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Preface

Renewable energy technologies have diverse applications across various sectors, with the

primary goal of reducing dependency on fossil fuels and minimizing environmental impacts. The

most common types of renewable energy sources—i.e., solar, wind, hydroelectric, biomass, and

geothermal—have applications in electricity generation, transportation, heating, and industrial

processes. Solar energy is harnessed through photovoltaic cells to generate electricity or thermal

energy for heating water and air. Wind energy technology provides another significant renewable

energy source with wind turbines converting kinetic energy from the wind into mechanical power or

electricity. Hydroelectric power plants utilize flowing water to spin turbines and generate electricity;

meanwhile, biomass involves using organic materials like wood waste or agricultural residues as fuel

for producing heat or electricity.

In addition to direct applications, renewable energy technologies have made substantial

advancements in integration and optimization systems. Smart grids, equipped with advanced

communication and control technologies, enable efficient distribution and management of renewable

resources within the electricity network. Energy storage technologies such as batteries and pumped

hydro storage are crucial in stabilizing grid operation by storing excess energy generated during

peak production times for use during periods of low generation. Innovations in energy management

systems facilitate better forecasting, monitoring, and control of renewable energy production which

is essential for maximizing efficiency and minimizing costs.

The adoption of renewable energy technologies has led to significant environmental benefits by

decreasing greenhouse gas emissions and pollution. Technological advancements have improved

the efficiency and affordability of renewable systems, making them a viable option even in

remote areas far from conventional power grids. In the transportation sector, electric vehicles

powered by renewable sources such as solar or wind power provide a clean alternative to

traditional gasoline-powered engines. Continued research efforts are concentrating on enhancing the

performance and sustainability of renewable technologies, promising a future where cleaner energy

solutions can meet increasing global demands while also supporting economic growth and energy

security.

Ayman Al-Quraan and Ahmad M. A. Malkawi

Guest Editors
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Abstract: Electric vehicle charging stations (EVCSs) and renewable energy sources (RESs) have been
widely integrated into distribution systems. Electric vehicles (EVs) offer advantages for distribution
systems, such as increasing reliability and efficiency, reducing pollutant emissions, and decreasing
dependence on non-endogenous resources. In addition, vehicle-to-grid (V2G) technology has made
EVs a potential form of portable energy storage, alleviating the random fluctuation of renewable
energy power. This paper simulates the optimal design of a photovoltaic/wind/battery hybrid
energy system as a power system combined with an electric vehicle charging station (EVCS) using
V2G technology in a grid-connected system. The rule-based energy management strategy (RB-
EMS) is used to control and observe the proposed system power flow. A multi-objective improved
arithmetic optimization algorithm (MOIAOA) concept is proposed to analyze the optimal sizing of
the proposed system components by calculating the optimal values of the three conflicting objectives:
grid contribution factor (GCF), levelled cost of electricity (LCOE), and energy sold to the grid (ESOLD).
This research uses a collection of meteorological data such as solar radiation, temperature, and wind
speed captured every ten minutes for one year for a government building in Al-Najaf Governorate,
Iraq. The results indicated that the optimal configuration of the proposed system using the MOIAOA
method consists of eight photovoltaic modules, two wind turbines, and thirty-three storage batteries,
while the fitness value is equal to 0.1522, the LCOE is equal to 2.66 × 10−2 USD/kWh, the GCF is
equal to 7.34 × 10−5 kWh, and the ESOLD is equal to 0.8409 kWh. The integration of RESs with an
EV-based grid-connected system is considered the best choice for real applications, owing to their
remarkable performance and techno-economic development.

Keywords: renewable energy sources; grid-connected; V2G; multi-objective optimization; arithmetic
optimization algorithm

1. Introduction

The energy crisis resulting from the rapid depletion of fossil resources has raised public
awareness of the need for environmental conservation. Thanks to the united efforts of
scientists, significant progress has been accomplished during the past ten years. Distributed
renewable energy sources (RESs) are integrated into the electrical grid to meet the energy
demand [1], and these distributed generation (DG) systems have made considerable use

Sustainability 2024, 16, 2491. https://doi.org/10.3390/su16062491 https://www.mdpi.com/journal/sustainability1
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of RESs and electric vehicle charging stations (EVCSs) [2]. The idea of multi-objective
techno-economic optimization was put forward in [3] as a way to plan when to charge
and discharge electric vehicles. For the first time, frequency regulation was provided
while simultaneously modeling and optimizing end-user energy costs, battery degradation,
grid interactions, and CO2 emissions in the context of home microgrids. However, to
increase reliability, optimize renewable energy sources, and lower overall costs, appropriate
energy management and operation are necessary, along with an appropriate optimization
technique based on techno-economic viewpoints.

In [4], the authors suggested a versatile multi-objective optimization method that
considers the technological, financial, and environmental aspects while assessing and
implementing V2G and grid-to-vehicle technologies. In addition, plug-in electric vehicle
(PEV) users’ driving habits, charging and discharging habits, and battery life cycles are
considered. The firefly algorithm is applied inside a stochastic optimization framework
to run simulations on a modified IEEE 69-bus radial distribution test system. The goal
is to minimize two objective functions: CO2 emissions and operational costs. The frame-
work considers renewable generation, load usage, and the charging/discharging time of
PEVs as ambiguous variables. The work in [5] offered hybrid renewable energy systems
combined with mobile hydrogen vehicle storage and stationary batteries for a zero-energy
community comprising office, residential, and academic buildings based on real-world
energy consumption data and simulations. A time-of-use grid penalty cost model was
presented to achieve electricity grid economy and flexibility, which evaluates grid export
and import during on-peak and off-peak times. In the coupled platform of TRNSYS and
jEplus + EA, multi-objective optimizations are carried out to size zero-energy buildings
and the community while considering the self-consumption of renewable energy, on-site
load coverage, and grid penalty cost. Methods for incorporating hydrogen energy technol-
ogy into hybrid energy systems, focusing on hydrogen fuel cell power generation, were
examined in [6]. Energy storage integration, sizing techniques, energy flow control, and
the software implementation and optimization methods that go along with them were
covered. Published case studies seldom address issues beyond technical ones. The authors
talked about this fact in the context of accessible software packages. To meet the design
objectives for the energy system, a four-dimensional multi-objective metaheuristic function
was suggested, with weights assigned to environmental, economic, socio-political, and
technical aspects.

Researchers in [7] looked into how responsive loads and the stochastic behavior of EVs
(including their departure/arrival times and charge levels) could be used as demand-side
management tools to improve the efficiency of a grid-connected microgrid that combines
power, heating, and cooling systems. They suggested a multi-objective model considering
responsive loads and electric cars for feeder reconfiguration, capacitor switching, and
economical dispatching. The suggested model considers operating expenses, greenhouse
gas emissions, the voltage stability index, and active power losses as objective functions.
In addition to thermal and electrical energy storage devices, the microgrid based on a
combined cooling, heating, and power system was outfitted with non-dispatchable dis-
tributed generators (photovoltaic (PV) cells and wind turbines (WTs)). Electric cars, thermal
and electrical needs, and the stochastic behavior of non-dispatchable generators were con-
sidered for appropriate modeling. The max-geometric mean operator and fuzzy scaling
were used in conjunction with a multi-objective hybrid big bang–big crunch algorithm to
obtain the best answers. In [8], the multi-objective sand cat swarm optimization (MSCSO)
algorithm was utilized to find a solution for the suggested model. Based on this, the
daily stochastic economic scheduling of an electric thermal hydrogen integrated energy
system (ETH-IES) was conducted to reduce operational expenses. The main concern of the
authors of [9] was the economic and environmental aspects of microgrid (MG) functioning
under different conditions. An analysis is conducted on an AC/DC hybrid MG with
solar, diesel generator, lithium battery, and electric car charging stations. A constrained
multi-objective optimization problem (CMOP) was constructed considering the operating
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restrictions of MG. The fuel cost, depreciation expenditure, and emission cost of distributed
generators are the optimization goals of the proposed CMOP. A method for converting a
multi-objective issue into a single-objective issue was introduced: the fuzzy comprehen-
sive evaluation. Then, the solutions of distributed generator outputs are solved using the
comprehensive learning particle swarm optimization (CLPSO). The optimization outcomes
in grid-connected and islanded modes demonstrate the efficacy of the suggested models,
techniques, and algorithm.

A multi-objective optimization approach utilizing the Normalized Normal Constraint
(NNC) was utilized to evaluate two competing objectives: minimizing the operating costs
of the Active Distribution System (ADS) and minimizing the power losses in the ADS [10].
In the interim, variable wind patterns, solar systems, and electric car arrival and depar-
ture timings are considered. The suggested model is a multi-objective problem with two
stochastic phases run on a modified IEEE 18-bus test system in a General Algebraic Model-
ing System (GAMS) environment. In [11], to optimize the environmental and economic
performance of an intelligent parking lot (IPL) with electric vehicles (EVs) while utilizing
time-of-use (TOU) rates for demand response programs (DRPs), a bi-objective optimization
model has been presented. ε-constraint and fuzzy decision-making strategies are applied to
tackle this kind of problem, and the outcomes, which show the efficacy and efficiency of the
methods used, are displayed for comparison. The IPL linked to the upstream net, renew-
able and non-renewable resources, and a hydrogen storage system make up the examined
example model in that research. The bi-objective issue in question has been modelled using
a MIP model, which is then simulated using GAMS. To facilitate the electrification of green
transport, the authors in [12] suggested a multi-objective planning framework for electric
vehicle (EV) charging stations in developing power networks. The effects of EV integration
on financial and environmental criteria are examined in four examples. The suggested
model was designed to integrate the planning models of transmission lines, energy storage
systems (ESSs), renewable energy systems, and thyristor-controlled series compensators
into the EV-based planning problem to make the construction of EVCSs easier. The second
objective, on the other hand, was focused on decreasing the carbon dioxide emissions
from fossil fuel-based power units to help the environment. The first objective function
seeks to maximize the penetration of EVs by increasing the networks’ capacity to provide
charging stations continuously throughout the day. Reducing the initial outlay and ongoing
expenses for the installed equipment is the third goal, which aims to satisfy the financial
needs. The multi-objective variant of the Gazelle optimization algorithm (MGOA) was
used to find a solution for the suggested model, which was expressed as a multi-objective
optimization problem. The suggested issue and a set of four benchmark test functions were
solved to gauge the MGOA’s effectiveness.

A multi-objective optimization model was developed in [13] to reduce the gearbox
losses, operational expenses, and carbon emissions of many microgrid systems. First,
a brand-new technique based on a back propagation neural network enhanced by long
short-term memory deep learning was put forth to anticipate the charging loads of EVs. A
double-layer solution algorithm was proposed based on the forecast data. At the multiple-
microgrid layer, it comprises an adaptive multi-objective evolutionary algorithm based
on decomposition and differential evolution. At the single-microgrid layer, it consists
of a modified consistency algorithm for rapid economic scheduling. In the end, a case
study consisting of four interconnected IEEE microgrids was used to simulate the model
system, and the suggested algorithm’s performance was contrasted with that of traditional
multi-objective evolutionary algorithms based on decomposition. A methodology for
optimization bound by dependability was introduced in [14] to determine the quantity and
dimensions of microgrid (MG) system components. To accomplish this, issue reliability
indicators for lost load anticipation and anticipated energy not delivered are introduced.
The Monte Carlo sampling technique was used to represent the uncertainties related to
load forecasting, modeling of all MG units, and random outage of all units. The suggested
paper’s major objective was to determine the ideal MG size that would minimize operating,

3
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emission, and MG investment costs. Additionally, under the usage of time-of-use (TOU)
rates of demand response programs (DRPs), a bi-objective optimization model has been
presented for the best possible environmental performance and economic operation of
MGs, including EVs. Fuzzy decision-making techniques and the ε-constraint are applied
to alleviate this issue. Long-term planning was tackled as an optimization issue using the
Tabu search method.

In [15], the authors compared the output of vehicle-to-home (V2H) and stationary
battery (SB). They devised a multi-objective optimization approach for the household of EV
owners utilizing energy expenses, comprising investment and CO2 emissions, as indices.
As a case study, the authors used an imagined average Japanese detached house to assess
the environmental and economic effects of solar electricity self-consumption utilizing SB
or V2H. The findings indicated that, by 2030, non-commuting EV owners should consider
investing in V2H if the cost of a bidirectional charger is one-third that of an affordable SB.
In [16], for regional integrated energy systems (RIESs), a multi-objective optimization that
takes electric cars (EVs) and renewable energy uncertainty into account was suggested.
The RIES can balance the system’s environmental friendliness and economy. First, an
orderly model for charging and discharging EVs with the following driving rules is built.
It considers the impact of elements like disorderly access and EV charging/discharging
on system functioning. Then, to address the uncertainty of renewable energy generation,
a robust optimization model with a polyhedral uncertainty set was built. Additionally,
a multi-objective function is constructed to minimize both operation costs and carbon
emissions. A carbon emission penalty component is implemented to reduce the multi-
objective solution to a single-objective solution. Ultimately, an actual RISE performs
the validation.

The authors of [17] examined how a commercial PV charging station with ten electric
car chargers should be commissioned. The charging station may purchase and sell power
to the grid as it is linked to the main distribution network. A multi-objective optimization
technique has been devised that minimizes the expenses associated with power losses
in the distribution grid and the operational costs of the charging station. The owner of
the charging station and the distribution system operator have their interests taken into
account in the suggested solution. The minimal charge when the car exits the charging
station, user comfort restrictions, and grid technical limits were also considered. A single
day with a fifteen-minute resolution is the analysis period. In [18], the authors employed
multi-objective optimization to find the best combination of energy and transportation
technologies while maximizing the positive effects on the economy and environment.

In contrast to continuous multi-objective linear programming with average cost in-
tervals, the authors showed the extra benefit of using multi-objective mixed integer lin-
ear programming (MOMILP) while considering economies of scale. The authors solved
MOMILPs precisely using an enhanced version. The effect of policies on the Pareto frontier
is evaluated to distinguish between optimum solutions with and without subsidies. The
writers distinguished between the need for investments (bounded rationality) and mini-
mizing economic life cycle costs (full rationality). An electrical and transportation-related
Belgian corporation serves as an example of the methodology. Transportation technologies
include internal combustion engine cars, grid-powered battery electric vehicles (BEVs), and
solar-powered BEVs; electricity technologies include solar photovoltaics and the grid. Grid-
powered BEVs have a limited ability to reduce greenhouse gas emissions, but they are less
expensive to use than solar panels. It was discovered that current policy initiatives appro-
priately target rational investors who take life cycle costs into account, but private (possibly
constrained rational) investors frequently concentrate primarily on needed investments.

To account for uncertainties arising from wind speed, solar irradiance, the conventional
load, and PEV load demand, the authors in [19] proposed a multi-objective optimization
methodology for the siting and sizing of solar distributed generations (SDGs), wind dis-
tributed generations (WDGs), and capacitor banks (CBs) inside the system of power. The
primary goals are the overall cost, greenhouse gas emissions, and the voltage stability index.
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The associated uncertainties are handled using an unconventional point estimate method
(PEM), while a chance-constrained programming technique handles the smooth constraints.
Using the greatest entropy approach, the associated probability distribution functions
of the output variables are computed. Moreover, Monte Carlo simulation was used for
robustness analysis (MCS). The suggested approach was implemented on a standard radial
distribution network. The fuzzy satisfactory technique chooses the Pareto front’s optimal
trade-off solution.

An interval optimization strategy was suggested by [20] to represent the unpredictabil-
ity of upstream grid prices. By changing the uncertainty-based profit function to a deter-
ministic multi-objective problem and treating average and deviation profits as competing
objective functions—average profit should reach the maximum, while deviation profit
should reach the minimum—the authors presented a novel solution to the problem of
electric vehicle aggregator uncertainty. The two-dimensional problem was also solved
using the ε-constraint approach to obtain optimum Pareto solutions. Finally, the fuzzy
satisfactory strategy was used to select a trade-off solution among Pareto solutions as
a target to show the examined technique’s capabilities; it was also contrasted with the
deterministic strategy and the proposed interval optimization approach.

Reference [21] describes the design of an islanded hybrid system (IHS) that includes
a diesel generator, solar system, wind turbine (WT), and energy storage systems (ESSs)
that are both mobile (electric cars) and stationary (battery). The suggested approach
uses two distinct goal functions in a multi-objective optimization to reduce the overall
cost of building, maintaining, and operating the sources and ESSs within the IHS and
the system’s emission level. A single-objective optimization problem is created for the
suggested design using the Pareto optimization methodology based on the ε-constraint
method. In [22], the authors used a multi-objective framework to consider two objectives.
A multi-objective mixed binary linear programming was provided to minimize the overall
cost of energy consumption and peak load in communal residential structures. This
programming considers the scheduling of electric car charging and discharging and battery
energy storage systems. Then, the Pareto front solutions of the provided multi-objective
model are obtained using the Pascoletti–Serafini scalarization technique. In the end, the
suggested model’s performance was examined and documented using model simulations
in two distinct scenarios.

Plug-in Electric Vehicles (PEVs) are used as storage units in a multi-objective power
dispatching issue that the authors in [23] defined. The authors minimized three objectives,
analyzed three criteria, and framed the energy storage planning as a Mixed-Integer Linear
Programming (MILP) problem while adhering to PEV constraints. Two cost-to-variability
measures based on the Sharpe Ratio are presented to analyze the energy storage schedules'
volatility. Energy storage planning was optimized by adding these extra parameters to
minimize the difference between two Sharpe Ratio indices, maximum peak load, PEV
battery utilization, total Microgrid (MG) expenses, and maximum peak load. Pareto
fronts are examined and discussed about various scenarios for energy storage. The most
significant outcome of the study would be that schedules that lower the system's total
cost could potentially be less dependable since they increase the maximum peak load and
its unpredictability under different circumstances. In [24], a multi-objective framework
was suggested for the day-to-day management of a smart grid (SG) with a high level of
sensitive load penetration. To provide highly dependable power for sensitive loads, the
Virtual Power Player (VPP) oversees the day-ahead scheduling of energy resources in the
smart grid, considering the extensive usage of Distributed Generation (DG) and V2G. The
collection of non-dominated solutions is identified by applying a Pareto front technique.
To account for the dependability needs of sensitive and vulnerable loads, the mathematical
formulation incorporates the maximization of the minimum available reserve in addition
to the cost reduction.

By calculating the available capacity of EV aggregators, a preliminary investigation of
the multi-objective optimum dispatch of the smart grid was suggested in [25]. A statistical
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model was used to determine the maximum possible capacity of EVs by describing their
behavior. Subsequently, the multi-objective optimum dispatch was defined together with
its constraints. The high-dimensional multi-objective enhancement issue was solved using
the multi-objective genetic particle swarm optimizer to find the Pareto front. In [26], a
mixed-integer linear programming (MILP) framework is created to measure flexibility in
a sizable business park with limited access to historical time series data. The suggested
mathematical model considers renewable energy sources, including solar energy, electric
vehicle (EV) charging stations, heat pumps, and centralized energy storage systems. The
quantification of flexibility was formulated as a bi-objective optimization problem, which
was solved by utilizing the epsilon-constraint approach to approximate the set of Pareto-
efficient solutions. The authors’ goal [27] was to optimize power loss, voltage deviation, and
voltage imbalance factor—three significant objective functions—by concurrently allocating
EVCSs and smart photovoltaic inverters in distribution networks. A unique hybrid fuzzy
Pareto dominance idea with a differential evolution technique was suggested to address
such a multi-objective optimization issue. A scenario-based approach was also employed
to incorporate the uncertainties of the model that includes loads, PV generation, and EVCS
demand. Next, under various case scenarios, the efficacy of the stochastic multi-objective
strategy was investigated and confirmed on an imbalanced 37-bus network.

In [28], a residential microgrid with plug-in hybrid electric cars, PV units, battery
energy storage systems, combined cooling, heating and power, and other components
was modeled to determine the best scheduling state for each unit while accounting for
the uncertainty of distributed energy resources. This was accomplished by modeling the
uncertainties of solar irradiance, electrical and heat demand, and electrical market pricing
using a scenario-based approach that uses the Normal, Weibull, and Beta probability
distribution functions, respectively. Scenario reduction strategies are employed to choose
representative situations generated using the scenario tree. The suggested issue was a
mixed-integer nonlinear programming problem to minimize emissions and operation costs.
The optimal solution on the Pareto front set is identified using a fuzzy approach, and
the augmented ε-constraint method was utilized to solve this multi-objective problem.
In [29], considering the time-of-use rates of a demand response program, a multi-objective
optimization approach was proposed for the cost-effective operation and environmental
performance of intelligent parking lots (IPLs). It was advised to address this problem using
the multi-objective grasshopper optimization technique, since such a model is related to
several practical bounds. The results show how well the compared methods using fuzzy
decision-making strategies worked. To improve this approach and advance searching
operators, chaos theory was utilized. Furthermore, the suggested multi-objective approach
is a model developed utilizing non-dominated sorting theory, variable detection, fuzzy
theory, and strategy selection-based memory to choose the best Pareto among a range of
reliable options for handling the abovementioned difficulties.

Optimal nature-inspired metaheuristics algorithms tend to experience premature
convergence and, in general, swiftly obtain both the local and almost global optimal
states. The No Free Lunch (NFL) theorem [30] for finding the best algorithm to tackle all
optimization problems states that not all algorithms are suited to address all problems. This
is because no method is optimal for solving all optimization problems. On the other hand,
each of the previously discussed approaches has its unique way of delivering the optimal
solution in terms of performance when it comes to resolving and optimizing power issues.

A metaheuristic approach based on simulation was created [31] to identify the ideal
size of a hybrid renewable energy system for residential buildings. The development
of a dynamic multi-objective particle swarm optimization method was needed to solve
this multi-objective optimization problem. The approach should maximize the buildings’
renewable energy ratio while minimizing the overall net present cost and carbon diox-
ide emissions for any necessary system modifications. The standard of the Pareto front
generated by the proposed technique was assessed using three established performance
indicators. A multi-objective optimization model that considers a multi-energy system
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and minimizes the overall cost and the life cycle emissions of vehicles and buildings was
developed [32]. The model chooses the sorts of vehicle powertrains and the storage and
conversion technologies the community utilizes to produce heat and electricity. The Pareto
solutions that emerge depend on the shift from internal combustion engine cars to bat-
tery electric cars, and to a much lesser extent, plug-in hybrid cars. The heating energy
is decarbonized by switching from gas boilers to heat pumps. In [33], the authors devel-
oped a multi-objective hydro–thermal–wind with EV scheduling (MOHTWES) issue by
combining large-scale electric vehicles (EVs) with wind power generation. Furthermore, a
better multi-objective particle swarm optimization (IMOPSO) approach was suggested to
solve the aforementioned issue under several restrictions. The IMOPSO may provide good
and well-distributed Pareto optimum solutions in objective space by providing a novel
dual-population evolution mechanism and a hierarchical elitism-preserving method based
on crowding entropy.

In [34], the issue of stochastic dynamic pricing and energy management policy for
providers of EV charging services was examined. EV charging service providers face
numerous uncertainties when energy storage systems and renewable energy integration are
present. These include fluctuations in wholesale electricity prices, inherent intermittency in
renewable energy generation, and volatility in charging demand. The goal was to provide
guidelines to charging service providers to manage electricity and set appropriate charging
prices while balancing the competing goals of increasing customer satisfaction, boosting
profitability, and lessening their impact on the power grid despite these uncertainties.
The authors devised a new metric to assess the impact on the power system without
having to solve the full power flow equations. The approach incorporates a safeguard
of profit to insulate service providers from extreme financial losses. Two algorithms are
used to determine the price and electricity procurement policy: the greedy algorithm
(benchmark algorithm) and the stochastic dynamic programming (SDP) algorithm. The
multi-objective optimization’s Pareto front was determined. In [2], the authors suggested a
multi-objective planning approach for allocating EVCSs and RESs in the best possible way.
In particular, voltage variations, energy losses, and EV owners’ discontent are considered
three sub-objectives to be minimized in the proposed RES and EVCS planning framework.

Furthermore, considering the various operating constraints of the grid, RESs, and
EVCSs, active power curtailment of RESs is not an option. The suggested framework
takes into consideration enhanced control systems for linking RES inverters, as well as
grid-to-vehicle (G2V) and V2G schemes, to yield additional benefits. To address this holistic
framework with conflicting sub-roles and find the Pareto-optimal solutions, a two-level
method was proposed.

In this research, the proposed system comprises a PV–Wind–Battery system combined
with EVCS using the vehicle-to-grid (V2G) technique. The thrilling Arithmetic Optimization
Algorithm (AOA) has been improved to overcome its drawbacks, such as being trapped
in a local search (stagnation in local minima), premature convergence, and neither the
addition (A) nor the multiplication (M) operators being obtainable for the exploitation
or exploration phases. In addition, in the AOA, the rudimentary mathematical models
obtained in both the exploration and exploitation phases (There can never be a perfect
balance between exploration and exploitation). Furthermore, most of the methods in the
previous literature considered only a single objective during the optimization process
for the proposed system (either an economic or technical objective). In this study, a
Multi-Objective Improved Arithmetic Optimization Algorithm (MOIAOA) based on the
Non-Scale multiple-run Pareto Front concept has been proposed to analyze the optimal
sizing design of the proposed system components by calculating the optimal values of the
three conflicting objectives, Grid Contribution Factor (GCF), Levelized Cost of Electricity
(LCOE), and Energy sold to the grid (ESOLD). These three constraint objectives are used
as renewability, economic, and technical criteria. The RB-EMS is used for controlling and
monitoring the power flow of the proposed system. The results are performed to analyze
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the optimal sizing of the proposed system by using an optimal sizing method based on the
MOIAOA Non-Scale multiple-run Pareto Front concept.

The following categories apply to the remaining sections. A description of the pro-
posed system’s modeling components is given in Section 2. The criteria for the renewability,
economic, and technical assessments are given in Section 3. Section 4 outlines the suggested
methodology for sizing the PV/WT/battery system in conjunction with EVCS utilizing a
vehicle-to-grid (V2G) technique in a grid-connected system. In contrast, Section 5 presents
the findings and discussion. Section 6 wraps up the analysis and suggests next steps.

2. Mathematical Modeling of the Grid-Connected PV/WT/Battery System Combined
with EVCS Using Vehicle-to-Grid (V2G) Technique

A mathematical equation is used to model the two different RESs stated earlier, namely
the PV and WT, with additional components. That leads to determining the output power
under different climate data of a government building located in Al-Najaf Governorate
in Iraq.

The PV array, WT, EMS control, storage battery, unidirectional converter, bidirectional
converter, grid, building load, and EVCS are the main components of the proposed system,
as seen in Figure 1. These could differ greatly depending on several factors, including the
availability of meteorological data, renewability–economic–technical parameters, and the
intended power demand. The technical and economical specifications of the PV module
used in the proposed system are given in Table 1.
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Table 1. Economical and technical data of the proposed system components.

Components Parameter Value Unit

Wind Turbine (WT)

Rated Power of Wind Turbine (Pr ) 1 kW
Cut-in speed (Vcin) 3 m/s
Cut-out speed (Vco) 20 m/s

Rated wind speed (Vrat) 11 m/s
Capital cost (per kW) 2300 USD

Replacement cost (per kW) 1500 USD
O & M cost (per kW) [operation + maintenance] 2 USD/vr

Hub height 50 M
Overall efficiency 26 %

Lifetime 20 years
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Table 1. Cont.

Components Parameter Value Unit

Solar (PV)

Rated power (Ps r) 325 W
Derating factor (f loss) 88 %
Capital cost (per kW) 1200 USD

Replacement cost (per kW) 1200 USD
O & M cost (per kW) 4 USD/yr

Lifetime 20 years

Battery

kVAh or kWh capacity 6 kWh
Minimum state of charge (SOCmin) 30 %
Maximum state of charge (SOCmax) 100 %

Round trip efficiency (gbatt) 92 %
Capital cost (per unit battery) 167 USD
Replacement cost (per unit) 67 %

M & O cost (per unit) 1.67 USD/yr
Lifetime 5 years

Nominal battery capacity 41 Ah
Battery capacity 75 Ah

Rectifier (grec) and
inverter (ginv)

Efficiency 97%
Installation and capital cost (per kW) 127 USD/yr

O & M cost (per kW) 1 USD/yr
Lifetime 20 years

General Requirement

Interest rate 6%
Project life (N) 20 years

EVs Capacity in kWh 20 kWh
Utility prices:

Power export price to utility (selling) 0.015 USD/kWh
Power import price from utility (purchasing) 0.013 USD/kWh

Optimization of lower
and upper bounds

Solar 1200 1
Wind 1000 15

Battery 1000 1

2.1. Photovoltaic Panel Mathematical Modeling

PV is the most widely used RES for generating. In this research, polycrystalline solar
panels (KD325GX-LFB) are taken into consideration. The panel manufacturers’ specifica-
tions and solar parameters are reported in [35–37]. The panels are inclined with an angle of
30◦ to the direction of the south. The modeled equation for the output power produced
from the PV system is given in Equation (1) and reported in [37–39].

Ppvout(t) = P(PVrated)
×

G(t)

1000
×
[
1 + αt

(
(Tamb + (0.03125× Gt))− TCSTC

)]
(1)

where P(PVrated)
indicates the rated power for PV (in watts), αt is the temperature coefficient

(−3.7× 10−3) 1/C, TCSTC is the cell temperature (in ◦C) under standard test condition (STC),
and Tamb is the ambient temperature (in ◦C), respectively. G(t) refers to solar irradiance (in
W/m2), 1000 W/m2 is the reference irradiance, and Ppvout(t) is the PV output power (in
watts). Equation (2) can be used to obtain the TC(STC) [40]. NOCT is the nominal operating
cell temperature in ◦C that the manufacturer can model.

TC(STC) = Tamb + G(t) ×
(

NOCT − 20
800

)
(2)

Additionally, the value 0.03125 ◦C was obtained by subtracting the value of Nominal
Operation Cell Temperature (NOCT), which is 45 ◦C in this study, from air temperature
(20 ◦C) based on the PV module that the manufacturer has specified; the acquired result
was divided by the irradiance on the cell surface (800 W/m2) to obtain 0.03125 ◦C [35]. The
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technical and economical specifications of the PV module used in the proposed system are
given in Table 1.

2.2. Wind Turbine Mathematical Modeling

Vertical and horizontal axis wind turbines are the products of axial categorization of
wind turbines [41]. The horizontal axis wind turbine is the most widely utilized type of
wind turbine for various reasons, including its capacity to capture the most wind energy,
adaptability to low-wind conditions, and pitch angle adjustment capability to prevent
strong windstorms [40]. Therefore, a wind turbine comprises three basic components: the
generator, which has a gearbox and controls, and the rotor, which houses the blade and
the frame. Equation (3) [38] presents the model equation for the output power produced
by the WT. The economical and technical specifications of the WT used in the proposed
system are given in Table 1.

PWT =





0
Pr

v(t)−vcut−in
vr−vcut−out

Pr

v(t) ≤ vcut−in or v(t) ≥ vcut−out
vcut−in < v < vr

vr < v(t) < vcut−out

(3)

The variables vcut−in and vcut−out represent the cut-in speed and cut-out speed, respec-
tively. Pr stands for rated power, vr for rated wind speed, and PWT is the produced output
power of the WT, as indicated by the manufacturer [40]. Equation (4) illustrates how taking
hub height into account can yield output power from WT with improved precision.

V2 = V1 ∗
(

h
hre f

)α

(4)

where h is hub height, hre f is the reference height anemometer, and α is the power-law
exponential, known as wind gradient, Hellmann exponent, or friction coefficient, which
equals 1/7 [42]. The wind speed (m/s) is represented by V2 and V1. It is evident that the
cut-in wind speed vcut−in, cut-out wind speed vcut−out, and rated wind speed vr, in that
order, determine the output power generated from WT [43].

2.3. Battery Mathematical Modeling

Systems that store and release energy from renewable energy sources (RESs), such as
solar, wind, and hydropower, are known as battery energy storage systems [44]. However,
these RESs are known to have high intermittency. Energy is stored in a battery storage
system (BSS) that can be used during a grid outage to reduce intermittency and boost
system reliability and efficiency. Equation (5) [45] provides the mathematical formula to
determine the nominal battery capacity.

CB =
EL ∗ AD

DOD ∗ ηinv ∗ ηb
(5)

where CB is the battery’s nominal capacity, EL is its daily average load demand, DoD is the
suggested depth of drain (80%), and autonomy days (usually 3–5 days) are represented,
while the inverter’s efficiency, ηinv, equals 95% and the battery’s efficiency, ηb, is 85%.
The battery’s energy storage capacity is known as its state of charge (SoC) and its energy
consumption is known as its depth of discharge (DoD) [42,43,45,46]. Additionally, the
minimum depth of discharge and the value of DOD, which is set at 80%, may be computed
using Equation (6) [47]. SoCmin ≤ SoCbatt ≤ SoCmax represents the SoC’s border. Further-
more, the battery’s power output has a mathematical expression, as shown in Equation (7).

SOCBT_MIN = (1− DOD)× CB (6)
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Pb(t) =
(

Ppv(t) + PWT(t)
)
− Pl(t)

ηinv
(7)

where ηinv is the inverter efficiency (95%) and Pb(t) is the total power delivered from the
battery, PPV(t) is the total power produced from PV, PWT(t) is the total power produced
from WT, and Pl(t) is the total energy demand [38]. One crucial factor that indicates the
battery’s performance is its state of charge (SoC) [48]. Equations (8) and (9) are used to
determine the state of charge (SoC) of the battery when charging or discharging. According
to the mathematical computation provided by Equation (8), the battery is in a charging
condition when the total generated output power from PV and WT exceed the load.

SoC(t) = SoC(t− 1).(1− σ) +

((
Ppv(t) + Pwt(t)

)
− Pl(t) + PEVdem

ηinv

)
∗ ηb (8)

The output power produced by the PV and WT, respectively, is expressed as PPV(t) and
PWT(t). The battery’s self-discharge rate, or σ, equals 0.007%/h [49]. The overall energy
demand is represented by PPV(t) Pl(t), the state of charge of the battery at a time (t) is
indicated by SoC (t), the inverter efficiency is represented by ηinv, and the battery efficiency
is marked by ηb, which is equal to 85% [38]. The EV battery specification is also considered
to obtain the SoC, charging decision, and energy demand. If the total generated output
power from PV and WT is less than the load demand, as determined by Equation (9), the
battery’s state of charge (SoC) will be in a discharging situation.

SoC(t) = SoC(t− 1).(1− σ) +

(
Pl(t) + PEVdem

ηinv
−(P pv(t) + Pwt(t)

))
∗ ηb (9)

Equation (10), which represents the battery power during discharging when the SoC
exceeds the RESs, may be derived from the previously mentioned facts.

PBATT(t) = [Pl(t)− Pwt(t)] ∗ ηinv − PPV(t) (10)

The technical and economical specifications of the BT used in the proposed system are
given in Table 1.

2.4. Converter Mathematical Modeling

Power converters, such as DC/AC and AC/DC, are required when a system consists
of both AC and DC components; Table describes the converter. In this analysis, batteries
that generate DC output, solar PV panels (DC), and household (AC) demands are taken
into consideration. Peak load demand (Pm

L ) at a time (t) and inverter efficiency (ηinv) are
combined to estimate the converter size and Equation (11) [50] is used to determine the
inverter rating (Pinv(t)).

Pinv(t) =
Pm

L (t)
ηinv

(11)

2.5. The Grid Mathematical Modeling

The grid can supplement the energy deficit if the RESs and battery bank are unable to
meet the load needs [51]. Equation (12) can be used to determine the money received from
energy sales to the utility grid.

Rgrid =
8760

∑
t=1

rate f eed−in × Egrid(selling) (12)

where Egrid(selling) represents the selling energy price (USD 0.015/kWh) and rate f eed−in
refers to the feed-in tariff rate, which is USD 0.02/kWh. Moreover, Equation (13) is used to
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compute the cost of power from the grid [52]. On the other hand, 8760 is the amount of
hours in a year. The following is the purchasing price of the grid-purchased power:

Cgrid = Cp ×
8760

∑
t=1

Egrid(purchased) (13)

where
8760
∑

t=1
Egrid(purchased) is the hourly total of yearly grid power purchases for a year [52],

and Cp is the cost of purchasing electricity in Iraq, which equals USD 0.013/kWh.

2.6. Mathematical Modeling of Electric Vehicle Charging Station

The battery of electric vehicles (EVs) is used to overcome several supply constraints to
improve security and financial sustainability. One of the fundamental needs for modeling
an electric vehicle charging station is knowing its rated capacity. One can compute the
rated capacity using the method shown in Equation (14).

Srated =
kload ∗ Nslot ∗ PEV

COS ∅ (14)

where Nslot is the number of charging slots for each EV, which equals 3, kload is the overload
factor for cover overloading in transients, which is 1.1, PEV is the maximum power rate of
each EV, which is 90 kW, and Srated, the station’s rated capacity, equals 850.97 VAr [53].

3. Date Collection and Renewability–Economic–Technical Assessments

In this research, real meteorological data have been used to model the proposed system.
These meteorological data are recorded every 10 min for an entire year (from 1 January to
31 December of 2018) in a government building (Engineering Technical College) located in
Al-Najaf Governorate in Iraq [54], which is located at the coordinates 31◦ north latitude
and 44◦ east longitude. These meteorological data consist of solar radiation, ambient
temperature, and wind speed. The meteorological data were collected for an entire year.

3.1. The Study Site and Load Profile

This study investigates the efficacy and potency of the recommended strategies for
the ideal sizing of the suggested system in Al-Najaf Governorate in Iraq.

3.1.1. Al-Najaf Governorate in Iraq

Al-Najaf Governorate is a city in central Iraq about 160 km (99 mi) south of Baghdad;
see Figures 2 and 3. This study uses the climatology data and load demand to implement
the mathematical equations to calculate the total amount of power generated during an
entire year. Real meteorological data have been used in the modeling of the proposed
system. These meteorological data are recorded every 10 min for an entire year (from 1
January to 31 December of 2018) of a government building (Engineering Technical College)
located in Al-Najaf Governorate in Iraq [54], which is located at coordinates 31◦ north
latitude and 44◦ east longitude. These data were gathered from a weather station installed
ten meters above the ground, as shown in Figure 4. These meteorological data consist of
solar radiation, ambient temperature, a wind speed. The energy demand profile data were
assumed for an entire year.
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3.1.2. Load Profile

The data of the load demand for the entire year of the building where the study
was conducted have a maximum value of 4.9687 kW and a minimum value of 0.6417 kW,
recorded every 10 min.

3.2. Objective Function Formulation
3.2.1. Levelized Cost of Electricity (LCOE)

The LCOE for a power system is the ratio between the total costs of the system and its
total electricity production over its economic lifetime [55]. It is regarded as the minimum
cost at which electricity must be sold to break even over the project's lifetime. LCOE is
measured in USD/kWh. The first objective can be presented as shown in Equation (15):

objective1 = min (LCOE)

= min
(

The reation betweenhe the total costs o f the system and
its total electricity production over its economic li f etime

)
(15)

3.2.2. Grid Contribution Factor (GCF)

Grid Contribution Factor (GCF) can minimize the maximized Renewable Energy
Fraction (REF). GCF is given in Equation (16) as follows:

GCF = 1− RFE (16)

The GCF is the amount the grid contributes to meeting the necessary energy demand
by minimizing REF [52]. The GCF is measured in kWh. The second objective can be
presented as shown in Equation (17):

objective2 = min (GCF) = min (1− REF) (17)
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3.2.3. Energy Sold to the Grid (ESOLD)

ESOLD is the annual energy sold to the grid and not self-consumed by the charging
station [56]. The ESOLD is defined as the quantity of electricity sold from any part of the
system (such as PV and/or wind and/or battery and/or EV battery) into the main grid. One
of the objective functions of this research is to maximize the value of ESOLD, which means
decreasing the dependency on the grid; this is achieved by increasing the dependency on
renewable energy and/or battery and/or EV batteries. The ESOLD is measured in kWh.
The third objective can be presented as shown in Equation (18):

objective3 = max (ESOLD) (18)

4. The Proposed Methodology for Sizing of the Grid-Connected PV/WT/Battery/
EVCS System

The proposed system comprises a grid-connected PV/WT/battery combined with
EVCS. The proposed system's energy management strategy and scenarios are provided in
phase 1 of this part, which is separated into three sections. Phase 2 clarifies the Arithmetic
Optimization Algorithm (AOA). Phase 3 presents the proposed Improved Arithmetic
Algorithm (IAOA) with benchmark algorithms such as AOA, Ant Lion Optimizer (ALO),
and particle swarm optimization (PSO). Finally, the proposed Multi-Objective Improved
Arithmetic Optimization Algorithm (MOIAOA) is explained.

4.1. Energy Management Strategy and Its Scenarios in the Proposed System

Information management included in such a system is known as an energy manage-
ment system (EMS); it provides the ability to guarantee that energy is supplied through
generation, transmission, and distribution at the lowest feasible cost. EMS is believed to
use several methods to supply the load needed, as described in [57] and [58]. Additionally,
according to the literature, it can categorized into three groups: Rule-Based (RB), Learning-
Based (LB), and Optimization-Based (OB), each of which has a subclassification [59]. In
addition, it is resource-dependent, balances BT SoC power, and lowers system running
costs [60]. There will be difficulties when integrating RESs with the grid, such as over-
loading [61]. To get around this integration limitation, EMSs can be used to monitor and
control the energy systems of RESs in situations where the data obtained from strategies
of controlling are inaccurate because the design variable is not taken into account as a
crucial feature by taking advantage of sizing algorithms [62]. The optimization algorithms
are integrated with EMS to ensure a steady power flow into the suggested system [63].
The system’s energy management is configured to meet load needs while considering the
dynamic energy flow among all system components [64].

In this research, the system’s integrated RB-EMS considered the following four operat-
ing modes for three EVs. The proposed system's energy management is crucial to manage
the power flow during the optimization process. The operating modes of the RB-EMS are
used for controlling and observing the power flow of the proposed system. RB-EMS-based
operating modes (scenarios) and their working rules can be illustrated as follows:

1. Operating Mode 1: Renewable energy sources (photovoltaic and wind power) supply
power for running the system and charging the battery and the electric vehicle.

2. Operating Mode 2: The battery supplies power for load and electric vehicle charging
if there is no grid and insufficient RESs.

3. Operating Mode 3: The main grid supplying power for electric vehicle charging
(Buying–Charging–G2V) when batteries and RESs are not available and grid demand
is required. The power flow will be unidirectional.

4. Operating Mode 4: The electric vehicle supplying power for the grid (V2G–Sell–
Discharging) when grid demand is high and batteries and RESs are unavailable. The
flow of power will be bidirectional. The proposed operation modes of RB-EMS for the
proposed system are listed in Table 2.
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Table 2. The rule-based EMS scenarios for the proposed system.

Rule No. Modes IF THEN

1 RESs
(

Ppv(t) + PWT(t)
)
> Pl(t)

(
Ppv(t) + PWT(t)

)
to Pl(t) and EV(t)

2 BT Pb(t) > [Pl(t)− PWT(t)]− PPV(t) ∗ ηinv
Pb(t) > [Pl(t)− PWT(t)]− PPV(t) ∗

ηinv to Pl(t) and EV(t)

3 Charge (G2V) Egrid < EVdemand Egrid < EVdemand to EV (G2V)

4 Discharge (V2G) Egrid > EVdemand Egrid > EVdemand to EV (G2V)

RB-EMS is used in this study because of its advantages, which include its ability to pre-
cisely solve problems and make quick judgments to fulfill load demand while minimizing
operating costs. The flowchart in Figure 5 illustrates how the metaheuristic technique and
system configuration sizing (PV-WT-BT) are being considered to meet the study’s objective
functions. The (if, otherwise, and then) statement governs the primary mechanism of rule-
based strategy [37]. The if-then conditions for the charging and discharging function with
the previously mentioned modes are shown in Figure 6. The proposed system’s RB-EMS,
as seen in Figure 6, presents the power flow via the system’s components as a flowchart.
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4.2. Arithmetic Optimization Algorithm (AOA)

Comparable to other population-based optimization techniques, the Arithmetic Opti-
mization Algorithm (AOA) was released in 2021 by Abualigah et al. [65]. The variety and
exploitative stages in AOA were produced by the mathematical operators addition (A “+“),
division (D “÷“), multiplication (M “×“), and subtraction (S “−“).

4.2.1. Inspiration

Arithmetic is a sufficient yet necessary prerequisite for algebra, number theory, analy-
sis, geometry, and modern mathematics. Therefore, these four simple operators might be used
to find the best solutions while preserving between the exploitation and exploration periods.
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4.2.2. Initialization Phase

A list of potential solutions (X) is established in the first phase. For the most optimal
solutions thus far, the best solution from all iterations is kept. As given in Equation (19):

X = XLB + rand(XUB − XLB) (19)

XUB and XLB establish the upper and lower boundaries of the problem, where X is
a collection of initialized solutions and rand is a random variable in the range [0, 1]. The
Math Optimizer Accelerated (MOA) function is employed to discern the exploration and
exploitation stages. It is calculated in the manner described in Equation (20) below:

MOA(Citer) = Min + Citer ×
Max−Min

Miter
(20)

where Citer specifies the current iteration and ranges between 1 and the maximum number
of iterations (Miter), and MOA (Citer) defines the value at the t th iteration. Max and Min
represent the highest and lowest values of the accelerated function. The steps of exploration
and exploitation will be covered in detail in the following sections.

4.2.3. Exploration Phase

Since the the D and M operators have widely distributed values in the design space,
they are used during the exploratory stage. The MOA function limits the exploration phase;
the D and M operators are utilized if r1 > MOA is found; otherwise, the A and S operators
are kept in place. The following equations can be used to express the exploring portion:

xij(Citer + 1) =
{

best
(
Xj
)
÷ (MOP + ε)×

((
UBj − LBj

)
× µ + LBj

)
r2 > 0.5

best
(
Xj
)
×MOP×

((
UBj − LBj

)
× µ + LBj

)
otherwise

(21)

where the second integer, r2, is conditioned between the D and M operations and is
generated at random. ε is a small integer value, while a control variable called µ is
set to 0.5 to change the search process. UBj and LBj stand for the bottom and upper
limits, respectively.

MOP(Citer) = 1− Citer
1
∝

Miter
1
∝

(22)

In this work, Math Optimizer Probability is a coefficient represented by the symbol
MOP. The sensitivity control parameter indicates the accuracy of the exploitation through-
out the iterations ∝, which is set to 5.

4.2.4. Exploitation Phase

Despite the large density of the A and S operators, their small dispersion makes them
easily accessible. The following can be used to represent the S and A operators:

xij(Citer + 1) =
{

best
(
Xj
)
−MOP×

((
UBj − LBj

)
× µ + LBj

)
r3 > 0.5

best
(
Xj
)
×MOP×

((
UBj − LBj

)
× µ + LBj

)
otherwise

(23)

where the third number, r3, is a randomly generated number that represents the A and
S operators.

4.3. The Proposed Improved Arithmetic Optimization Algorithm (IAOA)

There are two improvements key to overcoming the limitations of the original AOA by
employing the fitness distance balance (FDB) integrated with chaotic map strategies [66,67].
Firstly, the FDB is implemented to ensure the best new solutions are chosen to import
high-quality solutions into the new generation. The selection mechanism is determined
by computing the fitness function values of all particles and their distance from the best
solution position. Secondly, the FDB is integrated with a chaotic map tactic for local
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minima avoidance. Therefore, the newly developed IAOA can enhance the exploitation
by utilizing the selection of the FDB technique. At the same time, the new search areas
are discovered by obtaining a chaotic map tactic, where the balance between exploitation
and exploration tendencies is achieved. The proposed IAOA is proposed to handle three
conflicting objectives: GCF, ESOLD, and LCOE. The correlation between these is an inverse
relationship, where their values are varied based on the given weights for each one. PF
solutions will be executed after executing all weights’ statuses.

These objectives are transformed into a single objective after performing a normaliza-
tion operation [68]. The improvements of IAOA are described by the following:

• FDB Strategy

At first, the distance of particles from the best solution Pbest is computed using
Equation (24) below:

∀n
i=1, Pi 6= Pbest , DPi

=
√(

x1Pi − x1Pbest

)2
+
(
x2Pi − x2Pbest

)2
+ · · ·+

(
xmPi − xmPbest

)2
(24)

The distance matrix (DP) is generated for particle candidates, as given in Equation (25)
below:

DP ≡




d1
...

dn




n×1

(25)

Secondly, the scores of the particles are determined according to the distance and
fitness values, as seen in Equation (23). These two variables, normF and normDx, are nor-
malized with a range of [0, 1] to avoid one dominating the other. Then, the scores of particles
(Sxi) are determined with normF and normDx according to the following expression:

∀n
i=1Pi, SFDB1Pi

= normF FPi + norm DPi

Finally, the score vector ( Sx) can be presented by the following equation:

Sx ≡




sx,1
·
·

sx,n




nx1

(26)

According to our new strategy, the Sx vector is implemented with a chaotic map tactic to
boost the convergence and prevent the premature convergence during the optimization process.

• Chaotic map tactic

It is described as follows:

Xnew = X− Xnew(Sx) ∗ (mc − 1) (27)

where mc is a vector and it is computed as follows:

m = rand;

mc = 4 ·m · (1−m) (28)

The main benefit of chaos is to explore new search areas and information about the
candidate particles in the FDB strategy, which can concurrently and perfectly enrich the
population with high-quality solutions (exploitation) while exploring new promising zones
in the search space.
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• Handling upper and lower boundaries

Because several random techniques were used throughout the optimization process,
some newly created particles exceeded the upper and lower bounds of the optimization
problem. Most of the optimization methods produce simple upper and lower boundaries,
which may delay the convergence speed to optimal solutions. To address this issue, we
suggested a new method that makes use of the following mathematical framework to
transform particles from predetermined upper and lower boundaries to places that are
close to optimal areas:

xi,j = best
(
xj
)
+ ε×

(
rand×

(
UBj − LBj

))
× rand× LBj (29)

The aforementioned equations improve the diversity of the best optimal solutions
discovered thus far. This means that particles are not just moved from locality to optimal
regions, but also the quality of the solution is increased by obtaining information from the
best particle’s neighborhood. The operation process of the proposed IAOA is demonstrated
in Figure 7.
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4.4. The Proposed MOIAOA Method

In developing a set of PF solutions, the multi-objective optimization (MOO) methods
present several difficulties regarding efficiency, convergence, and diversity. In the case
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of large goal optimization problems, most MOO methods produce unsatisfactory opti-
mal PF solutions by simultaneously attempting to enhance diversity and convergence.
Furthermore, most of the methods in the previous literature considered only a single ob-
jective during the optimization process for the proposed system (either an economic or
technical objective).

The proposed system in this work is to define the scope of REMS in terms of system
size by calculating the minimum (optimal) number of PV modules, wind turbines, and ESU
batteries. This will be achieved by calculating the LCOE, GCF, and ESOLD for the proposed
system. It will ensure that the REMS operates the charging station without economic
losses for a specific number of EVs per day (three EVs). The proposed system, displayed
in Figure 1, can be considered a typical grid-connected system for supplying electricity
with the assistance of V2G technology and is presented as a test-case system to verify the
effectiveness of the devised optimal design method. In this research, an AOA has been
proposed and improved to become IAOA. In addition, the optimal design for the proposed
system's components has been determined using a multi-objective improved arithmetic
optimization algorithm (MOIAOA).

Multi-objective IAOA (MOIAOA) based on the Non-Scale multiple-run Pareto Front
concept has been used to calculate the optimal values of the three conflicting objectives,
which are Grid Contribution Factor (GCF), Levelized Cost of Electricity (LCOE), and Energy
sold to the grid (ESOLD). This method is classified as a Non-Scale (NS) multiple-run Pareto
Front method and deals with multi-objective optimization problems. In this paper, for
the LCOE, GCF, and ESOLD, the aggregation function transforms objectives into a mono-
objective problem, where the aggregation function treats the multi-objective optimization
problems as a mono-objective problem, as described below:

fi (t) =
k

∑
i=1

wi × fi (t) (30)

where k is an aggregated function that belongs to the individual objective function number
and x is the decision variable vector related to the search space. The range of weight
coefficients is 0 > wi < 1, denoting the relative importance of the k objective function of the
problem, and it is assumed as follows:

k

∑
i=1

wi = 1 (31)

On the other hand, the three objective functions are not scalable. Normalizing and
implementing the goal function described below is essential [50,51].

fi (t) =
fi (t)− f min

i (t)
f max
i (t)− f min

i (t)
(32)

where the upper and lower bounds of the ith individual objective function are denoted as
f max
i (t) and f min

i (t), respectively.

5. Results and Discussion

In previous sections, the concept and operation of RB-EMS and optimal design have
been established for the proposed system. The modeling of the components and power flow
control strategy of the proposed system has been presented. This section will present the
results obtained from the data collection. The results of the optimal design of the proposed
system will be presented.

The proposed system consists of a grid-connected PV-WT battery including EVCS.
The EVCS is combined within the proposed system by using V2G technology. In summary,
the RB-EMS aims to operate the charging station while keeping the charging cost lower
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than the average grid electricity price (without economic losses) and reducing the grid
burden and system economic losses. In addition, the RB-EMS is embedded in the central
controller of the proposed system for real-time decision making without the physical
presence of a human operator, so the results of EV charging are derived using the proposed
system operated under the control of RB-EMS. The optimal design of the proposed system
is provided in this study to show how to meet the load requirement for a government
building in the most efficient manner.

The meteorological data of solar insolation (G), temperature (Ta), and wind speed (v)
have been used in this research in Al-Najaf Governorate, Iraq. The data obtained are used
throughout the simulation process in MATLAB simulations. Data from 1 January 2018 to 31
December 2018 were recorded for one year and collected every ten minutes in a government
building. The topographical location of the study region is identified as 31◦ north latitude
and 44◦ east longitude. Figures 8–10 depict the G, Ta, and v plots, respectively.
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Data analysis significantly improves our understanding of consumer energy needs
from the available Renewable Energy Sources (RESs). This is crucial for handling difficult
situations like days without sunlight or wind. The area under study is fortunate to have
abundant solar energy and wind throughout the year, with the highest levels observed in
July. Most solar radiation, which holds immense potential for generating electricity using
photovoltaic (PV) systems, is experienced during summer, followed by spring, autumn
and winter. The wind speed is at its maximum in spring, followed by summer, winter,
and autumn, offering substantial potential for harnessing wind turbines for electricity
generation. Air conditioning units are primarily used during the summer, while consumers
predominantly use heaters in winter.

The data of the load demand for the entire year of the building that the study was
conducted in show a maximum value of 4.9687 kW and a minimum value of 0.6417 kW
every 10 min. A critical stage in optimizing the energy system is accurately estimating
the energy demand to be fulfilled to avoid oversizing or under-sizing the system. In this
research, the load demand profile for the chosen building is considered for one year with
a minimum value of 0.6417 kW and a maximum value of 4.9687 kW. These load data are
considered for every ten minutes for the entire year. The load data are graphically presented
in Figure 11. Energy demand can be categorized into domestic loads, including appliances
in the selected building. Given the case study area’s two distinct seasonal variations (cold
and hot), the energy demand profile data reveal that energy consumption is high during
the hot season, in contrast to the cold season.
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The plots of the annual PV output power (PPV) and wind turbine output power
(PWT) for the optimal configuration achieved by the proposed system are displayed in
Figures 12 and 13, respectively. The proposed system is primarily designed to take advan-
tage of the RESs in the location and interchange power via V2G technology between the
EVCS and the utility grid. One of the RESs taken into account in the proposed system is
PV. The solar irradiance (G) and ambient temperature (Tam) are the primary climatological
factors that affect the output power produced by the PV. Figure 12 shows the output power
produced by PV in the proposed system. The wind turbine is the second RES regarded
in the proposed system and the output power generated from the wind turbine in the
proposed system is illustrated in Figure 13.
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5.1. Performance Comparison between the Proposed IAOA and AOA, PSO, ALO

This study used four standard benchmark cases to confirm and verify the original
AOA’s stability [69] and performance. These benchmarks can reasonably approximate
the capability of exploitation and exploration, respectively, for the pending algorithm.
Numerous experiments were conducted to evaluate the IAOA’s properties, for instance,
the differences between IAOA and the original AOA were examined by utilizing several
benchmarks, as indicated in Table 3.

Table 3. Details of benchmark functions.

Benchmark Function Dim Range Optimal Value

f1(x) = ∑d
i=1 x2

i 10 [−100, 100] 0

f2(x) = ∑d
i=1|xi|+

d
∏
i=1
|xi| 10 [−100, 100] 0

f3(x) = maxi{|xi|, 1 ≤ i ≤ t} 10 [−10, 10] 0

f4(x) =
∑d

i=1
(
x2

i − 10 ∗ cos(2πxi) + 10d
) 10 [−5.12, 5.12] 0

The detailed experimental findings produced by AOA, ALO, PSO, and IAOA on these
benchmarks are displayed in Table 4 concerning best value, worst value, average value
and STD (standard deviation) value. This table shows that the IAOA can retrieve the best
values by obtaining the minimum values of best value, worst value, average value and
STD value. Hence, IAOA outperforms AOA, ALO, and PSO, indicating that algorithm
stability can be guaranteed. Furthermore, to further illustrate descript convergence, the
evolution curves of each approach on most of the benchmarks in this work are shown in
Figures 14–17. These figures show that, on these benchmarks, the proposed IAOA has
satisfied quicker convergence than the AOA, PSO, and ALO methods.
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Table 4. Results of IAOA compared to several peers on benchmark functions.

Function Algorithm Best Value Worst Value Average Value STD

f1(x)

ALO 1.6291 × 10−9 8.8636 × 10−9 4.0018 × 10−9 1.9334 × 10−9

PSO 8.2671 × 10−121 2.5752 × 10−48 1.2876 × 10−49 5.7582 × 10−49

AOA 0 0 0 0
IAOA 0 0 0 0

f2(x)

ALO 1.1730 × 10−5 0.4850 0.0254 0.1082
PSO 1.2952 × 10−14 9.0712 × 10−6 1.0976 × 10−6 2.5864 × 10−6

AOA 0 0 0 0
IAOA 0 0 0 0

f3(x)

ALO 1.1878 × 10−6 0.0025 1.8484 × 10−4 5.4351 × 10−4

PSO 1.4774 × 10−25 4.0204 × 10−13 2.0227 × 10−14 8.9870 × 10−14

AOA 0 0 0 0
IAOA 0 0 0 0

f4(x)

ALO 5.1427 × 10−5 0.0027 4.3189 × 10−4 5.8547 × 10−4

PSO 2.0618 × 10−19 2.5902 × 10−13 2.3924 × 10−14 6.2083 × 10−14

AOA 0 1.1591 × 10−186 5.7954 × 10−188 0
IAOA 0 1.7994 × 10−250 8.9970 × 10−252 0
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Exploiting and exploring individual algorithms are very common in gauging the
individual algorithm search capacity for all metaheuristic optimization strategies. The first
step in each algorithm is thoroughly exploring the promising areas of the given solution
search space. Depending on the optimization technique, optimizers can support this phase
by using some stochastic operators to search the given space globally and randomly. The
exploitation step, however, is a local search in which the optimizers look near the most
promising regions identified thus far in the exploration phase. There is always a challenge
in the optimization period to effectively balance these two stages, which can be performed
using the controlling parameter. These parameters were carefully selected and tested on
the employed standard benchmark test functions in this research.

Fitness–distance balance (FDB) and chaotic map mechanisms have been applied to
improve the AOA. The AOA, PSO, and ALO benchmark algorithms are selected to perform
the comparative analysis. A comparative analysis between IAOA, AOA, PSO, and ALO
has been performed to test the efficiency and reliability of the algorithms, as shown in
Figures 14–17. Four popular standard mathematical benchmark functions comprising of
the Unimodal and Multimodal functions have been used for comparison implementation.

Figures 14–17 display the convergence curve for the IAOA, AOA, PSO, and ALO
methods. The convergence curve shows how the algorithm converges to the best solution.
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So, the convergence curve indicates how fast the fitness value converges towards an optimal
solution through iterations. The final value of the fitness value shows the best solution,
while the nature/slope of this curve shows how fast the algorithm converges to the final
solution. AOA has been improved by enhancing the exploration and exploitation phases.
Fitness–distance balance (FDB) mechanisms have enhanced the exploitation phase. At the
same time, a chaotic map mechanism has been used to enhance the exploration phase.

IAOA has been compared with the AOA, ALO, and PSO on four benchmark cases, as
shown in Section 5.1. The experimental results, which are average values and evolution
curves, are vividly recorded in Table 4 and Figures 14–17, respectively. These records
demonstrate that the efficiency of IAOA was observed according to the enhanced evolu-
tionary convergence in competition with other counterparts. The curves in Figures 14–17
demonstrate an accelerated drift for the proposed IAOA.

5.2. Results of the MIAOA

In this section, an optimization of the proposed system using a Multi-Objective Im-
proved Arithmetic Optimization Algorithm has been implemented. The outcomes of the
optimal design method based on RB-EMS-MOIAOA based on the Non-Scale multiple-run
Pareto Front concept are shown in this section. The suggested optimization method aims to
identify the best layout for the proposed system that would supply building demand at a
desired value of LCOE, GCF, and ESOLD to guarantee that the proposed RB-EMS-MOAOA
is reliable and valid when calculating the optimal system size required to meet the required
demand of the chosen building.

In this research, the proposed system comprises a grid-connected PV–Wind–Battery
system combined with EVCS via using the V2G technique. Multi-Objective Improved Arith-
metic Optimization Algorithm (MOIAOA) based on the Non-Scale multiple-run Pareto
Front concept has been used to improve the optimal design of the proposed system com-
ponents. Multi-objective IAOA (MOIAOA) Non-Scale multiple-run Pareto Front concept
has been used to calculate the optimal values of the three conflicting objectives, which are
Grid Contribution Factor (GCF), Levelized Cost of Electricity (LCOE), and Energy sold
to the grid (ESOLD). This method is classified as a Non-Scale (NS) multiple-run Pareto
Front method, which deals with multi-objective optimization problems. Rule-Based Energy
Management Strategy (RB-EMS) controls and monitors the proposed system's power flow.
Three constraint objectives are used; the technical, economic, and renewability criteria are
all weighted, normalized, and combined using a mono-objective function.

Table 5 shows the optimal configurations of the proposed system with sets of weights
using the proposed MOIAOA based on the Non-Scale multiple-run Pareto Front concept.
For the proposed system, Table 5 indicates the initializing weights (W1, W2, W3), number
of wind turbines, number of PV modules, number of batteries, fitness value, LCOE, GCF,
ESOLD, and CPU execution time. The range of weight sets is [1, 36] with a step size of
0.1. In Table 5, the optimal weight set and configurations of the proposed system using
the MOIAOA Non-Scale multiple-run Pareto Front concept have been tabulated. The
maximum fitness function (f) value recorded is 0.1649 at the set of weights [0.5, 0.3, 0.2]. In
contrast, the minimum fitness function (f) value recorded is 0.0611 at the set of weights [0.1,
0.1, 0.8]. The given weight value changes the value of the individual objective. An accurate
selection of the effective W1, W2, and W3 weights from the design space is required to
find the best trade-off between the technical, economic, and renewability objectives. The
trade-off between the defined level of renewability, economic, and technical criteria is
required to choose an optimal configuration of the proposed system.
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Table 5. Optimal weight sets and configurations of the proposed system using MOIAOA based on
Non-Scale multiple-run Pareto Front concept.

