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Preface

Gels for removal and adsorption have gained significant attention in recent years due to their

unique properties and wide range of applications. These materials are three-dimensional networks

consisting of polymers that can adsorb and retain large amounts of liquid or solutes, making them

ideal for various environmental and industrial processes. Removal and adsorption gels are primarily

classified into two categories, i.e., hydrogels and organogels. Hydrogels are water-swollen networks

that can absorb and retain water and aqueous solutions, while organogels are composed of organic

solvents and find applications in non-aqueous systems. The crosslinked structure of these gels allows

them to adsorb and remove target substances such as heavy metals, organic pollutants, and dyes

from aqueous or organic phases. One of the key mechanisms behind the removal and adsorption

process is the interaction between the gel’s functional groups and the target substances. For instance,

gels containing amino, carboxyl, or hydroxyl groups can effectively adsorb heavy metals through

coordination or ion exchange. Additionally, gels with a high surface area and porosity can enhance

the adsorption capacity and selectivity for specific pollutants.

The goal of this Special Issue is to provide a summary of recent important progress in this field,

ranging from basic aspects to applications, thereby highlighting both the adsorption and removal

to the gel field. The targeted substances include, but are not limited to, gaseous, liquid, and solid

states. The gaseous matters can be poisonous gases (e.g., SOx, NOx, and CO), greenhouse gases

(e.g., CO2, freon, and CH4), etc. The liquid matters include wastewaters containing oils, heavy

metal ions, radioactive materials, dyes, and antibiotics. The targeted solids are represented by a

variety of particulates (e.g., haze, dust, and microorganisms). This Special Issue also covers gels for

the absorption and controlled release of drugs in postoperative repair dressing and wound healing.

For these applications, the gels have to be constructed responsively or intelligently geared towards

certain environmental stimulation, such as pH, light, magnetic field, electric field, and temperature for

controlled drug release. In this Special Issue, titled “Gels for Removal and Adsorption”, researchers

from around the world have presented research highlighting various materials, modifications,

structures, and applications of selected gels for removal and adsorption.

As a transition to more sustainable materials exploitation is evident, the contributions to

research, as in the present Special Issue, do indicate that gels for removal and adsorption of all kinds

of targeted substances offer a versatile approach that can be expected to aid also in this respect.

Daxin Liang, Ting Dong, Yudong Li, and Caichao Wan

Guest Editors
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Review

Metal–Organic Framework Gels for Adsorption and Catalytic
Detoxification of Chemical Warfare Agents: A Review
Ye Zhang and Cheng-An Tao *

College of Science, National University of Defense Technology, Changsha 410073, China;
zhangye8905@foxmail.com
* Correspondence: taochengan@nudt.edu.cn

Abstract: Chemical warfare agents (CWAs) have brought great threats to human life and social
stability, and it is critical to investigate protective materials. MOF (metal–organic framework) gels are
a class with an extended MOF architecture that are mainly formed using metal–ligand coordination
as an effective force to drive gelation, and these gels combine the unique characteristics of MOFs
and organic gel materials. They have the advantages of a hierarchically porous structure, a large
specific surface area, machinable block structures and rich metal active sites, which inherently meet
the requirements for adsorption and catalytic detoxification of CWAs. A series of advances have been
made in the adsorption and catalytic detoxification of MOF gels as chemical warfare agents; however,
overall, they are still in their infancy. This review briefly introduces the latest advances in MOF gels,
including pure MOF gels and MOF composite gels, and discusses the application of MOF gels in the
adsorption and catalytic detoxification of CWAs. Meanwhile, the influence of microstructures (pore
structures, metal active site, etc.) on the detoxification performance of protective materials is also
discussed, which is of great significance in the exploration of high-efficiency protective materials.
Finally, the review looks ahead to next priorities. Hopefully, this review can inspire more and more
researchers to enrich the performance of MOF gels for applications in chemical protection and other
purification and detoxification processes.

Keywords: metal–organic framework; gel; chemical warfare agents; catalytic detoxification

1. Introduction

Chemical warfare agents (CWAs) are toxic chemicals employed in warfare or related
military operations to harm, kill, or paralyze adversaries. Nerve agents and vesicant agents
are the most lethal types of chemical warfare agents [1]. Nerve agents are derived from alkyl
phosphonate esters, which can cause neurological disorders, damage the nervous regulatory
system and respiration processes, and lead to suffocation within minutes. Common nerve
agents include tabun (GA), sarin (GB), soman (GD), and VX (left, Figure 1) [2,3]. Vesicant
agents can cause severe skin erosion and damage to the respiratory and digestive tracts and
have systemic toxic effects, potentially leading to death. Mustard gas (HD) is a commonly
used vesicant agent [4–6]. Although chemical weapons are regulated by the Chemical
Weapons Convention, the potential for their use by extremist countries or organizations
remains. Therefore, the development of effective protective materials against chemical
warfare agents remains crucial [7–11]. Due to the highly toxic nature of nerve and erosive
agents, their simulants with lower toxicities (right, Figure 1) are often used in research to
reduce the risk of accidental poisoning.

Currently, activated carbon is the primary material used for protection against chemical
warfare agents. It functions by adsorbing toxic substances, and, in some cases, it can be
impregnated with additional substances to enhance its catalytic degradation capabilities,
converting CWAs into non-toxic compounds [12]. However, activated carbon materials
suffer from several limitations, including a low adsorption capacity, a limited number of

Gels 2023, 9, 815. https://doi.org/10.3390/gels9100815 https://www.mdpi.com/journal/gels1
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active sites, susceptibility to inactivation or destruction of catalytic sites, slow reaction
kinetics, and poor structural flexibility.
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In recent years, there has been a focus on developing fast, simple, safe, and effec-
tive detoxification methods for chemical warfare agents. Scientists have explored various
materials with good catalytic performance to achieve better detoxification results [13–17].
These materials typically possess specific structural characteristics, such as larger pore
sizes, higher specific surface areas, and flexible structures that provide more active sites.
Continued research has led to the discovery of catalytic materials that exhibit excellent per-
formance in the degradation of CWAs, including metal oxides, polyoxometalates, and metal
clusters [18–21]. For instance, Wang et al. designed a composite conjugated microporous
polymer based on Fe2+ for detoxification purposes [22]. Hu et al. developed recoverable
amphiphilic polyoxoniobates that catalyze oxidative and hydrolytic decontamination of
chemical warfare agents [23]. Zang et al. prepared porphyrinic silver cluster assembled
materials for simultaneous capture and photocatalysis of mustard gas simulants [24].

Among the numerous detoxification materials, metal–organic frameworks (MOFs)
formed by metal ions or clusters and multidentate ligands have received widespread atten-
tion (see Figure 2) [11,25–30]. The metal ions or clusters are mainly derived from transition
metal and lanthanide salts, and the multidentate ligands include bridging carboxylic acids,
imidazole, porphyrin, etc. Various methods are used to prepare MOFs, and hydrothermal
and solvothermal approaches at low temperatures (<250 ◦C) are the most commonly used
at the early stage. Other common methods, such as microwave synthesis and ultrasonic
synthesis, have been developed at present for large-scale synthesis, rapid reaction, and
reduction of crystallites size. MOFs have an inherently large specific surface area and
abundant pore structure, which give them excellent adsorption or solid-phase extraction
properties [31–35]. Moreover, metal nodes in MOFs serve as Lewis acid catalytic active
centers, which promote the hydrolysis of chemical warfare agents [36]. The photoactive
linkers may serve as photocatalysts [37,38]. MOF materials are usually in powdered crys-
talline states and have poor processability. Agglomerated particles may lead to a decrease
in active sites, limiting their practical applications. These problems pose a challenge for
practical applications.

MOF (metal–organic framework) gels are a class with an extended MOF architecture
that are mainly formed using the metal–ligand coordination as effective force to drive
gelation, and these gels combine the unique characteristics of MOFs and organic gel
materials [39]. They have the advantages of a hierarchically porous structure, large specific
surface area, machinable block structures and rich metal active sites. MOF gels also easily
form bulk materials and can be shaped as needed [40]. These materials not only overcome
the limitations of MOF powders in practical applications but also contribute to reduce
the diffusion barrier between the matrix and active sites, accelerate the mass transfer rate,
and enhance the adsorption and catalytic performance [40,41]. MOF gels can be used as
adsorbents for removal of hazardous heavy metal ions and organics in water and to capture
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harmful gases and eliminate particulate matters, such as PM2.5 and PM10. The catalytic
applications of MOF gels include electrocatalysis for fuel cells, heterogeneous catalysis for
organic chemistry, and photocatalysis for removal of pollutants. The unique structures and
composition of MOF gels also inherently meet the requirements for adsorption and catalytic
detoxification of CWAs. Metal organic composite aerogels have the advantages of aerogels,
showing low density, a high specific surface area and a multistage pore structure, which is
conducive to the transport of toxic molecules and degradation of products in the aerogels.
It is also possible to retain metal oxygen cluster nodes through a reasonable design and
disperse the metal nodes through appropriate organic molecules to ensure catalytic activity,
and many related works have been reported. Recently, there have been a few reviews on
MOF gels [42–44]; however, research on the application of MOF gels for the adsorption and
degradation of CWAs lacks a systematic introduction and review.
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In this review, pure MOF gels containing different metal ions and the formation process
are introduced first. Then, the recent progress of MOF gel composites is summarized. The
application of these MOF gel composite materials to protect against nerve agent and
vesicant agent CWAs is also discussed. It also looks forward to the next research focuses on
the use of MOF gels for CWA protection. The results of this paper provide new ideas for
the research and development of novel efficient protective materials.

2. Pure Metal–Organic Framework Gel

Pure MOF gels refer to gel materials consisting of a single MOF material, including
xerogel and aerogel, that served as the backbone structure. Pure MOF gels are usually
synthesized by directly mixing the metal precursor and organic linker, and the formation
process is simple and controllable (see Figure 3) [40,43]. When the coordination polymer
separates from the solvent and prevents the solvent from flowing, the gels are obtained.
The porous aerogels formed after post-processing have rigid spongy network that consist of
nanometer-sized MOF particles. At present, metals with different valence states have been
successfully used to prepare MOF gels, typical of which are tetravalent Zr(IV), trivalent
Fe(III), Al(III), Cr(III), bivalent Zn(II) and Cu(II), monovalent Ag(I) [45–51]. MOF gels
containing a variety of metals have also been prepared [52,53].
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2.1. Metal(IV)-MOF Gels

Many early reports describe gel formation during the synthesis of UiO-66, a typical
zirconium(IV)-carboxylate MOF [54–56]. For example, Liu et al. reported Zr-MOF gel syn-
thesized from an ethanol–DMF mixture containing aminoterephthalic acid and ZrCl4 [57].
Then, Bueken et al. first reported hierarchically porous, monolithic Zr-MOF xero- and aero-
gels consisting of several prototypical Zr4+-based MOF nanoparticles, including UiO-66-X
(X = H, NH2, NO2, (OH)2), UiO-67, MOF-801, MOF-808, and NU-1000 [58]. Among them,
the UiO-66 xerogel has a BET surface area of 1459 m2·g−1, and the total pore volume was
2.09 cm3·g−1, higher than that of bulk UiO-66 powder.

Moreover, as shown in Figure 4, UiO-66-NH2 aerogel has been designed as an efficient
adsorbent for the trace adsorption of arsenic in water in the full pH range (pH 1–14) [59].
These aerogel have advantages in terms of processability and preventing back pressure
during the continuous flow process compared with pristine UiO-66.

Gels 2023, 8, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 3. Schematic representation of pristine MOG formation. Reproduced from Ref. [43] with per-
mission from the Royal Society of Chemistry. 

2.1. Metal(IV)-MOF Gels 
Many early reports describe gel formation during the synthesis of UiO-66, a typical 

zirconium(IV)-carboxylate MOF [54–56]. For example, Liu et al. reported Zr-MOF gel syn-
thesized from an ethanol–DMF mixture containing aminoterephthalic acid and ZrCl4 [57]. 
Then, Bueken et al. first reported hierarchically porous, monolithic Zr-MOF xero- and aer-
ogels consisting of several prototypical Zr4+-based MOF nanoparticles, including UiO-66-
X (X = H, NH2, NO2, (OH)2), UiO-67, MOF-801, MOF-808, and NU-1000 [58]. Among them, 
the UiO-66 xerogel has a BET surface area of 1459 m2·g−1, and the total pore volume was 
2.09 cm3·g−1, higher than that of bulk UiO-66 powder.  

Moreover, as shown in Figure 4, UiO-66-NH2 aerogel has been designed as an effi-
cient adsorbent for the trace adsorption of arsenic in water in the full pH range (pH 1–14) 
[59]. These aerogel have advantages in terms of processability and preventing back pres-
sure during the continuous flow process compared with pristine UiO-66. 

 
Figure 4. (a) Design concept of MOF aerogel for use in decontamination of arsenic species in water. 
Optical images of UiO-66-NH2 in the formation of (b) a nonflowing gel, (c) fluid gel, (d) hydrogel, 
and (e) aerogel. Reprinted with permission from [59]. Copyright 2022 American Chemical Society. 

2.2. Metal(III)-MOF Gels 
MOF gels for trivalent metals are the most widely studied, of which iron(III)-based 

MOF gels were the first to be synthesized. Martin R and coworkers firstly reported metal–
organic framework aerogels that were synthesized by mixing Fe(NO3)3 and trimesic acid 
in 2009 [60]. The resultant gels have an elemental formula similar to that of MIL-
100(Fe)(Fe3O(BTC)2F·2H2O) and possess high internal micro- and macroporosity. Their 

Figure 4. (a) Design concept of MOF aerogel for use in decontamination of arsenic species in water.
Optical images of UiO-66-NH2 in the formation of (b) a nonflowing gel, (c) fluid gel, (d) hydrogel,
and (e) aerogel. Reprinted with permission from [59]. Copyright 2022 American Chemical Society.

2.2. Metal(III)-MOF Gels

MOF gels for trivalent metals are the most widely studied, of which iron(III)-based
MOF gels were the first to be synthesized. Martin R and coworkers firstly reported metal–
organic framework aerogels that were synthesized by mixing Fe(NO3)3 and trimesic
acid in 2009 [60]. The resultant gels have an elemental formula similar to that of MIL-
100(Fe)(Fe3O(BTC)2F·2H2O) and possess high internal micro- and macroporosity. Their spe-
cific surface area and total pore volume can reach as high as 1618 m2·g−1 and 5.62 cm3·g−1,
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respectively. To date, most of the functional pure Fe-MOF gels are still formed by Fe3+

and carboxylic acids, especially 1,3,5-benzenetricarboxylic acid (BTC). For example, Hu
et al. developed Fe3+–(BTC) metal–organic hybrid gel for online enrichment of trace
analytes in a capillary [61]. Zheng et al. synthesized monolithic MIL-100(Fe) with 1,3,5-
benzenetricarboxylic acid for energy-efficient removal and recovery of aromatic volatile
organic compounds [46].

Su and coworkers reported a series of porous Fe-MOF aerogels produced from Fe3+

and bridging carboxylic acids [62] and revealed a simple formation mechanism. The porous
aerogels were prepared using three steps: (1) primary nanoparticles were formed via Fe-
carboxylate coordination; (2) primary nanoparticles condense together to form networks
with an open, continuous and porous structure; and (3) the porous aerogels are produced
after a subcritical CO2(l) extraction process. The highly porous aerogels can be prepared
when rigid bridging carboxylates were used, such as 1,4-benzenedicarboxylate, which
possesses a higher of BET surface area of 1454 m2·g−1. A sensitive detection method
of dopamine (DA) was proposed given that DA greatly inhibits the Fe-MOX-catalyzed
luminol CL (see Figure 5), representing the first example of the use of MOF gels as catalysts
for a sensing platform in the CL field [63].
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Al(III)-based MOF gels have also gained attention. Su et al. prepared gel electrolytes
that have a sponge-like porous matrix of metal–organic gel assembled by coordination
of Al3+ and 1,3,5-benzenetricarboxylate (H3BTC) for use in highly efficient quasi-solid-
state dye-sensitized solar cells (DSSCs) for the first time [64]. Then, a variety of ultralight
hierarchically micro/mesoporous Al-MOF aerogels were also first successfully synthesized
by Su et al. [47]. As shown in Figure 6, these aerogels are formed through the stepwise
assembly of light metal Al(III) with bridging carboxylic acids. In the early stage, the metal
ions and ligands assemble into an MOF cluster, which can polymerize or aggregate to
trigger nucleation, and the nucleation of new particles is retarded as the concentrations
of ligands and metal ions decrease. Then, the consistent epitaxial growth or oriented
attachment induced by surface intension will lead to the crystallization of bulky MOFs
when the conditions favor the crystal growth of the precursors. However, if the coordination
equilibria are perturbed by other competing interactions, non-crystallographic branching
may occur, leading to mismatched growth or cross-linking, which provide the opportunity
for gelation. The final Al-MOF aerogels were obtained after the careful removal of solvents
via sub/supercritical CO2 extraction.
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In addition to the above reported MOF gels containing Al(III) and Fe(III), Cr(III) ions
can also be used for preparing MOF gels. Su et al. reported on MOF aerogels based on
Cr3+ and bridging carboxylic acids [62]. Heating induces the formation of these Cr(III)-
carboxylate gels, and all of the Cr3+-containing gels could only be formed at temperatures
above 80 °C. The texture and porosity of the aerogels are affected by the reactant concentra-
tion and organic ligands. At high reactant concentrations (Cr:BDC = 2:3, 0.2 mol·L−1), the
Cr-BDC aerogel has a high BET surface area of 737 m2·g−1.

2.3. Metal(II)-MOF Gels

Lee and coworkers developed a luminescent Zn-MOF hydrogel that achieved high
sensitivity detection of TNT [65]. Tian and coworkers reported monolithic HKUST-1(Cu-
MOFs) with higher volumetric BET areas (1193 m2/g), pore volumes (0.52 cm3·g−1), and
adsorption capacities compared to traditional powdered counterparts [50]. It also has
a high bulk density of 1.06 g cm−3 and exhibits enhanced methane uptake of 259 cm3

(STP) cm−3 at 65 bar.

2.4. Metal(I)-MOF Gels

Su et al. also reported luminescent coordination polymer gels based on rigid terpyridyl
phosphine and Ag(I), and the terpyridine groups could generate interesting photochemical
and electronic properties. The gel emits blue luminescence that exhibits an emission
intensity comparable with that of the ligand in dilute solution [51].

Cheng et al. synthesized a silver(I) coordination polymeric gelator through the combi-
nation of Ag(I) and 2, 7-bis(1-imidazole) fluorene. This coordination polymeric gel exhib-
ited thixotropic behaviors and stimuli responsive to S2−, I− and displayed antibacterial
properties [66].

2.5. Multi-Metal-MOF Gels

A series of bimetallic Co/Fe-MOF xerogels that have sufficient adsorption sites for
CO2 molecules have been prepared, and the metal center of Co acts as a major active site
for photocatalysis [67]. This novel bimetallic xerogel exhibits enhanced adsorption and
utilization of light energy and improved separation and transfer of carriers. Therefore, the
conversion of CO2 to CO is rapidly promoted, and the Co/Fe xerogel exhibits a high CO

6



Gels 2023, 9, 815

yield (67 µmol g−1 h−1) when the mole ratio of Co: Fe was set to 1:3, far higher than that of
the single Fe center MOF xerogel.

3. Metal–Organic Framework Composite Gel

The formation of pure MOF gels is affected by reaction conditions, such as reactant
concentration ratios, temperature, and their structures and applications are limited. The
metal–organic framework composite gels formed by growing or aggregating MOF particles
into interconnected 3D networks, such as cellulose, graphene, silicon aerogels, etc., exhibit
various architectures and are useful in a variety of applications. The MOF composite gels
are mainly based on Zr-MOFs, Fe-MOFs, Cu-MOFs, Co-MOFs, and others.

3.1. Zr-MOF Composite Gel

Zr-MOF is one of the most stable MOFs, and many researchers are committed to
fabricating Zr-MOF composite gels with other skeleton materials. Currently, Zr-MOF
composite gels containing UiO-66 have been most widely studied [45,68–71]. The UiO-
66 nanoparticles can still retain their crystallinity and function when integrated within
various substrates, such as cellulose nanocrystal (CNC) aerogels, and the obtained flexible
and porous composite gels show good processability [72]. The oxygen-containing groups
on UiO-66 (Zr-OH) are physically crosslinked with the hydroxyl groups in cellulose by
hydrogen bonding. As shown in Figure 7, UiO-66/NC was obtained using nanocellulose
as the structural skeleton. This composite gel has a specific surface area of 826 m2 g−1 and
can stand on the bristle of grass without observable deformation [73].
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In addition, there are also several studies on other Zr MOF composite gels, such as
NU-1000. The gel is formed by grafting NU-1000 into agarose (AG) possessing micropores,
mesopores, and macropores, and the average pore size is 2.57 nm, which is close to that of
NU-1000. This hybrid aerogel has potential applications for adsorbing in water treatment
due to the hierarchical pore structure [70].
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3.2. Fe-MOF Composite Gel

At present, the Fe-MOF gel is one of the most studied pure MOF gels, and it also
attracts much attention for the fabrication of composite gels. Researcher have success-
fully constructed Fe-MOF composite gels with many suitable porous supports, such as
cellulose, graphene, aerogels, etc. As shown in Figure 8, a monolithic iron metal−organic
gel/bacterial cellulose (denoted as Fe-MOG/BC) composite has been prepared by the
crosslinking of nanoscale Fe-BTC MOG particles with BC nanofibers to form 3D porous
networks [74]. These Fe-MOG/BC aerogel possesses many unique structural character-
istics, such as a three-dimensional (3D) hierarchically porous microstructure, abundant
active sites, and ultralight, water-fast, and mechanically robust features. Therefore, they
exhibit a superb saturated sorption capacity (495 mg g−1) for arsenate, higher than that of
Fe-MOF/BC.
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The MOF/GA composites can be prepared using growth-oriented MIL-88-Fe syner-
gized with graphene aerogels (GAs), and the oriented composite can be used for high-
performance supercapacitors with a specific capacitance as high as 353 F g−1 at a scan rate
of 20 A g−1 [75]. By immobilizing Fe-MOFs on nanofibrous aerogel membranes (NFAMs),
a novel Fe-BTC@polyacrylonitrile (PAN)NFAM catalyst was constructed with a 3D inter-
connected hierarchical porous structure that could be used as a catalytic membrane in a
filtration device for the treatment of organic wastewaters [76]. Specially, the combination of
Fe-MOFs with a photocatalyst, such as g-C3N4, can enhance the visible-light adsorption
regions, increase the specific surface areas and prolong the lifetime of the charge carriers.
Therefore, the porous g-C3N4/NH2-MIL-53(Fe) aerogel showed excellent recyclability and
a higher photocatalytic performance than pure g-C3N4 nanosheets [77].

3.3. Cu-MOF Composite Gel

HKUST-1, which is also called Cu-BTC and consists of copper oxide clusters linked
by benzene-1, 3, 5-tricarboxylate ligands, is a common material for Cu-MOF compos-
ite gels [78,79]. HKUST-1/graphene aerogels, HKUST-1 modified ultrastability cellu-
lose/chitosan composite aerogels, and HKUST-1 silica aerogel composites have been fab-
ricated successfully [78–84]. For example, a core–shell hybrid aerogel sphere material
containing Cu-MOF was fabricated using a combined assembly strategy of coordination
bonding and ionic cross-linking [85]. The Cu2+ ions cross-linked carboxylated cellulose
nanocrystals (CNCA) and carboxymethyl chitosan (CMCS) hydrogel spheres to serve as
templates for the in situ growth of the MOF-199 crystal using 1,3,5-benzenetricarboxylic
acid as ligand (Figure 9). The resultant aerogel spheres showed an excellent adsorption
capacity towards methylene blue (MB) with values as high as 1112.2 mg·g−1.
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Figure 9. Schematic illustration of the synthetic process of MOF-199@CNCA/CMCS aerogel
spheres [85]. Copyright © 2022, Elsevier.

Meanwhile, various methods are used for the synthesis of Cu-MOF composite gel. As
shown in Figure 10, a one-droplet synthesis strategy was developed to synthesize functional
polysaccharide/MOF(HKUST-1) aerogels [86]. In this one-droplet reaction, the metal ions
initiate the cross-linking of polysaccharide molecules and coordinate with organic ligands
to form MOFs simultaneously. The resulting composite aerogel has a hierarchical porous
structure and exhibits a high adsorption capacity for CO2.
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3.4. Co-MOF Composite Gel

Most of the Co-MOF composite gels consist of a zeolitic imidazolate framework-67
(ZIF-67) that is formed by 2-methylimidazole [87–90], and their structures are diverse. As
shown in Figure 11, the highly hydrophobic ZIF-67@PLA honeycomb aerogel was formed
by physically combining ZIF-67 nanoparticles with a PLA solution and a water-assisted
heat-induced phase. These ZIF-67@PLA honeycomb aerogels have a multilayer porous
structure, a considerably reduced pore size, and an increased honeycomb pore volume and
exhibit better oil wettability than pure PLA aerogels [89].

Wood aerogels made from naturally lightweight, high-porosity, thin-walled balsa
wood have a lamellar structure and provide sufficient attachment sites for ZIF-67. ZIF-
67@WA (wood aerogel) has been prepared successfully through in situ anchoring of ZIF-67
on the wood aerogel, and it exhibits excellent adsorption performance for tetracycline and
Cu(II) ions, respectively [91,92]. In addition, Co2+ coordinates with the oxygen-containing
functional groups of MXene to form a hydrogel and then acts as a nucleation site for the in
situ growth of ZIF-67 particles [93]. Porous 3D rGO/ZIF-67 aerogel was prepared via the
assembly of ZIF-67 polyhedrons on the 3D rGO framework, which has a specific surface
area up to 491 m2·g−1 and displays excellent adsorption for organic dyes [94].
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3.5. Other MOF Composite Gels

In addition to the above-mentioned MOF composite aerogels, other reported MOF
composite aerogels are mainly based on ZIF-8(Zn-MOF) and MIL 101(Cr-MOF). For ex-
ample, nanocellulose can also serve as template for developing shapeable fibrous ZIF-8
aerogels, which exhibit higher adsorption capacity and rapid adsorption kinetics for differ-
ent organic dyes [72].

As shown in Figure 12, the graphene aerogel (GA)-supported MIL-101 (Cr-MOF) par-
ticles exhibited a three-dimensional (3D) architecture with an interconnected macroporous
framework of graphene sheets and uniform dispersion of MOF particles, which could be
used as adsorbents for the solid-phase extraction (SPE) of non-steroidal anti-inflammatory
drugs (NSAIDs) [95].

Gels 2023, 8, x FOR PEER REVIEW 10 of 21 
 

 

containing functional groups of MXene to form a hydrogel and then acts as a nucleation 
site for the in situ growth of ZIF-67 particles [93]. Porous 3D rGO/ZIF-67 aerogel was pre-
pared via the assembly of ZIF-67 polyhedrons on the 3D rGO framework, which has a 
specific surface area up to 491 m2·g−1 and displays excellent adsorption for organic dyes 
[94].  

 
Figure 11. Images of the ZIF-67@PLA honeycomb aerogel structure and the oil–water separation 
[89]. Copyright © 2022, Elsevier. 

3.5. Other MOF Composite Gels 
In addition to the above-mentioned MOF composite aerogels, other reported MOF 

composite aerogels are mainly based on ZIF-8(Zn-MOF) and MIL 101(Cr-MOF). For ex-
ample, nanocellulose can also serve as template for developing shapeable fibrous ZIF-8 
aerogels, which exhibit higher adsorption capacity and rapid adsorption kinetics for dif-
ferent organic dyes [72]. 

As shown in Figure 12, the graphene aerogel (GA)-supported MIL-101 (Cr-MOF) par-
ticles exhibited a three-dimensional (3D) architecture with an interconnected 
macroporous framework of graphene sheets and uniform dispersion of MOF particles, 
which could be used as adsorbents for the solid-phase extraction (SPE) of non-steroidal 
anti-inflammatory drugs (NSAIDs) [95]. 

 
Figure 12. Synthesis of MIL-101@graphene hybrid aerogels. Reproduced from Ref. [95] with permis-
sion from the Royal Society of Chemistry. 
Figure 12. Synthesis of MIL-101@graphene hybrid aerogels. Reproduced from Ref. [95] with permis-
sion from the Royal Society of Chemistry.

Specifically, a superhydrophobic aerogel was constructed by fine-tuning the hy-
drophobicity of MOF (MOF, Eu-bdo-COOH, H4bdo = 2,5-bis(3,5-dicarboxylphenyl)-1,3,4-
oxadiazole) microspheres, and this aerogel exhibits fast and efficient absorption of various
oily substances from water [96].
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4. Adsorption of CWAs
4.1. MOFs for Adsorption of CWAs

The adsorptive removal of CWAs is an important method of personal protection,
and effective adsorbents, such as activated carbons, metal oxides, etc., have been widely
explored. A variety of studies have indicated that MOFs are promising materials for the cap-
ture of CWAs owing to their high porosity and adjustable reactivity. The selective adsorp-
tion of organic phosphonates in MOF-5/IRMOF-1 was investigated first, and the binding en-
ergy of DMMP in IRMOF1 was ∼19 kcal/mol. The sorption capacity of the CWA simulant
DMMP (dimethylmethyl phosphonate) can reach as high as 0.95 g g−1 [97]. Both zeolitic
imidazolate frameworks ZIF-8 and ZIF-67 have large pores connected through small aper-
tures, and the inner pores exhibit strong hydrophobicity. Therefore, they exhibit excellent
performance for rapid adsorption and removal of hydrophobic CEES molecules (Figure 13).
The maximum adsorption capacities of ZIF-8 and ZIF-67 for CEES were 456.61 mg g−1 and
463.30 mg g−1, respectively, and 100% of HD from from the water/ethanol solution (9:1,
v/v) was removed within 1 min in further experiments [98]. Some research suggests that
the partial charge of the metal atom induces a higher affinity of CWAs toward the MOF
surface [99].
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Recently, zirconium-based MOFs have been extensively studied for the adsorption
of chemical warfare agents (CWAs) and their simulants [100]. For example, NU-1000 and
UiO-67 have been successfully used for capturing chemical warfare agent simulants 2-CEES
and DMMP from aqueous media [101]. NU-1000 showed adsorptive capacities of 4.197
and 1.70 mmol g−1 for 2-CEES and DMMP, respectively, higher than the results of UiO-67,
which can also adsorb 2-CEES and DMMP with capacities of 4.000 and 0.90 mmol g−1,
respectively. Zr-MOFs with different surface area/pore volumes, secondary building unit
(SBU) connectivity, pore functionalization, and open metal sites for the adsorption of sarin
gas and CEES have been examined, and the findings showed that UiO-66, defective UiO-66,
and MOF-808 have the highest reactivities toward GB due to the presence of more active
sites per unit volume [102].

4.2. MOF Gels for Adsorption of CWAs

Currently, MOF gels containing MOF structures also demonstrate outstanding ad-
sorption properties for CWAs or simulants. We and collaborators prepared granular
UiO-66-NH2 xerogels that showed an excellent adsorption capacity of 802 mg/g for CEES
vapor in static adsorption and desorption tests, higher than that of many active inorganic
nanomaterials [103]. The ability to retain adsorbed CWA on the surface/in the porous struc-
ture is a very important feature of protection materials. Static desorption tests monitored
their weight change after exposure to 2-CEES vapors for 1 day, and air desorption tests
were conducted at 2 d and 7 d. The results demonstrated that these Zr-MOF xerogels have
low desorption capacity with only 28 wt%. Moreover, the superelastic hierarchical aerogels
composed of MOF-808 and SiO2 nanofibers exhibited hierarchical cellular architectures
with interconnected channels. Simultaneously, the additional ceramic constituents in the
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interconnected channels can generate van der Waals barriers, which are beneficial for nerve
agent adsorption in open MOF sites. Therefore, this MOF gel showed efficient adsorption
performance against CWAs with a breakthrough extent of 400 L g−1 [104].

5. Catalytic Detoxification of CWA

According to recent reports, MOF gels have shown excellent performance in the
field of CWA detoxification due to their large specific surface area, hierarchical porous
structures and processability. The meso- and macropores facilitate the transport of toxic
molecules and degradation products within the gel monoliths. Some substrates introduced
for constructing MOF composite gels can adsorb CWAs and exhibit water storage abilities,
which promote the degradation process.

Among the numerous chemical agents, nerve agents and vesicant agents are the
focus of current study, and Zr-MOFs gels are the most commonly reported materials. The
properties of pure zirconium-based MOF gels and zirconium-based MOF composite gels
for the degradation of these two CWAs and other simulants are summarized, as shown in
Table 1, and details of the analysis are presented below.

Table 1. Various MOF gels Used as Protection Media for the Detoxification of CWAs.

Materials Amount or Size Agent Volume Half-Life Environment Mechanism Refs.

monolithic UiO-66 xerogel 25 mg HD, 2.5 µL 24.8 min Liquid-Phase Catalytic
hydrolysis [105]

monolithic UiO-66 xerogel;
monolithic UiO-66-NH2 xerogel 20 mg VX, 0.4 µL ≤1.5 min Liquid-Phase Catalytic

hydrolysis [105]

monolithic UiO-66-NH2 xerogel 25 mg
25 mg

HD, 2.5 µL
2-CEES, 2.5 µL

14.4 min
8.2 min Liquid-Phase Catalytic

hydrolysis [105]

granular UiO-66-NH2 xerogel 10 mg 2-CEES, 1 µL 7.6 min Liquid-Phase Catalytic
hydrolysis [103]

UiO-66-NH2-loaded cellulose
sponge 8.1 mg DMNP, 4 µL 9 min Liquid-Phase Catalytic

hydrolysis [106]

UiO-66/Nanocellulose Aerogel 8 mg MPO, 2.5 µmol 0.7 min Liquid-Phase Catalytic
hydrolysis [107]

MOF-808/BPEIH hydrogel 2.2 mg MOF-808 loading,
6 mol% DMNP, 4 µL <1 min Liquid-Phase Catalytic

hydrolysis [108]

MOF-808/BPEIH/fiber 1 × 1 cm, containing
1.5 µmol MOF-808

DMNP, 4 µL
GD, 3 µL

DEMP, 4.2 µL

1 min
<10 min
<1 min

Liquid-Phase Catalytic
hydrolysis [108]

MOF-808/SiO2 aerogels 200 mg DMMP, 4 µL 5.29 min Liquid-Phase Catalytic
hydrolysis [104]

UiO-66-NH2@ANF aerogels 20 mg CEES, 5 µL 8.15 min Liquid-Phase Catalytic
hydrolysis [109]

UiO-66-NH2@agarose hydrogels — DCP, vapors — atmospheric Catalytic
hydrolysis [110]

UiO-66-AM
@PDMAEA@LiCl@PNIPAM

aerogel

60 mg of UiO-66-AM
loading, 12 mol% DMNP, 12.5 µmol 1.9 h atmospheric Catalytic

hydrolysis [111]

fibrous MOF-808 nanozyme
aerogel

1 mm × 1 mm × 1 mm,
containing 1.5 µmol

MOF-808
DMNP, 25 µmol 1 min Liquid-Phase Catalytic

hydrolysis [112]

MOF-808/bacterial
cellulose sponge

1.5 µmol MOF-808 in
composite DMNP, 25 µmol <1 min Liquid-Phase Catalytic

hydrolysis [113]

SA@UiO-66-NH2@PAMAM
hydrogel 17.6 mg DMNP, 4 µL 7 min Liquid-Phase Catalytic

hydrolysis [114]

MOF-808/HIPE sponge 3.2 mg MOF-808 loading,
0.68 mol% VX, 24 µL <1 h Liquid-Phase Catalytic

hydrolysis [115]

UiO-66/DSPD Composite Films 1 × 1 × 0.015 cm3 MPO, 25 µmol — Liquid-Phase Catalytic
hydrolysis [116]

“—” = not mentioned.

5.1. Nerve Agents and Simulants

For nerve agents and simulants, Zr-MOF gels based on UIO-66 and MOF-66 have been
extensively studied. As shown in Figure 14, our group and coworkers firstly reported pure
macroscopic monolithic UiO-66 and UiO-66-NH2 xerogels with excellent degradability
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for real nerve agent VX, and both of them possess a short half-life of 1.5 min and 100%
conversion within 3 min. These materials can selectively catalyze the breakage of P-S
during VX hydrolysis, and less toxic product breakage was obtained [105].
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Sui and our group fabricated flexible UiO-66-NH2-loaded cellulose sponge composites
for rapid degradation of DMNP. The surprising hydrolysis rate with a half-life of only 9 min
was attributed to the preserved catalytic activity of MOFs and the high porosity and random
three-dimensional structures of the sponge [106]. UiO-66/nanocellulose aerogel composite
fabricated by simple blending of UiO-66 and TEMPO-oxidized cellulose nanofibers could
decompose nearly all MPO within 3 min and exhibited a 0.7 min half-life under static
condition [107]. Moreover, this aerogel composite exhibits the surprising ability to dispose
53.7 g of MPO per hour with 1 m2 of the effective area when used as the detoxification filter
in continuous dynamic continuous flow systems.

A metal−organic framework-containing polymer sponge was fabricated by combining
the excellent nerve agent absorption agent (styrene pHIPE) with MOF-88, which served as
a hydrolysis catalyst (Figure 15) [115]. This MOF-HIPE composite can facilitate the bulk
absorption, immobilization, and catalytic decomposition of P–S bonds in VX, and they
rapidly hydrolyze over 80% VX in 8 h with a half-life of less than 1 h. The fibrous MOF-
808 nanozyme aerogel, which was fabricated by in situ growth of MOF-808(Zr-MOF) on
cellulose nanofibers, has a hierarchical macro/microporosity that provides more accessible
active sites. This flexible and processable monolithic MOF composite aerogel demonstrated
superior catalytic performance for hydrolysis with a very short half-life of 1 min, and
DMNP was converted to nontoxic dimethyl phosphate (DMP) [112]. Superelastic cellular
hierarchical metal–organic framework aerogels can be fabricated by combining functional
MOFs-88 nanoparticles with structural SiO2 nanofibers based on hydrogen bond-assisted
interfacial coupling effect. The as-prepared MOF-808/SiO2 aerogels have a preserved MOF
structure, van der Waals barrier channels and minimized diffusion resistance, which all
contribute to increasing the adsorption and decontamination efficiency toward CWAs. This
optimized aerogel-based MOF exhibited rapid adsorption and detoxification properties for
DMMP with a half-life of 5.29 min [104].

In addition, a hydrogel with polymeric networks, mechanical stability, flexibility and
a high water content is a very suitable platform for the hydrolytic reaction of nerve agents,
and many MOFs/hydrogel composites have been reported. For example, the inexpensive
non-volatile branched polyethyleneimine hydrogel integrated with Zr-MOFs was devel-
oped for rapid degradation of organophosphorus chemicals [108]. The hydrogel possesses
high amine density and plentiful water, which can regulate the micro-environment of
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the MOF catalytic reaction process. The obtained MOF-808 hydrogel (MOF-808/BPEIH)
powder can induce near-instantaneous catalytic hydrolysis of DMNP with a short initial
half-life of less than 1 min under ambient humidity, which is better than all other reported
MOF-based composites. When the MOF-based composite was coated onto a textile, the
as-prepared MOF-808/BPEIH/fiber composite also possessed excellent catalytic activity
for DMNP with an initial half-life of 1 min and a conversion of 72% after 15 min. Regarding
actual nerve agents, VX and GD, the MOF-808/BPEIH/fiber composite can degrade nearly
all VX and nearly 60% of the GD after 10 min under ambient conditions, demonstrating
potential for the large-scale production of protective gear in practical conditions.
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The SA@UiO-66-NH2@PAMAM composite hydrogel synthesized by immobilizing
UiO-66-NH2 and PAMAM to the backbone of sodium alginate can rapidly degrade DMNP
with a half-life as short as 7 min. This composite hydrogel easily combines with cotton
fabric. Upon introducing the indicator 4-nitro-(dimethyl-tert-butyl) silica ether (P-NSE), the
obtained recyclable flexible cotton not only catalyzes the hydrolysis of the nerve agent GB
but also serves as a portable colorimetric platform to realize the real-time visual detection
of changes in degradation [114].

To explore efficient catalysts for the destruction of nerve agents under atmospheric
environments, a spontaneously super-hygroscopic MOF-gel microreactor was designed and
synthesize by photoinduced integration of UiO-66-acrylamide (UiO-66-AM) and alkaline
poly(dimethylaminoethyl acrylate) onto LiCl-salinized poly(N-isopropylacrylamide) gel.
The resultant MOF@PDMAEA@LiCl@PNIPAM gel (MG) exhibits excellent catalytic perfor-
mance for hydrolysis of DMNP with an initial half-life of ~1.9 h, and the final conversion is
95.5% [111].

5.2. Vesicant Agents and Simulants

Sulfur mustard (HD), which was first used in World War I, remains the most notori-
ous vesicant agent. The degradation process of HD includes oxidation, dehalogenation,
and hydrolysis (Figure 16), and the C–Cl of HD will be destroyed during the hydrolysis
process [25]. CEES is commonly used in experiments instead of HD given its high toxicity.
At present, there are many studies that focus on the detoxification of HD or simulants,
which all exhibit remarkable potential in future military applications.
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Figure 16. HD degradation pathway. Reproduced from Ref. [25] with permission from the Royal
Society of Chemistry.

Pure monolithic UiO-66-NH2 xerogel reported by Zhou and our group also demon-
strated a fast decomposition rate of 2-CEES with a half-life of 8.2 min, higher than that of
UiO-66-NH2 powder (t1/2 = 29 min) [105]. Further study showed this xerogel has a t1/2
value of 14.4 min for the hydrolytic degradation of the real CWA sulfur mustard (HD).

Together with our collaborators, we designed and synthesized a series of defective
granular UiO-66-NH2 xerogels and investigated their catalytic properties for the decon-
tamination of 2-chloroethyl ethyl sulfide (2-CEES) (Figure 17) [103]. The degradation rate
increased with the increasing defect degrees and reducing the size of MOF crystals. A
shortened half-life value of 7.6 min was observed, representing the best performance for
MOFs reported under ambient conditions [103].
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Figure 17. Structurally defective granular UiO-66-NH2 xerogels and the hydrolysis of 2-CEES.
Reprinted with permission from [103]. Copyright 2022 American Chemical Society.

By combining UiO-66-NH2 and aramid nanofibers (ANFs), a light weight, flexible, and
mechanical robust aerogel with a 3D hierarchically porous architecture was constructed.
The resultant UiO-66-NH2@ANF aerogels have a short half-life of 8.15 min for the detoxi-
fication of 2-chloroethyl ethyl thioether (CEES), and the removal rate is as high as 98.9%.
The C-Cl bond in CEES was broken, and the fragment recombined to form BETE with low
toxicity. This aerogel exhibits good mechanical stability with a recovery rate of 93.3% after
100 cycles [109].

In practical application scenarios, multiple chemical warfare agents may be used at
the same time, so the ability of MOF gel to correspond to multiple toxic substances at
the same time should also be explored. The monolithic UiO-66-NH2 xerogel has initially
demonstrated this capability and may have important application prospects.
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6. Conclusions and Outlook

In summary, many studies demonstrate the potential of MOF gels and their com-
posites as effective materials for the detoxification of chemical warfare agents (CWAs).
The unique properties of MOF gels, such as their large specific surface area, hierarchical
porous structures, and processability, make them highly suitable for this application. The
studies have focused on nerve agents and vesicant agents, with Zr-MOF gels being the
most commonly reported material.

Various approaches have been explored to enhance the catalytic performance of
MOF gels, including the development of pure MOF gels, MOF-loaded composites, and
MOF/hydrogel composites. The results have shown rapid and efficient degradation of
CWAs, with short half-lives and high conversion rates achieved within minutes. The use
of flexible and processable monolithic MOF composite aerogels has further improved the
catalytic performance, enabling the disposal of significant quantities of CWAs per hour.

In addition, the combination of MOFs with different matrices, such as cellulose,
graphene, and balsa wood, has expanded the functionalities and advantages of MOF gels.
Silica aerogel-based MOF composites have demonstrated low densities and high specific
surface areas, while wood-based aerogels have shown potential for cost-effective and
continuous production. These advancements pave the way for future military applications
of MOF gels in CWA detoxification.

Looking ahead, further research should focus on optimizing the performance and
stability of MOF gels, exploring the potential of other MOF compositions, and investigating
their efficacy against a broader range of CWAs. The coupling effects of other external
conditions, such as light, microwave, ultrasound, and piezoelectric conditions, on the
adsorption and catalytic degradation process should be studied, which will provide new
ideas for developing efficient protecting materials. Additionally, efforts should be made to
scale up the production processes and evaluate the feasibility of incorporating MOF gels
into practical systems for large-scale CWA decontamination. By continuing to explore and
refine the application of MOF gels for CWA detoxification, significant advancements can
be made in the fields of chemical defense and military protection.
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Abstract: In this work, a highly efficient and environmentally friendly method for extracting palla-
dium from hydrochloric acid media was developed. The method uses a magnetic sorbent carrying an
organophosphorus extractant, which is not washed from the sorbent into the aqueous phase. The
extractant was characterized by 1H, 13C, and 31P NMR spectroscopy and MALDI TOF mass spec-
trometry, and the palladium complex based on it was characterized by IR spectroscopy. According to
an in vitro microbiological study, the extractant was non-toxic to soil microflora. It was established
that the water uptake and saturation magnetization of the magnetic sorbent were sufficient for use in
sorption processes. The sorption efficiency of palladium(II) with the developed sorbent can reach
71% in one cycle. After treatment of the spent sorbent with 5 M hydrochloric acid, palladium was
completely extracted from the sorbent. The new sorbent is proposed for the extraction of palladium
from hydrochloric acid media obtained by the leaching of electronic waste.

Keywords: phosphazene; extraction; stripping; sorption; magnetic sorbent; palladium; polyvinyl
alcohol; carbonyl iron; green chemistry

1. Introduction

Palladium is a noble metal of the platinum group and is widely used in various
fields of science and technology. For example, palladium is used in electronics as part
of multilayer ceramic capacitors of printed circuit boards [1], in the automotive industry
in catalytic converters in cars [2], as well as in jewelry [3], chemical catalysis [4,5], and
hydrogen energy production [6]. However, the content of palladium in natural deposits of
platinum group metals is extremely low. In particular, the average palladium content in
low-sulfide platinum–palladium ores from the Kievey and North Kamennik deposits is
3.32 ppm, and that in the Fedorova Tundra deposit is 1.20 ppm [7]. Therefore, the search
for methods to recover palladium from industrial waste and secondary resources, such
as spent automotive catalysts or waste electrical and electronic equipment (WEEE), is a
promising area of research.

To date, there is no highly efficient, selective, and simple method for extracting pal-
ladium from WEEE. Pyrometallurgical processes require very high temperatures (over
1500 ◦C) and generate a large amount of waste and atmospheric emissions [8]. During the
hydrometallurgical treatment of WEEE, a leaching solution of WEEE is prepared in concen-
trated hydrochloric acid in the presence of oxidizing agents, for example, aqua regia [9],
which is followed by the separation and extraction of palladium(II), platinum(IV), gold(III),
silver(I), copper(II), tin(II), lead(II), nickel(II), iron(II), and zinc(II) using electrodeposition,
extraction, ion exchange, membrane separation, and other techniques.

Solvent extraction with organic compounds (extractants) is the most promising method
for the recovery of metals from industrial waste compared to other methods due to
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high productivity, economic feasibility, high speed, and simple process design [10–21].
Organophosphorus extractants are becoming increasingly important in hydrometallurgical
processes [22] due to their high selectivity, good solubility of both extractants and their
metal complexes in nonpolar solvents, high degree of stripping, chemical stability, acid
resistance, and low cost. However, a significant disadvantage of liquid organophosphorus
extractants is their high toxicity. The introduction of organophosphorus extractants into a
sorbent matrix would make it possible to avoid their negative impact on the environment.

To date, the processes of metal sorption by mineral (silica gel, zeolites, bentonite,
activated carbon, activated alumina, and so on) and polymeric sorbents have been studied.
Mineral sorbents weakly interact with metal ions and are difficult to separate from the
aqueous phase and regenerate [23]. Among polymeric sorbents for metals, the most widely
used are polymers containing surface hydrophilic groups capable of coordinating metals,
for example, chitosan. The benefits of chitosan as a polymeric sorbent include the lack
of toxicity, biocompatibility, high density of functional groups on its surface, and ease of
functionalization. The drawbacks of chitosan are its low sorption capacity, sensitivity to the
pH of the aqueous phase, limited reuse, poor mechanical properties, and low stability in
acidic media [24]. To increase the sorption capacity, chitosan is modified with compounds
containing donor nitrogen, oxygen, and sulfur atoms, which makes the process more
expensive [25–27].

To provide for easy separation of the sorbent from the aqueous phase using a per-
manent magnet, magnetic particles, for example, magnetite nanoparticles, are added to
the polymer along with the extractant [28–30]. However, the agglomeration of magnetite
nanoparticles in a polymer matrix reduces the magnetic properties [31], so it is necessary to
use a finely dispersed magnetic carrier.

To improve the efficiency of palladium extraction, chelate compounds containing
at least two donor atoms are used. However, many chelate complexes are soluble in
water, some are toxic, and due to low content of coordination sites, they poorly bind
metals. Of interest are polyfunctional compounds, aryloxycyclophosphazenes, since they
are biocompatible, resistant to hydrolysis in an acidic environment, and insoluble in water.
The replacement of chlorine atoms in the starting chlorophosphazene produces various
structures capable of metal coordination [32,33].

Here, it is proposed to use a phosphazene-containing aminophosphonate with six
coordination sites as an extractant. It is planned that an extractant introduced into a
magnetic gel matrix based on polyvinyl alcohol and acid-resistant carbonyl iron will
effectively and selectively extract palladium(II) from hydrochloric acid media obtained by
leaching WEEE and electrical capacitors.

2. Results and Discussion

The extractant was synthesized by the Pudovik reaction from hexakis-[4-{(N-
allylimino)methyl}-phenoxy]-cyclotriphosphazene (APP) and diethyl phosphite in dioxane,
as shown in Figure 1.
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The product is a light-yellow viscous mass, soluble in most organic solvents and
insoluble in water, which is important in the extraction of metals from aqueous media.
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From the 31P NMR spectra, it can be seen that the signal of the phosphorus nuclei of the
phosphazene ring of the extractant (Figure 2B) is shifted relative to the phosphorus signal of
the original APP (Figure 2A) by 0.51 ppm. This is due to a decrease in the mesomeric effect
acting on the phosphorus atoms due to the disruption of conjugation between the benzene
rings and the azomethine nitrogen atoms, since azomethine groups have been converted to
aminophosphonate groups. The formation of aminophosphonate groups is also confirmed
by the presence of a phosphorus signal at 23.21 ppm. In this case, the integrated intensity
ratio of the phosphorus signals of the phosphazene ring and aminophosphonate groups is
approximately 1:2, which indirectly confirms the completeness of the Pudovik reaction.
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For a more accurate assessment of the conversion of azomethine groups to aminophos-
phonate groups, 1H NMR analysis was performed. It can be seen in the spectrum of the
extractant (Figure 2D) that the proton signals of the azomethine groups at 8.2 ppm have
completely disappeared (Figure 2C), while signals for the protons of the aminophosphonate
CH groups (proton 3, Figure 2D) have appeared at 3.7–4 ppm. The integrated intensity
ratio of the proton signals of the methylene groups in allyl radicals to the proton signals of
the benzene ring is 1:2, which indicates the absence of side reactions involving azomethine
groups during the synthesis. In addition, the number of protons of methyl groups in phos-
phonate radicals fully corresponds to the theoretical content, which confirms the formation
of the target product. It is worth noting that the methyl proton signals form two triplets
(0.98 and 1.12 ppm, Figure 2D) instead of one. The upfield shift of proton 5 (Figure 2D)
relative to proton 7 is due to the contribution of the magnetic anisotropy of the double bond
of allyl radicals. The signal shift of the methylene groups in the ethylphosphonate moieties
in the 1H NMR spectrum is slight, but it is clearly visible in the carbon spectrum (carbons 6
and 8, Figure 3B). On the contrary, the difference between the carbon signals of the methyl
groups is less pronounced (atoms 7 and 9). The upfield shift of the carbon 5 signal from
162 ppm (Figure 3A) to 63 ppm (Figure 3B) also indicates the complete conversion of
azomethine groups to aminophosphonate groups.
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The MALDI-TOF mass spectrum of the extractant (Figure 3C) shows a molecular ion
peak with a solvated matrix proton in the 1925 [M + H]+ region, corresponding to the mass
of the target compound, and a peak for sodium ion-solvated extractant at 1947 [M + Na]+.

It was found by DSC that the extractant is amorphous with a glass transition tempera-
ture in the range of −5 to +5 ◦C (Figure 4).
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Figure 4. DSC curve of the extractant.

The extractant was tested in palladium extraction from chloride media. As a result
of extraction, the corresponding complex was obtained, which turned out to be insoluble.
A comparison of the IR spectra of the extractant (Figure 5A) and the palladium complex
(Figure 5B) showed that palladium is coordinated by phosphoryl groups, as evidenced by
a change in the shape of the P=O stretching band at 935 cm−1. It was also assumed that the
double bonds of allyl groups would additionally be involved in coordination; however, the
vibrational band of the double bonds of allyl groups at 1501 cm−1 remained unchanged.
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Figure 5. IR spectra of the extractant (A) and its palladium complex (B).

According to the elemental analysis of the palladium complex (Table 1), there is
approximately one molecule of palladium chloride per two phosphoryl groups of the
extractant. This follows from the atomic ratio of phosphorus and palladium in the obtained
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complex, which is 3.42:1.17; i.e., it is close to the theoretical elemental ratio for the complex
with the indicated structure (3.45:1.15).

Table 1. Elemental composition of the palladium complex of the extractant, %.

Chemical
Element

Actual Content Theoretical Content

Weight Atomic Weight Atomic

C 41.01 32.24 41.05 32.17
N 5.15 3.47 5.13 3.45
O 15.7 9.25 15.63 9.20
P 11.23 3.42 11.34 3.45
Cl 8.65 2.30 8.67 2.30
Pd 13.1 1.17 13.00 1.15
H 5.16 48.15 5.18 48.28

Since palladium(II) exists in aqueous hydrochloric acid as chloride complexes
PdCl42− [34], in the case of aminophosphonates, the extraction of palladium(II) at high
acid concentrations proceeds according to the outer-sphere mechanism via protonation of
the aminophosphonate nitrogen atom to give the complex {[PdCl4]2−·[HR]+

x}, where R is
the coordination sites. With a decrease in the concentration of hydrochloric acid, the coordi-
nation mainly follows the intra-sphere mechanism involving the chelation of palladium
with phosphoryl groups. Moreover, in the case of synthesized phosphazene, palladium can
be chelated by phosphoryl groups located both at the same and at different phosphorus
atoms of the phosphazene ring. As a result, the formation of structurally diverse chelate
complexes is possible (Figure 6).
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Figure 6. Palladium(II)-extractant chelate complexes with intra-sphere coordination of palladium
(R = C2H5, Ar = p-C6H4).

To assess the effect of the extractant on the environment, which is important when
it enters wastewater and soil, microbiological studies were carried out. It was found that
when the extractant is applied to the surface of a nutrient medium inoculated with soil
microflora, the extractant does not have an inhibitory effect on it. Conversely, a stimulating
effect was noted compared to the control group, as evidenced by the increase in the number
of microorganisms in the sample treated with the extractant (Table 2).
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Table 2. Study of the effect of the extractant on soil microflora.

Optical Density,
Units

Number of Microorganisms, CFU mL−1

Bacteria Yeast and Fungi

Control 9.03 8.0 × 109 6.0 × 105

Sample 9.29 1.29 × 1010 2.6 × 106

The stimulating effect of the extractant is probably due to the destruction of the
phosphazene ring under the action of microbial enzymes and the formation of ammonium
phosphates, which act as fertilizers.

Polymer sorbents were formed from a two-phase system: an extractant solution in
THF and an aqueous solution of polyvinyl alcohol (PVA) with glutaraldehyde (GA). With
rapid mixing of the components, the solutions gave a stable and relatively viscous emul-
sion, which further ensured a uniform distribution of the extractant in the polymer. The
structuring of the system was provided by the addition of catalytic amounts of hydrochloric
acid, while intermolecular crosslinking of polymer chains occurred due to the formation of
acetals via the reaction of PVA hydroxyl groups and GA aldehyde groups.

When studying gelation, it was found that the gelation time and water absorption
decrease with the increasing amount of GA added, and the amount of liquid displaced from
the sorbent increases (Table 3), which is due to an increase in the degree of cross-linking of
the polymer. From the obtained results, it follows that the best sorbent for use in sorption
processes is sorbent number one, since it has the highest water uptake and does not displace
water during gelation. Therefore, further studies were carried out using this sample.

Table 3. Parameters of synthesized sorbents.

No. Gelation Time Displaced Liquid, wt % Water Uptake, wt %

1. 1 day 0 54.7
2. 1 day 23.4 53.4
3. 12 h 43.1 45.1
4. 7 h 71.6 39.4
5. 5 h 75.1 22.1

When conducting IR studies, it was found that the spectrum of the sorbent (Figure 7B)
exhibits a vibrational band in the region of 1208–1160 cm−1, which is absent in the spectrum
of PVA cross-linked with glutaraldehyde (Figure 7A). This band is also observed in the
spectrum of the extractant (Figure 7C) and is characteristic of the stretching vibrations of
the P=N units of the phosphazene ring. This fact indicates that the extractant is present
in the sorbent after washing and drying, and also that the phosphazene ring has been
preserved during the synthesis and isolation of the sorbent.

The study of the extraction properties of the sorbent showed that it is effective for the
sorption of palladium(II) from aqueous hydrochloric acid solutions. It was found that the
extraction efficiency increases with a decrease in the acidity of the medium and reaches 57%
when a 0.25 mol L−1 hydrochloric acid solution is used (sorbent weight 0.1 g, volume of the
aqueous phase 6 mL). This value is an order of magnitude higher than that for the liquid
extraction of palladium(II) from hydrochloric acid solution with commercial monodentate
extractant Cyanex 923 dissolved in toluene [35] (Figure 8). When the amount of sorbent
was doubled, the extraction efficiency reached 71%.

28



Gels 2022, 8, 492
Gels 2022, 8, x FOR PEER REVIEW 9 of 15 
 

 

 

Figure 7. IR spectra of cross-linked PVA (A), sorbent (B), and extractant (C). 

The study of the extraction properties of the sorbent showed that it is effective for 

the sorption of palladium(II) from aqueous hydrochloric acid solutions. It was found that 

the extraction efficiency increases with a decrease in the acidity of the medium and 

reaches 57% when a 0.25 mol L−1 hydrochloric acid solution is used (sorbent weight 0.1 g, 

volume of the aqueous phase 6 mL). This value is an order of magnitude higher than that 

for the liquid extraction of palladium(II) from hydrochloric acid solution with commer-

cial monodentate extractant Cyanex 923 dissolved in toluene [35] (Figure 8). When the 

amount of sorbent was doubled, the extraction efficiency reached 71%. 

Figure 7. IR spectra of cross-linked PVA (A), sorbent (B), and extractant (C).

During two cycles of extraction with one portion of the sorbent (0.1 g) for each cycle,
the amount of palladium recovered reached 89%.

It was also found that 100% stripping of palladium from the sorbent is accomplished
in one cycle with 5 mol L−1 hydrochloric acid. After stripping, the sorbent can be reused
without changing the extraction efficiency.
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Figure 8. Extraction efficiency of palladium by the magnetic sorbent. In [35], palladium(II) was
extracted from a hydrochloric acid medium using Cyanex 923 under the following initial conditions:
[Pd] = 5 × 10−4 mol L−1, [Cyanex 923] = 0.1 mol L−1.

Since production wastes and secondary raw materials containing palladium con-
tain other metals almost in all cases, it was necessary to evaluate the extraction selec-
tivity of the developed sorbent. For example, WEEE and electrical capacitors always
contain copper together with palladium. Therefore, the Pd(II) sorption was studied from a
0.25 mol L−1 hydrochloric acid solution in the presence of copper(II) chloride. As a result,
52% of palladium was selectively separated by the developed sorbent in one cycle, while
all copper remained in the leaching solution.

Magnetic properties were imparted to the sorbent by adding encapsulated iron in the
gelation stage. The stability of the dispersion was ensured by the viscosity of the system.
As can be seen from the micrograph of the magnetic sorbent film (Figure 9), iron particles
are evenly distributed in the gel and form small agglomerates, with their linear size not
exceeding 200 µm.
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Figure 9. Micrograph of a magnetic sorbent film.

According to vibrating magnetometry data (Figure 10), the saturation magnetization
of the sorbent is approximately 14 emu g−1. This value is sufficient for the sorbent to be
separated by a magnet from water and non-magnetic particles and used in the processes of
metal extraction from metallurgical waste and secondary raw materials.
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Figure 10. Magnetic properties of the sorbent with iron particles.

The study of the properties of the magnetic sorbent showed that it has similar extrac-
tion characteristics in terms of the weight of the iron-free sorbent.

3. Conclusions

The new magnetic sorbent based on polyvinyl alcohol, metallic iron, and a poly-
dentate phosphazene-containing extractant is a promising material for the solid-phase
extraction of noble metals from leaching solutions of WEEE and electrical capacitors. This
is due to its acid resistance, high efficiency and selectivity, excellent sorption and magnetic
properties, and environmental safety. The efficiency of sorption of palladium(II) by the
developed sorbent is 57% in one cycle and 89% in two sorption cycles. The spent magnetic
sorbent can also be disposed of by burial in the soil, since it does not inhibit the activity of
soil microflora.

4. Materials and Methods
4.1. Materials

Polyvinyl alcohol (PVA), carbonyl iron, glutaraldehyde (GA), hydrochloric acid, di-
ethyl phosphite, p-toluenesulfonic acid, dioxane, tetrahydrofuran, palladium(II) chloride,
copper(II) chloride, chloroform, and potassium carbonate were products of Sigma Aldrich
(Saint Louis, MO, USA). Dioxane and tetrahydrofuran were dried over sodium metal
followed by distillation. The encapsulation of carbonyl iron was carried out according to
the procedure described in [36].

4.2. Methods
1H, 13C, and 31P NMR spectra were recorded on an Agilent/Varian Inova 400 spec-

trometer (Agilent Technologies, Santa Clara, CA, USA) at 400.02 MHz, 100.60 MHz, and
161.94 MHz, respectively. The mass spectrum was recorded on a Microflex LRF mass spec-
trometer (Bruker Daltonic GmbH, Leipzig, Germany). 3-Hydroxypicolinic acid was used as
a matrix. IR spectra were measured on a Nicolet 380 spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA) in the spectral range of 4000–500 cm−1 with a wavenumber accuracy
of 0.01 cm−1. Differential scanning calorimetry (DSC) measurements were conducted using
a NETZSCH STA 449F1 instrument (Erich NETZSCH GmbH & Co. Holding KG, Selb,
Germany). The hysteresis loop of a magnetic composite swollen in water was recorded
using a LakeShore 7407 vibrating magnetometer (LakeShore Cryotronics Inc., Westerville,
OH, USA). The distribution of iron microparticles in the polymer matrix was visually
assessed using a Levenhuk MED D25T optical microscope (PRC, controlled by Levenhuk,
Inc., Tampa, FL, USA). The contents of Pd(II) and Cu(II) in aqueous hydrochloric acid
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solutions were determined using an XSeriesII ICP-MS instrument (Thermo Fisher Scientific,
USA). The composition of the palladium complex of the extractant was determined on an
X-Max SDD Inca Energy Dispersive spectrometer for electron probe microanalysis (Oxford
Instruments, Abingdon, UK).

Studies on the effect of the extractant on the soil microflora were carried out in vitro in
flasks on a liquid nutrient medium in a shaker incubator. An enrichment culture of soil
microorganisms obtained by cultivating a nutrient soil on a liquid medium of the following
composition was used as an inoculation material: peptone 1.0 g L−1, yeast extract 0.5 g L−1,
NaCl 0.5 g L−1, and glucose 2.0 g L−1. The medium pH was 6.5. The soil to medium
ratio was 1:2. The cultivation was carried out at 30 ◦C for 48 h with stirring at 200 rpm.
The growth of microflora was evaluated spectrophotometrically by measuring the optical
density at λ = 600 nm.

To determine CFU, the method of tenfold dilutions (Koch’s method) was used. The
obtained enrichment culture (1 mL) was added into flasks with 100 mL of liquid nutrient
medium of the above composition, and then, the extractant diluted in 1 mL of acetone was
added. Thus, the concentration of the extractant in the medium was 0.03314%. Then, 1 mL
of sterile tap water was added to the control flask (control group).

After incubation at 30 ◦C for 48 h at 200 rpm, the resulting suspension was sown on
a solid medium in Petri dishes. To do this, dilutions of the suspension were prepared in
sterile tap water. An exact volume of dilution was added to Petri dishes with agarized
nutrient medium and spread with a glass spatula over the surface of the nutrient medium,
and colonies were counted after 1–15 days of incubation.

4.3. Synthesis of Hexakis-[4-{(N-allylimino)methyl}-phenoxy]-cyclotriphosphazene

Hexakis-[4-{(N-allylimino)methyl}-phenoxy]-cyclotriphosphazene (APP) was synthe-
sized according to the procedure described in [37].

