The property manager controlled irrigation application decisions at the study site. Irri-
gations were applied based on the profile’s total available water (TAW) and the capacitance
probe data. Profile water availability in the spring is key in initiating irrigation at the start
of a new season. In-season irrigations were applied based on the phenological stage of the
crop, climate conditions, and water deficit in the soil profile. Irrigation was applied when
the stored water in the profile declined to a level lower than the readily available water
(Table A1).

In-season irrigation water was collected in a catch can installed at the terminal point
of the lateral irrigating vines at the study site. Water samples were collected fortnightly to
measure electrical conductivity (ECiw). The measured ECiw values during 2021–22 varied
from 0.17 to 0.38 dS/m and served as the current irrigation water quality for calibrating the
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model. For the rest of the simulated period (2017–21), the daily ECiw values of the River
Murray water (Rw) measured at the Langhorne Creek pipeline pumping station were used.
Estimated ECiw values ranged from 0.16 to 0.61 dS/m, lower than the tolerance threshold
(0.95 dS/m) of salinity-sensitive crops in Australia and New Zealand [69].

The groundwater quality at the Langhorne Creek Prescribed Groundwater Area is
predominantly brackish, with salinity ranging between 300 and 30,000 mg/L [59]. The
estimated groundwater salinity (Gw) in the nearest prescribed well used for irrigation
remained around 3.2 dS/m, and this value was adopted in the simulations. The rainfall
chemistry analyzed by Cresswell et al. [59] in the study region provides reliable information
about rainfall salinity (ECrw; 0.16 dS/m) used in simulations.

2.4. Estimation of Soil Hydraulic Properties

Soil hydraulic parameters were estimated from water retention curves determined on
undisturbed soil samples. These samples were collected in 75 mm diameter and 50 mm
tall rings from 0–15, 15–30, 30–50, 50–100, and 100–120 cm soil depths at two locations,
representing the site-specific textural heterogeneity. Intact soil rings were first saturated
overnight, and then saturated hydraulic conductivity (Ks) values were measured using the
constant head method [70]. Subsequently, the cores were used to measure the saturated
water content (θs) and volumetric water contents (θ) at −3 and −6, and −10, −33, −100,
−300, and −1500 kPa pressure heads using hanging columns and the pressure plate
apparatus, respectively. Measured Ks and water content (θ)—pressure head (h) data of
each soil layer were used to estimate the soil hydraulic parameters (SHP) according to the
van Genuchten-Mualem model [71]. Estimated SHPs were further finetuned by trial and
error during model calibration. The final values used in HYDRUS-2D to simulate water
movement in the soil are given in Table 1.

Table 1. Calibrated soil hydraulic properties (θs = saturated water content, θr = air dry water content,
α = inverse of air entry value, Ks = saturated hydraulic conductivity, η = pore size distribution
parameter, and l = pore connectivity parameter) of different textural layers at the Langhorne Creek
study site.

Soil Depth Texture θr θs A η Ks l

(cm) cm3cm−3 cm−1 cm day−1

0–15 Sandy Loam 0.041 0.4259 0.0353 1.743 141.238 0.5
15–30 Sandy Loam 0.053 0.347 0.058 1.774 98.61 0.5
30–50 Sandy Clay Loam 0.1527 0.3942 0.0339 1.495 10.93 0.5
50–100 Sandy Loam 0.1044 0.3413 0.0226 1.795 7.75 0.5

100–120 Sandy Clay Loam 0.1908 0.3731 0.0403 1.363 6.93 0.5

2.5. Estimation of Potential Evaporation and Transpiration

HYDRUS-2D requires daily inputs of potential evaporation (Es) and transpiration (Tp),
representing the evaporative flux from the partially wetted soil surface and the transpiration
flux via the canopy, respectively. In this study, these parameters were estimated using the
FAO Penman-Monteith dual crop coefficient approach [60,68]:

ETC = (Kcb + Ke) ET0 (3)

where ETC is evapotranspiration (LT−1), ET0 is reference evapotranspiration (LT−1), Kcb is
the basal crop coefficient, which represents the plant transpiration component, and Ke is
the soil evaporation coefficient. Generic values of the grapevine Kcb [60] were adjusted for
the local climate and crop conditions, considering crop height, wind speed, and minimum
relative humidity averages. Other crop and soil-related parameters for estimation of Tp
and Es using the FAO 56 approach, e.g., readily available water (RAW), total available
water (TAW), readily evaporable water (REW), total evaporable water (TEW), and fractions
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of wetted and shaded areas (fc, fw), were estimated from the measured data as reported
in previous studies [8,72]. Important climate and other parameters used in FAO-56 for
different years are provided in the Appendix A (Figure A1 and Table A1).

2.6. Model Construction, and Initial and Boundary Conditions

Brief theoretical details on water movement and solute transport processes in the soil
adapted in the model are given in the Appendix A. More information on the HYDRUS-
2D software (version 5.02.0530) and related references can be found at https://www.pc-
progress.com/en/Default.aspx?HYDRUS-3D (accessed 27 August 2021). A two-dimensional
model domain was constructed to represent a vertical cross-section perpendicular to the
vine line and equally spaced between mid-rows (Figure 2). The simulated domain was
120 cm deep and 300 cm wide (the row spacing at the field site), perpendicular to a vine
row. The transport domain was divided into 13,048 finite elements with a very fine grid
below the dripper (0.5 cm) and gradually increasing element sizes laterally (up to 3 cm) and
vertically (up to 10 cm) from the dripper. Surface drip irrigation was simulated assuming
an infinite line source, which was shown previously to be a good representation of the drip
irrigation system [44,73].

Figure 2. Model domain showing field observation setup (camera, moisture probe, and solution
extractor), soil textures, and imposed boundary conditions.

Different textural layers (see different colors in Figure 2) were assigned to the domain
depending on the measured depths of textural layers at the study site. A drip line runs
along the vine line, and irrigation water is applied through the drippers placed on the soil
surface. Measured values of the initial water content and soil solution salinity in different
textural layers were used as initial conditions for water flow and solute transport in the soil.
The soil surface was subjected to the atmospheric boundary condition (BC) and a variable
flux BC imposed by dripper discharge (2.3 L/h), resulting in a two-dimensional flow. A
free drainage boundary condition was assigned at the bottom, while a no-flow boundary
condition was imposed on the sides of the domain. Concentration flux conditions were set
as top and bottom boundary conditions for solute transport. Initial conditions reflected the
effects of rainfall, irrigation, evaporation, and transpiration on soil salinity before the start
of the experiment.

Root water extraction from the soil was computed using the macroscopic model
approach [74]. This model adjusts plant root water uptake according to the local soil water
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pressure head, h, at any point in the root zone. It defines how potential transpiration
(Tp) is reduced when the soil can no longer supply the plant’s required water under the
prevailing climatic conditions. Values of critical pressure heads for grapevine were taken
from previous investigations in South Australia [8,72]. The multiplicative model for osmotic
pressure head reductions is considered in this study. The model states that water is extracted
at the maximum rate below the crop threshold osmotic head (ECe = 2.1 dS/m). The slope
of the curve determines the fractional reduction of water uptake per unit increase in the
osmotic head (12.8%/ECe unit) beyond the threshold. These parameters for grapevine were
obtained from previous regional salinity tolerance studies [75].

Soil solution salinity (ECsw) was simulated as a non-reactive solute, similarly as in
many previous studies [57,72,76]. These studies showed good correspondence between
model predictions and observed soil salinity dynamics in the soil under conditions involv-
ing intensive irrigation and fertigation environments. Other solute transport parameters,
such as longitudinal and transverse dispersivities, initially assumed to be one-tenth of
the modeling domain size and one-tenth of the longitudinal dispersivity, respectively [77],
were optimized during the calibration.

Model calibration was performed to optimize the soil hydraulic and solute transport
parameters in the soil to mimic the field conditions over the entire growing season. Sub-
sequently, a calibrated model was used to simulate the soil’s water balance and salinity
dynamics under different climate and water quality scenarios.

2.7. Water Quality and Water Management Scenarios

Different scenarios were designed to assess the impact of using two water sources on
seasonal evapotranspiration components and salinity dynamics. Water qualities (ECiw) of
the two sources were involved in various scenarios. For the drought season scenario, a
rainfall reduction of 20% was assumed, which matches the future climate projections for
South Australia [78]. An annual leaching irrigation (l) of 30 mm of Rw was incorporated in
various scenarios based on the historical salinity issues in the Langhorne Creek area and a
previous leaching study [79]. Sixteen scenarios were designed to evaluate the impact of
various quantities and qualities of irrigation water and their use in different application
modes, such as mixing Rw and Gw in a 1:1 ratio (Mix) and alternate monthly use (Alt) of
Rw and Gw (Table 2).

Table 2. Scenarios involving combinations of different water qualities (Rw = river water,
Gw = brackish water, Mix = mixed Rw and Gw in a 1:1 ratio, Alt = a monthly alternate use of Rw
and Gw), the amount of annual rainfall (normal, n; and 20% less, d), and annual pre-season leaching
irrigation (LI) of 30 mm simulated over the five consecutive grapevine growing seasons (2017–22).

Water Quality

Normal Rainfall (n) Drought Season (d)

No
Leaching

Leaching
Irrigation (l)

No
Leaching

Leaching
Irrigation (l)

River water (Rw) Rw_n Rw_nl Rw_d Rw_dl
Brackish water (Gw) Gw_n Gw_nl Gw_d Gw_dl
Mixing Rw and Gw Mix_n Mix_nl Mix_d Mix_dl

Alternate use of Rw and Gw Alt_n Alt_nl Alt_d Alt_dl

The calibrated model was used to understand the impact of different scenarios (Table 2)
on the soil’s water balance and salinity dynamics over the five seasons (2017–18 to 2021–22),
using the growers’ actual irrigation schedule.

2.8. Statistical Analysis

Model-simulated (S) spatiotemporal water content distributions and ECsw values were
compared with corresponding measured (M) values using three error statistics, i.e., mean
error (ME), mean absolute errors (MAE), and root mean square error (RMSE). Relevant

195



Land 2023, 12, 1947

equations for the error statistics can be found in [80]. The two-sided Dunnett’s analysis
test (XLSTAT) was applied to compare the differences in the average values of water
balance components, namely, actual evapotranspiration (ETC act), root water uptake (RWU)
or actual transpiration (Tp act), soil evaporation (Es), and deep drainage (Dr); leaching
fractions (LF); and rootzone soil salinities (ECe) obtained for the current irrigation practice
and different water quality, drought, season, and leaching irrigation scenarios at a 95%
confidence interval.