W1 W2 W3 WT PV Bat f LCOE GCF ESOLD Elapsed Time (Seconds)

0.1 0.8 0.1 1 31 138 0.0762 2.37 × 10−2 0.0171 0.8596 4956.680489
0.1 0.7 0.2 1 32 108 0.1149 2.37 × 10−2 0.0171 0.8596 5536.762598
0.1 0.6 0.3 4 18 100 0.1344 2.33 × 10−2 0.0274 0.8337 4827.420494
0.1 0.5 0.4 1 18 93 0.145 0.022 0.8377 0 3438.61148
0.1 0.4 0.5 1 14 73 0.1343 0.0261 0.8376 0 2909.015921
0.1 0.3 0.6 1 13 63 0.1144 0.0304 0.8375 0 2731.221521
0.1 0.2 0.7 1 11 49 0.0942 0.0531 0.8371 0 2678.625856
0.1 0.1 0.8 1 12 106 0.0611 0.022 0.8377 0 5521.751529
0.2 0.7 0.1 6 27 70 0.0943 0.022 0.8377 0 2740.512867
0.2 0.6 0.2 4 22 147 0.1306 0.0237 0.0171 0.8596 4810.072815
0.2 0.5 0.3 1 20 91 0.1522 0.0237 0.0171 0.8596 3293.332732
0.2 0.4 0.4 2 15 63 0.1487 0.0253 0.0012 0.8475 3465.500523
0.2 0.3 0.5 1 15 83 0.1359 0.0531 0.8371 0 2780.494461
0.2 0.2 0.6 1 14 63 0.1095 0.022 0.8377 0 2766.968238
0.2 0.1 0.7 1 12 56 0.0779 0.0261 0.8376 0 3786.031941
0.3 0.6 0.1 5 31 59 0.1154 0.0216 0.1136 0.7579 3414.903356
0.3 0.5 0.2 3 24 68 0.1419 0.0233 0.0274 0.8337 2633.810036
0.3 0.4 0.3 1 19 103 0.1646 0.0237 0.0171 0.8596 5378.376291
0.3 0.3 0.4 1 15 56 0.1481 0.0246 0.0035 0.8554 2637.907928
0.3 0.2 0.5 1 12 63 0.13 0.0304 0.8375 0 2654.862484
0.3 0.1 0.6 1 12 56 0.0975 0.0261 0.8376 0 5068.761916
0.4 0.5 0.1 5 31 59 0.132 0.0243 0.0069 0.8475 3235.824878
0.4 0.4 0.2 4 12 56 0.1573 0.0239 0.0738 0.7026 4983.926465
0.4 0.3 0.3 1 16 63 0.161 0.0253 0.0012 0.8475 2682.447224
0.4 0.2 0.4 2 8 33 0.1522 2.66 × 10−2 7.34 × 10−5 0.8409 3272.623188
0.4 0.1 0.5 3 1 2 0.1156 0.0261 0.8376 0 2731.882521
0.5 0.4 0.1 3 24 68 0.1425 0.0262 0.0119 0.7838 2762.613745
0.5 0.3 0.2 1 19 68 0.1649 0.0239 0.0738 0.7026 5103.018621
0.5 0.2 0.3 1 15 52 0.1595 0.0246 0.0035 0.8554 5587.216803
0.5 0.1 0.4 3 1 1 0.1284 0.0246 0.0035 0.8554 2951.953591
0.6 0.3 0.1 5 17 42 0.1534 0.0262 0.0119 0.7838 2522.240268
0.6 0.2 0.2 5 7 25 0.1668 0.0266 7.34 × 10−5 0.8409 2629.085911
0.6 0.1 0.3 3 1 2 0.1418 2.46 × 10−2 3.50 × 10−3 0.8554 2904.915789
0.7 0.2 0.1 8 6 17 0.1542 0.0262 0.0119 0.7838 2771.440828
0.7 0.1 0.2 4 3 11 0.1518 0.0266 7.34 × 10−5 0.8409 5176.083577
0.8 0.1 0.1 5 10 4 0.1387 0.0246 3.50 × 10−3 0.8554 5424.871393

In Table 5, the first range of weights used in the MATLAB simulation of this work
are W1 = 0.1, W2 = 0.8, and W3 = 0.1, and that leads to the results of the number of PV
modules being equal to 31, the number of wind turbines equal to 1, number of batteries
equal to 138, fitness value equal to 0.0762, LCOE equal to 2.37 × 10−2 USD/kWh, GCF
equal to 0.0171 kWh, and ESOLD equal to 0.8596 kWh. Figure 18 presents the distribution of
the solutions using the NS multiple-run Pareto Front method, where the aggregation of the
three objectives is based on a predetermined set of weights.

Based on Table 5, the balance can be achieved when optimal weights W1, W2, and W3
are 0.4, 0.2, and 0.4, respectively. The weights of 0.4, 0.2, and 0.4 are optimal. Therefore, at
the optimal weights and by comparison with other optimal weights, it can be observed that
the value of LCOE is small, and the value of GCF is small, too. At the same time, the value of
ESOLD is high. The results indicated that by employing the proposed MOIAOA Non-Scale
multiple-run Pareto Front concept, the optimal configurations of the proposed system are
as follows: number of PV modules equal to 8, number of wind turbines equal to 2, number
of batteries equal to 33, fitness value equal to 0.1522, LCOE equal to 2.66−2 USD/kWh,
GCF equal to 7.34−5 kWh, and ESOLD equal to 0.8409 kWh.
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Figure 18. Development of the aggregation function based on the NS multiple-run Pareto
Front method.

Figure 19 displays the evolution of the mono-objective function (f) (fitness function)
based on optimal solutions using MOIAOA based on the Non-Scale multiple-run Pareto
Front concept. Figure 19 depicts the aggregation function’s development for the proposed
sizing algorithm at the optimal weights. Figure 19 demonstrates the development of the
evaluation of the aggregation function with the maximum iteration of the proposed method
to obtain the optimal size of the components of the proposed system.
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Figure 19. Evaluation of fitness function based on optimal solutions using MOIAOA based on
Non-Scale multiple-run Pareto Front concept.

Figure 20 exhibits the optimal weight sets based on three objectives using MOIAOA
Non-Scale multiple-run Pareto Front concept; this figure presents the optimal configuration
based on MOIAOA Non-Scale multiple-run Pareto Front concept, with the three objectives
of ESOLD, LCOE, and GCF.
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Figure 20. Evaluation of ESOLD (kWh), GCF (kWh), and LCOE (USD) values with different weight
sets using MOIAOA based on Non-Scale Pareto Front concept.

The results section shows that the control strategy can effectively schedule the gen-
erator at all times and meet the load demand. The simulation results demonstrate the
superiority and the rapid convergence performance of the proposed improved (MOIAOA)
Non-Scale multiple-run Pareto Front concept algorithm.

6. Conclusions and Future Direction

In this work, the IAOA is proposed and compared with AOA, PSO, and ALO methods
to prove that the proposed algorithm is superior (to justify the superiority of the proposed
algorithm). Then, a new MOIAOA is proposed for finding the optimal design of the
proposed system that includes a PV–WT–battery system combined with EVCS using V2G
technology in Al-Najaf Governorate in Iraq. The most desirable configurations for the
proposed system are defined based on renewability–economic–technical criteria using
ten-minute data readings of real meteorological data during the entire year. LCOE, GCF,
and ESOLD are utilized as economic, renewability, and technical criteria, respectively. The
MOIAOA based on a Non-Scale multiple-run Pareto Front concept was proposed to choose
an optimal design for the proposed system. The FDB mechanism was employed to enhance
the proposed system’s exploitation phase, and the chaotic map mechanism was employed
to enhance the exploration phase of the proposed system. By using Non-Scale multiple-run
PF, LCOE, GCF, and ESOLD are used as three constraint objective functions, which are
aggregated after normalization and weighting by the mono-objective function. LCOE, GCF,
and ESOLD are utilized as economic criteria, renewability criteria, and technical criteria,
respectively. LCOE needed to be minimized, GCF needed to be minimized, and ESOLD
needed to be minimized. The Rule-Based Energy Management Strategy (RB-EMS) was
used to control and observe the power flow in the proposed system. The Pareto Front
method was employed to obtain the optimal values of LCOE, GCF, and ESOLD; these three
constraint objectives are utilized as renewability criteria, economic criteria, and technical
criteria. MATLAB R2020b is used for simulations in this research. For performance
comparison, it is noted that the proposed IAOA is more efficient than AOA, ALO, and PSO
because IAOA converges to the optimal solution in fewer iterations. The results indicated
that by employing the proposed MOIAOA Non-Scale multiple-run Pareto Front concept,
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the optimal configurations of the proposed system are as follows: number of PV modules
equal to 8, number of wind turbines equal to 2, number of batteries equal to 33, fitness
value equal to 0.1522, LCOE equal to 2.66–2 USD/kWh, GCF equal to 7.34–2 kWh, and
ESOLD equal to 0.8409 kWh.

This paper also describes integrating EVs with photovoltaics (PV) and wind turbines
as Renewable Energy Sources (RESs) to address the problems associated with fossil fuels.
Alternative energy sources can be used to handle the situation where fossil fuels have
started to dwindle, leading to various power and environmental difficulties. This work
is fully satisfied and meets the grid-connected system’s load demand. The constraints
in electricity and environmental systems are resolved by integrating RESs with other
sources. To handle the complexity of PV–wind hybrid systems, a metaheuristic optimization
approach (MOIAOA) was combined with RB-EMS to achieve the objective functions. For
the future direction of this work, this work highly recommends using other metaheuristic
algorithms to investigate the renewability–economic–technical criteria and additional
development of energy management strategies. Additionally, more examinations may be
undertaken in the utilization of commercial load needs in the Al-Najaf Governorate in Iraq.
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Abbreviations

ESOLD The annual energy sold to the grid
WT Wind turbine
EV Electric Vehicle
EVCS electric vehicle charging station
NS Non-Scale
PSO Particle swarm optimization
ALO Ant Lion Optimizer
EMS Energy Management Strategy
AOA Arithmetic optimization algorithm
HRES Hybrid renewable energy system
MOO Multi-objective optimization
STC Standard Test Condition
Ppvout

(t) The output power generated from PV
G(t) Solar irradiance
P(PVrated)

Rated power for PV
NOCT The nominal operating cell temperature
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vcut−in cut-in speed of the WT
vcut−out cut-out speed of the WT
Pr Rated power of the WT
vr Rated wind speed of the WT
PWT The generated output power of the WT
BSS Battery Storage System
DOD The depth of discharge
Srated The station rated capacity
cos ∅ The power factor
Nslot The amount of charging slots for each EV
kload The overload factor for cover overloading in transients
PEV The maximum power rate of each EV
Pinv(t) The inverter rating
Pm

L (t) The peak load demand
BT Battery
X a collection of initialized solutions
Rand a random variable in the range [0, 1]
XUB and XLB the upper and lower limits of the problem
MOA ( Citer) the value at the t th iteration
Miter the maximum number of iterations

r2
randomly generated number that is conditioned between
the D and M operations

UBj and LBj the upper and lower limits
εε a tiny integer value

r3
a randomly generated number that serves as a denotation
for the A and S operators

FF Fitness Function
PV photovoltaic
RESs Renewable energy sources
LCOE Levelized Cost of Energy
V2G Vehicle-to-grid
STC Standard Test Conditions
RB-EMS Rule-Based Energy Management Strategy
GCF Grid Contribution Factor
REF Renewable Energy Fraction
NPC Economic criterion of net present cost
IAOA Improved arithmetic optimization algorithm
MOIAOA Multi-objective improved arithmetic optimization algorithm
αt Temperature coefficient
TCSTC The cell temperature as reference temperature
Tamb The ambient temperature
CB Capacity of the battery
EL The daily average load demand
AD the autonomy days
v1, v2 The wind speed
h hub height
href The reference height anemometer

α
The power-law exponential known as wind gradient,
Hellmann exponent, or friction coefficient

SOC State of Charge
Pb(t) The battery’s output of electricity
Ppv(t) The total power generated by PV
PWT(t) The total power generated by WT
Pl(t) The total energy demand
ηinv The inverter efficiency
σ The self-discharge rate of the battery
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ηb Battery efficiency
ratefeed−in The feed-in tariff rate
Egrid(selling) The cost of selling energy
Cp The cost of buying electricity from the grid

∑8760
t=1 Egrid(purchaed)

The per hour summation of annually buying
electricity from the grid for one year

MOA Math Optimizer Accelerated
Citer the current iteration

Max & Min
The accelerated function’s maximum and lowest values
are denoted by Max and Min (Maximum and minimum
values of the MOA function)

µ a control variable set
MOP Math Optimizer Probability
∝ a sensitive control parameter set
FDB Fitness–distance balance
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Abstract: Wind energy, renowned for cost-effectiveness and eco-friendliness, addresses global energy
needs amid fossil fuel scarcity and environmental concerns. In low-wind speed regions, optimising
wind turbine performance becomes vital and achievable by augmenting wind velocity at the tur-
bine rotor using augmentation systems such as concentrators and diffusers. This study focuses on
developing a velocity augmentation model that correctly predicts the throat velocity in an empty
concentrator-diffuser-augmented wind turbine (CDaugWT) design and determines optimal geometri-
cal parameters. Utilising response surface methodology (RSM) in Design Expert 13 and computational
fluid dynamics (CFD) in ANSYS Fluent, 86 runs were analysed, optimising parameters such as dif-
fuser and concentrator angles and lengths, throat length, and flange height. The ANOVA analysis
confirmed the model’s significance (p < 0.05). Notably, the interaction between the concentrator’s
length and the diffuser’s length had the highest impact on the throat velocity. The model showed
a strong correlation (R2 = 0.9581) and adequate precision (ratio value of 49.655). A low coefficient
of variation (C.V.% = 0.1149) highlighted the model’s reliability. The findings revealed a 1.953-fold
increase in inlet wind speed at the throat position. Optimal geometrical parameters for the CDaugWT
included a diffuser angle of 10

◦
, concentrator angle of 20

◦
, concentrator length of 375 mm (0.62Rth),

diffuser length of 975 mm (1.61Rth), throat length of 70 mm (0.12Rth), and flange height of 100 mm
(0.17Rth) where Rth is the throat radius. A desirability value of 0.9, close to 1, showed a successful op-
timisation. CFD simulations and RSM reduced calculation cost and time when determining optimal
geometrical parameters for the CDaugWT design.

Keywords: concentrator-diffuser-augmented wind turbine; response surface methodology; computational
fluid dynamics; optimisation; wind energy; Betz limit

1. Introduction

Many without electricity worldwide reside in rural areas, and South Africa is not
an exception, with an estimated 3.5 million households not connected to the national
electricity grid [1]. The Electricity Supply Commission (ESKOM), the main energy supplier,
notes that expanding the grid to these rural communities is expensive. Given their remote
nature, low population density, and low-income levels, it becomes challenging for ESKOM
to recover capital and operating costs solely from tariffs [1,2]. The potential expansion
of wind energy into these areas could drive technological advances, contributing to a
cleaner energy mix. As a clean and consistently renewable resource, wind energy plays
a crucial role in reducing carbon dioxide emissions and mitigating the effects of climate
change [3,4]. Although wind turbine technology may be an alternative source of electricity
in such areas, its effectiveness is often hindered by low wind speeds. In addition, most
commercially available wind turbines were designed for high wind speeds; thus, they do
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not work efficiently in areas of low wind speeds. Therefore, shrouded wind turbines have
been suggested in the literature to augment the power output of wind turbines in low-
wind speed regions in order to address this issue [5,6]. Shrouded wind turbines enhance
wind energy capture by increasing wind velocity as it passes through the throat region
of ducts while retaining the original energy extraction method employed by bare wind
turbines [7,8]. Numerous studies suggest that shrouded wind turbines can outperform
their bare counterparts, producing more wind power at lower cut-in wind speeds and
allowing for extended operation throughout the year [7,9–11].

Additionally, shrouded turbines may surpass the Betz limit, signifying peak efficiency
and mitigating energy losses related to tip vortices [10–13]. Shrouded wind turbines offer
additional advantages, including noise reduction, reduced risk of blade failure, improved
bird safety, and enhanced performance in turbulent environments [14]. Despite being
promising for built environments and small-scale applications [14], hub flow separation can
impact shrouded turbine performance, hindering the shroud’s ability to capture mass [12].
The concentrator-diffuser-augmented wind turbine (CDaugWT) consists of a concentrator,
a cylindrical section (throat section) housing the wind turbine, and a diffuser with a flange,
as shown in Figure 1.
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Figure 1. The CDaugWT design.

The CDaugWT significantly enhances wind speed at the rotor or throat section [8,15].
Commonly referred to as a wind lens, the CDaugWT, when equipped with a flange,
can generate 2–5 times more power than conventional wind turbines of the same rotor
diameter and upstream wind speed [16]. The CDaugWT is advocated for use in low-wind-
speed areas and urban environments due to its ability to reduce drag forces and enhance
power coefficients.

Several research studies have contributed to the understanding and optimisation
of the CDaugWT. In [14], high-fidelity numerical modelling techniques were utilised to
investigate six geometric parameters of the wind lens and assess its responsiveness to
wind direction. The optimised configuration of the wind lens attained a power coefficient
(Cp) of 0.702 at a tip speed ratio of 1, surpassing the Betz limit. This optimisation also
narrowed the range of the torque ripple factor, establishing it as a practical and economical
design for power generation, especially in the built environment. A wind tunnel study
by [17] examined the influence of turbulence on a wind turbine equipped with a wind lens
under yaw conditions. They explored the wind lens turbine’s performance across varying
turbulence intensity levels (10% and 15%) and yaw angles (0◦ to 30◦). The findings indicated
that an increase in yaw angle correlated with a decrease in the power coefficient for the
turbine equipped with the wind lens. Additionally, the wind lens turbine demonstrated
superior performance compared to the turbine without the flow concentrator in turbulent
flow and yaw angles of 20◦ or less.
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The research conducted in [18] investigated the impact of a brimmed wind lens
on power augmentation in wind turbines. The numerical analysis focused on the low-
pressure region and its influence on vortices formed by the brim attached to the diffuser.
Comparative numerical predictions were employed to optimise torque augmentation.
The results demonstrated a substantial increase in wake formation and vortex strength
when incorporating the brimming effect into the diffuser. Furthermore, Ref. [19] utilised
computational fluid dynamics (CFD) to analyse a diffuser-augmented hydrokinetic turbine.
They predicted performance and flow speeds for various shrouds encasing the turbine,
including nozzle, diffuser, and combined nozzle-diffuser turbines. The CFD analysis
provided insights for optimising the turbine design to enhance hydrokinetic energy capture.
Modified nozzle-diffuser-augmented turbines demonstrated improved efficiency, with a
36.73% increase in the performance of the modified combined model, albeit with effects on
torque and power output due to pressure drop and rotor rotation.

Additionally, Ref. [20] conducted a feasibility study on a nozzle-diffuser duct as an
energy harvester for Kuroshio currents. It employed computational fluid dynamics simu-
lations in ANSYS Fluent to calculate the drag and mass coefficients of the duct anchored
to the seabed. The results indicated that the duct could remain stable 25 m below the sea
surface under normal wave conditions and achieve a peak power take-off of 15 kW.

In [21], computational analysis was carried out on three diffuser duct configurations:
the straight wind lens, curved wind lens, and vortex generators (VGs) wind lens. Their
study investigated the impact of these designs on wind turbine performance. The findings
revealed that the curved wind lens and VGs-assisted wind lens setups generated increased
turbulence behind the wind turbine, forming low-pressure areas. Notably, the curved
diffuser wind turbine achieved the highest power generation in this analysis.

Research efforts have also focused on enhancing the design and geometry of shrouded
wind turbines. Another study [22] employed wind lens technology to increase wind
velocity at the rotor. It conducted a numerical simulation for a wind turbine model, both
with and without a diffuser, optimising the diffuser’s geometry for maximum efficiency.
The study concluded that incorporating a diffuser with an 8◦ divergence angle around a
wind turbine operated at an optimal wind velocity of 2 m/s resulted in a power coefficient
of 0.6, surpassing the Betz limit of 59.3% for horizontal axis wind turbines. The investigation
in [23] found that converging–diverging ducts for low-speed wind electricity generation
can increase wind velocity by 1.32-fold at a 15◦ outlet angle and an initial wind speed
of 2.45 m/s. However, it identified external backflow zones that hinder internal flow.
The authors recommended counteracting this by creating a negative pressure zone outside
the duct, enhancing internal flow, and avoiding excessive outlet angles.

Furthermore, Ref. [24] developed a compact wind turbine featuring a variable nozzle-
diffuser duct. This innovative design allowed control over the duct’s geometry, optimising
its performance in various wind conditions. Using numerical simulations and experimental
testing, it achieved a significant average augmentation ratio of 39.75% and a rotor speed-up
ratio of 53% in low-wind speed tunnel experiments.

Geometric characteristics are key in governing the aerodynamic performance of shrouded
wind turbines [14,25]. Therefore, an in-depth exploration of the impact of each parameter is
essential [26]. It has been established that the ability of the concentrator to increase velocity
is determined by both the angle and length of the concentrator [9,27–30]. Concurrently, the
augmentation of velocity for diffusers is significantly influenced by the length of the diffuser
and its opening angle [31–34]. Moreover, adding a flange to the diffuser is thought to further
improve velocity augmentation [11,35–37]. While the cylindrical section primarily serves
as a housing for the turbine, its throat length is crucial as it can influence airflow, thereby
affecting velocity augmentation. It is important to recognise that interactions among these
parameters impact the overall airflow within the structure of the CDaugWT.

As emphasised by [14], the geometric parameters of the CDaugWT design exhibit
diverse impacts on downstream vortices. The concentrator angle stands out as a pivotal
factor influencing wind turbine performance, impacting wind velocity enhancement, flow

38



Sustainability 2024, 16, 1707

disruption prevention, and pressure recovery through the diffuser. Abdelrazek et al. [30]
emphasised the significance of a well-designed concentrator angle, highlighting its role
in significantly increasing wind velocity by guiding, collecting, and concentrating airflow
within the nozzle. Furthermore, their study reported that wind velocity experiences an
increase as the concentrator length increases from 0.15D to 0.2D, with fluctuations beyond
0.2D, where D represents the throat diameter. In a similar finding, Ref. [32] noted that wind
velocity tends to increase with the concentrator length up to a certain point, beyond which
it fluctuates.

Regarding the diffuser angle, Ref. [33] indicated that the optimal opening angle falls
within the range of 6◦ for intermediate and long diffusers, while 8◦ is ideal for short dif-
fusers. The authors of [37] suggested that increasing diffuser length while preventing flow
separation within the shroud results in enhanced velocity at the rotor. However, Ref. [36]
cautioned against excessive diffuser length, as it may lead to decreased performance due
to potential flow instability. The work in [32] highlighted the critical role of throat section
length in shrouded wind turbine systems, emphasising its significance in preventing non-
uniform velocity distribution before the turbine and potential flow separation behind the
rotor, particularly at the diffuser’s outlet. Adding a flange to the diffuser exit creates a
low-pressure region, drawing more mass flow and causing wind turbines to rotate and
automatically align with changes in wind direction [11,26].

Response surface methodology (RSM) is a versatile tool in engineering and optimising
wind energy systems. Researchers such as the authors of [38] underscore its crucial role in
elucidating parameter-response relationships and facilitating the identification of optimal
combinations. Rahmatian et al. [9] illustrate the prowess of RSM in optimising various
aspects of wind energy systems, including turbine energy recovery and control parameter
optimisation. The authors of [39] recognise RSM’s broad applicability, but they also ac-
knowledge its limitations when dealing with nonlinear outputs. The work described in [40]
introduces response surface optimisation (RSO) through the use of surrogate models, pro-
viding insights into the intricate impact of design parameters on vertical axis wind turbine
performance. Stressing the robustness of RSM, Ref. [41] positions it as a benchmark against
which machine learning methods in optimisation can be evaluated. Collectively, these
perspectives underscore the enduring significance of RSM in the ever-evolving landscape
of wind energy optimisation.

A review of studies suggests that the surface response methodology can be effectively
combined with other methods in the context of shrouded wind turbines. The authors of [9]
employed the response surface methodology (RSM) and genetic algorithms (GA) for the
optimisation of a convergent–divergent shroud in wind turbines. In their study, seven
parameters are simultaneously investigated: the throat diameter and the length and angle
of the duct components (nozzle, diffuser, and flange). The findings indicated a substantial
increase in wind speed of up to 2.18 times and a remarkable 3.94-fold improvement in
the wind turbine power coefficient. Additionally, the optimised duct configuration led to
reduced vortices behind the turbine, resulting in decreased noise levels and dynamic forces.
The analysis presented in [15] utilised a multi-objective genetic algorithm to optimise a
nozzle-divergent duct for wind turbines. The simultaneous optimisation of turbine and
duct components resulted in a significant 12.3% increase in turbine power. This approach
led to reduced drag and thrust coefficients, highlighting improved aerodynamic efficiency
and structural performance.

Ramayee and Supradeepan [42] conducted an optimisation study on a shrouded
wind turbine enclosure using numerical simulations and the design of experiments (DOE)
approach. The study identified optimal parameters, including a shroud length-to-diameter
(L/D) ratio of 0.4, shroud angle of 9◦, flap L/D ratio of 0.2, flap angle of 16◦, and a radial
distance of 0.2R. This optimisation resulted in a higher acceleration factor, reduced material
volume, and a shorter enclosure length. The authors of [38] optimised a wind turbine
with a concentrator and flap using the response surface method (RSM) and Box Behnken
experimental design. They conducted a 2D computational fluid dynamics (CFD) analysis
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and employed the actuator porous disc model. The combined approach achieved a 1.2-fold
increase in flow speed at the turbine zone. Bouvant et al. [43] optimised an Archimedes
screw turbine using response surface methodology and central composite design (CcompD).
The study achieved a predicted Cp of 0.5137.

A research study in [7] utilised response surface methodology (RSM) and computa-
tional fluid dynamics (CFD) to optimise duct performance. Employing central composite
design (CcompD) for 27 runs, the analysis revealed that optimal design parameters, such
as a duct throat diameter of 0.16 m, contraction ratio of 2, and length-to-throat diameter
ratio of 1.5, could increase power output up to six times. Numerical data emphasised
the substantial impact of well-selected parameters on wind-enhanced power and speed,
confirming the efficiency of RSM-enabled CFD simulations in optimising duct performance.
Netto et al. [44] conducted an optimisation study on an H-Darrieus vertical axis wind
turbine using surrogate-based optimisation with three models. The extreme learning ma-
chine surrogate outperformed with the smallest root mean square error at 11.24%, followed
by kriging at 17.64% and response surface at 22.17%. The authors of [11] optimised the
Archimedean-spiral type wind turbine (ASWT) for off-grid power generation using an
evolutionary algorithm with a kriging model and computational fluid dynamics simu-
lations. The optimised shroud design achieved a remarkable Cp of 0.502, a 2.58-fold
increase over the bare ASWT’s Cp of 0.195 at a tip speed ratio of 2.5. The authors of [41]
optimised a U-type Darrieus wind turbine (UDWT) using machine learning (ML) with a
back-propagation neural network and three optimisation algorithms (genetic algorithm,
particle swarm optimisation, and simulated annealing). The optimised UDWT achieved
significant power coefficient improvements, surpassing bare turbines in aerodynamic
and structural performance. Kaseb and Montazeri [45] utilised metamodels to optimise
converging–diverging ducted openings in high-rise buildings. They demonstrated that
such ducts could enhance wind power, with various metamodels yielding power estimates
showing up to 153% variation.

While considerable research has explored enhancing wind turbine power output
through CDaugWTs, further investigation is required to design a CDaugWT with optimal
geometrical parameters. For economic and structural reasons, the CDaugWT structure
must have an optimal length with increased velocity augmentation at the wind turbine
rotor. Many previous studies overlooked interactions that occur among the parameters
affecting throat velocity. This study addresses this gap by employing the surface response
methodology, an optimisation approach that considers the interactions between geometrical
parameters, thus enhancing the precision of the optimisation process. The study also seeks
to develop a velocity augmentation model that considers the relationship between the throat
velocity and six geometrical parameters and to identify optimal geometrical parameters
for CDaugWT design, utilising computational fluid dynamics simulations carried out in
ANSYS Fluent workbench and Design Expert 13 software. This is a novel approach because,
according to the authors, to their knowledge, this has never been done. The model is
important because it assists in the design process of the CDaugWT by accurately predicting
the throat velocity and is also utilised as an objective function in evolutionary optimisation
methods when finding optimal geometrical parameters.

The study, however, shares similarities with the work conducted in [7,9]. A contrast
arises in selecting geometric parameters, particularly lengths, as outlined in [9]. At the same
time, the authors of [7], in their mathematical model, focused on two response outputs
(velocity and power output), three parameters, and a design structure, which differ from
those of the present study. The present study also seeks to promote using surrogate models
and computational fluid dynamics simulations in shroud optimisation, a practice not
well-established in current wind energy applications.

Section 2 outlines the methodology employed in the research, introducing the ge-
ometry of the CDaugWT structure and outlining the surface response methodology and
numerical methodology. The main findings of the study are subsequently discussed in
Section 3, and finally, the conclusion is drawn in Section 4.
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2. Methodology

The methodology phase of the research focused on the development of the velocity aug-
mentation model and identifying the optimal geometrical parameters of the concentrator-
diffuser design that maximised the weighted average throat velocity of a CDaugWT. This
involved the application of response surface methodology using the central composite
design and numerical methodology to establish the velocity augmentation model. In
numerical methodology, computational fluid dynamics (CFD) was employed, utilising
ANSYS Fluent, Reynolds averaged Naiver–Stokes equations, and the shear stress transport
k-ω turbulence model. These phases are presented in each subsection.

2.1. Surface Response Methodology

The response surface methodology (RSM) was utilised in the present study. RSM is a
collection of mathematical and statistical techniques that serve the purpose of designing
and constructing empirical models [46–48]. It analyses the impact of various factors and
determines the optimal conditions [37,49,50]. An outline of the steps of the response surface
methodology is given in Figure 2.
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In the present study, six geometrical parameters were identified from the literature:
diffuser angle (θd), concentrator angle (θc), concentrator length (Lc), diffuser length (Ld),
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length of the throat (Lth), and flange height (H f ) [51–54]. Figure 3 depicts the geometry of
the empty CDaugWT with the design parameters shown.
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Research studies have indicated that these parameters affect the velocity augmentation
of the diffuser-augmented wind turbine (DaugWT), the concentrator-augmented wind
turbine (CaugWT), and the CDaugWT [26,29,55,56]. However, most of these studies
focused on analysing each parameter’s influence independently, while other parameters
were held constant [42,57,58]. The present study investigated the interaction between
these parameters and their contribution towards velocity augmentation. The geometrical
parameter range chosen based on previous literature studies is shown in Table 1.

Table 1. The parameter ranges.

Parameter Name Units Low High

A Diffuser angle (θd) degrees 9.5 10

B Concentrator angle (θc) degrees 19.5 20

C Concentrator length (Lc) mm 350 375

D Diffuser length (Ld) mm 950 975

E length of the throat (Lth) mm 65 70

F Flange height (H f ) mm 95 100

This study utilised the central composite design (CcompD) with n number of inde-
pendent variables (X1, X2, . . ., Xn), encompassing three segments: the standard 2n factorial
points with their origin at the centre, an axial section with (2n) points, and repeated runs at
the centre (nc) to prevent errors. The axial (star) points (2n) served for screening analysis,
maintaining constant variance of model prediction at points equidistant from the design
centre. The parameter nc represents the number of central points providing test replicates
at the centre, crucial for the independent estimation of the experimental error [59]. The
number of experiments needed in a CcompD to quantify the effects of six factors is given
by Equation (1) [60,61].

N = 2n + 2n + nc = 26 + 2× 6 + 10 = 86 (1)

In experiments involving six factors, the CcompD included 64 factorial points, 12 axial
points, and 10 replicates at central points, resulting in a total of 86 tests (N), as indicated in
Equation (1). Once the desired range of variable values was defined, they were coded at five
levels to±1 for the factorial points, 0 for centre points, and±α for the axial points [37,59,62].
The experimental sample schedule used in CFD analysis is given in Table 2.

42



Sustainability 2024, 16, 1707

Table 2. Central composite experimental design (CcompD) samples.

Run A: θd[◦] B: θc[◦] C: [Lc/mm] D: [Ld/mm] E: [Lth/mm] F: [Hf/mm]

1 10 19.5 350 975 70 100

2 9.8 19.8 362.5 962.5 67.5 97.5

3 9.5 20 350 950 65 100

4 9.5 19.5 350 950 70 95

5 9.5 20 375 950 70 95

6 9.8 19.8 362.5 962.5 67.5 97.5

7 10 20 350 975 65 95

8 9 19.8 362.5 962.5 67.5 97.5

9 9.8 19.8 362.5 927.1 67.5 97.5

10 10 20 350 950 65 95

11 9.8 19.8 362.5 997.9 67.5 97.5

12 9.5 20 375 950 70 100

13 10 20 350 950 65 100

14 9.5 19.5 350 950 65 100

15 9.8 19.8 362.5 962.5 74.6 97.5

16 9.8 19.8 327.1 962.5 67.5 97.5

17 10 19.5 375 975 70 95

18 9.8 19 362.5 962.5 67.5 97.5

19 10 19.5 350 975 65 95

20 9.8 19.8 362.5 962.5 67.5 97.5

21 9.5 19.5 350 975 65 95

22 9.5 19.5 350 975 70 95

23 10 20 350 975 70 100

24 9.5 20 350 950 65 95

25 9.5 19.5 375 950 65 100

26 9.8 19.8 362.5 962.5 67.5 97.5

27 9.5 20 350 950 70 95

28 10 19.5 350 975 70 95

29 9.5 19.5 350 975 70 100

30 9.8 19.8 362.5 962.5 67.5 97.5

31 9.5 20 350 975 70 100

32 9.5 19.5 350 975 65 100

33 9.5 19.5 375 975 65 100

34 9.5 20 350 950 70 100

35 10 20 350 950 70 100

36 9.5 20 375 975 65 95

37 10 20 375 950 70 95

38 10 19.5 375 950 70 95

39 9.5 19.5 375 975 70 100

40 10 19.5 375 975 65 95

41 10 19.5 375 950 65 100
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Table 2. Cont.

Run A: θd[◦] B: θc[◦] C: [Lc/mm] D: [Ld/mm] E: [Lth/mm] F: [Hf/mm]

42 10.5 19.8 362.5 962.5 67.5 97.5

43 9.8 19.8 362.5 962.5 60.4 97.5

44 9.8 19.8 362.5 962.5 67.5 97.5

45 9.8 19.8 362.5 962.5 67.5 97.5

46 10 19.5 375 950 65 95

47 9.5 19.5 350 950 70 100

48 9.5 19.5 375 950 70 95

49 9.8 19.8 362.5 962.5 67.5 104.6

50 9.5 20 375 950 65 100

51 10 20 375 950 70 100

52 9.5 19.5 350 950 65 95

53 9.8 19.8 362.5 962.5 67.5 97.5

54 10 19.5 375 975 70 100

55 9.5 20 375 975 70 95

56 9.5 20 375 975 70 100

57 10 19.5 350 950 70 100

58 10 19.5 350 975 65 100

59 9.8 19.8 362.5 962.5 67.5 97.5

60 10 20 375 975 70 95

61 10 19.5 375 950 70 100

62 9.8 19.8 362.5 962.5 67.5 97.5

63 10 20 350 975 65 100

64 10 20 350 975 70 95

65 9.5 19.5 375 975 70 95

66 9.5 19.5 375 950 70 100

67 9.8 20.5 362.5 962.5 67.5 97.5

68 9.5 19.5 375 975 65 95

69 10 20 350 950 70 95

70 10 20 375 975 65 100

71 10 20 375 975 70 100

72 9.5 20 350 975 65 95

73 9.5 20 350 975 65 100

74 9.5 20 350 975 70 95

75 9.8 19.8 397.9 962.5 67.5 97.5

76 10 19.5 350 950 70 95

77 9.5 19.5 375 950 65 95

78 9.8 19.8 362.5 962.5 67.5 90.4

79 10 19.5 375 975 65 100

80 10 20 375 975 65 95

81 10 20 375 950 65 95

82 10 19.5 350 950 65 95
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Table 2. Cont.

Run A: θd[◦] B: θc[◦] C: [Lc/mm] D: [Ld/mm] E: [Lth/mm] F: [Hf/mm]

83 9.5 20 375 950 65 95

84 10 19.5 350 950 65 100

85 9.5 20 375 975 65 100

86 10 20 375 950 65 100

The 86 prepared empty concentrator-diffuser geometries (experimental samples), as
depicted in Table 2, were subsequently designed and simulated using ANSYS Fluent
workbench for 2D CFD analysis. This analysis aimed to obtain throat velocity values (Vth),
which were rendered dimensionless by dividing them by the inlet free stream velocity (V∞)

to yield the throat velocity augmentation ratio
(

Vth
V∞

)
. The CFD experimental results of

(
Vth
V∞

)
were subsequently used as input data in Design Expert 13.0 software to establish

the velocity augmentation model. This model was further analysed and optimised to
obtain the optimal geometrical parameters for the CDaugWT design. The present study,
guided by insights from prior research [7,41,43,63] and the fact that the first-order multiple
linear model is limited to a 2-level factorial fit due to the strong curvature of the response
surface [48], led to the adoption of the more flexible and versatile second-order multiple
linear model, or quadratic model. Equation (2) provides this quadratic regression equation
for the wind speed augmentation model [7,38,43,64].

y = α0 +
n

∑
i=1

αixi +
n−1

∑
i=1

n

∑
j>1

αijxixj +
n

∑
i=1

αiix2
i + ε0 (2)

where y represents the predicted response variable or objective function (throat wind speed
augmentation ratio Vth

V∞
, α0 is the offset term, αi is the linear effect, αij is the squared effect,

and αii is the interaction effect. ε0 represents the total error; this value is usually assumed
to follow a normal distribution with a mean of zero.

To assess the validity and significance of the wind speed augmentation model devel-
oped using response surface methodology (RSM), this study employed analysis of variance
(ANOVA) and a lack-of-fit test [65]. The model’s fitness was crucial for optimising the geo-
metrical parameters of the CDaugWT and the velocity augmentation ratio. Various metrics,
including F-value, correlation coefficient

(
R2), adjusted determination coefficient (adjusted

R2), the p-value for regression parameters, and adequate precision were used to check the
model adequacies. The model was considered adequate when the p-value was <0.05, lack-
of-fit p-value was >0.05, R2 > 0.9, and adequate precision > 4 [50,66]. The proposed model’s
95% confidence level evaluated the significance of independent geometrical parameters on
the velocity augmentation ratio. R2, ranging from 0 to 1, indicated how well the model fit
the data, with a value closer to 1 signifying a better fit. Additionally, p-values reflected the
significance of parameters on the objective function, with lower p-values indicating a more
significant role. The response surface optimiser in Design Expert 13 was used to obtain the
optimum design parameters, and a reduced velocity augmentation model was obtained.
The response surface (contours and 3D plots) was plotted and analysed at the optimised
condition. The obtained values of geometrical parameters were verified with CFD analysis
in ANSYS Fluent workbench.

2.2. Numerical Methodology
2.2.1. Governing Equations

The current study involved two-dimensional, incompressible, steady-state simula-
tions. In the present study, only the continuity and momentum equations were considered.
The conservation of energy equation was excluded from the analysis due to the negligi-
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ble heat transfer and the assumption of incompressible flow. The governing equations
considered were as follows:

Continuity equation
∂(ρui)

∂xi
= 0 (3)

Momentum equations

∂
(
ρuiuj

)

∂xj
= − ∂p

∂xi
+

∂

∂xj

[
ρv

(
∂ui
∂xj

+
∂uj

∂xi

)
− ρu′iu

′
j

]
(4)

In Equation (4)
(
−ρu′iu

′
j

)
denotes Reynolds stresses, p, ui, u′i, and v, respectively,

denote mean static pressure, mean velocity, turbulent fluctuation, and kinematic viscosity.

2.2.2. Turbulence Model Equations

The study employed the widely used shear stress transport (SST) k-ω turbulence model,
which combines the accuracy of the k-ω model near the wall with the independence of
the k-εmodel in the far field [67–69]. This model effectively investigates boundary layers,
considering factors such as free-stream flow turbulence, pressure gradient, and heat transfer
influences, particularly in shrouded wind turbines [15,37,70,71]. The SST k-ωmodel transi-
tions from near-wall regions to far-from-wall regions, accurately predicting flow separation
and shear flows [11]. Notably, it is suitable for adverse pressure gradients, insensitive
to free-stream turbulence in the far wake region, and eliminates the need for damping
functions [72]. The model choice was based on extensive literature recommendations for
aerodynamic purposes, especially in shrouded wind turbines [9,11,12,37,40,42,67–69,72–78].

The transport equations for the SST k-ω turbulence model were as follows:
Turbulent kinetic energy (k)

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[
Γk

∂k
∂xj

]
+ Gk −Yk + Sk (5)

Specific dissipation rate (ω)

∂(ρω)

∂t
+

∂(ρωui)

∂xi
=

∂

∂xj

(
Γω

∂ω

∂xj

)
+ Gω −Yω + Dω + Sω (6)

where Gk, denotes the generation of turbulence kinetic energy resulting from the mean
velocity gradient, which can be computed using the following Equation (7):

Gk = −ρ
uiuj

∂

∂uj

∂xi
(7)

The generation of Gω is given by (8)

Gω = α
ω

k
Gk (8)

The value of coefficient α depends on k and ω, and it is determined in such a way that
it tends towards unity in the far field regions of the flow.

The terms Γk and Γω, represent the effective diffusivity of k and ω, respectively,
shown as:

Γk = µ +
µt

σk
(9)

Γω = µ +
µt

σω
(10)

where σk and σω, are the turbulent Prandtl numbers for k and ω, respectively. µt is the
turbulent viscosity; Yk and Yω , describe turbulence-induced k andω dissipation. The cross-
diffusion term is controlled by Dω , while user-defined source terms are stated as Sk and Sω .
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The SST k-ωmodel is classified as a low Reynolds turbulence model, which means that it
is designed for regions where boundary layer effects are significant. To meet this criterion,
the height of the first cell within the boundary layer should fall within the viscous sublayer.
A recommended guideline is to ensure that the y+ value of the mesh on the wall surfaces is
approximately 1 [12,68].

This dimensionless wall distance, y+, is given by the following equation:

y+ =
u∗ y

ν
(11)

where u∗ stands for the friction velocity, y for the distance between the first node and the
wall, and v for the kinematic viscosity [12,77].

2.2.3. Computational Domain and Boundary Conditions

The CDaugWT shroud was modelled using the design modeller in ANSYS Fluent. In
order to reduce the computational time, a 2D axisymmetric domain was employed for the
study [79]. The dimensions of the computational domain are illustrated in Figure 4 as a
function of the throat diameter (D). The domain surrounding the CDaugWT shroud had
a rectangular shape with 15D length and 5D height. The inlet and outlet of the domain
were positioned at a distance of 5D upstream and 10D downstream of the CDaugWT
shroud, respectively.
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2.2.4. Solver Settings and Boundary Conditions

Before conducting the fluent analysis, the 2D computational mesh was prepared using
the pressure-based solver and the absolute velocity formulation. A single solver processor
was utilised. The fluid medium employed was air, with a density of 1.225 kg/m3 and a
viscosity of 1.7894× 10−5kg/ms. Furthermore, the boundary conditions were defined with
the inlet area designated as a velocity inlet, set at a velocity of 2 m/s, and the outlet area
configured as a pressure outlet set at 0 Pa [80]. The wall boundary was established as a slip
condition with a zero shear boundary condition, and the CDaugWT shroud was specified
as a no-slip boundary [81]. The pressure-velocity coupling was achieved using a coupling
scheme. The governing equations were solved using the second-order upwind method [68].
The chosen turbulence model was the SST k-ω, described by Equations (5) and (6). This
model combines elements of the k-ε and k-ε turbulence models, as previously mentioned.
The current study employed a root mean square (RMS) residual value of 10−6 as the
stopping criterion for continuity, momentum, velocity components, and turbulence equa-
tions [64,68,76]. The solution converged after approximately 121 iterations.
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2.2.5. Mesh Generation, Quality, and Grid Independence Test

The study employed the ANSYS Fluent 2022R1 software meshing tool for model cre-
ation and mesh generation. An unstructured quadrilateral mesh consisting of 84,388 cells
and 85,096 nodes was utilised. To satisfy the required condition of y+ = 1 for the SST k-ω
turbulence model, the height of the first layer was set to 1.1 mm. Specifically, the wall
boundaries of the shroud were equipped with ten inflation layers, each with a growth rate
of 1.2, as illustrated in Figure 5. The mesh size was gradually increased to achieve solution
convergence while avoiding abrupt increases in mesh size, because they can hinder solution
convergence [82].

Sustainability 2024, 16, x FOR PEER REVIEW 13 of 30 
 

 
Figure 5. Computational meshing and inflation layers on the shroud. 

Furthermore, the assessment of mesh quality considered aspects such as aspect ratio, 
orthogonal quality, and skewness [68,83]. To ensure solution convergence, strict criteria 
were applied, maintaining a maximum aspect ratio of 25 or less and a maximum skewness 
of 0.9, even for intricate geometries [82]. ANSYS recommends a maximum skewness ratio 
below 0.95 for optimal mesh quality, categorising average skewness ratios as excellent (0–
0.25), very good (0.25–0.50), good (0.50–0.80), acceptable (0.80–0.94), poor (0.95–0.97), and 
unacceptable (0.98–1.00) [84]. This study’s maximum skewness ratio was 0.7392, well be-
low the recommended threshold, and the average skewness ratio was 0.0827, indicating 
excellent mesh quality. The low skewness enhanced simulation accuracy and stability, 
confirming the mesh’s perfection. Orthogonal quality, another crucial parameter, is 
deemed excellent between 0.95 and 1.00, very good between 0.70 and 0.95, good between 
0.20 and 0.69, acceptable between 0.10 and 0.20, poor between 0.001 and 0.10, and unac-
ceptable below 0.001 [84]. Meeting the recommended minimum orthogonal quality rate 
above 0.1, the simulation’s mesh exhibited a minimum orthogonal quality rate above 
0.167. Furthermore, the average orthogonal quality rate, indicating perfect quality, was 
0.9805 in this simulation. Table 3 shows mesh parameters. 

Table 3. Details of the mesh parameters. 

Mesh Metric Element Quality Aspect Ratio Skewness Orthogonal 
Quality 

Min 0.2719 1 1.3508 × 10ିଵ 0.50298 
Max 0.9995 5.1535 0.7392 1 

Average 0.9246 1.0822 0.0827 0.9805 
Standard Deviation 0.1089 0.1422 0.1163 0.0487 

Conducting a mesh independence study is crucial to ensure that the obtained solu-
tion remains unaffected by mesh resolution or cell size [68]. In this study, a mesh inde-
pendence analysis aimed to enhance accuracy by minimising the impact of cell size on 
computational results while reducing costs. For the grid independence test, eight different 

Figure 5. Computational meshing and inflation layers on the shroud.

Furthermore, the assessment of mesh quality considered aspects such as aspect ratio,
orthogonal quality, and skewness [68,83]. To ensure solution convergence, strict criteria
were applied, maintaining a maximum aspect ratio of 25 or less and a maximum skewness
of 0.9, even for intricate geometries [82]. ANSYS recommends a maximum skewness ratio
below 0.95 for optimal mesh quality, categorising average skewness ratios as excellent
(0–0.25), very good (0.25–0.50), good (0.50–0.80), acceptable (0.80–0.94), poor (0.95–0.97),
and unacceptable (0.98–1.00) [84]. This study’s maximum skewness ratio was 0.7392, well
below the recommended threshold, and the average skewness ratio was 0.0827, indicating
excellent mesh quality. The low skewness enhanced simulation accuracy and stability,
confirming the mesh’s perfection. Orthogonal quality, another crucial parameter, is deemed
excellent between 0.95 and 1.00, very good between 0.70 and 0.95, good between 0.20 and
0.69, acceptable between 0.10 and 0.20, poor between 0.001 and 0.10, and unacceptable
below 0.001 [84]. Meeting the recommended minimum orthogonal quality rate above
0.1, the simulation’s mesh exhibited a minimum orthogonal quality rate above 0.167.
Furthermore, the average orthogonal quality rate, indicating perfect quality, was 0.9805 in
this simulation. Table 3 shows mesh parameters.
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Table 3. Details of the mesh parameters.

Mesh Metric Element
Quality Aspect Ratio Skewness Orthogonal

Quality

Min 0.2719 1 1.3508× 10−10 0.50298

Max 0.9995 5.1535 0.7392 1

Average 0.9246 1.0822 0.0827 0.9805

Standard Deviation 0.1089 0.1422 0.1163 0.0487

Conducting a mesh independence study is crucial to ensure that the obtained solution
remains unaffected by mesh resolution or cell size [68]. In this study, a mesh independence
analysis aimed to enhance accuracy by minimising the impact of cell size on computational
results while reducing costs. For the grid independence test, eight different grid sizes
were employed. The number of grid elements was gradually increased from 30,159 to
198,365 until minimal changes were observed in the results (Table 4 and Figure 6). The find-
ings revealed that from grid number 5, comprising 84,388 elements, throat velocity deviated
by less than 0.29%. Considering mesh independence and computational efficiency, grid
number 5 was determined as the optimal grid size.

Table 4. Study of mesh independency.

Grid No Number of Elements Average Throat Velocity (Vth) Relative Difference (%)

1 30,159 2.7854613 -
2 40,238 2.7895242 0.146
3 49,663 2.7918505 0.083
4 66,047 2.7939905 0.077
5 84,388 2.7858975 0.290
6 120,840 2.7858098 0.003
7 192,859 2.7864958 0.025
8 198,365 2.7863879 0.004
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3. Results and Discussion
3.1. CFD Analysis

The outcomes and discussions concerning the performance of a CDaugWT struc-
ture under six geometrical parameters are presented and explored. The design’s perfor-
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mance was influenced by the diffuser angle, concentrator angle, length of the concentrator,
length of diffuser, length of throat, and flange height. Utilising ANSYS Fluent workbench,
86 randomly designed runs based on response surface methodology (RSM) were executed
to optimise the area-averaged throat velocity and maximum velocity inside the flanged
CDaugWT design analysed in two dimensions. Figures 7–9 provide details for each case of
the 86 runs: the area-weighted averaged throat velocity, maximum velocity, and throat ve-
locity augmentation ratio. The values of the six parameters used in each of the 86 simulated
runs in two-dimensional (2D) ANSYS Fluent are listed in Table 2. Figure 7 shows that
the maximum velocity was recorded in case run 67, with a velocity of 5.48 m/s, while the
lowest value for maximum velocity was recorded in case run 47 at 5.23 m/s. The average
maximum velocity for all 86 runs in Figure 7 was 5.35 m/s. Correspondingly, the average
maximum velocity augmentation ratio

(
Vth
V∞

)
was determined as 2.68, given an inlet velocity

of 2 m/s. This finding suggests that the inlet velocity increased approximately 2.68 times
compared to the initial velocity. Notably, this value is slightly higher than the 2.22 times
reported in a study conducted by [9].
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Figure 9. Throat velocity augmentation ratio for each of the 86 runs.

Figure 8 shows that the highest velocity, recorded in case run 11 at 3.92 m/s, corre-
sponds to a throat velocity augmentation ratio of 1.96, as illustrated in Figure 9. The area-
weighted averaged throat velocities in Figure 8 and their corresponding velocity augmenta-
tion ratios in Figure 9 were used to develop the model, as they represent a larger throat
section area than the maximum velocity values depicted in Figure 7.

Validation of CFD Model

To validate the CFD model, we referenced [85] and adopted the same computational
domain and baseline shroud geometry presented in Figure 10. The mesh structure em-
ployed for validation can be seen in Figure 11. The CFD model’s validation involved
comparing the graph of U/Uo versus x/D with the results of Abe and Ohya, as illustrated
in Figure 12, where U, Uo, x, and D represent the free stream velocity, streamwise velocity,
streamwise coordinate, and inlet diameter of the diffuser, respectively. Notably, the simu-
lations indicated that the highest value of U/Uo was 1.29% lower than the results of Abe
and Ohya. This small deviation is likely attributable to minor shroud geometry and mesh
structure differences but remains within acceptable margins.
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3.2. ANOVA Analysis

In the present study, response surface methodology (RSM) utilising the central compos-
ite design method was employed to investigate the interaction of geometrical parameters
and their effects on the velocity augmentation ratio. Design Expert 13 software was used to
analyse empirically collected data and develop a second-order surface response quadratic
model by estimating model component coefficients. The coefficients for the model com-
ponents were determined through one-way ANOVA. Additionally, ANOVA was applied
to evaluate the adequacy of results concerning input parameters, with a model deemed
significant if it had a p-value below 0.05. The model’s validity was assessed using the
coefficient of regression (R2), and its statistical significance was measured by the F-value.

Furthermore, the study examined pure errors and residuals at repeated points through
the lack-of-fit test; 2D and 3D response surface plots were also generated. Additionally, a
numerical optimisation method with the desirability function in Design Expert 13 software
was carried out to determine optimal geometrical parameters and confirm the accuracy
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of the velocity augmentation ratio model in predicting the desired results. Finally, CFD
analysis was performed with the obtained optimal set of geometrical parameters to validate
the throat velocity predicted by the developed velocity augmentation ratio model.

3.3. Mathematical Model Fitting and Assessment

The RSM proposed a reduced quadratic model that relates the velocity augmentation
ratio to the six independent geometrical parameters. The model summary statistics for the
velocity augmentation ratio are given in Table 5. The reduced quadratic model was not
aliased and was adequately significant to represent the correlation between the velocity
augmentation ratio and its six independent geometrical parameters. It is on this basis that
the model was selected for model fitting.

Table 5. Summary of the model.

Source Std. Dev. R2 Adjusted R2 Predicted R2 PRESS

Linear 0.0030 0.8905 0.8822 0.8642 0.0009
2FI 0.0030 0.9128 0.8842 0.8684 0.0009

Quadratic 0.0022 0.9581 0.9387 0.8743 0.0008 Suggested
Cubic 0.0021 0.9785 0.9430 −1.1482 0.0144 Aliased

The wind speed augmentation model
(

Vth
V∞

)
, in terms of coded factors, is given by

Equation (12), and in terms of actual factors is given by Equation (13).

Vth
V∞

= 1.93782 + 0.00174831θd + 0.000856908θc + 0.00306857Lc

+0.00758128Ld + 0.00153922Lth + 0.000909229H f
+0.000669089θdLc + 0.0007775LcLd + 0.000452187LdLth
−0.00136721θd

2 − 0.000438725θc
2 − 0.000500042Lc

2

(12)

Vth
V∞

= −0.752974 + 0.355948θd + 0.280702θc − 0.00431128Lc

−0.00217402Ld − 0.0133117Lth + 0.000363692H f
+0.000214108θdLc + 4.976× 10−6LcLd + 1.447× 10−5LdLth
−0.0218753θd

2 − 0.00701959θc
2 − 3.20027× 10−6Lc

2

(13)

where Vth is the throat velocity, V∞ is the inlet upstream velocity, θd is the diffuser angle, θc is
the concentrator angle, Lc is the length of the concentrator, Ld is the length of the diffuser,
Lth is the length of the throat, and H f is the flange height.

The velocity augmentation serves as the response, and θd, θc, Lc, Ld, Lth, and H f , repre-
sent the coded terms for the examined parameters. The value and sign of each coefficient of
the response parameters indicate the nature of the effects, with a negative sign suggesting
antagonistic effects and a positive sign signifying synergistic effects. In accordance with
the proposed correlation in Equation (12), the relative significance of the independent
parameters is as follows: θd (diffuser angle) with a coefficient value of 0.00174831, θc (con-
centrator angle) with a coefficient value of 0.000856908, Lc (length of the concentrator) with
a coefficient value of 0.00306857, Ld (length of the diffuser) with a coefficient value of
0.00758128, Lth (length of the throat) with a coefficient value of 0.00153922, and H f (flange
height) with a coefficient value of 0.000909229. This confirms that all of the parameters
had a positive effect on the velocity augmentation. Additionally, the maximum increasing
impact of the dependent factor was 0.0007775, related to the interaction between Lc and Ld
parameters. The coded parameters in the quadratic model were beneficial for predicting
the relative significance of the factors by comparing the coefficients of the factors [86].
By default, the factors’ low and upper levels were coded as −1 and +1, respectively [66].
The coded equations were useful for understanding the relative effects of the parameters by
comparing the coefficients of the factors [86]. In contrast, Equation (13) with actual factors
specified in original units was used for predictions in the original factor units. Unlike the
coded Equation (12), it was not suitable for determining the relative impact of factors, as
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coefficients were scaled for unit compatibility, and the intercept was not centred in the
design space. The findings presented in Figure 13 reveal a consistent order of influence on
velocity augmentation, as observed in the sequence: D > C > A > E > F > B, aligning with
the patterns described in Equation (12). Notably, the length of the concentrator and the
length of the diffuser emerged as the most influential factors, exerting the most significant
impact on velocity augmentation.
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Figure 13. The perturbation plot for velocity augmentation within the design space, showing pa-
rameters such as (A) diffuser angle, (B) concentrator angle, (C) length of concentrator, (D) length of
diffuser, (E) length of throat, and (F) flange height.

The analysis of model fitness included a lack-of-fit test and analysis of variance
(ANOVA). The ANOVA results in Table 6 revealed a calculated p-value of <0.0001, sig-
nifying the statistical significance (p-value < 0.05) of the quadratic model with a low
probability of error. The p-values less than 0.0500 in the ANOVA indicated the significance
of model terms A, B, C, D, E, F, AC, CD, A2, B2, and C2 in this study. For the velocity
augmentation model, the maximum R2 and adjusted R2 were 0.9581 and 0.9387, respec-
tively, with a standard deviation of 0.0022. The R2 value of 0.9581 (Table 5) indicated that
independent parameters accounted for 95.81% of the variation in the velocity augmenta-
tion ratio. A quadratic model with an R2 value exceeding 0.9 has the strongest positive
correlation [66,87]. Adequate precision, measured by a ratio value of 49.655, indicated a
satisfactory signal-to-noise ratio, considering a ratio of adequate precision greater than
four is acceptable [7,88]. Model significance and proper variable fitting were affirmed by
the F-value of 106.67, with only a 0.01% probability that such a high F-value could arise
due to noise. The non-significant lack of fit (p-value = 0.0866) can be used to navigate
design spaces with a low probability of error [86]. Furthermore, the low coefficient of
variation (C.V.% = 0.1149) and the good agreement between predicted and actual velocity
augmentation values in Figure 14A suggest the experiment’s reliability.
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Table 6. Analysis of variance for velocity augmentation model.

Source Sum of Squares df Mean Square F-Value p-Value

Model 0.0063 12 0.0005 106.67 <0.0001 significant
A-θd 0.0003 1 0.0003 50.98 <0.0001
B-θc 0.0001 1 0.0001 12.25 0.0008
C-Lc 0.0008 1 0.0008 152.04 <0.0001
D-Ld 0.0046 1 0.0046 929.89 <0.0001
E-Lth 0.0002 1 0.0002 38.37 <0.0001
F-Hf 0.0001 1 0.0001 13.39 0.0005
AC 0.0000 1 0.0000 5.84 0.0182
CD 0.0000 1 0.0000 7.82 0.0066
DE 0.0000 1 0.0000 2.65 0.1082
A2 0.0003 1 0.0003 54.09 <0.0001
B2 0.0000 1 0.0000 5.57 0.0209
C2 0.0000 1 0.0000 5.85 0.0180

Residual 0.0004 73 4.947 × 10−6

Lack of Fit 0.0003 64 5.320 × 10−6 2.32 0.0866 not significant
Pure Error 0.0000 9 2.294 × 10−6

Cor Total 0.0067 85
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3.4. Regression Analysis

Figure 14A shows a plot of the actual value against the predicted value for velocity
augmentation, in which the points were randomly placed on a straight line. These results
confirmed that the predicted and actual values were in good agreement with the high
acceptability of the models and, therefore, can be utilised to analyse and predict the velocity
augmentation [7,86]. Figure 14B depicts the normal probability chart of the studentised
residuals utilised to assess the adequacy and suitability of the velocity augmentation model.
As shown in the graph, the points form a straight line, affirming that the errors were
distributed normally with a mean of zero and a fixed value, thereby confirming the model’s
adequacy [37,62,65,86,89]. Similar to the findings of [7], the results show no evidence to
dispute any independence violations or hypotheses of permanent variance. In Figure 14C,
a random distribution of points is displayed, varying up and down the x-axis within the
range of −3.59982 to +3.59982, enclosed by the red line, without exhibiting any noticeable
trends. This observation serves as an assessment of the adequacy and reliability of the
velocity augmentation model [65]. This scenario suggests that the velocity augmentation
model is reasonably exempt from any violations of the independence or constant variance
assumptions [86]. In Figure 14D, a chart displays internally studentised residuals plotted
against the predicted velocity augmentation ratio. The residuals exhibit a random distribu-
tion within the range of +3.00 to −3.00, suggesting that the velocity augmentation model
effectively captures the relationship between the independent geometrical parameters and
the velocity augmentation ratio [59,90].

3.5. Interaction Effects of Geometrical Parameters on Velocity Augmentation

The surface plots (three-dimensional and contour) for the results achieved are shown
in Figures 15–17, where the data demonstrate the combined effect of the geometrical
parameters. The interaction between the two geometrical parameters (length of diffuser
and length of concentrator) on the velocity augmentation ratio was significant compared
to the other parameters in Figures 15 and 17. It must noted that the concentrator length
and diffuser angle in Figure 15 interact in the same way that the diffuser length and
concentrator length do in Figure 16. In Figure 15, the contour and response surface plots
illustrate the velocity augmentation ratio as a function of concentrator length and diffuser
angle. The results reveal that as the concentrator length increased with an increase in the
diffuser angle, the velocity augmentation ratio also increased. However, once an optimal
diffuser angle was reached, as depicted in Figure 15, the velocity augmentation ratio started
to decrease. The interaction of these parameters was weak, as indicated by the ANOVA
analysis. Consistent with these findings, previous studies such as [31,91] observed that an
increase in the diffuser angle leads to an increase in both velocity inside the diffuser and
flow separation. Subsequently, further increasing the diffuser angle starts to decrease the
velocity inside the diffuser.