4.4. Synthesis of Hexakis-[4-{α,α-(N-allylamino)(O,O-
diethylphosphoryl)methylidine}phenoxy]cyclotriphosphazene (Extractant)

A 50 mL round-bottom flask equipped with a reflux condenser and a magnetic stirrer
was charged with APP (0.5 g, 0.4566 mmol), diethyl phosphite (0.59 mL, 0.4566 mmol),
and p-toluenesulfonic acid (catalyst) (79 mg, 10 mol %), and the mixture was dissolved
in 30 mL of dioxane. After complete dissolution, the reaction mixture was stirred at the
boiling point of dioxane for 6 h in an argon atmosphere. Dioxane was distilled off, and the
resulting liquid was dissolved in chloroform. Potassium carbonate (0.05 g) was added to
the solution, and the mixture was stirred for 24 h at 25 ◦C. The solution was separated from
the precipitate by decantation, and chloroform was distilled off on a rotary evaporator. The
resulting substance was dried in an oven under vacuum at a temperature of 90 ◦C for 5 h.
Yield: 0.70 g (80%).

4.5. Extraction of Palladium with the Developed Extractant

A solution of palladium(II) chloride (0.05 g, 0.282 mmol) in 0.5 M hydrochloric acid
(3 mL) was prepared in a 10 mL glass vial. At the same time, a solution of the extractant
(0.18 g, 0.0936 mmol) in chloroform (3 mL) was prepared. The extractant solution was
added to the palladium(II) chloride solution and stirred at 25 ◦C for 48 h. The solid
palladium complex formed at the interface was washed several times with distilled water
and chloroform. The complex was dried under vacuum at 70 ◦C for 4 h.

4.6. Synthesis of Sorbents

Five solutions of PVA (0.8 g) in water (4.52 mL) containing 0.05, 0.1, 0.2, 0.4, and
0.8 mL of HA, respectively, were prepared in 10 mL glass vials. Five identical solutions
of the extractant (0.1 g, 0.0520 mmol) in THF (1 mL) were prepared separately. Extractant
solutions were added to the PVA solutions and vigorously stirred. Catalytic amounts of
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hydrochloric acid (3 drops) were added and stirred again. The emulsions were left at room
temperature until gelation.

The gel was washed several times with distilled water and dried in a vacuum oven at
80 ◦C for 6 h.

4.7. Sorption of Palladium by the Developed Sorbent

Six solutions of palladium(II) chloride (0.012 g, 0.0677 mmol) in hydrochloric acid
(6 mL) of various concentrations (0.25, 0.5, 1.5, 3, and 4.5 M) were prepared in 10 mL glass
vials. Then, the sorbent (0.1 g) was placed in each vial, and the mixture was stirred for 48 h
at room temperature.

4.8. Stripping of Palladium

The spent sorbent was treated with 5 M hydrochloric acid with stirring for 48 h at
room temperature.

4.9. Sorption of Palladium by the Developed Gel in the Presence of Copper

A solution of palladium(II) chloride (0.012 g, 0.0677 mmol) and copper(II) chloride
(0.012 g, 0.08925 mmol) in 0.25 M hydrochloric acid (6 mL) was prepared in a 10 mL glass
vial. Then, the sorbent (0.1 g) was placed in the vial and stirred for 48 h at room temperature.

4.10. Synthesis of a Magnetic Sorbent Containing Acid-Resistant Iron

In a 10 mL glass vial, polyvinyl alcohol (0.8 g) was dissolved in distilled water (4.52 g).
Then, encapsulated carbonyl iron powder (1 g) was introduced into the solution. After that,
glutaraldehyde (0.05 mL), a solution of the extractant (0.1 g) in THF (1 mL), and 3 drops of
hydrochloric acid were added. The mixture was stirred for about 7 min until the viscosity
increased, after which it was left at room temperature until completely cured.

The gel was washed several times with distilled water and dried in a vacuum chamber
at a temperature of 80 ◦C to constant weight.
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The Use of Hydrogels in the Treatment of Metal Cultural
Heritage Objects
Elodie Guilminot

Arc’Antique Conservation and Research Laboratory, 26 Rue de la Haute Forêt, 44300 Nantes, France;
elodie.guilminot@loire-atlantique.fr

Abstract: Currently gels are widely used in the restoration of paintings, graphic arts, stuccowork and
stonework, but their use in metal restoration is less widespread. In this study, several polysaccharide-
based hydrogels (agar, gellan and xanthan gum) were selected for use in metal treatments. The use
of hydrogels allows to localize a chemical or electrochemical treatment. This paper presents several
examples of treatment of metal objects of cultural heritage, i.e., historical or archaeological objects.
The advantages, disadvantages and limits of hydrogel treatments are discussed. The best results are
obtained for the cleaning of copper alloys via associating an agar gel with a chelating agent (EDTA
(ethylenediaminetetraacetic acid) or TAC (tri-ammonium citrate)). The hot application allows to
obtain a peelable gel, particularly adapted for historical objects. Electrochemical treatments using
hydrogels have been successful for the cleaning of silver and for the dechlorination of ferrous or
copper alloys. The use of hydrogels for the cleaning of painted aluminum alloys is possible but it
has to be coupled with mechanical cleaning. However, for the cleaning of archaeological lead, the
cleaning using hydrogels was not very effective. This paper shows the new possibilities of using
hydrogels for the treatment of metal cultural heritage objects: agar is the most promising hydrogel.

Keywords: hydrogel; agar; conservation-restoration; cleaning treatment; stabilization; iron; copper
alloys; lead; Al alloys; silver

1. Introduction

When a metal object is discarded, the metal tends to revert to its natural mineral
state and corrosion takes place. The resulting corrosion products form layers that vary
considerably depending on the metal and its exposure to environment: iron corrosion
products are often voluminous and can be highly reactive, especially in the presence of
chlorides, while Pb objects tend to form a highly protective, thin corrosion layer, except
when organic acids are present. A conservators’ objective is to locate the original surface of
the object, which is often obscured by the various layers of corrosion.

Work carried out by conservators must be the least invasive possible while ensuring
the stability of the object and restoring its legibility. Ideally, a cleaning treatment would
act on a single element (generally corrosion products, sediments or dust) without affecting
the layer(s) to be preserved. A range of stabilization and cleaning techniques has been
developed and their effectiveness proven: these techniques may be mechanical, chemical
or electrochemical [1]. The most common mechanical cleaning methods involve removing
corrosion products with a scalpel, brush or compressed air, or by sandblasting. These
mechanical techniques are widely used but can be very time consuming and are unsuitable
for some objects. Chemical cleaning involves the use of chelating agents or acids to
selectively remove corrosion products. Electrochemical treatments are used to remove
chlorides or reduce corrosion products. However, chemical and electrochemical treatments
require the object to be immersed in the treatment solution. If the object is composed of
more than one material, the use of this type of treatment is largely ruled out. Moreover, if
chemical solutions penetrate too far into the object, this can result in a weakening of the
layers underlying the original surface.
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Conservators often have to combine different techniques to obtain a satisfactory result
and are always looking for new protocols that allow them better control. For this reason, the
Arc’Antique laboratory has been testing and developing gel-applied treatments for metals
for several years. In the early 1990s, Wolbers came up with an innovative methodology to
treat paintings: the application of liquid cleaning agents embedded in gel matrices [2,3].
In conservation, the term “gels” is often linked with other words, such as packs, pastes,
poultices, compresses and pads, to indicate that localized cleaning is intended. The gel
acts as a vehicle for applying the treatment solution to the surface to be cleaned. Gelled
formulations are used to lengthen solution retention time and to improve control over
the cleaning process. Many formulations are common in conservation–restoration [4,5]:
polyacrylic (Pemulen® or Carbopol®), cellulose-based (CMC (carboxymethylcellulose)
and cellulose ether), polysaccharides (agar, gellan gum or xanthan gum), emulsions, and
poly(vinyl alcohol) (PVA-borax and gels developed by the University of Florence (Center
for Colloid and Surface Science: CSGI)).

Interactions between polymer chains create a 3D structural network in gels. These
interactions can be in the form of a hydrophobic, electrostatic or van-der-Waals interactions
or hydrogen bonds: the system is then called a “physical gel” [6]. If connections between
different polymer chains are due to covalent bonds, the gel is known as a “chemical gel”.
Gels can also be classified according to the nature of the solution embedded in the gel: In
the case of a liquid phase composed of an organic solvent, they are referred to as organogels;
if the solvent is water, they are called hydrogels. For the restoration of cultural heritage
metal, physical hydrogels are preferred for various reasons: low cost, accessibility, ease of
processing and good compatibility with the active agents most commonly used by restorers.

In this article, the study will focus on physical hydrogels based on polysaccharides:
agar, gellan gum and xanthan gum [7,8]. Normally, physical gels contain reversible bonds
formed by temporary associations between chains. These associations have finite lifespans
and are continuously breaking up and reforming. These weak physical bonds are often
hydrogen bonds, but can also be a formation of block copolymer micelles and ionic associa-
tions [9]. However, some physical hydrogels form more stable bonds. The strong physical
bonds between polymer chains are effectively permanent within a given set of experimental
conditions. Examples of strong physical bonds are lamellar microcrystals, glassy nodules,
and double and triple helices. Hence, these physical hydrogels are analogous to chemical
gels. Agar can form a semi-rigid network. It is composed of a mixture of agarose and
agaropectin in variable proportions depending on the type of algae used and the manu-
facturing process [10]. The linear chains of agarose arrange themselves into double helix
structures that aggregate to form “suprafibers” comprising anywhere up to 104 helices.
Agar gels have the remarkable property of reversibility. They simply melt on heating and
solidify again upon cooling. These transformations can be repeated indefinitely in the
absence of aggressive substances. Generally, 1–5% wt agar is mixed in aqueous solution
and heated up to 85 ◦C. It then develops a random coil structure which has the ability to
progressively rearrange itself and gel during the cooling stage, at below 40 ◦C [11,12]. The
gelling temperature of agar is 38–42 ◦C. So, when the hot agar gel is cooled on a surface, the
film adheres to the surface and is easy to remove. These gels are called peelable gels [13]. It
was shown that the agar concentration strongly influences the water state within the gel
network: agar at 1% wt releases far more water than gels at 3% and 5% wt, acting as a “free
water reservoir” [14]. Conservators can adapt the rigidity of the gel film to suit the surface
to be treated and adapt its sensitivity to water.

The use of agar gels in the cleaning of artworks has been studied for more than a decade
and its application concerns a variety of substrates with different physico–mechanical fea-
tures: from stone [15,16] and plaster surfaces [17] with compact soiling, to the most fragile,
such as paper [18,19] or paintings [11,20,21]. Several research studies have recently been
launched with the aim of understanding the cleaning mechanism of agar and optimizing
its use in the restoration of heritage building materials [13,14,16,17,22]. These studies have
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shown the possibility of successfully using chelating agents combined with agar gels to
remove corrosion product stains from marble.

Gellan gum has similar characteristics to a peelable gel. It is a linear, anionic het-
eropolysaccharide produced by a microorganism (Sphingomonas elodea) [23]. The molecules
are transformed into an ordered double-helical conformation upon cooling, followed by
associations between the helices through weak interactions, such as hydrogen bonds and
van-der-Waals forces. In the presence of cations (especially Ca2+), gellan gum forms hard,
brittle gels that are able to promote and stabilize the ordered “crystalline-like” structure.
However, the addition of cations is not necessary for the formation of high-acyl gellan
gum gels [24], that have a higher gelling temperature than agar gels: about 70 ◦C. Another
difference with agar is that gellan gum is less thermo-reversible: once the film is formed,
conservators cannot reuse it (or any excess gel prepared). Gellan gum is mainly used
to clean paper because it keeps water damage to a minimum, and thus more effectively
preserves the integrity of the original, historical paper [25,26]. Sometimes gellan gum is not
used as a rigid peelable gel, it can be prepared cold and form a viscous gel. For example,
if biopatin is applied, the integration of microorganisms requires that the gel must not be
heated during the preparation process [27].

Unlike agar or gellan gum, xanthan gum has two conformations: an ordered conforma-
tion (helix) and a disordered one (random coil) [28]. This double conformation excludes the
possibility of obtaining a peelable gel, as is possible with agar or gellan gum gels. Xanthan
gum is an extracellular polysaccharide composed of glucose and secreted by Xanthomonas
Campestris bacteria. Xanthan gels obtained using dissolution at ambient temperatures tend
to be highly viscous. While the stability of peelable gels (agar or gellan gum) is strongly
pH-dependent, as the double helix structure is maintained in neutral pH, xanthan gels
maintain a high viscosity in a wide pH range [29]. The main disadvantage of these viscous
gels is residue [30].

In this paper, different physical hydrogels based on polysaccharides (agar, gellan gum
and xanthan gum) were tested for the cleaning and stabilization of metal cultural heritage
objects. In each case study, the main research issue is presented by detailing the objectives
of the restoration, the cleaning protocols tested and the relevant results.

2. Results
2.1. Choice of Treatments

Choice of treatment was determined by the selection of the active agent needed to
clean or stabilize the object. Conservators know which active agents are suitable for clean-
ing relevant metals in chemical treatments. Generally, to remove copper corrosion products,
solutions with chelating agents are used, such as EDTA (ethylenediaminetetraacetic acid)
or TAC (tri-ammonium citrate). In the case of lead corrosion products (based on lead car-
bonates), acidic solutions are also recommended. For cleaning silver, electrolytic reduction
yields good results. Electrolysis is also used for the stabilization of ferrous or copper objects.

The use of gels allows the quantity of active agents to be reduced and their degree of
penetration into the object limited. A gel treatment can also be used to treat a surface locally,
enabling the whole object to be preserved. Previous studies have shown the compatibility
of different gels with the active agents most widely used by conservators [7,31]. Physical
hydrogels based on polysaccharides with a helix structure (agar and gellan gum) remain
stable in a neutral pH range (about 5 to 8). If the treatment solutions are more acidic or
basic, it is possible to form gel films with demineralized water and then immerse the film
in the treatment solution for 2 h. The gel film maintains its mechanical strength throughout
the application (treatment time of less than 2 h); however, contact with the object’s surface
is less effective than when the gel is applied hot. Xanthan gels do not form rigid gels and
can be used in a wider pH range (between 4 and 10).

Table 1 summarizes the compatibility between treatment solutions and polysaccharide-
based hydrogels (agar, gellan gum and xanthan gum).
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Table 1. Compatibility of treatment solutions with physical polysaccharide-based hydrogels (agar,
gellan gum and xanthan gum).

Hydrogels Treatment Solutions Compatibility

Agar

Nitric acid (10−4 M) Possible with pre-made film
Citric acid (5 wt%) Possible with pre-made film

Citric acid (0.055 M) Compatible (hot application)
Oxalic acid (5 wt%) Possible with pre-made film

KNO3 (1 wt%) Compatible (hot application)
TAC (2.5 or 5 wt%) Compatible (hot application)

di-EDTA (0.5–2.5 or 5 wt%) Compatible (hot application)
tetra-EDTA (5 wt%) Compatible (hot application)

Metasilicate sodium (2 wt%) Incompatible
NaOH (2 wt%) Incompatible

Gellan gum

Nitric acid (10−4 M) Incompatible
Citric acid (5 wt%) Incompatible

Citric acid (0.055 M) Compatible (hot application)
Oxalic acid (5 wt%) Incompatible

KNO3 (1 wt%) Compatible (hot application)
TAC (2.5 or 5 wt%) Compatible (hot application)

di-EDTA (0.5–2.5 or 5 wt%) Compatible (hot application)
tetra-EDTA (5 wt%) Compatible (hot application)

Metasilicate sodium (2 wt%) Incompatible
NaOH (2 wt%) Incompatible

Xanthan gum

Nitric acid (10−4 M) Possible but very viscous
Citric acid (5 wt%) Possible but very viscous

Citric acid (0.055 M) Compatible
Oxalic acid (5 wt%) Possible but very viscous

KNO3 (1 wt%) Compatible
TAC (2.5 or 5 wt%) Compatible

di-EDTA (0.5–2.5 or 5 wt%) Compatible
tetra-EDTA (5 wt%) Compatible

Metasilicate sodium (2 wt%) Possible but very viscous
NaOH (2 wt%) Incompatible

2.2. Case Study
2.2.1. Cleaning of Copper Alloys—Historical Artifact

Our first case study concerns the cleaning of objects from the Islamic art collection
of the French author, Pierre Loti, whose former home is now a French museum. Located
in Rochefort, the author’s collection of art objects is remarkable for its scope and features
a wealth of various typologies, creative techniques and materials. The case of the gun
(Figure 1) illustrates the problems involved in cleaning a tarnished copper alloy. The
object also typifies the complexity of treating composite objects because it is constituted
of a wooden butt covered with copper alloy plates decorated with semi-precious gems
and corals. The copper alloy plates displayed uniform, light corrosion, and were stained
with grease deposits. The multi-material nature of the object made chemical treatment by
immersion impossible. Mechanical cleaning was possible but would have been long and
difficult because of the decoration. Gel cleaning provided an attractive alternative. After
initial cleaning with a mixture of water/ethanol applied using a cotton swab, the surface
was de-greased with acetone. The different gels (agar, gellan gum and xanthan gum) were
tested with a TAC solution at 2.5 wt% on the copper alloy plates. The best results were
achieved using agar gel applied hot. Application time can vary between 10 min and 1 h,
depending on the conservator’s cleaning objective. Gel treatment successfully removed
most of the copper corrosion products. The surface was rinsed with demineralized water
applied with a cotton swab. The cleaning resulted in a homogeneous surface, as shine
could be controlled.
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Figure 1. The gun from the Pierre Loti Museum collection (a), removal of the agar gel (b) (© J.G.
Aubert/Arc’Antique—Grand Patrimoine de Loire Atlantique, Nantes, France).

Gellan gum gels also gave good results but processing was more delicate. The gel
rapidly rigidified because of its higher gelation temperature than agar. Xanthan gum gels
also removed corrosion products but left a lot of residues on the surface.

These treatments were also carried out by applying the gel as a film: Agar gel films
were pre-made with demineralized water and immersed in a TAC solution before ap-
plication. The cleaning was effective due to good contact between the gel film and the
object. However, if an air bubble forms between the gel film and the object, the area
remains tarnished.

2.2.2. Cleaning of Gilded Copper Alloys—Historical Artifact

The second case study also concerns a historical object: an Armenian censer from
the Dobrée Museum collection (Figure 2). The object is made of gilded copper with a
set of chased, embossed and openwork decorations. The copper showed thick corrosion
masking the gilding (sometimes with gaps). The surface of the object was also covered
with a thick, dirty varnish. An application of agar gel with tetrasodium EDTA (5 wt%) for
5 min removed dirt, varnish and part of the corrosion products. Cleaning was completed
by the application of an agar gel with di-EDTA (2.5 wt%) for 5 min. Then, the surface was
rinsed with demineralized water using a cotton swab. Agar gel cleaning produced a result
that conservators consider to be highly satisfactory.
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2.2.3. Cleaning of Copper Alloys—Archaeological Artifact

The first two case studies showed that gel cleanings are effective in removing corrosion
from copper. The third case study presents a similar problem: the removal of copper
corrosion products from silver-plated copper alloy coins. In this case, however, the coins
were archaeological objects, from the Cléons treasure (Haute Goulaine, Pays de Loire,
France) dating from Antiquity (between 271 and 274 CE). They are in the effigy of various
Roman emperors: Volusianus, Valerianus I, Gallienus and Saloninus. The Cléons treasure
was discovered in 1901 and is conserved in the Dobrée museum collection. These coins
were used in a study comparing cleaning with a range of gels, published by Giraud et al. [7].
In this article, we will focus on the tests performed with hydrogels: agar, gellan gum and
xanthan gum (Figure 3). The objective of the cleaning was to reveal the significant surface
which corresponds to the silver plating. The silver plating was covered with a mixture of
corrosion products and sediments. The corrosion products above the silver plating were
mainly composed of copper carbonates. During the burial period, a layer of corrosion
products containing mainly copper oxides had developed below the silver plating. The
treatment selected was an application of disodium EDTA gels at different concentrations
(0.5, 2 or 5 wt%). It was applied to one half of the surface of a coin for 20 min, four or five
times. The coins had not undergone mechanical cleaning before the first application of the
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gel. The treated surface was rinsed using a cotton swab impregnated with acetone diluted
to 50% v. The coins were photographed prior to treatment and after each application of gel.
The results achieved after the final application are presented in Figure 3. All treatments with
0.5 wt% di-EDTA were ineffective. Gel treatment with 2 wt% di-EDTA partially removed
corrosion products but was not complete after five applications. Gel treatment with 5 wt%
di-EDTA ensured effective cleaning after four or five applications. Peelable hydrogels
(agar gels or gellan gum) gave the best results: they ensured good contact between the gel
and the surface of the object; the treatment was effective when the solution contained a
sufficient concentration of di-EDTA. They were easily removed and left little visible residue
on the surface of the coin; post-treatment rinsing was therefore limited and the result of the
treatment was homogeneous. The application of these hydrogels is precise and allows for
the treatment of a well-defined surface. Viscous hydrogels (xanthan gum) also effectively
cleaned the surface, but after treatment the surface was less well defined and gel removal
was difficult. Xanthan gum left a large amount of residue that required copious rinsing.
Despite thorough rinsing, it is possible that residue may have penetrated into the cracks
and remains on the surface of the archaeological object.
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Figure 3. Coins from the Cléons treasure (only half of the coin’s surface was treated in each case)
before or after treatments: before (a) and after 5 applications of agar with di-EDTA 0.5 wt% (b), before
(c) and after 5 applications of agar with di-EDTA 2 wt% (d), before (e) and after 5 applications of agar
with di-EDTA 5 wt% (f), before (g) and after 5 applications of gellan with di-EDTA 0.5 wt% (h), before
(i) and after 5 applications of gellan with di-EDTA 2 wt% (j), before (k) and after 4 applications of
gellan with di-EDTA 5 wt% (l), before (m) and after 5 applications of xanthan with di-EDTA 0.5 wt%
(n), before (o) and after 5 applications of xanthan with di-EDTA 2 wt% (p), before (q) and after
5 applications of xanthan with di-EDTA 5 wt% (r) (© C. Colonnier/Arc’Antique—Grand Patrimoine
de Loire Atlantique, Nantes, France).

2.2.4. Cleaning of Lead Artefacts

The fourth case study concerns another archaeological object: a curse tablet from the
collection of the Medals and Antiques Department of the National Library of France. Most
of the tablets from this collection come from North Africa, date from the early centuries AD,
and were acquired in the 19th century. Such tablets were used as magical objects and some
of them are inscribed [31]. Their condition had degraded as a result of being conserved
in oak coin cabinets and exposed to acetic acid vapors. The inscriptions were either
completely covered over by hard, thick corrosion products, or lightly veiled with whitish
corrosion products. Layers containing the incisions sometimes either lacked adherence
and displayed extensive cracking or, inversely, were compact and solid. The cleaning
objective was to remove corrosion products so that the inscriptions could be read. With
regard to chemical treatments, tests by conservators revealed that only acidic solutions
could eliminate corrosion products from lead. Peelable hydrogels were not very compatible
with acidic solutions. A film of water agar was first formed on the tablet and took on the
shape of the surface. It was then immersed for 2 h in an oxalic acid solution. Next, it was
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placed on the relevant surface for 2 h. The operation was repeated three times. The photo in
Figure 3b shows that the gel shrank after immersion in the acidic solution, and although it
retained its mechanical strength, it was degraded. The contact between the gel film and the
surface to be treated was not as good as when the agar gel was applied hot. The cleaning
resulting from the use of oxalic acid in agar gel was not completely successful (Figure 4):
The layer of corrosion products was reduced but only in the areas in direct contact with the
gel. In addition, a whitish veil formed on the surface and increased with the number of gel
applications. Xanthan gels were more compatible with acidic solutions. The cleaning test
was performed with citric acid (5 wt%) in xanthan gel. The gel was applied for 1 h and the
operation was repeated twice. The surface was rinsed using a cotton swab impregnated
with water, but the gel proved very difficult to remove completely. Figure 4 shows the
detail of the cleaned surface: corrosion products are still largely present and the treatment
was not really effective. Gel treatments are therefore not really suitable for this type of
archaeological object. Mechanical cleaning (micro-sandblasting with plant-based abrasive
or with cationic exchange resins) yielded better results.
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2.2.5. Cleaning of Painted Aluminum Alloys

In this case study, cleaning tests were carried out on painted surfaces from two au-
thentic WWII aircraft wrecks:

A plate fragment from a Messerschmitt Bf109, which crashed during WWII at Le Rheu
(west of Rennes, France) (Figure 5a). The fragment is in a good state of conservation. It
is a copper-based aluminum alloy with cladding (Alclad: layer of pure aluminum above
the alloy), it has a layer of paint with good cohesion with the metal surface. The object’s
surface was covered with black deposits. The cleaning objective was to remove these black
deposits without damaging the paint.

A wing part from a Spitfire Mk VII MB887, which crashed on 1st June 1944, off the
Saint Brieuc coast (France) (Figure 5b). The wing part is in relatively good condition: It
is also a copper-based aluminum alloy with cladding coated with remains of the original
paint. On the object’s surface, there were aluminum corrosion products, some concretions
and some traces of iron corrosion products. The cleaning objective was to remove the
corrosion products and concretions without damaging the paint remains.

43



Gels 2023, 9, 191

Gels 2023, 9, x FOR PEER REVIEW 9 of 18 
 

 

2.2.5. Cleaning of Painted Aluminum Alloys 
In this case study, cleaning tests were carried out on painted surfaces from two au-

thentic WWII aircraft wrecks: 
A plate fragment from a Messerschmitt Bf109, which crashed during WWII at Le 

Rheu (west of Rennes, France) (Figure 5a). The fragment is in a good state of conservation. 
It is a copper-based aluminum alloy with cladding (Alclad: layer of pure aluminum above 
the alloy), it has a layer of paint with good cohesion with the metal surface. The object’s 
surface was covered with black deposits. The cleaning objective was to remove these black 
deposits without damaging the paint. 

A wing part from a Spitfire Mk VII MB887, which crashed on 1st June 1944, off the 
Saint Brieuc coast (France) (Figure 5b). The wing part is in relatively good condition: It is 
also a copper-based aluminum alloy with cladding coated with remains of the original 
paint. On the object’s surface, there were aluminum corrosion products, some concretions 
and some traces of iron corrosion products. The cleaning objective was to remove the cor-
rosion products and concretions without damaging the paint remains. 

 
(a) 

 
(b) 

Figure 5. A small plate fragment from a Messerschmitt Bf109 (a) and a wing part from a Spit-
fire Mk VII MB887 (b) (© L. Preud’homme/Arc’Antique—Grand Patrimoine de Loire Atlantique,
Nantes, France).

For Al alloys, chemical cleaning protocols are still experimental and limited data are
available. The main treatments were developed in Australia and use solutions of citric
acid [32], sodium metasilicates or tetrasodium EDTA [33]. Tri-ammonium citrate (TAC)
solutions were also tested as they are used on painted surfaces [34]. For sodium metasilicate
and tri-sodium EDTA solutions, xanthan gels were applied, agar gels were used for citric
acid (0.055 M) and TAC. The results for the Messerschmitt Bf109 fragment are shown in
Figure 5. The best results were obtained with citric acid or sodium metasilicate solutions:
black deposits were removed with no damage to the paint. The ammonium citrate solution
removed most of the black deposits, but it also eliminated the thinner parts of the painted
layer. The EDTA solution was effective: all the black deposits disappeared but the paint
was damaged by the cleaning. Different treatment solutions were also tested on the Spitfire
wing part (Figure 6). Metasilicate sodium had little effect on corrosion products even after

44



Gels 2023, 9, 191

60 min of treatment: this solution was therefore not suitable for cleaning the Spitfire wing.
TAC or EDTA were more effective solutions because of their action on corrosion products.
When tetra- and disodium EDTA solutions were applied using gel, they partially removed
the corrosion products and had a slight effect on concretions but they also caused the paint
remains to deteriorate. The TAC gel solution offered the best compromise for removing
corrosion products without damaging the traces of paintwork but did not completely clean
the object. To clean the wing part, agar gel with TAC was applied with a spray gun, in line
with accepted procedures for large surfaces [21]. Three 20 min applications were necessary
for a satisfactory result. Dirt was removed and rust stains reduced. Then, to homogenize
the surface of those parts with a larger quantity of corrosion products and concretions, they
were cleaned by sandblasting with vegetal abrasive.
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(d), before (e) and after treatment using xanthan with metasilicate sodium (f), before (g) and after
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2.2.6. Cleaning of Vermeil Gold

This new case study concerns the cleaning of a further object from the Islamic art
collection of the French author, Pierre Loti. It is a dagger in a good state of conservation
(Figure 7a), composed of a steel blade and a walrus ivory handle with silver and ver-
meil plating. The silver elements displayed fine, homogeneous silver sulfide corrosion
(Figure 7b). Tarnished silver objects are often cleaned mechanically but the relief of the
decoration made it difficult to apply a mechanical treatment. Electrochemical treatments
thus provided a good alternative [35]: First, the silver sulfides were reduced to silver
at −0.89 V/SCE (saturated calomel electrode), then the reduced silver deposited on the
gilding was oxidized at +0.66 V/SCE to reveal the gilding. However, since the dagger is a
composite object, the ivory parts could not be immersed. Electrochemical treatment was
therefore applied locally using an agar gel with KNO3 at 1 wt%. Cleaning was completed
by rinsing the surface with a water/ethanol mixture applied with a soft brush (Figure 7c).
In this case study, the gel treatment was successful.

2.2.7. Stabilization of Copper Alloys or Iron

As seen in the previous case, local electrochemical treatments offer a very satisfactory
treatment alternative for composite objects. Other electrochemical treatments have been
developed for the treatment of metals, in particular dechlorination treatments for iron [36]
or copper alloys [37]. The electrochemical setup is a classic three-electrode electrolysis
setup. The object to be treated acts as the working electrode. The gel (agar with KNO3
1 wt%) acts as an electrolytic solution and the counter electrode is a stainless-steel grid.
The reference electrode is placed in an extension containing a conductive solution (KNO3
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1 wt%) and inserted in the gel (Figure 8). The reference electrode is a saturated calomel
electrode (SCE). Cathodic potential is applied to the object to be treated (working electrode)
to allow chloride ions to migrate into the gel: the potential is −1.04 V/SCE for iron objects
or −0.19 V/SCE for copper alloys. A previous study has shown the effectiveness of this
treatment [38]. For it to be effective, contact between the corrosion layers and the gel must
be very good; a drop of the electrolyte (KNO3 at 1 wt%) must be placed on the surface to
be treated. The gel must be changed every 30 min. The difficulty of these electrochemical
treatments using gel is to determine the end of treatment. The amount of extracted chloride
can be monitored by measuring chloride concentration in the gel after treatment by X-ray
fluorescence (XRF) [38]. When all chlorides have been extracted, the object is stable. The
absence of active corrosion can also be checked by measuring the oxygen consumption of
the object in a leakproof pocket [39].
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3. Discussion

These first studies on the use of gels for the treatment of metals show that gels can
provide good treatment alternatives but that they are not suitable in every case. Treatments
using agar gels applied hot yielded the best results. The limits of hot applied agar gels
are their compatibility with treatment solutions. Not all active agents commonly used in
chemical treatments are compatible with agar. The treatment solutions must have a pH
close to the neutral range, otherwise the helix network of the agar gel cannot form and the
gel is not peelable. Agar gel treatments can incorporate solutions of TAC, EDTA, dilute
citric acid or a neutral conductive solution such as KNO3. The case studies showed that gel
treatments work better on historical than archaeological objects. This is due to difference in
the surface state of the objects. Generally, historical objects have a homogeneous surface
whereas archaeological objects have cracked, heterogeneous corrosion layers. Agar gels
applied hot to an archaeological object tend to penetrate the cracks and porosities of the
corrosion layers. When the gel is removed, parts of the surface may become detached
and residues may remain in the corrosion layers. Post-treatment gel residue has not yet
been quantified. An initial study evaluated the presence of residues by integrating a
fluorescent marker, fluorescein (at 10−4 M), in the gels. The technique was not precise
enough to determine the quantity of the residues, but it enabled a comparison to be made
with residues due to agar or xanthan gels, respectively, on a historical silver object with a
surface relief (Figure 9). After removal of the gel, the surface was rinsed with demineralized
water using a cotton swab. The green color of the gel residues showed up under ultraviolet
light (UV). Agar residues were very localized in cavities and represented about 0.7% of the
treated surface while xanthan residues formed a veil on the surface and represented about
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20% of the treated surface. Although xanthan gels are more compatible with chemical
agents than agar gels, they form a viscous gel that is difficult to rinse off. Xanthan residues
are significant and are the main reason that conservators avoid using it for the treatment of
metal objects.
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Figure 9. A historical silver object with surface relief: (a) under normal lighting, (b) under UV light
after removal of a xanthan gel containing 10−4 M fluorescein, (c) under UV light after removal of an
agar gel containing 10−4 M fluorescein (© E. Guibert-Martin/Arc’Antique—Grand Patrimoine de
Loire Atlantique, Nantes, France).

Gellan gels and agar gels form peelable gels and have similar compatibility with
chemical agents. The advantage of agar gels is their thermo-reversibility: they can be
reheated several times, which is not the case for gellan gels. Moreover, the low cost of agar
gels makes them easy for conservators to access. Gellan gels solidify very quickly because
they have a gelling temperature of 70 ◦C while agar gels gel at around 40 ◦C. Agar gels
may seem more practical to use but in hot weather they may become unusable and unable
to solidify. In this case, the use of gellan gels is to be preferred.

Another advantage of using gels is the possibility of localized treatment. They are
particularly suited to the treatment of composite objects that cannot withstand immersion
in a chemical bath. The use of gel also allows the quantity of solution and active agent
to be limited. This is often cited as an ecological benefit of gel treatments. Gel treatment
as a new green method is currently being researched by Edith Joseph at the University of
Neuchatel [8]. The use of siderophores for the cleaning of historical ferrous metals yields
very promising results [40].

These different studies are shared among French conservators who are participating
in the “Gels Métaux” collaborative project [41]. Through a series of exchange days and
workshops, scientists and conservators present their respective studies and treatment
examples as well as the success and limits of their research.

4. Conclusions and Perspectives

For several decades, the use of gels has greatly modified the practices of painting and
graphic art conservators. Progressively, they are now becoming more commonplace in the
restoration of metals. The use of cleaning gels for historical objects is increasingly becoming
an integral part of conservation practice. The best results were obtained using agar gels
associated with a chelating agent (EDTA or TAC) applied hot. These gel treatments were
used to remove dirt and corrosion products from historical copper and iron objects. They
are particularly suitable for composite objects. For objects featuring decoration (gilding,
silver plating, painting), gel treatments can be an interesting alternative. Gel treatments
allow for the local application of a chemical or electrochemical treatment. Peelable gels
are preferable on surfaces in good condition, such as those of historical objects. The hot
application of these peelable gels (agar or gellan gum) ensures good contact between the gel
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and the surface to be treated. The use of gel films is generally unsuitable for the treatment
of metal objects because the geometry of the objects prevents good contact between the gel
film and the treated surface. Viscous gels, such as xanthan gum, adhere well to the surface
of the object and have a good level of compatibility with many active agents. However,
xanthan gels are very difficult to remove, even after copious rinsing. On a surface in good
condition—as is generally the case for historical objects—even after thorough rinsing a large
quantity of xanthan gel residue remains in the form of a thin layer spread over the surface.

For archaeological objects, the use of gels is more problematic. Gels can penetrate
corrosion layers and cause peeling or/and leave residues after treatment. The question of
residues is an issue that remains to be investigated. Gel residues must be quantified and
their impact on the conservation of objects must be determined. It should also be possible
to limit their presence by optimizing gel application protocols.

5. Material and Methods
5.1. Preparation Protocol of Gels

To prepare agar gel, first a solution was heated to 50 ◦C and mixed with 3 wt% agar
(AgarArt® provided by CTS Conservation, France). It was then heated to 90 ◦C until the
mixture became homogeneous and translucent. It was allowed to cool for 24 h before
being heated a second time to 90 ◦C. The preparation of gellan gum (Kelcogel® provided
by CTS or Phytagel® from Sigma Aldrich), requires only a single heating. When peeling
gels (agar or gellan gum) was applied hot, the gel was mixed directly with the treatment
solution and applied to the object with a syringe (hot application). For cold application,
films (2 or 3 mm in thickness) were formed with demineralized water. The films were then
immersed in the treatment solution for 2 h at room temperature, impregnating the gel with
the treatment solution.

Xanthan gum preparations (from Kremer, or Vanzan® by CTS Conservation) were
made at room temperature 24 h prior to use. A concentration of 2 wt% (Kremer) or 5 wt%
(CTS Conservation) xanthan gum was added to the treatment solution, and after 24 h
the mixture became homogeneous. The gel can be applied cold. Unused gel must be
refrigerated (24 h) to avoid the development of mold.

5.2. Treatment Solutions

The active agents selected are used in chemical or electrochemical treatments in metal
restoration. The 4 types of selected active agents tested were: acidic solutions to eliminate
corrosion products, sediments and concretions; neutral or alkaline conductive solutions to
carry out electrolysis, and chelating agent solutions to remove corrosion products. The list
of selected active agents is detailed in Table 2.

Table 2. List of treatment solutions.

Type Composition Concentration pH

Acidic solution

Nitric acid 10−4 M 3
Citric acid 5 wt% 3
Citric acid 0.055M 5.4
Oxalic acid 5 wt% 2

Neutral conductive solution KNO3 1 wt% 5.6

Alkaline solution
Metasilicate Sodium 2 wt% 9

NaOH 2 wt% 13.5

Chelating agent

TAC (tri-ammonium citrate) 2.5 wt% 7
TAC (tri-ammonium citrate) 5 wt% 7.5

Disodium EDTA (ethylenediaminetetraacetic acid) 0.5 wt% 4.7
Disodium EDTA (ethylenediaminetetraacetic acid) 2 wt% 4.5
Disodium EDTA (ethylenediaminetetraacetic acid) 5 wt% 4.4

Tetrasodium EDTA (ethylenediaminetetraacetic acid) 5 wt% 10
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Abstract: In recent years, the scarcity of pure water resources has received a lot of attention from
society because of the increasing amount of pollution from industrial waste. It is very important to use
low-cost adsorbents with high-adsorption performance to reduce water pollution. In this work, a gel
adsorbent with a high-adsorption performance on methylene blue (MB) and Cu(II) was prepared from
bamboo nanocellulose (BCNF) (derived from waste bamboo paper) and montmorillonite nanosheet
(MMTNS) cross-linked by polyethyleneimine (PEI). The resulting gel adsorbent was characterized
by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy
(SEM), X-ray photoelectron spectroscopic (XPS), etc. The results indicated that the MB and Cu(II)
adsorption capacities of the resulting gel adsorbent increased with the solution pH, contact time,
initial concentration, and temperature before equilibrium. The adsorption processes of MB and Cu(II)
fitted well with the fractal-like pseudo-second-order model. The maximal adsorption capacities on
MB and Cu(II) calculated by the Sips model were 361.9 and 254.6 mg/g, respectively. The removal
of MB and Cu(II) from aqueous solutions mainly included electrostatic attraction, ion exchange,
hydrogen bonding interaction, etc. These results suggest that the resulting gel adsorbent is an ideal
material for the removal of MB and Cu(II) from aqueous solutions.

Keywords: gel; adsorption; nanocellulose; montmorillonite; methylene blue; heavy metal

1. Introduction

In recent years, many pollutants, such as nitrates [1,2], phosphorus [3], antibiotics [4],
dyes [5], and heavy metals [6], have been discharged into the water as a result of rapid
industrial development and human activities. Dyes and heavy metals are two of the
most typical pollutants in industrial wastewater. They have serious impacts on human
living environments [7,8]. The dyes in the water bodies can absorb light and hinder the
penetration of light, thereby reducing the photosynthetic activities of aquatic plants and
microorganisms, and inhibiting their growth [9]. Methylene blue (MB), a cationic dye, is
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widely used in textile, paper, coating, and printing [10,11]. The residual MB in wastewater
has a serious influence on the environment and human health due to its non-biodegradable
feature [12]. Cu(II), a common used heavy metal, is produced during copper smelting,
processing, and electroplating [13]. Due to its toxicity and non-degradability in water, it
could gradually accumulate into food chains, endangering human health [14]. As a result,
Cu(II) is one of the priority pollutants classified by the US EPA [15]. Therefore, MB and
Cu(II) in wastewater must be eliminated before being discharged into the environment.

The removal methods of MB and Cu(II) include ion exchange [16], chemical precipita-
tion [17], electrodialysis [18], flocculation [19], membrane technology [20], adsorption [21],
electrodialysis, etc. Chemical precipitation and flocculation are simple to operate, but
they usually produce sludge and are difficult to remove; membrane technology and ion
exchange introduce new chemicals; electrodialysis is also difficult to put into practical
use given the high costs involved [22]. Adsorption is one of the most useful strategies in
wastewater treatment because of its convenience, effectiveness, low cost, and no harm-
ful products [23]. Many adsorbent materials, such as activated carbon, carbon nanotube,
graphene, and metal-organic framework, have been applied to remove dyes and heavy
metals in wastewater [24–27]. It is worth noting that some natural adsorbents, such as
loofah sponges and sugarcane bagasse, can also remove pollution in wastewater, even
though their adsorption capacities are not satisfactory [28,29]. The development of a natu-
ral, cheap, efficient, and biodegradable adsorbent is still a major concern in the study of
wastewater treatment [30].

Cellulose is a naturally acquirable material with good biodegradability and renewa-
bility [31]. Nanoscale cellulose, i.e., nanocellulose (CNF) and cellulose nanocrystal (CNC)
were developed from cellulose-containing materials [32]. The high aspect ratio, abun-
dant hydroxyl groups, and structural flexibility of CNF are beneficial to removing dyes
and heavy metal ions from wastewater. For example, CNF gel absorbent produced from
TEMPO-oxidized CNF has a good adsorption effect on cationic dye (malachite green) [33].
Moreover, the adsorption efficiency of CNF gel toward Cu(II) could be enhanced via
polyethyleneimine (PEI) [34].

Montmorillonite (MMT) is a clay mineral in nature. It has been demonstrated that
MMT could be used as a reinforcing agent in the cellulose framework [35]. MMT has a
three-layer sheet structure, consisting of a middle layer of aluminum oxide octahedron
(Al3+) between two layers of silicon-oxygen tetrahedrons (Si4+) [36]. The Al3+ and Si4+

in MMT will be replaced by other cations with lower charges, resulting in a negatively
charged MMT [37]. To eliminate the charge imbalance in the crystal lattice, a large number
of exchangeable cations, such as Na+ and Ca2+, will be generated between layers [38]. The
overall negative charge and cation exchange in MMT will contribute to its good adsorption
performance on cationic pollutants in wastewater [5]. In addition, the lattice structure
of MMT is maintained by weak electrostatic force and van der Waals force. It is easy to
exfoliate MMT into nanosheets [39]. It will boost its surface areas, resulting in the full
exposure of adsorption sites and functional groups [40,41]. Therefore, MMT nanosheets
(MMTNS) have great potential to be used as adsorbents.

The application of gel in the removal of dyes and heavy metal ions from wastewater
has received a lot of attention [16,42]. The gel structure is built from hydrophilic groups,
for example, –OH, –COOH, –NH2, –CONH2, and –SO3H, or hydrated polymer networks
under aqueous conditions [43]. Many materials have been used to prepare gels, such as
chitosan, alginate, and cellulose. However, these biopolymers have many drawbacks, such
as low stability and limited potential to remove dye molecules. Cross-linking is the most
critical strategy to prepare the gel with a stable 3D structure for improving its physical and
mechanical properties [44,45]. For example, gel beads prepared from sodium alginate and
carboxymethyl cellulose by blending and cross-linking have adsorption capacities for lead
ions due to their hydroxyl and carboxyl groups [46].

Polyethyleneimine (PEI) has a large number of amino groups that have good adsorp-
tion capacities in heavy metal ions and they are able to form cross-linking sites with other
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functional groups to enhance the structure stability [47].In this study, PEI with abundant
amino groups was used as a cross-linking agent to reinforce the connection between bam-
boo nanocellulose and MMTNS for producing a stable gel adsorbent. Similar work on
CNF/MMT/PEI had similar raw materials to ours [35]. The authors focused on the adsorp-
tion of anionic dye through amino groups from PEI, while MMT was overall negatively
charged, it could be easily exfoliated into nanosheets to increase its surface areas and
adsorption sites for positively charged cationic dyes.

Thereby, the performance of the resulting gel adsorbent in this work to remove MB
and Cu(II) from the aqueous solutions was investigated. The novelty of this work was
the utilization of waste bamboo paper, montmorillonite, and polyethyleneimine as raw
materials, for their low costs and great potential adsorption abilities after combining, and
to prepare bio-based gel adsorbents, which had good adsorption capacities for MB and
Cu(II). The adsorption processes and maximum adsorption capacities were determined by
a kinetic study and adsorption isotherm, respectively. Furthermore, SEM and XPS analyses
were carried out to study the adsorption mechanism.

2. Results and Discussion
2.1. Characterization of the BMP Gel Adsorbent
2.1.1. FTIR Spectra

The FTIR spectra of BCNF, MMTNS, and BMP gel are shown in Figure 1. The re-
markable BCNF bands at 3334 and 1601 cm−1 corresponded to O–H stretching, and C=O
stretching, respectively [48]. The bands observed at approximately 2903 cm−1 wereat-
tributed to the symmetrical stretching vibration of the C–H bond [49]. The band at
1431 cm−1 corresponded to CH2 deformation; 1375–1315 cm−1 was assigned to C-H and
C-OH deformation, and 1160–896 cm−1 corresponded to the C–O-stretched backbone vi-
brations and glycosidic linkages between sugar units [50,51]. A strong band at 3633 cm−1,
assigned to Al–OH vibration, was observed from MMTNS [52]. The main bands at 1640,
930, and 795 cm−1 corresponded to the stretching vibration of the hydroxyl groups, O–Si-O
stretching, and the Si–O–Al stretching in MMTNS, respectively [53,54]. Moreover, it was
found that the band of hydrogen bonding in the BMP gel was well retained at 3334 cm−1.
These findings indicated that strong hydrogen bonding interactions were formed between
BCNF and MMTNS [55]. Meanwhile, a secondary amide shoulder from PEI was observed
at 1649 cm−1 of the BMP gel adsorbent, indicating that PEI was involved successfully [56].
Moreover, a strong stretching vibration band of carboxylic acid anion was found at
1560 cm−1 on the IR spectrum of the BMP gel adsorbent [57]. These findings suggested the
formation of a cross-linked structure between –COOH (BCNF) and -NH2 (PEI) through an
electrostatic attraction (charged salt groups formed–NH3(+)/–NH2–(+) and (−)OOC– inter-
actions). The proposed preparation mechanism of the BCNF/MMTNS/PEI gel adsorbent
is shown in Figure 2a.
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2.1.2. SEM

The surface morphology and structure of the MMTNS and BMP gel adsorbent are
presented in Figure 2. There were many nanosheets on the surface of MMTNS (Figure 2b),
suggesting that MMT was successfully exfoliated by ultrasonic separation. It can be
observed from Figure 2c that the gel adsorbent had a three-dimensional layered structure
with a large interlayer space. The porosity of the BMP gel adsorbent was calculated to be
46.9% using Image J. The resulting gel adsorbent prepared from BCNF and MMTNS had
a porous structure. It could provide channels for the adsorbate to pass through [58]. The
cell wall of the BMP gel adsorbent (Figure 2c) showed a dense, smooth, and non-porous
surface, suggesting that BCNF and MMTNS dispersed uniformly and connected tightly
after cross-linking. It is worth noting that N elements were observed on the EDS image of
the BMP gel, indicating that PEI was successfully involved.
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2.2. MB and Cu(II) Adsorption
2.2.1. Effect of Initial pH

The solution pH is an important factor affecting the adsorption process [59]. The point
of zero charge (pHpzc) is the pH at which the positive and negative charges are balanced
(dissociation into the liquid by H+ and OH− ions) [60]. Thus, pHpzc is a useful measurement
for assessing the surface acidity of the BMP gel and characterizing functional groups on its
surface. The pHpzc of the BMP gel was 8.71, as shown in Figure 3a. It indicated that the
surface of the BMP gel was negatively charged at the pH solution> 8.71, and vice versa.
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Figure 3. pHpzc of the BMP gel adsorbent (a); effect of the solution pH on the adsorption of MB (b)
and Cu(II) (c) (C0 = 100 mg/L, t = 24 h, T = 25 ◦C).

MB is a cationic dye in a wide pH range from 0 to 14. It was observed that the
adsorption capacity of MB increased sharply with an increase of the solution pH, and
the maximum adsorption capacity was 93.0 mg/g at pH = 10 (Figure 3b). MB could be
easily adsorbed on the external surface and pores of the resulting gel adsorbent that is
larger than its molecular size [50]. Moreover, MB is either mono- (HMB2+) or di-protonated
(H2MB3+) at acidic pH conditions [61]. The low MB adsorption at pH < pHpzc was due to
the competition between H+ and MB. With the increasing solution pH, most of the carboxyl
groups in the BMP gel adsorbent were ionized into carboxylate anions (–COO−); thus, the
strong electrostatic adsorption between the negative surface charge and the cationic dye
molecule increased [62]. Furthermore, the hydrogen bond interaction between the imine
group (RCH = NR) of the MB molecule and the –OH group of gel adsorbent could enhance
the adsorption of MB [63].

Cu(II) in solution is easily converted into copper hydroxide precipitation when pH
is above 5. Therefore, the effect of pH on the adsorption of Cu(II) was studied in acid
environments (from 1 to 5) at 25 ◦C in this work (Figure 3c). The maximum adsorption
capacity of Cu(II) on the BMP gel was 53.6 mg/g at pH = 5. The adsorption of Cu(II)
improved with the increase of solution pH. The protonation of the amino groups on PEI
was dominant (as pH ≤ 2). As a result, there was an electrostatic repulsion between
the BMP gel adsorbent and Cu(II) [64]. As the solution pH increased, the electrostatic
force between MMTNS and the original interlayer cation gradually strengthened and the
competition from H+ tended to weaken [65]. Meanwhile, amino groups were deprotonated,
thereby improving the adsorption capacity of Cu(II) [66].
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2.2.2. Adsorption Kinetics and Isotherms

Figure 4 displays the adsorption kinetics and isotherms of MB and Cu(II) into the
BMP gel adsorbent. Table 1 lists the fitting parameters. MB and Cu(II)were adsorbed to
reach adsorption equilibrium within 6 and 10 h, respectively. The adsorption rate slowed
down with time, and the adsorption capacity tended to be stable. It suggested that the
adsorption rate was a time-dependent factor. The physical meaning of time dependence
is that the reaction path changes with time [67]. It can be observed from Figure 4a,b that
the adsorption processes of MB and Cu(II) were fitted better by the fractal-like pseudo-
second-order model than the other kinetic models. The correlation coefficients (R3

2) were
0.99 and 0.97, respectively. Moreover, the low reduced Chi-Sqr value also verified that
the fractal-like pseudo-second-order model was the most suitable one to fit MB and Cu(II)
adsorption processes [68].

Gels 2022, 8, x FOR PEER REVIEW 7 of 20 
 

 

2.2.2. Adsorption Kinetics and Isotherms 

Figure 4 displays the adsorption kinetics and isotherms of MB and Cu(II) into the 
BMP gel adsorbent. Table 1 lists the fitting parameters. MB and Cu(II)were adsorbed to 
reach adsorption equilibrium within 6 and 10 h, respectively. The adsorption rate slowed 
down with time, and the adsorption capacity tended to be stable. It suggested that the 
adsorption rate was a time-dependent factor. The physical meaning of time dependence 
is that the reaction path changes with time[67]. It can be observed from Figure 4a,b that 
the adsorption processes of MB and Cu(II) were fitted better by the fractal-like 
pseudo-second-order model than the other kinetic models. The correlation coefficients 
(R32) were 0.99 and 0.97, respectively. Moreover, the low reduced Chi-Sqr value also 
verified that the fractal-like pseudo-second-order model was the most suitable one to fit 
MB and Cu(II) adsorption processes [68]. 

 
Figure 4. Kinetic models for MB adsorption (a) (pH = 10, C0 = 100 mg/L, T = 25 °C) and Cu(II) 
adsorption (b) (pH = 5, C0 = 100 mg/L, T = 25 °C); (c) isothermal models for MB adsorption (pH = 10, 
t = 24 h, T = 25 °C) and Cu(II) adsorption (d) (pH = 5, t = 24 h, T = 25 °C). 

  

Figure 4. Kinetic models for MB adsorption (a) (pH = 10, C0 = 100 mg/L, T = 25 ◦C) and Cu(II)
adsorption (b) (pH = 5, C0 = 100 mg/L, T = 25 ◦C); (c) isothermal models for MB adsorption
(pH = 10, t = 24 h, T = 25 ◦C) and Cu(II) adsorption (d) (pH = 5, t = 24 h, T = 25 ◦C).
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Table 1. Kinetic and isothermal parameters for adsorption of MB and Cu(II).

Model Parameters
Adsorbate

MB Cu(II)

Pseudo-first-order

qe (mg/g) 85.3679 54.593
k1 (g/(mg·h)) 6.0452 9.9634

R1
2 0.9024 0.7876

Reduced Chi-Sqr 37.1686 17.3686

Pseudo-second-order

qe (mg/g) 91.0366 56.5531
k2 (g/(mg·h)) 0.0923 0.2877

R2
2 0.989 0.9386

Reduced Chi-Sqr 4.1878 5.0132

Fractal-like pseudo-second-order

qe (mg/g) 94.8239 60.043
k (g/(mg·h)) 0.0548 0.0961

a 0.7888 0.5773
R3

2 0.9983 0.978
Reduced Chi-Sqr 0.7763 2.0980

Langmuir

qm (mg/g) 173.3430 83.8704
KL (L/mg) 0.1935 0.0645

R4
2 0.8954 0.8824

RL (mg/L) 0 < RL < 1 0 < RL < 1
Reduced Chi-Sqr 684.1315 70.1838

Freundlich

n 5.3604 5.3692
KF (mg/g)/(L/mg) 59.0696 27.2935

R5
2 0.9637 0.9326

Reduced Chi-Sqr 235.3060 40.2597

Sips

qm (mg/g) 361.8749 254.6286
KS (L/mg) 0.2042 0.1118

n 3.8214 4.0920
R6

2 0.9683 0.9345
Reduced Chi-Sqr 239.8241 44.7173

The concentration dependence adsorptions of MB and Cu(II) by the BMP gel adsor-
bent are shown in Figure 4c,d. The obtained high correlation coefficient (R2) and low
reduced Chi-Sqr values from these isothermal Langmuir, Freundlich, and Sips models
are represented in Table 1. The R6

2 values (MB: 0.97; Cu(II): 0.93) calculated from the
Sips isotherm model were greater than the other models, indicating that the Sips isotherm
better described the adsorptions of MB and Cu(II) by the adsorbent BMP gel than the
other ones. This model indicated that the adsorption processes of MB and Cu(II) were
followed by a combined model: monomolecular (at high concentration) and diffuse (at low
concentration) [69]. The maximal adsorption capacities of MB and Cu(II) were 361.9 and
254.6 mg/g, respectively, calculated by the Sips isotherm model, and were higher than most
of the previously reported works (Table 2). In addition, the adsorptions of MB and Cu(II)
were fitted well by the Freundlich model. The n−1 in Freundlich indicates the advantage
of the adsorption process. If n−1 < 1, the adsorption intensity is favorable over the entire
range of the concentration studied. If n−1 > 1, it means that the adsorption capacity is
desirable at a high concentration but much less so at a lower concentration [14]. The value
of n−1 is 0.19 for both MB and Cu(II) (Table 1), indicating favorable adsorptions over the
entire concentration ranges for both MB and Cu(II).
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Table 2. Comparison of the maximum removal capacities of MB and Cu(II) with other biosorbents.

Adsorbent Adsorbate pH T (◦C) Qmax (mg/g) Ref.

Graphene oxide/CNF aerogel MB - - 111.2 [70]
PVA/chitosan/MMT hydrogel MB 8 30 132.2 [71]

Cellulose-derived carbon/MMT MB 8 25 138.1 [50]
Sugarcane bagasse MB - 45 9.41 [53]
BMP gel adsorbent MB 10 25 361.9 This work

CNF aerogel Cu(II) 6 29.85 30.0 [14]
Cellulose/acrylonitrile/methacrylic

acid Cu(II) 5.5 25 76.8 [64]

TEMPO-oxidized CNF Cu(II) 5 30 52.3 [66]
BMP gel adsorbent Cu(II) 5 25 254.6 This work

2.2.3. Effect of Interfering Ions

Actual wastewater contains several common ions, such as K+, Na+, Mg2+, Ca2+, etc.
To check the effects of these ions, we studied the adsorption of MB into BMP in the presence
of 100 mg/L of a dye solution with 10 mM aqueous solutions of salt. The results are
shown in Figure 5. The adsorption of MB into BMP was 94.6% in the blank group. By
adding these interfering ions, the adsorptions of MB slightly decreased in the order of
Na+(93.7%) > K+(92.3%) > Ca2+ (89.5%)> Mg2+ (80.8%). The decrease in the removal was
due to differences in the radii of the hydrated ions. Ions with smaller hydrodynamic radii
can compete with larger-sized contaminants and are easily absorbed, resulting in a decrease
in MB removal [72]. It is worth noting that BMP can effectively remove MB from aqueous
media even in the presence of interfering ions.
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2.2.4. Adsorption Thermodynamics and Adsorbent Reusability

As the temperature increased from 25 to 45 ◦C (Figure 6a,b), the adsorption capacities
of MB and Cu(II) by the BMP gel adsorbent increased from 131.8 to 147.6 mg/g and
from 58.7 to 63.5 mg/g, respectively. Meanwhile, the MB and Cu(II) removal efficiencies
increased from 65.9% to 73.8% and from 58.7% to 63.5%, respectively, with increasing
temperatures. The thermodynamic parameters of the MB and Cu(II) adsorptions by the
BMP gel adsorbent are presented in Table 3. The positive ∆H◦ elucidated that the adsorption
mechanism was endothermic, which implied that a large amount of heat was required
to transfer dyes and metal ions from the aqueous phase to the solid phase. The negative
value of Gibbs free energy (∆G◦) indicated that the adsorptions of MB and Cu(II) on the
adsorbent were spontaneous [72,73]. The positive ∆S◦ values suggested an increase in the
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degrees of randomness at the interface between the solid and liquid during the adsorption
of MB and Cu(II) on the resulting BMP gel adsorbent [53].
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Table 3. Thermodynamic parameters of the adsorption of MB and Cu(II).

Adsorbate T (K) Kc ∆G◦ (kJ/mol) ∆H◦ (kJ/mol) ∆S◦ (Jmol/K)

MB

298 1.9332 −1.6331

14.8247 6.6408
303 2.1144 −1.8863
308 2.3684 −2.2079
313 2.5517 −2.4377
318 2.8165 −2.7377

Cu(II)

298 1.4213 −0.8711

8.7197 3.8453
303 1.4331 −0.9065
308 1.5145 −1.0628
313 1.6681 −1.3315
318 1.7390 −1.4628

The regeneration of the adsorbent was also studied to provide a basis for its practical
application. The reusability of the BMP gel adsorbent was tested by repeating five cycles of
the adsorption–desorption process (Figure 6d). After five cycles, the removal efficiencies
for MB and Cu(II) remained at 49.3% and 47.1%, respectively, indicating that they had
acceptable reusability. The reduction of removal efficiency could be attributed to the incom-
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plete desorption of MB and Cu(II) [74]. It is easy to remove the gel from the suspension for
its solid shape, thereby, it has good potential to be used as an industrial adsorbent.

2.2.5. Adsorption Mechanism Analysis

Figure 7 shows the SEM images of the gel adsorbent after the adsorptions of MB and
Cu(II). Compared with the smooth surface before the adsorption (Figure 2c), the gel adsor-
bent surface became rougher after adsorbing MB and Cu(II) (Figure 5a,b). Furthermore,
as shown in Figure 5d, the blue points (denoted Cu elements) are evenly distributed on
the surface of the adsorbed BMP gel adsorbent, suggesting that Cu was evenly covered
on the surface of the BMP gel adsorbent. These results indicate the successful adsorptions
of MB and Cu(II), and the uniform distribution of the adsorption sites on the adsorbent.
These SEM images suggest that the BMP gel adsorbent had great potential to be used as an
adsorbent candidate.
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The chemical compositions of the BMP gel adsorbents before and after adsorption
were characterized by XPS. As shown in Figure 8a, there was an obvious decrease of
Na1s in the BMP gel adsorbent after MB and Cu(II) adsorptions. The wide scan spectra
of pristine BMP gel adsorbent did not have any signal in the Cu2p region, but binding
energy peaks at around 934.36 eV appeared after Cu(II) adsorption. These findings suggest
that the exchangeable cations, Na+, existed in MMTNS [65]. In the C1s plot (Figure 8b),
the binding energies of C–O and O–C=O were at 285.79 and 287.50 eV before adsorption,
respectively [75]. They shifted to 286.03 and 287.20 eV after MB adsorption and shifted to
286.32 and 288.32 eV after Cu(II) adsorption, owing to the combination of groups, such
as -OH and -COOH on the BMP gel adsorbent with MB or Cu(II) [76]. The O1s initial
peak could be divided into two regions at 530.57 and 531.85 eV, being consistent with the
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oxygen of C=O and C–O (Figure 8c) [77]. They shifted to 531.48 and 532.28 eV after the MB
adsorption and shifted to 531.31 and 532.73 eV after the Cu(II) adsorption, which suggested
that oxygen atoms in carboxyl and hydroxyl groups were involved in the adsorption
process [21]. The N1s spectra of the BMP gel adsorbent before adsorption had peaks at
398.64, 399.49, and 401.15 eV, which were assigned to -NH2, -NH-, and -NH3

+, respectively
(Figure 8d) [48,78]. After MB was adsorbed, the binding energy peaks of N1s shifted to
399.08, 400.04, and 401.67 eV. After Cu(II) was adsorbed, the binding energy peaks of N1s
shifted to 399.18, 400.49, and 402.25 eV. Simultaneously, there was an obvious decrease in
the N1s intensities. These findings confirmed that all three kinds (primary amine, secondary
amine, and tertiary amine groups) of amino groups from PEI were involved in the removal
of MB and Cu(II) [77].
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Under the alkaline condition, the cationic group of MB could be easily attracted by the
deprotonated carboxyl group in the BMP gel adsorbent through the electrostatic interaction.
A large number of hydroxyl groups in the BMP gel adsorbent could form hydrogen bonds
with the imine groups (RCH=NR) of MB molecules, which also enhanced adsorption.
In addition, the van der Waals force may play an important role in the MB adsorption
process [79]. As for the adsorption of Cu(II), the partially ionized carboxyl groups in the
BMP gel adsorbent could form electrostatic adsorption with Cu(II). The PEI grafted on the
gel adsorbent had a large number of amino groups and could also be connected with Cu(II)
to promote adsorption [34]. It is also worth noting that MB molecules and Cu(II) ions could
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exchange cations with ions between the MMTNS layers [16]. Comprehensively, BCNF was
rich in hydroxyl and carboxyl groups, which help form a stable structure of the BMP gel
adsorbent. It could adsorb positively charged MB and Cu(II). MMTNS could be used as a
reinforcement agent for cellulose framework, and the cations between the MMTNS layers
could exchange ions with MB and Cu(II). PEI, as a cross-linking agent with a large number
of amino groups, could increase the structural stability and boost the removal efficiencies
of MB and Cu(II). From the above, the proposed adsorption mechanisms of MB and Cu(II)
by the BMP gel adsorbent are shown in Figure 9.
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3. Conclusions

In this study, the BCNF/MMTNS/PEI (BMP) gel adsorbent was successfully prepared
from bamboo nanocellulose and montmorillonite nanosheets, cross-linked by polyethy-
leneimine, and used as an adsorbent to remove the cationic dye, methylene blue (MB),
heavy metal, and Cu(II) from aqueous solutions. The FTIR and SEM results showed that
the resulting gel adsorbent had abundant hydroxyl, carboxyl, and amino groups, as well
as a porous structure. The kinetics study of adsorption processes on MB and Cu(II) was
well-fitted by a fractal-like pseudo-second-order model. According to the Sips isotherm
model, the calculated maximum adsorption capacities of MB and Cu(II) were 361.9 mg/g
and 254.6 mg/g, respectively. The adsorption mechanisms mainly included electrostatic
attraction, ion exchange, hydrogen bond interactions, etc. These results suggest that the
adsorbent had great potential to be used to remove MB and Cu(II) from aqueous solutions.

4. Materials and Methods
4.1. Materials

The waste bamboo paper was collected from the laboratory. Montmorillonite (MMT)
was bought from Zhejiang Fenghong New Materials co., Ltd. (Huzhou, China). Methylene
blue (MB), copper sulfate pentahydrate, and 2,2,6,6-Tetramethylpiperidine (TEMPO) were
obtained from Sinopharm Chemical Regent Co., Ltd. (Shanghai, China). Polyethyleneimine
(PEI, 50% aqueous solution) was purchased from Aladdin Reagent Co., Ltd. (Shanghai,
China). Sodium hypochlorite (NaClO), glacial acetic acid (CH3COOH), sodium bromide
(NaBr), sodium hydroxide (NaOH), and hydrochloric acid (HCl) were obtained from
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Chengdu Kelong Chemical Co., Ltd. (Chengdu, China). All chemicals were of analytical
grade and used without further purification.

4.2. Preparation of Bamboo Nanocellulose (BCNF)

BCNF was prepared from waste bamboo paper in accordance with the previously
reported methods [80]. Briefly, cellulose was obtained from the waste bamboo paper after
bleaching and alkali treatment. Then 10 g of cellulose was mixed with 1000 mL of deionized
water, 0.36 g of TEMPO, and 37.5 mL of NaClO. Then, the pH was adjusted to 10 by HCI
and NaOH. Next, the suspension was treated with an ultrasonic homogenizer (Scientz,
China) for 1 h. Finally, it was freeze-dried to obtain BCNF.

