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Rapid Nondestructive Testing Technology-Based Biosensors for
Food Analysis
Yong-Huan Yun 1,* and Jiangbo Li 2,*
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Food analysis plays a vital role in ensuring the safety and quality of food products.
Traditionally, food analysis is performed through destructive testing, which involves the
physical or chemical alteration of the sample. In recent years, there has been a significant
increase in the demand for food safety, quality, and authenticity. To meet this demand, rapid
nondestructive testing (RNT) technology has become an important tool in the food industry.
It refers to techniques that can analyze the properties of a sample with the advantages of
real-time and in-situ analysis, without causing any damage or alteration to the sample.

Biosensors are analytical devices that employ chemical and biological components to
detect and quantify the existence or concentration of specific substances in a given sample.
They have diverse applications throughout the stages of food production, processing, and
storage, enabling quality control, contamination detection, and hazard identification. Over
the past few years, significant progress has been made in the development of biosensors in
RNT technology for food analysis. Researchers have explored various detection methods,
such as electrochemical, optical, and immunological, to develop biosensors that can detect
specific food contaminants, including pathogens, pesticides, and mycotoxins, with high
precision and sensitivity. Moreover, biosensors have also been developed to detect food
quality parameters, such as nutritional components, freshness, ripeness, spoilage, and
authenticity. These biosensors can help food producers and processors monitor the quality
of their products, reduce waste, and increase the shelf life of the food.

This Special Issue, entitled “Rapid Nondestructive Testing Technology-Based Biosen-
sors for Food Analysis,” includes ten research articles covering electrochemical sensors,
colorimetric biosensors, near-infrared (NIR) spectroscopy, fluorescence spectroscopy (FS),
and hyperspectral imaging (HSI). By integrating sensor data with chemometric algorithms,
researchers have been able to achieve precise detection of various food quality, safety,
and authenticity parameters, including freshness, nutritional components, authenticity,
pesticide residue, heavy metals, fungal infection, and browning due to physiological factors.

Electrochemical sensors are devices that use the interaction between a chemical species
and an electrode to produce an electrical signal, and are powerful tools for detecting and
quantifying chemical species in food analysis. Electronic nose and tongue are two types of
electrochemical sensors that are commonly used in food analysis to detect and identify the
volatile compounds and taste components of food samples. Ren et al. [1] used miniature
NIR spectroscopy and electronic tongue sensors, combined with data fusion strategies and
chemometric tools, for the taste quality assessment and prediction of multiple grades of black
tea, with the ant colony optimization–support vector machine (ACO–SVM) model providing
the highest classification accuracy. Zhao et al. [2] proposed a novel approach to detect fungal
infections in apples using a portable electronic nose and various machine learning models,
including the sparrow search algorithm–backward propagation neural network (SSA–BPNN),
with a high recognition accuracy of 98.40%. The study is valuable for the application of
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electronic noses in the nondestructive and rapid detection of fungal infections in apples. In
addition, Peng et al. [3] presented a molecularly imprinted electrochemical sensor for the
rapid detection of cyromazine residues in fruits and vegetables. The sensor demonstrated
good linearity and reproducibility, with a lower limit of detection of 0.5 µmol/L. This study
provides a basis for the development of methods for detecting pesticide residues in edible
agricultural products. Lian et al. [4] discussed the optimization of data transmission paths for
pest monitoring based on the genetic algorithm (GA), particle swarm optimization (PSO), and
simulated annealing (SA). The results show that the optimized path based on PSO can use
the least amount of time for data transmission. The study provides a reference for improving
the transmission efficiency of agricultural pest monitoring data and developing real-time and
effective pest control strategies.

Colorimetric biosensors are a type of biosensor that produces a measurable color
change in response to a specific analyte. When combined with a smartphone, the camera
can be used to detect and quantify the color change, making it a portable and convenient
method for on-site detection of various substances in food analysis. Gu et al. [5] presented
a real-time detection method for Hg2+ in drinking water using a smartphone as a low-
cost micro-spectrometer. The detection strategy uses a colorimetric sensor based on gold
nanoparticles and glutathione conjugate, with a limit of detection (LOD) of 1.2 nM. The
sensor was successfully applied to different types of water samples, including natural
mineral water, pure water, tap water, and river water. This study also reports on the
detection of gold nanoparticles with an LOD of 0.14 µM, demonstrating the versatility of
the sensor.

FS is a powerful analytical technique that has been widely used in food analysis due
to its high sensitivity, selectivity, and nondestructive nature. It involves the excitation of
a sample with a specific wavelength of light, followed by the emission of fluorescence
light at longer wavelengths. RNT technology using FS has shown great potential for food
analysis, which is a promising area that can help to ensure the safety and quality of food
products. Li et al. [6] used a composite thin film made up of rhodamine B encapsulated
in MOF-5 as a fluorescence sensor that responds to the volatile amines produced during
the quality deterioration of pork. The study uses fluorescence spectra of the composite
film combined with the partial least squares (PLS) algorithm to build quantitative and
qualitative models for predicting the freshness indicator and classifying pork samples,
respectively. The results indicate high accuracy in predicting and classifying the freshness
of pork samples. Additionally, Li et al. [7] presented a new method for detecting biothiols
based on the competitive modulation of gold nanoclusters and Hg2+ ions, encapsulated in a
zeolite imidazole framework for predesigned aggregation-induced luminescence emission.
The developed fluorescence strategy has a sensitive and specific response to trace amounts
of biothiols, providing a promising method for quantifying biothiols in serum, which could
promote progress in disease diagnosis.

NIR measures the absorption of light in the near-infrared range (from about 780 to
2500 nm) by a sample. It is a mature nondestructive analytical technique that combines
chemometrics and has become a widely used analytical tool in the food industry. Bian et al. [8]
proposed a weighted multiscale support vector regression method based on variational
mode decomposition (VMD-WMSVR) for the UV–Vis spectral determination of rapeseed oil
adulterants and the NIR spectral quantification of Rhizoma Alpiniae Offcinarum adulterants.
The VMD-WMSVR method decomposes each spectrum into discrete mode components by
VMD, then builds sub-models between each component and target value using SVR, and
integrates the predictions of the sub-models by weighted average to obtain the final prediction.
The proposed method shows potential in model accuracy compared with PLS and SVR.
Hao et al. [9] combined visible–near infrared (Vis–NIR) spectroscopy with a 1D-CNN deep
learning model for online detection of browning in Yali pears. The method achieved 100%
prediction accuracy for healthy and browned pears in the test set. The results indicate that the
combination of Vis–NIR spectroscopy and the 1D-CNN discriminant model can be used for
online detection of browning in Yali pears.
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Hyperspectral imaging technology provides both spatial and spectral information about a
sample, which allows for more comprehensive analysis and visualization of the sample’s prop-
erties. This technology is more popular than NIR spectroscopy in many fields. Dong et al. [10]
proposed a method to predict the content of alanine in beef quickly and nondestructively using
near-infrared hyperspectral imaging (NIR-HSI) combined with two-dimensional correlation
spectroscopy (2D-COS) analysis. The study identifies local sensitive variables related to Ala
content by analyzing the sequence of chemical bond changes caused by synchronous and asyn-
chronous correlation spectrum changes in 2D-COS. Simplified linear, nonlinear, and artificial
neural network models were developed, and the PLSR model based on effective wavelengths
was found to be the most effective. The results demonstrate that 2D-COS combined with
NIR-HSI can be used as an effective method to monitor Ala content in beef.

Out of the ten papers published in this Special Issue, it is evident that all of them utilized
chemometrics to process the analytical signal generated by various sensors, analyze large
datasets, and extract valuable information. Moreover, machine learning algorithms were
used to achieve precise qualitative and quantitative analysis. Notably, some researchers
employed AI algorithms such as CNN to develop discriminant models. Therefore, in addition
to developing high-performance sensor equipment, integrating the latest AI algorithms for
deep mining of large sensor data can significantly benefit RNT technology-based biosensors
for food analysis.
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An Impedance-Based Immunosensor for the Detection of
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Abstract: Food allergies are an exceptional response of the immune system caused by the ingestion
of specific foods. The main foods responsible for allergic reactions are milk, eggs, seafood, soy,
peanuts, tree nuts, wheat, and their derived products. Chicken egg ovalbumin (OVA), a common
allergen molecule, is often used for the clarification process of wine. Traces of OVA remain in
the wine during the fining process, and they can cause significant allergic reactions in sensitive
consumers. Consequently, the European Food Safety Authority (EFSA) and the American Food and
Drug Administration (FDA) have shown the risks for allergic people to assume allergenic foods
and food ingredients, including eggs. Commonly, OVA detection requires sophisticated and time-
consuming analytical techniques. Intending to develop a faster assay, we designed a proof-of-concept
non-Faradaic impedimetric immunosensor for monitoring the presence of OVA in wine. Polyclonal
antibodies anti-OVA were covalently immobilised onto an 11-mercaptoundecanoic-acid (11-MUA)-
modified gold surface. The developed immunosensor was able to detect OVA in diluted white wine
without the need for an external probe or any pre-treatment step with a sensitivity of 0.20 µg/mL,
complying with the limit established by the resolution OIV/COMEX 502–2012 for the quantification
of allergens in wine.

Keywords: allergen; wine; ovalbumin (OVA); molecular recognition element (MRE); electrochemical
impedance spectroscopy (EIS); food safety; immunosensor; biosensors

1. Introduction

Food allergies are an abnormal body immunological reaction to the ingestion of specific
foods. Milk of cows, eggs, shellfish, soy, peanuts, tree nuts, and wheat are the most-common
allergenic foods. The most-efficient approach to prevent allergy is to avoid the dietary
intake of such foods. However, the ubiquity of derivate food components in cooked or
manufactured food products makes it challenging to avoid allergy reactions. Moreover,
the body exposure to these food components may lead to a different level of allergy, from
low symptoms (rush, asthma) to severe conditions such as anaphylactic responses. In
this context, egg-derived products containing allergic proteins are widely employed in
winemaker processing. Chicken egg ovalbumin (OVA) is one of the main proteins used
in winemaking in the fining process [1]. This procedure allows for the clearing and the
biochemical stabilisation of wine through the precipitation of tiny floating particles, bacteria,
tartrates, proteins, pectins, various tannins, and other phenolic compounds [2]. The fining
proteins can be removed by decantation, filtration steps, or a secondary fining procedure
using inorganic agents, such as bentonite [3]. This operation should lead to a non-allergenic
product, even if the risk for wine consumers that are allergic to egg proteins cannot be
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entirely excluded. An opinion paper by the European Food Safety Authority (EFSA) has
highlighted the potential risks for allergic people to assume traces of OVA remained in wine
during the fining process, causing significant allergic reactions [4]. Moreover, the Food and
Drug Administration (FDA) in the USA has regulated the utilisation of egg products to
protect consumers from the possible consequences of accidental egg consumption [5].

Within the European Union, wine producers must specify in the ingredient label the
presence of allergenic aids from animal origin added for the fining process, as regulated
by Directive 2007/68/EC [6]. As a result, developing accurate and sensitive approaches
for detecting egg proteins in food matrices represents an opportunity for producers to
identify the risk associated with residual allergens. To offset the lack of reference analytical
methods for detecting fining agent proteins, the International Organization of Vine and
Wine (OIV) established the analytical requirements for methods under development [7].
More precisely, the enzyme-linked immunosorbent assay (ELISA) must fulfil a detection
limit of ≤0.25 µg/mL. This technique is the most-routinely used for monitoring proteins as
allergenic compounds in food samples. However, besides requiring experienced personnel,
in some cases, the ELISA test needs more sensitivity for allergen detection in some food
matrices [8]. On the contrary, liquid chromatography coupled with mass spectrometry (LC-
MS and LC-MS/MS) allows for complete and simultaneous identification of the analytes,
representing a robust technique for detecting residual fining agents [9–12]. Nonetheless,
this technique relies on time-consuming sample preparation, complicated data analysis, and
costly instrumentation. In this context, biosensors might help to assess the residual presence
of allergens allowing in situ and real-time food safety monitoring. A recent review reported
the most-relevant progress in biosensor development for food-allergen management [13].
To date, several biosensors to detect food allergens have been proposed [14–19]. They show
LoD values ranging from pg/mL to µg/mL and only a few of them have been tested on
wines [18,19].

Electrochemical-impedance-based biosensors present various advantages, such as
the affordability and the simplicity of miniaturisation. In particular, non-Faradaic-based
biosensors, also known as capacitive sensors, detect the capacitance variations at the elec-
trode surface produced by the molecular binding events. These sensors are well-suited to
point-of-care applications thanks to their potential, such as rapid response, portability, and
ease of use. Furthermore, unlike Faradaic biosensors, which require adding a potentially
harmful redox probe, which could damage biomolecules [20], the non-Faradaic approach is
label-free, allowing the analysis without sample preparation or trained personnel [21,22].

In this work, we explored the application of electrochemical impedance spectroscopy
(EIS) to develop a non-Faradaic impedimetric immunosensor for detecting the presence of
OVA in white wine. For this purpose, polyclonal antibodies against OVA (pAb anti-OVA)
were produced and characterised by an indirect ELISA test. Then, the antibodies were
covalently attached to a gold-based electrode surface. Atomic force microscopy (AFM)
was employed to study the surface topography of the functionalised biosensor surfaces.
Finally, EIS was used to characterise the performance of the immunosensor, which allowed
for a simple and fast determination of OVA directly in diluted white wine without any
additional reagent.

2. Materials and Methods
2.1. Reagents and Instruments

All commercially available reagents were chosen for the highest quality. 11-mercaptou-
ndecanoic acid (11-MUA), N-hydroxysuccinimide (NHS), N-(3-dimethylaminopropyl)-
N’-ethylcarbodiimide hydrochloride (EDC), sulfuric acid (H2SO4), ethanolamine (ETA),
ethanol, albumin from chicken egg (OVA), and 3,5-tetramethylbenzidine (TMB) were
purchased from Sigma-Aldrich (Milan, Italy). Goat polyclonal to rabbit IgG-HRP conjugate
(secondary antibody) was from Abcam (Cambridge, U.K.). The antibodies against OVA
were produced and purchased from Covalab SAS (Bron, France). nProtein A Sepharose
4 Fast Flow resin for antibody purification was acquired from Cytiva (Washington, DC,
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USA). Materials used for protein electrophoresis were obtained from Bio-Rad (Hercules, CA,
USA). Microplates (96-well), Nunc LockWell MaxiSorp form, and a microplate reader, Tecan
Infinity 200 Pro (Tecan, Männedorf, Switzerland), were used for the indirect ELISA. UV
measurements were carried out on a Jasco V-730 UV/Vis spectrophotometer. Ultrafiltration
units Vivaspin® Turbo 15 (30,000 MWCO) for antibody concentration were from Sartorius
(Göttingen, Germany). The miniaturised All-in-One electrochemical workstation (MicruX
ECStat), the All-in-One cell, the batch-cell Add-on, and thin-film gold single electrodes
(ED-SE1-Au) were purchased from Micrux Technologies (Oviedo, Spain). White wine
(alcohol content: 10.5%) was acquired from a local market.

2.2. Antibody Production and Purification

Antibodies anti-OVA were produced by Covalab (France), according to Varriale et al.
(2016) [23]. In brief, two rabbits were immunised following a standard protocol by intrader-
mal inoculation of an antigen (0.5 mg of OVA per rabbit). After the immunisation period,
the rabbits were sacrificed. Their blood was recovered and centrifuged to separate the blood
cells from the serum. From the obtained serum, the antibodies were purified, according
to Pennacchio et al. (2016) [24]. In particular, 1 mL of rabbit serum diluted with 1.0 mL of
sodium phosphate (NaP) 20 mM, pH 7.0, was applied to a Protein A column. Then, the IgG
fraction was eluted with sodium citrate 0.1 M, pH 3.0, and immediately buffered in sodium
borate 1 M, pH 8.5. Finally, the IgG concentration and purity were checked by absorbance
measurement at 278 nm and SDS-PAGE (12% acrylamide), respectively. The obtained pure
samples were concentrated at 1.6 mg/mL by centrifugal concentrators.

2.3. Indirect ELISA

In order to verify the binding capacity of the produced antibodies, an indirect ELISA
was performed, according to Capo et al. (2022) [25]. The antigen OVA was dissolved
in carbonate buffer (coating buffer) 0.05 M, pH 9.6, and diluted from 0.005 µg/mL to
50 µg/mL. The 50 µL/well of each dilution was used to coat 96-well microplates, incubated
overnight at 4 ◦C. Coating buffer and bovine serum albumin (BSA) (100 µg/mL) were used
as controls. The plate was rinsed thrice with TBS-T (TBS 0.01 M, pH 7.4; 0.05% Tween-
20), incubated with 200 µL/well of blocking buffer (TBS; 5% w/v non-fat dried milk) at
37 ◦C for 2 h, and rewashed three times with TBS-T. Afterward, pAb anti-OVA 1 µg/mL
(50 µL/well) diluted in blocking buffer (TBS; 1% non-fat dried milk; 0.05% v/v Tween-20;
pH 7.4) was incubated at 37 ◦C for 2 h. After three steps of washing with TBS-T, 50 µL/well
of horseradish-peroxidase (HRP)-conjugated goat anti-rabbit IgG antibodies (0.5 µg/mL)
was diluted in blocking buffer (TBS; 1% non-fat dried milk; 0.05% v/v Tween-20; pH 7.4)
and incubated for 1 h at 37 ◦C. After an incubation of 10 min at 37 ◦C with the TMB
substrate (100 µL/well), the stopping solution (HCl 2.5 M; 50 µL/well) was added to stop
the colour development, and the absorbance was recorded at 450 nm.

2.4. Immunosensor Development

The electrochemical sensors used in this work were gold-based and consisted of a three-
electrode configuration (reference, working, and counter, as shown in Figure 1 from the left
to the right of the chip). Before the derivatisation procedure, an electrochemical surface
pre-cleaning was performed through 12 potential cycles in the range of −1.0 to +1.3 V, at
a scan rate of 0.1 V/s, in the presence of sulfuric acid (H2SO4) (0.05 M (5 µL)). Next, the
clean gold substrates were immersed in an ethanolic solution of 11-MUA 5 mM (350 µL)
for 24 h [26]. Afterward, the antibodies were immobilised on the working electrode via
carbodiimide-mediated coupling in two consecutive steps: (1) a 10 min incubation with
a mixture of EDC/NHS (5 µL) (50 mM/5 mM) (volume ratio 1:1) in phosphate-buffered
saline (PBS, pH 7.4); (2) a 2 h incubation with pAb anti-OVA solution (0.25 mg/mL (5 µL)).
Lastly, the unreacted active sites were blocked with ethanolamine 1 M (pH 8.5, 5 µL) for
20 min (Figure 1).
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Figure 1. Schematic diagram of the immunosensor fabrication. Gold thin-film electrochemical sensors
(ED-SE1-Au) were treated sequentially with 11-MUA, a mixture of NHS and EDC, a solution of pAb
anti-OVA, and ETA. The immunosensor was tested at different concentrations of OVA.

2.5. Surface Characterisation by Atomic Force Microscopy

The immobilisation of the pAb anti-OVA on the gold impedimetric surface was char-
acterised by AFM. The AFM images were acquired using a Ntegra Prima system (NT-MDT
Spectrum Instruments, Zelenograd Russia) equipped with an AFM silicon tip (NSG01, NT-
MDT) having a spring constant of 5 N/m and a nominal resonance frequency of 160 KHz
in air. AFM measurements were carried out in tapping mode and in the PBS buffer to
preserve the structure and function of the biological components. For each sample, random
1 µm × 1 µm maps were scanned throughout the working area of the gold electrode with a
resolution of 200 pixels per line and a scan rate of 2 Hz. From the topographic images, the
root-mean-squared roughness (RMS) was calculated and averaged on ten AFM scans after
image processing with the open-source software Gwyddion 2.62.

2.6. Impedimetric Measurements

Non-Faradaic impedance spectroscopy is able to investigate antigen–antibody biorecog-
nition events without the use of an external redox probe.

The measuring cell used consisted of an All-in-One platform, which enabled the use
of the thin-film electrodes in static conditions, with a batch-cell Add-on, which provided
an interface with the electrochemical workstation, and it facilitated the dropping of the
sample on the electrode.

For this purpose, the working area of the immunosensor was incubated for 10 min
with 5 µL of OVA dissolved in PBS (pH 7.4) at different concentrations (0.001, 0.005, 0.01,
0.05, 0.1, and 0.5 µg/mL).

After thoroughly washing the surfaces with PBS, impedimetric measurements were
performed in PBS at 25 ◦C, using a sinusoidal AC potential (0.1 V) and a DC potential
of 0 V in the frequency range of 0.1 to 100,000 Hz. The AC potential value was chosen
after analysing the impedance response of the system at different values (0.005, 0.01, 0.05,
and 0.1 V) (Figure S1). To test the cross-reactivity of the immunosensor, BSA at increasing
concentrations was used as a negative control (Figure S2).

2.7. Preparation of Wine Samples for Impedimetric Tests on Real Matrix

In order to test the performance of the immunosensor on a real matrix, a white wine
acquired in a local grocery was diluted 1:200 in PBS (pH 7.4) and was spiked with different
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concentrations of OVA (0.001, 0.005, 0.01, 0.05, 0.1, and 0.5 µg/mL). The dilution ratio
was chosen to minimise matrix effects, preserving the characteristics of the immunosen-
sor [18]. The working area of the electrode was incubated for 10 min with 5 µL of the
sample. After extensive washing steps, impedimetric measurements were performed as
previously described.

2.8. Statistical Analysis

All the measurements were carried out in triplicate.
The standard deviation (SD) for all the data reported was calculated from the formula:

SD =

√
∑(x− x̄)2

(n− 1)
, (1)

where x is the sample mean average and n is the sample size.
The limit of detection (LoD) for indirect ELISA was calculated according to Ambruster et al.

(2008) (LoD = LoB + 1.645 (SD low concentration OVA) [27] and for the immunosensor perfor-
mance following Shrivastava (2011) (LoD = 3.3 S/b) [28]. Data were analysed in Microsoft®

Excel 2016 and Origin® 2018.

3. Results and Discussion

In this work, pAb anti-OVA were used to develop a non-Faradaic impedimetric
immunosensor to detect the presence of traces of ovalbumin in white wine.

3.1. Evaluation of the Antibody-Binding Capacity by Indirect ELISA

After the Ab purification procedure (described in Section 2.2), the binding capacity
of the pAb anti-OVA was assessed by an indirect ELISA test. Figure 2 shows that the
pAbs anti-OVA were able to recognise the antigen up to 0.05 µg/mL. The limit of detection
(LoD), determined by considering the measured limit of blank (LoB) and the replicates
(n = 3) of the sample containing a low concentration of analyte LoD = LoB + 1.645 (SD
low-concentration OVA) [27], was estimated to be 0.09 µg/mL.
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Figure 2. Indirect ELISA results for pAb anti-OVA (1 µg/mL) binding capacity. The figure shows that
OVA was recognised by the pAbs anti-OVA up to 0.05 µg/mL (NC: no coating; BSA used as a negative
control). The insert shows the variation of signal at 450 nm as function of the ovalbumin concentration.
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3.2. Electrochemical Characterisation of the Immunosensor Assembling

A typical biorecognition surface for capacitance detection comprises two layers: a
double insulation layer and a recognition layer; a third layer is generated by analyte binding
to the recognition element. A high-capacitance biorecognition layer detects slight variations
induced by the binding event [29,30]. Thus, achieving a tightly packed biorecognition layer
(SAM: self-assembled monolayer of long thiols C11–C16) allows for maximising the ability
to detect small impedance and capacity variations, reducing unrestricted ionic migration at
the interface.

The pAbs anti-OVA were covalently immobilised on an 11-MUA-modified gold surface
SAM (Section 2.4). The electrode derivatisation for the immunosensor assembling was
monitored using non-Faradaic electrochemical impedance spectroscopy (EIS), characterised
by resistive and capacitive contributions. A non-Faradaic system directly detects the
analyte without needing a redox probe, such as a ferrocyanide–ferricyanide redox couple
(Fe (CN)6

3−/4−). As a result, the experimental process turns out to be more manageable
and suitable for rapid monitoring.

The impedance data are presented in the Nyquist plot, where the imaginary part (Z′′)
is plotted versus the real part (Z′) of an impedance Z over a specified frequency range
(0.1 to 100,000 Hz). Due to the absence of a redox probe, a non-Faradaic Nyquist plot
shows a large incomplete semicircle, lacking the parameters related to electron transfer,
including charge transfer resistance (Rct) and Warburg impedance (ZW). Therefore, the
impedance of a non-Faradaic sensor is determined by the insulating characteristics of the
species bond to the conductive substrate. As a result, the deposition of the consecutive
layers on the electrode causes an increase in the impedance of the system (Figure 3). This
variation could be attributed to the coating layer on the electrode surface, which increases
during the assembly steps.
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Figure 3. Nyquist plots for the different functionalisation steps performed for the fabrication of the
impedimetric immunosensor. The impedance of the electrochemical system increased after each step
of the functionalisation procedure.

3.3. AFM Analysis

Since the electrochemical response depends on the morphological characteristics of the
surface electrode, AFM is useful to evaluate the immobilisation of the pAbs anti-OVA on
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the impedimetric immunosensor. In this respect, the root mean square (RMS) value of the
height irregularities was chosen to characterise the immunoassay surface roughness [31].
The following AFM analysis was carried out on the same chip at different stages of the pAb
anti-OVA immobilisation process to avoid the fluctuations of the surface roughness due to
the inter-batch variability of the electrochemical surface sensors. Figure 4a illustrates the
AFM morphology map of 1 µm × 1 µm in size acquired on the working area of the bare
gold-based electrode. The surface of the electrochemical sensor was characterised by a low
roughness (RMS = 1.7 ± 0.1 nm) and showed the typical granular structure, consisting of
nearly spherical nanoparticles, which was strictly connected to the gold deposition process
parameters used by Micrux manufactory [32]. The sensor was, then, functionalised with
an 11-MUA SAM, as described in Section 2.4. The evidence that the gold surface was
chemically modified was emphasised by the significant change of the surface roughness
(RMS = 2.3± 0.1 nm) as observed in the AFM morphology of the surface (Figure 4b). Finally,
in Figure 4c is shown the AFM morphology map of the 11-MUA-modified gold surface
after the incubation of the pAbs anti-OVA. As highlighted in the bar plot of Figure 4d,
the deposition of the consecutive layers on the electrode affected the RMS value of the
surfaces. In particular, the increment of the RMS value of the pAb anti-OVA surface
(2.6 ± 0.1 nm) compared to the 11-MUA-modified gold surface and the bare electrode
surface was comparable to the roughness change detected in similar studies [33,34]. The
AFM results further assessed the complete immobilisation process of the pAbs anti-OVA as
also confirmed by the impedimetric experiments.
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Figure 4. AFM analysis of pAb anti-OVA immobilisation on the electrochemical immunosensor.
The 2D and 3D AFM morphology scans (1 µm × 1 µm) acquired in tapping mode of (a) the bare
gold electrode, 11-MUA-modified gold surface (b) before and (c) after pAb anti-OVA incubation.
The white scale bar in the 2D image corresponds to 20 nm. (d) Bar plot of the root-mean-squared
roughness (RMS) of each analysed surface and presented as the average ± the SD (n = 10).

10



Biosensors 2023, 13, 669

3.4. Electrochemical Characterisation of the Immunosensor Performance

The electrochemical performance of the immunosensor was examined by non-Faradaic
EIS for detecting OVA dissolved in PBS. Unlike the Faradaic approach, a non-Faradaic
response shows high impedance values given that no redox species assist the charge transfer
between the interfacial layers [35]. The impedance response was recorded starting from
the lowest (0.001 µg/mL) to the highest (0.5 µg/mL) concentration of OVA. The insulating
effect of the sensing surface and the OVA binding on the modified electrode generated
variations in the double-layer capacitance (Cdl). The binding phenomena occurring at the
electrode interface can be observed in the Nyquist plot as an increase in the imaginary part
of impedance at increasing OVA concentrations (Figure 5).
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Figure 5. Nyquist plot of the pAb-anti-OVA-based immunosensor tested on OVA in PBS. The
impedance of the electrochemical system increased at increasing concentrations of OVA.

As the maximum impedance variation was observed at 0.1 Hz, the impedance values
registered at this frequency allowed us to obtain the binding curve described by a non-linear
fitting function. Figure 6a shows the plot of the change in impedance at 0.1 Hz expressed
as ∆Z (ZOVA − Zblank) versus OVA concentration.

A linear correlation was observed in the range of 0.001 to 0.01 µg/mL, while for
higher concentrations (from 0.05 to 0.5 µg/mL), no linear trend was noticeable, due to
the saturation of the binding sites. Therefore, the calibration curve was calculated in the
linear range to determine the detection limit (LoD) of the immunosensor in PBS (Figure 6b).
Each point represents the average of three replicates, and the error bars are the standard
deviations of the mean (SDs ≤ 380 ∆Z). The LoD, calculated by 3.3 S/b, where S is the
standard deviation of the y-intercept of the linear regression and b is the slope of the linear
range [27], was estimated to be 0.0008 µg/mL, with a response time of 15 min, including
the incubation time. As a control, the surface was tested at increasing concentrations of
BSA, and no significant impedance variations were registered (Figure S2).
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Figure 6. Plots of the change in impedance (∆Z) at 0.1 Hz versus OVA concentration dissolved in PBS
(in black colour) and OVA concentration in spiked white wine (in red colour). The binding curves
were obtained through a non-linear fitting function (a). The calibration curves of the immunosensor
were obtained through a linear fitting function (b).

3.5. Electrochemical Characterisation of the Immunosensor Performance on Real Matrix

In order to explore the application of the immunosensor on a real matrix, impedance
measurements were conducted on white wine diluted in PBS and spiked with differ-
ent concentrations of OVA (0.001, 0.005, 0.01, 0.05, 0.1, and 0.5 µg/mL) as described in
Section 2.7. The impedimetric response of the electrode reported in Figure 7 displays that
the immunosensor was able to detect OVA even in wine.
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Figure 7. Nyquist plot of the pAb-anti-OVA-based immunosensor tested with white wine diluted in
PBS and spiked with OVA.

Taking into consideration that the maximum impedance variation was at 0.1 Hz,
the impedance values registered at this frequency were used to obtain the binding curve
by applying a non-linear fitting function. The plot of the change in impedance at 0.1 Hz
expressed as ∆Z (ZOVA in wine − Zblank) versus the OVA concentration is shown in Figure 6a.

The calibration curve (Figure 6b) was calculated in the linear range of 0.001 to
0.01 µg/mL to determine the detection limit of the immunosensor in wine. The graph
shows standard deviation error bars from the mean of triplicate measurements
(SDs ≤ 340 ∆Z). The LoD, calculated by 3.3 S/b [28], was estimated to be 0.001 µg/mL,
with a response time of 15 min, including the incubation time. By considering the 200-fold
dilution used in the measurements, the LoD of the assay in white wine was 0.20 µg/mL, a
value that is compliant with the detection limit recommended by the OIV (i.e., 0.25 µg/mL)
for the quantification of allergens in wine [7].

Reproducibility data calculated in terms of the relative standard deviation (RSD) are
reported in Table S1. The immunosensor, stored in PBS buffer at 4 ◦C, showed stability for
2 weeks after the functionalisation procedure.

Table 1 depicts a comparison of the analytical performance of the immunosensor with
other biosensors for OVA detection previously reported. The detection limit obtained in
this work is compatible with the limit established by the resolution OIV/COMEX 502–2012
for quantifying allergens in wine. In addition, the immunosensor presents advantages such
as a rapid response, the ease of the functionalisation process, the need for micro volumes of
the sample, an assay time of 15 min, and affordability.

13



Biosensors 2023, 13, 669

Table 1. Performance comparison of different biosensors for OVA detection.

Sensing Substrate Technique Linear Range LoD Assay Time (min) Number of Steps References

GO/screen-printed carbon Differential pulse voltammetry 1 pg/mL–0.5 µg/mL 0.83 pg/mL 60 5 Eissa et al. (2013) [15]

Dextran-coated sensor
chips (CM5) Surface plasmon resonance (SPR) 0.03–0.2 µg/mL 0.6 µg/mL – 4 Pilolli et al. (2015) [16]

Screen-printed platinum Linear sweep voltammetry 0.5–9.5 µg/mL 0.2 µg/mL 60 4 Čadková et al. (2015) [17]

Graphene/screen-printed
carbon electrodes Amperometry 0.01–10 pg/mL 0.2 fg/mL 60 6 Baldo et al. (2021) [18]

Thin-film gold
single electrodes

Non-Faradaic impedance
spectroscopy 0.001–0.01 µg/mL 0.2 µg/mL 15 4 This work

4. Conclusions

In this work, we presented a non-Faradaic impedimetric immunosensor to monitor
the presence of OVA in white wine. The primary purpose of this study was to explore the
feasibility of using an impedimetric pAb-anti-OVA-based biosensor on a real matrix without
the use of external probes and the need for sample pre-treatment. The immunosensor
showed a sensitivity of 0.20 µg/mL, which is compatible with the limit established by
the resolution OIV/COMEX 502–2012 for quantifying the presence of allergens in wine.
Although the developed biosensor presents some advantages with respect to the biosensors
for OVA detection present in the literature (such as affordability, a good response time,
and the direct monitoring of OVA in diluted samples), additional efforts will be devoted to
improving the performance of the biosensor.
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Abstract: The taste of tea is one of the key indicators in the evaluation of its quality and is a key
factor in its grading and market pricing. To objectively and digitally evaluate the taste quality of tea
leaves, miniature near-infrared (NIR) spectroscopy and electronic tongue (ET) sensors are considered
effective sensor signals for the characterization of the taste quality of tea leaves. This study used micro-
NIR spectroscopy and ET sensors in combination with data fusion strategies and chemometric tools
for the taste quality assessment and prediction of multiple grades of black tea. Using NIR features
and ET sensor signals as fused information, the data optimization based on grey wolf optimization,
ant colony optimization (ACO), particle swarm optimization, and non-dominated sorting genetic
algorithm II were employed as modeling features, combined with support vector machine (SVM),
extreme learning machine and K-nearest neighbor algorithm to build the classification models. The
results obtained showed that the ACO−SVM model had the highest classification accuracy with a
discriminant rate of 93.56%. The overall results reveal that it is feasible to qualitatively distinguish
black tea grades and categories by NIR spectroscopy and ET techniques.

Keywords: tea; near-infrared spectroscopy; electronic tongue; chemometrics; quality control

1. Introduction

Black tea is the most widely distributed and consumed tea product worldwide and is
one of the most important fermented beverages in the world [1]. According to the different
processing techniques and shape characteristics, black tea can be divided into Congou
black tea, Souchong black tea, and Broken black tea. Among them, Congou black tea is
a famous tea product in China, its shape is intact, and the branches are tight and thin,
which are processed through four processes, namely withering and losing water in fresh
leaves, kneading and forming, fermentation and drying [2]. Compared to Congou black
tea, broken black tea is mainly processed with the fresh leaves of large-leaf species, and
the kneading process is replaced by kneading and cutting, resulting in a more fragmented
or granular shape, which is more conducive to the rapid leaching of nutrients. The main
flavor-presenting substances in black tea are tea polyphenols, catechins, free amino acids,
caffeine, soluble sugars, inorganic salts, and mineral elements, which are considered to be
the main sources of astringency, bitterness, sweetness, and saltiness in black tea, and the
composition and proportions of the above active ingredients determine the diversity of
the tea’s taste [3,4]. To guide consumers in making the right purchasing decisions, prevent
fraud, and avoid financial losses, a quick and effective evaluation of the quality of different
grades and flavors of black tea has become a pressing issue.

At present, the traditional methods for analyzing and evaluating the quality of tea and
its products (i.e., sensory quality evaluation and physical and chemical quality component
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testing) have been in use for decades [5]. Although the combination of these two types of
evaluation methods can accurately determine the content of the intrinsic quality compo-
nents of tea leaves, effectively assess the quality of tea leaves, and determine the grade of
tea leaves, they still have their shortcomings [6]. The sensory quality assessment method is
generally used by a professionally trained assessor to determine the quality of a tea sample
by scoring it according to its appearance (tenderness, shape, color, etc.) and intrinsic quali-
ties (liquor color, aroma, taste, infused leaf, etc.) combined with weighting factors. This
method is susceptible to subjective factors and the objectivity of the results obtained is not
sufficient. The physical and chemical composition method generally requires the use of vari-
ous sophisticated instruments such as liquid chromatography [7,8], gas chromatographs [9],
gas chromatograph–mass spectrometers [10,11], liquid chromatograph–mass spectrome-
ters [12,13], and spectrophotometers [14], which are more expensive and have complex
sample pre-treatment processes as well as use toxic and dangerous chemicals. Although
the test results are accurate and objective, the method has the drawbacks of cumbersome
operation, sample destruction, time-consuming and costly testing, and cannot meet the
requirements of the rapid multi-component quantitative testing of product quality and
online monitoring of characteristic attributes (grade, origin, etc.) during the distribution
and processing of tea.

Obtaining objective, fast, and accurate information on the taste and quality charac-
teristics of tea is the ideal method for the digital control of tea. Currently, the main rapid
characterization methods widely used in the field of quantitative analysis and qualita-
tive identification of tea taste quality are near-infrared (NIR) spectroscopy and electronic
tongue (ET) sensing techniques. NIR spectra are vibrational spectra of molecular leaps of
hydrogen-containing groups (bonds such as O—H, C—H, and S—H) in the non-visible
region in the wavelength range 780–2526 nm [15]. The technique is more commonly used
in the rapid testing of nutrient content and geographical traceability of tea [16]. In recent
years, with the development of small and compact portable NIR devices, which minimize
the size and manufacturing costs of equipment, the application scenarios of NIR have been
expanded, showing good potential for development. The ET is a category of bionic sensing
technology that utilizes a specific array of taste sensors to simulate the human tongue for
signal perception and pattern recognition of liquid samples [17]. The technique employs
suitable multivariate statistical analysis approaches for data processing of the obtained ET
response signals to obtain the taste output results of the multi-sensor array, which objec-
tively and rapidly reflects the taste characteristics of the samples and enables fingerprint
identification and classification of the test samples [18]. The method has been studied and
applied in wine [19], honey [20], tea [17], and other food industries [21]. Currently, most of
the published studies evaluate tea quality with a single portable NIR technique or bionic
sensing technology [22,23]. Few studies have fused micro-NIR spectroscopy and ET sensor
data to more comprehensively characterize black tea quality and grade.

Thus, the main work of this study is organized as follows: (1) Spectral data and
ET response signals from 700 black tea samples of seven grades were collected using a
home-made portable NIR spectroscopy system and a commercial ET system, and raw data
(i.e., low level) fusion was performed; (2) Four feature selection methods, namely grey
wolf optimization (GWO), ant colony optimization (ACO), particle swarm optimization
(PSO), and non-dominated sorting genetic algorithm II (NSGA−II), were used to extract
features (i.e., mid-level data fusion) on the raw fused data; (3) Support vector machine
(SVM), extreme learning machine (ELM) and K-nearest neighbor (KNN) algorithm were
employed to construct classification models to determine the quality grade of black tea.
The experimental procedure for this study is shown in Figure 1.
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Figure 1. Description of the experimental flow chart.