The curved slope of the response surface plot in Figure 16 indicates that the length
of the diffuser had a greater influence on the velocity augmentation than the length of the
concentrator and diffuser angle in Figure 15. This indicates its influential role in increasing
the throat velocity in a CDaugWT design. As shown in Figure 16, a rise in the length
of the diffuser with the increase in the length of the concentrator was responsible for
the increase in the velocity augmentation ratio. However, it must be noted that once an
optimal concentrator length was reached, any further increase in length started to impact
the flow negatively, hence the decrease in the velocity augmentation ratio, as shown in
the graph [32,92]. In addition, Ref. [37] asserted that an extended concentrator length
intensifies flow separation in the diffuser zone with CDaugWT design, causing a decrease
in the velocity augmentation ratio, as shown in Figure 16.

In Figure 17, the velocity augmentation ratio is depicted as a function of the length of
the throat and length of the diffuser at constant values (diffuser angle = 9.75◦, concentrator
angle = 19.75◦, length of concentrator = 362.5 mm, flange height = 97.5 mm). By keeping
the other parameters constant at those given values, the maximum velocity augmentation
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ratio showed a positive correlation with the length of the diffuser. Still, it remained
constant in relation to the length of the throat. This observation is not surprising, as this
combination in the ANOVA analysis had a p-value of 0.1082, greater than 0.1, indicating
that the model term was classified as insignificant. However, it was required to support
the hierarchy in the model. On the other hand, it is interesting to note that the increase in
velocity augmentation ratio with the increase in diffuser length was reported in previous
publications [33,36,54,91,93,94]. 
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concentrator length and diffuser angle.

3.6. Optimisation of Design Parameters through the Desirability Function (SRO)

The optimisation process in this study employed the desirability function, with values
ranging from 0 (undesirable) to 1 (desirable). Utilising a numerical optimisation method
(SRO), the procedure identified points that maximise the desirability function [66]. Numer-
ical optimisation allows for selecting desirable values for input parameters and responses.
Various input optimisations, such as range, maximum, minimum, target, and none (for
responses), can be chosen to establish an optimised output value under specific condi-
tions [7,88]. In this study, specific ranged values were assigned to the input variables, while
the objective was to achieve a maximum response. The optimisation ramp in Figure 18
and Table 7 displays the optimal values, with a maximum velocity augmentation ratio
of 1.953 and a desirability function value of 0.9. The optimal projected geometrical parame-
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ters were as follows: (A) diffuser angle = 10◦, (B) concentrator angle = 20◦, (C) length of
concentrator = 375 mm, (D) length of diffuser = 975 mm, (E) length of throat = 70 mm, and
(F) flange height = 100 mm. The optimisation proved successful, given the proximity of
the desirability value to 1 (0.9). A confirmatory CFD analysis yielded a throat velocity of
3.898 m/s with the optimal geometrical parameters values obtained from the desirability
function (SRO) utilised. This result is slightly below the model-predicted throat velocity of
3.906 m/s. This demonstrates the suitability and accuracy of the developed model.
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Table 7. Ideal ranges for response and designated parameters.

Parameter Target Minimum Maximum Optimised Value

Diffuser angle (θd) In range 9.50 10.00 10◦

Concentrator angle (θc) In range 19.50 20.00 20◦

Concentrator length (Lc) In range 350.00 375.00 375

Diffuser length (Ld) In range 950.00 975.00 975

Length of the throat (Lth) In range 65.00 70.00 70

Flange height (Hf) In range 95.00 100.00 100

Velocity augmentation ratio (Vth
V∞

) Maximum 1.91887 1.95795 1.95313

Desirability - 0 1 0.9
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Figure 18. Desirability ramp for adjustment of settings for maximum available velocity augmentation
ratio optimised values for (A) diffuser angle, (B) concentrator angle, (C) length of concentrator,
(D) length of diffuser, (E) length of throat, and (F) flange height.

3.7. Validation of the Velocity Augmentation Model with CFD Results

Table 8 displays the optimal geometrical parameter values, specifically the throat
velocity Vth values obtained from the surface response optimisation algorithms (SRO)
alongside CFDVth, which represents the throat velocity values from CFD analysis in
ANSYS Fluent, utilising the optimal geometrical parameter values from the optimisation
method (SRO). The results indicate a consistent alignment of the SRO outcomes with
the values derived from CFD analysis. The percentage difference of 0.2% was obtained,
highlighting the developed model’s excellent accuracy and reliability in predicting the
CDaugWT design’s throat velocity.

Table 8. Validation of model-predicted values using CFD analysis.

Method θd θc Lc Ld Lth Hf Vth CFDVth % Difference

SRO 10 20 375 975 70 70 3.906 3.898 0.2

4. Conclusions

This study developed a velocity augmentation model using RSM with CcompD,
illustrating the relationship between throat section velocity and six geometrical parameters
of the CDaugWT design. The model accurately predicted the simulation data with an R2

accuracy of 0.9581. Our primary conclusions are as follows:

(1) The non-aliased reduced quadratic model is significant in representing the relation-
ship between the velocity augmentation ratio and its six independent geometrical
parameters. The choice of this model for fitting was grounded in these considerations.

(2) The p-value for the velocity augmentation ratio model was below 0.05, indicating its
significance. On the other hand, the model’s F-value was 106.67, suggesting a less
than 0.01% probability that noise could result in such a substantial F-value. Moreover,
the low coefficient of variation (C.V.% = 0.1149) highlighted a favourable agreement
between predicted and actual velocity augmentation values.
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(3) The coded Equation (12) confirmed the relative importance of the independent param-
eters and that each parameter positively influenced velocity augmentation. Notably,
the concentrator length and diffuser length emerged as the most impactful factors,
exerting the greatest influence on velocity augmentation.

(4) The optimum geometrical parameters for the CDaugWT, resulting in a maximum
velocity augmentation ratio of 1.953 and a desirability function value of 0.9 at the
throat section, were determined as follows: diffuser angle of 10◦, concentrator angle
of 20◦, concentrator length of 375 mm (0.62Rth), diffuser length of 975 mm (1.61Rth),
throat length of 70 mm (0.12Rth), and flange height of 100 mm (0.17Rth) with Rth
representing the throat radius.

(5) The results of CFD validation indicated that the average throat velocity obtained
through RSM optimisation, 3.906 m/s, showed a percentage difference of 0.2% com-
pared to the value obtained from the CFD simulation of 3.898 m/s. This underscores
the excellent accuracy and reliability of the developed model in predicting the throat
velocity of the CDaugWT design.

This study confirms the effectiveness of the combination of RSM and CFD methodolo-
gies in developing a mathematical model that relates the throat velocity with its geometrical
parameters and the ability to optimise the CDaugWT to obtain optimal geometrical pa-
rameters. This study also highlights and magnifies the need to utilise RSM in developing
mathematical models that consider the interaction effects of the parameters a deviation
from one-factor analysis, which is not a holistic approach to the study of the impact of
geometrical parameters of the CDaugWT design. In addition, similar to the point noted
in [7], comparing RSM predictions with CFD data suggests that RSM effectively predicts
shrouded wind turbine performance. Therefore, utilising RSM will significantly reduce
both the time and cost compared to CFD computations.
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Abstract: The fossil fuel crisis is a major concern across the globe, and fossil fuels are being exhausted
day by day. It is essential to promptly change from fossil fuels to renewable energy resources for
transportation applications as they make a major contribution to fossil fuel consumption. Among the
available energy resources, a fuel cell is the most affordable for transportation applications because
of such advantages as moderate operating temperature, high energy density, and scalable size. It is
a challenging task to optimize PEMFC operating parameters for the enhancement of performance.
This paper provides a detailed study on the optimization of PEMFC operating parameters using a
multilayer feed-forward neural network, a genetic algorithm, and the design of a multiport high-
gain DC–DC converter for hybrid electric vehicle application, which is capable of handling both
a 6 kW PEMFC and an 80 AH 12 V heavy-duty battery. To trace the maximum power from the
PEMFC, the most recent SFO-based MPPT control technique is implemented in this research work.
Initially, a multilayer feed-forward neural network is trained using a back-propagation algorithm
with experimental data. Then, the optimization phase is separately carried out in a neural-power
software environment using a genetic algorithm (GA). The simulation study was carried out using
the MATLAB/R2022a platform to verify the converter performance along with the SFO-based MPPT
controller. To validate the real-time test bench results, a 0.2 kW prototype model was constructed in
the laboratory, and the results were verified.

Keywords: PEMFC; hybrid electric vehicle; multiport; SFO; DC–DC converter

1. Introduction
1.1. Sustainable Development

As the fossil fuel crisis is a common issue across the globe, researchers have been har-
nessing renewable energy resources. There are two approaches to encouraging sustainable
development: one is to optimally utilize existing conventional energy resources in such
a way that energy efficiency improves and energy consumption reduces, and the other is
to adopt new energy-conversion technologies and their development. Though there are
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plenty of renewable resources in use, fuel cells have attracted attention in the transportation
field because of salient features like low operating temperature, high energy density, quick
start-up, and scalable size. The chemical energy that exists inside a fuel cell leads to the
production of electricity and hot-water by-products. A fuel cell can be classified into many
types based on the electrolyte it uses.

In this research, a PEM fuel cell is used, in which the porous polymer membrane
can transfer protons and resist the electron flow. Its salient features make it possible
to use it for transportation applications. The construction of hybrid electric vehicles
using fuel cells is a challenge for researchers because their output voltage depends on
many operating parameters. Therefore, researchers are encouraged to use this technology
to optimize the operating parameters and make it economically viable for end-users,
promoting sustainable development.

1.2. Literature Review

The operating parameters of a 25 cm2 proton-exchange membrane fuel cell were set to
improve output power and efficiency. In this study, the researchers considered one design
parameter and two operating parameters. The parameters considered were the landing-to-
channel ratio, operating temperature, and hydrogen partial pressure. The results revealed
that hydrogen partial pressure contributed more than the other two parameters [1]. The
effect of different electrode materials used in a PEM fuel-cell electrode was investigated [2].
Three different materials were used in this study, namely aluminum, copper, and steel. In
this study, a detailed three-dimensional PEM fuel cell was constructed and simulated using
fluid dynamics in the ANSYS ANSYS FLUENT 18.0 software environment. Then, validation
of the investigation was carried out by conducting an experimental verification study, and
it was reported that the aluminum-based bipolar electrode performed better than the other
materials used. A multidimensional optimization study on PEM fuel cells was carried
out [3]. A set of parameters was considered for optimization that included efficiency, power
density, and oxygen uniformity in the cathode material used. The optimization techniques
used in this study were a computational fluid dynamics model, a surrogate model, and,
finally, a multi-objective genetic algorithm. The optimized parameters performed better
than the other set.

The importance of heating, cooling, and power systems was stressed [4]. The re-
searchers used a modified mayfly optimization-based algorithm to optimize the design
specification of a PEM fuel cell. The simulated results were compared against the con-
ventional mayfly algorithm and showed that the proposed optimization-based algorithm
could yield better results. There are two ways to improve a PEM fuel cell’s performance:
optimizing the operating parameters or optimizing the design specifications [5]. Therefore,
it is necessary to optimize the cell dimensions to enhance performance. Bearing that in
mind, these researchers optimized the bipolar plate dimension since it is directly related
to the water management and thermal management of PEM fuel cells. The results of this
study revealed that the square baffled channel could produce more power than bipolar
plates of other shapes, as found through the application of an ANFIS-based model.

The optimal design of PEM fuel cells has been investigated [6]. The design variables in-
cluded both design parameters and operating parameters. They employed a Box–Behnken
model for numerical calculations. Then, a regression model constructed via the RSM
method was analyzed using the NDRG-II algorithm (non-dominated ranking genetic al-
gorithm), and the results revealed that the proposed optimization method offered better
design parameters. A novel sunflower optimization technique to select the optimized
operating parameters was implemented [7]. This method was purely based on a PEMFC
circuit-based model, which reduced the SSE (sum of square error) of the actual value and
the estimated value. The results obtained using this model were compared against seagull
optimization, shuffled frog-leaping optimization, and multiverse optimization methods
and showed that the proposed method yielded better results than the other three methods.
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A suitable combination of parameters of nano-coolants to maximize the performance
of PEM fuel cells, such as relative humidity, thermal conductivity, and empirical coefficients,
has been investigated [8]. The optimal combination was identified using a genetic algorithm.
The performance of the PEM fuel cells was improved when the nano-coolant was added
with an optimized thermal conductivity value. An Elman Neural Network for selecting
the suitable parameters of a PEM fuel cell has been proposed [9]. After the identification
of suitable parameters for PEM fuel cells, the researchers used combined algorithms,
including TLBO and DE, to optimize the parameter selection. After the implementation
of this method, the fuel cell could operate efficiently on the maximum output voltage and
output power.

PEM fuel-cell parameters have been analyzed using a novel optimization technique
called the deer-hunting optimization algorithm [7]. The operating conditions of the PEM
fuel cell were analyzed under different fuel pressure conditions. The proposed optimization
yielded a very fast convergence with reduced weight function when applied to a convolu-
tion neural network. The proposed optimization performed better than other conventional
methods used in the state of the art. The operating conditions of the proton-exchange
membrane fuel cell were optimized using the Tuguchi method, in which many operating
parameters, such as operating temperature, electrode inlets, and the fuel flow channel
parameters, were considered [10].

The COSMOL multiphysics environment was used to optimize the operating pa-
rameters. A novel optimization technique known as the chaos-embedded PSO algorithm
was proposed for the first time to determine the unknown parameters of PEMFC [11]. A
new objective function was formulated and yielded a better convergence rate. It is worth
mentioning that the proposed objective function yielded the minimum error in finding the
global maximum value. The polarization curve of PEMFC in which maximum performance
was obtained was important [12]. The researchers used the real-time operating data of
50 cm2 using a data analytical model of one-dimensional size. Here, the results were
validated with real-time data, and a good agreement was found between analytical data
results and real-time polarization curve data. There were 2% and 3% error deviations in
obtaining maximum and minimum power between simulation and real-time experimental
results, respectively.

An accurate modeling of PEMFC performance analysis is inevitable [13]. Therefore,
researchers proposed the whale optimization technique, which was aimed to increase the
accuracy of the predicted model and reduce the error between simulated results and data
obtained from the polarization curve. After simulation and real-time data validation, it was
obvious that the proposed model could perform well. The performance of PEMFC was not
only altered by the operating parameters but also influenced by the material used in the
electrode [2]. From that perspective, researchers analyzed the performance of PEM fuel
cells with electrodes made from Cu, Al, and stainless-steel material alloys. The simulation
analysis was carried out using CFD-ANSYS software, and then the results were validated
through experimental work. The polarization curve obtained from this work showed the
effectiveness of the material used in the electrode.

The hybrid electric vehicle is usually fed from multiple sources like solar PV and
fuel cells with a battery backup. There are multiple converters adopted in the vehicle to
handle different sources, which leads to many difficulties like bulk in size, occupying more
space, complex control circuits, etc. To overcome these practical difficulties, a multiport
DC–DC converter, which handles two input sources effectively, has been proposed in the
literature [14–19]. There was power-quality improvement for a grid-connected PEMFC in
which modified pelican optimization was used to generate a switching pulse to the buck
converter [20]. A multiport DC–DC converter has been shown to be capable of handling
clean energy resources [21]. This multiport converter could integrate with three energy
resources along with a battery, and the output was isolated from the source. A novel
meta-heuristic technique, known as converged collective animal behavior optimization for
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PEMFC operating parameters, has been proposed [22]. Pulse generation for high-voltage
converters using SiC-MOSFET switches has been implemented [23].

1.3. Main Contribution to This Research

To trace the optimum power from a practical source, the converter is designed with an
SFO-based MPPT controller. The output port of the DC–DC converter drives the BLDC
motor through three phase inverters, as shown in Figure 1. A smooth mode transition is an
inherent feature of the proposed DC–DC converter.
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Figure 1. Architecture of a fuel-cell-energized hybrid electric vehicle.

1. The fuel cell is the most obvious choice of power source for sustainable transportation
applications as it does not pollute the environment, offers high energy density, noise-
free operations, etc. This research deals with the optimization of fuel-cell operating
parameters, and based on that, a multiport high-gain DC–DC converter is designed
for electric vehicle applications.

2. To contribute to sustainable development, we worked on the PEM fuel-cell field
because it is challenging to obtain constant output voltage at all times. It is necessary
to optimize the operating parameters. In this context, a deep-learning neural network
has been developed and trained to optimize the significant parameters.

3. Regulating the DC power when it is used in electric vehicle applications is another
challenge. A multiport high-gain DC–DC converter is designed along with an SFO-
MPPT controller, and the performance of the power converter was experimentally
validated. We hope these two objectives and their outcomes will be helpful for future
researchers to work on the PEM fuel-cell field, therefore contributing to sustainable
development in the transportation field.

2. Modeling of Input Sources
2.1. Physical Model of PEMFC

The electrochemistry modeling of fuel cells is more effective and advantageous than the
thermodynamics model. Though the thermodynamics model has been used by researchers
for theoretical performance analysis, the rate at which reactant reacts to produce electricity
cannot be analyzed. Moreover, the electrochemistry model can be used to predict the loss
that occurs during the chemical reaction. With that aspect in mind, the following section
elucidates the electrochemical modeling of PEM fuel cells. Figure 2a shows the construction
of PEMFC, and Figure 2b shows the equivalent circuit model of PEMFC.
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From Figure 2b, the operating voltage of the PEM fuel cell can be written as

Vo/p = Videal −Vact(a+c) −Vmass(a+c) −Vohm (1)

Videal = −(
G
2F

+
RT
2F

ln
PH2O

PO2
√

PH2

) (2)

a—anode, c—cathode, G—Gibbs constant, F—Faraday’s constant, R—gas constant,
T—operating temperature in K, PH2—hydrogen pressure, PO2—oxygen pressure, PH2O—water
pressure.

Vact(a+c) =
RT
αF

ln
(

id
ir

)
(3)
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α—coefficient of charge transfer, id—current density and ir—current density corre-
sponding to reaction exchange, iL—limiting current density

Vmass(a+c) =
RT
αF

(
α+ 1
α

)ln(1− iL
id
) (4)

Vohm = iR(a+c) (5)

R(a+c)—resistance of anode and cathode. From the modeling of the PEM fuel cell, it is
obvious that the operating parameters like temperature, fuel supply pressure, air supply
pressure, fuel flow rate, and airflow rate decide the output voltage of the PEM fuel cell at
any cost.

2.2. Physical Model of the Battery

The physical model of a lead-acid battery is depicted in Figure 3a. To understand
the electrical behavior of any battery, it is essential to obtain a mathematical model of the
battery. Three models of the batteries have been given in the literature [24,25], namely the
equivalent circuit model, electrochemical model, and data-driven model. The equivalent
circuit model (ECM) is considered to be an obvious choice because it gives good accuracy
without complexity. It consists of purely electrical components like controlled voltage
sources, resistors, and capacitors. Second-order ECM is a well-proven model for accuracy
without complexity. It consists of one controlled voltage source representing the State of
Charge (SoC) and series resistance connected with two parallel RC branches, as depicted in
Figure 3b. The charging and discharging behavior of the battery can be understood by a
mathematical model of the battery, as given below.

The mathematical modeling of the battery is derived as follows:
The terminal voltage of the battery is expressed as

Vb = Voc − IbRo −V(RC)1 −V(RC)2 (6)

The current flowing through the battery is written as

Ib =
V(RC)1

R1
+ C1

.
V1 =

V(RC)2

R2
+ C2

.
V2 (7)

The voltage across each pair of RC parallels is expressed as

V(RC)1 =

(
Q
C1

+ IbR1

)
e(−

t
R1C1

) − IbRo (8)

V(RC)2 =

(
Q
C2

+ IbR2

)
e(−

t
R2C2

) − IbRo (9)

For the RC parallel branch, the voltage and current are related as follows:

.
V1 = −

V(RC)1

R1C1
+

Ib
C1

(10)

.
V2 = −

V(RC)2

R2C2
+

Ib
C2

(11)

Here, Vb—voltage across the battery, Ib—current through the battery, V(RC)1, V(RC)2—voltage
across the parallel branch RC, Q—usable capacity of the battery, Voc—voltage across the
open circuit in the battery.
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3. Optimization of PEMFC Operating Parameters

The modeling of PEMFC using design and operating parameters has been reviewed,
and it is concluded that numerous parameters influence the output voltage of the sys-
tem [26], but their contribution towards deciding the output voltage must be analyzed
using machine learning for better understanding. In this experimental work, there are five
parameters, namely system temperature, fuel supply pressure, air supply pressure, fuel
flow rate, and airflow rate, which vary from minimum value to maximum value as given in
Table 1, and the corresponding output voltages and output powers are noted. To analyze
the most significant factor, a certain number of parameter experiments must be conducted.
Therefore, here, three levels are considered for five factors, which results in 243 data points
obtained from experiments. The interaction of other parameters with the most significant
factors vs. output parameters is shown in Figure 4. The importance of the parameters is
analyzed using statistical analysis, and its results are depicted in Figure 5. It is found that
the operating temperature is the most significant factor, whereas the airflow rate is the least
significant factor among the five parameters.
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Table 1. The range of PEMFC operating parameters.

System Parameter Max. Value Min. Value

System temperature 358 K 298 K

Fuel supply pressure 2 bar 1 bar

Air supply pressure 1.5 bar 0.5 bar

Fuel flow rate 23.46 lpm 12.2 lpm

Airflow rate 4615 lpm 2400 lpm

Output voltage 25.63 V 17.06 V

Output current 1094.91 W 485.01 W

3.1. Multilayer Feed-Forward Neural Network

To optimize the input parameters of a 6 kW PEMFC, a simple multilayer feed-forward
neural network is taken in which one input layer with five nodes, two hidden layers with
five nodes each, and one output layer with two nodes are set in the proposed network
as shown in Figure 6. The relationship between input and output of the hidden layer is
expressed as

hinj = bhid
oj +

n

∑
i=1

xivii (12)

The net output of the hidden layer is obtained by applying the sigmoid activation
function, and the input and output of the layer is expressed as

Oink = bOut
ok +

n

∑
j=1

hjwjk (13)

The net output is obtained from the output layer by applying a linear activation
function. The network is trained using an incremental back-propagation algorithm with
80% input data. During each iteration, the bias and weight are updated in the hidden and
output layers using the following equation.

vij(next) = vij(pre) + ∆vij (14)

wjk(next) = wjk(pre) + ∆wjk (15)

bhidd
oj(next) = bhidd

oj(pre) + ∆bhidd
oj (16)
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bOut
ok(next) = bOut

ok(pre) + ∆bOut
ok (17)

hinj and Oink are the inputs of the hidden and output layers. boj and bok are the bias
terms in the hidden and output layer. Vij and wjk are the connection weights of the hidden
and output layers.

A linear activation function is used in the output layer to obtain the net output. The
learning rate of the network is 0.8, with 0.8 as momentum, and it is trained until the root
mean square error (RMSE) reaches 0.01. It takes 13 min with 10,320 iterations for learning.
After successful completion of learning, it is tested with the remaining 20% of input data.
The results have been stored for optimization.
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3.2. Optimization of PEMFC Operating Parameters Using the Genetic Algorithm

The genetic algorithm (GA) is a meta-heuristic optimization technique that imitates
the natural process of Darwin’s principle of evolution. The conventional optimization
process suffered from local optimum and failed to provide accurate results, whereas GA is
a global search optimization algorithm and is implemented in the following sequence of
processes: selection, cross-over, and mutation. The first step in GA is to generate parental
chromosomes with population size P. Each chromosome is represented as

P = {X1, X2, X3 . . . Xn} (18)

Here, n is the number of individual chromosomes in the population size.
Each chromosome in the population is an N-dimensional vector and can be represented as

am < xm < bm (19)

Here, am and bm are the lower and upper limits of variables to be optimized, and xm is
the total number taken into account for optimization. The parent generation chromosomes
are evaluated at the end of each generation with its fitness function f (Xn). After that, the
cross-over process begins. Two new offspring, Xp and Xq, are produced from two random
parents, Xr and Xs, and the process of cross-mating is limited by the cross-mate rate r.

xp,i = (1− r)xri + rxsi (20)
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xq,i = (1− r)xsi + rxri (21)

The population size doubles at the end of the cross-over process. Then, chromo-
somes with high fitness values are selected among the doubled population. The mating
process begins with reliable genetic diversity with a probability of 0.1. This process is
repeated with newly generated chromosomes as parental chromosomes until a satisfied
fitness value is attained or the required number of iterations is reached. The optimiza-
tion phase is separately carried out in a neural-power software environment. The ge-
netic algorithm is used with population size = 30, cross-over rate = 0.8, and mutation
rate = 0.1 to optimize the results obtained from a multilayer feed-forward neural net-
work. It takes less than a minute with 20,501 iterations to yield the optimized result. The
maximum output voltage and power are obtained when the input parameters are set as
follows: system temperature = 328 K, fuel supply pressure = 1.9998894 bar, air supply
pressure = 1.4995502 bar, fuel flow rate = 19.490219 lpm, and airflow rate = 4613.4466 lpm.

4. The Multiport High-Gain DC–DC Converter

The proposed DC–DC converter consists of two input ports and one output port, as
depicted in Figure 7. One input port is fed with a polymer-exchange membrane fuel cell,
and the second input port is connected to a battery. There are three active switches used
in the proposed converter, namely M1, M2, and AS, in which main switch M1 is operated
when the fuel cell is sufficient to supply the load, and M2 is operated when the fuel cell is
drained off and shut down for fuel filling. An auxiliary switch AS is operated when the
fuel cell and battery are together enough to meet the demand. The load RL is supplied
from the output capacitor Co. The mode of operation of the proposed converter is detailed
as follows:
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Figure 7. The multiport high-gain DC–DC converter.

During Mode I operation, the fuel cell alone is sufficient to supply load, the switch
M1 is turned on, and the diodes D2 and D3 cause the source inductance Ls to become
charged, as shown in Figure 8. The load RL is supplied from the output capacitor Co. The
steady-state equations of this mode are given below.

VFC = L
dis
dt

+ VCo (22)

When main switch M1 is in the OFF condition, VFC becomes zero, and the inductor
Ls supplies load, as shown in the key waveforms in Figure 11a.

VCo = −L
dis
dt

(23)

76



Sustainability 2024, 16, 872

During Mode II operation, hydrogen fuel is completely drained off, and it looks for
a new hydrogen cylinder. In this case, the battery comes into action to drive the load.
The active switch M2 is turned on during Mode II, as depicted in Figure 9a. When the
main switch M2 is in the OFF condition, both diodes D1 and D2 come into conduction,
as depicted in Figure 9b. When the main switch M2 is in the OFF condition, the source
inductance supplies the load. The key waveforms are shown in Figure 11b.
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Vbatt = L
dis

dt
+ VCo (24)

In this particular mode, both the battery and fuel cell are operated simultaneously
since they are supposed to meet the demand together. In this case, all three switches, M1,
M2, and AS, come into action, during which the source inductance absorbs energy from
both the battery and fuel cell, as shown in Figure 10. When all three switches are in the OFF
condition, diodes D1 and D2 come into action. The key waveforms are shown in Figure 11c.

Vbatt + VFC = L
dis
dt

+ VCo (25)
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5. Voltage Conversion Ratio

It is assumed that the inductance is sufficient to supply load continuously, and all
semiconductor devices used in the converter are ideal. According to the voltage–time
balance equation, the voltage applied across inductance over the period of time in Mode I
can be expressed as

Vout(1− (MS1 + MS2)) = (V FC −Vout)MS1 + (V batt −Vout)MS2 (26)

On simplifying the expression (26), the output voltage can be expressed as

Vout = VFC MS1 + Vbatt MS2 (27)

Similarly, the voltage–time balance equation for the source inductance Ls for Mode II
can be written as

(V FC + Vbatt)MS3 = (−V FC + Vout)MS1 + (−V batt + Vout)MS2 (28)

On simplifying the expression (29), the output voltage can be expressed as

Vout(2− (MS1 + MS2)) = VFC MS1 + Vbatt MS2 (29)
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Vout =
VFC MS1 + Vbatt MS2

(2− (MS1 + MS2))
(30)

Assuming VFC and Vbatt are equal for the ideal case (VFC = Vbatt = Vin), the voltage
conversion ratio can be generalized as

G =
Vout

Vin
=

MS1 + MS2

(2− (MS1 + MS2))
(31)

6. SFO Algorithm

The sunflower optimization (SFO) algorithm has recently been introduced into the
engineering era to solve non-linear problems. It imitates the orientation process of sun-
flowers towards the Sun to obtain maximum solar irradiance for the whole day. It is a
well-known global search optimization technique rather than a local search optimization
one. Sunflower fertilization happens during the orientation of the sunflower towards the
Sun to produce the next generation of sunflowers. For simplicity, it is assumed that one
pollen comes from the sunflower during the fertilization process. The sunflower inverse
square law relates solar irradiance intensity and power from the Sun, as denoted below.

ISR =
Psun

4πr2 (32)

where ISR—represents intensity of solar radiation, Psun— represents Sun power, and r—distance
between Sun and sunflower. The alignment of the sunflower towards the Sun is based on
the following expression.

Dj =
Sbest − Sj∥∥∥Sbest − Sj

∥∥∥
(33)

where Sbest—represents the best solution, and Sj—jth iteration solution. The movement of
the Sun in each step of the iteration is denoted as follows.

dj = δ× Pj
(∥∥Sj + Sj−1

∥∥)×
∥∥Sj + Sj−1

∥∥ (34)

where δ—the inertial displacement, and Pj
(∥∥Sj + Sj−1

∥∥)—the probability of pollination. To
limit the control parameter within the control range, the following mathematical expression
is followed.

dmaxlim =
‖Smax − Smin‖

2j
(35)

where Smax and Smin are the maximum and minimum values of the solution, and j is the
population size. The minimization of the cost function is updated for each iteration by
following the below expression.

Sj+1 = Sj +
(
dj ∗Dj

)
(36)

where Sj+1 is the new sunflower orientation, Sj is the current position of the sunflower.

7. Simulation Results

The proposed converter is constructed using the following components listed in Table 2.
Both the simulation and experimental setup are constructed using the same components as
given below. To analyze the results, an extensive simulation analysis has been carried out
using the MATLAB/R2002a platform. In this section, a detailed analysis of the mode of
operation and mode transition is clearly elucidated.
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Table 2. The proposed converter components.

S. No Components Used Symbol Rating

1. Power switch M1, M2 5 A

2. Auxiliary switch As 2 A

3. Diodes D1, D2, D3 5 A

4. Source inductor Ls 300 µH

5. Output capacitor Co 230 µF (electrolytic)

6. Load resistance RL 100 Ω

7.1. PEMFC Is Meeting the Demand Alone

A 6 kW 45 V PEM fuel cell is taken for this study. This stack contains 65 cells connected
in series with nominal operating points of 133 A nominal current and 45 V open-circuit
voltage, respectively. The nominal stack efficiency of this converter is around 46%. The
nominal composition of hydrogen, oxygen, and water present in the air is taken in a ratio
of 99:21:1. During Mode I, the fuel cell is able to meet the demand alone. As the fuel cell
is fully supplied from hydrogen fuel, it can produce 45 V in the ideal case, and the same
voltage is stepped up to 220 V by the proposed converter during the optimum power
extraction conditions with the help of the SFO-based control technique. The duty cycle
is maintained as 0.5, and the corresponding inductor current waveform is depicted in
Figure 12.
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7.2. Battery Is Meeting the Demand Alone

In this mode, the battery takes over demand when the fuel for PEMFC is completely
exhausted. A 24 V 80 AH heavy-duty lead-acid battery is taken as the source. The charging
voltage of each cell is 2.2 V/cell under high temperature, and it is 245 V/cell under
low temperature. Since heat dissipation is a major concern for hybrid electric vehicle
applications, it is calculated as 0.45 W/cell for 80 AH. For a long battery life-span, the ripple
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content must be less than 5 A. The duration of this mode must be minimal since the battery
rating is low for the sake of advantages to the hybrid vehicle. The duty cycle is maintained
at 0.6, which can give the output voltage of 120 V, while the input voltage supplied from
the battery is 24 V. The corresponding inductor current waveform is shown in Figure 13.

7.3. Both Sources Are Meeting Demand Together

This mode comes into action when the PEMFC’s fuel is partially exhausted, it is in
need of fuel filling, and the lead-acid battery is partially full enough to supply the demand.
During this Mode III, both the switches, M1 and M2, are turned ON for the duty cycle of
0.5 and 0.6, respectively, which in turn conduct the auxiliary switch AS for the duty cycle
of 0.1, as shown in the figure. Both input voltages (45 V, 24 V) are stepped up to 345 V, as
depicted in the figure. The duration of this mode is greater than Mode II and less than
Mode I. The inductor current waveform is presented in Figure 14.
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7.4. Performance of SFO Controller

To verify the effectiveness of the SFO control technique in tracing maximum power
from PEMFC, the operating temperature is taken as a variable parameter, as discussed
in Section 3. The variation in operating temperature is as follows: 54.84 ◦C for the first
0.3 s, 24.85 ◦C for the next 0.3 s, and 84.85 ◦C for the next 0.3 s. During this variation in
temperature, the SFO controller is supposed to generate dynamic pulses to the switches
to extract high power from PEMFC. The power-tracing capability is checked against the
ANN controller and variable step-size FLC-based controller, as shown in Figure 15. The
proposed SFO-based controller can yield better power-tracing capability compared with
the other two controllers in terms of maximum power traced and transient parameters.
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8. Experimental Results

To validate the simulation results on a real-time test bench, a 0.2 kW hardware proto-
type was constructed in the laboratory using the hardware components listed in Table 2.
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The entire experimental arrangement is shown in Figure 16. A 2 kW PEMFC and 80 AH
24 V Exide-made heavy-duty lead-acid battery are used as the sources for a multiport
high-gain DC–DC converter.
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Figure 16. Experimental setup.

During Mode I, the fuel-cell voltage is stepped up to 215.6 V, and its corresponding
inductor waveform is shown in Figure 17a. During Mode II, the battery voltage is stepped
up to 115.6 V, and its corresponding inductor current waveform is depicted in Figure 17b.
When both these sources supply demand, the corresponding output voltage is stepped up
to 339.8 V, and its inductor current waveform is given in Figure 17c. The output power is
measured across the load resistance 1 kΩ by adjusting from its minimum value to maximum
value using the Tektronix SMU 2450 power-quality analyzer. It should be noted that the
maximum power conversion efficiency is 95.12% for a 105 W load, as given in Figure 18.
The various losses contributing to overall loss are measured using the same analyzer and
shown in Figure 19. The performance comparison of the proposed converter is made
against the state of the art, as listed in Table 3. It is observed that the proposed converter
can handle more than one source with a minimum number of circuit components and yield
a maximum conversion efficiency.
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Table 3. The performance comparison.

S. No Reference
No

Circuit Components
Peak Power

Conversion η (%) No of PortsNo of
Switches (M)

No of
Diodes (D)

No of
Capacitors (C)

No of
Inductors (L)

1 [14] 2 2 3 2 98.41 4

2 [15] 5 9 7 9 98.12 2

3 [16] 3 4 2 1 94.80 3

4 [17] 2 2 3 2 95.13 2

5 [18] 2 8 3 5 Not reported 2

6 [19] 4 3 5 5 98.1 3

7 Proposed
converter 3 3 1 1 95.12 3
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9. Conclusions

In this research, the optimization of 6 kW PEMFC operating parameters was carried
out using a neural-power software environment. The operating parameters varied, and
the corresponding output voltage and output power were measured experimentally. This
dataset was used for training a multilayer feed-forward neural network, and then the
results obtained after testing were optimized using a genetic algorithm. It was worth
mentioning that the operating temperature was the most significant parameter in deciding
the performance of PEMFC. This inference led to the design of the MPPT controller, which
extracts optimum power from PEMFC under variable temperatures. A multiport high-gain
DC–DC converter was designed to handle two sources, namely 6 kW PEMFC and an
80 AH 24 V heavy-duty battery with a smooth transition. A meta-heuristic algorithm called
an SFO-based controller was designed to obtain optimum output power from PEMFC
under dynamic operating temperature. The performance of the DC–DC converter, along
with the SFO-based MPPT control technique, was tested using MATLAB/R2022a software
environment. To validate the real-time test bench results, a 0.2 kW DC–DC converter
was designed in the laboratory, and the results were compared against the literature.
Future researchers may use advanced artificial intelligence (AI) techniques to optimize the
operating parameters and design a Hardware In Loop (HIL)-based operating condition
management system for hybrid electric vehicle applications.

Highlights of this research work:

• The PEMFC operating parameters were optimized, and it was experimentally proven
that the operating temperature is the most significant factor.

• A multiport high-gain DC–DC converter can effectively handle PEMFC and batteries
with inherent smooth mode transition.

• The SFO-based MPPT control technique outperforms ANN and variable fuzzy-based
controllers under dynamic operating temperature conditions.

• The maximum conversion efficiency of a multiport high-gain DC–DC converter is
95.12%, with fewer components used in the converter.
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Abstract: Solar desalination is a promising sustainable solution to overcome the scarcity of fresh water
in the deserts of arid regions. The productivity of a solar still depends mainly on its design parameters
and the meteorological conditions of its location (longitude and latitude angles). Therefore, this study
aimed to optimize the main design parameters of a single-slope solar still for freshwater production in
the arid climate of the central region of Saudi Arabia (24◦4′ N, 32.89◦ E). Experiments were conducted
on four identical solar stills, with the same basin surface area and air gap distances (d) of 14, 16, 18,
and 20 cm, respectively. The stills operated using three basin water depths (h) of 0.5, 1, and 1.5 cm on
clear sunny days. The performance and productivity of the four stills were evaluated. The results
showed that reducing the air gap distance (d) and water depth (h) significantly enhanced the distillate
freshwater yield, and the optimum ratio of the length/width is 2 and of the back/front wall height
is 3.65. Specifically, at a low water depth (h) of 0.5 cm, the daily distillate yield of the solar still
increased by about 11% when the air gap distance (d) decreased from 20 to 14 cm. For the lowest
air gap distance (d) of 14 cm, the distillate yield increased by about 23% when h decreased from 1.5
to 0.5 cm. Using the measured parameters, several numerical correlations have been developed to
estimate the desalination rate (mc) as a function of the solar irradiance (Is) and ambient temperature
(Tam). The developed correlations can be used successfully to estimate the values of mc instead of
the prohibitive experimental measurements. The stills showed excellent performance in the arid
climate and reduced water salinity from 31,250 to 495 ppm. This should encourage decision-makers
to expand investment in solar desalination to sustainably develop the deserts of arid regions.

Keywords: solar desalination; still; water depth; gap distance; arid climate; single slope

1. Introduction

Freshwater is an essential requirement of life and sustainable development of all
sectors in the deserts of the Arabian Peninsula. Freshwater scarcity is the main challenge
in the deserts, despite the huge amount of brackish water resources. In the deserts of arid
regions, freshwater scarcities are due to the high salinity of water resources and the rapid
increase in population and agriculture extension needs. Recently, about 40% of the world’s
population has been located in remote deserts or islands, which, in most cases, do not have
access to clean freshwater [1]. The process of obtaining freshwater by using the available
clean, eco-friendly, and sustainable energy (e.g., solar energy) is a promising solution for
freshwater scarcity (known as solar–thermal desalination). Moreover, the desalination of
saline water by using solar stills is economically profitable because of the low cost and
simple design and construction of the stills [2]. Passive solar stills are more convenient
and profitable because they depend only on solar energy for heating [3]. The yield of the
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low-cost passive solar still depends on several parameters, such as the climatic conditions
(solar radiation intensity, wind speed, ambient temperature, etc.), structural design (slope
angle of the cover, side walls heights, relative dimensions, absorber specifications, etc.),
and operation conditions (water depth and flowrate, surface area of evaporation, etc.) [4,5].

Several studies have tested the effect of operation and design parameters on the
performance and production rate of solar stills. The most common parameters in the
previous studies are the air gap distance (the average distance between the basin water
surface and cover) and the basin-water depth. Regarding the air gap distance, solar stills
with various air gaps were examined under the climatic conditions of Ankara (40◦ N, 33◦ E),
Turkey [6]. Their result showed that the distillate yield increased by 11% when the air
gap was reduced from 13 to 8 cm. They [6] reported that under the climatic conditions
of Ankara, Turkey, the air gap distance should be 8 cm or lower for desired freshwater
production. The effect of the air gap distance on the yield of a solar still was studied
under the climate of Tamil Nadu, India [7]. They used a cover slope angle of 10◦ which is
approximately equal to the test site latitude (9.9◦ N). The results showed that productivity
increased by 1.84 times when the air gap distance decreased from 0.45 m to 0.15 m [7].
The effect of two air gap distances (6.6 cm and 26.6 cm) with a water depth of 1 cm was
examined at a location of 13◦ N and 80◦ E [8,9]. Their results showed that the productivity
of the distillate freshwater increased when the average air gap distance of the solar still
was decreased. This was due to the high rate of the convective heat transfer between the
condensing cover and absorber. For the same absorber dimensions, the effect of changing
the elevations of the north and south walls on the productivity of a single-slope solar still
have been examined [10]. The results showed a significant increase in the yield of the solar
still when the elevation of the north wall increased [10].

A survey in the literature revealed that similar solar stills, having a typical air gap
distance, installed in different locations (latitude and longitude) produced different desali-
nation rates. However, in a specific location, such as the central region of the Kingdom of
Saudi Arabia (KSA), and under arid climatic conditions, such information is still unclear;
therefore, in situ experiments are necessary to show the effect of air gap distance (d) on the
performance of a solar still.

On the other hand, the effect of basin water depth (h) on the performance of solar
stills has been evaluated in different locations worldwide and under various climatic
conditions. A study in Bagdad (33.3◦ N, 44◦ E), Iraq [11] found that increasing the basin
water depth, from 1 to 10 cm, reduced the still productivity by about 48%, even though
increasing the water depth (h) increases the stored heat energy in the basin water during
the daytime and makes the production continue even at night. However, increasing the
water depth (h) from 1 cm to 7.5 cm decreased the productivity by about 77% [12]. A
study in Tamil Nadu (9◦11′ N, 77◦52′ E), India examined the effect of increasing h from
1 cm to 5 cm on the productivity of both single- and double-basin solar stills [13]. They
reported that the maximum productivity was at the lowest water depth of 1 cm, at which,
the double-basin produced 17.38% more than the single-basin stills [13]. The effect of h as
2, 4, 8, and 16 cm on the solar still productivity in summer and in winter were examined
under the climatic conditions of Shiraz (29.6◦ N, 52.5◦ E), Iran [14]. They reported that
the productivity decreased as h increased; however, the nocturnal yield increased. The
performance of passive and active solar stills at various h of 0.5, 1.0, and 1.5 cm were
tested in the New Delhi (28.3◦ N, 77.2◦ E) climate [15]. They reported that increasing h
decreased the temperature and internal energy of basin water, and thus the productivity
of the solar still decreased. Different water depths, h (2, 3, 4, 5, and 6 cm) for passive and
active solar stills were evaluated under the climatic conditions of Andhra Pradesh (16.51◦ N,
80.52◦ E), India [16]. They reported that h of 4 cm is optimum for the specific climate of the
experimental site, and the active solar still enhanced the yield by about 57.55% compared
with the passive solar still.

Based on the previous studies, large numbers of optimum air gap distances (d) and
basin water depths (h) were recorded based on the locations of the experimental sites
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(latitude and longitude) and the meteorological conditions of these sites (solar radiation
intensity, sunshine duration, air temperature, wind speeds, etc.). In addition, the available
previous studies conducted under climatic conditions are completely different from the
arid climate of the central region of KSA. In arid climates, intensive solar radiation flux,
high air temperature, low relative humidity, and long periods of sunshine are common
in most of the months of the year [17]. However, a similar study used to determine the
optimum air gap distance (d) and basin water depth (h) for single-slope solar stills under
harsh, arid climatic conditions of the KSA is still missing and urgently required.

Accordingly, this study aimed to determine the optimum design parameters of the
simplest type and low-cost solar still (i.e., single-slope). These parameters are the air
gap distance (d), basin water depth (h), and back/front wall height ratio; these would be
optimized for the harsh arid climatic conditions of the Arabian Peninsula. Even though
wind stream may have a positive effect on cooling the glass cover and enhancing the still
productivity, the effect of wind was excluded because of the very low wind speed over the
stills during the days of the experiments. For this purpose, four identical insulated wooden
frame single-slope solar stills covered with glass sheets were constructed with different air
gap heights (d) of 14, 16, 18, and 20 cm. The stills would be operated, in parallel, for several
clear sunny days using various water depths (h) of 0.5, 1.0, and 1.5 cm, one for each day.
The experiments would be conducted during the daytime; however, the nighttime period
is beyond the scope of this study.

2. Materials and Methods
2.1. Experimental Setup and Measuring Procedure

The experiments were conducted on clear sunny days under solar and thermal irra-
diance on the roof of the building of the Agricultural Research and Experiment Station at
King Saud University (Riyadh, Saudi Arabia, 46◦47′ E, longitude and 24◦4′ N, latitude).
The measurements were carried out in October 2023 from 7:0 to 19:0 for 12 h every day.
During the experiments, the wind speed was very low; in addition, the roof of the building
was surrounded by an external wall of 2 m height, which was relatively far from the solar
stills; therefore, the effect of wind over the still cover was neglected. Four wooden frame
single-slope solar stills (designated as A, B, C, and D), with identical cover slope angles of
24.4◦ (the latitude angle of Riyadh), and different air gap distances (d) of 14, 16, 18, and
20 cm for stills A, B, C, and D, respectively, were constructed. Wood bars of 5 cm × 5 cm
cross section for each were used for constructing the frames. The front wall height (Ho)
of the lowest solar still (still A) was decreased as much as possible to allow the cover,
trough, basin, and base (ho) to be installed properly. The air gap distance (d) was estimated
according to Figure 1 as d = (H + Ho)/2 − (h + ho). A schematic diagram showing the
layout dimensions (length, L = 100 cm, and width, W = 50 cm) of the solar still used in
the study is illustrated in Figure 1. A black-painted galvanized iron sheet, in the form
of a tray, was constructed to be used as an absorber basin; the galvanized iron sheet was
also used to perform the trough (Figure 1). The basin surface area (As) is 4050 cm2, with
a dimension of 90 cm length, and 45 cm width (Figure 1); the aspect ratio (length/width)
of 2 was recommended by [18] as an optimal ratio to efficiently collect solar radiation in
the solar still. A condensing glass cover of 5 mm thickness was fixed and sealed on the
top of each solar still cavity, each having a surface area of about 5400 cm2. To minimize
the heat losses, the outer surfaces of the frame (side walls and base) were insulated using
glass wool of 5 cm thickness (thermal conductivity, k = 0.03 W m−2 ◦C−1). The covers of
the solar stills faced to the south direction to collect most of the incident solar radiation
during the day. For the stills A, B, C, and D, the layout dimensions are summarized in
Table 1. A schematic diagram of the experimental setup, including the four solar stills,
is illustrated in Figure 2. Before starting the actual measurements, the experiment was
conducted for several days to fix any problems, such as leakage, measuring errors, etc.,
and to reach steady state operation conditions. During the 9 days of measurements (10–18
October), the water depth (h) in the basin was kept constant for each three consecutive days
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of measurements; it was 0.5, 1.0, and 1.5 cm. This was achieved by continuously supplying
feed water, equal to the amount of distillate-collected water, to the solar still basin. The
working fluid was Red Sea water taken from Duba Coastal, Tabuk, KSA, with a salinity of
31,250 ppm.
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Table 1. Layout dimensions of the four solar stills used in the study.

Symbol Definition Still A Still B Still C Still D Units

L (length) 100 100 100 100 cm
W (width) 50 50 50 50 cm
H (back wall height) 30.63 32.63 34.63 36.63 cm
Ho (front wall height) 8.38 10.38 12.38 14.38 cm
ho (basin depth) 5 5 5 5 cm
α (latitude angle) 24.4◦ 24.4◦ 24.4◦ 24.4◦ degree
d (air gap distance) 14 16 18 20 cm
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Figure 2. Schematic diagram of the experimental setup including the four solar stills (A, B, C, and D)
used in the study. Dimensions in cm, not to scale.

The ambient air temperature (Tam) was measured using an aspirated psychrometer.
The temperatures of the outer surface of the glass cover (Tg) and basin water (Tw) were
measured using type-T copper constantan thermocouples of 0.3 mm in diameter, (Reotemp
Instruments Co., San Diego, CA, USA). The thermocouple sensors used to measure Tg were
covered with strips of aluminum foil to eliminate the effect of radiation on the thermocouple
reading. The global solar radiation flux (Is) was measured beside the stills, at a height of
the covers level, using a CMP3 pyranometer (Kipp and Zonen, Sterling, VA, USA). The
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thermocouple sensors and pyranometer used in the experiment were calibrated by the
supplier before use to eliminate any expected errors. All the required parameters were
measured at every 10 min interval, averaged at every hour, and saved in a data logger
(CR3000 Micrologger®, Campbell Scientific Inc., Logan, UT, USA). However, the distillate
yield was collected manually and measured every hour. During the experiment, the four
solar stills (A, B, C, and D) were operated in parallel, with the same water depth (h) in the
four stills, for three consecutive days for each water depth, and the average value of each
parameter was obtained. The average air gap distance (d) changes according to the water
depth (h); the values of d according to h and the days of measurements are illustrated in
Table 2.

Table 2. Values of d and h and the days of measurements for the solar stills.

Date of Experiments Height (cm) Still A Still B Still C Still D

(10,11,12) October 2023
d 14 16 18 20
h 0.5 0.5 0.5 0.5

(13,14,15) October 2023
d 13.5 15.5 17.5 19.5
h 1 1 1 1

(16,17,18) October 2023
d 13 15 17 19
h 1.5 1.5 1.5 1.5

2.2. Theoretical Approach

To evaluate the solar still, a mechanism to describe the evaporation process (heat and
water vapor exchanges) is required. The key factors in this process are the evaporative and
convective heat transfer coefficients (he and hc). Once these coefficients were determined,
the production rate (yield) of a solar still can be estimated theoretically without the need for
measurements. Several analytical expressions (models) have been reported in the literature
for these coefficients; we have selected three of them to calculate he and hc (i.e., Dunkle [19],
Kumar and Tiwari [20], and Zheng et al. [21]). For simplicity, among these models, several
assumptions have been considered such as (i) the heat loss from inside to outside the solar
still was neglected, (ii) there is no heat generation in the solar still, (iii) the basin-water
depth is fixed as having a uniform temperature of Tw, (iv) all thermophysical properties of
the humid air in the still are calculated at the mean temperature of the basin water surface
(Tw) and condensation surface (Tg) of the solar still, and (v) the evaporation rate (mev) is
equal to the condensation rate (mc) which is completely collected to be as the production
rate of the solar still.

The maximum evaporation or desalination rate of a solar still, (kg s−1) can be calcu-
lated as follows:

mev = mc =
qe

h f g
(1)

where hfg is the latent heat of vaporization of water (J kg−1), and qe is the evaporative heat
transfer rate (W) and is given by the following:

qe = he
(
Tw − Tg

)
(2)

where he is the evaporative heat transfer coefficient (W m−2 ◦C−1), Tw is the basin water
temperature (◦C), and Tg is the inner surface temperature of the glass cover (◦C). An
expression to estimate he is given by [19] as follows:

he = 0.016273× hc ×
Pw − Pg

Tw − Tg
(3)

where hc is the convective heat transfer coefficient (W m−2 ◦C−1), Pw (N m−2) is the partial
pressure of the humid air at the basin water temperature (Tw), and Pg (N m−2) is the partial
pressure of the humid air at the glass cover temperature (Tg).
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In Equation (3), the convective heat transfer coefficient (h c) is estimated using a
semi-empirical expression proposed by the following numerical models:

(i) Dunkle model [19]

hc = 0.884(∆T)1/3 (4)

where ∆T (◦C) is the temperature difference between the basin water and glass cover
surface and is given by [19] as follows:

∆T =

[
Tw − Tg +

(P w − Pg
)
(Tw + 273)

268.9× 103 − Pw

]
(5)

The partial pressures of water vapor in Equation (5) are given by [19] as follows:

Pw = exp
(

25.317− 5144
Tw + 273

)
(6)

Pg = exp
(

25.317− 5144
Tg + 273

)
(7)

(ii) Kumar and Tiwari model [20]

They considered the characteristic length of Nu as the average air gap distance (d) to
express hc in the following form:

Nu =
hc ∗ d

K
= c(Gr ∗ Pr)n (8)

where Gr, Pr, d, and k are the Grashof number, Prandtl number, average air gap distance,
and thermal conductivity of the humid air, respectively. The numerical constants c and
n are dependent on the boundary conditions and the flow regime. Dunkle [19] has sug-
gested that for humid air enclosed in a horizontal space, the numerical constants are
c = 0.075 and n = 0.333 for (3.22 × 105 < Gr < 1 × 107). Hollands et al. [22] suggested
that for Ra > 5.5 × 106, the corresponding values are c = 0.055 and n = 0. 333. Gr and Pr
dimensionless numbers are defined as follows:

Gr =
g β ∆T d3

µ2/ρ2 , Pr =
Cp µ

K
(9)

where g is the gravitational acceleration (m s−2), ρ is the humid air density (kg m−3), β is
the thermal expansion factor (=1/T, T is the humid air temperature in degree K), Cp is the
specific heat of the humid air (J kg−1.◦C−1), and µ is the dynamic viscosity of the humid
air in the still (N s m−2).

(iii) Zheng et al. model [21]

hc = 0.2× (R a)
0.26

(
K
d

)
, (10)

Ra =
ρβgd3

µα

[
Tw − Tg +

Pw − Pg
MaPt

Ma−Mw
− Pw

× (Tw + 273)

]
(11)

where α is the thermal diffusivity (m2 s−1), Ma is the molecular weight of dry air (kg mol−1),
Mw is the molecular weight of water vapor (kg mol−1), and Pt is the total pressure of the
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humid air in the solar still (N m−2). For conventional passive solar still, the overall daily
efficiency (ηd) is given by [23] as follows:

ηd =

∫ t2
t1 mc(t)h f gdt
∫ t2

t1 Is(t) dt
(12)

where t1 and t2 are the sunrise and sunset time; mc(t) is the rate of distilled water at a
specific time t (kg s−1m−2), and Is(t) is the global solar radiation flux over the solar still
(W m−2). The physical properties of the humid air in the solar still, such as specific heat
(Cp), density (ρ), thermal conductivity (k), viscosity (µ), latent heat of vaporization (hfg),
and thermal expansion factor (β), were estimated as a function of the glass and basin water
mean temperature, Tm [Tm = (Tg + Tw)/2], using well-known correlations reported in [24].

3. Results and Discussions
3.1. Evaluation of the Solar Stills

(i) Effect of water depth (h) and air gap distance (d)

In order to optimize the most important parameters of a single-slope solar still (basin
water depth, h and air gap distance, d), four identical solar stills (A, B, C, and D) having
different d values (14, 16, 18, and 20 cm) were operated, in parallel, for nine days using
different h values (0.5, 1, 1.5 cm); measurements were conducted for three consecutive days
using constant water depth, and the measured parameters were averaged as one day for
each water depth. The daily production for each solar still (in kg per m2 of basin water
surface) was collected for the three cases of h (0.5, 1, 1.5) and is illustrated in Figure 3. Based
on the resulting yields in Figure 3, still A (d = 14 cm) showed the highest production rate
(5.4 kg m−2) at a water depth of 0.5 cm compared to the other three stills (B, C, and D). The
proper design/construction considerations (e.g., well insulation, high transparency of the
glass cover, clear sunny weather) that were considered have enhanced the desalination
yields of the solar stills to reach 5.4 kg m−2 (for still A) and 4.7 kg/m2 (for still D) at a
constant water depth (h) of 0.5 cm.
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Figure 3. Daily accumulative yields (kg/m2) at different basin water depths for the four solar stills
tested in the study (10–18 October 2023).

For more clarification on the effects of d and h on the still performance, the daily yields
of the four solar stills (A, B, C, and D) were estimated (in kg per m2 of basin surface area)
and are plotted in Figure 4a against the basin water depth (h). Under the same conditions
of solar irradiance and ambient temperature, still A (having the lowest air gap distance
of 14 cm) showed the highest daily yield compared to the other stills having higher air
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gap distances. In each solar still, the daily yield decreases as the water depth increases
(Figure 4a). This is because for the same solar irradiance, increasing water depth would
increase the amount of water in the basin and reduce the water temperature; thus, the
distillate freshwater yield would decrease.
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On the other hand, increasing the basin water depth would attenuate the transmitted
solar irradiance to reach and be absorbed by the absorber surfaces (i.e., the black-painted
inner surface of the basin). For any water depth (h), the reduction in the air gap distance
(d) improves the distillate yield, as shown in Figure 4b. The decrease in the air gap height
would eliminate the shading effect of the side walls on the basin surface, allowing more
solar irradiance to be absorbed by the basin water, and the evaporation as well as the
desalination rate increases. Based on Figure 4a,b, the daily distillate yield of the solar still
at a water depth (h) of 0.5 cm increased by about 11% when the air gap distance decreased
from 20 to 14 cm. For an air gap distance (d) of 10 cm, the distillate yield increased by about
23% when the water depth decreased from 1.5 to 0.5 cm. This indicated that, during the
daytime, the effect of basin water depth, h, on the still productivity, mc, is much higher than
the effect of the air gap distance, d.

The basin water depth (h) is an operator choice, whereas the air gap distance (d) is
a designer choice; it depends on the still base dimensions (L, W, H, and Ho); d should be
reduced as much as possible to enhance the still performance. To calculate the optimum
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value of d, designers should go through the following steps: (i) selecting L and W (L/W = 2,
recommended) based on the requirements of customers (i.e., the amount of the freshwater),
(ii) selecting the lowest height of the front wall (Ho) and the basin depth (ho) based on
the lower limit of design considerations, (iii) determining the cover slope angle (α), i.e.,
equal to the latitude angle of the location, and (iv) determining the back wall height
(H) as H = Ho + W × tan (α). Then, the optimal air gap distance (d) can be calculated. In
addition, an optimum value of the back-to-front wall height (H/Ho) of 3.65 should be taken
into account. A proper design of a solar still would produce at least 5 kg m−2 per day, and
according to the World Health Organization [25], a solar still having a basin surface area of
10–20 m2 is required to meet the needs of one person per day. Scaling up of the proposed
design is possible; the only limitation is the breakability of the glass cover. To avoid this, rigid
supports (e.g., rigid plastic or stainless-steel bars) should be used below the glass cover to
carry the weight of the cover; for a glass cover of 1 m width, one bar for every 1–1.5 m interval
of glass span length is suggested based on our observations on the present experiments.

(ii) The still daily overall efficiency, ηd

The daily overall efficiency (ηd) of the four solar stills was calculated at the three water
depths of 0.5, 1, and 1.5 cm using Equation (12), and the resulting values are depicted in
Figure 5. The results showed that for a water depth of 0.5–1 cm, the solar still-A showed
a higher daily overall efficiency (ηd = 46–53%) compared to the other stills tested. This
result emphasizes that under the arid climatic conditions of Riyadh area, a water depth
(h) of 0.5–1 cm and an air gap distance (d) of 14 cm or lower are the desired dimensions to
design/construct a single-slope solar still; this can produce about 5 kg/m2 of freshwater
per day. On the other hand, values of ηd are quite low for the four solar stills (A, B, C, and
D); this is because Equation (12) is the measure of how much the incident solar radiation
over the still cover is absorbed by the basin water and converted to water vapor and then
condensed on the cover surface. This hypothesis combined the cover transmittance with
all the thermal losses from the still to the surroundings and considered the solar still as a
solar collector. However, if Equation (12) was divided by the cover transmittance, then the
resulting efficiency should be defined as the daily conversion efficiency of a solar still. In the
worst case, by considering the cover transmittance of 85%, the resulting daily conversion
efficiency (ηco) would increase by 17.6% for the four solar stills in Figure 5.
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Figure 5. Daily overall efficiency of the tested solar stills (A, B, C, and D), estimated at the three water
depths (h) of 0.5, 1, and 1.5 cm.

It is well known that the evaporation, as well as the desalination rate, of a solar still
depends mainly on the intensity of solar irradiance and the design configuration of the
still. In order to predict the desalination rate simply without the need for experiments,
which is mainly induced by solar irradiance, the hourly distillate yields of the tested solar
stills (A, B, C, and D having air gap distances of 14, 16, 18, and 20 cm, respectively) were
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obtained for the basin water depths of 0.5, 1, and 1.5 cm. All the yield data were gathered
and plotted against the corresponding values of the hourly average solar radiation flux in
Figure 6a (for the data before noon, from 7:0–12:0) and in Figure 6b (for the data after noon,
from 13:0–19:0). Applying the regression analysis to the data in Figure 6a,b, the hourly
distillate yields (mc in kg m−2) could be correlated before noon (R2 = 0.92, standard error of
estimate, SEE = 0.057, and p < 0.0001) and after noon (R2 = 0.91, SEE = 0.072, and p < 0.0001)
as a function of solar radiation flux (Is in W m−2) in the following form:

Before noon

mc = −0.397 + 0.003(Is)− 5.99× 10−6(Is)
2 + 4.4× 10−9(Is)

3, R2 = 0.92 (13)

After noon

mc = 0.05 + 0.0009(Is)− 7.1× 10−8(Is)
2, R2 = 0.91 (14)
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Figure 6. The hourly yields of the four solar stills (A, B, C, and D) as affected by solar irradiance
intensity, estimated before noon (a), and after noon (b) for the three water depths (h) of 0.5, 1.0, and
1.5 cm (10–18 October 2023).

Equations (13) and (14) are valid for basin water depth of 0.5–1.5 cm and air gap
distance of 14–20 cm and can be used, as a useful and easy tool, to estimate the expected
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freshwater yield, with a maximum possible error ≤ 8% (before and after noon) in the arid
area of the Arabian Peninsula as a function of the solar irradiance intensity (W m−2), which
is easily can be obtained from any meteorological station in this area. Based on such quick
estimation, designers can perform feasibility studies and put the outline dimensions of a
solar desalination project with a proper expectation of the outcomes.