4.3. Preparation of MMTNS

The 5 wt% of MMT suspension was centrifuged at a speed of 1000 r/min for 2 min
to remove large particles. Then 7 wt% of MMT was exfoliated by an ultrasonic processor
(Scientz, China) at 400 w of power for 15 min. Finally, the exfoliated MMTNS sample was
dried at 60 ◦C.

4.4. Preparation of BCNF/MMTNS/PEI (BMP) Gel Adsorbent

The preparation process is shown in Figure 10. A total of 0.6 g of BCNF and 0.6 g of
MMTNS were evenly dispersed in 100 mL of deionized water by an ultrasonic treatment.
Then, PEI was added to produce the hydrogel. Finally, it was pre-frozen at −20 ◦C and
then freeze-dried at −50 ◦C for 72 h to obtain the resulting BMP gel adsorbent.
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4.5. Adsorbent Characterization

Fourier transform infrared spectroscopy (FTIR) (Nicolet iS50, Thermo Fisher, Waltham,
MA, USA) was carried out to detect the change of chemical groups among samples. The
field emission scanning electron microscopy (SEM, SU 8010, Hitachi, Japan) equipped
with energy dispersive spectroscopy (EDS) was used to analyze the morphology and
elemental presence of the BMP gel adsorbent. X-ray photoelectron spectroscopic (XPS) was
conducted using the Theta Probe Angle-Resolved XPS System, Thermo Fisher Scientific
(UK), with an Al Ka X-ray source. The point of zero charge (pHpzc) of the BMP gel was
determined according to the pH drift method [60]. The porosity of the BMP gel adsorbent
was calculated by Image J.
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4.6. Adsorption Experiment

The resulting gel adsorbent was applied to remove MB and Cu(II) in the batch ad-
sorption experiment. Briefly, a 30 mg sample was added to a 30 mL adsorbate solu-
tion. The mixture was shaken at 170 rpm with a mechanical shaker for 24 h. The effects
of the pH solution (MB: 2–10, Cu(II): 1–5), contact time (0–24 h), initial concentration
(MB: 5–800 mg/L, Cu(II): 20–600 mg/L), and temperature (25–45 ◦C) on the adsorption
efficiency were studied. The adsorption capacity of gel adsorbent on MB was estimated
by calculating the change between the initial and residual MB concentrations using a UV
spectrophotometer (UV-4802H, Unico, Shanghai, China) at 664 nm. The concentration of
Cu(II) was determined using an AA-6300 atomic absorption spectrophotometer with an
air acetylene burner (AAS, Shimadzu, Japan). The adsorption capacity (q) and removal
efficiency (R) were calculated by Equations (1) and (2), respectively.

q =
C0 − Ce

m
× V (1)

R(%) =
C0 − Ce

C0
× 100% (2)

where q represents the adsorption capacity (mg/g); C0 and Ce are the initial concentra-
tion and equilibrium concentrations (mg/L) of the MB or Cu(II) solution, respectively;
V represents the volume of the adsorbent solution (L); m is the weight of the dried
adsorbent (g).

The pseudo-first-order in Equation (3), pseudo-second-order in Equation (4), and fractal-
like pseudo-second-order model in Equation (5) were fitted to analyze the adsorption process.

qt = qe(1 − e−k1t) (3)

qt =
k2qe

2t
1 + k2qet

(4)

qt =
kqe

2ta

1 + kqeta (5)

where t is the contact time (h); qe and qt are the adsorption capacities at equilibrium and
time t, respectively (mg/g); k, k1, and k2 are the rate constants (g/(mg·h)); and a is the
fractal exponent.

Langmuir adsorption isotherm (Equation (6)), Freundlich isotherm (Equation (7)), and
the Sips isotherm model (Equation (8)) were used to analyze the adsorption isotherm.

qe =
qmKLCe

1 + KLCe
(6)

qe = KFCe
1/n (7)

qe =
qmKSCe

1/n

1 + KSCe1/n (8)

where Ce is the concentration of MB or Cu(II) at equilibrium (mg/L); qe and qm are the
adsorption capacity of the adsorbent at equilibrium and the maximum adsorption capacity
at saturation (mg/g), respectively; n is the exponent (dimensionless); KF, KL, and KS
represent Freundlich, Langmuir, and Sips adsorption constants.

The separation factor (RL) was used to describe the favorable degree of the adsorption
process using Equation (9):

RL =
1

1 + KL × C0
(9)

where RL is a dimensionless equilibrium parameter or the separation factor; C0 is the
initial pollutant concentration (mg/L); RL > 1 indicates unfavorable adsorption; RL = 1

65



Gels 2023, 9, 40

corresponds to a linear adsorption process; 0 < RL < 1 indicates favorable adsorption, and
RL = 0 means irreversible adsorption.

To investigate the thermodynamic adsorption behaviors of MB and Cu(II), the thermo-
dynamic parameters (∆G◦, ∆H◦, and ∆S◦) were obtained using Equations (10)–(12):

∆G◦ = ∆H◦ − T∆S◦ (10)

Kc =
qe

Ce
(11)

lnKc =
∆S◦

R
− ∆H◦

R
× 1

T
(12)

where ∆G◦ is the Gibbs free energy change (kJ/mol); ∆H◦ is the enthalpy change (kJ/mol)
and ∆S◦ is the entropy change (kJ/mol); Kc is the distribution coefficient; R is the universal
gas constant (8.314 J/mol K); T is the absolute temperature (K).

4.7. Reusability Experiment

A total of 30 mg of the BMP gel adsorbent was added to the 30 mL MB (100 mg/L) and
Cu(II) solution (60 mg/L) for 24 h. Then, the adsorbed adsorbent was washed for 24 h with
ethanol and the NaOH solution for MB and Cu(II), respectively, followed by freeze-drying
at −50 ◦C for the next cycle. It was repeated 5 times to study the reusability.
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Abstract: Industrial dye wastewater is one of the major water pollution problems. Adsorbent
materials are promising strategies for the removal of water dye contaminants. Herein, we provide a
statistical and artificial intelligence study to evaluate the adsorption efficiency of graphene oxide-
based hydrogels in wastewater dye removal by applying Principal Component Analysis (PCA). This
study aims to assess the adsorption quality of 35 different hydrogels. We adopted different approaches
and showed the pros and cons of each one of them. PCA showed that alginate graphene oxide-based
hydrogel (without polyvinyl alcohol) had better tolerance in a basic medium and provided higher
adsorption capacity. Polyvinyl alcohol sulfonated graphene oxide-based hydrogels are suitable when
higher adsorbent doses are required. In conclusion, PCA represents a robust way to delineate factors
affecting hydrogel selection for pollutant removal from aqueous solutions.

Keywords: hydrogel; sustainability; wastewater treatment; principal component analysis; graphene
oxide; adsorption; hydrogel composites; dye; machine learning; artificial intelligence

1. Introduction

Dyes are used primarily in the production of consumer products, including paints,
textiles, printing inks, paper, and plastics. Each year, the discharged dyes reach 60,000 tons
worldwide. Dyes consist of synthetic organic material with biological toxicity such as
carcinogenicity and teratogenicity and are mutagenic [1]. The main source of synthetic
and organic dyes is the textile dyeing process. Azo dyes are the largest group of artificial
dyes, corresponding to 65% of the total production of dyes in the world [2]. Synthetic
dyes are refractory to temperature [3] and very stable due to their complex molecular
structure and, therefore, do not biodegrade easily [4]. Consequently, dye-contaminated
water discharged by industrial activities, including dye production, is one of the major
water pollution problems posing a serious risk to drinking-water supplies [5].

Enormous efforts and various physical, chemical, and biological remediation ap-
proaches have been developed to treat the aquatic environment. However, physical meth-
ods, including adsorption, have shown promising and sustainable efficiency for treating
dye-contaminated water [6]. Adsorbent materials are yet considered one of the most promis-
ing strategies to remove contaminants [7]. By definition, adsorption is a phenomenon of
surface in which a solute (atom, ion, or molecule in a gas or liquid state) adheres to a
solid sorbent. The advantages of adsorption processes are mainly their simple design, low
cost, and their effectiveness towards a wide range of pollutants compared to other ap-
proaches (coagulation, filtration, precipitation, ion exchange, reverse osmosis, and oxidative
processes) [8–10].

The tendency to favor better adsorption results is observed when the dye-contaminated
waters, hydrophilic, and functional materials are taken into consideration. In recent years,

Gels 2022, 8, 447. https://doi.org/10.3390/gels8070447 https://www.mdpi.com/journal/gels70



Gels 2022, 8, 447

studies have focused on using composite hydrogels for adsorption due to their promising
properties compared to conventional hydrogels or other hydrophilic materials [6]. Hy-
drogels are three-dimensional networks of hydrophilic polymers that can absorb large
amounts of water and swell while maintaining their structure due to the chemical or physi-
cal cross-linking of individual polymer chains [6]. These composites can be enriched with
hydrophilic and functional groups, which enhance the adsorption of dyes and heavy metal
ions from aqueous solutions.

Adsorbents and environmental applications of graphene-based composites have been
reviewed for dye removal [8,11]. Activated carbon has been used intensively in dye
manufacturing industries due to its sustainability and cost-effectiveness [12]. The new
prospect of pollutant management is the combination of nanomaterials such as metal oxides,
graphene, and carbon nanotubes. Graphene is massively used as a nano-adsorbent for
environmental applications due to its high theoretical surface area (~2620 m2g−1) [13,14].
Graphene oxide (GO) is mainly produced from graphene by the Staudenmaier method [15].
GO has abundant oxygen-containing functional groups on its surface and can be processed
into reduced graphene oxide (rGO) [16].

The surface functionality and electrostatic interactions of the adsorbate make GO a
very promising material for environmental applications [17], such as the adsorption of
charged species [18]. However, the efficiency of adsorption of GO depends on the charge
on the dye [4].

To evaluate the adsorption efficiency of GO hydrogels in wastewater dye removal,
Principal Component Analysis (PCA) with several parameters has been applied. In general,
PCA is used to reduce the parameters of a dataset by producing linear combinations of the
original parameters and, therefore, to identify the main parameters necessary to enhance
and improve a given process [19].

Following the large number of parameters that affect the efficiency of GO for wastew-
ater remediation, a PCA approach can be adopted to better seek intercorrelation in parame-
ters related to adsorption efficiency. To the best of our knowledge, this work represents the
first statistical and artificial intelligence study applied to evaluate the adsorption efficiency
of GO hydrogels for dye removal.

2. Methodology

The aim of the study is to apply PCA based on the published study by Pereira et al. [6]
(Table 1) to better understand the functional difference of multiple GO-based hydrogels
depending on their adsorption properties. PCA is a method of revealing patterns among
variables. These patterns were hidden from the bi-dimensional statistical approach. It
presents an unsupervised machine-learning method since, once applied, no prior knowl-
edge is assumed regarding the data or the investigated phenomena. The jth PC matrix (Fi)
is expressed using a unit-weighting vector (Uj) and the original data matrix M with m × n
dimensions. (m: number variables n: number of datasets) as follows [19–22]:

Fi = UT
j M =

i=0

∑ Uji Mi (1)

where U is the loading coefficient and M is the data vector of size n. The variance matrix
M(Var(M)), which is obtained by projecting M to U, should be maximized, following:

Var(M) =
1
n
(UM)(UM)T =

1
n

UMMTU (2)

MaxVar(M) = Max
((

1
n

)
UMMTU

)
(3)
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Table 1. Adsorption data of different composite hydrogels containing graphene oxide (and deriva-
tives) used for the removal of dyes from water (adapted with permission from Ref. [6]).

Composite Hydrogel C% a D b ET c qm d pH e References

1 PMPTC/GO 0.3 - 150 13 Wang et al. [23]
2 PAAm/GO 50 0.2 20 293 Yang et al. [24]
3 CMC/Aam/GO 10 4 720 185 6 Varaprasad et al. [25]
4 Chitin/TA/GO 7 400 231 7 Liu et al. [26]
5 CTS/GO 4000 10 Zhao et al. [27]

6 CTS/amino-functionalized-GO 20 5 385 7 Omidi and
Kakanejadifard [28]

7 PVP/Aac/GO 0.2 5 40 78 7 Atyaa et al. [29]
8 Double ALG/GO network 1 1200 2300 8 Zhuang et al. [30]
9 Single ALG/GO network 1 1200 1800 8 Zhuang et al. [30]
10 Double ALG/PVA/GO network 5 0.1 480 1437 6 Kong et al. [31]
11 Single ALG/PVA/GO network 5 0.1 480 1256 6 Kong et al. [31]
12 ALG/immobilized GO network 5 0.2 200 181 5.4 Li et al. [32]
13 ALG/GO 5 60 122 5.3 Balkız et al. [33]
14 CTA/PAAc/GO 0.5 1 2250 297 7 Chang et al. [34]
15 CTS/GO 50 0.13 70 390 6.5 Chen et al. [35]
16 CTS/GO 50 3.5 Zhao et al. [27]
17 PVA/sulfonated-GO 1 80 720 5.1 6.2 Li et al. [32]
18 Cellulose/GO 0.5 20 20 123 7 Soleimani et al. [36]
19 Cellulose/GO 10 2 70 46 Liu et al. [26]
20 CMC/PVA/GO 0.7 1.5 80 89 8 Dai et al. [37]
21 k-CARR/GO 30 6 658 5.3 Yang et al. [38]
22 PEGDMA-rGO 1 2.5 720 60 7.4 Halouane et al. [39]
23 PAMm/GO 5 75 26 Thompson et al. [40]
24 PEGD/thiolated-GO 17 75 6 Liu et al. [26]
25 PAAc-g-XG/GO 0.5 0.25 7 Hosseini et al. [41]
26 PEI/GO 240 334 Guo et al. [42]
27 PVA/sulfonated-GO 1 80 4.4 6.2 Li et al. [32]
28 ALG/PAAc/Graphite 60 629 7 Verma et al. [43]
29 XG-g-PAAc/rGO 5 0.5 30 1052 6 Makhado et al. [44]
30 PAMm/GO 50 0.025 20 288 Yang et al. [24]
31 CTS/GO 250 1.9 Zhao et al. [27]
32 PMPTC/GO 0.3 150 12 Wang et al. [23]
33 Cellulose/GO 0.5 20 40 62 7 Soleimani et al. [36]
34 PEI/GO 240 132 Guo et al. [42]
35 ALG-Fe3+/rGO 50 360 18.4 Xiao et al. [45]

a C% = Content of graphene oxide (and derivatives) (wt-%) in the composite hydrogel. b D = Adsorbent dosage
(g/L). c ET = time necessary to achieve the equilibrium condition (min). d qm = Adsorption capacity (mg/g).
e pH = potential of hydrogen is a scale used to specify the acidity or basicity of an aqueous solution.

Since 1
n MMT is the same as the covariance matrix of M(cov(M)), Var(M) can be

expressed, following:
Var (M) = UTcov (M) U (4)

The Lagrangian function can be defined by performing the Lagrange multiplier
method, following:

L = UT

L = UTcov(M)U − δ
(
UTU − 1

) (5)

for (5), “UTU−1” is considered equal to zero since the weighting vector is a unit vector.
Hence, the maximum value of Var(M) can be calculated by equating the derivative of the
Lagrangian function (L), with respect to U, following:

dL
dU

= 0 (6)
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cov(M)U − δU = (cov(M)− δI)U = 0 (7)

where,

δ: eigenvalue of cov(M)
U: eigenvector of cov(M)

3. Results and Discussion

Figure 1 shows the PCA biplot for the published results on the adsorption data of
different composite hydrogels containing GO (and derivatives) used for the removal of dyes
from water [6]. The first two PCs accounted for 62.03% of the total variance (32.73% for PC1
and 29.30% for PC2). The factors: C%, D, and ET, exhibited the highest contribution to PC1,
accounting for 26.43%, 34.12%, and 36.22%, respectively. As for PC2, qm and pH accounted
for the highest contributions, yielding 45.91% and 35.66% of the total contribution of these
factors, respectively. The difference in factors’ contributions with respect to the investigated
PCs indicates a high representation of the adsorption data of the investigated hydrogels.
C% showed a negative influence on both PCs; however, it influenced PC2 to a lesser extent.
For qm and pH, they presented certain proximity and were located on the top-right quarter
of the biplot. More specifically, qm had a strong positive influence along PC2, with no
influence along PC1. The factor pH had a slight positive influence along PC1 with a major
positive effect along PC2. ET and D are located in the bottom-right corner of the biplot.
More specifically, ET scored a strong positive influence along PC1, with no influence for
PC2. For D, it scored a strong negative influence along both PCs.
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Figure 1. PCA for all datasets. Ref. [6] White bullets represent the 35 investigated graphene oxide
hydrogels. Black bullets represent the adsorption properties involved. Different colors were used for
clusters to make the interpretation of results easier.

PCA yielded four different distinguishable clusters of hydrogels: red, blue, yellow, and
grey (Figure 1). It is quite interesting that the red cluster gathered most of the investigated
hydrogels, indicating a poor to no influence of the studied factors on each hydrogel of
this cluster. For the blue cluster, it gathered hydrogels 8 and 9 and showed a positive
correlation along pH and qm. This indicates that alginate GO hydrogels (without polyvinyl
alcohol) are more suitable for an elevated pH medium, and higher adsorption capacities are
required. These findings are corroborated by Zhuang et al., where alginate GO hydrogels
had the highest qm and the best tolerance for strong base [30]. For the yellow cluster, it
gathered hydrogels 16, 17, and 27; and showed a positive correlation along ET and D. Since
both 17 and 27 are the only sulfonated polyvinyl alcohol hydrogels, this could indicate that
these hydrogels are better suitable for highly contaminated water. This is supported by Li
and colleagues’ results, where both 17 and 27 scored the highest sorbent dosage D [32]. For
the time to achieve equilibrium conditions (ET), the findings in hand could not confirm
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or inform its relevance to these hydrogels, as a part of the data is missing (Figure 1). For
the grey cluster, it gathered hydrogels 10, 15, 21, 24, 26, 30, and 35 and showed a positive
correlation with C%. This could generally indicate the relevance of the content of GO in
composite hydrogels. No other findings can be depicted since the included hydrogels show
significantly different functional groups and are, therefore, not similar.

Even though most of the individuals have shown negligible influence by both PCs,
all of the datasets for the PCA approach have shown quite interesting findings. Hence,
ALG/GO hydrogels (without PVA) have shown more suitability for higher pH media and
where higher adsorption capacities are required. PVA sulfonated hydrogels are estimated
to be more likely applied where higher adsorbent doses (D) are required. To seek a
better knowledge, the dataset will be split into: (a) high correlation individuals (having
correlation factor, x > +0.2; Figure 2), (b) low correlation individuals (having correlation
factor, −0.2 < x < +0.2; Figure 3).

Gels 2022, 8, x FOR PEER REVIEW 5 of 9 
 

 

PCA yielded four different distinguishable clusters of hydrogels: red, blue, yellow, 
and grey (Figure 1). It is quite interesting that the red cluster gathered most of the inves-
tigated hydrogels, indicating a poor to no influence of the studied factors on each hydro-
gel of this cluster. For the blue cluster, it gathered hydrogels 8 and 9 and showed a positive 
correlation along pH and qm. This indicates that alginate GO hydrogels (without polyvi-
nyl alcohol) are more suitable for an elevated pH medium, and higher adsorption capaci-
ties are required. These findings are corroborated by Zhuang et al., where alginate GO 
hydrogels had the highest qm and the best tolerance for strong base [30]. For the yellow 
cluster, it gathered hydrogels 16, 17, and 27; and showed a positive correlation along ET 
and D. Since both 17 and 27 are the only sulfonated polyvinyl alcohol hydrogels, this could 
indicate that these hydrogels are better suitable for highly contaminated water. This is 
supported by Li and colleagues’ results, where both 17 and 27 scored the highest sorbent 
dosage D [32]. For the time to achieve equilibrium conditions (ET), the findings in hand 
could not confirm or inform its relevance to these hydrogels, as a part of the data is miss-
ing (Figure 1). For the grey cluster, it gathered hydrogels 10, 15, 21, 24, 26, 30, and 35 and 
showed a positive correlation with C%. This could generally indicate the relevance of the 
content of GO in composite hydrogels. No other findings can be depicted since the in-
cluded hydrogels show significantly different functional groups and are, therefore, not 
similar. 

Even though most of the individuals have shown negligible influence by both PCs, 
all of the datasets for the PCA approach have shown quite interesting findings. Hence, 
ALG/GO hydrogels (without PVA) have shown more suitability for higher pH media and 
where higher adsorption capacities are required. PVA sulfonated hydrogels are estimated 
to be more likely applied where higher adsorbent doses (D) are required. To seek a better 
knowledge, the dataset will be split into: (a) high correlation individuals (having correla-
tion factor, x > + 0.2; Figure 2), (b) low correlation individuals (having correlation factor, 
−0.2 < x < + 0.2; Figure 3). 

 
Figure 2. PCA for highly correlated values. [6] White bullets represent the 35 investigated graphene 
oxide hydrogels. Black bullets represent the adsorption properties involved. 

1

2

3

4

5
6

7 8

9

10

11

12

13 14

15

16

17

18

19

20
21

22

23

24

25

26

27

C%

D

ET

qm
pH

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0

0

10

20

30

40

50

C% D ET qm pH

Contribution of the variables (%)

PC1
PC2

High Values

Principal Component 1 (33.66%)

Pr
in

cip
al

 C
om

po
ne

nt
 2

 (3
1.

80
%

)

Figure 2. PCA for highly correlated values. Ref. [6] White bullets represent the 35 investigated
graphene oxide hydrogels. Black bullets represent the adsorption properties involved.
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Figure 3. PCA for low correlated values. Ref. [6] White bullets represent the 35 investigated graphene
oxide hydrogels. Black bullets represent the adsorption properties involved.

Figure 2 shows the PCA biplot for the highly correlated individuals of the investigated
GO hydrogels. The first two PCs accounted for 65.46% of the total variance (33.66% for
PC1 and 31.80% for PC2; Figure 2) The slightly higher variance, if compared to the all-
dataset approach (Figure 2) indicates that the following findings are more reliable than
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the total dataset PCA. For the factors, C and ET exhibited the highest contribution of
PC1, accounting for 27.32% and 29.12%, respectively. As for PC2, D and qm accounted
for the highest contributions, yielding 43.22% and 28.91% of the total contribution of this
factor. Interestingly, both qm and pH showed moderate contributions along both PCs.
Similar to the case of all datasets, C% in the PCA analysis showed a negative influence
on both PCs. For qm and pH, they presented certain proximity and were located in the
bottom-right quarter of the PCA-biplot. Therefore, qm and pH scored a strong positive
and negative influence along PC1 and PC2, respectively (Figure 2). ET and D are located
on the top-right of the PCA biplot. More specifically, D scored a strong and moderate
influence along PC2 and PC1, respectively (Figure 2). ET and D are located in the top-right
of the PCA biplot. More specifically, D scored a strong and moderate influence along
PC2 and PC1, respectively (Figure 2) For ET, it scored a moderate influence on both PCs.
%C was individually located on the bottom-left corner of the PCA biplot and presented
a moderate negative influence along with both PCs. Even though the factors showed
different distributions on the PCA biplot than the all-dataset approach, it revealed the same
grouping. Additionally, a better distribution of the individuals is clear (Figure 2). This
reveals the efficiency of dividing the dataset into high and low-correlation individuals
(Figures 2 and 3). In contrast, a high distribution of individuals makes seeking any relevant
tendencies between hydrogels a rather tedious and time-consuming approach.

Figure 3 shows the PCA biplot for the low correlated individuals of the investigated
GO hydrogels. The first two PCs accounted for 73.79% of the total variance (44.04% for
PC1 and 29.75% for PC2; Figure 3). Once compared with the two previous approaches
(Figures 1 and 2), the higher variance of the low correlation individuals indicates that the
following strategy is the most reliable one, as it copes with the highest amount of the “truth”
in the investigated dataset. Factors, D, qm, and pH exhibited the largest contribution of
PC1, accounting for 27.77%, 31.28%, and 34.56%, respectively. As for PC2, ET accounted
for the highest contribution, yielding 56.15% of the total contribution of this factor. It is
worth mentioning that different groupings were yielded than the two previous approaches
(Figures 1 and 2). Hence, ET is individually located on the upper part of the biplot, yielding
a high positive influence following PC1 and a negligible one along PC2 (Figure 3). pH and
D are located on the bottom-right quarter of the PCA biplot. More specifically, D scored
strong positive and negative influences along PC1 and PC2, respectively. For pH, a strong
positive influence along PC1, with a minor influence along PC, can be found. C% and
qm are located in the bottom-left quarter of the PCA biplot. More specifically, qm scored
a strong negative influence along with both PCs. For C%, it scored a moderate negative
influence along with both PCs. For individuals, and similarly to the highly correlated
individuals, it yielded multiple clusters containing hydrogels with very different matrices
and functional groups, which prohibits any change of finding relevant findings between
the hydrogels in hand.

4. Conclusions

This study aims to apply PCA to delineate interesting tendencies affecting the ad-
sorption features of GO-based hydrogels. Different approaches were adopted, and each
presented pros and cons. When PCA was run for the whole data set at once, ALG/GO
hydrogels (without PVA) showed better tolerance in the basic medium and provided
higher adsorption capacity to be implemented. PVA sulfonated hydrogels are considered
preferably applied where higher adsorbent doses (D) are required.

Furthermore, we have attempted to develop a new strategy to reveal the outmost
findings from the datasets. The adopted strategy involves splitting the individual hydrogels
between high and low correlated ones. In our case, both groups of individual hydrogels
showed a higher presentation of the total variance rather than having the total dataset
analyzed all at once. Interestingly, the highest variance was yielded for the low correlated
factors. This will allow a better seeking out of the tendencies between different hydrogels.
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Even though no specific trends were yielded when the various hydrogels were separated,
the highest variance makes this method better suited for the provided data-driven study.
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Abstract: Water pollution is caused by multiple factors, such as industrial dye wastewater. Dye-
contaminated water can be treated using hydrogels as adsorbent materials. Recently, composite
hydrogels containing metal oxide nanoparticles (MONPs) have been used extensively in wastewater
remediation. In this study, we use a statistical and artificial intelligence method, based on principal
component analysis (PCA) with different applied parameters, to evaluate the adsorption efficiency
of 27 different MONP composite hydrogels for wastewater dye treatment. PCA showed that the
hydrogel composites CTS@Fe3O4, PAAm/TiO2, and PEGDMA-rGO/Fe3O4@cellulose should be used
in situations involving high pH, time to reach equilibrium, and adsorption capacity. However, as the
composites PAAm-co-AAc/TiO2, PVPA/Fe3O4@SiO2, PMOA/ATP/Fe3O4, and PVPA/Fe3O4@SiO2,
are preferred when all physical and chemical properties investigated have low magnitudes. To
conclude, PCA is a strong method for highlighting the essential factors affecting hydrogel composite
selection for dye-contaminated water treatment.

Keywords: dye removal; hydrogel; hydrogel composites; machine learning; metal oxide nanoparticles;
principal component analysis; wastewater

1. Introduction

Dyes are made of synthetic organic material. They are mutagenic and exhibit biolog-
ical toxicity, such as teratogenicity and carcinogenicity [1,2]. Dyes are primarily used in
the production of some consumer goods, including textiles, plastics, paints, paper, and
printing inks. According to recent studies [3], approximately 60,000 tons of dyes are dis-
charged annually worldwide. Synthetic and organic dyes are mainly produced through the
textile dyeing process. Azo dyes, which correspond to more than half of the total global
production of dyes, represent a major part of artificial dyes [4,5]. Due to their complex
molecular structure, synthetic dyes are known to be refractory to temperature [6], and very
stable; hence, they are not easily biodegradable [7]. Subsequently, dye-contaminated water
discharged by industries is one of the major water pollution issues threatening drinking
water supplies [8].

Huge efforts and numerous physical, chemical, and biological remediation methods
have been devoted to the treatment of the aquatic environment [9]. In particular, phys-
ical processes, including adsorption, show promising and long-term sustainable efficacy
in treating dye-contaminated water [10]. Indeed, adsorbent materials are very capable of
eliminating contaminants [11]. By definition, adsorption is a surface phenomenon in which
a solute adheres to a solid sorbent. The solute can be an atom, ion, or molecule in a gas or
liquid state. Adsorption processes have several advantages over other methods, such as
filtration, precipitation, coagulation, reverse osmosis, ion exchange, and oxidative processes.
In addition, adsorption processes are effective against a wide range of pollutants while
keeping a simple design and a low cost [12–14]. When dye-contaminated waters, hydrophilic
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materials, and functional materials are considered, there is a tendency to favor better im-
proved adsorption results. Recently, the use of composite hydrogels for adsorption has been
the focus, thanks to their promising properties in comparison to conventional hydrogels or
some other hydrophilic materials [10]. Due to their three-dimensional network structure
and polymeric hydrophilicity, hydrogels are able to adsorb large quantities of water and to
swell while preserving their structures. This is due to individual polymer chains that are
chemically or physically cross-linked [10]. These composites can also be enriched with a
variety of functional groups to further improve the adsorption of dyes and heavy metal ions
from aqueous media.

Recently, composite hydrogels containing metal oxide nanoparticles (MONPs) have
been extensively prepared as they have been used in different areas, including environmen-
tal remediation [15–17]. The use of these composites in the treatment of dye-contaminated
water has received particular attention [10,18,19]. MONPs have numerous characteristics,
such as specific adsorption properties [20], magnetic features, and redox capabilities. There-
fore, in addition to their ability to improve hydrogels’ electrical, mechanical, and thermal
properties, MONPs have been used to enhance adsorption selectivity and catalytic activity
in pollutant species degradation [21,22]. By adjusting the external magnetic field, they
can also allow for remote control of swelling and analyte adsorption/desorption. In fact,
composite hydrogels containing magnetic MONPs can reversibly change shape and volume
in response to external magnetic fields [23–25]. Because an external magnetic field imposes
attractive/repulsive forces, the movements of the embedded magnetic nanoparticles di-
rect the polymeric chains’ contraction and distention [26]. As a result, liquid diffusion
throughout the hydrogel matrix can be tailored, influencing the adsorption/desorption
of the concerned solutes, such as dye molecules. The ability to easily recover from the
treated media using magnets represents one more advantage for composite hydrogels
containing magnetic compounds when compared to the use of more arduous processes,
such as filtration, sedimentation, or centrifugation [27,28].

Principal component analysis (PCA) with several parameters was used to assess
the adsorption efficiency of composite hydrogels containing MONPs in wastewater dye
removal. PCA is generally used to reduce the parameters of a dataset by generating linear
combinations of the original parameters, and thus to identify the main parameters required
to enhance and improve a given process [29–31]. Following the huge number of parameters
affecting the effectiveness of composite hydrogels containing MONPs for wastewater
treatment, a PCA study can be implemented to pursue intercorrelation in parameters
associated with adsorption efficiency. In this work, we used the same methodology as our
previously published work on dye removal using graphene oxide hydrogels [29]. Herein,
we conduct our analysis on 27 different MONPs hydrogel composites, and we examine
the intercorrelation between five parameters, namely pH, adsorbent dosage (D), time to
reach equilibrium (ET), adsorption surface (qm), and the content of MONPs in the hydrogel
(MONP%). To the best of our knowledge, this is the first statistical and artificial intelligence
study that has been used to assess the adsorption efficiency of MONPs containing hydrogels
for dye removal.

2. Results and Discussion

PCA analysis was conducted on previously published data (Table 1) from the study of
Pereira et al. [10]. Figure 1 presents the PCA bi-plot for previously published data on the
physical and chemical properties of various composite hydrogels containing MONPs used
for dye removal from water [10]. The first two PCs were responsible for 61.89% of the total
variance (37.15% for PC1 and 24.74% for PC2) (Figure 1). When the physical and chemical
properties of composite hydrogels containing MONPs (and derivatives) were considered,
they yielded similar results to those of PCA [29]. This indicates that the PCA approach
is equally efficient for both dataset approaches. ET provided the highest contribution to
PC1 for the factor MONP% and accounted for 76% of its total contribution. The high
contribution of MONP% was surprising, given that fewer data for this factor were provided
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following the various investigated samples (Table 1). In terms of PC2, pH was the most
significant factor, accounting for 70% of its total contribution. The large disparity in factor
contribution following the first two PCs indicates the representability of the investigated
physical and chemical properties for the various hydrogels under consideration. MONP%
and ET had a strong positive influence along PC1, with no to minor positive influence
along PC2. This could probably indicate a high correlation between the necessary time to
reach equilibrium, from one side, and the carbon content, from the other side. Nonetheless,
this could not be confirmed or infirmed following the shortage in data with regard to the
carbon content. For pH, it showed a high positive influence along PC2, with no influence
along PC1. As for qm, it showed an average negative influence, and a positive influence
along PC1, and PC2. Interestingly, D showed nearly no influence on either PC.

Table 1. Physical and chemical properties data of different composite hydrogels containing MONPs
used for the removal of dyes from water (adapted with permission from Pereira et al. Ref [10]).

MONPs Composite Hydrogel Composite # MONP% D ET qm pH Ref

CTS@ Fe3O4 1 - 1 400 142 7 [32]
ALG@Yttrium 2 - 2 30 1087 6 [33]

Collagen-g-PAAc-co-NVP/Fe3O4@SiO2 3 - 0.05 150 199 7 [34]
PAAm-co-AAc/TiO2 4 20 1 - 2.2 - [35]

PAAm/TiO2 5 0.5 - 600 132 6.5 [36]
St-g-PAAc/ZnSe 6 - 1 30 189 6 [37]

PAAc/Co3O4 7 - 0.5 30 837 - [38]
PEGDMA-rGO/Fe3O4@cellulose 8 30 2.5 720 112 7.4 [39]

CTS/Fe3O4@κ-CARR 9 - 2 30 123 5.5 [40]
CTS/MMT/γFe2O3 10 - 100 180 82 - [41]

Collagen-g-PAAc-co-NVP/Fe3O4@SiO2 11 - 0.05 125 202 7 [34]
PVPA/Fe3O4@SiO2 12 0 1.4 - 14 - [42]

AMPS/NIPAAm/Fe3O4 13 0 1 10 833 7 [43]
AMPS/NIPAAm/Cu2O 14 0 1 35 341 7 [43]

AMPS/NIPAM/Fe3O4·Cu2O 15 0 1 5 746 7 [43]
Cellulose/κ-CARR/TiO2 16 0.7 115 7 [44]

ALG/AgNPs 17 1 120 214 - [45]
CMSt/PVA/Fe3O4 18 10 600 24 7 [46]
PAAm/CTS/Fe3O4 19 0.1 125 1603 7 [47]

Cellulose/Fe3O4-diatomite 20 0.7 30 102 10 [48]
HPG@Fe3O4 21 4 30 459 8 [49]

PAAc-co-AAm/Co3O4·Cu2O 22 0.5 40 238 7 [50]
PAAc-g-ALG/TiO2 23 0.6 1157 7 [51]

HPG@Fe3O4 24 4 30 400 7 [49]
PMOA/ATP/Fe3O4 25 3 400 1.7 4.6 [52]

PAAc-g-salep/AgNPs 26 1 20 93 2 [53]
PVPA/Fe3O4@SiO2 27 1.4 16 - [42]

MONP% = Content of metal oxide (and derivatives) (wt-%) in the composite hydrogel. D = Adsorbent dosage
(g/L). ET = time necessary to achieve the equilibrium condition (min). qm = Adsorption capacity (mg/g).

Individuals can be clustered in three ways (blue, red, and yellow) based on the different
trends found in the samples (Figure 1). Surprisingly, the red cluster contained the vast
majority of the samples examined. This cluster, along with D, qm, and pH, was positively
correlated, indicating that these properties had the greatest influence on the investigated
hydrogels. It put together samples 4, 12, 26, and 27 for the yellow cluster. All investigated
factors had a negative to low correlation with these samples. This suggests that these
hydrogels could be used in situations where low pH, adsorbent dosage (D), time to reach
equilibrium (ET), and adsorption surface (qm) are required. Only samples 8 and 18 were
collected for the blue cluster because they were positively correlated with ET and MONP%.
Interestingly, both hydrogels included ferric oxide in their composite structure, despite
the fact that this feature is not unique to them. In summary, when the entire dataset was
considered, the PCA presentation demonstrated an acceptable presentation of the truth
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(around 60% of the total variance; Figure 1). However, one shortcoming may arise from
the fact that MONP% was missing for the majority of the investigated hydrogels. This will
almost certainly create a bias in the differences. As a result, overcoming this problem is as
simple as ignoring the MONP% portion.
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Figure 1. PCA for all datasets. Small empty bullets represent the 27 investigated hydrogels containing
MONPs. Large gray bullets represent different physical and chemical properties.

The PCA bi-plot for the physical and chemical properties of the investigated hydrogels,
excluding MONP%, is shown in Figure 2. The first two PCs were responsible for 67.87%
of the total variance (40.18% for PC1 and 27.69% for PC2; Figure 2). The higher variance
score, in comparison to the PCA bi-plot in Figure 1, indicates that the strategy used was
effective. ET and qm were the factors that contributed the most to PC1, accounting for
82.85% of the total contributions. In terms of PC2, D contributed the most (67.62%), with
pH having a moderate influence (30% of the PC2 contribution; Figure 2). Similar to the
case in Figure 1, a high discrepancy in the factors’ contributions is scored. Figure 2 shows a
higher distribution of the factors, which is interesting. On one side of PC1, qm had a strong
positive influence, while ET had a strong negative influence. D had a significant positive
influence on PC2. Both positive influences on pH were observed in both PCs.
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Individually, and similarly to the “all dataset” case, three distinct clusters can be
identified when MONP% is considered (Figure 2). The majority of the samples were found
in the red cluster, which is positively correlated with both pH and qm. The yellow cluster
contained a smaller number of samples than the red cluster. It included samples 1, 4, 5, 8,
12, 18, 25, and 27, all of which showed a strong positive correlation with ET. Interestingly,
more samples were more likely to be influenced by the time to reach equilibrium when
MONP% was excluded. Only hydrogel samples 10 and 16 were found in the blue cluster,
which was positively correlated with D. Nonetheless, the lack of data input for these two
samples makes a non-speculative conclusion about the origin of this proximity impossible.
In summary, when the MONP% was excluded, the dataset’s representativeness increased.
This is demonstrated by the greater contribution of total variance in Figure 2 than in
Figure 1. A “separation of individuals” approach was used to improve the presentation of
the dataset. The goal was to perform a PCA on each cluster to gain a better understanding
of the similarities and differences between the hydrogel samples under consideration.

Figure 3 presents the PCA bi-plot for the physical and chemical properties of the
samples of the red cluster in Figure 2. The first two PCs accounted for 62.58% of the
total variance (35.48% for PC1, and 27.19% for PC2; Figure 3). For the factors, the highest
contribution was scored for D and ET, along PC1 (46.38% and 47.57%, respectively). For
PC2, the highest contribution was scored for qm and pH (52.47% and 41.74%, respectively).
Interestingly, a high distribution of the factors can be noticed, as in the case of Figure 2. ET
had a strong positive influence on one side of PC1, while D had a strong negative influence
on the other. Both pH and qm had a significant positive influence along PC2, with a minor
positive influence along PC1.
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Figure 3. PCA for all datasets. Small bullets represent the 15 investigated hydrogels containing
MONPs (red cluster components of Figure 2). Large gray bullets represent different physical and
chemical properties, with the exclusion of metallic oxide nanoparticles (MONP%).

For individuals, four different clusters were distinguished. The red cluster contained
samples 2, 7, 13, 15, 20, and 23 and showed a positive correlation along qm and pH factors.
The blue cluster contained samples 3, 11, and 17 and showed a positive correlation along the
ET. The yellow cluster only contained samples 21 and 24 and showed a positive correlation
with factor D. As for the green cluster, it contained samples 6, 9, 14, and 22 and showed
a negative correlation along all of the investigated factors. Even though the red cluster
PCA presented a lower variance than the “all dataset” approach, it similarly showed a
higher distribution of the factors along the first two PCs, and it distinctively showed a
high distribution of the individuals (four clusters in Figure 3, rather than three clusters in
Figure 2). This allows for a better distinction between the different features and conditions
of the different investigated hydrogel composites.
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Figure 4 depicts the PCA bi-plot for the physical and chemical properties of the
samples in the yellow cluster of Figure 2. When only these samples were considered, a
higher presentation of the total variance was observed, with a variance of 91.89% (64.11%
for PC1 and 27.78% for PC2; Figure 4). This demonstrates the effectiveness of the strategy
used, as more focus on “similar” individuals’ results in a greater ability to compare them.
In the case of PC1, the factors with the highest contributions were pH and ET (36.8% and
30.56%, respectively). In terms of PC2, D had the highest contribution (57.72 percent of
the total contribution of PC1), while qm had a moderate contribution of 40% (Figure 4).
When compared to the original PCA in Figure 2, a lower distribution of the factors were
seen along the bi-plot of the yellow cluster. As a result, all of the factors were located on
the positive side of PC1, with qm on the positive side of PC2 and D on the negative side. It
had no effect on pH or ET along PC2.
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Figure 4. PCA for all datasets. Small bullets represent the 15 investigated hydrogels containing
MONPs (yellow cluster components of Figure 2). Large gray bullets represent different physical and
chemical properties, with the exclusion of metallic oxide nanoparticles (MONP%).

Individuals were divided into three clusters; the red cluster contained samples 1, 5,
and 8, and had a high positive correlation with qm, pH, and ET. The blue cluster contained
only hydrogel sample 18 and demonstrated a strong positive correlation with D. The
yellow cluster contained samples 4, 12, 25, and 27, and it was located on the opposite
side of the different factors (along the negative side of PC2). Given the high variance, it is
safe to assume that the composite hydrogel CMSt/PVA/Fe3O4 should be used with high
adsorbent doses. For CTS@Fe3O4, PAAm/TiO2, and PEGDMA-rGO/Fe3O4@cellulose, it
should be used where high pH, time to reach equilibrium, and adsorption capacity were
implemented. For PAAm-co-AAc/TiO2, PVPA/Fe3O4@SiO2, PMOA/ATP/Fe3O4, and
PVPA/Fe3O4@SiO2, it should be used where all of the investigated factors are low.

3. Conclusions

In this study, we performed principal component analysis (PCA) for a better un-
derstanding of the correlation between several chemical and physical properties. The
properties in-hand are: (a) Time to reach equilibrium (ET), (b) water acidity (pH), (c) Adsor-
bent dosage (D), and (d) adsorption capacity (qm). In order to seek a higher presentation
of the dataset, a “separation of individuals” approach was acquired. The aim was to per-
form a PCA on each of the clusters to better seek the similarities and dissimilarities of the
investigated hydrogel composites. Interestingly, a higher presentation of the total variance
was shown in one of the cases, making the PCA-biplot reliable for seeking solid conclu-
sions. The PCA (Figure 4) showed different potential applications for some of the investi-
gated hydrogels. In fact, CTS@Fe3O4, PAAm/TiO2, and PEGDMA-rGO/Fe3O4@cellulose
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should be used where high pH, time to reach equilibrium, and adsorption capacity are
encountered. For PAAm-co-AAc/TiO2, PVPA/Fe3O4@SiO2, PMOA/ATP/Fe3O4, and
PVPA/Fe3O4@SiO2, it should be used where all of the investigated physical and chemical
properties are at low magnitudes. A shortcoming arising from this study resides in the ne-
glecting of structural differences between azo dyes compounds. In fact, we aimed to focus
on the physical and chemical features of the adsorbent. Therefore, we have assumed that
all azo dyes compounds have similar adsorption properties. Hence, it could be interesting
to investigate the influence of adsorbent molecular discrepancies in further investigations.

4. Methodology

The purpose of this study is to apply PCA to a previously published study by Pereira
et al. [10] (Table 1) in order to better understand the differences in the functioning of
multiple metal oxide nanoparticle (MONP)-based hydrogels based on their adsorption
properties. PCA is regarded as a technique for identifying patterns among variables. The bi-
dimensional statistical approach failed to reveal these patterns. It presents an unsupervised
machine-learning method because, once applied, no prior knowledge of the data or the
investigated phenomena is assumed. A unit-weighting vector (Wj) and the original data
matrix M with m × n dimensions (m: number of variables, n: number of datasets) are used
to express the jth PC matrix (Pj) [31,54,55].

Pj = WM =
i=0

∑ Wji Mi (1)

where W is the loading coefficient and M is the n-dimensional data vector. M(Var(M)),
which is obtained by projecting M to W, should be maximized as follows:

Var(M) =
1
n

(
WT M

)
(WM)T =

1
n

WT MMTW (2)

MaxVar(M) = Max
((

1
n

)
WT MMTW

)
(3)

Since 1
n MMT is the same as the covariance matrix of M(cov(M)), Var(M) can be

expressed as follows:
Var (M) = WTcov (M) W (4)

The Lagrangian function can be defined using the Lagrange multiplier method, which
is as follows:

L = WT (5)

L = WTcov(M)W − δ
(

WTW − 1
)

(6)

Because the weighting vector is a unit vector, “WTW − 1” is assumed to be equal
to zero in Equation (6). As a result, the maximum value of Var(M) can be calculated by
equating the derivative of the Lagrangian function (L) with respect to W, as follows:

dL
dW

= 0 (7)

cov(M)W − δW = (cov(M)− δI)W = 0 (8)

where, δ: eigenvalue of cov(M), W: eigenvector of cov(M).
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Abstract: Functional aerogels composed of regenerated cellulose and tungsten oxide were fabricated
by implanting tungsten-oxide nanodots into regenerated cellulose fiber. This superfast photochromic
property benefitted from the small size and even distribution of tungsten oxide, which was caused by
the confinement effect of the regenerated cellulose fiber. The composite was characterized using XRD
and TEM to illustrate the successful loading of tungsten oxide. The composite turned from pale white
to bright blue under ambient solar irradiation in five seconds. The evidence of solar absorption and
electron paramagnetic resonance (EPR) demonstrated the fast photochromic nature of the composite
and its mechanism. Furthermore, carbon fiber filled with preferential growth tungsten-oxide nanorods
was obtained by annealing the photochromic composite in a N2 atmosphere. This annealed product
exhibited good absorption across the whole solar spectrum and revealed an excellent photothermal
conversion performance. The water evaporation rate reached 1.75 kg m−2 h−1 under one sun
illumination, which is 4.4 times higher than that of pure water. The photothermal conversion
efficiency was 85%, which shows its potential application prospects in seawater desalination.

Keywords: functional aerogels; regenerated cellulose; color center; solar absorbent; desalination

1. Introduction

Developing advanced building materials with both excellent thermal insulating and
tunable optical properties to replace common glass is highly desirable for improving
humans’ quality of life and reducing global energy consumption. Nanocellulose is a major
composite of plants, whose resource is abundant on Earth and has been used in heat
insulation by reflecting solar light [1]. Furthermore, nanocellulose is a promising dispersion
material because of its outstanding advantages, such as being environmentally friendly,
having a good film-forming property, and being a good dispersant for transition-metal
oxide. Tungsten oxide has been widely used in the electrochromic and photochromic
fields due to its unique crystal structure and electronic energy band structure [2,3]. The
colored tungsten oxide can adsorb part of the visible light and near-infrared light, which
has a potential application for cooling down the inside temperature, photothermal therapy,
and catalysis [4–7]. The chromic nature of tungsten oxide is caused by the formation of
a color center (reduced tungsten state W5+), occurring in both the electrochromic and
photochromic processes [8–10]. The electrochromic process has two parts, namely coloring
and bleaching, which represent the macroscopic appearance of the cation intercalation
and deintercalation processes [11]. The reduced tungsten state can also be formed by
the self-trapping of the photon caused by exposure to UV light, i.e., the photochromic
effect [12,13]. The reduced tungsten state can dramatically increase the light absorption of
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the visible range and even the near-infrared range, which has been applied in photothermal
conversion and NIR shielding [14–17]. However, the slight color change, slow response,
and poor irreversibility of WO3 hinder its practical application. In general, photochromic
efficiency has largely been limited by the separation and recombination of photon-induced
electrons and holes. Thus, decreasing the particle size seems to be an effective way to reduce
the migration path of the photon, which leads to an increase in photochromic efficiency.
However, nanoparticles, even QDs, tend to aggregate due to the large surface energy, which
hampers photochromic efficiency. Appling sub-nanoporous silica as a template has been
reported to fabricate tungsten-oxide quantum dots (QDs) [18]. The spatial confinement
effect of this porous silica prevents the WO3 QDs from aggregating into large particles.
Suzuko et al. increased the photochromic efficiency of tungsten oxide by using glyceric
acid as a dispersant to accelerate electron diffusion. However, another disadvantage
(suppressed bleaching process) emerged due to the low oxygen diffusion [9]. Lacking
effective contact with oxygen prolonged the bleaching time of the colored tungsten oxide.
In this research, nanocellulose was chosen as the dispersant because of its abundant OH and
COOH functional groups, which have also been widely used as an anti-quenching agent by
preventing the fluorescent nanoparticles from assembling [19]. The excellent dispersion of
tungsten oxides on the cellulose surface provides a fast solar response and bleaching ability
without solar irradiation. Furthermore, the obtained cellulose filled with tungsten-oxide
quantum dots changes into a carbon fiber filled with preferential growth tungsten-oxide
nanorods, which exhibits good solar absorption and excellent photothermal conversion
performance. The annealed composites can be applied in many areas, such as photothermal
evaporation membranes, NIR shielding, photothermal therapy, etc. [20,21]. This excellent
photothermal conversion performance also benefits from the reduced tungsten oxide (W5+)
and the size, morphology, and orientation of the tungsten-oxide nanorods. Guo reported
that nanorods may exhibit transverse and longitudinal surface plasmon resonances, which
correspond to the electron oscillations perpendicular and parallel to the rod length direction,
respectively.

2. Results and Discussion

Figure 1 shows the XRD patterns of the WO3-x@-regenerated cellulose fiber composites.
As known from the Debye–Scherrer equation, the broad diffraction peaks in the black line
revealed the small nanoparticle size of the tungsten oxides. This was caused by the
confinement of the regenerated cellulose fiber during the tungsten-oxide crystal growth
process. As we can see in Figure 2, the size of the regenerated cellulose was hundreds
of nanometers in diameter, which was composed of several nanocellulose fibers. When
the alcoholysis intermediate product penetrated into the regenerated cellulose fiber, it
was confined in the gaps between the cellulose fibers. Therefore, this confinement effect
benefited from the gaps generated during the formation of the nanocellulose fiber in the
regenerated cellulose fiber. This confinement guaranteed the small size of the tungsten-
oxide crystal in the hydrolysis reaction of the alcoholysis intermediate product. This result
is also evidenced by the partially enlarged TEM image shown in Figure 2b. As for the
diffraction results of the annealed sample (the red line), there were only two obvious
diffraction peaks, indexed to the (010) and (020) crystal face, which were well matched
with JCPDS No. 71-2450. The disappearance of other diffraction peaks was caused by
the oriented growth along with the <010> direction when it was annealed in an inert
atmosphere. This was also seen in other reported works [22,23]. Tungsten oxide is a
well-known semiconductor because of its varied crystal structure and affordability of
oxygen deficiency. The WO6 octahedron as the unit of the tungsten-oxide crystal structure
presented a different arrangement under different temperatures. The crystal structure
of tungsten oxide has a temperature-related nature. Furthermore, when being annealed
under an inert atmosphere, oxygen deficiencies can be formed at the surface of the crystal
structure, which has a large impact on the crystal structure. Thus, tungsten oxide always
reveals preferential growth under an inert atmosphere at high temperatures. Therefore,

89



Gels 2023, 9, 10

the appearance of two diffraction peaks of parallel crystal faces showed that the tungsten
oxides were loaded into the regenerated cellulose fiber. This is also evidenced by the
enlarged TEM image shown in Figure 2d.
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The morphology of the composite is shown in Figure 2. The morphology of the
regenerated cellulose fiber with several um in length and a radius less than 100 nm can
be seen in Figure 2a. This benefitted from the freezing and melting cycle process, which
introduced ice crystals into the cellulose fibers to widen the distance between the fibers. This
is a common way to decrease the hydrogen bonds between the cellulose fibers to induce a
stable process of cellulose dispersion. As shown in the partially enlarged TEM image in
Figure 2b, a large number of nanodots were anchored in the cellulose fiber. It is hard to see
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any small particles except in the gaps between the cellulose fibers. This result illustrates that
the regenerated cellulose fiber acted as not only a growth substrate but also a confinement
cage. These results were also consistent with the broad diffraction peaks of XRD diffraction
shown with the black line. As shown in Figure 2c,d, these tungsten-oxide nanodots were
transformed into nanorods after being annealed in a N2 atmosphere. This correlated with
the XRD result of the red line diffraction pattern. Tungsten oxide prioritized growth along
the <010> direction during the heat treatment under an inert atmosphere. Furthermore, the
regenerated cellulose fiber was carbonized into carbon fiber during the annealing process.
The carbonization process inevitably causes shrinkage, which can be seen by comparing
Figure 2a,c and Figure 2b,d (taken at the same magnification). The tungsten-oxide nanodots
confined in the regenerated cellulose fiber were closer and contacted each other during the
cellulose shrinkage, which enabled the nanodots’ migration and the crystal’s preferential
growth. The orientational growth of the tungsten-oxide nanorods was also anchored in
the carbon fibers. It is difficult to see any nanorods except in the gaps between the carbon
fibers (Figure 2c,d). This is very important for its practical application, which effectively
prevents the loss of active material.

As discussed above, the tungsten-oxide nanodots were exactly located in the regener-
ated cellulose fiber; thus, the composite should have a good photochromic performance.
As shown in Figure 3, the black and red lines at the bottom are the absorption spectra of
the regenerated cellulose fiber before and after solar irradiation, respectively. It should
be noted that this solar absorption spectrum is collected on solid films, not solutions, be-
cause of its low dispersion in water. The absorption of cellulose had almost no change at
all after solar irradiation throughout the UV–Vis range. However, the composite of the
WO3-x@-regenerated cellulose fiber exhibited a fast photochromic property. As the inset
pictures reveal, the appearance of the composite turned from pale white to bright blue
under ambient solar irradiation; the absorption intensity of the composite increased up to
0.3 from 0.01 during the long wavelength range from 600 to 800 nm. This fast photochromic
performance can be attributed to the small particle size of tungsten oxide, just as Figure 2b
shows. The appearance of the WO3-x@-regenerated cellulose fiber composite quickly turned
blue from pale in less than 10 s under solar irradiation (the photochromic process can be
seen in the Supplemental Material Video S1). This photochromic nature was caused by
a photon-induced electron self-trapping process, which introduced the formation of the
color center W5+. Furthermore, the formation of the color center was verified with the EPR
experiment. The single electron in the 4f orbital of W5+ was detected by the fluctuating
magnetic field. The signal peak in Figure 4 was exactly caused by the single-electron
spinning resonance, which was evidenced by the value of the g factor (the same as that of
the free radical). This result revealed that the composite could generate a large amount of
W5+ under illumination by AM 1.5. This fast photochromic property came from the evenly
distributed tungsten-oxide nanodots, which dramatically decreased the carrier migration
distance so that the process of the carriers’ recombination was depressed. Due to the sur-
rounding regenerated cellulose fiber, the surface area of the tungsten-oxide dots exposed to
contact with oxygen in the air was decreased. This is critical to the photochromic nature of
this composite. However, the WO3-x@-regenerated cellulose fiber composite turned back
to pale white when in contact with the air for a period of time without solar irradiation,
which demonstrated its good circularity. Thus, this product might have some potential
applications in window films.
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Figure 4. EPR spectra of the WO2.72@-regenerated cellulose composite under natural conditions
(black) and illuminated by AM 1.5 (blue).

As Figure 2c,d shows, the orientational growth of the nanorods was anchored in the
carbonized fiber. The nanorod morphology depressed the light scattering to a large extent.
The high concentration of free carriers in the semiconductor coupled with the carbonized
cellulose fiber had excellent solar absorption, as shown in Figure 5a. As is known, the
amorphous carbon material only absorbs visible light, not near-infrared light. Only some
graphene-based carbon materials have a small near-infrared absorption capability due to
their single electron on each carbon atom. Apparently, the carbon fiber obtained in this
work could not be graphitized at the low carbonization temperature without catalysts.
Therefore, the good absorption between 800 and 2500 nm of the annealed product (red
line) mostly came from the oxygen deficiencies in WO2.72. A new orbital energy level was
introduced into the valance and conductive band when oxygen vacancies formed in the
semiconductor. The collective oscillations of the surface free carriers (electron for n-type
semiconductor WO2.72) induced the surface plasmon resonance, which indicated a good
photothermal conversion performance. As for the cellulose before being annealed, the
weak absorption in the range from 1600 to 2500 nm was due to its surface functional groups
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such as COOH and OH, which is a common occurrence in biomass. Therefore, a water
evaporation test was conducted under one sun illumination to evaluate the photothermal
conversion performance. The results are shown in Figure 5b; the water evaporation rate of
the WO2.72@carbon fiber reached 1.75 kg m−2 h−1, which was faster than that of carbonized
fiber and 4.4 times higher than that of pure water (0.39 kg m−2 h−1). The water evaporation
efficiency of the carbonized cellulose fiber was 1.33 kg m−2 h−1, which was lower than
that of the graphene-based carbon materials [24]. This was determined by its electronic
structure. The free-carrier concentration of the carbon fiber was very low, which could not
effectively absorb the low-frequency photons to generate heat. According to the calculation
equation of light to heat for water evaporation efficiency [25], the conversion efficiency
of the WO2.72@carbon fiber was 85%. This evaporation efficiency was higher than that of
the reported 2D evaporators [26–28]. It should be mentioned that 2D evaporators aim to
evaluate the photothermal conversion performance, and 3D evaporators aim to increase
the water evaporation rate. Therefore, the water evaporation rate was limited by the
finite evaporation surface. Here, water evaporation consumed a large amount of the heat
generated by the photothermal conversion membrane to realize the phase transition; even
with this, the surface temperature still reached 48 ◦C. Therefore, the composite of the
WO2.72@carbon fiber revealed an excellent photothermal conversion performance. As
shown in Figure 5d, above the evaporation surface of the WO2.72@carbon fiber membrane,
the steam generation under one sun irradiation (simulated solar light irradiation, whose
power was 100 mW/cm2) was clear. The dynamic evaporation process recorded by a
cell phone can be seen in Supplemental Material Video S2. Therefore, the photothermal
evaporation membrane fabricated with the assistance of vacuum filtration might have a
promising application in the solar desalination field.
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Figure 5. (a) Solar absorption spectrum of the cellulose fiber and the WO2.72@carbonized cellu-
lose fiber. (b) Water evaporation test of the WO2.72@carbon fiber. (c) The photothermal image of
the WO2.72@carbon fiber under one sun irradiation. (d) Digital image of the evaporation for the
WO2.72@carbon fiber.

3. Conclusions

A superfast photochromic material was obtained by implanting tungsten-oxide nan-
odots into regenerated cellulose fiber. This superfast photochromic property benefitted
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from the small size and even distribution of the tungsten oxide, which was caused by the
confinement effect of the regenerated cellulose fiber. This reversible photochromic nature
shows promising applications for UV detectors, smart windows, NIR shielding, etc. The
WO2.72@carbon fiber composite had a broad and strong absorption across the whole solar
spectrum. The anchoring effect of the substrate on the photothermal conversion material
guarantees its long-term use. Its excellent photothermal conversion performance also
makes it a promising application for solar desalination.

4. Materials and Methods

The materials described in this report were all purchased from Aladdin. There was no
need to purify before use. All the materials were Analytical Reagents. The purity of NaOH
was higher than 96%. The purity of urea and WCl6 was 99%, and the purity of n-butanol
and DMF was 99.5%.

4.1. Synthesis of the Regenerated Cellulose Fiber

The preparation solvent was as follows: First, an amount of 10 g NaOH was dissolved
in 90 mL of deionized water to obtain a 10 wt% NaOH solution. Then, 0.9 g urea was added
to decrease the polarity of the solution (prevent cellulose excessive dissociation). Next, 1 g
of filter paper scraps was immersed into the mixture of NaOH and urea solution, followed
by three repeated programs of freezing at −18 ◦C and melting at room temperature.
The freezing process lasted at least 4 h to ensure the mixture was completely frozen.
The regenerated cellulose fiber was obtained by centrifuging the mixture, followed by a
vacuum-assisted drying process.

4.2. Synthesis of the WO3-x@-Regenerated Cellulose Fiber

First, 100 mg WCl6 and 1 g of the regenerated cellulose fiber were dispersed in 60 mL
of n-butanol and DMF via sonication. This light-yellow dispersion was transferred into
a 100 mL stainless autoclave and kept at 200 ◦C for 24 h. After cooling down to room
temperature, the pale-white precipitate was centrifuged and washed with deionized water
and ethanol three times. The WO3-x@-regenerated cellulose fiber composite was dried in a
vacuum oven at 60 ◦C overnight.

4.3. Synthesis of the WO2.72@Carbon Fiber

The obtained WO3-x@-regenerated cellulose fiber was annealed in a high-purity N2
environment at 500 ◦C for 2 h with a 10 ◦C /min ramping rate. After cooling down
to room temperature, dark black powders were obtained. The WO2.72@carbon fiber was
dispersed in DMF via sonication to induce stable dispersion. The photothermal evaporation
membrane was fabricated with the assistance of vacuum filtration.

4.4. Characterization

The XRD patterns were recorded using PANalytical B.V. Empyrean X-ray powder
diffraction with Cu Kα radiation over a range of 10–70◦ (2θ) with 0.02◦ per step. The
transmission electron microscope (TEM) images were obtained with a Tecnai G2 FEI electron
microscope. UV–vis adsorption spectra were recorded using a Lambda 950 spectroscope.
Electron paramagnetic resonance (EPR) spectra were obtained with a JES-FA 200 EPR
spectrometer. The EPR test of the colored composite was conducted under simulated
light irradiation. The solar absorption spectrum was recorded with a Shimadzu UV-2450
spectroscope across the whole solar spectrum (200–2500 nm). The photothermal image was
filmed using Fluke Ti 32s. The water-mass change was recorded with an electrical balance
(FA 2004) under one sun irradiation (AM 1.5).
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels9010010/s1, Video S1: photochromic; Video S2: evaporation.
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Abstract: In the development of energy supply systems for smart wearable devices, supercapacitors
stand out owing to their ability of quick and efficient energy supply. However, their application
is limited due to their low energy density and poor mechanical energy. Herein, a strategy for the
preparation of flexible supercapacitors is reported, which is based on the fabrication of aerogel
films by simultaneously utilising cellulose nanofiber (CNFs) as an MXene intercalation material
and polyaniline (PANI) as a template material. CNFs, which can form hydrogen-bonded networks,
enhance the mechanical properties of MXene from 44.25 to 119.56 MPa, and the high electron
transport properties of PANI endow MXene with a capacitance of 327 F g−1 and a resistance of
0.23 Ω. Furthermore, the combination of CNFs and PANI enables a 71.6% capacitance retention
after 3000 charge/discharge and 500 folding cycles. This work provides a new platform for the
development of flexible supercapacitors.

Keywords: supercapacitors; MXene; CNFs; polyaniline

1. Introduction

As an alternative to fossil energy, electric power is a renewable and clean energy
that is easy to store and transport [1]. For daily life applications, structural electrode
materials with high flexibility and high electrochemical performance attracted have great
attraction [2–4], because they are essential for manufacturing lightweight and flexible
electronic products [5–7]. In particular, capacitors offer fast charging and discharging
speed and good recyclability for practical applications [8]. To fabricate flexible capacitors,
carbon-based materials, including carbon nanotubes and graphene, have been widely
used as electrode materials with stable performance and structure [9–11]. Unfortunately,
their electrochemical energy storage capacity is insufficient [12]. Although this problem
can be significantly circumvented by adding metal oxides and conductive polymers, the
reduction of the mechanical properties stemming from the lack of interaction between the
two materials cannot be ignored [13,14].

MXenes (Ti3AlCx) are a family of two–dimensional (2D) transition metal carbides
or nitrides having the general formula Mn+1XnTX (n = 1–3), where M represents an early
transition metal such as Ti, Zr, V, Nb, Ta or Mo, X is the carbon or nitrogen element and
T represents a surface functional group, generally =O, –OH or –F [12,15]. MXenes are
prepared by selectively etching the A element layer from the corresponding MAX phase
precursor (Mn+1AXn) [16]. Since Gogotsi et al. synthesised the first MXene in 2011 [17,18],
these materials have attracted a wide interest for application in supercapacitors. Their
unique 2D layered structure and rich surface functional groups provide them with excellent
conductivity and high surface hydrophilicity. However, their mechanical properties are
still not ideal [19,20].
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Cellulose nanofibrils (CNFs) have useful properties, such as strong mechanical strength,
distinctive biological flexibility, great stability and outstanding capacity of liquid absorp-
tion [21–23]. Moreover, as a nanolinear structured material, CNFs can not only enhance the
mechanical properties of MXene by dispersing between its interlayer gaps but also improve
the electrochemical performance by inhibiting the stacking of MXene and facilitating the
transport of electrolyte ions as an electrolyte reservoir [24–26]. However, the charge storage
capacity of MXene in supercapacitors stems mainly from =O functional groups, whereas –F
and –OH functional groups, which are abundant in CNFs, are detrimental to the electrical
performance [12,27].

Polyaniline (PANI) is a typical conducting polymer that has been widely used to
prepare supercapacitor electrodes due to its fast redox rate, high pseudocapacitance, fully
reversible doping, low cost and easy synthesis [28–30]. However, the application of PANI
is limited by its tendency to undergo agglomeration, which leads to the blockage of the
conductive paths, increase in resistance and decrease in energy density decreases [31–33].
Interestingly, PANI can be uniformly dispersed using CNFs as templates and excess –OH
as linkages, thereby leading to the improvement of their electrochemical performance.