2. Materials and Methods
2.1. Sample Collection

The experimental samples were seven standard grades of Congou Dianhong black
tea products, provided by Yunnan Dian Hong Group Co. (Lincang, China). The contents
of the main quality components and the organoleptic evaluation results of the samples
were obtained through laboratory testing and sensory evaluation panel scoring by the
National Standard Method of the People’s Republic of China, respectively, to ensure their
quality. The total number of black tea samples was 700, with 100 samples of each grade, in
descending order of T, C1, C2, C3, C4, C5, and C6. The grading of black tea samples was
mainly determined by their appearance, color, aroma, and flavor when brewed. The tea
samples were picked in the spring and autumn of 2019 and 2020. Usually, tea leaves were
picked in different seasons to produce a primary processing tea, and the different primary
processing teas need to be blended to stabilize the quality of the finished tea product; based
on this, grading was carried out. Black tea samples were processed through the processes
of withering, twisting, fermentation, and drying of fresh leaves. The samples were dried
utilizing a dryer at 90 ◦C for 30 min. The samples were dried to a moisture content of
around 7%. Before data collection, samples were stored in kraft aluminum foil bags and
kept in a thermostatic desiccator for three months. Additionally, the single tea sample
was tightly knotted, dark brown, and oily, with a uniform appearance. Each tea sample
weighed 100 g and was used for multi-sensor signal acquisition and analysis of the data.

2.2. Miniature NIR Spectroscopy and Data Pre-Processing

The miniature NIR spectrometer (Figure 1) developed by our group was equipped
with a Bluetooth module and could be connected to a Huawei P50 smartphone for spectral
data acquisition on the mobile phone. The NIR device had a spectral acquisition range of
900–1700 nm, a resolution of 10 nm, and weighs only 80 g. During the spectral acquisition,
each sample was placed into a quartz sample cup for scanning. After ensuring that the
bottom of the sample cup was completely covered by the tea sample, the NIRS information
of the sample was collected via diffuse reflection mode. A sample spectrum was acquired
every 120◦ of rotation and the average spectral value of the three scans was used as the
subsequent spectral data for modeling purposes.

As the raw spectra acquired by the NIR instrument are susceptible to the physical
properties of the sample, background information, and noise interference, it is necessary to
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pre-process the raw spectra to obtain high−quality spectral features. The effect of spectral
pre-treatment methods on the subsequent modeling performance have been investigated
in several published studies by our group [16]. The results of several papers showed that
the SNV spectral pre−processing method was an effective way to eliminate the effects of
solid particles, scattering, and light range variability on the NIRS spectrum. Therefore,
the spectral information from the SNV pre−processing was used as feature data for sub-
sequent data analysis in this study. The original NIR spectra of the samples and the SNV
pre−treatment spectra are shown in Figure 2. As can be seen in Figure 2, SNV filters out
the noise at the beginning and end of the spectral interval, and the SNV-processed spectral
curve is smoother and of better quality.

Figure 2. Raw and SNV pre−treatment spectra of samples. (a) Raw spectra; (b) SNV pre−processing
spectra.

2.3. Electronic Tongue Signal Acquisition

The electronic tongue system, model SA402B, was supplied by Insent Intelligent
Sensor Technology of Japan and was equipped with an array of six different taste sensors
(i.e., CAO, COO, CTO, AE1, AAE, and GL1). The above sensors could perceive nine
taste characteristics: sour, bitter, astringent, fresh, salty, sweet, astringent aftertaste, bitter
aftertaste, and richness. Before data collection by the ET sensor system, samples were
pre-treated in the following sequence: firstly, 3.00 g of tea samples were placed in standard
evaluation cups and bowls and brewed for 5 min with 150 mL of boiling distilled water. The
tea extract was then filtered through a triple-layer filter cloth and 35 mL of the tea extract
was placed into an ET sample cup and cooled at room temperature for the acquisition of
ET response signals. The system data acquisition program was set up as follows: 90 s
for cleaning the positive and negative electrodes, 120 s for both washes of the reference
solution (30 mM KCl and 0.3 mM tartaric acid), and 30 s for sensor data acquisition. The
instrument collected the taste potential signal from the sample solution and output it as the
nine taste characteristics described above. In the experiment, each sample was measured
four times and the average of the four measurements was used as a reference value for data
analysis. The working temperature of the test was maintained at 28 ◦C in circulating water.

2.4. Feature Selection Strategy

To extract feature information from a large number of feature variables related to the
exclusive properties of the target substance to be sensed, swarm intelligence optimization
algorithms, i.e., PSO, ACO, NSGA−II, and GWO feature variable selection algorithms were
introduced to screen ET sensor features and spectra for valid features.

PSO was originally applied as a feature screening method to stimulate social behavior
in flocks of birds, fish, and other groups [24]. Considering each bird as each solution
of the optimization algorithm in the target space, the population of N particles evolved
with each iteration and moved towards the optimal solution of the problem according to
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the principles of the optimization method, with the particles moving through the path
optimization of the previous optimal position and the global optimal position to explore the
optimal solution for the whole population [25,26]. The evaluation criterion of the algorithm
was determined by the optimal cost parameter of the objective function, the value of which
was determined in several iterations of the algorithm [27].

ACO was a swarm optimization algorithm based on the naturally evolving foraging
behavior of ant colonies [28]. Scientists studying ants foraging for food discovered that
they communicated with each other by spreading pheromones [18]. The algorithm was
based on the information feedback mechanism of the ant colony to find the shortest path,
enabling intelligent search, parameter optimization, and other functions [29].

NSGA−II was a multi-objective genetic algorithm, proposed by Deb et al. [28]. In the
structure of the method, in addition to crossover, genetic operators, and mutation, two
multi-objective operators (non-dominated sorting and crowding distance) were utilized.
The basic idea of NSGA-II was to hierarchically rank populations by the non-dominant
sorting of populations, calculate the crowding distances of individuals to maintain popu-
lation diversity, and obtain an approximate solution when the termination condition was
reached [30].

GWO was a population-based optimization algorithm that simulated the leadership
hierarchy and hunting strategy of the natural grey wolf [31]. The algorithm was based
on the decision making and management of the alpha wolf leading the pack through the
process of tracking, rounding up, and attacking the prey, ultimately achieving the global
optimal solution for the capture of the prey [32].

2.5. Modeling Algorithms

The classification models of linear KNN as well as non-linear ELM and SVM were
constructed based on the variable information selected by the above methods and their
model performance was compared for merit to explore the best classification model for the
sample rank.

The KNN algorithm was based on Euclidean distance to explore similar samples and
discriminate between different grades of tea samples, and the performance of this classifier
depended heavily on the K−value and Euclidean distance chosen [33]. The K−value
was chosen concerning the minimum prediction error of the best result obtained by the
classifier [34]. The method was relatively simple and was considered to be one of the fastest
machine learning methods to execute on large datasets with uniformly distributed feature
spaces [35].

ELM was a machine learning algorithm for multiple classification and regression based
on a single implicit layer feed-forward neural network [36]. The discriminator randomly
assigned weighting coefficients connecting the input layer and the implicit nodes. The
main optimization of the algorithm was described as follows: (1) determine the number of
neurons in the hidden layer and randomly setting the input weights of the nodes in the
hidden layer; (2) select the activation function of the neurons in the hidden layer (HL) and
calculate the output matrix of the neurons in the HL. Based on the highest recognition rate
of the prediction set, the optimal number of neurons in the HL is determined [37].

The SVM method was a common multi-classifier employed in data analysis [38].
The algorithm was based on the principle of structural risk minimization and attempted
to improve generalization and reduce expected risk [39]. The SVM discriminator used
the radial basis function (RBF) as the kernel function and obtained good predictions by
optimizing two parameters (i.e., the penalty parameter c and the kernel parameter g) [40].
The specific steps of the method were outlined as follows: (1) the leave−one−out method
of cross-validation was employed to optimize the core parameters (c and g); (2) the best
parameter pair (c and g) using the grid search method was determined; (3) the best SVM
classification model was built based on the highest output of the correct classification rate
(CCR) in the prediction set.
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2.6. Model Evaluation

In this study, the CCR of the prediction set samples was used as the evaluation criterion
for the performance of the model; the higher the CCR value, the higher the prediction
accuracy and the better the generalization ability of the model built. All the algorithms
for feature selection and qualitative analysis model construction in this work were written
by our group and implemented in MATLAB R2020b software (MATLAB Inc., Natick, MA,
USA) under Windows 8.1.

3. Results and Discussion
3.1. Sample Set Division and Principal Component Analysis

The Kennard–Stone sample set partitioning algorithm was introduced to obtain the
number of the calibration set and prediction set samples of 467 and 233 in sequence with a
partitioning ratio of 2:1. The three−dimensional scatter space distribution of the sample set
of Dianhong tea samples based on different feature data is shown in Figure 3. As can be
seen from Figure 3, the spatial distribution of the single taste features (ET taste values or
NIR spectrum) of the Dianhong samples is more discrete from the sample set of the fused
data features, with the distribution of the calibration set samples covering the distribution
of the prediction set samples. This result indicated that the distribution of the calibration
and prediction set samples was appropriate.

Figure 3. Distributions of Dianhong tea samples from the calibration set and the prediction set
in the three−dimensional principal components space. (a) ET taste features; (b) spectral features;
(c) data fusion.

Figure 4 shows the results of the three-dimensional principal component analysis
(PCA) distribution of the Dianhong tea samples. The distribution of principal component
(PC) scores for single taste characteristics (ET taste values and spectra) and fusion data
for the seven classes (T, C1, C2, C3, C4, C5, and C6) of samples showed a high degree
of overlap in three-dimensional space between the different quality classes, and it was
not simple to distinguish the different classes of samples effectively based on both single
and fusion feature data, and there was an urgent need to introduce suitable chemometric
methods to achieve effective identification of the quality classes of the samples for testing.
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Figure 4. Three−dimensional PC distribution of seven grades of Dianhong tea samples. (a) ET taste
features; (b) spectral features; (c) data fusion.

3.2. Selection of Taste Characteristic Variables

Four feature selection methods, namely ACO, PSO, GWO, and NSGA−II, were used
to feature the low−level fused data from both sensors (ET and NIR spectra). From the
convergence curve of feature selection in Figure 5, it can be seen that the above feature
variable selection algorithm eventually converged after several iterations to obtain the
smallest objective function value as the optimal solution.

Figure 5. Convergence curves of feature variable selection for different swarm intelligence algorithms.
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The results of the wavelength statistics for the above feature variable selection method
over 100 iterations are shown in Table 1. As can be seen from Table 1, the number of
sample multi-sensor feature variables extracted by the ACO, PSO, GWO, and NSGA−II
algorithms were 12, 15, 83, and 52 in respective order, and the number of variables selected
as a proportion of the total number of variables was 5.06% (12/237), 6.33% (15/237), 35.02%
(83/237), and 21.94% (52/237). The spectral bands chosen for the above methods were
mainly in the long-wave region, and the extracted ET response features all contained
astringent aftertaste and umami. In summary, by extracting features from the multi-
sensor fusion information of the samples, the computational efficiency and complexity
of the subsequent modeling could be further simplified, which was more helpful for the
construction of high-quality models.

Table 1. Statistical results of different feature variable selection methods within 100 iterations.

Method Number of
Variables Best Cost Selected Variables

ACO 12 0.0665 957.03 nm, 977.51 nm, 1004.20 nm, 1024.41 nm, 1286.39 nm,1332.25 nm, 1485.71 nm,
1492.12 nm, 1544.94 nm, 1574.00 nm, astringent aftertaste, umami

PSO 15 0.0411
985.16 nm, 1013.06 nm, 1063.20 nm, 1066.93 nm, 1164.82 nm, 1176.84 nm,
1201.94 nm, 1210.26 nm, 1395.17 nm, 1599.64 nm, 1634.02 nm, bitter aftertaste,
astringent aftertaste, umami, saltiness

GWO 83 0.0084

953.17 nm, 964.72 nm, 973.68 nm, 981.33 nm, 985.16 nm, 996.60 nm, 1020.63 nm,
1024.41 nm, 1039.48 nm, 1051.98 nm, 1059.46 nm, 1070.65 nm, 1074.38 nm,
1085.51 nm, 1108.90 nm, 1146.70 nm, 1150.33 nm, 1161.21 nm, 1180.44 nm,
1198.37 nm, 1206.70 nm, 1224.46 nm, 1238.60 nm, 1257.35 nm, 1264.34 nm,
1274.81 nm, 1278.29 nm, 1282.92 nm, 1293.32 nm, 1318.57 nm, 1321.99 nm,
1325.42 nm, 1332.25 nm, 1335.66 nm, 1342.46 nm, 1353.77 nm, 1367.27 nm,
1373.99 nm, 1380.70 nm, 1387.39 nm, 1395.17 nm, 1398.50 nm, 1408.47 nm,
1418.39 nm, 1426.08 nm, 1435.93 nm, 1442.48 nm, 1445.75 nm, 1449.02 nm,
1452.27 nm, 1458.78 nm, 1463.11 nm, 1469.59 nm, 1476.05 nm, 1479.27 nm,
1485.71 nm, 1496.39 nm, 1499.59 nm, 1505.97 nm, 1512.33 nm, 1515.51 nm,
1525.01 nm, 1551.20 nm, 1554.32 nm, 1557.44 nm, 1560.56 nm, 1567.81 nm,
1570.91 nm, 1580.18 nm, 1583.26 nm, 1596.58 nm, 1599.64 nm, 1602.69 nm,
1614.87 nm, 1631.01 nm, 1634.02 nm, 1640.03 nm, sourness, astringency, bitter
aftertaste, astringent aftertaste, umami, richness

NSGA−II 52 0.0509

960.88 nm, 969.84 nm, 992.79 nm, 996.60 nm, 1024.41 nm, 1035.71 nm, 1070.65 nm,
1074.38 nm, 1078.09 nm, 1108.90 nm, 1112.58 nm, 1116.25 nm, 1128.47 nm,
1132.12 nm, 1135.77 nm, 1150.33 nm, 1169.64 nm, 1194.79 nm, 1213.82 nm,
1235.07 nm, 1238.60 nm, 1246.82 nm, 1250.33 nm, 1325.42 nm, 1339.06 nm,
1353.77 nm, 1363.90 nm, 1391.84 nm, 1418.39 nm, 1429.37 nm, 1432.65 nm,
1435.93 nm, 1442.48 nm, 1445.75 nm, 1449.02 nm, 1472.82 nm, 1488.92 nm,
1541.81 nm, 1554.32 nm, 1570.91 nm, 1589.42 nm, 1596.58 nm, 1605.74 nm,
1611.83 nm, 1617.91 nm, 1620.94 nm, 1623.97 nm, sourness, bitter aftertaste,
astringent aftertaste, umami, sweetness

3.3. Results of The Optimal Models

The results of the optimization models built based on ET sensors and spectral features
combined with different chemometrics are shown in Table 2. The statistics in Table 2
showed that the order of CCRs for models based on different data using the same modeling
approach was roughly low−level fusion data > ET data > NIR data. The CCR of the KNN
model based on ET data only was higher than that of the KNN model with fused data.
The reason may be that there were more variables in the fused data and the relationships
between them were complex, and KNN as a class of linear algorithms was not as advan-
tageous in solving non-linear complex problems. In terms of the performance of models
built from the same data source combined with different classification algorithms, the SVM
model has the highest CCR. The highest CCR of 92.27% was obtained from the SVM model
based on low−level fused data. It could be seen that the modeling performance utilizing
fused data outperformed the results of models constructed from single sensor features.
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Table 2. Results of the optimal models based on ET sensors and spectral features combined with
different chemometrics.

Data Model Parameters
CCR/%

Calibration Set Prediction Set

ET
ELM nn a = 45 358/467 76.66 178/233 76.39
KNN PCs = 4, K = 1 408/467 87.37 201/233 86.27
SVM c = 16, g = 5.66 422/467 90.36 210/233 90.13

NIR
ELM nn a = 38 328/467 70.24 150/233 64.38
KNN PCs = 3 K = 3 333/467 71.31 152/233 65.24
SVM c = 16, g = 0.062 425/467 91.01 198/233 84.98

Low−level
Fused data

ELM nn a = 97 376/467 80.51 185/233 79.40
KNN PCs = 6, K = 5 370/467 79.23 182/233 78.11
SVM c = 16, g = 0.062 455/467 97.43 215/233 92.27

a Number of hidden layer neurons.

The feature fusion data obtained using different variable selection algorithms are the
characteristic variables and the prediction results of the models built by combining different
machine learning algorithms, as shown in Table 3. The results in Table 3 showed that the
accuracy of the prediction set for all models was above 80%. The order of merit of the
model performance for the same variable selection method was SVM > KNN > ELM. The
CCRs of the ACO−ELM, ACO−KNN, and ACO−SVM models were the highest when
analyzed in terms of the model effects of the same modeling approach. It can be seen
that the ACO algorithm effectively extracted the feature variables related to the quality
grade of Dianhong black tea samples. With fewer variables, the model achieved higher
accuracy. The optimal classification model that was built was ACO−SVM with a CCR of
93.56% and only 12 variables were extracted. The ACO−SVM model was more robust
than models built from fused data at a low level. To explain in detail the discriminative
correctness of the prediction set samples in the ACO−SVM model, the confusion matrix
results of the prediction sample distribution are presented in Figure 6. The results of
the sample distribution in Figure 6 showed that the CCRs for the seven grades (T, C1,
C2, C3, C4, C5, and C6) in the prediction class were 100%, 97.1%, 90.9%, 90.9%, 88.2%,
87.9%, and 100%, respectively. The CCRs for the corresponding seven levels in the true
class were 91.7%, 97.1%, 96.8%, 93.8%, 96.8%, 85.3%, and 94.3%, respectively. The plotted
confusion matrix gave a visual indication of the classification of the samples. The ACO-
SVM discrimination model based on fused features was more effective in evaluating the
quality of seven categories of tea samples.

Table 3. Results of optimization models based on fused data and different chemometric methods.

Model Parameters
CCR/%

Calibration Set Prediction Set

GWO−ELM nn a = 73 397/467 85.01 196/233 84.12
GWO−KNN PCs = 5, K = 3 408/467 87.37 203/233 87.12
GWO−SVM c = 16, g = 0.25 450/467 96.36 216/233 92.70
ACO−ELM nn a = 83 398/467 85.22 197/233 84.55
ACO−KNN PCs = 9, K = 7 421/467 90.15 210/233 90.13
ACO−SVM c = 16, g = 0.70 448/467 95.93 218/233 93.56
PSO−ELM nn a = 97 386/467 82.66 189/233 81.12
PSO−KNN PCs = 8, K = 7 421/467 90.15 208/233 89.27
PSO−SVM c = 11.31, g = 2.83 440/467 94.22 217/233 93.13
NSGA−II−ELM nn a = 73 394/467 84.37 195/233 83.69
NSGA−II−KNN PCs = 6, K = 5 412/467 88.22 205/233 87.98
NSGA−II−SVM c = 16, g = 0.35 455/467 97.43 216/233 92.70

a Number of hidden layer neurons.
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Figure 6. Confusion matrix of the sample distribution of the ACO−SVM model in the prediction
process.

3.4. Discussion of the Optimal Models

The characteristic variable features in this study were based on fused data (Miniature
NIR data + ET sensor data), and the published papers were all based on a single variable
for feature selection [18,41]. The fused data covered a more comprehensive range of
information, for which the selection of characteristic variables was beneficial in obtaining
valid variables. The results of the selection of feature variables in Table 1 showed that the
ACO method obtained the 12 best variables. The number of variables obtained was less
than the number of features obtained based on a single spectral information. In published
studies based on single spectral data, the performance of the best classification model
was also lower than that of the existing ACO−SVM model. Due to the small amount of
information from the ET sensor, it was difficult to obtain useful information effectively.
Therefore, the stability of the constructed model based on the ET data was insufficient. In
terms of the performance of the modeling algorithm, the SVM model had a higher CCR.
It had been shown through previous studies that SVM exhibited excellent classification
ability in solving non-linear problems [24,42]. In this research, satisfactory results were
obtained with the ACO−SVM model.

In the future, the importance of developing small and precise portable NIR equipment
to minimize equipment size and manufacturing costs and achieve process control of tea
processing quality is an important research direction. In addition, the construction of a
cloud-based control system for big data will be an inevitable trend in the development of
NIR technology in the field of tea analysis applications.

4. Conclusions

NIR spectroscopy and ET sensors can capture the flavor characteristics of tea and thus
assess the flavor quality of tea. In this study, a rapid evaluation method for the taste quality
(ET, NIR, and fusion data) of Congou black tea was proposed. The effects of different
feature wavelength selection methods (ACO, PSO, GWO, and NSGA−II) and intelligent
classification algorithms (KNN, ELM, and SVM) on modeling ET features, NIR features,
and multi-sensor feature fusion data of Dianhong black tea samples were explored to find
the best assessment parameters and recognition models for black tea grade quality. The
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experimental results showed that the fusion data (ET + NIR) were filtered for features using
the feature variable selection algorithms, and the effective fusion recognition models for
the quality of Dianhong black tea were established in combination with the classification
methods. The discriminative accuracy of the ACO−SVM model based on fused feature
vectors was higher at 93.56% compared to the predictive performance of the single sensor
data model. It can be seen that the effective fusion of feature data can reflect the intrinsic
properties of the samples to be tested more comprehensively, and the fusion based on ET
and spectra has good prospects for evaluating the quality of Dianhong black tea.
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Abstract: This paper reported a real-time detection strategy for Hg2+ inspired by the visible spec-
trophotometer that used a smartphone as a low-cost micro-spectrometer. In combination with the
smartphone’s camera and optical accessories, the phone’s built-in software can process the received
light band image and then read out the spectral data in real time. The sensor was also used to
detect gold nanoparticles with an LOD of 0.14 µM, which are widely used in colorimetric biosensors.
Ultimately, a gold nanoparticles-glutathione (AuNPs-GSH) conjugate was used as a probe to detect
Hg2+ in water with an LOD of 1.2 nM and was applied successfully to natural mineral water, pure
water, tap water, and river water samples.

Keywords: colorimetric sensor; smartphone; micro-spectrometer; gold nanoparticle; Hg2+ detection

1. Introduction

The distribution of mercury pollution within the various spheres of the Earth system
has been attracting long-term attention because of the substantial toxicity of mercury [1].
Hg2+ is one of the most stable inorganic forms of mercury and has characteristics highly
hazardous to health at low concentrations [2], such as permanent damage to the human
digestive system, urinary system, and nervous system. Therefore, to prevent Hg2+ from
threatening the health of human beings and ecosystems as much as possible, it is necessary
to perform qualitative and quantitative detection of the trace levels of Hg2+ in water.

Several well-established methods are currently available for detection of heavy metals
in drinking water and in its source, including atomic absorption spectroscopy [3,4], atomic
fluorescence spectroscopy [5,6], inductively-coupled plasma mass spectrometry [7,8], and
gas chromatography-mass spectrometry (GC-MS) [9]. Many rapid-detection methods have
been used to improve detection efficiency, including colorimetric methods based on the
nucleic acids, antibodies, nanomaterials, or paper [10,11], fluorescence methods [12,13], elec-
trochemical conduction methods [14,15], and recently-developed surface Raman-enhanced
scattering methods [16]. Although these methods have been shown to provide high sensi-
tivity and accuracy using biological and chemical reactions, there are some drawbacks that
must still be addressed, such as difficulty in preparing nucleic acid aptamers or antibodies,
low ligation efficiency, extended response time, complexity, and short lifetime. In contrast,
colorimetric biosensors based on nanotechnology are more attractive because of their sim-
ple preparation processes, low cost, and excellent readability [17–19]. Gold nanoparticles
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(AuNPs) are favorable for colorimetric biosensing applications due to the high molar ex-
tinction coefficient, high specific surface area, and easy functionalization, leading to color
changes that are related to their interparticle distances [20–23]. Additionally, the spec-
trophotometer is widely used in biological colorimetric sensors as an important analytical
device. However, the cost of spectrophotometers for non-laboratory-based applications is
high, the available software support is severely limited due to the scalability by specific
permissions, and the device is strongly dependent on professional and proficient operators
with regard to data processing [24]. Additionally, an adequate platform is required to place
and power the spectrometer. Therefore, the development of a portable spectrophotometer is
essential to reduce detection costs and increase simplicity, and smartphones have gradually
emerged as an outstanding option [25–27].

Research trends and innovative approaches in the testing field have begun to focus
more on light device weight, simplicity, and effectiveness. Over the past decade, smart-
phones have become indispensable personal devices for many people and are attracting
considerable attention for low-cost, low-power, portable, and high-speed biosensors [28–30].
Among the device features, complementary metal-oxide-semiconductor (CMOS) image
sensors on smartphones can convert optical signals into electrical signals [31]. With the
continuous advancements in their integrated circuit design and manufacturing technology,
smartphone cameras are increasingly improving sensitivity, resolution, and dynamic range
with reduced power consumption [32,33]. These cameras have even been applied to smart
cars, which are more demanding than smartphones [34]. These advantages enable smart-
phones to be used as readout tools for portable colorimetric biosensors to measure color
and intensity changes effectively.

Based on the studies referenced above, we constructed a colorimetric biosensor system
that uses a smartphone miniature spectrometer as a readout tool (Figure 1A) in this work.
As a part of evaluating the sensor, we used a monochromatic diode and a gold nanoparticles
(AuNPs) solution to evaluate the accuracy and stability of the proposed system. We also
used gold nanoparticles-glutathione (AuNPs-GSH) conjugate as a detection probe to test
the practical applicability of the proposed sensor (Figure 1B). According to the three
classifications of drinking water in China’s national standard (GB19298-2014, GB5749-2006)
and an essential source of drinking water, we selected natural mineral water, pure water,
tap water, and river water as actual samples for the spiking experiment and obtained
satisfactory results.

Figure 1. (A) Colorimetric biosensor system based on a smartphone; (B) schematic illustration of
Hg2+ detection based on AuNPs-GSH.

31



Biosensors 2022, 12, 1017

2. Experimental Section
2.1. Materials and Instruments

The details have been listed in Supporting Information.

2.2. Preparation of AuNPs and AuNPs-GSH

Gold nanoparticles (AuNPs) were prepared using the trisodium citrate reduction
method established by Frens in 1973 [35]. We added 85.8 mL of ultrapure water to a
three-necked round-bottomed flask, followed by 4.2 mL of chloroauric acid solution (1%),
and then the solution was heated to 120 ◦C and stirred under magnetic reflux until boiling.
Then, 10 mL of trisodium citrate solution (1%) was added rapidly, and the color of the
solution turned red within 1 min. We then continued to boil the solution for 20 min and
subsequently cooled it to room temperature naturally to obtain a wine-red AuNPs solution.
This solution was then stored at 4 ◦C for later use within a one-year period.

Then, 30 µL of the GSH solution (25 mg/mL) was added to 6 mL of the AuNPs solution.
The mixture was placed on a magnetic stirrer and was stirred at room temperature for 2 h
to modify the AuNPs completely using GSH via the Au-S bond. The solution was then
centrifuged at high speed (30 min, 12,000 rpm, 4 ◦C) to remove the supernatant containing
unreacted GSH, and deionized water was added to re-suspend the AuNPs-GSH conjugates.
This solution was also stored at 4 ◦C for later use within a two-month period.

2.3. Evaluation of Sensor Capability for Colorimetric Detection

First, a commercial miniature optical fiber spectrometer (Avantes) was used to detect
four narrow-band monochromatic diode light sources. The results obtained were then
used as the actual wavelength bands for the monochromatic diodes. After a fixed distance
was set between each diode and the smartphone, the smartphone was set to detect the
diodes at 2 s detection intervals. In addition, the band position and intensity data of
the single peaks were recorded to verify the accuracy and stability of the smartphone’s
detection performance.

Further detection and absorbance analyses of AuNPs solutions with various con-
centrations (1, 5, 10, 25, 50, 75, and 100 µM) were performed to verify the colorimetric
detection capability of the smartphone. In this experiment, deionized water was used as
the background for the absorbance analysis. For comparison and verification, the back-
ground and each concentration of AuNPs solution were automatically detected 20 times
by an Avantes micro-optical fiber spectrometer and then the average detected values were
exported. Under the same conditions, the smartphone performed 20 detections for the
same solution and then obtained the average value. In addition, the 1st, 10th, and 20th
of 20 detections for each concentration were selected as three parallel experiments of this
concentration.

Limit of detection (LOD) was one of the indicators used to evaluate our detection
performance. It was calculated by 3 sb/slope (sb: standard deviation of the background,
and the slope in the calibration plot).

2.4. Practical Application of Sensors to Colorimetric Detection
2.4.1. PH and Response Time Optimization

The pH of the AuNPs-GSH solution was adjusted to values of 3.5, 4.5, 5.5, 6.5, and 7.5.
Then, 5 µM and 10 µM Hg2+ solutions were added to each of the AuNPs-GSH solutions
with different pH values, and the VHg2+:VAuNPs-GSH was 2:1.The spectral data of these
solutions were detected at 522 nm and recorded every 3 s using the smartphone, and the
detection process lasted for 30 s. Each assay in these experiments was repeated three times.
In the analysis, the absorbance data of the solutions at 522 nm were used as indicators of
the degree of dispersion or aggregation of the AuNPs.
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2.4.2. Detection of Specificity

The AuNPs-GSH solution was mixed with 16 common ions (Ni2+, Cd2+, Cr3+, Hg2+,
Pb2+, Mn2+, Cu2+, Ca2+, Mg2+, Zn2+, Fe3+, CrO4

2−, CO3
2−, SO4

2−, CH3COO−, and PO4
3−

ions, 5 µM) at a volume ratio of 1:2 and were detected under the same experimental
conditions using the proposed sensor, and each detection process was repeated three times.
Ten metal ions (Ni2+, Cd2+, Cr3+, Pb2+, Mn2+, Cu2+, CrO4

2−, Ca2+, Mg2+, Zn2+, and Fe3+

ions, 0.5 µM) were mixed. The mixture solution with/without Hg2+ (0.5 µM) was added to
the AuNPs-GSH solution and detected with the same detection method as above.

2.4.3. Quantitative Detection

We added Hg2+ solutions with different concentrations (VAuNPs-GSH:VHg2+ = 1:2), and
then each mixture was incubated for 5 s. To better use the smartphone for detection in this
case, the mixtures obtained above were then diluted at a ratio of 1:4 with deionized water.
The smartphone’s spectral data were detected and recorded from 400 nm to 700 nm. The
relative distances between the light source, the cuvette, and the smartphone were all fixed.
The total detection time was approximately 300 s. The detection time refers to the time
between the dropwise addition of the first Hg2+ solution concentration to the AuNPs-GSH
solution and the detection of the final Hg2+ solution concentration. The experiment was
repeated three times. Among the results, the absorbance data acquired at 522 nm were used
to provide the index parameter for the Hg2+ content, which also represented the degree of
aggregation or dispersion of the AuNPs.

3. Results and Discussion
3.1. Smartphone Functions of the Sensor

The colorimetric biosensing system constructed in this work used the smartphone
camera as a readout tool. The light band image that was formed by the light beam when
dispersed by the optical accessories reached the smartphone’s camera. The smartphone then
collected the detected spectral data based on the image received (this principle is illustrated
in Figure S1, Supplementary Materials). The operational interface of the mobile terminal
processing software (GoSpectro app) is shown in Figure 2. The accuracy and stability of the
spectrum band data obtained are vital to the detection process. The calibration process can
be adjusted using the parameter settings before detection and the calibration light source.
After the calibration process is complete, the smartphone software will then match the
pixel position and intensity of the received image with the position and intensity of the
band. This will enable the formation of the visual and spectral data simultaneously. These
data can be read and recorded in real-time. This is true whether the data are acquired
for mercury lamps with multiple narrow-band light sources or for halogen lamps with a
broader spectrum of wavelengths. We detected mercury lamps to validate that using the
above process could obtain available and similar results from different low-configuration
smartphones (Table S1 and Figure S2).
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Figure 2. Operating interface of GoSpectro app (Android) on the smartphone. (A) Detection parame-
ter settings; (B) calibration operation with calibration light source; (C) detection of mercury lamp;
and (D) detection of white light source.

3.2. Evaluation of Sensor Performance in Colorimetric Detection
3.2.1. Accuracy and Stability of Sensor Detection

Using a smartphone as a reading device involves two primary abilities: the wavelength
band must be detected accurately, and the light intensity detection must remain relatively
stable. This part of the experimental process was verified using four monochromatic diodes
with different wavelengths (Figure 3A). The results in Table S2 show that the position of the
detection peak of the proposed sensor is basically the same as that of the Avantes spectrometer,
and the existing sensor error will not affect the detection significantly (0.5 nm).

Figure 3. (A) Verification of the accuracy and stability of the sensor proposed in this paper via
the detection of monochromatic diodes; (B) detection of AuNPs solutions via the sensing system;
(C) absorbance analysis results for AuNPs solutions with different concentrations; (D) color changes
in the solutions with increasing AuNPs concentrations.
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These results also verified that the calibration operation performed before detection
was effective. Otherwise, the calibration would cause the image pixels to fail to correspond
to the band’s position, and the detection peak would have been shifted. Furthermore, the
fluctuations in the light intensity data for the detection peak are minimal, thus indicating
that the impact of the system error is limited. This illustrates the good repeatability of the
detection operation.

The cooperation between the smartphone camera and the optical accessories also
indicates that the sensing system can provide an accurate and stable detection performance
after a standard calibration operation.

3.2.2. Sensitivity Analysis of Sensor Detection

For colorimetric detection applications, it is imperative that the sensor be highly sensi-
tive to color. It is possible to change the color of the solution under test gradually, from
colorless to wine red, by varying the AuNPs concentration. Therefore, we analyzed the
detection and absorbance of AuNPs solutions with different concentrations to verify the
smartphone’s detection performance (Figure 3B). As shown in Figure 3C, the absorbance
analysis indicated that the AuNPs appeared to have a prominent absorption peak at ap-
proximately 522 nm due to the 15 nm AuNPs. In addition, within the 625–650 nm range,
there is a fluorescence effect that results in the appearance of a negative absorbance peak
for this band range. These two characteristic peaks showed good repeatability in multi-
ple experiments, and the Avantes spectrometer under the same experimental conditions
verified this phenomenon as well.

We performed linear regression analyses on the absorbance data acquired at 522 nm
from both the smartphone and the Avantes spectrometer. These analyses evaluated the
detection capability of the smartphone. Both detection devices showed excellent linear
relationships between the concentration and the absorbance of the AuNPs within the
detection range from 1 µM to 100 µM (Figure S3). The correlation coefficients of the two
devices were R2 = 0.99922 and R2 = 0.99975, respectively, and their slopes differed by only
0.0002. Additionally, the limit of detection (LOD, 3 sb/slope) for AuNPs of the smartphone
reached 0.14 µM (Figure S3A). These results showed that the sensing system provided a
detection capability comparable to that of a commercial spectrometer over an extensive
range of variations of the same color. It was noted that even when the AuNPs solution
appeared to the naked eye as having little to no color, or when the colors of the solutions
were so close to each other that it was difficult to differentiate between them (Figure 3D), the
smartphone could detect the gradient successfully. This provides an intuitive illustration of
the sensitivity and conveys that the smartphone camera is highly suited to the capture of
color changes, thus meeting the colorimetric application requirements.

3.3. Practical Application of the Sensors to Hg2+ Detection

AuNPs are used widely because of their excellent optical properties. We selected the
detection performance for Hg2+ sensing based on GSH-modified AuNPs to evaluate the
practical applicability of the sensor. This allows the sensor to work under more complex
color change conditions to ensure that comprehensive performance testing can be obtained
during practical applications. The detection process based on use of AuNPs as probes can
also reflect the scalability of the sensor in colorimetric detection.
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3.3.1. Principle and Characterization of Hg2+ Detection by AuNPs-GSH

AuNPs have a high affinity for biological thiols, and when molecules containing thiol
groups are added to the AuNPs solution, they will bind rapidly to the surfaces of the
AuNPs [36]. When compared with AuNPs and other metal ions, Hg2+ has higher thiophilic
properties [37]. Based on this principle, several studies have been performed that have
led to the aggregation of AuNPs, which results in a color change from red to blue [38–40]
or causes aggregated AuNPs to achieve an anti-aggregation effect, which in turn causes
the solution color to change from blue to red as the particles are re-dispersed [41–43]. This
enables the detection of Hg2+ or biothiols using AuNPs. Based on the studies described
above, trisodium citrate-reduced AuNPs (citrate-AuNPs) were modified with GSH via
Au-S bonds at room temperature to form a stable AuNPs-GSH probe. When a specific
volume of the Hg2+ solution was added to the AuNPs-GSH solution, the extremely high
affinity of -SH toward Hg2+ triggered the breakage of Au-S bonds on surfaces of AuNPs,
causing GSH to fall from Au surfaces and then form a GSH-Hg-GSH complex with Hg2+,
thus destabilizing the AuNPs and causing aggregation and color changing [44]. When
the Hg2+ concentration increases, the AuNPs solution follows a red-purple-blue color
change pattern, which also places higher requirements on the tests of the proposed sensor’s
detection performance.

To verify the capability of the practical smartphone detection process and the feasibility
of the proposed method, we first characterized the AuNPs-GSH solution using the sensing
system presented in this paper (Figure 4). The AuNPs-GSH absorption peak is located
near 522 nm. The addition of a high Hg2+ concentration causes the AuNPs-GSH solution
to aggregate and rapidly change from red to blue. We also observed the process of the
AuNPs-GSH solution before and after aggregation by transmission electron microscopy
(TEM). Figure 4B showed that the prepared AuNPs-GSH had a good dispersion, but when
a specific concentration of the Hg2+ solution was added to the AuNPs-GSH solution, the
AuNPs then aggregated (Figure 4C). The absorption peak in Figure 4A showed a significant
shift to the right with the addition of Hg2+, which is related to the red-shift phenomenon
caused by the larger overall diameter of the aggregated AuNPs. Further, we used dynamic
light scattering (DLS) to characterize the size distribution changes of AuNPs, AuNPs-GSH,
and AuNPs-GSH+Hg2+. The results (Figure S4) showed that the average size of AuNPs is
about 15 nm. The hydrodynamic size of AuNPs-GSH increased to about 21 nm after the
conjugation of GSH on the surface of AuNPs. We also validated the aggregation process
using DLS, which revealed that the hydrodynamic size of AuNPs was dramatically enlarged
relative to the AuNPs-GSH when Hg2+ was introduced. The zeta potential also was tested
as well. Compared with AuNPs, the zeta potential of AuNPs-GSH changed from −44.3 to
−26.6 mV, which suggested that GSH has been successfully modified on the surfaces of
AuNPs, and it changed to −1.56 mV after adding Hg2+. These characterization processes
verify that the AuNPs-GSH-based probe has the potential to detect Hg2+, while the accurate
detection of the red-shift phenomenon also illustrates the excellent performance of the
proposed sensor.
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Figure 4. (A) Characterization of the absorption spectra of the AuNPs−GSH solution using the
proposed sensor (a) without Hg2+ and (b) with 10 µM of Hg2+; (B,C) TEM images of the AuNPs−GSH
solution before and after addition of Hg2+; (D) absorbance analysis results before and after addition of
Hg2+ to the AuNPs−GSH solution under different acid−base environmental conditions; (E) changes
in absorbance over time after addition of Hg2+ to the AuNPs−GSH solution.