3. Results and Discussion

3.1. Model Calibration

HYDRUS-2D was calibrated for spatiotemporal water content distribution and salinity
dynamics in the soil over the entire grapevine growing season (2021–22). Statistical errors
(RMSE, ME, MAE) estimated for water content and salinity dynamics in the soil are shown
in Table 3. RMSE, ME, and MAE values at different depths varied from 0.02 to 0.05, 0.00 to
0.05, and 0.02 to 0.05 cm3/cm3, respectively, showing slightly higher deviations at the soil
surface than deeper in the soil profile. The average values for the entire profile varied in a
much narrower range (0.02–0.04 cm3/cm3), showing a good agreement between measured
and model-predicted water contents in the soil (Table 3). Similar error estimates between
measured and modeled values have been reported in several studies in different soils,
crops, and climate conditions [54,57,72,81,82]. It is well understood that soil water contents
measured with sensors such as capacitance probes are not error-free. The magnitude of
error estimates observed in the current study is equivalent to those often seen in the field
measurements with capacitance probes [83].

Table 3. Root mean square error (RMSE), mean error (ME), and mean absolute error (MAE) values
for water content dynamics at different soil depths and the average profile salinity.

Statistics
Water Content (cm3/cm3) ECsw

(dS/m)20 cm 40 cm 60 cm 80 cm 100 cm Average

RMSE 0.05 0.05 0.03 0.02 0.04 0.04 0.61
ME/MBE 0.05 0.04 0.00 0.00 0.02 0.02 −0.13

MAE 0.04 0.05 0.02 0.02 0.03 0.03 0.42

The profile-averaged values of RMSE, ME, and MAE for soil solution salinity (ECsw)
were 0.61, −0.13, and 0.42 dS/m, respectively (Table 3). Chen et al. [54] reported RMSE
and MAE values ranging between 0.23 and 0.55 dS/m, respectively, while Phogat et al. [84]
reported error estimates between 0.35 and 0.86 dS/m for the measured and HYDRUS-2D
predicted soil salinities. Similarly, Ramos et al. [57] estimated ME, MAE, and RMSE in
the range of −0.21 to −0.67, 0.6 to 1.25, and 0.85 to 1.76 dS/m, respectively, for similar
calibration of HYDRUS-2D for the salinity distribution in the soil. There are varied reasons
for the disparity between measured and model-predicted ECsw values, such as measurement
errors in the model input parameters, soil solution collection, and measurement errors.
Phogat et al. [85] pointed out that the estimation of ECsw of the soil solution extracted from
the soil under suction (a region of an uncertain size) may vary from ECsw simulated by the
model at a specific point in the soil. The statistical comparison supports the ability of the
model to simulate the distribution of water content and salinity dynamics in the soil.

3.2. Soil Water Balance

Average annual rainfall (P) and seasonal irrigation (I) applied during drought season
(d) and leaching irrigation (l) scenarios differed significantly from the current irrigation
practices (the n scenarios) (Table 4). This means that assumed drought season conditions
and ameliorative salt management strategies have been appropriately applied. The average
values of wine grape ETC act estimated for the sceanarios where leaching irrigation is
applied (Gw_nl, Alt_nl, and Mix_nl) showed insignificant differences compared to the
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current practice (river water, Rw_n). It implies that integration of leaching irrigation
(l) in the current irrigation schedule (n) in the brackish water (Gw), 1:1 blending (Mix),
and monthly alternating (Alt) of river and brackish water irrigations can reduce the salt
pressure in the root zone and provide a soil environment similar to the current practice.
The blending and alternate mode scenarios without leaching irrigation also showed ETC act
values comparable to current practices.

Table 4. Components of the annual water balance (P = precipitation/rainfall, I = irrigation,
RWU = root water uptake, Es = evaporation, and Dr = drainage), leaching fraction (LF), and average
rootzone salinity (ECe, dS/m) estimated for different irrigation scenarios including the current irriga-
tion practice (Rw_n). Statistical significance was estimated using Duncan’s two-sided analysis of the
difference between Rw_n (control) and other scenarios at a 95% confidence interval.

Scenarios P I ETC act RWU Es Dr LF ECe

(mm) (%) (dS/m)

Rw_n 373 209 424 218 206 39 0.07 2.2
Rw_d 299 * 209 382 * 201 181 * 15 * 0.03 * 2.7
Rw_nl 373 237 * 438 * 223 216 * 53 0.09 1.6
Rw_dl 299 * 237 * 401 * 210 192 * 26 0.05 2.2
Gw_n 374 209 409 * 177 * 232 * 53 0.09 4.5 *
Gw_d 299 * 209 366 * 154 * 213 31 0.06 5.5 *
Gw_nl 374 237 * 426 188 * 238 * 65 * 0.10 * 3.9 *
Gw_dl 299 * 237 * 387 * 168 * 219 * 39 0.07 4.9 *
Mix_n 374 209 * 417 198 * 219 * 45 0.07 3.6 *
Mix_d 299 * 209 375 * 177 * 197 * 22 0.04 4.3 *
Mix_nl 374 237 * 434 208 226 * 58 0.09 2.9
Mix_dl 299 * 237 * 395 * 190 * 205 31 0.06 3.8 *
Alt_n 374 209 418 202 * 216 * 44 0.08 3.2
Alt_d 299 * 209 376 * 183 * 193 * 21 0.05 3.9 *
Alt_nl 374 237 * 434 210 224 * 57 0.09 2.6
Alt_dl 299 * 237 * 396 * 194 * 202 30 0.06 3.4

CD (0.05) 16.5 0.005 13.5 16.3 8.9 19 0.03 1.3

* Statistically significant at a p-value of 0.05. Irrigations with river water (Rw, 0.32 dS/m) under normal (n) rain
(Rw_n), brackish water (Gw, 3.2 dS/m) under normal rain (Gw_n), a blend of Rw and Gw in a 1:1 ratio under
normal rain (Mix_n), monthly alternate use of Rw and Gw under normal rain (Alt_n), Rw + 20% less rain (Rw_d),
Gw + 20% less rain (Gw_d), Mix + 20% less rain (Mix_d), Alt + 20% less rain (Alt_d), Rw_n + annual leaching
irrigation of 30 mm (l) before bud burst (Rw_nl), Gw_nl, Mix_nl, Alt_nl, Rw_dl, Gw_dl, Mix_dl, and Alt_dl.

Seasonal vine water uptake (RWU) accounts for 40–51% (154–223 mm) of the total
water application, including irrigation and rainfall during the growing season (Table 4).
The maximum water uptake was predicted for the Rw_nl scenario, representing the most
favorable conditions for grapevine growth, i.e., river water irrigation coupled with annual
leaching irrigation (l) of 30 mm before the bud burst. The simulated daily water balance
responded to the diurnal changes in the weather conditions, irrigation, canopy character-
istics, soil water regime, and osmotic conditions in the soil (Figure 3). Actual daily root
water uptake (RWU) of grapevines under current practices (Rw_n) varied between 0.02
and 3.4 mm during the simulation. Note that higher RWU values were observed over
the December to March period, which coincides with the maximum canopy size and LAI
(Figure 1). Numerous studies have reported that transpiration in crops without full ground
cover, such as grapevine (an energy surplus system), responds to the canopy size, ground
cover, leaf area index [86–88], and canopy density [68,89,90] under non-saline conditions.

Rootzone salinity (ECe) is an important factor affecting ETC act and RWU (Tp act) of
grapevines. Both parameters decreased linearly in response to rootzone salinity. However,
the impact of ECe was more pronounced for RWU, which decreased by 6.8% (R2 = 0.96)
for a unit increase in the rootzone ECe (dS/m). The impact of salinity on ETC act decreased
to less than half (3.1%, R2 = 0.42) as the surface evaporation component increased under
brackish water irrigation. Ben-Asher et al. [91] reported a 20 and 65% reduction in potential
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vine transpiration for 1.8 and 4.8 dS/m saline water irrigation. Such a drastic reduction
in vine transpiration occurred due to 4 times higher irrigation applications in different
climatic conditions. A linear reduction in ETC in response to saline water irrigation and
rootzone salinity was reported by many [50,92–95].

Figure 3. Model-predicted daily values of precipitation (P), irrigation (I), root water uptake (RWU),
evaporation (Es), and drainage (Dr) below the root zone (120 cm) of a grapevine irrigated with river
water under normal rainfall conditions (Rw_n; current practice) during 2017 to 2022.

Water quality and water stress impacted the seasonal water balance components. The
minimum RWU was observed in the Gw_d scenario, where brackish water of 3.2 dS/m
was used for irrigation coupled with 20% less rain (drought season, d), representing an
adverse soil environment for grapevine growth. Average seasonal RWU under the brackish,
blending, and alternate mode scenarios showed significant differences compared to the
current practices (Rw_n), except in the alternate mode with leching irrigation (Alt_nl) and
1:1 blending (Mix_nl) scenarios (Table 4). This suggests that brackish water irrigation in the
blending (Mix) and alternate (Alt) modes could be a viable irrigation strategy if appropriate
leaching of salts from the root zone is maintained with annual leaching irrigation of 30 mm
before the bud burst. The Alt scenarios, where the application of Rw and Gw is alternated,
performed better in terms of greater RWU than the mixing scenarios (Mix), where the two
water sources were blended before irrigation. The average seasonal RWU for the Gw, Mix,
and Alt irrigation scenarios was reduced by 18.7, 8.8, and 7.0%, respectively, compared
to Rw irrigation. Although the mixing and alternate modes of irrigation applications
improved vine water uptake over Gw alone, the impact of salts was still visible compared
to Rw irrigation. The reduction in RWU in the Gw and other scenarios can be ascribed to
the osmotic stress in the root zone due to salt buildup in the soil, which reduces the ability
of vine roots to extract water from the soil [96]. Ben-Asher et al. [65] reported a significant
impact of saline water (4.8 dS/m) irrigation on the seasonal transpiration of grapevines.
Irrigation with saline water not only induced an osmotic effect on the roots but also severely
impacted the green area index, gaseous exchange processes, and photosynthetic activity in
the leaves.

Seasonal evaporation losses (Es) accounted for 46–56% of the water applied, including
rainfall during the growing season (Table 4). Significant differences in Es were observed in
all scenarios relative to Rw_n, except for Gw_d, Mix_dl, and Alt_dl. Leaching irrigation (l)
scenarios enhanced Es losses as 30 mm irrigation was applied in spring when a large portion
of the soil surface was exposed. In the Gw, Mix, and Alt scenarios, a reduction in RWU due
to osmotic stress allowed for an increased Es flux from the soil surface. Under reduced
rainfall conditions (20% less), Es decreased significantly compared to Rw_n, although
drought season scenarios with leaching irrigation (l) promoted surface water evaporation
similar to Rw_n. Daily evaporation (Es) losses across different scenarios ranged between
0.01 and 5.6 mm (Figure 3), and high Es losses were observed during spring (August–
September) to mid-summer (December–January). During the early growing period of
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crops with partial ground cover, such as grapevines, post-winter moist soil water regimes
provide favorable soil surface conditions for evaporation losses. On the other hand, during
mid-summer (December–January), the hot and dry season encourages high Es losses.