Herein, MXene/CNF–PANI aerogel films with layered porous structures were pre-
pared via in situ polymerisation and using MXene/CNF aerogel films. The films were
obtained by self-assembling MXene and CNFs via vacuum suction filtration after preparing
single-layer MXene suspensions by LiF/HCl etching of Ti3AlC2 (Scheme 1). CNFs served as
an intercalation material to link MXene with PANI, which greatly enhanced the mechanical
properties of the MXene films, and as a template material to enable PANI to disperse.
Moreover, PANI provided a communicating pathway between MXene layers and improved
the electrochemical properties of materials, demonstrating a new structural model for the
preparation of flexible supercapacitors for daily life applications.
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Scheme 1. Preparation of MXene/CNF aerogel films and MXene/CNF–PANI aerogel films.

2. Results and Discussion
2.1. Characterisation of MXene/CNF Aerogel Films and MXene/CNF–PANI Aerogel Films
2.1.1. Scanning Electron Microscopy (SEM) Analysis

The micro-morphologies of the MXene/CNF and MXene/CNF–PANI aerogel films
are shown in Figure 1. Due to the insertion of CNFs between the MXene layers having a
rough surface (Figure 1a), the MXene/CNF aerogel films were endowed with a layered
and porous structure (Figure 1b), which is conducive to the infiltration of electrolytes.
Moreover, this uniform dispersion can be expected to enhance the mechanical properties
of MXenes. The polymerisation of PANI on the CNFs transformed the smooth surface
(Figure 1c) to an overall layered porous structure (Figure 1d), illustrating the main roles of
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PANI, which were to coat the CNFs and connect the MXenes that were disconnected after
the incorporation of the CNFs for an improved electrochemical performance.
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2.1.2. Fourier Transform Infrared (FTIR) Analysis

The FTIR spectra of CNFs, MXene, MXene/CNF aerogel films and MXene/CNF–PANI aero-
gel films are shown in Figure 2. In the spectrum of CNFs, the peaks at 3344, 2932–2868 and
1031 cm−1 can be assigned to the stretching vibration of –OH, the stretching vibrations
of –CH and the C–O–C pyranose ring skeleton of CNFs, respectively. The spectrum of
MXene shows a characteristic peak at 1100 cm−1 corresponding to the surface C–F end
groups. [34]. When CNFs were added into MXene, the absorption peaks of C–F were
masked and the intensity of the –OH peaks increased because a large amount of –OH
groups was introduced, whereas the spectrum of the MXene/CNF–PANI aerogel films only
exhibited stretching vibrations of N–H between 3350–3344 cm−1 and double-bond vibra-
tions of benzene and quinone ring molecules of the PANI chains at 1486 and 1579 cm−1,
respectively [35]. This result demonstrates that CNFs serve only as a structural framework
to construct the MXene/CNF–PANI aerogel films, in which PANI connects the MXenes
by reducing the –OH on the surface of the CNFs, thereby improving the electrochemical
performance of the MXene/CNF–PANI aerogel films.
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2.1.3. X-ray Diffraction (XRD) Analysis

Figure 3 shows the XRD patterns of CNFs, MXene, MXene/CNF aerogel films and
MXene/CNF–PANI aerogel films. A distinct (002) diffraction peak was observed for
MXene at 2θ = 7.1◦ [36], but it decreased with the addition of CNFs, indicating that the
interlayer spacing of the MXene increased as a result of the successful penetration of
cellulose between those layers. After the polymerisation of PANI, the diffraction peaks of
the CNFs disappeared, which is in agreement with the SEM results, indicating that PANI
coated the surface of cellulose.
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2.1.4. Tensile Stress–Strain Analysis

Figure 4 shows the tensile stress–strain curves of CNFs, MXene, MXene/CNF aerogel
films and MXene/CNF–PANI aerogel films. After the introduction of CNFs, which resulted
in a uniform dispersion of stress in the MXene film, the stress strength of the MXene/CNF
aerogel films increased from 44.25 to 132.84 MPa and their strain increased from 3.26%
to 15.01% due to the hydrogen bonding interactions between the CNF networks. How-
ever, when PANI was introduced, it covered the surface of the CNFs and decreased the
number of hydrogen bonds, reducing the stress strength and the strain of the MXene/CNF–
PANI aerogel films, albeit only slightly, from 132.84 to 119.56 MPa and from 15.01% to
13.71%, respectively.
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2.2. Electrochemical Performance of MXene/CNF Aerogel Films and MXene/CNF–PANI
Aerogel Films

As shown in Figure 5a, the cyclic voltammetry (CV) curve of the MXene films recorded
at a scan rate of 2 mV s−1 exhibited a rectangular shape, which is indicative of their
ideal capacitive behaviour. Upon addition of CNFs and PANI, an obvious increase in
the peak current density in the CV curves at the same scan rate was observed. The
results of a galvanostat charge/discharge (GCD) test were consistent with those of the
CV measurements (Figure 5b). The GCD curves at the same discharge current density
(3 mA cm−2) further demonstrate the higher mass capacitance of the MXene/CNF aerogel
films; the insertion of CNFs endowed the MXene with a more free interlayer space for
charge storage while retaining the interlayer electron transport channels for high interlayer
conductivity. Two pairs of broad redox peaks were clearly observed in the potential window
of the MXene/CNF aerogel films after the addition of PANI, indicating that the capacitance
is mainly a pseudocapacitance because the reversible intercalation/deintercalation of
protons leads to a valence state change of the redox element Ti. The GCD curves exhibited
a distorted triangle due to the redox reaction of MXene, which was consistent with the
CV results. The mass capacitance results calculated from the GCD curves are shown in
Figure 5c. After the introduction of CNFs, the capacitance of the MXene/CNF aerogel
films reached 294 F g−1, whereas pure MXene produced only a capacitance of 271 F g−1

at the same scan rate. When the scan rate was increased to 10 mV s−1, the MXene/CNF
aerogel films still maintained a capacitance of 227 F g−1 and a capacitance ratio of 77%,
which was much higher than that of the MXene films with a capacitance of 132 F g−1 (48%).
The results showed that the improvement of the capacitive properties of the MXene/CNF
aerogel films was related to the electrode structure, and the CNF nanonetwork structure
not only prevented the stacking of MXene but also accelerated the intercalation/extraction
transport rate of ions and improved the capacitance of MXene [20]. After PANI loading,
the capacitance of the resulting aerogel films reached 327 F g−1 with a ratio of 77% when
the scan rate was increased to 10 mV s−1. This large improvement was due to the fact that
the introduction of PANI in the MXene/CNF aerogel films resulted in the formation of the
loops inside, allowing a smooth electron transport.
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To understand the kinetic process of the charge/discharge profiles of the films, electro-
chemical impedance spectroscopy (EIS) measurements were conducted. Figure 6 shows the
Nyquist curves of CNFs, MXene, MXene/CNF aerogel films and MXene/CNF–PANI aero-
gel films, in which two regions can be observed, i.e., semicircular arcs at high frequencies
and a straight line at low frequencies [34,37–39]. For the MXene/CNF and MXene/CNF–
PANI aerogel films, the straight-line regions are almost parallel to the Z′ ′ axis, indicating
that ions could diffuse rapidly from the electrolyte solution to the film interface. MXene
exhibited a relatively high resistance (2.5 Ω) due to the stacking of MXene nanosheets in
a bi-continuous structure. In contrast, the addition of CNFs improved the stacking in the
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MXene/CNF aerogel films, reducing the internal resistance to 2.15 Ω. Then, the internal
pathway constructed through the action of PANI was beneficial for a smooth electron trans-
port, and the resistance value was reduced to 0.23 Ω, which proved that the introduction of
MXene/CNF with PANI was effective.
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Figure 6. Nyquist curves of MXene films, MXene/CNF aerogel films and MXene/CNF–PANI
aerogel films.

To demonstrate the effectiveness of this structural design for aerogel films, CV curves
of the MXene/CNF–PANI aerogel films were recorded at varying scan rates from 1 to
20 mV s−1 (Figure 7a). At low scan rates, redox peaks appeared in the CV curves, which
might be attributed to the special morphological features of the MXene/CNF–PANI aerogel
films facilitating the protonation of the oxygen functional groups at positive and negative
potential sites. As shown in Figure 7b, the charge/discharge profiles in a symmetric
state reflect the nearly 100% Coulombic efficiency of the MXene/CNF–PANI aerogel films,
indicating the occurrence of reversible redox reactions in the electrode. According to the
results calculated from the GCD curves (Figure 5c), the MXene/CNF–PANI aerogel films
showed high capacitive properties, i.e., 327 F g−1 at 3 mA cm−2 and 203 F g−1 at 50 mA
cm−2, indicating that the MXene/CNF–PANI aerogel films exhibited good ion transport
ability and that the three-dimensional structure design of MXene was useful and efficient.
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To evaluate the applicability of the MXene/CNF–PANI aerogel films, 3000 charge/discharge
cycles were performed at a current density of 50 mA cm−2 (Figure 8). The combination
of CNFs and PANI prevented the stacking of MXene and increased the film toughness,
whereas the resistance was not increased, resulting in a capacitance retention of 84.1%
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after 3000 charge/discharge cycles. Furthermore, a capacitance retention of 71.6% was
obtained after subjecting the MXene/CNF–PANI aerogel films to 500 folding cycles at
the same charge/discharge current density, indicating that the electrode material had
excellent flexibility for practical applications [40]. The comprehensive performance of
MXene/CNF–PANI aerogel films could be shown through Table 1, and the applicability of
MXene/CNF–PANI aerogel films was shown through comparison.
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Table 1. MXene/CNF–PANI aerogel films comparison of the performance of capacitors with
other capacitors.

Composites Capacitance Mechanical
Properties (MPa) Resistance (Ω) Ref.

TEMPO-oxidized-nanocellulose carbon nanotubes 65 F g−1 0.065 26 [41]
N-doped porous carbon 193 F g−1 — 0.97 [42]

Ti3C2Tx/CNF 298 F g−1 0.004 0.003 [12]
MWNT/cellulose nanofibers 145 F g−1 — 0.37 [43]

Brazilian-pine fruit coat 0.87 F cm−2 6.1 13.5 [39]
MXene/CNF–PANI 327 F g−1 119.56 0.23 This study

3. Conclusions

In this study, porous layered MXene/CNF–PANI aerogel films with a novel structure
were prepared, which can be used as supercapacitors. Using PANI for cladding after
intercalation of CNFs into the MXene layers boosted the performance of MXene in terms
of the three following properties: (1) The MXene/CNF–PANI aerogel films possessed
a capacitance of 327 F g−1 and a resistance of 0.23 Ω because the introduction of CNFs
prevented the stacking of MXene, enabling more free interlayer space for charge storage.
Meanwhile, the introduction of PANI provided communicating pathways for a smooth
electron transport. (2) A high mechanical strength of 119.56 MPa originating from the
introduction of CNFs resulted in the formation of abundant hydrogen bonds to enhance the
overall MXene structure. (3) The MXene/CNF–PANI aerogel films showed a capacitance
retention of 71.6% after 500 folding and 3000 charge/discharge cycles. In summary, the
MXene/CNF–PANI aerogel films are promising as a supercapacitor material with enhanced
electrochemical, mechanical and cycling properties.

4. Materials and Methods
4.1. Materials

All chemicals were used without further purification. Titanium aluminium carbide
(Ti3AlC2, ~400 mesh, 98%) was purchased from Yiyi Technology Co., Ltd., Jilin, China, CNF
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suspension (0.55 wt%) from Hongqi Technology Co., Ltd., Guilin, China and sulphuric acid
(H2SO4, 99.8%) from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China). Lithium
fluoride (LiF, 99.7%), ammonium persulfate ((NH4)2S2O8, 99.7%), aniline (C6H7N, 97.7%)
and potassium hydroxide (KOH, 97.7%) were obtained from Sigma-Aldrich Co., Ltd.,
Shanghai China. Hydrochloric acid (HCl, 37%) and ethanol (C2H6O, 99%) were sourced
from a local supplier.

4.2. Characterisation

The morphology and structural characteristics of the samples were observed via SEM
using a TM3030 microscope (Hitachi, Tokyo, Japan). The crystal structures were analysed
using a D/max-2200VPC X-ray diffractometer (Rigaku, Tokyo, Japan). FTIR spectroscopy
(Perkin Elmer, Waltham, MA, USA) was used to characterise the functional groups in the
samples. A universal testing machine (CMT5504, MTS, Eden Prairie, MN, USA) was used
to study the mechanical properties. All electrochemical performance tests were conducted
on an electrochemical workstation (51-XMX1004, Oxford, UK).

4.3. Preparation of MXene, MXene/CNF Aerogel Films and MXene/CNF-PANI Aerogel Films

To an aqueous solution of LiF (6 g) and 9 M HCl, 5 g Ti3AlC2 was slowly added under
continuous stirring at 45 ◦C for 24 h. After centrifugation of the solution, the resulting
precipitate was washed first with HCl (1 M) for 2–3 times and then with deionised water
until pH 7. After sonication for 60 min at 0 ◦C in water and centrifugation at 3500 rpm min−1

for 10 min, a dark green supernatant was obtained, which was collected and subjected to
freeze-drying to furnish layered MXene flakes.

CNF films and MXene films were obtained by suction filtration from CNF and MXene
solutions, respectively. The MXene/CNF aerogel films were prepared via insertion and
suction filtration by blending 3.6 mL CNF solution (0.55 wt%) with 6.6 mL MXene solution
(3 mg mL−1), followed by magnetic stirring at 500 rpm for 3 h, sonication for 30 min
and then vacuum suction. The MXene/CNF aerogel films were immersed in 20 mL
(NH4)2S2O8 solution (0.57 g mL−1) containing 1 M HCl solution for 3 h and then removed
and immersed in 20 mL aniline solution (0.19 g mL−1) with 1 M HCl solution for 3 h for in
situ polymerisation of aniline. MXene/CNF–PANI films were finally obtained by repeated
rinsing with deionised water and drying.

4.4. Electrochemical Performance of MXene, MXene/CNFs Aerogel Films and MXene/CNFs-PANI
Aerogel Films

The electrochemical performance of MXene, MXene/CNF aerogel films and
MXene/CNF–PANI aerogel films was investigated by means of CV, GCD and EIS mea-
surements using an electrochemical workstation. The composite films were cropped into
2 × 1.8 cm2 electrode sheets and assembled into symmetric supercapacitors in the elec-
trochemical workstation using a three electrodes system with Ag/AgCl as the reference
electrode and 3 M H2SO4 as the electrolyte.
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Abstract: Novel Cr(III)-imprinted poly(vinyl alcohol)/sodium alginate/AuNPs hydrogel membranes
(Cr(III)-IIMs) were obtained and characterized and further applied as a sorbent for chromium speciation
in waters. Cr(III)-IIMs were prepared via solution blending method using blends of poly(vinyl alcohol)
and sodium alginate as film-forming materials, poly(ethylene glycol) as a porogen agent, sodium
alginate stabilized gold nanoparticles (SA-AuNPs) as a crosslinking and mechanically stabilizing com-
ponent, and Cr(III) ions as a template species. The physicochemical characteristics of pre-synthesized
AuNPs and obtained hydrogel membranes Cr(III)-IIM were studied by UV-vis and FTIR spectroscopy,
TEM and SEM observations, N2 adsorption–desorption measurements, and XRD analysis. The mech-
anism of the adsorption process toward Cr(III) was best described by pseudo-first-order kinetic and
Langmuir models. Experiments performed showed that quantitative retention of Cr(III) is attained in
20 h at pH 6 and temperature 40 ◦C. Under the same conditions, the adsorption of Cr(VI) is below
5%. A simple and sensitive analytical procedure was developed for the speciation of Cr in an aquatic
environment using dispersive solid phase extraction of Cr(III) by Cr(III)-IIM prior to selective Cr(VI)
measurement by ETAAS in the supernatants. The detection limits and reproducibility achieved for
the Cr speciation analysis fulfill the requirements for their monitoring in waters under the demand of
the Water Framework Directive.

Keywords: ion-imprinted hydrogel membrane; Cr(III); sodium alginate; polyvinyl alcohol; gold
nanoparticles; chromium speciation; surface waters

1. Introduction

The importance of selective and sensitive determination of the two most common
chemical forms of chromium, Cr (III) and Cr (VI), demanded by their very different toxic ef-
fects, is still an analytical problem. In contrast to the relatively non-toxicity of Cr(III), Cr(VI)
is highly toxic to most living organisms, causing strong adverse effects and diseases [1].
Chromium exists mostly as Cr(III) in the aquatic environment; toxic Cr(VI) is also present,
however, at much lower concentrations as a result of its ongoing industrial application. That is
why developed speciation methods should allow direct, selective determination of low levels
of toxic Cr(VI) in order to ensure reliable speciation results. Moreover, considering the high
oxidizing power and chemical activity of Cr(VI), the proposed method should preserve the
original concentrations of Cr(III) and Cr(VI) during the sample transportation to the analyt-
ical laboratory, meaning that the separation step should be performed during sampling.
From such a point of view, the creation of conditions for the separation of the two chemical
forms immediately after sample collection and during its transportation is both preferable
and encourages the preparation of innovative materials for non-chromatographic, selective
determination of toxic Cr(VI). Very recently, advanced techniques for the selective removal
of Cr(VI) from aqueous samples have been presented in a review article [2]. Modern ana-
lytical strategies and efficient nanosized sorbents used for chromium speciation in various
matrices have been summarized and critically discussed in several review articles [3–8].

Gels 2022, 8, 757. https://doi.org/10.3390/gels8110757 https://www.mdpi.com/journal/gels107



Gels 2022, 8, 757

The application of ion-imprinted polymers (IIPs) as sorbents for elemental speciation
analysis attracts extensive research interest due to their advantages, such as selectivity,
stability, ease of preparation, low cost, and reusability [9]. Several Cr(III)-IIPs have been
studied and characterized as effective sorbents in non-chromatographic speciation analysis
of chromium [10–15]. These polymer sorbents have been synthesized as micro- or nanoparti-
cles so that the proposed analytical procedures could not avoid the filtration/centrifugation
steps. This drawback might be overcome by using membranes instead of particles as
sorbents for solid phase extraction (SPE). It is known that hydrogel membranes can be
successfully used to adsorb pollutants from water samples [16]. Hydrogel membranes are
crosslinked three-dimensional (3D) networks composed of hydrophilic polymers (natural
or synthetic). Their selectivity might be additionally improved by the introduction of
the ion template species resulting in the high recognition ability of ion imprinted poly-
mers [17,18]. Studies on the synthesis of IIMs and their application for selective adsorption
of Cr(III) [19,20] or Cr(VI) [21,22] ions, mostly from water samples, have been reported, but
no studies are known about the green synthesis of Cr(III)-IIMs and their application for
chromium speciation analysis.

One of the strategies for the green synthesis of hydrogel membranes is based on the use
of renewable or natural materials in the membrane formation process. Sodium alginate (SA)
is a natural, non-toxic, biocompatible, and biodegradable anionic polysaccharide composed
of 1,4-linked β-D-mannuronic acid and 1,4-linked α-L-guluronic acid residues, containing
carboxyl and hydroxyl groups [23]. It is well known as an environmentally friendly polymer
for membrane preparation. Poly(vinyl alcohol) (PVA) is characterized by properties such
as non-toxicity, biocompatibility, high hydrophilicity, film-forming ability, and chemical and
mechanical resistance [23]. Blending SA with PVA results in polymeric materials that possess
the desired properties, such as improved physical characteristics and film-forming abilities.
Since traditionally used crosslinking agents for SA and PVA, such as epichlorohydrin and
glutaric dialdehyde, are toxic [24,25], it is recommended to use inorganic crosslinking
agents [26]. For example, gold nanoparticles (AuNPs), known to be non-toxic [27], could
be used in this case. A significant additional advantage of AuNPs as cross-linkers is their
capacity to form multiple bonds (so-called multivalency) within the gel networks [28].

In the present work, Cr(III)-IIMs are synthesized using sodium alginate and poly(vinyl
alcohol) as film-forming materials, poly(ethylene glycol) (PEG) as a porogen agent, SA-
coated gold nanoparticles (SA-AuNPs) as a crosslinking and mechanically stabilizing
component, and Cr(III) ions as template species. The literature survey showed that the
preparation of Cr(III)-imprinted PVA/SA/AuNPs hydrogel membrane has not yet been
published. The physicochemical characteristics of pre-synthesized SA-AuNPs and hydrogel
Cr(III)-IIM were studied by UV-vis and FTIR spectroscopy, TEM and SEM observations,
and XRD analysis. Cr(III) imprinting is confirmed by FTIR spectroscopy and sorption charac-
teristics by N2 adsorption–desorption measurements. Experiments performed showed that
the mechanism of sorption of Cr(III) was best described by pseudo-first-order kinetic and
Langmuir models. A novel analytical procedure for solid phase extraction, which combines
the selectivity of ion imprinting with the practicality of hydrogel membrane application, is
developed for direct selective determination of toxic Cr(VI) in water samples. The proce-
dure proposed might be performed in one reaction vessel, avoiding desorption steps and
any operations leading to contamination or loss of analyte. Moreover, the whole procedure
for Cr(VI) quantification could be performed during sampling on a membrane previously
transferred in a polypropylene vessel and brought to the sampling site.

2. Results and Discussion
2.1. Cr(III) Ion-Imprinted Hydrogel Membrane Synthesis

Cr(III)-IIMs were synthesized by an approach based on “crosslinking of linear chain
polymers” [29]. In the preparation process of Cr(III)-IIM adsorbent, two kinds of polymer
materials, SA and PVA, were used as the functional hydrogel matrix. Preparation of
Cr(III)–IIM included several steps, shown schematically in Figure 1. Initially, the solution
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of SA was blended with PVA, and then a solution of Cr(III) ions (template) was added.
As a result, the carboxylate ions of SA formed complexes with Cr(III) cations, while the
hydroxyl groups of SA could form coordinate bonds with Cr(III), confirmed by FTIR spectra.
Based on these two kinds of chemical bonds, many stable structures like “egg box” were
formed by SA chains [23]. In the next step, PVA chains were physically crosslinked with
SA-AuNPs due to the coordination interaction between sodium alginate-capped AuNPs and
hydroxyl groups of PVA [30]. Then the hydrogel matrix dispersion prepared was cast on the
bottom of glass beakers and allowed the solvent to evaporate and dry until the formation
of the membranes. The obtained self-standing hydrogel membrane can be considered a
novel double crosslinking interpenetrating polymer network [31]. In the final step, Cr(III)
ions were removed from the membrane prepared, resulting in the formation of a cavity
with geometry and functional groups oriented specifically to the complex formation with
template specie.
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Figure 1. Schematic representation of the hydrogel Cr(III)-IIMs preparation.

2.2. Characterization of SA-AuNPs and Cr(III)-IIM

The optical, morphological and structural properties of SA-AuNPs before and af-
ter their incorporation in the hydrogel polymer matrix of membranes are studied and
compared.

The UV-vis absorption spectrum of SA-AuNPs, recorded right after their preparation
by sodium borohydride reduction of AuCl4−, is shown in Figure 2. The pink-red SA- AuNPs
dispersion shows a surface plasmon resonance (SPR) band at 508 nm, and no aggregation was
observed for at least up to six months. The narrow absorption band suggests the preparation
of small gold nanoparticles with a narrow size distribution, as further confirmed by the
TEM and XRD analysis. Figure 2 also displays the effect of SA-AuNPs incorporation in
PVA/PEG/SA hydrogel polymer matrix solution before casting the membranes on the optical
properties of gold nanoparticles. A red shift of the absorption band of gold nanoparticles
(from 508 nm to 515 nm) was observed after the incorporation of AuNPs in the hydrogel
polymer matrix, probably due to the partial sintering. No aggregation was observed, as
further confirmed by TEM observation.
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Figure 2. UV-vis absorption spectra of SA-AuNPs in: aqueous dispersion (red line) 
and PVA/PEG/SA hydrogel matrix solution (black line); inset: optical photo of SA-
AuNPs aqueous dispersion. 

Figure 2. UV-vis absorption spectra of SA-AuNPs in: aqueous dispersion (red line) and PVA/PEG/SA
hydrogel matrix solution (black line); inset: optical photo of SA-AuNPs aqueous dispersion.

Figure 3 shows TEM images at different magnifications of gold nanoparticles prepared
by chemical reduction of AuCl4− and stabilized by sodium alginate.
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Figure 3. (a) TEM and (b) HRTEM micrographs of SA-AuNPs.

Most gold nanoparticles have a nearly spherical morphology, while a small part of
them is polyhedral. It can be clearly seen that the nanoparticles in the aqueous dispersion
are well separated from each other due to the protection by SA and have a small particle
size—the average particle diameter is 4.9± 0.6 nm. An insignificant number of very small gold
nanoparticles are also seen in TEM micrographs, which confirms the effective stabilization
of nanoparticles with SA in aqueous dispersion.

TEM micrographs of hydrogel Cr(III)-IIM (Figure 4) display uniformly distributed
gold nanoparticles with efficient stabilization by SA throughout the entire Cr(III)-imprinted
PVA/SA hydrogel network. Local congregations of gold nanoparticles in the Cr(III)-IIM
are observed in the TEM micrograph at higher magnification, probably due to the role of
Cr(III) ions as a linker between nanoparticles, a natural result of which is a reduction of the
distances between them in the ion-imprinted membrane. This observation is in excellent
agreement with the previously commented red shift of the SPR band of AuNPs after their
incorporation into the PVA/PEG/SA polymer hydrogel matrix.
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Figure 4. TEM micrographs at different magnifications (a,b) of Cr(III)-IIM.

An energy dispersive X-ray (EDX) elemental analysis was conducted for further
investigation of the Cr(III)-IIM surface characteristics. The results are shown in Figure S1a,b.
The EDX mapping confirmed the homogeneous dispersion of both Cr and Au elements in
the polymer hydrogel matrix of the membrane. From the EDX spectrum and the inset table
of Figure S1b, giving the elemental composition of Cr(III)-IIM, the presence of Cr and gold
nanoparticles is confirmed.

The surface morphology characteristics of a non-imprinted membrane (NIIM) and
Cr(III)-IIM were compared using SEM. As shown in Figure 5, the Cr(III)-IIM and NIIM dis-
play considerable differences in surface morphology. The SEM images of NIIM (Figure 5a,b)
represent non-uniformity and some conglomeration of SA-AuNPs on the membrane sur-
face. In contrast, the SEM images at different magnifications of Cr(III)-IIM (Figure 5c,d)
clearly indicate a more uniform distribution of SA-AuNPs. Surface pores of Cr(III)-IIM can
be distinguished with average sizes around 0.2–0.3 µm, while for NIIM, there are no pores
on the membrane surface. The formation of a double crosslinking interpenetrating polymer
network in Cr(III)-IIM can help generate a regularly distributed surface morphology, which
does not exist in NIIM since Cr(III) ions are absent.

FTIR spectroscopy was used to elucidate the structure of hydrogel Cr(III)-IIM (see
Figure S2). The chelate complex formation between alginic acid and metal ions is thoroughly
studied, and the structure of complexes formed is confirmed by FTIR spectroscopy in the
published literature [19,32]. As expected, a comparison of FTIR spectra of NIIM and Cr(III)-
IIM shows that bands of the asymmetric (νas) and symmetric (νs) stretching vibrations
of alginic acid −OCO− group are shifted from 1654 cm−1 and 1419 cm−1 for NIIM to
lower frequencies of 1601 cm−1 and 1409 cm−1 for Cr(III)-IIM, respectively. These results
mean that carboxylic functional groups take part in chelate formation. The shift of the
broad νOH band at around 3400 cm−1 to lower frequencies indicates that the OH groups
are also involved in the chelation. FTIR spectra proved the coordination process between
Cr(III) and alginic acid confirming the successful imprinting of Cr(III) in hydrogel Cr(III)-
IIM. A schematic presentation of the interactions between SA and Cr(III) ions is shown in
Figure S3.
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Nitrogen adsorption–desorption isotherm studies performed for hydrogel Cr(III)-IIM
membrane indicated that the specific surface area is 5 m2/g with a total pore volume of
0.04 cm3/g. Similar results have already been reported for hydrogel membranes based on
SA/PVA blend and different inorganic constituents [33,34].

The XRD pattern of the PVA/PEG/SA polymer membrane shows a significant semicrys-
talline peak at 2θ value of 19.65◦, which is connected to the PVA structure, generated from
strong intra- and intermolecular hydrogen bonding [35,36] (see Figure S4a). In cases of
NIIM and Cr(III)-IIM, this semicrystalline peak appears at the same 2θ value along with
other broad diffraction peaks of low intensity centered at 2θ values of 38.8◦, 44.4◦, 64.7◦,
77.5◦, which can be indexed to the (111), (200), (220), and (311) crystal planes corresponding
to the face-centered crystal (fcc) structure of gold [37] (see Figure S4b).

2.3. Adsorption Behavior of Cr-IIM toward Cr(III) and Cr(VI)—Optimization Studies

In order to evaluate the suitability of hydrogel Cr(III)-IIM as a sorbent for the selective
separation of Cr(III) ions, chemical conditions for quantitative retention of Cr(III) were
optimized. Taking into account the kinetic inertness of Cr(H2O)6

3+ complexes, three important
parameters were optimized—pH, temperature, and time for adsorption. As a first step, the
progress of Cr(III) retention on the Cr(III)-IIM at different times was studied. Experimental
data for the degree of Cr(III) sorption, Ds, were obtained at initial concentration 5 mg/L,
pH 6, and temperature 40 ◦C. The kinetic adsorption curve is shown in Figure 6, where the
duration of the sorption process varied from 1 to 24 h. It can be seen that as the contact time
increases, the degree of sorption Ds also increases. According to this curve, quantitative
sorption > 95% for Cr(III) in the Cr(III)-IIM adsorption system was achieved within 20 h.
The retention time considered optimal was set to 20 h. A similar relatively slow process
(equilibrium time of 18 h) has already been reported for quantitative Pd(II) sorption using
palladium imprinted membrane based on a chitosan matrix with azo-derivative ligand [38].
It is reasonable to assume that such a slow reaching of the adsorption equilibrium is due
to the large diffusion barrier in the thin ion-imprinted membrane. The greater diffusion
resistance leads both to the difficult entry of Cr(III) ions into the membrane cavities and to
their limited association with the recognition centers.
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Figure 6. Effect of contact time on the degree of sorption Ds of Cr(III) onto Cr(III)-IIM at initial con-

centration 5 mg/L, pH 6, temperature 40 °C, and adsorbent dose (one membrane) 0.140 g. 
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Figure 6. Effect of contact time on the degree of sorption Ds of Cr(III) onto Cr(III)-IIM at initial
concentration 5 mg/L, pH 6, temperature 40 ◦C, and adsorbent dose (one membrane) 0.140 g.

The acidity of the solution is an important parameter determining the effectiveness
of the SPE procedure because the pH value affects both the binding sites on the surface of
the sorbent and the metal chemistry in aqueous solutions. In order to preserve the original
concentrations of Cr(III) and Cr(VI) during the Cr(III) sorption onto Cr(III)-imprinted
PVA/SA/AuNPs membrane, it is very important to take into account the possibility of
reduction of Cr (VI) by the carboxyl groups of SA—a process that also depends on pH. The
influence of pH on the reduction of Cr(VI) to Cr(III) with alginic acid is well established—at
pH 1–3, alginic acid slowly reduces Cr(VI); at pH 6.0, the redox reaction of Cr(VI) with
alginic acid proceeds very slowly, with negligible reduction of Cr(VI) [39].

The effect of pH (in the range 4–9) and temperature (25, 40, 50, and 60 ◦C) on the
degree of Cr(III) sorption onto Cr(III)-IIM is illustrated in Figure 7. The hydrogel membranes
prepared contain carboxylic groups (in SA) and hydroxylic groups (in SA and PVA) in the
polymer matrix, suggesting that at lower pH (pH < pKa = 3.6 for alginic acid), the functional
groups are protonated, and in this way, the Cr(III) adsorption onto Cr(III)-IIM is restricted.
Hence, the values of Ds are very small (these results are not presented in Figure 7). It is seen
from Figure 7 that the degree of Cr(III) sorption is enhanced with an increasing pH of 6
for all studied temperatures. At pH values in the range 4–6, the fraction of deprotonated
carboxyl groups in SA grows and (–COO−) becomes available for binding and adsorption
of Cr(III) cations. In addition, the positively charged Cr3+ and CrOH2+ ions (species
existing at pH < 6 [40]) can be bound to the negatively charged groups of the membrane
by electrostatic attraction, leading to an increased degree of sorption. However, at pH
values higher than 6, a decrease in the degree of Cr(III) sorption is noticed (Figure 7), which
may be attributed to the precipitation of the metal ions as Cr(OH)3 [40]. Furthermore, the
temperature dependence of the degree of Cr(III) sorption on Cr(III)-IIM is clearly visible
from the results in Figure 7.

Quantitative Cr(III) sorption (Ds > 95%) is achieved at temperatures in the range of
40–50 ◦C, while the degree of Cr(III) sorption is lower at temperatures outside this range
(91.0% and 93.7% at temperatures of 25 ◦C and 60 ◦C, respectively). These results can be
explained by the kinetic stability of the Cr(H2O)6

3+ complex, for which ligand exchange in
the inner coordination sphere requires elevated temperatures. Finally, quantitative retention
of Cr(III) on the Cr(III)-IIM was achieved at optimal pH 6 for 20 h at a temperature of 40 ◦C.
Under the established optimal conditions for quantitative sorption of Cr(III), the degree
of Cr(VI) sorption is found to be less than 5%. These results unambiguously confirm that
the hydrogel Cr(III)-IIM can be used for the quantitative separation of Cr species in order
to perform successful speciation analysis. Results from parallel adsorption experiments
carried out with NIIM membrane showed similar sorption behavior (not presented in
Figure 7) toward Cr(III), however, with about a 30% lower value of Ds. Under defined
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optimal conditions, the sorption capacity of the Cr(III)-IIM and NIIM were evaluated after
saturation of the membranes with Cr(III) ions. The effect of the initial concentration of
Cr(III) ions (5–35 mg/L) on the sorption capacity of Cr(III)-IIM and NIIM is displayed in
Figure 8.
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Adsorption isotherms (Figure 8) clearly show that the amount of adsorbed Cr(III) per
unit mass of the membrane increases with growing Cr(III) concentration and reaches a
plateau determining the maximum adsorption capacity (Qmax,exp)—1.75 mg/g for Cr(III)-
IIM and 1.23 mg/g for NIIM. As expected, the adsorption capacity of Cr(III)-IIM exceeds
the NIIM’s capacity, indicating that the binding sites created after the removal of template
ions ensure higher affinity of the hydrogel Cr(III)-IIM toward Cr(III) in this way proving
the advantages of ion-imprinting approach for the preparation of sorbent materials with
higher adsorption capacity.

2.4. Elution Studies

The elution step should ensure quantitative desorption of sorbed Cr(III) in this way,
ensuring further use of synthesized Cr(III)-IIM. Eluent solutions containing HCl or NH4-
EDTA were tested for Cr quantitative extraction from loaded Cr(III)-IIMs. The results
obtained are presented in Table 1. It can be concluded that hydrochloric acid at any
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concentration level is not suitable for the elution of Cr(III)—the elution is not quantitative,
and AuNPs in the membranes are dissolved at the higher acid concentration (1 mol/L). The
most suitable eluent is NH4-EDTA solution (0.1 mol/L), which provides complete elution of
Cr(III) (>99%) from the membranes, and at the same time, the membrane composition and
stability are unaffected. The effect of desorption agent volume was also studied (Table 1). A
10 mL NH4-EDTA solution was found to be the optimum volume to provide quantitative
Cr(III) elution from the membranes. The kinetics of the Cr(III) desorption process studied
according to the procedure described in Section 4.5 for 1–5 h showed that quantitative
desorption was reached for 2 h. Optimal conditions defined for quantitative elution of
Cr(III) include 10 mL 0.1 mol/L NH4-EDTA for 2 h desorption time.

Table 1. Degree of elution DE (%) of Cr(III) from Cr(III)-IIM using different eluents.

Eluent c, mol/L DE, %

HCl (V = 10 mL)
0.1 67.3 ± 3
0.5 80.6 ± 3
1.0 AuNPs dissolution

NH4-EDTA (V = 10 mL)
0.05 68.7 ± 4
0.1 >99
0.2 >99

NH4-EDTA (V = 5 mL) 0.1 75.6 ± 3

NH4-EDTA (V = 10 mL) 0.1 >99

NH4-EDTA (V = 20 mL) 0.1 >99

2.5. Investigations on the Mechanism of Cr(III) Adsorption onto Cr(III)-IIM
2.5.1. Adsorption Isotherm Models

The adsorption data for Cr(III)-IIM and NIIM as a function of the initial Cr(III) concen-
trations were analyzed using the Freundlich and Langmuir adsorption isotherm models.
The applicability of the isotherm models was evaluated by comparing the calculated values
for the R2 coefficient.

The Freundlich isotherm model can be applied in the case of multilayer adsorption
of the adsorbate on a heterogeneous surface [41]. Equation (1) presents the Freundlich
isotherm in the linear form:

ln Qe = ln kF + n−1.ln Ce (1)

where Ce (mg/L) and Qe (mg/g) are Cr(III) equilibrium concentration in the solution
and equilibrium capacity of the membranes, respectively; kF is the Freundlich isotherm
constant; n is the adsorption intensity. The value of n gives information about the adsorbent–
adsorbate interaction. The adsorption process is favorable, when 0 < 1/n < 1; unfavorable—
1/n > 1; and irreversible—1/n = 1 [42].

The Langmuir isotherm model describes a sorption process occurring in a surface
monolayer of homogeneous sites [41]. The linear form of Langmuir isotherm is presented
by (Equation (2)):

Ce

Qe
=

Ce

Qmax
+

1
b.Qmax

(2)

where Qmax (mg/g) is the calculated maximum adsorption capacity, b (L/mg) is the Lang-
muir constant.

To predict the favorability of a given adsorption system, it is recommended to use the
dimensionless factor RL (Equation (3)). The isotherm is irreversible, favorable, linear, or
unfavorable if RL = 0, 0 < RL < 1, RL = 1, or RL > 1, respectively [41].

RL =
1

1 + b.C0
(3)
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The final calculation results of Langmuir and Freundlich isotherm parameters are
exhibited in Table 2, and the graphical visualization is in Figure S5.

Table 2. Experimental adsorption capacity values and Langmuir and Freundlich isotherm parameters
obtained by linear fitting for the Cr(III)-IIM and NIIM at temperature of 40 ◦C.

Polymer
Hydrogel

Membrane

Qmax,exp
mg/g

Langmuir Isotherm Model Freundlich Isotherm Model

Qmax,calc
mg/g b L/mg R2 RL kF n R2

Cr(III)-IIM 1.75 1.74 3.52 0.9997 0.01–0.05 1.15 3.47 0.8956

NIIM 1.23 1.25 0.32 0.9993 0.08–0.38 11.47 2. 38 0.9592

From Table 2, it can be concluded that the values of coefficient of determination R2

obtained for the Langmuir model (0.9997 and 0.9993 for Cr(III)-IIM and NIIM, respectively)
are higher than values obtained when using Freundlich isotherm (0.8956 and 0.9592 for
Cr(III)-IIM and NIIM, respectively). The calculated values of adsorption capacity Qmax,calc
are in good agreement with experimentally obtained values (Table 2). These results confirm
the correctness of the assumption that the adsorption process occurs in a surface monolayer
of homogeneous sites.

The calculated values of Langmuir dimensionless factor RL are in the range 0 < RL < 1
(Table 2), indicating that the adsorption of Cr(III) ions onto Cr(III)-IIM and NIIM is favorable.
This conclusion for favorable adsorption is also confirmed by the values of the Freundlich
coefficient n related to the adsorption intensity that satisfies the condition 0 < 1/n < 1 (1/n
is 0.28 and 0.46 for Cr(III)-IIM and NIIM, respectively).

2.5.2. Modeling of Cr(III) Sorption Kinetics

In order to understand the behavior of Cr(III) ions adsorbed by the novel hydrogel
Cr(III)-IIM and to determine the controlling mechanism of the adsorption process, several
kinetic models, which contain two undetermined parameters, have been used to fit the
experimental data [43]:

pseudo-first-order model : qt = qe

(
1 − e−k1.t

)
(4)

where qt and qe (mg/g) are the adsorbed amounts at different times t (h) and at an equi-
librium, respectively, and k1 (1/h) is the rate constant. The pseudo-first-order kinetic model
better describes an adsorption process controlled by diffusion and is mainly used to simulate
a simple single reaction.

pseudo-second-order model : qt = k2 .q2
e

t
1 + k2.qe.t

(5)

where k2 (g/(mg·h) is the rate constant. The pseudo-second-order model assumes that the
chemisorption is a rate-limiting step.

Elovich equation : qt =
1
β

ln (α.β) +
1
β

ln t (6)

where α (mg/(g·h)) is the initial rate of the adsorption process and β (g/mg) is the desorp-
tion constant of this process related to the extent of surface coverage and activation energy
of chemisorption. Elovich equation is useful in describing the chemical sorption on highly
heterogeneous surfaces [44].
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In order to find other important correlations of experimental kinetic data in this study,
the Weber and Morris equation was tested for evaluation of adsorption kinetics of Cr(III)
ions onto Cr(III)-IIM:

intra-particle diffusion model : qt = ki . t0.5 + Ci (7)

where ki (mg/(g·h0.5)) is the equilibrium rate constant of intra-particle diffusion, and Ci
(mg/g) is the intercept associated with the thickness of the boundary layer. The intra-particle
diffusion model describes the kinetics of the diffusion process inside a particle; it is not
suitable for describing the kinetics of the diffusion process on the surface of a particle [45].

Kinetic parameters of pseudo-first-order, pseudo-second-order, and Elovich kinetic
models estimated by regression analysis are summarized in Table 3, and the fitted curves
are plotted in Figure S6a–c. To choose the superior model, both coefficient of determination
(R2) and the equilibrium adsorption capacity predicted by the model (qe,calc) should be
considered [46].

Table 3. Fitted kinetic parameters of pseudo-first-order, pseudo-second-order, Elovich, and intra-
particle diffusion models for adsorption of Cr(III) ions onto the Cr(III)-IIM at concentration 5 mg/L,
pH 6, temperature 40 ◦C, and adsorbent dose (one membrane) 0.140 g.

Model Parameters Values

Pseudo-first-order model
k1 (1/h) 0.07529

qe,calc * (mg/g) 0.4496
R2 0.9694

Pseudo-second-order model
k2 (g/(mg·h)) 0.07234

qe,calc * (mg/g) 0.6974
R2 0.9626

Elovich equation
α (mg/(g·h)) 0.09449
β (g/mg) 8.1739

R2 0.9331

Intra-particle diffusion model
Region 1

ki (mg/(g·h0.5) 0.1034
Ci (mg/g) −0.09989

R2 0.9558

Intra-particle diffusion model
Region 2

ki (mg/(g·h0.5) 0.03459
Ci (mg/g) 0.1892

R2 0.8710
* qe,exp = 0.3521 mg/g.

The low value of the determination coefficient (0.9331, Table 3) shows that the Elovich
model is unsuitable to represent the adsorption of Cr(III) ions onto the Cr(III)-IIM and
also indicates that the adsorption process is not controlled by chemisorption [13]. Curve
fitting results (Table 3) implied that the pseudo-first order kinetic model (R2 = 0.9694) is
more suitable to describe the adsorption behavior than the pseudo-second order model
(R2 = 0.9626), and the values of qe,exp and qe,calc are closer to each other under pseudo-first-
order kinetic model than that of pseudo-second-order model, indicating that the adsorption
is mainly controlled by diffusion.

The rate constant of intra-particle diffusion ki could be obtained from the slope of
the plot presented in Figure S6d. It is seen that the plot does not pass through the origin
and is nonlinear. It can be concluded that the adsorption of Cr(III) ions onto Cr(III)-IIM
is a complex process [47]. Two straight lines simulating the experimental results and the
values of kinetic parameters are presented in Table 3. The slope of the line for the first region
(responsible for external diffusion; ki,1 = 0.10342) is higher than the slope of the line for the
second region (corresponding to intra-particle diffusion; ki,2 = 0.03459), which confirms the
conclusion that the active sorption sites for Cr(III) ions are distributed onto the outer sorbent
surface and penetration into the inside of the membrane is insignificant [48]. A negative Ci
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value in Equation (7) (see Table 3, Region 1) could be explained by the combined effects of
surface reaction control and film diffusion processes [49].

2.6. Analytical Applications

The experimental results obtained showed that an analytical procedure for Cr spe-
ciation might be developed based on the sorption of Cr(III) on the hydrogel membrane
and selective determination of Cr(VI) in the supernatant (see Section 4.7). Model experi-
ments were performed with various waters such as river, sea, and mineral water aiming
to assess the selective recovery of Cr(VI) independent of the water matrix. As a first step,
interference studies according to the procedure described in Section 4.6 were performed in
order to confirm that even in the presence of different levels of matrix cations and anions,
quantitative separation of both Cr(III) and Cr(VI) is still achieved (see Table S1). Results
obtained undoubtedly showed that independently of the sample matrix degree of sorption
of Cr(III) is in the range between 95–98%, and for Cr(VI), in all cases degree of sorption
is below 5%. As a next step, the separation of both species was studied at different ratios
more relevant to the environmental conditions, e.g., relatively low concentrations of Cr(VI)
in the presence of high amounts of Cr(III) and for different types of surface waters, using
added/found method. River water, groundwater, and seawater, filtered through a cellulose
membrane filter (0.45 µm), were spiked with different concentration ratios of Cr(VI) to
Cr(III) and passed through the procedure described in Section 4.7. The results obtained are
presented in Table 4.

Table 4. Determination of Cr(III) and Cr(VI) in different types of waters (three parallel determinations).

Sample Cr(III), µg/L
Mean ± SD

Cr(VI), µg/L
Mean ± SD

Recovery for Cr(VI),
%

River water 2.3 ± 0.2 <DL
River water + 0.5 µg/L Cr(VI) 2.2 ± 0.2 0.49 ± 0.02 94 ± 2

Seawater 0.52 ± 0.04 <DL
Seawater + 0.2 µg/L Cr(VI) 0.54 ± 0.04 0.21 ± 0.02 95 ± 4

Groundwater 1.3 ± 0.1 0.25± 0.02
Groundwater + 0.4 µg/L Cr(VI) 1.2 ± 0.1 0.63 ± 0.03 93 ± 4

Evidently, for all studied ratios and for all types of waters, recoveries for toxic Cr(VI)
are between 93–95%, confirming the applicability and reliability of the developed analytical
procedure.

In addition, the results for Cr (VI) content in waters obtained by the proposed analytical
method were compared at a bit higher concentration level to the results obtained using a
standard procedure based on the spectrophotometric method with 1,5-diphenylcarbazide
(ISO 11083:1994). Natural ground waters from polluted aquifers in north Bulgaria were
used for this comparison. The very good agreement observed between parallel results for
more than 10 samples verifies the accuracy and versatility of the proposed approach for
Cr(VI) quantification using hydrogel Cr(III)-IIM.

The experiments performed showed that the hydrogel membrane might be used for
four adsorption/desorption cycles using 0.1 mol/L NH4-EDTA for elution (extraction
efficiency above 95%). The extraction efficiency toward Cr(III) achieved by using hydrogel
membranes from different batches showed very good repeatability, most probably due to
the sustainability and robustness of the developed synthesis procedure.

2.7. Analytical Figures of Merit

Analytical figures of merit were defined after Cr(III) and Cr(VI) determination in five
parallel samples. Detection and determination limits were calculated based on 3σ and 10σ
criteria taking into account standard deviations of a blank sample (Cr measurement in
10 mL high-purity water passed through the whole developed analytical procedure. The
results obtained are depicted in Table 5.
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Table 5. Analytical figures of merit determined after five parallel determinations.

Species Detection Limit,
µg/L

Determination Limit,
µg/L

RSD, % for the Range
0.05–50 µg/L

Cr(III) 0.001 0.003 7–11
Cr(VI) 0.01 0.03 4–6

As seen from the results in Table 5, the analytical procedure developed is characterized
by low determination limits and very good reproducibility. The most serious advantage is
the possibility for direct determination of Cr(VI), avoiding any parallel determination and
additional calculations.

A comparison of analytical figures of merit reported in the literature for Cr speciation
procedures using different sorbent materials is presented in Table S2 [10–15,50]. As can
be seen, the proposed in this work analytical method for the selective determination of
Cr(III) and Cr(VI) ensures the lowest detection limits and allows the determination of envi-
ronmentally relevant concentrations of Cr in surface/ground waters, even at background
levels in unpolluted sites.

3. Conclusions

In this study, a novel hydrogel membrane, Cr(III)-imprinted poly(vinyl alcohol)/sodium
alginate/AuNPs, was prepared by green synthesis and tested for Cr(III)/Cr(VI) separation.
The formation of a double crosslinking interpenetrating polymer network and obtained
good dispersion of gold nanoparticles in a polymer hydrogel matrix restricts the chain
movements and thereby supports a mechanical strength of membrane produced and easy
operation in sorption experiments. Optimization studies performed showed quantitative
retention of Cr(III) at pH 6 and temperature 40 ◦C, while sorption of Cr(VI) is below 5%. The
adsorption equilibrium for Cr(III) was attained within 20 h. The kinetics adsorption data
for Cr(III) were well-fitted with a pseudo-first-order kinetic model, and the equilibrium
data were best described by the Langmuir isotherm model. The maximum adsorption
capacity of the Cr(III)-IIM for Cr(III) ions under the optimal condition was 1.75 mg/g. The
successive adsorption–desorption experiment indicated that 0.1 mol/L NH4-EDTA solution
could be effectively applied for Cr(III) elution from the Cr(III)-IIM, and the membrane can
be used for additional three adsorption/desorption cycles.

A simple and sensitive analytical procedure was developed for the speciation of Cr
in an aquatic environment using dispersive solid phase extraction of Cr(III) by Cr(III)-IIM
membranes prior to selective Cr(VI) determination in the supernatants. The determination
limit achieved for toxic species Cr(VI) fulfills the requirements for their monitoring in
surface water bodies under the demand of the Water Frame Directive. The developed
procedure avoids any additional calculations or parallel determinations for Cr(VI) quantifi-
cation. In addition, if necessary, Cr(III) might be determined in the same sample with an
even lower determination limit.

4. Materials and Methods
4.1. Materials, Reagents, and Instruments

High-purity water (Millipore Corp., Milford, MA, USA) was used to prepare all aqueous
solutions. The working standard solutions were prepared daily by appropriately diluting
the stock solutions of Cr(III) (Spex Certiprep 1000 mg/L in 2% HNO3) and Cr(VI) (Spex
Certiprep 1000 mg/L in H2O).

Tetrachloroauric(III) acid (HAuCl4.3H2O, 99%, Panreac, Poland) and sodium tetrahy-
dridoborate (NaBH4, GR for analysis, Merck, Germany) were used for AuNPs preparation.
Sodium alginate (SA, low viscosity, Alfa Aesar, MA, USA), poly(vinyl alcohol) (PVA, rela-
tive molecular mass 72000, Sigma-Aldrich, St. Louis, MO, USA), and poly(ethylene glycol)
(PEG, relative molecular mass 400, Sigma-Aldrich, St. Louis, MO, USA) were used to pre-
pare the hydrogel Cr(III)-IIM and NIIM. Hydrochloric acid (Fisher Chemical™, Waltham,
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MA, USA) and ethylenediamine tetraacetic acid (EDTA, Sigma-Aldrich, St. Louis, MO,
USA) were used for Cr desorption in the optimization experiments. After the dissolution of
EDTA in NH3 solution (25%, Merck, Darmstadt, Germany), EDTA diammonium salt (NH4-
EDTA) was prepared. The pH value of water samples was adjusted with NH3 solution
or HNO3.

Absorption spectra of gold nanoparticles were recorded on a Thermo Scientific Evo-
lution 300 UV–V spectrometer in the range 190–1100 nm, using quartz cuvette with 1 cm
optical path. Quartz cuvette containing high-purity water served as a reference sample for
background absorption. The morphology and sizes of gold nanoparticles were examined
by a transmission electron microscope (TEM, JEOL JEM-2100 operating at 200 kV). The
surface morphology of membranes was observed by scanning electron microscope (SEM,
JEOL JSM-5510 operating at 10 kV). X-ray diffraction (XRD) patterns were registered on an
X-ray powder diffractometer Siemens D500 equipped with the CuKα radiation (λ = 1.54 Å)
in 2θ ranging from 10◦ to 90◦.

The texture parameters were determined by nitrogen adsorption at temperature 77.4 K
in NOVA 1200e (Quantachrome, Boynton Beach, FL, USA) instrument. The BET equation
and the Gurvich rule (at a relative pressure close to 0.99) were used to calculate the specific
surface area (SBET) T and the total pore volume (Vt), respectively.

ATR-FTIR spectra were recorded by using Nicolet iS50 (Thermo Scientific, Waltham,
MA, USA) Fourier Transform Infrared (FTIR) spectrophotometer with Attenuated Total Re-
flectance Attachment. In general, 32 scans and 4 cm−1 resolution were applied. The spectral
data were processed with OMNIC Software (version 9.12.1002., (Thermo Fisher Scientific
Inc., Waltham, MA, USA).

The concentrations of Cr were measured by Electrothermal atomic absorption spec-
trometry (Perkin Elmer Model AAnalyst 400, equipped with HGA 900 and AS 800 autosam-
pler). Samples of effluate and eluate solutions (10–20 µL) were injected into pyrolytically
coated graphite tubes using AS-800. Optimized temperature program consists of drying
step at 120 ◦C, pretreatment step at 1100 ◦C, and atomization step at 2500 ◦C. Integrated ab-
sorbance signals (three replicates) were used for Cr quantification against external calibration.

The solutions’ pH was measured with a pH meter (Mettler Toledo; Seven Compact
S220-K, Greifensee, Switzerland).

4.2. Synthesis of SA-AuNPs

The aqueous dispersions of sodium alginate stabilized gold nanoparticles were pre-
pared by chemical reduction method based on the reduction of Au(III) (8 mL 0.001 mol/L
HAuCl4) using strong reductant sodium tetrahydridoborate (24 mL 0.002 mol/L NaBH4)
and alginate ions (1.5 mL 1% SA) as a non-toxic capping agent. The reduction was carried
out in ice bath under magnetic stirring, and at the end of reaction sodium alginate solution
was added for steric stabilization of gold nanoparticles by different functional groups, such
as −COOH and −OH. The synthesis process is schematized in Figure S7. The noble metal
nanoparticle dispersion was stored in dark bottles at room temperature. The wine-red
dispersion of SA-AuNPs was stable for several months under storage conditions.

4.3. Preparation of Cr(III)-IIM and NIIM

The preparation of hydrogel Cr(III)-IIM includes using blends of poly(vinyl alcohol)
and sodium alginate as film-forming materials, poly(ethylene glycol) as porogen agent,
gold nanoparticles (SA-AuNPs) as cross-linking and mechanically stabilizing component,
and Cr(III) ions as template species. In the typical procedure, aqueous solutions of SA (1%
w/v) and PVA (2% w/v) were prepared in high-purity water with stirring at 85–90 ◦C for
90 min; then the hot solutions were filtered. Prepared mixture from PVA solution (30 mL)
and PEG (115 mg) was poured into SA solution (30 mL) and stirred well for 30 min. This
was followed by the addition drop by drop of Cr(III) solution (3 mL, 1000 mg/L), pH
adjusting up to 5–6 by NaOH (2 mol/L). The resulting mixture was stirred vigorously for
60 min. In the next step, the pre-synthesized SA-AuNPs aqueous dispersion (80 mL) was
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added into the above polymer hydrogel matrix solution and stirred vigorously for 60 min.
Then the solution was cast on plastic Petri dishes in portions of 7.5 mL and dried in hot air
oven at 70 ◦C for 12 h. In order to remove the porogen PEG, the dried hydrogel membranes
were immersed in high-purity water for one day. Then, chromium was extracted from
the produced membranes by elution with 0.2 mol/L NH4-EDTA solution until the Cr
concentration in the eluate solution was below the LOQ as measured by ETAAS. Similarly,
in the absence of matrix ions, non-imprinted membranes (called NIIMs) were prepared.
The whole imprinting process is schematized in Figure 1.

4.4. Static Adsorption/Desorption Experiments

The model solutions for static adsorption experiments were prepared by addition of 50
µg Cr(III) to 10 mL high-purity water. a The pH value between 4–9 was adjusted by HNO3
or NH3 solution. Cr(III)-IIM or NIIM was immersed in this solution and stirred with an electric
shaker for 20 h at temperature of 40 ◦C. The membrane was removed and remaining solution
(effluate) was analyzed by ETAAS. The membrane was treated twice with high-purity
water, and Cr(III) was eluted with 0.1 mol/L NH4-EDTA solution. Chromium content was
measured in the eluate by ETAAS.

The degree of sorption (DS, %) and degree of elution (DE, %) of Cr(III) ions were
calculated by the following equations:

DS =
Ai –Aeff

Ai
× 100 (8)

DE =
Ael

Ai–Aeff
× 100 (9)

where Ai (µg) is the initial amount of Cr(III) in contact with the membrane; Aeff (µg) is the
amount of Cr(III) in the effluate solution after Cr(III)-IIM extraction; Ael (µg) is the amount
of Cr(III) in the eluate.

4.5. Isotherm and Kinetic Studies

The following procedure was used for determination of the adsorption capacities of
the hydrogel Cr(III)-IIM and NIIM: 10 mL solutions (pH 6) with various concentrations of
Cr(III) ions (from 5 to 35 mg/L) were added to the tested membrane and shaken for 20 h at
temperature 40 ± 1 ◦C. The Cr concentrations were measured in the effluate solutions by
ETAAS under optimized instrumental parameters. All the experiments were performed in
triplicate, and the average value was used to calculate the maximum adsorption capacity
of Cr(III)-IIM and NIIM (Qmax,exp) using the following expression:

Qmax,exp =
(C0–Ce).V

m
(10)

where Qmax, exp (mg/g) is the mass of Cr(III) ions adsorbed per unit mass of the membrane;
V (L)—solution volume; m (g)—mass of the membrane; C0 and Ce (mg/L)—initial and
equilibrium concentrations of Cr(III) ions in the solution, respectively.

The sorption kinetics of Cr(III) was investigated using one Cr(III)-IIM in contact with
10 mL 5 mg/L Cr(III) standard solution at pH 6, placed in 15 mL centrifuge tubes on an
electrical shaker at 150 rpm at 40 ± 1 ◦C. The sorption time was varied in the range of
1–24 h, and the residual Cr content in the effluate solutions was determined by ETAAS.
Each experiment was repeated in triplicate. The amount of Cr(III) adsorbed at time t, qt
(mg/g), was calculated from Equation (11) by the difference between the initial chromium
concentration in the solution (Ci, mg/L) at t = 0 and the residual chromium concentration
at t adsorption time (Ct, mg/L):

qt =
(C i − Ct).V

m
(11)
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4.6. Interference Studies on the Selective Separation of Cr(III) and Cr(VI)

A standard solution containing 50 µg Cr(III) or Cr (VI) was added separately to each
one of the 10 mL model solutions, containing 5% NaCl, 400 mg/L SO4

2−, 400 mg/L PO4
3−,

100 mg/L Fe(III), Cu(II), or Zn(II) at pH 6. The hydrogel Cr(III)-IIMs were immersed in
these solutions and stirred with an electric shaker for 20 h at temperature of 40 ± 1 ◦C.
The membrane is removed, and remaining solution is analyzed by ETAAS. Chromium(III)
content was quantified by ETAAS after membrane elution with 0.1 mol/L NH4-EDTA.

4.7. Analytical Procedure

A sample of surface water 20 mL was filtered through 45 µm membrane filter, and
Cr(III)-IIM was immersed in this solution and stirred with an electric shaker for 20 h at
temperature of 40 ± 1 ◦C. The supernatant solution is removed, and Cr(VI) is measured
in this solution by ETAAS. In the case of very low concentrations of Cr (III), it might be
eluted and also determined by ETAAS. The whole procedure could be performed during
sampling—filtered sample is added to polypropylene vessel with inserted membrane.
Supernatant after sorption is analyzed for Cr(VI) later in the laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels8110757/s1, Figure S1: (a) EDX mapping images and (b)
EDX spectrum of Cr(III)-IIM after adsorption of Cr(III); Figure S2: FTIR spectra of Cr(III)-IIM and
NIIM; Figure S3: Schematic presentation of the interactions between SA and Cr(III) ions; Figure S4:
XRD patterns of (a) PVA/PEG/SA polymer membrane, NIIM, Cr(III)-IIM, SA-AuNPs (layer on glass
slide); (b) Cr(III)-IIM, SA-AuNPs (layer on glass slide); Figure S5: Langmuir (a) and Freundlich (b)
isotherms for adsorption of Cr(III) on the Cr(III)-IIM and NIIM; Figure S6: Adsorption kinetics of
Cr(III) ions onto the Cr(III)-IIM at concentration 5 mg/L, pH 6, temperature 40 ◦C, and adsorbent
dose (one membrane) 0.140 g: (a) pseudo-first order; (b) pseudo-second order; (c) Elovich, and (d)
intra-particle diffusion model; Figure S7: Schematic representation of SA-AuNPs synthesis process;
Table S1: Interference studies on the degree of sorption and the selectivity of Cr(III)-IIM hydrogel
in the presence of different cations and anions in model solutions. (three parallel determinations);
Table S2: Comparison of analytical figures of merit of analytical procedures using different sorbent
materials for Cr(III)/Cr(VI) speciation.
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Abstract: Insulation materials play an extremely important role in the thermal protection of aerospace
vehicles. Here, aluminum carbon aerogels (AlCAs) are designed for the thermal protection of
aerospace. Taking AlCA with a carbonization temperature of 800 ◦C (AlCA–800) as an example,
scanning electron microscopy (SEM) images show an integrated three-dimensional porous frame
structure in AlCA–800. In addition, the thermogravimetric test (TGA) reveals that the weight loss
of AlCA–800 is only ca. 10%, confirming its desirable thermal stability. Moreover, the thermal
conductivity of AlCA–800 ranges from 0.018 W m−1 K−1 to 0.041 W m−1 K−1, revealing an enormous
potential for heat insulation applications. In addition, ANSYS numerical simulations are carried out
on a composite structure to forecast the thermal protection ability of AlCA–800 acting as a thermal
protection layer. The results uncover that the thermal protective performance of the AlCA–800 layer
is outstanding, causing a 1185 K temperature drop of the structure surface that is exposed to a heat
environment for ten minutes. Briefly, this work unveils a rational fabrication of the aluminum carbon
composite aerogel and paves a new way for the efficient thermal protection materials of aerospace via
the simple and economical design of the aluminum carbon aerogels under the guidance of ANSYS
numerical simulation.

Keywords: aluminum carbon composite aerogel; simple fabrication method; thermal stability; ther-
mal conductivity; heat insulation; numerical simulation

1. Introduction

With the increasing speed and flight time of aerospace vehicles, the high heat fluxes
arising from aerodynamics and combustion have created a growing demand for insulation
materials to protect the key components of aircrafts [1,2]. However, the heat resistance,
thermal stability, heat insulation ability and weight of current insulation materials are still
unable to satisfy the growing needs of aerospace thermal protection [3]. Therefore, it is
necessary to explore novel materials with extremely light weight and outstanding thermal
insulation performance at ultrahigh temperatures [4].

A tremendous amount of research is currently focused on carbon-based materials,
which have the ability to withstand ultrahigh temperatures up to 3000 ◦C [5], making them
the most promising candidates for lightweight aerospace materials [6]. Carbon aerogel (CA)
possesses an abundant mesoporous and superimposed nanoparticle network, which confers
it various unique properties, such as high specific surface area and extremely low density [7].
Besides, the carbon skeleton of the carbon aerogel has ultralow thermal conductivity [8], and
the heat transfer through the gases is suppressed due to the nanoscale pores in the carbon
aerogel [9]. Compared with other aerogels, the higher specific extinction coefficient of the
carbon aerogel could significantly reduce the radiation heat transfer between it and the high
temperature environment [10]. Overall, the carbon aerogels provide enormous potential
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for acting as a barrier in convection, conduction and radiation heat transfer. Furthermore,
carbon aerogels are able to keep their mesoporous structure in an inert atmosphere above
2000 ◦C [11], so it appears to be one of the high temperature insulating materials with
excellent thermal stability. Hence, developing the carbon aerogel is an effective way to
address the problem of thermal protection under high temperatures [12].

Traditional carbon aerogels are fabricated by chemical organic precursors, such as
hydroxybenzene, aldehyde, polyimide and polyimide, etc., which does not conform to
the concept of green production [13]. Besides, the surface tension of the carbon aerogels
is large during the preparation; thus, the pores easily collapse in the drying process [14].
There will also be the obvious expansion or contraction of the carbon aerogel in the car-
bonization process, which may lead to cracks in the aerogel [15]. Therefore, traditional
carbon aerogel fabrication usually requires a complicated solution exchange process and
high-cost supercritical drying process to reduce the surface tension and prevent the pore
collapse [16], severely limiting the large-scale production and practical applications. To
overcome this issue, researchers try to strengthen the gel skeleton with carbon fibers, car-
bon nanotubes and ceramic fibers as a remedy of those hindrances [17]. Unfortunately,
the strong shrinkage mismatch between different structures will generate internal tensile
stress [11,18], which still inevitably results in microcracks. Meanwhile, the addition of some
fibers may lead to an increase in the thermal conductivity of the carbon aerogel [19], caus-
ing a contradiction between the heat insulation ability and mechanical properties. Hence,
under the purpose of widely employing the carbon aerogel as thermal protection materials
for aerospace applications, the raw materials with low cost, large-scale production and
simple fabrication methods should be adopted in the design of the carbon aerogel [20,21].
Moreover, some materials ought to be added to address the problems of cracks and collapse
in the production process of carbon aerogel, and at the same time the addition of these
materials should not bring about other problems [22].