(iii) Diurnal variation of the desalination rate, mc

The results in the previous figures (Figures 3–5) revealed that operating the solar
still-A, having the lowest air gap distance (d) of 14 cm, at the lowest water depth (h) of
0.5 cm is more efficient, giving higher freshwater production than the other solar stills and
water depths. To show the daily behavior of the still A, the hourly yield of the still at three
different water depths is illustrated in Figure 7a. The hourly distillate yield of the solar
still A at h = 0.5 cm was the highest over all the solar stills and depths throughout the
experiment, (Figure 7a). This is due to the highest solar energy absorbed (because d is the
lowest), as well as the highest temperature of the basin water, Tw (because h is the lowest).
Specifically, at d = 14 cm (still-A), when the basin water depth (h) decreased from 1.5 to
0.5 cm, the cumulative distillate yield increased by about 26% (Figure 7b).
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3.2. Analytical Expressions to Estimate the Desalination Rate, mc

The desalination rate (mc) can be predicted by conducting experiments on a real solar
still, or by using analytical expressions (i.e., theoretical models, Section 2.2). Numerical
expressions, as in Equations (13) and (14), provide a quick, less expensive, and more fixable
and repeatable way compared with the expensive and time-consuming experimental
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prediction. Several analytical expressions have been developed in the past to predict
mc, and the input parameters to these expressions are the glass cover and basin water
temperatures (Tg and Tw). In addition to Equations (13) and (14), another attempt was
made to estimate mc by using Equations (1)–(11). Therefore, the three selected models
used to estimate the values of mc without the need for measurements need evaluation to
examine their validity for arid climates. For this reason, during all the experiments, the
measured values of Tw (i.e., mainly depends on the solar irradiance, Is, because of the
frame insulation) were plotted against the corresponding values of Is in Figure 8a for the
before noon (7:0–12:0) and in Figure 8b for the after noon times (13:0–19:0). Applying the
regression analysis to the data in Figure 8a,b, two expressions could be obtained for the
before noon time (Equation (15), R2 = 0.97, SEE = 3.68, and p < 0.0001), and after noon time
(Equation (16), R2 = 0.91, SEE = 4.68, and p < 0.0001) as follows:

Tw = 20.45 + 0.0353(Is) + 3.2× 10−5(Is)
2, R2 = 0.97 (before noon) (15)

Tw = 20.87 + 0.129(Is)− 7.72× 10−5(Is)
2, R2 = 0.91 (after noon) (16)
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Unlike the basin water temperature (Tw), the glass cover temperature (Tg) depends on
the solar radiation flux as well as the ambient air temperature (Tam) because the glass cover
is exposed directly to the ambient air and exchanges energy with it. In a similar manner to
Equations (15) and (16), the measured data of Tg, Tam, and Is for the stills A, B, C, and D
were gathered for the three water depths, h (0.5, 1, and 1.5 cm), and then the values of Tg
vs. Is and Tam were plotted, as three dimensions, in Figure 9a for the data before noon and
in Figure 9b for those after noon.
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Applying regression analysis to the data in Figure 9a,b, two numerical expressions
could be obtained for the before noon time (Equation (17), R2 = 0.97, SEE = 2.26, and
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p < 0.0001) and the after noon time (Equation (18), R2 = 0.97, SEE = 2.23, and p < 0.0001) in
the following form:

Tg = −2.86 + 0.0457Is + 0.0668Tam, R2 = 0.97 (before noon) (17)

Tg = −9.47 + 0.032Is + 1.185Tam, R2 = 0.97 (afternoon) (18)

Most of the numerical models in the literature used to estimate the desalination rate
(mc) mainly used Tw and Tg as input parameters to the simulation. In order to make
these models applicable, Tw and Tg (in ◦C) were correlated in Equations (15)–(18) as a
function of solar irradiance (Is, in W/m2) and ambient air temperature (Tam, in ◦C). Then,
an empirical model can be used easily to determine mc, once the meteorological conditions
are predetermined.

To validate the selected numerical models (Equations (1)–(11)), used for estimating the
desalination rate (mc), the values of Tw and Tg were calculated (Equations (15)–(18)), and
then these values were substituted into Equations (1)–(11). The resulting values of mc are
depicted in Figure 10 as accumulative yields with time. In addition, the measured values
of mc (under the same conditions of h = 0.5 cm and d = 14 cm) are also depicted in Figure 10
for comparison. Overestimation errors are observed in Figure 10 on the predicted values
of mc, resulting from the three models, especially in the after noon time. This is mainly
attributed to the assumptions allocated with these models; for example, the models have
assumed that the evaporation rate is equal to the collected condensation rate (mc = mev),
and the condensed droplets that fall into the basin water were neglected. In addition,
Kumar and Tiwari’s model [20] and Zheng et al.’s model [21] are more convenient than
Dunkle’s model [19] to predict the values of mc theoretically. Eventually, once the ambient
air temperature (Tam) and solar radiation flux (Is) were measured, the desalination rate (mc)
in kg per m2 of basin surface can be calculated.
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erence [25], is about 1200 ppm. Other chemical parameters were measured for the two 
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3.3. Distilled Water Analysis

The saline water used in the experiments was taken from the Red Sea (Duba Coastal,
Tabuk, KSA). Two samples of seawater and the output distilled water were tested in
the central laboratory, King Saud University. The total dissolved solids (TDS) in the
seawater and distilled water were about 31,250 and 495 ppm, respectively. This is very
acceptable because the maximum acceptable solids in the drinking water, according to
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the STD reference [25], is about 1200 ppm. Other chemical parameters were measured
for the two samples and the results are illustrated in Table 3, and showed promising
results, emphasizing that the distilled water can be used as drinkable water according to
the STD [25]. However, iron (Fe) in the distilled water was higher than in the seawater;
this may be attributed to the corrosion that occurred in the galvanized iron trough during
the experiments. Therefore, anti-corrosive materials are highly recommended to make
the trough. The distilled water can be remixed with brackish water (adjusting ppm of
the mixture up to 1000) to be used for irrigation and greenhouse evaporative cooling in
summer. This can solve the main challenge facing greenhouse growers in these regions,
especially in summer, which is blocking the wet pad because of using brackish water for
cooling the pad in the wet-pad fans system [26]. Solving this issue would significantly
enhance the cooling performance of wet-pad fan systems, increase the lifetime of the pads,
and reduce the fixed and operating costs of the greenhouses.

Table 3. Chemical analysis of distilled water and seawater.

Composition, ppm Sample-1 (Seawater) Sample-2 (Distilled
Water) STD [25]

Carbonates (CO3) 560.504 zero ___

Chloride (Cl−) 21,442 71 500

Phosphates (PO4) 54.299 Not detected 0.3

Calcium (Ca) 537.072 16.032 200

Magnesium (Mg) 233.38 4.86 150

Iron (Fe) 0.0567 0.1008 1

Manganese (Mn) Not detected Not detected ___

Sodium (Na) 132.0029 22.6480 200

Potassium (K) 109.1886 2.8609 ___

pH 6.18 6.23 6.5–9.2

Total dissolved solids (TDS) 31,250 495.36 1200

4. Conclusions and Recommendations

This study evaluated four solar stills to examine the effect of air gap distance (d) and
basin water depth (h) on the performance and freshwater productivity (mc) of these stills in
the arid climate of Riyadh area. Based on the measured parameters, different analytical
expressions have been developed to estimate the desalination rate (mc) as a function of the
meteorological parameters (i.e., solar radiation flux, Is, and ambient air temperature, Tam).
According to the obtained results, the main conclusion could be summarized as follows:

The solar radiation flux is the main power that induces the evaporation process and
the solar still freshwater productivity; therefore, selecting the appropriate location to install
solar stills is important.

Both the basin water depth and the air gap distance, between the water surface and
glass cover, have a considerable effect on the distillate freshwater yield; the highest collected
distilled yield could be obtained at the lowest air gap distance and lowest water depth due
to the rapid evaporation and condensation rate as affected by the reduction in the still side
walls. Low side walls reduce shading on the basin water and consequently increase the
water temperature. Therefore, transparent side walls are recommended, in future work,
to reduce the shading effects on the basin water, and enhance productivity. Moreover,
the effect of wind speed over the glass cover on enhancing the still performance and
productivity should be evaluated.

Based on our observation during the experiments, the trough, used to collect the
condensed water, should be made from anti-corrosive materials to avoid corrosion. Hy-
drophilic paint is also recommended to be applied carefully on the inner surface of the
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glass cover, without jeopardizing the cover transmittance, to achieve film condensation
and eliminate dropwise condensation on the cover.

Scaling up for the proposed design of solar still is possible to meet the requirements
of any activity. Due to the breakability of glass cover, rigid supports (e.g., plastic or
stainless-steel bars) are recommended below the glass cover to carry its load.

The values of the glass cover temperature (Tg) and basin water temperature (Tw) could
be correlated as functions of the solar intensity (Is), and ambient air temperature (Tam) with
high R2 values of 0.97. Thus, values of Tw and Tg can be used as input parameters for
analytical models to finally estimate the desalination rate (mc) theoretically instead of using
expensive measurements. Other two simple correlations could be obtained to estimate mc
as a function of Is (before and afternoon) with a maximum error of <8%; this will be useful
for the feasibility studies of solar desalination projects in arid areas.

A high desalination rate per unit area of basin surface was achieved under the highly
intensive solar radiation in the central region of Saudi Arabia; therefore, this climate is
promising for solar energy applications, such as desalination and power generation.

The solar stills reduced the TDS from 31,250 ppm (sea water) to 495.36 ppm (drinkable
water); the distilled water can be remixed with sea water up to ~1000 ppm to be used
successfully for evaporative cooling and irrigation in the greenhouses.

More research is required for the night period and how to enhance the desalination
rate in the absence of solar radiation by implementing phase change materials (PCM) and
storage materials with high thermal capacities on the basin.
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Nomenclature

As Basin surface area of the solar still (m2)
Cp Specific heat capacity (J kg−1 ◦C−1)
d Air gap distance (m)
g Gravitational acceleration (m s−2)
H Back wall height (m)
Ho Front wall height (m)
H Basin water depth (m)
hc Convective heat transfer coefficient between water and glass cover (Wm−2 ◦C−1)
hev Evaporative heat transfer coefficient (Wm−2 ◦C−1)
h f g Latent heat of vaporization of water (J kg−1)
ho Basin thickness (m)
Is Solar radiation intensity (Wm−2)
K Thermal conductivity (Wm−1 ◦C−1)
Ma Molecular weight of dry air (kg mol−1)
Mw Molecular weight of water vapor (kg mol−1)
mc Desalination rate (kg s−1)
mev Evaporation rate (kg s−1)
PT Total pressure of the mixture of air and water vapor in still (Pa)
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Pw Partial pressure of the vapor at water temperature (Pa)
Pg Partial pressure of the vapor at glass temperature (Pa)
SEE Standard error of estimate
Tam Ambient air temperature (◦C)
Tg Glass cover temperature (◦C)
Tw Basin water temperature (◦C)
Greek symbols
α Slope angle of the glass cover (degree)
β Thermal expansion factor (1/k)
ηd Daily overall efficiency
∆T Temperature difference between water and glass (◦C)
µ Dynamic viscosity (Ns m−2)
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Abstract: Grid-forming inverters are anticipated to be integrated more into future smart microgrids
commencing the function of traditional power generators. The grid-forming inverter can generate
a reference frequency and voltage itself without assistance from the main grid. This paper compre-
hensively investigates grid-forming inverter modelling and control methodology. A decentralized
method employing an active power versus frequency P− f droop and a reactive power versus voltage
Q − V droop is exploited to drive the operation of the grid-forming inverter. This decentralized
method ensures balancing the supply and demand beside the power-sharing task between two
or more inverters. The performance of the grid-forming inverter is examined by monitoring the
frequency and RMS voltage of the inverter bus for three different periods of a varying PQ load. In
addition, the performance of the resultant droop is compared with the assumed droop to validate the
effectiveness of the proposed method. Finally, two grid-forming inverters equipped with the same
droop characteristics are connected to a single load to observe the power-sharing concept among
them. All simulations are implemented and executed using Matlab/Simulink version R2014b.

Keywords: grid-forming inverter; decentralized control; P − f droop control; Q − V droop control;
power sharing

1. Introduction

Synchronous generators are usually dominant for traditional AC power networks,
where the essential control targets of frequency and voltage regulation are satisfied through
governor and exciter control, respectively. Furthermore, during load variations and short
circuits, the frequency is kept within the permissible limits due to the higher inertia of the
prime mover and rotor. This property of a synchronous generator makes the main utility
power grid more stable. The deeper penetration of renewable energy sources (RES) into
AC power networks entails interfacing the source with an inverter-based power electronic
interface, which has low inertia. The most commonly used inverters are grid-following
inverters, which are utilized to generate power, both active and reactive, into the main
grid. This type of inverter requires a phase-locked loop (PLL) to coordinate with the main
grid voltage and frequency, which are taken as references. The grid-forming inverters can
extract their voltage and frequency alone without the need for the main grid voltage and
frequency, contrary to grid-following inverters. This feature is beneficial for the distributed
generator (DG) or microgrids operating in an autonomous mode. For an islanded microgrid
system, some inverters can operate in grid-following mode while one or some others take
the responsibility of grid-forming mode to create a neighborhood electricity grid [1–4].

Grid-forming inverters were primarily evolved to be applied in a microgrid on islands.
However, their operation can be modified when integrating them in large-scale power
networks, like wind and solar farms, placed in far-off places. This is because of the high-line
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impedance needed, which forms a weak grid side. Thus, voltage control at the common
coupling point becomes a crucial problem, which can be solved using grid-forming inverter
integration to strengthen the weak grid. Grid-forming inverters are a trending technology
where the control methodologies, modelling techniques, and practical applications are not
fully addressed. To remedy the shortage in the above, many academic and non-academic
original and review papers have investigated the widespread aspects of grid-forming
inverters [5–9].

Grid-forming inverters have to share the overall power generation according to their
capacities. This is usually achieved through a supervisory control where a central controller
sends control commands to the inverters through a communication medium. However,
this strategy is less reliable, as the supervisory control can be threatened by cyberattacks
or due to communication delays. Alternatively, the decentralized methods do not need a
communication medium. Thus, cyberattacks and communication delays are not considered
as a risk. That is why droop control as a decentralized method are preferred in the control
of grid-forming inverters [10–12].

A hybrid grid-forming/-following inverter, which describes the inverter control sys-
tem’s dynamic behavior, was proposed in [13]. A method for damping the postfault
oscillations observed in inverters that both form and follow the grid and based on droop
control was investigated in [14] for changes in grid strength. The authors in [15] proposed
a novel method to decouple the real and reactive power in grid-forming inverters based on
droop control or any other control structure. A method of aggregation based on coherency
for analyzing massive power networks involving grid-forming inverters with droop control
was studied in [16] using hardware in the loop testbed. In [17], a creative decentralized
control method for multiparallel grid-forming distributed generators in a microgrid on an
island was proposed, where the system frequency was independent of the load conditions.
In reference [18], the authors analyzed the effect that hybrid voltage-and-power-based syn-
chronization control has on the transient stability of grid-forming inverters. The duality of
grid-forming and -following inverters was analyzed in [19] through theoretical analysis and
simulation results for single-, two-, and multi-inverter systems. In [20], a battery-supported
inverter with an improved droop control was thought to function in parallel with a pho-
tovoltaic (PV)-based grid-forming inverter with modified virtual synchronous machine
control under non-ideal grid voltage conditions and in the isolated mode of operation.

Some of the research articles discussed before used the droop control only as a tool for
the grid-forming inverter to satisfy other objectives, like seamless transition or damping
oscillations. Others proposed new control methods or strategies for the grid-forming
inverter without employing droop control. However, to the best of the authors’ knowledge,
the applicability of droop-based control in the grid-forming inverter has not been addressed
fully and comprehensively in the up-to-date literature. Moreover, the validity of the
performance of such decentralized control has not been analyzed in depth, neither for the
case of off-grid systems nor of a varying PQ load demand. Therefore, the innovation of
this paper is represented by providing a comprehensive validation of the droop-based
grid-forming inverter as an off-grid system with a varying PQ load demand to address
such a literature gap. Among the existing control strategies of the grid-forming inverter
in the literature, droop control as a decentralized control is investigated in depth and is
utilized to drive the proposed grid-forming inverter operation, where P − f and Q − V
droops are adjusted and confirmed with the simulation results for a varying-load condition.
Voltage and current control loops are implemented in dq rotating reference frame to extract
the reference voltage of the grid-forming inverter. Thus, the main contributions of this
paper are:

(1) A detailed insight of the theoretical analysis for the grid-forming inverter and its
control structure.

(2) The validation of the assumed and resultant P − f and Q − V droop characteristics
used to drive the grid-forming inverter.
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(3) The verification of the power-sharing concept employed by connecting two grid-
forming inverters to satisfy a varying load demand.

Five sections make up the remaining text of the paper. Following the Introduction,
Section 2 presents a general illustration of the grid-forming inverter and its control schemes.
In Section 3, where a thorough examination of the droop control strategy and the construc-
tion of the cascaded voltage and current control loops are studied, the system structure and
methodology, including the assumed droop control and the voltage and current control
loops, are explained. Discussion of the simulation results, including the setting of the
assumed P − f and Q − V droops, performance evaluation of the system under a varying
load, and the validation of the simulation results as well as the active and reactive power
sharing between two grid-forming inverters is in Section 4. In Section 5, the conclusions
and future work are outlined.

2. Configuration and Control of Grid-Forming Inverter

Grid forming is an umbrella for any power converter that can deliver constant voltage
magnitude and frequency when the main supply grid is not available. It does not need a
PLL similar to how grid-following converters work and can work with other grid-forming
or -following inverters on the same network. A grid-forming inverter is usually operated
in island mode and is regulated to adjust the frequency and voltage forming a local grid.
Therefore, it can be shown by connecting a low impedance to an idealized AC voltage
source [21]. The use of the grid-forming converter mostly lies in the context of microgrids.
In this case, the grid-forming converter can operate in grid-connected mode as supporting
inverters or it can operate autonomously, which means in island mode [22].

As mentioned previously, the grid-forming power converter appears as a low-output
impedance connected to an ideal ac voltage source, where the voltage level and frequency
Vm, δm are set by utilizing an appropriate control loop, as indicated in Figure 1. Therefore,
the grid-forming converter needs an accurate system of synchronization in order to be able
to work in parallel with other grid-forming converters. A real-world illustration of the grid-
forming converter is the standby uninterruptible power supply (UPS), where it can form
the grid voltage when a grid failure occurs. In the case of grid failure in a grid-connected
microgrid system, the grid-forming converter will be employed as a reference if multiple
grid-following converters are running on the system.
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The following [23] is a classification of certain grid-forming converter control strate-
gies:

• Droop control: this method offers a linear trade-off between the frequency and real
power in addition to the voltage and reactive power. This principle is inspired from
the steady-state operation of a typical synchronous machine. Therefore, the droop
characteristics are expressed as P− f and Q−V relationships. Thus, each distributed
generation unit will have the same frequency and it will supply power according to
its capacity or, in other words, its droop gain.

• Virtual synchronous machines: this method employs the behavior of a synchronous
machine in power systems to be applied in the inverter control. Here, the mea-
surements of the inverter terminals are inserted as inputs into a digital model of a
synchronous machine to deliver an inverter output according to the digital model.
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To match the machine characteristics, P−ω and Q−V, which are nominated as syn-
chronverters, are usually employed. The virtual machine concept can be implemented
considering the detailed electromechanical models or simply the simplified swing
dynamics.

• Virtual oscillator controllers: this method emulates the behavior of nonlinear loads
where a digital model processes the real-time measurements like a virtual synchronous
machine. The major difference is that an oscillator circuit with a natural frequency
that matches with AC main grid frequency forms the digital model. Also, by tuning
this oscillator circuit, the control bandwidth and nominal voltage can be adjusted. In
steady-state conditions, this method will eventually offer P−ω and Q−V droops.

All the methods described above have analogous properties despite the differences
between them. The inverter output of any of the abovementioned grid-forming controllers
looks like a voltage source, with amplitude and frequency that changes with the power
and load variation of the system. This hierarchy permits grid-forming inverters to instanta-
neously conform the load demand with the generated output power, control local voltage,
and take part in frequency control without the need for a reference voltage from the main
grid, as in the case of grid-following inverters [24]. The control methods applied for the
grid-forming inverters are depicted in Figure 2. Here, the grid-forming inverter acts like
a voltage source, which can be driven by one of the mentioned control methods. In the
context of microgrids, grid-following and grid-forming inverters differ significantly in that
the grid following always need a PLL as well as voltage reference to extract the real and
reactive power.
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Figure 2. Control methods of the grid-forming inverter [21].

3. System Structure and Methodology

As discussed earlier, the grid-forming inverter should be driven by a proper control
methodology to deliver a reference voltage, as the main grid no longer exists. The reference
voltage should be regulated by two cascaded voltage and current control loops before
being sent to the grid-forming inverter. Figure 3 depicts the structure of the implemented
network, which includes one grid-forming inverter and one local load. The grid-forming
inverter is represented by an ideal controlled voltage source. The reference voltage Vre f
is delivered to the inverter after being extracted and controlled by the droop control and
sinewave generation as well as the voltage and current control loops, respectively. Those
two blue subsystems will be clarified in the subsections that follow.
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3.1. Droop Control and Sinewave Generation

In synchronous machines, the generator rotor speed is decreased if the demand of
power is suddenly increased. Thus, the frequency is lowered in order to deliver extra
power. This consistency between P and f is introduced as a standalone control in DG
systems. The only difference here is that the inverter lacks inertia, unlike the synchronous
machine. As a result, the transmission-line impedance plays a major role in determining
the droop-control-based active power and frequency P− f . Considering the system shown
below in Figure 4, which connects a voltage source with a load through a transmission line,
the real and reactive powers are given as [25]:

P =

(
EV
Z

cosδ− V2

Z

)
cosθ +

EV
Z

sinδsinθ (1)

Q =

(
EV
Z

cosδ− V2

Z

)
sinθ − EV

Z
sinδcosθ (2)
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When θ = 90◦ for an inductive transmission line, the power equations reduce to:

P =
EV
Z

sinδ & Q =
EV
Z

cosδ− V2

Z
(3)

If the phase angle δ is small, sinδ ≈ δ and further reduction to the power equation
yields

P ≈ EV
Z

δ & Q =
V
Z
(E−V) (4)

Thus, it can be observed that if the transmission line is inductive, the active power is
connected to the phase angle, and the reactive power is coupled to the terminal voltage.
However, the frequency is selected in place of the phase angle to regulate the active power
for control of DG-based power converters. This is because the initial phase values of the
DG systems are unknown in the absence of the grid. According to this logic, the P− f
droop can be represented as:

f = fre f − kP

(
Pre f − P

)
(5)

Also, the terminal voltage and reactive power Q−V droop are characterized by:

V = Vre f − kq

(
Qre f −Q

)
(6)

where Pre f and Qre f are the reference active and reactive power, P and Q are the measured
active and reactive power, fre f and Vre f are the reference frequency and voltage, and kP
and kq are the droop gain coefficients.
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It is worth mentioning that as the droop gain coefficient is low, the control response
will be slow, whereas for large droop gain coefficient, the load sharing becomes faster. This
is due to the swap between the droop gain coefficient and stability of the system.

The concept resulting from Equations (5) and (6) has been implemented in the droop
control and sinewave generation block depicted in Figure 3. Its representation is presented,
as shown in Figure 5. Here, the measured current and voltage at the grid-forming inverter
are inserted into a block that calculates the power to extract the measured real and reactive
powers, which are then compared with their rated (reference) values.
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Figure 5. A representation of the droop control and sinewave generation block.

The droop gain coefficients kP and kQ are adjusted according to the capacity of the
renewable energy source, in other words, the rated values for both active and reactive power
of Pre f and Qre f . The output of these droop gains is compared with the nominal frequency
and terminal voltage values. Thus, if the measured active power is increased/decreased,
the frequency will be lowered/raised, respectively. This logic also extends to the measured
reactive power and the terminal voltage. That is why the P− f and Q−V droops have
inverse characteristics. Finally, the voltage Vabc that should be controlled and the phase
angle ωt required for dq transformation are extracted and inserted into the control loop
block of voltage and current, which will be discussed further.

3.2. Voltage and Current Control Loops

In this section, the sinewave-generated voltage Vabc from the droop control block will
be regulated by two cascaded control loops, as depicted in Figure 6. The control loop of
voltage is in charge of controlling the output voltage, where the distinction between the
measured and reference voltage is an input to the control loop of current that delivers the
current reference to be injected by the converter. Only when the DG is operating in islanded
mode and separated from the main grid does the voltage control loop exist. The current
control loop regulates the current provided by the power inverter and tracks, at the same
time, the current reference supplied by voltage control loop.

In the block diagram shown below, the ABC sinusoidal voltage is transformed into a
synchronous frame by Park’s transformation to extract Vd,re f and Vq,re f , such that,




Xd
Xq
X0


 =

2
3



−cosωt −cos(ωt + 2π/ 3) −cos(ωt− 2π/ 3)
sinωt sin(ωt + 2π/ 3) sin(ωt− 2π/ 3)
1/2 1/2 1/2


×




Xa
Xb
Xc


 (7)

The measured and reference dq voltages are then compared and passed through PI
controllers to deliver the reference dq currents. This part specifically identifies the voltage
control loop. Further, the measured and reference dq currents are compared and also
inserted to PI controllers to deliver the final voltage reference of the grid-forming converter,
which includes the reference voltages V∗d and V∗q . This part specifically identifies the current
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control loop. The voltages V∗d and V∗q are transformed into stationary reference frame by
the inverse Park’s transformation, such that,




Xa
Xb
Xc


 =




−cosωt sinωt 1/2
−cos(ωt− 2π/ 3) sin(ωt− 2π/ 3) 1/2
−cos(ωt + 2π/ 3) sin(ωt + 2π/ 3) 1/2


×




Xd
Xq
X0


 (8)
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Figure 6. Representation of the voltage and current control loops.

In real practice, the grid-forming converter is fed by a balanced dc source driven by a
fuel cell or a battery, for example. This dc source remains disconnected when the system is
operating within acceptable limits, and it is connected in case of grid failure to form the
grid voltage and frequency.

A flowchart of the overall control process for generating the reference voltage of the
grid-forming converter is depicted in Figure 7. In the flowchart, the droop characteristics
are adjusted to deliver the sinusoidal signal; then, it is passed through voltage and current
control loops to generate the reference voltage.
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𝑘 ൌ
50 െ 52

15000 െ 0
ൌ െ0.00013 

𝑘 ൌ
230 െ 253
5000 െ 0

ൌ െ0.0046 

Figure 7. Flowchart of the overall control process.
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4. Discussion of Simulation Results
4.1. Setting the Droop Characteristics

The grid-forming power converter’s droop characteristics have been tuned so that
the voltage V controls the reactive power Q and the frequency f controls the active power
P. The P− f and Q− V settings are presented in Figure 8a,b. The permissible limits of
the frequency and RMS voltage in the distribution networks are (48 Hz < f < 52 Hz) and
(207 V < Vrms < 253 V), respectively. The frequency range in the P− f droop has been
adjusted between (50 Hz and 52 Hz) as the active power is assumed to be generated to
satisfy the load and not to be stored for future usage. Keep in mind that if the active power
needs to be stored, the frequency range should be from (48 Hz to 50 Hz). In addition, the
voltage range in the Q − V droop has been adjusted between (230 V and 253 V) as the
reactive power is assumed to be inductive (load draws + ve VAR). If the reactive power is
capacitive, the voltage range should be from (207 V to 230 V). The real and reactive power
range in the P− f and Q− V droops was adjusted arbitrarily, as there is no restriction
similar to the permitted ranges for voltage and frequency.
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In subfigures (a) and (b), the droop gains kP and kq are calculated as follows:

kP =
50− 52

15000− 0
= −0.00013

kq =
230− 253
5000− 0

= −0.0046

Those droop gains are inserted into the unit of control for the grid-forming power
converter, where, if the active power of the load is increased, the frequency is decreased and
vice versa. Furthermore, if the load reactive power is increased, the voltage is decreased
and vice versa. The references of active and reactive power Pre f and Qre f are 15 kW and
5 kVAR, which represent the maximum capacity of the grid-forming inverter, whereas the
frequency and voltage references are fre f and Vre f are 50 Hz and

√
2× 230 V, respectively.

4.2. Performance Evaluation under Load Variation

The proposed model structure of Figure 3 was constructed in Matlab/Simulink version
R2014b, where the grid-forming power converter was designed as a controlled voltage
source. The load is assumed to be a resistive-inductive (PQ) load to examine the reaction of
the proposed droop controllers, and the line is an R− L series branch. The Simulink model
of the proposed network, including the droop and control structure, is presented in Figure 9.
Subfigure (a) shows the network model, while subfigures (b) and (c) present the droop and
sinewave generation in addition to the voltage and current control loops. The evaluation of
the results was divided into three regions: the first region between (0 and 0.5 s) is when no
load is connected to the grid-forming inverter, the second region between (0.5 s and 1 s)
is when the load is increased to 50% of the grid-forming inverter capacity, and the third
region between (1 s and 1.5 s) is when the load is increased to 100% of the grid-forming inverter
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capacity. Reactive power vs. voltage Q−V droop and active power versus frequency P− f droop
performance under the load variation for the three regions are depicted in Figures 10 and 11. The
left y-axis for the two figures represents the active and reactive power, and the right y-axis
represents the frequency and RMS voltage, respectively.
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In no-load conditions (the load active and reactive power are zeros), the grid-forming
inverter ran at the highest frequency, 52 Hz, which corresponds to zero active power accord-
ing to the assumed P− f droop setting. The same condition was applied for the reactive
power where the RMS voltage was at the highest permissible value, 253 V, corresponding
to the assumed Q−V droop setting.

When the load is increased to 50% of the grid-forming-inverter capacity, the frequency
is decreased to 51 Hz according to the assumed P− f droop so that the inverter active
power is increased to 7.5 kW to satisfy the active power load demand. Similarly, the RMS
voltage is decreased to 241.5 V according to the assumed Q−V droop so that the inverter
reactive power is increased to 2.5 kVAR to satisfy the reactive power load demand.
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Furthermore, when the load is increased to 100% of the grid-forming inverter capacity,
the frequency is decreased to 50 Hz (lowest frequency permissible value) according to the
assumed P− f droop so that the inverter active power is increased to 15 kW (maximum
capacity) to satisfy the active power load demand. At the same time, the RMS voltage is
decreased to 230 V (lowest RMS voltage permissible value) according to the assumed Q−V
droop so that the inverter reactive power is increased to 5 kVAR (maximum capacity) to
satisfy the reactive power load demand. It should be noted that the spike in the RMS
voltage is due to the PI controller reaction in the control loop at the moment of 50% and
100% load increase. When the PI controller is subjected to a sudden load increase, it needs
a little bit of time to minimize the error difference between the measured and reference
quantity. That is why a spike appeared and then settled down to a steady-state response.

The peak voltage and current at the grid-forming inverter bus during the load variation
condition are depicted in Figure 12. It can be seen that the current is zero until t = 0.5 s as
an indication of the zero-load demand while the voltage is oscillating at √2 times 253 V.
During 0.5 s < t < 1 s, the current increases as the load demand is increased to 50% of the
inverter capacity while the voltage is decreased to √2 times 241.5 V due to the reaction of
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the Q−V droop to satisfy the reactive power demand of the load. After t = 1 s, the current
increases further due to the further increase in the load demand. Thus, the inverter needs
to generate more active power according to the P− f droop to satisfy the active power
load demand. Also, the voltage is decreased to √2 times 230 V due to the reaction of the
Q−V droop to satisfy the further increase in the load reactive power demand.
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4.3. Validation of Results

The validation of results is accomplished by monitoring the reference and measured
quantities of the droop control loop of the grid-forming inverter, as presented in Figure 13.
As shown from subfigure (a), the reference frequency fre f is always 50 Hz, and the mea-
sured frequency is changing according to the load demand variation and depending on
the assumed P− f droop setting. Notice that the output of KP in subfigure (b) is changing
exactly according to the difference between the measured and reference frequency. Extend-
ing the same logic for subfigure (c), the grid-forming inverter active power is changing
according to the change in KP, which represents the assumed P− f droop characteristic.

In subfigure (d), the reference voltage Vre f is always 230 V, and the measured voltage
is changing according to the load demand variation and depending on the assumed Q−V
droop setting. Notice that the output of Kq in subfigure (e) is changing exactly according to
the difference between the measured and reference voltage. Extending the same logic for
subfigure (f), the grid-forming inverter reactive power is changing according to the change
in Kq, which represents the assumed Q−V droop characteristic.

Furthermore, to confirm that the assumed droop control discussed in Section 4.1 has
been applied efficiently in the control of the proposed grid-forming inverter, the measured
active power and frequency values in addition to the measured reactive power and rms
voltage values are plotted as presented in Figure 14. Notice that the resultant P− F droop
equals exactly the assumed P− F droop, in which KP = −0.00013 and the resultant Q−V
droop equals exactly the assumed Q−V droop, in which Kq = −0.0046.

4.4. Active and Reactive Power Sharing

Sharing between active and reactive power among the grid-forming inverters based on
their rated capacity is employed to avoid overloading the sources. A microgrid consisting
of two grid-forming inverters sharing a single load is represented in Figure 15 to investigate
how the droop controllers equally shared the load demand of active and reactive power.
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Figure 13. Reference and measured quantities of the droop control loop. (a) Reference and measured
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RMS voltage; (e) output of Kq (f) reference and measured reactive power.
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The droop characteristics of both grid-forming inverters are adjusted to be identical so
that they share the same amount of the load demand in terms of real and reactive power.
Their settings are as follows:

kP =
50− 52

10000− 0
= −0.0002

kq =
230− 253
5000− 0

= −0.0046
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The single load in the above model is assumed again as PQ load, where between  0 ൏
𝑡 ൏ 0.5 s ,  the demand of active power  is  12 kW   and  the demand of  reactive power  is 
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Figure 15. A microgrid consisting of two grid-forming inverters sharing a single load.

The single load in the above model is assumed again as PQ load, where between
0 < t < 0.5 s, the demand of active power is 12 kW and the demand of reactive power is
4 kVAR. After that the load demand is increased between 0.5 s < t < 1 s, the demand of
active power becomes 20 kW and the demand of reactive power becomes 10 kVAR.

Figure 16 shows the power sharing in terms of both real and reactive power for both
inverters that are grid forming. It can be noticed how both inverters share the same amount
of active power and reactive power during the normal load period and when the load is
increased. This is due to the fact that both inverters are equipped with the same droop
characteristics.
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Figure 16. Active and reactive power sharing of both grid-forming inverters during the load variation.
(a) Active and reactive power of GFM inverter 1; (b) active and reactive power of GFM inverter 2.

The frequency and RMS voltage for both grid-forming inverters are presented in
Figure 17, where it can be observed that the change in frequency and RMS voltage is the
same for both inverters.
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(a) Frequency of GFM inverter 1; (b) RMS voltage of GFM inverter 1; (c) frequency of GFM inverter 2;
(d) RMS voltage of GFM inverter 2.
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Here, the frequency for both inverters was oscillating at 50.8 Hz when the total load
demand of active power was 12 kW and then dropped to 50 Hz as the active power load
demand increased to 20 kW, which is divided between the maximum capacity of both
grid-forming inverters (10 kW for both). The same was the case for the RMS voltage, where
the voltage of both inverters was oscillating at approximately 244 V when the total load
demand of reactive power was 4 kVAR and then dropped to 230 V as the reactive power
load demand increased to 10 kVAR, which is divided between the maximum capacity of
both grid-forming inverters 5 kVAR for both.

5. Conclusions and Future Work

Inverters of the grid-forming type have been suggested as a favorable arrangement for
the various problems in modern power systems. In this paper, the autonomous operation
of the grid-forming inverter with the integration of the droop control as a decentralized
method was investigated. The decentralized method used in this work confirms the applica-
bility and accuracy of installing grid-forming inverters in the distribution network without
the need for communication. The simulation results confirmed the precision of the assumed
droop setting with the resultant droop in response to the PQ load variation in the three
regions. It was also clear how the load demand is exactly satisfied with the generation that
employs the droop control methodology. Furthermore, the simulation results confirmed
the power sharing, where the generation of active and reactive power for both grid-forming
inverters was divided equally to satisfy the load demand. Future work can include further
investigations into grid-forming inverters connected at the distribution and transmission
levels. These investigations can be the hardware implementation, energy storage, system
protection, fault ride through capability, stability analysis, economic aspects and economic
dispatching of units, and the transition from islanded mode to grid-connected mode. An-
other path for future work may include a comprehensive analysis of the limitations and
constraints inherent in the proposed methodology and the overall study.
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Abstract: This paper proposed a dual DC bus nanogrid with 380 V and 48 V buses and allows the
integration of distributed energy resources on two buses. The proposed system employs an interlink
converter to enable power sharing between the buses. The integration of distributed energy resources
has been found to enhance the reliability of the low-voltage bus in comparison to those that lack such
integration. The integration process requires the introduction of a new V-I curve for the interlink
converter within a DC nanogrid controlled by DC bus signaling and droop control. Furthermore,
selecting a power electronics converter for the interlink converter is essential. This paper employs a
dual active bridge with galvanic isolation as an interlink converter and proposes a control strategy for
the converter that relies on DC bus signaling and droop control. Moreover, this control methodology
serves the purpose of preventing any detrimental impact of the interlink converter on the DC buses
through the reprogramming of the V-I curve. Subsequently, the suggested control methodology
underwent simulation testing via MATLAB/Simulink, which included two different test categories.
Initially, the DAB was evaluated as an interlink converter, followed by a comprehensive assessment
of the interlink converter in a complete dual DC bus nanogrid. The results indicate that the DAB has
the potential to function as an interlink converter while the suggested control approach effectively
manages the power sharing between the two buses.

Keywords: distributed energy resources; dual DC bus nanogrid; nanogrid; interlink; PV system;
battery converter; droop control; DC bus signaling

1. Introduction

Integrating renewable energy sources (RESs) at the distribution levels is a promising
alternative for reducing the environmental impact of conventional fossil-fuel-based sources
and the need for building new transmission lines to bring power from large plants far
away from consumer centers. However, the stochastic nature of RESs and their variable
power generation can lead to power quality issues in the distribution system. One way
around this is to associate them with energy storage units and controllable loads, which
could be controlled as a cluster or a “microgrid”. For that, one needs detailed informa-
tion about the state and operating conditions to be sent timely to the grid interfaces of
generation and storage units, which must be fast acting and reliable. This is achieved
with sophisticated information and communication technology (ICT) and modern power
electronic converters [1–4]. The microgrids study has focused on distribution feeders and
neighborhoods with medium-sized power plants, 100’s kW [4–6]. The microgrids concept
enables the distributed energy resources (DERs), which include power sources, energy
storage units, and controllable loads, to operate in islanding mode following a power grid
failure [2,5,7]. This is done by dynamically decoupling the microgrids from the utility
grid using a full-power bidirectional converter. This grid tie or interface converter can
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Sustainability 2023, 15, 10394

be used as an energy control center [7]. This concept can be extended for smaller units,
10 s of kW, for a residence. The future smart homes are envisioned to be net-zero energy
homes (NZEH). These are homes with net-zero energy consumption, meaning that the total
energy they use annually is nearly equal to the amount of energy they produce, ideally
with RESs [8–10]. To be able to operate autonomously, at least for some time, they should
present not only generation as well as storage units and controllable loads which, with a
suitable control structure, can be seen as a “nanogrid”. Nanogrids can be based on AC or
DC distribution [7,11].

In order to connect RESs, plug-in hybrid electric vehicles, and storage units to an AC
nanogrid, power electronics converters of the DC to AC type are used. Unidirectional
power electronic converters are employed for power sources such as PV and wind turbines.
In the case of PV, the required DC–AC converter usually consists of two stages: A step-up
(boost) DC–DC converter and a single or three-phase DC–AC converter [7,12,13]. Two-stage
converters, now bidirectional, connect energy storage units, usually batteries, to an AC
nanogrid [12–14]. In AC nanogrids, the DC–AC converters are responsible for voltage
and frequency regulation of the AC bus in islanding (stand-alone) and grid-connecting
modes [15,16]. For distributed energy sources, energy storage units, and controllable loads
in a nanogrid, a DC bus leads to the most straightforward interconnection scheme [7,17].
Compared to the AC distribution, the DC distribution does not require frequency or phase
control. Another aspect of the AC distribution is controlling the reactive power [18]. In
addition, DC–DC interfaces have higher efficiency and reliability [7,17,19–21].

Furthermore, DC has lower distribution losses, lower cost of conductors for the same
power, and does not use bulky transformers leading to cost and volume reduction [7,17,22].
In addition to that, a DC nanogrid should employ a DC–AC converter to serve as the
interface to a conventional AC distribution feeder/neighborhood. It should offer the
desirable capability of dynamically decoupling the DC nanogrid from the AC utility grid.
Therefore, the future residential electrical system of an NZEH could very well be based on
DC distribution [7].

One key aspect that remains unclear is the voltage level that should be adopted.
According to the IEC, extra low voltage (ELV) DC presents a magnitude of less than 120 V
and a lower risk of electrical shock. However, relatively high currents are required to
supply kW loads, leading to high distribution losses and conductors. The 48 V DC is a
standard telecom voltage level [7,23,24]. The following higher voltage category is the low
voltage (LV) magnitudes between 120 V and 1500 V. Higher voltages lead to lower currents
for a given power demand but this might complicate the design of the DC protection
system and require power interfaces with significant voltage gains. The 380 V DC level
matches the industry-standard intermediate DC voltage [7,25]. One option that industry
associations have considered and proposed is using two voltage levels (buses). The Emerge
Alliance [26,27] advocates using a 24 V, mainly to comply with current LED technology for
lighting, and a 380 V for other loads. However, in order to be able to supply other small
loads, the use of a 48 V, which is also considered for mild-hybrid vehicles, will be selected.

In the Emerge Alliance scheme, power sources and storage units are connected to
the 380 V bus, and a step-down unidirectional DC–DC converter is used to supply the
24 V lighting bus. One issue of concern is the reliability of the 24 V, which will be de-
energized if either the 24 V bus interface fails or the 380 V bus is not operational. The
dual DC bus nanogrid considered in this paper presents power sources and energy storage
units in both DC buses and a bidirectional “interlink” converter/interface to allow power
flow from one bus to the other and, indirectly, from the 48 V bus to the AC utility grid,
assuming that a 380 V DC to AC grid interface is present and operational. A simplified
Dual DC buses nanogrid is shown in Figure 1. One can see that the RESs (solar energy) and
electrical storage systems (batteries) are connected to both DC buses. The first can employ a
unidirectional converter but the second requires a bidirectional one. A bidirectional DC–AC
converter connects the utility grid to the HV DC bus. A bidirectional interlink converter
allows the power flow between the two DC Buses.
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Figure 1. Dual DC Bus Nanogrid.

In terms of research and development of the interlink converter, one should select a
suitable power topology with rated voltages of 48 V:380 V, a modulation/control scheme,
as well as define an appropriate control strategy (V-I curve) for the interlink converter
to operate with DC bus signaling (DBS). The latter should be done in a way as to not
interfere with the conventional approach of managing power and energy in a single-bus
DC nanogrid. It should be noted that although 48 V and 380 V, as stated before, are ELV
and LV, they would be called LV side and HV side, respectively, in this work.

This paper introduces a nanogrid system with dual DC buses, namely a low voltage
(48 V) bus and a high voltage (380 V) bus, which are interconnected through an interlink
converter responsible for managing the power flow between them. The buses at the booth
are equipped with various resources such as renewable energy sources (RESs), storage
systems, and load. Furthermore, the paper proposes V-I curves for the power interfaces that
manage the power sharing in decentralized control of the dual DC bus nanogrid through
DC bus signaling and droop control. The present paper introduces a control strategy
for the interlink converter to enhance the power balance of the two buses. Additionally,
the authors analyze the small signal model of the dual active bridge in its capacity as an
interlink converter. The authors validated the proposed dual DC bus nanogrid through
simulation results utilizing MATLAB/Simulink.

2. Power Control and Current Sharing in a Single DC Bus Nanogrid

A conventional single-bus DC nanogrid can be decentralized with a hierarchical struc-
ture with DC bus signaling (DBS) and droop control used at the primary level [7,13,28–32].
In addition, adaptive droop control could be used to improve the power sharing for parallel
DC–DC converters [33]. This work does not consider the secondary and tertiary levels,
which require a communication means for energy management. Thus, with fixed parame-
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ters for the primary control level, the DC bus voltage will vary in a small range around the
rated voltage, as defined by the V-I curves of the DERs. DBS uses the DC bus voltage as
the communication link to coordinate the operation of DERs in a decentralized way. With
droop control, the current (power) injected by each DER in the DC nanogrid depends on its
threshold voltage (VNL), where the injected current is zero, and its droop slope/factor (Rd)
is shown in (1). The latter determines how the injected current varies as a function of grid
voltage variations.

IDC = (VNL −VDC)
1

Rd
(1)

where;

Rd =
∆VDC
∆IDC

(2)

Figure 2 shows the V-I curves of the standard components found in a DC nanogrid
with a proposed set of parameters [7,13,30]. The DC–AC grid converter is discussed first.
When the DC bus voltage is between 390 V and 370 V, the converter operates in droop
mode with a droop constant (slope) Rdg. Otherwise, it operates in current-limiting mode,
with the DC–AC converter absorbing rated current for VDC > 390 V and supplying for
VDC < 370 V. Its threshold, or no-load, voltage is the rated voltage of the DC bus: 380 V.
That is to say that at this voltage, the current and power flowing through the converter is
zero. The values of the threshold voltage and the DC bus voltage determine the power-flow
direction. When the DC bus voltage is higher than 380 V but lower than 390 V, power flows
from the DC nanogrid into the AC utility grid (Ig < 0 A). Conversely, for DC bus voltage
lower than 380 V but higher than 370 V, power flows to the DC nanogrid from the AC
utility grid (Ig > 0 A). The threshold voltage is the main control parameter of this DC–AC
converter, which the secondary control level can adjust.

Figure 2. V −I curves of the high voltage DC bus DERs: Grid Converter, Solar Converter, and
Battery Converter.

In the case of the RESs, such as the solar converter, the V. vs. I curve usually presents
three regions: droop, constant power, and constant current, as shown in Figure 2. It operates
with droop constant Rds for a DC bus voltage between 400 V (threshold voltage) and 390 V
when the converter starts to operate in the maximum power point tracking (MPPT) mode
with the maximum available power injection. In the concept of DC bus signaling, a higher
threshold voltage for the solar converter than the grid converter gives the RESs a higher
priority to feed the DC nanogrid demand/load when operating in parallel. The following
section will discuss the actual power flow between the solar converter, grid converter,
battery, and variable load. For DC bus voltages between 390 V and 360 V, the converter
operates in the maximum power point tracking (MPPT) mode injecting virtually constant
power for constant solar irradiance (W/m2). The dashed line in this region shows that
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the solar converter is reprogrammed to operate in MPPT mode, injecting the maximum
available power when the solar irradiance decreases from the rated value or the PV panel
temperature increases [7]. When the DC bus voltage drops below 360 V, the solar converter
operates at the current-limiting mode.

The electrical storage units operate in droop mode, with droop constant Rdb when the
DC bus voltage is between 380 V and 360 V. Otherwise, it operates in the current-limiting
mode, absorbing rated current for VDC > 380 V and supplying for VDC < 360 V. The storage
system usually has the third priority, after the RESs and the utility grid, to feed the load. It
has a threshold voltage of 370 V, lower than the other system interfaces. This prevents the
electrical storage system from discharging through the utility grid. On the other hand, the
electrical storage system is discharged at DC bus voltages less than 370 V.

Concerning power-flow control and energy management in the DC nanogrid, the
actual value of the threshold voltage of the power interfaces can be adjusted based on the
instantaneous and historical price of energy that could be drawn from or supplied to the
utility grid. Long- and/or short-term histories of the local renewable energy generation
and the nanogrid load profiles play a role in reprograming the threshold voltage. In
addition, the history of the storage units’ state of charge (SoC) should be considered. To
achieve optimal threshold voltage preprogramming, an optimal energy utilization algorithm
is used [7]. To implement this algorithm, historical data about the system is needed. The
maximum charging and discharging current are based on the battery manufacturer and
power-converter ratings. Sometimes, when the SoC drops below 20%, the control will stop
the discharging operation mode. On the other hand, the battery will not be charged when it
has a SoC greater than 90% [34]. The current limits could be a function of the state of charge
(SoC) [7,35–37]. This produces the shaded area in the V-I curve, as shown in Figure 2.

Neglecting the voltage drops between the DER interfaces and the equivalent system
load, the DC bus voltage (VDC) of a nanogrid operating with DBS and multiple DERs can
be determined from the:

ILoad =
n

∑
i=1

IDC_i (3)

where IDC_i are computed according to the V-I curves of the n DERs, with the value of VDC,
one can then calculate the individual contributions of the DERs from their V-I curves.

3. Power Control of the Interlink Converter

As a conventional single-bus DC nanogrid, the dual DC bus nanogrid could be decen-
tralized with a hierarchical structure based on droop control and DC bus signaling [7,28,29].
In principle, the V-I curves and parameters of the DERs in the LV DC and HV DC buses
could be the same as in the case of a single-bus DC nanogrid. For instance, it is assumed
that the values of threshold voltages, droop slopes, and current limits for the DERs in the
LV bus are proportional to those of the HV side, shown in Figure 2. With the addition of
the interlink converter, an opportunity for optimizing the operation of both buses arises in
terms of voltage regulation and management of power flow and energy management. For
that, a suitable strategy for controlling the power flow of the interlink converter is needed.
Ideally, it should be based on DBS, considering the voltages of both DC buses, which reflect
the power availability in those buses. Considering that the batteries are the weak link in
the system since they are not supposed to be over- or undercharged, the control law of the
interlink converter must not place unnecessary stress on them. In addition, in terms of
managing the system to operate efficiently, having the battery of one bus charge, and the
battery of the other should be avoided.

Two control strategies for the interlink converter in a dual DC bus nanogrid, average
droop control, and constant-voltage ratio, were presented in [38]. The first determines
the power flow between the two buses based on the average value obtained from droop
curves of the LV and HV sides. On the other hand, the second employs a PI controller to
keep the per-unit voltage ratio constant between the two buses without a V-I curve. Those
control strategies can be used for a dual DC bus nanogrid with similar RESs and storage

125



Sustainability 2023, 15, 10394

unit participations, but they should not be used when the dual DC nanogrid is connected
with the AC utility grid.

This paper presents an alternative approach to control the interlink converter, which is
to use, in principle, the same V-I curve of the grid converter of the HV bus. Recall that this
is controlled based only on the HV DC bus’s voltage, neglecting the AC bus’s voltage. This
is reasonable since the latter is assumed to be much stronger, with more power availability,
than the former and can supply/absorb the matching power for/from the HV DC bus. By
making the control of the interlink converter based on the voltage of the LV bus only, one
does not compromise the ability of the HV bus to operate without stressing its storage units
since the grid converter is there to provide/absorb the required matching power.

Therefore, one can use the V-I curves shown in Figure 3 for the interfaces of the LV DC
bus. Note that the voltage levels, in terms of pu, are comparable to those employed in the
HV DC bus. The voltage range in normal operating conditions varies by about 5% above
and below the rated voltage (48 V).

Figure 3. Low voltage 48 V DC bus V-I characteristics: Interlink Converter, Solar Converter, and
Battery Converter.

Based on the V-I curves in Figure 3, one can say that the LV DC bus battery will not
be discharged into the HV DC bus. The LV DC bus is discharged with DC bus voltages
less than 46.75 V, and, at this DC bus voltage, power should flow from the HV DC bus
to the LV DC bus, according to the interlink converter V-I characteristic. To avoid power
flowing from the LV DC bus to the HV DC bus at light load conditions or when the utility
grid cannot absorb the excess power, the interlink converter (current) limits should be
reprogrammed. They are changed based on the HV DC bus voltage, as shown in Figure 4.
In addition, Figure 4 shows that the interlink converter (current) limits are reprogrammed
to prevent the HV DC bus battery from discharging into the LV DC bus.
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126



Sustainability 2023, 15, 10394

4. Interlink Converter Modeling and Control Design in Dual DC Buses Nanogrid

Figure 5 shows the schematic of a full-bridge isolated bidirectional DC–DC converter
called a dual active bridge (DAB) [39–41]. It can provide a high voltage gain using a
high-frequency transformer with a small volume and weight. Moreover, the DAB provides
galvanic isolation between the two DC buses and there is no need for the circuit breakers to
isolate the buses at fault conditions in one of them [42]. There, VLV and VHV are the LV and
HV DC bus voltages, respectively, S1 −S4 and Q1 −Q4 are the controllable switches, n is
the transformer’s turn ratio, and L is the equivalent leakage inductance of the transformer.

Figure 5. Full-bridge isolated DC–DC converter (DAB).

The DAB DC–DC converter is controlled with phase-shift control in this work. There
are many types of phase-shift control in the literature [39–41,43]. However, the most
common one (and suitable for this application) is the single-phase-shift (SPS) control shown
in Figure 6 [31]. All the switches are gated in this control scheme with a 50% duty cycle. S1
and S4 are switched as a pair, complementarily to S2 and S3 in the first full bridge. Likewise,
Q1 and Q4 are switched complementarily to Q2 and Q3 in the second HV side bridge. That
generates square waveforms, VAC_HV and VAC_LV, at the transformer’s terminals. As in
traditional AC power-transmission systems, the inductor current’s direction and magnitude
can be adjusted by changing the phase shift between the two square waves. This allows the
control of the direction and magnitude of the power flow [43–45]. This is achieved with a
single control parameter, the phase-shift ratio (d), for an actual phase shift (πd) between
VAC_HV and VAC_LV.

The power injected into the LV side of the DC–DC converter in Figure 5 can be
expressed as follows for SPS control [39,46]:

P =
nVAC_HVVAC_LV

2 fsL
d(1 − |d|) (4)

where fs is the switching frequency and VAC_HV and VAC_LV are the transformer’s high
and low side voltages. By ignoring the voltage loss of the power switch, VAC_HV could
equal VHV and −VHV, while VAC_LV could equal VLV and −VLV. From Equation (4), the
power has a maximum value when the phase-shift ratio (d) is 0.5. Figure 7 shows the power
injected by the 48 V bus vs. the phase −shift ratio (d). Power flows from the HV side to the
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LV side at positive phase shifts (0 < πd < π) and from the LV side to the HV side at negative
phase shifts (−π < πd < 0).

Figure 6. SPS Control waveforms.

Figure 7. Power injected by the LV bus vs. phase −shift ratio.

Then, the average value of the current at the LV side (IDC) is [46]:

IDC =
nVAC_HV

2 fsL
d(− |d|) (5)

Therefore, the large signal model for the DAB can be obtained by replacing the two
full bridges and the HV voltage with a current source of magnitude given in (5) and the
large signal equivalent circuit is shown in Figure 8 [46]. Moreover, the LV DC bus could be
modeled using Thevenin’s equivalent circuit with a threshold voltage VNL_LV and a droop
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resistance RdLV. Then, the DAB in the dual DC buses nanogrid could be modeled with
respect to the LV side in the dual DC nanogrid, as shown in Figure 9.

Figure 8. Equivalent circuit of DAB feeding a resistive load.

Figure 9. Equivalent circuit of DAB in dual DC buses nanogrid with respect to LV side.

For the study of the dynamic response of the DAB, the expression for the average
value of the current injected in the LV DC bus should be linearized around an operating

point, leading to a small signal model as in (6) [46]. However, the injected current
∼
i inj(s) as

a function of the phase-shift ratio
∼
d(s) is needed to control the DAB based on the proposed

V-I curve. The small signal model for the DAB DC–DC converter with SPS reflected the
LV side in the DC nanogrid, assuming that the equivalent threshold voltage of the LV bus
(VNL_LV) is constant, is shown in Figure 10.

∼
i DC(s) =

nVAC_HV
2 fsL

(1 − 2d)
∼
d(s) (6)

Figure 10. Small signal model of DAB in dual DC buses nanogrid with respect to LV side.
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Then, one gets the following expression for the current injected by the interlink con-

verter into the LV DC bus (
∼
i inj(s)) as a function of variations in the phase-shift ratio (

∼
d(s)).

∼
i inj(s) =

nVAC_HV(1 − 2d)(RdLV + RLoad)

2 fsL(R LoadRdLVCLVs+RdLV + RLoad)

∼
d(s) (7)

The transfer function of the DAB Gp(s) for the design of the current controller becomes.

∼
i inj(s)
∼
d(s)

=
nVAC_HV(1− 2d)(RdLV + RLoad)

2 fsL(R LoadRdLVCLVs+RdLV + RLoad)
(8)

5. Case Study

As a case study in this work, a DAB, as in Figure 5, is used as an interlink converter with
the following parameters: transformer-turns ratio n = 0.25, leakage inductance L = 300 µH,
switching frequency fs = 20 kHz, and HV and LV capacitors CHV = CLV = 1500 µF. The LV
DC bus is modeled by a Thevenin equivalent with the DC voltage VNL_LV = 49.25 V and a
droop constant RdLV = 0.289 Ω. In addition, the HV DC bus is modeled by Thevenin’s with
the DC voltage VNL_HV = 390 V and a droop constant RdHV = 0.289 Ω. Table 1 summarises
the case-study parameters.

Table 1. The case-study parameters.

The Parameter The Value

Transformer turns ratio (n) 0.25

Leakage inductance (L) 300 µH

Switching frequency (fs) 20 kHz

HV and LV capacitors (CHV = CLV) 1500 µF

The LV DC bus threshold voltage (VNL_LV) 49.25 V

The LV droop constant (RdLV) 0.289 Ω

The HV DC bus threshold voltage (VNL_HV) 390 V

The HV droop constant (RdHV) 0.289 Ω

The load resistance (RLoad) 10 Ω

For a load resistance of 10 Ω, the transfer function of the plant becomes:

∼
i inj(s)
∼
d(s)

=
81.5

0.004335 s + 10.289
(9)

Then, a PI type-II compensator (10) is designed for a cut-off frequency of fx = 240 Hz [31]
and a phase margin PM = 80◦, as illustrated in the following steps:

Step 1: From the Bode plot of the plant, obtain |G( fx)| = 6.7 ≡ 16.5 dB and
∠(G( fx)) = −32.4◦.

Step 2: Step 4: Calculate the ∠(C( fx)) and |C( fx)|:
∠(C( fx)) = PM− (180◦ +∠(G( fx))) = −67.6◦

|C( fx)| = 1
G( fx)

= 0.15 ≡ −16.5 dB

Step 3: Calculate the controller parameters:

Boost: ∅(ωm) = −90◦ + boost→ boost = 22.4◦

K factor: K = tan
(

boost
2 + 45◦

)
= 1.5

Zeros and Poles:
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Z = 1
τ = 2π fx

K → τ = 991 µs
P = 1

TP
= 2πK fx → TP = 443 µs

Gain: |C( fx)| = KPI = 0.15 ≡ −16.5 dB

The compensator parameters are τ = 991 µs, TP = 443 µs, and KPI = 0.15. Figure 11
shows the Bode plot for the plant (G), the controller (C), and the loop transfer function (CG).

C(s) = KPI
1 + τs

τs(1 + TPs)
(10)
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For the current or power sharing, the interlink converter is controlled with the V-I
curve in Figure 3, with threshold voltage VNL_int = 48 V and Rdint = 0.289 Ω. The injected
current (Iinj) from DAB is given by the droop equation (1) in the droop mode or constant at
4.325 A in the current-limiting mode. The control block diagram is shown in Figure 12. The
phase-shift PWM control used in this work is realized, as shown in Figure 13. The HV side
triangular waveform was shifted by 0.25 duty cycle (π/2) to allow negative delay using
a time delay block. The fixed duty cycle is used to be 0.499 instead of 0.5 to implement a
small dead time for the switches.

Figure 12. Control block diagram.
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Figure 13. Phase-shift PWM block.

6. Simulation Results

Two simulation results were obtained considering the dual DC bus nanogrid discussed
in this paper. The first is to test the DAB as an interlink converter. That can be done by
verifying the SPS modulation waveforms described in Figure 6. Then, test the proposed
model of the DAB in the DC nanogrid. Finally, test the ability of the interlink converter
to direct the power between the two DC buses, as described in Figure 4. The second test
is regarding the full dual DC bus nanogrid in Figure 1 and controlling the power and the
current sharing with the V-I curve presented in Figures 2 and 3.

6.1. Simulation Results of DAB as Interlink Converter

MATLAB/Simulink is used to simulate the DAB in Figure 5 with the case-study
parameter and control loop presented in Section 4. The first is an open loop test to verify
the SPS modulation waveforms of the DAB described in Figure 6. Figure 14 shows the
gating signals of the LV and HV sides of DAB, the AC voltage at the LV and HV sides of the
transformer, and the transformer leakage inductor current at d = −0.25. The results show
that the phase-shift PWM block in Figure 13 works as expected to perform the required
modulation for the DAB.

The second test is to verify the performance of the control loop of the current injected
into the LV bus. Again, the voltages of the LV and HV sides are set at 48 V and 380 V,
respectively. The reference current is initially at −1.5 A, then changed in a step to 1.5 A. As
shown in Figure 15, the injected current Iinj follows the reference signal very well, reaching
the steady state at 0.007 s with zero error. The negative injected current Iinj sign means
that the power flow is from the LV to the HV side, achieved with a negative phase shift.
Conversely, a positive injected current Iinj means the power flow from the HV side to the
LV side, requiring a positive phase shift.
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Figure 14. Simulation result of SPS modulation waveforms.

Figure 15. Simulation results for a step change in the injected reference current.

The last test investigates the impact of load variations in both DC buses and the
power flow controlled by the interlink converter, according to the proposed droop con-
trol scheme, on the LV and HV buses’ voltages. Three cases are considered: first with
370 V < VHV < 390 V, then with VHV < 370 V, and finally with VHV > 390 V. As discussed
before, the interlink converter is droop-controlled based on the magnitude of the voltage
at the LV bus, but for low and high at the HV bus, it should be reprogrammed to prevent
worsening the problem of excess surplus or shortage of power in that bus.
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Threshold voltages and droop resistances modeled the LV DC bus and HV DC bus.
For the LV DC bus, VNL_LV = 49.25 V and RdLV = 0.289 Ω, while for the HV DC bus,
VNL_HV = 390 V and RdHV = 0.289 Ω. In this case, the LV DC bus voltage can be calcu-
lated by (11) through the droop Equation (1) with an equivalent threshold voltage of
VNL_eq = 48.625 V, obtained considering the threshold voltages of the LV DC bus and inter-
link converter, and a droop constant Rdeq = 0.1445 Ω, the parallel combination of RdLV and
Rdint. For a given current injected by the DAB into the LV side, the current drawn from the
HV side will be much smaller due to the transformer’s turn ratio. The HV DC bus voltage
can be calculated by (11) through the droop Equation (1) with a threshold of VNL_HV and a
droop constant of RdHV.

The simulation results are shown in Figure 16. Initially, both DC buses are connected
to 80 Ω loads, presenting voltages VLV = 48.54 V and VHV = 388.6 V. The value of the current
injected into the LV bus (Iinj) is −1.87 A, determined by the V-I droop characteristic of the
interlink converter. With VLV = 48.54 V higher than VNL_int = 48 V, power is shown to be
drawn from the LV bus and sent to the HV bus. At t = 0.02 s, an additional 40 Ω is connected
to the LV side, resulting in a decrease in the voltage at that bus, VLV = 48.36 V, and in the
current, the interlink converter draws power from the LV bus, Iinj = −1.26 A. The change, a
reduction, in VHV is minimal due to the small value of the LV side current reflected to the
HV side current, and transformer turns ratio. At t = 0.04 s, an additional 40 Ω is connected
to the HV side and, since the reference value for the current of the interlink is a function of
the LV DC bus only, the injected current does not change; the HV DC bus voltage becomes
VHV = 385.8 V, lower than before. At t = 0.06 s, an additional 20 Ω is connected to the LV
side, reducing the voltage in the LV bus to VLV = 48 V, which makes Iinj ≈ 0 A. At t = 0.08 s,
an additional 20 Ω is connected to the HV side; again, it does not affect the power sharing
and the HV DC bus voltage drops to VHV = 380.4 V. At t = 0.1 s, an additional 40 Ω is
connected to the LV side, reducing the voltage at this DC bus below 48 V VLV = 47.85 V,
and the power starts to flow from the HV DC bus to the LV DC bus with injected current:
Iinj = 0.52 A. At t = 0.12 s, an additional 40 Ω is connected to the HV side and, again, it
does not affect the power sharing, and the HV DC bus voltage drops to VHV = 377.7 V. At
t = 0.14 s, an additional 20 Ω is connected to the LV side; therefore, the injected current
increases Iinj = 1.73 A and this means more power flow from the HV side to the LV side
with more drop in the LV DC bus VLV = 47.5 V. Finally, at t = 0.16 s, an additional 20 Ω is
connected to the HV side and it does not affect the power sharing, and the HV DC bus
voltage drops to VHV = 372.5 V. The results show that the power injected by the interlink
converter does not depend on the HV voltage side, as the V-I curve is a function of the LV
side. In addition, the interlink converter successfully directs the power between the LV and
the HV sides based on the proposed V-I curves.