3.3.2. Optimization of the Experimental Conditions

To remove the influence of certain factors in the experiment of smartphone detection
performance and to provide a better reflection for the practical application of the sensor
proposed in this paper, we analyzed and optimized the pH value of the solution and the
response time to the AuNPs-GSH solution with Hg2+. Figure 4D showed that the AuNPs
were extremely unstable in an acidic environment and exhibited low absorbance. From a
combination of the absorbance values with the electron microscope images (Figure 4A,D),
it can be inferred that the AuNPs were aggregated to a high degree at this time, which
also means that even if Hg2+ was added to the solution, no significant change would be
observed. According to the results of this analysis, the detection should be performed in a
weak acid environment. Because the reaction of the solution tends to become stable within
approximately 5 s of adding Hg2+ (Figure 4E), the incubation time for the probe and target
was set at 5 s. In this section, the smartphone detection results demonstrated the device’s
rapid-detection capability and reflected the aggregation of the AuNPs accurately.

3.3.3. System-Specific Analysis and Quantitative Detection

The specific selection of AuNPs-GSH is essential to guarantee the effective detection
of Hg2+ by the proposed sensor. In the experiments, we adjusted the volume ratio of
the AuNPs-GSH solution to 16 common ions solutions (1:2) appropriately, and the color
changed dramatically when Hg2+ was dropped into this solution. Additionally, the change
in this solution was most obvious in the 5 min following the addition of Hg2+ (Figure S5).
To better illustrate this feature, we used the smartphone to detect the absorbance at 522 nm
after the AuNPs-GSH solution was mixed with common ions (Figure S6), as well as the
value of the resulting absorbance change (Figure 5A). When the AuNPs-GSH solution was
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mixed with deionized water as a control group, it was found that Hg2+ produced a very
prominent response, whereas the influence of adding other ions to the solution was similar
to the control group. To a certain extent, this also showed that interference from the other
ions is very limited at the volume ratio of 1:2. Under the same conditions, when we added
the mixture solution containing 10 metal ions (excluding Hg2+) to AuNPs-GSH, there was
no obvious interference. However, the mixture solution containing Hg2+ caused AuNPs
aggregation (Figure S7), which showed that our method still had good selectivity when
ions competed with each other.

Figure 5. (A) Absorbance at 522 nm of AuNPs−GSH solutions when mixed with 16 different metal
ions; (B) color changes caused by the addition of different concentrations of Hg2+ to the AuNPs−GSH
solution; (C) absorption spectra of the solution in (B) when detected by the proposed sensor; (D) linear
relationship between absorbance at 522 nm and the Hg2+ concentration.

Based on the work described above, it was determined that the colorimetric biosensor
of the smartphone is capable of detecting Hg2+ in water by AuNPs-GSH. We then eval-
uated the quantitative detection effect of the sensor under optimized conditions. When
the concentration of Hg2+ increased, the aggregation of the AuNPs in the solution also
increased, which means that the absorbance of the solution near 522 nm decreased gradu-
ally as the Hg2+ concentration increased from 0 to 1 × 104 nM (Figure S8), and this change
was accompanied by a red-shift phenomenon (Figure 5C). The LOD (3 sb/slope) of Hg2+

is 1.2 nM/0.24 ppb (Figure 5D), which is well under the international community’s limit
values of 5 nM (1 ppb) and 10 nM (2 ppb) for Hg2+ in drinking water. The change in the
Hg2+ concentration and absorbance showed a good linear relationship within the detection
range from 30 nM to 1 × 104 nM (Figure 5D), which indicates that the colorimetric biosensor
system, based on the use of a smartphone as a miniature spectrometer as proposed in this
paper, could be used effectively to perform quantitative Hg2+ detection. Furthermore, rapid
detection and high sensitivity were both achieved within an extensive color variation range
(red-purple-blue), even when the solutions were difficult to distinguish with the naked eye
(Figure 5B). This verified the reliability of the sensor’s colorimetric detection performance
in practical applications.
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3.3.4. Spiking Experiment in Actual Samples

When establishing the calibration model, the sample preparation solution was stan-
dard purified water prepared in the laboratory. However, the water-quality parameters
for natural water bodies are not the same as for standard purified water. When the con-
figuration solution is from a natural water body, the substances in the water may cause
results to be inaccurate, so the detection and evaluation of actual water samples is essen-
tial. According to the three classifications of drinking water in China’s national standard
(GB19298-2014, GB5749-2006), we selected natural mineral water, pure water, and tap water
as actual samples for the spiking experiment.

Analytical results in Table 1 showed that the recoveries varied from 97.43% to 102.98%
in the spiked Hg2+ samples. The recovery values indicated that our proposed method could
be used for highly accurate Hg2+ detection in actual samples from different drinking waters.

Table 1. Analytical results of samples.

Sample Added (nM) Found (nM) Recovery (%) RSD (%, n = 3)

Tap water

75 77.23 102.98 3.25
300 299.07 99.68 1.43
1250 1267.68 101.41 1.98
5000 5123.52 102.65 2.02

Mineral water

75 75.575 100.76 3.58
300 295.61 98.54 3.23
1250 1217.87 97.43 2.61
5000 4938.94 98.78 2.79

Pure water

75 74.91 100.14 1.06
300 295.82 98.61 1.70
1250 1277.33 102.18 1.86
5000 4958.97 99.18 1.15

In addition, river water is an essential part of the ecological system and is an important
source of drinking water, so we have also listed it as our test object. Due to the complex
composition of river water, we left the samples standing overnight and diluted them
five times with deionized water. For comparison, the inductively coupled plasma-mass
spectrometry (ICP-MS) was also used to detect the spiked samples. As listed in Table S3,
the results of the presented method were similar to those of ICP-MS, with the recoveries
varying from 99.76% to 115.88%, which indicated that the proposed method showed
excellent potential for detecting Hg2+ in complex, river water samples.

Furthermore, we compared the performance of the proposed strategy with those of
other sensors for Hg2+ detection, based on AuNPs and on the use of a professional spec-
trometer or smartphone as the readout method, as shown in Table 2. First, we could obtain
a detection limit with the same order of magnitude as those of precision instruments based
on the Hg2+ detection of the smartphone. Second, when compared with the other methods
presented, the Hg2+ detection method proposed in this paper showed a comparable linear
range and faster response time. Third, combined with Table S1, we find that our method
could work well with most cheap, mid- to low-end phones currently on the market. Addi-
tionally, compared to other smartphone-based methods, we can perform a more detailed
analysis that incorporates spectral information rather than solely the data of color. Finally,
through practical application to Hg2+ detection and by comparison with related work
from other researchers, this paper demonstrated that the colorimetric biosensor with a
smartphone as a low-cost micro-spectrometer has great potential for future applications,
and that this sensor can perform colorimetric detection accurately, effectively, and stably
within the visible light range.
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Table 2. Comparison between the practical application effect of the proposed colorimetric biosensor
to Hg2+ detection and the results of previously reported works.

Materials Incubation Time(s) Tool * Linear Rangen(M) Sample LOD for Hg2+ Ref.

AuNPs-MBT 300 S 50–103 Lake water 6.0 nM/1.20 ppb [45]
AuNPs-CTAB 1800 S 20–103 Tap water 11.9 nM/2.39 ppb [46]
AuNPs-MSA 300 S 10–104 Tap water 4.8 nM/0.96 ppb [47]
AuNPs-AA 300 S 9–1.27 × 104 Tap water 8.8 nM/1.76 ppb [48]

AuNPs-APTES 1200 S 15–92 River water 10 nM/2.01 ppb [49]
AuNPs-DETL 900 S 100–5 × 103 River water 24.0 nM/4.81 ppb [37]
AuNPs-DTT 480 P 54–267 Rain water 17.0 nM/3.40 ppb [50]

AuNPs-H2O2 1800 P 100–104 Lake water 40.0 nM/8.02 ppb [51]
AuNPs-GSH 5 P 30–103 River water 1.2 nM/0.24 ppb This work

* Readout tool type. S: Spectrophotometer, P: Phone.

4. Conclusions

In this work, we built a colorimetric micro-spectrometer system that used a smart-
phone as a readout tool for the detection of Hg2+ in drinking water. The mobile terminal of
the sensor processed the image received using a combination of the smartphone’s camera
and optical accessory, and ultimately achieved the desired spectral detection effect. In the
evaluation of smartphone detection performance, effective detection of both the target
light source and the liquid being tested were achieved, and the detection limit of AuNPs
reached 0.14 µM. Additionally, when the samples were colorless or very similar in color,
the smartphone detection method showed high sensitivity in capturing color changes. We
also used the sensor to detect more complex sample-color changes. Therefore, we used
AuNPs-GSH as a detection probe material to detect Hg2+ in water, and obtained a LOD of
1.2 nM. This method was also applied successfully in actual samples of natural mineral
water, pure water, tap water, and river water, with a recovery rate range of 97.4~115.9%.
Following a series of performance evaluations and practical applications, it was concluded
that the sensor proposed in this paper could use the smartphone as a micro-spectrometer
to collect the spectral signals of AuNPs and perform accurate, stable, and fast colorimetric
detection with a highly sensitive readout capability. This sensor has tremendous potential
for future application in low-cost biological colorimetric rapid detection.
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light band, which is received by the cell phone camera; Table S1: Smartphones related information;
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debugged, where each monochromatic diode was detected 20 times during the experiment at 2 s
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detection of AuNPs by commercial Avantes spectrometer; Figure S4: Size distribution and Zeta
potential of AuNPs, AuNPs-GSH, and AuNPs-GSH+Hg2+; Figure S5: Influence of various metal ions
on the color of AuNPs-GSH solution; Figure S6: Influence of various metal ions on the absorbance of
AuNPs-GSH solution; Figure S7: The change of absorbance in AuNPs-GSH solution after adding
deionized water and metal ions mixture solution with/without Hg2+ (0.5 µM), respectively. A,
AuNPs. M, metal ions mixture solution (Ni2+, Cd2+, Cr3+, Pb2+, Mn2+, Cu2+, CrO4
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Abstract: This study presents a novel composite thin film based on rhodamine B encapsulated
into MOF-5 (Metal Organic Frameworks) as a fluorescence sensor for the real-time detection of the
freshness of chilled pork. The composite film can adsorb and respond to the volatile amines produced
by the quality deterioration of pork during storage at 4 ◦C, with the fluorescence intensity of RhB
decreasing over time. The quantitative model used for predicting the freshness indicator (total volatile
base nitrogen) of pork was built using the fluorescence spectra (excited at 340 nm) of the RhB@MOF-5
composite film combined with the partial least squares (PLS) algorithm, providing Rc

2 and Rp
2

values of 0.908 and 0.821 and RMSEC (root mean square error of calibration) and RMSEP (root mean
square error of prediction) values of 3.435 mg/100 g and 3.647 mg/100 g, respectively. The qualitative
model established by the partial least squares discriminant analysis (PLS-DA) algorithm was able to
accurately classify pork samples as fresh, acceptable or spoiled, and the accuracy was 86.67%.

Keywords: metal–organic frameworks; rhodamine B; volatile compounds; fluorescence sensing;
chilled pork; freshness

1. Introduction

Pork is a highly nutritious food rich in protein and several essential amino acids and
vitamins ideal for human consumption. However, fresh pork is a perishable food and can
easily deteriorate under the action of enzymes and microorganisms in cold-chain logistics,
which affects food safety [1]. Traditionally, the freshness of chilled pork has been evaluated
based on chemical and microbial indicators, such as the total volatile base nitrogen (TVB-N)
value and total viable count (TVC) [2]. However, these traditional detection methods have
the disadvantages of being time-consuming and requiring cumbersome pretreatments,
high operational requirements, and sample destruction. When meat deteriorates, volatile
compounds are produced due to protein degradation and lipid oxidation. Therefore, if
these volatile gases can be identified, pork freshness can be monitored in real time.

Electronic nose technology, which is often used to analyze food odors and can compen-
sate for the deficiencies caused by the human subjectivity inherent in sensory evaluation,
has been used to determine meat freshness [3,4]. However, as metal oxide sensors in the
electronic nose often require the stimulation of electron transfer at a high temperature to
produce a gas-sensitive response, these can easily be affected by environmental factors,
limiting their application [5]. Cold-chain logistics are now developing from using tradi-
tional static methods for detecting food quality to using the “Internet of Things” to provide
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comprehensive, real-time monitoring [6]. Electronic nose devices are large and expensive,
making the rapid sharing of information difficult. More recently, gas sensors based on
pigments, which can perform detection and analysis based on the color change of pigments
(such as anthocyanin and bromophenol blue) caused by changes in the pH of volatile
substances arising in meat, have been developed [7–9]. However, these gas sensors have
some disadvantages [10], such as pigment instability, a short shelf-life, and low sensitivity.
Therefore, developing a rapid and reliable method based on new synthetic gas-sensing
materials for identifying the volatile compounds of pork during chilled storage in real time,
thus providing a freshness detection technology, has great significance and wide prospects
for application in food preservation [11].

Metal–organic frameworks (MOFs) are a type of inorganic, porous, and coordinated
polymer material formed from a central metal component and rigid ligands. These highly
ordered MOFs are characterized by superior performance resulting from their diversi-
fied structure, ultra-high porosity, good adsorption, and surface modifiability, which can
play a role in preconcentrating gas molecules and providing sufficient contact with an-
alytes [12–14]. With their unique cage and channel-type porous structures, MOFs can
efficiently assemble molecules with identifiable characteristics. Furthermore, owing to their
greater specific surface area, these can provide a greater number of active sites, leading to
more sensitive chemical sensing [15,16]. One type of MOF, Zn4(µ4-O)-(µ4-4-carboxyl-3,5-
dimethyl-4-carboxyl-pyrazole)3, containing carboxyl groups and coordinated unsaturated
metal sites, can selectively capture harmful volatile organic compounds (VOCs) such as
sarin and mustard gas [17]. Koh et al. designed a plasmonic nose based on an MOF-
encapsulated Ag nanocube array that was able to identify and quantify several harmful
VOCs and polycyclic aromatic hydrocarbons (PAHs) at the ppm level [18].

Introducing guest molecules or units, such as dye molecules or chromophores, into
MOFs can improve their fluorescence properties, allowing them to be used as a luminous
platform for the detection of target substances [19,20]. Yassine et al. used thin films of a
rare earth metal (RE)-based MOF with an fcu topology as a fluorescence sensor to detect
H2S at room temperature [21]. The innovative material Rho@CZJ-3 (a luminescent MOF
material containing 1D nanotube channels) was synthesized to probe different volatile
organic molecules (VOMs) by modulating the energy transfer efficacy between two different
emissions [22]. Combining the highly sensitive and selective identification offered by
fluorescence spectroscopy with the gas adsorption properties of MOFs shows potential for
producing new gas-sensing materials for practical applications.

This study aimed to synthesize a luminescent rhodamine B (RhB)@MOF-5 gas-sensing
thin film for the real-time detection of the freshness of chilled pork (Scheme 1).
First, RhB@MOF-5 was prepared from a mixture of zinc nitrate hexahydrate and tereph-
thalic acid in a 2:1 ratio by adding RhB at a concentration of 2 × 10−3 mol/L, and the
composite film was manufactured by mixing RhB@MOF-5 with polyvinylidene fluoride
(PVDF). Next, changes in the volatile components during pork deterioration were analyzed
using electronic nose technology, and the response of RhB@MOF-5 to these volatile com-
pounds was discussed. Finally, the relationship between the fluorescence properties of the
RhB@MOF-5 composite films and the TVB-N value of pork during storage at 4 ◦C was
determined, and these data, in combination with chemometrics algorithms, were used to
establish quantitative and qualitative models for the evaluation of pork freshness.
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Scheme 1. Schematic illustration of the RhB@MOF-5 composite film for pork freshness detection.

2. Materials and Methods
2.1. Materials

Pork samples of longissimus dorsi muscles were obtained from the Beijing Ershang
Dahongmen Meat Food Co., Ltd. (Beijing, China). The muscles were divided into approxi-
mately 50 g pieces on a sterile surface and placed on a tray. The RhB@MOF-5 composite
films were made into uniform size labels, numbered, and then attached to plastic wrap on
the tray. Thirty prepared pork samples were stored in an incubator at 4 ◦C.

Zinc nitrate hexahydrate (Zn(NO3)2·6H2O), 1,4-benzenedicarboxylic acid (H2BDC),
N,N-dimethylformamide (DMF), and rhodamine B (RhB) were purchased from Aladdin
Reagent Company (Shanghai, China).

2.2. Preparation of RhB@MOF-5 Composite Film

RhB (38.3 mg) was added to dimethyl formamide (DMF, 40 mL) containing Zn(NO3)2·6H2O
(2.00 mmol) and H2BDC (1.00 mmol),and treated with ultrasound for 60 min. The reaction
mixture was then transferred to a Teflon-lined reactor and heated in an oven at 120 ◦C for 24 h.
The mixture was then cooled to room temperature and separated by centrifugation (2500 rpm, 5
min), and the products were washed repeatedly with DMF until the supernatant exhibited no
fluorescence. After further centrifugation, the products were dried under vacuum at 120 ◦C for
12 h to obtain the MOF powder [23]. The MOF and PVDF powders were mixed in a 4:5 ratio and
then DMF was added. After dispersion using ultrasound for 30 min, the mixture was stirred
overnight with a magnetic stirrer to obtain a light pink uniform viscous liquid. This liquid
was poured onto a tray in a thin layer and then placed in an oven at 140 ◦C for about 30 min.
After cooling naturally, the films were cut into 1 cm square pieces with a thickness of 0.1 mm
and then placed in a dryer.

2.3. Instrumentation

Scanning electron microscopy (SEM) images were obtained using the FEI Inspect F50
scanning electron microscope. Powder X-ray diffraction (PXRD) patterns were created
using the Panalytical X-ray Diffractometer Smartlab-9 kW. Fourier transform infrared (FTIR)
spectra were investigated using a Thermo Scientific Nicolet IS5 FTIR spectrophotometer
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within a range of 4000 to 400 cm−1. The fluorescence spectra were obtained using a
HITACHI F-7000 fluorescence spectrophotometer with a solid sample holder enabling the
non-destructive analysis. Electronic nose detection was performed using the AlphaMOS
Fox 4000 electronic nose with the test parameters as follows: balance temperature of the
sample, 37 ◦C; balance time, 600 s; temperature of the sampler needle, 47 ◦C; clean and dry
air used as the carrier gas at a flow rate of 150 mL/min; sampler volume, 1500 µL; delay
time, 10 min; and five samples being processed at one time. The maximum response value
of the sensor was taken as the characteristic value.

2.4. Storage Stablity Experiment

The RhB@MOF-5 composite films prepared in Section 2.2 were placed in a dark
environment at 4 ◦C. Then, the fluorescence data were collected on day 0, day 30, day 45
and day 60. The fluorescence intensity on day 0 was I0, and the ratio between day n and
day 0 was In/I0.

2.5. Standard Measurement of Freshness Indicator

According to the Chinese national standard (GB 5009.228-2016), the TVB-N value
can be used as an indicator of meat freshness based on the collection of alkaline volatile
nitrogen-containing substances, such as ammonia and amine [24]. Using the Kjeldahl
method, the TVB-N value of chilled pork samples was determined on days 1, 2, 3, 4, 6, 8,
11, 13, 15, and 17 of storage, with three pork samples used for each determination.

2.6. Statistical Analysis

The data were analyzed using IBM SPSS Statistics (Version 26, IBM Corp., Armonk, NY,
USA) and graphs were plotted using Origin 2018 (OriginLab Corp., Northampton, MA, USA).

Partial least squares (PLS) regression was used to identify quantitative correlations
between the spectral data and the freshness indicator, using Unscrambler X 10.0.1 (CAMO
PROCESS AS, Oslo, Norway). The performance of the models was assessed using the
square of the correlation coefficient (R2), the root mean square error of calibration (RMSEC),
and the root mean square error of prediction (RMSEP). The models will generally give
higher Rc

2 and Rp
2 values and lower RMSEC and RMSEP values. When R2 is closer to 1

and the Rc and Rp values are more similar, the predictions made by the models are usually
more accurate [25,26].

Partial least squares discriminant analysis (PLS-DA) is a linear classification method.
It can combine the characteristics of PLS regression with the discrimination ability of a
classification technique and is used to find mathematical models that can identify which
class each sample belongs to [27]. PLS-DA models were applied using SIMCA-P 11.5
(Umetrics, Umeå, Sweden), which allowed the graphical visualization and understanding
of the different data patterns and relationships using the scores and loadings of latent
variables (LVs).

3. Results and Discussion
3.1. Synthesis and Characterization of RhB@MOF-5
3.1.1. Selection of RhB Concentration

Images of MOF-5, RhB, RhB mixed with MOF-5, and RhB@MOF-5 with different
RhB concentrations under visual light and 365 nm UV light are shown in Figure 1a,b.
The luminescence intensity of RhB@MOF-5 was much higher than that of pure RhB and
MOF-5 powder. Fluorescent dyes often undergo fluorescence quenching due to aggregation,
but the porous structure of MOFs can act as a “solid solvent” [19]. According to the related
reference [28], the pore size of MOF-5 is around 1.56 nm. The immobilization of dyes into the
pore spaces of MOFs can disperse the dye molecules and minimize aggregation-induced
quenching, resulting in increased luminescence. Furthermore, the photoluminescence
properties of RhB@MOF-5 were clearly different from those of the mixture of MOF-5 and
RhB, which indicated that RhB had been enclosed in the pores of MOF-5.
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Figure 1. (a) Images of RhB@MOF-5 (RhB at a concentration of 2 × 10−3 mol/L), RhB@MOF-5 (RhB
at a concentration of 2 × 10−2 mol/L), MOF-5, RhB mixed with MOF-5 and RhB under visual light.
(b) Images of RhB@MOF-5 (RhB at a concentration of 2 × 10−3 mol/L), RhB@MOF-5 (RhB at a
concentration of 2 × 10−2 mol/L), MOF-5, RhB mixed with MOF-5 and RhB under 365 nm UV light.
(c) Fluorescence spectra (emission at 550 nm) for RhB@MOF-5 (RhB at concentrations of 2 × 10−2,
2 × 10−3, and 2 × 10−4 mol/L). (d) Fluorescence spectra (excitation at 340 nm) for RhB@MOF-5 (RhB
at concentrations of 2 × 10−2, 2 × 10−3, and 2 × 10−4 mol/L).

Previous research has shown that the fluorescence emission wavelength of RhB is
about 550 nm [29]. To determine the optimal RhB concentration, fluorescence spectra
of RhB@MOF-5 powder samples with different RhB concentrations (including 2 × 10−2,
2 × 10−3, and 2 × 10−4 mol/L) were measured with emission at 550 nm, as shown in
Figure 1c. The fluorescence intensities exhibited maximum values when the RhB concentra-
tion was 2 × 10−3 mol/L. When the dye concentration is low, the fluorescence intensity
increases with increasing dye concentration. However, when the dye concentration reaches
a certain value, its aggregation will be enhanced, which increases the nonradiative energy
transfer between molecules but decreases the fluorescence intensity [30]. MOF-5 provides
abundant pores that allow RhB to be well dispersed, which decreases aggregation and thus
improves the fluorescence properties. Figure 1d also shows the redshift in the emission
wavelength as the concentration of RhB increased. This might be due to energy transferring
between the component molecules when RhB aggregated into a dimer or polymer form.
Therefore, the RhB/DMF solution with a concentration of 2 × 10−3 mol/L was selected to
prepare RhB@MOF-5 for the following experiments.

3.1.2. Characterization of RhB@MOF-5

The morphological and structural characterization of RhB@MOF-5 was conducted
using the following tests. First, SEM images of MOF-5 and RhB@MOF-5 were analyzed,
as shown in Figure 2a,b. The size of MOF-5 was 60–80 µm, while the size of RhB@MOF-5
was about 80 µm. The surface of RhB@MOF-5 was slightly rougher than that of MOF-5.
RhB@MOF-5 is a square crystal with a similar structure to that of MOF-5, indicating
that RhB encapsulation did not change the morphology of MOF-5. The powder X-ray
diffraction (PXRD) characterization of RhB@MOF-5 was also conducted, as shown in
Figure 2c. This showed that RhB encapsulation did not obviously change the diffraction
peak position or reduce the intensity of MOF-5. Therefore, RhB@MOF-5 retained the
structure of MOF-5. Moreover, the XRD peaks of MOF-5 and RhB@MOF-5 were similar,
indicating that RhB molecules had been enclosed in the pores rather than being physically
adsorbed on the surface of MOF-5, and that the composite material had been successfully
prepared. Figure 2d shows the FT-IR spectra of MOF-5 and RhB@MOF-5, which were
highly similar, with no shift in the symmetric and asymmetric stretching vibrations of
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carboxylic acid at 1598 and 1390 cm−1, respectively, indicating that RhB encapsulation did
not affect the coordination between H2BDC and zinc(II) ions.
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3.2. Response of RhB@MOF-5 to Volatile Compounds during Pork Deterioration
3.2.1. Analysis of Characteristic Volatile Components by Electronic Nose

The electronic nose is an odor analysis system based on a gas sensor array, with the
different sensors able to identify the various volatile components. Figure 3 shows the
changes in the responses of the 18 sensors of the electronic nose to volatile compounds
from pork stored at 4 ◦C (Table S1). As the storage time increased, the response values
of the electronic nose sensors also changed, with sensors LY2/G, LY2/AA, LY2/GH, and
LY2/gCTL showing particularly obvious changes. Sensor LY2/G responded to changes in
ammonia, amine compounds, ketones and alcohols; sensor LY2/AA responded to changes
in ethanol, acetone, and ammonia; sensor LY2/GH responded to changes in ammonia
and amine compounds; and sensor LY2/gCTL responded to changes in H2S. Overall, this
showed that the contents of compounds including ammonia, amines, ketones, and alcohols
changed a great deal as pork deteriorated during chilled storage.
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3.2.2. Infrared Analysis of RhB@MOF-5 Response to Pork Deterioration

Infrared analysis can be used to characterize the chemical bonds and functional
groups of substances to provide specific fingerprinting characteristics. FT-IR spectra of
RhB@MOF-5 were collected after the adsorption of volatile components produced by pork
deterioration, as shown in Figure 4. Characteristic bands of the symmetric and asym-
metric stretching vibrations of terephthalic acid were still present at 1598 and 1390 cm−1,
respectively. The intensity of the Zn–O band at 530 cm−1, the C-H band at 750 cm−1

and the C=O band at 1015 cm−1 decreased, showing that the structure of RhB@MOF-5
had been affected. A distinct, wide band appeared from 2800 to 3500 cm−1 and a sharp
band appeared at 3600 cm−1, which were both attributed to O-H stretching, showing
that RhB@MOF-5 had absorbed water. Furthermore, a N-H stretching vibration band was
observed at 3243 cm−1 and a C-N stretching vibration band appeared at 1310 cm−1, which
indicated that RhB@MOF-5 adsorbed volatile amines produced by the quality deterioration
of pork during storage.
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3.2.3. Fluorescence Sensing Analysis of RhB@MOF-5 Response to Pork Deterioration

Three-dimensional fluorescence spectra can provide comprehensive information on
components in a complex system. Four fluorescence peaks were identified in the 3-D flores-
cence spectra of RhB@MOF-5, as shown in Figure 5, Ex/Em peaks located at 330 nm/435 nm
and 365 nm/440 nm were attributed to MOF-5, while Ex/Em peaks of 340 nm/550 nm and
520 nm/550 nm were characteristic peaks of RhB. As shown in Figure 5d, when RhB@MOF-5
adsorbed volatile compounds from pork deterioration, the fluorescence intensities of the two
characteristic peaks of RhB (340 nm/550 nm and 520 nm/550 nm) greatly decreased. The
RhB molecules were distributed in the pores of MOF-5 mainly through electrostatic action.
When volatile amines diffused and adsorbed into the pores of MOF-5 and made contact
with RhB, the electron cloud density of RhB molecules changed, resulting in a decrease in
fluorescence intensity. These results demonstrated the feasibility of using RhB@MOF-5 as a
gas-sensing material for monitoring the quality deterioration and detecting the freshness of
chilled pork.
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3.3. Application of RhB@MOF-5 Composite Film to Detecting Chilled Pork Freshness

To broaden the applications of MOFs and weaken the effect of their inherent vulnera-
bility, a composite film was prepared using RhB@MOF-5 and PVDF powders at a 4:5 ratio
(w/w) using the mixed matrix method, which simultaneously provided the mechanical
flexibility of a polymer matrix and the high porosity of MOFs. A storage test showed
that the composite film maintained its fluorescence stability for more than 60 d in a dark
environment at 4 ◦C, as shown in Figure 6c.

Fluorescence wavelength scanning using a fixed excitation or emission wavelength has
the advantage of simplifying spectral analysis and reducing the influence of light scattering,
and only takes a few seconds per sample (3-D fluorescence spectroscopy requires more
than 5 min for each scan). As shown in Figure 5c, scanning the RhB@MOF-5 composite
film at an excitation wavelength of 340 nm facilitated simultaneous observation of the
changes in characteristic peaks of both the MOF-5 (Ex/Em at 330 nm/435 nm) and RhB
(Ex/Em at 340 nm/550 nm), allowing the properties of RhB@MOF-5 to be comprehensively
determined. Figure 6a shows the fluorescence emission spectra of RhB@MOF-5 composite
films (excited at 340 nm) during pork storage at 4 ◦C. Two characteristic peaks were
identified at emission wavelengths near 420 nm and 550 nm, which were associated with
MOF-5 and RhB, respectively. The intensities of these two peaks decreased significantly
with increasing storage time. Furthermore, Figure 6b shows the fluorescence images
of composite RhB@MOF-5 films (under excitation light of 530 nm) before and after pork
spoilage, showing that the fluorescence intensity had clearly decreased. Overall, the volatile
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compounds produced by pork deterioration greatly affected the fluorescence properties of
the composite film.
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Figure 6. (a) Fluorescence emission spectra (excitation at 340 nm) of RhB@MOF-5 composite films of
pork samples stored at 4 ◦C. (b) Fluorescence image of RhB@MOF-5 composite film before and after
pork spoilage (excitation light of 530 nm). (c) Storage stability of RhB@MOF-5 composite film at 4 ◦C
in dark conditions.

The TVB-N value can be used as an indicator of meat freshness based on the collection
of alkaline volatile nitrogen-containing substances, such as ammonia and amine. The
TVB-N values of the pork samples were measured on days 1, 2, 3, 4, 6, 8, 11, 13, 15, and 17
of chilled storage at 4 ◦C, and ranged between 11.17 and 54.68 mg/100 g, with an average
value of 19.18 mg/100 g. Partial least squares (PLS) regression was used to establish a
quantitative model to identify the relationship between the fluorescence spectral data of
RhB@MOF-5 composite films and the TVB-N values of pork samples. The data matrix
from 30 pork samples was randomly divided into a calibration set and a prediction set at
a ratio of ~3:1 (23 in the correction set and 7 in the prediction set). Figure 7a shows the
quantitative modeling results, with Rc

2 and Rp
2 values of 0.908 and 0.821, respectively,

and RMSEC (root mean square error of calibration) and RMSEP (root mean square error of
prediction) values of 3.435 and 3.647 mg/100 g, respectively. With both the Rc

2 and Rp
2

values being greater than 0.8, and the RMSEC and RMSEP values being similar, the PLS
regression model was considered to be effective with a good prediction accuracy.
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According to Chinese national food safety standards for meat quality, the TVB-N val-
ues of fresh pork is below 15.0 mg/100 g, of acceptable pork is around 15.0–25.0 mg/100 g,
and of spoiled pork is above 25.0 mg/100 g [24], which serves as a reference for establishing
a qualitative model based on fluorescence spectra of RhB@MOF-5 film combined with the
PLS-DA algorithm. Figure 7b shows the visualization of the latent variable score plot map
of the qualitative model, as defined by the principal components 1 and 2, and the three
classes of pork freshness (fresh, acceptable and spoiled) can be clearly distinguished with
an accuracy of 86.67%, which can be used to estimate the freshness classifications of pork
samples reliably.

Overall, the RhB@MOF-5 composite film has the potential to be used as a fluorescence
gas sensor for the sensitive, rapid, and nondestructive detection and visual monitoring of
pork quality deterioration and freshness during refrigerated storage.

4. Conclusions

This study developed a RhB@MOF-5 composite thin film that can be used as an
intelligent label in pork packaging, enabling the sensitive and nondestructive detection
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of pork freshness during chilled storage based on fluorescence sensing. Changes in the
FT-IR spectra of RhB@MOF-5 after exposure to deteriorating pork showed that this material
adsorbed volatile amines. The fluorescence intensity of the RhB@MOF-5 composite film
tended to weaken with increasing storage time. Quantitative models for predicting the
freshness indicator and qualitative models for the classification of pork freshness both
produced satisfactory results. This study provides the first examination of the dye@MOF
system as a gas-sensing material for meat freshness evaluation, showing its potential for
application in food quality detection.
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Abstract: Browning is the most common physiological disease of Yali pears during storage. At the
initial stage, browning only occurs in the tissues near the fruit core and cannot be detected from the
appearance. The disease, if not identified and removed in time, will seriously undermine the quality
and sale of the whole batch of fruit. Therefore, there is an urgent need to explore a method for early
diagnosis of the browning in Yali pears. In order to realize the dynamic and online real-time detection
of the browning in Yali pears, this paper conducted online discriminant analysis on healthy Yali pears
and those with different degrees of browning using visible-near infrared (Vis-NIR) spectroscopy. The
experimental results show that the prediction accuracy of the original spectrum combined with a
1D-CNN deep learning model reached 100% for the test sets of browned pears and healthy pears.
Features extracted by the 1D-CNN method were converted into images by Gramian angular field
(GAF) for PCA visual analysis, showing that deep learning had good performance in extracting
features. In conclusion, Vis-NIR spectroscopy combined with the 1D-CNN discriminant model can
realize online detection of browning in Yali pears.

Keywords: visible-near infrared spectroscopy; deep learning; online analysis; browned Yali pears

1. Introduction

Yali pears (Pyrus bretschneideri Rehd.) are also known as white pears [1]. With a regular
and duck head-like shape, this kind of pear has thin skin, a small kernel, and juicy flesh.
Yali pears are loved by consumers at home and abroad because they have the functions
of relieving cough and thirst, and clearing heat and detoxification [2]. Yali pears can be
easily affected by their environment during storage, especially by carbon dioxide (CO2).
When the CO2 concentration is greater than 1%, the Yali pears will suffer from internal
browning [3]. Browning is mainly related to the regulation of various genes and relevant
enzymes in Yali pears [4], among which phenolic substances are the main substrates leading
to browning. Under aerobic conditions, phenolic substances react with polyphenol oxidase
to produce quinones [5], thereby accelerating the occurrence of browning. The browning of
Yali pears starts from the inside of the fruit, so it is difficult to observe from the surface at
the initial stage. Only when the browning worsens, it can be observed that the surface of
Yali pears will become darker. Browning undermines the quality of Yali pears and makes
them less tasty, thus leading to bad sales. Therefore, it is urgent to explore a nondestructive,
environment-friendly, and accurate technology to identify browning in Yali pears.

During post-harvest storage, Yali pears are prone to core and pulp browning and
lose their commercial value. Therefore, huge economic losses are caused to producers and
operators. The traditional method of browning discrimination is usually combined with
experience to conduct destructive sampling inspection of internal components [6]. This
will make fruit analysis difficult to achieve quickly, accurately, and non-destructively. It is
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not suitable for the actual situation of fruit production and sales at present. Visible-near
infrared (Vis-NIR) spectroscopy is an indirect measurement method suitable for rapid online
analysis. With its environment-friendly, non-destructive, and flexible integrated detection
unit, Vis-NIR spectroscopy has been widely used in the detection of fruit components
and defects. Sun et al. [7] adopted Vis-NIR spectroscopy to simultaneously measure
online the browned core and soluble solids content (SSC) in Yali pears. They selected a
total of 200 samples, including 73 pears with black-heart disease and 127 pears of good
quality. The results showed that the classification accuracy of black-heart Yali pears by
Vis-NIR spectroscopy was up to 98.3%. The percentages of SSC predictive precision
were 97.8% and 99% within deviations of ±0.5 and ±1%, respectively. Qin et al. [6]
conducted online and non-destructive detection of moldy-heart disease in apples through
the miniature Vis-NIR spectrometer. After the 96 samples were optimized in terms of
placement posture, the accuracy of partial least squares discriminant analysis (PLS-DA)
reached 93.75%. By adopting Vis-NIR spectroscopy, Hao et al. [8] established an AdaBoost
integrated model based on k nearest neighbors (kNN), naive Bayes classifier (NBC), and
support vector machine (SVM) for 285 Yali samples. The results showed that the AdaBoost
model combined with wavelet transform (WT) had the highest discrimination accuracy
(92.63%) of black-heart Yali online detection. Cruz et al. [9] simulated the randomness
of fruit positions during spectral acquisition by randomly sampling on the four sides of
1002 ‘Rocha’ pears, so as to figure out the optimal combination of pretreatment method
and discrimination method. The results showed that PLS-DA combined with the original
spectrum of Yali pears browning classification mode presented the best performance, and
the classification accuracy reached 83%. The above results indicated that the research
on the discriminant model of browning of Yali pears has basically stayed on machine
learning in recent years. These methods are applicable when the amounts of samples are
relatively small, and the accuracy requirement is not high. There were few studies on the
discriminant of Yali pears by the deep learning model combined with the spectral analysis
method. Vis-NIR as an environment-friendly and nondestructive detection technique can
be employed to identify browning in Yali pears. When the number of samples is limited,
the discrimination accuracy will vary with different identification methods.

In recent years, convolutional neural network (CNN) has been widely and successfully
used in image recognition, natural language, video, and other fields. By combining NIR
technology with one-dimensional convolutional neural network (1D-CNN), Li et al. [10]
developed a data-driven model to estimate the content of organic matter in Huangshan
Maofeng tea. The results showed that the key features of NIR spectroscopy were successfully
extracted, thus providing a new and effective NIR analysis strategy for food analysis. Wu
et al. [11] established a quantitative analysis model to detect olive oil content in a corn
oil–olive oil mixture by combining Raman spectroscopy with 1D-CNN. The results showed
that the 1D-CNN model based on 315 extended average Raman spectra could quantitatively
detect the content of olive oil, in which the predictive determination coefficient (R2

P) and the
root mean square error of prediction (RMSEP) were 0.9908 and 0.7183, respectively. Chen
et al. [12] established a CNN calibration model for the NIR quantitative determination of
water pollution and verified the applicability of shallow convolutional network modeling
architecture in feature extraction of one-dimensional spectral data. Rong et al. [13] proposed
a detection method based on the principle of deep learning. Through the construction of
a 1D-CNN model, the Vis-NIR spectral database containing a total of 500 samples of five
kinds of peaches was established for identifying peach varieties. The results showed that
the accuracy of the deep learning model reached 100% in the validation data set and 94.4%
in the test data set. As suggested by multiple studies, when the number of samples for
analysis met certain requirements, CNN combined with Vis-NIR can be applied for the
identification of material variety and component analysis. In addition, for the NIR spectral
analysis based on scientific research instruments or at a static state, the CNN method
can obtain better analytical accuracy, because the spectral response has better wavelength
accuracy and less external noise interference.
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Vis-NIR online analysis technology cannot be successfully applied without a stable,
accurate, and concise modeling algorithm. The effectiveness of the algorithm not only
depends on the information extraction ability of the algorithm itself, but also the pretreat-
ment of spectra and effective variable screening before modeling. However, a large number
of discriminative models need to be established for the continuous selection of multiple
spectral pretreatment methods and variable screening methods, and it is hard to maintain
the consistency of optimal variables obtained by different variable screening methods,
which affects the stability of the model. For this reason, in order to ensure the accuracy of
the model while reducing the complexity and differences in the selection of pretreatment
methods and spectral variable screening methods, this paper intends to adopt a deep learn-
ing method to simultaneously realize the automatic extraction of spectral feature variables
and model construction. In other words, the depth features of Vis-NIR of Yali pears are
extracted and used for modeling by means of a 1D-CNN algorithm, so that the interference
of noise on the feature variables selection can be avoided and the stability of the model
is thus improved. This study can provide reference for rapid online analysis of Yali pear
quality in an accurate and reliable manner based on deep learning.