Starch is an abundant resource in the leaves and seeds, which could be widely pro-
duced from the nature [23]. In addition, the starch easily forms colloidal solutions at high
temperatures under the high temperature [24]. Subsequently, hydrogels can be converted
from the colloidal solution by reforming the hydrogen bonds during the decrease in tem-
perature [25]. Hence, the starch exhibits prominent advantages as the raw material to
fabricate the carbon aerogels, since it does not require a complex pre-treatment or addi-
tional post-processing step [26,27]. Moreover, the introduction of aluminum ions in the
process of the fabrication of carbon aerogel has been proposed as the way to promote
the polymerization of organic precursors [28]. Meanwhile, aluminum oxide has a certain
effect on restraining the expansion or contraction of the carbon aerogel in the carbonization
process [29]. Hence, the aluminum could promote the development of a three-dimensional
porous frame structure in the carbon aerogel.

Herein, carbon aerogels are designed and fabricated using starch as a raw material for
availability and economy. Meanwhile, aluminum ions are anchored on the carbon skeleton
to improve the cracking during the process of drying or the carbonization process and en-
sure the integrity of the pores of the carbon aerogel. Taking an aluminum carbon composite
aerogel (AlCA) with a carbonization temperature of 800 ◦C (AlCA–800) as an example, the
scanning electron microscopy (SEM) image displays an unbroken three-dimensional porous
frame structure in AlCA–800, which demonstrates that the aerogel is successfully prepared.
In addition, elemental mapping images (EDS) exhibit a homogeneous distribution of C
and Al2O3 in AlCA–800. Furthermore, the thermogravimetric test (TGA) indicates that the
weight loss of AlCA–800 is only ca. 10%, further confirming its thermal stability. Moreover,
the thermal conductivity of AlCA–800 ranges from 0.018 W m−1 K−1 to 0.041 W m−1 K−1,
revealing a superior heat insulation ability. In addition, ANSYS numerical simulations
are carried out on a plate protected with a thermal protection layer made of AlCA–800.
The results demonstrate that the thermal protection performance of AlCA–800 layer is
desirable, causing a 1185 K temperature drop to the plate surface that was exposed to
heat environment for ten minutes. Overall, this work unveils a rational fabrication of the
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aluminum carbon composite aerogel and paves a way for thermal protection materials
with light weight and low thermal conductivity for aerospace applications. Meanwhile, the
ANSYS numerical simulation is brought into the design of the materials for predicting the
effect of thermal protection in practical applications, which makes the work more reliable
and economical.

2. Results and Discussion
2.1. The Structure and Thermochemical Property of Carbon Aerogels

In this work, carbon aerogels (CA) and aluminum carbon composite aerogels (AlCA)
were designed and fabricated as effective thermal protection material for aerospace appli-
cations, and by altering the carbonization temperature and time, the most suitable aerogel
was finally selected. Scanning electron microscopy (SEM) images in Figure 1 revealed the
three-dimensional porous frame structure of the CAs and AlCAs. One can observe that the
pore structures of CAs and AlCAs can be readily adjusted by increasing the carbonization
temperature and time. In addition, the integrity of micropores in CAs was not a patch on
AlCAs due to the structural shrinkage and cracking during the carbonization process [30].
Among AICAs, the AlCA–800 has the most excellent three-dimensional porous frame
structure, while some holes were sightless and not fully formed in the AlCA–600 due to
insufficient carbonization temperature and time [31]. Despite the slight cracks and fractures,
AlCA–1000 still retained the three-dimensional porous frame, which indicated the thermal
stability of the carbon skeleton. The BET surface, adsorption average pore diameter and
quantity adsorbed were displayed in Table 1, further confirming the three-dimensional
porous framework in the CAs and AlCAs [32]. Meanwhile, the quantity adsorbed of
AlCA–800 was largest, corresponding to the result of SEM images.

To study the elemental composition of the samples, the X-ray diffraction (XRD) pattern
was employed for the characterization of the CAs and AlCAs. As shown in Figure 2a, it can
be observed that the XRD peak positions of the CAs and AlCAs were consistent but the peak
intensities differed greatly, indicating that the substrate of aerogels was graphite [33] (JCPDS
card No. 87-0722). However, the XRD peak of the aluminum was not detected due to the
small quantity of aluminum. In addition, the Raman spectra of CA–600 and AlCA–600 in
Figure 2b demonstrated that there were two characteristic peaks at wavelength 1347 cm−1

and 1585 cm−1, which could be assigned to graphite D peak and G peak, respectively [34].
The peaks of CA–600 did not demonstrate a detectable difference from those of AlCA–600
due to the weak interaction between the lower temperature of Al and C, corresponding to
the result of the XRD patterns (Figure 2a). In addition, Figure 2c revealed the discrepancy
of the D peak in CA–800 and AlCA–800, which could be ascribed to the interaction of the
Al and C and the decrease in the graphitization degree in AlCA–800 [34,35]. Moreover, as
discovered in Figure 2d, the difference appeared in the CA–1000 and AlCA–1000 due to
the same reason. In addition, the elemental mapping images (EDS) in Figure 2e further
revealed the carbon skeleton in CA–800. A homogeneous distribution of C and Al2O3
in AlCA–800 was depicted in Figure 2f, confirming that the aluminum was successfully
anchored on carbon. As mentioned above, all the results suggested that the CAs and AlCAs
were successfully synthesized through the simple sol-gel method.
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Table 1. The BET parameters of CAs and AlCAs.

as BET Surface
/m2 g−1

Adsorption Average Pore Diameter
/nm

Quantity Adsorbed
/(cm3 g−1 STP−1)

AlCA–600 291.9096 2.9517 150.4746

AlCA–800 356.1491 4.9803 286.6782

AlCA–1000 292.8679 3.0761 160.2679

CA–600 306.9739 2.6727 148.4311

CA–800 287.8915 3.3322 170.8282

CA–1000 300.4066 2.4997 133.4855

Thermogravimetric tests (TGA) were carried out to reveal the thermal stability of CAs
and AlCAs. As shown in Figure 3, in the heating process from 30 ◦C to 300 ◦C, the removal
of absorbed H2O trapped in the samples led to a significant weight loss [36]. Then, there was
a slight weight loss of the samples from 300 ◦C to 600 ◦C, which was mainly because of the
oxidation of a small amount of organic residues [37]. After this stage, a significant weight
loss of the carbon CAs and AlCAs occurred in the heating process from 600 ◦C to 1000 ◦C,
which was attributed to the loss of carbonaceous residuals during depolymerization and
decomposition [38]. Based on the TGA curves, the thermal stability of AlCAs was superior
to the CAs, which indicated that the Al2O3 could promote the thermal stability of the
aerogel [39]. In addition, the weight loss of AlCA–800 was only ca. 10%, and its thermal
stability was better than that of other AlCAs. Moreover, the AlCA–1000 exhibited a
favorable thermal stability, which meant that the AlCAs could be employed under higher
temperatures. Nevertheless, due to the deficiency of carbonization temperature and time,
there was not a complete three-dimensional porous frame structure in AlCA–600, and thus
the thermal stability of AlCA–600 was poorer. Overall, the AlCAs had higher thermal
stability; in particular, the AlCA–800 possessed excellent thermal stability, demonstrating a
great potential to serve as a kind of efficient thermal protective material.
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To investigate the thermal protection ability of the AlCAs, the thermal conductivities
at different temperatures were tested. The density of AlCAs was displayed in Table 2.
As shown in Figure 4, the thermal conductivity of AlCA–800 was the lowest, ranging
from 0.018 W m−1 K−1 to 0.041 W m−1 K−1, which could be attributed to the integrated
three-dimensional porous frame structure. In addition, the AlCA–1000 demonstrated
higher thermal conductivity at low temperatures, but the thermal conductivity presented
a slow upward trend as the temperature increases, revealing a fine heat insulation ability
under higher temperature. Due to the incomplete three-dimensional network structure, the
AICA–600 always demonstrated a relatively higher thermal conductivity. To sum up, the
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AlCA–800 possessed desirable thermal stability and heat insulation capacity simultaneously,
and hence AlCA–800 could be adopted in the thermal protection of aerospace.
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Table 2. Density of AlCAs.

Aerogels Thickness
/mm

Diameter
/mm

Weight
/g

Density
/g cm−3

AlCA–600 0.875 10 0.0157 0.229

AlCA–800 1.78 10.14 0.0401 0.279

AlCA–1000 0.519 10 0.0119 0.294
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2.2. The Thermal Protection Performance of Carbon Aerogel

To explore the thermal protection performance of AlCA–800 as the thermal protection
layer, the numerical simulations were performed on a plate with the thermal protection
layer (combined structure) under the practical working condition of the scramjet engine
(Figure 5a). Meanwhile, the plate without a thermal protection layer (single structure)
was also numerical simulated for comparison. The combined structure of the plate to be
protected and the thermal protection layer made of AlCA–800 were illustrated in Figure 5a.
The plate was initially placed at the ambient environment. Then, its upper surface was
exposed to a mainstream with 3000 K high temperature, and its lower surface was cooled
by the air with 300 K. The thickness of the plate was 2 mm, while the thickness of carbon
aerogel thermal protection layer was 0.5 mm. The TC4 titanium alloy with the thermal
conductivity of 7.4 W m−1 K−1 was adopted as the material of the plate. For the thermal
protection layer, the material parameters were customized using the experimental values
of AICA–800. In order to reduce the computational region and thereby save computing
resource, the periodic boundary conditions were employed on both sides. The numerical
simulation was carried out through ANSYS Fluent, and the plate and the hot mainstream
were coupled and solved with a transient state pressure-based solver. A second order
upwind scheme was employed for the discretization. When the residual of continuity, mass,
energy and momentum equations were all lower than 10−6, the numerical calculations
were considered convergent.
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Table 3 displayed the mathematical models describing the heat transfer between the
high temperature mainstream and the structure. The fluid flow was calculated by the
Menter’s two-equation SST k-ω model [40], of which the veracity was confirmed by many
practical applications. Meanwhile, the heat conduction appeared in the thermal protection
layer and the lower plate, and thus the Fourier’s law was used to describe the energy
balance. Mainstream and cooling air were regarded as ideal gases, and the corresponding
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viscosity was determined by Sutherland’s formula. Besides, the NIST could serve as
the reasonable method to calculate other gas property parameters and fit them with a
polynomial formula.

Table 3. Mathematical models.

Computational Domain Conservation Equation

Mainstream

The continuity equation: ∂ρ
∂t +

∂
∂xi

(ρui) = Sm

The momentum equation: ∂
∂t (ρui) +

∂
∂xi

(ρuiuj) = − ∂p
∂xi

+− ∂τ
∂cj

+ ρgi + Fi)

The SST k-ω turbulence model was used to solve the Reynolds stress term

The energy equation: ∂
∂t (ρE) + ∂

∂xi
(ui(ρE + p)) = ∂

∂xi

(
k f

∂T
∂xi

)
+ ∑j hj Jj + uj(τij) f + Sh

Solid wall Fourier’s law of heat conduction: ∂
∂t ρh + ∂

∂xi
(uiρh) = ∂

∂xi

(
ks

∂T
∂xi

)

Thermodynamic
model

Ideal gas law: P = ρRgT

Sutherland formula: µ
µ0

=
(

T
T0

)1.5 T0+Ts
T+Ts

Figure 5b showed the unstructured grid generated in the local calculation region.
The grid near the wall was refined due to strong energy exchanges in the fluid near the
wall. Besides, the height of the first layer of the grids was set as 1 × 10−5 m to ensure the
dimensionless wall distance y+ was less than 1, and the grid growth rate was set to 1.2 in
this paper. The grid establishment method and distribution directly affected the accuracy
of the results, and hence the grid independence of the numerical results was tested through
three grid strategies, respectively. The temperature on the centerline of the plate after
heating for 100 s was selected for monitoring and comparison. As shown in Figure 5c, the
results obtained by the grid sizes of 0.33 million and 0.51 million were similar. Considering
the accuracy of the calculation results and the calculation load, a grid size with 0.33 million
was adopted in the following calculations.

The temperature distributions on the lengthwise section at the centerline of the two
structures were shown in Figure 6a, the heat transfer from the high temperature mainstream
to the plate was greatly hindered in the combined structure due to the extremely low
thermal conductivity of the AlCA–800. Thus, there was a large temperature drop between
the thermal protection layer and the plate. Figure 6b displayed the contours of temperature
on the surface of the plates in two structures after 60 s of heating; it could be obviously
observed that the surface temperature of the plate in the combined structure was lower,
and the temperature distributed more uniformly. Besides, Figure 6c showed the variation
of the temperature on the plate surface with heating time, one could see that the rate of
the temperature rise slowed down for both structures, while the temperature differences
between the two structures were becoming more and more significant. Notably, the
temperature on the plate surface of the combined structure was only 1268 K after heating
for 10 min under the protection of thermal protection layer, whereas that of the single
structure bore the high temperature up to 2453 K, indicating the excellent heat insulation
ability of AlCA–800 thermal protection layer. Therefore, the AlCA–800 could be employed
as a competitive material for the thermal protection layer, and provided efficient thermal
protection for the aerospace vehicles.
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3. Conclusions

In summary, the aluminum carbon composite aerogels (AlCAs) were designed for
realizing the effective thermal protection of aerospace vehicles. The AlCAs were fabricated
with the starch, which had a large quantity and low price, being raw, and the preparation
process was simple and achievable, guaranteeing the economy of the materials. In addition,
the carbon aerogels (CAs) were also fabricated for comparison. The SEM images demon-
strated a tightly three-dimensional porous frame structure in the AlCAs, which indicated
the successful synthesis of the aerogel. Notably, the AlCA–800 possessed the most desirable
three-dimensional porous frame structure due to appropriate carbonization temperature
and time. Elemental mapping (EDS) images unveiled a homogeneous distribution of C
and Al2O3 in AlCAs. Moreover, the TGA revealed the lower weight loss of AlCAs than
CAs, which could be attribute to the addition of Al. In particular, the weight loss of the
AlCA–800 was only ca. 10%, powerfully confirming its thermal stability. Importantly, the
thermal conductivity of the AlCA–800 ranged from 0.018 W m−1 K−1 to 0.041 W m−1 K−1,
which was far below the existing thermal protection materials, meaning that the AlCA–800
had an outstanding heat insulation ability under high temperature. Furthermore, the
numerical simulation was carried out on the plate with thermal protection layer made
of AlCA–800, aiming at evaluating the thermal protection performance of the AlCA–800.
The results uncovered that the thermal protective performance of the AICA–800 layer was
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extraordinary, causing a 1185 K temperature drop to the plate surface, which was exposed
to a heat environment for ten minutes. Consequently, this work not only paved a way for
the simple and low-cost fabrication of thermal protection materials with light weight and
low thermal conductivity, but also brought ANSYS numerical simulation for predicting
its protection performance in practical application situation, which made the work more
reliable and economical.

4. Materials and Methods
4.1. Preparation of Aluminum Carbon Composite Aerogel

Aluminium chloride (AlCl3) and soluble starch were obtained from Sinopharm Chem.
Reagent Co. Ltd. (Shanghai, China).

Taking carbon aerogel with a heating temperature of 800 ◦C as an example, the
preparation process was as follows: Initially, 50 mL ultrapure water was heated to 80 ◦C
and the 15 g/20 mL starch aqueous solution was added to the water under vigorous stirring
for 5 min, and the hydrogels were obtained. Afterwards, the aerogels were obtained after
freeze drying. Finally, the aerogels were carbonized at 800 ◦C for 4 h with a ramping rate of
2 ◦C min−1 under an Ar atmosphere.

Taking aluminum carbon composite aerogel with heating temperature 800 ◦C as an
example, the preparation process was as follows: Initially, 10 mmol AlCl3 was dissolved in
the 50 mL ultrapure water, the suspension was heated to 80 °C under vigorous stirring and
the hydrosols were obtained. Then, the 15 g/20 mL starch aqueous solution was added to
the above suspension under vigorous stirring for 5 min, and the hydrogels were obtained.
Afterwards, the aerogels were obtained after freeze drying. Finally, the aerogels were
carbonized at 800 ◦C for 4 h with a ramping rate of 2 ◦C min−1 under the Ar atmosphere.

4.2. Characterization of Aluminum Carbon Composite Aerogel

SEM images were measured on a FEI Sirion-200 (FEI NanoPorts, Hillsboro, OR, USA).
XRD patterns were performed on a Rigaku D/MAX-TTRIII diffractometer (Rigaku Corpo-
ratio, Tokyo, Japan) with Cu Kα radiation (λ = 1.54178 Å). Raman spectra was acquired by
a JY LabRamHR Evolution (HORIBA Jobin Yvon, Palaiseau, France) with a 532 nm laser.
SDT Q600 (TA Instruments, New Castle, DE, USA) thermal analyzer was employed to
acquire TGA curves under nitrogen atmosphere. Thermal conductivity was determined by
the NETZSCH LFA457 thermal analyzer (NETZSCH, Selb, Germany). BET surface area
was acquired by automatic microporous gas adsorption analyzer system on ASAP 2020
PLUS (Micromeritics, Norcross, GA, USA).
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Nomenclature

k Conductivity [W·m−1·K−1]
T Temperature [K]
u Velocity [m·s−1]
P Pressure [Pa]
h Coefficient of heat transfer [W·m−2·K−1]
Rg Universal or ideal gas constant [J·kg−1·K−1]
Greek
µ Dynamic viscosity [N·s·m−2]
ρ Fluid density [kg·m−3]
τ Shear stress
Subscripts
s Solid
f Fluid
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Abstract: In this study, we present the synthesis of a novel peptide-based magnetogel obtained
through the encapsulation of γ-Fe2O3-polyacrylic acid (PAA) nanoparticles (γ-Fe2O3NPs) into a
hydrogel matrix, used for enhancing the ability of the hydrogel to remove Cr(III), Co(II), and Ni(II) pol-
lutants from water. Fmoc-Phe (Fluorenylmethoxycarbonyl-Phenylalanine) and diphenylalanine (Phe2)
were used as starting reagents for the hydrogelator (Fmoc-Phe3) synthesis via an enzymatic method.
The PAA-coated magnetic nanoparticles were synthesized in a separate step, using the co-precipitation
method, and encapsulated into the peptide-based hydrogel. The resulting organic/inorganic hybrid
system (γ-Fe2O3NPs-peptide) was characterized with different techniques, including FT-IR, Raman,
UV-Vis, DLS, ζ-potential, XPS, FESEM-EDS, swelling ability tests, and rheology. Regarding the appli-
cation in heavy metals removal from aqueous solutions, the behavior of the obtained magnetogel
was compared to its precursors and the effect of the magnetic field was assessed. Four different
systems were studied for the separation of heavy metal ions from aqueous solutions, including
(1) γ-Fe2O3NPs stabilized with PAA, (γ-Fe2O3NPs); (2) Fmoc-Phe3 hydrogel (HG); (3) γ-Fe2O3NPs
embedded in peptide magnetogel (γ-Fe2O3NPs@HG); and (4) γ-Fe2O3NPs@HG in the presence
of an external magnetic field. To quantify the removal efficiency of these four model systems, the
UV-Vis technique was employed as a fast, cheap, and versatile method. The results demonstrate
that both Fmoc-Phe3 hydrogel and γ-Fe2O3NPs peptide magnetogel can efficiently remove all the
tested pollutants from water. Interestingly, due to the presence of magnetic γ-Fe2O3NPs inside
the hydrogel, the removal efficiency can be enhanced by applying an external magnetic field. The
proposed magnetogel represents a smart multifunctional nanosystem with improved absorption
efficiency and synergic effect upon applying an external magnetic field. These results are promising
for potential environmental applications of γ-Fe2O3NPs-peptide magnetogels to the removal of
pollutants from aqueous media.

Keywords: magnetogels; magnetic nanoparticles; peptide-based hydrogels; hydrogel composites;
water purification; Cr(III); Co(II); Ni(II)

1. Introduction

Worldwide, due to the increase in industrialization levels, the protection of the en-
vironment from industrial wastes has become more and more important over the past
decades. The presence of toxic metal ions in industrial wastewaters can result in adverse
effects on both human health and the environment even at low concentrations because
these inorganic species are generally nondegradable in nature [1–3]. Some of the most

Gels 2023, 9, 621. https://doi.org/10.3390/gels9080621 https://www.mdpi.com/journal/gels137



Gels 2023, 9, 621

common metal pollutants are cadmium (Cd), lead (Pb), mercury (Hg), nickel (Ni), arsenic
(As), copper (Cu), chromium (Cr), cobalt (Co), and zinc (Zn). Table 1 summarizes the
primary industrial sources, health side effects and the permitted quantity of these heavy
metals, based on recent literature data [4–8].

Table 1. Heavy metals commonly found in industrial wastewaters, along with their health side
effects and the permitted quantity in drinking water based on the World Health Organization (WHO)
recommendations. Adapted with permission from Ref. [4]. Copyright 2021, Springer Nature.

Heavy Metal Sources Main Organ and System
Affected

Permitted
Amounts (µg)

Lead (Pb)

Lead-based batteries, solder, alloys,
cable sheathing pigments, rust
inhibitors, ammunition, glazes,

plastic stabilizers

Bones, liver, kidneys, brain, lungs, spleen,
immunological system, hematological

system, cardiovascular system,
reproductive system

10

Arsenic (As) Electronics and glass production
Skin, lungs, brain, kidneys, metabolic system,

cardiovascular system, immunological
system, endocrine system

10

Copper (Cu) Corroded plumbing systems, electronic
and cables industry

Liver, brain, kidneys, cornea, gastrointestinal
system, lungs, immunological system,

hematological system
2000

Zinc (Zn) Brass coating, rubber products, some
cosmetics and aerosol deodorants

Stomach cramps, skin irritations, vomiting,
nausea, anemia, convulsions 3000

Chromium (Cr) Steel and pulp mills, tanneries
Skin, lungs, kidneys, liver, brain, pancreas,

tastes, gastrointestinal system,
reproductive system

50

Cadmium (Cd)
Batteries, paints, steel industry, plastic
industries, metal refineries, corroded

galvanized pipes

Bones, liver, kidneys, lungs, testes, brain,
immunological system,
cardiovascular system

3

Mercury (Hg)

Electrolytic production of caustic soda
and chlorine, electrical appliances,

runoff from landfills and agriculture,
industrial and control instruments,

laboratory apparatus, refineries

Brain, lungs, kidneys, liver, immunological
system, cardiovascular system, endocrine

and reproductive system
6

Nickel (Ni) Nickel alloy production, stainless steel Skin, gastrointestinal distress, lung,
pulmonary fibrosis, kidney 70

1 Cobalt (Co)

Cement industries, polishing disc used
in diamond polishing, mobile batteries,
televisions (TVs), liquid crystal display

TVs, computer monitors

High concentrations cause vomiting, nausea,
vision problems, thyroid gland damage N/A

1 The data for cobalt (Co) were taken from references [5,6].

In the past decades, there have been admirable efforts to develop fast and efficient
techniques to remove metal ions from aqueous solutions, and different approaches have
been studied and developed for water remediation, including ion exchange, electrochemical
treatments, membrane separation, and flocculation [1,9]. However, these methods often
suffer from their own limitations in terms of complexity, cost, and efficiency. In recent years,
sol- and gel-based adsorption strategies have attracted increasing attention for scaling-up
the removal process because of their simplicity, high efficiency, and low-cost operation. To
this aim, polymers, clay minerals, and carbon-based materials have been investigated as
adsorbents, and promising results have been obtained in this regard [10–14]. On this basis,
an ideal adsorbent should have high adsorption capacity, fast adsorption kinetics, good
chemical stability, and easy preparation method [2].

Hydrogels have been recently introduced as suitable alternatives as absorbent ma-
terials due to their highly porous structure and adsorbing functional groups, as well as
their large surface area and high swelling ability [15–21]. They are colloidal materials that
possess a three-dimensional (3D) network based on amphipathic polymer building blocks.
The polymers link to each other, forming an insoluble 3D matrix that can absorb and entrap
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a significant amount of water [22,23]. For water treatment applications, it is highly recom-
mended to use biocompatible absorbents, and among them, peptide-based hydrogels for
example can be suitable candidates [1,15]. In general, hydrogels can absorb large amounts
of metal ions inside their matrices, due to the presence of suitable functional groups. As
is well-known, on this basis, hydrogels physically or chemically interact with pollutants
via one or more mechanisms. One of the major mechanisms of heavy metals removal
by hydrogels is based on electrostatic interactions that usually occur when, as a function
of pH, hydroxyl and carboxyl groups of hydrogels are deprotonated, imparting negative
charges to the hydrogel. Other possible interactions involve H-bond formation. These types
of hydrogels can be easily used and scaled up for industrial applications of wastewater
treatment because of their cost-effectiveness and standard synthetic methods. In particular,
they can be prepared by using an enzymatic approach and under mild conditions, which
are highly suitable for large-scale production [19,24].

To enhance hydrogels adsorption efficiency and reduce their operational costs, they
can be hybridized (or combined) with magnetic nanoparticles (NPs) to form “magnetogels”,
which are promising organic-inorganic nanohybrids for environmental and biological ap-
plications, as they combine benefits of both hydrogels and magnetic nanoparticles into
a single inorganic/organic hybrid [25–32]. In fact, magnetic sorbents entrapped within
hydrogel-based materials can promote heavy metals removal thanks to the large number of
functional groups on hydrogel surfaces, thus improving adsorption selectivity as well as
sorbent capacity. These magnetogels are considered as soft smart multifunctional nanosys-
tems, which provide the possibility for enhancing the adsorption efficiency of hydrogels
upon applying an external magnetic field. In addition, the presence of magnetic nanoparti-
cles can modify hydrogels’ structure through covalent or non-covalent interactions, which
offers the possibility to finely tune their physico-chemical properties. The porous mag-
netogels present in their structure active functional groups (e.g., carboxyl, hydroxyl and
amino groups) that are able to remove contaminants by means of electrostatic interac-
tions, ionic exchange, or complexation with contaminants such as heavy metal ions. More
importantly, the interaction of magnetogels with an external magnetic field can promote
the separation, collection, and reuse of hydrogel adsorbents and also have an enhancing
effect on the adsorption of magnetogels [28]. Among the various types of magnetic NPs,
maghemite (γ-Fe2O3) and magnetite (Fe3O4) nanoparticles have been employed for bio-
logical and environmental applications due to their high magnetization, biocompatibility,
and well-assessed synthesis methods [25]. These two types of magnetic nanoparticles
both exhibit strong on/off superparamagnetic properties in the presence/absence of a
magnetic field, respectively. Although maghemite NPs (γ-Fe2O3NPs) show a slightly
smaller magnetic moment compared to magnetite NPs (Fe3O4NPs), they are more stable
in air and have the benefits of possessing a much lower optical absorption in the visible
region [33], suitable for biotechnologies. For water remediation applications, γ-Fe2O3NPs
can act as photocatalysts to break down and remove various organic contaminants. To
date, various nanocomposite-based γ-Fe2O3NPs have been used as adsorbents to remove
different metallic- and organic-based contaminants from aqueous solutions (drinking water,
groundwater, wastewater, and acid mine drainage) with significant adsorption efficiency.
The pollutants include heavy metal ions and several dyes (e.g., methyl orange (MO), methy-
lene blue (MB), rose bengal, Congo red (CR), brilliant cresyl blue, thionine, and Janus green
B) [34,35]. Although several worthwhile water purification studies have been performed
using magnetogels [26,36–39], only a few water remediation applications of peptide-based
magnetogels are known. Thus, it is worth studying this topic to gain more insight toward
the development of advanced and smart biocompatible adsorbents.

Concerning magnetogels synthesis, several methods have been introduced, such
as blending [40], grafting [41], in situ precipitation [42], and swelling [43]. Among these
methods, the swelling strategy is considered as an in situ methodology, and the magnetogels
are prepared in one step. On the other side, blending and grafting methods are known
as “ex situ” strategies, and the magnetogels are synthesized in more than one step [27].
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Regarding the blending method, it is based on sequential syntheses of the components,
starting with the magnetic NPs, which are then blended with hydrogel precursors to
make the resultant magnetogels. Despite the simplicity of the blending method, the
magnetic nanoparticles may have an interfering effect on hydrogel formation and also have
a negative influence on the final structure of the gel. Moreover, lack of proper stabilization
of nanoparticles can result in their heterogeneous distribution or diffusion out of the
gel upon swelling [27]. Based on the interaction of MNPs with the hydrogel network,
magnetogels are classified into class I and class II, as discussed by Weeber et al. [27]. In
class I magnetogels, nanoparticles have a weak interaction with the hydrogel network (also
called blends) through physical interactions, e.g., nanoparticles embedded in the aqueous
compartments or adsorbed onto the fibers. On the other hand, class II magnetogels exhibit
strong interactions among MNPs and hydrogel fibers, through covalent bonding or strong
physical forces [27]. From an industrial point of view, the synthesis of novel magnetic
hybrid sorbents with improved properties in terms of sorbent efficiency or ability to
simultaneously introduce different extraction approaches is highly desirable.

Hence, due to the importance of magnetogels, we studied the synthesis, characteri-
zation, and potential water remediation application of novel peptide-based magnetogel
nanocomposites by ex situ encapsulation of polyacrylic acid (PAA)-modified iron oxide
magnetic nanoparticles (γ-Fe2O3NPs) into a peptide hydrogel matrix (γ-Fe2O3NPs@HG).
The γ-Fe2O3NPs were synthesized by the well-known co-precipitation method, and for
the hydrogel matrix, Fmoc-Phe and diphenylalanine (Phe2) were used as starting mate-
rials for the hydrogelator synthesis through an enzymatic reaction [44]. The magnetogel
nanocomposite was characterized using different spectroscopic, morphological, and struc-
tural techniques and applied to the separation of Cr(III), Co(II), and Ni(II) from aqueous
solutions. The effects of contact time and an external magnetic field on the adsorption
efficiency of the different contaminants were investigated.

2. Results and Discussion
2.1. Preparation of γ-Fe2O3NPs and γ-Fe2O3NPs@HG Magnetogel

Co-precipitation is known as a simple and cheap method to synthesize magnetic iron
oxide NPs (γ-Fe2O3NPs) from aqueous solutions of Fe(II) and Fe(III) by the addition of
a base as a precipitating agent at mild temperature, and a large amount of NPs can be
prepared by this method. The co-precipitation process, schematized in Figure 1a, does not
require organic solvents or toxic precursor iron complexes and proceeds at temperatures
below 100 ◦C. More importantly, it can be developed and scaled up from lab to industry due
to its simplicity, reproducibility, and eco-friendly reaction conditions. However, this method
sometimes suffers from a lack of control over particle size distribution, probably because
of the complicated set of pathways that lead to the formation of NPs [45]. The general
mechanism for the formation of MNPs first involves hydroxylation of the ferrous and ferric
ions to form Fe(OH)2 and Fe(OH)3, respectively. These two low-soluble hydroxides (Kps
(25 ◦C) = 7.9 × 10−15 and 6.3 × 10−38, for ferrous and ferric hydroxide, respectively [46])
can be obtained at alkaline pHs (pH > 8), and when NaOH is used as the precipitating
agent, a black colloidal solution of iron containing NPs is formed instantaneously. By
applying a 2:1 molar ratio of Fe(III):Fe(II) and an oxygen-free environment, magnetite NPs
(Fe3O4NPs) are the main product of this reaction through the following possible reactions
(Equations (1)–(4)) [45]:

Fe(III) + 3OH− → Fe(OH)3 (1)

Fe(OH)3 → FeOOH + H2O (2)

Fe(II) + 2OH− → Fe(OH)2 (3)

2FeOOH + Fe(OH)2 → Fe3O4NPs↓+ 2H2 (4)
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Figure 1. (a) Schematic in situ synthesis of PAA-stabilized γ-Fe2O3NPs; (b) separation of γ-Fe2O3NPs
with an external magnetic field (the enlarged image is provided in SI as Figure S1); (c) illustration
of the ex situ incorporation of γ-Fe2O3NPs into the peptide-based hydrogels γ-Fe2O3NPs@HG
(blending method).

Magnetite shows an inverse (or normal) spinel crystal structure, and its unit cell
contains 32 O2− anions, 8 Fe(II), and 16 Fe(III) cations. Due to the presence of reduced
iron (Fe(II)) in this crystal structure, Fe3O4NPs are easily subject to oxidation and are
transformed to a more stable maghemite phase (γ-Fe2O3NPs) by the following equation
(Equation (5)) [47]:

3Fe3O4NPs + 0.5O2 + 2H+ → 4γ-Fe2O3NPs + Fe2+ + H2O (5)

Another important aspect of iron-based NPs is their colloidal stability after the synthe-
sis. Due to their magnetic properties, iron-based NPs are more vulnerable to agglomeration
because of the magnetic attraction among particles. In general, colloidal stability is the
result of a balance between repulsive interactions (steric and electrostatic) and attractive
forces (Van der Waals, dipolar, and magnetic), which can be influenced by the medium
parameters, including composition, pH, and ionic strength [48]. To enhance their colloidal
stability, MNPs should be stabilized by steric, electrostatic, or a combination of these repul-
sive forces. In the electrostatic stabilization, the repulsive forces between the NPs originate
from likewise charges [49], and for the steric stabilization, the presence of large molecules
provides a repulsive hindrance for the surface of NPs [22]. Steric stabilization is usually
favored because it is less sensitive to medium parameters and therefore more suitable
when MNPs are in contact with complex media [50–52]. To this aim, several small and
large stabilizing agents have been applied for the surface functionalization of MNPs, such
as polymers (polytrolox ester, PAA, and polyacrylic-co-maleic acid), natural antioxidants
(green tea polyphenols, curcumin, quercetin, and anthocyanins) and organic or inorganic
acids (gallic, ascorbic, citric, and humic acid) [53]. Among these stabilizers, the functional-
ization of magnetic NPs with PAA provides both steric and electrostatic effects on the NPs’
surface [54]. The electrostatic effect of PAA originates from its carboxylate groups, and the
steric effect from its polymeric nature. For water purification applications, PAA is known
for its ability to absorb a large amount of water and is used as a superabsorbent. Another
advantage of PAA is its biocompatibility which is highly desirable [40]. For the PAA func-
tionalization of NPs, two methods are generally used: in situ and post (ex situ) surface
coating. For in situ functionalization, PAA is used simultaneously with the iron precursors
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during the synthesis of magnetic NPs, and both synthesis and functionalization occur
simultaneously in one step. For the post (ex situ) method, PAA is added to pre-synthesized
NPs in a separate step (next step) from the synthesis. Generally, the in situ method is more
preferable due to the inhibition of particle growth in a high concentration of PAA. Also,
the high hydrophilicity and colloidal stability induced by PAA stabilization of magnetic
NPs can decrease the long gelation time of supramolecular magnetogels. For instance, it
was reported that the stabilization of iron oxide NPs with polyacrylic acid allowed ho-
mogeneous encapsulation of NPs up to 30 m/m% in both Npx-L-Asp-Z-∆Phe-OH and
Npx-L-Tyr-Z-∆Phe-OH hydrogels containing non-canonical amino acids [27]. These are
some important benefits of PAA for its applications as composite adsorbents. For instance,
PAA-functionalized magnetic magnetite particles have been used as an adsorbent for basic
dyes [53,55,56]. For the above reasons, we synthesized the magnetic NPs stabilized by PAA
using the in situ strategy to obtain small and colloidally stable γ-Fe2O3NPs, followed by
preparation of γ-Fe2O3NPs@HG magnetogel.

The isolation of γ-Fe2O3NPs was first confirmed by the visual magnetic behavior
of the purified precipitates. As can be seen in Figure 1b and Figure S1, the particles are
strongly attracted to the external magnet and easily redispersed after removing the magnet.
To confirm the stabilizing effect of PAA, uncoated magnetic NPs were also synthesized,
using the same reaction conditions but without the presence of PAA. For the synthesis
of γ-Fe2O3NPs@HG magnetogels, we have used the blending strategy mentioned in the
introduction section as a well-known method to synthesize magnetogels [25,27]. This
method is based on sequential syntheses of the components, starting with the magnetic
NPs, which are then blended with hydrogel precursors to make the resulting magnetogels.
The formation of the hydrogel followed a well-assessed procedure, using a microbial lipase
to catalyze the synthesis in water of self-assembling peptides generated by the peptide
bond formation between 9-fluorenylmethoxycarbonyl-phenylalanine (Fmoc–Phe) and the
dipeptide diphenylalanine (Phe2) (Figure 1c) [57].

2.2. Raman, FT-IR/ATR, and XPS Characterization of γ-Fe2O3NPs

Fourier transform-infrared (FT-IR) and Raman spectroscopies are two commonly
used techniques to characterize iron oxide nanoparticles, as they can provide information
on the oxide phase through detection of phonon modes [58]. The FT-IR spectra of bare
and PAA-stabilized γ-Fe2O3NPs are presented in Figure 2a in the 1000–400 cm−1 region,
containing information about the phase of both NPs. Based on literature, the magnetite
phase has a sharp and symmetrical vibration at around 571 cm−1, assigned to the Fe–O
bonds present in tetrahedral and octahedral sites of the spinel structure. It is a general
characteristic band of iron oxide NPs, and its sharpness clarifies the pure defect-free phase.
In maghemite, this band splits into two characteristic vibrations, due to the creation of
vacancy defects and vanishing of Fe(II) ion from the octahedral sites upon the formation of
γ-Fe2O3, causing a decrease in Fe–O bond length, and hence, corresponding splitting of the
band occurs [59]. It should be mentioned that both phases (magnetite or maghemite) show
a weak band in the 440–460 cm−1 region [58]. Regarding the crystal structure, also group
theory theoretically predicts that if the γ-Fe2O3NPs have a spinel crystal, then there are four
T1 modes expected at 212, 362, 440, and 553 cm−1 [60], of which we were able to only detect
the highest two frequencies with our experimental setup. Both spectra of γ-Fe2O3NPs
clearly show the two T1 modes around 460 and 570 cm−1 for uncoated γ-Fe2O3NPs, and
462 and 565 cm−1 for the PAA stabilized γ-Fe2O3NPs, confirming a spinel crystal structure
for both NPs of our experiment. Hence, in both spectra, the formation of γ-Fe2O3NPs
was confirmed from the broadening and splitting of the band into 628 and 570 cm−1 for
uncoated γ-Fe2O3NPs, and 626 and 565 cm−1 for PAA-stabilized γ-Fe2O3NPs. Regarding
the PAA coating and its interaction with the surface of NPs, the FT-ATR data are shown
in Figure 2b for PAA-stabilized γ-Fe2O3NPs (red line) and pristine PAA (black line) in the
4000–600 cm−1 region. The FT-ATR spectrum of PAA stabilized γ-Fe2O3NPs is not a simple
superposition of the PAA spectrum, and the relative intensities of the main vibrational
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bands show some changes, which suggests that PAA alters its symmetry when it attaches
to the NPs. The main features of these spectra are summarized in Table 2, which shows
the characteristic frequencies of free PAA, including the carbonyl stretching (−C=O) at
1669 cm−1, −CH2 scissoring at 1446 cm−1, and the −C−O stretching at 1236 cm−1, as well
as the symmetric stretching frequencies of the carboxylate ions (−COO−) at 1402 cm−1.
Compared to the PAA spectrum, the PAA-stabilized γ-Fe2O3NPs spectrum shows all these
characteristic bands (except –C–O stretching) with a maximum of 6 cm−1 shift. There is
also an additional band for the PAA-stabilized γ-Fe2O3NPs at around 1556 cm−1, assigned
to –COO– asymmetric stretching. These results confirm the surface functionalization of
NPs with PAA, and based on the small shifts observed in frequencies of PAA-stabilized
γ-Fe2O3NPs (compared to the PAA spectrum), a physical interaction can be proposed
between the negatively charged PAA (–COO–) and positive surface Fe(III) ions of NPs [61].
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Figure 2. (a) FT-IR spectra of uncoated γ-Fe2O3NPs NPs (blue line) and PAA-stabilized γ-Fe2O3NPs
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Table 2. Comparison of FT-ATR peak assignments (in cm−1) for polyacrylic acid (PAA) in solid form
and after attachment onto the γ-Fe2O3NPs surface.

PAA PAA-Stabilized
γ-Fe2O3NPs Peak Assignment

1699 1705 –C=O (free COOH)
- 1556 –COO− (asymmetric)

1446 1444 –CH2 scissor
1402 1408 –COO− (symmetric)
1236 - –C–O

As mentioned above, Raman spectroscopy can discriminate iron oxide phases because
they exhibit distinct Raman signatures originating from their different oxidation states [62].
Hence, Raman spectroscopy was used as a complementary technique to better understand
the structure of the synthesized γ-Fe2O3NPs.

The Raman spectra of the synthesized uncoated γ-Fe2O3NPs and PAA-coated γ-
Fe2O3NPs are shown in Figure 3a,b, respectively. The results clearly match Raman spectra
for maghemite previously reported in the literature [58,63], with the three broad observed
Raman active phonon modes at around 350 cm−1 (T1), 500 cm−1 (E), and 700 cm−1 (A1). Re-
garding the PAA-coated sample, we clearly see the Raman modes at higher wavenumbers,
with two main bands centered at around 1400 and 2927 cm−1, assigned to –COO− (sym-
metric) and –CH/–CH2 stretching bands, respectively [64]. These results are in accordance
with the FT-IR spectra and confirm the presence of maghemite phase for the PAA-coated
γ-Fe2O3NPs [58,62,65–68].
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The maghemite phase is also confirmed by XPS results (Figure 3c,d) [62,69–73], and the
PAA-coated γ-Fe2O3NPs sample was analyzed with XPS in order to ascertain the chemical
composition of the inorganic core structure. Figure 3c shows the XPS spectrum, where
the signals due to ionization of Fe, C, O, and Na are visible, the latter resulting from the
use of NaOH in the synthesis of PAA-coated γ-Fe2O3NPs. Figure 3d shows the Fe 2p
spectrum of PAA-coated γ-Fe2O3NPs, which is composed of two rather broad spin-orbit
split components (j = 3/2 and 1/2), whose maxima are separated by a ∆Eso ~ 13.6 eV. This
spectrum was curve-fitted in order to determine the oxidation state of the iron species.
The curve-fitting procedure was conducted following the work by Grosvenor et al. [69,70],
who applied a Shirley background removal to the 2p3/2 envelope and successfully used
the Gupta and Sen (GS) multiplets calculated for free metal ions [71,72] to account for
electrostatic interactions in high-spin Fe(II) and Fe(III) compounds [69,70]. Also in the
present case, a five-fold GS multiplet for Fe(III) compounds was used in the curve-fitting
(green curves in Figure 3d, first component at 710.05 eV binding energy), achieving a good
match with the experimental data. This agreement strongly supports the attribution of
this signal to γ-Fe2O3, as reported by Grosvenor et al. A further two-fold multiplet was
added at low binding energy (red curves in Figure 3d, first component at 708.17 eV binding
energy), in order to better reproduce the experimental signal. This multiplet appears also
in the spectrum by Grosvenor et al. as a “pre-peak” and might stem from residual Fe(II)
high-spin components possibly present in γ-Fe2O3 [69].

2.3. DSL and UV-Vis Characterization of γ-Fe2O3NPs

The hydrodynamic size and surface charges of the two γ-Fe2O3NPs systems (bare and
coated with PAA) were studied by DLS and ζ-potential techniques (Figure 4a,b). Compared
to uncoated γ-Fe2O3NPs, PAA-coated γ-Fe2O3NPs show smaller size and higher negative
surface charge, which can be a good indication of PAA coating and, more importantly,
PAA’s stabilizing effect on the NPs. Using PAA in the in situ synthesis of NPs allows for
controlling the size of γ-Fe2O3NPs because the attached PAA moiety provides steric (by
its polymeric nature) and electrostatic (by its –COO− group) stabilizations, thus permit-
ting γ-Fe2O3NPs dispersion in aqueous media [54]. In fact, the presence of PAA on the
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surface of γ-Fe2O3NPs prolongs the colloidal stability by slowing down the agglomeration
process. Another major advantage of PAA is that the carboxylic acid-enriched surfaces
of PAA-coated γ-Fe2O3NPs may provide a platform for attaching these NPs to other sys-
tems to prepare multifunctional nanohybrids. UV-Vis spectra of PAA-coated γ-Fe2O3NPs
(1.6–0.005 mg/mL) were monitored over a 7-day period to characterize their colloidal sta-
bility against agglomeration and sedimentation [74–76]. As can be seen in Figure 4c, results
show no significant changes in the intensities, indicating the stability of the preparations
against aggregation. The images of three PAA-coated γ-Fe2O3NPs suspensions (1.6, 0.16,
and 0.08 mg/mL) are shown in Figure S2a, in which no precipitation was observed, consis-
tent with the UV-Vis spectra (Figure 4c). Also, the colloidal stability of higher concentrations
of PAA-coated γ-Fe2O3NPs (10 mg/mL) was visually monitored over one week, and a
remarkable stability of the NPs against sedimentation was observed. Conversely, uncoated
γ-Fe2O3NPs showed a fast aggregation and sedimentation that were visually detected,
even at low concentrations (Figure S2c). These results are consistent with previous studies
on the use of organic molecules as stabilizing agents for MNPs. However, the uncoated
NPs showed a limited amount of precipitation in the vials (Figure S2c), demonstrating the
positive long-term stabilizing effect of PAA-coated γ-Fe2O3NPs (Figure 4c). These results
are comparable and consistent with the literature [27,40,53–56] about the stabilizing effect
of PAA on γ-Fe2O3NPs, explained in Section 2.1.
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Figure 4. (a,b) DLS results of the two bare and PAA-coated γ-Fe2O3NPs; (c) stability tests of PAA-
coated γ-Fe2O3NPs assessed by following the maximum absorption peak at 355 nm; (d) UV-Vis
spectra of freshly prepared precursors ions (Fe2+

(aq) and Fe3+
(aq)) and the two NPs.

The UV-Vis spectra of both NPs systems show the presence of a new absorption band
at around 355 nm (Figure 4d), which is different compared to the spectra of precursors
ions (Fe2+

(aq) and Fe3+
(aq)) and assigned to the band gap of maghemite derived from

O(2p)→ Fe(3d) transitions [77,78]. In the freshly prepared samples of both NPs, shoulder
peaks centered at around 450 nm are observed due to the presence of a minor amount of
Fe3O4NPs, which then oxidized to the maghemite phase, and are not seen in the results of
previous section (Section 2.2).
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The peaks of Fe3+
(aq) and Fe2+

(aq) are assigned to charge-transfer electronic transition in
octahedral aquo complexes [79–81]. Regarding these UV-Vis spectra of the Fe3+

(aq)/Fe2+
(aq),

it is worthy to explain that their electronic transition is largely governed by their d-electron
configuration. The charge-transfer transitions are both spin- and Laporte-allowed and
occur in the UV region, which is closely related to the strength of the applied ligand field
(10Dq) [82].

2.4. FESEM-EDS Characterization of γ-Fe2O3NPs and γ-Fe2O3NPs@HG Magnetogel

The solid-state morphology and size of the γ-Fe2O3NPs were evaluated using Field
Emission Scanning Electron Microscopy (FESEM) (Figure 5a,b). The FESEM image of
uncoated γ-Fe2O3NPs demonstrates a grain-like morphology with a size range of 15–65 nm
(Figure 5a,c), and a little aggregation is detected in the image. In agreement with DLS
results, the FESEM images of PAA-coated γ-Fe2O3NPs show smaller particles (Figure 5b,d,
10–40 nm). This result is consistent with the general mechanism of γ-Fe2O3NPs formation
including a nucleation step in the beginning of co-precipitation, followed by nuclei growth
and coalescence. This mechanism is supported by our results, in which both DLS and
FESEM analyses indicate that the γ-Fe2O3NPs obtained without PAA have a larger average
size compared to the particles in the presence of PAA. EDS elemental analyses showed
the presence of C element, which is due to the presence of PAA, previously confirmed by
the FT-IR/ATR and Raman results (Figure S3). For both γ-Fe2O3NPs (with and without
PAA), we see smaller distribution particles, compared with the DLS results, relating to the
differences between these two techniques. In fact, FESEM probes the electron-rich part of
the particle in the solid state; then only the inner core can be seen, and the result obtained
would be smaller. On the other hand, the DLS measures a hydrodynamic diameter based on
the diffusion of the particles in the solutions, and in most cases, we see larger nanoparticles
due to the hydrodynamic layer. FESEM images of the hydrogel and magnetogel are shown
in Figure 5e,f, both exhibiting the typical fibrillar structure, suggesting that the presence of
PAA-coated γ-Fe2O3NPs does not change the macromolecular structure of the gel. Also,
the small particles seen in the magnetogel image can be assigned to γ-Fe2O3NPs.

2.5. Rheological Studies and Swelling Ability

The viscoelastic behavior and the adsorption properties of hydrogel materials are
tightly correlated properties. The goal of the rheological analyses was to understand
how the presence of PAA-coated γ-Fe2O3NPs and their concentration could modulate the
viscoelastic behavior of the hydrogels. As can be seen in Figure 6, for all systems, the
experimental curves show a typical trend of a viscoelastic gel-like material, characterized
by G′ values much larger than G′′ values [83]. All the magnetogels showed lower me-
chanical strength compared to the hydrogel alone, and a concentration-dependent trend is
observed for the magnetogels’ mechanical strength, in which the highest concentration of γ-
Fe2O3NPs (30 mg/mL) had the lowest storage modulus. The decrease in the strength of the
magnetogels may be due to the presence of PAA-coated γ-Fe2O3NPs with different sizes,
morphologies, and surface charges. The negatively charged PAA-coated γ-Fe2O3NPs could
expand the hydrogel network and increase the number of pores and free spaces, lowering
the mechanical strength. The PAA-coated γ-Fe2O3NPs can interact with some hydroxyl
and amine groups of the hydrogel using Fe(III) and PAA moieties expanding the internal
network structure [84–88]. The swelling abilities of hydrogel and magnetogel samples
were measured and are summarized in Table 3. All magnetogels showed higher swelling
behavior in comparison to the native peptide-based hydrogel. This result may be attributed
to the interaction of the hydrogel networks with PAA-coated γ-Fe2O3NPs, neutralizing the
repulsions in the networks and resulting in the penetration of more water in order to com-
pensate for the buildup of osmotic ion pressure [44,89]. Another water-adsorbing moiety is
the attached PAA [40]. These results are consistent with the rheological studies, and there is
an inverse relationship between them, meaning that the higher mechanical strength causes
the lower swelling ability of the gels [38]. For all successive removal applications, we used
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the 10 mg/mL PAA-coated γ-Fe2O3NPs magnetogels because of their higher mechanical
strength compared to the other two magnetogels.

Table 3. Swelling abilities of the hydrogel systems.

Samples Swelling Degree (q)

HG 62.18 ± 0.35
γ-Fe2O3NPs@HG (10 mg/mL) 73.82 ± 0.99
γ-Fe2O3NPs@HG (20 mg/mL) 81.28 ± 0.22
γ-Fe2O3NPs@HG (30 mg/mL) 88.24 ± 0.31
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supporting section (Figure S3).
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2.6. Magnetogels Application in the Removal of Metallic Cations

A simple and straightforward procedure of absorption was applied to Co(II), Ni(II), and
Cr(III) aqueous solutions in the presence of fixed quantities of HG and γ-Fe2O3NPs@HG,
following the UV-Vis peak arising from the metal ions over time, also comparing the effect
of an external magnetic field (1.42–1.47 T). In the following paragraphs, the results of the
studies are reported.

2.6.1. Co(II) Removal Studies

Co(II)(aq) has a broad metal-based absorption peak in the visible region centered
at 512 nm [90]. Over the whole removal process, the intensity of this peak decreases
without significant change in the wavelength for all the three adsorbents (Figures 7a and S4)
tested, i.e., HG, γ-Fe2O3NPs@HG, and γ-Fe2O3NPs@HG upon magnetic field application.
In particular, in Figure 7a, the UV-Vis spectra of γ-Fe2O3NPs@HG upon magnetic field
application is reported. The adsorption capacity of these systems was monitored as a
function of contact time (Co(II)initial = 61 mg/mL), and qt (in mg g−1) plots are shown in
Figure 7b, with contact times ranging from 0 to 480 min. The adsorption capacities follow
the trend γ-Fe2O3NPs@HG upon magnetic field application > γ-Fe2O3NPs@HG > HG,
confirming the enhancing effect of γ-Fe2O3NPs on the adsorption. The interaction of
magnetogel with an external magnet further increases the capacity, compared to that of
the magnetogel. For each adsorbent, a fast Co(II) removal was observed in the first 15 min,
which is due to the large number of active sites available on the hydrogel [91]. This rapid
adsorption might be due to chemical rather than physical adsorption because of the possible
complexation between the suitable functional groups of hydrogels and Co(II) ions. This
phenomenon was already reported in several studies of Co(II) adsorption [16,92,93]. Then,
their adsorption gradually slowed until reaching equilibrium after 480 min for all systems.
At equilibrium, the capacity of γ-Fe2O3NPs@HG upon magnetic field application is about
1.25 times higher than that of the other two adsorbents. Total adsorption efficiencies
were estimated, and the results show that γ-Fe2O3NPs@HG and γ-Fe2O3NPs@HG upon
magnetic field application increase the removal efficiency by 0.3% and 5.3%, respectively
(Table 4), in comparison with hydrogel alone. Under these experimental conditions, the
external magnetic field has a relevant effect on the adsorption capacity and efficiency of
the hydrogel.
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Table 4. Co(II) adsorption efficiencies and capacities, obtained from the UV−Vis measurements at
the equilibrium, at room temperature.

Adsorbent Removal% (RE%) Experimental qe (mg g−1)

HG 20.4 ± 0.3 1680 ± 34
γ-Fe2O3NPs@HG 20.7 ± 0.4 1703 ± 42

γ-Fe2O3NPs@HG + magnet 25.7 ± 0.6 2111 ± 72

As time passes, the removal speeds decrease, owing to more active sites occupied by
Co(II) ions. To better understand the adsorption kinetics, two well-known kinetic models,
pseudo-first order and pseudo-second order [91], were applied and evaluated using the
given linearized equations (Equations (9) and (10)), as provided in Section 4.8. In general,
the pseudo-first order model describes a reversible adsorption between solid and liquid
phases [94], claiming physisorption rather than chemisorption. Conversely, the second-
order model mainly suggests a chemical adsorption of adsorbates onto the adsorbents [95],
in which chemical bonding occurs among the metal ions and polar functional groups of the
adsorbents. Two kinetic plots are shown in Figure 7c,d, and the subsequently calculated
kinetics parameters are summarized in Table 5. Considering the correlation coefficient, R2

better-fitted straight lines were obtained from the pseudo-second order relation for all the
adsorbents, compared to those obtained for the pseudo-first order plots. Moreover, the
calculated equilibrium adsorption capacities, qe, obtained from the pseudo-second order
equation were much closer to the experimental trend seen in Figure 7b. The results suggest
that the adsorption of Co(II) onto our synthesized HG and γ-Fe2O3NPs@HG systems
occurs through chemisorption, in agreement with previous works [96]. Also, we can clearly
see the significant effect of magnetic interaction on the speed of adsorption, as shown in
Table 5.
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Table 5. Co(II) adsorption rate constant obtained from pseudo-first order and pseudo-second order
models, at room temperature.

Pseudo-First Order Pseudo-Second Order

Adsorbent k1 (min−1) qe
(mg g−1) R2 k2

(g mg−1 min−1)
qe

(mg g−1) R2

HG 0.0036 1867 0.9057 0.0005 1958 0.9722

γ-Fe2O3NPs@HG 0.0036 1611 0.9363 0.0005 1895 0.9872

γ-Fe2O3NPs@HG
+ magnet 0.0032 1486 0.9667 0.0004 2285 0.9834

The chemisorption of Co(II) can be interpreted based on the coordination chemistry of
Co(II) aquo complexes, which are kinetically labile species. For substitution reactions, the
transition metal kinetics are governed by their electronic configurations. For octahedral
complexes, the d orbitals split into high energy eg (dz

2 and dx
2−y

2) and low energy T2g
(dxz, dyz, dxy) levels, of which eg orbitals show anti-bonding characters. Due to the high-
spin d7 configuration of Co(II) aquo complexes having the T2g

5 eg
2, they also exhibit the

Jahn-Teller effect (z-out), which is a geometric distortion of a non-linear molecular system
that reduces its symmetry and energy, seen in the complexes having the occupied eg levels.
Therefore, the Co(II) ions in the dissolution process have high lability and are vulnerable
to the chemical substitution reaction to achieve their stable electronic configurations. In
fact, the presence of Fmoc-Phe and diphenylalanine (Phe2) in the hydrogel network can
provide the chelating moiety (through their nitrogen and oxygen atoms) for the Co(II) ions,
resulting in stable Co(II) complexes [97].

Regarding the enhancing effect of γ-Fe2O3NPs nanoparticles, it is consistent with
previous studies on magnetogels [98,99] and is related to the fact that NPs embedded
in hydrogel can increase the cross-linking degree and porosity of the gel, providing a
channel for the entry, exit, and adsorption of some substances [28]. More importantly, the
interaction of γ-Fe2O3NPs@HG with the external magnet further enhances the adsorption.
As is well-known, magnetogels can exhibit an on/off effect on the hydrogel pores [27]. In
fact, swelling or shrinking states of γ-Fe2O3NPs@HG can be influenced by the magnetic
dipole-dipole orientation of γ-Fe2O3NPs toward the external magnetic field [100] and can
increase the permeability of Co(II) into the hydrogel network for the chemisorption [89,101].

2.6.2. Ni(II) Removal Studies

Ni(II)(aq) complexes display a typical octahedral structure with six water ligands
in the first coordination shell [102] and an absorption maximum at 394 nm due to spin-
allowed transitions. Upon interaction, a decrease in the absorption band was observed
without significant changes in the wavelength (see supporting information, Figure S5).
The γ-Fe2O3NPs@HG dramatically enhances the adsorption of Ni(II), with and without
an external magnet. All the three systems show very fast adsorptions in the early 30 min,
and applying an external magnet results in reaching the equilibrium earlier, after around
150 min for γ-Fe2O3NPs@HG + magnet. Considering the effect of an external magnet on
γ-Fe2O3NPs@HG adsorption ability, a plateau is reached after 150 min. Without applying
the external magnet, the equilibrium is reached later (after 360 min) but with 10% higher
adsorption capacity (Figure 8a). The adsorption efficiencies are summarized in Table 6,
showing that the γ-Fe2O3NPs@HG and γ-Fe2O3NPs@HG + magnet systems can increase
the removal efficiency by 7.3% and 5.1%, respectively, compared to the native hydrogel.
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Figure 8. (a) Ni(II) adsorption capacity of HG, γ-Fe2O3NPs@HG, and γ-Fe2O3NPs@HG + magnet
versus time; (b) fit of kinetic data to the pseudo-second-order model for Ni(II); (c) Cr(III) adsorption
capacity of HG, γ-Fe2O3NPs@HG, and γ-Fe2O3NPs@HG + magnet versus time; (d) fit of kinetic data
to the pseudo-first and (e) second-order models for Cr(III). (The complete UV-Vis study of Ni(II) and
Cr(III) adsorption are reported in the supporting information section together with the Ni(II) and
Cr(III) calibration curves.)

Table 6. Ni(II) adsorption efficiencies and capacities, obtained from the UV−Vis measurements at the
equilibrium, at room temperature.

Adsorbent Removal% (RE%) Experimental qe (mg g−1)

HG 18.6 ± 0.1 1399 ± 12
γ-Fe2O3NPs@HG 25.9 ± 0.4 1945 ± 41

γ-Fe2O3NPs@HG + magnet 23.7 ± 0.4 1758 ± 39

For all the three adsorbents, the speed of adsorption is higher in the beginning and
slows down with time. Also, the adsorption speed of magnetogels (with and without an
external magnet) is higher than that of the native hydrogel. Applying the kinetics models
for the Ni(II) removal, it can be seen (Figure 8b) that the pseudo-second order model was
more consistent for all these three systems (all second-order coefficients R2 are higher than
0.97), supporting a chemisorption mechanism for Ni(II) (Table 7).

Table 7. Ni(II) adsorption rate constant obtained from pseudo-first order and pseudo-second order
models, at room temperature.

Pseudo-First Order Pseudo-Second Order

Adsorbent k1 (min−1) qe
(mg g−1) R2 k2

(g mg−1 min−1)
qe

(mg g−1) R2

HG 0.0115 1948 0.8548 0.000005 1785 0.9735

γ-Fe2O3NPs@HG 0.0161 2998 0.8247 0.000007 2325 0.9954

γ-Fe2O3NPs@HG
+ magnet 0.0092 613 0.9457 0.000036 1851 0.9993
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2.6.3. Cr(III) Removal Studies

Cr(III) removal showed a different pattern, compared to Co(II) and Ni(II) adsorption.
It is known that the aqueous Cr(III)(aq) can show three absorption peaks due to both the
d→d electronic transitions [103]. In the present study, the absorption peak of 420 nm was
monitored and assigned to spin-allowed transition. The UV-Vis spectra (reported in the
supporting information, Figure S6) show the decrease in the 420 nm absorption band due to
the removal of Cr(III). As can be seen in Figure 8c, the adsorption rate of both magnetogels
γ-Fe2O3NPs@HG with and without the applied magnet is higher than that of the hydrogel
HG in the first half of the experiments. However, at equilibrium, all adsorbents reach
almost similar values of removal capacity (Figure 8c) (120–130 mg/g). Similar to the Co(II)
and Ni(II) results, here also we clearly see the higher speed of magnetogels in removing
the contaminant, further enhanced by the presence of a magnetic field. Table 8 reports the
removal efficiencies for all the systems.

Table 8. Cr(III) adsorption efficiencies and capacities, obtained from the UV−Vis measurements at
the equilibrium, at room temperature.

Adsorbent Removal% (RE%) Experimental qe (mg g−1)

HG 13.2 ± 0.1 127 ± 6
γ-Fe2O3NPs@HG 15.5 ± 0.1 149 ± 8

γ-Fe2O3NPs@HG + magnet 14.7 ± 0.1 142 ± 5

Kinetic studies provided us further detailed information on Cr(III) removal. The
fitting results of the kinetic models are given in Table 9. For the hydrogel, the correlation
coefficient (R2) provided by the pseudo-first order model is much higher than that of
the pseudo-second order, suggesting a physical mechanism for the adsorption of Cr(III)
(Figure 8d). This can be explained by the electronic configuration of Cr(III) aqua complexes
(d3), which are kinetically inert and have a low rate for the chemical substitution reaction
in normal conditions. The physical mechanism might be due to the electrostatic interaction
of positively charged Cr(III) ions with the negatively charged hydrogel network [24,44].
Conversely, the data obtained with both magnetogels (with and without magnet) fit with
a pseudo-second order model, suggesting that the presence of γ-Fe2O3NPs@HG and
magnetic field can both change the hydrogel network and porosity, providing chelating
conditions inside the hydrogel suitable for the formation of the chemical bonds among
hydrogel hyteroatoms and Cr(III) ions [104].

Table 9. Cr(III) adsorption rate constant obtained from pseudo-first-order and pseudo-second-order
models, at room temperature.

Pseudo-First Order Pseudo-Second Order

Adsorbent k1 (min−1) qe
(mg g−1) R2 k2

(g mg−1 min−1)
qe

(mg g−1) R2

HG 0.0105 248 0.8355 - 27 0.0040

γ-Fe2O3NPs@HG 0.0101 184 0.9052 0.00003 212 0.9538

γ-Fe2O3NPs@HG
+ magnet 0.0112 134 0.9197 0.0001 163 0.9794

3. Conclusions

The goal of this work was to direct attention to emerging and novel research involving
magnetogel nanohybrid materials that might be relevant in future applications for the
treatment of wastewater, as well as in other fields.

Generally, composite hydrogels are promising adsorbents with tunable features, and
we demonstrated that the addition of effective functional groups in nanohybrid materials
through chemical conjugation is a promising strategy to further improve the adsorption
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abilities of hydrogels. In fact, the results achieved pointed out that the presence of γ-
Fe2O3NPs provides magnetic properties to the resulting nanohybrids, which can be applied
for magnetic-based removal applications of contaminants, such as heavy metal ions, from
aqueous phases. The results of the removal studies demonstrate that the presence of γ-
Fe2O3NPs in combination with the application of an external magnetic field increases the
adsorption efficiency of the hydrogel matrix for all the metal ions tested in this study; in
particular, the γ-Fe2O3NPs@HG + magnet was effective to absorb up to 2111 ± 72 mg/g
for Co(II), 1758 ± 39 mg/g for Ni(II), and 142 ± 5 mg/g for Cr(III).

The kinetic models showed the chemisorption of these cations onto the γ-Fe2O3NPs@HG
(with and without the magnetic field). Regarding the native HG, Co(II) and Ni(II) showed
chemisorption, but for the Cr(III), the results were fitted with a physical adsorption mecha-
nism. This work showed that the peptide-based magnetogels can be introduced as promis-
ing adsorbing materials for wastewater treatment to remove heavy metals from aqueous
solutions. In the future, this study could be expanded to test the recovering ability of the
three adsorbing systems for the recycling of metal ions, and extensive efforts should be
directed to scale up the applications and test the developed materials in practical scenarios.