VDC =
RLoadVNL

Rd + RLoad
(11)

Figure 17 shows simulation results for a case with VNL_HV = 395 V, where the voltage
at the HV bus is higher than 390 V, from t = 0 s to 0.6 s. In such a case, the proposed control
law for the interlink converter should prevent any power flow to the HV bus, which already
has a surplus of power. Initially, both DC buses are connected to 80 Ω loads, presenting
voltages VLV = 49.32 V and VHV = 393.6 V. At t = 0.02 s, an additional 40 Ω load is connected
to the HV DC bus, VHV decreases to 390.8 V, and there is no power flow from the LV to
the HV DC bus. At t = 0.04 s, an additional 40 Ω load is connected to the LV DC bus,
VLV = 48.72 V, still higher than 48 V, and there is no power flow from the LV to the HV DC
bus because of the voltage at the HV bus. At t = 0.06 s, an additional 40 Ω load is connected
to the HV DC bus, VHV drops to 385.26 V, below 390 V, and power starts to flow from the
LV to the HV DC bus. Due to that, VLV drops to 48.36 V with Iinj = −1.25 A as the V-I
curve in Figure 4. At t = 0.08 s, an additional 40 Ω load is connected to the LV DC bus,
VLV ≈ 48 V, which makes Iinj ≈ 0 A. In this case, there is no power flow from the LV DC
to the HV DC but now it is due to VLV ≈ 48 V= VNL_int. After that, power flow from the
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HV to the LV DC bus increases at t = 0.12 s and t = 0.16 s, when loads are added to the LV
bus, but not at t = 0.14 s, when there is a load increase in the HV DC bus. The results show
that the proposed interlink V-I curve could prevent power flow from the LV to the HV side
when the HV bus has a voltage higher than 390 V, which means that the HV DC bus cannot
supply power to the grid for some reasons.

Figure 16. Simulation results considering that 370 V < VHV < 390 V throughout the simulation time.

Figure 17. Simulation results for the case where VHV > 390 V for a specific time interval.
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Figure 18 shows simulation results for a case with VNL_HV = 380 V, where the HV
DC bus is lower than 370 V, from t = 0.1 s to 0.18 s. In such a case, the proposed control
logic of the interlink converter prevents the power flow from the HV DC bus to the LV DC
bus, achieved by reprogramming the current limit as in Figure 4, Iinj = 0. To prevent the
HV DC bus batteries from discharging through the LV DC bus, initially, both DC buses
are connected to 80 Ω loads, presenting voltages VLV = 48.54 V and VHV = 378.63 V with
Iinj = −1.87 A, meaning that power flows from the LV to the HV side. At t = 0.02 s, an
additional 40 Ω load is connected to the HV DC bus and VHV decreases to 375.9 V without
changes in the current of the interlink converter. At t = 0.04 s, an additional 40 Ω load
is connected to the LV DC bus, and VLV decreases to 48.36 V, indicating a reduction of
the power surplus on the LV side, which makes Iinj reduce to −1.26 A. At t = 0.06 s, an
additional 40 Ω load is connected to the HV DC bus and VHV drops to 370.63 V. At t = 0.08 s,
an additional 40 Ω load is connected to the LV DC bus, VLV ≈ 48 V, which makes Iinj ≈ 0 A.
In this case, there is no power flow from the LV DC to the HV DC since VLV ≈ 48 V = VNL_int.
At t = 0.1 s, an additional 40 Ω load is connected to the HV DC bus and VHV drops to
368.05 V, below 370 V, and the interlink should prevent the power flow from the HV DC
bus to the LV DC bus as described in Figure 4. Therefore, at t = 0.12 s, when an additional
40 Ω is connected to LV DC, Iinj = 0, indicating that power does not flow from the HV DC
bus to the LV DC bus, even though VLV = 47.7 V, < VNL_int = 48 V, as discussed in Figure 4.
After that, power flow from the HV to the LV DC bus is still prevented at t = 0.14 s and
t = 0.16 s when loads are added to the HV bus and LV bus, respectively. The results show
that the proposed interlink V-I curve could prevent power flow from the HV to the LV side
when the HV side has a voltage less than 370 V, which prevents the HV side batteries from
discharging into the LV side.

Figure 18. Simulation results for the case where VHV < 370 V for a specific time interval.

6.2. Simulation Results of Dual DC Buses Nanogrid

MATLAB/Simulink is used to simulate the dual DC buses nanogrid in Figure 19 under
different operation conditions. A class C DC–DC converter, as in Figure 19, is used as the
main power electronics interface of the DERs: solar panels and batteries. A class C DC–DC
converter is also used along with a DC–AC converter as the two-stage AC grid interface.
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Regarding the power and the current sharing, the V-I in Figures 2 and 3 were used. For
the HV DC bus DERs, a 5 kW PV panel and battery were considered with a droop constant
RdS_380 = RdB_380 = 0.763 Ω, and a 10 kW grid connection was considered with a droop
constant RdG = 0.3815 Ω. They resulted in 14.2 A, 13.11 A, and 26.22 A as current limits
for the solar, battery, and grid converters. For the LV DC bus DERs, a 2 kW PV panel, bat-
tery, and interlink were considered with a droop constant RdS_48 = RdB_48= Rdint = 0.0289 Ω.
They resulted in a 44 A current limit for the solar converter and a 43.25 A current limit for
the battery and interlink converters. The supercapacitors (SC) were controlled to support
the dynamics of the battery’s current by splitting the storage inductor current into low
frequencies for the battery and high frequencies for the SC using a low-pass filter (LPF)
with a 30 Hz cut-off frequency.

The same current control loop parameters can be used for all DERs at the same DC bus.
A PI type-III controller was designed for the same equivalent plant with a transfer function
shown in (12) [47,48]. They were designed for a crossover frequency of fx = 2 kHz (10% of
the switching frequency) and a phase margin of PM = 80◦ for both DC buses. For the LV DC
bus converters, the following plant parameters were used: Vout = VDC = 48 V, IDC = 41.67 A,
R = 1.152 Ω, L = 300 µH, C = 1500 µF, and D = 0.46 for VPV = VB = VSC = 29 V. R was selected
as the maximum load that could be supplied by the RES alone. Finally, the PI controller
parameters are computed as KPI = 0.0117, τ = 175 µs, and TP = 36 µs. For the HV DC bus
converters, the following plant parameters were used: Vout = VDC = 380 V, IDC = 13.16 A,
R = 27.94 Ω, L = 3000 µH, C = 1500 µF, and D = 0.39 for VPV = VBat = VSC = 232 V. R
was selected as the maximum load that could be supplied by the RES alone. Finally,
the PI controller parameters are computed as KPI = 0.0015, τ = 171 µs, and TP = 37 µs.
The interlink converter with the following parameters: transformer turns ratio n = 0.25,
leakage inductance L=10.7 µH, switching frequency fs = 20 kHz, and HV and LV capacitors
CHV = CLV = 1500 µF. Then, a PI type-III compensator is designed for a cut-off frequency of
240 Hz [31] and a phase margin PM = 80◦. Therefore, the compensator parameters can be
calculated as τ = 1.4 ms, TP = 318 µs, and KPI = 0.049 at a load resistance of 1.15 Ω.

Gdi(s) =

∼
i L(s)
∼
d(s)

=
CVouts + 2IDC

LCs2 + L
R s + (1− D)2 (12)

The first test of the dual DC buses nanogrid is with a grid connection, and the bat-
teries are not fully charged. The indication of the load variations in the system with the
respective times and the numerical values of the voltage and current waveforms shown
in Figures 20 and 21 are summarized in Tables 2 and 3 for the HV DC bus and the LV DC
bus, respectively. The figures demonstrate that while the grid, the interlink, and the battery
converters operate with droop control, the solar converters operate at the MPPT. The grid
converter supports the HV bus and indirectly the LV bus through the interlink converter
with Iint = 2 A when a 305 Ω load is initially attached to the HV bus and 40 Ω to the LV bus.
The LV bus load increased to 7 Ω at t = 0.1 s and additional support came from the HV bus
at Iint = 4.8 A, which raised the grid current to 5.3 A. At t = 0.2, the HV DC bus increased
to 63.4 Ω; the grid current changed to 5.2 A to support the HV bus, while the interlink
converter current remained constant because it depended on the LV bus. Figure 20 shows
that the grid current varied when the HV bus load or LV bus changed, while Figure 21
shows that the interlink converter current changed when the LV bus load changed. Based
on these results, the nanogrid operates according to the V-I curves presented in Figures 2
and 3 for the HV DC and LV DC buses, respectively. The RESs operate at maximum power.
At the HV DC bus, the battery and the grid converter operate with droop control, the bat-
tery is in charging mode, and the grid supports the nanogrid by supplying power. At the
LV DC bus, the battery and the interlink converter operate with droop control, the battery
is in charging mode, and the interlink supports the LV DC bus. In addition, Figures 20
and 21 show that the PI type III controller successfully controls the dynamic response of
the converters where the currents reach the steady state in almost 10 ms. However, the

138



Sustainability 2023, 15, 10394

batteries’ currents are much slower than other resources due to hybrid energy storage
between the supercapacitors and the batteries, which is more efficient for the batteries.

Figure 20. Simulation results of the dual DC buses nanogrid with grid connection—the HV DC
bus waveforms.

Figure 21. Simulation results of the dual DC buses nanogrid with grid connection—the LV DC
bus waveforms.
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Table 2. Numerical results of the HV DC bus from Figure 20.

Time (s) Load (Ω) VHV(V) IPV_380(A) IG(A) IB_380(A) ILoad_380(A)

Initially 305 379.3 13.2 1.8 −12.2 1.2

t = 0.2 63.4 378 13.2 5.2 −10.5 6

t = 0.4 35.4 376.7 13.25 8.6 −8.8 10.7

t = 0.6 24.5 375.3 13.3 12.3 −7 15.3

t = 0.8 18.8 374 13.3 15.6 −5.3 20

Table 3. Numerical results of the LV DC bus from Figure 21.

Time (s) Load (Ω) VLV(V) IPV_48(A) Iint(A) IB_48(A) ILoad_48(A)

Initially 40 47.94 41.7 2 −42 1.2

t = 0.1 7 47.86 41.7 4.8 −40 6.8

t = 0.3 3 47.75 41.7 8.7 −35 16

t = 0.5 1.95 47.62 42 13 −30 24.4

t = 0.7 1.64 47.56 42 15.2 −28 29

t = 0.9 1.27 47.45 42 19 −24 37.5

The second test of the dual DC buses nanogrid is without a grid connection, and the
batteries are not fully charged. The indication of the load variations in the system with the
respective times and the numerical values of the voltage and current waveforms shown
in Figures 22 and 23 are summarized in Tables 4 and 5 for the HV DC bus and the LV DC
bus, respectively. Based on these results, the nanogrid operates with the V-I presented
in Figures 2 and 3 for HV DC and LV DC buses, respectively. By comparing the cases
above, one can say that the grid connection gives the DC nanogrid more power availability;
missing this support leads to a higher voltage drop in the DC buses, especially at the HV
DC bus. Moreover, the battery started to discharge at t = 0.6 s while in the charging mode
with the grid connection.

Regarding the LV DC bus, the effect of missing the grid connection is less once the HV
DC bus is higher than 370 V due to the power and current sharing V-I being based on the
LV DC bus. Therefore, there is no change in the LV DC bus before t = 0.5 s according to
Table 5 compared to Table 3. At t = 0.6 s, the HV DC load was increased to 24.5 Ω, and the
HV DC bus dropped below 370 V; the HV battery operates in discharging mode and the
interlink converter prevents the power flow from the HV DC to the LV DC bus (Iint = 0), so
the HV DC bus battery will not discharge through the LV DC bus. After t = 0.6 s, the LV
DC bus misses the support from the HV DC bus. Therefore, the voltage drops in the LV DC
bus in Table 5 increase compared with the case with grid connection in Table 3 at the same
load level. The RESs operate at maximum power at all periods. Moreover, the interlink
converter prevents the LV and HV side batteries from discharging to charge each other. In
addition, Figures 22 and 23 show that the PI type III controller successfully controls the
dynamic response of the converters where the currents reach the steady state in almost
10 ms. However, the batteries’ currents are much slower than other resources due to hybrid
energy storage between the supercapacitors and the batteries, which is more efficient for
the batteries.

Table 4. Numerical results of the HV DC bus from Figure 22.

Time (s) Load (Ω) VHV(V) IPV_380(A) IG(A) IB_380(A) ILoad_380(A)

Initially 305 378 13.2 0 −10.5 1.2

t = 0.2 63.4 374.3 13.25 0 −5.6 5.9
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Table 4. Cont.

Time (s) Load (Ω) VHV(V) IPV_380(A) IG(A) IB_380(A) ILoad_380(A)

t = 0.4 35.4 370.5 13.4 0 −0.5 10.5

t = 0.5 No change 370 13.5 0 0 10.5

t = 0.6 24.5 368 13.5 0 2.5 15

t = 0.8 18.8 364.7 13.6 0 7 19.5

Table 5. Numerical results of the LV DC bus from Figure 23.

Time (s) Load (Ω) VLV(V) IPV_48(A) Iint(A) IB_48(A) ILoad_48(A)

Initially 40 47.94 41.7 2 −42 1.2

t = 0.1 7 47.86 41.7 4.8 −40 6.8

t = 0.3 3 47.75 41.7 8.7 −35 16

t = 0.5 1.95 47.62 42 13 −30 24.4

t = 0.6 No change 47.28 42 0 −18 24.2

t = 0.7 1.64 47.16 42 0 −14 28.8

t = 0.9 1.27 46.93 42 0 −6 37

Figure 22. Simulation results of the dual DC buses nanogrid without grid connection—the HV DC
bus waveforms.
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Figure 23. Simulation results of the dual DC buses nanogrid without grid connection—the LV DC
bus waveforms.

7. Conclusions

This research presents a nanogrid system with a dual DC bus configuration, including
a bidirectional interlink converter capable of directing the power flow between the two
buses. The high voltage (HV) bus provides power to high-power appliances, while the low
voltage (LV) bus supplies energy to low-power loads. Nanogrid reliability was enhanced
by integrating distributed energy resources on the two buses. Furthermore, a control
methodology utilizing DC bus signaling (DBS) is suggested, which facilitates the assessment
of the impact on the DC buses in the presence of other DERs controlled by DBS. It is
commonly observed that the HV bus is more robust than the LV bus. As a result, the
voltage at the LV side determines the power flow between DC buses. The above statement
is equivalent to the V-I curve of an AC grid converter operating within a single DC bus
nanogrid. This implies that the power delivered by the interlink converter is independent
of the voltage on the high voltage side since the low voltage side determines the V-I curve.

Furthermore, utilizing the suggested V-I curve, the interlink converter effectively
facilitates power transfer between the low voltage (LV) and high voltage (HV) sides. If the
high voltage (HV) bus exhibits a significant excess or lack of power, identified by its bus
voltage (VHV), the interlink converter is prevented from worsening these circumstances.
One potential solution involves implementing a mechanism that prevents power transfer
from the low voltage (LV) to the high voltage (HV) side in instances where the HV bus
voltage exceeds 390 V. This would effectively prevent the HV DC bus from supplying
power to the grid under certain circumstances. Additionally, preventing power flow from
the HV to the LV side would be necessary in cases where the HV side voltage falls below
370 V, as this would prevent the discharge of HV side batteries into the LV side. The
characteristic above is essential to dual DC bus nanogrids that function continuously
or intermittently disconnected from the AC utility grid. In addition, a topology that
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is considered appropriate for the interlink power converter is chosen. This topology is
bidirectional, has high gain, and is equipped with galvanic isolation. It is commonly
referred to as the dual active bridge (DAB). A dynamic model has been proposed for the
interlink converter. This converter operates using a single phase-shift modulation scheme
and behaves within a droop-controlled environment. A closed-loop controller has been
developed to regulate the current injected into the LV DC bus based on the voltage of
the bus. The performance of the droop-controlled interlink converter in a dual DC bus
nanogrid is examined via MATLAB/Simulink simulations. Per the proposed approach, the
interlink converter effectively manages power sharing between the HV and LV buses.
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RES Renewable Energy Source
ICT Information and Communication Technology
DER Distributed Energy Resources
NZEH Net-Zero Energy Homes
ELV Extra Low Voltage
LV Low Voltage
HV High Voltage
DBS DC Bus Signaling
MPPT Maximum Power Point Tracking
SoC State of Charge
DAB Dual Active Bridge
SPS Single-Phase Shift
d Phase-Shift Ratio
PWM Pulse Width Modulation
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Abstract: Renewable energy sources (RESs) are a great source of power generation for microgrids
with expeditious urbanization and increase in demand in the energy sector. One of the significant
challenges in deploying RESs with microgrids is efficient energy management. Optimizing the
power allocation among various available generation units to serve the load is the best way to
achieve efficient energy management. This paper proposes a cost-effective multi-verse optimizer
algorithm (CMVO) to solve this optimization problem. CMVO focuses on the optimal sharing of
generated power in a microgrid between different available sources to reduce the generation cost.
The proposed algorithm is analyzed for two different scale microgrids (IEEE 37-node test system
and IEEE 141-node test system) using IEEE test feeder standards to assess its performance. The
results show that CMVO outperforms multi-verse optimizer (MVO), particle swarm optimization
(PSO), artificial hummingbird algorithm (AHA), and genetic algorithm (GA). The simulation results
emphasize the cost reduction and execution time improvement in both IEEE test systems compared
with other meta-heuristic algorithms.

Keywords: cost optimization; energy management; microgrid; multi-verse optimizer; renewable
energy sources (RESs)

1. Introduction

Microgrids are reliable low-voltage networks that supply energy to consumers effi-
ciently [1,2]. With the rapid growth in power demand in the energy sector, it is essential to
use renewable energy resources (RERs) to meet demand. RERs help to fulfill the energy
demand and carry out efficient execution of microgrids. Microgrids consist of various
distributed energy resources (DERs) such as wind power plants and solar power plants,
among others, as well as storage devices and loads [3,4]. Figure 1 describes a microgrid
consisting of an energy management system, DERs, storage system, and load. Loads are
generally categorized as residential, industrial, and commercial loads. Microgrids are
usually operated in islanded mode or grid-connected mode.

A microgrid in islanded mode is a standalone, independent system that operates
for different communities. It works totally on distributed energy resources, whereas
the microgrid in grid-connected mode means saving fossil fuels and works as a regular
microgrid connected to the utility grid for power generation [5]. Energy management in a
microgrid is essential for its smooth operation in a real-time environment. It is observed
that to solve the optimization problem and perform energy management in a microgrid is
a challenging task [6]. In previous studies, many known meta-heuristic algorithms have
been applied to optimize various performance attributes of a microgrid.
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Many optimization methods have been reported in the literature for optimizing dif-
ferent parameters in microgrid energy management. The authors in [7] proposed a robust
stochastic for hybrid energy systems to perform optimization. The suggested method in-
tends to decrease system losses and the total operating cost of renewable energy resources
and was tested on the IEEE 37 node distribution system. Another study [8] presented an
integrated method using multi-objective particle swarm optimization to minimize power
supply probability loss, levelized energy cost, and greenhouse emissions. The authors
in [9] proposed a reduction in cost by optimally placing a capacitor to alleviate the power
loss in a radial distribution network. The proposed work is then tested over two different
IEEE standard networks. In [10], a real-time energy management system was proposed
for the performance optimization of a microgrid. The proposed binary particle swarm
optimization was analyzed on the IEEE 14-bus system and focused on minimizing energy
costs and CO2 emissions.

Furthermore, in various studies, many optimizing algorithms have been used for
scheduling of renewable energy sources. In [11], the authors proposed quantum-teaching-
based learning optimization for optimal energy management using day-ahead optimum
power scheduling in microgrids. The authors in [12] used the artificial fish swarm algorithm
for cost minimization, whereas in [13], optimal scheduling of dispatchable distributed
generations has been studied to minimize the fuel cost in microgrids. Moreover, in [14],
the authors presented a multi-objective economic dispatch problem using pareto concavity
elimination to minimize the cost in microgrids. Hence, the prime aim of a microgrid energy
management system is to effectively schedule the power flow and coordinate between
various available generation units and load demand to optimize operational cost [15,16]. It
tries to maintain stability between generated and demanded power based on the idea that
DERs can supply the requested capacity every hour. The multi-verse optimizer algorithm
(MVO) is a nature-derived meta-heuristic algorithm that has improved the ability to exploit
and explore search space without getting trapped in local minima. In contrast, it has lower
accuracy and slow convergence while solving a problem. Hence, many researchers have
proposed different versions of MVO to handle these disadvantages. The authors in [17]
have published an improved MVO for feature selection for phishing, spam, and denial
of service attacks. Moreover, in [18], the improved multi-verse optimizer is used for text
document clustering. Similarly, in [19], a multi-verse optimization algorithm for stochastic
bi-objective disassembly sequence planning is proposed. It achieved minimum energy
consumption and maximized disassembly profit. It is noted that MVO has proved to be
effective in addressing different optimization problems, whereas it is less explored for
optimization in microgrids.
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Scheduling power among various units to have minimum generation cost, the energy
management system must have the capability to allocate power sharing in generous pro-
portions. When RERs are not able to serve the load with generated power, then power is
obtained from other storage sources, virtual power plants (VPPs), or utility grids [20,21].
In addition to the above, it is observed in the literature that various other work [22–28]
has been performed for optimization using meta-heuristic algorithms, as there has been a
sharp increase in demand for optimization in various research areas as well as in the energy
sector. Thus, the importance of energy optimization is rapidly increasing.

The contributions of this paper are summarized below.
This paper proposes an enhanced multi-verse optimizer algorithm called ‘cost-effective

multi-verse optimization algorithm (CMVO)’ for optimal power scheduling among avail-
able generation units in a microgrid to minimize generation cost. It is observed that
modification performed in the original version ensures more balanced exploitation and
exploration. It has improved the ability to discover rugged search spaces and avoid local
optima stagnation. The CMVO algorithm solves the power scheduling problem for micro-
grids to minimize the generation cost. It focuses on optimal power sharing among available
generation units such that demand is satisfied with minimum cost. The convergence speed
of the proposed algorithm is also improved in a way that it explores the search space
without getting trapped into local minima and converges quickly. The calculated mean and
standard deviation of all of the algorithms illustrate that the proposed algorithm is most
stable among all investigated algorithms.

The remaining structure of the paper is organized in a manner where the literature
on cost optimization by meta-heuristic algorithms is discussed through related work in
Section 2. Section 3 presents the problem formulation for the research conducted and
explains various functions and equality constraints. Further, the methodology for the pro-
posed algorithm is described in Section 4, followed by the results and analysis in Section 5.

2. Related Work

This section investigates several aspects of the previous work carried out to optimize
microgrids. The best way to optimize microgrids is efficient energy management, so
that a perfect balance is maintained between demand and supply. In smart microgrids,
the load is first served with energy from renewable energy resources when it works in
islanded mode. If renewable energy cannot meet the load demand, the grid works in a
grid-connected way, in which they buy the deficient amount of energy from the utility
grid [29,30]. In the literature, researchers have operated microgrids in islanded mode
and grid-connected mode. Energy management is carried out in microgrids in many
ways by solving different kinds of optimization problems such as the optimal allocation
of generation sources, optimal dispatch problem, and power scheduling problem. In
the optimal generation allocation of conventional sources or optimal dispatch problem,
the sizing and siting of the sources is improved, which optimizes various parameters of
microgrids, whereas in the power scheduling problem, researchers focused on scheduling
the demanded power in microgrid generators in such a way that it optimizes different
parameters such as power losses, generation cost, total operation cost, and so on. The
authors in [31–33] have discussed the optimal allocation problem considering the sizing and
siting of various sources to minimize cost, power losses, emissions, and more in microgrids.
The authors in [34] proposed a stochastic multi-objective optimization model to reduce the
voltage deviation and operational cost in grid-connected mode for energy management.
The proposed idea is applied to an amended IEEE 34-bus test system that consists of diesel
generators, solar units, wind turbine units, EVs, and a battery system. It ensures that the
malfunctioning of a microgrid is not possible because operators can trade between the
high power quality and operational cost. Modified PSO is implemented in grid-connected
mode in [35] for real-time energy management. The authors work for efficient demand side
management by optimally controlling battery operations. The proposed idea successfully
reduced operational costs by 12% over a time horizon of 96 h.
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In [36], ANN-based binary particle swarm optimization and ANN-based tracking
search algorithm were implemented to schedule a few microgrids in virtual power plants,
aiming for optimal scheduling with less fuel consumption, reducing CO2, and increasing
system efficiency. They assessed the system under different system scenarios to evaluate
the performance of the system under variable conditions. They used actual load data for
trained and untrained models to assess the algorithm’s performance, and the results were
then compared to previous works based on several parameters. The results demonstrate
that the hybrid algorithm was better than the available algorithms. In [11], the authors
applied a quantum-based algorithm for better microgrid energy management. A quantum-
teaching-learning-based optimization algorithm was employed to optimize the microgrid’s
energy flow. They studied four scenarios considering seasonal variations to deal with
uncertainties related to power generation. It focuses on day-ahead scheduling according to
the availability of DERs and shows a significant reduction in operational costs, especially
during times of high market prices. It also improved the convergence graph and optimized
power scheduling compared with other algorithms. This paper focuses on implementing
an optimization algorithm for microgrids working in islanded mode. In previous works,
various algorithms have been used to optimize microgrids by concentrating on different
performance attributes.

The authors in [37] focused on optimizing renewable energy microgrids for the rural
areas of the south Philippines using multi-objective particle swarm optimization and
proposed a multi-case power management strategy. An optimized microgrid design was
presented, considering various variables like load size, renewable energy sources, and
different objective functions. It minimized the loss of supply, the level of energy, and
greenhouse emission cost, and maximized reliability. A standalone microgrid was proposed
in [38] with renewable energy resources for rural communities. The proposed microgrid
performance was evaluated using differential evolution, PSO, and GA to find affordable
energy for the community. The studies showed that differential evolution was suitable for
the least energy cost compared with PSO. An improved mayfly optimization algorithm was
applied for microgrid optimization in [39] for economic emission dispatch. The microgrid
worked in islanded mode, utilizing solar power, wind power, and thermal power. The
simulation was carried out for 24 h with varying load and supply demands. The algorithm
was implemented for various scenarios, and it was observed that it performed better than
other algorithms and could reduce total operational cost and emission level. It achieved a
better system cost and emission reduction than mayfly and other metaheuristic algorithms.

The authors in [40] implemented a lightning search algorithm for energy management
in microgrids on IEEE 14-bus system for a 24 h data. It aims to optimize the microgrid with
renewable energy by minimizing operation costs, reducing emissions, and maximizing
the usage of renewable energy. In [41], particle swarm optimization and the rainflow
algorithm were implemented on a community microgrid for power scheduling with a
battery for different scenarios. They focused on day-ahead battery scheduling, considering
degradation costs owing to charging and discharging cycles. Moreover, after considering
several uncertainties, the proposed technique could minimize operational costs by 40%.
The variations in power generation and demand do not impact the battery energy schedule,
whereas a fluctuation in electricity price affects the schedule. In another study [42], the PV
microgrid was optimized using a mixed integer linear programming model considering
social, technical, and economic aspects. It focuses on designing systems using location
sizing and microgrid configurations. The results show that it successfully minimized the
design cost of a microgrid with several uncertainties in geographic contents and improved
its versatility. Several methods have been used in [43–46] for the optimization of various
problems of energy management in microgrids.

In [47], the Markov decision process was employed for power scheduling in a renewable-
energy-based microgrid. A rollout algorithm was used for decision space and the large state
of MDP. A memory-based genetic algorithm [45] was carried out on a microgrid consisting
of solar, wind, and a combined heat and power plant (CHP). It focuses on minimizing the
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cost through optimal energy distribution among available generation sources, whereas
the authors of [48] optimize energy, heat, and demand using a mathematical model based
on MILP to minimize the operational cost. In [49], the author proposed an artificial hum-
mingbird algorithm for optimal operation of a microgrid. It tends to solve the deterministic
incentive DR program that reduces overall cost, taking into account the load demand. It
worked in grid-connected mode and the proposed algorithm was tested for two different
case studies. The authors in [50] focused on solving numerical optimization problems with
the proposed cost-effective multi-verse optimizer algorithm. They modified the updated
position mechanism in standard MVO and combined it with a sine cosine algorithm for
balanced exploration and exploitation. It is observed that the proposed algorithm achieves
much better results for optimization, and the proposed method was evaluated on 27 bench-
mark functions. Similarly, in [51], multi-verse optimization is used for power scheduling
for loss minimization, and validation was conducted on the IEEE 30-bus test system.

Previous studies have analyzed power scheduling from various aspects for better
energy management. Among existing algorithms that have been implemented for opti-
mization, it is observed that they do not explore and exploit the search space effectively and
escape the local minima, whereas the multi-verse optimization algorithm has been applied
to various research areas and shows promising results; it explores and exploits the search
space efficiently. It is observed that it has also been used by various research scholars to
optimize various parameters of microgrids while addressing different problems like unit
commitment, economical dispatch, demand response problem, optimal allocation, power
scheduling, and so on. This gives us the motivation to solve the power scheduling problem
using MVO. The previously implemented work lacks an efficient optimization algorithm
to solve power scheduling among different generation units to minimize the generation
cost in microgrids. This gives us the motivation to solve the power scheduling problem
using MVO. The proposed cost-effective optimization algorithm is a modified multi-verse
optimization algorithm. As compared with the original algorithm, in this modified version,
the best outcome of each iteration is stored in a temporary variable. After n number of
iterations, they replace the current universes as an input to the (n + 1)th iteration. Here,
n represents the total number of initialized populations. It enhances the operation and
improves the solution searching capability of the original version in a search space concern-
ing the challenges and drawbacks of available traditional algorithms. It aims to solve the
power scheduling problem considering the intermittent nature of the renewable sources
and minimize the generation cost for power generation. The proposed idea effectively fills
this research gap by optimally scheduling the power between various generation sources.

3. Problem Formulation
3.1. Cost Function

The microgrid consists of variable load and intermittent generation power, including
wind plants, PV, CHP, and so on. The demand at each hour and generated power are
different, and the main aim is to supply power to satisfy the demand load. There are many
techniques for energy allocation among DERs. The best energy management method in
a microgrid is to reduce the generation cost. The commonly used quadratic cost function
used to achieve this goal from the literature on microgrid [52] optimization is as follows:

Ci = αi × P2
i + βi × Pi + γi (1)

where αi, βi, and γi are the cost coefficients; Ci represents the total cost in dollars; and Pi
denotes the power of ith generation units in MW per hour. This quadratic cost function is
used for each generation unit to minimize generation cost. The total cost of each hour is a
summation of all the DERs used at that hour. The main aim is to satisfy the load through
power generation with minimum cost. It is considered that generation will always be equal
to load.
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3.2. Equality Constraint

For smooth implementation, it is observed that, at any instant, generated power should
always be greater than or equal to the demand power. If DERs cannot meet demand, the
needed capacity is taken from the utility grid. In this research, it is considered that load
will always satisfy the load and it is not necessary to get energy from the utility grid.

This can be formulated as follows:

DER

∑
g=1

Pg=Pl (2)

where Pg is the total generated power of the available DERs, Pl is the demanded power at a
particular hour of the day, and DER represents the total number of DERs in a microgrid.
Generated power for every hour is the sum of the power of all of the generation units.
In this paper, we have considered two different microgrids, and both microgrids have a
different number of generation units. Each generation unit should be operated between its
limits. This can be represented as follows:

Pg min ≤ Pg(t) ≤ Pg max where g = 1, 2, . . . NDERt = 1, 2, 3 . . . 24. (3)

This equation states that, at time t, power from any generation unit should always be
in this power range. Here, Pg min is the minimum power generated by any generation unit,
and it is supposed to be zero, whereas Pg max is the maximum power produced depending
on the rated power capacity. These also define the lower and upper bound and form the
generation vector’s boundary.

3.3. Objective Function

Each generation unit is considered a decision variable to solve the cost minimization
problem. Thus, there are two different scale microgrids, and the decision variables differ.
In microgrid 1, there are six decision variables; they are three wind power plants, two PV
plants, and a CHP. Similarly, for microgrid 2, there are 15 decision variables, which are
eight wind power plants, six PV plants, and a CHP. The vector solution for microgrid 1 [45]
is represented as x = [ Pwp1, Pwp2, Pwp3, Ppv1, Ppv2, PCHP] and that for microgrid 2 [46]
is x = [ Pwp1, Pwp2, Pwp3, Pwp4, Pwp5, Pwp6, Pwp7, Pwp8, Ppv1, Ppv2, Ppv3, Ppv4, Ppv5, Ppv6, PCHP].
The total generation cost is the sum of all of the costs of generation units used at that
time. Using the equality constraint, the energy management system should balance the
generation power with the demanded load. Thus, the main aim of the optimization
algorithm is to use the generated power from all of the available generation units so that
the cost of generation is minimized. To solve this power scheduling problem, the following
optimization function [45] should be solved:

MIN OF =
DER

∑
i=1

C(i) (4)

where

C(i) =
DER

∑
i=1

[
αi × P2

i + βi × Pi + γi

]
(5)

Subject to
DER

∑
g=1

Pg=Pl (6)

As discussed, the generated power should be in the power range, and handling this
issue in an optimization problem is challenging. Thus, the best way to address this problem
is to introduce a penalty function. The penalty function helps to implement the optimized
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process in a balanced manner. The equation for the objective function with the penalty
function [45] is given below:

C(i) =

[
DER

∑
i=1

[
αi × P2

i + βi × Pi + γi

] ]
+ Pf

∣∣∣∣∣
DER

∑
i=1

Pi − Pl

∣∣∣∣∣ (7)

Here, Pf is the penalty factor that maintains the balance equation.

4. Methodology

This section explains the multi-verse optimizer algorithm and how it helps to find an
optimized result for the problem. Further, a cost-effective version of the multi-verse opti-
mizer algorithm is discussed and implemented in different scenarios for cost optimization.

4.1. Multi-Verse Optimizer Algorithm

The multi-verse algorithm is a nature-inspired population-based stochastic optimiza-
tion algorithm. The optimization process for any problem starts by initializing some
random set of solutions. These initial solutions are explored over a definite time for some
defined step known as iterations or generations. The basic concept for all population-based
algorithms is the same, but what makes them different is the process of moving or evolving
toward an optimized solution. A population-based algorithm uses two processes during
searching: exploration and exploitation [53]. The better the exploration and exploitation,
the more optimized the solution is expected to be. The multi-verse optimization algorithm
is based on the concept of the multi-verse theory, which came into existence after the big
bang theory. This theory implies that a massive eruption led to the universe’s presence,
whereas the multi-verse theory states that many explosions led to the emergence of several
parallel universes that collide and interact with each other, and every existing universe has
distinct properties.

MVO works on the principle of the multi-verse theory of white holes, black holes, and
wormholes. It is believed that white holes have never been found in the universe, but many
physicists consider them a collision between several existing parallel universes. However,
black holes attract everything towards them, including light, because of their great gravita-
tional force. Wormholes are considered time/space travel tunnels from which objects travel
within the universe from one corner to another (from one universe to another). Universe
expansion through space depends on its inflation rate. The creation of stars, different plan-
ets, asteroids, wormholes, white holes, black holes, physical laws, and the sustainability of
life depends on the inflation speed of the universe. It is argued that universes interact with
each other through white holes, black holes, and wormholes to achieve a stable point. This
is the motivation for a multi-verse optimization algorithm where universes interact with
each other to achieve an optimized solution. In a multi-verse optimization algorithm, a few
rules are employed in the universes, which are described below:

1. The inflation rate is directly proportional to the probability of having white holes.
2. The inflation rate is inversely proportional to the probability of having black holes.
3. The universe with more white holes and a high inflation rate tends to send more

objects to another universe.
4. The universe with more black holes and a lower inflation rate tends to receive more

objects from another.
5. The objects in different universes tend to randomly transfer toward the best universe

through wormholes, regardless of the inflation rate.

In a multi-verse optimization algorithm, solutions are called universes and every
variable in a solution is a variable in a universe. Moreover, each universe is associated with
an inflation rate that is known as the fitness value of that universe. For the exploration
process, white/black hole tunnels are used, whereas for the exploitation process, the objects
are sent through wormholes. The universes with high inflation rates have more white
holes, whereas the universes with lower inflation rates have more black holes. As explained
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above, the object travels from the source universe of white holes to the destination universe
of black holes through white/black tunnels. With this process, the overall average inflation
rate of all of the universes increases by the movement of objects from universes with higher
inflation rates to universes with lower inflation rates. This process is also explained in
Figure 2. To mathematically model this process, the following steps are followed:
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Step 1: All of the universes are sorted by their inflation rate so that the universes with
more white holes, i.e., with a high inflation rate, are kept in front, and the universes with
more black holes, i.e., with a lower inflation rate, are kept at the rear.

Step 2: The roulette wheel mechanism chooses one of the universes with a white
hole. With this implementation, exploration occurs as the universes interchange objects to
explore the search space.

Step 3: After exploration, exploitation is performed using wormholes in universes.
Each universe’s objects exploit the search space by transforming the objects through the
search space regardless of the inflation rate.

Step 4: Wormhole tunnels are formed between a universe and the best universe created.
Step 5: This mechanism assures the diversity of solutions and is expected to expand

the local search and enhance the universe’s overall inflation rate.
Initially, all of the parameters are defined, such as the objective function, problem

dimension, population size, maximum iterations, and upper and lower limits. After explain-
ing all of the parameters, the positions of universes are initialized using random solutions.

Each universe has d number of variables in a solution (here, it is several generation
units). Universe i is shown by the vector, xi = [x1

i x2
i x3

i . . . ... xd
i]. The matrix of the

universe is shown as follows:

Ui =




x1
1 x2

1 . . . · · · xd
1

x1
2 x2

2 . . . . . . xd
2

...
...

...
...

...
x1

n x2
n . . . · · · xd

n


 (8)

Here, d is the number of decision variables and n is the number of universes (solutions). Then,
the inflation rates are calculated and tend to find the best solution using the following equation:

xj
i =

{
xj

k r1 < NI(Ui )

xj
i r1 < NI(Ui )

(9)
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where xj
i indicates the jth parameter of the ith universe, Ui indicates the ith universe, NI(Ui)

is a normalized inflation rate of the ith universe, r1 is a random number in [0, 1], and xj
k

indicates the jth parameter of the kth universe selected by the roulette wheel selection
mechanism. These universes are then sorted in a series where the ones with a high inflation
rate, i.e., with a more significant number of white holes, are in front, and those with low
inflation rates are kept at the rear. After sorting the universes, the wormhole existence
probability (WEP) and traveling distance rate (TDR) are calculated using the formula for
both coefficients mentioned below:

WEP = min + l ×
(

max − min
L

)
(10)

where min stands for minimum and equals 0.2, max stands for maximum and the value is
set to 1, l shows the current iteration, and L indicates the total number of iterations.

TDR = 1 − l
1
p

L
1
p

(11)

Here, p shows the exploitation accuracy over iterations and is set to 6. The speed and
accuracy of the local search or exploitation rate are directly proportional to p. Now, the posi-
tions of the universes are updated using the following equation and the current best solution.

xj
i =





Xj + TDR ×
((

ubj − lbj
)
× r4 + lbj

)
r3 < 0.5 and r2 < WEP

Xj + TDR ×
((

ubj − lbj
)
× r4 + lbj

)
r3 < 0.5 and r2 < WEP

xj
i r2 ≥ WEP

, otherwise (12)

where Xj indicates the jth parameter of the best universe formed so far; TDR is a coefficient;
WEP is another coefficient; lbj shows the lower bound of the jth variable; ubj is the upper

bound of the jth variable; xj
i indicates the jth parameter of the ith universe; and r2, r3, and

r4 are random numbers in [0, 1]. This is repeated until the maximum number of iterations
is reached and the best-optimized result is outputted.

4.2. Cost-Effective Multi-Verse Optimizer Algorithm

The existing algorithm has yielded promising results, but converges prematurely
without proper exploitation in search space. The improved version of the multi-verse
optimizer algorithm enhances the optimization results with an improved exploitation
process for cost optimization problems. As shown in Figure 3, some modifications in the
optimization process using a multi-verse optimizer algorithm ensure better results for
cost optimization problems and are labelled as 1 and 2. Initially, all of the parameters are
defined as the objective function, dimension of the problem, population size, maximum
iterations, and upper and lower limits. Then, the positions of universes are initialized
using random solutions. The following steps are achieved by initializing the population
of N universes. Inflation rates are calculated and the best solution is decided among all
of the universes. Further, sorting of universes is performed, in which a high inflation rate
universe is supposed to consist of more white holes stored in front and others in the rear.
After the sorting is complete, the best results so far are stored at every consecutive iteration.
Then, the WEP and TDR are calculated using the given equations. The positions of the
universe are held using the current locations, and the best solution at every iteration is
stored followed by the evaluation of inflation rates for new universes. After this, it is
checked whether the stored solutions reach the population size. Once the stored solutions
are equal to population size, the previous population is replaced, and the new solution
serves as the new population for the rest of the implementation. For every n population
size, there will be a new population after every 2n iterations. This process is followed for N
number of iterations and outputs promising results for this problem (Algorithm 1).
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Algorithm 1: Algorithm for proposed cost-effective multi-verse optimizer algorithm

Input: Number of decision variables, boundaries, loads, cost coefficients
Output: Generation cost at each hour
Step 1: Start, Initial parameters No. of universes = 50, maximum no. of iteration = 1000, WEP = 0.2
and TDR = 1.
Step 2: Initialize Universe positions with random solutions using a matrix.

Step 3: Calculate the inflation rate using xj
i =

{
xj

k r1 < NI(Ui )

xj
i r1 < NI(Ui )

And find the best solution

using Roulette wheel selection.

Step 4: Calculate WEP using WEP = min + l ×
(

max−min
L

)
and TDR by TDR = 1 − l1/p

L1/p

Step 5: Update the inflation rates using.

xj
i =









Xj + TDR ×
((

ubj − lbj

)
× r4 + lbj

)
r3 < 0.5

Xj − TDR ×
((

ubj − lbj

)
× r4 + lbj

)
r3 ≥ 0.5

r2 < WEP

xj
i r2 ≥ WEP

Step 6: After every iteration, store the best solution.
Step 7: If stored solutions are equal to the number of universes, Replace the population with new
stored solutions.
Step 8: Repeat the process until the maximum number of iterations.
Step 9: Calculate the Best cost.
Step 10: End
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5. Implementation and Results

In this section, the experimental setup and dataset description are provided. Moreover,
the performance of a proposed algorithm is evaluated by implementing it on different scale
microgrid models.
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5.1. Experimental Setup and Data Set Description

The algorithms were implemented using MATLAB and the experiments were executed
on a computer with a Windows 10 64-bit operating system specification, Intel (R) core (TM)
i5, and 8 GB RAM. The proposed algorithm is implemented on two test systems and the
results are compared to those of other algorithms. According to the classification based
on generation power, demands, and electrical lengths, the microgrids are categorized as
small-scale, medium-scale, and large-scale microgrids.

In this paper, the performance of the proposed algorithm is evaluated on two micro-
grid models, i.e., the IEEE 37-node test feeder and the IEEE 141-node test feeder. These
two different models are categorized as medium-scale and large-scale microgrids. In this
research, we will consider the microgrids in islanded mode, assuming the generated power
from all of the available generation sources will satisfy the load at each hour. Islanded mode
depicts that the microgrid will serve the demand with the available renewable sources and
CHP. A cost-effective multi-verse optimization algorithm optimizes demand power among
the various available DERs. It focuses on optimal power sharing among the available
sources in such a way that generation cost is optimized and the load is served.

The proposed CMVO and other algorithms were implemented by the authors for both
medium-scale and large-scale microgrids. The generation data were obtained from [52]
and all of the algorithms were implemented by the authors for the same dataset and then
compared in terms of cost. It is shown that the proposed algorithm performs better than
the other investigated meta-heuristic algorithms. These algorithms are run 30 times for a
24 h load dataset, and the best results are reported for a fair evaluation. All of the algorithms
are executed for the same population size and the maximum number of iterations for the
comparison. Other parameters for each algorithm are varied accordingly. The parameter
settings of all algorithms are presented in Table 1.

Table 1. Parameter settings of the algorithms.

Algorithm Parameter Value

CMVO

Universe size 50
Number of iterations 1000
WEP 0.2
TDR 1

MVO

Universe size 50
Number of iterations 1000
Min 0.2
Max 1
p 6

GA

Population size 50
Number of iterations 1000
Crossover probability 0.9
Mutation probability 0.5

PSO

Swarm size 50
Number of iterations 1000
Learning factor 2
Inertia weight 0.9 to 0.4

AHA
Population size (n) 50
Number of iterations 1000
Migration coefficient 2n

Two different small-scale and large-scale microgrid test systems are used for the
implementation. Table 2 represents the configuration of these microgrids and they are
discussed in detail below.
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Table 2. Configurations of microgrids.

Microgrid 1 2

IEEE Test System IEEE 37-NODE Test Feeder IEEE 141-NODE Test Feeder
Scale Medium Large

No. of solar plant (PV) 2 6
No. of wind plant 3 8

No. Of CHP 1 1

5.1.1. Microgrid 1 (Medium-Scale Microgrid)

This microgrid consists of three wind plants, two PV plants, and one CHP, whereas the
load area is represented by the IEEE 37-bus test system, as seen in Figure 4. The generation
and load data for this microgrid are adopted from [45] and the rated capacity of the wind
turbine, solar plant, and CHP is 750 KW, 200 KW, and 1000 KW, respectively [45]. Wind
and PV plants are intermittent and provide different power at each hour, whereas CHP
will offer the same power for a whole day. It is assumed that the generation sources do not
run out, and the microgrid works in islanded mode without relying on the grid.
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Figure 4. Representation of microgrid 1.

The energy management system will be informed about the demand and generated
power for every hour. It evaluates the data and communicates back to generation units that
aim to allocate the energy to achieve the minimum generation cost. The power generation
of each renewable energy source per hour is shown in Figure 5. Table 3 shows the load for
each microgrid [45,54], whereas Table 4 shows the cost coefficient for each generation unit
in microgrid 1 [45,46].
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Figure 5. Generation data for each hour.

Table 3. Load data for microgrid 1 and microgrid 2 [45,54].

Hour Load (KW) IEEE 37 Load (KW) IEEE 141

1 1471 3482
2 1325 2946
3 1263 2761
4 1229 2558
5 1229 2541
6 1321 2616
7 1509 3635
8 1663 4339
9 1657 4748
10 1643 5100
11 1643 5231
12 1652 5306
13 1666 5454
14 1639 5215
15 1642 5363
16 1640 5383
17 1676 5198
18 1920 5051
19 2214 4496
20 2382 5275
21 2382 5479
22 2327 5536
23 2174 5370
24 1903 4611

Table 4. Cost coefficients of DERs in microgrid 1.

Plant α β
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5.1.2. Microgrid 2 (Large-Scale Microgrid)

This microgrid consists of eight wind plants, six PV plants, and one CHP, whereas
the load area is represented by the IEEE 141-bus test system, as seen in Figure 6. The load
data for this microgrid are adopted from [45], and the rated capacity of the wind turbine,
solar plant, and CHP is 750 KW, 200 KW, and 1000 KW, respectively. Figure 6 represents
microgrid 2, and cost coefficients for microgrid 2 are listed in Table 5 [46].
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Table 5. Cost coefficient of DERs in microgrid 2.

Plant α β
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WP1 0.0027 17.83 4.46
WP2 0.0028 17.54 4.45
WP3 0.0026 17.23 4.44
WP4 0.0027 17.83 4.46
WP5 0.0028 17.54 4.45
WP6 0.0028 17.54 4.45
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WP8 0.0026 17.23 4.44
PV1 0.0055 29.30 4.45
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PV6 0.0055 29.58 4.46
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Wind and PV plants are intermittent and provide different amounts of power at
each hour, whereas CHP will offer the same amount of power for a whole day. For this
implementation, it is assumed that the generation sources do not run out and the microgrid
works in islanded mode without relying on the grid. The load dataset for microgrid 2 is
presented in Table 3.

5.2. Experiment Results

In the experiment results, the results for both microgrids are explained by various
algorithms. The results are obtained for different microgrids with their respective datasets
using initialized parameters. All of the algorithms were run 30 times, and the best results
were reported for fair evaluation.

159



Sustainability 2023, 15, 6358

5.2.1. Microgrid 1 (IEEE 37 NODE TEST FEEDER)

The optimization results for microgrid 1 are explained in this section. Five of the
algorithms are applied to the given dataset. It is assumed that the generated power will
always satisfy the demanded power, so the equality constraint is satisfied. Table 6 shows
the generation power of all of the DERs every hour by applying a genetic algorithm (GA).
For this microgrid, we have six DERs as WP1, WP2, WP3, PV1, PV2, and CHP. The load
data for this microgrid are presented in Table 1. After applying the genetic algorithm, the
total generation is $1600.35. Table 7 shows the result for the generation power of all of
the DERs using the particle swarm optimization algorithm. The entire generation cost
for PSO is $1183.45. Table 8 shows the results performed by the artificial hummingbird
algorithm AHA [55], respectively. The total generation cost for AHA is $1353.74. Similarly,
Tables 9 and 10 represent the generation power for the multi-verse optimizer algorithm
(MVO) and cost-effective multi-verse optimizer (CMVO) algorithm, respectively. The
total generation cost for MVO is $1177.20, whereas it is $1167.35 for CMVO. These tables
represent various algorithms for optimal power scheduling of all available generation units
at the hour.

Table 6. Generation power (KW) by GA for microgrid 1.

No. WP1 WP2 WP3 PV1 PV2 CHP Cost ($)

1 383.73 574.293 395.83 0 0 117.134 51.17
2 534.689 399.98 354.819 0 0 35.502 43.91
3 506.64 541.73 168.308 0 0 46.316 43.51
4 604.402 521.86 20.91 0 0 81.82 45.05
5 644.34 460.329 11.67 0 0 112.64 46.86
6 509.143 587.81 161.23 0 0 62.8 45.48
7 643.22 544.58 90.8 0 12.55 217.82 62.48
8 643.23 457.34 453.9 8.2 57.38 42.85 59.97
9 697.466 460.85 359.08 45.26 48.89 45.42 60.39
10 681.39 273.42 434.45 45.86 61.61 146.245 66.14
11 433.81 503.18 493.97 115.71 95.25 1.06 58.83
12 683.71 639.69 154.38 108.2 60.22 5.6 58.93
13 583.55 552.691 287.59 77.51 99.25 65.377 62.69
14 504.43 454.82 203.9 95.97 101.11 278.75 74.87
15 565.73 622.26 25.91 86.12 221.53 320.43 76.35
16 603.22 559.95 10.227 120.11 57.968 288.51 75.31
17 664.6 610.49 123.11 104.07 60.73 112.96 65.55
18 466.86 559.42 361.755 62.14 33.61 436.19 87.69
19 696.422 617.59 501.47 2.64 22.6 373.25 88.38
20 610.1 635.03 474.8 0 0 662.05 98.90
21 505.89 576.14 663.899 0 0 636.06 97.30
22 623.55 648.58 591.11 0 0 463.74 86.36
23 597.81 454.71 647.62 0 0 472.83 84.17
24 573.63 609.4 579.94 0 0 140.01 60.08

Table 11 represents the total generation cost by all of the algorithms after optimal
power scheduling among various available DERs. Based on Table 8, it is found that the
cost-effective multi-verse optimizer algorithm has improved results. It performs optimal
scheduling at a lower cost than all other algorithms. In comparison, the total costs produced
by CMVO, MVO, PSO, AHA, and GA are $1167.35, $1177.20, $1183.45, $1353.74, and
$1600.35, respectively. It is seen that the daily cost reduction varies from $10.05 for MVO
to $433 for GA, whereas the average time taken by CMVO, MVO, PSO, AHA, and GA for
each hour is 0.18 s, 0.19 s, 1.90 s, 0.26 s, and 1.05 s, respectively. The mean and standard
deviation for each algorithm are presented in Table 11. Here, AHA has a better standard
deviation than CMVO, but has a difference of $186, which is more significant. So, the
proposed algorithm is more stable than the other investigated algorithms.
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Table 7. Generation power (KW) by PSO for microgrid 1.

No. WP1 WP2 WP3 PV1 PV2 CHP Cost ($)

1 340.11 693.8836 437 0 0 0 39.12
2 610 715 0 0 0 0 32.33
3 558 705 0 0 0 0 31.23
4 571.28 657.71 0 0 0 0 30.63
5 649 580 0 0 0 0 30.66
6 459 682 180 0 0 0 36.60
7 665 484 360 0 0 0 39.90
8 660 536.89 466.10 0 0 0 42.57
9 478.81 639.15 514.99 0 24.03 0 47.14
10 703.40 453.24 486.34 0 0 0 42.22
11 717 454.65 433.65 0 37.68 0 47.16
12 640.19 667.97 335.13 8.68 0 0 47.01
13 648.60 647.39 370 0 0 0 42.65
14 685 570 210 138.28 35.71 0 53.20
15 710 665 0 112 155 0 50.01
16 725 668.06 0 111.74 135.18 0 49.74
17 705 673.53 159.66 90.68 47.11 0 53.45
18 725 674 395 77.82 48.17 0 57.52
19 740 677.72 634.99 0 65.78 95.49 68.22
20 660 682 667 0 0 373 82.03
21 685 680 730 0 0 287 77.02
22 687 670 758 0 0 212 71.68
23 695 645 695 0 0 138 64.69
24 495 688 720 0 0 0 46.65

Table 8. Generation power (KW) by AHA for microgrid 1.

No. WP1 WP2 WP3 PV1 PV2 CHP Cost ($)

1 339.07 694.95 436.96 0 0 0 44.33
2 162.01 714.98 447.99 0 0 0 41.71
3 328.00 704.99 229.99 0 0 0 40.74
4 480.00 704.99 43.99 0 0 0 40.24
5 629.00 579.99 19.99 0 0 0 40.29
6 459.01 681.98 179.99 0 0 0 41.81
7 467.68 682.36 358.92 0 0.029607 0 49.51
8 643.28 505.41 513.19 0.68 0.201648 0.22 56.61
9 729.23 358.55 514.65 54.08 0.466118 0 56.52
10 372.73 754.57 515.38 0.01 0.209078 0 56.25
11 663.77 476.72 501.45 0.32 0.282455 0.43 56.26
12 717.29 617.67 313.45 2.63 0.511972 0.42 56.53
13 699.73 647.00 170.74 148.13 0.382843 0 56.79
14 677.34 568.27 207.93 107.10 78.05455 0.28 58.43
15 709.50 664.99 73.86 39.23 150.4662 3.92 58.75
16 721.78 668.68 0.35 105.60 143.4948 0 59.15
17 704.22 673.99 159.78 89.42 48.06352 0.50 58.66
18 722.77 673.50 393.77 64.56 65.37054 0 62.74
19 738.62 676.32 626.67 29.18 65.55676 77.62 71.15
20 659.99 681.99 666.99 0 0 373. 82.03
21 684.99 679.98 729.99 0 0 287.02 77.02
22 687 670 758 0 0 212 71.68
23 695 645 695 0 0 138 64.69
24 495.00 687.99 719.99 0 0 0 51.86
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Table 9. Generation power (KW) by MVO for microgrid 1.

No. WP1 WP2 WP3 PV1 PV2 CHP Cost ($)

1 361.18 672.81 437 0 0 0 39.13
2 609.99 715 0 0 0 0 32.34
3 582.44 680.55 0 0 0 0 31.23
4 587.82 641.17 0 0 0 0 30.64
5 648.99 580 0 0 0 0 30.66
6 459.85 682 179.14 0 0 0 36.60
7 464.05 685 359.94 0 0 0 39.85
8 519.48 596.52 547 0 0 0 42.52
9 429.49 745 482.50 0 0 0 42.43
10 445.41 685.22 512.37 0 0 0 42.15
11 717 503.75 398.39 23.85 0 0 46.99
12 720 587.56 324.60 19.83 0 0 47.13
13 694.32 643.01 328.65 0 0 0 42.68
14 685 570 210 155 18.99 0 53.20
15 710 665 0 131.28 135.71 0 50.01
16 725 669 0 104.95 141.03 0 49.74
17 705 674 160 104.21 32.78 0 53.44
18 725 674 395 71.91 54.08 0 57.52
19 740 677.87 634.98 0 0 161.14 66.84
20 660 682 667 0 0 373 82.03
21 685 680 730 0 0 287 77.02
22 687 670 758 0 0 211.99 71.68
23 695 645 695 0 0 137.99 64.70
24 500.83 682.16 720 0 0 0 46.66

Table 10. Generation power (KW) by CMVO for microgrid 1.

No. WP1 WP2 WP3 PV1 PV2 CHP Cost ($)

1 353.16 693.51 424.32 0 0 0 39.14
2 609.99 715 0 0 0 0 32.33
3 563.36 699.64 0 0 0 0 31.25
4 558.78 670.21 0 0 0 0 30.64
5 648.99 580 0 0 0 0 30.66
6 470.87 670.12 180 0 0 0 36.61
7 630.78 518.40 359.80 0 0 0 39.90
8 437.34 699.34 526.31 0 0 0 42.49
9 409.15 744.67 503.17 0 0 0 42.39
10 599.26 760 283.73 0 0 0 42.28
11 600.05 526.10 516.83 0 0 0 42.19
12 689.93 669.82 292.24 0 0 0 42.45
13 676.69 622.62 366.68 0 0 0 42.71
14 685 570 209.9 155 19.01 0 53.20
15 710 664.97 0 131.06 135.95 0 50.02
16 725 669 0 113.94 132.05 0 49.74
17 705 674 160 109.61 27.38 0 53.44
18 725 673.99 395 78.130 47.87 0 57.52
19 739.40 677.96 635 0 0 161.62 66.83
20 660 682 667 0 0 373 82.03
21 685 680 729.981 0 0 287.01 77.02
22 687 670 758 0 0 211.99 71.68
23 695 645 695 0 0 138.00 64.70
24 498.23 687.93 716.82 0 0 0 46.66
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Table 11. Total generation cost and time of the invested algorithm for microgrid 1.

Algorithm Total Cost ($) Total Time (s) Mean ($) Standard
Deviation

Proposed
CMVO 1167.35 0.18 1261.11 17.22

MVO 1177.20 0.19 1265.85 19.87
PSO 1183.45 1.90 1346.91 41.56
AHA 1353.74 0.26 1361.16 16.67
GA 1600.35 1.05 1958.76 32.34

Figure 7 represents the convergence graph for hour 10 and Figure 8 represents the
graph for hour 13. These convergences graphs are selected to show the best outcome from
all of the running hours. It is observed from the figure that the proposed algorithm that
explores the search space is converged efficiently. The convergence graph represents the best
solution versus the generation (iteration number). In these graphs at hour number 10, it is
observed that, compared with other algorithms, the proposed algorithm finds a promising
region in search space for initial generations and rapidly converges to the optimal solution.
It performed better than other algorithms in terms of efficiency and accuracy. Similarly,
in another hour, hour 13, it is observed that the proposed algorithm converges better as it
finds a promising region in fewer generations and achieves better results compared with
other existing algorithms.
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always satisfy the demanded power, so the equality constraint is satisfied. The generation
power of all DERs at every hour is different and, for this microgrid, we have 14 DERs as
WP1, WP2, WP3, WP4, WP5, WP6, WP7, WP8, PV1, PV2, PV3, PV4, PV5, PV6, and CHP. As
shown in Figure 5, the data for WP1, WP2, and WP3 are the same, and WP4 has the same
data as WP1, WP5 and WP6 have the same data as WP2, and the data of WP7 and WP8 are
the same as those of WP3. Similarly, for solar datasets, PV1, PV3 and PV5 have the same
data as PV1 in Figure 4, and PV2, PV4, and PV6 have the same data as PV2 in Figure 4.
The load data for this microgrid are presented in Table 3. Assume CHP has a constant
production value of 1000 KW for the entire 24 h. Table 12 shows that the total generation
obtained by genetic algorithm is $4711.06. It describes the optimal power scheduling
carried out by GA for this microgrid. Each row in the table shows the total power generated
by each renewable resource, and it is observed that, at every hour, the demand is satisfied
by generated power. Similarly, Tables 13 and 14 describe the optimal power scheduling
carried out by PSO and AHA, respectively. The total cost generated by PSO for microgrid 2
with 15 DERs is $3252.05, which shows an improvement in generation cost compared with
GA, which is $4711.06, whereas that of AHA is $3598.03. Tables 15 and 16 represent the
results of MVO and CMVO, where the total generation cost produced by MVO is $3211.43.
Compared with all of these algorithms, CMVO achieves many promising results, and the
entire generation cost is $3178.30. It is observed that the daily cost reduction varies from
$33.3 for MVO to $1532.96 for GA.

Table 12. Generation power (KW) by GA for microgrid 2.

No. WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 PV1 PV2 PV3 PV4 PV5 PV6 CHP Cost
($)

1 266.55 562.88 304.41 482.98 642.50 589.01 301.68 331.94 0 0 0 0 0 0 0 96.60
2 362.10 475.85 333.35 296.96 404.02 394.55 322.03 357.10 0 0 0 0 0 0 0 87.14
3 193.03 563.42 191.78 583.54 383.54 651.13 151.11 43.417 0 0 0 0 0 0 0 84.13
4 414.91 611.88 26.44 321.47 566.87 570.09 18.43 22.46 0 0 0 0 0 0 0 80.68
5 458.20 480.10 0 439.96 547.06 431.25 0 16.08 0 0 0 0 0 0 7.89 77.92
6 462.17 483.09 67.89 240.32 634.785 506.96 132.02 88.73 0 0 0 0 0 0 0 81.59
7 572.38 501.92 285.42 594.31 537.65 464.53 299.55 319.80 0 12.35 0 17.038 0 19.89 10.05 119.18
8 522.87 595.10 435.21 484.16 607.71 630.73 389.28 427.95 6.39 36.05 7.32 47.40 4.9578 38.28 105.48 151.37
9 573.92 671.20 344.79 553.14 607.52 635.48 372.39 480.34 45.02 48.05 38.70 58.24 30.99 27.01 5.14 156.70
10 407.38 693.91 399.74 636.00 649.37 500.92 415.77 478.07 80.75 53.73 48.87 60.83 50.55 63.78 560.23 193.76
11 566.47 617.54 427.35 659.78 581.30 466.78 304.23 429.12 89.26 120.08 47.64 85.58 88.28 96.67 650.84 203.45
12 596.61 560.44 217.73 636.78 634.30 574.24 270.83 316.55 104.28 94.62 82.66 106.05 110.42 112.52 887.91 219.65
13 646.29 561.12 289.20 654.15 519.63 562.11 285.74 265.26 115.35 109.49 99.59 85.51 94.11 100.46 937.53 258.77
14 653.23 473.21 133.19 628.34 461.28 488.50 156.81 134.84 112.96 121.97 97.45 122.7 107.30 111.7 849.69 624.76
15 622.73 592.20 61.39 687.11 541.72 585.69 48.81 34.19 114.65 130.77 96.43 131.25 116.53 117.98 939.28 417.22
16 701.51 633.34 19.95 693.21 577.54 628.39 6.94 11.32 118.43 40.96 111.38 57.18 117.81 66.06 899.45 446.78
17 614.11 632.59 146.81 624.06 547.03 638.26 134.89 138.28 52.78 59.93 75.86 89.75 85.87 108.29 812.61 253.12
18 680.39 630.80 271.10 685.45 653.45 611.39 264.69 297.53 62.45 73.12 62.99 37.89 70.00 68.9 540.15 194.58
19 618.00 562.14 497.95 605.59 511.91 521.03 478.84 528.09 12.25 25.82 11.05 46.09 17.00 25.16 34.95 149.96
20 555.56 591.59 610.00 554.79 616.86 588.71 576.92 512.74 0 0 0 0 0 0 468.09 172.64
21 580.69 582.53 610.78 604.42 574.14 625.57 595.95 551.74 0 0 0 0 0 0 753.13 180.54
22 543.86 582.12 621.52 607.25 616.43 564.16 684.28 664.83 0 0 0 0 0 0 651.5 175.55
23 655.44 432.84 543.51 638.87 693.77 607.04 560.54 618.42 0 0 0 0 0 0 149.49 161.62
24 484.30 588.78 641.39 560.66 535.92 600.20 638.19 528.33 0 0 0 0 0 0 33.14 123.36

Figure 9 represents the convergence graph for hour 7 and Figure 10 represents the
graph for hour 23. These convergence graphs are selected to show the best outcome
from all of the running hours. The convergence graph represents the best solution versus
iteration. In these graphs, at hour 7, it is observed that, compared with other algorithms,
the proposed algorithm finds a promising region in search space for initial generations and
quickly converges to the optimal solution. It performed better than different algorithms in
terms of efficiency and accuracy. Similarly, in another hour, hour 23, it is observed that the
proposed algorithm converges better as it finds a suitable region in fewer generations and
achieves the optimal result compared with other existing algorithms.
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Table 13. Generation power (KW) by PSO for microgrid 2.

No. WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 PV1 PV2 PV3 PV4 PV5 PV6 CHP Cost
($)

1 650 695 352.1 526.13 694.39 564.36 0 0 0 0 0 0 0 0 0 88.02
2 667.00 711.30 448 0 498.38 451.97 0 169.33 0 0 0 0 0 0 0 78.37
3 741.81 0 227.39 0 705 705 166.57 215.21 0 0 0 0 0 0 0 75.14
4 638.69 689.28 0 0 588.0 589.73 43.99 8.27 0 0 0 0 0 0 0 71.73
5 665 580 5.1356 412.81 422.17 455.87 0 0 0 0 0 0 0 0 0 71.59
6 0 520.19 180 528.64 670.65 682 0 34.51 0 0 0 0 0 0 0 72.67
7 307.19 633.48 357.00 278.06 658.41 676.23 359.05 357.46 0 8.09 0 0 0 0 0 103.75
8 660 642.63 547 556.12 347.62 700 547 306.22 6.31 13.36 0 0 12.70 0 0 125.37
9 730 255.29 497.5 730 745 745 398.66 515 0 0 54.16 0 11.331 66.04 0 133.79
10 565.94 678.14 448.38 694.5 741.08 748.66 437.58 519.95 63.98 0 42.93 59.26 0 99.49 0 145.97
11 701.94 692 470.78 717 633.73 691.01 514.98 517 119.50 119.18 0 53.84 0 0 0 144.15
12 720 670 360 720 669.81 670 360 352.7 139.45 155 0 81.57 137.70 155 114.64 170.89
13 700 650 370 699.97 650 650 368.45 369.84 0 160 149.63 145.60 111.39 141.96 287.11 184.00
14 685 570 205 684.78 570 570 205 190.60 155 158 155 84.83 0 155.75 826.02 211.28
15 710 665 0 710 665 665 74 0 140 155 140 144.07 140 154.92 1000 221.72
16 725 669 20 725 669 669 20 18 130 145 130 145 130 145 1000 229.63
17 705 674 149.6 705 674 674 160 106.31 110 130 110 0 0 0 1000 207.97
18 692.87 674 390.51 725 674 672.70 395 395 80 0 0 110 0 0 241.91 154.70
19 586.83 612.30 588.76 548.27 546.84 583.95 444.79 510.93 19.324 46.60 0 7.357 0 0 0 128.55
20 590.17 662.58 667 660 682 681.97 666.97 664.29 0 0 0 0 0 0 0 127.87
21 685 680 730 685 680 679 670 670 0 0 0 0 0 0 0 131.46
22 657.47 670 758 687 577.52 670 758 758 0 0 0 0 0 0 0 132.39
23 561.57 645 695 689.14 744.279 645 695 695 0 0 0 0 0 0 0 129.51
24 0 647.23 720 674.74 628.80 530.02 720 690.1 0 0 0 0 0 0 0 111.55

Table 14. Generation power (KW) by AHA for microgrid 2.

No. WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 PV1 PV2 PV3 PV4 PV5 PV6 CHP Cost
($)

1 88.88 516.7 310.1 419.8 694.98 695.0 328.0 428.4 0 0 0 0 0 0 0 101.65
2 709.9 554.9 12.73 400.5 234.23 714.9 216.4 102.2 0 0 0 0 0 0 0 92.18
3 638.2 702.7 151.8 0.15 438.05 517.0 190.9 121.9 0 0 0 0 0 0 0 89.06
4 372.4 630.2 35.43 323.0 448.55 705.0 42.89 0.32 0 0 0 0 0 0 0 85.78
5 472.7 309.9 12.92 656.9 482.19 579.7 19.81 6.78 0 0 0 0 0 0 0 85.61
6 344.8 511.2 156.8 251.4 410.46 681.9 79.18 180.0 0 0 0 0 0 0 0 86.64
7 439.1 468.0 352.9 228.5 561.20 679.8 359.5 181.3 0 5.38 0 3.72 0 4.28 350.9 118.10
8 659.7 566.3 411.4 516.3 699.47 542.1 516. 351.6 6.38 1.21 18.20 0.89 7.96 40.30 0.30 144.51
9 712.7 653.9 433.3 690.6 335.18 631.9 432.0 502.9 67.39 3.04 73.95 93.00 49.78 67.99 0.04 152.21
10 646.8 749.5 456.2 596.0 748.50 565.3 4.85 476.8 0.01 101.6 75.08 69.67 44.47 31.90 532.9 160.86
11 716.3 636.6 495.0 469.3 663.85 683.6 516.9 455.4 93.54 0.30 56.64 46.68 25.47 0.13 370.9 164.86
12 619.3 571.4 359.8 638.8 646.03 571.5 333.9 359.8 30.02 91.25 0.29 126.5 140.0 87.56 729.5 189.03
13 698.6 646.2 202.8 684.6 634.66 605.5 354.0 351.6 121.0 75.45 118.8 0.63 0.06 127.5 832.1 201.26
14 646.8 568.3 173.9 594.4 559.59 563.9 152.1 178.1 100.9 155.5 154.2 153.5 149.2 153.0 910.8 218.45
15 673.9 664.7 73.98 686.7 664.97 664.3 69.51 73.68 138.3 145.6 124.5 145.0 124.0 142.6 970.9 225.75
16 724.9 668.9 19.84 724.8 668.79 668.9 19.99 19.67 129.9 145.0 129.7 144.8 129.9 144.9 999.5 229.54
17 688.4 668.7 155.5 662.1 672.05 670.2 130.3 156.2 72.03 74.38 2.28 129.4 90.68 108.0 917.4 212.53
18 715.0 540.8 255.6 692.6 460.89 672.8 247.8 301.6 72.58 3.50 78.98 65.19 53.74 0.05 889.5 176.66
19 721.6 579.9 628.9 463.8 474.76 344.9 312.9 629.7 0.52 16.77 2.35 34.16 10.14 56.17 219.0 147.18
20 438.6 606.8 661.9 540.7 662.02 680.9 309.0 663.9 0 0 0 0 0 0 710.8 151.45
21 566.1 670.7 722.1 684.0 548.94 677.5 592.5 565.9 0 0 0 0 0 0 450.3 154.03
22 686.9 630.4 758.0 686.8 387.71 642.1 555.6 518.9 0 0 0 0 0 0 669.3 154.77
23 491.8 644.6 690.4 694.4 741.58 539.8 428.9 695.0 0 0 0 0 0 0 443.2 134.74
24 699.9 550.0 466.7 699.7 688.00 609.7 83.35 624.4 0 0 0 0 0 0 188.9 121.27

Table 15. Generation power (KW) by MVO for microgrid 2.

No. WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 PV1 PV2 PV3 PV4 PV5 PV6 CHP Cost
($)

1 650 695 399.20 0 690.46 612.90 434.41 0 0 0 0 0 0 0 0 87.73
2 641.79 692.46 437.38 580.07 594.27 0 0 0 0 0 0 0 0 0 0 74.23
3 670.85 679.14 0 508.41 688.40 0 214.18 0 0 0 0 0 0 0 0 70.97
4 719.64 463.36 0 0 661.67 705 0 8.30 0 0 0 0 0 0 0 67.38
5 432.42 580 0 367.75 572.77 580 0 8.05 0 0 0 0 0 0 0 71.52
6 0 681.56 0 250.12 679.84 681.85 180 142.60 0 0 0 0 0 0 0 72.60
7 636.42 374.36 355.04 646.64 604.91 683.16 334.46 0 0 0 0 0 0 0 0 95.25
8 647.63 555.82 293.82 426.29 599.70 699.65 545.70 495.92 0 16.72 0 57.71 0 0 0 121.46
9 719.18 697.76 437.77 628.16 519.27 709.55 435.10 502.59 0 0 47.62 0 38.90 12.05 0 133.41
10 684.71 676.63 465.77 709.11 750 689.11 424.89 434.5 95.61 73.72 0 0 0 95.90 0 141.73
11 659.38 691.28 500.48 716.90 691.57 689.12 501.29 516.40 114.51 0 0 149.98 0 0 0 139.67
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Table 15. Cont.

No. WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 PV1 PV2 PV3 PV4 PV5 PV6 CHP Cost
($)

12 719.52 669.09 346.24 719.87 669.83 670 357.35 359.67 118.58 154.23 116.45 145.22 131.49 120.12 8.2720 170.56
13 699.79 649.12 369.96 700 649.97 649.94 370 369.91 149.97 156.63 89.151 134.45 117.17 78.706 269.16 187.59
14 684.65 568.44 204.81 685 568.40 568.73 197.33 202.31 140.90 151.20 153.56 119.93 153.80 96.17 719.70 210.81
15 710 665 74 710 665 664.61 0 0 129.39 155 140 155 140 155 1000 221.82
16 725 668.88 19.89 725 669 669 20 20 130 145 130 144.87 129.09 145 999.26 229.59
17 704.71 674 159.74 677.09 674 674 158.80 139.1 0 130 109.43 92.21 109.31 111.63 783.87 206.74
18 708.98 657.65 394.70 725 674 674 395 394.97 0 63.15 80 106.75 78.00 98.763 0 151.62
19 675.79 459.15 577.06 310.79 642.88 626.26 574.08 588.61 22.14 19.24 0 0 0 0 0 123.92
20 568.78 682 667 659.2 682 682 667 667 0 0 0 0 0 0 0 127.86
21 684.89 680 729.63 685 680 679.47 670 670 0 0 0 0 0 0 0 131.46
22 593.42 670 758 676.25 652.52 669.82 757.96 758 0 0 0 0 0 0 0 132.37
23 584.93 644.90 694.65 692.44 745 643.14 688.58 676.33 0 0 0 0 0 0 0 129.53
24 700 684.33 649.19 0 688 687.75 720 481.71 0 0 0 0 0 0 0 111.65

Table 16. Generation power (KW) by CMVO for microgrid 2.

No. WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 PV1 PV2 PV3 PV4 PV5 PV6 CHP Cost
($)

1 523.03 695 437.00 0 695 695 0 437.00 0 0 0 0 0 0 0 87.95
2 0 715 359.59 0 715 715 0 441.40 0 0 0 0 0 0 0 73.76
3 750.00 705 0 600.84 705 0 0 0 0 0 0 0 0 0 0 68.21
4 484.92 632.85 0 735 0 705 0 0 0 0 0 0 0 0 0 65.25
5 202.97 513.15 0 665 580 580 0 0 0 0 0 0 0 0 0 68.33
6 0 682 5.02 565 682 682 0 0 0 0 0 0 0 0 0 68.50
7 478.51 685 274.38 665 685 685 162.13 0 0 0 0 0 0 0 0 95.36
8 0 700 547.00 660 700 700 423.50 547 20 41.46 0 0 0 0 0 117.06
9 730 679.27 515.00 730 604.12 381.26 515 515 75 0 0 3.48 0 0 0 130.09
10 715 750 520.00 349.94 750 750 520 520 0 125 100 0 0 0 0 137.07
11 717 692 517.00 717 692 692 517 460.17 0 0 120 0 106.86 0 0 139.16
12 720. 670 360.00 720 670 648.71 357.75 360 140 155 140 155 54.28 155 0 167.55
13 700 650 370.00 700 650 601.12 370 370 150 160 150 160 139.91 96.83 185.92 186.46
14 685 570 205.00 685 570 570 205 205 155 158 155 158 155 63.70 675.50 210.57
15 710 665 0.00 710 665 665 74 0 140 143.99 140 155 140 155 1000 221.86
16 725 669 20.00 725 669 669 20 20 130 145 130 145 128 145 1000 229.61
17 705 674 160 705 674 674 147.18 160 110 0 109.72 0 0 79.11 1000 207.50
18 725 674 395 725 674 674 395 395 0 110 80 94.41 0 110 0 150.87
19 325.37 678 635 733.47 678 678 635 117.33 15.92 0 0 0 0 0 0 119.82
20 660 682 575 660 682 682 667 667 0 0 0 0 0 0 0 127.92
21 684 680 730 685 680 680 670 670 0 0 0 0 0 0 0 131.49
22 687 670 758 687 670 548 758 758 0 0 0 0 0 0 0 132.41
23 695 645 555 695 745 645 695 695 0 0 0 0 0 0 0 129.63
24 0 688 720 470.47 646.99 645.52 720 720 0 0 0 0 0 0 0 111.70
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It is observed that CMVO produces the minimum generation cost for the available
power compared with the other algorithms, and the time taken by the proposed algorithm
is improved. The average time taken by the investigated algorithms, i.e., CMVO, MVO,
PSO, AHA, and GA, is 0.41 s, 0.43 s, 2.66 s, 0.29 s, and 1.6 s, respectively. The mean and
standard deviation for each algorithm are provided in Table 17. It is observed that the
proposed algorithm is more stable than other investigated algorithms and has the minimum
mean and standard deviation.

Table 17. Total generation cost and time of the investigated algorithm for microgrid 2.

Algorithm Total Cost ($) Total Time (s) Mean ($) Standard
Deviation

Proposed
CMVO 3178.30 0.27 3353.21 26.78

MVO 3211.43 0.29 3413.56 31.58
PSO 3253.05 2.66 4253.48 885.34
AHA 3598.03 0.29 3846.11 40.57
GA 4711.06 1.6 5348.16 91.60

6. Conclusions

This paper proposed a cost-effective multi-verse optimizer algorithm for optimal
power sharing among different generation units. The proposed optimization algorithm,
CMVO, enhances the local and global search capacity of MVO and results in cost optimiza-
tion. It is observed that the proposed algorithm minimizes the generation cost and provides
the most cost-effective solution for the power scheduling problem, ensuring its stability
and efficacy. The optimization results provide an optimal energy management strategy
in renewable-energy-based microgrids. This paper compares the different optimization
algorithms for two different scale microgrids, i.e., the IEEE 37 node and 141 node systems,
where the proposed algorithm outperforms other implemented algorithms.

Furthermore, it is seen that, in both cases, CMVO outperforms and provides the most
effective solution and can be highly desirable for power-sharing problems. It optimally
shares the generated power among different DERs, supplies energy at the minimum cost
compared with another algorithms, and satisfies the equality constraints. In the future,
the proposed algorithm can be investigated for different microgrid systems for various
scenarios. Moreover, this algorithm can be tested under uncertain generation and load data
in the islanded or grid-connected mode with energy storage devices. With the availability
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of large datasets for demand and load, this power scheduling problem can also be solved
using machine learning or other available methods.
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Abstract: Estimating wind energy at a specific wind site depends on how well the real wind data
in that area can be represented using an appropriate distribution function. In fact, wind sites differ
in the extent to which their wind data can be represented from one region to another, despite the
widespread use of the Weibull function in representing the wind speed in various wind locations in
the world. In this study, a new probability distribution model (normal PDF) was tested to implement
wind speed at several wind locations in Jordan. The results show high compatibility between this
model and the wind resources in Jordan. Therefore, this model was used to estimate the values of the
wind energy and the extracted energy of wind turbines compared to those obtained by the Weibull
PDF. Several artificial intelligence techniques were used (GA, BFOA, SA, and a neuro-fuzzy method)
to estimate and predict the parameters of both the normal and Weibull PDFs that were reflected in
conjunction with the actual observed data of wind probabilities. Afterward, the goodness of fit was
decided with the aid of two performance indicators (RMSE and MAE). Surprisingly, in this study,
the normal probability distribution function (PDF) outstripped the Weibull PDF, and interestingly,
BFOA and SA were the most accurate methods. In the last stage, machine learning was used to
classify and predict the error level between the actual probability and the estimated probability based
on the trained and tested data of the PDF parameters. The proposed novel methodology aims to
predict the most accurate parameters, as the subsequent energy calculation phases of wind depend
on the proper selection of these parameters. Hence, 24 classifier algorithms were used in this study.
The medium tree classifier shows the best performance from the accuracy and training time points
of view, while the ensemble-boosted trees classifier shows poor performance regarding providing
correct predictions.

Keywords: wind estimation; normal PDF; Weibull PDF; optimization algorithms; machine learning;
prediction; classification; accuracy

1. Introduction

Long ago, it was understood that the continuous usage of conventional energy sources
(fossil fuel) jeopardizes and threatens the stability of life. As a result, humanity has tried to
find other inexhaustible energy resources to tackle the issues of the undesired impacts of the
dominant energy sources (fossil fuel). Renewable energy sources were the best alternative,
which became grist, an integral part, and the interesting core of the energy sector due to
their immense valuable features [1]. Furthermore, the lack of conventional energy resources
boosts the harnessing of clean energy sources [2]. Inasmuch, the development of lifestyle is
associated with energy demand. As such, the larger the energy demand in a certain area,
the most sophisticated the area [3–7].

Wide choices of renewable energy are available, such as solar, the internal heat of
the earth, wind, tidal, and biomass energy [8]. Wind energy has played a prominent,
astounding, and marvelous role in contributing to the depreciation of carbon dioxide [9],

Sustainability 2023, 15, 3270. https://doi.org/10.3390/su15043270 https://www.mdpi.com/journal/sustainability171



Sustainability 2023, 15, 3270

which has encouraged some countries to invest in wind energy [10]. The key to wind energy
is its kinetic energy; the energy that can be harvested by wind turbines fundamentally
depends on the average wind speed. The most effective areas to install a wind farm are
those located beside coasts, on the edge of water bodies, and in open terrain [11]. Figure 1
shows the worldwide distribution of wind energy [12].

Figure 1. The worldwide distribution of wind energy.

Wind energy is defined as an inherently unfixed energy source, which varies rapidly
over time [13]. It is dramatically growing and ubiquitous since this type of renewable
energy has several strong points which make it outstrip fossil fuel; for example, it can meet
the massive demand for energy and minimize the pollution resulting from fossil fuel usage
up to a certain limit. Consequently, wind energy is deemed a green energy technology [14].
In addition, wind energy projects contribute to enhancing the situation of the environment,
economy, and society [15].

Wind turbines can be installed on ranches or farms, which improves the economic
situation, as mentioned before, chiefly in rural regions where the best sites for wind are
found. These turbines do not generate any atmospheric emissions that are responsible
for greenhouse gases and acid rain, which makes wind energy eco-friendly, as mentioned
before [16,17].

Among the types of renewable energy, the consumption of wind energy is the largest
category in most countries [18]. For illustration, it constitutes about more than 20% of the
total renewable energy, and this percentage is increasing continuously [19,20]. The global
capacity of wind was about 336.327 GW in June 2014. However, 17.613 GW of this was
installed in the first half of the same year [21]. In particular, Jordan is considered a country
where the wind is available in abundance. The attention to wind energy began in Jordan in
1979, and these days, Jordan has decided to provide 20% of the required energy from wind
and solar energy [22]. Several wind projects exist, such as the Tafilah wind project, which
delivers almost 132 MW of electricity to the national grid; meanwhile, some other wind
projects deliver about 25 MW of electricity [23–28]. Moreover, Jordan has been deemed
as one of the Arab countries which contributes to the spread of the culture of renewable
energy exploitation; notably, by the end of 2021, the installed renewable energy projects
will contribute to electricity generation by a percentage of 20.1% generally and 15.3% by
the wind, as clarified in Figure 2. Accordingly, the awareness of wind energy has increased
abruptly and attracted attention, which is the reason for installing two new wind farms in
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2021 with a capacity of 51.75MW each [29]. Figure 3 represents the MW production from
wind during the period from 2010 to 2021 in Jordan [30].

Figure 2. Electricity generation sources in Jordan.

Figure 3. Wind Profile of Jordan.

The output of wind power depends mainly on the speed of the wind. Hence, it is
irrefutable that evaluating the distribution of wind speed is considered the starting point for
wind energy potential assessment purposes [31]. Usually, the distribution of wind speed is
estimated and described by several probability distribution functions (PDFs) [32], especially
by the Weibull PDF, since the estimated outcomes are close to the actual observed wind
speed. In addition, the Rayleigh PDF, which is a special case of the previously mentioned
PDF (Weibull), is used in some studies, and sometimes, it provides a better fitting [33].
Therefore, it can be understood that no particular PDF can fit the distribution of wind
speed in all sites meticulously, bearing in mind that the estimation of wind speed is not
simple because of the stochastic nature of the wind source and frictional and roughness
effects [34–36].
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Several recent studies stated that estimating the wind turbines’ P-V curve is required
in the preliminary assessment of the wind turbines’ energy yield [37]. However, different
methods have been proposed to make an initial assessment and estimation of wind speed
with an uneven degree of resolution and accuracy [38]. Kevin et al. proposed a technique
in [39] that endorsed a study conducted by Al-Mhairat et al. in [1], showed that gamma PDF
outperforms the other PDFs in wind assessment. This study was performed in Kenya and
aimed to specify the optimal parameters of the selected distribution functions, which were
Weibull, log-normal, and gamma. The process of this study was conducted by estimating
the PDFs’ parameters by using a numerical approach, that is, the maximum likelihood
method (MLM).

Consequently, Rejhana [40] decided to use two methods to estimate the parameters of
the Weibull PDF and the wind power density, which are the MLM and the energy pattern
factor methods. The outcomes showed that the wind energy that is available in Sarajevo is
not enough to meet the required energy for that region.

Similarly, Boro et al. in [41] used the MLM in order to compare the accuracy of various
PDFs, including the inverse Gaussian, gamma, Rayleigh, hybrid Weibull, and Weibull PDFs.
Some statistical tools were used as indicators, such as the coefficient of determination (R2)
and root-mean-square error (RMSE). The results stated that there is not only one PDF that
fits the whole region worldwide, such that in some sites, such as Ouahigouya, Dédougou,
and Ouaga, the Weibull PDF was the most suitable one, while in other sites, such as Gaoua,
Dori, and Boromo, it was found that the inverse Gaussian PDF was the most suitable one.

Saeed et al. in [42] aimed to improve the performance of the Weibull PDF by using
artificial intelligence optimization techniques (AIOP) to obtain the highest possible precision
from the Weibull PDF. This study was conducted in thirteen different sites in Pakistan and
tried to provide an alternative method for the estimation of parameters for the Weibull PDF.
Further, the convergence was enhanced in this study by three AIOTs. The results showed
that the proposed method for estimating the parameters of the Weibull PDF outperforms
the common Weibull PDF.

However, some studies used both Weibull and Rayleigh PDFs in wind speed esti-
mation. The reason for being the two most common PDFs is their accuracy in predicting
and describing wind speed. For instance, Bidaoui et al. in [43] evaluated the potential of
wind energy by using stochastic models of Rayleigh and Weibull PDFs of five locations
in Northern Morocco. Some indicators were utilized, such as the mean bias error (MBE),
RMSE, Chi-square error (χ2), and R2. The outcomes of this study indicated that the accuracy
of the Weibull PDF is higher than the Rayleigh PDF.

Abeysirigunawardena et al. in [44] claimed in their study that the maximum likeli-
hood estimation (MLE) approach is the most commonly used in wind estimation. This
method can mix various information with the parameters of the model. Moreover, the
results showed that approximate standard errors for the estimated parameters may be
shaped automatically.

Baloch et al. stated in [45] that a sensitivity analysis is usually conducted in order to
test the effectiveness of varying the parameters. Several research studies were conducted
to study the effect of distribution function parameter variations on the energy of both wind
regimes and wind turbines [46–48]. However, the goal of proposing new approaches is
to be able to select accurate parameters for each PDF such that the estimated probability
becomes very close to the actual one. Accordingly, the subsequent applications based on
these parameters will become more reliable. The previously mentioned recent studies are
summarized in Table 1.
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Table 1. Summary for the previous studies in the same field of research.

Study Year Proposed Region Used PDF Used Method Objective
Function

Data
Resolution Data Period

[39] 2020 Kenya
Weibull,

log-normal,
and gamma

Numerical
approach
(MLM)

NA Hourly From 2016 to
2018

[40] 2021 Sarajevo, Bosnia and
Herzegovina Weibull

MLM and
energy pattern

factor
NA

The rate of the
recorded data

was 48 per day
in 30 min time

intervals

1 January 2019
to 31 December

2019

[41] 2020

Dori, Ouahigouya,
Ouagadougou, Fada
N’goura, Gaoua, PO,
Dédougou, Ouaga,

Bobo Dioulasso,
Bogandé, and

Boromo

Inverse
Gaussian,
gamma,

Rayleigh,
hybrid Weibull,

and Weibull

MLM
To identify the best

PDF for the
proposed sites

Every three
hours

From January
2006 to

December 2016

[42] 2021 Pakistan Weibull AI
Minimize cost

Min LEC =
∑N

n=0 Cnet/(1+i)n

∑N
n=0 Eo,n/(1+i)n

NA
April

2015–January
2018

[43] 2019

Northern Morocco
(Tangier, Tetuan,

Al-Hoceima, Nador,
Larach)

Weibull and
Rayleigh NA

Minimize the error
between the

estimated
theoretical and the
actual wind speed

Monthly One year

[44] 2009 South coast of British
Columbia, Canada

Generalized
Pareto

distribution
MLM Test the validity NA NA

Our Study 2022 Jordan Normal and
Weibull

AI and
machine

learning (ML)

Max ETotal =
(1− ξ)×
(Eir + Ero)

Daily
From 1 October

2021 to 30
September

2022

The importance of the PDF is summarized by being able to make a description and
prediction for the probability of a certain event. Each PDF carries its own parameters,
and the right selection of these parameters will be reflected in a proper application. The
normal PDF depicts one of the most common PDFs that is commonly used in estimating
probability [49]. This PDF is represented by two main parameters, µ, which is the mean
value that describes the central tendency, and σ, which is the standard deviation that
describes how the probability values are dispersed around the central point. [50]. Moreover,
the Weibull PDF is also considered an accurate PDF that is used in wind variation estimation.
This PDF is represented by two main parameters, K, which is the shape factor, and C, which
is the scaling factor [51].

The main contribution of this study compared to other studies in the same field of
research can be summarized by the following:

• This study estimates the wind energy and extracted energy of a wind turbine using a
new distribution function (normal) that has not regularly been used in the literature.

• The estimation method of this study is performed using several artificial intelligence
methods with the aid of machine learning classifiers that have not previously been
used in other studies.

However, wind speed can be measured by several apparatuses, such as the cup
anemometer, which is represented in Figure 4a [52]; this technology responds promptly
to wind movement, but this device cannot stop immediately once the wind stops [53].
Moreover, another technology that is used in wind speed measuring is the propeller
anemometer, which is represented in Figure 4b [52], while sonic anemometers are used for
both wind speed and direction measurement, which is represented in Figure 4c [54].
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Figure 4. Technologies that are used in wind speed measurement. (a) Cup anemometer; (b) propeller
anemometers; and (c) sonic anemometer.

2. Methodology

Innumerable choices for studying the extractable energy from wind are available nowa-
days; the chosen method strongly depends on statistical science. The general methodology
adopted to accomplish this study is clarified and depicted in Figure 5.

Figure 5. Flowchart steps of the intended study.

2.1. Data Collection for the Whole Site

An abundant number of marvelous research were conducted to achieve the goal of
developing some reliable and sophisticated methods for wind forecasting. Each method
has a tolerance percentage and does not match the actual wind measurements strictly.

In other words, the only essence disparity that differs vividly from one strategy to
another is the uneven level of rigor. However, these methods are clarified in Figure 6 [55].
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Figure 6. Forecasting methods for wind measurements.

The physical approaches use several types of physical information, including, to name
a few, wind conditions, especially at the turbine hub’s height, the power curve of the wind
turbine, data from the meteorological departments, and the weather conditions, by and
large. Regardless, these physical data are borne in mind to estimate wind readings.

In juxtaposition, statistical methods can forecast either wind speed power probability
or wind speed/power value. Both are commonly obtained based on statistical analyses of
time series, which depend on past observed wind data.

The third astounding method is the hybrid approach, which is a combination of
several methods, such as physical methods in conjunction with statistical methods. Finally,
the fourth method is other new techniques such as entropy-based training, ensemble
predictions, wavelet transform, fuzzy logic, and spatial correlation.

In this paper, the daily wind speed data have been collected from RETScreen software
for nine sites in Jordan, which are clarified in Table 2 with their corresponding details. The
raw data period was for one complete year, starting from 1 October 2021 and going to
30 September 2022. All of these data were recorded at a 10 m height.

Table 2. The latitude, longitude, and elevation of the proposed sites [56].

Site Latitude North (◦) Longitude East (◦) Elevation (m)

Al-Badieh 31.88 36.90 658
Amman 31.59 35.59 767
Aqaba 29.52 35.00 6
Bayir 30.76 36.68 831
Irbid 32.33 35.51 618

Irwaished 32.30 38.12 686
Ma’an 30.10 35.47 1069
Mafraq 32.22 36.15 686

Queen Alia Airport 31.43 35.59 722

2.2. Data Analysis and Statistical Analysis

Currently, modern turbines have a hub height of around 100 m, while the wind data
were measured at 10 m, as mentioned afore. Therefore, the first step in wind data analysis is
carried out by making a conversion for the obtained wind speed at 10 m into corresponding
data at 100 m. The reflected wind speed at 100 m is obtained by applying Equation (1) [57].

V2 = V1

(
h2

h1

)α

(1)

where V2 represents the desired wind speed at the extrapolated height, V1 represents the
wind speed at the reference level, h2 represents the desired height, and h1 represents the
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reference height. Finally, the symbol α represents the wind shear exponent (WSE) that
discerns and describes the terrain situation of the site. Table 3 clarifies several scenarios for
the factor of the proposed sites. The following subsections clarify how the corrected wind
speed was analyzed statistically.

Table 3. Details regarding the WSE [58].

Type of Terrain The Corresponding Value of α

Large cities with tall buildings 0.4
Small towns with trees and shrubs 0.3
Wooded countryside, many trees 0.25
High crops, hedges, and shrubs 60.20

Tall grass on level ground 0.15
Smooth, hard ground, calm water 0.1

2.2.1. Selecting the Candidate PDFs

The current trend is to use the probability density function (PDF) approach to assess
wind energy resources. The Weibull approach is the most ubiquitous PDF that has been
used in most recent studies in wind assessment. This research sheds light on another PDF,
the well-known normal PDF, to assess wind in several sites in Jordan. The mathematical
representations for the proposed PDFs are clarified in the following points [59].

(A). Weibull

As stated before, the wind speed probability for a certain region is often expressed
and represented by the Weibull PDF. Based on the following mathematical representation,
it can be observed that this PDF has two main parameters, which are the shape and the
scale factor.

fW(v) =
k
c

(v
c

)k−1
e−(

v
c )

k
(2)

(B). Normal

The second proposed PDF in this paper is the normal PDF, which is also known as
the Gaussian distribution. This distribution function is called the Gaussian distribution by
physicists and the bell curve by social scientists [60]. The following mathematical formula
shows the PDF for the normal function:

fN(v) =
1√

2πσ2
× e

−(v−µ)2

2σ2 (3)

where σ and µ are the standard deviation and the mean wind speed.
Analyses of wind speed can be made by the PDFs. Thus, the more precise the selected

parameters, the more accurate and more satisfactory the outcomes. In other words, the
estimation of the parameters is the springboard, and it is considered a critical phase that
plays an essential role in achieving the desired and accurate outcomes. The performance of
the PDFs relies on several factors, such as the number of data, the evaluation criteria, and
the period of data measuring.

2.2.2. Set an Objective Function

A power curve of a wind turbine is defined as a visual representation of the generated
electrical output power for each corresponding wind speed. The lofty goal of capturing and
exploiting the wind is to produce electrical power. Therefore, it is necessary to link these
two parameters (electrical power and intermittent wind speed) in order to comprehend
how they affect each other. The power curve of wind turbines that depicts the relationship
between the electrical power output and the wind speed is known as the P-V curve, and
each wind turbine model has its own P-V curve. This curve is essential for many purposes,
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chiefly for project conducting and planning, monitoring the turbines, and detecting the
likelihood of the maloperation of turbines [61].

Producing electrical power from wind energy at the sites under investigation relies on
immense factors, including the mean wind speed and wind turbine speed characteristics,
which involve the cut-in speed, rated speed, and cut-out speed. The available energy in the
wind varies with the variation in wind speed. Hence, understanding the P-V characteristics
of wind is essential in wind assessment. Figure 7 clarifies a typical representation of the
ideal P-V curve.

Figure 7. P-V curve of an ideal wind turbine.

It is apparent in Figure 7 that, in the region before the cut-in speed, the output power
from the wind turbine is zero since the cut-in speed is quite low and cannot produce
enough power to overbear the friction of the wind turbine. However, even if the friction
of the wind turbine has been overcome and a rotation of the generator is observed, the
corresponding generated electrical power may be slight and not sufficient to offset the
required power by the generator field windings. Per contra, once the wind speed increases
above the cut-in speed, the resultant output power rapidly increases until it reaches a
critical point where the output power flattens out. At this point, the turbine is reaching
its upper limit of generation, which is known as the rated output power. After a certain
threshold value, which is around 25 m/s, the next wind speed is known as the cut-out
speed, where the turbine initiates shut-down mode for protection purposes since the blades
are at risk because of the large applied force. Hence, based on the previous clarification,
the symbols vi, vr, vo, PR refer to cut-in speed, rated wind speed, cut-out speed, and rated
power, respectively. However, the most important parameter of this curve is Q (v), which
describes the nonlinear region.

The enclave region between the cut-in speed and the rated wind speed (nonlinear
region) can be represented using several mathematical formulas. Therefore, the output
power from a wind turbine can be determined depending on the interval of wind speed, as
illustrated below [62]:

P(v) =





0, v > vo or v < vi
Q(v), vi < v < vr (enclave region)

PR, vr < v < vo

(4)
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In this research, four representations of Q(v) have been examined, which are [63]:

Q1(v) = PR

(
v2 − v2

i
v2

r − v2
i

)
(5)

Q2(v) = PR

(
1− e−(

v
β )

5
)

, β = 0.70335986vr − 0.00049995 (6)

Q3(v) =
PR

1 + e−(bv−7.5)
, b = 5.822e−0.3398vr + 1.79e−0.0548vr (7)

Q4(v) = PR

(
v3

v3
r

)
(8)

In this paper, the objective function is to maximize the energy captured by wind
by the proper selection of the proposed PDFs’ parameters as illustrated in the following
equations [64]:

Maximize : ETotal = (1− ξ)× (Eir + Ero) (9)

Subject to:

Minimise Error =
√
(PO − PD)

2 (10)

where:
ETotal: Total energy that can be generated by the wind turbine (KWh/m2);
ξ: The overall loss percentage of the turbine;
T: Time period in an hour;
Eir: Generated energy by the wind turbine in the region between the cut-in speed and

rated speed in KWh/m2.

Eir = T
∫ vr

vi

Q(v)× f (v)dv (11)

Ero: Generated energy by the wind turbine in the region from the rated speed to the
cut-out speed in KWh/m2.

Ero = TPR

∫ vo

vr
f (v)dv (12)

PO: The probability based on the observations (real data from RETScreen);
PD: The probability based on the proposed PDFs.
In general, the energy that is available from wind resources can be determined based

on the following expression:

ED =
∫ ∞

0
WPD× f (v)dv =

∫ ∞

0

1
2
× ρa ×V3 × f (v) dv (13)

where:
ED : The available energy in the regime;
WPD : The wind power density;
f (v) : The used PDF;
A : The effective area of the disk;
ρa : The air density;
V : The velocity of the wind.
The attention in this research goes to tracking the maximum energy by varying the

two parameters of the normal and Weibull PDFs such that the estimated probabilities must
be close to the observed probabilities for each wind speed class.
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2.2.3. Estimating and Predicting the Parameters by Artificial Intelligence Techniques in
Conjunction with Neural Fuzzy Methods

In the design stage of any project implementation, optimization is an essential tool by
which the performance of the overall system can be enhanced effectively. Furthermore, this
tool is used in the whole field and is not limited to only one field due to the diversity of the
dilemma nowadays. The intriguing ideas of the optimization algorithms were put forth
depending on the behavior of things around us.

The concentration of this research is oriented toward estimating the parameters of the
various distribution functions by optimization algorithms. Nowadays, artificial intelligence
(AI) has become a trend due to its features. This technique programs the machine to be
capable of performing complex tasks. Further, it works in various fields, which makes it
popular these days [65].

In this study, three distinct algorithms are employed to estimate the parameters of the
proposed PDFs. The first one is the genetic algorithm (GA), the second one is the bacterial
foraging optimization algorithm (BFOA), and the third one is the simulated annealing (SA)
algorithm. It is no wonder that artificial intelligence (AI) techniques are more recommended
than numerical approaches due to their high level of accuracy and flexibility.

In this paper, the initial population of each parameter started from 0 to 100 for each
PDF, with a step of 0.05 for each iteration. The goal of the AI was to find the best parameters
that made the estimated wind speed as close as possible to the actual wind speed. Thus,
the stopping criteria were based on finding the most accurate parameters by evaluating the
holistic possibilities of the initial population.

(A). Genetic Algorithm

The GA mimics the biological evolution natural process by selecting fit individuals for
reproduction. It works with specific population sizes (individuals) that are evolving with
time. The principle of this algorithm is inspired by human beings based on the three main
operators: selection, crossover, and mutation. Figure 7 shows the implementation steps of
GA based on [66].

Based on Figure 8, the principle of this algorithm can be simply explained as follows:
the population of a certain number of chromosomes is generated randomly. The next step
is to find the corresponding fitness value of each chromosome. Afterward, a single-point
crossover is applied for the two chromosomes (two inputs of the optimization problem) to
generate offspring. The applied crossover in this thesis is the partially matched crossover
(PMX) method since it is the most commonly used crossover. The next step is to apply the
mutation operation to the obtained offspring to generate a new population. Thereafter,
the previous process (selection, crossover, and mutation) is applied again until a new
population is obtained [67].

(B). Bacterial Foraging Optimization Algorithm

BFOA is considered an optimization approach that was developed depending on the
base of Escherichia Coli (E. Coil) bacteria’s foraging strategy. These bacteria live inside the
human gut. The term “foraging” refers to the animals’ behavior for ingesting, handling, or
locating their food. In general, E. Coil bacteria have flagella, which enable the bacteria to
rotate or move in a locomotion manner. For clarification, with the aid of the flagella, the
bacteria may move in the same direction or change its orientation. The ultimate two goals
of this bacteria are to find a place with a high level of nutrients and mitigate the noxious
areas by moving in a certain motion. Hence, as a summary, when the bacteria reach a
place with a higher level of nutrients compared with the previous place, the movement is
described as “swimming” or “running”. Otherwise, it will tumble. Figure 9a,b clarifies
the previous discussion. In Figure 9a, the bacteria move from location L1 into location L2
since the nutrient level in L2 is higher than in L1. It can be observed that the bacteria move
forward within the same path, “swim”. Similarly, the bacteria move from L2 into L3, which
indicates that L3 has more nutrient levels compared with L2. This process is repeated until
the phase-out of the bacteria’s life.
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Figure 8. Flowchart of GA.

Figure 9. Bacteria movement based on the nutrient level in each location where (a) represents
“swimming” case, and (b) represents “swimming and tumbling” case.
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The second mentioned case is clarified in Figure 9b. This case may include swimming
beside tumbling. In this case, the initial location is L1; the bacteria try to find another
location, and the nutrient levels of the two locations are compared. If the nutrient level of
the new location is higher, the bacteria will go toward (swimming) this area; otherwise,
it will search for another location with a higher nutrient level by changing its trajectory
(tumbling). Since the nutrient level at L2 is lower than that of L1, the bacteria will not
continue moving with the same path but will move in another path until reaching L3, where
the nutrient level is higher in comparison with the previous location. Another test for
nutrient level will be conducted; if at L3 the nutrient level is lower than that of L2, the
bacteria will tumble and move into another location, L4. If the nutrient level at L4 is higher
than that of L3, the bacteria will swim in the same path of the previous movement until a
new location, L5, is reached [68]. The flowchart of this algorithm is clarified in Figure 10,
where Nd refers to the number of elimination-dispersal events, Nre refers to the number of
reproduction steps, and Nc refers to the number of chemotactic steps [69].

Figure 10. Flowchart of BFOA.
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(C). Simulated Annealing Algorithm

The idea of the simulated annealing (SA) algorithm mimics the metal reshaping
process, where a heated metal is reshaped from one structure to another after being cold.
An initial solution is set randomly and then based on this procedure, which is clarified in
Figure 11 [70]. The control parameter in this algorithm is the temperature, which controls
the number of iterations of the process [71]. In the end, the best fit which meets the objective
function will be selected. Based on Figure 11, it can be noticed that SA has a sequence of
moving from the initial solution toward the next solution, where in some cases, the worst
solution may be accepted based on a probability factor.

Figure 11. Flowchart of SA.

(D). Adaptive Neural Fuzzy Inference System (ANFIS)

Fuzzy logic is a worthwhile tool in conducting complex tasks, especially when it
is difficult to obtain a mathematical model. In addition, fuzzy logic may be used in
prediction problems for quality amelioration purposes. In contrast, neural networks (NNs)
are networks that can link the input with the output data in a certain manner, where each
input is assigned a certain value of weight. Subsequently, the output is determined based
on the assigned weights [72].
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However, in this paper, a combination of these two techniques is used, where ANFIS
is classified as a hybrid AI model that coalesces and combines the intrinsic features of fuzzy
logic in the parallel processing of a NN [72]. The architecture appears from the tool itself
for the proposed problem, which has two inputs and a single output. The flowchart of
ANFIS is presented in Figures 12 and 13 [73].

Figure 12. Architecture of ANFIS.

Figure 13. Flowchart of ANFIS.
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ANFIS became a technique that can be used for predicting purposes, as it can make an
input-output mapping and accordingly design an input-output prediction by the hybrid
learning process. In general, ANFIS is commonly used to simulate nonlinear systems
providing intrinsic and reliable outcomes [74].

2.2.4. Selecting the Most Accurate Approach Based on the Indicators (RMSE and MAE)

Estimating the parameters of the proposed PDFs is a non-trivial task, and the most
challenging task is to opt for and decide which PDF model is the best. Based on the previ-
ously mentioned two methods of selecting the parameters (either by artificial intelligence
techniques or by prediction), once the corresponding parameters of each PDF are selected,
the next step is assigned to choose the most precise PDF. This can be accomplished with
the aid of some goodness-of-fit (GOF) indicators, such as RMSE and MAE. Incontrovertibly,
the lower the fitness value, the better the proposed model fit. Each proposed PDF is a
candidate to be accepted if its parameters achieve a fitness value that is relatively small.

Several options for GOF tests are offered and available nowadays; in this study, RMSE
and MAE are the proposed indicators since these two indicators are the most frequently
employed in evaluating accuracy. The mathematical formulas for these indicators are
illustrated in the following points [75].

(A). RMSE:

The root-mean-square error (RMSE) between X datasets (the observed probability)
and Y datasets (the estimated probability) is defined as a measurement of the difference
between their values and can be expressed as:

RMSE =

√√√√1
k

k

∑
i=1

(Xi −Yi)
2 (14)

This indicator is commonly used to assess how good the predicted probability is over
the observed probability, where the smaller value of RMSE is, the better the accuracy of the
proposed model, indicating that the selected parameters achieve the best results.

(B). Mean Absolute Error (MAE)

This test determines the absolute error between the observed value and the corre-
sponding estimated value. This performance indicator looks similar to the RMSE since
the lower the MAE, the better the outcomes obtained are. Its mathematical formula is
represented below:

MAE =
1
n

n

∑
i=1
|yi − xi| (15)

2.2.5. Machine Learning Classification and Prediction Based on the Best PDF

Machine learning (ML) is a description of a computer that has been programmed and
trained based on a certain data pattern, thus becoming able to predict the situation for
newly inserted data. This term (ML) is divided into two major categories: classification
(supervised learning) and clustering (unsupervised learning). In classification, two phases
are required: the training phase and the testing phase. In the training phase, the inserted
data should be divided into a certain number of categories, where each category carries a
particular percentage from the overall data that have the same classification. Commonly,
the first columns in the intended trained data represent the input(s), while the last column
represents how each input(s) has been classified. Within the same phase and based on
several built-in classifier algorithms, the machine will be able to understand and learn the
data. Accordingly, by generating a learning model while in the data testing phase, the data
is classified based on the generated trained model in addition to the classifier model.

On the other hand, in clustering, the input data are grouped based on their similarities
without any trained model. The purpose of using ML in this study is to be able to predict
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the difference (error) between the actual observed wind speed data and the estimated wind
speed for the best PDF, which will be decided based on the performance indicators, as
mentioned before. Here, a small error indicates that the selected parameters are good, while
a medium error indicates that the selected parameters are not good enough, and finally, a
Large error indicates that the selected parameters achieve a large difference between the
observed and the estimated value.

In this paper, 24 classification algorithms have been used to run the data. These
algorithms have been summarized in the last section of this paper. The significance of using
ML in this study came from the necessity of the more precise prediction of the parameters
since the remaining phases of energy estimation depend on the selected parameters.

3. Results and Discussion

The two parameters of the normal PDF, µ and σ, were selected intelligently by GA,
BFOA, SA, and the neuro-fuzzy method. The corresponding energy regime in Kwh/year
was determined accordingly based on each method for all sites, as clarified in Table 4. These
parameters are reflected concurrently with the observed actual data of wind speed for all
sites, as represented in Figure 14.

Table 4. Outcomes for the normal PDF parameters by GA, BFOA, SA, and ANFIS along with the
energy regime per year.

GA BFOA SA Fuzzy Neural Energy Regime kWh/m2

(Year)

Site µ σ µ σ µ σ µ σ GA BFOA SA ANFIS

Al-Badieh 4.5 1.44 4.31 1.41 4.35 1.41 4.4 1.4 641.207 570.84 581.838 595.31
Amman 4.05 1.07 4.02 1.09 3.95 1.14 4.1 1.1 431.509 425.21 413.435 449.1
Aqaba 3.75 1.09 3.81 1.09 3.85 1.1 3.75 1.1 355.470 370.41 380.653 355.47
Bayir 4.45 1.59 4.45 1.66 4.45 1.66 4.4 1.61 655.642 669.977 669.977 641.37
Irbid 2.7 0.591 2.36 0.62 2.35 0.59 2.5 0.63 120.85 85.217 82.893 99.958

Irwaished 4.45 1.56 3.66 1.18 3.65 1.18 4 1.18 648.476 345.16 343.249 433.64
Maan 4 1.09 3.91 1.06 3.9 1.05 4.1 1.12 420.761 390.83 387.428 452.4

Mafraq 3.65 1.02 3.75 1.02 3.75 1.02 3.7 1 322.68 346.414 346.414 331.42
Queen Alia airport 4.5 1.51 4.16 1.48 4.2 1.47 4.3 1.48 655.699 533.69 543.012 579.02

Similarly, the parameters of the Weibull PDF, K and C, were assigned by the same
approaches of GA, BFOA, SA, and the neuro-fuzzy method. The corresponding energy
regime in Kwh/year has been determined accordingly based on each method for all sites,
as clarified in Table 5. These parameters are reflected in conjunction with the observed
actual data of wind speed for all sites, as represented in Figure 15.

Table 5. Outcomes for the Weibull PDF parameters by GA, BFOA, SA, and ANFIS along with the
energy regime per year.

GA BFOA SA Fuzzy Neural Energy Regime kWh/m2

(Year)

Site K C K C K C K C GA BFOA SA ANFIS

Al-Badieh 3.65 4.6 3.5 4.8 3.5 4.8 3.7 4.5 489.56 562.41 562.41 456.81
Amman 3.25 4.8 3.2599 4.6326 3.2 4.6 3 4.9 575.51 516.84 509.29 631.25
Aqaba 3.2 4.35 3.9 4.25 3.9 4.25 3.3 4.1 430.68 380.41 380.41 356.82
Bayir 2.95 5.55 3.0571 4.993 3.1 5 2.9 5.3 923.93 662.69 661.83 810.84
Irbid 4.55 2.35 4.4 2.6 4.4 2.6 4.2 2.4 62.778 85.375 85.375 67.603

Irwaished 3.3 4.1 3.5064 4.031 3.55 4.05 3.1 4.2 356.82 332.93 336.51 392.27
Maan 4.3 4.1 4.1651 4.1869 4.2 4.2 4.4 4 335.85 359.41 362.31 310.88

Mafraq 4.05 3.95 4.25 4.1 4.25 4.1 4 3.85 303.23 336.43 336.43 281.41
Queen Alia airport 3.55 4.6 3.25 4.7 3.25 4.7 3.6 4.6 493.07 540.28 540.28 491.26
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Figure 14. Outcomes based on Normal PDF.

Figure 15. Outcomes based on Weibull PDF.

In the end, the extractable energy from wind has been determined based on the four
listed P-V models for both the normal and Weibull PDFs. The outcomes are summarized in
Tables 6 and 7, respectively, assuming the same wind turbine brand parameters for a fair
comparison.
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Table 6. Extractable energy (MWh per year) based on Normal PDF.

Extractable Energy Based on
Q1 Model

Extractable Energy Based on
Q2 Model

Extractable Energy Based on
Q3 Model

Extractable Energy Based on
Q4 Model

Site GA BFOA SA ANFIS GA BFOA SA ANFIS GA BFOA SA ANFIS GA BFOA SA ANFIS

Al-Badieh 2299 1938 1993 2056 2453 2044 2105 2169 3087 2572 2648 2728 2053 1779 1822 1875
Amman 1126 1106 1074 1222 1162 1141 1111 1256 1459 1434 1396 1577 1209 1185 1141 1283
Aqaba 795 856 904 795 834 894 942 834 1051 1126 1186 1051 902 961 1003 902
Bayir 2403 2486 2486 2337 2618 2733 2733 2546 3290 3437 3437 3203 2100 2162 2162 2053
Irbid 6 1 1 4 13 3 2 8 17 5 3 11 20 5 3 12

Irwaished 2361 794 787 1188 2550 831 823 1226 3220 1046 1037 1541 2080 877 870 1227
Maan 1087 934 911 1248 1120 972 950 1283 1410 1223 1196 1611 1160 1040 1024 1298

Mafraq 624 721 721 646 668 721 721 691 845 763 763 874 758 853 853 787
Queen Alia

Airport 2386 1777 1819 1999 2573 1883 1926 2129 2573 2370 2423 2679 3238 1638 1673 1812

Table 7. Extractable energy (MWh per year) based on Weibull PDF.

Extractable Energy Based on
Q1 Model

Extractable Energy based on
Q2 Model

Extractable Energy Based on
Q3 Model

Extractable Energy Based on
Q4 Model

Site GA BFOA SA ANFIS GA BFOA SA ANFIS GA BFOA SA ANFIS GA BFOA SA ANFIS

Al-Badieh 1503 1899 1899 1328 1542 1980 1980 1358 1935 2490 2490 1703 1463 1749 1749 1331
Amman 1988 1686 1654 2292 2109 1766 1736 2504 2655 2222 2185 3153 1798 1571 1542 2009
Aqaba 1257 914 914 879 1304 943 943 910 1639 1186 1186 1145 1234 1016 1016 937
Bayir 3731 2446 2439 3184 4355 2682 2666 3648 5434 3377 3357 4568 3103 2129 2126 2682
Irbid 0.002 0.3 0.3 0.04 0.01 1 1 0.1 0.01 1 1 0.2 0.01 1 1 0.2

Irwaished 879 736 746 1081 910 768 779 1123 1145 967 980 1412 937 832 845 1085
Maan 651 780 790 525 697 816 826 0579 881 1029 1041 737 816 921 933 704

Mafraq 530 659 659 442 576 703 703 490 731 890 890 624 685 820 820 595
Queen Alia

Airport 1532 1808 1808 1518 1578 1903 1903 1559 1981 2395 2395 1957 1477 1662 1662 1470

3.1. Assessment of the Proposed Approaches

An assessment of the proposed approaches was carried out based on the GOF by two
performance indicators (RMSE, MAE), as clarified in Table 8, to ascertain the accuracy
of the selected parameters. The goal of this step was to rank the selectivity level of each
approach depending on the minimal difference (error) between the observed data and the
foreshadowed data. Hence, based on Table 8, it can be perceived that BFOA and SA are
the most accurate and predominant approaches in selecting the parameters in both the
normal and Weibull PDFs, with a slight ignorable difference between them compared with
their counterparts. In addition, based on the same table, it can be noticed that the normal
PDF gives more accurate and precise estimated outcomes compared with the Weibull PDF.
Therefore, the classification of classes was conducted based on the normal PDF. Accordingly,
based on the outcomes that were obtained from this study, the worthiest regions in Jordan
that are rich in wind resources, headed by Bayir and wrapped up by Irbid, are arranged in
Figure 16 based on the BFOA and SA algorithms.

Table 8. Comparison between normal and Weibull PDFs based on several performance indicators for
the four methods of parameter selection.

RMSE MAE
GA BFOA SA ANFIS GA BFOA SA ANFIA

Sites G
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Al-Badieh 2.2154 2.0480 1.6860 1.8402 1.7127 1.8402 1.7438 2.5164 1.4284 1.6278 1.1883 1.2964 1.1829 1.2964 1.2329 1.9336
Amman 3.1027 3.6164 2.8906 3.1293 2.5751 3.1179 3.1258 4.0767 1.9644 2.2439 1.8973 2.1273 1.9080 2.1301 2.1746 5.6719
Aqaba 1.9567 3.7269 1.4537 1.5499 1.3942 1.5499 2.7570 3.5467 1.4130 2.8002 0.9072 1.1287 0.9028 1.1287 1.4130 2.9174
Bayir 1.6636 3.0264 1.6757 1.4336 1.6757 1.4242 1.6422 2.2053 1.3706 2.3625 1.3043 1.0807 1.3043 1.0758 1.3435 1.7186
Irbid 9.4640 6.7671 0.8988 0.5492 1.0263 0.5492 3.6928 5.9630 6.1133 4.5869 0.7881 0.5072 0.9501 0.5072 2.6720 4.6240

Irwaished 6.3403 2.6331 2.2236 2.4685 2.2426 2.5946 3.5435 3.0769 4.4746 2.0076 1.6651 1.7918 1.6686 1.7943 2.8742 2.3617
Maan 3.0444 2.6829 2.9661 2.6439 2.5240 2.6300 3.4508 3.2724 2.0540 2.0683 1.7651 1.9797 1.7627 1.9842 2.5257 2.5927

Mafraq 3.7953 4.2286 4.0225 4.6509 4.0225 4.6509 3.9485 4.3644 2.9061 3.3184 2.5749 2.9943 2.5749 2.9943 2.8589 3.6309
Queen Alia Airport 2.2031 1.7485 1.4870 1.4602 1.4295 1.4602 1.5079 1.8163 1.6565 1.2139 1.0363 0.9552 1.0471 0.9552 1.2436 1.2702
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Figure 16. The ranked sites in Jordan based on the availability of wind.

The bottom line of Table 8 is to emphasize that the Weibull PDF is not always the most
accurate PDF but rather the opposite in this study, as it was found that the normal PDF
overwhelmed the Weibull PDF.

3.2. Machine Learning Classification Outcomes

Several studies used ML in several fields, for instance, [76], in the diagnosis of the crime
rate against women by using k-fold cross-validation. In [77], ML was used to conduct the
sensitivity analysis of k-fold cross-validation, especially in error prediction and estimation.
Another study conducted by [78] stated that ML is an effective and powerful tool, notably
when massive amounts of data are collected.

In this study, a novel approach is proposed to classify and predict wind estimation
by a MATLAB environment-classification learner application based on the datasets that
were gathered from RETScreen, analyzed by the SPSS environment, and finally tested by
AI codes. Hence, a huge dataset has been investigated to evaluate the performance of the
normal PDF, where the nominated approaches try to find the best parameters of µ and σ

that attain the least difference (error) between the observed and estimated probabilities
for each site. The sample size comprises 3000 species for each candidate site; these 3000
were divided into three main categories. Thus, three distinct classifications were assigned,
low error, medium error, and large error, based on each case of µ and σ and the resultant
error. Each classifier has its accuracy percentage, cost misclassification, and training time.
Therefore, the trade-off between them was based on the accuracy percentage in the first
level, then on the training time if several classifiers gave the same accuracy percentage.

The validation process of the inserted data can be made by three options, cross-
validation (x-validation), holdout validation, and no validation. Each approach has its
features, where the cross-validation approach mitigates the situation of overfitting by
dividing the whole raw data into a certain number of folds, while holdout validation is
recommended to be used in large data sets. Finally, with no validation option, there is no
protection against overfitting. In this study, the k-fold cross-validation method was used
to validate the behavior of the generated learned model, where a certain number of folds
equal to 5 was set. In other words, the inserted data was divided into five groups; one
group was used for testing in the testing phase, while the remaining four groups were used
for learning purposes in the training phase, as clarified in Figure 17. Generally, the k-fold
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cross-validation method has five main steps to be implemented, which are summarized in
Figure 18. The principle of k-fold cross-validation can be explained by splitting the data
into k groups, where each group carries an equal data sample weight; afterward, each
group will be used as a test group for one time and as a training group for k-1 times. This
validation approach is very common since it is easy to understand [76].

Figure 17. Five-fold cross-validation demonstration.

Figure 18. Steps of applying K-fold validation.
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In general, the corresponding performance of any classifier is represented by the
confusion matrix from an accuracy point of view, as clarified in Figure 19 in terms of
true-positive rate (TPR) and false-positive rate (FPR). In a scatter plot, the performance of
the classifier is represented in another manner, where the dot sign represents the correct
prediction, and the cross sign indicates an incorrect prediction, as shown in Figure 20.

Figure 19. Obtained confusion matrices for all sites based on the best and the worst classifier.

Figure 20. Scatter plot shows that the uncorrected prediction occurs on the edge of two classes when
the accuracy is high (90%).

A confusion matrix is a square matrix that is divided into n× n, where n is the number
of classes. In this paper, low error, medium error, and large error were the three classes.
Thus, the resulting confusion matrix was 3 × 3. However, it can be observed that the
percentage of prediction for each class in this matrix is contained inside a square, where
the reflection of this square on the x-axis represents how this classifier classifies this class,
while the reflection on the y-axis represents the true classification. The diagonal line of each
matrix represents the accurate predictions, and the out-of-diagonal squares are the incorrect
predictions. Regardless, some other classifier algorithms showed a good performance,
where the accuracy was close to 100%. Interestingly, it was observed that for the classifiers
with 90% accuracy, the misclassified points were those which were located at the boundary

192



Sustainability 2023, 15, 3270

(edge) between two classes, as represented in Figure 20. Surprisingly, another observation
that is in dire need to be mentioned is that in ML classification, the data sample for each
class affects the accuracy. For instance, if a certain class contains merely one row of data
(one case), while the other classes have a relatively higher sample of data, the prediction of
this class will not be detected easily or maybe at all. For example, there is the best selection
of µ and σ that achieves the best fit for each site. Hence, when a new class was created and
named “Best”, this class was not predicted since it contained merely one case, while the
other classes contained around 500 cases or more.

Figure 20 shows that there is a certain range of µ and σ that commences and achieves
a small error between the estimated and observed data. Once the values of µ and σ exceed
this range, another region representing a medium error will be entered. Finally, when the
range of µ and σ exceeds the range of medium error, the last region will be entered, which
represents a large error.

Accuracy =

(
100− round

total misclassi f ication cost
Overall number o f inserted data

)
% (16)

The overall number of inserted data refers to the number of observations that were in-
serted to be trained and tested, or in other words, the same as the sample size. However, the
previous table can be summarized by two main figures, as represented in Figures 21 and 22.
Based on Table 9, the performance of 24 classifier algorithms was evaluated. Hence, from
the accuracy and training time points of view, it was deduced that the medium tree classifier
showed the most accurate and swiftest results for all sites, with an accuracy percentage of
100% and with minimal training time compared with the other classifier algorithms. It can
predict the error level based on the given values of µ and σ. Therefore, the medium tree
classifier is a second-to-none trustworthy classifier since it can effectively predict the error.
On the other hand, the ensemble-boosted trees classifier shows poor and awful performance
in predicting the error level based on the values of µ and σ of each site. Figure 19 shows the
confusion matrices based on these two classifier algorithms, where for all sites, the same
matrices were obtained for these two classifiers. These classifier algorithms were trained
and tested automatically by the classification learner application in MATLAB software, and
the prediction process was carried out by exporting the trained model into a workspace.