2. Materials and Methods
2.1. Sample Preparation

The Yali pear samples in this paper were collected from an orchard in Hebei Province,
China, and then were refrigerated and transported to the laboratory immediately after
harvesting. In order to reduce the influence of temperature on spectrum acquisition [14]
and the damage caused by rapid cooling to the fruit, these samples were stored for 24 h
under constant temperature before experiments. The sample storage temperature was
1 ◦C (±0.5), and the humidity was 85–95%. The diameter of Yali pears selected in the
experiment was about 75 mm, and they had no obvious defects and mechanical damage
on the surface. They were cleaned and numbered. A total of 495 samples were collected,
including 256 healthy pears and 239 browned pears. The Kennard–Stone algorithm was
used to divide healthy and browned pear samples into calibration sets and test sets in the
ratio of 7:3.

2.2. Vis-NIR Spectroscopy Acquisition

The Vis-NIR spectra of Yali pears were collected by an Ocean Optics INC, QE65Pro
(Dunedin, FL, USA) high-precision spectrometer with a wavelength range of 361–1165 nm.
The spectral resolution of ca. 0.8 nm and the signal-to-noise ratio (SNR) of 1000 were
employed. Before spectral acquisition, the spectrometer was preheated for 30 min to
obtain stable light source energy. Then, a PTFE ball was used to conduct the qualified
calibration on the spectrometer and the sorting device. Figure 1 shows the dynamic
online acquisition device of Yali pears. The online detection device, which consists of
spectrometer, light source, conveyor belt, optical fiber (model QP1000-2-VIS-NIR, Ocean
Optics, Dunedin, FL, USA), and computer and so on, includes three modules (transmission
module, spectral acquisition module, and control module).

The spectrometer integration time was set to 80 ms, and the conveyor belt can transmit
six samples per second. The optical fiber probe was located below the tray, at a distance
of about 12 mm from the conveyor belt. The light source, which consists of ten 100-watt
halogen tungsten lamps (Osram), was located above the sample and arranged along the
concentrating coil at an angle of 45 degrees. The halogen tungsten lamps were arranged in
an equidistant arrangement of five lamps on both sides of the Yali pear samples, as shown
in Figure 1C.

Yali pears were manually placed on the device for spectral acquisition, and the acqui-
sition process is as follows. First, as shown in Figure 1C, the pear samples were placed in
a way that the connecting line direction between the pears’ stalk and the pears’ pedicel
was always perpendicular to the running direction of the conveyor belt. When the pears
were transported to the spectral acquisition station by a conveyor belt, the arc-shaped
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equidistant light source on both sides could evenly penetrate the pears into the detector
probe. Second, the spectrometer was triggered by signals sent by the system encoder, which
acquired the Vis-NIR spectrum of Yali pear samples. The collected transmission spectra
were automatically stored on the computer. Each sample was scanned five times in order
to ensure the consistency of spectral collection, and the average spectrum was used as the
final spectrum of the sample. Each sample spectrum had 1044 variables in the wavelength
range of 361–1165 nm. As the signal-to-noise ratios at both ends of the detector were low,
1024 variables in the wavelength range of 387–1165 nm were thus reserved for subsequent
experiments. The whole spectral acquisition process was completed in the designed shield
that effectively avoided the influence of external stray light.
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2.3. Evaluation of Browning in Yali Pears

The damage information of browning in Yali pears was evaluated by the destructive
method. After spectral acquisition, each pear sample was cut along the direction of the CD
line in Figure 1C, and three experts with years of experience in pear planting determined
whether the inside of these pears had browned. The evaluation criteria are as follows: if
there were no abnormal changes of cell tissue near the pears’ core, then it was a healthy
pear; while if tissues around the core were browned, then it was classified as a browned
pear. The picture of flesh inside browning pears is shown in Figure 2, and it can be clearly
seen in the figure that there are varying degrees of browning near the core.
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2.4. Spectral Pretreatment and Variable Selection

The original Vis-NIR data contain not only feature information, but also many noise
and other interference factors, such as the temperature and humidity of the environment
during the spectral acquisition process, the location of the samples, and the light source
stability. In order to achieve modeling spectra with better quality and enhance the features
with stronger correlation in the spectra, the traditional pretreatment methods such as
first-derivative (SG 1st−Der) [15], multiplicative scatter correction (MSC), standard nor-
mal variable transformation (SNV) [16], moving average smoothing (MAS), and wavelet
transform (WT) [17] were used in this experiment for modeling. In this case, problems of
baseline shift, scattering, and high-frequency noises of the original spectra can be removed.

The spectra of Yali pear samples contain many uninformative variables which are
characterized by a highly overlapping spectral band. In order to eliminate redundant
and uninformative spectral variables, Monte Carlo uninformative variable elimination
(MCUVE) was used in this paper to select effective wavelengths, which can significantly
reduce the number of feature wavelengths and the complexity of the model, as well as
improve the generalization ability and robustness of the model [18]. In MCUVE, the
contributions of wavelength variables in high dimensional spectral data were evaluated by
making full use of the intrinsic correlation among samples. The contribution value of each
spectrum, which served as an indicator of stability, was sorted to establish a series of partial
least squares regression (PLSR) models. The importance of each variable was measured by
its stability value, and the threshold value of variable optimization was finally determined
by the minimum root mean square error of cross-validation.

2.5. Construction Method of Discriminant Model
2.5.1. PLS-DA Model

PLS-DA, or partial least squares discriminant analysis, is a discriminant analysis
method used to deal with classification and discrimination problems in high-dimensional
data analysis. It can effectively distinguish the observed values between classes and find
the influencing variables that lead to the differences between classes [19]. In addition,
PLS-DA can reduce the influence of multicollinearity among variables. A simple linear
model can be used to describe the relationship between variables and responses, as shown
in Equation (1).

Y = b0 + b1X1 + b2X2 + . . . + bnXn (1)

where b0 refers to intercept, bi is the regression coefficient of the sample, and Xi is the ith
spectral response value corresponding to the wavelength.

2.5.2. SVM Model

The basic principle the support vector machines (SVM) algorithm is to figure out the
separation hyperplane that can correctly partition the training data sets and maximize the
geometric interval and map the input vectors to a high-dimensional feature space using a
specific transfer kernel function [20]. The construction of a linear surface for feature space
endows the SVM network with higher generalization ability. The optimization objectives
of SVM are presented as follows.





min
ω,b,ξi

1
2
‖ω‖2 + C

n

∑
i=1

ξi

s.t.
{

yi(ω · xi + b) ≥ 1− ξi
ξi ≥ 0, i = 1, 2, . . . , N

(2)

where ω is the normal vector that determines the direction of the hyperplane; b is the
displacement term which determines the distance between the hyperplane and the original
point; ζi is the relaxation variable which represents the degree to which the sample does
not satisfy the constraint; C is the penalty factor, and the greater its value is, the larger
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value indicates a greater penalty for classification; n is the number of samples; xi is the
supporting vector of training sample; yi is the category of the corresponding sample.

2.5.3. 1D-CNN Model

Integrating feature learning and classification, the convolutional neural network
(CNN) is a feed-forward neural network with convolution computation and deep structure.
By mapping simple data features to complex high-dimensional space by convolution and
pooling, CNN can obtain the accuracy of classification. Studies have shown that the convo-
lution layer can extract important features with more useful information while removing
noises and unimportant features, which is a more robust algorithm for feature extraction
than the feature selection method [21]. The working principle of 1D-CNN is shown in
Figure 3, where the dimension of the convolution kernel is 3 × 1 and the moving step is 1.
The data features are extracted through distributively moving the convolution kernel.
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The structure of the 1D-CNN network consists of the convolution layer, pooling layer,
and full connection layer. The operation of the convolution layer is equivalent to the
process of pretreatment and feature extraction in traditional machine learning [22]. Before
convolution, the size of the convolution kernel and the number of filters need to be set
and these two parameters are obtained through multiple experiments. The maximum
pooling was selected as the pooling layer, which can reduce the dimension of feature
mapping without losing important information, thus cutting computation amount and
time of network training. The fully connected layer acted as the classifier in CNN and
optimizes the network as the feature combination layer. In order to prevent over-fitting in
training data, a dropout layer was added to the network structure to suppress over-fitting
by removing some neurons. The flow chart of the network framework of the 1D-CNN
model is shown in Figure 4.

All models and chemometric procedures used throughout the work were implemented
based on Python 3.8.
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Figure 4. The flow chart of the network framework of the 1D-CNN model.

2.6. Evaluation of Models

Three indexes including the overall accurate identification rate (Accuracy), accurate
identification rate of healthy pears (RH), and accurate identification rate of browned pears
(RB) were adopted to evaluate the online discriminative model of browning in Yali pears.
Accuracy refers to the rate of correct identification made by the classifier for all samples; RH
refers to the percentage of correct identification made by the classifier for all healthy samples;
RB refers to the percentage of correct identification made by the classifier for all browned
samples. The greater the values of these three indexes are, the higher the rate of correct
classification is. Accuracy, RH, and RB can be calculated according to the following equations.

Accuracy =

(
1− He + Be

H + B

)
× 100% (3)

RH =

(
1− He

H

)
× 100% (4)

RB =

(
1− Be

B

)
× 100% (5)

where H refers to the total number of healthy samples, and He refers to the number of
healthy samples being mistakenly classified. B is the total number of browned samples,
and Be is the number of browned samples being mistakenly classified.

3. Results and Discussion
3.1. Vis-NIR Spectral Analysis of Yali Pears

Figure 5 shows the original Vis-NIR spectra of healthy and browning Yali pears, as
well as the averaged spectra. It can be seen from Figure 5A that the spectra of healthy pears
and browning pears overlap so seriously that it is impossible to directly distinguish from
the spectral graph whether Yali pears were browned or not. It can be seen from Figure 5B
that the average spectrum of healthy pears is higher than that of browned pears on the
whole, and the band of 600–800 nm is the most obvious, which may be due to the strong
absorption of transmitted light by browning tissue inside the fruit. As shown in the spectral
graph, there are two absorption peaks at approximately 700 and 800 nm. In addition, the
absorption peak at around 700 nm may result from the stretching and contraction of the
fourth overtone of the C-H functional group, while that at around 800 nm may be related
to the stretching and contraction of the third overtone of the N-H functional group [23].
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3.2. PCA Analysis on Health Status of Yali Pears with Different Pretreatment Methods

In the experiment, principal component analysis (PCA) was applied to analyze the
spectral spatial distribution of two kinds of Yali pear samples pretreated by different
methods. The core idea of PCA is dimensionality reduction, and its working principle is to
transform a group of variables that may have correlation into a set of linearly uncorrelated
variables, namely principal components, through orthogonal transformation. The data in
the new subspace defined by the principal component are usually easier to interpret [24].

The data set contains 256 healthy pears and 239 browned pears. PCA analysis was
conducted on the original spectrum and on the spectra separately pretreated by SG 1st−Der,
MSC, SNV, MAS, and WT. The first three principal components were retained for visual-
ization. The results are shown in Figure 6. It can be observed that the spatial distribution
of spectra pretreated by MAS and WT were basically consistent with that of the original
spectrum. The spectral points of browned pears and healthy pears were so crossed that
they cannot be distinguished, indicating that these two pretreatment methods failed to
significantly improve the spectral features of data used in this experiment. Compared with
the original spectrum, pretreatment methods of SG 1st−Der, MSC, and SNV have shown
better performance. The spectral points of samples pretreated by these three methods
presented a trend of classification separation in terms of spatial distribution. The cumu-
lative contribution rates of the first three principal components of SG 1st−Der, MSC, and
SNV were 96.4%, 99.6%, and 99.3%, respectively. The cumulative contribution rates of
MSC and SNV were both over 99%, indicating that both methods were applicable to the
experimental data. In order to further explore the effectiveness of the method, PLS-DA and
SVM models were established combined with different pretreated methods. The results of
the discrimination are shown in Table 1. It can be seen from the table that the discrimination
accuracy of SNV is higher than that of MSC. Therefore, the SNV pretreatment method was
finally selected for model optimization in this experiment.

Table 1. The discrimination results of PLS-DA and SVM models’ training sets under different
preprocessing methods.

Model Pretreatment Accuracy (%) LVs Model Pretreatment Accuracy (%)

PLS-DA

Raw 82.66 4

SVM

Raw 96.53
SG 1st−Der 95.09 5 SG 1st−Der 100

MSC 95.66 8 MSC 100
SNV 97.11 9 SNV 100
MAS 84.97 5 MAS 96.25
WT 85.26 4 WT 95.66

Polynomial order of SG 1st−Der is three, and the number of smoothing points is 15. The number of smoothing
points in MAS is 15. Daubechies 8 wavelet is selected in WT.
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3.3. Robust Variable Selection Based on MCUVE Method

When the spectrum contains a large number of invalid variables, it will undermine the
quality of modeling to a certain extent. In order to further simplify the model and improve
the accuracy and interpretability of the model, the spectral wavelength was optimized by
the MCUVE method after SNV pretreatment. As variables were selected in a random way,
each model was selected 10 times. The optimized results are shown in Figure 7. Figure 7A
shows the corresponding relationship between the variable distribution of the 10-time
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wavelength selections and the corresponding spectrum. It can be seen that the wavelength
distribution of each optimal selection is not completely consistent, but most of the variables
are concentrated at the absorption peak of the sample. Figure 7B shows the number of
variables retained after 10 runs of MCUVE, and it can be seen that the number is within
the range of 224 to 324. Although the distribution of the selected variables is relatively
concentrated, the number of retained variables is different. When the distribution of the
modeling samples is not representative or the number is small, although the MCUVE
method can improve the accuracy of the model, the number of wavelengths selected for
multiple times is unstable, which affects the robustness of the model.
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3.4. Evaluation Model for Health Status of Yali Pears Based on PLS-DA Method

PLS, which contains least squares regression analysis and discriminant analysis, is
suitable for analyzing cases where the differences between groups are small while differ-
ences within groups are large. Unlike PCA, PLS-DA is a supervised discriminant analysis
statistical method, which is widely used in the discrimination of Vis-NIR spectral data
analysis. The core idea of PLS-DA is to obtain the optimal number of factors (LVs) in
the calibration set through Monte Carlo cross-validation combined with an F-test. In this
experiment, 10-fold cross-validation was employed to determine LVs. Furthermore, the
results show that the root mean square error of the calibration set was the smallest when
the LVs were 9, indicating that the model presented the best classification performance
when the LVs were 9.

The model was established based on the calibration set, and then its performance was
verified by the sample test set. The modeling results of the full spectrum, the pretreated
spectrum, and the optimally selected spectrum (the best model in the 10 selections is chosen,
whose number of variables is 264) are shown in Table 2. It can be seen that after spectral
pretreatment and variable selection, the discrimination accuracy of discriminating quality
of Yali pears had been improved. The optimal model of PLS-DA is SNV-MCUVE-PLS-DA,
and accuracy, RH, and RB of its test set are 97.32%, 100%, and 92.16%, respectively.

Table 2. The results of PLS-DA discriminative models for pear quality based on different modeling variables.

Model Method Accuracy (%) RH (%) RB (%)

PLS-DA
Raw 80.54 88.64 68.85
SNV 95.97 98.98 90.20

SNV-MCUVE 97.32 100 92.16
RH: accurate identification rate of healthy pears; RB: accurate identification rate of browned pears.
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3.5. Evaluation Model for Health Status of Yali Pears Based on SVM Method

SVM is a class of generalized linear classifiers that perform binary classification of data
based on the supervised learning method. SVM mainly maximizes the interval between
different categories by finding the division hyperplane with the largest interval. It is a class
of generalized linear classifiers for binary classification of data in a supervised learning
manner. The selection of SVM hyperparameters (kernel function, penalty factor C, and
kernel function parameter g) is determined by an optimizing algorithm through grid search
so as to obtain the best calibration model. Grid search is an exhaustive search method,
which uses cross-validation to optimize the estimation function and finally solves the
optimal parameters. In this experiment, grid search determines that linear is the optimal
kernel function, the value of the optimal penalty factor C is 100, and the value of the optimal
kernel function parameter g is 0.001.

It can be seen from Table 3 that the optimal SVM model is SNV-MCUVE-SVM, and
accuracy, RH, and RB of its test set are 98.66%, 100%, and 96.08%, respectively; more-
over, the modeling results of the SNV-SVM model are exactly the same as those of the
SNV-MCUVE-SVM model. There are only 317 variables involved in the modeling of the
SNV-MCUVE-SVM model, which greatly reduces the complexity of the model. Therefore,
the optimal SVM model is the SNV-MCUVE-SVM model in which spectra are pretreated
by SNV and variables are optimally selected by MCUVE.

Table 3. The results of SVM discriminative models for pear quality based on different modeling variables.

Model Method Accuracy (%) RH (%) RB (%)

SVM
Raw 95.97 97.73 93.44
SNV 98.66 100 96.08

SNV-MCUVE 98.66 100 96.08

3.6. Evaluation Model for Health Status of Yali Pears Based on 1D-CNN Method

The above research shows that although traditional methods can classify the browning
pears, the process is cumbersome. A detection model with good performance requires
rich theoretical knowledge and practical experience of the modeler. For this reason, it is
necessary to figure out the effect of the deep feature extraction method on discriminating
browned pears and healthy pears.

This paper proposed building a 1D-CNN model based on one-dimensional Vis-NIR
spectral data in a bid to determine more accurately whether Yali pears are browned or not.
The network was composed of an input layer, convolutional layer, pooling layer, and full
connection layer. These layers were mainly used for feature extraction and classification.
Among them, the convolutional layer and the pooling layer were used to extract the features
of the data, while the fully connected layer was used to map the previously extracted
features to the output space for subsequent classification. The activation functions of the
convolutional layer and the full connection layer were the Relu function and the Sigmoid
function, respectively. The dropout rate was set to 0.3. The Adam optimizer was adopted
to optimize the network, the learning rate of the training model was set to 0.0001, the batch
size was set to 64, and the number of iterations (epochs) was set to 500. The output feature
value of the full connection layer which can combine features was set to 400.

The spectral data of the calibration set was read into the initialization network for
iterative training, while the spectral data of the test set was used to evaluate the accuracy
of the deep learning model. The deep learning model was randomly run 10 times in order
to test its robustness, with the training samples and test samples unchanged. The modeling
results of 10 runs are shown in Table 4. It can be seen that the correct discrimination rate of
the 1D-CNN discriminant model has the lowest rate of 96.64% and the highest rate of 100%.
The difference between the two is only 3.36%, indicating that the model is relatively robust.
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Table 4. The results of 10 parallel runs of the 1D-CNN discriminant model for pear quality.

Modeling Method The Model Number Accuracy (%) RH (%) RB (%)

1D-CNN

1 99.33 100 98.36
2 98.66 98.86 98.36
3 96.64 98.86 93.44
4 99.33 100 98.36
5 98.66 98.86 98.36
6 97.32 95.45 100
7 98.66 100 96.72
8 100 100 100
9 98.66 98.86 98.36
10 99.33 100 98.36

3.7. Establishment and Error Analysis of the Optimal Evaluation Model for Health Status of Yali Pears

PLS-DA, SVM, and 1D-CNN discriminant methods were separately used to establish
online models for identifying healthy pears and browned pears. These models were then
adopted to qualitatively discriminate healthy pears and browned pears that were not
involved in the modeling. In order to optimize the model and improve the discriminant
performance of the model, the spectral preprocessing and variable selection were performed
before PLS-DA and SVM modeling. As errors of spectral rotation and shift were eliminated,
the model became less complicated. After the network was completely designed, the
1D-CNN discriminant model can be directly constructed based on the original spectrum of
Yali pears, because 1D-CNN had excellent performance in integrating pretreatment and
extracting features.

The discrimination results of training sets and test sets in 10 PLS-DA, SVM, and 1D-
CNN models are shown in Figure 8. It can be seen that 1D-CNN has better discriminant
performance than PLS-DA and SVM, as evidenced by better modeling and testing accuracy
of all its discriminant models. Moreover, in the 1D-CNN method, there is no requirement
for preprocessing and variable selection of sample spectra. The model with the highest
discrimination accuracy in 10 times of 1D-CNN modeling is selected as the final model,
and the discrimination results are shown in Table 5.
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Table 5. Statistics of test results of SVM, PLS-DA, and 1D-CNN models.

Samples in Test Set
SNV-MCUVE-PLS-DA SNV-MCUVE-SVM 1DCNN

Healthy Browned Healthy Browned Healthy Browned

Discrimination 98 51 98 51 88 61
Misclassification 0 4 0 2 0 0

RH (%) 100 100 100
RB (%) 92.16 96.08 100

Accuracy (%) 97.32 98.66 100
Prediction Time (s) 0.0113 0.0099 0.0256

It can be seen from the table that the PLS-DA, SVM, and 1D-CNN models all can
correctly identify healthy pears, but there are also cases in which browned pears are
misjudged as healthy pears. From the perspective of the data in experiment, the overall
discrimination performance of the 1D-CNN model is better than that of PLS-DA and SVM
models, as the discrimination accuracy of its test set was as high as 100%. Furthermore,
the calculation time of the 1D-CNN model in predicting the test set samples was about
0.0256 s, which met the requirements of online classification. Compared with the traditional
models, the 1D-CNN model can automatically identify important features and has better
classification performance. Furthermore, this model is so simple to operate that even those
without much basic knowledge of modeling can use it properly. In summary, the 1D-CNN
model is the optimal model for discriminating browned pears.

3.8. Deep Feature Analysis on Vis-NIR Spectra of Yali Pears

It can be seen from the above studies that the deep learning model has excellent
performance in extracting features of Vis-NIR spectral analysis for Yali pears. In order
to carry out a further expression and analysis of the spectral features extracted by the
1D-CNN method, the Gramian angular field (GAF) was used to transform the spectral
data into graphs. The GAF has been used for visual expression of one-dimensional time
series signals and the good classification results have been obtained [25,26]. The main
advantage of the GAF is that features of the original one-dimensional spectral signal of the
image during encoding are maintained and bidirectionally mapped to the two-dimensional
image [27]. The feature data extracted by 1D-CNN are converted into a 20 × 20 image by
the GAF. The GAF encoding process of the Yali pears’ spectral data is shown in Figure 9.
Figure 9A,B show the results of the GAF transformation of healthy pears and browned
pears, respectively.
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Figure 10 shows five pictures randomly selected from the two types of pear samples.
Among them, Figure 10A,B correspond to the GAF expression of healthy and browned
pears in the test set, respectively. It can be seen from Figure 10 that the model can adaptively
learn the separable features from the original spectral information. The GAF graphs of
healthy pears are similar (all in the shape of ‘+’); the GAF graphs of browned pears are
slightly different due to the different browning degrees of tissue cells near the fruit core,
but most of the graphs are shown in Figure 10B (in the shape of ‘#’). It can be distinguished
that the GAF graphs of the two types of samples are quite different, which further confirms
that the deep learning model works excellently in feature extraction and classification.
Meanwhile, the local and global features of Vis-NIR which can be easily classified and
distinguished, if integrated by the feature combination layer (the full connection layer), can
save calculation time while retaining important information.
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The GAF features were visualized by the PCA method. The two-dimensional feature
distributions of the original spectral data and of features extracted by the 1D-CNN are
shown in Figure 11A,B. It can be seen from Figure 11A that the spatial distribution of the
original spectral data is relatively chaotic; the spectral points of the two types of samples
overlap each other, so the feature distinction is not obvious. It can be seen from Figure 11B
that the data features of 1D-CNN after dimensionality reduction by PCA have better
aggregation and feature distinction.
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4. Conclusions

Based on the in-depth study of 1D-CNN, this paper proposed a device and method
for online detection of Yali pear browning using Vis-NIR spectroscopy combined with
deep learning. SVM, PLS-DA, and 1D-CNN models were established to discriminate the
browned pears. The original spectrum and five spectra pretreated by SVM and PLS-DA
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methods were used to establish and optimize the discriminative model for browning in Yali
pears. Moreover, the MCUVE method was adopted to reduce the complexity of the model.
The experimental results show that the energy spectra processed by SNV and MCUVE
were adopted to establish the PLS-DA discriminant model, and the discrimination accuracy
rate was 97.32%; the energy spectra processed by SNV and MCUVE were used to establish
the SVM discriminative model, and the discrimination accuracy rate was 98.66%. Without
cumbersome pretreatment and variable screening, the 1D-CNN discriminative model has
shown the optimal performance, and the discrimination accuracy rate was as high as 100%.
In conclusion, Vis-NIR spectroscopy combined with the 1D-CNN discriminant model can
realize online detection of browning in Yali pears.
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Abstract: In this study, a novel “on-off-enhanced on” approach to highly sensitive rapid sensing
of biothiols was developed, based on competitive modulation of gold nanoclusters (AuNCs) and
Hg2+ ions. In our approach, the AuNCs were encapsulated into a zeolite imidazole framework
(ZIF) for predesigned competitive aggregation-induced luminescence (AIE) emission. To readily
operate this approach, the Hg2+ ions were selected as mediators to quench the fluorescence of
AuNCs. Then, due to the stronger affinities between the interactions of Hg2+ ions with -SH groups in
comparison to the AuNCs with -SH groups, the quenched probe of AuNCs@ZIF-8/Hg2+ displayed
enhanced fluorescence after the Hg2+ ions were competitively interacted with -SH groups. Based on
enhanced fluorescence, the probe for AuNCs@ZIF-8/Hg2+ had a sensitive and specific response to
trace amounts of biothiols. The developed fluorescence strategy had limit of quantification (LOQ)
values of 1.0 µM and 1.5 µM for Cys and GSH molecules in serum, respectively. This competitive
AIE strategy provided a new direction for developing biological probes and a promising method for
quantifying trace amounts of biothiols in serum. It could promote progress in disease diagnosis.

Keywords: aggregation-induced emission; fluorescence enhancement; detection; biothiols; sensitive

1. Introduction

Biothiols, as essential signaling molecules, e.g., cysteine (Cys) and glutathione (GSH),
play important roles in physiological activities [1]. Several studies have confirmed that
abnormal levels of biothiols were highly associated with neurotoxicity and cardiovascu-
lar disease [2–4]. For example, a high level of homocysteine is a reliable risk factor for
hypertension, stroke and heart attack [5,6]. Significantly reduced GSH levels in serum
can be used as diagnostic signs of early Parkinson’s disease. Levels of GSH are related
to neurodegenerative diseases, diabetes, HIV infection and cancer [7–9]. In addition to
the above diseases, sudden changes in Cys molecule levels are potentially associated with
liver damage, skin diseases and Alzheimer’s disease [10–12]. Therefore, the necessary
point-of-care-testing (POCT) techniques relating to evaluation of biothiol levels—especially
visual approaches—have attracted more attention in analytical sciences.

Currently, traditional methods, such as capillary electrophoresis [13], high perfor-
mance liquid chromatography [14], colorimetry [15] and mass spectrometry [16] are widely
used in the evaluation of biothiols. However, expensive equipment, time-consuming op-
eration and complex preparations highly limit onsite applications. Over the past decade,
rapid fluorescence detection technology, based on various fluorescent probes, has devel-
oped rapidly, providing simple, robust, and fast sensing strategied for the quantitative
analysis and monitoring of biological substances, biologically relevant ions and other
trace substances [17–19]. Nanoprobes, as another alternative approach, have also been
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seen as promising strategies for rapid sensing of biothiols [20,21]. Among these, gold
nanoclusters (AuNCs) have been marked as significant probes on fluorescence output due
to their simple synthetic methods, good photostability, rapid sensing, chemical stability
and biocompatibility [22]. Notwithstanding, to date, most synthetic techniques for AuNCs
have displayed lower fluorescence quantum yields compared to common fluorescent dyes
such as rhodamine [23,24]. Thus, a promising approach for modulating the fluor-features
of AuNCs has become necessary and desirable for Au-based POCT techniques.

As a class of porous crystalline materials, zeolite imidazole frameworks (ZIF-MOFs)
have been used to adsorb and separate various ions or applied as a carrier to co-encapsulate
molecular probes, such as enzymes, carbon dots and gold nanomaterials [25–28]. Due to the
confining holes of ZIF-MOFs, the encapsulated molecules usually generate more effective
performances than those of which they are capable. For example, Jingtian Chi et al. [29]
incorporated AuNCs with glucose oxidase (GO) into ZIF-8, which greatly improved the
catalytic activity of the enzymes and the storage stability of the nanomaterials compared to
the free GOx/AuNCs solution under the protection of ZIF-8 scaffold. For highly effective
detection of tetracycline residues in milk, Alireza Khataee et al. [30] encapsulated both
AuNCs and copper nanoclusters (CuNCs) into ZIF-8. Based on their construction, the
quantum yields of BSA-AuNCs were improved fifteenfold due to restricted molecular
motion and a 4.8 nM of the limit of detection was obtained. The significantly increased
emission efficiency of AuNCs and the protective effects of the ZIF-MOFs shell couldpave
a promising way forward for further application of AuNCs in hazards, specifically in
molecule sensing and sensitive POCT evaluations.

In the present study, a novel “on-off-enhanced on” approach was developed, based
on the competitive modulation of AuNCs in ZIF-8-MOF for highly sensitive rapid sensing
of biothiols. As illustrated in Scheme 1, in our strategy, the AuNCs were encapsulated
into ZIF-8-MOF. Due to the self-aggregation of AuNCs, an intensive aggregation-induced
luminescence was achieved. Differing from conventional AIE ideas, the aggregated lumi-
nescence was modulated and quenched through a pre-burying competitive factor of Hg2+

ions to develop a visual-sensing nanoprobe. In the presence of biothiols, the mediators of
Hg2+ ions were competed from AuNCs, based on the formation of stronger Hg2+-S bonds,
which resulted in the recovery and generation of enhanced fluorescence. A nanoprobe such
as that devised could successfully respond to trace levels of biothiols in serum samples.
Notably, the solid stability of free AuNCs also demonstrated great potential for sensing
biothiols and could promote progress in disease diagnosis.
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Scheme 1. Schematic illustration of in situ self-assembly of AuNCs@ZIF-8 and the sensing mechanism
of biothiols by AuNCs@ZIF-8 and Hg2+ ions.

2. Experimental Section
2.1. Materials and Apparatus

Chloroauric acid trihydrate (HAuCl4·3H2O, purity > 99.9%) was supplied by Adamas
Reagent Co., Ltd. (Shanghai, China). Glutathione reduced (GSH) was purchased from
Innochem Co., Ltd. (Beijing, China). 2-Methylimidazole (2-MIM) was purchased from J&K
Scientific Co., Ltd. (Shanghai, China). Zinc nitrate hexahydrate (Zn(NO3)2, purity > 99%),
L-Cysteine(Cys), L-Aspartic acid (Asp), L-Arginine (Arg), L-Lysine (Lys), Glycine (Gly),
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L-Valine (Val), L-Isoleucine (Ile), L-Leucine (Leu), L-Histidine (His), L-Phenylalanine (Phe),
L-Threonine (Thr), L-Proline (Pro), L-Alanine (Ala), L-Glutamic acid (Glu), L-Tryptophan
(Trp), L-Serine(Ser), L-Methionine (Met), L-Glutamine (Gln) L-Asparagine (Asn) and tyro-
sine (Tyr) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

All chemical reagents were AR-grade and used without further purification. The
ultrapure water used throughout the experiments was obtained from a Millipore water
purification system (18.2 MΩ, Milli-Q, Millipore, Burlington, MA, USA).

2.2. Synthesis of AuNCs

AuNCs were synthesized according to a previously reported method with minor
modification [31]. Briefly, an aqueous solution of HAuCl4·3H2O (20 mM, 0.5 mL) was
mixed with 4.35 mL ultrapure water. Then, GSH solution (100 mM, 0.15 mL) was slowly
dripped into HAuCl4·3H2O solutions at 25 ◦C. After 5 min of magnetic stirring at 500 rpm,
the temperature was increased to 70 ◦C and stirring continued for 24 h. Finally, the AuNCs
solution was concentrated to 1.5 times and stored at 4 ◦C for the following experiments.
All glass bottles were washed and soaked in aqua regia before use.

2.3. Synthesis of AuNCs@ZIF-8 Nanocomposites

One-pot synthesis of the AuNCs@ZIF-8 nanocomposites was prepared by mixing con-
centrated AuNCs solution with the precursors of ZIF-8. That is, the Zn(NO3)2·6H2O (0.08 M,
0.5 mL) and 2-MIM (4 M, 3.5 mL) was first dissolved in the concentrated solution of AuNCs
solution to obtain solutions A and B, respectively. Then, solution A was dripped into solution
B under magnetic stirring (500 rpm) at 25 ◦C. After 30 min reaction, nanocomposites were sat
for 2 h and washed three times under centrifugation (10,000 rpm, 10 min).

2.4. Characterization of AuNCs and AuNCs@ZIF-8

Transmission electron microscopy (TEM) images were acquired through a JEOL JEM-
2100 transmission electron microscope with an acceleration voltage of 200 kV. UV-vis spectra
for AuNCs, ZIF-8 and AuNCs@ZIF-8 in the range of 800–250 nm with scan interval 1 nm
were obtained on a T9 UV-vis spectrophotometer provided by Beijing Purkinje General
Instrument Co. Beijing China. The crystal structure of ZIF-8 and AuNCs@ZIF-8 were
obtained on a D2 PHASER X-ray diffractometer (XRD; Karlsruhe, Germany) using Cu-Kα
radiation as the X-ray source at 30 kV and 10 mA. Fourier transform infrared spectra (FT-IR)
in the range of 400–4000 cm−1 was measured on an IS10 IR spectrophotometer (Nicolet,
Waltham, MA, USA) using KBr pellet method. The fluorescence spectra were observed on
a Fluoro Max4 (Horiba JY, Irvine, CA, USA).

To evaluate the fluorescence enhancement effects of AuNCs@ZIF-8, the fluorescence
quantum yields of freshly-synthesized AuNCs solution and AuNCs@ZIF-8 synthesized
with 1.5 times concentrated AuNCs were measured. Differences in fluorescence intensity
of AuNCs and AuNCs@ZIF-8 were additionally measured after dilution to equal AuNCs
concentrations. To evaluate the temporal and Ph stability of the prepared AuNCs and
AuNCs@ZIF-8, AuNCs and AuNCs@ZIF-8, stored at 4 ◦C, were taken out every 1 month to
measure fluorescence intensity. Changes in fluorescence intensity with Ph of the solutions
were measured by respectively taking and diluting 20 µL of AuNCs and AuNCs@ZIF-8 to
1 mL with different Ph of water (pH = 4.5, 5, 6, 7, 8). To investigate the “on-off-enhanced
on” fluorescence switch, the fluorescence intensity values of 5 µL of AuNCs@ZIF-8 before
and after quenching by Hg2+, were recorded, and the fluorescence intensity values were
recorded with the addition 1 mL of Cys solution

2.5. Optimization of Reaction Conditions

To determine the optimal amount of Hg2+, 10 µL of AuNCs@ZIF-8 was added to
different volumes of Hg2+ solution (3 × 10−4 M, 0 µL, 5 µL, 10 µL, 12 µL, 15 µL, 16 µL,
18 µL, 20 µL and 30 µL) and the fluorescence intensity was measured after diluting to 1 mL
system with water. To determine the reaction time of AuNCs@ZIF-8 with Hg2+, 10 µL of
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AuNCs@ZIF-8 was added to the optimal amount of Hg2+, and the change of fluorescence
intensity with time was measured after diluting to 1 mL system with water.

To evaluate the performance of as-prepared nanoprobes, the volume ratio of AuNCs@ZIF-8
to Hg2+ ions (3 × 10−4 M) was first fixed. Then, the volume of AuNCs@ZIF-8 was changed
and the solution systems were replenished to the same volume with ultrapure water. After
adding Cys solution (5 µM, 1 mL) and reacting for 15 min, the fluorescence spectrum of
the solution was measured under 400 nm excitation. The degree of fluorescence recovery of
AuNCs@ZIF-8/Hg2+ after the addition of biothiol concentration was expressed by Equation (1):

(FL− FL0)

FL0
(1)

Here, FL0 and FL are the fluorescence intensities of the AuNCs@ZIF-8/Hg2+ in the
absence and presence of biothiols, respectively.

The optimal reaction time of Hg2+/AuNCs@ZIF-8 with Cys was evaluated by adding
Cys (1 mL, 5 µM) to Hg2+/AuNCs@ZIF-8 and recording the change of fluorescence intensity
with time.

2.6. Fluorescent Detection of Cys and GSH Molecules

Under shaking, 1 mL of Cys solution at different concentrations (0.0, 1.0, 1.5, 2.0, 2.5,
4.0, 5.0, 8.0, 10.0, 20.0 and 30.0 µM) was separately added into a 5 µL of AuNCs@ZIF-8
solution containing Hg2+ ions (3 × 10−4 M, 8 µL). Finally, the fluorescence spectra were
measured by a fluorescence spectrometer. Parameter settings: excitation wavelength of
500–750 nm, scanning speed at 1 nm/min. Same parameters were used to detect GSH.
Moreover, the detection conditions for Cys molecules were optimized accordingly, mainly
including dosage of AuNCs@ZIF-8 probe, the dosage ratio of Hg2+ ions to AuNCs@ZIF-8
and the incubation time of Cys and Hg2+ ions. In addition, the control tests were separately
conducted, accordingly, for different analytes (10 folds the Cys solution) of other amino
acids (Asp, Arg, Lys, Gly, Val, Ile, Leu, His, Phe, Thr, Pro, Ala, Glu, Trp, Ser, Met, Gln,
Asn and Tyr) and GSH. Detection of Cys molecules with AuNCs/Hg2+ followed the same
detection conditions as AuNCs@ZIF-8/Hg2+.

2.7. Real Sample Analysis

For the real sample test, bovine serum was first treated with acetonitrile at a volume
ratio of 1:5, shaking for 30 s and leaving it to rest for 15 min. After centrifugation to
remove protein precipitation at 10,000 rpm for 20 min, acetonitrile was removed by nitrogen
blowing and diluted to 200 folds with ultrapure water as solvent. Different concentrations of
Cys molecules were pre-prepared with the treated serum for spiked recovery experiments.