4. Materials and Methods
4.1. Materials

L-Phenylalanyl-L-phenylalanine (H-Phe-Phe-OH, 98%, 312.36 g/mol) and N-(9-Fluore-
nylmethoxycarbonyl)-L-phenylalanine (Fmoc-L-phenylalanine: Fmoc-Phe-OH, 99%,
387.44 g/mol) were purchased from Bachem GmbH (Weil am Rhein, Germany) and used
as received. FeCl2·4H2O (198.75 g/mol) and FeCl3 (162.20 g/mol) were purchased from
Fluka. NaOH (39.99 g/mol) and CrCl3·6H2O (158.36 g/mol) were purchased from Carlo
Erba Reagents (Cornaredo (MI), Italy). NiCl2·6H2O (129.59 g/mol) and CoCl2·6H2O
(129.83 g/mol) were obtained from Alfa Aesar. Lipase from Pseudomonas fluorescens
(PFL ≥ 20,000 U/mg) was purchased from Sigma-Aldrich (Milan, Italy) and used as re-
ceived. Ultra-pure water (H2Oup) was obtained using a Zeneer Power I Scholar-UV (Full
Tech Instruments, Rome, Italy) apparatus. In this study, the external magnetic field was
provided by a commercial neodymium-based magnet possessing 39.270 cm3 volume, mag-
netization quality of N5, and 1.42–1.47 T of magnetic strength.

4.2. Synthesis of γ-Fe2O3NPs@HG Magnetogels

γ-Fe2O3NPs were synthesized via the co-precipitation method in which 40 mg of FeCl3
and 25 mg of FeCl2·4H2O were dissolved in 25 mL of an aqueous solution of polyacrylic
acid (PAA) and degassed with Ar(g) for 15 min, followed by increasing the temperature
to 80 ◦C [87]. Then, pH of this solution was increased to 11 by a fast addition of NaOH
(10 M). The mixture was stirred at 80 ◦C for 1 h (with constant monitoring of the pH) and
then cooled down to room temperature. The dark-brown colloidal solution of MNPs was
collected by a strong magnet (1.42–1.47 T) and washed three times with a total volume of
150 mL of ultra-pure water to remove the excess amount of NaOH and other non-magnetic
species. The resultant NPs were freeze-dried and stored at room temperature. Regarding
PAA, it was synthesized by radical polymerization of acrylic acid (2 mL) in the presence of
the initiator potassium persulfate (50 mg) in a total volume of 25 mL of water at 80 ◦C for
5 h. FmocPhe3 hydrogel synthesis was performed according to our previous work [44]. In
brief, Phe2 and FmocPhe peptides were added in equimolar amounts to a colloidal solution
containing 2 mL aqueous solution of the as-synthesized MNPs-PAA (10–30 mg/mL) and
420 µL of 0.5 M NaOH, stirring magnetically for 10 min. Then pH was adjusted to 7 by
adding 1.5 mL of 0.1 M HCl, followed by the addition of 100 µL lipase aqueous solution
(50 mg/mL), leaving the resultant mixture at 30 ◦C for 30 min.

4.3. UV-Vis, FT-IR/ATR and Raman Spectroscopies and Dynamic Light Scattering (DLS)

All UV-Vis spectra of the MNPs and Fe2+/Fe3+ ions were recorded in 1.00 cm optical
path quartz cells using a Cary 100 Varian spectrophotometer. For the removal studies,
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we used the plastic PMMA cells. FTIR-ATR data were collected with a Bruker Vertex 70
instrument (Bruker Optics, Ettlingen, Germany) using KRS-5 cells in the 4000−400 cm−1

range or in ATR mode on a diamond crystal in the 4000−600 cm−1 spectral region. Dynamic
light scattering (DLS) measurements were performed using a Malvern Zetasizer with a
minimum of 10 replicates. All measurements were carried out at least three times with
reporting the average value ± standard deviation. Raman spectra were run at room
temperature in backscattering geometry with an inVia Renishaw micro-Raman spectrometer
equipped with an air-cooled CCD detector and super-Notch filters. An Ar+ ion laser
(λlaser = 514 nm) was used, coupled to a Leica DLML microscope with a 20× objective. The
resolution was 2 cm−1, and spectra were calibrated using the 520.5 cm−1 line of a silicon
wafer [105].

4.4. X-ray Photoelectron Spectroscopy (XPS)

The XPS analysis was conducted using a modified Omicron NanoTechnology MXPS
system.(Scienta Omicron GmbH, Taunusstein, Germany) Samples were excited by achro-
matic AlKα photons (hν = 1486.6 eV), operating the anode at 14–15 kV and 10–20 mA. The
take-off angle and pass energy were fixed at 21◦ and 20 eV, respectively. Samples were
prepared by casting onto a hydrogenated Si(100) wafer a 20 µL drop of MNPs-PAA, and the
obtained Si-supported sample was left to dry overnight and then mounted on a stainless
steel sample holder for measurement [106].

4.5. Electron Microscopy Studies

FESEM images were performed using an Auriga Zeiss field emission scanning electron
microscope supported by an energy dispersive X-ray spectroscopy detector (FESEM-EDS)
instrument (Zeiss, Oberkochen, Germany). Samples were deposited onto conducting silicon
stubs without the need of a conductive coating and analyzed at an accelerating voltage that
avoided radiation damage.

4.6. Rheology Measurements

The rheological properties of three magnetogels containing different concentration
of NPs and of the native hydrogel were studied by using an Anton Paar MCR 302 rota-
tional rheometer in frequency sweep experiments, (Anton Paar, Turin, Italy) as reported
previously [44].

4.7. Swelling Test

Swelling tests of the hydrogel samples were conducted as reported previously [44].
The swelling degree (q) was calculated by using the following equation:

q = (Ws −Wd)/Wd (6)

where Ws is the weight of the hydrogel after removing the swelling solution and Wd is the
weight of the freeze-dried sample.

4.8. Adsorption Experiments

Magnetogel samples were prepared in cuvettes, and 2 mL of the target solutions
(Co(II), Ni(II), and Cr(III)) were cast on top of them, using different concentrations of the
cations (see Figure S7). We only used the 10 mg type γ-Fe2O3NPs@HG magnetogel because
of its higher mechanical strength, evidenced by the rheological characterization.

The removal studies were performed using UV-Vis spectroscopy, and the results are
presented in Figures 7, 8 and S2–S4. For all the tested pollutants, we used three main
hydrogel-based absorbents including (1) HG, (2) γ-Fe2O3NPs@HG magnetogel, and (3) γ-
Fe2O3NPs@HG + magnet). We also studied the removal efficiency of γ-Fe2O3NPs alone
(10 mg/mL), and no significant change was observed in the UV-Vis of solutions. The UV-
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Vis absorbances of the solutions were monitored over time with 15 min intervals, and the
removal efficiency (RE) was estimated by absorption spectra using Equation (7) as follows:

RE (%) = (C0 − Cf)/C0 × 100 (7)

where C0 is the initial concentration of pollutant and Cf is the concentration of pollutant
in the eluted solution. The calibration curves were obtained and used for the calculations.
Also, the adsorption capacities were estimated using the stock solutions of the pollutants
(Co(II), Ni(II), and Cr(III)) prepared at pH 7, and their concentrations remaining in solutions
after specific time intervals were determined by UV-Vis spectrophotometry. The adsorption
capacity (qe, mg g−1) of the adsorbents was calculated using Equation (8) [107–109]:

qe = (C0 − Ce)/m × V (8)

where m (g) is the dried hydrogel mass, C0 and Ce (mg L−1) are the initial and equilibrium
pollutant concentrations, and V (L) is the solution volume, respectively.

Kinetic behavior was studied using non-linear pseudo-first order and pseudo-second
order kinetic models (Equations (9) and (10)) [108,110].

log(qe − qt) = logqe − k1t/2.303 (9)

t/qt = 1/k2qe
2 + t/qe (10)

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels9080621/s1, Figure S1: Separation of γ-Fe2O3NPs with an
external magnetic field (1.42–1.47 T); Figure S2: PAA-coated γ-Fe2O3NPs solutions after one week for
(a) 1.6, 0.16 and 0.08 mg/mL and (b) 10 mg/mL; (c) sedimentation of uncoated γ-Fe2O3NPs after 24 h.;
Figure S3: EDS spectrum of PAA-coated γ-Fe2O3NPs; Figure S4: UV-Vis study of Co(II) adsorption for
(a) the peptide HG; (b) γ-Fe2O3NPs@HG, and (c) the calibration curve for Co(II) aqueous solutions.;
Figure S5: UV-Vis study of Ni(II) adsorption for (a) the peptide HG; (b) γ-Fe2O3NPs@HG; (c) γ-
Fe2O3NPs@HG upon magnetic field application; (d) the calibration curve for Ni(II) aqueous solutions,
and (e) fit of kinetic data to pseudo-first order model for Ni(II).; Figure S6: UV-Vis study of Cr(III)
adsorption for (a) the peptide HG; (b) γ-Fe2O3NPs@HG; (c) γ-Fe2O3NPs@HG upon magnetic field
application, and (d) the calibration curve for Cr(III) aqueous solutions.; Figure S7: Methodology used
for studying the removal efficiency of Co(II), as an example here.
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Abstract: The persistent challenge of removing viscous oil on water surfaces continues to pose a major
concern and requires immediate attention. Here, a novel solution has been introduced in the form of
a superhydrophobic/superoleophilic PDMS/SiO2 aerogel fabric gathering device (SFGD). The SFGD
is based on the adhesive and kinematic viscosity properties of oil, enabling self-driven collection of
floating oil on the water surface. The SFGD is able to spontaneously capture the floating oil, selectively
filter it, and sustainably collect it into its porous fabric interior through the synergistic effects of
surface tension, gravity, and liquid pressure. This eliminates the need for auxiliary operations such as
pumping, pouring, or squeezing. The SFGD demonstrates exceptional average recovery efficiencies
of 94% for oils with viscosities ranging from 10 to 1000 mPa·s at room temperature, including
dimethylsilicone oil, soybean oil, and machine oil. With its facile design, ease of fabrication, high
recovery efficiency, excellent reclaiming capabilities, and scalability for multiple oil mixtures, the
SFGD represents a significant advancement in the separation of immiscible oil/water mixtures of
various viscosities and brings the separation process one step closer to practical application.

Keywords: oil collection; oil–water separation; superhydrophobic; superoleophilic

1. Introduction

With the development of the social economy and industrialization, oil pollution such
as waste edible oil, mechanical abandoned oil, and industrial spilled oil increases rapidly,
which results in a serious threat to the ecosystem and human health [1,2]. Conventional
methods and technologies such as flotation, separators, centrifugation, oil containment
booms, and skimmers have been developed for oil removal but are not effective for to-
tally eliminating oil from water, especially oil with viscosity, thus making the separation
incomplete with oil residual in water [3,4]. Moreover, these methods usually involve low
selectivity, tedious operations, energy-consuming processes, low separation efficiency, and
so on, which severely blocks the practical usage of these approaches. Therefore, novel
materials with special selectivity, good mechanical stability, excellent separation efficiency,
and reliable recyclability are urgently needed for the separation of oil/water mixtures [5,6].

Recently, various separation materials with special wettability such as membrane
films, porous materials, and gelation have been widely developed [7–12]. Superhydrophilic
materials with hierarchical structures and water-binding affinity could adsorb water and
make water become trapped in the rough structures once contacting water during the
separation process [13,14]. The adsorbed water forms a hydration layer, which definitely
reduces the contact area between the oil and sample surface and thus decreases the oil
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adhesive property. During the separation process, these materials could easily attract and
filter water content from oil/water mixtures under gravity or external force, often display-
ing outstanding oil/water separation efficiency [15,16]. However, besides the drawbacks
of the rigorous fabrication process, complicated operation steps, and the process being
energy-consuming, having low recyclability, and sometimes requiring pump assistance,
the large-scale usage of these materials for oil/water separation still remains limited be-
cause of their separation style: the water content of the viscous-oil/water mixtures passes
through the materials instead of gathering floating viscous oil content from the mixtures,
requiring oil/water mixtures to be gathered first [17]. Meanwhile, most reported materials
are mainly focused on organic solvents or light oils (e.g., gasoline and diesel) and are still
easily polluted and fouled by sticky oils [18–20].

Porous absorbent materials with water repellency such as sponges, foam materials,
rubber, carbon-based materials, and chemosynthesis adsorbents have drawn much atten-
tion to dealing with floating oil assigned to their prominent adsorption characteristics and
extrusion property [21–23]. The materials could spontaneously and selectively adsorb oil
from the water surface due to their lipophilicity and water resistance, usually possessing
excellent adsorption capacity and exceptional separation efficiency. Polydimethylsiloxane
(PDMS) sorbent has been widely used for oil–water separation due to its high selectivity
and recovery rates for oil types, as well as its ease of use and cost-effectiveness compared to
other sample preparation methods [24–26]. However, its use also has several disadvantages,
including higher costs than other sample preparation materials, environmental impact due
to the difficulty of biodegradation of the synthetic material, the need for reusability, and
limited capacity for large sample volumes. Graphene/PDMS sponge has gained attention
as a promising material for oil–water separation due to its high surface area and selective
affinity for different types of oil. In addition, its reusability and durability make it a cost-
effective solution for oil–water separation [27–29]. However, the synthesis and preparation
of graphene/PDMS sponge can be challenging and requires advanced methods, resulting in
high production costs. Furthermore, the stability of the material may not be consistent over
time, leading to degradation and decreased efficiency in oil–water separation. However,
it is of concern that these adsorbent materials, once used for viscous oil adsorption and
removal, would show a dramatic decline in adsorption properties, leading to an inevitable
decrease in recovery efficiencies after a limited number of uses [21]. The primary reason for
the decline is due to the stickiness and kinematic viscosity of the oils, which would lead
to accumulated contaminants, severe pore fouling, and an irreversible decrease in their
adsorption properties. In the meantime, artificial squeezing or pump-driven procedures
may require tedious separation operations and high energy consumption. Therefore, novel
devices and methods with easy operation, self-driven property, good oil recovery, and
stable recyclability should be designed for floating viscous oil collection and removal.

Herein, a superhydrophobic/superoleophilic PDMS/SiO2 aerogel fabric gathering
device (SFGD) is designed for collection and removal of floating viscous oil spills. Firstly,
a layer of superhydrophobic/superoleophilic PDMS/SiO2 composite aerogel coating is
prepared on the surface of the burlap fabric using PDMS and nano-silica aerogel particles
[30,31]. Subsequently, the burlap fabric is combined with porous plastic balls (i.e., by filling
the porous plastic balls as an internal support frame inside the burlap sack) to form the
SFGD. The device could spontaneously gather floating oil on a water surface and sus-
tainably collect it into a porous sack relying on the effects of surface tension, gravity, and
liquid pressure, requiring no auxiliary operations (e.g., pumping, pouring, and squeezing).
During the separation process, the partially submerged fabric surface remains superhy-
drophobic even underwater, which mainly results from the adhered waterproof viscous
oil, hierarchical surface structures, and the intrinsic water repellency of the textile surface.
Therefore, an interesting phenomenon appears that the water tightly wraps the submerged
part of the sack surface while being totally forbidden to pass through the textured surface;
simultaneously, the oil could easily flow into the sack while being inevitably locked into the
sack by the wrapped water. Finally, the floating viscous oil is collected into a container and
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the SGFD could be reutilized for the oil/water separation, thus demanding no clean-up
treatment. Moreover, the fabrics display good water repellence, excellent wear resistance
detected by an oscillating abrasion tester, and prominent reusability via a recycling experi-
ment. The facile prepared SFGD with scalable fabrication, high recovery efficiency, and
prominent reclamation for the separation of immiscible oil/water mixtures of various oil
viscosities utilizing a self-driven approach is displayed to illustrate the necessity of the
unique device designed herein.

2. Results and Discussion
2.1. Mechanism and Surface Wettability

Polydimethylsiloxane has been widely applied for the construction of superhydropho-
bic/superoleophilic surfaces due to its low surface energy and adhesive properties [32].
Nano-silica aerogel particles were prepared by the sol-gel method and used as the surface
coating composition for providing additional nanoscale surface roughness and enhanc-
ing surface [30]. As shown in Figure 1a, PDMS prepolymer was dissolved into n-hexane
solution under stirring and then the added nano-silica aerogel particles were dispersed
under ultrasonic treatment because of the aggregation of the particles. After a simple
dip-coating procedure and a subsequent drying process, the burlap fabric was coated with
a uniform superhydrophobic PDMS/SiO2 composite aerogel coating as exhibited in the
SEM images (Figure 1b). During the preparation of the PDMS/SiO2 composite aerogel
coating on the fabric surface, the adhesive properties of the PDMS played a crucial role
for both the fabric substrate and silica. The strong adhesion of the PDMS ensured firm
and continuous bonding between the coating and the fabric surface, which was essential
for the long-term stability and durability of the superhydrophobic coating. The adhesive
properties of the PDMS also prevented the coating from peeling or flaking off the fabric sub-
strate, ensuring that the coating remained intact even under high stress or wear conditions.
In addition, the addition of nano-silica aerogel particles not only built a rough structure
for the overall superhydrophobic coating, but also increased its mechanical stability and
durability. The adhesive properties of the PDMS also helped to bond the silica particles to
the fabric, forming a strong and uniform coating that could resist wear and tear. Therefore,
the combination of the PDMS and silica enhanced the overall performance of the coating
and made it more superhydrophobic. With the synergistic effect of hybridization and
composite formation between PDMS and nano-silica aerogel particles, a layer of superhy-
drophobic/superoleophilic PDMS/SiO2 composite aerogel coating is formed on the surface
of burlap fabric.

Generally, surfaces with low surface energy showed a stronger affinity to oil than
water [33,34]. The wettability of the coated burlap fabric was measured in air conditions
with water contact angles (WCAs) of 156◦ (Figure 1c top) and an oil contact angle of 0◦

(Figure 1c bottom), respectively, showing excellent water repellency and superoleophilicity.
Once it contacted the as-prepared sample, the oil droplet would spread on the modified
surface (see the Supplementary Information, Figure S2). As demonstrated in Figure 1d, the
sack coated by PDMS/SiO2 composite aerogel coating displayed excellent water impact
resistance (Figure 1d left) and outstanding water-holding properties (Figure 1d right).

As reported, the modified Young’s equation could be not only applicable to analyze
the wettability of an oil droplet on a solid surface underwater but also valid to a water
droplet on a surface in oil [35,36]. The modified formula of water contact angle on an ideal
smooth surface underoil (θWO) is displayed in Equation (1). According to the equation,

cos θ′WO = r cos θWO (1)

where θ′WO represents the water contact angle of a water droplet on the rough surface
and r is the roughness of the surface. the value of surface roughness (r) is greater than 1,
illustrating that for material with underoil WCA (θWO) more than 90◦, the real value of θ′WO
increase with the strengthening of surface roughness. Thus, the nano-silica aerogel-particles
play an essential role in the construction of underoil superhydrophobicity. The wettability
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of the as-prepared rough surfaces with superhydrophobicity was explored via a contact
angle meter (Figure 2 and Figure S3).
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Figure 1. (a) Schematic illustration of the construction process for the PDMS/SiO2-coated burlap
fabric. (b) SEM images of the PDMS/SiO2 composite aerogel coating on burlap fibers (left) with
partial magnification (right). (c) Photographs of water contact angle (top) and oil contact angle
(bottom) on the coated fabric surface in air conditions, respectively. (d) Photographs exhibiting the
surface hydrophobicity of the water impacting test (left) and the water holding test (right).
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Figure 2. Photographs of (a–f) the underoil water-adhesion detection process on PDMS/SiO2-coated
fabric surface and (g,h) water contact angles on the prepared surfaces under n-hexane and under
dimethyl silicone oil, respectively.

In oil, the superoleophilic PDMS/SiO2 composite aerogel coating could quickly absorb
oil and the oil could be tightly adhered to the textured surface and trapped in the rough
structures, which was attributed to the excellent surface affinity to oil. The oil-coated fabric
surface demonstrated remarkable superhydrophobicity with a WCA of 154.1◦ under n-
hexane (Figure 2g). As shown in Figure 2a–d, when a water droplet came into contact with
the oil/solid composite interface (Figure 2b) under n-hexane and was pressed downward
(Figure 2c), the droplet was compressed but did not wet the interface, retaining its intact
shape. When the water droplet was lifted, it remained non-adherent to the interface
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(Figure 2d). Additionally, when the water droplet was brought into contact with the
interface and pressed down a certain distance, upon moving the droplet to the right
(Figure 2e) or left (Figure 2f), there was no lag or adhesion between the droplet and the
interface. Furthermore, as shown in Figure 2h, the WCA on the textured surface under
dimethylsilicone oil was 165.8◦, providing a solid theoretical foundation for the collection
and removal of viscous oils (the WCAs on the composite surface in the other viscous oils
can be seen in Figure S3). In summary, the burlap fabric coated by PDMS/SiO2 composite
aerogel coating possesses predominantly excellent oil affinity and underoil water repellency.

2.2. Surface Chemical Component Analysis

As displayed in Figure 3, the chemical composition of the prepared burlap fabric was
examined by X-ray photoelectron spectroscopy (XPS) (Figure 3a) and FT-IR spectroscopy
(Figure 3b).
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Figure 3. (a) XPS survey spectra of pristine burlap fabric, burlap fabric coated with PDMS only, and
PDMS/SiO2 composite aerogel coating. (b) FTIR spectra of pristine burlap fabric and burlap fabric
coated with PDMS/SiO2 composite aerogel coating.

Table S1 summarizes the quantitative data obtained for pristine burlap fabric, burlap
fabric coated with PDMS only, and PDMS/SiO2 composite aerogel coating. The XPS
graphic of the burlap fabric exhibited C1s, O1s, Si2p, and Si2s peaks as shown in Figure 3a.
Comparing the results, there was a significant increase in Si peaks after the fabrics were
coated with PDMS and PDMS/SiO2. Meanwhile, there was an apparent relatively higher
ratio of O to C (43.3/24.1) or Si to C (32.6/24.1) content on the PDMS/SiO2-coated fabric
compared to the PDMS coated fabric (O to C = 27.6/48.8; Si to C = 23.6/48.8), which could
be attributed to the nano-silica aerogel particles [37]. The contents increase could also
be qualified through EDX as shown in Figure S4. Figure 3b showed that the absorption
peaks at 1050 cm−1 and 1262 cm−1 were assigned to Si-O-Si stretching vibrations attributed
to silicon dioxide and silicon rubber. The occurrence of prominent bands at 796 cm−1

represented the Si-C vibrations conforming that the PDMS adhered to the fabric surface. In
summary, Figure 3 demonstrated that silicon dioxide and silicon rubber were deposited on
the superhydrophobic burlap fabric surface.

2.3. Mechanical Robustness

The stability of micro- and nano-scale rough structures is an essential part of preparing
durable special wettability surfaces which deeply affects the practicability of the mate-
rials [38]. The stickiness of the PDMS could coat and fix the nanoparticles on the fabric
surfaces and the elasticity of the dried PDMS will disperse the forces once subjected to
mechanical forces, which could protect the coated nano silica from facing the external force
directly. To confirm the mechanical stability of the PDMS/SiO2 composite aerogel coating
on the fabric surface, the as-prepared burlap fabric was investigated by an oscillating
abrasion tester as shown in Figure 4a. The fabric side of the sample was placed into the
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oscillating abrasion tester equipment with grit covering the whole sample. As exhibited
in Figure 4b, the WCA of the sample remained above 152◦ even after 1500 abrasion cycles
showing excellent durability. The stable hydrophobicity of the burlap fabric was primarily
attributed to the remaining PDMS/SiO2 rough structures (Figure 4b inserted images).
Moreover, a blue-dyed water droplet could easily roll off the fabric surface after being
treated for 1500 cycles (see the supplementary Information, Figure S6).
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Figure 4. (a) Schematic Illustration of surface mechanical detection by an oscillating abrasion tester.
(b) WCAs change of the burlap fabric by the PDMS/SiO2 layer in the process of the abrasion test,
and the SEM image after 1500 cycles and the corresponding insert SEM images of the pristine sample
and the treated sample.

2.4. Separation of Viscous Oil/Water Mixture

For understanding the separation mechanism of the immiscible oil/water mixture via
the SFGD, a schematic illustration for viscous oil collection and removal was provided as
displayed in Figure 5. The SFGD was assembled by a superhydrophobic/superoleophilic
burlap sack and a porous plastic ball (Figure 5(a,b1)). The porous hollow ball was se-
lected as an internal prop that could keep the sack owning a steady inner space. When
dropping into a beaker containing viscous oil/water mixtures (Figure 5(b2)), the SFGD
would partially submerge in water due to gravity but not sink because of the buoyancy
meaning that the average density of the device is lower than water. Subsequently, due to
the superhydrophobic/superoleophilic properties of the SFGD surface fabric, the viscous
oil on the water surface rapidly wetted the SFGD surface and slowly and self-drivenly
passed through the outer fabric of the SFGD under the joint gravity of the SFGD and the oil
as well as the liquid pressure, while the water was selectively blocked on the outer side due
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to the superhydrophobicity of the burlap fabric and the superhydrophobicity under the oil,
finally completing the collection of the viscous oil on the water surface (Figure 5(b3)). Thus,
an interesting phenomenon occurs that the water tightly wraps the submerged part of the
sack surface while being totally prevented from penetrating the textured surface; however,
the oil could be easily attracted and flow into the sack while being inevitably locked into
the sack by the wrapped water. As shown in Figure 5(b4), when equilibrium (zero resultant
force) was achieved, the oil-filled SFGD still partially submerged in water and remained
unsinkable ascribed to its lower density than the water, and it maintained water repellency
because of the water resistance of the collected oil and surface superhydrophobicity. Sub-
sequently, the device was taken out and the oil was poured into a container. The leakage
rate of the collected oil was rather low due to the relatively high kinematic viscosity of the
inherent oil property, which could guarantee the oil recovery. Finally, after the pouring
process, the SFGD was directly reused for viscous oil collection and removal without any
wash treatment (Figure 5(b1,b5)).
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Figure 5. Scheme for (a) assembling the superhydrophobic/superoleophilic aerogel fabric gathering
device (SFGD) and (b) the process (b1–b5) of separating the immiscible viscous oil/water mixture.

Figure 6a shows that floating silicon oil (100 ± 8 mPa·s) was collected and removed
from the blue-dyed water surface via the SFGD following the steps in Figure 5b. It re-
quired 2 h for managing the oil collection. Obviously, on first use, the SFGD was gradually
adsorbed with silicon oil during the gathering process which led to the mass increase of
the oil-poured empty SFGD. Therefore, after the oil removal process, the weight of the
uncleaned empty SFGD increased from 14.67 g to 38.09 g, and the weight difference of the
device before and after usage was 23.42 g as shown in Figure 6b. The mass and recover
efficiency of the collected oil was 68.9 g and 71.5%, respectively. However, when repeating
the above separation via an uncleaned device, the weight difference of the SFGD could be
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controlled to ±2 g with the average recovery of 94.81% after 50 cycles (Figure 6b). Further-
more, during the long-time water resistance detection (see the Supplementary Information,
Figure S6), the SFGD filled with the collected oil remained floating on the water for 15 days
with an oil recovery efficiency of no less than 95.8%, showing excellent practicability. The
SFGD could be applied to collect various viscous oils, such as dimethylsilicone oil (viscosity
100 ± 8 mPa·s, 500 ± 8 mPa·s, 1000 ± 8 m mPa·s), soybean oil, lubricant oil, anti-wear
hydraulic oil, and gasoline engine oil, with recovery efficiency above 94% as exhibited in
Figure 6c.
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Figure 6. (a) Photographs for viscous oil removal from the water surface by SFGD. (b) The recovery
of viscous silicone oil and the weighing difference of the sack before and after usage. (c) Recovery
capacity and recovery efficiency of various kinds of viscous oils.

To evaluate the practical usage of the device (burlap sack: 15 × 20 cm, porous plastic
ball diameter: 8 cm), 300 mL of viscous oil mixture containing dimethylsilicone oil (viscosity
100 ± 8 mPa·s), soybean oil, lubricant oil, anti-wear hydraulic oil, and gasoline engine
oil at the ratio of 1:1:1:1:1 was added to in a 2000 mL beaker filled with 1500 mL of
water (Figure 7a). The special wettability of the fabric provided the key foundation of
the self-driven, gravity and liquid pressure aided, floating viscous oil collection device as
illustrated. When dropped into the beaker, the enlarged SFGD with oil binding affinity was
gradually wetted and adhered to by the oil mixture as shown in Figure 7b,c. The floating
viscous oil mixture was driven to be filtered by the fabric surface and collected in the inner
surface of the sack (Figure 7d,e) under the effectiveness of the surface tension, gravity, and
liquid pressure and simultaneously. Though repelled by the hydrophobic fabric, the water
seamlessly wrapped the device due to liquid pressure and indeed prevented the oil mixture
from leaking from the sack. When taken out, the device could retain the oil mixture without
any leakage, which mainly resulted from the adhesive properties and kinematic viscosity of
the oil. Thus, the oil mixture was completely collected and removed from water (Figure 7f),
exhibiting that this device with remarkable functionality could be easily scalable. Thus, the
self-driven oil collection SFGD was successfully applied for the separation and removal of
immiscible viscous oil/water mixtures with excellent recyclability and practicability.
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and liquid pressure and simultaneously. Though repelled by the hydrophobic fabric, the 

water seamlessly wrapped the device due to liquid pressure and indeed prevented the oil 

mixture from leaking from the sack. When taken out, the device could retain the oil mix-

ture without any leakage, which mainly resulted from the adhesive properties and kine-

matic viscosity of the oil. Thus, the oil mixture was completely collected and removed 

from water (Figure 7f), exhibiting that this device with remarkable functionality could be 

easily scalable. Thus, the self-driven oil collection SFGD was successfully applied for the 

separation and removal of immiscible viscous oil/water mixtures with excellent recycla-

bility and practicability. 

 

Figure 7. Photographs for the collection process of an oil mixture from the water surface via SFGD. 

(a) SFGD, oil mixture, and water. (b–e) Oil collection process. (f) Cleaned water and recovered oil. 
Figure 7. Photographs for the collection process of an oil mixture from the water surface via SFGD.
(a) SFGD, oil mixture, and water. (b–e) Oil collection process. (f) Cleaned water and recovered oil.

3. Conclusions

In summary, the burlap fabric coated by a layer of superhydrophobic/superoleophilic
PDMS/SiO2 composite aerogel coating were initially and creatively utilized for self-driven
floating viscous oil collection. The SFGD could spontaneously attract, filter, and collect
the floating oils under the synergetic effect of surface tension, gravity, and liquid pressure,
requiring no extra operations such as pumping, oil/water mixture collecting, and squeezing.
The superhydrophobic/superoleophilic burlap sack with excellent mechanical robustness
and functionality could be easily scaled by a flexible dip-coating method and utilized for
oil/water separation, displaying excellent oil recovery efficiency even after 50 cycles of
usage. Furthermore, during long-time water resistance detection, the SFGD filled with
the collected oil remained floating on water for 15 days with oil recovery efficiency no
less than 95.8%, showing excellent endurance and practicability. It is worth stating that
the SFGD could be scaled for the efficient elimination of large multiple oil mixtures on
water, demonstrating the versatility for oil removal. We firmly believe that such a smartly
designed oil-collection system could provide a unique perspective for dealing with floating
viscous oil pollution.

4. Materials and Methods
4.1. Materials

Burlap sack (length and width: 10 cm × 12 cm and 15 cm × 20 cm) and porous
suspended plastic ball (diameter: 6 mm and 8 mm) were supplied by Alibaba. PDMS
was provided by Dow Corning Co., Ltd (Sylgard 184, Midland, MI, USA)). Tetraethoxysi-
lane (TEOS, chemically pure), and NH3·H2O (28%) were obtained from Tianjin Kaitong
Chemical Reagent Co, Ltd (Tianjin, China). Dimethylsilicone oil (viscosity 100 ± 8 mPa·s),
dimethylsilicone oil (viscosity 500 ± 8 mPa·s), and dimethylsilicone oil (viscosity 1000
± 8 mPa·s) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd
(Shanghai, China). Methylene blue, ethanol, and n-hexane were provided by Sinopharm
Chemical Reagents Co., Ltd. (Shanghai, China). Soybean oil was procured from a local
market. Lubricant oil, anti-wear hydraulic oil, gasoline engine oil (0W-20), and gasoline
engine oil (5W-40) were obtained from Petro-China Co., Ltd. (Beijing, China). All chemicals
were used as received without further purification.

4.2. Synthesis of Superhydrophobic and Superoleophilic Burlap Sack

Firstly, the nano-silica aerogel particles were prepared with an alkali-base catalyzed
sol–gel method by drying under ambient pressure. In brief, ethanol (90 mL), TEOS (10 mL)
and deionized water (10 mL) were mixed and stirred to prepare a mixture solution, and
then 2 mL NH3·H2O used as the catalyst was added dropwise into the mixture at room
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temperature under magnetic stirring (400 rpm) for 0.5 h. The gelation process usually takes
around 12 h to complete, and the gels are subsequently allowed to age for 72 h in order
to enhance the gel network. N-hexane was used to replace the solvent of wet gel. After
rinsing with n-hexane 3–4 times, the wet gel was dried under ambient pressure to obtain
the bulk silica aerogel. The bulk silica aerogel was ground into silica aerogel particles.

Secondly, a colloidal solution composed of PDMS and nano-silica aerogel particles
was prepared. The colloidal solution was prepared by sonicating 90 mL of n-hexane, 3 g of
PDMS prepolymer (Sylgard 184A), 0.3 g of PDMS prepolymer (Sylgard 184B) and 3.6 g of
nano-silica aerogel particles for 20 min using an ultrasonic disruptor, followed by magnetic
stirring for 10 min.

Finally, the burlap sack was totally washed with deionized water, n-hexane, and
ethanol under ultrasonic treatment for 20 min, respectively. Then, the burlap fabric was
immersed into the colloidal solution. Subsequently, the immersed fabric sack was taken
out, rinsed with n-hexane, and dried at 60 ◦C for 3 h. The resulting burlap fabric was coated
with a layer of superhydrophobic/superoleophilic PDMS/SiO2 composite aerogel coating
that adheres uniformly to its surface.

4.3. Characterization

The morphological surfaces of the samples were observed by a scanning electron
microscope (SEM, FEI QUANTA 200, Hillsboro, OR, USA) operating at 15 kV. The surface
chemistry composition was detected by Fourier transform infrared spectroscopy (FT-IR,
Thermos Fisher Scientific, Nicolet 6700, Waltham, MA, USA) and X-ray photoelectron
spectroscopy (XPS, ESCALAB 250Xi, Thermo Fischer Scientific, Waltham, MA, USA). The
contact angles were measured with a 5 µL deionized water droplet or an oil droplet at room
temperature using an optical contact angle meter (OCA20 system, DataPhysics Instruments
GmbH, Filderstadt, Germany), and the final contact angle was determined by averaging the
measurements taken from at least five different positions on samples which were adhered
onto the glass slide by double-sided adhesive tape.

4.4. Stability Test

Mechanical stability superhydrophobic/superoleophilic PDMS/SiO2 composite aero-
gel coating on surface of burlap fabric was assessed by an oscillating abrasion tester and
recycling experiment for viscous oil/water separation. In order to be easily measured by a
contact angle meter, the as-prepared waterproof fabric was cut into pieces (1 cm × 3 cm)
before adhering one of them onto a glass slide (2.5 cm × 7.6 cm) that was sticky on the
central area of a square board (10 cm× 10 cm) by double-sided adhesive tape as well. Then,
the fabric side of the above sample was placed into the oscillating abrasion tester equipment
with 800 mL of grit covering the whole sample. During the oscillation process, the rolling
grit constantly abraded the textile surface at a speed of 130 cycles/min. The oscillating
process was repeated for a certain number of times to detect the stability of superhydropho-
bicity. The structural stability of superhydrophobic/superoleophilic composite aerogel
coating was assessed by cycling experiments of viscous oil/water mixture separation.

4.5. Separation of the Immiscible Viscous Oil/Water Mixture

Typically, an immiscible viscous oil/water mixture consisting of 300 mL water dyed
by methylene blue and 100 mL of silicone oil (viscosity 100 ± 8 mPa·s) was prepared and
served in a beaker container. Then, the SFGD was put into the beaker container for 3 h
for viscous oil gathering and removal. The SFGD could be directly reused to collect the
floating viscous oil without any clean-up process. Meanwhile, the fabric device could
be applied to collect various kinds of daily used viscous oil such as soybean oil, vacuum
pump oil, anti-wear hydraulic oil, and gasoline engine oil (5W-40) following the same
separation process.
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The oil recovery efficiency was defined as W (%) and calculated by Equation (2):

W =
m1

m0
× 100% (2)

where m0 and m1 were the mass of the oil before and after the separation process, respectively.
In this study, the average mass of the oil-coated SFGD was 37.61 g and the density of

the silicone oil was 0.963 g/mL. The calculated theoretical value of the maximum volume
of the collected oil under certain conditions was calculated as 1016.5 mL when reaching
equilibrium (see the Supplementary Information, Figure S1), exhibiting that the collected
volume totally covered the volume of the SFGD containing a porous plastic ball with a
volume about 113 mL. Therefore, 100 mL of viscous oil was selected for the demonstrative
experiments of oil collection and removal.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels9050405/s1. Figure S1: (a) Force equilibrium analysis dia-
gram of the oil-filled and partially submerged SFGD and (b) the corresponding photograph. Figure S2:
Photographs of an oil droplet quickly spread on the surface in the air once contacting the super-
oleophilic fabric surface. Figure S3: Underoil WCAs of various oils. Figure S4: EDX elemental analysis
images of (a) PDMS coated fabric and (b) PDMS/SiO2 layer coated fabric. Figure S5: Photo images of
the blue-dyed water droplet rolling off the fabric surface after being treated by an oscillating abrasion
tester for 1500 cycles. Figure S6: (a) Photographs of the SFGD dropped into a beaker containing
oil/water mixture, (b) the oil-filled SFGD partially submerged in water for 15 days, (c) photographs
of the oil-filled SFGD taken out of the container, and (d) the volume of the collected oil. Table S1:
Surface relative composition of XPS analysis for pristine burlap fabric, burlap fabric coated with
PDMS only and PDMS/SiO2 layers.
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Abstract: Water pollution, which is caused by leakage of oily substances, has been recognized as one
of the most serious global environmental pollutions endangering the ecosystem. High-quality porous
materials with superwettability, which are typically constructed in the form of aerogels, hold huge
potential in the field of adsorption and removal of oily substances form water. Herein, we developed
a facile strategy to fabricate a novel biomass absorbent with a layered tubular/sheet structure for
efficient oil/water separation. The aerogels were fabricated by assembling hollow poplar catkin
fiber into chitosan sheets using a directional freeze-drying method. The obtained aerogels were
further wrapped with -CH3-ended siloxane structures using CH3SiCl3. This superhydrophobic
aerogel (CA ≈ 154 ± 0.4◦) could rapidly trap and remove oils from water with a large sorption
range of 33.06–73.22 g/g. The aerogel facilitated stable oil recovery (90.07–92.34%) by squeezing after
10 sorption-desorption cycles because of its mechanical robustness (91.76% strain remaining after
50 compress-release cycles). The novel design, low cost, and sustainability of the aerogel provide an
efficient and environmentally friendly solution for handling oil spills.

Keywords: chitosan; poplar catkin fiber; superhydrophobic aerogels; layered tubular/sheet structures;
oil/water separation

1. Introduction

Gasoline is increasingly in demand because of recent industrial developments, yet
leakage of oily substances during the processes of exploitation and transportation becomes
a dire consequence [1,2]. For example, the outbreak of the Gulf War in 1991 resulted in a
leak of oil of about 1.5 million tons, forming an oil band that was 16 km long and 3 km wide
near Saudi Arabia at a spreading rate of 24 km/day. Unfortunately, any minor leakage
of oil negatively affects the marine ecological system in various ways [3]. For example,
the frequency of marine red tide is in direct proportion to the content and frequency of
oil leakage [4,5]. Oil leakage over oceans may also adversely affect the health of infants
and toddlers, potentially inflicting them with asthma and a higher death toll, of which the
results may take shape over numerous years. As a result, the removal of leaked oils over the
sea becomes a worldwide concern, and traditional management involves physical, chemical,
and biological methods [6,7]. The physical methods, such as mechanical skimmers, have
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the disadvantages of costly oil/water separation machines and tremendous consumption
of both manpower and material resources. Chemical methods include chemical dispersants
and in situ burning, of which the former involves spraying a dispersion agent containing
a toxic substance, while the latter generates tremendous toxic gases, causing secondary
pollution and energy waste [8]. Biological methods rely on microorganisms to decompose
leaked oils. However, these methods are only suitable for small-scale oil leakage. By
contrast, the sorption-based method has been regarded as an energy-saving approach for
oil contaminant disposal because of low production cost and low demand for manpower.

The oil/water separation efficiency via absorption is dependent on the hydrophilic/
hydrophobic attributes and micro-pore structure of the absorbent. In particular, high-
quality porous materials with superwettability, which are typically constructed in the forms
of aerogels, hold huge potential in the field of adsorption and removal of oily substances
form water because of their abundant and tunable porous structure, lightweight feature,
and programmable surface groups. To date, a large number of aerogels have been devel-
oped, including the magnetic superhydrophobic melamine sponge (oil absorption ratio:
39.8–78.7 g/g) [9], polyurethane foam coated with polysiloxane-modified clay nanotubes
(oil absorption ratio: 20–105 g/g) [10], graphene-coated carbon nanofiber (G-CNF) foam
(oil absorption ratio: 86–153 g/g) [11], carbon nanotube sponges (oil absorption ratio:
80–180 g/g) [12], graphene/PDMS sponge (oil absorption ratio: 4.2–13.7 g/g) [13], and
graphene/nanofiber aerogels (oil absorption ratio: 230–734 g/g) [14]. At present, the major-
ity of aerogels are composed of synthetic materials that are favorable for mass production,
and their waste either cannot be decomposed or has a very small decomposition rate, lead-
ing to severe secondary pollution. Carbon-based aerogels have the advantage of excellent
oil absorption capacity, yet their fabrication demands tremendous energy and resources,
which makes their mass production impossible. For example, carbon nanofiber (CNF)
aerogels need to extract nano-cellulose from plants. However, the original plant fibers
contain drastic hydrogen bonding between the fibrous groups, which means the extraction
of nano-cellulose requires enzyme catalysis or chemical pre-treatment followed by mechan-
ical decomposition. Compared to synthetic materials and carbon-based materials, such
as natural fiber (kapok fiber [15,16], cotton fiber [17], populus seed fibers [18], kenaf core
fiber, milkweed floss [19], etc.), they feature abundant natural resources, a low production
cost, and biodegradation. Biomass aerogels are usually produced via freeze-drying in
pace with superhydrophobic modification via the principle of constructing low surface
energy and hierarchically rough surface [20]. At present, the majority of biomass-based
materials lack sufficient mechanical endurance, and thus the oil absorption performance is
compromised after multiple squeeze cycles. Moreover, due to the intrinsic fragility and
internal chaotic porous structure, biomass materials are prone to have a collapse of internal
structure and a swelling-then-dissolution feature when used in a water environment, which
in turn severely restricts the biomass aerogel from the oil-water separation application.
In nature, some natural materials like seaweed, lotus stems, and wood show an orderly,
organized interior and a regular structure, hence demonstrating extraordinary mechan-
ical properties [21,22]. Derived from conventional freeze-drying techniques, directional
freeze-drying technology generates a temperature gradient in a single direction, which
promotes the directional growth of ice crystals in the precursor to form an oriented porous
structure along the temperature gradient after freeze-drying [23–25]. This method become
an efficient method of improving the mechanical compression performance of aerogels,
such as a high-strength (CNF)/polyvinyl alcohol (PVA)/graphene oxide (GO) aerogel
showing an anisotropic porous structure [26] and a wood-inspired elastic biomass aerogel
with special spring-like morphology [27].

On the other hand, environmental concerns regarding discarded solid debris con-
taining oil residues due to the indiscriminate use of various sorption materials are often
overlooked. These discarded oil-containing materials, which take up lots of land, have
led to global environmental concerns regarding the release of microplastics due to the
long-term environmental weathering [28,29]. For example, synthetic polymer absorbents,
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such as PU sponges, PS sponges, PP nonwovens, and PET nonwovens, which are non-
degradable, have been proved to be the main contributor of detected microplastics in the
terrestrial soil. The occurrence of microplastics in the terrestrial soil will cause hetero- or
homo-aggregation with various microorganisms and macromolecules and disturb the vital
aspects of soil like soil colloids and soil micro flora and fauna [30]. Biomass materials are
biodegradable and environmentally friendly, but many biomass-based aerogels, which
are generally fabricated by freeze-drying in pace with chemical cross-linkage to obtain
the necessary strength, are less biodegradable [18]. Therefore, it is of global significance
to develop sustainable alternatives combining high oil sorption performance, excellent
biodegradation, and good reusability as oil absorbents.

Poplar is a common wood that grows worldwide. Its fruits grow ripe in the spring,
and the cracked fruits produce numerous catkin fibers (PC) flying around in the air, which
generally causes environmental pollution, possible fires, and allergic reactions in peo-
ple. PC fibers show a unique hollow structure, and their composition enables good liq-
uid adsorption capacity. Chitosan (CS), which is a linear polymer of β-(1→ 4)-linked 2-
acetylamino-2-deoxy-β-D-glucopylanopylanoid and 2-amino-2-2 deoxy-β-d-glucopylanoid,
is mainly extracted from crab/shrimp shells and obtained through the deacetylation of
chitin. The degree of deacetylation of commercial CS is generally above 60%. As low-cost,
biodegradable, non-toxic, and biocompatible, CS has been reported to be widely used in
food additives, drug release, oil adsorption, heavy metal adsorption, and tissue engineer-
ing scaffolds [31–33]. Herein, we developed a facile strategy to fabricate a novel biomass
absorbent with a layered tubular/sheet structure by a directional freeze-drying method,
through which hollow PC fiber was assembled into chitosan sheets. The obtained aerogels
were further wrapped with -CH3-ended siloxane structures through a facile chemical vapor
deposition (CVD) process using CH3SiCl3. This aerogel was used as an oil sorbent to effi-
ciently trap and remove oils from water. The aerogels also showed mechanical robustness,
which facilitated stable oil recovery for repeated oil/water separation by squeezing. The
novel design, low cost, and sustainability of the sorbent reported here provides an efficient
and environmentally friendly solution for the handling of oil spills.

2. Results and Discussion

The PC fibers were collected from the Qingdao University of Shandong province
in China and were highly hollow, with a fiber wall thickness of 330 nm and an inner
diameter of 6.63 µm, meaning the hollow part took up 90.7% of the total volume (Figure S1).
On top of the hollow structure, the wax layer also provided PC fibers with hydrophobic
features. In this study, to scatter the PC fibers in the water, the wax over the surface
was first removed. Figure 1a–c compares the stereomicroscopic and SEM images of the
PC fibers, and the treated PC fibers have a sleeker surface while retaining their hollow
structure. The results suggest that pre-treatment does not change the intrinsic structure or
features of PC fibers. The treated PC fibers and the CS (as a thickening agent) were mixed
to form a stabilized suspension. The suspension was poured into a PTEF mold that was
connected to a copper plate and placed in a freezer. As a result, ice crystals grew along
a specified direction, and eventually the longer PC fibers became curly and entangled.
Meanwhile, the CS became the connective points among the fibers, and after the crystals
were removed via the freeze-drying process, there was an initiating configuration of PC/CS
aerogel (Figure 2a). In the aerogel, PC fibers that had a hollow structure were assembled
into chitosan sheets showing a layered tubular/sheet structure (Figure 1a–c). PC fibers that
can be used as a second-pore capillary have a positive influence over the oil transport of
aerogel, while the CS serves as bonding points that make the aerogel mechanically robust.
The resulting tubular/sheet structure has a sheet structure (from freeze-drying the CS) as
the first gradient of oil absorption as well as a concurrent hollow structure (from the PC
fibers) as the second gradient of oil transport. As a result, the aerogel demonstrates a highly
strengthened oil sorption capacity that is guaranteed by its super high porosity and lower
volume density (0.011 g/cm3).
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As seen in Figure 3a,b, FTIR spectra is mainly used to study the differences in the
surface functional group of non-treated PC fibers and the S-PC/CS aerogel. PC fibers, as
cellulose fibers, contain many characteristic function groups, such as -OH (3340 cm−1),
C-H (2921 cm−1), C-O (1737 cm−1 and 1237 cm−1), C=C (1590 cm−1), C-O-C (1106 cm−1),
and C-O (1037 cm−1) [18]. By contrast, the treated PC fibers demonstrate significantly
attenuated bands at 1598 cm−1, 1242 cm−1, and 1456 cm−1 that corresponded to the tensile
vibration of the aromatic C skeleton, which confirms that the wax is removed from the
PC fibers. Moreover, after the superhydrophobic treatment, S-PC/CS aerogel exhibits
characteristic peaks at 773 cm−1 corresponding to the Si-O-Si bond and an asymmetric
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stretching band at 1271 cm−1 corresponding to the C-Si-O group. The Si-O bond indicates
that the derived -OH from PC/CS has a drastic interaction with organosilane, which in turn
forms a silicon-oxygen bond over the surface of the PC/CS aerogel, suggesting a chemical
reaction between TMCS and the PC/CS aerogel. The peaks of the hydroxyl group in the
S-PC/CS are still present. This is because the connection between MTCS and material is
relatively complicated. During the process, MTCS undergoes self-polymerization with
H2O vapor to produce 3D methylsiloxanes with reactive trifunctional silanes that can bond
with hydroxyl groups on the fiber surface via -Si(OH)3 radicals. However, due to steric
hindrance, these surfaces should contain “holes” between randomly attached disiloxane
groups that are smaller than the disiloxane, contain surface hydroxyl groups, and cannot
be filled by further reaction (Figure S2) [34].
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Figure 4a,b shows the cyclic compression performance of the S-PC/CS aerogel tested
with a constant 20–60% strain. The deformation behavior of the S-PC/CS aerogel includes
the linear elastic area when ε < 20%, the subsequent plateau stage when 20% < ε < 40%, and
the densification stage when the stress accelerates. With a compression strain (ε = 40%),
the S-PC/CS aerogel demonstrates marginal plastic deformation (6.81%) and a height
recovery rate of 93.19%. Furthermore, when a greater compression stress (ε = 60%) is
exerted, the S-PC/CS aerogel presents a plastic deformation of 13.23%. The test results
also indicate that the aerogel exhibits excellent fatigue resistance. The produced plastic
deformations are 4.83% after the first cycle and 8.57% after 20 cycles. Nonetheless, the
effects of multiple plastic deformations are accumulated, and the aerogel at the 50th cycle
of loading-unloading is inflicted with irreversible damage of 11.29%. To data, a majority
of biomass aerogels still present crucial limitations on structural and mechanical stability.
As illustrated in Table 1, the existing biomass aerogels have a maximum compressive
stress of 3.5–55 kPa, and many of them have the problem of structural instability and
plastic deformation exceeding 15%, such as dialdehyde carboxymethyl cellulose aerogels
(<10 kPa, 15–20% plastic deformation after 50 cycles) [35], cellulose nanocrystals/PVA
aerogels (<35 kPa, >15% plastic deformation after 50 cycles) [36], cellulose nanofibrils/N-
alkylated chitosan/poly(vinyl alcohol) aerogels (<55 kPa, but the maximum stress will
reduce to 17 kPa after 50 cycles, 18–20% plastic deformation) [37], seed hairs of typha
orientalis aerogels (<25 kPa, 14.8% plastic deformation after 10 cycles) [38], and so on. The
excellent rebound property of the S-PC/CS is primarily attributed to the unique sheet
structure. When the aerogel is compressed, the sheet structure provides enough space for
elastic deformation while saving energy. When the external force is withdrawn, the energy
in need is released, which allows the aerogel to recover its original state. Meanwhile, the PC
fibers among the sheets of aerogel also provide a proportion of support, which benefits the
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compression strength of the aerogel. The excellent mechanical properties and compression
recovery prove that the materials can be repetitively used.
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Figure 5a–c shows the effects of three types of oil on the S-PC/CS aerogel, and the
difference in the speed of infiltrating the aerogel among the different oils is ascribed to the
viscosity and mobility. It takes the aerogel only 3.1 s to absorb vegetable oil completely,
5.9 s for viscous motor oil 1# 5W−40, and 3.4 s for viscous motor oil 2# 0W−20, which
substantiates that the modified aerogel exhibits excellent oil sorption rate regardless of
the oil type. In addition, the original PC/CS is highly hydrophilic, and the modification
of CH3SiCl3 results in the replacement of the hydroxyl groups of the materials by -CH3-
ended siloxane structures. This process effectively transfers the hydrophobic properties
of the aerogels with an average WCA of about 154 ± 0.4º which is highly hydrophobic
and satisfies the requirement of oil/water separation. In order to test the hydrophobicity
and selective adsorption of the aerogel, the following tests were performed. As shown
in Figure 5d, the aerogel was put into water stained with methylene blue for a period
of time and taken out, and it was found that the aerogel was not dyed. As shown in
Figure 5e, a few drops of soybean oil dyed with oil red O were dropped on the water
surface, and then the aerogel was immersed in water. After a period of time, the soybean
oil on the water surface was completely adsorbed by the aerogel, which proves that the
aerogel has good hydrophobicity and selective adsorption of oil. Different liquids are em-
ployed to examine the oil sorption capacity of the aerogel. Figure 5f shows that the aerogel
demonstrates the maximal and minimal sorption capacity for dichloromethane and hexane,
respectively. Furthermore, the sorption capacity is ascending for diesel, soybean oil, motor
oil 1#, motor oil 2#, motor oil3# 20W-50, and pump oil in a range of 33.06–73.22 g/g−1, and
the corresponding sorption capacity is dependent on the density of the liquids. In addition,
the repetitive use of aerogel was tested, as seen in Figure 5g. An aerogel was immersed
in the test oil for 10 minutes and then placed over a filter for another 1 min to remove
redundant oil. After 10 cycles of sorption-desorption, the sorption capacity of the aerogel
was decreased by 5.48 g/g for dichloromethane, 4.51 g/g for soybean, 4.10 g/g for diesel,
and 2.69 g/g for hexane. During the 10 cycles of sorption-desorption, the aerogels retained
90.07–92.34% of their initial sorption capacity. The oil sorption tests of the aerogels under
50 sorption-desorption cycles were also carried out using soybean oil. As shown in Figure
S3a, the sorption capacity of aerogel was decreased by 0.985 g/g after 20 cycles, 1.378 g/g
after 30 cycles, 1.15 g/g after 40 cycles, and 0.81 g/g after 50 cycles. During the 50 cycles of
sorption-desorption, the aerogels retained over 85.6% of their initial sorption capacity. In
other words, the oil sorption capacity of the aerogel was not significantly compromised by
the test, which suggests that the aerogel can be repetitively used and is an ideal oil/water
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separation material. In addition, the oil/water selectivity performance in Figure S3b shows
that the aerogel retained a high oil sorption capacity of 47.48–44.49 g/g in 10 testing cycles,
while the water sorption capacity was very low and in the range of 0.002–0.020 g/g, indi-
cating a high oil/water selectivity of 222.45–19,869.46. The above characteristics feature
S-PC/CS aerogel as a great application prospect in controlling oil spills. Table 1 compares
the S-PC/CS with a wide range of current state-of-the-art biomass-based oil absorbents.
Compared with biomass aerogels, which are generally derived from cellulose, chitosan,
sodium alginate, lignin, etc., the S-PC/CS outperforms the majority of aerogels in terms
of oil sorption capacity and hydrophobicity, such as dialdehyde carboxymethyl cellulose
aerogels (sorption capacity: 20–30 g/g, WCA = 144.5º) [35], graphene ox-ide/halloysite nan-
otubes (RGO/HNTs) membrane (WCA = 82.43º) [39], chitin/halloysite nanotubes sponges
(sorption capacity: 11.23 g/g, WCA = 88–98º) [40], HNTC-FG-PU sponges (sorption capac-
ity: 50.8 g/g, WCA = 145 ± 2º) [41], and alginate/oil gelator aerogels (sorption capacity:
32 g/g, WCA = 155 ± 5º) [42]. The results indicate that the tubular/sheet structure facili-
tates fast oil transport. The aerogel contains chitosan that forms narrow channels in tidy
alignment, which provides sufficient space for oil transmission. Moreover, the tubular
structure of PC fibers serves as a second channel that expedites the infusion of oil, and
thus the aerogel demonstrates excellent oil sorption performance. At the same time, the
WCA of the aerogel modified by super hydrophobicity is better than most aerogels. The
excellent hydrophobicity endows the aerogel with the characteristic of selective adsorption.
In addition, the raw material of aerogel comes from pure biomass material, which is low
cost and easy to obtain, biodegradable, and environmentally friendly. These attractive
advantages of the aerogel give it a broad application prospect, and it is expected to be used
in industrial wastewater treatment and marine oil and water separation.
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3. Conclusions

In this study, chitosan is used as the basic material and is combined with PC fibers to
form a CS-based aerogel with a unique tubular/sheet structure that mechanically improves
the biomass aerogel. After 50 cycles of a compression resistance test, the aerogel only
exhibits marginal irreversible deformation (8.24%). The aerogel exhibits an oil sorption
range of 33.06–73.22 g g−1, which outperforms the majority of recently reported sponges.
The multiple sorption-desorption results indicate that the aerogel retains a stable oil sorp-
tion capacity that is over 90%, suggesting that the aerogel can be repetitively used. As
the proposed aerogel is pure biomass material, it can be decomposed in nature and is
eco-friendly. Also, the needed raw material for the chitosan-based pure biomass aerogel is
easily accessible, and the aerogel can be expected to be used in oil/water separation on a
large scale compared to the conventional aerogel.

4. Material and Methods
4.1. Materials

The PC fibers (hereafter referred to as PC fibers) were collected from poplar trees at
Qingdao University, Shandong. Chitosan (CS) (95% degree of deacetylation, 100–200 mPa·s)
was purchased from Aladdin, Industrial Co., Ltd., Shanghai, China. Hexane, absolute
alcohol, acetic acid, dichloromethane, chloroform, and ethyl acetate were purchased com-
mercially without further purification. Methyltrichlorosilane (MTCS, 98%) was obtained
from Sigma, America. Methylene blue and oil red O were both from Hefei Sifu Biotechnol-
ogy Co., Ltd., Hefei, China. Several oils were purchased commercially (see Table S1).

4.2. Pre-Treatment of PC Fibers

The PC fibers were trimmed to a length of 5–10 mm and rinsed with deionized water
and ethanol several times in order to remove any impurities from the surface. Next, NaClO2
(3 g) was dissolved in 300 mL of deionized water, after which 0.9 mL of acetic acid and
3.0 g of PC fibers were added to be heated in a water bath at 75 ◦C for 2.5 h. Afterwards, PC
fibers were filtrated and once again rinsed with deionized water until the residual liquid
becomes neutral. The fibers were removed and dried in an oven at 70 ◦C for 12 h.

4.3. Preparation of Aerogels

PC fibers (0.8 g) and CS (1.4 g) were added to deionized water (200 mL, 60 ◦C), after
which 2 mL of acetic acid (1%, v/v) was added. The blends were mixed using a household
blender to form suspensions with uniform quality. Next, the suspension was infused into a
PTFE mold, with the bottom of the mold in contact with a copper plate, and was then frozen
in liquid nitrogen. After being totally frozen, the suspension underwent the freeze-drying
process for 48 h, resulting in the aerogel (hereafter referred to as PC/CS).

4.4. Modification of Aerogels

The PC/CS aerogel was placed in an environment at a humidity of 60–70% for 24 h.
Next, the aerogel was placed in sealed glass, where 0.2 mL of TMCS was added and left
for a 12-h reaction. The sample was removed and heated to 60 ◦C in an oven to remove
the redundant TMCS, thereby obtaining a superhydrophobic aerogel (hereafter referred to
as S-PC/CS).

4.5. Characterizations

A freezer dryer used (LGJ-18, Beijing Songyuan Huaxing Technology Development
Co., LTD., Beijing, China) in the freeze drying process. A field emission scanning elec-
tron microscope (SEM, Zeiss Sigma500, Oberkochen, Germany) was used to observe the
structure of the aerogel. The working distance and energy beam for the SEM were 3 and
5 mm, respectively, with voltage 10 keV and current 10 µA. The samples were metallized
before analysis. Fourier-transform infrared spectroscopy (FTIR, Thermo Fisher, Waltham,
MA, USA) was used to analyze the function groups of treated PC fibers, CS, PC/CS, and
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S-PC/CS in the range of 500–4000 cm−1. A universal material testing machine (Instron-3300,
Norwood, MA, USA) was used for the compression stress-strain test with a strain rate of
20 mm/min. A drop-shaped analyzer (Theta, Biolin Corporation, Goteborg, Switzerland)
was used to measure the water contact angle (WCA) of the aerogel with the specified
volume of droplets being 5.0 µL. The porosity was measured by an automatic mercury
intrusion porosimetry instrument (PoreMaster-33, Quantachrome, FL, USA). The volume
density was calculated by the following formula:

p =
v
m

(1)

where p is the volume density, v is the aerogel volume, and m is the aerogel mass.

4.6. Oil Sorption Capacity

Different types of oil were dripped over the aerogel, and the time that the aerogel
required to absorb the whole droplet was measured. To evaluate the oil absorption capacity,
S-PC/CS aerogel was immersed in different oils and organic solvents for 10 min, and the
oil-loaded aerogel was placed over a filter for one minute to remove the excess oil. After ten
cycles of the absorption-squeeze test, the oil absorption capacity and reusability of samples
were recorded. The oil sorption capacity was calculated according to the following formula:

Oil absorption rate : (Q) =
m−m0

m0
(2)

where the m0 is for the quality of the aerogel oil absorption before, and m is for the quality of
the aerogel after oil absorption. In addition, to measure the oil/water selectivity, the aerogel
was completely immersed in a mixture of soybean oil/water (v/v = 1:1) for 1 h, and then the
saturated aerogel was dried in the oven at 60 ◦C for 1 h to remove the absorbed water. The
masses of absorbed water (mw) and oil (mo) were calculated using the following formulas:

mw = m1 −m2. (3)

mo = m2 −m0. (4)

where m0 is the initial mass of the gel, m1 is the mass of the adsorbed saturated sample,
and m2 is the mass of the sample after removing the water. The oil/water selectivity is
calculated by the ratio of oil sorption mass to the water sorption mass.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/gels9040346/s1: Figure S1: (a/b) Camera photos of PC trees/fibers;
(c) microscopic image of PC; (d/e) microscopic image of treated PC; Figure S2: Reaction mechanism
of MTCS with the material; Figure S3: (a) Adsorption capacity of soybean oil for 50 cycles, (b) Oil
absorption and water absorption of aerogel in 10 cycles; Table S1: The oil used in experiments.
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Abstract: Heavy metal toxicity is an important issue owing to its harmful influence on fish. Hence,
this study is a pioneer attempt to verify the in vitro and in vivo efficacy of a magnetite (Fe3O4)
nanogel (MNG) in mitigating waterborne lead (Pb) toxicity in African catfish. Fish (n = 160) were
assigned into four groups for 45 days. The first (control) and second (MNG) groups were exposed to
0 and 1.2 mg L−1 of MNG in water. The third (Pb) and fourth (MNG + Pb) groups were exposed to
0 and 1.2 mg L−1 of MNG in water and 69.30 mg L−1 of Pb. In vitro, the MNG caused a dramatic
drop in the Pb level within 120 h. The Pb-exposed group showed the lowest survival (57.5%) among
the groups, with substantial elevations in hepato-renal function and lipid peroxide (MDA). Moreover,
Pb exposure caused a remarkable decline in the protein-immune parameters and hepatic antioxidants,
along with higher Pb residual deposition in muscles and obvious histopathological changes in the
liver and kidney. Interestingly, adding aqueous MNG to Pb-exposed fish relieved these alterations
and increased survivability. Thus, MNG is a novel antitoxic agent against Pb toxicity to maintain the
health of C. gariepinus.

Keywords: Clarias gariepinus; health status; lead toxicity; magnetite nanogel; nanotechnology;
tissue architecture

1. Introduction

With the introduction of harmful compounds into the aquatic environment, public
health issues connected to environmental pollution are receiving much attention. Heavy
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metal (HM) pollution is considered one of the most disastrous problems threatening aquatic
and human life [1]. Fish are considered a pivotal indicator of aquatic environments for
the assessment of the severity of HM toxicity, which constitutes a major hazard for all fish
consumers [2,3].

African catfish (Clarias gariepinus) has been used to assess HM toxicity. The recent liter-
ature reveals the susceptibility of C. gariepinus to various HMs and verifies the deleterious
impacts of HMs by inducing behavioral changes, immune–antioxidant impairments, and
bioaccumulation [4–6]. Lead (Pb) is among the most hazardous HMs and is toxic even in
low amounts for aquatic animals and humans, resulting in toxic impacts and accelerating
different diseases [7]. In aquaculture, exposure to Pb induces oxidative stress, bioaccu-
mulation, neurotoxicity, and immune dysfunction [8]. In C. gariepinus and Nile tilapia
(Oreochromis niloticus), Pb toxicity causes several issues, including hepato-renal toxicity,
oxidative damage, histopathological changes, and higher mortality rates [9,10].