Seasonal Es losses of a similar extent in the current study have been reported in
other studies in surface and subsurface drip-irrigated grapevines with similar spacing
and climate [72,97]. In contrast, Fandiño et al. [98] reported an Es component comprising
8–15% of ET under different climate conditions due to using a low wetted fraction (0.01)
in their estimation. In sparse vegetation such as grapevine, evaporation often constitutes
a large fraction of ET due to the considerable area between the mid-rows exposed to the
atmosphere [99].

Modeled average seasonal drainage (Dr) was remarkably low and varied from 2.8 to
8.2% of the total water application in different scenarios (Table 4). The lowest Dr value was
observed in the Rw_d scenario, while the maximum Dr was recorded in the Gw_nl scenario.
These scenarios significantly differed from the current practice (Rw_n) and showed the
impact of drought season and annual leaching irrigation, respectively (Table 4). Low Dr
values cannot leach the rootzone salts and favor the deposition of salts in the soil during
the growing season. Daily values of Dr below the root zone (120 cm) varied in response
to rainfall, irrigation, and leaching conditions during 2017–22 (Figure 4). Daily Dr varied
from 0 to 1.2 mm and represented a negligible volume of leaching below the root zone over
the low rainfall period (November 2017 to November 2019). Winter (June–August) rainfall
during 2017 was also much lower (112 mm) than the long-term average (160 mm) in the
study area [59]. The extent of winter rainfall plays a crucial role in generating the bottom
flux below the root zone, which triggers the leaching of salts and maintains a favorable
environment in the soil for water uptake. During the following two vintages (2017–18 and
2018–19), there was an extended period of below-average winter rainfall during late spring,
when no leaching occurred (Figure 4). Therefore, most rain and irrigation events during
this period were unable to generate drainage surplus below the root zone. This resulted in
the rapid accumulation of salts in the root zone, which could impact the normal growth
and yield of the vineyard.

Figure 4. Model-predicted daily bottom fluxes (cm/day) below the root zone (120 cm) of a grapevine
under (a) river water irrigation (Rw_n), (b) Rw + 20% less rain (Rw_d), (c) Rw_n + annual leaching
(Rw_nl), and (d) Rw_d + annual leaching (Rw_dl) during 2017–22.

Three major leaching events occurred below the root zone over the simulation period
from 2017–18 to 2021–22 (Figure 4). These were related to above-average annual rainfall
and large rain events during late 2019–20 and throughout 2020–21; this triggered the rapid
flushing of salts from the root zone and restored soil conditions. Phogat et al. [85] found that
profile establishment is an essential management strategy early in the season to facilitate a
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favorable environment for root development, canopy growth, and profitable horticultural
production in Mediterranean climates. The vineyards in the study region rely heavily on
winter rainfall and flood events in the rain-induced local river catchments to flush the salts
accumulated in the soil profile [100]. Therefore, to enhance the drainage volume, leaching
irrigations play an important role in managing the accumulation of salts in the root zone,
reducing the impact of osmotic stress, and providing a congenial medium for plant growth.

3.3. Crop Coefficients

The model predicted daily values of Tp act, Es, and ETC act for different scenarios were
used to compute the monthly actual basal crop coefficients (Kcb act), evaporation coefficients
(Ke), and actual single crop coefficients (Kc act) of wine grapes under current irrigation
practices (Rw_n) over the five seasons (Figure 5). The Kc act values during the initial
period (Kc act ini) in the current study varied from 0.33 to 0.84 and showed a large variation
between growing seasons (Figure 5b). A comparison of average values of Kc act,ini (0.56) and
Kcb act,ini (0.13) (average of September and October) showed a much higher contribution
of evaporation during this period, which corresponds to the bud burst and initial canopy
development. Normally, high Kc act ini values and seasonal fluctuations largely reflect the
variability in winter rainfall. For example, monthly rainfall of 61 and 65 mm during
September and October 2020 (compared to 12 and 9 mm during 2018–19) resulted in a
doubling of Kc act ini. A high value of Kc act ini (0.33) was also reported by Silva et al. [101].
The maximum Kc act (0.58) and Kcb act (0.33) were recorded during November-December,
which coincides with the maximum canopy size [102].

Figure 5. Estimated monthly values of (a) actual basal crop coefficient (Kcb act), (b) single crop
coefficient (Kc act), and (c) evaporation coefficient (Ke) for drip-irrigated grapevines following current
irrigation practices (Rw_n). Subscripts 1, 2, 3, 4, and 5 represent the values estimated for the 2017–18,
2018–19, 2019–20, 2020–21, and 2021–22 vintages, and ‘av’ represents the average coefficient values
for five vintages.

During the mid-season (November-February), large variations were recorded in the
Kc act mid values (0.23–0.73). The Kcb act values for the mid-season (Kcb act mid) varied from
0.23 to 0.44, with a mean value of 0.31, much lower than the average Kcb mid (0.6) adjusted
for the study site under the prevailing climatic conditions. This indicates that grapevines
were irrigated at an almost 50% deficit level. Yunusa et al. [97] and Cancela et al. [103]
reported similar Kc act values during the mid-season to the current study. The mean value
of Kc act during the post-harvest period (Kc act end) was, on average, 0.36, although higher in
April (0.43). The end season Kcb act (Kcb act end) ranged from 0.02 to 0.51 (average 0.21) and
showed immense variability depending on post-harvest irrigation and soil water regime.
The average Kcb act end is less than half of the corresponding adjusted value (0.48), indicating
deficit moisture regimes adopted by the growers. Very low values of Kcb act end (0.02–0.04)
for the 2017–18 and 2018–19 seasons represent extreme moisture-deficit conditions during
that period (Figure 5). Significant seasonal fluctuations in the crop coefficients suggest that
irrigation decisions made based on the same/standard Kc values across seasons may lead
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to under- or over-irrigation, affecting the grapevine growth, yield, and efficiency of the
irrigation system.

Irrigation water quality had a drastic impact on the crop coefficients. Mean Kcb ini
values for the Gw irrigation were reduced by 7–21% compared to the corresponding
values for the Rw irrigation (Figure 6). The maximum reduction was observed for the
drought (d) scenario, whereas the Gw irrigation with additional annual leaching irrigation
(30 mm) showed the lowest impact. The Kcb mid for the Gw irrigation was reduced by 19,
23, 16, and 20% for the normal rain (n), drought (d), l with normal rain (nl), and l with
drought (dl) scenarios, respectively, compared to the respective Kcb mid for the Rw scenario
(Figure 6b). A similar reduction pattern (19–27%) in the Kcb end values was observed for the
Gw irrigation and Kcb act values with other irrigation water quality scenarios (Mix and Alt).
The Kcb ini, Kcb mid, and Kcb end for the Mix and Alt water qualities decreased by 4–12, 7–11,
8–14% and 2–7, 5–8, 8–15%, respectively, compared to the corresponding values for the Rw
irrigation (Figure 6c,d). The reduction in the Kcb act values corresponds to the extent of the
impact of rootzone salinity on RWU by the grapevine, which deviates from the standard
conditions [60]. Rosa et al. [104] reported similar responses on the Kcb act for maize under
saline conditions.

Figure 6. Mean values of monthly actual basal crop coefficients (Kcb act) (a–d) and evaporation
coefficients (Ke) (e–h) for a wine grape irrigated with river water (Rw) (a,e), groundwater (Gw) (b,f),
1:1 blending of Rw and Gw (Mix) (c,g), and monthly alternate use of Rw and Gw (Alt) (d,h) under
normal irrigation (n), drought season (d), leaching irrigation with normal rain (nl), and leaching
irrigation under drought (dl).

A wide range of Kc act and Kcb act values of grapevines have been reported in many
studies reviewed by Rallo et al. [90]. These studies have shown that site-specific growing
conditions, including climate, cultivar, training system, ground cover, crop management,
and soil conditions, impact evapotranspiration and crop coefficients of grapevines. Timing,
variability, and extent of these factors lower the generic crop coefficient values [60,68]
estimated by different methods [101,105,106]. Darouich et al. [107] evaluated the crop coef-
ficients of grapevines at three locations in Italy and Portugal using the SIMDualKc model
based on FAO-56 [60]. In their study, low values of Kcb ini (0.09–0.14), Kcb mid (0.27–0.4),
and Kcb end (0.17–0.32) emphasized the impact of site-specific climate, soil, cultivars, and
management conditions. In contrast, some studies [108–110] reported high Kc mid values
(0.8–1.31). Normally, such deviations in crop coefficients from the generic values occur due
to variable crop conditions due to insufficient or non-uniform irrigation, variable plant
density and canopy cover, soil salinity, and/or agronomic management [111].

A wide variation was observed in the evaporation coefficient (Ke) estimated for the
current practice (Rw) over the five seasons (Figure 6c). During the initial growth period
under the current practice (Rw_n), large Ke values were recorded (0.23–0.70) because a
large portion of the soil surface was wetted by irrigation and rainfall was exposed to the
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atmospheric evaporative flux. However, the Ke values during the mid-season declined
(0.09–0.41; average 0.2) in response to a reduced fraction of the wetted and exposed surface
Phogat [112]. Ke towards the end of the season was only 0.15, except after the post-harvest
irrigation, when it slightly increased (0.2) during April.

3.4. Salinity Dynamics in Soils

The spatial distributions of ECe in the soil under the Rw_n irrigation scenarios were
compared at four phenostages of grapevines, i.e., bud burst, flowering, veraison, and
harvest (Figure 7). At bud burst, ECe in the upper 40–50 cm of the soil was <1.5 dS/m, except
during the 2018–19 season, which received below-normal rainfall. Without appropriate
leaching, pockets of ECe in the 1.5–3 dS/m range developed in the surface soil alongside
the vine row. At deeper depths, ECe usually varied in the 1.5–3 dS/m range, but some
pockets of ECe in the 3–7 dS/m range were observed. Such variation in ECe in the soil
profile is normal as salt concentrations dynamically vary in space and time in response to
irrigation, rainfall, evaporation, and transpiration. Similar salt distributions were observed
until flowering/full bloom, which provided favorable conditions for growth and good vine
health during the initial stages of development sensitive to salinity.

Figure 7. Spatiotemporal prediction of salinity dynamics (ECe) in the soil under river water (Rw)
irrigation at indicated dates (31 August—bud burst, 31 October—flowering, 31 January—veraison,
and 30 April—harvest) during (a) 2017–18, (b) 2018–19, (c) 2019–20, (d) 2020–21, and (e) 2021–22
under a grapevine.