3. Result and Discussion
3.1. Characterization of GSH-AuNCs and AuNCs@ZIF-8

The structure of GSH-AuNCs and AuNCs@ZIF-8 particles were characterized using
TEM (Figure 1). As shown in Figure 1A, the original product of GSH-AuNCs particles
was a spherical shape with good dimensional uniformity. The mean particle size was
2.21± 0.49 nm, calculated from 150 randomly selected particles (Figure 1A insert). Emission
fluorescence of GSH-AuNCs showed an optimum at 615 nm under the excitation of 420 nm
(Figure S1A in Supplementary Materials). Moreover, when the AuNCs solution was
irradiated by a UV light at 365 nm, the color of solution changed from a pale yellow to
a luminous orange-yellow (Figure S1A insert). However, compared with ZIF-8 MOFs,
which have a regular uniform polyhedral shape with a uniform size distribution of ca.
120 nm (Figure 1B insert), the one-pot synthesized AuNCs@ZIF-8 particles only showed
slight increases in shape and size. Moreover, the zoom-in images, as plotted in Figure 1C,
clearly showed that the AuNCs particles were encapsulated inside of the ZIF-8 framework
rather than adsorbed on the surface. Meanwhile, UV-vis spectra of AuNCs, ZIF-8 and
AuNCs@ZIF-8 particles also indicated that the absorption of AuNCs in AuNCs@ZIF-8
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particles was not affected, i.e., the ZIF-8 MOFs had no absorption peak in the range of
250–800 nm, while both AuNCs and AuNCs@ZIF-8 had clear absorption peaks at 400 nm
(Figure S1B).
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Figure 1. TEM morphology of (A) as-prepared GSH-AuNCs(insert size distribution of as-prepared
GSH-AuNCs), (B) free ZIF-8 and AuNCs@ZIF-8 nanoparticles and (C) the AuNCs wrapped in ZIF-8
which were marked in red circles.

The fidelity of the ZIF-8 crystalline structure after imbedding of AuNCs were con-
firmed with XRD (Figure 2A). The XRD patterns of ZIF-8 and AuNCs@ZIF-8 exhibited
characteristic and sharp peaks of pure-phase ZIF-8. It was observed that theAuNCs@ZIF-8
could exhibit no significant change in the phase structures. As plotted in Fourier transform
infrared spectroscopy (FT-IR) (Figure 2B), the peaks at 2500–3600 cm−1 and 1640–1660 cm−1

corresponded to stretching vibrations of -OH groups and C=O stretching in AuNCs, respec-
tively. The characteristic absorption bands of -OH disappeared from the FT-IR spectrum of
the AuNCs@ZIF-8 particle. Such obvious variances implied the coordination of -COOH
group in GSH with Zn2+ ion existing in the ZIF-8 framework. On the other side, an ad-
ditional characteristic absorption band of AuNCs@ZIF-8 particle at 1640–1660 cm−1 also
indicated the presence of AuNCs in ZIF-8.

Biosensors 2023, 13, x FOR PEER REVIEW 6 of 12 
 

 
Figure 2. Basic properties of ZIF-8 and AuNCs@ZIF-8 MOFs. (A) XRD pattern, (B) FT-IR spectra, 
effect of pH (C) and time (D) on material stability, (E) fluorescence emission spectra containing same 
concentration of AuNCs. (F) The fluorescence emission spectra of AuNCs@ZIF-8, AuNCs@ZIF-
8/Hg2+ and AuNCs@ZIF-8/Hg2+/Cys. 

We investigated the fluorescence stability of AuNCs and AuNCs@ZIF-8 with pH and 
storage time (Figure 2C,D). We found that AuNCs, before and after coating by ZIF-8, did 
not show significant change in the pH range of 4.5–9. Thus, they presumably had good Ph 
stability in serum and other detection systems. In addition, the fluorescence intensity of 
AuNCs and AuNCs@ZIF-8 was not significantly lost during storage of 4 °C for six months. 

In addition to the few changes occurring between ZIF-8 and AuNCs@ZIF-8 particles, 
interestingly, the fluorescence intensity of AuNCs@ZIF-8 (a) was substantially enhanced 
(approximately sixfold) in comparison to the AuNCs solution (b) with same molarity (Fig-
ure 2E insert). It was demonstrated that the enhanced luminescence of AuNCs was linked 
to the reduced nonradiative decay caused by restriction of intramolecular movements 
[32]. Thus, it was highly reasonable to speculate that the limited space in ZIF-8 MOFs 
blocked the intramolecular rotation and provided an unfirm aggregation of AuNCs, 
which finally resulted in the phenomenon of aggregation-induced emission (AIE) [33–35]. 
The enhanced features were also proven by fluorescence quantum yields and were con-
sistent with previous reports [36]. That is, after optimization of the synthesis conditions 
of AuNCs@ZIF-8 particles, the quantum yields of primary AuNCs solution and synthe-
sized AuNCs@ZIF-8 particles were 0.75% and 20.65%, respectively. To effectively sense 
hazards, synthesized AuNCs were concentrated and used at optimum concentration, i.e., 
1.5 times in 2-MIM solution (Figure S2). 

As plotted in Figure 2F, although the fluorescence intensity of AuNCs@ZIF-8 was 
intensively improved, it rapidly decreased when Hg2+ ions were added. This was probably 
due to the formation of a metalophulid bond between Hg2+ ions and Au+ existing on the 
surface of AuNCs [31,37]. On the other hand, the quenched emissions gradually recovered 
when the particles met with Cys molecules. Such lost-and-found fluorescence probably 
originated from the higher, more stable reactions between Hg2+ ions and sulfhydryl, com-
pared with the reactions between AuNCs and Hg2+ ions [38]. 

3.2. Optimization of Experimental Conditions 

Figure 2. Basic properties of ZIF-8 and AuNCs@ZIF-8 MOFs. (A) XRD pattern, (B) FT-IR spectra,
effect of pH (C) and time (D) on material stability, (E) fluorescence emission spectra containing same
concentration of AuNCs. (F) The fluorescence emission spectra of AuNCs@ZIF-8, AuNCs@ZIF-8/Hg2+

and AuNCs@ZIF-8/Hg2+/Cys.

76



Biosensors 2023, 13, 35

We investigated the fluorescence stability of AuNCs and AuNCs@ZIF-8 with pH and
storage time (Figure 2C,D). We found that AuNCs, before and after coating by ZIF-8, did
not show significant change in the pH range of 4.5–9. Thus, they presumably had good Ph
stability in serum and other detection systems. In addition, the fluorescence intensity of
AuNCs and AuNCs@ZIF-8 was not significantly lost during storage of 4 ◦C for six months.

In addition to the few changes occurring between ZIF-8 and AuNCs@ZIF-8 particles,
interestingly, the fluorescence intensity of AuNCs@ZIF-8 (a) was substantially enhanced
(approximately sixfold) in comparison to the AuNCs solution (b) with same molarity
(Figure 2E insert). It was demonstrated that the enhanced luminescence of AuNCs was
linked to the reduced nonradiative decay caused by restriction of intramolecular move-
ments [32]. Thus, it was highly reasonable to speculate that the limited space in ZIF-8
MOFs blocked the intramolecular rotation and provided an unfirm aggregation of AuNCs,
which finally resulted in the phenomenon of aggregation-induced emission (AIE) [33–35].
The enhanced features were also proven by fluorescence quantum yields and were consis-
tent with previous reports [36]. That is, after optimization of the synthesis conditions of
AuNCs@ZIF-8 particles, the quantum yields of primary AuNCs solution and synthesized
AuNCs@ZIF-8 particles were 0.75% and 20.65%, respectively. To effectively sense hazards,
synthesized AuNCs were concentrated and used at optimum concentration, i.e., 1.5 times
in 2-MIM solution (Figure S2).

As plotted in Figure 2F, although the fluorescence intensity of AuNCs@ZIF-8 was
intensively improved, it rapidly decreased when Hg2+ ions were added. This was probably
due to the formation of a metalophulid bond between Hg2+ ions and Au+ existing on the
surface of AuNCs [31,37]. On the other hand, the quenched emissions gradually recovered
when the particles met with Cys molecules. Such lost-and-found fluorescence probably orig-
inated from the higher, more stable reactions between Hg2+ ions and sulfhydryl, compared
with the reactions between AuNCs and Hg2+ ions [38].

3.2. Optimization of Experimental Conditions

To handily control and operate the as-prepared “on-off-enhanced on” approach, the
effects of synthesis conditions, including the synthesis time, the volume of GSH solution
and the synthesis temperature of fluorescence performances of AuNCs were investigated
and the results are plotted in Figure S3. As demonstrated, the fluorescence intensity of
AuNCs gradually increased as the reaction kept going, and the optimal intensity was
obtained after 24 h (Figure S3A). However, when the temperature exceeded 70 ◦C, the
reaction gradually suspended, even though the maximum GSH was set optimally at 150 µL
(Figure S3B).

In addition to the synthesis conditions, assay operation factors, such as the amount
of fluorescence quenching effect observed with Hg2+, AuNCs@ZIF-8 composite and the
incubation time of biothiols, were also explored to thoroughly elucidate the sensing prin-
ciples. As shown in Figure 3A, it was observed that the fluorescence intensity gradually
decreased with the increase of Hg2+ dosage. Such variance implied that more Hg2+ could
induce a more stable structure of Hg2+/Au+, but excessive amounts of Hg2+ could finally
react with biothiols, resulting in a lack of fluorescence response to the target. To obtain
optimal detection sensitivity and a wide detection range, the amount of Hg2+ was set at
16.0 µL (approximately 90% quenching of initial fluorescence). Under the optimal volume
of Hg2+, as-prepared probes also displayed an AuNCs@ZIF-8 responding, as illustrated
in Figure 3B. With trace numbers of probes, it was difficult to provide good fluorescence;
however, an excess of probes undoubtedly reduced the sensitivity of detection.

Figure 3C,D plotted the time-dependent fluorescence quenching of AuNCs@ZIF-8
to Hg2+ ions and fluorescence restoration of the probe of AuNCs@ZIF-8/Hg2+ to Cys
molecules, respectively. The fluorescence intensity of AuNCs@ZIF-8 particles was signif-
icantly quenched in 1 min after meeting with Hg2+ ions, and the fluorescence intensity
reached a stable level after 5 min. When Cys molecules were present in the solution, the
fluorescence intensity of AuNCs@ZIF-8/Hg2+ probes sharply increased, reaching the maxi-
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mum after 10 min. Such a rapid response of our AuNCs@ZIF-8/Hg2+ probes demonstrated
great potential for onsite POCT detection of biothiols.
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3.3. Sensitivity and Selectivity of AuNCs@ZIF-8/Hg2+ Probes on Cys and GSH Molecules

To investigate the specific features of as-prepared AuNCs@ZIF-8/Hg2+ probes on
biothiol sensing, the responses of GSH and human amino acids, including Cys molecules,
were tested. As plotted in Figure 4, not all of the amino acids displayed evident fluores-
cence recovery. As is known, Cys molecules are the only amino acid containing -SH groups
among the 20 amino acids necessary for humans, while GSH is a thiol-containing tripeptide
composed of Cys molecules, glutamic acid and glycine. Therefore, the AuNCs@ZIF-8/Hg2+

probes also displayed restored fluorescence on GSH molecules based on interactions be-
tween -SH groups and Hg2+ ions. However, probably due to the spatial block of tripeptide,
the fluorescence intensity of GSH molecules was lower than that of free Cys molecules. The
excellent specificity of AuNCs@ZIF-8/Hg2+ probes on detection of Cys and GSH molecules
suggested that our developed AuNCs@ZIF-8/Hg2+ approach exhibited great potential to
sense Cys and GSH molecules.

3.4. Quantitative Sensing on Trace Amount of Cys and GSH Molecules

The quantitative evaluation of Cys and GSH molecules with our developed AuNCs@ZIF-
8/Hg2+ approach was studied by measuring the fluorescence intensity at 400 nm. As plotted
in Figure 5, after Hg2+ was mixed with AuNCs@ZIF-8, it was added to different concentrations
of Cys or GHS solutions and incubated for 10 min for fluorescence testing. Cys and GHS
molecules were able to establish a series of good linear relationships with AuNCs@ZIF-8-based
probes. The detection of Cys molecules with AuNCs@ZIF-8 probes had a linear relationship
in the range of 1–10 µM, and the linear equation was y = 2.083x − 2.907 with R2 = 0.991.

78



Biosensors 2023, 13, 35

Similarly, the detection of GSH with AuNCs@ZIF-8 probes had a linear relationship in the
range of 1.5–8 µM, and the linear equation was y = 0.950x− 1.23 with R2 =0.999. Furthermore,
compared with previous reports on Cys and GSH molecules, as summarized in Table 1, our
AuNCs@ZIF-8/Hg2+ strategy displayed a much better response tos trace amount of Cys and
GSH molecules regarding linear ranges and LODs, simultaneously.
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Table 1. Comparison of different fluorescent probes for detection of biothiols.

Material Linear Range LOD Reference

CDs 2–20 µM for Cys 0.29 µM [39]
AuNCs/AuNPs 1.5–35 µM for Cys 1.4 µM [40]

AuNCs 8.3–100 µM for Cys 1.45 µM [41]
AuNCs 0.2–60 µM for Cys 80 nM [42]

AgNCs/NCDs 20–80 µM for Cys
20–80 µM for GSH

0.14 µM
0.4 µM [43]

CeO2/CoO 5–10 µM for Cys 3.71 µM [44]

AuNCs@ZIF-8 1–10 µM for Cys
1.5–8 µM for GSH

0.15 µM
0.32 µM Our work

3.5. Detection Performance in Real Samples

To further investigate the feasibility of using AuNCs@ZIF-8/Hg2+ probes to sense
biothiols in blood sera, recovery experiments ON biothiols in serum samples were carried
out. Low, medium and high concentrations of biothiols were selected to verify the univer-
sality of our strategy. For the sample preparation, after the protein from bovine serum was
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precipitated, the supernatant was diluted to a certain concentration, as standard for adding
of Cys or GSH molecules, respectively. The results of quantitative evaluation are depicted
in Table 2. As listed in Table 2, the recovery of spiked Cys molecules ranged from 97.36% to
115.31%, while that of spiked GSH molecules ranged from 105.29% to 115.46% with an RSD
less than 5%. Such quantitative results implied that our developed AuNCs@ZIF-8/Hg2+

strategy provided a promising approach to accurate and rapid evaluation of biothiols in
blood serum.

Table 2. The recovery of Cys and GSH molecules detection in real samples.

Types of
Biothiols Detected (µM) Spiked (µM) Found (µM) Recovery (%) RSD (n = 3, %)

Cys
2 3.25 ± 0.06 111.94 ± 2.86 2.56

1.008 4 4.90 ± 0.15 97.36 ± 3.83 3.94
8 10.39 ± 0.12 115.31 ± 3.37 2.92

GSH 1.567
2 3.64 ± 0.14 115.46 ± 4.24 3.67
4 6.09 ± 0.01 113.04 ± 0.36 0.32
6 7.88 ± 0.20 105.29 ± 3.40 3.22

4. Conclusions

In summary, a “on-off-enhanced on” strategy for sensitive and fast sensing of biothiols
in blood serum was developed based on AuNCs@ZIF-8 fluorescence nanoparticles. By
combining the ZIF-8 framework with mediators of Hg2+ ions, our approach displayed AIE
behavior for AuNCs under the embedding of ZIF-8 framework. However, the fluorescence
intensity sharply decreased when meeting with mediators of Hg2+ ions. Due to the different
affinities between the interactions of Hg2+ ions with -SH groups and the AuNCs with -SH
groups, the quenched probe of AuNCs@ZIF-8/ Hg2+ displayed an obviously enhanced
fluorescence after the Hg2+ ions were competitively interacted with -SH groups. Differing
from conventional AIE strategy, our competitively-enhanced AIE behavior resulted in a
much lower LOD and longer fluorescence lifetime on sensing trace amounts of biothiols.
In light of these findings, this facile, accurate, and reliable competitive AIE strategy could
provide a promising alternative method of quantifying trace amounts of biothiols in sera
and biological systems.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bios13010035/s1, Figure S1. (A) Fluorescence excitation and
emission spectra of as-prepared GSH-AuNCs. (B) UV-vis spectra of ZIF-8, AuNCs and AuNCs/ZIF-8;
Figure S2. The fluorescence emission spectra of AuNCs/ZIF-8 synthesized from (A) different concen-
tration of 2-MIM solution and (B) different concentration times of AuNCs solution. The red broken
line represents the coverage of AuNCs.; Figure S3. The effect of (A) synthesis time (B) Volume of GSH
solution and (C) synthetic temperature on the fluorescence intensity of AuNCs.
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Abstract: Alanine (Ala), as the most important free amino acid, plays a significant role in food taste
characteristics and human health regulation. The feasibility of using near–infrared hyperspectral
imaging (NIR–HSI) combined with two–dimensional correlation spectroscopy (2D–COS) analysis
to predict beef Ala content quickly and nondestructively is first proposed in this study. With Ala
content as the external disturbance condition, the sequence of chemical bond changes caused by
synchronous and asynchronous correlation spectrum changes in 2D–COS was analyzed, and local
sensitive variables closely related to Ala content were obtained. On this basis, the simplified linear,
nonlinear, and artificial neural network models developed by the weighted coefficient based on
the feature wavelength extraction method were compared. The results show that with the change
in Ala content in beef, the double-frequency absorption of the C-H bond of CH2 in the chemical
bond sequence occurred prior to the third vibration of the C=O bond and the first stretching of O-H
in COOH. Furthermore, the wavelength within the 1136–1478 nm spectrum range was obtained
as the local study area of Ala content. The linear partial least squares regression (PLSR) model
based on effective wavelengths was selected by competitive adaptive reweighted sampling (CARS)
from 2D–COS analysis, and provided excellent results (R2

C of 0.8141, R2
P of 0.8458, and RPDp of

2.54). Finally, the visual distribution of Ala content in beef was produced by the optimal simplified
combination model. The results show that 2D–COS combined with NIR–HSI could be used as an
effective method to monitor Ala content in beef.

Keywords: hyperspectral imaging; two–dimensional correlation spectroscopy; alanine; visualization

1. Introduction

Beef is a popular food in the human diet, and its rich amino acid and protein composi-
tion is close to human needs [1]. With the rapid development of social economy and the
continuous improvement in life quality, meat quality plays an increasingly important role
in determining the value of meat products, and more and more consumers are attracted
to high-quality meat [2]. As the most critical factor affecting the quality of meat products,
flavor not only affects the taste of food and the absorption of nutrients, but also determines
the consumers’ purchase desire and intake intention to a certain extent [3]. Free amino
acids (FAA) are the main taste substances in meat products. Their type and content have
an important impact on meat quality, antioxidant activity, and nutritional value. They
can also be used as precursors for the Maillard reaction and Strecker degradation reaction
with reducing sugar, affecting the overall flavor of the food system [4]. Different FAAs
have different taste characteristics. They have a low taste threshold, strong taste ability,
and five basic taste senses: sour, sweet, bitter, salty, and umami [5]. Among them, alanine
(Ala), as the most simple-flavored amino acid among FAAs, has become the main sweet

Biosensors 2022, 12, 1043. https://doi.org/10.3390/bios12111043 https://www.mdpi.com/journal/biosensors83



Biosensors 2022, 12, 1043

amino acid in meat products due to its low hydrophobicity, and the umami of food will
be directly affected by its content [6]. When Ala coexisted with taste substances such as
glutamic acid and ornithine in food, it can produce a synergistic effect and provide strong
umami for meat products [7]. In addition, Ala also plays a variety of important physio-
logical roles, including improving the immune system, preventing and treating vascular
diseases, and participating in growth and metabolism [8]. When too much or too little Ala
is ingested, the absorption balance of human total amino acids might be affected, leading
to nutritional imbalance and poor health [9]. Therefore, it is of great significance to develop
a rapid, nondestructive, and noncontact quantitative method for the determination of Ala
content in beef.

At present, high-performance liquid chromatography and automatic amino acid
analysis are often used for the physical and chemical detection of FAA [2–4]. These
methods have the advantage of high precision in detecting the composition and content
of amino acids. However, their disadvantage is that sample pretreatment is complex,
harmful, and polluting, and the integrity of the sample is damaged [10]. Therefore, the
rapid detection requirements in the beef mass production process cannot be met. In
previous investigations, the combination of several nondestructive rapid measurement
methods and chemometric methods have been applied in the assessment of amino acid
content, including visible near–infrared spectroscopy, near–infrared (NIR) spectroscopy,
Fourier infrared spectroscopy, and nondestructive magnetic resonance imaging [11–14].
However, these studies mainly focused on the evaluation of research objectives concerning
soybean, daqu, tea, potato, and ham [11–15], and detection indicators such as amino
acid nitrogen [12], total amino acid [15], and total volatile basic nitrogen (TVB-N) have
been emphatically discussed [16]. In addition, hyperspectral imaging (HSI) technology
is more widely focused in predicting other meat-related quality attributes, especially
nutritional attributes (fatty acid, protein, and intramuscular fat), technical attributes (pH
and water holding capacity), sensory attributes (tenderness, color, hardness, gumminess,
and chewiness), freshness attributes (thiobarbituric acid reactive substances (TBARS), total
biogenic amines (TBA), and myoglobin), and microbial attributes (total viable count) of meat
in different parts, types, and places of origin [17–25]. Notably, Cheng et al. [23,24] reported
that NIR–HSI had great application potential in evaluating the content of meat quality
(TBA, TBARS, and fat oxidation). Through comparison, it was found that molecules with
greater contributions could be detected more easily than those with smaller contributions.
The above research provides the possibility to reveal NIR–HSI prediction of Ala content in
meat and meat products.

However, beef, as a complex food item, has interactions among various components
(proteins, amino acids, lipids, and carbohydrates) [26]. This makes it difficult to extract
the NIR spectral information of the meat, and the spectral signal presents overlapping
and complexity [27]. As a result, quantitative analysis by NIR has relied heavily on the
application of chemometric analysis to relate the subtle spectral changes to the variations
in concentrations of certain components in the analyte [28]. In previous studies, the deriva-
tive method, weight value method, principal component analysis, and feature variable
extraction were the main spectral response analysis methods for studying the spectral
characteristic variables of objects [29,30]. It usually requires a lot of experiments to identify
sensitive variables and build a stable model effect. This is a time-consuming and iterative
process, the results of which vary with experience and the chemometric methods used.
Thus, a better understanding of NIR spectra and a more accurate spectral band division is
conducive to the establishment of a more robust NIR quantitative model. In recent years,
two–dimensional correlation spectroscopy (2D–COS) has been applied to HSI research by
some researchers to improve spectral resolution by extending one–dimensional spectral
signals to the second dimension [31]. By this means, the changes in subtle spectral features
are analyzed and the relationship and change order of various groups are revealed [32].
This technique has been successfully applied to spectral interpretation and spectral band
allocation of the lipid oxidation of meat, the damage of myofibrils, and the spectral interpre-
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tation and distribution of protein secondary structure changes in meat [24,26]. In addition,
Dong et al. [33] reported that the use of 2D–COS to select the NIR–HSI continuous sensitive
interval and the establishment of a deep learning algorithm have great potential to improve
the accuracy of the model. This provides a new direction for our research. As far as we
know, a feasibility study using NIR–HSI combined with 2D–COS analysis to detect Ala
content in beef has not been previously reported.

Therefore, this study is the first to explore the feasibility of NIR–HSI combined with
2D–COS analysis in detecting Ala content in beef. The specific objectives were as follows:
(i) NIR–HSI (900–1700 nm) was used to collect the spectral information of beef samples,
the segment threshold method was used to select the sample region of interest (ROI), and
the Monte Carlo (MC) method was used to eliminate abnormal value information; (ii) the
determination of the change order of characteristic peaks related to Ala content and local
sensitive intervals was achieved by analyzing synchronous and asynchronous 2D–COS;
(iii) the determination of the best characteristic variables of the global and local spectral
intervals based on the weight algorithm (competitive adaptive reweighted sampling (CARS)
and regional coefficient (RC)) were studied; (iv) simplified linear partial least squares
regression (PLSR), nonlinear least squares support vector machine (LSSVM), and artificial
neural network (ANN) Ala prediction models were developed; (v) the optimal characteristic
variables and models obtained were used to characterize the visual distribution of Ala
content. The research results were expected to further improve the accuracy of NIR–HSI
technology in detecting meat quality indicators. A graphical representation of the proposed
method is illustrated in Figure 1.
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2. Materials and Methods
2.1. Sample Preparation

The samples were collected from three parts (longissimus dorsi (LD), foreleg (FD),
and hind leg (HD)) of 20 cattle in Ningxia, China. The samples were vacuum packed and
stored in a portable refrigerated incubator, and were transported to the Meat Processing
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and Quality Safety Control Laboratory of Ningxia University. The oil and fascia in the
fresh samples were removed and cut into 40 mm × 40 mm × 20 mm (L × W × T). All
samples were vacuum packed and stored in a 4 ◦C refrigerated room. In order to ensure
the reliability and universality of the model, the samples were collected following four
slaughter batches (30 samples were obtained from each part of each batch). Finally, 360 beef
samples were obtained, and their spectral data and chemometric data were measured at
the same time.

2.2. Hyperspectral Image Correction and Parameter Determination

The NIR–HSI (900–1700 nm) system was used to collect spectral images of beef samples.
The HSI system can continuously acquire 256 spectral bands with a spectral resolution of
5 nm. The HSI system was mainly composed of five parts, including an HSI spectrometer,
four 35 W tungsten halogen lamps, a CCD camera, an electronic displacement platform,
and a computer. The best debugging parameters were optimized during preliminary
experiments because diffuse reflections of the light source may be caused by the color,
texture, and shape of the beef sample. The best debugging parameters were as follows:
the object distance was 360 mm, the steady current of the light source was set to 6.0 A, the
electric control displacement speed was 20 mm/s, and the exposure time of the camera was
30 ms. In order to reduce the uneven distribution of image light source intensity and the
existence of a dark current in the sensor, black and white correction was required for the
obtained hyperspectral image. The formula used was as follows:

R =
A− S
B− S

× 100% (1)

where A is the original spectral image of the sample; B is the all-white calibration image; S is
the all-black calibration image; R is the calibrated spectral image. The all-black calibration
image S was obtained by covering the camera lens (almost 0% reflectance), and the all-white
calibration image B was obtained using a white board made of polytetrafluoroethylene
(>99% reflectance). The ROI of the HSI was extracted from the spectral information of the
sample using the segmented threshold method (set at 0.16) with ENVI software.

2.3. Measurement of the Content of FAAs

Sample pretreatment: minced meat sample (2.00 g) was weighed, 0.02 mol/L hy-
drochloric acid was added, and the sample was then placed in a 10 mL centrifuge tube for
homogenization. After ultrasound (30 min), centrifugation (4000 r/5 min), and activation
(C18), 5.00 mL methanol and 5.00 mL water were added, respectively. After filtration,
2.5 mL of solution was absorbed and 1.50 mL hydrochloric acid of 0.02 mol/L was added.
After passing through the column, 0.02 mol/L hydrochloric acid was used to dilute the
solution to 5.00 mL. After uniform mixing, the solution was centrifuged (10,000 r/10 min)
after standing (15 min), and then filtered through a membrane of 0.45 µm pore size for
analysis. By comparing the retention time and peak area of each amino acid standard,
qualitative and quantitative analysis of each amino acid was carried out.

Analytical parameters: the chromatographic column used was a sulfonic acid cation
resin separation column (4.6 mm × 60 mm). The detection wavelength was 440 nm
and 570 nm, respectively; the injection volume was 20 µL. The reaction temperature was
135 ± 5 ◦C. The separation column temperature was 57 ◦C.

2.4. Analysis of Two–Dimensional Correlation Spectra

As an advanced spectral analysis method, 2D–COS is particularly suitable for explor-
ing the structural changes and interactions of complex systems under external disturbances
from the molecular perspective [31]. Compared with traditional one–dimensional spec-
tral analysis, 2D–COS has a strong simplification effect for complex spectra containing
multiple overlapping peaks. At the same time, it is extended on the basis of the original one–
dimensional spectrum, significantly improving the resolution of the original spectrum [32].
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With the help of a peak correlation diagram, the assignment and interaction of peaks in
the system were judged, and the change order of peak position under external disturbance
was obtained [26]. In this study, Ala was used as the external disturbance condition, and
the dynamic spectrum ỹ (v, d) caused by the system in the external disturbance range (1~T)
was defined as:

ỹ(v, d) =
{

y(v, d)− y(v) 1 ≤ d ≤ T
0 other wise

(2)

where y (v) is the reference spectrum of the system, which was usually set as the average
spectrum, and was defined as:

y(v) =
1
T ∑T

j=1 y
(
v, dj

)
(3)

where y (v, d) data are expressed in discrete form in actual measurement. The following
vector forms were commonly used:

y(v, d) =




y = (v, d1)
y = (v, d2)
y = (v, d3)

·
·
·

y = (v, dm)




(4)

The two–dimensional correlation intensity X (v1, v2) indicated the function of the
spectral intensity changes ỹ (v, d) of the spectral variables v1 and v2, and was compared in
the external disturbance variable interval. The correlation function was used to calculate
the intensity change at two independent spectral variables, v1 and v2, so that X (v1, v2)
could be converted into the plural form:

X(v1, v2) = Φ(v1, v2) · i Ψ(v1, v2) (5)

According to the 2D–COS theory of Noda et al. [31,32], the mutually perpendicular real
parts and imaginary parts of the complex number were called the synchronous correlation
strength and asynchronous correlation strength, respectively, and the strength changes of
the two were directly related to the change in d value. We then converted the dynamic
spectrum from the external interference domain to the frequency domain via Hilbert–Noda
change, and finally, 2D–COS was obtained. Its two–dimensional correlation synchronous
spectrum was expressed as (6):

Φ(v1, v2) =
1

T − 1
ỹ(v1)

T · ỹ(v2) (6)

The expression of the two–dimensional correlation asynchronous spectrum was (7):

Ψ(v1, v2) =
1

T − 1
ỹ(v1)

T · N · ỹ(v2) (7)

where N is the T-order square matrix (T is the spectral number), which was called the
Hilbert–Noda matrix; the matrix formula was (8):

Njk =

{
oj = k
1

π(k−j) j 6= k (8)

2.5. Analysis Rules of Spectral Peak

The synchronous correlation spectrum characterizes the simultaneous or coincidental
changes in spectral intensities measured at spectral variables of v1 and v2. In the atlas, it
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was symmetrical along the diagonal direction, its autocorrelation peak appeared on the
diagonal, and the cross peak appeared outside the diagonal. In the synchronous spectrum,
the intensity of the automatic peak was always positive, representing the overall degree of
the dynamic change in spectral intensity under the corresponding number of bands. It is
worth noting that there were positive and negative cross peaks in the synchronous spectrum.
If the cross peaks of the two bands were positive, it meant that the spectral intensity of
the corresponding wave number increased or decreased simultaneously under external
interference. When the opposite value was negative, it meant that the spectral intensity
corresponding to the two wave numbers increased one and decreased the other. In the
asynchronous two–dimensional correlation spectrogram, the asynchronous or sequential
(i.e., delayed or accelerated) changes in spectral intensity at the given wave numbers v1 and
v2 were presented. Its asynchronous graph was asymmetric with respect to the diagonal,
and only had cross peaks. The asynchronous cross peak only appeared when the spectral
intensity of a given wave number changed out of phase. Using this feature to analyze the
overlapping peaks with different sources in the spectrum had a significant role in judging
the change order of the characteristic peaks in the process of external interference. The
direction and order of strength change determined according to Noda rules are shown
in Table 1.

Table 1. The direction and sequence of intensity changes according to Noda’s rule.

Φ (v1, v2) Ψ (v1, v2) Significance

+ / The signal strength at v1 and v2 changes in the same direction, i.e.,
increases or decreases at the same time.

− / The signal strength at v1 and v2 changes in opposite directions.
+ + The change at v1 is mainly prior to the change in band at v2.
+ − The change at v1 mainly follows the change in wave band at v2.
− + The change at v1 mainly follows the change in wave band at v2.
− − The change at v1 is mainly prior to the change in band at v2.

Note: Φ (v1, v2), synchronous correlation spectrum; Ψ (v1, v2), asynchronous correlation spectrum.

2.6. Extraction of Spectral Characteristic Wavelength

The complex and time-consuming properties of model training were caused by the
high dimension of the data and the strong correlation between adjacent variables. There-
fore, the selection of characteristic wavelength variables became a key step in spectral
analysis, which was mainly used to simplify the model and eliminate data redundancy.
The use of genetic algorithms, principal component algorithms, iterative algorithms, and
weight algorithms to extract feature variables has been reported by a large number of
researchers [27–29]. In this study, two weight algorithms (CARS and RC) were used to
select characteristic wavelengths to develop simplified models for the full spectral (FS)
area and sensitive local areas selected from 2D–COS analysis. The purpose of this was to
consider the proportion of data from the perspective of weight to analyze the appearance
of characteristic variables more reasonably.

2.7. Visualization of the Ala Contents

Inversion of Ala content distribution was feasible because HSI had both image infor-
mation and spectral information (combining two–dimensional imaging technology with
one–dimensional spectral curve to form three–dimensional data). Based on the method
of multivariate optimization model, the optimal simplified combination was selected, the
weight coefficients of each pixel and the optimal correction model were calculated, and a
matrix consisting of multiple predicted values was obtained. Then, the obtained matrix
was refolded to generate the content distribution map [30]. The Ala content of each pixel
was expressed in different color scales. Therefore, the distribution of Ala content could be
clearly inverted on the color map.
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2.8. Model Establishment and Evaluation

In this study, three multivariate algorithms, including linear PLSR, nonlinear LSSVM,
and ANN, were used to develop the detection model for quantitative analysis. PLSR is a
multiple factor regression method. Firstly, the scores of the main factors were extracted
from the spectral matrix X and the physical and chemical matrix Y, and the PLS was used
to conduct the best precision regression for the main factors of X and Y, respectively. The
principal component of spectral matrix X was directly related to physical and chemical
parameters, and the linear relationship between spectral variables and physical and chem-
ical parameters was used to the greatest extent. LS-SVM used the least squares linear
equation as the loss function formula. The convex quadratic programming was solved
by solving linear equations instead of traditional SVM, which reduced the training time
and computational complexity. ANN is a multilayer feedforward neural network char-
acterized by forward signal propagation and backward error propagation. According to
the error signal of forward propagation, the method of gradient descent was adopted for
backward propagation, and the signal error was minimized through repeated forward and
backward learning.

In order to establish the reliable accuracy of the validation model, the whole sample
set data were divided according to a 3:1 ratio, based on the RS method. The proficiency and
accuracy of the model were evaluated by analyzing statistical parameters. These included
determination coefficients (R2), root mean square error (RMSE), and ratio of performance
deviation (RPD). Generally, a good model should have higher R2 and RPD values and
lower RMSE values.

3. Results and Discussion
3.1. Spectral Reflectance Index Visualization and Spectral Curve Analysis

ENVI software was used to extract sample ROI from HSI by the segmentation threshold
method, and to visually express spectral reflectance indexes of different parts. First, the band
with the best image definition was selected, and the optimal segmentation threshold of samples
and background was set to 0.16 to retain the effective sample area as much as possible and
eliminate the influence of background area interference. The independent regions of each
sample were taken as ROI, and their average values were taken as the effective spectral data of
the sample. The visual distribution of spectral reflectance index of beef samples from different
parts is shown in Figure 2. When the color was closer to red, it meant that the reflectivity index
was larger, and vice versa. It can be observed that the reflectivity index of the FD and the
HD was low, and their colors were similar to each other, showing a yellow-green coloration,
while the LD appeared an obvious yellow color with a small amount of red, and the reflectivity
index was large. There was a certain correlation between the spectral reflectance index and
the chemical composition of the sample, indicating that the LD had a more complex chemical
composition than the FD and HD.
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The spectral curves of 360 beef samples obtained by NIR–HSI are shown in Figure 3.
The NIR bands of the beef samples contained rich combination bands of molecular over-
tones and molecular vibration, which were characterized by the double-frequency absorp-
tion of chemical bonds and relatively strong spectral characteristic absorption. As shown
in Figure 3a, it was observed that there was more noise in the full-band original spectral
curve of beef samples within the band range of 918–1000 nm, which might be related to
the instability of the instrument at the beginning of scanning. Therefore, the spectral data
of 1000–1700 nm (225 wave bands) were further analyzed. Figure 3b shows the average
spectral curves of different beef samples. It can be seen that the curves show a similar trend
as a whole. The spectral curve of the LD muscle was higher than that of the FD and HD,
which is basically consistent with the conclusion drawn from the visualization of the ROI
spectral reflectance index of the sample. It is worth noting that the longitudinal shifts of
the spectra were rather different. Specifically, compared with the spectral reflectance of
the 1010–1400 nm band, the reflectance of the 1400–1700 nm band was low and the peak
amplitude frequency was wide. This difference might be related to the typical reflection
characteristics of different components in the sample at a specific wave band when the
electromagnetic radiation wave interacted with the material.
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According to relevant studies, the spectral absorption band in the NIR band was mainly
related to the tensile vibration of amide bonds, C-H bonds, N-H bonds, and O-H bonds of
organic compounds (proteins and amino acids), lipids, carbohydrates, and water [33]. The
absorption band at 1022–1100 nm might be related to the second stretching of the N-H bond
in amides. The peak at 1100–1160 nm might be related to the double-frequency absorption
of the C-H bond of the CH2 group. The absorption band at 1160–1300 nm was attributed to
the second C-H stretching of carbonyl compounds. The absorption band at 1300–1400 nm
represents the third vibration the of C=O bond. The absorption band at 1400–1500 nm
represents the first O-H stretching of COOH. The infrared spectrum in the 1600–1700 nm
region was related to the amide I band of the protein, which was mainly attributed to the
absorption of the C=O bond [17,22–30].

3.2. Abnormal Sample Detection and Sample Set Division

As a common method to eliminate outliers, MC can help identify the variation among
samples and improve the accuracy of the model. It was mainly used to calculate the
corresponding mean value and standard deviation, via a random sampling method, and to
further draw the distribution map. Generally, the points far away from the main sample
were assumed to be outliers, and were thus eliminated. Abnormal samples were identified
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based on the improvement or decrease in the performance of the established PLSR model.
As shown in Figure 4, 16 abnormal value samples of 360 samples (3, 4, 8, 64, 43, 56, 61,
75, 122, 168, 174, 179, 227, 273, 298, 299) were identified by MC. The modeling effect of
each abnormal value was obtained by eliminating samples one by one, as shown in Table 2.
When samples 64, 168, and 299 were removed, the prediction performance of the model
was reduced; therefore, false samples were retained. When the remaining 13 samples were
removed, the final PLSR model was established. The R2

cv value increased from 0.6905 to
0.7419, and the RMSECV value decreased from 0.2071 mg/100 g to 0.1831 mg/100 g.
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Table 2. Detection results of abnormal beef samples based on the Monte Carlo method.

Sample
Set Outliers Remaining

Amount

PB PA

R2
CV RMSECV R2

CV RMSECV

Ala

64, 168, 299 357 0.6905 0.2071 0.6209 0.2275
3, 4, 8, 43,
56, 61, 75,
122, 174,
179, 227,
273, 298

347 0.6905 0.2071 0.7419 0.1831

Note: PB, performance before removing the outliers; PA, performance after removing the outliers.

The partition of sample set was an important step in spectral multivariate analysis.
After removing the outliers, 260 samples were selected as the calibration set using the RS
algorithm, and 87 samples were used to predict the model performance. The statistical
results are shown in Table 3. It can be seen that the range of the Ala prediction set was
included in the correction set, and the difference between the average value and the
standard deviation of the two datasets was not large, which means that the distribution of
the divided sample sets was similar. This was highly beneficial to the establishment of a
prediction model with high accuracy and robustness. At the same time, it also shows that it
was feasible to use the RS method to divide samples.

91



Biosensors 2022, 12, 1043

Table 3. Statistical results of beef sample set divided by the RS method.

Sample Set
Calibration Set Prediction Set

N Range Mean SD TAV N Range Mean SD TAV

Ala 260 5.04–10.6 9.616 0.356 0.160 87 5.56–10.5 9.611 0.387 0.160

Note: SD, standard deviation; TAV, taste activity value.