Currently, the application of nanomaterials has been proven to have great success
in drug delivery, antimicrobial uses, and remediating toxicity caused by either chemical
toxicants or HMs in freshwater fishes [11–14]. Regarding the removal of HMs, engineered
nanomaterials represent novel and successful approaches compared to traditional methods.
Among the recently formulated nanoparticles, magnetite (Fe3O4) nanoparticles have inter-
esting electric and magnetic properties and unlimited physical and chemical characteristics
at the nanoscale [15,16]. The nano-magnetite form of iron has wide applications in the
industry (magnetic recording media, soft magnetic materials, and coloring) and medical
sectors (drug delivery, in vivo therapeutic technology, cell separation, and imaging) [17,18].
The magnetite nanocomposites prepared by the sol–gel method have several advantages,
including low-cost preparation, toxicity-free iron salts, small particle size, and good disper-
sion in the solvent [16]. Magnetite nanoparticles (Fe3O4) succeeded in removing 66% of
copper from a solution after 15 min [19]. Magnetite nanoparticles (Fe3O4 NPs) have been
used in O. niloticus to chelate mercury (Hg) in vitro, in addition to boosting the immune–
antioxidant status and liver and kidney function in vivo [14]. Nanogels (NGs) refer to
small, aqueous, swollen nanoparticles composed of nano-scaled polymeric chains [20].
Recently, NGs have emerged as very promising and flexible biomaterials utilized in several
applications, such as catalysts, sensing materials, or environmental adsorbents. Their
characteristics (such as their wide surface area, flexibility in size, ability to carry molecules,
and encapsulation of a high percentage of water when suspended in the fluid) enable their
use for drug delivery [21,22]. NGs have been reported in novel environmental fields to
eliminate organic toxicants and agrochemicals [23,24]. These contaminants can be trapped
inside the NGs, and then removed from the environment [25,26]. In addition, a magnetic
nanocomposite sol–gel of iron oxide nanoparticles coated with titanium dioxide efficiently
removed aluminum and iron ions from contaminated water [27].

Therefore, this novel study is carried out to investigate the potent magnetic power of
a magnetite nanogel (MNG) to mitigate the waterborne toxicity induced by Pb ions via
testing their adsorption capacity and, accordingly, testing their magnetic effect to prevent
Pb bioaccumulation in muscles. In addition, this study provides an assessment of the
promising role of MNG on the protein profile, hepato-renal function, immune responses,
tissue antioxidants, and the histological picture of African catfish.

2. Results
2.1. MNG Characterization

Figures 1–3 display various types of MNG characterization findings. X-ray diffraction
(XRD) analysis demonstrated the fingerprint curve and data for magnetite according to
the Brucker Database library, which conformed to validate our synthesis method without
any secondary phases (Figure 1A). Dynamic light scattering (DLS) and zeta potential data
showed a homogenous size (one peak) of 60 nm (Figure 1B). Due to a substantial degree of
zeta potential (−35 mV), the results demonstrated a superior colloidal structure in aqueous
solution (Figure 1C).
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Figure 1. Characterization patterns of magnetite nanogel: (A) XRD, (B) DLS, (C) Zeta potential, and
(D) AFM.
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Meanwhile, gel formation had no characteristic peaks due to its amorphous nature.
The morphology illustrated by atomic force microscopy (AFM), scanning electron mi-
croscopy (SEM), and transmission electron microscopy (TEM) showed the spherical shape
of MNG (Figure 1D, Figure 2, and Figure 3).
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Figure 3. TEM image (100 nm) of magnetite nanogel.

2.2. Absorption of Pb Ions by MNG

Figure 4A shows that MNG caused a dramatic drop in the concentration of Pb ions
throughout all sampling points. The concentration decreased from 169.53 mg L−1 at the
beginning of the experiment to 82.87 mg L−1 after 120 h.
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Figure 4. (A) Absorption of lead (Pb) by magnetite nanogel (MNG) across 24, 48, 72, 96, and 120 h.
(B) Impact of MNG level on the concentration of Pb ions across 24, 48, 72, 96, and 120 h. Values that
did not have the same superscripts differ significantly (one-way ANOVA; p < 0.05).

The various MNG concentrations affected the elimination of the Pb ions, as seen in
Figure 4B. The findings showed that raising the MNG level lowered the amount of Pb ions
in the aquarium water and allowed for the removal of reduced Pb metal. The outcomes
also showed that 1.2 and 1.4 mg/L of MNG were the ideal doses that produced the greatest
Pb ion adsorption loading.
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2.3. Mortality and Clinical Observations

Based on Kaplan–Meier curves (Figure 5A), the survival rate was 100% in the control
and MNG groups during the experimental period (45 days). The lowest survival rate was
recorded in the Pb group (57.5%). There was a marked elevation in the survival rate in the
MNG + Pb group (82.5%) compared with the Pb group.
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Figure 5. Cumulative survival (n = 40/group) and protein profile parameters (n = 12/group) of
C. gariepinus exposed to magnetite nanogel (MNG) and/or lead (Pb) as a water exposure for 45 days.
(A) Survival curves (Kaplan–Meier). (B) Total proteins (TP). (C) Albumin (ALB). (D) Globulins (GLO).
Bars (means ± SE) that did not have the same superscripts differ significantly (one-way ANOVA;
p < 0.05).

The clinical examination of the treated fish showed that neither the control nor the
MNG groups exhibited any atypical behaviors or disease symptoms during the 45 days
of exposure. On the contrary, the fish of the Pb group featured symptoms of respiratory
distress manifested by rapidly moving the operculum and air gasping from the surface.
Fish also developed a slimy appearance, severe skin rot, darkening, and erosions with
hemorrhages. Internally, the gills were pale with congestion of internal organs. The Pb and
MNG (MNG + Pb)-exposed group showed a remarkable return to the typical appearance
with minimal fin rot and a mildly congested liver.

2.4. Hepato-Renal Function Biomarkers

Table 1 demonstrates no discernible variations in the values of hepato-renal biomarkers
(ALT, AST, ALP, creatinine, and urea) between the MNG and control groups. These
biomarkers displayed the highest values (p < 0.05) in the Pb group compared to the control.
In contrast, treatment of Pb-exposed fish with MNG resulted in a significant decrease
(p < 0.05) in these variables compared to Pb exposure alone.
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Table 1. Liver and kidney function biomarkers of C. gariepinus exposed to magnetite nanogel (MNG)
and/or lead (Pb) as a water exposure for 45 days (n = 12/group).

Parameters Control MNG Pb MNG + Pb

ALT (U L−1) 16.33 ± 0.93 c 17.75 ± 1.91 c 25.08 ± 1.17 a 20.25 ± 1.23 b

AST (U L−1) 44.95 ± 1.22 c 46.70 ± 0.85 c 94.33 ± 2.20 a 82.58 ± 1.68 b

ALP (U L−1) 34.24 ± 1.08 c 34.88 ± 1.35 c 50.20 ± 1.53 a 41.12 ± 0.62 b

Urea (mg dL−1) 1.44 ± 0.05 c 1.56 ± 0.04 c 2.75 ± 0.10 a 2.21 ± 0.05 b

Creatinine (mg dL−1) 0.27 ± 0.02 b 0.30 ± 0.03 b 0.49 ± 0.50 a 0.34 ± 0.01 b

ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase. Values (means ± SE)
in the same row that did not have the same superscripts differ significantly (one-way ANOVA; p < 0.05).

2.5. Protein Profile and Immune Status

Figure 5B–D and Figure 6A–D demonstrate substantial augmentations (p < 0.05) in
the protein profile (TP, ALB, and GLO) and immune (LYZ, C3, NO, and IgM) parameters
in the MNG group related to the control. Meanwhile, the lowest concentrations of these
biomarkers were observed in the Pb-exposed fish, followed by the MNG + Pb fish.

Gels 2023, 9, x FOR PEER REVIEW  6  of  17 
 

 

AST (U L−1)  44.95 ± 1.22 c  46.70 ± 0.85 c  94.33 ± 2.20 a  82.58 ± 1.68 b 

ALP (U L−1)  34.24 ± 1.08 c  34.88 ± 1.35 c  50.20 ± 1.53 a  41.12 ± 0.62 b 

Urea (mg dL−1)  1.44 ± 0.05 c  1.56 ± 0.04 c  2.75 ± 0.10 a  2.21 ± 0.05 b 

Creatinine (mg dL−1)  0.27 ± 0.02 b  0.30 ± 0.03 b  0.49 ± 0.50 a  0.34 ± 0.01 b 
ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase. Values 

(means ± SE) in the same row that did not have the same superscripts differ significantly (one‐way 

ANOVA; p < 0.05). 

2.5. Protein Profile and Immune Status 

Figures 5B–D and 6A–D demonstrate substantial augmentations (p < 0.05) in the pro‐

tein profile (TP, ALB, and GLO) and immune (LYZ, C3, NO, and IgM) parameters in the 

MNG group  related  to  the  control.  Meanwhile,  the  lowest  concentrations of  these bi‐

omarkers were observed in the Pb‐exposed fish, followed by the MNG + Pb fish. 

 

Figure 6. Immune parameters of C. gariepinus exposed to magnetite nanogel (MNG) and/or lead (Pb) 

as a water exposure for 45 days (n = 12/group). (A) Lysozyme activity (LYZ). (B) Complement 3 (C3). 

(C) Nitric oxide (NO). (D) Immunoglobulin M (IgM). Bars (means ± SE) that did not have the same 

superscripts differ significantly (one‐way ANOVA; p < 0.05). 

2.6. Hepatic Oxidant/Antioxidant Status 

Table 2 shows the levels of MDA and antioxidants in the liver (GSH, SOD, and CAT) 

of C. gariepinus after the exposure period (45 days). There was no noticeable variation in 

the MNG group’s MDA level compared with the control one; however, a significant ele‐

vation (p < 0.05) in the GSH, SOD, and CAT values was noticed. Pb exposure induced a 

profound elevation in the MDA level and lessened the antioxidant values relative to the 

control. The values of these variables showed more improvement in the MNG + Pb group 

than in the Pb group. 

   

Figure 6. Immune parameters of C. gariepinus exposed to magnetite nanogel (MNG) and/or lead (Pb)
as a water exposure for 45 days (n = 12/group). (A) Lysozyme activity (LYZ). (B) Complement 3 (C3).
(C) Nitric oxide (NO). (D) Immunoglobulin M (IgM). Bars (means ± SE) that did not have the same
superscripts differ significantly (one-way ANOVA; p < 0.05).

2.6. Hepatic Oxidant/Antioxidant Status

Table 2 shows the levels of MDA and antioxidants in the liver (GSH, SOD, and CAT)
of C. gariepinus after the exposure period (45 days). There was no noticeable variation in the
MNG group’s MDA level compared with the control one; however, a significant elevation
(p < 0.05) in the GSH, SOD, and CAT values was noticed. Pb exposure induced a profound
elevation in the MDA level and lessened the antioxidant values relative to the control. The
values of these variables showed more improvement in the MNG + Pb group than in the
Pb group.
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Table 2. Hepatic oxidant/antioxidant biomarkers of C. gariepinus exposed to magnetite nanogel
(MNG) and/or lead (Pb) as a water exposure for 45 days (n = 12/group).

Parameters Control MNG Pb MNG + Pb

MDA (nmol mg−1) 0.64 ± 0.15 c 0.99 ± 0.05 c 11.55 ± 0.58 a 3.06 ± 0.32 b

GSH (ng mg−1) 113.57 ± 1.84 b 143.76 ± 2.42 a 41.21 ± 0.43 d 71.69 ± 1.19 c

SOD (U mg−1) 88.23 ± 1.79 b 157.67 ± 3.55 a 12.73 ± 0.49 d 62.82 ± 1.31 c

CAT (ng mg−1) 22.20 ± 0.57 b 47.30 ± 1.65 a 4.91 ± 0.19 d 8.79 ± 0.15 c

MDA, malondialdehyde; GSH, reduced glutathione content; SOD, superoxide dismutase; CAT, catalase. Values
(means ± SE) in the same row that did not have the same superscripts differ significantly (one-way ANOVA;
p < 0.05).

2.7. Histopathological Findings

According to the histopathological investigations, the livers of the control and MNG
fish both displayed normal histological structures of hepatic acini and vasculatures (Figures
7A and 7B, respectively). On the contrary, the Pb exposure caused areas of fatty changes,
congested hepatic blood vessels, and perivascular inflammatory cell infiltrates (Figure 7C).
The livers of the MNG + Pb group exhibited an improvement of lesions as depicted by
the appearance of microvacuoles within a small number of hepatocytes, congested hepatic
blood vessels, inflammatory cells aggregated within the portal area, and perivascular
aggregation of melanomacrophage (Figure 7D).
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Figure 7. Photomicrograph of H&E-stained liver sections of C. gariepinus exposed to magnetite
nanogel (MNG) and/or lead (Pb) as a water exposure for 45 days. (A,B) Liver of the control and
MNG groups, respectively, showing normal histological structures of hepatic acini (arrow) and
vasculatures (arrowheads). (C) Liver of the Pb group showing a focal area of fatty change (arrow),
congested hepatic blood vessel (star), and perivascular inflammatory cell infiltrates (arrowhead).
(D) Liver of the MNG +Pb group showing microvacuoles within a few numbers of hepatocytes
(arrow), congested hepatic blood vessels (star), inflammatory cell aggregate within the portal area
(arrowhead), and perivascular aggregation of melanomacrophage (red arrow). Scale Bar: 20 µm.

Moreover, normal renal structures with preserved glomerular capillary tufts, renal
tubular epithelium, and hemopoietic cells were clear in the fish kidney of the control
and MNG groups (Figures 8A and 8B, respectively). However, Pb exposure induced
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histopathological alterations in the kidney, which appeared as marked necrotic changes
in tubular epithelium and maintained glomerular architectures. Further, a depletion of
the hemopoietic center replaced by a pale eosinophilic substance was obvious (Figure 8C).
Treatment of Pb-exposed fish with MNG markedly improved these alterations and revealed
normal histopathological structures of renal tubules and glomerular corpuscles (Figure 8D).
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Figure 8. Photomicrograph of H&E-stained kidney sections of C. gariepinus exposed to magnetite
nanogel (MNG) and/or lead (Pb) as a water exposure for 45 days. (A,B) Kidney of the control and
MNG groups, respectively, showing normal renal structures with preserved glomerular capillary
tufts (arrowheads), renal tubular epithelium (arrows), and the presence of hemopoietic cells (red
arrows). (C) Kidney of the Pb group showing marked necrotic changes in the tubular epithelium
(arrow), maintained glomerular architectures (arrowhead), and depletion of hemopoietic center
replaced by pale eosinophilic substance (star). (D) Kidney of the MNG + Pb group showing normal
histomorphological structures of the renal tubule (arrow) and glomerular corpuscle (arrowhead).
Scale Bar: 20 µm.

2.8. Bioaccumulation of Pb2+ in Fish Muscles

The concentration of Pb ions in the muscles of the MNG and control groups did not
alter significantly (p > 0.05), as presented in Figure 9. The muscles of the Pb group had
the highest levels of Pb ions. Still, the MNG + Pb group had considerably lower levels of
Pb residues.
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Figure 9. Residues of lead (Pb) in muscles of C. gariepinus exposed to magnetite nanogel (MNG)
and/or Pb as a water exposure for 45 days (n = 12/group). Bars (means ± SE) that did not have the
same superscripts differ significantly (one-way ANOVA; p < 0.05).
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3. Discussion

The toxicity of Pb has a slow-acting cumulative impact that results in major health
problems for aquatic animals and humans because of its use in various industrial processes
that contaminate water [28]. The current report is an innovative trial to underpin the
effectiveness of MNG to alleviate the toxicity of Pb in vitro and in vivo via assessing its
magnetic power to protect fish muscles from Pb bioaccumulation and studying its potential
role on protein picture, hepato-renal function, immune-antioxidant response, and tissue
architecture in African catfish.

Among heavily studied nanoparticles, the magnetite nanoscale has attracted more
interest owing to the potent power of magnetite to adsorb heavy metal ions in solutions. The
nanosized Fe3O4 particles remove heavy metals via their magnetic properties, high surface
area, chemical stability, easy synthesis, and low toxicity [29]. Pb was chosen for testing
the adsorption capacity of MNG because it is one of the most predominant dangerous
HMs in aquaculture practice [30]. Our findings showed that MNG had a potent adsorbing
power of Pb ions that caused a clear reduction in Pb ions with time (120 h). Also, the best
adsorption loading was provided by 1.2 and 1.4 mg L−1 MNG concentrations relative to
the other concentrations. The adsorption power was raised at the start of the experiment
and then declined by progressing the adsorption time. These findings could be related to
the adsorption and the decrease of the Pb2+ ions to Pb metal on the surface of the MNG
until the saturation of the MNG surfaces by the Pb ions. The magnetite has a specific crystal
structure consisting of free electrons (Fe2+ and Fe3+) conjugated with oxygen. In the crystal
structure, the localization of free electrons [31] is responsible for the magnetic properties,
which elevate the surface activities and the adsorption power of the magnetite to lessen
the Pb ions on the surface of the MNG. The sorption reaction between magnetite and Pb
is chemical adsorption [32]. In the same manner, Hong et al. [33] verified the efficacy of
MNG in getting rid of more than 80% of Pb, chromium (Cr), and cadmium (Cd) from
contaminated water at 1 mg L−1 because of the emerging electrostatic attraction between
the positive metal ions and the negatively charged ions of iron oxide.

Considering the clinical picture and post mortem examination, exposure to Pb al-
ters the general health of C. gariepinus. Additionally, fish suffered anorexia, major signs
of respiratory manifestation, profound mucous secretion production, fin rot, severe ery-
thema, erosion in the skin, and the lowest survival rate (57.5%). It is assumed that the
Pb ions irritate the skin and gills because of their direct contact with fish in the aquatic
environment, inducing respiratory distress and erythema with more mucous produc-
tion as a defense reaction against the toxic Pb ions. Our findings were concurrent with
those of Alfakheri et al. [34] and Abdel Rahman et al. [10], who noted that the exposure
of C. gariepinus and O. niloticus to Pb toxicity induces respiratory problems and mortali-
ties. On the other hand, exposure to MNG improved the clinical picture and reduced the
mortalities in Pb-exposed fish. It is assumed that there are two reasons: the first is the
potent magnetism of the magnetite, which enables MNG to adsorb the Pb ions, resulting
in a decrease in its level. The other reason is the verified potent antioxidant activity of the
NGs, which counteracts the oxidative damage produced by Pb ions. Likewise, Mahboub
et al. [14] recorded no mortalities in the mercury-exposed O. niloticus with Fe3O4 NPs.

LYZ, complement activity, NO, and IgM are non-specific and important components
that mainly indicate innate immunity in fish [35,36]. TP indicates activated humeral immu-
nity in aquatic organisms [37]. Herein, we reveal the occurrence of immune suppression
upon exposure to Pb reflected by a clear reduction in immune parameters, including
lysozymes, C3, NO, IgM, and TP. Concurrent with an earlier study, Shah [38] recorded that
lethal and even sub-lethal exposure to Pb alters the immunological biomarkers in tench
(Tinca tinca). Likely, Alandiyjany et al. [12] found a clear depression in the level of TP
following the exposure of O. niloticus to Pb.

On the other hand, immunomodulation has been reported upon the exposure of
C. gariepinus to aqueous MNG, which is indicated by a noticeable increase in the immuno-
logical biomarkers.
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The mechanism of action of Fe3O4 NPs on the immune system was recently docu-
mented by Huang et al. [39], who revealed that the degradation products of the magnetic
nanoparticles improve immune stimulation via the interferon gene activating protein
(STING) pathway, which, in turn, enhances cellular immune response. A similar report
found that Fe3O4 NPs had an immunological influence by augmenting the activity of LYZ
in O. niloticus exposed to mercury toxicity [14].

Detoxification of HMs is mainly carried out in the hepatic tissue, followed by filtration
and excretion in the renal tissue. Hence, elevating the concentration of HMs induces an
increased rate of filtration and detoxification in the fish body, which in turn causes hepato-
renal dysfunction [40]. In the present investigation, the biomarkers of renal functions
(creatinine and urea) and hepatic enzymes (ALT, ALP, and AST) exhibited an elevation in
their levels upon exposure to Pb. It is assumed that Pb induces necrosis in the liver, and
accordingly, this damage leads to the leakage of hepatic enzymes into the bloodstream,
producing an elevation. Furthermore, Pb toxicity impairs renal function by minimizing
its ability to excrete urine, urea and by impairing the glomerular filtration rate, as Akturk
et al. [41] described. These attributions were confirmed by the histopathological alteration
that was observed in the liver and kidney in our study. In line with the present findings,
Abdel-Tawwab et al. [42] revealed that a noticeable increase in the values of urea and
creatinine was recorded in O. niloticus after intoxication with a mixture of HMs, including
Pb. Histological alterations of the liver and gill tissue of C. gariepinus were reported post-
exposure to Pb, including fibrosis of hepatic cords and necrosis of parenchyma cells besides
collapsing blood vessels [43].

On the other side, a restoration of hepato-renal biomarkers in the aqueous MNG + Pb-
treated group and a clear regeneration of histological changes indicated the protective effect
of MNG against Pb-induced hepato-renal damages. It is suggested that aqueous MNG can
mitigate the hazardous effects of Pb toxicity by lessening the Pb-generated reactive oxygen
species (ROS) on hepatic cells. Similarly, Mahboub et al. [14] reported that Fe3O4 NPs had a
promising effect on improving hepato-renal functions of O. niloticus and could enhance the
levels of liver enzymes and renal parameters upon exposure to mercury toxicity. A recent
study conducted by Alandiyjany et al. [12] reported severe histopathological changes in
the liver and gills of O. niloticus following exposure to Pb, and a noticeable improvement
was detected in the magnetized silica-received group.

HMs induce oxidative damage by generating ROS. The antioxidant defense mecha-
nism involves various enzymes, such as CAT, SOD, and GSH, which protect cells from
oxidative stress by detoxifying ROS [44]. The current work showed that oxidative damage
in the Pb-exposed group reflected a clear elevation in MDA level and a reduction in GSH,
CAT, and SOD. It is opined that Pb causes excess production of ROS, resulting in oxidative
damage. In line with recent work, Alandiyjany et al. [12] detected decreased serum CAT,
SOD, and GSH activity levels in Pb-exposed O. niloticus.

Contrarily, the exposure of fish to MNG in the Pb-exposed group has an antioxidant-
protecting effect indicated by a clear modulation in the antioxidant biomarkers (elevated
SOD and CAT activities) resulting in protection from oxidative damage. In line with a recent
finding, Răcuciu et al. [45] confirmed that Fe3O4 NPs have potent antioxidant enzymatic
activity via modulating the levels of CAT and SOD and aid in plant development. Moreover,
Fe3O4 NPs can enhance the antioxidant status and reduce the oxidative stress of O. niloticus
and Indian major carp (Labeo rohita) [14,46,47].

HM toxicity produces variable immunological and physiological responses, allowing
for the bioaccumulation of metals in different fish tissues [7]. Here, we find that the Pb-
exposed group’s muscles have a greater level of Pb. In line with a recent report, Alandiyjany
et al. [12] detected bioaccumulation of Pb in the muscles of O. niloticus following exposure
to Pb.

In contrast, the MNG + Pb group reflected the least accumulation of Pb, indicating
its efficacy in removing Pb. It is assumed that the magnetic power of magnetite found
in MNG, plus the formulation of NGs, enables it to absorb Pb strongly. Previous studies
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supported our outcomes and documented that the structure of NGs causes them to be
easily biocompatible and biodegradable and can absorb and release molecules for decon-
taminating water, catalysis, and sensors [48,49]. Furthermore, Neamtu et al. [50] added
that NGs can absorb active materials through chemical interactions such as hydrogen or
hydrophobic bonding and salt formation. Similar outcomes were observed by Alandiyjany
et al. [12] in the muscles of O. niloticus.

4. Conclusions

The present study demonstrates that Pb is a hazardous heavy metal that causes a
decline in the survival rate, suppresses immune-antioxidant status, and deteriorates hepato-
renal functions and histopathological structure of the liver and kidney tissues. Also, Pb
exposure results in high bioaccumulation in the muscles of the treated African catfish.
The basic attention is directed to the magnetic antitoxic power of MNG to adsorb Pb
ions and protect fish from bioaccumulation in muscles. Additionally, MNG enhances
the immune-antioxidant profile, improves the hepato-renal function, and regenerates the
histopathological picture. Further studies are mandatory to assess other applications of
MNG in various fish species and to assess the safe use on a large scale for sustaining
aquaculture and maintaining human health.

5. Materials and Methods
5.1. Synthesis and Characterization of MNG

Firstly, Fe3O4 NPs were synthesized following the protocol of Hamdy et al. [51]. About
0.4 g of the hematite ore (Fe3O4) was added drop by drop to 40 mL of H2O2. At the same
time, the mixture was subjected to ultrasound at 60 kHz for 2.5 h in an ultrasonic device
(Sonica 4200 EPS3, Milano, Italy) until the black particles of Fe3O4 were obtained. After
1.5 h, the Fe3O4 NPs (black color) precipitated from the supernatant (reddish color). The
Fe3O4 NPs were separated from the solution by centrifugation at 4000 rpm, and, finally, the
Fe3O4 NPs were washed four times using methanol.

For the synthesis of Fe3O4 NPs/carbopol hybrid nanogel, 0.2 g of Fe3O4 NP des-
peration in 25 mL of ethanol was added to a solution of 0.25 g carbopol dissolved in
25 mL of ethanol and the mixture was stirred using a mechanical stirrer for 50 min. Then,
0.75 mL of trimethylamine was added drop by drop and stirred for another 40 min until
obtaining a black gel. The Fe3O4 NPs/carbopol hybrid nanogel was prepared in high and
low viscosities.

Characterization protocols were categorized into three groups: morphology, identifi-
cation, and index class, according to the Hassan et al. [52] approach.

5.2. Preparation of Pb Ion Solution

In this experiment, lead chloride (PbCl2; purity 98%) of Merck, Darmstadt, Germany
was utilized as a source of Pb ions. To reach the proper concentrations, PbCl2 was primarily
dissolved in de-ionized water to create a stock solution (1000 mg L−1) which was then
diluted to the necessary concentration before being used in aquarium water. According
to Alfakheri et al. [34], the 96 h median lethal concentration (LC50) for Pb was 231 mg L−1

and 30% of 96 h LC50 (69.30 mg L−1) was used.

5.3. Adsorption Capacity of MNG

In two different studies, the capacity of MNG to adsorb the Pb ions was evaluated. In
the first experiment, at 24 ◦C and pH 6.0, an exact amount of PbCl2 (20 mg) was mixed
with 100 mL of ultrapure water. In a glass vial, 20 mL of prepared PbCl2 and 20 mg of
MNG were mixed and vortexed for 10 min to assess the adsorption kinetics per the Kôsak
et al. [53] technique. Daily, for five days (24, 48, 72, 96, and 120 h), and using an atomic
absorption spectrophotometer (Buck Scientific, Norwalk, CT, USA), the concentration of
Pb+2 ions was calculated. Three copies of each sample were tested.
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The second experiment examined how varied MNG concentrations (0.2, 0.4, 0.6, 0.8,
1, 1.2, and 1.4 mg L−1) affected the adsorption ability of Pb ions. It involved setting up
seven aquariums with water in them, adding 0.025 mg L−1 of Pb ions to each aquarium
at pH 6.0, and then adding the seven concentrations of MNG directly to each Pb-exposed
aquarium [4]. Then, using the atomic absorption spectrophotometry technique, the level of
Pb ions was assessed after 24, 48, 72, 96, and 120 h. The safe recommended level of iron in
fish, which varies between 0.35 and 1.7 mg/L [54,55], was considered when choosing the
concentrations of MNG.

5.4. Ethical Agreement and Fish Acclimation

The Institutional Animal Care and Use Committee of Zagazig University in Egypt
(ZU-IACUC/2/F/309/2022) approved the experimental strategy. Two hundred and forty
African catfish (100 ± 7.39 g) were selected from the Al-Abbassa private fish farm in
Sharkia Governorate, Egypt. The fish were kept for ten days in 100 L of well-aerated
aquaria for acclimation. Part of the water was partially exchanged (25%). The fish were
supplemented with a basal diet at 3% of their body weight twice daily during acclimation
and experimental trial. Assessment of physio-chemical parameters of the rearing water
was carried out daily, including temperature, dissolved oxygen, ammonia, and pH, and
recorded as 24 ± 2 ◦C, 6 ± 0.26 mg L−1, 0.01 ± 0.04 mg L−1, and 7 ± 0.13, respectively.

5.5. Assessing the Initial Concentration of MNG

Fish (n = 80) were exposed to 8 various concentrations of MNG for 15 days (Table 3) to
determine the starting concentration for the treatment experiment. These concentrations
were 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, and 1.4 mg L−1 of MNG. The clinical observations were kept
track of every day during the preliminary trial. MNG concentrations were safe in the 0.2 to
1.4 mg L−1 range, and 1.2 mg L−1 was determined to be the dose used for treatment.

Table 3. Mortality and clinical observations of C. gariepinus exposed to different concentrations of
magnetite nanogel (MNG) for 15 days.

Conc. (mg L−1) Mortality
(n = 10)

Clinical Observations

Erratic Swimming Loss of Escape Reflex
External Symptoms

(Hemorrhages, Darkness, Fin Rot,
and Ulcerations)

0.0 0/10 - - -

0.2 0/10 - - -

0.4 0/10 - - -

0.6 0/10 - - -

0.8 0/10 - - -

1 0/10 - - -

1.2 0/10 - - -

1.4 0/10 - - -

(-) No abnormal observations.

5.6. Experimental Design

For 45 days, fish (n = 160) were randomly assigned into four groups (10 fish/replicate;
40/group). The first and second (MNG) groups were exposed to 0 and 1.2 mg/L MNG in
water, where the control was the first group. The third (Pb) and fourth (MNG + Pb) groups
were exposed to 0 and 1.2 mg L−1 MNG in water, respectively, and 69.30 mg L−1 of lead
chloride. Fish were moved to freshly produced solutions with the same concentrations daily
for 45 days during the experiment. Every day, about 25% of the aquarium’s contents were
replenished. Clinical observation and mortalities were kept track of throughout the trial.
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5.7. Sampling

Fish were randomly selected (12 fish per group) at the end of the experiment (45 days)
to collect samples. According to Neiffer and Stamper’s [56] approach, fish were anesthetized
with a benzocaine solution (100 mg L−1), and blood was then drained from the caudal blood
vessels using tubes devoid of the anticoagulant. Samples were centrifuged at 1750× g for
10 min after being incubated at room temperature (21 ± 3 ◦C) for 5 h. Clear serum was then
kept at 20 ◦C until biochemical and immunological assays. Liver tissues (12 fish/group)
were gathered and kept in liquid nitrogen for the oxidant/antioxidant assay. Additionally,
liver and kidney samples (12 fish/group) were used for histopathology analysis, and
samples of muscles (12 fish/group) were picked for determining Pb residues.

5.8. Evaluation of Hepato-Renal Function Biomarkers

The activity of hepatic function biomarkers, including aspartate aminotransferase
(AST, Catalog No.; EK12276) (Biotrend Co., Laurel, MD, USA), alanine aminotransferase
(ALT, Catalog No.; MBS038444) (MyBioSource Co., CA, USA), and alkaline phosphatase
(ALP, Catalog No.; TR11320) (Thermo Fisher Scientific, Swindon, UK) were computed. Also,
the total protein (TP, Catalog No.; MBS9917835), albumin (ALB, Catalog No.; MBS019237),
and urea (Catalog No.; MBS9374784) (MyBioSource Co., CA, USA) were measured. All
the biomarkers mentioned above were computed using a spectrophotometer (Lambda
EZ201; Perkin Elm, Beaconsfield, UK). The globulin (GLO) level was determined by sub-
tracting ALB from TP. The creatinine (Catalog No.; MAC080) level was estimated at a
wavelength of 340 nm using a spectrophotometric protocol (Centromic Gmbit kit manual,
Wartenberg, Germany).

5.9. Immune Assays

The immune parameters, including lysozyme activity (LYZ), were estimated using
the inhibition zone method in agarose gel plates, depending on the protocol of Lee and
Yang [57]. The level of complement 3 (C3) was measured by immunoturbidimetry using
the method of Abdollahi et al. [58] with separated Eastbiopharm ELISA kits (Hangzhou
Eastbiopharm CO., LTD., Torrance, CA, USA).

To quantify the serum nitric oxide (NO), about 100 mL of each serum sample was added
to the Griess reagent, which was then incubated for 10 min at 27 ◦C [59]. Immunoglobulin
M (IgM) was quantified in serum spectrophotometrically using ELISA kits (Cusabio Biotech
Co., Ltd., Wuhan, China) as directed by the manufacturer, following Schultz’s [60] approach.

5.10. Hepatic Oxidant/Antioxidant Assays

According to the Siroka et al. [61] assay, the liver samples were prepared to estimate the
levels of oxidant/antioxidant biomarkers (malondialdehyde (MDA), reduced glutathione
content (GSH), catalase (CAT), and superoxide dismutase (SOD)). Liver samples were
subjected to homogenization in a buffer with a pH of 7.5 to obtain the supernatant, which
was then obtained by centrifuging them at 4 ◦C for 15 min at 10,000 × g for 1 h to recover
the final supernatant.

The level of MDA was assessed using the Sigma assay kit (MAK085) according to
the protocol of Ohkawa et al. [62]. The content of GSH and SOD activity was computed
depending on the assays of Beutler et al. [63] and Velkova-Jordanoska et al. [64]. The GSH
was estimated at 412 nm using 5,5′-dithio-bis-2-nitrobenzoic acid in the supernatant fraction.
The level of SOD was calculated using the xanthine oxidase–cytochrome protocol using a
spectrophotometer at 505 nm. Xanthine interacted with 2-[4-iodophenyl]-3-[4-nitrophenyl]-
5-phenyl-tetrazolium chloride (INT) to compose superoxide radicals producing red-colored
formazan. This product was utilized to measure the activity of SOD as SOD conjugate with
superoxide radicals and consequently controls the formazan synthesis.

The activity of CAT was monitored depending on the decrease in hydrogen peroxide
(H2O2) at 240 nm using a light plate and a spectrophotometer with 1.0 mL quartz cuvettes
according to the method of Aksenes and Njaa [65].
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5.11. Histopathological Investigation

Samples from the liver and kidneys were gathered from all investigated groups, fixed
using 10% buffered neutral formalin, then exposed to dehydration in ascending degrees
of alcohol, cleared using xylene, and soaked in paraffin. Paraffin sections of about 5 µm
in thickness were arranged and stained using hematoxylin and eosin (H&E) and then
inspected by an optical microscope, depending on the protocol of Suvarna et al. [66].

5.12. Determination of Pb Residues in Fish Muscles

After terminating the experiment (45 days), representative samples were dissected
from the dorsal muscle of each group and dried in an oven at 85 ◦C until they reached a
stabilized weight. The prepared samples were weighed (1 g dry weight) and placed in
a muffle furnace (Shelton, CT, USA) for 6 h of ashing. After the procedure outlined by
Golberg et al. [67], the samples were digested using 5 mL of freshly made perchloric acid
(HCLO4; 70%) and nitric acid (HNO3; 65% v/v) to Teflon beakers and heating at 50 ◦C for
approximately 5 h to completely break down the organic matter. The digested solution was
chilled at ~21 ± 2 ◦C and diluted using deionized water to reach a final volume of 50 mL.
The atomic absorption spectrophotometer was used to analyze each sample separately for
calculating the Pb ion residues [68].

5.13. Data Analysis

The Shapiro–Wilk test was first conducted to evaluate whether all the data were
normal. To determine whether there was a statistically significant difference between
treatments, a one-way analysis of variance (ANOVA) was performed with Tukey’s post
hoc analysis (SPSS version 18; IBM Corp., Armonk, NY, USA). The Kaplan–Meier protocol
was used to analyze survival according to Kaplan and Meier [69]. A p-value of less than
0.05 represents statistical variance, including all tests.
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Abstract: Inorganic arsenic in drinking water from groundwater sources is one of the potential
causes of arsenic-contaminated environments, and it is highly toxic to human health even at low
concentrations. The purpose of this study was to develop a magnetic adsorbent capable of removing
arsenic from water. Fe3O4-monolithic resorcinol-formaldehyde carbon xerogels are a type of porous
material that forms when resorcinol and formaldehyde (RF) react to form a polymer network, which
is then cross-linked with magnetite. Sonication-assisted direct and indirect methods were investigated
for loading Fe3O4 and achieving optimal mixing and dispersion of Fe3O4 in the RF solution. Variations
of the molar ratios of the catalyst (R/C = 50, 100, 150, and 200), water (R/W = 0.04 and 0.05), and
Fe3O4 (M/R = 0.01, 0.03, 0.05, 0.1, 0.15, and 0.2), and thermal treatment were applied to evaluate their
textural properties and adsorption capacities. Magnetic carbon xerogel monoliths (MXRF600) using
indirect sonication were pyrolyzed at 600 ◦C for 6 h with a nitrogen gas flow in the tube furnace.
Nanoporous carbon xerogels with a high surface area (292 m2/g) and magnetic properties were
obtained. The maximum monolayer adsorption capacity of As(III) and As(V) was 694.3 µg/g and
1720.3 µg/g, respectively. The incorporation of magnetite in the xerogel structure was physical,
without participation in the polycondensation reaction, as confirmed by XRD, FTIR, and SEM
analysis. Therefore, Fe3O4-monolithic resorcinol-formaldehyde carbon xerogels were developed as a
potential adsorbent for the effective removal of arsenic with low and high ranges of As(III) and As(V)
concentrations from groundwater.

Keywords: adsorption; arsenate and arsenite; carbon xerogels; resorcinol-formaldehyde; sonication

1. Introduction

A current environmental and human health problem is the availability of water due to
the increasing demand and contamination of drinking water sources. Most of the accessible
drinking water is found in aquifers, which are underground reservoirs of water. However,
the presence of contaminants such as arsenic, which naturally occur in the environment
due to geological factors, can migrate into groundwater through weathering processes.

Inorganic arsenic (As) is a well-known carcinogenic element and one of the most
significant chemical pollutants worldwide, found in several countries across the globe. The
Agency for Toxic Substances and Disease Registry (ATSDR) has ranked arsenic as the top
substance with potential risks to public health on a global scale [1]. The World Health
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Organization (WHO) recommends a guideline value of 10 µg/L for arsenic concentrations
in drinking water, which is also considered acceptable by the United States Environmental
Protection Agency (EPA) [2,3]. In Mexico, the NOM-127-SSA1-2021, “Environmental Health,
Water for Human Use and Consumption—Permissible Limits of Quality and Treatments
for Water Purification”, sets an allowable limit of 10 µg/L for arsenic in drinking water [4].
Groundwater contamination by arsenic affects millions of people in various countries,
including the United States, Argentina, Australia, Bangladesh, Cambodia, Chile, China,
India, Laos, Myanmar, Mexico, Pakistan, Taiwan, Thailand, and Vietnam [5–7].

Arsenic contamination in drinking water is a serious problem in Mexico. The levels of
arsenic in drinking water in some regions of the country exceed the recommended limit of
10 µg/L. Many people in Mexico are at risk due to consuming water with elevated arsenic
levels. children are at risk of developing serious health problems as a result of their exposure
to arsenic [8]. The concentrations of arsenic in water samples from Chihuahua ranged
from 0.1 to 419.8 µg/L, which is associated with adverse health effects [9]. Groundwater
background values in Guanajuato State were evaluated, and the arsenic values from
sample wells were in the range of 0.068–0.777 mg/L. These values are due to geogenic
sources containing volcanic rocks, specifically rhyolites, which have a presence of As and
F in the hot deep flow [10]. Three Yaqui villages in southern Sonora, Mexico, have been
studied for arsenic exposure through drinking water. The range of arsenic concentration
in these villages was 11.8–70.01 µg/L, and it has been associated with lung function and
inflammation, as well as respiratory infections in children [11].

Arsenic can exist in various oxidation states, but in natural water sources, it is predom-
inantly found in its inorganic forms as trivalent arsenite (As(III)) or pentavalent arsenate
(As(V)) oxyanions. The presence of arsenic-contaminated water that is used for drinking,
food preparation, and agricultural irrigation poses a significant threat to public health.
Prolonged exposure to arsenic through the ingestion of contaminated food and water can
lead to the development of cancer and skin lesions [12]. Arsenic has been linked to various
diseases affecting the cardiovascular, liver, neurological, immune, endocrine systems, as
well as the skin. It has also been associated with diabetes and various types of cancer, such
as skin, liver, lung, and bladder cancer, due to its absorption through the gastrointestinal
tract, skin, and respiratory system [13]. Furthermore, elevated levels of arsenic in drinking
water have been associated with an increased risk of myocardial infarction [14], adverse
effects on fertility in women [15,16], and negative consequences for fetal development
during pregnancy [17].

The processes and technologies for the removal of arsenic from water that are known
currently are oxidation, precipitation, coagulation and softening with lime, reverse osmosis,
microfiltration, nanofiltration, adsorption, biological treatments, phytoremediation, electro-
dialysis, and electrokinetics, among others [18–20]. Among these methods, the application
of adsorption is a promising technique and has been widely extended in the treatment of
water and wastewater due to its high efficiency, affordability, ease of design, operation,
handling, and maintenance, and the variety of adsorbent materials that can be regenerated
and reused. Furthermore, no additional chemicals are needed in the operation, and there is
no production of sludge or generation of toxic byproducts [7,21].

Some emerging arsenic adsorbents are chemically modified zeolites [22], zeolitic
imidazole frameworks [23], lanthanum hydroxide–doped graphene oxide biopolymer
foam [24], metal–organic framework-based composite materials [25], and jarosites [26]. The
vast majority of reported adsorbents are micro or nanometer-size powders; although some
of these materials have a high adsorption capacity for micropollutants from water, their
application at the pilot plant or industrial level is limited by the difficulty of separating the
adsorbent from the treated water.

Iron-based adsorbents are excellent adsorbents for removing arsenic from water. Mag-
netite (Fe3O4) is one of the most well-known iron oxides/hydroxides due to its strong
affinity for arsenic and ease of accessibility [27]. Iron-based adsorbents are non-toxic, low
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cost, and easily accessible in large quantities and offer promising results for arsenic removal
from water [28,29].

The gels are mesoporous materials with texture, mechanical resistance, and chemical
stability. They can be controlled and designed according to the variation of the synthesis
and processing conditions. Gels are formed by the addition and/or polycondensation
of a low molecular weight oligomer in an aqueous or alcoholic solution. First, a “sol”
is formed, a colloidal solution of solid particles that grow and coalesce to the gel point,
making the sol-gel transition at which the viscosity of the medium changes. The formed wet
gel behaves like a giant molecule of equal size to the container where it is prepared. The gel
progressively strengthens as residual unreacted oligomers bind to the developing network.
This phenomenon is called aging or curing, and it allows favorable conditions for drying
the gel with the least number of breaks in the structure formed. In other words, the gel is
composed of a continuous solid skeleton formed by chains of monomer particles arranged
in a pearl necklace that is immersed in a continuous liquid phase. By removing the liquid
from the wet gel, a large pore volume can be obtained [30]. The solvent that saturates the
pores can be evacuated by three following drying methods: subcritical, supercritical, and
cryogenic. Subcritical or conventional drying under atmospheric conditions can generate
drastic changes in the surface tension of the solvent once the vapor–liquid interface is
formed, this difference between the surface tension of the coexisting vapor and liquid
phases produces collapses in the pore structure of the gels. The result is a dense polymer
called xerogel. A specific application of resorcinol formaldehyde (RF) gel, including the
doping of RF gels with metals or metal oxides, is found in the removal of contaminants
from drinking water and wastewater [31–34].

Ultrasound technology has been utilized for the synthesis of various materials, in-
cluding nanoparticles, and has found numerous applications such as homogenizing, emul-
sifying, dispersing, deagglomeration, sonochemistry, and sono-catalysis. The effects of
sonication on agglomeration, metal release, zeta potential, and the administered dose were
evaluated using probe sonication for the synthesis of non-functionalized nanoparticles such
as copper, aluminum, manganese, and zinc oxide [35]. The results showed that sonication
can be used to control the size and morphology of nanoparticles, as well as to improve their
dispersibility and zeta potential. Iron(III) trimesate xerogel was prepared using ultrasonic
irradiation within a short time of 10 to 20 min and a low pH solution [36]. This method
produced a product with a high specific surface area of 1042 m2/g. The high specific
surface area of the xerogel was attributed to the formation of a porous structure during the
ultrasonic irradiation process. Furthermore, silica xerogels were prepared using the sol-gel
method with ultrasonic treatment to accelerate aging and hydrophobic treatment [37].
The effect of ultrasonic frequency, specifically 100 kHz and 500 kHz, on the structure was
investigated. It was found that 500 kHz accelerated the aging reaction, facilitated hydropho-
bization, and rapidly suppressed gel shrinkage. These studies demonstrate the potential
of ultrasound technology for the synthesis of various materials with desired properties.
Ultrasound can be used to control the size, morphology, dispersibility, zeta potential, and
aging of nanoparticles. It can also be used to accelerate the formation of porous structures
and to improve the hydrophobicity of materials. Ultrasonic technology can be considered
an environmentally friendly application because it reduces processing time, increases cost
efficiency, simplifies manipulation, enhances the purity of the final product, and lowers
energy consumption [32,34].

Regarding the theoretical knowledge of resorcinol-formaldehyde xerogels and the
applications of iron-based adsorbents such as Fe3O4 for arsenic removal, this study applied
the ultrasonic-assisted synthesis of carbon xerogels to evaluate the effect of Fe3O4 loading
through both direct and indirect methods on the removal of arsenic species in groundwater.
The novelty of this work is a Fe3O4-monolithic resorcinol-formaldehyde carbon xerogel
that, due to its chemical composition and ordered porous structure, is capable of removing
arsenite and arsenate ions present in groundwater. Moreover, due to its magnetic properties,
it is possible to easily recover it from the treated water.
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This research focuses on generating magnetic carbon xerogels with morphological,
magnetic, textural, and physical–chemical properties in the form of pellets, which makes
them reusable. These materials have the capability to adsorb arsenates and arsenites. The
synthesis procedure was developed considering the effect of Fe3O4 loading via ultrasonic
methods, both direct and indirect, while varying the molar ratios of Fe, catalyst, and water.
The arsenic adsorption test was conducted in batch, and the synthesized materials were
characterized using various analytical techniques before and after the adsorption of arsenic.
The intended purpose of this work is for the adsorbent materials produced to serve as
viable alternatives within the technological advancements for water remediation. The
magnetic properties of carbon xerogels facilitate the separation, reuse, regeneration, and
recycling of the adsorbents so that their useful life is extended. The efficient separation
of aged adsorbents also facilitates the recovery and final disposal of contaminants and
strengthens the environmental sustainability of the water purification process.

The experimental reproducibility of Fe3O4-monolithic resorcinol-formaldehyde carbon
xerogels involves several challenges, including the composition of the starting materials
(variation in molar ratios), the homogeneity of dispersion (direct and indirect ultrasoni-
cation methods), the sonication conditions (power output, duration, and frequency), the
gelation and curing conditions, and the post-synthesis treatments (pyrolysis). Controlling
these parameters consistently across different experiments can be challenging, and this can
affect the properties of the resulting monolithic carbon xerogels. Subsequently, the adsorp-
tion capacity of the final material was improved with increasing the initial concentration
and the adsorption affinity for arsenic species.

The environmental sustainability of the arsenic adsorption process using Fe3O4-
monolithic resorcinol-formaldehyde carbon xerogels can be evaluated through methodolo-
gies such as the lifecycle, planetary boundaries, and sustainable development goals [38].
However, applying these methodologies and their indicators is beyond the scope of
this article.

2. Results and Discussion
2.1. Fe3O4-Monolithic Resorcinol-Formaldehyde Xerogels: Effect of Loading of Magnetite with
Indirect and Direct Sonication, and Modification of Catalyst

This study focuses on the development and initial preparation of monolithic xerogels
with magnetic properties using magnetite (Fe3O4, Lanxess) as an adsorbent material for
water treatment. The magnetic xerogel monoliths (MCs and MXs) were synthesized through
the sol-gel polymerization of resorcinol and formaldehyde (RF) with sodium carbonate (C)
as a catalyst, employing indirect and direct sonication, respectively. The effect of varying
the molar ratios of resorcinol/catalyst was evaluated to obtain the high adsorption capacity
in the arsenate adsorption.

2.1.1. Characterization of MCs and MXs

To identify the phases in the xerogels, XRD analysis was carried out. XRD pattern of
RFX revealed the presence of both crystalline and amorphous phases as shown in Figure 1,
which is similar to the pattern reported by [39,40].

The XRD patterns of magnetic xerogels prepared using direct and indirect sonication
methods and different R/C ratios (Figure 1) were found to be similar, with diffraction peaks
at 2 θ values of 18◦, 30◦, 35.5◦, 43◦, 57◦, and 62◦ corresponding to the crystallographic
planes of magnetite 111, 220, 311, 400, 511, and 440, as reported in the ICCD card number 00-
01900629. These findings align with the research of [41]. The percentage of crystalline phase
for RFX, MX1, and MX2 was 10.54%, 12.45%, and 10.51%, respectively. Meanwhile, the
percentage of crystalline phase for MC1-MC4 ranged from 10.51% to 12.64%. The percent-
age of crystalline phase for magnetic xerogels prepared using direct and indirect methods
(MX1 and MC1) at the same molar ratios and gelation process was approximately 12%.
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Figure 1. Powder X-ray diffraction patterns of the xerogels (RFX), Fe3O4-monolithic resorcinol-
formaldehyde xerogels synthesized through direct sonication (MX1 and MX2), and indirect sonication
with different R/C (MC1-MC4), along with their corresponding JCPDS card assignments.

The crystal size of the magnetic xerogels was determined by calculating the X-ray
diffraction peak widths using Bragg’s law and Debye Scherrer equation, as described
by [42].

D = Kλ/βCosθ, (1)

where D is the crystalline size, K denotes represents the Scherrer constant (0.98), λ represents
the X-rays wavelength (1.54178 Å), β denotes the full width at half maximum (FWHM) and
θ is the Bragg diffraction angle (radians).

Table 1 shows the average crystalline sizes of MC50, MC100, and MC200 were in
the range of 22.94–25.88 nm. Additionally, their values of β (0.32–0.36 radians) and
θ (35.52–35.53 radians) were similar. However, the crystallinity of particle of MC200
(R/C = 200) was higher than MC50 (R/C = 50) and MC100 (R/C = 100). This indicates that
increasing the R/C ratio can result in increased crystallinity, which is similar to the results
obtained by [43].

Table 1. The average crystal size of magnetic xerogels varying R/C Molar ratios.

Sample Name R/C Molar
Ratios

Crystal Size
Average (nm)

FWHM (β)
(Radian) θ (Radian)

MC1 50 24.52 0.34 35.54
MC2 100 22.94 0.36 35.52
MC4 200 25.88 0.32 35.53

The morphology of RF xerogels (RFX) was observed using scanning electron mi-
croscopy (SEM). Figure 2a shows that RFX is composed of a large number of microclusters
that are uniformly distributed. These microclusters contain the resorcinol-formaldehyde
polymer. The RF gel network is formed with nearly spherical particles, showing similar
results to those obtained by [44]. Furthermore, the interconnects between the microclusters
were observed to form porous materials. This porosity is likely due to the gelation process
used in the synthesis of RFX, which involves the formation of a three-dimensional network
of interconnected polymer chains [39,45,46]. Therefore, RFX is a highly porous material
with a complex microstructure.
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Figure 2. SEM images of RF gels between (a) inside and (b) outside.

Figure 2a shows the difference between the outside and inside of the RF gel. The
microclusters in the outer region appear more compact than those in the inner region. This
difference in microstructure is likely due to the contact of the outer region with the glass
tube during the gelation process. During gelation, the RF solution is typically poured
into a mold or tube and allowed to solidify. The contact of the outer region with the glass
surface may have caused the microclusters to pack more tightly together, resulting in a
more compact microstructure.

In this study, the SEM analysis revealed the effect of direct and indirect ultrasonication
on the preparation of magnetic xerogels. Figure 3 depicts the morphology of magnetic gels,
namely MX1 and MC4, synthesized with the same molar ratios. It can be observed that
the morphology of MC4 (Figure 3b,d) characterizes nearly spherical particles that partially
overlap, resulting in the formation of large pores. This morphology is likely attributed
to the incorporation of magnetite particles into the RF gel during synthesis. Comparing
MX1 and MC4 at the same magnification range of 15,000 and 25,000, it is evident that MX1
has smaller particle and pore sizes compared to MC4. Additionally, MX1 shows a more
compact RF gel structure than MC4. Both techniques involve delivering energy to the RF
solution with magnetite particles through probe sonication. However, the resulting particle
sizes and mesoporosity of RF gels differ between the two methods. Indirect sonication
generates cavitation in the water bath using high-intensity ultrasound through a water bath,
while direct sonication involves the probe causing cavitation during sample processing. It
can be explained that the particle size of MX1 decreases after ultrasonication, as observed
by [37,47,48].

Energy-dispersive X-ray spectroscopy (EDX) is a technique used to determine the
elemental composition of a material. In this study, EDX analysis was used to determine the
Fe content, confirming the incorporation of Fe content in the structure of magnetic RF gels.
Both magnetic gels demonstrate the physical incorporation of magnetite into the structure
of RF gel without participating in the polycondensation reaction of RF, as stated by [47].
MC4 shows a more uniform distribution of magnetite contents in the structure of RF gel
than MX1.

During the synthesis of MX1 with direct sonication, the RF solution was mixed, and
the temperature increased dramatically from 45 ◦C to 79 ◦C within 5 min, resulting in the
formation of a black gel. On the other hand, MC4 was prepared using indirect sonication.
The mixed solution of MC1-MC4 allowed the dispersion of magnetite into the RF gel, and
the temperature of the solution continuously increased from 33 ◦C to 85 ◦C, and finally
leading to the formation of a black gel within the water bath for 60 min.
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Figure 3. SEM mages of Fe3O4-monolithic resorcinol-formaldehyde xerogels prepared by (a,c) direct
(MX1) and (b,d) indirect (MC4) ultrasonication with magnifications.

It can be explained that direct sonication involves the use of a sonication probe directly
immersed in the reaction mixture. The probe emits ultrasonic waves that directly interact
with the sample, resulting in more localized and precise energy transfer. However, direct
sonication generally requires shorter processing times compared to indirect sonication,
as the energy efficiently reaches the desired regions, accelerating the required reactions.
Consequently, the mixed solution of MX1 with ultrasonication experienced a significant
increase in temperature, leading to reduced gelation times [49]. In this study, magnetite was
added to the RF solution, and due to its natural behavior, magnetite tends to agglomerate
within a short mixing time. Considering the variables involved in the solution, gelation,
and curing processes, high temperatures during synthesis lead to porosity shrinkage [49].

After ultrasonication of magnetite into an aqueous RF solution, the particle size of
magnetite was decreased, which can be clearly observed with MC4. The EDX analysis
revealed that MC4 incorporated 1.19% Fe content (Figure 4d). The M/R ratio used in
the synthesis was 0.01, indicating a low concentration of magnetite compared to the RF
polymer. This suggests that even with a low M/R ratio, the incorporation of Fe in the RF
gel was successful, due to the use of magnetite particles in the synthesis process.

The morphology of the MCs was studied by SEM as shown in Figure 5. A three-
dimensional RF gel network was formed with nearly spherical particles [46,50]. MC1
and MC4 prepared with different Na2CO3 concentrations, the morphology and pore size
distribution can be observed that MC1 with lower R/C molar and high initial pH solution
exhibit smaller particles and pore sizes than other materials. pH variations can alter the
nucleation and growth of the gel network, leading to changes in the average pore size, pore
connectivity, and surface area of the xerogel. Higher pH values can promote the formation
of smaller pores, while lower pH values may result in larger pores [50].

209



Gels 2023, 9, 618

Gels 2023, 9, 618 8 of 30 
 

 

 

 

 

(a) (c) 

 

 
(b) (d) 

Figure 4. SEM and EDX images of Fe3O4-monolithic resorcinol-formaldehyde xerogels prepared 
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Figure 4. SEM and EDX images of Fe3O4-monolithic resorcinol-formaldehyde xerogels prepared by
(a,c) direct (MX1) and (b,d) indirect (MC4) ultrasonication.
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The mesoporosity of RF gels increases with an increase in the R/C ratio, as reported in
previous studies by [39,45,51]. This indicates that the porosity of RF gels can be controlled
by adjusting the R/C ratio in the synthesis process. Mesopores are pores with diameters
between 2 and 50 nm and are desirable for various applications such as adsorption.

Table 2 shows the textural properties of magnetic xerogels, the effect of direct, and
indirect sonication on the textural properties of materials, specifically MX1 and MC4,
respectively. The surface area of the magnetic xerogels for both MX1 and MC4 increased
significantly compared to the xerogel. MC4 exhibited a higher surface area of 529.47 m2/g,
whereas MX1 had a surface area of 472.41 m2/g. Additionally, the total pore volume and
average pore diameter of MC4 were lower than those of MX1. This can be explained by
the fact that MX1, prepared through direct sonication with a shorter sonication time for
gelation, resulted in a lower surface area but higher total pore volume and larger average
pore size.

Table 2. Textural parameters, pHpzc, and IEP of xerogel and Fe3O4-monolithic resorcinol-
formaldehyde xerogels.

Samples Molar Ratio
of R/C

Area BET
(m2/g)

Total Pore
Volume (cm3/g)

Average Pore
Diameter (nm) pHpzc IEP

RFX 200 399.19 0.517 5.23 2.99 2.74
MX1 200 472.41 0.842 7.57 4.54 3.09
MC1 50 365.93 0.255 2.79 6.63 3.40
MC2 100 545.09 0.549 4.03 6.12 3.59
MC4 200 529.47 0.683 5.16 4.35 3.70

The effect of pore structure in magnetic xerogels using the ultrasound-assisted sol-gel
method was investigated through N2 physisorption analysis. It can be explained that direct
sonication promotes the formation of smaller and more uniform pores within the xerogel
structure, as the energy can be precisely targeted to specific regions. On the other hand,
indirect sonication may result in the generation of larger or more irregularly shaped pores
in the xerogel due to less controlled and localized energy transfer. This observation is
consistent with the findings in Figure 3 of SEM images and Figure 4 depicting particle
distributions, which demonstrate that MX1 has a smaller particle size compared to MC4.

Moreover, Table 2 shows the effect of catalyst contents on the surface area and pore
volume of the magnetic xerogels. The results of the RF gels using sodium carbonate as
a catalyst show that MC200 had a higher average pore diameter (5.16 nm) than MC100
(4.03 nm), but MC200 had a lower surface area (529.47 m2/g) than MC100 (545.09 m2/g).
However, MC200 (529.47 m2/g) exhibited a surface area lower than MC100 (545.09 m2/g).
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These findings are consistent with those of [52], reported that increasing the molar ratios of
R/C in gels prepared with Na2CO3 leads to an increase in average pore width. When lower
molar ratios of R/C are used for RF gel preparation, a higher concentration of Na2CO3
results in the formation of smaller clusters with smaller average-sized pores. Therefore,
MC100, with its lower R/C ratios, has a greater number of smaller pore diameters, and a
higher surface area, making it more suitable for use in water treatment adsorption.

In this study, the obtained results of the mesoporous nature of magnetic xerogels
with varying R/C demonstrated the effect on the surface area and pore volume of the
RF polymer in magnetic xerogels. It can be explained that the pH of the RF solution is
associated with the quantity of catalyst utilized during the synthesis. When the pH was
decreased, both the surface area and pore volume of the RF polymer in xerogels increased.
This indicates that lower pH values result in the formation of a greater number of pores
and increased surface area within the RF polymer retained in the xerogels [53]. Moreover, it
can be explained that the larger carbonate ions have a trigonal planar molecular geometry,
which may cause steric hindrance. Consequently, the condensation of the intermediates
leads to the generation of larger pores of the samples [54]. The use of a higher amount of
catalyst leads to more rapid gelation, resulting in a less uniform structure with fewer and
larger pores. Alternatively, the catalyst itself may interfere with the formation of crosslinks
within the RF polymer, leading to a less porous structure. Therefore, higher amounts of
catalyst used during the synthesis have a similar effect on the surface area and porosity of
the resulting material, as observed in the results obtained by [55].

The determination of the isoelectric point (IEP) and point of zero charges (pHpzc)
of xerogels and magnetic xerogels was carried out by measuring the zeta potential and
pH, as shown in Table 2. The IEP and pHpzc of MX1 and MC4 prepared by direct and
indirect sonication, respectively, with R/C 200 are in a similar range of values. However,
the RF xerogel exhibits lower IEP and pHpzc values compared to the other materials. These
findings are similar to the results reported by [56], where organic xerogels demonstrated a
pHpzc value of 3.

Figure 6 shows the particle distribution of xerogel and magnetic xerogels prepared
using the sol-gel method under ultrasonic irradiation. The particle size distribution in the
obtained xerogels may vary because of sonication-assisted synthesis and variations in the
R/C ratios. RFX exhibits a broader particle size distribution with larger particles compared
to MX1 and MC4, which were prepared with the same molar ratios and drying process.
RFX, prepared without sonication, showed a larger particle size, which is consistent with
the findings of [57].

It can be observed that the average particle diameter of MX1 (28.05 nm) was lower
than that of MC4 (32.65 nm), which is similar to the results obtained from SEM analysis.
The use of direct sonication in the preparation of MX1 resulted in a narrower particle
distribution due to localized energy transfer, leading to more consistent particle sizes in
the obtained xerogel. On the other hand, MC4 exhibited a wider range of particle sizes
due to less precise control of sonication energy distribution. Therefore, the direct method
of sonication generally leads to a lower particle size distribution compared to the indirect
method, due to the more localized and intense energy transfer that promotes effective
fragmentation and reduction in particle size. Similar findings of the study of [58].

The initial pH of the solution is a factor influencing the polymerization of xerogels,
especially when varying the molar ratio of the catalyst. The pH values of the RF solutions
for MC1, MC2, MC3, and MC4 were 7.26, 7.05, 6.92, and 6.82, respectively, within the
similar range of the study of [52]. It can be observed that higher catalyst concentrations
with lower R/C molar ratios result in smaller particles and pore sizes, as reported by [53].
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Figure 6. Particle size distribution of RF xerogel and Fe3O4-monolithic resorcinol-formaldehyde
xerogels prepared by the sol-gel method under ultrasonic irradiation and presented in (a) grouping
and (b) separation graphs.

The pH of the precursor solution plays a crucial role in determining the final structure
of the obtained xerogel. It affects the kinetics of polymerization and crosslinking reactions,
as well as the condensation and gelation processes. The mechanism of polymerization in
RF gels involves two steps: the addition reaction to form hydroxymethyl derivatives of
resorcinol and the condensation of these derivatives to form methylene or methylene ether
bridged compounds [49]. In a high pH solution, the first addition reaction is favored. This
leads to a higher rate of polymerization and crosslinking, resulting in a more extensively
crosslinked network structure and a relatively quick process. This process often yields small
nodules and narrow mesopores. Gelation kinetics, which refers to the rate of transition
from a liquid precursor solution to a gel network, is strongly influenced by pH. Higher pH
values generally promote faster gelation, while lower pH values slow down the process.
The gelation kinetics can significantly impact the overall pore structure and porosity of the
xerogel. When the condensation reaction occurs in the presence of small particles resulting
from the high pH conditions, it produces materials with smaller pores, leading to a higher
density or more compact RF gel structure [59]. On the other hand, lower pH values may
result in a less densely crosslinked structure.

Figure 7a depicts the FTIR spectra of RFX and magnetic gels prepared using ultrasoni-
cation with direct and indirect techniques, covering a wavelength range of 4000–400 cm−1.
The characteristic FTIR bands of RFX, MX, and MC are similar. However, MC4, MX1, and
MX2 exhibit an FTIR band at 478 cm−1 attributed to Fe-O stretching vibration [60,61]. The
profiles of RFX, MC4, and MXs show the presence of six absorption bands: (i) O-H stretch-
ing at 3300 cm−1, (ii) C-H stretching at 2900 cm−1, (iii) C = C stretching in the aromatic ring
at 1600 cm−1, (iv) C-H bending vibration at 1400 cm−1, (v) C-O stretching at 1200 cm−1,
and (vi) methylene ether C-O-C linkage stretching between two resorcinol molecules at
1000 cm−1 [62]. The FTIR spectra of RF gel and MC1-MC4 can be observed in Figure 7b,
and all of them exhibit bands that are correlated with the bands described above.
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Regarding the characterization of MCs and MXs, it can be observed that the prepa-
ration of monolithic resorcinol-formaldehyde xerogels involved different methods of son-
ication, utilizing low and high intensity, respectively. However, the results of their XRD
and FTIR analyses show significant similarities. This is in contrast to the study conducted
by [48], where the preparation of ZnO nanoparticles using direct and indirect sonication
had an impact on the crystalline structure (XRD analysis) and resulted in different IR spec-
tra of the samples. Due to the probable growth mechanisms of ZnO nanoparticles, various
crystallization mechanisms were proposed. However, in the case of xerogels, ultrasonic
irradiation aids in promoting aging and hydrophobization reactions. Additionally, [37]
discovered that the preparation of silica xerogels can be accomplished in less than 1/5 of
the time required by conventional methods.

2.1.2. Performance of Adsorption of Arsenic Using MCs and MXs

In the batch adsorption experiment of As(V) using MCs and MXs, the effect of pH in
the range of 2 to 7 was used to evaluate their adsorption capacities, as shown in Figure 8.
MC1 and MC2 demonstrated high adsorption capacities, qe were more in the range of
63.26–73.47 µg/g and 59.18–61.22 µg/g, respectively, than other materials. MX1 and MX2
showed higher adsorption capacity in the acidic solution. Due to the pHpzc being the zero
net charge on the surface of the adsorbent, the adsorbent surfaces are charged positively
or negatively, depending on whether the pH of the solution is lower or higher than the
pHpzc values, respectively [55]. The analysis result of pHpzc of MX1 was 4.54, meaning that
MX1 adsorbed As(V) at pH values lower than this value. The same can be described for the
adsorption of MC1 and MC2, whose pHpzc values were 6.63 and 6.12, respectively.