At veraison, the soil region with an ECe of 1.5–3 dS/m expanded, and pockets of much
higher ECe (3–5 and 5–7.5 dS/m) also developed, especially during 2018–19 and 2019–20.
These high salinity zones expanded further during the veraison to harvest period (February-
April). During this stage, regulated deficit irrigation was applied to enhance the wine
quality traits [113,114]. The imposition of deficit conditions results in the upward movement
of water and salts in the soil in response to evaporative fluxes at the soil surface and
transpiration fluxes from the root zone. This phenomenon (capillary rise) increases ECe in
the region below the tree line compared to the mid-row region. Numerous studies reported
similar observations under varied climate, cultivar, and irrigation conditions [28,31]. The
salts deposited in the root zone need to be leached deeper into the soil before the start of the
next growing season. Therefore, winter rainfall during the dormant stage plays a critical
role in managing irrigation-induced salt accumulation in the soil.

The brackish water (Gw) irrigation scenario resulted in a rapid increase in ECe in
the soil (Figure 8). At harvest in the 2017–18 season, ECe in the soil varied between 3
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and 25 dS/m. These pockets of high salinity were normally observed in the upper soil
layer (0–40 cm) away from the drip line as the lateral wetting front pushed the salts
outward from the vine row [44]. Although subsequent winter rain in the following season
(2018–19) reduced the high salinity regions, ECe remained very high at the time of bud
burst and increased continuously during the growing season. In the subsequent seasons
(2019–22), high ECe regions further expanded as there was limited rainfall to aid leaching,
and more salts were added through irrigation. Eventually, a large region of high salinity
(7.5–25 dS/m) developed during the five years of irrigation with Gw, which could impact
the sustainability of irrigated vineyards. High soil salinity due to brackish water irrigation
of grapevines has been previously reported in the study region [27,79] and other parts of
the world under similar climates [36]. These results suggest that grapevine irrigation with
Gw is unsustainable and would result in a rapid salt buildup in the soils. Spatiotemporal
ECe distributions in other scenarios are expected to vary between the two extreme examples
of irrigation water quality (Figures 6 and 7).

Figure 8. Spatiotemporal prediction of salinity dynamics (ECe) in the soil under brackish water (Gw)
irrigation at indicated dates during (a) 2017–18, (b) 2018–19, (c) 2019–20, (d) 2020–21, and (e) 2021–22
under a grapevine.

The model-predicted average daily rootzone salinity (ECe) distributions for the 16 sce-
narios from 2017 to 2022 are compared in Figure 9. The data showed that the ECe values
remained close to or lower than the tolerance threshold for the river water (Rw) irrigated
scenarios except for reduced rainfall (Rw_d) where the salinity was slightly higher due to
a rapid reduction in the drainage component. Alternating Rw and Gw irrigations (Alt_nl)
and blending Rw and Gw in a 1:1 ratio (Mix_nl) with leaching irrigation scenarios showed
rootzone ECe comparable to the Rw irrigation. These results suggest that these scenarios
are promising approaches for the adaptation to drought seasons or low water allocations
from the river. In all other scenarios, rootzone ECe increased consistently with time until
April 2020. Thereafter, ECe decreased in response to good winter rainfall and a couple of
large rain events (30 and 61 mm) occurring in April 2020, which generated intense leaching,
pushing the salts deeper into the soil. Salinity (ECe) increased again during the post-2021
vintage and then decreased gradually during the post-spring season (October 2021). These
troughs and peaks in the rootzone salinity are normal occurrences and reflect the extent of
leaching triggered by winter rainfall and irrigation. Normally, troughs contribute signifi-
cantly to salt leaching below the root zone and help reduce the salinity to a great extent.
Thus, spatiotemporal salinity dynamics in different scenarios represent a dynamic system
that needs constant monitoring and appraisal of drainage, leaching, and soil degradation.

203



Land 2023, 12, 1947

Figure 9. Model predicted average daily rootzone salinity (ECe) in the soil under a grapevine irrigated
with different water qualities and reduced rainfall scenarios (Rw = river water, Gw = brackish water,
Alt = an alternate application of river and brackish water, Mix = mixing river and brackish water
in a 1:1 proportion, n = normal rainfall, d = 20% less rainfall, and l = 30 mm annual leaching
irrigation) during 2017–22. The red dotted line shows the threshold ECe (2.1 dS/m) for the grapevine
salinity tolerance.

The daily average ECe values predicted by the model for different scenarios are box-
plotted in Figure 10. All scenarios with Rw irrigation (Rw_n, Rw_nl, Rw_d, and Rw_dl)
and alternate mode irrigation (Alt_nl) showed median rootzone ECe values close to the
grapevine tolerance threshold. Rootzone salinity (ECe) under all Gw, Mix, and Alt scenarios
under drought season (d) showed significantly higher values than Rw_n (current prac-
tice). The average ECe under the brackish water (Gw) irrigation with reduced rain (Gw_d)
increased three times relative to Rw_n. The Mix and Alt scenarios with reduced rainfall
(drought season) also resulted in salt concentrations higher than the grapevine tolerance
threshold. This indicates increased exposure of grapevine roots to high osmotic pressure,
which may restrict plant uptake. Ben-Asher et al. [65] observed a four-fold increase in the
rootzone salinity (from 2 to 8 dS/m) in sandy loam soil with an ECiw of 4.8 dS/m irrigation
of grapevine over a single growing season.

Figure 10. Distributions of predicted daily average rootzone salinity (ECe, dS/m) in different scenarios
(Rw = river water, Gw = brackish water, Mix = mixing Rw and Gw in a 1:1 proportion, Alt = monthly
alternate use of Rw and Gw, n = normal rainfall, d = 20% less rainfall, and l = 30 mm annual leaching
irrigation) during 2017–22. The red dotted line shows the threshold ECe (2.1 dS/m) for the grapevine
salinity tolerance.

Blended water (Mix_n) showed a 21% reduction in salinity compared to brackish
water irrigation (Gw_n). Monthly alternating Rw and Gw (Alt_n) irrigation reduced the
salinity by 28% compared to Gw_n. Despite a reduction in salinity in these scenarios,
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the average ECe values (4.5 and 3.8 dS/m) remained higher than the corresponding ECe
observed under the current practice (Rw_n). Average rootzone ECe values in the Alt (Alt_n)
and Mix (Mix_n) scenarios under normal rainfall (n) were further reduced to 3.3 and 3.6
dS/m, respectively, but were still higher than the crop tolerance level. The Alt_n scenario
showed non-significant differences in average ECe compared to the current irrigation
practice (Rw_n).

The annual leaching irrigation of 30 mm during spring (1st September) showed a
drastic reduction in the rootzone salinity values in all water quality scenarios (Rw, Gw, Mix,
and Alt). Under normal rain (n), leaching irrigation (l) decreased the average rootzone
salinity by 17–24% in different water quality scenarios, and the mean ECe values decreased
to 2.5 and 2.9 dS/m, respectively, in the Alt_nl and Mix_nl scenarios, which were statistically
at par with Rw_n and fell in the range of suitable for grapevines [75]. The reduction in
ECe varied from 8 to 17% only under l for reduced rain scenarios (Gw_dl, Mix_dl, and
Alt_dl) compared to their respective scenarios without leaching (Gw_d, Mix_l, and Alt_l)
and ECe (3.2–4.9 dS/m) remained above the tolerance threshold for grapevines. These
results suggest that annual leaching irrigation of more than 30 mm is required for salinity
control in the heterogeneous soils at the study site.

3.5. Leaching Fraction

The fraction of applied water leaving the root zone (leaching fraction, LF) plays a key
role in flushing the soluble salts and chemicals out of the root zone and helps facilitate the
congenial environment for root water and nutrient uptake essential for plant growth. The
estimated annual LF in the current study varied from 0.05 to 0.16 in different scenarios
over the simulation period (2017–22) (Figure 11). Typically, LF smaller than 0.1 may favor
the salt buildup in soils, posing a threat to the long-term sustainability of crops. Under
the current irrigation practice (Rw_n), the LF was larger than 0.1 only during 2020–21 due
to several large rainfall events (>30 mm) early in the season. It was able to produce an
appreciable volume of drainage that transported salts below the root zone. It signifies the
importance of large rain events to flush the irrigation-induced salinity below the root zone.
However, high-intensity rain events may generate more runoff than infiltration into the
soil, depending on the soil type and surface conditions.

Figure 11. Annual leaching fractions (LF) below the root zone (120 cm) of a grapevine under
different water quality (Rw = river water, Gw brackish water, Mix = mixed Rw and Gw in a 1:1 ratio,
Alt = monthly alternate use of Rw and Gw) and management scenarios (n = normal rainfall, d = 20%
less rainfall, and l = 30 mm annual leaching irrigation) during 2017–22 estimated from model predicted
water balance components.

Extremely low LF values (0.005–0.021) were observed during the 2018–19 season
across all scenarios, as annual rainfall (283 mm) was lower than the long-term average of
392 mm [59] in the region, and a few rain events >20 mm (which could generate LF) were
almost negligible. Application of drought season conditions (20% reduction in the annual
rain; the ‘d’ scenarios) had a tremendous impact on the drainage volume because the annual
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LF was reduced by 7–74% during different years. Average LF decreased by 33 to 52% in the
reduced rainfall scenarios (the ‘d’ scenarios) as compared to the normal rainfall scenarios
(the ‘n’ scenarios) under different water qualities (Gw, Mix, and Alt); the reduction was
highest in Rw and the lowest in the Gw scenarios. The development of high salinity regions
in the root zone of the Gw irrigation scenarios reduced RWU and allowed more water to
drain below the root zone. Negative correlations were observed between the reduction in
RWU and LF under Gw (−0.98), Mix (−0.98), and Alt (−0.98) irrigation scenarios. Other
studies have also reported a similar negative correlation between transpiration and LF [115].
However, numerous other factors, such as soluble chemical constituents, soil physical state,
and flow conditions, may also profoundly impact LF.

The application of annual leaching irrigation (l) of 30 mm in the spring over multiple
growing seasons had a tremendous impact on the extent of drainage and leaching of
soluble salts in all scenarios (Figure 11). LF increased from 3 to 225% in the normal
irrigation scenarios (nl) and from 9 to 220% in the reduced rainfall scenarios (dl). The mean
increase in LF for river (Rw), brackish (Gw), 1:1 blending (Mix), and monthly alternate
(Alt) irrigation under normal and reduced rainfall was 31, 18, 26, and 21% and 55, 22, 38,
and 33%, respectively, compared to the corresponding no-leaching irrigation scenarios.
Among the seasons, 2018–19 recorded a four-fold increase in LF, although it was still
less than 0.1. Even this small leaching fraction can greatly impact the salt balance in
the soil. The LF increased above 0.1 during the 2017–18, 2020–21, and 2021–22 seasons,
rapidly flushing the salts out of the root zone. The application of annual leaching irrigation
(l) under Rw irrigation (Rw_nl) showed an overall depletion of 1.2 t salts/ha over the
simulation period (Figure 12a). However, in all other scenarios, salt deposition varied
from 2.2 to 16.7 t/ha in response to the salts added through different modes of irrigation
application. Therefore, rootzone salt depletion occurred only in the Rw_nl scenario over
the simulation period. Nonetheless, annual leaching irrigation with the Gw, Mix, and Alt
irrigation modes produced a 1.8–2.2 t/ha reduction in the rootzone salts, indicating this as
a viable management option to manage the irrigation-induced salts in the soil.