3.3. Analysis of Spectral Full Band Modeling

In order to maximize the resolution of overlapping data and reduce the system
noise caused by spectral scattering and instrument drift, nine mathematical preprocess-
ing methods were used to correct the full spectrum data. The full wavelength data that
was relevant to Ala content were evaluated and compared according to the PLSR model
(Table 4). The original spectral results show a good prediction model effect (R2

C = 0.8202,
RMSEC = 0.1507 mg/100 g; R2

P = 0.8145, RMSEP = 0.1663 mg/100 g). The modeling per-
formance of the nine pretreatments had a small overall difference. Compared with the
original spectrum, the PLSR model established by MF pretreatment showed the high-
est correlation coefficient when evaluating the Ala content, i.e., R2

C increased to 0.833,
R2

P increased to 0.8388, and RMSEP decreased to 0.1548. As a nonlinear signal processing
technology, MF had a good filtering effect on spectral images. At the same time, it was able
to protect the edge data of the signal. Fan et al. [27] also used MF to optimize the original
NIR spectrum to determine the TBA content in Tan mutton, and obtained Rc and Rp values
of 0.94 and 0.88, respectively.

Table 4. PLSR model performance of different pretreatment methods.

Sample Set Pretreatment
Method LVs

Calibration Set Cross-Validation Prediction Set

R2
C RMSEC R2

CV RMSECV R2
P RMSEP

Ala

None 15 0.8202 0.1507 0.7527 0.1773 0.8145 0.1663
MA 15 0.8156 0.1526 0.7570 0.1756 0.8230 0.1850
GF 15 0.8180 0.1516 0.7561 0.1760 0.8287 0.1674
MF 16 0.8330 0.1452 0.7619 0.1738 0.8388 0.1548
SG 15 0.8129 0.1537 0.7530 0.1771 0.8191 0.1811

Normalize 14 0.8051 0.1569 0.7510 0.1777 0.7898 0.1764
Baseline 18 0.8136 0.1534 0.6935 0.1991 0.8165 0.1651

SNV 13 0.7729 0.1693 0.7059 0.1934 0.7705 0.1862
DT 17 0.8052 0.1568 0.6904 0.1997 0.8084 0.1687

MSC 12 0.7597 0.1742 0.6941 0.1941 0.7476 0.1939

Note: Bold indicates optimal model effect. MA, moving average; GF = Gaussian filter; MF, median filter; SG,
Savitzky–Golay; SNV, standard normal variate; DT, detrending; MSC, multiplicative scatter correction.

3.4. 2D–COS Analysis of Ala Content in NIR–HSI

The pretreated NIR with Ala content as the external disturbance condition was ana-
lyzed by 2D–COS, as shown in Figure 5a. The self-peak in the synchronous spectrum was
positive on its diagonal. The strength of the automatic peak was reflected by the number of
circles. The more circles, the stronger the automatic peak. On the contrary, the fewer circles
present, the weaker the automatic peak. The corresponding cut spectrum in Figure 5c was
generated in order to more clearly represent the position of its self-peak. It can be seen that
five main self-peaks were 1055, 1136, 1323, 1478, and 1648 nm at the diagonal position. The
appearance of these autocorrelation peaks indicates that with the change in Ala content,
the spectral absorption intensity of the band underwent a strong change, and the spectral
signals of these characteristic variables were more sensitive to external interference. Among
them, 1055 nm belonged to the second stretching of the N-H bond in amides, 1136 nm was
the double-frequency absorption band of the C-H bond in CH2, 1323 nm was the third
vibration of the C=O bond, 1478 nm was the first O-H stretching of COOH, and 1648 nm
was the absorption stretching of the C=O bond in the amide I band of protein [22–30].
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Analyzing the cross peaks outside the main diagonal of the synchronous spectrum, only
the obvious cross peaks were observed at (1136–1323), (1323–1478), and (1478–1136) nm.
However, there was no cross peak between (1055–1136) and (1478–1648) nm, indicating
that the absorption peak between them was irrelevant; thus, the self-peak at 1055 nm and
1648 nm was excluded. At the same time, it was found that the cross peaks generated by
the 1136 nm and 1478 nm (named band group 1) bands were always positive, indicating
that the spectral intensity of these wavelengths increased or decreased with the fluctuation
of disturbance. The cross peak generated in the 1323 nm (named band group 2) band was
always negative, which indicates that the bands from group 1 and group 2 demonstrated
opposite behaviors.
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The asynchronous 2D–COS is shown in Figure 5b. When the phase of the spectral
intensity change in two variables was different, cross peaks were generated and used to
infer the order of spectral intensity change. The same main cross peak was observed at the
self-peak position of the synchronous spectrum. The signs of the cross peaks are shown
in Table 5. According to the positive and negative signs of synchronous asynchronous
cross peaks, it can be concluded that under the condition of Ala content as an external
disturbance, the order of changes in the relevant spectra was 1136–1323–1478 nm. This
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shows that under the change in Ala content in beef, the double-frequency absorption of the
C-H bond (1136 nm) in CH2 occurred before the third vibration of the C=O bond (1323 nm)
and the first O-H stretching of COOH (1478 nm).

Table 5. Cross peak sign of two–dimensional correlation spectrum of Ala content in the NIR band.

Wavelength/nm 1136 1323 1478

Assignment C-H C=O O-H
Synchronous

1136 + − +
1323 + −
1478 +

Asynchronous
1136 \ − +
1323 \ −
1478 \

From the above analysis, we could see that more sensitive variables could be obtained
by 2D–COS compared with the one–dimensional spectral curve. Therefore, in the further
study, the sensitive range 1136–1478 nm (115 wave bands) of 2D–COS analysis was selected
as the detection area of beef Ala content. Its local region contained the main absorption
band of the one–dimensional spectrum. The spectral resolution was significantly improved
by this method, and the spectral band contributions from different sources and the order of
chemical bond changes were distinguished.

3.5. Characteristic Wavelength Extraction

In order to improve the prediction performance of the model to a certain extent, the
feature variable screening method based on the weight algorithm was selected to evaluate
the global data and local regional data of Ala. The purpose of this was to verify the impact
of different weighting methods on the model effect [34].

As a fast variable selection method, CARS algorithm was proposed according to the
principle of “survival of the fittest” in Darwin’s theory of evolution. Due to the randomness
of the MC sampling method in the CARS algorithm, in order to ensure the reliability of
the model, each set MC sampling number was ran 500 times, respectively, and a 10-fold
cross-validation method was used to take the wavelength corresponding to the minimum
RMSECV value in all PLSR models as the optimal variable [35]. Figure 6a shows the
average weight distribution of CARS. It can be seen that the characteristic variables of
the whole band selected by CARS were evenly distributed, and the weight value changed
slightly. On the contrary, the position of characteristic variables appearing in the local band
selected by 2D–COS was denser and closer to the position selected in the full band, but
the weight value was significantly higher. This shows that the local features selected by
2D–COS contained a large number of features, and the correlation between features was
large. In the case of local data, the disappearance of some features would not affect the
detection and matching of other features [35].

There were 36 characteristic variables selected by FS–CARS, including 1029, 1038,
1068, 1115, 1130, 1136, 1151, 1163, 1199, 1217, 1235, 1238, 1246, 1267, 1288, 1336, 1339, 1378,
1381, 1384, 1395, 1410–1416, 1431, 1437, 1446, 1458, 1476, 1482, 1518, 1533, 1586, 1592, 1601,
and 1661 nm. In 2D–COS–CARS, 36 characteristic wavelengths were selected, including
1136, 1139, 1187, 1193, 1199, 1205, 1214, 1220, 1240, 1246, 1267, 1288, 1297, 1303, 1309,
1321, 1342–1348, 1354, 1357, 1363, 1372, 1384, 1395, 1398, 1413–1419, 1425, 1431, 1434, 1446,
1458, 1461, and 1473 nm. We found that when feature variables were extracted by the
CARS algorithm, the number of extracted variables remained stable without significant
changes in the total number of bands of the model. Wan et al. [25] also reported that in the
selection of characteristic wavelengths for HSI detection of OxyMb and MetMb content
in Tan mutton, the CARS algorithm was used to extract 36 and 33 characteristic variables,
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respectively, to establish linear and nonlinear models that provided the best results. In
addition, Cheng et al. and Zhuang et al. [36,37] reported that 22 and 26 characteristic
variables were extracted by the CARS algorithm to obtain effective prediction results in
evaluating meat DeoMb and TVB-N content. The above reports strongly demonstrate the
robustness and effectiveness of the CARS algorithm, and the number of selected feature
wavelengths in these studies was between 20–40, which is similar to the number of feature
wavelength extractions in this study.

Biosensors 2022, 12, x FOR PEER REVIEW 14 of 18 
 

1000 1100 1200 1300 1400 1500 1600 1700

-1000

-750

-500

-250

0

250

500

750

1000

M
e
a
n

 w
e
ig

th
 o

f 
V

C
P

A
 r

u
n

s

wavelength/nm

 2D–COS–CARS   FS–CARS(a)

 

1000 1100 1200 1300 1400 1500 1600 1700

-5

-4

-3

-2

-1

0

1

2

3

4

5

R
e
g
r
e
ss

io
n

 c
o
e
ff

ic
ie

n
t

wavelengths/nm

 2D–COS–RC

 FS–RC

(b)

 

Figure 6. Operation diagram of characteristic wavelength extracted by weight algorithm: (a) average 

weight distribution diagram of CARS algorithm, (b) RC algorithm weight regression coefficient dis-

tribution diagram. 

3.6. Comparison of PLSR, ANN, and LS-SVM Model Effects 

In order to evaluate the effect of multicombination data model, PLSR, ANN, and LS-

SVM models established by feature variable data were extracted based on the weight al-

gorithm of FS and 2D–COS, and the results are shown in Table 6. First of all, the linear 

PLSR model had the best effect in FS modeling, whereby R2C = 0.8330 and R2P = 0.8388, 

which is 9.42 and 2.74% higher than LS-SVM and ANN in the prediction set, respectively. 

In contrast, the modeling results of 2D–COS local data in the band with 48.9% reduction 

were similar to those of full band modeling, and the best modeling effect was also shown 

in the linear model (R2C = 0.8203, R2P = 0.8190). 

In the data modeling of feature wavelength extraction, the number of feature varia-

bles selected by RC was less than for CARS, but the modeling result was poor in the entire 

dataset. This was partly due to the negative correlation between the selected bands and 

Ala content. In addition, some useful information related to Ala content was lost in the 

process of manually selecting the absolute value of the regression coefficient to maximize, 

which made the model less adaptable. In variable selection modeling using the CARS al-

gorithm, the same number of 36 characteristic variables were selected in FS and 2D–COS 

data, respectively, which effectively reduced data redundancy and obtained better model 

performance. Surprisingly, all models of CARS in the two data intervals were better than 

the original data and RC feature extraction data. This shows that the key bands deter-

mined by the CARS algorithm are rich in information and highly correlated with Ala con-

tent. The main reason for this is that CARS establishes a calibration model for each varia-

ble separately during operation, and calculates the weight of the regression coefficient in 

each variable. Different from RC algorithm, in order to avoid subjective selection, an ex-

ponential decreasing function (EDF) was used to reduce the variable space. Furthermore, 

adaptive reweighted sampling (ARS) was used to reduce the number of variables. Finally, 

the optimal variable quantum set with the minimum RMSECV was retained [35]. To put 

it another way, when the weighting methods were inconsistent, there were huge differ-

ences in the model effects. 

Further discussing the modeling performance of CARS with the two datasets, we 

found that the three models based on 2D–COS local data were better than models based 

on FS data. The 2D–COS–CARS–PLSR model was the best (R2C = 0.8141, R2P = 0.8458). This 

provides the possibility that although the sensitive range of 2D–COS data compared with 

FS data had been reduced, the modeling effect was similar and the model accuracy had 

not been further improved. It was mainly used to select local intervals where data overlap 

Figure 6. Operation diagram of characteristic wavelength extracted by weight algorithm: (a) average
weight distribution diagram of CARS algorithm, (b) RC algorithm weight regression coefficient
distribution diagram.

The RC algorithm, as a common spectral peak analysis method, is widely used in
HSI nondestructive testing. The RC algorithm conducted PLSR modeling and analysis on
the reflectance vector X corresponding to each wavelength in the spectral matrix of the
calibration set and the component value vector Y to be measured in the physicochemical
matrix, and the wavelength regression coefficient distribution map was obtained. The
larger the absolute value of the regression coefficient corresponding to the wavelength
point, the more information obtained, and the stronger the correlation. Therefore, the
wavelength with large absolute value of regression coefficient was selected to participate in
the model establishment process [34]. Figure 6b shows the distribution of weight regression
coefficients for the prediction of beef Ala content in two spectral intervals using the RC
algorithm. It was also found that the local weight of 2D–COS selection was significantly
higher than the global weight, and there were relatively many characteristic variables in
the local area with strong significant positive correlation peaks.

In FS–RC, 26 characteristic variables were selected, of which 1005, 1020, 1080, 1165,
1285, 1381, 1404, 1422, 1488, 1568, 1601, 1610, 1646, and 1670 nm were positively correlated
with Ala, and 1011, 1041, 1124, 1255, 1336, 1395, 1413, 1440, 1533, 1625, 1658, and 1679 nm
showed negative correlations with Ala. At the same time, 22 characteristic variables were
selected in 2D–COS–RC, among which 1165, 1184, 1193, 1195, 1205, 1264, 1285, 1381, 1407,
1425, 1446, and 1458 nm were positively correlated with Ala, and 1148, 1172, 1199, 1220,
1232, 1330, 1392, 1413, 1431, and 1473 nm showed negative correlations with Ala. In the
overall range, a strong positive correlation was observed at 1079, 1165, 1205, 1285, 1381,
and 1446 nm, of which the peak at 1079 nm was related to the second stretching of the N-H
bond in amides. The peaks at 1165, 1204, and 1285 nm were related to the second C-H
stretching of carbonyl compounds. The peak at 1383 nm represents the third vibration of
the C=O bond. The peak at 1446 nm represents the first O-H stretching of COOH [22–30].
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It is worth noting that the regression trends of the weights of the two groups of data were
similar, with 1165, 1285, and 1381 nm peaks overlapping.

3.6. Comparison of PLSR, ANN, and LS-SVM Model Effects

In order to evaluate the effect of multicombination data model, PLSR, ANN, and
LS-SVM models established by feature variable data were extracted based on the weight
algorithm of FS and 2D–COS, and the results are shown in Table 6. First of all, the linear
PLSR model had the best effect in FS modeling, whereby R2

C = 0.8330 and R2
P = 0.8388,

which is 9.42 and 2.74% higher than LS-SVM and ANN in the prediction set, respectively.
In contrast, the modeling results of 2D–COS local data in the band with 48.9% reduction
were similar to those of full band modeling, and the best modeling effect was also shown
in the linear model (R2

C = 0.8203, R2
P = 0.8190).

Table 6. Prediction model of Ala content established by different characteristic wavelength
extraction methods.

Model Extraction Method Variable
Number

LVs
Calibration Set (n = 260) Prediction Set (n = 87)

R2
C RMSEC RPDC R2

P RMSEP RPDP

PLSR

FS 225 16 0.8330 0.1452 2.45 0.8388 0.1548 2.50
FS–RC 26 15 0.7754 0.1684 2.11 0.8006 0.1721 2.25

FS–CARS 36 18 0.8404 0.1419 2.51 0.8409 0.1538 2.52
2D–COS 115 12 0.8203 0.1506 2.36 0.8190 0.1655 2.34

2D–COS–RC 22 12 0.7536 0.1764 2.02 0.7919 0.1755 2.21
2D–COS–CARS 36 13 0.8141 0.1531 2.33 0.8458 0.1521 2.54

LS-
SVM

FS 225 - 0.7226 0.1876 1.90 0.7598 0.1907 2.03
FS–RC 26 - 0.7323 0.1839 1.94 0.7446 0.1960 1.97

FS–CARS 36 - 0.7278 0.1858 1.92 0.7596 0.1900 2.04
2D–COS 115 - 0.8145 0.1600 2.23 0.7898 0.1657 2.34

2D–COS–RC 22 - 0.7938 0.1704 2.09 0.7702 0.1747 2.22
2D–COS–CARS 36 - 0.8212 0.1629 2.19 0.7980 0.1633 2.37

ANN

FS 225 - 0.8317 0.1461 2.44 0.8158 0.1650 2.35
FS–RC 26 - 0.8275 0.1476 2.41 0.7785 0.1810 2.14

FS–CARS 36 - 0.8492 0.1381 2.58 0.8312 0.1580 2.45
2D–COS 115 - 0.8095 0.1566 2.27 0.7924 0.1767 2.19

2D–COS–RC 22 - 0.7786 0.1672 2.13 0.7652 0.1863 2.08
2D–COS–CARS 36 - 0.8484 0.1383 2.57 0.8341 0.1560 2.48

In the data modeling of feature wavelength extraction, the number of feature variables
selected by RC was less than for CARS, but the modeling result was poor in the entire
dataset. This was partly due to the negative correlation between the selected bands and
Ala content. In addition, some useful information related to Ala content was lost in the
process of manually selecting the absolute value of the regression coefficient to maximize,
which made the model less adaptable. In variable selection modeling using the CARS
algorithm, the same number of 36 characteristic variables were selected in FS and 2D–COS
data, respectively, which effectively reduced data redundancy and obtained better model
performance. Surprisingly, all models of CARS in the two data intervals were better than
the original data and RC feature extraction data. This shows that the key bands determined
by the CARS algorithm are rich in information and highly correlated with Ala content.
The main reason for this is that CARS establishes a calibration model for each variable
separately during operation, and calculates the weight of the regression coefficient in each
variable. Different from RC algorithm, in order to avoid subjective selection, an exponential
decreasing function (EDF) was used to reduce the variable space. Furthermore, adaptive
reweighted sampling (ARS) was used to reduce the number of variables. Finally, the
optimal variable quantum set with the minimum RMSECV was retained [35]. To put it
another way, when the weighting methods were inconsistent, there were huge differences
in the model effects.
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Further discussing the modeling performance of CARS with the two datasets, we
found that the three models based on 2D–COS local data were better than models based on
FS data. The 2D–COS–CARS–PLSR model was the best (R2

C = 0.8141, R2
P = 0.8458). This

provides the possibility that although the sensitive range of 2D–COS data compared with
FS data had been reduced, the modeling effect was similar and the model accuracy had
not been further improved. It was mainly used to select local intervals where data overlap
and redundancy still existed. When CARS was used to eliminate useless variables, local
data based on 2D–COS was effectively improved. Similarly, Fan et al. [27] used NIR–HSI to
predict the TBA content of mutton, and the best prediction effect was obtained through the
characteristic variable of 2D–COS local sensitive interval selected by the CARS algorithm,
but the effect of 2D–COS data was slightly worse than that of FS data.

We also used RPD as the evaluation index of model performance: when RPD < 1.5,
the model was invalid; when 1.5 ≤ RPD ≤ 2.0, the model could distinguish low and high
content samples; when 2 < RPD < 2.5, the model could be used as a semi-quantitative
evaluation sample; when RPD ≥ 2.5, the model could be used for quantitative evaluation.
We found that the RPDc range of Ala overall modeling was 1.90–2.58, and the RPDp range
was 1.97–2.54, which indicates that the three models had good adaptability. In particular,
the RPDp of linear PLSR in 2D–COS–CARS data reached 2.54, which could effectively
quantitatively evaluate the content of Ala.

3.7. Visualization of Alanine Content in Beef

A visual map of Ala content was developed based on the dot product of the calcu-
lated pixel points and the weight coefficient of the optimal correction model. The optimal
pretreatment MF and the optimal simplified model PLSR–2D–COS–CARS were obtained
through analysis. A distribution map of the predicted Ala content of each pixel was gener-
ated by multiplying the corresponding characteristic wavelength variable and the weight
coefficient. The visual variation range of Ala values (5.04–10.59 mg/100 g) is shown in
Figure 7. The level of content was indicated by linear chromaticity band. The red represents
high value, and blue represents low value. The Ala content in the visualization chart had
obvious color difference. From Figure 7(I)–(VI), the Ala content transitions from red to
yellow and finally to blue, accompanied by a decrease in content. This phenomenon might
be attributed to the complex changes in compounds, including protein decomposition,
lipid oxidation, and water loss. In addition, some vertical stripes appeared in the Ala
visualization diagram, which might be caused by jitter noise in the line scanning of the
spectrum [30]. It can be observed that the visual distribution map was evenly distributed
and had clear texture, and could collect more effective spectral information. Therefore, the
visualization of Ala content is of great significance for intuitively and comprehensively
evaluating the dynamic changes in beef quality and nutrition.
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4. Conclusions

Ala content could be predicted by global and local data of NIR–HSI in this study. In
order to improve the spectral resolution, 2D–COS was introduced to analyze the changes
in spectral characteristics, reveal the change order among various groups, and find the
best local research area. The spectral data of 1000–1700 nm (225 wave bands) were used as
global data, and 1136–1478 nm (115 wave bands) were used as local sensitive area data of
Ala content selected by 2D–COS. On this basis, in order to improve the prediction accuracy
of spectral data, the adaptive effects of the two weight algorithms in PLSR, LS-SVM, and
ANN models were compared. Based on the 2D–COS–CARS–PLSR model, the optimal
modeling effect was achieved (R2

C was 0.8141, R2
P was 0.8458, RPDp was 2.54), which was

0.83 and 3.71% higher than FS and 2D–COS data in the prediction set. The best combination
prediction model was used to generate the distribution map of Ala content prediction value.
The results of this study provide a possible method to predict the Ala content of beef and
better explain the changes in spectral characteristics in meat product quality.
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Abstract: The harm of agricultural pests presents a remarkable effect on the quality and safety of
edible farm products and the monitoring and identification of agricultural pests based on the Internet
of Things (IoT) produce a large amount of data to be transmitted. To achieve efficient and real-time
transmission of the sensors’ data for pest monitoring, this paper selects 235 geographic coordinates
of agricultural pest monitoring points and uses genetic algorithm (GA), particle swarm optimization
(PSO), and simulated annealing (SA) to optimize the data transmission paths of sensors. The three
intelligent algorithms are simulated by MATLAB software. The results show that the optimized path
based on PSO can make the shortest time used for transmitting data, and its corresponding minimum
time is 4.868012 s. This study can provide a reference for improving the transmission efficiency of
agricultural pest monitoring data, provide a guarantee for developing real-time and effective pest
control strategies, and further reduce the threat of pest damage to the safety of farm products.

Keywords: pest monitoring; sensors; data transmission; genetic algorithms; particle swarm optimization;
simulated annealing

1. Introduction

The use of large amounts of fossil fuels has accelerated global warming since the
20th century, and atmospheric temperatures and sea levels are rising at an unprecedented
rate [1]. It is expected that the global average temperature will rise by 1.5–4.5 ◦C by the
end of this century [2]. Insects are typically poikilotherm, and temperature is the most
important environmental factor affecting insect population dynamics. Climate warming
present a series of influences on pests, such as expanding the range of fitness zones [3],
increasing the survival rate of overwintering, increasing the number of generations [4],
and increasing the risk of spreading crop diseases. These effects may cause sudden local
outbreaks or migrations of pest populations, reduce crop yields, affect normal crop growth
and development, and even cause massive crop mortality and severe crop failure, thus
presenting a serious threat to the quality and safety of agricultural products. Once crop
yields are severely affected, it can cause local crop supply and demand to be relatively tight,
making the price of food products remarkable high and hindering the steady improvement
of a region’s agricultural economy. This means that the agricultural pests cause huge
economic losses as well as presenting a remarkable threat to food safety [5,6]. Only through
effective monitoring methods to achieve early warning of pest occurrence can we reduce
agricultural losses and ensure the safety of edible farm products.

Traditionally, the acquisition of pest information is mainly performed by manual field
survey and identification statistics, and the monitoring of pest situations is based on the
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manual survey, which is a method with high workload, low efficiency, poor reliability, and
low accuracy [7,8]. Agricultural pest monitoring and identification using the Internet of
Things (IoT) has become an important component of the agricultural pest control category
with the advent of Industry 4.0. Combining agriculture with modern electronic information
industries such as communications and sensors has greatly improved the efficiency and
accuracy of pest monitoring and identification. Gassoumi et al. designed a computer vision-
based insect classification and identification system for cotton fields, using an artificial
neural network approach to classify 12 insect species in cotton fields, the recognition
rate of 11 insect species reached more than 90%, and the recognition rate of only one
insect was 72% [9]. Based on the existing light trapping technology, an automatic pest
collection device that can be used for cruciferous major insect pest detection was studied
and designed. Using this device, images of cruciferous major pests can be collected,
flipped, and vibrated according to the real-time situation of pest images, which effectively
improves the quality of image collection and recognition accuracy, and the recognition
error is less than 5% [10]. Based on a wireless network image sensors system, a pest
remote automatic monitoring and early warning system was designed, which uses the
technique of background differencing to achieve pest counting and sends an early warning
message when the pest density is greater than a threshold value [11]. Pest monitoring and
identification technology are continuously optimized and the accuracy is continuously
improved, but multiple monitoring points are often set up in the process of agricultural
pest monitoring in the field. The network will be blocked when the number of monitoring
points increases or during the peak of pest occurrence, which will delay or collapse the data
transmission, thus limiting the real-time monitoring of agricultural pests. As a result, the
information on the species and quantity of pests cannot be obtained in time, and effective
pest control strategies cannot be formulated. Therefore, it is urgent to increase research on
the optimization of sensors’ data transmission paths for pest monitoring to achieve efficient
and real-time transmission of multi-point data in the process of pest monitoring.

Genetic algorithm (GA), swarm optimization (PSO), and simulated annealing (SA)
are all bionic intelligence algorithms which are widely used in industry, agriculture, and
medicine to find optimal solutions [11]. GA, also known as the evolutionary algorithm (EA),
is a heuristic algorithm based on the process of biological evolution. Its main feature is the
selection of the solution to the problem based on the “survival of the fittest” or “competition”
method of biological evolution [12]. GA is based on all individuals in a population and
uses randomization techniques to guide an efficient search of coded parameter space.
Among them, selection, crossover, and mutation constitute the genetic operations of GA;
five elements, namely, parameter encoding, initial population setting, design of fitness
function, design of genetic operations, and setting of control parameters, form the core of
GA [13]. GA has been widely used in the fields of combinatorial optimization, machine
learning, signal processing, adaptive control, and artificial life, and it is one of the key
techniques in modern relevant intelligent computing [14]. Zhang tested the performance of
the improved GA on the transmission path of wireless Mesh network through simulation
to optimize the transmission path of marine data and improve the efficiency of marine data
transmission [15]. PSO, also known as the birds’ flock foraging algorithm, is a new EA
developed by Kennedy and Eberhart et al. in recent years. The PSO starts from a random
solution, finds the optimal solution by iteration, evaluates the quality of the solution
by fitness, and follows the current searched optimal value to find the global optimal.
This algorithm has attracted the attention of academics for its easy implementation, high
accuracy, and fast convergence, and has demonstrated its superiority in solving practical
problems [16]. Ma et al. applied the PSO to the medical field, and the research based
on the PSO will use a multi-PSO for path planning to effectively reduce the path search
range and improve the path search speed [17]. SA is a general probabilistic heuristic
algorithm for combinatorial optimization problems to find a global optimal solution and
an approximate optimal solution in a large global search space [18]. The SA is often used
for searching in discrete spaces; it will be more effective than the exhaustive method for

101



Biosensors 2022, 12, 948

some problems because it aims to find a good solution in an acceptable time, rather than
the best solution [19]. Based on the SA, Liu et al. proposed an optimal design method
for the heat extraction section of the energy tunnel, which effectively improved the heat
transfer efficiency and reduced the construction cost [20]. The sensors’ data transmission
paths for pest monitoring are optimized based on GA, PSO, and SA in our study (Figure 1),
and the data transmission speed is compared and analyzed after the optimized paths,
which improves the transmission efficiency of agricultural pest monitoring data, provides
a guarantee for the formulation of effective agricultural pest control strategies, and reduces
the threat of pest damage to the quality and safety of farm products.
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2. Methods

In this paper, 235 geographic location coordinates of agricultural pest monitoring
points are selected, and the sensors’ data transmission paths for pest monitoring points are
optimized and analyzed based on GA, PSO, and SA, and the optimal transmission path
and transmission time are determined.

2.1. Genetic Algorithm

The GA is used to analyze the prediction of their weights.
Step1. Encode the data:

Gk = [V1, V2, . . . , Vt, . . . , VT ] = [R1, R2, . . . , Ri, . . . , Rn]
T =




p11 p12 · · · p1t · · · p1T
p21 p22 · · · p2t · · · p2T

...
... · · · ... · · · ...

pi1 pi2 · · · pit · · · piT
...

... · · · ... · · · ...
pn1 pn2 · · · pnt · · · pnT




(1)

uit =

{
0, pit = 0
1, other

(2)
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Step2. Coding during initialization of genetic populations:

R =[r1, r2, . . . , ri, . . . , rn] i = 1, 2, . . . , n (3)

per = [per1, per2, . . . , peri, . . . , pern] (4)

peri = ri
n
∑

i=1
ri

i = 1, 2, . . . , n

Vt = [p1t, p2t, . . . , pit, . . . , pnt]
T

(5)

Continue to optimize and simulate it.
Step3. Adjustment for each individual adaptation:

pit
1 =





pimax, pit > pimax
pit, pimin ≤ pit ≤ pimax

pimin, λpimin ≤ pit ≤ pimax
0, other

(6)

Step4. The function takes the following form:

fitness(Gk) =
A

(F +
n
∑
i

mδSi)
(7)

Step5. The selection probability is calculated by:

P(xi) =
fitness(xi)

n
∑

j=1
fitness(xj)

(8)

qi =
i

∑
j=1

P(xj) (9)

Step6. Cross mutation and offspring combination were carried out:

C1 = GC1 =
[
V1

C1, V2
C1, . . . , Vt

C1, . . . , VT
C1]

C2 = GC2 =
[
V1

C2, V2
C2, . . . , Vt

C2, . . . , VT
C2] (10)

The specific operation process is:

D1 =
[
V1

C1, V2
C1, . . . , Vj−1

C1, (1− α)Vj
C1 + αVj

C2, Vj+1
C1, . . . , VT

C1]

D2 =
[
V1

C2, V2
C2, . . . , Vj−1

C2, αVj
C1 + (1− α)Vj

C2, Vj+1
C2, . . . , VT

C2] (11)

O1 = max = { fitness(C1), fitness(D1)}
O2 = max = { fitness(C2), fitness(D2)} (12)

Step7. Individual crossover through Step 6:

E1 =
[
V1

O1, V2
O1, . . . , Vt

O1, . . . , VT
O1]

E2 =
[
V1

O2, V2
O2, . . . , Vt

O2, . . . , VT
O2] (13)

η, (η =

{
1, Individuals mutated
0, Individuals did not mutate

)

H1 =
[
V1

O1, V2
O1, . . . , ηβVγ

O1 + (1− η)Vγ
O1, Vγ+1

O1, . . . , VT
O1]

H2 =
[
V1

O2, V2
O2, . . . , ηβVγ

O2 + (1− η)Vγ
O2, Vγ+1

O2, . . . , VT
O2] (14)

I1 = max = { fitness(E1), fitness(H1)}
I2 = max = { fitness(E2), fitness(H2)} (15)
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2.2. Particle Swarm Optimization

In the PSO algorithm, the particle population is searched in an n-dimensional space,
where the position of each particle Xi represents a solution to the problem, and the particle
searches for a solution by continuously updating its position.

The position of the i-th particle at moment t is denoted by Xi.t = [xi.t.1, xi.t.2, · · · , xi.t.n].
The velocity of the first particle at moment t is denoted by Vi.t = [vi.t.1, vi.t.2, · · · , vi.t.n].
The first particle remembers at each moment the best position it searched for before

moment t, denoted as Pt, and the best position searched for by the whole particle population,
denoted as Pg.

The velocity Vit of each particle at moment t is influenced by its own optimal position
and the population optimal position, and the velocity and position of each particle are
updated according to the following equation:

Vi,t = ωVi,t−1 + c1r1(Pi − Xi) + c2r2(Pg − Xi)
Vi,t = Vi,t−1 + Vi,t

where ω is called the power inertia factor, c1, c2 is a positive acceleration constant,
and r1, r2 is a random number uniformly distributed between 0 and 1. The corresponding
algorithm flowchart of the PSO is shown in Figure 2
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2.3. Simulated Annealing

The optimization of sensors’ data transmission paths for pest monitoring based on
SA first determines the initial temperature, randomly selects an initial state and examines
the objective function value of that state, attaches a small perturbation to the current
state and calculates the objective function value of the new state, and accepts the better
point with probability 1 and the worse point with some probability Pr as the current
point until the system cools down. The SA is able to converge to the global optimum
with probability 1 under the condition that the initial temperature is high enough and the
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temperature decreases slowly enough. The SA process of IoT monitoring data transmission
is completed, and the regulation of monitoring network path optimization is finally realized.
The corresponding algorithm flow chart is shown in Figure 3.
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3. Result
3.1. Genetic Algorithm

The data of 235 pest monitoring points were imported into MATLAB software (Math-
Works, MA, USA), and the GA was used for optimization analysis, and the results are
shown in Figures 4 and 5. In order to test whether the GA-based pest monitoring data
reached the global minimum, the total number of iterations was set to 1000. The value of
the objective function gradually decreased, and the number of transients of its convergence
trajectory increases with the increase in the number of iterations, resulting in many local
minima, which reach the global minimum at about 900 iterations.
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3.2. Particle Swarm Optimization

The data of 235 pest monitoring points were imported into MATLAB software, and the
PSO was used for optimization analysis, and the results are shown in Figures 6 and 7. The
total number of iterations was set to 14, and the value of the objective function decreased
with the increase in the number of iterations, and its convergence trajectory started to
converge rapidly at the number of iterations of four, and reached the global minimum at
about five iterations.
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3.3. Simulated Annealing

The data of 235 pest monitoring points were imported into MATLAB software, and the
SA was used for optimization analysis, and the results are shown in Figures 8 and 9. The
total number of iterations was set to 900, and the value of the objective function decreased
slowly with the increase in the number of iterations, and its convergence trajectory was
smoother than that of the GA, and it reached the minimum value at about 800 iterations.
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The results showed that the transmission completion time of 235 pest monitoring
points was 262.738048, 4.868012, and 17.842523 s, respectively, after optimizing the sensors’
data transmission path based on GA, PSO, and SA (Table 1). The transmission speed after
optimization based on PSO was much higher than that of GA and SA. The objective function
values of all three algorithms decrease with the increase in the number of iterations, the
curves gradually converge, and the objective function values are close to the optimal. The
convergence trajectory of the PSO has reached the optimal value at about five iterations, and
the GA and SA reach the optimal value at about 900 and 800 iterations, respectively. The
convergence speed of the PSO-based algorithm is higher than that of the GA and the SA, and
the convergence trajectory of the GA has more transients. This show that the performance
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of the PSO algorithm is better than that of the GA and the SA in the optimization of sensors’
data transmission path for pest monitoring based on three algorithms.

Table 1. The elapsed time of three algorithms to complete the optimal path.

Types of Algorithms Elapsed Time (s)

Genetic Algorithm 262.738048
Particle Swarm Optimization 4.868012

Simulated Annealing 17.842523

4. Discussion

Internet technology is a new distributed sensors network and information transmission
network integrating various sensing technologies, modern communication technologies,
artificial intelligence, and automatic control. It has been widely used in insect monitoring
and early warning, as well as agricultural product traceability, etc. [21,22]. Agricultural
pests are characterized by a wide range of species, large numbers, wide distribution,
and serious damage, which makes the monitoring and integrated prevention and control
of agricultural pests particularly important. In the process of monitoring agricultural
pests in the field, considering the mobility and random rows of agricultural pests, a large
number of monitoring points need to be set up in the monitoring area, which facilitates
the construction of a sensors network for pest monitoring and maximizes the collection
of pest information [23]. However, the interconnection of multiple monitoring points
means that the sensors’ data transmission from monitoring nodes to aggregation nodes
may have a large amount of redundant data, making the monitoring network congested or
even collapsing, resulting in failure to receive timely pest information. A total of 235 pest
monitoring points were selected and the sensors’ data transmission paths were optimized
based on three bionic intelligent algorithms (GA, PSO, and SA) in our study to improve the
sensors’ data transmission efficiency for pest monitoring. The data transmission completion
time was 262.738048 s after optimization using GA, 4.868012 s for PSO, and 17.842523 s
for SA. The transmission time after optimization based on PSO was much lower than that
of GA and SA, which shows that the PSO presents the best effect on the optimization of
sensors’ data transmission path. Zhu et al. proposed a target recognition method based
on PSO for data transmission path in wireless sensor networks, with an average delay of
1.8 µs. The transmission energy consumption and delay are reduced [24].

The GA is a computational model of the biological evolutionary process that simulates
the natural selection and genetics mechanism of Darwinian biological evolution, the PSO
is an intelligent algorithm designed by simulating the predatory behavior of a flock of
birds, and the SA is derived from the principle of solid annealing. All three algorithms
are heuristic algorithms, which are mathematical simulations of natural processes, and
all are global optimization-seeking algorithms [25]. The GA has a strong global search
capability and can jump out of the local optimum well, but it has a slow convergence,
long running time, and insufficient local search capability; the PSO is simple to operate,
and does not require complex behaviors such as population selection, crossover, and
mutation, it runs fast but has the risk of falling into the local optimum solution; the SA has a
strong local search capability, short running time, and poor global search capability [26,27].
Premalatha et al. proposed a hybrid algorithm PSO-GA based on GA, which applied the
variation of GA to PSO and avoided the PSO to fall into the local optimal solution [28].
Da et al. proposed an improved PSO algorithm based on the SA technique, and the results
showed that the SAPSO-based artificial neural network presents a better ability to escape
from local optimum and is more effective than the traditional PSO-based artificial neural
network [29]. A hybrid algorithm using a combination of GA and SA is proposed to
solve the shortest path optimization problem of undirected networks, which prevents
the occurrence of premature maturation, ensures the diversity of the population, and can
effectively prevent the occurrence of falling into the local optimal search situation [30]. The
three algorithms are pairwise combined into the hybrid algorithm, which can effectively
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complement the prematurity of GA, and the disadvantages of convergence speed decrease
and similarity increase due to the random search algorithm. The sensors’ data transmission
paths were optimized based on each of the three algorithms and compared in our study, and
if the hybrid algorithm can be used in combination with the agricultural pest monitoring
data transmission, the sensors’ data transmission path is further optimized.

In the process of agricultural pest monitoring, the performance of sensor nodes plays
a decisive role in data transmission [31]. The speed of sensors’ data transmission for
pest monitoring is guaranteed, and the data can be transmitted in real-time to develop
pest control strategies in time after using PSO to optimize the path, but the sensor nodes
are powered by batteries, which have limited energy and are extremely inconvenient
to charge [32]. The lifetime of sensor nodes depends on the battery life, and excessive
energy loss can cause the premature end of the agricultural pest monitoring network [33].
Therefore, while considering the transmission speed, the energy required for sensors’ data
transmission also needs to be considered. Yang proposed a high-energy data transmission
optimization algorithm-OTCEE based on tree-cluster topology, which reduces the energy
loss of sensor nodes and delays the death of nodes [34]. Abhishek et al. developed an
energy-saving scheme based on PSO optimization and GA optimization techniques, which
solves the sensor node energy consumption fast [35]. Therefore, the efficiency of sensors’
data transmission for pest monitoring will be greatly improved if an algorithm can be
designed to maximize the transmission speed and minimize the energy consumption.