2.2. Fe3O4-Monolithic Resorcinol-Formaldehyde Xerogels with Direct and Indirect Sonications:
Effects of Power Output of Ultrasonic Processor, Varying the Molar Ratios of M/R and R/W

Table 3 presents the molar ratios used in the synthesis of five magnetic xerogels,
specifically MX3-MX7. These xerogels were prepared with molar ratios of M/R of 0.03,
0.05, 0.1, 0.15, and 0.2, respectively. The xerogels were synthesized using direct ultrasonic-
assisted synthesis with an ultrasonic VCX130 operating at 130 watts and a 1/4” diameter
probe. The M/R ratios increased with the increasing Fe contents, as determined by chemical
composition analysis using ICP-Optical Emission Spectroscopy. However, MX6 and MX7
exhibited similar Fe content values. In this case, it can be explained that the high quantity
of magnetite may not have fully incorporated into the gel matrix and some of it may have
washed out during the solvent exchange, as evidenced by the observation of a brown
solution after changing the acetone solution.

214



Gels 2023, 9, 618

Figure 8. Effect of pH on the adsorption of As(V) using Fe3O4-monolithic resorcinol-formaldehyde
xerogels (Condition: initial concentration 100 µg/L, dose 1 g/L, 6 h, and temperature 25 ◦C).

Table 3. Fe3O4-Monolithic resorcinol-formaldehyde xerogels prepared with direct sonication with
low power output varying M/R ratios ranging from 0.03 to 0.2, resulting in different Fe content.

Molar Ratios
Direct Ultrasonic-Assisted Synthesis

MX3 MX4 MX5 MX6 MX7

R/W 0.04

R/C 200

R/F 0.5

M/R 0.03 0.05 0.1 0.15 0.2

Fe content (w%) 3.48 5.62 9.29 13.39 13.13

Solids content (w/v%) 19.59 20.37 22.29 24.23 26.16

MX8-MX11 were synthesized using indirect sonication via the Q700 sonicator, which
has a power output of 700 watts and a 1/2” diameter probe. The molar ratios used in the
synthesis, along with the corresponding Fe content, are shown in Table 4.

Table 4. Fe3O4-Monolithic resorcinol-formaldehyde xerogels prepared with indirect sonication with
high power output varying M/R ratios ranging from 0.03 to 0.15.

Molar Ratios
Indirect Ultrasonic-Assisted Synthesis

MX8 MX9 MX10 MX11

R/W 0.05

R/C 200

R/F 0.5

M/R 0.03 0.05 0.1 0.15

Fe content (w%) 3.41 5.82 11.59 16.09

Solids content (w/v%) 23.04 23.95 26.22 28.48

At the same molar ratios of M/R at 0.15 for direct (MX7) and indirect (MX11) sonica-
tion, MX11 demonstrated a higher Fe content than MX7. The theoretical calculations of Fe
content for MX8, MX9, MX10, and MX11 are 4.27%, 6.85%, 12.52%, and 17.29%, respectively.
These values are similar to the results obtained from ICP-OES analysis. This can be ex-
plained that increasing the power output to 700 watts makes the system more homogenous.
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2.2.1. Characterization of Fe3O4-Monolithic Resorcinol-Formaldehyde Xerogels MX3-MX7
and MX8-MX11

SEM images and mapping analysis of MX3-MX7 are shown in Figure 9, with an increas-
ing amount of magnetite through direct sonification. Figure 9a–e shows the SEM images of
the surface morphology of magnetic xerogels composed of large numbers of microclusters
with a three-dimensional network. However, some parts of them are agglomerated, and
some bright particles can be observed. The elemental distribution of these particles can be
confirmed with the corresponding EDX spectra, which demonstrate the existence of iron
(Fe), oxygen (O), carbon (C), aluminum (Al), and sodium (Na).
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Figure 9. SEM images and EDX mapping analysis of magnetic xerogels prepared with R/C = 200, 
R/W = 0.04, and varying M/R of MX3 = 0.03 (a,f), MX4 = 0.05 (b,g), MX5 = 0.1 (c,h), MX6 = 0.15 (d,i), 
and MX7 = 0.2 (e,j), respectively. 

Figure 9. SEM images and EDX mapping analysis of magnetic xerogels prepared with R/C = 200,
R/W = 0.04, and varying M/R of MX3 = 0.03 (a,f), MX4 = 0.05 (b,g), MX5 = 0.1 (c,h), MX6 = 0.15 (d,i),
and MX7 = 0.2 (e,j), respectively.
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Elemental mapping was analyzed to observe the distribution of synthesized magnetite
on RF matrix gels, as shown in Figure 9f–j. The individual EDX mapping of Fe element
distributions: blue = low, green = medium, and red = high. Magnetite particles were ob-
served in a blue color and were evenly distributed on the RF surface, with a higher quantity
corresponding to the increasing M/R ratios. Similar results were obtained from Table 3. The
results of the mapping analysis show that the incorporation of Fe into the structure of the
samples is homogeneously distributed, similar to the results obtained from activated carbon
xerogels doped with iron (II) phthalocyanine by ultrasonication [63]. However, some of
them had some accumulation of Fe due to the increase of high concentration of magnetite
in the RF solution. It can be observed in Figure 9h,i, where EDX mappings for Fe display a
red color in several regions, indicating a high concentration of Fe within the RF gels. The
agglomeration of the microclusters and the presence of bright particles on the surface of the
MX5-MX7 xerogels suggest that the synthesis process could be improved. Further studies
are needed to optimize the synthesis conditions in order to produce magnetic xerogels with
improved properties.

The XRD patterns of MX3-MX7, prepared by direct sonication, and MX8-MX11, pre-
pared by indirect sonication, are shown in Figure 10a,b, respectively. Both sets of samples
were synthesized with different molar ratios and utilized different ultrasonic processors.
However, both sets varied the M/R ratios from 0.03 to 0.2 for MX3-MX7 and from 0.03 to
0.15 for MX8-MX11. Consequently, the XRD analysis of the magnetic xerogels demonstrated
the presence of magnetite, in accordance with the JCPDS card assignments, as described
in Figure 1. The diffraction peaks at d311 (2 θ = 35.68◦) appeared high and sharp for all
materials, indicating their magnetic properties [42], the intensity of the iron phase peaks
increased with higher M/R ratios in the synthesis. These results are particularly relevant
for the analysis of the chemical composition, as presented in Tables 3 and 4.
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Figure 10. XRD patterns of magnetic xerogels prepared by (a) direct (MX3-MX7) and (b) indirect
(MX8-MX11) ultrasonic with varying M/R ratios of 0.03–0.2.

The FTIR spectra of monolithic resorcinol-formaldehyde xerogels prepared by direct
sonication, with varying M/R molar ratios of 0.05, 0.1, 0.15, and 0.2 (referred to as MX4,
MX5, MX6, and MX7, respectively) are similar, as shown in Figure 11a. Similarly, Figure 11b
presents FTIR spectra of MX8-MX11, prepared by indirect sonication, which exhibit similar-
ities. The resulting FTIR spectrum displays peaks corresponding to different vibrational
modes of the molecules in the sample, as discussed in detail in Figure 7. Both groups of
materials exhibit an FTIR band at 468 cm−1, attributed to Fe-O stretching vibration [60,61].
Therefore, the use of different sonication methods and power outputs of the ultrasonic
processor has no effect on the functional groups and chemical compounds present in the
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samples of monolithic resorcinol-formaldehyde xerogel, based on the absorption of infrared
radiation with wavelength ranges of 4000–400 cm−1.
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2.2.2. Performance of Adsorption of Arsenic Using MX4-MX7 and MX8-MX11

Figure 12a presents the removal efficiency of As(V) using MX4-MX7 prepared by direct
sonication via a sonicator with 130 watts of power. The removal efficiency of MX4-MX7
was higher than RFX, which was prepared without using magnetite. In particular, MX4
with a lower loading of Fe3O4 (M/R = 0.03) gave the highest arsenic removal of 58.78%.
Meanwhile, arsenic removals were lower with MX5, then increased and remained constant
for MX6 and MX7. This can be explained by the capacity of the sonicator. With a low power
output sonication and small diameter tip, it was possible to homogenize the solution well
with a low quantity of magnetite. However, with increasing magnetite loading into the RF
solution with M/R of 0.05, 0.07, and 0.15, the As removal results were similar. This can be
confirmed with SEM/EDX analysis (Figure 9), which showed that magnetite was more
homogeneously distributed in MX4 than in the other materials.
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(a) direct sonication with low power output and (b) indirect sonication with high power output.
(Conditions: initial concentration 200 µg/L, pH of 3, dose 2 g/L, 6 h, and temperature 25 ◦C).
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Figure 12b shows the arsenic removal using MX8-MX11 prepared by indirect ultrasonic-
assisted synthesis with 700 watts. The removal of MX8 (M/R = 0.03) and MX9 (M/R = 0.05)
increased dramatically from 36.49% to 58.78%. With the increasing of M/R to 0.1 and 0.15,
their arsenic removal of MX10 and MX11 remained constant, which demonstrated the same
behavior as MX4-MX7.

Additionally, the effect of the molar ratio of R/W and M/R on the total solids content
of the materials is shown in Tables 3 and 4. The solid content increases with increasing
magnetite loading. At the same molar ratios of M/R, the total solids content also increases
with increasing R/W. Moreover, low solids contents result in fragile structures, and very
high solids contents result in increased densification of the material that lowers porosity.
Therefore, the optimum solids content of the xerogel is 20 w/v% [45].

2.3. Fe3O4-Monolithic Resorcinol-Formaldehyde Xerogels and Carbon Xerogels by
Indirect Sonication
2.3.1. Characterization of Fe3O4-Monolithic Resorcinol-Formaldehyde Carbon Xerogels

Some parts of the RF surface of Fe3O4-Monolithic resorcinol-formaldehyde xerogels
(MXRF) were agglomerated due to the formation of magnetite, as shown in Figure 13a. The
presence of Fe in the RF gels was determined to be 14.83 w% by AAS, compared to 24.67%
of Fe as quantified by EDX in the solid sample. It can be observed that the morphology and
EDAX analysis did not change significantly after the adsorption process (Figure 13b).
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Figure 13. SEM and EDAX images of (a,b) Fe3O4-Monolithic resorcinol-formaldehyde xerogels
(MXRF), and (c,d) Fe3O4-Monolithic resorcinol-formaldehyde carbon xerogels (MXRF600).
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Figure 14a shows N2 adsorption–desorption isotherms at 77 K, and Figure 4b illustrates
the pore size distributions of XRF and MXRF. The analysis results of BET surface area, total
pore volume, and average pore size of xerogel adsorbent were 399.19 m2/g, 0.517 cm3/g,
and 5.228 nm, respectively. When magnetite composites were added to xerogels, the porous
properties of MXRF for BET surface area, total pore volume, and average pore diameter
were 292 m2/g, 0.279 cm3/g, and 3.81 nm, respectively.
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cinol formaldehyde (MXRF) and (b) magnetic carbon xerogels of resorcinol formaldehyde 
(MXRF600). 

XRD patterns of MXRF and MXRF600 before and after adsorption (Figure 16) clear-
ly demonstrated that they had high intensity peaks that contained a crystalline phase 
and corresponded to Fe3O4 with the Joint Committee on Powder Diffraction Standards 
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Figure 14. (a) N2 adsorption isotherms and (b) pore size distributions of xerogel (RFX) and Fe3O4-
monolithic resorcinol-formaldehyde xerogels (MXRF).

Figure 14a shows that the adsorption isotherms of RFX and MXRF adsorbents at a
constant temperature of 77 K with N2 as the adsorptive exhibit a linear relationship between
relative pressure and amount adsorbed. RFX and MXRF exhibited type IV adsorption
isotherms with H2 and H4 hysteresis loops, respectively. This implies that RFX contained
typical mesoporous materials and MXRF contained micro- and mesoporous adsorbents,
similar to the results of the pore size distributions.

Figure 14b shows that the main pore diameter sizes of RXF and MXRF are in the range
of 2–50 nm, which is defined as mesoporous material. The pore size distribution of MXRF
reveals that the average pore diameter was 3.81 nm, which is similar to the results of the
narrow centering of PSD of Fe, Co, and Ni doped carbon xerogels [64]. This indicates that
the doping with transition metals, such as magnetite, into the xerogels has a similar effect
to the composite of magnetite, which affects the reduction of surface areas and total pore
volume of the material and makes alterations to their textural properties [65,66]. Similar
results were found from SEM analysis, which showed increased agglomeration of particles
in RF gels.

As shown in Figure 15, FTIR analysis of MXRF before and after adsorption of As(III)
was obtained using attenuated total reflection (ATR) technique. Absorption peaks at
558 cm−1 are characteristic peaks of Fe-O-Fe, which are indicative of magnetite, confirming
the presence of Fe3O4 on the MXRF adsorbent [67]. The bending vibration of the hydroxyl
groups (Fe–OH) confirmed the formation of iron oxide in xerogels [68] and O–H groups
on the gel surface. These groups are possible to facilitate the adsorption of arsenic by iron
oxides composites in the matrices of RF magnetic xerogels [28].
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Figure 15. FTIR analysis before and after adsorption of As(III) of (a) magnetic xerogels of resorcinol
formaldehyde (MXRF) and (b) magnetic carbon xerogels of resorcinol formaldehyde (MXRF600).

XRD patterns of MXRF and MXRF600 before and after adsorption (Figure 16) clearly
demonstrated that they had high intensity peaks that contained a crystalline phase and
corresponded to Fe3O4 with the Joint Committee on Powder Diffraction Standards (JCPDS)
card No. 19-0629. Therefore, the chemical and structural properties of MXRF and MXRF600
did not change significantly following the carbonization and adsorption process.
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Figure 16. XRD diffractogram of Fe3O4-monolithic resorcinol-formaldehyde xerogels (MXRF) and
carbon xerogel (MXRF600) before and after adsorption of As(III).

2.3.2. Adsorption of Low and High Concentration of As(III) and As(V) with MXRF
and MXRF600

In the adsorption process, contact time is one parameter that is a time-dependent
process. Adsorption kinetic studies are important in water treatment. These studies can
describe the mechanism of the adsorption process and provide kinetic adsorption constants
and valuable information. The experimental data were analyzed with four kinetic models:
pseudo first-order, pseudo second-order, Elovich, and Power function.
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The effect of contact time on the adsorption process was varied from 10 to 1440 min
with different ranges of initial concentration for the low range of As(III) concentrations (25,
50, and 75 µg/L) and high range of concentration for As(III) and As(V) were 514 µg/L and
1034 µg/L, respectively. The adsorption kinetic of As(III) on MXRF is shown in Figure 17.
The removal efficiency for As(III) concentration of 75 µg/L increased faster in 10 min and
remained constant until 240 min at 97.33%.
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Figure 17. Adsorption kinetics using MXRF with 0.025, 0.05, and 0.075 mg/L of As(III) concentrations,
pH of 3, and dosage of 2 g/L.

Kinetic parameters and correlation coefficients for As(III) and As(V) adsorption by
using MXRF600 were obtained by nonlinear regression as presented in Table 5, including
residual root mean square error (RMSE). The condition of As(III) and As(V) adsorption
kinetics were pH of 3, dosage of 2 g/L, and initial concentration of As(III) and As(V)
solution of 0.514 mg/L and 1.034 mg/L, respectively. The adsorption kinetic models that
presented the best fit in the As(III) and As(V) adsorption process were the Power equation
and Elovich chemisorption model.

Table 5. Kinetic parameters and error indices of Pseudo First-Order, Pseudo Second-Order, Elovich,
and Power Equation for As(III) and As(V) removal using MXRF600.

Adsorption
Pseudo First-Order Pseudo Second-Order

qt (µg/g) k1 R2 RMSE qt (µg/g) k2 R2 RMSE

As(III) 129.68 0.153 0.374 9.900 134.03 0.002 0.575 8.161
As(V) 230.55 0.147 0.446 17.09 238.00 0.001 0.600 14.51

Adsorption
Elovich Equation Power Equation

α (µg/g min) β (g/µg) R2 RMSE a b R2 RMSE

As(III) 808,122.16 0.129 0.830 5.166 93.36 0.062 0.842 4.979
As(V) 2,288,305.88 0.075 0.807 10.07 166.34 0.061 0.822 9.681

It can be observed that MXRF600 demonstrated greater adsorption of As(III) and As(V)
than MXRF, implying a higher adsorption capacity. The final step of preparing MXRF600
was to produce a carbon xerogel with a carbonization process for removing the rest of the
oxygen and hydrogen groups and improving a thermally stable nanostructure [49]. With
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the use of high temperature under an inert atmosphere, MXRF and MXRF600 demonstrated
modifications in their chemical composition and texture properties, which can be identified
with the analysis of XRD, FTIR, N2 physisorption, and SEM/EDAX, as discussed above.

In this study, the experimental data were analyzed with nonlinear equations using
the Langmuir and Freundlich isotherm models to describe the adsorption of As(III) and
As(V) on MXRF600. The Langmuir isotherm model assumes that a monomolecular layer of
adsorbate molecules is formed on the adsorbent surface, with each molecule having the
same adsorption energy. The Freundlich isotherm model describes the heterogeneity of the
surface and the distribution of adsorption energies.

The conditions for the isotherm adsorption were as follows: adsorbent dose of 2 g/L,
initial solution pH of 3.0, and contact time of 24 h. The initial concentrations of the As(III)
and As(V) solutions were in the range of 0.05–1.27 mg/L and 0.12–3.0 mg/L, respectively.
The Langmuir and Freundlich model parameters and regression coefficients are shown in
Table 6. The experimental data for the adsorption of As(III) and As(V) on magnetic carbon
xerogel monoliths were fitted to the Langmuir models, and the maximum monolayer
adsorption capacity (qmax) of As(III) and As(V) were 694.3 and 1720.3 µg/g, respectively,
with R2 values (RSME) of As(III) and As(V) were 0.897 (3.865), and 0.901(9.220), respectively.

Table 6. Isotherm parameters and correlation coefficients for As(III) and As(V) adsorption on
MXRF600.

Adsorption
Langmuir Freundlich

qmax (µg/g) KL (L/µg) R2 RMSE KF ((µg/g)(L/µg)1/n) n R2 RMSE

As(III) 694.3 1.527 0.897 3.865 502.8 1.346 0.894 3.903
As(V) 1720.3 0.641 0.901 9.220 655.7 1.338 0.899 9.309

3. Conclusions

The ultrasonic-assisted synthesis of Fe3O4-monolithic resorcinol-formaldehyde xe-
rogels using direct and indirect sonication methods as an easier recovery of adsorbent
was shown to reduce the gelation time and improve the textural properties of the final
product. The optimal mixing time for magnetite dispersion in an RF aqueous solution was
determined to be 5 min using direct sonication and 60 min using indirect sonication, as
confirmed by SEM/EDX analysis. This study investigated the effect of different molar ratios
of R/C, M/R, R/W, and thermal treatment on RF xerogel. The results show MXRF600 was
synthesized by indirect sonication with R/F = 0.5, R/C = 100, R/W = 0.05, and M/R = 0.15
and enhanced adsorption capacity for As(III) and As(V) from groundwater due to the influ-
ence of sonication assistance and the carbonization process. However, the optimization of
the process parameters for the adsorption of magnetic carbon xerogels should be studied to
find out the optimum condition and improve their performance in removing contaminants
from the environment. The desorption process, regeneration efficiency, and the lifecycle
assessment of magnetic carbon xerogels are suggested for future research.

4. Materials and Methods
4.1. Reagents and Materials

Reagents required to perform the synthesis of Fe3O4 nanoparticles were prepared in
duplicate, including ferric chloride hexahydrate (FeCl3·6H2O, 98.9%, Fermont), ferrous
sulfate heptahydrate (FeSO4.7H2O, 99%, Meyer), and sodium hydroxide (NaOH, 97%,
Meyer. Nitrogen gas was purchased from Infra (Morelos, Mexico). Resorcinol (C6H4(OH)2,
98%, Chemistry Meyer), sodium carbonate (Na2CO3, J.T. Baker, 100%), formaldehyde
(HCHO, 37% methanol stabilized Solution, J.T. Baker), acetone ((CH3)2CO, 99.5%, J.T.
Baker,), and magnetite Fe3O4 (Lanxess, Bayferrox) were used for synthesis of magnetic
xerogels. All the solutions used in the synthesis and adsorption experiment were made
using ultrapure Type I water from the water purification system (WaterproBT, Labconco,
Kansas City, MO, USA).
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4.2. Synthesis of Adsorbent Materials

The gels were synthesized by polymerizing resorcinol (R, C6H6O2) and formaldehyde
(F, CH2O) in water (W), using sodium carbonate (C, Na2CO3) as a catalyst, following
the procedure described by [69]. The synthesis utilized molar proportions of R/C = 200,
R/F = 0.5, and R/W = 0.06 [70,71]. While keeping other factors constant, the effect of
loading of Fe (via direct and indirect sonication), Fe content (M/R = 0.03–0.2), water
(R/W = 0.04–0.06), and catalyst (R/C = 50–200) ratios were varied in the realization of the
monoliths. Then, they were evaluated for their impact on the physicochemical properties of
the resulting materials, as well as their ability to remove As(III) and As(V). Iron oxides (M)
used in this study were magnetite obtained from Lanxess, García, Nuevo León, Mexico.

The procedure for synthesizing the gels involved placing half of the deionized water
and the mass of R in a 100 mL beaker, which was then vigorously shaken to homogenize
the solution. The F solution was added, followed by the addition of C, and the mixture was
stirred magnetically until homogeneous. pH of RF solution was controlled between 5.5–6.0
to obtain high surface areas of resulting materials [52]. The resulting solution was then
placed in Pyrex® glass tubes, which were sealed with a stopper to prevent evaporation. The
temperature of the RF solution during reaction of an ultrasonic processor was controlled
to be in the range of 80 to 85 ◦C. To evaluate the optimal mixing time and the dispersion
of magnetite in the RF aqueous solution, three types of ultrasonic devices were applied.
First, a digital ultrasonic device (UP400St; Hielscher, Teltow, Germany) with an output of
400 watts, a frequency of 24 kHz, and a 1-inch diameter probe was used in the synthesis of
RFX, MC1-MC4, MX1-MX2, and MXRF. The device was equipped with automatic frequency
tuning and adjusting an amplitude ranging from 80% to 100%. An ultrasonic processor
(VCX 130; Sonics & Materials, Inc., Newton, CT, USA) with a power output of 130 watts,
a frequency of 20 kHz, and a 1

4 -inch diameter tip was applied in the synthesis of MX3-
MX7. A sonicator (Q700; Qsonica L.L.C, Newtown, CT, USA) with a power rating of
700 watts, a frequency of 20 kHz, and a 1/2-inch diameter probe was used in the synthesis
of MX8-MX11. All ultrasonic processors were used for homogenization, dispersal, and
deagglomeration of magnetite particles in the RF aqueous solution, using both direct and
indirect sonication methods before the gelation process.

4.2.1. Monolithic Resorcinol-Formaldehyde Xerogels Effect of Loading of Magnetite with
Direct and Indirect Sonication, and Modification of Catalyst

The study investigated the optimal mixing time and dispersion of magnetite in RF
aqueous solution, using both direct and indirect ultrasonication methods prior to the
gelation process. Magnetic xerogel monoliths (MCs) were prepared by indirect sonication
with molar ratios of R/F = 0.5, R/W = 0.06, and M/R = 0.01, and varying proportions of
resorcinol and catalyst. MC1, MC2, MC3, and MC4 were identified based on R/C ratios
of 50, 100, 150, and 200, respectively. The homogenization process was carried out using
ultrasonic-assisted synthesis, with digital ultrasonic equipment (UP400St; Hielscher, Teltow,
Germany), starting at room temperature. After 5 min of sonication, the temperature reached
85 ◦C. Magnetite (M) was added into the homogeneous RF aqueous solution and subjected
to indirect sonication for 60 min to disperse the magnetite particles before the gelation
process. Additionally, the variable factors studied in this work include loading of magnetite
with direct and indirect ultrasonication. Therefore, MX1 was prepared using the same
method as MC4 but with direct sonication to compare their properties and adsorption
capacity of arsenic in aqueous solution. Afterward, the materials were placed in the oven
at 80 ◦C for 5 days. In the case of MX2, the gelation and curing process was changed to be
left at room temperature for 5 days.
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4.2.2. Monolithic Resorcinol-Formaldehyde Xerogels with Direct and Indirect Sonication:
Effects of Power Output of Ultrasonic Processor, Varying the Molar Ratios of M/R
and R/W

In this study, monoliths of magnetic xerogels (MXs) were prepared by the sol-gel
polymerization of resorcinol with formaldehyde, using an alkaline catalyst and direct
sonication of magnetite to incorporate them into the xerogels. Different proportions of iron
oxides were modified to achieve the maximum adsorption capacity. Initially, batches of
magnetic xerogel monoliths (MX3-MX7) were prepared by varying the M/R ratio from 0.03
to 0.2. The molar ratios of R/F = 0.5, R/C = 200, and R/W = 0.04 were maintained for a
small portion of the batches. The preparation process involved the use of an ultrasonic
processor VCX 130 with a power output of 130 watts and a frequency of 20 kHz.

4.2.3. Monolithic Resorcinol-Formaldehyde Carbon Xerogels by Indirect Sonication

The monolithic resorcinol-formaldehyde xerogels (MXRF) were synthesized in a larger
batch using UP400St equipment with the relations of molar ratio of R/F = 0.5, R/C = 100,
R/W = 0.05, and M/R = 0.15. Then, the gels were cured in a conventional oven for three
days at 80 ◦C. The gels were taken off the glass tubes and allowed to cool to room tem-
perature. After that, the gels were cut using a diamond disk into pellet forms of 5 mm in
diameter. The materials were then exchanged with acetone, sealed in a jar with the lid
tightly closed, and wrapped with paraffin film. The jar was placed in a shaking water
bath (BS-11; Lab Companion, Daejeon, Republic of Korea) at 150 rpm for two days, with
fresh acetone being added daily. Subsequently, the gels were dried for three days in a
conventional oven at 80 ◦C.

MXRF were then pyrolyzed using a tube furnace (STF55346C-1; Lindberg/Blue M,
Asheville, NC, USA) with the following conditions: temperature of 600 ◦C, heating ramp
of 3 ◦C/min, time of 6 h, and nitrogen flow of 100 mL/min. The resulting product was
monolithic resorcinol-formaldehyde carbon xerogels, which were labelled as MXRF600.

4.3. Characterization through Analytical Techniques

To assess the physicochemical characteristics of the synthesized materials, the follow-
ing techniques were employed:

X-ray diffraction (XRD) analysis was used to identify the main constituents and
mineralogical phases of the synthesized materials. The analysis was performed using
an X-ray diffractometer on MCs, MXs, and MX3-MX11 samples (XPert PW3040; Philips,
Almelo, The Netherlands), and on MXRF and MXRF600 (D8 ADVANCE; Bruker, Karisruhe,
Germany). Sample preparation involved sieving the sample through a 200-mesh sieve,
resulting in an average particle size of 74 µm. A high-temperature chamber attached to
the X-ray diffractometer was used to measure diffraction patterns up to 900 ◦C. Cu(Kα)
radiation was applied in a 2θ range from 10◦ to 80◦.

Fourier transform infrared spectroscopy (FTIR) was employed to investigate the
surface functional groups of the adsorbents before and after arsenic adsorption, in order
to understand the mechanism of ion adsorption. FTIR analysis was conducted using
a Shimadzu IRAffinity-1S instrument (Shimadzu Corp., Kyoto, Japan) on dry powder
samples. Infrared spectra were measured by connecting to the attenuated total reflection
(ATR) contained in the disk of crystal (type IIIa monocrystalline diamond). Before the
analysis, the samples were sieved through a standard test sieve No. 142 to obtain a uniform
particle size of 106 µm. Subsequently, the powder samples were dried in an oven at 60 ◦C for
15 h under dry air to avoid interference from water vapor adsorption in the infrared region,
which could affect the analysis result. After installing the ATR with infrared spectroscopy,
the solid samples were directly added to the crystal plate and pressed for surface analysis.
All spectra were recorded between the wavenumbers of 400–4000 cm−1, with 45 scans
per sample.

The surface morphology, pore structure, and element analysis of the magnetic xero-
gels were analyzed using a scanning electron microscope (SEM). MCs, MXs, MXRF, and
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MXRF600 were analyzed using a field emission scanning electron microscope (FE-SEM)
(7800F Prime; JEOL, Tokyo, Japan) after gold coating. MX3-MX11 were analyzed using a
scanning electron microscope (SEM) (JSM-IT300; JEOL, Tokyo, Japan). The samples were
coated with graphite before the analysis. The acceleration voltages used were between
5 and 20 kV. The textural properties of magnetic xerogels, and magnetic carbon xerogels
were characterized by physical adsorption of N2 at 77 K, using physisorption apparatus
(ASAP 2020; Micromeritics, Norcross, GA, USA and NOVA touch 2LX; Quantachrome
Instruments, Boynton Beach, FL, USA). The samples were dried at 110 ◦C for 15 h prior to
N2 physisorption analysis.

Particle Size Distribution (PSD) was determined using Dynamic Light Scattering
Analyzers (PMX 500; Microtrac, Meerbuch, Germany), and the data report was generated
by FLEX software version 11.1.0.1

The determination of the point of zero charge (pHpzc) and the isoelectric point (IEP)
was conducted following the methods described by [72]. The pH solutions were prepared
by adjusting deionized water to pH values of 2, 4, 6, 8, 10, and 12 using 0.1 M HCl or
0.1 M NaOH solutions. The pH was measured using a multi-parameter device (Orion Star
A211; Thermo Scientific, Beverly, MA, USA). A zeta potential analyzer (PMX 500; Microtrac,
Meerbuch, Germany) was employed to measure the zeta potential, with pH variations
ranging from 2 to 11 for the determination of the isoelectric point (IEP).

The amount of Fe in the magnetic xerogel monoliths was determined by Inductively
Coupled Plasma (ICP) Optical Emission Spectrometer (OES) (Optima 8300; Perkin Elmer,
Shelton, CT, USA).

4.4. Batch Adsorption Experiment

Groundwater used in experimental study was obtained from a well approximately
70 m deep located at Jiutepec, Morelos Mexico. Physical and chemical characteristics of
groundwater sample used in this study were analyzed. pH (7.6), total dissolved solids
(TDS, 172.6 mg/L), turbidity (1.53 NTU), chlorides (Cl−, 10.1 mg/L), iron (Fe, 0.03 mg/L),
fluoride (F−, 0.25 mg/L), manganese (Mn, 0.001 mg/L), nitrate (NO−

3 , 4.4 mg/L), sulphate
(SO2−

4 , 37 mg/L), and phosphate (PO3−
4 , 0.82 mg/L) were all in the limitation of Mexican

stand NOM-127-SSA1-2021 [4]. Since there was no arsenic in the selected water, arsenic
was added to the stock solution prepared for adsorption tests on synthetic samples. This
water was used to prepare the corresponding arsenic solution to the required concentra-
tions by adding sodium arsenite (NaAsO2, Sigma-Aldrich) and sodium arsenate dibasic
heptahydrate (HAsNa2O4·7H2O, Sigma-Aldrich) for studying As(III) and As(V) adsorption
processes, respectively.

The batch adsorption experiment of As(V) using MCs and MXs as adsorbents was
conducted to evaluate their adsorption capacities. The effect of solution pH (2–7) on As(V)
adsorption was investigated with an initial concentration of 100 µg/L, a dose of 1 g/L,
150 rpm, a contact time of 6 h, and a temperature of 26.2 ± 1 ◦C.

Batch adsorption of As(V) using MX4-MX7 and MX8-MX11 was studied with direct
sonication at low power output, and indirect sonication at high power output, respectively.
The following conditions were used: an initial concentration of As(V) of 200 µg/L, pH of 3,
a dose of 2 g/L, 150 rpm, a contact time of 6 h, and a temperature of 26.3 ± 1 ◦C.

XRF600 was carbonized into pellets and used in this form to test kinetics and isotherms.
The kinetic study adsorption using MXRF with As(III) concentrations of 0.025, 0.05, and
0.075 mg/L was conducted at a pH of 3, a dosage of 2 g/L, 150 rpm, a temperature of
26.5 ± 1 ◦C, and contact time ranging from 10 to 1800 min. The adsorption kinetics of
As(III) and As(V) using MXRF600 were carried out under a pH of 3, a dosage of 2 g/L,
and initial concentration of As(III) and As(V) solution of 0.514 mg/L and 1.034 mg/L,
respectively, with a contact time ranging from 10 to 1440 min.

The conditions for the isotherm adsorption using MXRF600 were as follows: an
adsorbent dose of 2 g/L, an initial solution pH of 3.0, 150 rpm, a temperature of 26.4 ± 1 ◦C,
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and a contact time of 24 h. The initial concentrations of the As(III) and As(V) solutions
were in the range of 0.05 to 1.27 mg/L and 0.12 to 3.0 mg/L, respectively.

The importance of kinetic and equilibrium models of adsorption is described in the
mechanisms and dynamics of the adsorption system of adsorbents. Adsorption kinetic
models that control the adsorption process of arsenic are related to the adsorbate uptake on
the adsorbent with chemisorption. Therefore, the Pseudo First-Order (PFO), Pseudo Second-
Order (PSO), and Elovich and Power equations were applied to perform the experimental
data in this study. The assumptions of the PFO model are: sorption at localized sites,
the energy of adsorption is independent of surface coverage, a saturated monolayer of
adsorbates, and the concentration of the adsorbate is constant [73]. The assumptions of
the PSO model are similar to those of the PFO model. The PSO kinetic equation typically
describes metal ion uptake on activated carbons well, as well as the adsorption of dyes,
herbicides, oils, and organic compounds from aqueous solutions [73,74]. The Elovich
equation is used to describe the kinetics of a heterogeneous diffusion process [74]. It is
a semi-empirical equation that is based on the assumption that the rate of diffusion is
controlled by the rate of adsorption onto active sites on the heterogeneity of the surface of
the adsorbent.

The Langmuir and Freundlich isotherm models are the most commonly used equilib-
rium models for determining the relative concentrations of the solute adsorbed onto the
solid in the solution [75]. The Langmuir isotherm assumes that a solute is adsorbed onto
a homogeneous surface with a finite number of similar active sites, forming a monolayer.
The Freundlich isotherm is an empirical model that describes multilayer adsorption.

The equations for kinetic and equilibrium models of adsorption used in this study are
listed in Table 7.

Table 7. Equation of kinetic and isotherm models of adsorption.

Kinetic Models Non-Linear Equations References

Pseudo First-Order qt = qe(1 − exp(−k1 t)) [74,75]

Pseudo Second-Order qt =
qe

2 k2 t
1+k2 qe t [74,75]

Elovich Equation qt =
1
β ln(1 + αβt) [76]

Power Equation qt = atb [76]

Isotherm Models Non-Linear Equations References

Langmuir qe =
KLqmCe

(1+KLCe)
[74]

Freundlich qe= KFCe
1
n [74]

qt and qe are the amount of adsorbate adsorbed at time t (mg/g) and the equilibrium adsorption capacity (mg/g),
respectively. k1 is the PFO rate constant (min−1), and k2 is the PSO rate constant (min−1), respectively. t is the
contact time (min). α is the initial adsorption rate (mg/g min), β is related to surface coverage (g/mg), and a
and b are constants. Ce is the equilibrium concentration of adsorbate in solution (mg/L). qm is the maximum
adsorption capacity (mg/g). KL is the Langmuir constant that is related to the adsorption energy (L/mg). KF and
n are Freundlich constants that measure the adsorption capacity ((mg/g)(L/mg)1/n) and intensity, respectively.

The arsenic adsorption process was carried out in a batch reactor system. The effect
of contact time and initial concentration of arsenic adsorption was investigated on MXRF
and MXRF600. Different kinetic and isotherm adsorption models were analyzed using
nonlinear regression analysis with the statistical software R v3.5.

4.5. Determination of As(III) and As(V)

The determination of arsenic species was performed using hydride generation atomic
absorption spectroscopy (HG-AAS) (Varian; SpectrAA220, Mulgrave, VIC, Australia). To
analyze As (III) at trace concentrations, AAS must be combined with the hydride generation
(HG) technique with citric-citrate buffer [77].
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A total of 10 mL of the samples were adjusted to pH 2. In the case of samples of
As(V), 1 mL of HCl and 1 mL of potassium iodide and ascorbic acid were added. This was
conducted in order to reduce As(V) to As(III). On the other hand, the arsenic (NaAsO2)
calibration curve was prepared. First, a solution was prepared with 1 mL of arsenic standard
and 1 mL of HNO3. This solution was then diluted to a concentration of 1 mg/L. From this,
the solutions of 0.001, 0.002, 0.004, 0.006, and 0.0075 mg/L were made in 100 mL flasks.
A small amount of deionized water was added to each flask, along with 0.1, 0.2, 0.4, 0.6,
and 0.75 mL of stock solution, 6 mL of HNO3, 10 mL of KI, and 4 mL of HCl. Then, the
solutions were calibrated with deionized water. Finally, the solutions were analyzed in a
HG-AAS at a wavelength of 193.7 nm.
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Abstract: Adsorption is one of the most crucial processes in water treatment today. It offers a
low-cost solution that does not require specialized equipment or state-of-the-art technology while
efficiently removing dissolved contaminants, including heavy metals. This process allows for the
utilization of natural or artificial adsorbents or a combination of both. In this context, polymeric
materials play a fundamental role, as they enable the development of adsorbent materials using
biopolymers and synthetic polymers. The latter can be used multiple times and can absorb large
amounts of water per gram of polymer. This paper focuses on utilizing adsorption through hydrogels
composed of poly(acrylamide-co-itaconic acid) for removing Cu2+ ions dissolved in aqueous media in
a semi-continuous process. The synthesized hydrogels were first immersed in 0.1 M NaOH aqueous
solutions, enabling OH− ions to enter the gel matrix and incorporate into the polymer surface.
Consequently, the copper ions were recovered as Cu(OH)2 on the surface of the hydrogel rather
than within it, allowing the solid precipitates to be easily separated by decantation. Remarkably,
the hydrogels demonstrated an impressive 98% removal efficiency of the ions from the solution in
unstirred conditions at 30 ◦C within 48 h. A subsequent study involved a serial process, demonstrating
the hydrogels’ reusability for up to eight cycles while maintaining their Cu2+ ion recovery capacity
above 80%. Additionally, these hydrogels showcased their capability to remove Cu2+ ions even from
media with ion concentrations below 100 ppm.

Keywords: semi-continuous process; adsorption by hydrogels; removal Cu2+ from wastewater;
poly(acrylamide-co-itaconic acid)

1. Introduction

In recent years, the utilization of heavy metals has witnessed a significant increase
due to their participation in numerous industrial processes and their incorporation into
various products, devices, and equipment developed to enhance people’s quality of life,
as seen in electronics, for example. However, the excessive use of heavy metals has led
to dangerous concentrations of these elements in the soil, air, and water. This represents
a serious health problem not only for human beings but also for plants and animals, as
heavy metals are non-biodegradable and accumulate within the bodies of living organisms,
causing poisoning, gastrointestinal and pulmonary diseases, cancer, and cell abnormalities.
Prolonged and severe exposure to these metals can even lead to death [1].
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Although some heavy metals serve important biological functions in plants and
animals, an increase in their concentration, along with their coordination and oxidation-
reduction chemical behavior, leads to serious issues. For instance, in humans, copper is
an essential element for various organism functions, including physiological processes,
immune system functions, fetal and infant development and growth, brain function, bone
strengthening, glucose metabolism, iron and cholesterol regulation, among others [2].
However, the excessive presence of this metal in the human body can cause severe health
damage. The initial symptoms that usually subside upon reducing exposure to this metal
include nausea, abdominal pain, vomiting, and diarrhea [3]. Prolonged exposure to high
copper concentrations has been linked to various conditions such as cancer, dementia,
Parkinson’s disease, Alzheimer’s, childhood cirrhosis, Wilson’s disease, kidney disease,
cell toxicity, among others [4,5]. The daily intake of copper is determined by one’s diet, sup-
plements, and primarily the water ingested. The World Health Organization reported that
nearly 104 countries have established an average value of 1.5 mg/L of copper in drinking
water. However, copper is widely used in the manufacturing of structural materials, pipes,
electronics, heat transfer equipment, the automotive industry, and numerous industrial
processes and products, including mining, electroplating, paints, tanneries, and even in the
production of fertilizers and pesticides [6]. Consequently, the concentration of this metal
has increased in both surface water and groundwater due to these activities.

Due to these concerns, considerable efforts have been made to develop materials and
methods capable of removing heavy metals and other pollutants from industrial efflu-
ents and water sources. Various methods have been explored, including electrochemical
treatments, physicochemical processes such as chemical precipitation and adsorption, as
well as more recent advancements such as filtration processes through membranes and
photocatalysis [7]. Among these techniques, chemical precipitation stands out as a widely
used and economically viable method for heavy metal removal at the industrial level [8,9].
It basically consists of converting a soluble ion into an insoluble compound through a
chemical reaction, for example, the formation of metal sulfides, carbonates, and hydroxides.
Finally, the insoluble compound is removed from the medium by sedimentation or filtration.
In this method, the pH of the medium plays an important role in the recovery of metal
ions, and generally, values of pH = 11 are required to increase the amount of metal ions
removed [10]. Unfortunately, the chemical substances used and their high concentration
necessary in the precipitation process, as well as the sludge obtained that requires certain
treatments, can represent a new contamination problem. In that sense, the effectiveness
of the chemical precipitation method depends on the type of dissolved ion, its concentra-
tion, the precipitating agent, the medium, and the presence of other compounds that can
inhibit the reaction [11]. Consequently, this method may not be very effective for low ion
concentrations or cases where sedimentation is challenging.

On the other hand, the adsorption process is renowned for its successful application
in cases where the concentration of metal ions is low, leading to high-quality treated
effluents [12]. This method is not only cost-effective but also highly efficient and easily
reproducible and operable. Adsorption relies on mass transfer between the liquid phase
and the solid phase (adsorbent), where the negatively charged functional groups on the
adsorbent’s surface attract positively charged metal ions [13]. A wide variety of adsorbent
materials have been developed, including activated carbon, graphene, carbon nanotubes,
zeolites, mesoporous silica, clay, biomass, and hydrogels [14,15]. Among these, hydrogels
have garnered the most interest.

Hydrogels are three-dimensional networks composed of synthetic or natural poly-
mer chains containing hydrophilic groups. This characteristic enables them to absorb
significant amounts of water while maintaining their shape through physical or chemical
crosslinking between the chains. These unique properties have sparked significant interest
across various fields of application over the last sixty years. For instance, hydrogels have
found applications in the biomedical field [16], tissue engineering [17–21], drug trans-
port [22], agriculture [23], and the removal of heavy metals. In the context of heavy metal
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removal, hydrogels have proven successful in eliminating metal ions such as copper [24,25],
nickel [26,27], lead [28], arsenic [29], cadmium [30], chromium [31], among others.

Considering the significance of chemical precipitation and adsorption methods using
hydrogels, this work presents a study focused on the effective removal of Cu2+ ions from
aqueous media using poly(acrylamide-co-itaconic acid) hydrogels in a semi-continuous
process. The objective is to determine the optimal ratio of Cu2+ ions to hydroxyl groups
that enable the removal of the maximum number of ions, resulting in Cu(OH)2 precipi-
tation in the aqueous medium. In this approach, hydrogels serve as transport media for
the OH− ions, preventing metal ions from permeating and becoming trapped within the
hydrogel matrix. Consequently, the Cu(OH)2 formed is located on the hydrogel’s surface,
facilitating the removal and recovery of Cu2+ ions from the aqueous solution. The applica-
tion of this method for removing Cu2+ or other metallic ions, performed on the surface of
the hydrogel, has not been previously documented in the literature. Finally, the hydrogels
were employed in a semi-continuous process, wherein the concentration of metal ions
gradually decreased. This approach allowed us to assess the number of times the hydrogels
could be reused and determine if their removal capacity remained consistent throughout.

2. Results
2.1. Conversion

The hydrogels obtained after the reaction time were smooth and completely solid,
without any residues of the aqueous solution from the reaction mixture. The conversion
achieved in the synthesized hydrogels was 97 ± 2%, indicating that the reaction was nearly
complete. Figure 1 depicts a pictogram illustrating the possible reaction scheme in the
synthesis of the copolymer.
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2.2. Metal Ion Recovery

Table 1 presents the values of the mass of the 0.1 M NaOH solution (massNaOH) and
the mass of the mixed CuCl2·2H2O solution (massCuCl2), along with the percentage of
copper ions removed (RCu

2+
) and the molar ratio between the OH− and Cu2+ groups

(molOH
−/molCu

2+).

Table 1. Removal of copper ions as a function of the mass ratio of NaOH solution/copper solution.

Experiment 1 2 3 4 5 6 7 8 9

massCuCl2 (g) 18 16 14 12 10 8 6 4 2

massNaOH (g) 2 4 6 8 10 12 14 16 18

molOH
−/molCu

2+ 0.71 1.59 2.74 4.27 6.37 9.52 14.78 25.37 56.36

RCu
2+(%) 30 41 98 99 98 99 95 93 98

It was observed that when the molOH
−/molCu

2+ ratio reached the value of 2.74,
the percentage of copper ions removed was 97.9%. Beyond this ratio, no significant
increase in metal removal was observed, even with an increase in the amount of NaOH
solution added. In Experiments 7 and 8, the removal percentage decreased. Hence, it was
determined that the optimal value for the molOH

−/molCu
2+ ratio was 2.74. Regarding the

adsorption process through the use of hydrogels, maintaining a ratio of 2.74 between the
moles of OH− present within the hydrogel matrix and the concentration of Cu2+ ions in
the reaction medium resulted in a Cu2+ removal efficiency (ReCu

2+) of 98.52%. Removal
efficiency through the chemical precipitation method was equaled, enabling us to pinpoint
the optimal ratio of molOH

−/molCu
2+ for attaining the utmost elimination of Cu2+ ions.

Furthermore, this process can be repeated multiple times using the same hydrogel, as
the precipitate formed on the surface of the hydrogel can be easily removed by gently
shaking the medium and separating it by decantation. The hydrogel can be regenerated by
reintroducing it into a NaOH solution, making it suitable for reuse and thereby reducing
operating costs.

To evaluate the effect of the concentration of the NaOH solutions in which the xerogels
are immersed and swollen, they were immersed in solutions with concentrations of 0.1, 0.2,
0.3, and 0.4 M. It was found that the swelling capacity (W (%)) of the hydrogels decreased as
the concentration of the NaOH solution increased, ranging from 64% to 50%. This decrease
is attributed to the higher presence of Na+ and OH− ions in the medium. Consequently, the
interaction between water molecules and the hydrophilic chains of the polymer diminishes,
resulting in a reduction in its swelling.

Subsequently, when the hydrogels swollen with the NaOH solution were immersed
in the CuCl2·2H2O solution with 1000 ppm Cu2+ at a ratio of Cu2+ ion solution mass
to xerogel mass of 200/1, it was observed that the mass of copper removal per gram of
xerogel (mgCu

2+/gxerogel) slightly increased with the increasing concentration in NaOH
solutions, from 0.1 M (183 mgCu

2+/gxerogel) to 0.4 M (211 mgCu
2+

/gxerogel). Additionally,
the RCu

2+ (%) increased from 98% to 99.7%. Table 2 summarizes the values of the swelling
capacity, mgCu

2+/gxerogel removed, and the RCu
2+ as a function of the concentration of the

NaOH solution.

Table 2. Removal of copper ions as a function of the concentration of NaOH solutions, with a
lye/xerogel ratio of 125/1 and a copper/xerogel solution of 200/1.

[NaOH] M W (%) mgCu
2+/gxerogel RCu

2+ (%)

0.1 64 183 98.52

0.2 55 194 98.44

0.3 53 205 99.10

0.4 50 211 99.68

235



Gels 2023, 9, 702

The RCu
2+ values were very similar in all cases. This is because the metal removal

occurs through the reaction of the OH− ions present inside the gel, which migrate toward
the gel’s surface and react with the metal ions. The efficiency of the removal was not
dependent on the concentration of the NaOH solutions but on the amount of OH− ions
within the hydrogels. Therefore, as the absorption capacity of the hydrogels decreased due
to the increase in NaOH concentration, the OH− ions inside the hydrogel also decreased,
resulting in similar efficiency in copper recovery in all cases. Thus, a 0.1 M concentration of
NaOH in the solution was the most suitable for the recovery of copper ions present in the
solution, similar to the precipitation method. This proves that hydrogel functions akin to a
“sponge,” proficient in capturing, transporting, and releasing OH− ions. In that sense, the
AI played an important role due to its ability to confer carboxylic groups to the hydrogel.
Such groups facilitate pronounced swelling in basic environments, thereby enhancing the
influx of OH− ions when diluted solutions of NaOH were employed [32].

To verify this, the process was carried out by immersing the xerogels in bidistilled wa-
ter under the same conditions mentioned above and in the same proportion. Subsequently,
they were placed in 1000 ppm Cu2+ solutions at a ratio of Cu2+ solution mass to xerogel
mass equal to 200/1. In this case, the ions were not recovered on the surface but within
the gel matrix. The cations penetrated the gel matrix, causing it to saturate, and as a result,
the network closed, leading to the collapse of the hydrogel. Additionally, as seen in the
residual water, Cu2+ ions were still present (Figure 2).
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hydrogel remained swollen (b). In contrast, in the case of water-swollen xerogels, (c) Cu2+ ions
entered the matrix, causing the hydrogel to collapse (d).

Moreover, when xerogels were directly introduced into a 1000 ppm Cu2+ solution,
without a previous immersion in 0.1 M NaOH solution, at a mass ratio of 200/1 maintained
at 30 ◦C without agitation and left for a duration of 48 h, the RCu

2+ value equated to 14.67%
or 29.29 mg Cu2+/g of xerogel. This is only 16% of the obtained RCu

2+ compared to the
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previous immersion in NaOH: 98.52% or 183 mg Cu2+/g of xerogel, which confirms the
key role of OH− ions in the process.

In another experiment, it was demonstrated that if the total volume of the metal ion
solution is increased while keeping the molOH

−/molCu
2+ ratio constant at the value of 2.74,

the RCu
2+ value remains around 97% with no significant changes until a concentration of

1000 ppm (Figure 3). Below that concentration, the RCu
2+ value decreased to about 75% for

concentrations of 30 ppm (inset Figure 3). Another study was conducted to determine the
detection limit of Cu2+ ions by the hydrogel, and it was found that this process can cause
the precipitation of metal ions in solutions containing up to 10 ppm Cu2+ (Figure 4c). The
value of RCu

2+ was not displayed for concentrations lower than 30 ppm due to reading
and precision limitations in UV-vis analysis. On the other hand, it can be observed that the
standard deviation was much higher for concentrations lower than 100 ppm due to reading
limitations and the precision obtained with the technique used in the analysis. Figure 4
shows photographs of the experiment, where the formation of Cu(OH)2 on the surface of
the hydrogel can be observed in solutions with concentrations of 30, 20, and 10 ppm.
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Figure 3. The amount of Cu2+ removed through the use of hydrogels while maintaining a ratio of
molNaOH/molCu

2+ equal to 2.74, as the total volume of the Cu2+ ion solution is increased.
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Figure 4. Recovery of copper ions in aqueous solutions of cupric chloride at different concentrations:
30 (a), 20 (b), and 10 ppm (c), while maintaining a ratio of molNaOH/molCu

2+ at the value of 2.74.
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The effect of the initial concentration of dissolved Cu2+ ions on the RCu
2+ and the value

of mg Cu+2/g of xerogel are shown in Figure 5. It was observed that as the concentration
of initial cations in the medium increased, the value of RCu

2+ remained, on average, at
98.61% for concentrations ranging from 200 to 1750 ppm. However, for concentrations
greater than 1750 ppm, the RCu

2+ value gradually decreased, falling below 80% for initial
concentrations higher than 2000 ppm. This decline is attributed to the insufficient amount
of OH− ions present inside the hydrogel to effectively react with the high concentration
of Cu2+ ions. In the range of concentrations where the RCu

2+ was greater than 95%, the
molOH

−/molCu
2+ ratio was found to be higher than 2.74. Conversely, for values where

the RCu
2+ decreases below 80%, the molOH

−/molCu
2+ ratio was less than 2.74. Therefore,

the two most important parameters for effective copper ion removal were the initial cation
concentration and the amount of OH− ions present within the hydrogel.

Gels 2023, 9, x    8  of  14 
 

 

 

Figure 5. Effect of the initial concentration of Cu2+ ions on the RCu2+ and mg of Cu2+/g of xerogel. 

Finally, in the semi-continuous study, it was found that the same hydrogel sample 

can be used up to eight times (Figure 6). The process was categorized as a semi-continuous 

process because the hydrogel required a retention time at each stage to facilitate the elim-

ination of Cu2+ ions (which constitutes a batch process). Following this, the hydrogel was 

regenerated and proceeded  to  the subsequent stage, wherein  the concentration of Cu2+ 

ions was lower compared to the previous stage (representing a continuous process). 

 

Figure 6. Semi-continuous metal ion removal process: obtained xerogel swollen after immersion in 

a 0.1 M NaOH solution (a), hydrogel immersed in the Cu2+ ion solution (b), hydrogel after the first 

0 500 1000 1500 2000 2500 3000
0

10

70

80

90

100

R
C

u
2+
(%

)

[Cu2+] (ppm)

0 500 1000 1500 2000 2500 3000
0

50
200

250

300

350

400

m
g

 C
u

2+
/m

g
 x

er
o

g
el

Figure 5. Effect of the initial concentration of Cu2+ ions on the RCu
2+ and mg of Cu2+/g of xerogel.

Regarding the maximum mg Cu+2/g of xerogel ratio obtained within acceptable
RCu

2+ values, it was 336 mg Cu+2/g of xerogel. Although in higher initial concentrations,
the maximum ratio of mg Cu+2/g of xerogel was also 336 mg of mg Cu+2/g of xerogel, the
RCu

2+ was no longer acceptable because it reached only 71%.
Finally, in the semi-continuous study, it was found that the same hydrogel sample can

be used up to eight times (Figure 6). The process was categorized as a semi-continuous
process because the hydrogel required a retention time at each stage to facilitate the elimi-
nation of Cu2+ ions (which constitutes a batch process). Following this, the hydrogel was
regenerated and proceeded to the subsequent stage, wherein the concentration of Cu2+ ions
was lower compared to the previous stage (representing a continuous process).

On average, the RCu
2+ value was 93.40% in the first six stages, subsequently decreasing

to 87.30% and finally to 83% in the last stage (Figure 7). This decrease in removal capacity is
attributed to the fact that in each stage where the hydrogel was used, a small fraction of the
metal ions remain trapped in its matrix (Figure 6c,f), which accumulated with each reuse.
As a result, the amount of OH− ions inside the hydrogel decreased, leading to a reduction
in its ability to remove the cations. Furthermore, the lowest RCu

2+ value was found in
solutions with the lowest amount of initial Cu2+ ions. As previously demonstrated, the two
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main factors for maintaining high RCu
2+ values were the concentration of OH− ions in the

hydrogel and the initial concentration of Cu2+ ions in the solution.
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Figure 6. Semi-continuous metal ion removal process: obtained xerogel swollen after immersion
in a 0.1 M NaOH solution (a), hydrogel immersed in the Cu2+ ion solution (b), hydrogel after the
first stage (c), hydrogel regeneration in the NaOH solution (d), hydrogel immersed in ion solution
Cu2+ (e), and hydrogel after being used eight times (f).
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Figure 7. Values of RCu
2+ (�) and mgCu

2+/gxerogel (#) as a function of the initial concentration of
Cu2+ ions in each stage.

The achieved percentage removal of copper ions using this method was 98.52% at a
temperature of 30 ◦C with a residence time of 48 h, no agitation, and with a mass ratio of
Cu2+ solution to xerogel of 200/1. This corresponds to the maximum removal capacity
(Qmax) of 183 mg Cu2+/g xerogel, recovered on the surface of the hydrogel in the form
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of Cu(OH)2, which is easily removed by slightly shaking the container or simply rinsing
with the minimum amount of distilled water to the hydrogel. This avoids the use of acidic
solutions for the recovery of the metal ions, a practice employed in processes in which
the metal ions remain within the gel matrix. Table 3 provides a compilation of various
adsorption studies along with their respective Qmax values. While this study does not
boast the highest Qmax value, it does mark the pioneering utilization of the hydrogel
surface for recovery. Furthermore, it shows a method for the easy recovery of metal ions
in a process similar to industrial water treatment, where the concentration of the ions
decreases in the process, deviating from the conventional practice of recovering throughout
the entire matrix.

Table 3. Adsorption capacities of different adsorbent materials for Cu2+ from other studies.

Adsorbents Materials Qmax
(mg/g) Reference

Graphene oxide-polyethylene glycol and polyvinyl alcohol (GO-PEG-PVA) triple network hydrogel 917 [33]
Hybrid hydrogel of acrylic acid monomer/wheat bran/montmorillonite 17.64 [34]
Hydrogels comprised of polysaccharide salecan injerted with poly(3-sulfopropyl methacrylate
potassium salt). 107.2 [35]

Aerogels comprised of carboxylated cellulose and MnFe2O4. 73.70 [36]
Hydrogels comprised of Loess of clay/Itaconic acid/2-Hydroxyethyl
methacrylate/N-vinyl-2-pyrrolidone 594.43 [37]

Poly(acrylic acid-co-itaconic acid)/NaOH hydrogel 85 [38]
Polyvinyl alcohol/alginate/iron oxide nanoparticles (PAI) hydrogels 60 [39]
Carboxymethylcellulose sodium/polyvinyl alcohol (PVA)/Cellulose nanocrystals hydrogels 108.8 [40]
Corn starch/acrylic acid/itaconic acid ion exchange hydrogel 699.31 [41]

3. Conclusions

The present work demonstrated that hydrogels composed of poly(acrylamide-co-
itaconic acid) were capable, efficient, and economical for the removal of Cu2+ ions from
aqueous solutions. Once the xerogels were swollen in 0.1 M NaOH aqueous solutions,
they acted as carriers for OH− ions, which reacted with dispersed Cu2+ ions in the so-
lution to form Cu(OH)2. This Cu(OH)2 adhered to the hydrogel surface, preventing its
dispersion in the solution. The supernatant-diluted solution was removed by decantation,
and the solid formed was recovered by rinsing the hydrogel. The hydrogel was regen-
erated by submerging it again in 0.1 M NaOH solutions and was used up to eight times
while maintaining its removal capacity above 80%. It was demonstrated that when the
molOH

−/molCu
2+ ratio was equal to 2.74, the RCu

2+ was 98%. As long as this ratio was
maintained, the total volume of the solution in which the hydrogel was immersed did not
affect its cation removal capacity. Based on the experiments carried out, the factors that
greatly influenced the removal capacity of metal ions were the amount of OH− ions inside
the hydrogels and the initial concentration of Cu2+ ions in the medium. Additionally, the
maximum mgCu

2+/gxerogel ratio obtained was 336 when the initial concentration of Cu2+

was 1750 ppm, with an average value of W = 64.24%. Finally, it was demonstrated that this
process can be used in very diluted solutions as 30, 20, and 10 ppm of Cu2+.

4. Materials and Methods
4.1. Materials

The monomers acrylamide (AM), itaconic acid (AI), and the CuCl2·2H2O salt, all
with a purity of 99%, were obtained from Aldrich (St. Louis, MO, USA). The initiator
used in the polymerizations was potassium persulfate (K2S2O8) (KPS), also with a pu-
rity of 99%, sourced from Aldrich (St. Louis, MO, USA), along with the crosslinking
agent N,N′-methylenebisacrylamide (NMBA). To carry out the polymerization reactions
at 30 ◦C, N,N,N′N′ groups (mol-tetramethyl-ethylenediamine (TMDA) from Tokyo Kasei
(Shanghai, China) served as an accelerator. Finally, sodium hydroxide (NaOH) with 99%
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purity from Aldrich (St. Louis, MO, USA) and bidistilled water from Productos Selec-
tropura (Guadalajara, Mexico) (pH = 6.36) were used as the reaction medium. All reagents
were used as received.

4.2. Hydrogel Synthesis Reactions

The synthesis reactions were conducted in glass vials under temperature control
using a LAUDA Eco Silver (LAUDA DR. R. WOBSER GMBH & CO. KG, Germany) brand
overboard thermostat set at 30 ◦C, with a reaction time of 24 h. The composition of
the reaction mixture in all cases was 90% water by mass and 10% monomers by mass,
with a mass ratio of 80/20 AM/AI (0.1125/0.0154 molar ratio). For every total mass of
monomers, 1% KPS, 2% TMDA, and 1% NMBA were added by mass (percentage molar
ratio corresponds to 0.289 KPS, 0.5074 NMBA, and 1.3448 TMDA with respect to the total
amount of monomers). Afterward, the hydrogels were removed from the vials and cut into
0.5 cm-thick discs, identified with three sections: upper, middle, and lower. Subsequently,
the hydrogels were immersed in bidistilled water to wash and eliminate all traces of the
reaction. The water was replaced every 6 h for 3 days and then every 24 h for a further
5 days. Previous research has demonstrated that this process is sufficient for cleaning the
materials [42].

4.3. Conversion Determination

To measure the conversion, the hydrogels were removed from the vials and cut into
0.5 cm-thick discs. These discs were then placed in Teflon Petri dishes and subjected
to a convection oven at 50 ◦C until a constant mass was achieved, resulting in xerogels
(completely dry hydrogel). Subsequently, the xerogels were immersed in bidistilled water
to clean the hydrogels following the previously described procedure. Finally, the samples
were placed back in the drying oven until they reached a constant mass again. The yield of
the reaction was determined by gravimetry using the following equation:

X% =
Mx,0 −Mx,t

Mx,0
× 100 (1)

where Mx,0 is the mass of the xerogel before being washed, and Mx,t is the mass of the
xerogel after undergoing the washing process.

4.4. Batch Study of Removal of Cu2+ Ions in Aqueous Solution

First, in order to determine the optimum ratio of moles of OH− used to moles of Cu2+

present (molOH
−/molCu

2+) for enhanced metal ion precipitation, solutions of CuCl2·2H2O
with 1000 ppm of Cu2+ were prepared and mixed with aqueous solutions of 0.1 M NaOH in
varying proportions. This allowed us to identify the molOH

−/molCu
2+ ratio ranging from

0.71 to 56.36. The residence time for the experiments was 48 h, conducted at a constant
temperature of 30 ◦C. These experiments were performed without gels.

Once the most suitable ratio was determined, the obtained xerogels in Section 4.2 were
weighed using an OHAUS (OHAUS CORPORATION, Parsippany, NJ. USA) brand balance
with a precision of 0.0001 g. Subsequently, they were immersed in 0.1 M NaOH aqueous
solutions for 24 h at 30 ◦C without stirring, with a mass ratio of NaOH solution/xerogel
(NaOH/xerogel) set at 125/1. The amount of NaOH solution absorbed by the hydrogels
was calculated using the following equation:

W =
mt −m0

m0
× 100 (2)

where mt is the mass of the hydrogel swollen at time t, and m0 is the mass of the xerogel.
After 48 h, the hydrogels were removed from the NaOH solution and placed in

CuCl2·2H2O solutions containing 1000 ppm Cu2+, maintaining the optimal
molOH

−/molCu
2+ ratio identified in the chemical precipitation process. The subsequent
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study focused on evaluating the effect of the concentration of NaOH solutions used to
swell the hydrogels, the total volume of copper solution while maintaining a constant
molOH

−/molCu
2+ ratio, and the initial concentration of copper ions on the hydrogels’

ability to remove metal ions. The overall process is illustrated in Figure 8.
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where  ሾ𝐶𝑢
ଶାሿ  represents the initial concentration of Cu2+ ions, and  ሾ𝐶𝑢

ଶାሿ  is the residual 
concentration. Throughout all experiments, five samples were used, and the average val-

ues were reported. 
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Figure 8. Obtained xerogels (a). A xerogel is immersed in a 0.1 M NaOH solution with a mass ratio
of 125/1 for 48 h (b), resulting in a swollen hydrogel (c). The hydrogel is then immersed in a copper
ion solution of 1000 ppm for 48 h (d), facilitating the migration of copper ions from the solution
to the hydrogel (e). The generated Cu(OH)2 is separated by decantation (f), and the hydrogel is
subsequently regenerated for reuse (g).

4.5. Semi-Continuous Study of Removal of Cu2+ Ions in Aqueous Solution

To determine the reusability of hydrogels for metal ion recovery, the same hydrogel
sample was immersed in different CuCl2·2H2O solutions, each with a decreasing con-
centration of Cu2+ ions from one container to another (from one stage to another). The
process involved removing Cu(OH)2 from the hydrogel in the first container, followed by
washing with distilled water. Subsequently, the hydrogel was placed back in a 0.1 M NaOH
solution at a 125/1 NaOH to xerogel solution ratio. Afterward, this hydrogel was placed in
a new aqueous solution of CuCl2·2H2O with a mass ratio of Cu2+ solution to xerogel of
200/1. The concentration of the metal solution was progressively reduced to simulate a
semi-continuous metal ion removal process using the synthesized hydrogels.

In both the batch study and the semi-continuous study, the amount of Cu2+ ions
removed was quantified using UV-visible spectroscopy (UV-vis). To achieve this, the su-
pernatant of each solution was decanted, and the first 15 mL were utilized for residual
copper measurement. A previously established calibration curve on a UV-visible spec-
trophotometer, UNICO model UV2150 (United Products & Instruments Inc., Dayton, NJ,
USA), at the wavelength of 800 nm, aided in determining the concentration of Cu2+ ions.
The percentage of Cu2+ ions removed (RCu

+2) from the medium was calculated using the
following equation:

RCu+2(%) =

[
Cu2+

0

]
−

[
Cu2+

f

]

[
Cu2+

0

] × 100 (3)
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where
[
Cu2+

0

]
represents the initial concentration of Cu2+ ions, and [Cu2+

f ] is the residual
concentration. Throughout all experiments, five samples were used, and the average values
were reported.
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