Figure 12. Leaching efficiency (a) in terms of salts leached/salts applied (LEs, kg/kg), salts
leached/drainage volume (LEd, kg/m3), and salts deposited (+)/depleted (−) in the soil root zone
(120 cm) at the end simulations (b) for different scenarios (Rw = river water, Gw = brackish water,
Mix = mixed Rw and Gw in a 1:1 ratio, Alt = monthly alternate use of Rw and Gw) and managements
(under normal n, drought season d, and leaching irrigation l scenarios).

3.6. Leaching Efficiency

The leaching efficiency of salts (LEs) is defined as the ratio of the salt mass leached
below the crop root zone and the salt mass added through irrigation and rainfall during
a given time (e.g., an annual or crop cycle), which offers a more quantitative measure of
the salt balance [27,116] under drip irrigation. The maximum value of LEs (1.5 kg salts
leached/kg added) was observed in the river water with the leaching irrigation (Rw_nl)
scenario, followed by Rw_n (1.14 kg salts leached/kg added), while the lowest LEs values
(0.2–0.3 kg salts leached/kg added) were found in the reduced rainfall scenarios (Gw_d,
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Rw_d, Alt_d, and Mix_d), indicating a profound influence of drought period conditions,
which lead to a rapid reduction in the leaching fraction and drainage volume (Figure 12b).
Annual leaching irrigation (l) (30 mm) increased LEs by 31, 18, 29, and 34% in the Rw,
Gw, Mix, and Alt scenarios, respectively, with normal rainfall compared to their respective
scenarios without leaching irrigation. The annual leaching irrigation also showed a much
higher increase in LEs (32–139%) in the reduced rain (drought season) scenarios.

Leaching efficiency in terms of the amount of salts leached with a drainage volume
(LEd) below the root zone varied from 1.3 to 4.5 kg/m3 between scenarios (Figure 12b). The
maximum value was observed in Gw_dl whereas the lowest was observed under Rw_d
because of a higher amount of salts in the former scenario. It suggests that a small leaching
fraction in the Gw_dl scenario triggered large quantities of salts transported out of the
root zone that had accumulated from the Gw irrigation. The average LEd was larger than
1 in all scenarios, which may not imply that rootzone salinity has been reduced below
the crop threshold. For example, even in the Rw_n scenario, the salt balance showed an
increase of the initial salt mass by 0.53 t of salts/ha out of 4.05 tons/ha of salts added
over the simulation period (2017–22) (Figure 12a). It suggests that LEd represents only
the intensity factor for salt leaching and may not provide a valid criterion to estimate the
leaching requirement (LR) for salinity management.

The LR is LF, which, when passed through the root zone, reduces the rootzone salts
below the crop threshold [117]. Estimation of LR following steady state uniform soil
conditions typically overestimates LR required for heterogeneous soils that have variations
in their wetting patterns under drip and micro irrigation systems [118,119]. Hanson
et al. [44] observed that, in drip-irrigated systems, it is hard to determine LR due to
spatially variable soil wetting patterns that lead to localized leaching below the drip line,
depositing large amounts of salts laterally along the wetting fronts, as observed in the
current study (Figures 7 and 8). Calibrated numerical models that accurately simulate water
and salt movement under drip irrigation can help develop better salinity management
guidelines [19]. Phogat et al. [27] estimated LEs in various soils, climatic conditions, water
qualities, and irrigation schedules applied to vineyards. They reported large differences in
LEs values obtained for light-textured deep uniform soil (>1 kg salts leached/kg added)
compared to heavy-textured heterogeneous soils (0.12–0.13 kg salts leached/kg added),
showing a tremendous influence of inherent soil transmission properties. They concluded
that in drip irrigation systems, LF that corresponds to LEs ≥ 1 could potentially leach
annually added salts from the root zone. Such LF can serve as a good estimate for the
leaching of irrigation-induced salts from the root zone. In the current study, LEs > 1 was
observed in the Rw_nl and Rw_n scenarios, which had an average LF of 0.09 and 0.07
(Figure 13), respectively, and the average rootzone salinity less than the tolerance threshold
of grapevines (Figure 13), maintaining a favorable environment for normal vine growth.
This suggests that LEs > 1 proposed in the previous study [27] can serve as a good indicator
for sustainable crop production for different soils, climates, and irrigation managements.
However, restricted drainage conditions [51], high SAR of irrigation water, and high soil
ESP, especially in the subsoils, have an immense impact on the mobility of salts in the
soil [116,120,121] and require different management options for salinity control [21].

Water quality and annual rainfall strongly influence the salt leaching in the soil. A
strong positive linear relationship (R2 = 0.99) was found between irrigation water sources
(Rw, Gw, Mix, and Alt) and the corresponding leaching fractions (LF) (Figure 13). A
threshold LEs for salinity control (LEs > 1) was achieved with an LF of 0.07, 0.12, 0.12, and
0.15 for Rw, Mix, Alt, and Gw water quality irrigation, respectively. This suggests that LR
increased proportionately to the salts added through irrigation. Irrigating the grapevines
below the water requirement added a smaller mass of salts in the soil but could not provide
adequate leaching for salinity control in the study region [79]. The LEs also showed a very
weak but positive linear relationship with annual rainfall, suggesting that an increase in
annual rainfall influenced the mobilization of salts out of the root zone, depending on
the timing, amount, and intensity of the rain events. It is worth noting that under the
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current irrigation practice (Rw), annual rainfall equal to the long-term average (390 mm) can
generate LEs > 1, suggesting a typical threshold for maintaining appropriate salt balance in
the soil for irrigated viticulture at the study site (Figure 13b).

Figure 13. Relationship between (a) leaching efficiency in terms of salts leached/salts applied (LEs,
kg/kg) and the leaching fraction (LF) and (b) LEs and annual rainfall under river water (Rw), brackish
water (Gw), mixed Rw and Gw in 1:1 proportion (Mix), and monthly alternate irrigation of Rw and
Gw (Alt) at the study site.

Numerous other studies have shown a strong influence of rainfall on leaching salts
out of the crop root zone. Cucci et al. [122] found that rainfall in autumn and winter
produced a good salt-leaching effect in a sandy clay loam in southern Italy. Isidoro and
Grattan [120] also reported that winter rainfall increased leaching compared to rainfall dis-
tributed uniformly throughout the year. Similar observations were reported for monsoonal
climates [18], where annual rainfall with high-intensity events occurred during a short
period (July–September).

4. Conclusions

An appropriate risk assessment is required for integrating brackish water (Gw) into
crops’ irrigation schedules to provide effective soil salinity management. Estimated low
values of actual basal (Kcb act) and single (Kc act) crop coefficients estimated in this study
over five seasons demonstrated that grapevines were irrigated under sustained deficit
conditions. Under the Mediterranean-type climate, winter rainfall is considered to generate
appropriate leaching to maintain a favorable environment. Simulated results confirm
that rainfall reduction (20%) over the five years potentially leads to rapid soil salinization
across all modes of irrigation scenarios [river water (Rw, 0.32 dS/m); brackish water (Gw,
3.2 dS/m); 1:1 blending of brackish and river water; and monthly alternate use of Rw and
Gw], severely impacting the sustainable production of wine grapes. Under these conditions,
it becomes quite imperative to manage the rootzone salts by applying appropriate leaching
to maintain the sustainability of vineyards.

Models suggested that in the absence of favorable rainfall, leaching irrigation (l) with
good-quality water (Rw) at the beginning of the growing season could best use this high-
quality but low-availability water source. This strategy significantly increased the salt
leaching efficiency (LEs), and a threshold LEs for salinity control (LEs > 1) was achieved
with a leaching fraction (LF) of 0.07, 0.12, 0.12, and 0.15 for Rw, Mix, Alt, and Gw water
quality irrigation, respectively.

Results further demonstrated that blending or alternating saline brackish water with
non-saline surface water reduced the extent of salt deposition in the soil relative to the
application of Gw only. These options can be explored further depending on the extent of
salts in brackish water under projected climate change.

This study recommends applying leaching irrigation early in the season before bu
burst when the soil is almost saturated with winter rain. It provides a strategic management
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option during drought season and periods of low freshwater allocation to develop resilience
for maintaining sustainable production. However, these options need location-specific
evaluation and continuous monitoring of climate, soil, and plant systems to enable long-
term adaptation and resilience for irrigated viticulture and other crops.
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Appendix A

Appendix A.1. Brief Description of the Model

This study used a numerical model (HYDRUS-2D; [53]) to simulate the water flow
and salt transport in the soil under wine grapes. The governing two-dimensional water
flow equation for an isothermal and isotropic medium is described as follows:

∂θ

∂t
=

∂

∂x

(
K(h)

∂h
∂x

)
+

∂

∂z

(
K(h)

∂h
∂z

+ K(h)
)
− S(h, hs, x, z, t) (A1)

where θ is the soil water content (L3 L−3); t is the time (T); h is the soil water pressure head
(L); x is the horizontal coordinate; z is the vertical coordinate (positive upwards); K(h) is
the hydraulic conductivity (LT−1); and S(h, hs, x, z, t) is the sink term accounting for water
uptake by plant roots (L3L−3T−1).

Water extraction S(h, hs, x, z, t) from the soil was computed according to the Feddes
macroscopic approach [74]. In this method, the potential transpiration rate, Tp, is distributed
over the root zone using the normalized root density distribution function, β(x, z, t), and
multiplied by the dimensionless water [α1 (h)] and salinity stress [α1 (hs)] response functions
as follows:

S(h, hs, x, z, t) = α1(h, hs, x, z, t)Sp(x, z, t) = α1(h, hs, x, z, t)β(x, z, t)Tp(t) (A2)

This model calculates plant root water uptake rates according to the local soil water
pressure head, h, at any point in the root zone. It defines how potential transpiration (Tp) is
reduced below potential when the soil can no longer supply the amount of water required
by the plant under the prevailing climatic conditions. The multiplicative model for the
osmotic head reduction is considered in this study as follows:

α1(h, hs) = α1(h)α1(hs) (A3)
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The reduction of root water uptake due to the water stress, α1(h), is described as

α1(h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, h > h1 or h ≤ h4
h−h1
h2−h1

, h2 < h ≤ h1

1, h3 < h ≤ h2
h−h4
h3−h4

, h4 < h ≤ h3

(A4)

where h1, h2, h3, and h4 are the threshold model parameters. Water uptake is at the potential
rate when the pressure head is between h2 and h3, decreases linearly when h > h2 or
h < h3, and becomes zero when h < h4 or h > h1. These critical values of pressure heads for
grapevine were taken from previous investigations in South Australia [8,72].