In the end, the usage of ML in this paper is justified since it was concluded based
on Equations (11) and (12), which clarify how to calculate wind energy, that the energy
calculation of wind depends on the turbine specifications, which are constant, in addition
to the parameters of the proposed PDF. Hence, the precise selection of the parameter gives
actual values for the wind energy regime and for the extractable energy from wind turbines.
Otherwise, if the selection of the parameters is not accurate enough, all corresponding
calculations cannot be trusted. Accordingly, the selection of these parameters is a critical
phase and must be carried out wisely.

Hence, it was necessary to predict and double-check if the chosen parameters attained
low error between the actual and the estimated wind speed values, and that was the role
of the ML in this paper based on the most accurate classifier, which was the medium
tree classifier.
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Figure 21. Comparison between all 24 classifiers for all locations from the training time point of view.

Figure 22. Comparison between all 24 classifiers for all locations from an accuracy point of view.
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4. Conclusions

This paper shed light on a PDF that is not regularly used in wind estimation, the
normal PDF, which overwhelmed the most commonly used PDF in wind estimation, the
Weibull PDF. The decision was made based on two performance indicators (RMSE and
MAE). The goal of using these PDFs was to estimate the extractable energy from wind in
nine sites in Jordan by the proper selection of the parameters of each PDF. The outcomes
showed that Bayir is the richest wind source site. Finally, this paper used machine learning
with 24 classifier algorithms for the purpose of predicting suitable parameters for each
site based on previously trained data based on the k-fold cross-validation method. It was
noticed that several classifier algorithms achieve an accuracy of 100%, which justifies the
comparison between them based on the training time point of view. The medium tree
classifier was the most accurate and swiftest classifier for all sites. On the contrary, the
ensemble-boosted trees classifier was the worst one, with the lowest accuracy for the nine
sites. Finally, it was observed that for the classifiers with accuracy in the range of 90%,
the misclassified points were those which are located at the boundary (edge) between
two classes.

Author Contributions: Methodology, H.H.D.; Formal analysis, H.H.D.; Investigation, A.A.-Q.;
Writing—draft, H.H.D.; Writing—review & editing, A.A.-Q.; Supervision, A.A.-Q.; Project adminis-
tration, A.A.-Q.; Funding acquisition, A.A.-Q. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request.

Acknowledgments: The authors would like to acknowledge Yarmouk University for their support
in this research study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al-Mhairat, B.; Al-Quraan, A. Assessment of Wind Energy Resources in Jordan Using Different Optimization Techniques. Processes

2022, 10, 105. [CrossRef]
2. Al-Quraan, A.; Al-Qaisi, M. Modelling, Design and Control of a Standalone Hybrid PV-Wind Micro-Grid System. Energies 2021,

14, 4849. [CrossRef]
3. Alrwashdeh, S.S. Energy sources assessment in Jordan. Results Eng. 2022, 13, 100329. [CrossRef]
4. Stephan, A.; Stephan, L. Achieving net zero life cycle primary energy and greenhouse gas emissions apartment buildings in a

Mediterranean climate. Applied Energy 2020, 280, 115932. [CrossRef]
5. Thormark, C. A low energy building in a life cycle—Its embodied energy, energy need for operation and recycling potential.

Build. Environ. 2002, 37, 429–435. [CrossRef]
6. Arvesen, A.; Hertwich, E.G. More caution is needed when using life cycle assessment to determine energy return on investment

(EROI). Energy Policy 2015, 76, 1–6. [CrossRef]
7. Sahu, O. Sustainable and clean treatment of industrial wastewater with microbial fuel cell. Results Eng. 2019, 4, 100053. [CrossRef]
8. Bull, S.R. Renewable energy today and tomorrow. Proc. IEEE 2001, 89, 1216–1226. [CrossRef]
9. Neupane, D.; Kafle, S.; Karki, K.R.; Kim, D.H.; Pradhan, P. Solar and wind energy potential assessment at provincial level in

Nepal: Geospatial and economic analysis. Renew. Energy 2022, 181, 278–291. [CrossRef]
10. Emblemsvåg, J. Wind energy is not sustainable when balanced by fossil energy. Appl. Energy 2022, 305, 117748. [CrossRef]
11. Wind Energy Project Analysis Clean Energy Project Analysis: Retscreen ®Engineering & Cases Textbook. Available online: https:

//unfccc.int/resource/cd_roms/na1/mitigation/Module_5/Module_5_1/b_tools/RETScreen/Manuals/Wind.pdf (accessed on
11 January 2023).

12. Imdadullah; Alamri, B.; Hossain, M.A.; Asghar, M.S.J. Electric Power Network Interconnection: A Review on Current Status,
Future Prospects and Research Direction. Electronics 2021, 10, 2179. [CrossRef]

13. Bitar, E.Y.; Rajagopal, R.; Khargonekar, P.P.; Poolla, K.; Varaiya, P. Bringing Wind Energy to Market. IEEE Trans. Power Syst. 2012,
27, 1225–1235. [CrossRef]

196



Sustainability 2023, 15, 3270

14. Saidur, R.; Rahim, N.A.; Islam, M.R.; Solangi, K.H. Environmental impact of wind energy. Renew. Sustain. Energy Rev. 2011, 15,
2423–2430. [CrossRef]

15. Billinton, R.; Gao, Y. Multistate Wind Energy Conversion System Models for Adequacy Assessment of Generating Systems
Incorporating Wind Energy. IEEE Trans. Energy Convers. 2008, 23, 163–170. [CrossRef]

16. Varun; Prakash, R.; Bhat, I.K. Energy, economics and environmental impacts of renewable energy systems. Renew. Sustain. Energy
Rev. 2009, 13, 2716–2721. [CrossRef]

17. Kikuchi, R. Adverse impacts of wind power generation on collision behaviour of birds and anti-predator behaviour of squirrels. J.
Nat. Conserv. 2008, 16, 44–55. [CrossRef]

18. Sadorsky, P. Wind energy for sustainable development: Driving factors and future outlook. J. Clean. Prod. 2021, 289, 125779.
[CrossRef]

19. Renewable Capacity Statistics 2019. Irena.org. 2019. Available online: https://www.irena.org/publications/2019/Mar/
Renewable-Capacity-Statistics-2019 (accessed on 11 January 2023).

20. Statistics Time Series. Available online: https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/
Statistics-Time-Series (accessed on 11 January 2023).

21. Siddique, S.; Wazir, R. A review of the wind power developments in Pakistan. Renew. Sustain. Energy Rev. 2016, 57, 351–361.
[CrossRef]

22. Alrwashdeh, S.S. Map of Jordan governorates wind distribution and mean power density. Int. J. Eng. Technol. 2018, 7, 1495.
[CrossRef]

23. Alsaad, M.A. Wind energy potential in selected areas in Jordan. Energy Convers. Manag. 2013, 65, 704–708. [CrossRef]
24. Dalabeeh, A.S.K. Techno-economic analysis of wind power generation for selected locations in Jordan. Renew. Energy 2017, 101,

1369–1378. [CrossRef]
25. Al-omary, M.; Kaltschmitt, M.; Becker, C. Electricity system in Jordan: Status & prospects. Renew. Sustain. Energy Rev. 2018, 81,

2398–2409. [CrossRef]
26. Ammari, H.D.; Al-Rwashdeh, S.S.; Al-Najideen, M.I. Evaluation of wind energy potential and electricity generation at five

locations in Jordan. Sustain. Cities Soc. 2015, 15, 135–143. [CrossRef]
27. Bataineh, K.M.; Dalalah, D. Assessment of wind energy potential for selected areas in Jordan. Renew. Energy 2013, 59, 75–81.

[CrossRef]
28. Feilat, E.A.; Azzam, S.; Al-Salaymeh, A. Impact of large PV and wind power plants on voltage and frequency stability of Jordan’s

national grid. Sustain. Cities Soc. 2018, 36, 257–271. [CrossRef]
29. National Electric Power Company (NEPCO), Annual Report; NEPCO: Amman, Jordan, 2021.
30. Online Store and Quote Request—The Wind Power—Wind Energy Market Intelligence. Available online: https://www.

thewindpower.net/store_en.php (accessed on 11 January 2023).
31. Filom, S.; Radfar, S.; Panahi, R. A Comparative Study of Different Wind Speed Distribution Models for Accurate Evaluation of

Onshore Wind Energy Potential: A Case Study on the Southern Coasts of Iran. Energy Fuel Technol. 2020. [CrossRef]
32. Mazzeo, D.; Oliveti, G.; Labonia, E. Estimation of wind speed probability density function using a mixture of two truncated

normal distributions. Renew. Energy 2018, 115, 1260–1280. [CrossRef]
33. Li, M.; Li, X. MEP-type distribution function: A better alternative to Weibull function for wind speed distributions. Renew. Energy

2005, 30, 1221–1240. [CrossRef]
34. Stathopoulos, T.; Alrawashdeh, H.; Al-Quraan, A.; Blocken, B.; Dilimulati, A.; Paraschivoiu, M.; Pilay, P. Urban wind energy:

Some views on potential and challenges. J. Wind. Eng. Ind. Aerodyn. 2018, 179, 146–157. [CrossRef]
35. Al-Masri, H.M.K.; Al-Quraan, A.; AbuElrub, A.; Ehsani, M. Optimal Coordination of Wind Power and Pumped Hydro Energy

Storage. Energies 2019, 12, 4387. [CrossRef]
36. Usta, I. An innovative estimation method regarding Weibull parameters for wind energy applications. Energy 2016, 106, 301–314.

[CrossRef]
37. Al-Quraan, A.; Al-Mahmodi, M.; Radaideh, A.; Al-Masri, H.M.K. Comparative study between measured and estimated wind

energy yield. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 2926–2939. [CrossRef]
38. Al-Quraan, A.; Stathopoulos, T.; Pillay, P. Comparison of wind tunnel and on site measurements for urban wind energy estimation

of potential yield. J. Wind. Eng. Ind. Aerodyn. 2016, 158, 1–10. [CrossRef]
39. Kevin, O.O.; Otumba, E.; David, A.A.; Matuya, J. Fitting Wind Speed to a Two Parameter Distribution Model Using Maximum

Likelihood Estimation Method. Int. J. Stat. Distrib. Appl. 2020, 6, 57. [CrossRef]
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Abstract: The electrical power need in the Kingdom of Saudi Arabia (KSA) has been escalating at
a rapid rate of about 7.5% annually. It has the third highest usage rate in the world as stated by
World Energy Council statistics. The rising energy demand has a significant impact on the country’s
economy since oil is considered to be its mainstay. Additionally, conventional energy production
using fossil fuels is a leading contributor to ecological degradation and adversely influences human
health. As a result, Saudi Arabia has taken significant steps to shift from its current status of total
reliance on oil to new frontiers of exploration of other kinds of renewable energies. Photovoltaic (PV)
solar energy is the most preferred renewable energy to be harnessed in Saudi Arabia. In accordance
with Vision 2030, the KSA intends to generate at least 9.5 GW of electricity from green sources, a
significant portion of which will come from solar PV power. Since the site peculiarities have a huge
influence on the project’s technical and economic dimensions, the scaled-up deployment of solar
projects calls for a judicious selection of PV sites. Undoubtedly, performing a thorough solar site
survey is the foremost step to establishing a financially viable and successful solar project. Multiple
criterion decision-making (MCDM) strategies can be very helpful in making judgments, given that
a number of criteria might influence PV site selection. The objective of this research is to provide
valuable information on various MCDM approaches that can be utilized to select optimal locations
for PV solar plants. A number of variables, including topography, air temperature, dust storms, solar
radiation, etc., are considered in this analysis. This study has combined various MCDM techniques in
order for the strengths of each method to outweigh the weaknesses of the others. It has been deduced
from this analysis that the most crucial factors in choosing PV sites are solar radiation and sunshine
hours. It has also been concluded that of the surveyed cities, Tabuk is the optimum location for the
construction of a solar power plant due to its high GHI value of 5992 W/m2/day and abundant
sunshine hours of 12.16 h/day. Additionally, the FAHP-VIKOR method is noted as being the most
rigorous, whereas Entropy-GRA is the simplest method.

Keywords: solar energy; renewable energy; multi criteria decision-making approaches; clean energy;
site selection

1. Introduction

The electricity usage in the Kingdom of Saudi Arabia (KSA) is expanding every
year, and it has the third-highest utilization rate worldwide as per World Energy Council
statistics [1]. In the last ten years or so, KSA’s demand for energy has been growing at a
rapid rate of about 7.5% annually [1]. One of the primary issues the power companies in
Saudi Arabia are dealing with is the rising energy demand, which leads to the burning of
more barrels of carbon-based fuel, which has an impact on the country’s economy since oil
is considered to be its mainstay. Furthermore, it is well-known that the use of fossil fuels
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in traditional energy generation contributes significantly to environmental deterioration
and has a detrimental effect on human health. Saudi Arabia has thus made tremendous
efforts to move away from its current state of complete reliance on oil and move toward
new horizons of exploration of other types of renewable energies.

Solar energy is one of the most prominent sustainable energy sources, which is rising
in popularity due to its many benefits, including its ability to reduce reliance on energy
sources, e.g., oil and gas [2,3]. In addition, solar energy is a dependable, unending, clean
alternative that is safe for the environment. Solar photovoltaic (PV) electricity is the most
popular green energy source in Saudi Arabia. Its location in the sun belt and favorable
spatial conditions make it one of the world’s top solar energy producers [4]. The KSA is
fortunate to have access to a wealth of solar energy resources. There are vast undeveloped
land areas that might be used to house solar projects, and Saudi Arabia’s average daily
global horizontal irradiance (GHI) receives between 5.7 and 6.7 kWh/m2 on average [5].
In accordance with Vision 2030, the KSA intends to generate 9.5 GW of electricity from
renewable sources, a significant portion of which will come from solar PV power [6].
Additionally, the cost of PV modules has decreased by an average of 70% over the past ten
years, mostly due to improvements in their efficiency [7]. The scaled-up deployment of
solar projects necessitates a precise evaluation and analysis of PV site selection. A thorough
solar site survey is the first step in ensuring a solar project is both affordable and efficient.

The location of a solar PV power plant is vital since the site’s attributes directly affect
the project’s technical and financial elements, and consequently, its viability [8]. The selec-
tion of the ideal solar energy site, which is crucial to their installation, is influenced by a
variety of variables. These factors should be addressed to obtain more energy while also
lowering startup and ongoing operating expenses [9]. These variables must be considered
in the first stages of solar energy installation to appropriately locate the plant. Considering
that a number of criteria might drive the choice of location, implementing multiple criteria
decision-making (MCDM) methodologies can greatly help in making judgments regarding
site selection for PV solar energy systems by taking important elements into considera-
tion [10]. Numerous investigations have been conducted in the literature in order to locate
solar power plants [11–14]. MCDM provides a potent decision-making method that may be
used in numerous applications, including the site selection for solar power projects [15–17].
Seven MCDM techniques were used by Villacreses et al. [18] to identify suitable locations
for PV solar farm installation. The analysis used nine variables, four constraints, and the
Analytic Hierarchy Process (AHP) approach to weigh the factors. The Pearson correlation
coefficient was used to analyze seven MCDM outcomes. Wang et al. [14] consolidated
three techniques, such as the fuzzy analytical hierarchy process (FAHP), data envelopment
analysis (DEA), and the technique for order of preference by similarity to ideal solution
(TOPSIS), to discover the best location for a solar power facility combining both quantitative
and qualitative metrics. Similarly, Mirzaei [19] coupled MCDM and fuzzy logic to assess
possible Turkish cities for the construction of newer solar power stations. Stepwise Weight
Assessment Ratio Analysis (SWARA) was used in the suggested procedure to measure
weights, and the Pythagorean Fuzzy Form of TOPSIS was used to grade the locations. A
two-step methodology premised on FAHP and DEA was presented by Lee et al. [20] for
assessing the viability of potential locations for sustainable energy plant sites. The FAHP
was applied as the initial step to establish the assurance region (AR) of the input variables,
and the AR was integrated into DEA to evaluate the efficacy of potential plant sites. The
best-worst method (BWM) was employed to quantify the criterion and sub-criteria in
a hybrid MCDM approach [13]. Grey relational analysis (GRA) and Vlsekriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) were used to rank the prospective locations.
Additionally, a novel Monte Carlo simulation-based (MCSB) methodology was used to
examine the sensitivity of GRA and VIKOR. Similarly, to identify the ideal PV system for
Saudi Arabia, Al-Shammari et al. [21] utilized AHP and TOPSIS effectively. An MCDM
strategy for the site location of PV charging stations was also used by Dang et al. [22] to
choose the optimal alternative in China. The fuzzy VIKOR approach was used to rank
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the solutions, and the fuzzy measure technique was utilized to calculate the weight of the
criteria. AHP, the entropy weight method, the fuzzy measure method, and VIKOR were all
successfully used in the hybrid fuzzy approach. Seker and Kahraman [23] established a
thorough two-stage MCDM model including the AHP and Multiplicative Multi-Objective
Ratio Analysis (MULTIMOORA) approaches to select the best PV panel maker for solar
power plants. The robustness and verification of the proposed strategy for the solar power
industry were also demonstrated by the sensitivity and comparison analyses. Similarly,
Wang et al. [24] established a fuzzy MCDM approach by integrating FAHP with DEA to
identify a solar panel supplier for a PV system design. They also used a number of DEA
models for rating possible suppliers in the last phases.

The preceding works cited in this research serve as proof of the extensive literature
that is available in various domains of solar energy applications employing MCDM. The
prior studies provide examples of different MCDM methodology behavior when several
conflicting variables are considered. It is true that earlier studies have used MCDM to
determine the ideal location for PV installation. None of them have highlighted the basis
for choosing an appropriate MCDM approach, rather, they have all emphasized choosing a
suitable location utilizing any MCDM based on their convenience. The key challenge for
the decision-makers has always been deciding which MCDM method to use. Consequently,
this study is an effort in which several MCDM methods have been employed and evaluated.
Thus, the objective of this research is to provide valuable information on various MCDM
combinations that can be utilized to select optimal locations for PV solar plants. This work
explores MCDM methods for evaluating possible solar PV sites by considering a variety of
factors, such as solar radiation, air temperature, dust storms, topology, etc. The suggested
methodology is based on a combination of different MCDM techniques, such as the group
eigenvalue method (GEM), FAHP, entropy method, VIKOR, and GRA. The application of
various MCDM techniques, which are coupled and employed as an adaptive approach
for the PV site selection problem in Saudi Arabia, is where this research makes a scientific
contribution. First, the weights of the criteria are determined using GEM, FAHP, and
entropy approaches. Next, the PV sites are ranked and prioritized using VIKOR, and GRA.
To demonstrate the reliability of the evaluation methodologies, comparison, and sensitivity
analyses are carried out. The investigation of a specific instance in Saudi Arabia serves to
support the applicability of the proposed methodology. This study, which is still in its early
phases of development in terms of solar energy, is expected to help the authorities gain a
better knowledge of the potential investment in solar energy.

2. MCDM Methods

This work intends to put into practice the combination of different MCDM tech-
niques, including GEM, FAHP, Entropy, VIKOR, and GRA approaches. The combinations,
including GEM-VIKOR, FAHP-VIKOR, Entropy-VIKOR, GEM–GRA, FAHP–GRA, and
Entropy-GRA have been used to obtain the optimal PV site for the generation of solar
energy. The following is a succinct summary of various MCDM techniques.

2.1. Determination of Weights
2.1.1. Group Eigen Value Method

GEM [25] is deployed to give attribute weights or assess their significance by develop-
ing an expert judgment matrix. Since one expert only has a limited amount of information
and experience, a judgment matrix derived from a group of various specialists should be
employed. This approach aims to locate the ideal expert, whose evaluation is most reliable,
accurate, and repeatable with the opinions of fellow experts in the team. Following are the
phases and equations (Equations (1)–(6)) for the GEM technique [25].

Take into account the assessment of n variables N1, N2, N3, . . . , Nn by a team of m
analysts M1, M2, M3, . . . , Mm. Let xij represent the analyst’s opinion of the j-th variable
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by i-th analyst. Suppose x = (xij)m×n be the m × n order matrix (Equation (1)) assessed by
the specialists.

x =
(
xij
)

m×n =




x11 x12 . . . x1n
x21 x22 . . . x2n
. . . . . . . . . . . .
xm1 xm2 . . . xmn


 (1)

x* as shown in Equation (2) can be used to express the evaluation vector of a specialist
with the greatest judgment quality and exact assessment.

x* = (x*1, x*2, x*3, . . . , x*n)T (2)

The summation of angles at which the preferable expert judgment vector and the
assessment vectors of other specialists’ overlap should be as small as possible. It indi-
cates that x* can be calculated once the function f = ∑m

i=1
(
bTxi

)2 reaches its highest value.
Consequently, it is possible to determine an idealized expert’s assessment vector, x* using
Equation (3).

max
||b||2=1

∑m
i=1

(
bTxi

)2
= ∑m

i=1

(
xT
∗ xi

)2
(3)

The expression ∀b = (b1, b2, . . . , bn)T is satisfied by the parameter, bT, which is an eigen-
vector of F. x* designates the positive eigenvector equivalent to ρmax, which is the highest
possible positive eigenvalue of the matrix F = xT.x. After the eigenvector is normalized to
match the highest eigenvalue, the standardized weight vector for every specialist can be
found. The procedure listed below should be considered to estimate the criterion weights.

1. Analysts designate assessment scores to specified criteria.
2. Transpose of the assessment matrix and then multiply it by the transposed one as

shown in Equation (4).
F = xT.x (4)

3. The power method, as employed by Qiu in 1997 [25], can be utilized to derive the
eigenvector x*.

• Suppose k = 0, y0 = (1/n, 1/n, . . . ..,1/n)T

y1 = Fy0; z1 =
y1

||y1||2
(5)

• For k = 1, 2, 3,..., yk+1 = Fzk, and zk+1 = yk+1
||yk+1||2

• Verify if |zk→k+1|≤ ε, if it does, then, zk+1 equates to x*, else return to the prior
step (with ε representing the precision and |zk→k+1|is the maximum absolute
value of the difference between zk and zk+1)

4. Normalization of the derived eigenvector using Equation (6).

wj = x∗j/ ∑n
j=1 x∗j (6)

where, j = 1, 2, 3, . . . ,n, so that ∑n
j=1 x∗j = 1 and x*j is the weight obtained for criteria

utilizing GEM.

2.1.2. Fuzzy Analytic Hierarchy Process

The fuzzy set principle proposed by Zadeh [26] is used to deal with the ambiguity and
vagueness of specialist views as well as information gathering. The FAHP can methodically
oversee design choices since it is founded on the fundamentals of fuzzy set theory and
hierarchical structural analysis. The FAHP, however, is an expansion of a conventional AHP
technique using fuzzy numbers in a fuzzy environment [27]. The initial conversion of the
typical AHP into FAHP was posited by Van Laarhoven and Pedrycz [28], Buckley [29], and
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Chang [30]. They used fuzzy numbers with triangular membership functions to indicate
the relative importance of the Saaty. In this work, the crisp values are modeled by applying
a trapezoidal membership function because of its greater effectiveness over the triangular
membership function [31]. The following are the steps used to estimate fuzzy weights.

Step 1: translating crisp values into fuzzy numbers.
The decision matrices generated by many experts are adapted into trapezoidal fuzzy

numbers in this stage. The membership function of the F-designated trapezoidal fuzzy
number with the characteristics (l, m, n, u) can be depicted using Equation (7) [32].

Membership function,

µF (x) =





0 x ≤ l
x−l
m−l l ≤ x ≤ m
1 m ≤ x ≤ n

u−x
u−n n ≤ x ≤ u
0 x ≥ u

(7)

The Saaty scale-based crisp values are initially transformed into triangular fuzzy
numbers and subsequently into trapezoidal fuzzy numbers to accomplish this conversion.

The triangle fuzzy numbers are converted into trapezoid numbers by consistently
retaining the upper and bottom limits of the fuzzy numbers and slightly increasing the
center [33]. As an illustration, consider the transformation of the crisp value of x into a
triangular fuzzy number (a, b, c) where a = x − 1; b = x and c = x + 1. Following this
transformation, the triangular fuzzy numbers have been changed into trapezoidal fuzzy
numbers (l, m, n, u), where l = a; u = c; m = l + 0.5 and n = u − 0.5.

Step 2: weights computation.
The Chang extent analysis is adopted in this work to derive the weights of the per-

formance indicators [30]. For computing priori weights, the extent analysis is outlined as
follows [34,35].

Suppose X = {x1, x2, x3, . . . , xn} symbolize the array of objects and G = {g1, g2, g3,
. . . , gn} signify the list of objectives. symbolize the collection of objects. Every object
must experience extent analysis for each objective of the problem, according to the extent
analysis framework. As a result, m extent analysis values for each object can be obtained as
M1

gi, M2
gi, M3

gi, M4
gi, . . . , Mm

gi, i = 1, 2, 3, 4, . . . , n. Here, Mj
gi (j = 1, 2, 3, 4, . . . ,m) is an

illustration of a fuzzy trapezoidal number. The succeeding steps (Equations (8)–(15)) can
be undertaken to complete Chang’s extent analysis [30].

The synthetic fuzzy values for i-th object can be derived using Equation (8).

Si = ∑m
j=1 Mj

gi ⊗
[
∑n

i=1 ∑m
j=1 Mj

gi

]−1
(8)

Because FAHP evaluates the relevant attribute using a trapezoidal fuzzy number with
four values. As a result, the fuzzy addition action for a specific matrix can be accomplished
by employing the expression in Equation (9) to estimate ∑m

j=1 Mj
gi.

∑m
j=1 Mj

gi=
(
∑m

j=1 lj, ∑m
j=1 mj, ∑m

j=1 nj, ∑m
j=1 uj

)
(9)

The value of
[
∑n

i=1 ∑m
j=1 Mj

gi

]−1
can be calculated by the fuzzy addition process of

Mj
gi (j = 1, 2, 3, 4, . . . , m) values in the following way by applying Equation (10).

∑n
i=1 ∑m

j=1 Mj
gi=

(
∑n

i=1 li, ∑n
i=1 mi, ∑n

i=1 ni, ∑n
i=1 ui

)
(10)

Additionally, the vector’s inverse can be defined using Equation (11).

[
∑n

i=1 ∑m
j=1 Mj

gi

]−1
=
(

1
∑n

i=1 ui
, 1

∑n
i=1 ni

, 1
∑n

i=1 mi
, 1

∑n
i=1 li

)
(11)
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Suppose M1 = (l1, m1, n1, u1) and M2 = (l2, m2, n2, u2) denotes two trapezoidal fuzzy
numbers. The following condition in Equation (12) affects how likely it is that M2 = (l2, m2,
n2, u2) ≥M1 = (l1, m1, n1, u1).

V (M2 ≥ M1) =
sup

y ≥ x
⌊
min

(
µM1(x), µM2(y)

)
c (12)

where, V (M2 ≥M1) can be expressed using the definition in Equation (13).

V (M2 ≥ M1) = hgt(M1 ∩ M2) = µM2(d) =
1, m1 ≥ m2
0, (m2 − n1) > (u1 + l2)

((n1−m2)+(u1+l2))
(u1+l2)

, 0 < (m2 − n1) < (u1 + l2)
((m2−n1)+(u1+l2))

(u1+l2)
, (m2 − n1) < (u1 + l2), where m2 < n1 and m1 < m2

(13)

A fuzzy number with a probability greater than k can be represented as V (M2 ≥M1,
M2, M3, M4, . . . , Mk) = V [(M ≥M1) and V [(M ≥M2) and V [(M ≥M3) and V [(M ≥M4)
and V [(M ≥Mk)] = min V (M ≥Mi), i = 1, 2, 3, . . . , k.

Assume that d (Ai) = min V (Si ≥ Sk) for k = 1, 2, 3, 4, . . . , n; k 6= i. The weight vector
can be estimated as depicted in Equation (14).

w′=
(
d′(A1), d′(A2), d′(A3), d′(A4), . . . , d′(An)

)T (14)

where Ai (i = 1, 2, 3, 4, . . . , n) indicates n elements. Normalization is needed to obtain the
weight vector for the individual elements. The weight vector is normalized to get the vector
normalized as in Equation (15).

w= (d(A1), d(A2), d(A3), d(A4), . . . , d(An) )
T (15)

where w is a vector of non-fuzzy numbers or crisp values.

2.1.3. Entropy Method

Entropy weight calculation is an empirical approach that uses the attribute’s innate
knowledge to compute its weights. Accordingly, noise in the resultant weights can be
reduced, leading to the production of impartial outcomes [36]. The attribute’s higher
relevance is indicated by its greater entropy weight. The entropy weight approach makes
use of the attribute’s intrinsic information to make the resulting weights more realistic than
subjective [37].

If there are m alternatives and n criteria, xij reflects the value for j-th criterion
and i-th alternative. The entropy weight can be calculated as seen below using Equa-
tions ((16)–(21)) [36,37]:

Standardization of attribute values, rij using Equations (16)–(17).

Benefit attribute =
x

xmax
(i = 1, 2, 3, 4 . . . , m; j = 1, 2, 3, . . . , n) (16)

Cost attribute =
xmin

x
(i = 1, 2, 3, 4 . . . , m; j = 1, 2, 3, . . . , n) (17)

Quantification of entropy using Equation (19).

Hj= −
∑m

i=1 Pij ln Pij

ln m
(i = 1, 2, 3, 4 . . . , m; j = 1, 2, 3, . . . , n) (18)

Pij=
rij

∑m
i=1 rij

(i = 1, 2, 3, 4 . . . , m; j = 1, 2, 3, . . . , n) (19)
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Estimation of Entropy weight using Equation (20).

wj= 1− 1− Hj

n−∑n
j=1 Hj

(20)

∑n
j=1 wj = 1(j = 1, 2, 3, . . . , n) (21)

2.2. Ranking Approaches
2.2.1. VIKOR Method

The various procedures required to establish VIKOR-based MCDM [38] tools are
covered in this section. Assume there are m possibilities Si (i = 1, 2, . . . , m) and n criteria Aj
(j = 1, 2, . . . , n). The VIKOR approach’s major goal is to assess both the positive and negative
ideal positions in the candidate solutions. The applied equations (Equations (22)–(25)) to
implement the VIKOR approach are discussed in the following steps [38].

Step 1. The first step is to create the decision matrix, which is written as X = (xij)m×n.
Here, xij stands for real numbers that represent the values of the j-th criterion for the
alternative i.

Step 2. Apply Equation (22) to determine the normalized decision matrix, (rij)m×n.

(
rij
)

m×n =
xij√

∑
(
xij
)2

(22)

Step 3. Specify the upper and lower bounds for the normalized decision matrix. For the
benefit criteria, v+j = max

j
rij and v−j = min

j
rij. For the non-benefit condition, v+j = min

j
rij

and v−j = max
j

rij.

Step 4. Using Equations (23) and (24), determine how far away each alternative is
from the best choice, which is represented by the utility (Si) and regret (Ri) measures.

Si = ∑n
j=1 wj

v+j − vij

v+j − v−j
(23)

Ri = max
j

(wj
v+j − vij

v+j − v−j
) (24)

Step 5. Estimate the values for Qi (rank indexes) by applying Equation (25).

Qi=

(
ϕ ∗ Si − S+

S− − S+
+ (1− ϕ) ∗ Ri − R+

R− − R+

)
(25)

where, S+ = min
i

Si, S− = max
i

Si, R+ = min
i

Ri, R− = max
i

Si

The weight for the “majority criteria” (also known as “the maximum group utility”)
technique is represented by ∅ ∈ [0,1]. The lowest scores are based on Ri values, while the
rate of quality is dependent on Si values.

Step 6. In accordance with the Qi values, arrange the best options in ascending order.
The VIKOR technique suggests a compromise option for the alternative, that is the

best rated by Q (minimum) when the underlying two requirements are met [38,39].
C1. Allowable advantage
Q2 − Q1 ≥ DQ, where i = 2 is the second-best choice using Q and DQ = 1/(m − 1).
C2. Allowable stability
Additionally, R and/or S must also rank the option with i = 1 as the highest. It gives a

number of potential options in the event that one of the requirements is not met.

• Alternatives i = 1 and i = 2 if only condition C2 is not achieved or
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• Alternatives i = 1, 2, . . . , m, if the condition C1 is not attained, where m is specified by
the QM − Q1 < DQ relationship, for maximum i.

2.2.2. Grey Relation Analysis

Prof. Deng first established the concept of grey theory from the grey set in conjunction
with control theory and space theory [40]. Grey theory is being used with the intention
of exploiting its capacity to account for the complexity and ambiguity related to user
preferences and data collection. The following method and Equations (26)–(32) can be used
to implement GRA [41,42].

If xi
*(k) denotes the sequence following the data processing, xi

(O)(k) indicates the
original sequence of responses, (where i = 1, 2, . . . , m and k = 1, 2, . . . , n), max xi

(O)(k) and
min xi

(O)(k) denote the highest and lowest values of xi
(O)(k), respectively. The following is

how the data is standardized (see Equations (26)–(28)).

x∗i (k)=
x(O)

i (k)−min x(O)
i (k)

maxx(O)
i (k)−minx(O)

i (k)
Larger-the-better (26)

x∗i (k)=
max x(O)

i (k)− x(O)
i (k)

maxx(O)
i (k)−minx(O)

i (k)
Smaller-the-better (27)

x∗i (k)=

∣∣∣x(O)
i (k)−IV

∣∣∣
max

{
max x(O)

i (k)−IV, IV−minx(O)
i (k)

}Nominal-the-better (define the

response as intended value (IV))
(28)

A reference sequence is established employing the comparability sequences. Upon
data processing, the preprocessed sequences are used to estimate the grey relational coeffi-
cient (GRC). Equation (29) is used to calculate the GRC.

GRC (x∗O(k), x∗i (k) ) =
∆min + ε ∆max

∆oi(k) + ε ∆max
(29)

where ∆oi (k) is the deviation sequence of the reference sequence xO
*(k) and the comparabil-

ity xi
*(k), i.e., ∆oi (k) = |xO

*(k) − xi
*(k)| is the absolute magnitude of the difference between

xO
*(k) and xi

*(k).
∆min= min

∀i
min
∀k

∆oi(k) (30)

∆max= max
∀i

max
∀k

∆oi(k) (31)

where i = 1, 2, . . . , m and k = 1, 2, . . . , n ε: distinguishing coefficient, ε [0,1]. The
value of ε is set as 0.5. The grey relational grade (GRG), which is calculated using
Equations (30) and (31), can be described as a weighting sum of the GRC.

GRG (xo, xi
∗) = ∑n

k=1 βkγ (xo ∗ (k), xi ∗ (k)) (32)

where βk represented the weighting value of the kth performance characteristic, and ∑n
k=1 βk = 1.

The rating is calculated for each user and also for an imaginary user whose needs are
the sum of each of the four unique users.

2.3. Sensitivity Analysis

The consistency and dependability of the ranking produced using the suggested
approach are assessed using sensitivity analysis. It can be described as a technique for
understanding how changes in input values affect a model’s results [43]. Undoubtedly, it is
important to consider the changes in the proposed model’s output parameters brought on
by changes in the values of the input variable [44,45]. The model is reliable and trustworthy
if the result is not highly sensitive to changes in input. The most popular sensitive analysis

207



Sustainability 2023, 15, 3284

method is changing the performance criterion weights and examining how the outcomes
evolve [46]. Previous studies have also shown that the ranks of the alternatives strongly
depend on the weight coefficients of the criterion [47]. Sensitivity analysis based on
variations in the weight coefficients is used in this study to confirm the model’s validity
and check the accuracy of the findings. The first stage in sensitivity analysis is the random
assignment of a criterion. The chosen criterion’s weight is then changed by a certain
percentage (increase or decrease). As a result, Equation (33) is used to calculate the weights
for the remaining criteria [48].

w∗n=
wn
(
1− w∗i

)

(1− wi)
(33)

where,
wi: original weights for attribute i
wi

*: weight derived after adjusting the original weight by 10% for attribute i
wn: original weight for attribute n
wn

*: recalculated weight for attribute n
To assess the robustness of the proposed method and to examine the similarity of ranks

obtained by varying the weights, Kendall’s coefficient (Z) of concordance is used [49,50].
Kendall’s coefficient, whose values range from 0 to 1, illustrates analogies in the ranking of
sorted quantities. For instance, a value of 1 indicates that all of the different ranking orders
perfectly match each other. It implies that the robustness will be better the closer the value
of Z is to 1. Equations (34)–(36) can be used to calculate the value of Z [49,50].

Z =
12R

m2 (k3 − k)
(34)

Ri = ∑m
j=1 rij (35)

R = ∑k
i=1

(
Ri − R

)2 (36)

where m is the number of scenarios, k is the number of options, and rij is the score that
scenario i gives to alternative j.

As shown in Table 1, six different scenarios based on weight percentage are devised.
These scenarios involve a percentage in weight for a chosen criterion and subsequently
changing the weights of the remaining criteria using Equation (36).

Table 1. Scenarios explored in the sensitivity analysis.

Scenario Description

1 20% increase in weight for average temperature
2 40% increase in weight for the population
3 20% decrease in weight for topography
4 30% increase in weight for global horizontal irradiance
5 40% decrease in weight for dust storm
6 30% decrease in weight for wind speed

3. Data Collection
3.1. Study Area

The KSA is located in the farthest region of southwestern Asia, surrounded by the
Red Sea to the west and the Arabian Gulf to the east. The KSA, with a total area of around
2,000,000 square kilometers, makes up approximately four-fifths of the Arab Peninsula [51].
Saudi Arabia has a desert climate, with summers that are exceedingly hot and dry, with
temperatures ranging from 27 ◦C to 43 ◦C inland and 27 ◦C to 38 ◦C by the shore [52].
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3.2. Criteria for MCDM

Factors from technological, economical, ecological, social, and risk considerations are
examined in order to discover the ideal location for a PV solar power plant to produce
electricity [21,53–56]. The following is a brief description of these criteria.

1. Solar radiation (C1). The yearly solar radiation is a meteorological factor that is
applied to quantify the intensity of sunlight for a prospective site. The uninterrupted
functioning of a PV plant relies upon solar irradiance. The opportunity for producing
energy in a location increases with the amount of solar radiation available. In this
research, the amount of solar radiation received by a surface is measured using the
Global Horizontal Irradiance (GHI) [57]. The unit of measurement for GHI is in Watts
per square meter per day (W/m2/day).

2. Average air temperature (C2). The efficiency of power generation in PV systems
is significantly influenced by ambient temperature [58]. The efficiency of power
conversion in solar cells decreases with increasing ambient temperature, resulting in a
reduction in the amount of power produced. The air temperature is measured in ◦C.

3. Wind speed (C3). The efficacy of a PV system’s energy production is influenced
by wind speed. The rate at which solar systems cool down increases with wind
speed, which is accompanied by an increase in power production. It is measured in
kilometers per hour (km/h).

4. Sunshine hours (C4). The territory with more sun hours has the ability to generate
more power when taking into account that various regions receive the same quantity
of solar radiation. It is measured in hours (h).

5. Sand and dust storm (C5). A suitable parameter for solar PV systems can be sand
and dust storm [59]. Among the globe’s places where sand and dust storm existence
are particularly intense is the Arabian Peninsula. The extent of radiation reaching the
surface of PV panels is decreased with a greater incidence of storm phenomena. As
a result, the amount of power generated in locations prone to higher sand storms is
also decreased. It is calculated using the average yearly number of storms.

6. Topography (C6). Minimal elevation fluctuations aid in lowering the high construction
costs and flat topography is generally preferred for the placement of PV plants. Due
to low economic viability, more change in topography or terrain is not acceptable. A
maximum elevation change in a specific location can be approximated in feet.

7. Population (C7). A high population in a region causes both a larger energy demand
as well as a higher need for employment. Consequently, job generation increases with
an increase in population. It implies that having a higher population in a specific area
makes it a good location for a PV installation. As a result, the site of a solar system
must be preferable to one where there is enough consumption and trained personnel
to run and manage the PV system.

Table 2 displays the values of the chosen criteria that have been acquired from various
sources [21,52,54,60–65]. Since the information has been gathered from a number of sources,
the authors cannot guarantee that it is updated and highly accurate. The main focus of the
authors’ research is the implementation and viability of MCDM techniques in the problem
of solar site selection, even though they have made every effort to acquire data that is as
accurate as possible.

We have solely taken technical factors into account due to our consideration of cities.
It is presumed that economic considerations, such as distance to power lines and distance
to urban centers, are not very significant and can be assumed to be the same for all cities.
They have not been found to be important as past literature has claimed [21,53,56].
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Table 2. Criteria and their values.

Cities
Criteria

C1 C2 C3 C4 C5 C6 C7

Arar 5392 22 14 12.16 0.30 174 148,540
Al-Jouf 5016 21.87 13.5 12.16 0.57 82 102,903
Tabuk 5992 22.98 10 12.16 0.16 125 455,450
Hail 5359 23.3 12 12.15 0.28 387 267,005

Dhahran 5205 26.4 15 12.16 0.15 525 99,540
Al-Ahsa 5278 26.9 12 12.15 0.91 157 293,179

Taif 5671 22.2 14 12.15 0.08 459 530,848
Makkah 5303 28.6 3 12.15 0.02 1106 1,323,624
Jeddah 5525 28.1 13 12.13 0.17 112 2,867,446
Yanbu 5765 27.7 11 12.14 0.48 190 200,161

Medina 5376 27.2 11 12.14 0.09 276 1,300,000
Riyadh 6040 27 11 12.15 0.16 200 4,205,961
Abha 5674 19.2 11 12.15 0.05 1942 210,886
Jizan 4663 28.55 11 12.13 0.60 190 105,198

Najran 6684 23.9 11 12.15 0.26 1486 258,573

4. Implementation

The effectiveness and efficiency of solar power generation are influenced by the site
location. A lower benefit-to-cost ratio may result from the site’s random selection. A variety
of MCDM techniques are combined to find the optimal site. The decision-making tools
used in this research have advantages and limitations of their own. The various strategies
used to determine the ideal location for solar power generation are as follows. Additionally,
the estimation of the weight or importance of various criteria is the most significant step in
the use of any MCDM method. Numerous techniques including GEM, FAHP, and entropy
approaches have been used in this work. The development of the decision matrix comes
before the estimate of weights using these techniques. These decision tables are created
with the assistance of professionals with extensive experience in the solar energy sector.
Three specialists (E1, E2, and E3), including academics, researchers, etc., are taken into
consideration. These experts are asked to rate the chosen criteria on a scale of 1 to 10, with
1 representing the lowest priority and 10 the most important. Table 3 displays the ranking
outcomes of the experts.

Table 3. Assessment of criteria by experts.

Criteria E1 E2 E3

C1 9 10 9
C2 8 7 8
C3 7 8 6
C4 9 9 8
C5 7 8 6
C6 6 5 5
C7 4 6 4

The decision matrix obtained from the experts must be analyzed to see whether their
subjective assessment is valid. Thus, the consistency ratio-based approach established by
Prof. Saaty is adopted in the paper [66]. In this method, the ratio between the consistency
index (CI) and random consistency index (RI) yields a consistency ratio (CR). According
to this method, if the CR is 10% or less, the inconsistency is acceptable; otherwise, the
subjective judgment needs to be changed. An earlier study described in [67] provides an
illustration of CR estimation. For experts E1, E2, and E3, the calculated CR is, respectively,
3.91%, 3.97%, and 4.02%, which is substantially less than 10%. This suggests that the
expert’s subjective judgment is reasonable.
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4.1. GEM-VIKOR

The encoding of ratings by the evaluation matrix x, as illustrated below, is the prelimi-
nary step in the use of GEM-VIKOR.

x =




9 8 7 9 7 6 4
10 7 8 9 8 5 6
9 8 6 8 6 5 4


; xT =




9 10 9
8 7 8
7 8 6
9 9 8
7 8 6
6 5 5
4 6 4




F =




262 214 197 243 197 149 132
214 177 160 199 160 123 106
197 160 149 183 149 112 100
243 199 183 226 183 139 122
197 160 149 183 149 112 100
149 123 112 139 112 86 74
132 106 100 122 100 74 68




The ideal evaluation vector x* has been derived in Table 4 by applying the power
approach and assuming precision, = 0.0005.

Table 4. Outcomes from the power method.

k 0 1 2 3

yk
T (0.14, 0.14, 0.14, 0.14,

0.14, 0.14, 0.14)
(199.14, 162.71, 150, 185,

150, 113.57, 100.29)

(539.20, 440.77, 406.01,
500.91, 406.01, 307.58,

271.36)

(539.20, 440.77, 406.01,
500.91, 406.01, 307.58,

271.36)

||yk||2 - 410.262 1110.79 1110.79

zk
T -

(0.4854, 0.3966, 0.3656,
0.4509, 0.3656, 0.2768,

0.2444)

(0.4854, 0.3968, 0.3655,
0.4509, 0.3655, 0.2769,

0.2443)

(0.4854, 0.3968, 0.3655,
0.4509, 0.3655, 0.2769,

0.2443)

Ideal evaluation vector, x* = (0.4854, 0.3968, 0.3655, 0.4509, 0.3655, 0.2769, 0.2443)T

The GHI and sunshine hours, according to experts, are the most important criteria
to consider when choosing a location for a solar power plant, whereas population and
topology are regarded to be less important. The weights acquired for various criteria after
normalization can be rewritten as

w = (0.1877, 0.1535, 0.1414, 0.1744, 0.1414, 0.1071, 0.0945)
The establishment of the decision matrix, as demonstrated in Table 2, is the first step

in the VIKOR implementation process. The weights generated from the GEM technique are
then used to construct the weighted normalized decision matrix (Table 5).

To compute vj
+ and vj

− as shown in Table 6, the different attributes have been catego-
rized as benefit and cost attributes.

Set of benefit criteria = C1, C3, C4, and C7
Set of cost criteria = C2, C5, and C6
The values of Si, Ri, and Qi are computed in the final steps of the VIKOR technique as

shown in Table 7. The options are then ranked in order of decreasing Q values, with the
best choice having the lowest Q value.
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Table 5. Weighted normalized decision matrix.

Cities
Criteria

C1 C2 C3 C4 C5 C6 C7

Arar 0.0471 0.0346 0.0433 0.0451 0.0293 0.0065 0.0026

Al-Jouf 0.0438 0.0344 0.0417 0.0451 0.0557 0.0031 0.0018

Tabuk 0.0523 0.0361 0.0309 0.0451 0.0158 0.0047 0.0078

Hail 0.0468 0.0366 0.0371 0.0450 0.0276 0.0145 0.0046

Dhahran 0.0455 0.0415 0.0464 0.0451 0.0146 0.0197 0.0017

Al-Ahsa 0.0461 0.0423 0.0371 0.0450 0.0886 0.0059 0.0050

Taif 0.0495 0.0349 0.0433 0.0450 0.0076 0.0173 0.0091

Makkah 0.0463 0.0449 0.0093 0.0450 0.0020 0.0416 0.0228

Jeddah 0.0483 0.0441 0.0402 0.0450 0.0166 0.0042 0.0493

Yanbu 0.0504 0.0435 0.0340 0.0450 0.0466 0.0071 0.0034

Medina 0.0470 0.0427 0.0340 0.0450 0.0089 0.0104 0.0224

Riyadh 0.0528 0.0424 0.0340 0.0450 0.0159 0.0075 0.0723

Abha 0.0496 0.0302 0.0340 0.0450 0.0046 0.0730 0.0036

Jizan 0.0407 0.0448 0.0340 0.0450 0.0588 0.0071 0.0018

Najran 0.0584 0.0375 0.0340 0.0450 0.0249 0.0559 0.0044

Table 6. Estimation of vj
+ and vj

−.

Criteria

C1 C2 C3 C4 C5 C6 C7

vj
+ 0.0584 0.0302 0.0464 0.0451 0.0020 0.0031 0.0723

vj
− 0.0407 0.0449 0.0093 0.0450 0.0886 0.0730 0.0017

Table 7. Computation of Si, Ri, and Qi.

Cities
Criteria

Si Ri Qi
C1 C2 C3 C4 C5 C6 C7

Arar 0.0471 0.0346 0.0433 0.0451 0.0293 0.0065 0.0026 0.3206 0.1200 0.1929
Al-Jouf 0.0438 0.0344 0.0417 0.0451 0.0557 0.0031 0.0018 0.3983 0.1550 0.4497
Tabuk 0.0523 0.0361 0.0309 0.0451 0.0158 0.0047 0.0078 0.2961 0.0863 0.0000
Hail 0.0468 0.0366 0.0371 0.0450 0.0276 0.0145 0.0046 0.4335 0.1231 0.3309

Dhahran 0.0455 0.0415 0.0464 0.0451 0.0146 0.0197 0.0017 0.3955 0.1374 0.3601
Al-Ahsa 0.0461 0.0423 0.0371 0.0450 0.0886 0.0059 0.0050 0.5856 0.1414 0.5866

Taif 0.0495 0.0349 0.0433 0.0450 0.0076 0.0173 0.0091 0.3284 0.0941 0.0737
Makkah 0.0463 0.0449 0.0093 0.0450 0.0020 0.0416 0.0228 0.6066 0.1535 0.6692
Jeddah 0.0483 0.0441 0.0402 0.0450 0.0166 0.0042 0.0493 0.5073 0.1744 0.6644
Yanbu 0.0504 0.0435 0.0340 0.0450 0.0466 0.0071 0.0034 0.5586 0.1388 0.5446

Medina 0.0470 0.0427 0.0340 0.0450 0.0089 0.0104 0.0224 0.5049 0.1306 0.4458
Riyadh 0.0528 0.0424 0.0340 0.0450 0.0159 0.0075 0.0723 0.3219 0.1274 0.2305
Abha 0.0496 0.0302 0.0340 0.0450 0.0046 0.0730 0.0036 0.4024 0.1071 0.2182
Jizan 0.0407 0.0448 0.0340 0.0450 0.0588 0.0071 0.0018 0.7553 0.1877 1.0000

Najran 0.0584 0.0375 0.0340 0.0450 0.0249 0.0559 0.0044 0.3910 0.0908 0.1256

Tabuk is ranked first in the VIKOR ranking scheme, followed by Taif and Najran. In
VIKOR, a compromise solution is put into practice in order to verify the two conditions
mentioned in Section 2.2.2 above. The condition 1 (acceptable advantage) is satisfied since
Q2–Q1 (0.0737)≥DQ (0.07143). As a result, it is feasible to differentiate the best one between
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Tabuk and Taif. Additionally, the alternative that received the highest Q value also received
the highest R and S rankings. Thus, it meets both criteria for acceptability. It implies that
condition 2 is also satisfied. Consequently, based on the GEM-VIKOR approach, Tabuk is
suggested as the ideal location for a solar power plant.

4.2. FAHP-GRA

In this method, the alternatives are ranked using the GRA technique, and weights
are estimated using FAHP. Below are the steps for putting this strategy into practice. First,
trapezoidal fuzzy numbers are generated from the crisp values collected from each expert
in the form of a decision matrix. Table 8 shows the trapezoidal fuzzy numbers for different
levels of significance.

Table 8. Conversion of crisp values to trapezoidal fuzzy numbers.

Importance Explanation Trapezoidal Fuzzy Number Importance Trapezoidal Fuzzy Number

1 Equal importance (1,1,1,1) 1 (1,1,1,1)
3 Moderate importance (2, 2.5, 3.5, 4) 0.3333 (0.25, 0.286, 0.4, 0.5)
5 Strong importance (4, 4.5, 5.5, 6) 0.2 (0.167, 0.182, 0.222, 0.25)
7 Very strong importance (6, 6.5, 7.5, 8) 0.1429 (0.125, 0.133, 0.154, 0.167)
9 Extreme importance (9, 9, 9, 9) 0.1111 (0.111, 0.111, 0.111, 0.111)

2

Intermediate values

(1, 1.5, 2.5, 3) 0.5 (0.333, 0.4, 0.667, 1)

4 (3, 3.5, 4.5, 5) 0.25 (0.2, 0.222, 0.286, 0.333)

6 (5, 5.5, 6.5, 7) 0.1667 (0.143, 0.154, 0.182, 0.2)

8 (7, 7.5, 8.5, 9) 0.125 (0.111, 0.118, 0.133, 0.143)

After transformation into trapezoidal fuzzy numbers, Chang’s extent analysis is
applied to estimate the weights for various criteria for a specific expert. In this calculation,
expert 1′s judgment matrix for several criteria is used as an illustration. The first step is to
create a fuzzy pairwise matrix as shown in Table 9.

Table 9. Fuzzy pairwise comparison matrix.

Criteria C1 C2 C3 C4 C5 C6 C7

C1 (1,1,1,1) (1, 1.5, 2.5, 3) (2, 2.5, 3.5, 4) (1,1,1,1) (2, 2.5, 3.5, 4) (3, 3.5, 4.5, 5) (5, 5.5, 6.5, 7)

C2 (0.333, 0.4,
0.667, 1) (1,1,1,1) (1, 1.5, 2.5, 3) (0.333, 0.4,

0.667, 1) (1, 1.5, 2.5, 3) (2, 2.5, 3.5, 4) (4, 4.5, 5.5, 6)

C3 (0.25, 0.286,
0.4, 0.5)

(0.333, 0.4,
0.667, 1) (1,1,1,1) (0.25, 0.286,

0.4, 0.5) (1,1,1,1) (1, 1.5, 2.5, 3) (3, 3.5, 4.5, 5)

C4 (1,1,1,1) (1, 1.5, 2.5, 3) (2, 2.5, 3.5, 4) (1,1,1,1) (2, 2.5, 3.5, 4) (3, 3.5, 4.5, 5) (5, 5.5, 6.5, 7)

C5 (0.25, 0.286,
0.4, 0.5)

(0.333, 0.4,
0.667, 1) (1,1,1,1) (0.25, 0.286,

0.4, 0.5) (1,1,1,1) (1, 1.5, 2.5, 3) (3, 3.5, 4.5, 5)

C6 (0.2, 0.222,
0.286, 0.333)

(0.25, 0.286,
0.4, 0.5)

(0.333, 0.4,
0.667, 1)

(0.2, 0.222,
0.286, 0.333)

(0.333, 0.4,
0.667, 1) (1,1,1,1) (2, 2.5, 3.5, 4)

C7 (0.143, 0.154,
0.182, 0.2)

(0.167, 0.182,
0.222, 0.25)

(0.2, 0.222,
0.286, 0.333)

(0.143, 0.154,
0.182, 0.2)

(0.2, 0.222,
0.286, 0.333)

(0.25, 0.286,
0.4, 0.5) (1,1,1,1)

Subsequently, the synthetic fuzzy values are measured utilizing Equations (7)–(14).
S1 = (15, 17.5, 22.5, 25) ⊗ (1/103.982, 1/91.632, 1/69.994, 1/59.751).
S2 = (9.666, 11.8, 16.334, 19) ⊗ (1/103.982, 1/91.632, 1/69.994, 1/59.751).
S3 = (6.833, 7.972, 10.467, 12) ⊗ (1/103.982, 1/91.632, 1/69.994, 1/59.751).
S4 = (15, 17.5, 22.5, 25) ⊗ (1/103.982, 1/91.632, 1/69.994, 1/59.751).
S5 = (6.833, 7.972, 10.467, 12) ⊗ (1/103.982, 1/91.632, 1/69.994, 1/59.751).
S6 = (4.316, 5.03, 6.806, 8.166) ⊗ (1/103.982, 1/91.632, 1/69.994, 1/59.751).
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S7 = (2.103, 2.22, 2.558, 2.816) ⊗ (1/103.982, 1/91.632, 1/69.994, 1/59.751).
These fuzzy values are then compared using Equation (12).
V (S1 ≥ S2) = 1, V (S1 ≥ S3) = 1, V (S1 ≥ S4) = 1, V (S1 ≥ S5) = 1, V (S1 ≥ S6) = 1,

V (S1 ≥ Sc7) = 1.
V (S2 ≥ S1) = 1, V (S2 ≥ S3) = 1, V (S2 ≥ S4) = 1, V (S2 ≥ S5) = 1, V (S2 ≥ S6) = 1,

V (S1 ≥ S7) = 1.
V (S3 ≥ S1) = 0.8799, V (S3 ≥ S2) = 1, V (S3 ≥ S4) = 0.8799, V (S3 ≥ S5) = 1, V (S3 ≥ S6) = 1,

V (S3 ≥ S7) = 1.
V (S4 ≥ S1) = 1, V (S4 ≥ S2) = 1, V (S4 ≥ S3) = 1, V (S4 ≥ S5) = 1, V (S4 ≥ S6) = 1,

V (S4 ≥ S7) = 1.
V (S5 ≥ S1) = 0.8799, V (S5 ≥ S2) = 1, V (S5 ≥ S3) = 0.8799, V (S5 ≥ S4) = 1, V (S5 ≥ S6) = 1,

V (S5 ≥ S7) = 1.
V (S6 ≥ S1) = 0.6663, V (S6 ≥ S2) = 0.8627, V (S6 ≥ S3) = 1, V (S6 ≥ S4) = 0.6663,

V (S6 ≥ S5) = 1, V (S6 ≥ S7) = 1.
V (S7 ≥ S1) = 0.1931, V (S7 ≥ S2) = 0.3416, V (S7 ≥ S3) = 0.5529, V (S7 ≥ S4) = 0.1931,

V (S7 ≥ S5) = 0.5529, V (S7 ≥ S6) = 0.7930.
The weights for various criteria can be estimated by using Equation (13).
d′(C1) = min (1, 1, 1, 1, 1, 1) = 1.
d′(C2) = min (1, 1, 1, 1, 1, 1) = 1.
d′(C3) = min (0.8799, 1, 0.8799, 1, 1, 1) = 0.8799.
d′(C4) = min (1, 1, 1, 1, 1, 1) = 1.
d′(C5) = min (0.8799, 1, 0.8799, 1, 1, 1) = 0.8799.
d′(C6) = min (0.6663, 0.8627, 1, 0.6663, 1, 1) = 0.6663.
d′(C7) = min (0.1931, 0.3416, 0.5529, 0.1931, 0.5529, 0.7930) = 0.1931.
The weight vector can now be expressed as below.
w′ = (1, 1, 0.8799, 1, 0.8799, 0.6663, 0.1931).
Upon normalization, the weight vector can be inferred as
w = (0.1780, 0.1780, 0.1566, 0.1780, 0.1566, 0.1186, 0.0344).
The remaining weights for the other decision matrices are calculated in a similar

manner. The individual weights are also aggregated by applying the geometric mean (GM)
method and normalized as indicated in Table 10.

Table 10. Weights computed using FAHP.

Criteria E1 E2 E3 Aggregated Normalized

C1 0.1780 0.1888 0.1835 0.1834 0.1862
C2 0.1780 0.1384 0.1835 0.1654 0.1679
C3 0.1566 0.1762 0.1476 0.1597 0.1622
C4 0.1780 0.1888 0.1835 0.1834 0.1862
C5 0.1566 0.1762 0.1476 0.1597 0.1622
C6 0.1186 0.0404 0.1042 0.0794 0.0806
C7 0.0344 0.0910 0.0500 0.0539 0.0547

After computing the weights, the best location for a solar power plant is determined
using the GRA approach. Data normalization is the first step in the GRA implementation
process to produce comparability sequences, followed by deviation sequences and GRC.
The comparability sequences, deviation sequences, and GRC are shown in Table 11, Table 12,
and Table 13, respectively.

The weights acquired through FAHP are then used to obtain the GRG and the corre-
sponding ranking after the GRC has been estimated. Table 14 shows the GRG and the city’s
respective rankings.

The Arar and Tabuk as stated in Table 14 can be recommended for the construction of
a solar power plant based on the study utilizing FAHP and GRA.
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Table 11. Comparability sequences after data normalization.

C1 C2 C3 C4 C5 C6 C7

0.3607 0.7021 0.9167 1.0000 0.6857 0.9505 0.0119
0.1747 0.7160 0.8750 1.0000 0.3799 1.0000 0.0008
0.6576 0.5979 0.5833 1.0000 0.8415 0.9769 0.0867
0.3444 0.5638 0.7500 0.6667 0.7045 0.8360 0.0408
0.2682 0.2340 1.0000 1.0000 0.8546 0.7618 0.0000
0.3043 0.1809 0.7500 0.6667 0.0000 0.9597 0.0472
0.4988 0.6809 0.9167 0.6667 0.9353 0.7973 0.1050
0.3167 0.0000 0.0000 0.6667 1.0000 0.4495 0.2981
0.4265 0.0532 0.8333 0.0000 0.8321 0.9839 0.6740
0.5453 0.0957 0.6667 0.3333 0.4859 0.9419 0.0245
0.3528 0.1489 0.6667 0.3333 0.9203 0.8957 0.2923
0.6813 0.1702 0.6667 0.6667 0.8396 0.9366 1.0000
0.5002 1.0000 0.6667 0.6667 0.9700 0.0000 0.0271
0.0000 0.0053 0.6667 0.0000 0.3443 0.9419 0.0014
1.0000 0.5000 0.6667 0.6667 0.7364 0.2452 0.0387

Table 12. Deviation sequences after data pre-processing.

C1 C2 C3 C4 C5 C6 C7

0.6393 0.2979 0.0833 0.0000 0.3143 0.0495 0.9881
0.8253 0.2840 0.1250 0.0000 0.6201 0.0000 0.9992
0.3424 0.4021 0.4167 0.0000 0.1585 0.0231 0.9133
0.6556 0.4362 0.2500 0.3333 0.2955 0.1640 0.9592
0.7318 0.7660 0.0000 0.0000 0.1454 0.2382 1.0000
0.6957 0.8191 0.2500 0.3333 1.0000 0.0403 0.9528
0.5012 0.3191 0.0833 0.3333 0.0647 0.2027 0.8950
0.6833 1.0000 1.0000 0.3333 0.0000 0.5505 0.7019
0.5735 0.9468 0.1667 1.0000 0.1679 0.0161 0.3260
0.4547 0.9043 0.3333 0.6667 0.5141 0.0581 0.9755
0.6472 0.8511 0.3333 0.6667 0.0797 0.1043 0.7077
0.3187 0.8298 0.3333 0.3333 0.1604 0.0634 0.0000
0.4998 0.0000 0.3333 0.3333 0.0300 1.0000 0.9729
1.0000 0.9947 0.3333 1.0000 0.6557 0.0581 0.9986
0.0000 0.5000 0.3333 0.3333 0.2636 0.7548 0.9613

Table 13. GRC computed depending on the deviation sequences.