5. Conclusions

In conclusion, this study uses three intelligent algorithms (GA, PSO, and SA) to
optimize the data transmission paths of the sensors, and the optimization results are
compared and analyzed. The results show that the optimized path based on PSO presents
the shortest time used for transmitting data, and its minimum time is 4.868012 s. This
study can provide a reference for improving the sensors’ data transmission efficiency for
agricultural pest monitoring, and guarantee the development of real-time and effective
pest control programs.

Author Contributions: A.W., Y.L., S.P., J.J., X.Y., J.L. (Jinlei Li), L.Z. and S.Z. participated in the study
design and analysis of the manuscript. J.L. (Jianjun Liao), R.Z. and S.Y. participated in the study
design and helped to draft the manuscript. S.Z. revised and processed the manuscript and provided
supervision and financial support. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was supported by Hainan Major Science and Technology Project (ZDKJ201901),
Hainan Province Science and Technology Special Fund (ZDYF2022XDNY163), Open project of Hainan
Key Laboratory for Control of Plant Diseases and Insect Pests (2022), Hunan Provincial Natural
Science Foundation (2022JJ50245), Project of the Administrative Bureau of Sanya Yazhou Bay Science
and Technology City.

Institutional Review Board Statement: This is an observational study. The Insects Research Ethics
Committee has confirmed that no ethical approval is required.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shrestha, S. Effects of climate change in agricultural insect pest. Acta Sci. Agric. 2019, 3, 74–80. [CrossRef]
2. Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling,

and impacts. Science 2000, 289, 2068–2074. [CrossRef] [PubMed]
3. Menéndez, R. How are insects responding to global warming? Tijdschr. Entomol. 2007, 150, 355.
4. Yamamura, K.; Kiritani, K. A simple method to estimate the potential increase in the number of generations under global warming

in temperate zones. Appl. Entomol. Zool. 1998, 33, 289–298. [CrossRef]
5. Sexton, S.E.; Lei, Z.; Zilberman, D. The economics of pesticides and pest control. Environ. Res. Econ. 2007, 1, 271–326. [CrossRef]

110



Biosensors 2022, 12, 948

6. Lima, M.C.F.; de-Almeida-Leandro, M.E.D.; Valero, C.; Coronel, L.C.P.; Bazzo, C.O.G. Automatic detection and monitoring of
insect pests—A review. Agriculture 2020, 10, 161. [CrossRef]

7. Yue, J.; Lei, T.; Li, C.; Zhu, J. The application of unmanned aerial vehicle remote sensing in quickly monitoring crop pests. Intell.
Autom. Soft Comput. 2012, 18, 1043–1052. [CrossRef]

8. Preti, M.; Verheggen, F.; Angeli, S. Insect pest monitoring with camera-equipped traps: Strengths and limitations. J. Pest. Sci.
2021, 94, 203–217. [CrossRef]

9. Gassoumi, H.; Prasad, N.R.; Ellington, J.J. Neural network-based approach for insect classification in cotton ecosystems. In
International Conference on Intelligent Technologies; InTech: Bangkok, Thailand, 2000.

10. Liu, Y.X. Study on Automatic Collection Device of Main Pests in Cruciferous Vegetables. Master’s Thesis, Zhejiang Agriculture
and Forestry University, Zhejiang, China, 2020.

11. Coleman, C.M.; Rothwell, E.J.; Ross, J.E. Investigation of simulated annealing, ant-colony optimization, and genetic algorithms
for self-structuring antennas. IEEE Trans. Antennas Propag. 2004, 52, 1007–1014. [CrossRef]

12. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools. Appl.
2021, 80, 8091–8126. [CrossRef]

13. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [CrossRef]
14. Haldurai, L.; Madhubala, T.; Rajalakshmi, R. A study on genetic algorithm and its applications. Int. J. comput. Sci. Eng.

2016, 4, 139.
15. Zhang, Q. Study on Ocean Data Transmission Path Optimization and Acquisition Method in Narrowband Network. Master’s

Thesis, Jimei University, Fujian, China, 2020.
16. Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [CrossRef]
17. Ma, T.; Yang, Q.; Li, Z.L. Orthodontic path planning based on improved polyparticle swarm optimization. J. Graph.

2021, 42, 615–622.
18. Rutenbar, R.A. Simulated annealing algorithms: An overview. IEEE Circuits Devices Mag. 1989, 5, 19–26. [CrossRef]
19. Dowsland, K.A.; Thompson, J. Simulated annealing. Handb. Nat. Comput. 2012, 1623–1655.
20. Liu, J.X.; Han, C.J.; Cai, G.Q. Optimization design of heat harvesting section of energy tunnel based on simulated annealing

method. J. Shenzhen Univ. 2022, 39, 3–12. [CrossRef]
21. Kwon, S.W.; Kim, J.Y.; Cho, H.S.M.Y.; Kim, K.J. Development of wireless vibration sensor using MEMS for tunnel construction

and maintenance. Tunn. Undergr. Space Technol. 2006, 21, 318. [CrossRef]
22. Huang, Q.; Tang, B.; Deng, L. Development of high synchronous acquisition accuracy wireless sensor network for machine

vibration monitoring. Measurement 2015, 66, 35–44. [CrossRef]
23. Feng, H.Q.; Yao, Q. Automatic identification and monitoring technology of agricultural pests. Plant Prot. 2018, 44, 127–133.
24. Zhu, Y.Q.; Tian, E.L. Target recognition method for data transmission path in wireless sensor networks. J. Shenyang Univ. Technol.

2021, 43, 307–310.
25. Nazari-Heris, M.; Mohammadi-Ivatloo, B. Application of heuristic algorithms to optimal PMU placement in electric power

systems: An updated review. Renew. Sust. Energ. Rev. 2015, 50, 214–228. [CrossRef]
26. Guo, L.; Zhao, S.; Shen, S.; Jiang, C. Task scheduling optimization in cloud computing based on heuristic algorithm. J. Netw.

2012, 7, 547. [CrossRef]
27. Zhang, Y.; Wang, S.; Ji, G. A comprehensive survey on particle swarm optimization algorithm and its applications. Probl. Eng.

2015, 2015, 931256. [CrossRef]
28. Premalatha, K.; Natarajan, A.M. Hybrid PSO and GA for global maximization. Int. J. Open Problems Compt. 2009, 2, 597–608.
29. Da, Y.; Xiurun, G. An improved PSO-based ANN with simulated annealing technique. Neurocomputing 2005, 63, 527–533.

[CrossRef]
30. Wen, X.L. Shortest path optimization algorithm based on hybrid algorithm. J. Tianjin Univ. Technol. 2009, 25, 37–40.
31. Rustia, D.J.A.; Lin, C.E.; Chung, J.Y.; Zhuang, Y.J.; Hsu, J.C.; Lin, T.T. Application of an image and environmental sensor network

for automated greenhouse insect pest monitoring. J. Asia Pac. Entomol. 2020, 23, 17–28. [CrossRef]
32. Anastasi, G.; Conti, M.; Di, F.M.; Passarella, A. Energy conservation in wireless sensor networks: A survey. Ad Hoc Netw.

2009, 7, 537–568. [CrossRef]
33. Sun, Y.; Dong, W.; Chen, Y. An improved routing algorithm based on ant colony optimization in wireless sensor networks. IEEE

Commun. Lett. 2017, 21, 1317–1320. [CrossRef]
34. Yang, Y.Q. An efficient data transmission optimization algorithm in wireless sensor networks. South. Farm Mach.

2021, 52, 112–114.
35. Agnihotri, A.; Gupta, I.K. A hybrid PSO-GA algorithm for routing in wireless sensor network. In Proceedings of the 2018 4th

International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India, 15–17 March 2018; pp. 1–6.

111



Citation: Zhao, C.; Ma, J.; Jia, W.;

Wang, H.; Tian, H.; Wang, J.; Zhou, W.

An Apple Fungal Infection Detection

Model Based on BPNN Optimized by

Sparrow Search Algorithm. Biosensors

2022, 12, 692. https://doi.org/

10.3390/bios12090692

Received: 20 June 2022

Accepted: 17 August 2022

Published: 28 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Article

An Apple Fungal Infection Detection Model Based on BPNN
Optimized by Sparrow Search Algorithm
Changtong Zhao 1, Jie Ma 1, Wenshen Jia 1,2,*, Huihua Wang 3, Hui Tian 1, Jihua Wang 2 and Wei Zhou 4

1 Mechanical Electrical Engineering School, Beijing Information Science and Technology University,
Beijing 100192, China

2 Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences,
Beijing 100097, China

3 Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102206, China
4 Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
* Correspondence: jiawenshen@163.com; Tel.: +86-13521217121

Abstract: To rapidly detect whether apples are infected by fungi, a portable electronic nose was
used in this study to collect the gas information from apples, and the collected information was
processed by smoothing filtering, data dimensionality reduction, and outlier removal. Following
this, we utilized K-nearest neighbors (KNN), random forest (RF), support vector machine (SVM),
a convolutional neural network (CNN), a back-propagation neural network (BPNN), a particle
swarm optimization–back-propagation neural network (PSO-BPNN), a gray wolf optimization–
backward propagation neural network (GWO-BPNN), and a sparrow search algorithm–backward
propagation neural network (SSA-BPNN) model to discriminate apple samples, and adopted the
10-fold cross-validation method to evaluate the performance of each model. The results show that
SSA can effectively optimize the performance of the BPNN, such that the recognition accuracy of the
optimized SSA-BPNN model reaches 98.40%. This study provides an important reference value for
the application of an electronic nose in the non-destructive and rapid detection of fungal infection
in apples.

Keywords: electronic nose; fungal infection; sparrow search algorithm; apples

1. Introduction

Apples are one of the most popular fruits, rich in vitamins and various minerals,
and widely grown all over the world. Preliminary studies have shown that eating apples
regularly can reduce the risk of colon cancer, prostate cancer, and lung cancer, while
apple peel also contains a plethora of indeterminate phytochemicals that have antioxidant
properties [1]. In 2021, the global production of apples was about 76.1 million tons, and
normal apples can usually be stored for about a year after picking. However, apples
are susceptible to some fungal infections during storage and transportation, including
Aspergillus niger [2], Penicillium expansum [3] and Penicillium crustosum [4]. These fungi
can cause widespread corruption of apples if not detected and handled in time, which
will bring about huge direct economic losses for farmers. To reduce the economic loss
caused by fungal infection, it is necessary to design a fast, convenient, and safe method
to detect whether apples are infected by fungi, so as to improve the overall status of the
apple industry.

When the volatile gas of apples encounters gas sensors, specific reactions occur, and
the characteristic response spectra of gas information are given. Gas chromatography–mass
spectrometry (GC-MS) is a widely used analytical method, which has the advantages of
high selectivity, small sample requirement, and high resolution. GC-MS has developed
rapidly in the applications of food safety, industrial detection, environmental protection,
and other fields, while showing advantages, such as high resolution and high sensitivity.
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Berrada et al. measured patulin in apple juice using GC-MS and investigated the effect
of patulin on the stability of apples during storage [5]. Thin-layer chromatography (TLC)
is a chemical analysis method that is widely used in qualitative analysis in the fields of
food, medicine, and environment. TLC has a high detection efficiency and can complete an
analysis in 10–20 min. High-performance liquid chromatography (HPLC) uses liquid as
the mobile phase and uses a high-pressure system to effectively separate analytes. HPLC
has the advantages of high sensitivity and a fast analysis speed and plays an important
role in the field of food safety. It is also a globally recognized authoritative method for the
qualitative detection of fungi [6]. However, although the above traditional methods can
determine whether apples are infected by fungi, these processes need to be carried out in
the laboratory, the detection process is complicated, operation by professionals is required,
the cost of experiment is expensive, and real-time detection is not possible. Therefore, there
is an urgent need for a fast and simple technique to determine whether the experimental
sample is infected by fungi via the analysis of the volatile gas from the sample. The
portable electronic nose is a fast, non-destructive, efficient, and chemical-free technology
for analyzing volatile gas on-site [7]. In recent years, it has been used prominently, and is
receiving increasing attention in the field of food safety and evaluation.

The convenient and fast operation of the electronic nose means it plays an important
role in the quality inspection of fruits. Guo et al. collected the characteristic information of
apples infected by different fungi through an electronic nose and used the BPNN pattern
recognition model to classify and identify the information of apples; the results achieved
were good [8]. Nouri et al. used an electronic nose combined with the BPNN pattern
recognition model to detect the fungal infection of pomegranates, and the recognition rate
of pomegranate samples infected with mycoplasma was as high as 100% [9]. This study
shows that the electronic nose is a reliable and high-precision instrument for detecting the
quality of pomegranate. Voss et al. used an electronic nose to capture the volatile gas of
peaches to predict growth and maturity [10]. The results prove that the method of using an
electronic nose combined with random forest (RF) can effectively predict the maturity date
of peaches in orchards, thereby reducing farmers’ economic losses caused by neglect and
late harvest. Yang et al. analyzed the volatile gas in yellow peaches through an electronic
nose, accomplished non-destructive prediction of the compression damage degree of the
fruit, discriminated the damaged fruit, and predicted the compression time, while the
accuracy of identifying the damaged fruit was as high as 93.33% [11]. Guo et al. used
an electronic nose combined with PCA-DA to predict the corruption area and corruption
degree of apples and achieved a good result. The prediction accuracy of the corruption
degree was 97.2%; this study proves that the electronic nose has a certain application value
in the classification of corrupt apples and the quantitative detection of corrupt areas [12].
To date, several studies have reported the application of the electronic nose technology in
fruit quality detection. Furthermore, regarding the optimization of the recognition model,
Wu et al. used a sparrow search algorithm (SSA) to propose an evaluation model for
predicting the economic losses suffered by subway stations after rainstorms and floods,
which effectively solves the problems of the low efficiency and low prediction accuracy
of traditional evaluation models [13]. This study proves that the support vector machine
(SVM) and BPNN evaluation models optimized by SSA have higher accuracy and stability
than other optimization algorithms and can effectively predict the economic losses of
subway stations caused by rainstorms and floods. Jiang et al. proposed a method for
detecting aflatoxin B1 content in wheat based on colorimetric sensor array technology and
used the firefly algorithm to optimize sensor features with SSA to optimize the BPNN
recognition model [14]. The result proves that the prediction accuracy and stability of
the optimized BPNN recognition model have been improved, and the complexity of the
model has been reduced. Some studies have shown that the electronic nose can detect fruit
quality according to volatile gas components under different conditions, which has great
potential applicability for fruit damage and spoilage detection. Electronic nose technology
can strengthen the early rot inspection of fruits and reduce the economic losses of growers.
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However, few studies have used electronic noses combined with classification models to
evaluate the effects of different fungi on apple spoilage. In addition, an electronic nose
combined with the BPNN recognition model can often achieve better results; however, in
the BPNN recognition model, the hidden layers are mainly responsible for modeling the
complex functions of the network, and the number of nodes in the hidden layer has a great
impact on the performance of the model, which may directly lead to the model falling into
overfitting or underfitting. In the previous model building process, rich experience and
continuous debugging were always required to find the appropriate number of nodes in
the hidden layer. SSA is a new type of intelligent optimization algorithm that has been
proposed in recent years; using SSA to optimize the number of nodes in the hidden layers of
BPNN can help to quickly determine the appropriate number of nodes in each hidden layer,
which precludes spending a lot of time and effort to debug the model manually while the
performance of the optimized model is improved. We sought to detect conveniently, rapidly,
and effectively fungal infection in apples, simplify the training process of the recognition
model, and improve the performance of the recognition model. Therefore, this paper
includes the following: (a) the use of the electronic nose to collect the volatile information
of fresh apples, apples inoculated with Aspergillus niger, apples inoculated with Penicillium
expansum, and apples inoculated with Penicillium crustosum; (b) the preprocessing of the
collected data by filtering and removing outliers; (c) the dimensionality reduction of the
preprocessed data; (d) finally, using the SSA-optimized BPNN model to classify apples
infected with different fungi, comparing it with traditional pattern recognition methods.

2. Materials and Methods
2.1. Materials

The “Fuji” apples selected in this experiment came from apple plantations in Gansu
Province, China. In total, 160 ripe apples were selected and randomly divided into 4
groups, 40 apples in each group, namely, Group A, Group B, Group C, and Group D. The
fungi inoculated into the middle apples were Aspergillus niger, Penicillium expansum, and
Penicillium crustosum. The apple samples were pretreated with 75% alcohol on a sterile
bench and dried at room temperature. Then, four holes were punched in four directions in
each apple in the three groups containing the inoculator (A, B, and C). Sample apples were
inoculated with 7-day-old molds through drilled loops, and the holes were covered with
sterile film. The mold-inoculated apples were then placed in a 1000 mL beaker, sealed with
plastic wrap, and then placed in a 25 ◦C constant-temperature incubator for 5 days. Before
the test, the apple samples were taken out of the incubator and left to rest for 30 min. To
eliminate the influence of residual gas on the experimental results, the electronic nose was
cleaned with inert gas before using. Electronic nose parameters were as follows: cleaning
time 500 s, collection time 350 s, sampling interval 1 s, injection flow 150 mL/min.

The sensor array of the portable electronic nose in this experiment was composed of
electrochemical sensors. The portable electronic nose was primarily composed of three
parts: the control unit, the sensor room, and the data acquisition and transmission unit. The
portable electronic nose used in the experiment is shown in Figure 1a, and the schematic
diagram of the portable electronic nose is shown in Figure 1b. The sampling valve controls
the gas entry into the sealed bottle, the injection valve controls the entry of gas into the
air chamber and the flow of the gas, and the injection valve and the vacuum valve work
together to prevent outside gas from entering the air chamber. The response curve of the No.
1 sensor C2H4-20 during the sampling process is shown in Figure 2. In addition, Fameview
(V7.6.12.4) configuration software (Beijing Jiekong, Beijing, China) was used to collect and
save the electronic nose data, while the Modbus protocol was used for data transmission
and communication with the hardware, so as to permit human–computer interaction. In
this experiment, two identical sensors (numbered 1 and 5) were selected as indicators
to identify whether the collected data were abnormal. If the difference between the two
150–300 s sensors was greater than 1.2 mg/L, the specimen was considered anomalous and
removed. Table 1 lists the sensor names and performance specifications, and Table 2 lists
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the specifications of the metal oxide sensors commonly used for PEN3 electronic noses.
From the comparison between Tables 1 and 2, it can be seen that the recognition accuracy
of the electrochemical sensor is higher than that of the metal oxide sensor. In addition,
the electronic nose system proposed in this paper has a lower cost and a higher detection
accuracy than the electronic nose of the same price. It is also very convenient to carry; the
volume of the electronic nose system is about 0.04 m3 and its weight is about 15 kg, which
makes it convenient for inspection personnel as they carry out inspection and analysis on
site. The operating platforms used in this experiment were PyCharm 2021.3 (JetBrains,
Prague, Czech Republic), Tensorflow2 (Google, Menlo Park, CA, USA), and Matlab2018b
(MathWorks, Portola Valley, CA, USA).

Table 1. Types of gas-sensitive sensors in the portable electronic nose sensor array, and their sensitive
gas and detection accuracies.

Sensor Number Sensor Model Sensitive Gas Detection Precision (ppm)

1 7NE/C2H4-20 C2H4 0.4
2 7NE/H2S-50 H2S 1
3 7NE/H2S-1000 H2S 20
4 7NE/C2H4-200 C2H4 4
5 7NE/C2H4-20 C2H4 0.4
6 7NE/ETO-20 C2H4O 0.4
7 7NE/PID-300 VOC 6
8 7NE/CH2O-2000 CH2O 40

Table 2. Names of sensors in the PEN3 electronic nose sensor array, their sensitive gas and
detection accuracies.

Sensor Name Sensitive Features Representative Gas and
Detection Precision (ppm)

W1C Sensitive to aromatic compounds Methylbenzene, 10

W3C Aromatic compounds,
particularly sensitive to ammonia Benzene, 10

W5C
Aromatic compounds such as
alkanes and compounds with

relatively small polarity
Propane, 1

W1S Particularly sensitive to methane
contained in specimens Methane, 100

W2S Particularly sensitive to ethanol
contained in specimens Carbon monoxide, 100

W3S
Sensitive to high-concentration

alkanes, especially methane,
in specimens

Methane, 100

W5S
Sensitive to nitrogen oxides,

extremely sensitive to negatively
charged nitrogen oxides

Nitrogen dioxide, 1

W6S Only detects hydrogen Hydrogen, 100

W1W Mainly sensitive to sulfides, also
sensitive to organic sulfides Hydrogen sulfide, 1

W2W Mainly sensitive to aromatic
compounds and organic sulfides Hydrogen sulfide, 1
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2.2. Methods
2.2.1. Data Preprocessing

The portable electronic nose selected in this experiment is equipped with 8 sensors,
and each sensor can detect different gas components. Since the sensor array of the portable
electronic nose in this experiment used an electrochemical sensor, it has the characteristics
of high sensitivity, but low response compared with metal oxide sensors, while the sensor
has a certain cross-sensitivity (it can detect multiple gases). Based on this characteristic,
we took the integral value, variance value, average differential value, maximum gradient
value, relatively stable average value and energy value of the response curve of each sensor
over 30–300 s as the characteristic information of the electronic nose, so the characteristic
parameter of each sample is 48.

Smooth Filter

In this experiment, 3-point linear smoothing, 5-point linear smoothing, 7-point linear
smoothing, 9-point linear smoothing, and 11-point linear smoothing algorithms were
selected to remove noise from the data, and their results were compared. The response
curves of each sensor after smoothing are shown in Figure 3. As can be seen from Figure 3,
the response curve after 7-point smoothing is relatively smooth, and can maintain the basic
characteristic information of the data, so the 7-point linear smoothing method was selected
for the preprocessing operation in this experiment. In addition, the response curves of
the 7NE/H2S-1000 and PID-300 sensors are always 0, because fresh apples and apples
infected with fungi release less H2S gas. From Table 1, it can be seen that H2S-50 and
H2S-1000 are both effective sensors for detecting H2S gas; the difference between them
is that the detection precision of H2S-50 is much higher than that of H2S-1000. It can be
seen from Figure 3a that the response curve of the H2S-50 sensor is less than 1, which
means that the sample releases less H2S gas, and has not reached the minimum detection
range of H2S-1000. Therefore, the response curve of H2S-1000 is always 0. Similarly, the
concentration of VOC gas released by the sample in the sealed bottle did not reach the
minimum detection range of the PID-300 sensor, so the response curve of the PID-300
sensor is always 0. As such, in this study, we only analyzed the data measured by 6 sensors,
excluding 7NE/H2S-1000 and VOC-300, so the characteristic parameter of each sample
is 36.

Eliminate Outliers

Due to the performances of the sensors and the effects of the external environment, the
collected sample data may contain abnormal values, and abnormal data will directly
affect the accuracy and stability of the recognition model. In order to eliminate this
effect, Mahalanobis distance was used to remove abnormal data from the original data.
Mahalanobis distance is a method used for calculating the distance between points and
distribution and was proposed by Indian statistician P. C. Mahalanobis. The inconsistency
and correlation between the scales of each dimension can be used to effectively evaluate
the similarity within the data. Sun et al. used Mahalanobis distance combined with Monte
Carlo cross-validation to effectively remove outliers from the hyperspectral data of tobacco
leaf water content [15].

In this experiment, Mahalanobis distance and the method of difference judgment for
the No. 1 and No. 5 sensors mentioned above were used to eliminate 30 abnormal sample
data: 8 apples inoculated with Penicillium crustosum, 6 apples inoculated with Aspergillus
niger, 5 apples inoculated with Penicillium expansum, and 11 fresh apples. Then, the KNN,
SVM, and BPNN models were trained with the original data and the data after removing
outliers, respectively, and the 10-fold cross-validation method was used to evaluate the
performance of each model; the results are shown in Table 3. It can be seen that the accuracy
and stability of each pattern recognition model were improved after removing outliers
from Table 3. The results show that removing outliers from the raw data can effectively
improve the performance of the recognition model.
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Table 3. Average accuracy and standard deviation of KNN, BPNN, and SVM pattern recognition
models before and after removing outliers.

Model Sample Set Validation Set Accuracy Standard Deviation
of Accuracy

KNN
before removing 62.37% 0.326
after removing 68.29% 0.163

BPNN
before removing 56.38% 0.452
after removing 69.21% 0.263

SVM
before removing 57.32% 0.318
after removing 64.65% 0.227
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Data Dimensionality Reduction

Principal component analysis (PCA), factor analysis (FA), and linear discriminant
analysis (LDA) are common data dimensionality reduction methods. The purpose of data
dimensionality reduction is to reduce the dimension of the original data, remove useless
information from the original data, and increase the recognition accuracy of the recognition
model on the premise of retaining as much as possible of the feature information of the
original data. PCA, FA, and LDA were performed on the sample data after removing
outliers, and the results are shown in Figure 4. The 10-fold cross-validation method was
used to evaluate the performances of the SVM, BPNN, and KNN recognition models
with different dimensionality reduction methods. The results are shown in Table 4. The
results show that the recognition accuracies of the models after PCA, FA, and LDA were
improved, and the dimensionality reduction performance of LDA was the best among the
three methods.
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Table 4. Average accuracy of KNN, BPNN, and SVM pattern recognition models after different
dimensionality reduction methods; the LDA dimensionality reduction method is the best among the
three dimensionality reduction methods.

Dimensionality
Reduction Method Model Average Accuracy Standard Deviation

of Accuracy

SVM 64.65% 0.227
None BPNN 69.21% 0.263

KNN 68.29% 0.163
SVM 66.29% 0.138

PCA BPNN 75.38% 0.149
KNN 73.85% 0.104
SVM 65.50% 0.136

FA BPNN 72.14% 0.147
KNN 63.53% 0.119
SVM 91.07% 0.046

LDA BPNN 93.17% 0.072
KNN 89.23% 0.058
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2.2.2. Pattern Recognition Model

In recent years, with the rapid development of machine learning, the combination of
electronic noses and pattern recognition models such as KNN, RF, SVM, CNN, and BPNN
in machine learning has increased the prominence of the electronic nose in many fields.
Virtanen et al. successfully identified five common pathogenic bacteria of acute sinusitis
by combining the electronic nose and KNN while providing a pathological basis for the
treatment of acute sinusitis [16]. Tian et al. made full use of the advantages of high RF
stability, short time consumption, and high precision, and proposed an electronic nose and
RF model based on the rapid detection of yogurt flavor acceptability. The research proved
that the combination of an electronic nose and RF can be used to effectively evaluate the
acceptability of yogurt flavor [17,18]. Jiang et al. used a combination of the electronic nose
and SVM to classify five common odors [19]. Kang et al. uses CNN to process electronic
nose data based on metal oxide sensor arrays to achieve the real-time detection of CO, NH3,
NO2, CH4, and C3H6O gases [20]. Gu et al. used a combination of the electronic nose and
BPNN to detect early Aspergillus in rice, and the recognition accuracy reached 96.40% [21].

To improve the performance of the pattern recognition model, an optimization al-
gorithm can be used. Currently, the most commonly used optimization algorithms are
particle swarm optimization (PSO) [22], gray wolf optimization (GWO) [23], and sparrow
search algorithm (SSA) [24]. These are inspired by the feeding behaviors of animals in
nature. SSA is a recently proposed swarm intelligence optimization algorithm. The sparrow
population in SSA is divided into two parts: producers and scroungers. Producers have a
high fitness value and energy reserve, and their main task is to provide scroungers with
directions and areas for foraging. The search range of producers is larger than that of
scroungers. Scroungers follow producers to find food and obtain their own energy reserve,
and thus increase their fitness value, and some scroungers continuously increase their own
energy reserves through predation, thus turning themselves into producers. In addition,
some sparrows in the sparrow population will act as forewarners. Forewarners will issue
a warning signal when danger is coming, and at the same time spread into the safe area
to obtain a better position. When the alarm value is greater than the set threshold, the
producers will lead all scroungers out of the danger zone. A schematic diagram of SSA is
shown in Figure 5. SSA has better global search and local development capabilities and
can consider all the variable factors of the population, so that the population can quickly
move into the optimal position. SSA also has the advantages of fewer iterations and higher
prediction model accuracy.
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3. Results

In order to verify the abilities of the above eight recognition models to recognize
fungus-infected apples, a multi-algorithm pattern recognition platform was developed
using the PyQt5 tool in this experiment. The user interface enables human–computer inter-
action through the mouse and keyboard to adjust the parameters of different recognition
models. As shown in Figure 6a, users can select different pattern recognition models on
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the main interface of the platform and enter the corresponding recognition model interface
by clicking the button. Then, as shown in Figure 6b–i, the user can adjust the parameters
of the current recognition model according to the label prompts, select training sample
data to train the model, and assess the performance of the model. When the training of the
recognition model is completed, the inspectors can begin to inspect the apple samples. First,
one must put the apple sample into a sealed bottle to collect its electronic nose data, select
the recognition model that has been trained in the multi-algorithm pattern recognition
platform, and finally select the collected electronic nose data for this model to use to detect
the apple sample. The result will soon appear in the recognition result display area below,
as shown in Figure 6j. The whole process does not require the use of any chemical reagents,
nor will it cause damage to the apple samples, and the testing process will not affect the
edibility and sales of the apple samples.
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3.1. The Recognition Accuracy of the Model Optimized by SSA-BPNN Is Higher

The characteristic information of apples inoculated with three different fungi and fresh
apples was collected by the electronic nose, and the collected characteristic information was
preprocessed. Then, we used the above-mentioned multi-algorithm pattern recognition
platform to train each recognition model while using the 10-fold cross-validation method
to evaluate the performance of each model; the results are shown in Figure 6b–i, and
the summarized results are shown in Table 5. It can be seen from Table 5 that CNN, RF,
KNN, SVM, and BPNN were used for identifying the apples inoculated with Aspergillus
niger, Penicillium expansum, and Penicillium officinale, as well as fresh apples. The average
accuracy values of each recognition model are 57.80%, 86.92%, 89.23%, 91.07%, and 93.17%,
and the standard deviation of the accuracy is less than 0.08. In terms of training time,
although the training times of the RF, KNN, and SVM recognition models are shorter, they
are not as good as the BPNN model in terms of recognition accuracy. Following this, three
optimization algorithms, PSO, GWO, and SSA, were used to optimize the BPNN model.
The number of iterations was set to 100 and the number of populations was 15; the accuracy
of the BPNN model was used as the fitness function, and the 10-fold cross-validation
method was also used to evaluate the performance of the model after optimization. Then,
the average recognition accuracy values of the PSO-BPNN, GWO-BPNN, and SSA-BPNN
models are 94.62%, 96.16% and 98.40%, respectively, and the standard deviations of the
accuracy are 0.091, 0.064 and 0.032, respectively. The training times are 8936.21 s, 8723.43 s
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and 9193.02 s, respectively. In addition, as regards the evaluation score of the true positive
rate (TPR) and the F1 score of each recognition model, the scores of SSA-BPNN are higher
than those of other recognition models. In summary, the experimental results show that the
SSA-BPNN recognition model proposed in this paper achieves outstanding performance in
detecting fungal infection in apples.

Table 5. TPR, F1 score, average accuracy, standard deviation of accuracy, and training time of different
pattern recognition models by 10-fold cross-validation.

Preprocessing Model TPR F1 Score Average Accuracy Standard Deviation
of Accuracy Training Time (s)

\ CNN 61.03% 0.564 57.80% 0.071 270.16
LDA RF 84.36% 0.836 86.92% 0.077 0.17
LDA KNN 88.12% 0.878 89.23% 0.058 0.09
LDA SVM 90.69% 0.903 91.07% 0.046 0.22
LDA BPNN 92.75% 0.929 93.17% 0.072 63.12
LDA PSO-BPNN 93.82% 0.937 94.62% 0.091 8936.21
LDA GWO-BPNN 95.83% 0.951 96.16% 0.064 8723.43
LDA SSA-BPNN 97.31% 0.976 98.40% 0.032 9193.02

3.2. SSA-BPNN Has Faster Convergence

The variations in the fitness functions of SSA, GWO, and PSO with the number of
iterations in the optimization process are shown in Figure 7. Although SSA-BPNN has no
obvious beneficial effect on the optimization time required for 100 iterations, it can be seen
from Figure 7 that PSO-BPNN, GWO-BPNN, and SSA-BPNN enable the model to reach the
optimal state after 81, 70, and 36 iterations, respectively, which shows that the convergence
speed of SSA is higher than those of PSO and GWO, and it has a better optimization
capacity. Compared with the GWO-BPNN and PSO-BPNN models, the SSA-BPNN model
proposed in this study has obvious advantages in terms of recognition accuracy, stability,
and convergence speed.
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Figure 7. Variation trend of the fitness function curves of SSA, GWO, and PSO with the number of
iterations. The SSA-BPNN model reached the optimal state first.

SSA is an intelligent optimization algorithm that has been proposed in recent years.
Using SSA to optimize the BPNN recognition model can help the BPNN model to quickly
find the optimal parameters thus avoiding the need to spend a lot of time and energy to
debug the recognition model manually. With regard to the huge economic losses caused by
fungal infection in the process of storage and transportation, the portable electronic nose
combined with the SSA-BPNN method proposed in this study can effectively detect and
identify common fungi and take preventive measures in time. The measures can effectively
reduce the economic losses caused by fungal infection in apples.
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4. Discussion

Apples are loved because of their delicious taste and rich nutrition. The annual global
demand and supply of apples are huge, but some apples will inevitably be infected by fungi
during the storage process, which will introduce huge economic losses to apple merchants.
Electronic noses can be used to detect volatile substances in contact with the sensor array,
which facilitates the quality detection of fruits. With the continuous development and
progress of machine learning, the combination of electronic noses and machine learning
provides a fast, non-destructive and easy-to-operate method for fruit quality detection and
has gradually attracted people’s attention. Compared with machine learning algorithms
such as KNN, RF, CNN, and SVM, BPNN has the best performance. However, BPNN
has many parameters of note; in particular, a small change in the number of nodes in the
hidden layers can easily affect the overall performance of the BPNN network model. The
selection of optimal parameters for BPNN has always been the most important task in the
process of model building. On this basis, this paper proposed to use SSA to optimize the
BPNN network model by finding the optimal parameters of the hidden layers of BPNN
through continuous iteration, such that the model can quickly reach the optimal state. The
TPR, F1 score, and accuracy of the model’s recognition results after optimization achieved
97.31%, 0.976%, and 98.40%, respectively—4.56%, 0.047%, and 5.23% higher than those
before optimization. The reason for this is the lower number of iterations compared to PSO
and GWO. However, when the electronic nose is used to detect the quality of apples, its
performance will be affected by external factors. Interference outside the normal range
will give rise to abnormalities in the characteristic information of the samples collected
by the electronic nose, which will eventually lead to unreliable test results. In order to
improve the reliability of the detection results, in our follow-up research, we will combine
the electronic nose with other detection equipment and collect characteristic information
from the samples at the same time, using the method of data fusion to detect and identify
the samples.
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Abstract: The accurate prediction of the model is essential for food and herb analysis. In order to
exploit the abundance of information embedded in the frequency and time domains, a weighted
multiscale support vector regression (SVR) method based on variational mode decomposition (VMD),
namely VMD-WMSVR, was proposed for the ultraviolet-visible (UV-Vis) spectral determination of
rapeseed oil adulterants and near-infrared (NIR) spectral quantification of rhizoma alpiniae offci-
narum adulterants. In this method, each spectrum is decomposed into K discrete mode components
by VMD first. The mode matrix Uk is recombined from the decomposed components, and then,
the SVR is used to build sub-models between each Uk and target value. The final prediction is
obtained by integrating the predictions of the sub-models by weighted average. The performance of
the proposed method was tested with two spectral datasets of adulterated vegetable oils and herbs.
Compared with the results from partial least squares (PLS) and SVR, VMD-WMSVR shows potential
in model accuracy.

Keywords: variational mode decomposition; support vector regression; adulteration; quality control;
chemometrics

1. Introduction

Quality control is a critical analytical topic, especially regarding foods and herbs that
play an essential role in everyday life. Adulteration is one of the major challenges in the
quality control of foods and herbs. Some unscrupulous vendors dilute them with cheap
alternative food sources or fraudulently label and sell low-quality products as premium
ones to make more profit [1]. These not only damage the quality and nutritional value
of foods but also are detrimental to consumer health. With a series of food adulteration
incidents per year that lead to severe health impacts and economic costs, the problem
of food fraud has become more sinister and devastating in the globalized food supply
chain [2–4]. An important index for evaluating the nutritional value and quality of foods
and herbs is to determine the contents of the main components in them. However, it is
difficult to determine adulterants in the final product as some foods or herbs are similar in
appearance but vary greatly in price [5,6]. In order to protect consumer rights and ensure
food safety, there is an urgent need to develop a simple and reliable method to meet the
accurate quantitative analysis of food and herb adulteration.

Various techniques have been applied to detect adulteration in foods and herbs, such
as chromatography, mass spectrometry and capillary electrophoresis. These methods
allow for a relatively accurate determination of the samples [7,8]. However, most of them
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are time-consuming and expensive and require a high degree of technical expertise [9].
Spectroscopic techniques, especially ultraviolet-visible (UV-Vis) and near-infrared (NIR)
spectroscopy, have been rapidly developed in scientific research and industrial production
because of their non-contact, environmentally friendly and low-cost advantages [10–13].
Since the original spectra usually contain a large amount of signal overlap, background
and noise information unrelated to the target, chemometric models need to be integrated
to improve and expand the potential applications of the spectroscopic techniques.

Chemometrics, as an effective support means, has been developed extensively in
analytical chemistry [14–17], especially in multivariate calibration methods for spectral data
analysis, such as partial least squares (PLS) and support vector regression (SVR) [18,19]. PLS
is a commonly used modeling method because of its practicality and versatility, but it may
produce undesirable prediction results when dealing with strongly nonlinear issues [18].
SVR has the capability to solve both linear and nonlinear multivariate regression problems
with a simple process [20]. These modeling approaches predict unknown samples by
constructing one model, but the prediction performance of only a single model that is built
between spectra and targets tends to be poor when the training set is small or the samples
are outliers [21].

Ensemble modeling has gained increasing attention in the multivariate calibration for
quantitative analysis [22,23]. Compared with the prediction of a single model, ensemble
modeling achieves a greater accuracy and more robust results by combining the predictions
of multiple sub-models to produce the final prediction [21]. One of its key points is the
generation of training sub-sets that can be produced from samples, variables or both
directions, such as bagging, cluster and boosting [24–26]. However, most spectra are
essentially localized and have varying localization in time and frequency. These traditional
ensemble strategies are all generated sub-models from the original data that do not use both
time and frequency information of the signal simultaneously [27]. Due to the complexity of
the spectra, if the original signal is decomposed by mathematical transformation before
ensemble calibration, better results may be obtained. There is different information hidden
in the data that can be revealed by converting signals from the original data space to other
spaces through a certain mathematical transformation.