Similarly, the threshold model was used to simulate the impact of osmotic (salinity)
stress α1(hs), which states that water is extracted at the maximum rate below the crop thresh-
old (ECe = 2.1 dS/m) osmotic head and the slope of the curve determines the fractional
reduction of water uptake per unit increase in osmotic head (12.8%/ECe unit) beyond the
threshold. These parameters for grapevine were obtained from previous regional salinity
tolerance studies [75].

The spatial root distribution is defined in HYDRUS-2D according to Vrugt [123]:

β(x, z) =
[

1 − z
zm

][
1 − x

xm

]
e−(

pz
zm |z∗−z|+ px

xm |x∗−x|) (A5)

where xm and zm are the maximum width and depth of the root zone (cm), respectively, z*
and x* describe the location of the maximum root water uptake from the soil surface in the
vertical direction (z*) and from the tree position in the horizontal direction (x*), and px and
pz are empirical coefficients. These parameters for grapevine were optimized depending
on the system design parameters and local soil and crop conditions [72].

Appendix A.2. Solute Transport/Salinity Distribution in the Soil

The governing advection-dispersion equation for the simulation of the transport of a
single non-reactive ion in a homogeneous medium is described as
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where c is the concentration of the solute/salts in the liquid phase (ML−3), D is the dis-
persion coefficient (L2T), and q is the volumetric flux density (LT−1). Soil solution salinity
(ECsw) is simulated as a non-reactive solute in the soil, as described in previous stud-
ies [57,76,85]. These studies showed good predictions of soil salinity dynamics in the soil
under intensive irrigation and fertigation conditions.

The longitudinal dispersivity was assumed to be one-tenth of the size of the transport
domain, with the transverse dispersivity being one-tenth of the longitudinal dispersivity
Cote [77]. These values were additionally optimized during the calibration. The salinity of
irrigation (ECiw) was obtained from the water quality analysis available in the literature
and from previous studies. The rainfall chemistry analysis by Cresswell and Herczeg [59]
for the study region provided reliable information about rainfall salinity (ECrw; 0.16 dS/m).
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Figure A1. Daily values of reference crop evapotranspiration (ET0), rainfall, and irrigation applied to
wine grapes at the study site during (a) 2017–18, (b) 2018–19, (c) 2019–20, (d) 2020–21, and (e) 2021–22.
Annual amounts of ET0, rainfall, and irrigation are also given.

Table A1. Values of different parameters used to estimate daily transpiration (Tp) and daily evapora-
tion (Es) for wine grapes for the field site following the FAO-56 DCC approach.

Parameter Value Parameter Season Value

Lini 20 Mid-season Min RH (%) 2017–18 39.2
Ldev 40 2018–19 36.9
Lmid 120 2019–20 33.7
Llate 60 2020–21 36.9

θfc (0–15 cm) 0.23 2021–22 41.0

θfc (15–30 cm) 0.18 Mid-season Av. Wind
speed (m/s) 2017–18 1.9

θfc (30–60 cm) 0.31 2018–19 2.1
θfc (60–100 cm) 0.29 2019–20 2.2

fw 0.3 2020–21 1.8
fw, Rain 1 2021–22 1.8

RAW (mm) 84 Kcb mid adj 2017–18 0.59
TAW (mm) 153 2018–19 0.61
TEW (mm) 21 2019–20 0.62
REW (mm) 7.4 2020–21 0.60

Plant height h (m) 1.5 2021–22 0.59
Rooting depth Zr (m) 1.0 Kcb end adj 2017–18 0.46

Evaporable depth Ze (m) 0.15 2018–19 0.48
Kcb ini (generic) 1 0.20 2019–20 0.49
Kcb mid (generic) 1 0.65 2020–21 0.47
Kcb end (generic) 1 0.50 2021–22 0.46

1 Basal crop coefficient values for medium-density wine grapes from Allen and Pereira [68].
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53. Šimůnek, J.; van Genuchten, M.T.; Sejna, M. Recent developments and applications of the HYDRUS computer software packages.

Vadose Zone J. 2016, 15, 1–25. [CrossRef]
54. Chen, L.-J.; Feng, Q.; Li, F.-R.; Li, C.-S. Simulation of soil water and salt transfer under mulched furrow irrigation with saline

water. Geoderma 2015, 241–242, 87–96. [CrossRef]
55. Phogat, V.; Skewes, M.A.; Cox, J.W.; Sanderson, G.; Alam, J.; Šimůnek, J. Seasonal simulation of water, salinity and nitrate
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Daghari, I.; Younes, A.; Ali, K.B.;

Mariem, S.B.; Ghannem, S. Modeling

Irrigation of Tomatoes with Saline

Water in Semi-Arid Conditions Using

Hydrus-1D. Land 2024, 13, 739.

https://doi.org/10.3390/

land13060739

Academic Editors: Tiago Brito Ramos,

Maria da Conceição Gonçalves and

Mohammad Farzamian

Received: 2 May 2024

Revised: 22 May 2024

Accepted: 22 May 2024

Published: 24 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Modeling Irrigation of Tomatoes with Saline Water in
Semi-Arid Conditions Using Hydrus-1D
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Abstract: In arid and semi-arid regions like Tunisia, irrigation water is typically saline, posing a risk
of soil and crop salinization and yield reduction. This research aims to study the combined effects of
soil matric and osmotic potential stresses on tomato root water uptake. Plants were grown in pot and
field experiments in loamy-clay soils and were irrigated with three different irrigation water qualities:
0, 3.5, and 7 dS/m. The Hydrus-1D model was used to simulate the combined dynamics of subsurface
soil water and salts. Successful calibration and validation of the model against measured water and
salt profiles enabled the examination of the combined effects of osmotic and matric potential stresses
on root water uptake. Relative yields, indirectly estimated from actual and potential transpiration,
indicated that the multiplicative stress response model effectively simulated the measured yields and
the impact of saline water irrigation on crop yields. The experimental and modeling results provide
information to aid in determining the salinity levels conducive to optimal crop growth. The findings
indicate that the selected salinity levels affect tomato growth to varying degrees. Specifically, the
salinity levels conducive to optimal tomato growth were between 0 and 3.5 dS/m, with a significant
growth reduction above this salinity level. The gradual salinization of the root zone further evidenced
this effect. The scenario considering a temperature increase of 2 ◦C had no significant impact on crop
yields in the pot and field experiments.

Keywords: soil; saline water supply; irrigation; tomato; Hydrus-1D; Tunisia

1. Introduction

Saline water poses a significant challenge to agricultural sustainability in Tunisia, a
country characterized by arid and semi-arid climates. With limited freshwater resources,
Tunisia heavily relies on alternative water sources for irrigation, including saline waters
(waters containing high concentrations of dissolved salts), which presents both opportu-
nities and challenges for agriculture in Tunisia. The use of saline water for irrigation is
widespread in Tunisia, driven by the scarcity of freshwater resources and the increasing
demands of agriculture [1]. Saline water sources include groundwater with elevated lev-
els of dissolved salts and treated wastewater from various sources [2]. In some regions,
desalination plants have also been established to convert seawater into usable irrigation
water [3]. Brackish water requires careful management to avoid negative impacts on soil
quality and crop productivity [4,5].

When saline water is applied to the soil, salts accumulate over time, increasing soil
salinity levels. It can also contribute to soil erosion and degradation, further exacerbating
land degradation issues in Tunisia [6]. In addition to soil salinization, saline water irrigation
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can directly impact crop health and productivity. Many crops are sensitive to high soil and
irrigation water salt concentrations. Excessive salt levels can cause physiological stress in
plants, leading to reduced growth, yield losses, and even crop failure [7]. Certain crops,
such as tomatoes, are particularly sensitive to salinity stress, making them susceptible to
yield reductions when irrigated with saline water [8]. Despite these drawbacks, saline
water irrigation also has some benefits for agriculture in Tunisia. Waters containing high
concentrations of dissolved salts are often more readily available and less expensive than
freshwater sources, providing an alternative water supply for irrigation during water
scarcity [9].

Modeling irrigation with saline water is crucial for understanding its effects and im-
plementing effective mitigation strategies. Modeling can be performed using hydrological
models, such as Hydrus-1D [10]. These models simulate water movement and solute
transport in soils, allowing researchers and farmers to predict how saline water affects soil
salinity, crop growth, and yields over time [11]. Using different data for soil hydraulic prop-
erties, irrigation practices, and water quality, these models can simulate various scenarios
and assess the effectiveness of different management strategies [12]. Modeling can also aid
in identifying the most suitable crops for irrigation with water of a given salinity. Indeed,
some crops have higher salt tolerance than others, and modeling can help determine which
crops are best suited for cultivation in saline environments. Additionally, models can
evaluate the impact of different irrigation strategies, such as drip irrigation or leaching, on
soil salinity levels and crop productivity [13].

Several models have been developed to simulate water flow and solute transport
in soil profiles with plants, such as Hydrus-1D [14,15], SWAP [16], and SALTMOD [17].
In this study, we use the Hydrus-1D model because of its distinct advantages over the
other models in modeling root water uptake under various environmental stresses. The
Hydrus-1D model offers superior capabilities in simulating water and salt dynamics in
the soil profiles with plants under saline irrigation conditions, allowing more accurate
predictions of crop responses to varying salinity levels [18,19].

Increased temperatures due to climate change can severely affect tomato production [20].
Increased temperatures can accelerate evaporation, potentially depleting soil moisture [21].
This can negatively impact tomato plants, affecting their growth and yield [22]. Higher
temperatures can also alter the phenological stages of tomato plants, affecting flowering, fruit
set, and ripening [23]. As temperatures rise, evaporation rates increase, concentrating salts in
the soil. This increased soil salinity can adversely affect tomato plants, reducing their ability to
absorb water and nutrients, stunting growth, and reducing yields [5].

The objectives of this study are: (i) to integrate the effects of soil matric and osmotic
potentials into modeling water and salts transport, (ii) to study the effects of saline water
irrigation on tomatoes cultivated under semi-arid conditions to provide a framework for un-
derstanding the complex interactions between soil, water, and crops in saline environments,
and (iii) to evaluate the effects of an increase in mean air temperature on soil water and
salts dynamics and tomatoes’ root water uptake and, ultimately, yield. Haut du formulaire.

2. Materials and Methods

2.1. Experiment Design and Measurements

The experimental trials were conducted on a land parcel (36◦51′36.791′′ N, 10◦11′36.795′′ E)
in the Ariana region, a semi-arid area in north Tunisia, during the year 2018. The soil is
loamy clay. The study focused on a tomato variety, Rio Grande, commonly cultivated in
Tunisia. Planting was done on 16 March 2018 in the pot experiment and on 17 April 2018 in
the field experiment. A spacing of 25 cm between plants and 50 cm between rows was used
in the field experiment. Tomato harvesting occurred on 10 June 2018 in pot cultivation and on
3 August 2018 in field cultivation. Both pot and field experiments were conducted under natural
meteorological conditions. The field and pot experimental data are not compared against each
other (since they were not carried out at the same time). Instead, they are used to calibrate and
validate the Hydrus-1D model and assess its ability to account for environmental stresses.
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The water requirements of the crops were estimated using climate data from the
past 10-year period obtained from the National Institute of Meteorology. The average
values were used to estimate the reference evapotranspiration using the Penman–Monteith
formula (FAO-56). For calculating the actual evapotranspiration, crop coefficient values
for the three growth stages were taken from those proposed by Allen et al. (1998) [24].
These values are as follows: Kc = 0.6 (initial stage), 1.15 (mid-stage), and 0.8 (final stage).
The CROPWAT 8.0 software (FAO, 1998; FAO, 2009) was utilized to establish the irrigation
schedule. Water requirements for tomato cultivation are approximately 720 mm.

Surface irrigation was used to deliver water to each individual tomato plant. The
irrigation scheduling in the pot and field experiments, mean temperatures, and reference
evapotranspiration are presented in Figure 1. No rainfall events were recorded during the
tomato growing season. In the field experiments, irrigation was applied every three or
four days based on 100% of estimated evapotranspiration (Figure 1). In the pot experiments,
irrigation was applied every two or three days until the soil water content reached field
capacity (34% in terms of the volumetric soil water content). Soil field capacity was
measured using a pressure plate apparatus (for a pressure head of −300 cm). The amounts
of water added were recorded for each pot (Figure 1). The average wetted area was 45% in
the field experiment and 65% in the pot experiment. Irrigation water provided to the plants
had three different qualities: distilled water with a salinity of 0 dS/m, saline water with
a salinity of 3.5 dS/m, and saline water with a salinity of 7 dS/m. Volumetric soil water
content was measured using the gravimetric method, and soil salinity was measured using
the saturated paste extract method [25] with three replicates. In the pot experiment, soil
samples were taken every ten days until the end of the tomato plant cycle to characterize
soil water and soil salt content. In the field experiment, the soil water content was measured
on days 1, 30, 60, and 109 after planting every 20 cm down to a depth of 80 cm.

Figure 1. Mean temperatures, reference evapotranspiration (top), and tomato irrigation scheduling
(bottom) in the pot and field experiments.
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2.2. Hydrus-1D Model
2.2.1. Theory

Hydrus-1D [14,15] is a numerical model that uses the Galerkin finite element method
to solve the Richards equation governing water dynamics in the unsaturated zone:

∂θ

∂t
=

∂

∂z

[
K
(

∂h
∂z

+ 1
)]

− S (1)

where h is the water pressure head [L], θ is the soil volumetric water content [L3L−3], t is
time [T], z is the depth measured from the land surface (positive downward) [L], S is a sink
term [L3L−3T−1], and K is the soil unsaturated hydraulic conductivity [LT−1].

Hydrus-1D uses the van Genuchten–Mualem soil hydraulic functions to represent
soil hydraulic properties. The soil water retention [26] and hydraulic conductivity [27]
functions are as follows:

θ(h) =

{
θr +

θs−θr

(1+|αh|n)m h < 0

θs h ≥ 0
(2)

K(h) = KsS0.5
e

[
1 −

(
1 − Se

1/m
)m]2

(3)

Se =
θ − θr

θs − θr
(4)

where θr is the residual water content [L3L−3]; θs is the saturated water content [L3L−3];
α [L−1], n (n > 1), and m = 1 − 1/n are shape parameters; Se is the effective saturation; and
Ks is the saturated hydraulic conductivity [LT−1].

Hydrus-1D uses the Galerkin finite element method to solve the advection–dispersion
equations (ADE) governing solute transport:

∂θC
∂t

=
∂

∂z

[
θD

∂C
∂z

]
− ∂qθC

∂z
(5)

where C is the solute concentration of the liquid phase [ML−3], D is the dispersion coefficient
[L2T−1], and q is the Darcy velocity [LT−1]. When neglecting molecular diffusion, the
dispersion coefficient is defined as:

D = λq (6)

where λ is the soil longitudinal dispersivity [L].
The sink term, S, represents the volume of water removed from a unit volume of soil

per unit time due to plant water uptake. The Feddes model, as described by [18], was
employed to simulate root water uptake. Three stress response function models available in
Hydrus-1D were evaluated for the simulation of salt stress: the additive model (Additive),
the threshold model (T-Model), and the S-shape model (S-Model). The last two models
are multiplicative models, combining the Feddes model [28], accounting for saturation
stress, with either the “Threshold and Slope” model of Mass [29] or the S-shape model of
van Genuchten [30], accounting for salinity stress. The theoretical underpinnings of these
models are elaborated in the Hydrus-1D manual, with specific parameter values provided
for tomato crops.

2.2.2. Soil Hydraulic Properties and Solute Transport Parameters

The estimation of the soil hydraulic parameters, namely the van Genuchten parameters
in the water content–pressure head (Equation (2)) and conductivity–saturation (Equation (3))
relationships, was based on soil column evaporation experiments [31].

The dispersion coefficient, a crucial parameter in solute transport in unsaturated
soils, cannot be measured, and we thus resorted to indirect methods. Experiments on soil
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columns were conducted using PVC tubes with a diameter of 15 cm filled with 10 cm of
soil. The columns were slowly saturated from the top with distilled water. A Mariotte
bottle was placed at the top of the column to maintain a constant pressure head of about
3 cm and steady-state flow conditions. A pulse (50 mL) of a potassium chloride solution
(0.8 M, 8.4 dS/m) was manually applied [32,33]. Effluent samples of approximately 100 cm3

were used to measure soil electrical conductivity and determine the solute breakthrough
curve (BTC). The experimental BTC values were fitted using the analytical solution of the
ADE using CXTFIT 2.1 software [34] to estimate the dispersion coefficient.

2.2.3. Model Calibration and Validation

The Hydrus-1D model was calibrated using measured soil water content and salinity
profiles in both pots and field experiments irrigated with fresh water (i.e., 0 dS/m). The
validation of the Hydrus-1D model was carried out by keeping the same input parameters
and only changing the water quality in both cases of this study (pot and field experiments).

2.3. Statistical Evaluation of Modeling Results

Simulation results were evaluated graphically and statistically. In the graphical
method, the measured and simulated volumetric water content values were plotted as a
function of soil depth. The statistical approach involved calculating the root mean square
error (RMSE; in %):

RMSE =

√
∑n

i=1 (si − mi)
2

n
× 1

m
× 100 (7)

where si is the simulated value, mi is the measured value, m is the average observed value,
and n is the number of observations.

3. Results and Discussion

3.1. Soil Water Content Dynamics

The variations in the soil water content in the pot experiments are presented in Figure 2.
During the first month after the start of irrigation, the water content gradually increased to
reach the field capacity (34%) in all three pots irrigated with different water qualities [35–37].
The water content of the soil irrigated with the saltiest water (7 dS/m) remained at the
field capacity. As the soil salinity increased with frequent irrigations, osmotic pressure also
increased, preventing root water uptake. Irrigations with the other two water qualities did
not block water extraction by the plant roots, and the soil water content decreased over
time. The soil irrigated with fresh water (0 dS/m) had the lowest water content values, as
the plant roots extracted water without any osmotic potential constraints.

Figure 2. Measured soil water content (in %) in the pot experiments irrigated with different water
qualities (0, 3, and 7 dS/m).

The soil water profiles, measured every 30 days in the field experiment with tomatoes
irrigated with fresh water, are illustrated in Figure 3a. This figure shows the variations
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in soil water content without significant osmotic potential effects. Indeed, the soil water
content profiles show dynamics that reflect infiltration (wetting) and evaporation (drying)
episodes. After 109 irrigation days, the water content exceeded the field capacity, indicating
that the roots did not undergo water stress.

 
(a) (b) 

Figure 3. Measured soil water content (in %) in the field experiments with tomatoes irrigated with
(a) fresh water (at 30, 60, and 109 d) and (b) waters of different salinities (0, 3, and 7 dS/m) (at
109 days).

Figure 3b shows the water content profiles measured after 109 irrigation days in
field experiments irrigated with waters of different qualities. The water content in the
surface layers is very close to field capacity (34%), while it increases considerably with
depth, indicating deep water infiltration. The irrigation strategy based on calculating
the water needs using climatic parameters from the previous ten years to estimate actual
evapotranspiration succeeded in not subjecting the crop to water stress [38]. However,
deep percolation shows that crop water needs were overestimated [39].

3.2. Soil Salinity Dynamics

The variations in the average soil salinity in the pot experiments irrigated with waters
of different qualities are shown in Figure 4. This figure shows a nearly constant level of
salinity in soils irrigated with fresh water and a gradual increase in soil salinity in soils
irrigated with lower-quality waters, reaching 8 dS/m when 3.5 dS/m water was used and
12 dS/m when 7 dS/m water was used.

Figure 4. Soil salt content (ECe) in the pot experiments irrigated with waters of different salinities
(0, 3, and 7 dS/m).

In the field experiment irrigated with fresh water, the variations in the soil salinity
profiles measured every thirty days indicated continuous leaching of the initial salinity
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(Figure 5a). In contrast, surface salinity significantly increased during irrigations with
saline waters of 3.5 dS/m and 7 dS/m, reaching 7 dS/m and 12 dS/m, respectively, at
the end of the crop cycle (Figure 5b). Soil salinity is higher near the surface than at depth,
mainly due to evapotranspiration causing salt accumulation near the soil surface [40].

 
(a) (b) 

Figure 5. Measured soil salt content in the field experiments with tomatoes irrigated with (a) fresh
water (at 30, 60, and 109 d) and (b) waters of different salinities (0, 3, and 7 dS/m) (at 109 days).

3.3. Numerical Modeling of Water and Salt Dynamics with Root Water Uptake
3.3.1. Inputs to Hydrus-1D

The soil was considered homogeneous in pot experiments, consisting of a single layer
of 30 cm. In the field experiment, water content and salinity measurements were taken
every 20 cm down to a depth of 80 cm. Four soil layers (horizons) of 20 cm thickness were
considered in the simulations. The values of the van Genuchten–Mualem parameters for
the four soil layers are presented in Table 1. The simulation period lasted 87 days in the pot
experiments, with three output dates of 30, 60, and 87 days. On the other hand, the field
trial lasted 109 days, and the output dates were 30, 60, and 109 days.

Table 1. The soil hydraulic parameters of different soil layers.