Three decomposition strategies are widely applied for the signal process, that is, the
Fourier transform (FT) [28], wavelet transform (WT) [29] and empirical mode decompo-
sition (EMD) [30]. FT portrays well the frequency domain information of signals, but it
does not provide time domain information and can only deal with stationary and linear
signals [31]. WT has displayed its modeling effectiveness owing to its capacity for time-
frequency resolutions. Nevertheless, WT is not a self-adaptive decomposition that needs to
choose wavelet filters and scales for a given application to obtain an optimal result [32].
EMD is a useful technique for processing non-stationary and nonlinear signals and decom-
poses the signal into a finite number of intrinsic mode functions (IMFs) [30]. Although
this self-adaptive decomposition method is a potent tool for the multiscale analysis of data
without the trouble of selecting the filters or scales, the existence of mode mixing and end
effect in the EMD process will lead to the distortion of IMF components [33]. Therefore, it
is necessary to develop a new mathematical transformation for the signal process, which
can make up for the deficiency in the above methods.

Variational mode decomposition (VMD) is a new adaptive signal decomposition
strategy that is particularly suitable for nonlinear and non-stationary signals [34]. It not
only has a good separation effect on the noise in signals but also effectively suppresses
the mode mixing and end effect [35]. Using VMD, a series of mode components can
be decomposed from the complex spectra according to the inherent characteristics of
the signals. Previously, various studies reported that VMD has been used successfully in
multiple fields due to its efficiency superiority, such as the forecast of stock prices [36], wind
speed forecasting [37] and fault diagnosis [38]. However, there are very few reports in the
literature that use the VMD algorithm for ensemble modeling in the spectral determination

127



Biosensors 2022, 12, 586

of food. Since VMD can fully utilize the information embedded over the frequency and
time domains of spectral signals, it was introduced in the generation of sub-models.

Herein, a weighted multiscale SVR modeling method based on VMD for improving
the prediction accuracy of food and herb adulterants is proposed and referred to as VMD-
WMSVR. Firstly, each spectral signal is decomposed by VMD and then K mode components
with different central frequencies are obtained. After recombining these mode components,
SVR is used to establish sub-models for each mode. Finally, the predictions of each sub-
model are weighted and averaged to obtain the ultimate prediction result. The spectral
datasets of adulterated vegetable oils and herbs were investigated using this method. The
performance of the method was evaluated based on the root mean square error of prediction
(RMSEP) and correlation coefficient (R) and compared with results derived from single PLS
and SVR models.

2. Materials and Methods
2.1. Sample Preparation

For adulterated vegetable oils, the sample consists of six different vegetable oils bought
in different markets in the municipality of Tianjin. These are sesame oil, soybean oil, corn
oil, peanut oil, rapeseed oil and sunflower oil. The six pure oils were blended in different
mass proportions in order to form 51 adulterated vegetable oil samples. Each oil content is
within the range of 0–100% (g/g) with an interval of ca. 2%. Before measurement, these
samples were well shaken and sonicated in an ultrasonic instrument (SK6200HP, Kudos
Ultrasonic Instrument Company, Shanghai, China) for 30 min to further mix and eliminate
air bubbles. In this study, rapeseed oil was taken as the analysis target.

For adulterated herbs, the sample includes pure herbs. These are Panax notoginseng (PN),
rhizoma alpiniae offcinarum (RAO), rhizoma curcumae (RC) and Curcuma longa (CL)
purchased from various pharmacies in Tianjin. Since the herbs have a certain amount of
moisture, they were dried at 60 ◦C to a constant weight. These herbs were ground into
powder, passed through a 120-mesh stainless steel sieve and stored in sealed plastic bags
measuring 60 mm × 100 mm. The four processed herbs were mixed at different mass
percentages and ensured that the total mass fraction of the four herbs in each sample was
100%. There were 75 samples in the adulterated herbs dataset and studied with the content
of RAO.

2.2. Spectral Collection

Two small spectral datasets were experimentally investigated. A UV-Vis spectropho-
tometer (Evolution 300, Thermo Fisher, Waltham, MA, USA) was used for the adulterated
vegetable oils in order to obtain the spectra of 51 samples in the wavelength range from 200
to 800 nm with an interval of 1 nm. The average spectrum of three parallel measurements
was used for each sample. There is a negative absorbance for the 200–380 nm wavelengths,
which seems to have no useful information. When the absorbance is above four, there is an
obvious noise phenomenon and the absorption peaks are mainly present at 380–800 nm.
Thus, Figure 1a mainly shows the absorption peaks at wavelengths of 380–800 nm. The
adulterated herbs were measured from 12,000 to 4000 cm−1 at 2 cm−1 intervals on a Vertex
70 NIR spectrometer (Bruker Optics Inc., Ettlingen, Germany). Figure 1b shows the NIR
spectra of the samples.

Each spectrum of the adulterated samples in the same dataset is similar. Therefore, it
is necessary to combine multivariate calibration with spectroscopy to achieve an accurate
quantitative analysis. Before calculation, the two datasets were divided into the training and
prediction set by the Kennard–Stone (KS) algorithm. KS is the most widely used grouping
method in chemometrics, which usually yields good grouping results. For the vegetable oil
dataset, 34 and 17 samples are used as the training and prediction sets, respectively. For the
herb dataset, 50 and 25 samples are used as the training and prediction sets, respectively.
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2.3. Variational Mode Decomposition (VMD)

VMD is a powerful technique for signal analysis, which depends on the frequency
information of the signal. The basic idea of the VMD algorithm is to construct and solve
variational problems. For the construction of the variational problem, the purpose of VMD
is to decompose the spectral signal X into a number of K discrete mode components uk
around the center frequency ωk. At the same time, the sum of each mode is equal to the
input signal X. The constrained variational model consists of the following target function.
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where {uk} = {u1, . . . , uK} is the mode ensemble obtained by decomposition,
{ωk} = {ω1, . . . , ωK} represents the center frequency of each mode component, δ is the
Dirac function, ||·||2 is the L2 distance, ∗ is the convolution, j is the imaginary unit and X is
a [m× n] matrix containing n spectral responses of m samples.

By introducing Lagrange multipliers and quadratic penalty terms, the above problem
can be transformed into an unconstrained variational problem. An alternate direction
method of multipliers (ADMM) is used to solve the saddle points of the multipliers’
function. {uk}, {ωk} and the Lagrange multiplier are updated continuously in the frequency
domain until the optimal solution of the variational problem is obtained. Finally, the results
are derived by a FT. Please refer to Ref [34]. for the detailed algorithm.

2.4. Support Vector Regression (SVR)

SVR is a machine learning algorithm based on the principle of structural risk mini-
mization and function approximation. It is specifically used to obtain predictive models via
a number of identified support vectors and nonlinear kernel functions. The main process
of SVR is to map the input data into a high-dimensional space by kernel functions. Then,
the optimal hyper-plane is found in this feature space and a model is built to solve the
linear regression problem. With strict statistical theory, SVR is able to be trained with few
samples. Least square SVR (LSSVR) is one of the SVR algorithms. It can transform the
quadratic programming problem into the problem of solving linear equations to reduce the
complexity of computation. The Lagrangian function that is constructed to solve the linear
system is as follows: [

0
In

IT
n

K + γ−1I

][
b0
b

]
=

[
0
y

]
(2)

where In is a [n× 1] vector, K is a [n× 1] kernel matrix, T is a transpose of a matrix or
vector, γ is a weight vector, b is regression vector and b0 is the model offset.
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In this study, the Gaussian radial basis function (RBF) kernel function was used:

ki,j = e
−|xi−xj |

2σ2

2

(3)

where xi and xj denote the measured spectra of different samples and σ is the kernel
width parameter. As we can see from Equations (2) and (3), the performance of the SVR
model is mainly affected by two parameters, namely, γ and σ2. More details are provided
in Refs [22,39].

2.5. Variational Mode Decomposition Weighted Multiscale Support Vector Regression
(VMD-WMSVR)

Motived by the advantages of VMD and SVR, a novel ensemble modeling method
(VMD-WMSVR) is proposed for the spectral quantitative analysis of food and herb adulter-
ants. This method includes the calibration and prediction stages. The schematic diagram of
the proposed method is shown in Figure 2. Details of the process are described as follows.
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Figure 2. The schematic diagram of VMD-WMSVR.

(1) Each spectrum of the training set is decomposed by VMD into K discrete mode
components uk (k = 1, 2, . . . , K). Different K values of different samples have a large impact
on the predictive stability of the proposed model. Moreover, too many mode components
may destroy the linear relationship between the signal and the target value. The mode
number K needs to be predetermined.

(2) Then, K mode components uk of the ith (i = 1, 2, . . . , m) spectral signal are
assigned sequentially to the ith row of each corresponding mode matrix Uk, i.e., the
mode components uk are recombined to derive K modes Uk. In this way, each Uk contains
the same number of samples and variables as the training set.

(3) SVR is used to build sub-models between each Uk and the target values. Overall, K
multiscale regression sub-models are established for calibration.

(4) In the process of prediction, the spectral decomposition and recombination of the
prediction set is the same as that of the training set. VMD-WMSVR is used for predicting
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the samples in prediction set. Each sub-model gives a prediction and all the predictions
are weighted and averaged to obtain the final prediction result. Sub-model weights are the
inverse of the fourth power of the root mean square error of cross-validation (RMSECV).

3. Results and Discussion
3.1. The Mode Number K

In VMD-WMSVR model, the mode number K is a key parameter that needs to be set
before the algorithm runs. Too few numbers of K may cause multiple components of the
signal to be contained in one mode concurrently, resulting in insufficient decomposition.
The model with too many numbers of K will create over decomposition problems and false
modes [40]. In order to obtain the proper K value, the variation in the RMSEP with the
mode number K for the two datasets is presented in Figure 3a,b, respectively.
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Figure 3. Variation in the RMSEP of VMD-WMSVR modeling with the mode number K for the
adulterated vegetable oil (a) and herb (b) datasets.

VMD was applied multiple times with different K values for each spectrum and the
result of the minimum RMSEP was considered the appropriate K value. Figure 3a shows
that the RMSEP first presents a downward trend with the increase in K. When the K value
reaches 5, the RMSEP obtains the minimum value and the prediction accuracy is the highest.
After that, the RMSEP increases, especially when K is 9. This indicates that it may have
mode mixing or pure noise modes that do not contribute much to the target value of interest.
Figure 3b shows a similar trend to Figure 3a. As K is 5, the RMSEP reaches its minimum
value. The smaller the RMSEP, the higher predictive accuracy of the model. Hence, the
mode number K was set to 5 for both datasets.

3.2. The Spectral Decomposition of VMD

With the determination of K, each spectrum of the training set is decomposed by
VMD and obtains K discrete mode components uk using this method. The UV-Vis spectra
of 34 samples for the adulterated vegetable oils in the training set are decomposed. To
illustrate the decomposition result, sample No. 2 is used. Figure 4a demonstrates that the
original UV-Vis spectra are decomposed into five u components, which are graphically
explained in the extracted order. This order represents the change in frequency from
the lowest frequency to the highest. Different frequency blocks may contain different
information and contribute varyingly to the model. The first three u components fluctuate
slightly with a low number of peaks and the wavelength fluctuation in the range of
560–800 nm is gentle, which may contain some useful information. For u4, it almost

131



Biosensors 2022, 12, 586

fluctuates symmetrically near zero over the entire wavelength range by detailed observation.
In addition, big peaks alternate with small ones, making it difficult to determine whether
they are noise or not. The variation in frequency for u5 is higher and the pronounced peak
number increment is observed compared with the former u components, which behave
more like noise.
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For the adulterated herb dataset, each NIR spectrum of 50 samples in the training
set is decomposed. Sample No. 17 is taken as an example. Figure 4b shows u1 oscillates
slowly over the whole wavenumber with few peaks. Compared with u1, u2 changes
more frequently and contains more peaks. Both of them have minor changes between
12,000 and 8000 cm−1 and have big fluctuations between 8000 and 4000 cm−1, which may
include a lot of helpful information. The last three u components have similar trends
throughout the wavenumber range, fluctuating almost symmetrically around zero. The
variation in frequency is prominent, changing rapidly from 12,000 to 10,000 cm−1, which
may have noise interference. In short, it can be seen from Figure 4 that the first u is
a low-frequency component with a clear linear characteristic and a highly noticeable
trend. As the order increases, the u component frequency becomes higher and higher,
appearing with more irregularities and higher degrees of complexity. Since VMD is a
mathematical decomposition, not all mode components have a well-defined chemical
meaning for the spectral signal. The low-frequency and high-frequency mode components
can be distinguished by observing their variation regularity combined with their variance
values [41]. The low-frequency mode component changes gently with a large variance,
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while the high-frequency mode component oscillates almost symmetrically at zero with a
small variance.

3.3. Comparison of the Predicted Results

In order to evaluate the predictive ability of the proposed method, PLS and SVR
are used for comparison. The parameters of PLS and SVR were optimized at first. For
PLS, the Monte Carlo cross validation (MCCV) combined with the F-test was used to
determine latent variables (LVs). The optimal LV for the adulterated vegetable oil and herb
datasets is 5 and 4, respectively. For SVR, there are two parameters (γ, σ2) that need to be
predetermined. The particle swarm optimization (PSO) algorithm was adopted and the
RMSEP was used as the evaluation standard for the parameters optimization. The optimal
γ and σ2 for the adulterated vegetable oil and herb datasets are 222.74, 227.37 and 247.46,
106.22, respectively. The relationship between the prepared and the predicted values for the
prediction set by PLS (a), SVR (b) and VMD-WMSVR (c) for the two adulterated datasets
is shown in Figure 5andFigure 6, respectively. The RMSEP and R of the prediction set are
used as indicators to validate the performance of the models.
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PLS (a), SVR (b) and VMD-WMSVR (c) for the adulterated herb dataset.

It can be found that the R values of the three methods are all above 0.9, indicating
that these modeling methods combined with spectroscopy are effective for the quantitative
analysis of rapeseed oil and RAO adulterants. However, the high benchmark of R leads
to little room for improvement in all approaches, so their improvement is not significant
from the perspective of R values alone. The variation in the RMSEP was used as the main
criterion for comparison of the different methods. The RMSEP is a measure of the deviation
between the predicted and prepared values. The smaller its value, the closer the predicted
value is to the prepared value. For the vegetable oil dataset, it is observed from Figure 5
that SVR has a lower RMSEP and a higher R compared with PLS, demonstrating that SVR
is superior to PLS. Among the three methods, VMD-WMSVR has the lowest RMSEP and
the highest R. This indicates that the adaptive spectral decomposition can further improve
the prediction ability of SVR and PLS. Thus, VMD-WMSVR has the best prediction, which
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is attributed to the original spectra of VMD. Figure 6 shows that compared with PLS, the
RMSEP for the herb dataset under SVR is reduced by 45%. This also indicates that SVR
is better than PLS in modeling results. There is a good linearity between the prepared
values and the predicted values in Figure 6c. Compared with PLS and SVR, the RMSEP of
VMD-WMSVR is reduced by 82% and 67%, respectively. Therefore, the prediction results of
both datasets suggest the potential of VMD-WMSVR in improving the predictive accuracy.

4. Conclusions

In summary, this work presented a new chemometric methodology named VMD-
WMSVR and was applied for two spectral datasets to achieve the quantification of veg-
etable oil and herb adulterants. On the one hand, VMD is designed to make full use of
the information by decomposing the original spectra adaptively into multiple mode com-
ponents with different frequencies. The modeling technique can improve the accuracy of
predictions compared with a single PLS and SVR. On the other hand, it is a non-destructive
and efficient method for the determination of rapeseed oil and RAO adulterants without
the use of reagents and the generation of harmful residues, which protects the environment.
However, the performance of predicting actual new samples was not discussed in this
paper and should be further studied in the future.
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Abstract: Cyromazine is an insect growth regulator insecticide with high selectivity and is widely
used in the production and cultivation of fruits and vegetables. In recent years, incidents of excessive
cyromazine residues in food have occurred frequently, and it is urgent to establish an accurate,
fast, and convenient method for the detection of cyromazine residues to ensure the safety of edible
agricultural products. To achieve rapid detection of cyromazine residues, we prepared a molecularly
imprinted electrochemical sensor for the detection of cyromazine residues in agricultural products.
Samples of tomato (Lycopersicon esculentum Miller), cowpea (Vigna unguiculata), and water were
tested for the recovery rate of cyromazine. The results showed that the concentration of cyromazine
showed a good linear relationship with the peak response current of the sensor developed in this
study. The lower limit of detection for cyromazine was 0.5 µmol/L, and the sensor also had good
reproducibility and interference resistance. This paper can be used as a basis for the study of methods
for the detection of cyromazine residues in edible agricultural products.

Keywords: edible agricultural products; rapid detection of pesticide residues; molecular imprinting
sensor; cyromazine

1. Introduction

Cyromazine is an insect growth regulator insecticide with strong systemic, stomach
poisoning, and contact killing abilities. It is currently widely used in the control of fly
pests in fruits and vegetables such as cowpea (Vigna unguiculata) and tomato (Lycopersicon
esculentum Miller) [1,2]. Cyromazine itself has low toxicity to humans, but its degradation
product melamine, when ingested in large quantities, can cause irreversible damage to the
kidneys and is a serious health hazard [3]. As modern technology and analytical methods
continue to improve, there is a need for greater accuracy and sensitivity in the detection
of cyromazine in food [4]. To prevent cyromazine residues in food from causing harm to
consumers, it is necessary to develop a simple and rapid detection method for cyromazine
residues with high sensitivity and accuracy.

At present, the relatively mature technologies for the detection of cyromazine residues
in food include liquid chromatography–tandem mass spectrometry (LC-MS), ultra-high-
performance liquid chromatography (UPLC), enzyme-linked immunosorbent assay (ELISA),
and high-performance liquid chromatography (HPLC) [5–7]. Although the above-mentioned
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methods have high accuracy and sensitivity, the high equipment cost and complicated op-
eration hinder their further development. Therefore, there is an urgent need to develop an
analytical method for pesticide residue determination with good sensitivity and selectivity,
low cost, easy portability, and large-scale use.

Molecularly imprinted polymers (MIPs) are an advanced means of overcoming the
limitations of traditional detection methods described above. MIPs are artificial recognition
materials that are complementary in size and shape to template molecules and can be used
for the specific target purpose of molecule identification [8,9]. As a novel material and bionic
molecular recognition element, MIPs have unique advantages over traditional enzymes,
antibodies, and receptors, such as excellent stability, high selectivity, ease of preparation,
stability in organic solvents, and broad compatibility with many scientific fields [10–12].
In addition to their excellent identification properties, MIPs offer the advantages of low
cost, heat and pressure resistance, storage stability, and suitability in harsh chemical media.
Compared to conventional detection techniques, electrochemical detection methods are
simple, low cost, and have a fast response time, thus offering significant advantages for
pesticide residue detection in food [13–15]. Pan et al. used coumarin as a template molecule
and MIP as a recognition element to prepare a chemiluminescence sensor on a 96-well
microplate for the determination of organophosphorus residues in milk samples. The
synthesized MIP can specifically recognize seven organic phosphorus [16]. The lowest
detection limit of the sensor was 1 pg/mL, and the recoveries for seven organophosphorus
species ranged from 86.1% to 86.5%. This shows that the detection of pesticide residues in
food by molecularly imprinted polymers has broad application prospects [17,18]. There
is no report on the use of molecularly imprinted sensors for the detection of cyromazine
residues in food. In this study, electrochemical detection of cyromazine was achieved for the
first time, which provides a reference for the rapid detection of triazine pesticides and other
pesticides in food. In this study, a portable molecular imprinting sensor for cyromazine
was prepared by electrochemistry combined with a molecular imprinting technique, using
a gold nanoparticle-modified electrode, cyromazine as a template molecule, α-methacrylic
acid as a functional monomer, trimethylolpropane trimethacrylate as a crosslinking agent,
and HCl as an eluent under specific conditions, and the method was applied to the rapid
analysis and detection of cyromazine in tomato, cowpea, and water samples.

2. Materials and Methods
2.1. Materials and Reagents

Cyromazine was purchased from Zhengzhou Labor Agrochemicals Co., Ltd., Zhengzhou,
China); concentrated hydrochloric acid, sodium dihydrogen phosphate, dibasic sodium
phosphate, glutaric dialdehyde, and potassium chloride were purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China); potassium hexacyanoferrate(II) was pur-
chased from Xilong Scientific Co., Ltd. (Guangzhou, China); potassium ferricyanide was
purchased from Guangzhou Chemical Reagent Factory (Guangzhou, China); α-methacrylic
acid was purchased from Meryer (Shanghai, China) Chemical Technology Co., Ltd. (Shang-
hai, China); trimethylolpropane trimethacrylate was purchased from Hubei Shishun Bio-
Technology Co., Ltd. (Huanggang, China); acetonitrile was purchased from Shanghai
Macklin Biochemical Technology Co., Ltd. (Shanghai, China). All the above reagents
were analytically pure. Cowpea and tomato were purchased at a nearby farmers’ mar-
ket. Chloroauric acid (99%) was purchased from Hubei Guangao Biotechnology Co.,
Ltd. (Wuhan, China). Water samples were collected from paddy fields (19.507036◦ N,
109.504222◦ E), rivers (19.513888◦ N, 109.4917.2◦ E), and botanical gardens (19.5124◦ N,
109.4988◦ E).

2.2. Instrumentations and Equipment

Electrochemical workstation (CHI660E, CH Instruments Ins., Austin, TX, USA), screen-
printed electrodes (Qingdao Botan Technology Co., Ltd., Qingdao, China), 1/10,000 analyt-
ical balance (Quintix124-1CN, Sartorius, Germany), Neofuge 23R high-speed refrigerated
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centrifuge (Likang Biomedical Technology Holdings Co., Ltd., Hong Kong, China), FST-
111-TH100 ultra-pure water machine (Thermo, Waltham, MA, USA).

2.3. Preparation of Solutions and Samples
2.3.1. Preparation of Pesticide Standard Solutions

First, 1.2374 g of cyromazine was placed in a 1000 mL volumetric flask, and a 6 µmol/L
pesticide standard solution with phosphate-buffered saline (PBS) (pH = 7.4) solvent was
prepared and stored in a room-temperature environment. The 6 µmol/L pesticide stock
solutions were then diluted with PBS into a series of pesticide standard solutions of 0.5, 1.0,
1.5, 2.0, 2.5, and 3.0 µmol/L, respectively.

2.3.2. Pretreatment of Test Samples

Tomato samples: Prepared tomatoes were washed and dried, chopped, and beaten
well. Thirty grams of the homogenate was weighed and added to 30 mL of acetonitrile
solution and vortexed for 3 min, then poured into a 50 mL centrifuge tube and centrifuged at
8000 r/min for 5 min, and the supernatant was filtered for use. The corresponding amount
of cyromazine was added to the supernatant to prepare sample solutions containing 1, 2,
and 3 µmol/L cyromazine. Cowpea samples were treated the same as tomatoes.

Water samples: The sampling bottles were first rinsed with water and filled carefully
so that they overflowed to avoid trapping air bubbles in the sealed bottle. The samples were
shipped in a refrigerated box with an ice pack. Container preparation included washing
with detergent, rinsing with tap and ultra-pure water, and finally air drying. After the
samples were transported to the laboratory, they were stored at 4 ◦C, and the collected water
samples were simply filtered within 48 h, and then the corresponding amount of cyromazine
was added to prepare sample solutions containing 1, 2, and 3 µmol/L cyromazine.

2.4. Preparation of the Modifier

HAuCl4 stock solution: 0.5 mol/L H2SO4 was used as a solvent and a quantitative
amount of HAuCl4 was added to configure a deposition solution containing 0.2% HAuCl4.

Cyromazine and α-methacrylic acid stock solution: Cyromazine and α-methacrylic
acid stock solution was prepared with PBS solvent in a molar ratio of 1:4. Then, 0.4 µmol
α-methacrylic acid was added to a 100 mL volumetric flask and mixed with ultrasound
for 30 min, 0.1 µmol of cyromazine stock solution was added, and then PBS solution was
added to increase the volume to 100 mL, sonicated for 1 h, and stored at a temperature
of 2 ◦C.

2.5. Preparation of Molecularly Imprinted Sensors

Referring to the methods of preparing electrodes by Shi et al. and Li et al. [19,20]
and optimizing them, 80 µL of 0.2% HAuCl4 was dropped on the working surface of the
electrode, and deposited by the potentiostat method (voltage: −0.25 V) for 3 min. The
surface was rinsed with water and dried. Then, 80 µL of the polymerization solution of
cyromazine and α-methacrylic acid was added to the surface of the dried electrode and
deposited at a voltage of −1.0 V for 5 min. At this time, the surface of the electrode was
simultaneously polymerized with cyromazine and α-methacrylic acid, and the electrode
was dried. After that, 10 µL of 2 mg/L trimethylolpropane trimethacrylate solution was
added to crosslink cyromazine and α-methacrylic acid on the electrode surface. After
drying for 12 h, 80 µL of 1% HCL solution was added to elute for 15 min under the
condition of a potential range of −0.4 to +0.8 V to obtain a molecularly imprinted sensor.
The sensor prepared with the polymer solution without cyromazine was used as the
non-molecularly imprinted sensor (NIP). Figure 1 is a flow chart of the development and
detection of the sensor.
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Figure 1. Flow chart of sensor development and testing. (a) The prepared molecularly imprinted
sensor. (b) Molecularly imprinted sensor soaked in the sample solution.

2.6. Electrochemical Characterization and Performance Testing of Sensors
2.6.1. CV and EIS Characterization of Sensors

The homemade sensor was immersed in a 0.1 mol/L KCl solution containing 5.0 mmol/L
[K3Fe(CN6)] and subjected to cyclic voltammetry (CV) scan for 2 segs at a potential range
of −0.4 to +0.6 V to obtain the cyclic voltammogram of the sensor; the electrochemical
impedance spectrum (EIS) of the sensor was obtained using the AC impedance method
between 10−1 and 10−5 Hz.

2.6.2. Scanning Electron Microscope Characterization of Sensors

The homemade sensor was scanned under a scanning electron microscope to ob-
tain a scanning electron microscope image of the sensor, and its surface was observed
and analyzed.

2.6.3. DPV Performance Testing of Sensors

The prepared sensor was tested using differential pulse voltammetry (DPV) using
5.0 mmol/L [K3Fe(CN6)] and 0.1 mol/L KCL solution as the electrolyte solution to record
the peak current (I0) at this time [21]. Subsequently, the electrodes were immersed in
a solution containing different concentrations of cyromazine from high to low, soaked
for 20 min, and then taken out to dry, and the electrode peak current was tested with
differential pulse voltammetry (DPV) at this time, which is recorded as I. The relative
suppression (I%) of different concentrations of cyromazine on the sensor was calculated
using Equation (1):

I% =
I0 − I

I0
× 100%. (1)

Note: I0: differential pulse voltammetry peak current of the sensor without pesticide
immersion; I: differential pulse voltammetry peak current of the sensor with different
concentrations of pesticide immersion; I%: relative suppression of this sensor with different
concentrations of cyromazine.
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2.6.4. Repeatability Testing

The prepared sensor was soaked in PBS buffer solution containing 2 µmol/L of
cyromazine, taken out and dried after 20 min, and 60 µL of 0.1 mol/L KCL solution
containing 5.0 mmol/L [K3Fe(CN6)] was added to the working area of the sensor, and the
differential pulse voltammetry (DPV) method was used to record the peak current value.
The above operation was repeated six times and the relative standard deviation (RSD)
was calculated.

2.6.5. Interference Test

Two pesticides, atrazine and metolachlor, which have a similar structure to cyromazine,
were selected as the pesticides for resistance to interference. To 1 µmol/L of cyromazine
solution, atrazine and metolachlor were added to form a mixture of 5 µmol/L, 10 µmol/L,
20 µmol/L, and 30 µmol/L of cyromazine solution, respectively, and this mixture was
used as the interference solution. The sensor was immersed in the above solutions in
a gradient order for 20 min, removed, and dried, then 60 µL of 0.1 mol/L KCl solution
containing 5.0 mmol/L [K3Fe(CN6)] was added dropwise and scanned by differential pulse
voltammetry, and the peak current values were recorded.

2.6.6. Actual Sample Recovery Testing

The sensor was immersed in the sample solution to be tested at different concentrations
of cyromazine, left to adsorb for 20 min, and then removed and dried, then 60 µL of
0.1 mol/L KCl solution containing 5.0 mmol/L [K3Fe(CN6)] was dropped and scanned
by differential pulse voltammetry, the peak current values were recorded, three replicates
were made for each sample at each concentration, and the recoveries and relative standard
deviations were calculated.

3. Results and Analysis
3.1. Analysis of the Results of Electrochemical Characterization

Figure 2A shows the result of the cyclic voltammetry in the sensor preparation steps
where, after the screen-printed electrode is modified with chloroauric acid, the peak current
of the electrode increases significantly, indicating that the gold nanoparticles are success-
fully deposited on the surface of the electrode, thereby increasing the conductivity of the
electrode. When the polymer of cyromazine and α-methacrylic acid is deposited on the
surface of the electrode, the presence of the polymer hinders the diffusional permeability of
the redox marker, resulting in a decrease in the peak current of the electrode. After being
eluted by HCL, some of the cyromazine molecules in the polymer were eluted, the gap
between the polymer molecules became larger, and the electron transport was accelerated.
Non-molecularly imprinted electrochemical sensors cannot crosslink to form long chains
due to the absence of the participation of cyromazine in the preparation process, resulting in
the inability of the polymerization solution to crosslink to form a long chain, which makes
the gap between molecules smaller, resulting in a weakening of the conductivity of the
sensor. After HCL elution, the peak current of the molecularly imprinted electrochemical
sensor is greater than that of the non-molecularly imprinted electrochemical sensors, indi-
cating that the blotting site on the surface of the sensor has good recognition performance
for cyromazine.

The electrochemical impedance spectroscopy was performed on the above electrodes
respectively, and the results are shown in Figure 2B. The results showed that the electron
transport was promoted and the impedance spectrum radius was significantly reduced after
chloroauric acid deposition. After the polymer was deposited and eluted, the impedance
spectrum radius increased, indicating that the cyromazine and the α-methacrylic acid
polymer were successfully bound to the sensor.
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Figure 2. Structural characterization of the sensor in 5.0 mmol/L [K3Fe(CN6)] solution in 0.1 mol/L
KCl. (A) Cyclic voltammogram (CV): A bare electrode CV (bare SPCE), B electrode after deposition
of HAuCl4 solution, C electrode after polymerizing cyromazine molecular polymer, D electrode
after elution, E electrode (CK) after elution of non-imprinted sensor. (B) Electrochemical impedance
spectroscopy (EIS): A bare electrode, B electrode after deposition of HAuCl4 solution, C electrode
after polymerizing cyromazine molecular polymer, D electrode after elution.

3.2. Characterization Results of the Sensors Using Scanning Electron Microscopy

The surface of the electrode modified with chloroauric acid had many small particles
(Figure 3B) and became smooth, indicating that the gold particles were successfully as-
sembled on the sensor. After elution with 1% HCl, the electrode surface became flat and
smooth, and the surface lumps were reduced (Figure 3D), indicating that the cyromazine
molecules were successfully eluted.

Figure 3. Scanning electron micrograph of the sensor. (A) Bare electrode CV (bare SPCE), (B) electrode
after deposition of HAuCl4 solution, (C) electrode after polymerizing cyromazine molecular polymer,
(D) electrode after elution.
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3.3. Performance Test Results of Sensors

The prepared sensor was used to test solutions containing different concentrations
of cyromazine, the results are shown in Figure 4A, and the relative suppression curve of
the cyromazine solution was drawn in combination with the peak current of the sensor
(Figure 4B). It can be seen that the peak current of the sensor is negatively correlated with
the concentration of cyromazine, and the specific performance is that with the increase
in the concentration of cyromazine, the corresponding peak current decreases. Therefore,
in a certain concentration range, there is a good linear relationship between the response
current of the sensor and the pesticide concentration.

Figure 4. Standard curve and relative suppression curve of cyromazine solution with different con-
centrations. Note: (A) DPV curve of the molecularly imprinted sensor with different concentrations of
cyromazine, the (B) curve of relative suppression of the molecularly imprinted sensor with different
concentrations of cyromazine; 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 are different concentrations of cyromazine,
where the concentration unit is µmol/L.

3.4. Results of Repeatability Tests

We found that the current response signal of the sensor did not show significant
attenuation during the test, and the relative standard deviation of the results of the first six
tests was 4.56% (Figure 5), indicating that the results obtained by the prepared sensor in
the six consecutive tests were more accurate.

3.5. Anti-Interference Test Results

Atrazine and metolachlor were added to 1 µmol/L cyromazine solution to prepare
cyromazine containing 5 µmol/L, 10 µmol/L, 20 µmol/L, 30 µmol/L atrazine and meto-
lachlor amine solution, respectively, and each group of solutions was tested. The results
show that adding different concentrations of interfering substances has little effect on the
test results, and the difference between the relative suppression and the original solution
is less than 5% (Tables 1 and 2). The above results show that this molecularly imprinted
sensor has good anti-interference performance.
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Table 1. Test results of the sensor’s resistance to atrazine interference.

Samples 1 µmol/L
Cyromazine Solution

1 µmol/L Cyromazine
Solution + 5 µmol/L

Atrazine

1 µmol/L Cyromazine
Solution + 10 µmol/L

Atrazine

1 µmol/L Cyromazine
Solution + 20 µmol/L

Atrazine

1 µmol/L Cyromazine
Solution + 30 µmol/L

Atrazine

Relative suppression 11.7% 9.07% 11.73% 8.64% 13.57%
Difference between
relative suppression
and stock solution

0.00% 2.63% 0.03% 3.06% 1.87%

Table 2. The test results of the sensor’s resistance to metolachlor interference.

Samples 1 µmol/
Cyromazine Solution

1 µmol/L
Cyromazine

Solution + 5 µmol/L
Metolachlor

1 µmol/L
Cyromazine

Solution + 10 µmol/L
Metolachlor

1 µmol/L
Cyromazine

Solution + 20 µmol/L
Metolachlor

1 µmol/L
Cyromazine

Solution + 30 µmol/L
Metolachlor

Relative suppression 17.40% 17.20% 19.07% 15.36% 16.27%
Difference between
relative suppression
and stock solution

0% 0.20% 1.67% 2.04% 0.93%

3.6. Recovery Analysis of Actual Samples

The prepared sensors were used to detect the recovery of tomato and cowpea and
water samples, and each sample was repeated three times for each concentration. The
results are shown in Tables 3 and 4. The recovery rates of tomato and cowpea were 90.14%
to 101.67% and 90.64% to 101.10%. The spiked recoveries of the water samples ranged
from 91.1% to 108%, 114% to 118%, and 92.5% to 97.4%, respectively, and the relative
standard deviations were all less than 6%. This shows that the molecularly imprinted
sensor can meet the requirements of rapid detection of cyromazine in tomato and cowpea
and water samples [22].
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Table 3. Results of actual sample recovery.

Samples Added
(µmol/L)

Found
(µmol/L)

Recovery
(n = 3)

RSD
(n = 3)

Tomato (Lycopersicon esculentum)
1 1 99.89% 4.16%
2 2.03 101.67% 1.56%
3 2.70 90.14 2.61%

Cowpea (Vigna unguiculata)
1 0.90 94.7% 4.98%
2 2.02 101.10% 1.66%
3 2.72 90.64% 2.52%

Table 4. Results of recovery of different water samples.

Samples Added
(µmol/L)

Found
(µmol/L)

Recovery
(n = 3)

RSD
(n = 3)

River water
1 1.08 108% 2.39%
2 1.82 91.1% 1.28%
3 2.95 98.3% 3.39%

Water in the paddy field
1 1.16 116% 0.9%
2 2.37 118% 2.33%
3 3.43 114% 2.02%

Water in the botanical garden
1 0.925 92.5% 0.87%
2 1.91 95.6% 5.79%
3 2.92 97.4% 5.77%

4. Discussion

Pretreatment of samples with a large number of organic solvents leads to the presence
of many interfering substances in the treated samples, which have an unavoidable effect on
the determination [23,24]. In this study, we selected two pesticides structurally similar to
mefenoxam for interference experiments and found that the peak currents of the sensors
did not change significantly after the addition of the interfering substances to the solution
compared to those without the addition of the interfering substances. This suggests that
molecularly imprinted polymers have the property of specific recognition. Li et al. [25]
prepared a biosensor with a dual recognition system to detect lincomycin in meat prod-
ucts and the environment, with a detection limit of 1.6 × 10−13 mol/L, which meets the
requirement of lincomycin in daily meat products. Dinali et al. synthesized a mesoporous
molecularly imprinted polymer (core@mMIP) on the surface of silica nanoparticles to use it
as a filler sorbent for microextraction for the selective determination of pesticides in apple
juice. The sensor has been successfully applied to real samples of processed and fresh apple
juice [26]. Li et al. successfully synthesized novel core–shell structured zeolite imidazole
skeleton-8@ molecularly imprinted polymers by a surface imprinting technique and used
them as sorbents for solid-phase extraction of organophosphorus pesticides. Under optimal
conditions, the detection range of the method was from 1 to 200 µg/L. The recoveries of
three different concentrations spiked in agricultural products (cauliflower, radish, pear,
melon cauliflower, radish, pear, and muskmelon) ranged from 82.5% to 123.0% with the
relative standard deviations below 8.24% [27]. These show that molecularly imprinted
polymers have excellent recognition ability, and based on this property, molecularly im-
printed sensors will be more rapidly developed and applied in the field of rapid detection
of pesticide residues in food [28–30].

At present, the traditional pesticide residue detection technology has formed a com-
plete set of detection systems and is widely used to detect pesticide residues in food [31–33].
Yu et al. [33] used a fluorescent quantitative method to detect paclobutrazol pesticide
residues in apples. At a wavelength of 341 nm, the average recovery rate of the samples
was 99.62%, and the relative standard deviation was 0.52%. Tsochatzis et al. [34] used
matrix solid-phase dispersive extraction and high-performance liquid chromatography to
detect eight pesticides commonly used in rice. The detection limits ranged from 0.002 mg/L
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to 0.2 mg/L with a relative standard deviation of less than 12%, which met the conditions
for the detection of pesticide residues in rice. Although these traditional laboratory assays
are characterized by high sensitivity and accurate results, they require complex sample
pretreatment, have a high cost of detection, and are inconvenient in terms of portability,
which hinder their further development. In this study, we prepared molecularly imprinted
sensors with spiked recoveries ranging from 90% to 102% with relative deviations (RSDs)
<5% using cyromazine as the template molecule and α-methacrylic acid as the functional
monomer. The detection limit of the sensor was 0.083 mg/L, meeting the demand for the
detection of cyromazine residues in fruits and vegetables. When we tested the repeatability
of the sensor, we found that there was no significant difference (RSD < 5%) between the
results obtained when the same sensor was used six times for the same concentration of
the solution. This result indicates that the same sensor can be used at least six times, thus
not only reducing the cost of pesticide residue testing but also reducing the number of
contaminants generated during the testing process. The experimental results show that
compared with traditional detection methods, the molecularly imprinted electrochemical
sensor not only has accurate results and high sensitivity, but also reduces detection costs, is
portable, suitable for large-scale applications, and has broad market prospects [35,36].

In this study, the sensor was only used to detect cyromazine residues in cowpea,
tomato, and water samples, so the detection range needs to be expanded. Since cyromazine
is also commonly used in the production and cultivation of edible agricultural products
such as celery (Apium graveolens L.), cucumber (Cucumis sativus L.), and mango (Mangifera
indica L.), this sensor can also be used to detect cyromazine residues in other foods to ensure
food quality and consumer safety.
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