Layer (cm) θr (cm3·cm−3) θs (cm3·cm−3) α (cm−1) n (-) Ks (cm·d−1)

Pot experiment

- 0.1 0.41 0.27 1.11 6.41

Field experiment

0–20 cm 0.078 0.546 0.07 1.067 8.87

20–40 cm 0.078 0.544 0.07 1.079 8.87

40–60 cm 0.078 0.445 0.10 1.073 12.6

60–80 cm 0.078 0.443 0.03 1.078 12.5

The dispersivity of the different soil layers varied around 5 cm, except for the 60–80 cm
layer, where it was equal to 3 cm. The distribution coefficient of the adsorption isotherm
ranged between 0.1 g/cm3 and 0.3 g/cm3 for all soil layers. Hydrus-1D includes a database
that provides stress response function values for many crops, including tomatoes, which were
considered here. The initial soil water content and soil salinity values as a function of depth in
the field experiment are shown in Figure 6. In the pot experiment, the initial water content was
20%, and the initial soil salinity was 1.2 dS/m.

For the simulation of field experiments, we used the rainfall and evapotranspiration
data from the National Institute of Meteorology and crop coefficients from [24].
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(a) (b) 

Figure 6. Measured initial (a) water content and (b) salinity as a function of soil depth in the
field experiment.

3.3.2. Simulation Results

The Hydrus-1D model was used to simulate the movement of water and salts in both
pot and field soils, considering root water uptake under the combined effects of soil matric
and osmotic potentials.

Model Calibration

The Hydrus-1D model was calibrated using measured soil water content and salinity
profiles in both pots and field experiments irrigated with fresh water (i.e., 0 dS/m). The
measured and simulated water content and salinity values for both experiments are presented
in Figures 7–9. The measured soil water content values are quite close to the simulated values.
In the field experiment (Figures 7 and 8), the Hydrus-1D model underestimated the measured
water content on day 30 and overestimated it on the other output dates. The model slightly
overestimated the volumetric water content in the pot experiment (Figure 9).

  

  

Figure 7. Measured and simulated (calibration) soil water content (in %) (top) and salinity (in dS/m)
(bottom) in the field experiment irrigated with fresh water at 30 (left), 60 (middle), and 109 (right) days.
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Figure 8. Measured and simulated (validation) soil water content (in %; (top)) and salinity (in dS/m;
(bottom)) in the field experiments irrigated with saline waters of 3.5 dS/m (left) and 7 dS/m (right)
at the end of the experiment.

The measured soil salinity profiles during the two pot and field experiments with
tomatoes irrigated with saline waters and simulated using the Hydrus-1D model are
presented in Figure 9. Overall, the measured and simulated values are similar on all three
output dates. The simulated soil electrical conductivities generally overestimated the
measured values in both experiments.

Model Validation

The validation of the Hydrus-1D model was carried out by keeping the same input
parameters and only changing the water quality in both cases of this study (pot and field
experiments). Figures 6 and 7 show that the simulated soil water content profiles agree well
with the measured profiles for both pot and field experiments. Indeed, for all the output
dates, the simulated profiles are very close to the measured ones.

The model’s performance was evaluated qualitatively (Figures 7–9) and assessed
using statistical evaluations and the RMSE values (Tables 2 and 3). These values are low
(<10%) and highlight the model’s reliability for simulating water and salt dynamics for
both experiments and during the calibration and validation processes [41].

Table 2. Root mean square errors (RMSE, in %) assessing the Hydrus-1D calibration process.

Variable Experiment Date 1 Date 2 Date 3

Soil Water Profile
Field 9.30 7.30 6.40

Pot 10.30 11.10 8.30

Soil Salinity Profile
Field 5.30 2.10 4.60

Pot 2.00 4.50 1.70
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Water quality (3.5 dS/m) 

 
Water quality (7 dS/m) 

(a) (b) 

Figure 9. Measured and simulated time series of soil water content (%) (left) and salinity (dS/m)
(right) in the pot experiments irrigated with (a) freshwater (top) (calibration) and (b) saline waters of
3.5 dS/m (middle) and 7 dS/m (bottom) (validation).

Table 3. Root mean square errors (RMSE, in %) assessing the Hydrus-1D validation process.

Variable Experiment Irrigation Water Quality
RMSE (%)

(on the Final Day)

Soil Water Profile Field
3.5 dS/m 9.10

7 dS/m 1.10

Soil Water Profile Pot
3.5 dS/m 3.00

7 dS/m 1.10

Soil Salinity Profile Field
3.5 dS/m 10.20

7 dS/m 5.70

Soil Salinity Profile Pot
3.5 dS/m 5.20

7 dS/m 3.00
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3.3.3. Crop Yield

The Hydrus-1D model cannot directly estimate the crop yield. However, according
to Oster et al. (2012), the relative yield (Yr) can be estimated as the ratio between the
actual and potential (or maximum) transpiration, which are both provided in the model’s
output files [42]. Figures 10 and 11 show the relative yields for tomatoes irrigated with
waters of different qualities for both experimental pot and field trials simulated using
the three models mentioned above (Additive, T-Model, and S-Model) to represent the
effects of osmotic and matric potentials on crop root water uptake. The simulated relative
yields decreased with increased irrigation water salinity (ECw) for all three stress response
functions (Figure 10). The relative yield is 0.98 in the field experiment with tomatoes
irrigated with fresh water (0 dS/m) for all three stress response functions. However, in the
pot case, Yr equals 0.33 for freshwater irrigation. The reduced root development in pots
compared to the field accounts for this reduction in relative yield [43].

  
Additive T-Model S-Model 

Figure 10. The effect of saline irrigation water on tomatoes’ relative yield (Yr) [−] (top) and the rela-
tionships between the actual (Y) and simulated (Ys) yields (kg/plant) (bottom) using the three stress
response models (Additive, T-Model, and S-Model) incorporated in Hydrus-1D (field experiments).

The actual yields measured in the two trials with different irrigation water qualities
were compared to the simulated yields to identify the most suitable stress response function
model for studying the combined effects of osmotic and matric potentials. According to
FAO Note 66 (2012), Yr = Y/Ymax, where Y is the actual yield, and Ymax is the maximum (or
potential) yield. In our experiments, Ymax is calculated for irrigations with fresh water. The
Ymax value equals 2.53 kg/plant for the field experiment and 4.16 kg/plant for the pot trial.
The values of the simulated relative yields were calculated using these values [42].

Figures 10 and 11 also present linear correlations between the measured and simulated
relative yields. The relative yields simulated using the additive model (Feddes) and the
multiplicative T-Model (combining the Feddes et al. [28] model for saturation stress with
the threshold and slope model of Mass [29] for osmotic stress) were least correlated with the
measured relative yields in both pot and field trials. The multiplicative S-Model (combining
the Feddes model [28] for saturation stress with the S-shape model of van Genuchten [30]
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for osmotic stress) is the only model capable of reproducing the measured relative yields
with a correlation coefficient R2 close to 1 for both pot and field experiments.

 

  
Additive T-Model S-Model 

Figure 11. The effect of saline irrigation water on tomatoes’ relative yield (Yr) [−] (top) and the rela-
tionships between the actual (Y) and simulated (Ys) yields (kg/plant) (bottom) using the three stress
response models (Additive, T-Model, and S-Model) incorporated in Hydrus-1D (pot experiments).

3.4. Effect of Temperature Increase

According to the IPCC (2021), temperatures in Tunisia are expected to increase by
2 ◦C over the coming decades. The effects of this temperature increase on tomato cultivation
were studied (numerically) by increasing the temperature by 2 ◦C. To this aim, the reference
evapotranspiration (ET0) values were recalculated, and simulations were rerun using the
updated ET0 values while all other model parameters were kept unchanged.

The results of these simulations are presented in Figures 12 and 13. In the field
experiment, soil water content exceeded field capacity in the root zone. In deeper layers
between 40 and 80 cm, soil water content decreased after the 60th day, indicating infiltration
beyond the root zone. On the other hand, in the pot experiment, the water content remained
constant and below field capacity. Additionally, the accumulation of salts in the surface
layer increased due to irrigation with saline waters and increased evaporation. The salinity
in the root zone reached an average value of 6 dS/m, and the relative yields estimated
using the S-Model did not change compared to the measured relative yields. An increase
in temperature, thus, did not significantly affect the tomato yields in either trial [20].
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Figure 12. Effects of a temperature increase of 2 ◦C on tomatoes cultivated in field conditions:
relative yield as a function of irrigation water salinity (top left); soil water content profiles at 30,
60, and 109 days when irrigated with freshwater (top right); soil salinity profiles at 30, 60, and
109 days (middle row) when irrigated with fresh water (left) and saline waters of 3.5 (middle)
and 7 (right) dS/m; and average root zone salinity when irrigated with fresh water and saline
waters of 3.5 and 7 dS/m (bottom).

 

Figure 13. Cont.
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Figure 13. Effects of a temperature increase of 2 ◦C on tomatoes cultivated in pot conditions:
relative yield as a function of irrigation water salinity (top left); average soil water content when
irrigated with fresh water (top right); average soil salinity in the 0–30 cm soil layer (bottom left);
and root zone salinity (at 5 cm depth) for irrigations with fresh water and saline waters of 3.5 and
7 dS/m (bottom right).

4. Conclusions

The aridity of regions like Tunisia has prompted the intensification of irrigation prac-
tices. However, the scarcity of good-quality water resources has led to the necessity of using
brackish water in agriculture. The accumulation of salts due to irrigation with such waters
has detrimental effects on both soil and crop yields. Experiments conducted using tomatoes
grown in pots and the field and irrigated with three different water qualities ranging in
salinity from 0 dS/m to 7 dS/m provided data to study the variations in soil water and
salt dynamics. In both pot and field trials, the water content in the root zone (0–30 cm)
remained close to field capacity throughout the crop cycle. The variations in salt pro-
files showed progressive soil salinization depending on irrigation water salinity, reaching
12 dS/m in the pot soil and 8 dS/m in the field soil. Crop reactions to these water qualities
were evaluated using water movement and salt transfer modeling using the Hydrus-1D
model. The combined effects of osmotic and matric potentials were evaluated using three
stress response function models: the additive model and two multiplicative models, the
T-Model and S-Model. The estimated relative crop yields showed that only the S-Model
could reproduce the measured relative yields. A hypothetical 2 ◦C temperature increase
did not significantly affect crop yields. Soil salinization slightly increased due to increased
temperature and evaporation.

Adopting a modeling approach based on soil geochemical characterization and the
UnsatChem module of HYDRUS [14,15], which considers transport and reactions between
major ions (e.g., Ca2+, Mg2+, Na+, K+, SO4

2− CO3
2−, Cl−), would be an alternative ap-

proach to this study, where the risks of soil alkalization and salinization could be more
thoroughly explored for strategic crops like tomatoes. Moreover, to obtain more accurate
yield predictions, using specialized crop models, such as AquaCrop and DSSAT, would be
advisable. These crop models are specifically designed to simulate and predict crop growth
and yield under varying environmental conditions and provide more reliable estimates of
agricultural productivity. Therefore, while Hydrus-1D excels in soil water and salinity dy-
namics, including crop models such as AquaCrop and DSSAT would improve the accuracy
of yield predictions.
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