C1 C2 C3 C4 C5 C6 C7

0.4389 0.6267 0.8571 1.0000 0.6141 0.9100 0.3360
0.3773 0.6377 0.8000 1.0000 0.4464 1.0000 0.3335
0.5935 0.5542 0.5455 1.0000 0.7593 0.9558 0.3538
0.4327 0.5341 0.6667 0.6000 0.6285 0.7530 0.3426
0.4059 0.3950 1.0000 1.0000 0.7747 0.6773 0.3333
0.4182 0.3790 0.6667 0.6000 0.3333 0.9254 0.3442
0.4994 0.6104 0.8571 0.6000 0.8854 0.7116 0.3584
0.4225 0.3333 0.3333 0.6000 1.0000 0.4759 0.4160
0.4658 0.3456 0.7500 0.3333 0.7486 0.9688 0.6054
0.5237 0.3561 0.6000 0.4286 0.4931 0.8960 0.3389
0.4358 0.3701 0.6000 0.4286 0.8625 0.8274 0.4140
0.6108 0.3760 0.6000 0.6000 0.7571 0.8874 1.0000
0.5001 1.0000 0.6000 0.6000 0.9434 0.3333 0.3395
0.3333 0.3345 0.6000 0.3333 0.4326 0.8960 0.3336
1.0000 0.5000 0.6000 0.6000 0.6548 0.3985 0.3422
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Table 14. GRG and ranking of the cities for installation of the solar power plant.

Cities C1 C2 C3 C4 C5 C6 C7 Sum Rank

Arar 0.0817 0.1052 0.1390 0.1862 0.0996 0.0733 0.0184 0.7035 1

Al-Jouf 0.0703 0.1071 0.1297 0.1862 0.0724 0.0806 0.0183 0.6645 6

Tabuk 0.1105 0.0931 0.0884 0.1862 0.1231 0.0770 0.0194 0.6978 2

Hail 0.0806 0.0897 0.1081 0.1117 0.1019 0.0607 0.0188 0.5715 9

Dhahran 0.0756 0.0663 0.1622 0.1862 0.1256 0.0546 0.0182 0.6887 3

Al-Ahsa 0.0779 0.0636 0.1081 0.1117 0.0541 0.0746 0.0188 0.5088 13

Taif 0.0930 0.1025 0.1390 0.1117 0.1436 0.0573 0.0196 0.6668 5

Makkah 0.0787 0.0560 0.0541 0.1117 0.1622 0.0384 0.0228 0.5237 12

Jeddah 0.0867 0.0580 0.1216 0.0621 0.1214 0.0781 0.0331 0.5611 10

Yanbu 0.0975 0.0598 0.0973 0.0798 0.0800 0.0722 0.0185 0.5051 14

Medina 0.0812 0.0621 0.0973 0.0798 0.1399 0.0667 0.0227 0.5496 11

Riyadh 0.1137 0.0631 0.0973 0.1117 0.1228 0.0715 0.0547 0.6349 8

Abha 0.0931 0.1679 0.0973 0.1117 0.1530 0.0269 0.0186 0.6685 4

Jizan 0.0621 0.0562 0.0973 0.0621 0.0702 0.0722 0.0183 0.4382 15

Najran 0.1862 0.0840 0.0973 0.1117 0.1062 0.0321 0.0187 0.6362 7

Table 15. Normalized decision matrix.

Cities
Criteria

C1 C2 C3 C4 C5 C6 C7

Arar 0.8067 1.1458 0.9333 1.0000 14.4000 2.1220 0.0353
Al-Jouf 0.7504 1.1391 0.9000 1.0000 27.4400 1.0000 0.0245
Tabuk 0.8965 1.1969 0.6667 1.0000 7.7600 1.5244 0.1083
Hail 0.8018 1.2135 0.8000 0.9992 13.6000 4.7195 0.0635

Dhahran 0.7787 1.3750 1.0000 1.0000 7.2000 6.4024 0.0237
Al-Ahsa 0.7896 1.4010 0.8000 0.9992 43.6400 1.9146 0.0697

Taif 0.8484 1.1563 0.9333 0.9992 3.7600 5.5976 0.1262
Makkah 0.7934 1.4896 0.2000 0.9992 1.0000 13.4878 0.3147
Jeddah 0.8266 1.4635 0.8667 0.9975 8.1600 1.3659 0.6818
Yanbu 0.8625 1.4427 0.7333 0.9984 22.9200 2.3171 0.0476

Medina 0.8043 1.4167 0.7333 0.9984 4.4000 3.3659 0.3091
Riyadh 0.9037 1.4063 0.7333 0.9992 7.8400 2.4390 1.0000
Abha 0.8489 1.0000 0.7333 0.9992 2.2800 23.6829 0.0501
Jizan 0.6976 1.4870 0.7333 0.9975 28.9600 2.3171 0.0250

Najran 1.0000 1.2448 0.7333 0.9992 12.2400 18.1220 0.0615

4.3. Entropy-VIKOR

The criteria weights are computed in the consolidated Entropy-VIKOR scheme and
VIKOR is used to rank the alternatives. The weighted normalized decision matrix is
computed first, as depicted in Table 15, before implementing the entropy technique.

After standardization, the entropy Hj and weights are determined for different criteria
as presented in Table 16.

After the entropy weights are determined, the choices are ranked using the VIKOR
based on various criteria. The VIKOR approach indicates that Tabuk or Taif are both
viable options because only condition 2 (Section 2.2.1) is met. Tabuk and Taif are therefore
the best candidates for the location of a solar power plant according to the results of the
Entropy-VIKOR technique.

Similarly, the remaining approaches are applied and the findings are listed in Table 17.
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Table 16. Estimation of entropy and weight.

Criteria C1 C2 C3 C4 C5 C6 C7

Hj 0.9987 0.9975 0.9873 1.0000 0.8778 0.8237 0.7382

m 15

ln m 2.7081

1 − Hj 0.0013 0.0025 0.0127 0.0000 0.1222 0.1763 0.2618

n − ∑ Hj 0.5767

wj 0.0022 0.0043 0.0219 0.0000 0.2118 0.3057 0.4540

1 − wj 0.9978 0.9957 0.9781 1.0000 0.7882 0.6943 0.5460

Normalized wj 0.1663 0.1659 0.1630 0.1667 0.1314 0.1157 0.0910

Table 17. Findings from several MCDM techniques.

MCDM Approach Ideal Location

GEM-VIKOR Tabuk
FAHP-VIKOR Tabuk

Entropy-VIKOR Tabuk or Taif
GEM-GRA Tabuk
FAHP-GRA Arar (Tabuk is second-ranked)

Entropy-GRA Arar (Tabuk is second-ranked)

Kendall’s coefficient of concordance, W (described in Section 2.3) is calculated to assess
the degree of ranking agreement between various MCDM approaches. The W is calculated
to be 0.8741 for this site selection problem for solar power plants. It shows a high degree of
agreement amongst the various methodologies.

The sensitivity analysis is undertaken by varying the weights in accordance with the
scenarios in Table 1 and calculating the rank using each approach. The ranking order for
the six scenarios generated using each approach is examined for similarity in order to
obtain the values of W. The greater values of W imply that the established ranking order is
dependable and not overly sensitive to changes in weight. The outputs of the sensitivity
study, which are presented in Table 18 show that the ranking order ascertained using
various methodologies is reliable and stable. It makes sense given that each method’s W
value is more closely related to 1.

Table 18. Outcomes obtained in the sensitivity analysis.

MCDM
Technique

GEM-
VIKOR

FAHP-
VIKOR

Entropy-
VIKOR

GEM-
GRA

FAHP-
GRA

Entropy-
GRA

W 0.9598 0.9759 0.9694 0.9752 0.9821 0.9841

5. Results and Discussion

The combinations of MCDM techniques used in this study qualify as logical, practical,
and systematic approaches. They are effective in assisting to choose the best location for
the generation of solar energy. Because there are so many MCDM strategies already in
use, each with advantages and disadvantages, it is necessary to choose the right approach.
The effort required and the outcomes produced by various MCDM strategies vary. As a
result, the selection of a suitable MCDM approach has a big impact on the decision’s quality
as well as the work that must be conducted. As illustrated in Table 19, different MCDM
techniques can rank identical alternatives in distinct sequences. The various approaches
have varied computational needs and varying degrees of difficulty. Some strategies work
well for large-sized problems, while others are better suited to small-sized problems.
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The degree of difficulty of the various approaches has been graded on a scale from
1 to 10, with 10 denoting the greatest degree of difficulty. These scores may change
depending on the user’s comprehension and the execution method. The Entropy-GRA
method is the easiest of all the techniques used, whilst the FAHP-VIKOR method is the
most difficult. Keep in mind that some strategies work effectively with medium-sized
problems while others perform better with larger-sized problems. Large-sized problems
are those that involve more than 15 criteria, whereas small-sized problems only require less
than ten criteria. Table 19 presents a detailed summary of the advantages and drawbacks of
several MCDM techniques. The FAHP-VIKOR method provides a number of advantages,
including improved precision, the use of inherent information in the criteria, and checking
for inconsistency using the consistency index, despite the fact that it can be challenging,
especially for large-scale situations. Entropy-GRA is different in that it is the simplest and
best suited for large-scale problems, but consistency cannot be maintained. This shows
that each MCDM strategy has its own unique advantages and constraints. Therefore, it is
crucial to choose the right strategy based on the problem, the information that is available,
the simplicity of use, consistency, etc.

It is evident that choosing the option that can be replicated by a number of MCDM
procedures is the best option out of a range of alternatives. Tabuk can therefore be chosen
as the best location for the production of solar energy. This outcome is comparable to
that of past research. For instance, Al-Shammari et al. [21] ranked Tabuk city best for PV
installation after analyzing 17 Saudi Arabian cities using an AHP-TOPSIS-based approach.
Similarly, Tabuk was proven to be the optimal site for both PV and concentrated solar
power in a study by Awan et al. [68] that compared three cities, namely Majmaah, Najran,
and Tabuk. Tabuk station was recognized to be the preferred venue for a PV power plant
with an energy power of 110,250 kWh in other investigations by Awan et al. [1]. Moreover,
Tabuk was classified as one of the cities with the best prospects for renewable energy plants
by Brumana et al. [69] due to the city’s year-round adequate solar radiation and wind
velocity. Mohammed et al. [70] also came to the conclusion that Tabuk city is the ideal place
to deploy a PV system for residential structures.

The factors responsible for Tabuk’s selection can be traced to its high GHI. However,
it can be demonstrated that Riyadh likewise has a high GHI value but also has a greater
ambient temperature, making it less suitable than Tabuk for the generation of solar energy.
Similarly, Najran has a very high GHI value but is not chosen because it also has a higher
ambient temperature, more dust storms, and more topographic variation. The Tabuk
region typically features clear days with minimal clouds and low dust, which is another
factor contributing to the higher average GHI value [5]. Furthermore, if a simple and a
sophisticated method yield similar rankings, the simplest approach should be used because
it can reduce computing time and effort. The strategy that has the fewest steps to estimate
weight and rank is the simplest. Moreover, the stakeholders or users can easily comprehend
the results using the simple and direct approaches, which are only marginally impacted
by the problem’s size. From an ecological standpoint, it has been discovered, according
to Rehman et al. [71], that on average 8182 tons of greenhouse emissions can be inhibited
from invading the local atmosphere every year. This highlights how important it is to use
renewable energy sources and to increase their effectiveness and efficiency, especially by
choosing an ideal location for the installation of their generation plants and so by employing
proper MCDM methodologies.

The established ranking order is dependent and not unduly susceptible to variations
in weight, as evidenced by the higher values of W for the various scenarios developed
utilizing each approach. Additionally, the results are adequate and steady as indicated
by the ranking order from several MCDM techniques, which is implied by a considerably
larger value of W that is nearer to 1.

The work is distinctive since it takes into account a number of factors connected to
the choice of location for a solar power facility. The selection procedure in this study
is made more flexible, accurate, and useful by the employment of numerous MCDM
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approaches. When choosing locations for solar power plants or other similar problems,
where the level of uncertainty is predicted to vary according to environmental factors, the
utilized MCDM methodologies are very useful. However, as the number of criteria and
alternative locations increases, some of these selection processes, may become repetitive,
computationally difficult, and tiresome. Additionally, because the effectiveness of most
of these decision-making methods depends on expert assessments, they frequently tend
to exaggerate the ranking process. Because the basic problem of solar power plant site
selection utilizing consolidated MCDM techniques has not been treated with proactive
diligence due to its dynamic nature, this research intends to assist stakeholders in selecting
the most appropriate location. The repository needs to be updated frequently with new
criteria and reliable data due to the constantly changing solar energy industry and shifting
environmental concerns. For this reason, new efforts should investigate more precise
information and different sites in order to make a more trustworthy conclusion regarding
the location of solar power plants.

6. Conclusions

Many MCDM approaches have been proposed to address the issue of selecting the
appropriate site for solar power generation. A concise guideline for choosing an MCDM
approach for solar power plant site selection is provided by the examination of several
methods. Consequently, the following conclusions about the outcomes of this study can
be drawn.

• The fact that different strategies might produce different outcomes when used to solve
the same problem is a key critique of MCDM. A decision-maker need to select a course
of action that comes the closest to the ideal. As a result, the best solution can be one
that is repeated by numerous MCDM procedures.

• This paper emphasizes the significance of evaluating several decision-making strate-
gies and choosing the most suitable methodology for the specific application, without
implying that any one MCDM method is superior to other methods.

• The outcomes of the different techniques might not be the same. This is explained by
various weights and their distributions, as well as various solution algorithms.

• All three weight calculation methods have established solar radiation and sunshine
hours as the most important criteria. For instance, using GEM, solar radiation and sun-
light hours are given weights of 0.1877 and 0.1744, respectively, thereby contributing
18.77% and 17.44% to the choice of the PV site. Similarly, solar radiation and sunshine
hour receive the same weight value of 0.1862 from the FAHP. Solar radiation and
sunlight hours have entropy weights of 0.1663 and 0.1667, respectively.

• The type of MCDM approach selected affects the decision’s quality and the amount of
work necessary. The various approaches display differing degrees of difficulty and
demand varying degrees of computation.

• It makes sense to employ one of the simplest techniques. However, the use of multiple
techniques is suggested in order to verify consistency and improve the trustworthiness
of the results.

• It should be noted that some strategies work well for large-sized problems while
others are better suited for small-scale problems.

• Of all the methods utilized in this study, the FAHP-VIKOR technique is the most ex-
haustive with a difficulty level of 8, while Entropy-GRA is the easiest with a complexity
degree of 4.

• A decision among numerous options that is replicated by several MCDM approaches
can be regarded as the best option. As a result, Tabuk is the ideal location for the con-
struction of a solar power plant. High solar radiation (GHI value of 5992 W/m2/day)
and more sunshine hours (12.16 h/day) are the main factors that contribute to its selection.

• The ranking consistency among the various MCDM techniques employed in the study
is reasonable, as indicated by Kendall’s coefficient of concordance value of 0.8741,
which is very close to 1.
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• The likelihood of uncertainty in expert decision-making as well as the lack of precise
data collection is the work’s limitations. Future studies will find ways to circumvent
these restrictions. Future versions of the work will also be expanded by integrating
additional accurate data, expert opinions, different cities or locations, and improvised
MCDM procedures.
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Abstract: The rapid spread of Microgrid systems has led to the need for an intensive analysis of the
system to avoid several challenges such as stability, reliability, power balance, and other aspects.
In this context, real-time simulation plays a vital role in the overall system study before the actual
implementation stage. This helps avoid many on-site problems of the Microgrid by simulating
the system and studying different operation scenarios. This paper uses the OPAL-RT simulator to
perform a real-time simulation of an MG case study. Furthermore, it examines the implementation of
the Fault Ride Through technique to overcome the total disconnection of the PV system following
unpredictable faults. Moreover, a Load curtailment solution method is proposed in this study, to meet
the balance and stable operation of the MG. The results prove the effectiveness of both techniques,
with FRT implementation reducing the losses by about 62%, and the Load curtailment algorithm
maintaining the balance of the MG.

Keywords: real-time simulation; microgrid; OPAL-RT; fault ride through; load curtailment

1. Introduction

Microgrid (MG) systems’ proliferation has significantly increased in recent years. The
penetration of renewable energy resources, the limitation of carbon dioxide emissions, and
the broad deployment of smart power systems have contributed to the wide spread of MG
applications.

An MG is a smart small-scale power system comprising a mix of generating resources,
controllable loads, energy storage units, transmission lines, transformers, and a point of
common coupling (PCC) [1]. The PCC is the main circuit breaker installed in the MG
system to control the operation mode of the network. The MG system’s operation modes
can be grid-connected or grid-islanded [2]. Various research projects have been directed
toward the MG topic as a promising field in the electrical energy world [3,4].

The main and critical feature of the MG system is the ability to work in two operation
modes: connected or islanded. The potential complexity of such a network is caused by the
transition between operation modes while maintaining a stable operation [5].

MG systems have several benefits to different sides of the community, including
environmental aspects [6], economic aspects [7], and trading aspects [8]. In addition,
the control part of the MG includes energy management [9], stability and resiliency [2],
decentralized monitoring [10], real-time monitoring [11], and system protection [12].

The control side of power systems has countless articles highlighting diverse fields and
techniques that help to maintain a stable operation. Advanced transactive control strategies
have been developed to optimally utilize the installed distributed energy resources and
storage units in the energy community [13]. The proposed techniques have been built based
on the game theoretical control scheme. In addition, two other innovative control techniques
have been established, the whale optimization algorithm (WOA) and the artificial neural
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network (ANN). They are utilized to control the power flow of power systems comprised
of a mix of renewable energy resources.

The availability of software simulations of the MG systems have contributed to its
broad deployment worldwide. However, it still needs more accurate and intensive sim-
ulators to help in monitoring, and to analyze several cases and scenarios. In this context,
Real-Time Simulation (RTS) is considered a valuable and vital tool to test and configure the
proposed models before their actual implementation.

The RTS has been revolutionized in recent years; it returns valuable and significant
results that are highly considered before the implementation phase of the studied systems.
Generally, RTS is a promising technique to test and validate the complex and latest control
approaches applied in MGs. Furthermore, it also helps specify the control and management
parameter values for the best implementation of the model.

A complete RTS of an MG case study has been introduced in [11]. The authors
proposed and studied a reactive power coordination control scheme in a real-time state.
Also, they discussed the transition between the operation modes of the MG case study. The
voltage and frequency evaluation of an MG system using RTS during islanded mode has
been studied in [14].

In MGs, and power systems in general, electrical faults can cause unstable operation of
the systems. These faults could occur by failures in the devices or due to human errors [15].
Moreover, the operation of the MG in islanded mode may lead to voltage sag occurrence
and hence unstable operation [16]. One of the vital and effective techniques that can be
utilized in abnormal operation and voltage sag cases is Fault Ride Through (FRT) [17]. FRT
is one of the effective techniques that is applied to the generation units during fault cases.
It can be defined as “the ability of the generation units to stay connected and available in
case of voltage sag occurrences without interruptions” [18].

Reference [19] has utilized the OPAL-RT simulator to validate dynamic test cases
of two test systems. These dynamic test cases have been examined and validated under
several disturbances, such as a single line-to-ground fault, line shortage, load changes,
and other disturbances. Furthermore, a four-level fault current hierarchical limitation has
been proposed in [20] to analyze and resolve the problem of high fault current during
FRT. Furthermore, an enhancement of MG models has been proposed in [21], using droop
control virtual impedance and secondary power reference generation. It mainly aims to
improve the FRT capability of the inverter-based MG system.

A centralized MG system has been designed in [22] to apply the controller Hardware
in the Loop (HIL) test. This test is applied for the proposed control algorithm, show-
ing the system’s functionality on the power management side and reducing the needed
load shedding.

FRT implementation in MG during the islanded mode of operation has been discussed
in [23]. Islanded mode operation of the MG refers to the operation of the MG as an
independent power system. This can be effected by opening the PCC breaker. Intensive
research and efforts are going on to study the different and most important factors of
MG operation to support a stable system operation during islanded mode. However,
maintaining reliable, stable, and robust operation of the MG, regardless of the current
operation mode, is one of the highest priorities of the MG network. Hence, an algorithm is
utilized in this paper to perform the load-shedding, which aims to maintain the stability
and the power balance factor.

A complete review of load-shedding implementation in MG networks is introduced
in [24]. This reference covered a large number of applied intelligent methods, as well
as different load-shedding classes. The authors of [25] proposed a new load-shedding
algorithm for Inverter-based MGs. The proposed algorithm is based on frequency changes
to specify the power shortage in the MG. Compensation for the power shortage is applied
in the MG using the proposed load-shedding scheme. The generation side of the studied
MG in this reference is generally based on several renewable energy units, including PV
systems, solid oxide fuel cells, and energy storage systems.
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The research presented so far focuses on MG’s characteristics, control systems, protec-
tions, management, and optimization issues. However, implementing an RTS of MG is an
attractive and promising research avenue that has been given attention recently. Moreover,
there is still a significant gap in studying MG control techniques in real-time, especially
during the islanding mode operation. This paper emphasizes the implementation of many
algorithms and scenarios in a real-time state. Two innovative algorithms are demonstrated
for power loss reduction and power balance.

The main objective of this work is the implementation of an RTS, using the OPAL-RT
simulator, to study and analyze an MG case study with different cases. Furthermore, the
detailed steps of the model transformation into a real-time model in the RT-LAB envi-
ronment are introduced in this paper. Even though many researchers have worked on
the RTS of MG, very few pieces of research were reported on implementing two con-
trol techniques that covered both operation modes (connected and islanded modes) of
the MG in a real-time state. Hence, as an energy management process, the two opera-
tion modes of the MG have been covered in this work by implementing FRT and Load
curtailment algorithms.

The rest of the paper is organized as follows: Section 2 presents the proposed MG
model that has been created in this work. The detailed RTS part using the OPAL-RT
simulator, and the MG modeling in the RT-LAB platform, are addressed in Section 3.
Simulation and results analysis are presented in Section 4. Finally, Section 5 summarizes
the findings and conclusion of this study.

2. Microgrid Model Understudy

An MG, as defined previously, is represented by a small-scale power network consist-
ing of different generating units, loads (residential, institutions, commercial), transmission
lines, transformers, controllers, and a PCC. Figure 1 represents a general MG diagram.
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This paper studies different scenarios of an MG case study in real-time mode. The MG
model studied in this work comprises several components: PV systems, load units, battery
energy storage systems (BESS), diesel generators (DGs), and the main utility grid. Figure 2
shows the single-line diagram of the MG case study.
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The installed PV system consists of four PV areas with a total capacity of around
1.8 MW. The five installed loads are varied in their capacity and priority, which have been
considered in performing several algorithms in case of blackout occurrence. The load
priority of the loads has been defined as 25%, 21%, 11%, 13%, and 30% for the installed
loads 1, 2, 3, 4, and 5, respectively.

The utility grid usually controls the MG operation during the connected mode phase.
The main grid follows the voltage and frequency parameters required to maintain the MG’s
stable and reliable operation. The control scheme of the MG during the islanded mode
depends on providing and absorbing the active and reactive power difference between the
generation and load units. Hence, the voltage and frequency parameters can be maintained
at stable values during the islanded operating mode.

Regarding the operation of the MG during the islanded mode, or any fault cases,
the installed resources must have voltage or frequency ride-through capabilities. These
capabilities help maintain the MG’s continuous operation during voltage anomalies.

The modeling of the system has been performed on MATLAB SIMULINK, as shown
in Figure 3. The model’s left side represents the utility grid and its connection with step-
down transformers and a PCC. While the right side of the MG model illustrates the model
classification into five areas, as explained previously in the single-line diagram.

The energy storage system is built with a battery control system that manages its
operation. It helps provide power to the MG system in case of any power shortage.
Moreover, inside the PV and BESS subsystems, a control system has been included to
manage and organize the system’s operation. As both systems are DC power supplies,
inverters have been inserted to convert their output into AC power.
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3. Developed Microgrid Model for RTS

RTS is a promising step in testing several scenarios and technologies. It has contributed
considerably to the evolution of several research communities, especially in the power
systems field. RTS platforms have significantly contributed to analyzing and studying
power system performance issues.

The simulation part in an RTS is strictly based on a discrete-time model with a fixed-
step size. The RT-LAB software is an OPAL-RT real-time simulation platform that meets the
RTS objectives and improves the user’s access experience. It enables the model to perform
its real-world implementation, allowing Hardware-In-Loop (HIL) simulations, for instance.

The OPAL-RT is a cutting-edge technology that combines distributed processing
software and hardware to obtain a high parallel speed and RTS. Figure 4 represents the
OPAL-RT simulator (OP1420 PHIL Microgrid test bench) used in this study. The RT-LAB
software is used in the second stage of the simulation part. The use of the fixed-step
solver in RT-LAB software is mandatory. The system structure and interaction between the
Real-time target and the software platform (Host PC) are represented in Figure 5.

Generally, and regarding the RTS part, the applied process of the RTS can be briefly
summarized into four main steps. In the first step, the Simulink model has to be opened
through the RT-LAB software, where RT-LAB version 2021.3.4.320 has been used in this
stage. Then, the base model will be reconstructed, to be composed of three subsystems
called master, slave, and console subsystems. The master subsystem is the main subsystem
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in the real-time model, and its prefix is “SM_”. Therefore, it cannot be accessed after starting
the simulation.
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On the other hand, users can access the console subsystem during the simulation
running time. The console subsystem contains all the scope blocks and other variables
that need to be modified during the running time. Finally, the slave subsystem is an
optional component in the RT-LAB model, which can be inserted in the case of large and
complex models. Real-time models can include many slave subsystems based on the
model structure.

The second step of the RTS is the compilation of the real-time model. This stage
involves the model’s conversion into a real-time application based on the C language.
The time utilized in this stage depends on the model’s complexity and the predefined
configurations of the real-time process. The compiling step involves six stages: separate
model, generate code, clean target directory, transfer files to target, compile and link
generated code, and retrieve files from the target.

The third stage of the RTS process is “Execute.” As shown in Figure 5, the host contains
the model construction and the platform where the results will be illustrated. The number
of cores used has to be specified before the execution stage, to perform the simulation part
in less computational time and enhance the allocation of the resources. The interact step is
the final step of the RTS. This stage refers to the utilization of the graphical interface in order
to perform the available features, such as data aggregation and control implementation.
The flow chart shown in Figure 6 represents the main steps in the RTS phase.
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ARTEMIS and RT-Events are modeling tools available in the RT-LAB platform. These
tools help in simulating complex power systems with high-performance improvement.
ARTEMIS is a fixed-time solver applied in the real-time simulation of Simscape power
systems. It allows users to benefit from the available algorithms that help provide reliable,
stable, and accurate simulation. The utilization of the ARTEMIS tool allows the users to
perform parallel execution of the circuits on different cores. Additionally, it enables the
real-time simulation of models that consist of a large number of switches.
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RT-Event block-set enables the simulation of systems that contain both continuous
and discrete systems. Moreover, it supports fixed-step size simulation models and works
with RT-LAB to perform real-time simulations.

In the initial stage of the RTS, the MG model has to follow specific modifications to
meet the RTS considerations. One of these conditions is that the model’s upper view must
be composed of two or three subsystems, as mentioned in the previous section. After the
first stage modifications, the MG model is represented in Figure 7, where the red subsystem
is the master subsystem, while the blue one is the console subsystem. The ‘powergui’ block
is the same as the conventional models. It performs its functions represented by choosing
the simulation solver type, obtaining steady-state values, adjusting the initial state, FFT
(Fast Fourier Transform) analysis, etc. Moreover, the “ARTEMIS” block is a fixed step
solver utilized as an RTS optimization tool. It is fully compatible with MATLAB and the
“SimPowerSystems” library.
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Figure 7. MG model in RT-LAB.

The “OpComm” block is a critical component in the model during the RTS part. It can
be installed from the RT-LAB library. It is responsible for providing the communication
infrastructure between the subsystems and the communication between the GUI subsystem
and other computational subsystems. The essential condition in the RTS process is that the
model has to be run well in the MATLAB platform without any errors. After performing
the required modifications, we can open the MG model through the RT-LAB platform and
start the RTS by building the model, loading the model on the target, executing the model,
and acquiring the needed results from the console window. The specifications applied
through this simulation are shown in Table 1.

Table 1. Specification of the RTS.

RT-LAB version v2021.3.4.320

Host platform Windows

Target platform OPAL-RT Linux (x86-based)

Architecture I686

Target OS version Red Hat 5.2 (2.6.29.6-opalrt-6.2.1)

Matlab version v9.9 (64 Bit) (R2020B)
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4. Simulation and Results

This section presents the proposed mechanisms: FRT and Load curtailment algorithms,
and their implementation in the MG case study.

4.1. Fault Ride through

The first technique that has been studied in the real-time state through this paper
is FRT. The operational principle of the FRT technique is represented in the flowchart in
Figure 8. It is mainly based on the injection of the reactive current. The FRT algorithm
starts with sensing the voltage sag. Based on the regulations, the voltage limits measured
at the PCC must be in the range of 0.9–1.1 pu. This indicates the normal operation of the
MG system. However, if the voltage value differs from the acceptable limits, the FRT will
start its operation based on the specified K factor. This factor can be calculated using the
following equations:

K =
IQ

∆V
=

IQ

VN −VPCC
, K ≥ 2 (1)

K = − tan δ (2)
where K is the FRT gain, IQ is the reactive current, ∆V is the voltage difference, VN is the
nominal voltage (1 pu), and VPCC is the voltage value at the PCC point.
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If the voltage parameter exceeds acceptable limits, FRT will start operating by inject-
ing the reactive current from the Grid Side Converter (GSC) to the PCC side to oppose
the voltage sag. Generally, the operational process of the applied FRT is composed of
three stages:

1. The first stage involves the sensing operation of the voltage parameter, in which a
comparison between the measured voltage and the nominal voltage occurs. Referring
to the output of this comparison, the model continually monitors any voltage sag
cases and recovers the system by the proposed FRT.

2. The second step indicates the moving state of the reactive current IQ parameter to be
1 pu as the system faced a voltage sag.

3. The third phase is responsible for adjusting the reactive power reference factor fed to
the PV area block, to control the reactive power injected into the grid side.
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The FRT technique will be studied on the MG model during the connected mode by
inserting a fault at t = 1 s. As the fault occurs, the system will monitor a voltage sag case,
and the FRT algorithm will start to be triggered. It is worth noting that the running time of
the MG simulation is 10 s.

Figure 9 shows the FRT triggering signal in a real-time state, representing the FRT’s
starting operation at t = 1 s. The reactive current (IQ) signal and the changing state of its
value at the FRT operation are shown in Figure 10. The PV block’s reactive power setpoint,
considered a reference factor, will be adjusted during the FRT operation. Figure 11 displays
the MG system’s reactive power signal at the GSC and PCC. The first signal involves a
negative value of the reactive power, showing the flow of the reactive power in the opposite
direction, toward the main grid. Further, the second signal represents the increasing change
of the reactive power value injected from the GSC towards the grid side, to oppose the
voltage sag.
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Figure 12 shows the Active power signal at the first PV area. The spikes generated
in the figures above are due to the loads associated with the PV systems. Furthermore,
the applied maximum point power tracking (MPPT) technique in the PV subsystem can
generate oscillations in some cases, especially in inductive load cases. Load switching and
fault clearness can also create transients, due to the interaction between the mechanical
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energy stored in rotating machines and the energy stored in the inductance and capacitance
when connecting and disconnecting the generation units.
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Equation (3) represents the power losses of the PV system in the two cases: utilizing
the FRT technique, and without FRT. The losses in the output power of the PV system at
area “A” reached about 190 kW. While in the case of the MG, without applying the FRT
technique, the PV system will be disconnected as the fault occurs, leading to a cut of the
output power from the PV side.

Ppv_losses =
Pnormal − Pfault

Pnormal
× 100% (3)

where, Ppv_losses is the losses percentage in the PV output power, Pnormal is the measured
output PV power in ordinary cases, Pfault is the measured output PV power in fault cases.

Based on the results, the output power of the PV is decreased by about 190 kW,
resulting in power losses of about 38%. However, comparing this result with the losses in
case of the total disconnection of the PV system in case of voltage sag, the output power
will reach zero. The achievement of power loss reduction by the FRT technique leads to
a significant reduction in the economic losses and the operational cost of the system. A
minimization function (f1) of the cost factor of the studied MG is represented below by
implementing the FRT algorithm.

min.f1 = min(Closses) (4)
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min.f1 = min
(
Plosses·Cp·365

)
(5)

Closses is the cost of the losses, and Cp is the price of the energy use in kWh in Jordan,
which is USD 0.123. The MG’s power losses factor with FRT implementation is 192 kW,
while it is 500 kW in the case of the absence of the FRT implementation. These results lead
to a cost reduction of USD 22,447.5 to 8619.84 per year by applying FRT. So a minimization
factor of about USD 13,827.66 is achieved out of the f1 function.

4.2. Load Curtailment

Power losses and power balance keys are considered vital factors in the energy man-
agement of power systems. They have a direct impact on the system’s performance and
economical operation. Power balance relies on the generation and demand levels. It is
based on the power difference parameter. The generation side of the MG is classified based
on the installed generation units. RES (PV, wind, etc.), DGs, grid sources, and other units
are examples of the generation side. In addition to the case of BESS installation, Equations
(6) and (7) present the power balance condition:

Pgeneration_side = Pconsumption_side (6)

PGrid + PPV + PSS_discharge + PDG = PDemand + PSS_charge (7)
The problem formulation of this scenario started in the MG’s islanded mode operation.

During the islanded mode of the MG, the generation side relies on the installed types of
generation, including intermittent generation units such as PV systems and dispatchable
generation units such as diesel generators. Moreover, the installed intermittent genera-
tion units and load demand units vary depending on several factors, such as weather
forecasts and human activities. This leads to the need for continuous monitoring of the
generation/demand balance in the MG system.

The power difference parameter (PDiff) is the key to achieving power balance. It has to
be within a specified range, as shown in Equation (8). A zero value of PDiff indicates the
power balance state. Several strategies have to be exploited in the case of PDiff values that
are more or less than zero. Values greater than zero indicate cases of surplus power. The
surplus power can be stored in an energy storage system, or injected into the main grid, or
sold to other utilities. Values below zero represent the cases of generation failures covering
the installed load. Load curtailment techniques can be exploited in these cases. They rely
on load minimization through a gradual disconnection process of the load.

PDiff = Pgeneration_side − Pconsumption_side
Where Pmin

Diff < PDiff < Pmax
Diff

(8)

where
Pgeneration_side

min ≤ Pgeneration_side ≤ Pgeneration_side
max

Pconsumption_side
min ≤ Pconsumption_side ≤ Pconsumption_side

max

Pdiff ≥ 0, (typical case)
(9)

A second minimization function (f2) of the power difference factor of the studied MG
is represented below by implementing the Load curtailment algorithm.

min.f2 = min(PDiff)
∣∣∣Pgrid=0 , PDifff ∈ R (10)

min.f2 = min
(

Pgenerated − Pdemand

)∣∣∣Pgrid=0 (11)

Pgenerated = PPV + PSS + PDG; Pgrid = 0 (12)
The f2 mainly manages the balance state of the system by decreasing the Pdiff parameter

in the case of islanded mode operation. The main constraints of this function are the
generated and demand power, which together specify the Pdiff parameter. Based on
equation 9, Pdiff is considered an inequality constraint with several active, inactive, and
violated cases at the design point (zero).

As the Pgenerated depends on the installed generation units, f2 decreases the demand
side as the Pgrid is zero (islanded mode operation). The shedding process of the installed
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load depends mainly on the priority of the load. Therefore, the load with the lowest priority
is considered the first choice in the shedding stage. The disconnecting loads decrease the
overall demand, and the algorithm recalculates the PDiff parameter. In the MG case study,
the load priority of the installed loads 1, 2, 3, 4, and 5 are ordered as follows: 25%, 21%,
11%, 13%, and 30%, respectively.

In this case study, the MG will operate in islanded mode at t = 3 s. Figure 13 represents
the power difference signal of the MG. The power significantly decreases when the MG
operates in islanded mode.
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The Load curtailment algorithm starts its operation as it senses the value of the grid
current Igrid. The zero value of Igrid indicates the MG is operating in islanded mode.
Figure 14 represents the operation principle of the proposed mechanism. As the value of
Igrid reaches zero, and the Pdiff factor is negative, Load curtailment will start its operation
automatically. Load 3 (L3) will be the first choice to be disconnected since it has the lowest
priority. At about t = 3.2, L3 has disconnected, increasing the Pdiff factor, as shown in
Figure 13. However, the Pdiff signal is still a negative value, which means that the demand
side still exceeds the generation side. Hence, the Load curtailment algorithm continues
its operation by disconnecting load 4. This process proceeds automatically by the Load
curtailment model, based on a sensing system and logical blocks to send ON/OFF signals
to the demand side. Moreover, in RTS, RT-LAB allows the users to manually send the
ON/OFF signal during the running simulation, using control signals from the console
subsystem. After the disconnection of load 4, the Pdiff signal becomes positive, and this
indicates the elimination of the unbalanced case.

Generally, as the implementation of FRT and Load shedding techniques leads to
cost reduction, and demand scheduling maintaining a stable and reliable operation, both
techniques can be considered as a simplified approach of the power flow scheme. One of
the future directions of this study is to develop an Optimal power flow of the MG system
to enhance several factors. An example of these factors is the enhancement of the voltage
stability using the demand response management system, referring to [26].

The monitoring view window in Figure 15 presents the CPU usage for the tasks
implemented in a real-time state. It helps to monitor overrun cases, in which our simulation
shows that the number of overruns is zero. Furthermore, this tab can specify each task’s
duration by identifying the task’s start and stop times.

236



Sustainability 2023, 15, 2696Sustainability 2023, 15, x FOR PEER REVIEW  15  of  17 
 

 

 

Figure 14. Load curtailment flowchart. 

Generally, as the implementation of FRT and Load shedding techniques leads to cost 

reduction, and demand scheduling maintaining a stable and reliable operation, both tech‐

niques can be considered as a simplified approach of the power flow scheme. One of the 

future directions of this study is to develop an Optimal power flow of the MG system to 

enhance several factors. An example of these factors  is the enhancement of the voltage 

stability using the demand response management system, referring to [26]. 

The monitoring view window in Figure 15 presents the CPU usage for the tasks im‐

plemented in a real‐time state. It helps to monitor overrun cases, in which our simulation 

shows that the number of overruns is zero. Furthermore, this tab can specify each task’s 

duration by identifying the task’s start and stop times. 

 

Figure 15. Real‐time monitoring view window for the proposed model. 

Figure 14. Load curtailment flowchart.

Sustainability 2023, 15, x FOR PEER REVIEW  15  of  17 
 

 

 

Figure 14. Load curtailment flowchart. 

Generally, as the implementation of FRT and Load shedding techniques leads to cost 

reduction, and demand scheduling maintaining a stable and reliable operation, both tech‐

niques can be considered as a simplified approach of the power flow scheme. One of the 

future directions of this study is to develop an Optimal power flow of the MG system to 

enhance several factors. An example of these factors  is the enhancement of the voltage 

stability using the demand response management system, referring to [26]. 

The monitoring view window in Figure 15 presents the CPU usage for the tasks im‐

plemented in a real‐time state. It helps to monitor overrun cases, in which our simulation 

shows that the number of overruns is zero. Furthermore, this tab can specify each task’s 

duration by identifying the task’s start and stop times. 

 

Figure 15. Real‐time monitoring view window for the proposed model. Figure 15. Real-time monitoring view window for the proposed model.

5. Conclusions

In this paper, an MG case study has been built in MATLAB/SIMULINK and studied in
a real-time state. The real-time simulator used in this study is the OP1420 PHIL Microgrid
testbench simulator. The MG model has been edited in the RT-LAB platform to implement
the required modifications in a real-time state. Two scenarios have been proposed and
modeled through this work. The first scenario is the FRT, which is implemented to prevent
the total outage of the PV system that may occur following unpredictable faults. The
results show the effectiveness of this technique in decreasing the losses of the system and
hence decreasing the economic losses. The FRT implementation achieved a minimization
in losses of about 60%. The second scenario is performed to obtain the load-generation
balance by applying the proposed Load curtailment algorithm. The results show that the

237



Sustainability 2023, 15, 2696

Load curtailment algorithm contributes to maintaining the balance and stable operation of
the MG.
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Abstract: Due to the high penetration of renewable energy sources into the electrical power network,
overcurrent relays coordination with highly sensitive and selective protection systems are now
two of the most important power protection concerns. In this research, an optimal coordination
strategy utilising a new hybrid tripping scheme based on current–voltage characteristics has been
devised for overcurrent relays in a power network coupled to a photovoltaic system. This research
develops and proves a new optimal coordination scheme based on two optimisation methods,
the vibrating particles system and particle swarm optimisation algorithms, in consideration of the
impact of renewable sources on fault characteristics. The new optimal coordination approach aims
to improve the sensitivity and dependability of the protection system by reducing the tripping
time of the overcurrent relays by employing a new hybrid tripping scheme. A specific case study,
Conseil International des Grands Réseaux Electriques (CIGRE) distribution network connected to
two photovoltaic systems is constructed and presented utilising Industrial software (namely ETAP),
and the outcomes of the proposed optimal coordination scheme are compared with standard and
recent characteristics from the literature. The hybrid tripping scheme and optimisation techniques
are evaluated using different fault and power network model scenarios. The results show that the
optimal hybrid tripping scheme provided successfully decreases the overall operating time of the
overcurrent relays and increases the sensitivity of the relay during all fault scenarios. The reduction
in overall time for the proposed hybrid tripping scheme was 35% compared to the literature for the
scenario of a power grid with and without photovoltaic systems.

Keywords: overcurrent relays; optimal coordination; renewable energy; nonstandard tripping characteristics

1. Introduction

Photovoltaic (PV) arrays, wind turbines, and fuel cells are all examples of Distributed
Generators (DGs) that can be integrated into an existing Distribution Network (DN) to
save energy costs, improve reliability, and satisfy environmental regulations. Furthermore,
utilities benefit from higher power quality with such DG systems in place. However, DGs
cause a change in the level and characteristics of the fault current and bidirectional power
flow [1–3]. As a result, the conventional method of protecting DN with DGs based on
the use of Overcurrent Relays (OCRs) is becoming more challenging. In addition, when
designing a protective system to deal with varying fault levels and different grid operation
modes (with and without DG), the DN’s ability to operate in these modes is an important
concept to take into account [4]. Redesigning or replacing the protection system in a DN
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due to the integration of the DGs can be costly and technically challenging. By increasing
the capacity of DG penetration in DN, the OCR settings must be modified to cope with the
changing power flow and fault. Adaptive protection systems in radial DNs often adjust
the relay settings according to the role of the communication system. However, in many
DNs, establishing a communication infrastructure for power protection systems may be an
expensive choice. The recent and main OCR coordination approaches for DN with DG are
divided into six categories, which are shown in Figure 1, as follows [4,5]:

• Developing a new objective function to address the OCR coordination problem.
• Applying and developing a dual-setting approach in OCR.
• Designing and developing a non-standard characteristic for OCR.
• Using a new optimisation algorithm to solve the complex OCR coordination problem

for a DN with DG.
• Applying and developing new constraints to the objective function.
• Designing and developing a hybrid tripping characteristic for OCR.
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The primary purpose of all of the aforementioned approaches is to obtain the ap-
propriate setting for protection schemes to maintain the reliability of protection scheme
performance for interconnected DNs with DGs. Therefore, this research presents a new
non-standard current–voltage characteristic for programmable OCRs as a hybrid tripping
characteristic approach. The magnitudes of the faulty phase voltage and current are used
by the suggested method to calculate the relay’s operation time by employing a new op-
timisation method. Plus, it can safeguard DNs with extensive penetration of DGs in the
grid-connected mode of DN operation, and it does not rely on any sort of communication
infrastructure. Academics and industry professionals have focused significantly on the
problem of DN protection due to the stochastic behaviour of DGs. Several approaches
have been proposed to provide an adequate method of protecting the microgrid in both
modes (with and without DGs). Some of them concentrate on communication channel
protection [6,7]. Slemaisar-doo et al. [8] suggested a differential protection approach em-
ploying a non-nominal frequency-current during a microgrid fault that is superior to
traditional overcurrent protection in detecting the microgrid fault. Aghdam et al. [9]
proposed a differential protection method based on variable tripping times, and a mul-
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tiagent protection scheme was designed to improve the coordination of adjacent relays.
Communication-based strategies are realistic microgrid protection options. However, the
reliability of this type of protection highly depends on the communication facilities and
performance; it is also not an economically viable solution. In addition [6,10], these schemes
are affected by a communication failure, imbalanced loads, and transients’ events during
the connection and disconnection of DGs. These days, it is common practice to employ
programmable relays (microprocessor relays) to apply non-standard characteristics. The
literature proposed several concepts, including a logarithm characteristic for OCRs [5,10],
a combination of standard characteristics and a non-standard term based on voltage [5],
and a standard characteristic under new constants [5,10] for DNs with DG to reduce the
total amount of time spent operating the OCR. However, these approaches are utilised in
radial DNs with DG, and all of these techniques require a communication infrastructure.
Therefore, the purpose of this study is to introduce a new hybrid optimal coordination
strategy that does not require a communication link between the OCRs. This is intended to
reduce the demand for communications infrastructure while improving the coordination
approach of the OCR. Furthermore, the suggested method will reduce computing costs
and the necessity to access voluminous PV and network data.

Because of phase OCR’s inapplicability for handling the complexity of DN-integrated
PV systems, the voltage term is being explored as a potential term for solving the OCRs
coordination issue [11]. In [12], a voltage-restricted overcurrent relay is presented using
phase voltage and current to set the necessary threshold. Nevertheless, the PV plant’s
control method may cause phase currents to be larger in a healthy phase than in a faulty
phase, leading to the relay in miscoordination events. Few studies have looked into the
use of voltage terms in the OCRs coordination problem [13]. The use of voltage-restricted
OCRs coordination schemes for network protection was discussed, for example, in [14].
However, no voltage limitation was presented with the OCR algorithm or result [14].
The voltage–current–time inverse model presented by Singh et al. [15] is based on vari-
ations in currents and voltages during fault events. The suggested OCR coordination
model improves operating time and maintains protection coordination for power networks
with PV systems without considering different modes of the grid. El-Sayed et al. [16]
introduced a current–voltage scheme for directional OCR based on measuring harmonic
currents and voltages at the relay position to guarantee optimal protection coordination
for the islanded microgrid without taking into account bidirectional power flow and grid-
connected operation mode. Protection schemes that use conventional inverse time–current
characteristics are becoming increasingly unsuitable as the penetration of DGs in the DN
rises. Authors [17,18] presented a voltage-based protection scheme to minimise the oper-
ating time of the relay compared to the traditional inverse time current scheme. Another
study [19] proposes a strategy for protecting the DN using the superconducting fault limiter
based on the voltage parameter. There is a limited number of research that used the non-
standard logarithmic function for developing a current–voltage protection coordination
scheme for DN with DGs under different grid operation modes and fault scenarios.

The foregoing challenges and evidence point to the necessity of having a flexible
protection mechanism for more dynamic power networks with DG in the future. OCR
protection schemes must be compatible with dynamic power systems in terms of their
ability to overcome and accommodate these emerging features, raising questions about
the appropriateness of standard characteristics of OCR protection schemes, stability, and
protection selectivity for DN with DG. In this paper, we introduce a novel hybrid trip-
ping scheme based on non-standard current–voltage characteristics for fast response OCR
prevention in DNs with PV farm systems without using a communication protocol. The
following are some of the study’s contributions that aim to bridge this research area gap:

1. To enhance the performance of the protection system, a new non-standard logarithmic
and hybrid tripping coordination scheme based on current–voltage characteristics
is established for DN with DGs. In this article, a significant reduction in total oper-
ational time is achieved, with no instances of miscoordination compared to typical
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characteristics of the OCR scheme. This work compares the proposed new hybrid
tripping OCR scheme (HOC) with the common inverse time–current characteristic
(SIC) and the time–current–voltage characteristic (CVC) from the literature [16,20].

2. In the literature [20], the use of modern optimisation techniques in solving protection
problems, such as the particle swarm algorithm [21,22] assists in achieving the optimal
OCR settings. To solve the OCR coordination problem based on the non-standard
current–voltage characteristic and reduce the total operational time of OCRs, a new
optimisation technique, the Vibrating Particles System (VPS) approach, has been
designed and employed.

3. Since the proposed hybrid optimal coordination scheme in this work only uses locally
obtained measurements, no medium of communication between the OCRs is nec-
essary. This eliminates the demand for communications infrastructure and reduces
computational costs and the requirement for access to extensive PV and network data.

4. The sensitivity and selectivity of the proposed hybrid optimal coordination scheme
have been investigated for DN (benchmark power network, CIGRE) with DGs under
different fault scenarios and operation modes. This aims to provide network operators
with a preliminary indicator regarding the potential impact of DGs on the fault
contribution and relay setting.

The following sections are ordered as follows: The optimum OCRs coordination
problem formulation is introduced in Section 2. In addition, the proposed hybrid tripping
scheme is developed. The results and comparison are discussed in Section 3. In Section 4,
the summary and conclusion of this work are presented.

2. Problem Formulation of Optimum OCRs Coordination

The coordination problem of OCRs in a DN with DGs can be formulated as an optimi-
sation problem [1,5]. This formulation’s purpose is to identify the OCRs settings that reduce
the overall operational times of OCRs without sacrificing the selectivity between primary
and backup relays. Figure 2 describes the structure and workflow taken in this paper.
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This section offers a mathematical formulation of the proposed optimisation approach
to solve the coordination problem and enhance the performance of the optimisation strate-
gies for OCRs. The objective function (OT) is, therefore, utilised to minimise the overall
operating time of the primary and backup OCRs. OT can be expressed as described in
Equation (1) [1,5].

OT =
R

∑
r=1

F

∑
f=1

tr,f (1)

where tr,f is the operational time of the relay, r, at the fault location, f. R is the number of
OCRs and F is the total location of the fault in the DN. The objective function, OT, is subject
to the following constraints.

2.1. Selectivity Constraints

The objective of the selectivity or coordination restriction is to extend the lag time
between the primary and backup OCRs in terms of propositional operations. This producer
will help in reducing the impact of a power loss on the network by pinpointing the precise
location of the defect; in this case, the backup OCRs should be inoperable unless the primary
OCRs fail to do so. As a collection of inequality constraints, selectivity and coordination
criteria can be stated using the Coordination Time Interval (CTI) [1,4].

tbackup − tprimary ≥ CTI (2)

where the tprimary is the operational time for the primary OCR and tbackup is the operational
time of the backup OCR. The CTI value is based on several criteria, including relay type
and circuit breaker speed. To achieve selectivity, the CTI is often set between 0.2 and 0.5 s
according to IEEE-242. Therefore, the CTI is equal to 0.3 in this study, similar to [1,4].

2.2. Relay Settings Constraints

To preserve the OCRs operational time constraints, minimum and maximum OCR
operational time requirements must be presented. However, protective relays should run
with the shortest operational time possible; if they take longer to work, equipment damage
and power system instability will result. Here are the minimum and maximum operational
time limits:

tmin ≤ tr ≤ tmax (3)

TMSmin ≤ TMSr ≤ TMSmax (4)

where tmin and tmax are the minimum and maximum OCR operational time, tr is the
operational time of the relay r. TMSmin and TMSmax are the minimum and maximum
Time Multiplier Settings (TMS). TMSr is the TMS value for relay r. In this study, TMS is
handled as a continuous variable, and OCRs need to work within the operating period
of the protection schemes. Therefore, the TMS should be set within the maximum and
minimum values under different fault conditions, or even during a light overload. TMS
limits range from 0.01 to 3 [5], and the TMS for the majority of industrial and microgrid
OCRs falling within this range.

2.3. Characteristics of the Relay

In general, the operation time of an overcurrent relay (OCR), t, is dictated by a standard
inverse function of the fault current and operational time. The characteristic equation
governing the relay’s working time varies based on the OCR’s manufacturer and type of
the relay. In this paper, standard OCRs are employed in conjunction with the IEC255-3
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standard characteristic equation as described in (5) as a reference scheme to compare our
proposed scheme with it [4,5].

t =


 A
( I f

Ipi

)B
− 1


TMS (5)

where I f is the fault current, Ipi is the pickup current, A and B are constants defined based
on the OCR standard such as IEEE, IEC, and AREVA. Numerical and programmable relays,
such as OCRs (microprocessor relays), can typically have their time-operating properties
modified and updated via a network connection and real-time data. In this article, the
numerical relay (OCR) is used in this article based on industry standard (IEC) where A and
B are equal to 014 and 0.02, respectively [2,5]. The normal standard inverse time-current

characteristic is shown in Figure 3 for the relation between operational time, t, and
I f
Ipi

.
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In addition to the standard inverse characteristic, in [23] a time–current–voltage
characteristic for OCR based on the phase fault voltage, V, is proposed as follows:

t =
(

1
e1−V

)K
TMS


 A
( I f

Ipi

)B
− 1


 (6)

The time–current–voltage characteristic of [19], as described in Equation (6) and shown
in Figure 4, is also used as a reference OCR scheme, which will be compared to the hybrid
tripping scheme in this work.
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2.4. Proposed Hybrid Tripping OCR Characteristic

In the literature, the typically inverse time–current characteristic [1,2] and time–
current–voltage characteristic [23] are restricted to certain values of the setting of low
and high multipliers. As previously explained, the fault characteristics of a power system
network incorporating renewable energy sources are challenging and distinct. The limita-
tion of using characteristics from the literature reduces OCR’s sensitivity in the event of
maximum and minimum fault currents at different operation modes for the DN [5]. This
work proposes an advanced hybrid OCRs characteristic and coordination approach based
on a non-standard current–voltage characteristic based on a logarithmic function to alleviate
the limitations in the standard characteristics and the protection difficulties for DG systems.
Furthermore, the tripping characteristics of OCRs as described in Equations (5) and (6) [5]
are significantly longer for DGs with a weak fault infeed, making them unsuitable for
use in power networks with low fault currents. This limitation is alleviated in this work
by the introduction of a new hybrid tripping OCR characteristic based on a logarithmic

function for the currents (
I f
Ipi

) and the phase voltage (VP). The new hybrid tripping OCR
characteristic is presented in Equation (7):

t =

(
5.8 − 1.35 ∗ loge

(
I f

Ipi

))
loge(9VP + 1) TMS (7)

To achieve selectivity in OCR coordination, the grading time must be independent
of the network fault location and fault current level. Equation (7) presents the proposed
hybrid tripping OCR characteristic utilizing logarithmic and constant coefficients for all
relays. This helps the classification time to be independent of the fault level and location.
To establish the best TMS in Equation (7) that minimises the operation tripping time, the
next section describes the optimisation algorithm that has been used to find the optimal
OCR setting and TMS. Figure 5 presents the current–voltage characteristic curve based on
a logarithmic function.
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2.5. Optimisation Methods for Solving the OCRs Coordination Problem

In this section, the OCRs coordination problem represented by Equation (1) for a
DN with connected DGs is treated as an optimisation problem. This section presents
two optimisation algorithms, Particle Swarm Optimisation (PSO) and the Vibrating Particle
System (VPS) approach, as common and new powerful optimisation algorithms for solving
OCR coordination problems using the standard inverse time–current characteristic [2,4], the
time–current–voltage characteristic [20,23], and the hybrid current–voltage characteristic.

2.5.1. PSO Algorithm

This research introduces and employs the PSO algorithm, as depicted in Figure 6 [24,25],
as a common optimisation technique to solve OCR coordination problems. Kennedy and
Eberhart established PSO as one of the most effective approaches for solving complex
engineering optimisation problems [2,26]. Furthermore, the PSO is a cutting-edge heuristic
optimisation technique, and its inherent simplicity means that it uses fewer CPU resources.
Consequently, the PSO’s global solution finding, rapid convergence, and easy implemen-
tation have made it popular in a variety of contexts, including energy, power flow, and
protection system problems [5,26]. Based on the benefits of this strategy, the PSO method
is used here to provide a common and reference algorithm for solving the proposed coor-
dination problem, as described in Equation (1). In general, PSO mimics and is inspired
by human social behaviour and the behaviour of swarming animals [5]. The objective of
the PSO algorithm is to maintain and govern the population of agents or particles (called
a “swarm”), where each swarm of particles represents a potential solution. In PSO, the
population of the swarm represents the solution, and each particle represents an individual
result. The particles memorize their current and optimal population position relative to
the objective function under consideration (Equation (1)). The trajectory of the particles
will be modified based on their position and the optimal position of the swarm. In each
iteration, improved placements and optimal solutions are discovered, which influence
particle movement in the swarms. Each particle moves inside the search space with a
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variable velocity. In the end, the PSO model will identify the optimal answer among all
conceivable alternatives, which is known as the “global solution”.
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Figure 5 depicts the outline of the optimisation technique for the proposed coordi-
nation of OCRs problem. First, using the measured network information, load flow and
short circuits are computed. Then, the PSO model is used to generate an initial swarm
population based on all of the input data. In this article, we describe the PSO optimisation
model through the minimal cost function, Equation (1), and the protection and network
constraints, Equations (2) to (4). After the swarm’s data have been updated, the process will
repeat itself based on the fitness values of the goal function. Finally, the OCRs problem’s
global solution will be found by the PSO model at the end of each iteration, and the TMS
will be determined as a result.

2.5.2. VPS Algorithm

In 2017, an evolutionary metaheuristic search strategy, the Vibrating Particles System
(VPS) approach [27], was created by Kaveh and Ilchi Ghazaan. It encourages natural
vibration of systems with a single degree of freedom subject to viscous damping. VPS
has been used to solve a variety of structural and engineering optimisation problems,
with positive results in terms of convergence and accuracy [28]. The newly presented
optimisation algorithm (VPS) is intended to tackle complicated optimisation problems with
minimal computational effort and expense. Therefore, the proposed VPS algorithm can
be an extremely efficient and potent algorithm to tackle complex protection coordination
problems for a power network with integrated DGs. Similarly, to other population-based
metaheuristics, VPS starts with a random pool of initial solutions and analyses them as
single degrees of freedom in vibrating systems. When a freely vibrating system is subjected
to damping conditions, it oscillates and eventually finds its equilibrium position according
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to a predetermined formula. Differential equations are used to easily demonstrate this
case. VPS improves the quality of the particles on a regular basis during the optimisation
process by oscillating them forward to the equilibrium position using a combination of
randomness and exploitation of the data collected [27,28]. Consider that the equilibrium
position of each particle includes three parts: the highest optimal position (HOP), a good
optimal particle (GOP), and a bad optimal particle (BOP). Therefore, there are essentially
three concepts for the movement towards the global optimal solution:

1. Self-adaptation: In a process of self-adaptation, the particle shifts its trajectory to
approach HOP.

2. Collaborations: The new particle’s location can be influenced by the GOP and BOP.
3. Competitions: In terms of competition, GOP is more influential than BOP.

For each particle, VPS modifies the weights in HP, GP, and BP. Following a population-
level application of a penalised objective function sort, values are then ranked in ascending
order. Both the GOP and the BOP for a given particle are drawn at random from the first
and second halves of the population, respectively. Good particles, bad particles, and the
algorithm’s best particle up to this point are compared using different constant weights,
and the rand is a uniformly produced random number between 0 and 1. It should be
mentioned that VPS adjusts the location of particles using memory based on the harmony
search approach [27]. The best solution (TMS) will be chosen at the end of the iteration
process, when the number of objective function evaluation iterations (NFEs) exceeds the
maximum number of NEFs (maxNFES), as shown in Figure 7.
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3. Results

The formulation described in Section 2 for the OCRs coordination problem is evaluated
using a CIGRE distribution network as a common and standard DN. Figure 7 shows the
CIGRE distribution network, and a detailed description of the CIGRE grid is discussed
in [29]. The proposed hybrid tripping OCR scheme suggested in this paper was first
applied to protect the CIGRE network with or without DGs (two PV systems). This
section will describe the results of the hybrid tripping OCR characteristic provided under
different network operation modes (with and without DG) and different fault scenarios.
Furthermore, this section compares the proposed hybrid tripping OCR scheme (HOC) to the
common inverse time–current characteristic (SIC) and time–current–voltage characteristic
(CVC) [20,23]. Presented is a comparison of the total operational time for HOC, SIC, and
CVC in several power network scenarios. Using the three tripping characteristics, the VPS
and PSO optimisation algorithms are applied to solve the OCR protection coordination
problem. The outcomes of both the VPS and PSO models are also evaluated and contrasted.
The HOC approach has been evaluated using industrial software (ETAP), and the findings
are provided and compared to the SIC and CVC schemes.

3.1. Description of the CIGRE Distribution Network under Study

The proposed HOC scheme is tested on a CIGRE distribution network, as shown in
Figure 8, to determine optimal OCRs coordination and achieve the minimum tripping time.
The CIGRE grid is developed based on a 14-bus feeder, and all details are described in [29].
In general, the CIGRE grid is fed by a utility HV/M source and protected by 12 OCRs.
Furthermore, this grid is connected to two PV units (each rated at 5MVA) through a 1/20 kV
set-up transformer, as described in more detail in [2,5]. On each line, three-phase faults
are done at nodes (F1–F12) that represent the near-end and far-end fault locations. Each
fault location is assigned two primary OCRs, with one backup OCR for each primary OCR.
The Plug Setting (PS), pickup current (Ipi), and Current Transformer Ratio (CTR) for each
OCR are displayed in Table 1. The load flow was generated to determine the CTR and
PS for each OCR initially. In addition, a three-phase short-current determine according to
IEC-60909 for different locations. Consequently, the HOC, SIC, and CVC schemes utilised
in this investigation have been detailed. The three-phase short-circuit was examined using
the ETAP software and the relevant data. The OCR data required to simulate the power
network model are listed in Table 1.

Table 1. The PS, Ipi, and CTR for each OCR.

Relay CTR PS Ipi(A)

HOC1 200/1 60 120
HOC2 200/1 60 120
HOC3 100/1 50 50
HOC4 100/1 50 50
HOC5 100/1 20 20
HOC6 100/1 20 20
HOC7 100/1 60 60
HOC8 100/1 50 50
HOC9 100/1 30 30

HOC10 100/1 20 20
HOC11 100/1 30 30
HOC12 100/1 50 50
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3.2. Test Results for CIGRE Distribution Network without PVs

To demonstrate the performance advantage of the proposed hybrid tripping scheme
(HOC) in terms of providing the shortest tripping time while preserving suitable CTI across
OCR pairs, Table 1 displays the tripping times of all OCR pairs (primary and backup) at
various fault sites for the distribution network without PVs. In addition, Table 2 displays the
number of recorded delays in trip time when the SIC and CVC approaches were employed
in comparison to the HOC approach. For instance, 0.27 s in comparison to 0.59 and 0.56 s
for OCR 4 when utilizing the HOC compared to SIC and CVC, respectively, in the event of
a three-phase fault at F3.
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Table 2. The operating time values in seconds (S.) of OCR for the SIC, CVC, and HOC approaches for
the CIGRE distribution network without PVs.

Fault Fault Current (A) OCR SIC (S.) CVC (S.) HOC (S.)

F1
1223.0 5 0.02 0.01 0.00

1223.0 4 0.32 0.31 0.31

F2
1415.0 4 0.31 0.26 0.12

1415.0 3 0.61 0.56 0.42

F3
1500.0 3 0.59 0.52 0.27

1500.0 2 0.89 0.82 0.57

F4
1603.0 2 0.87 0.77 0.54

1603.0 1 1.17 1.07 0.84

F5
3239.0 1 0.91 0.69 0.54

3239.0 — 0.00 0.01 0.00

F6
1394.0 7 0.90 0.89 0.40

1394.0 2 0.92 0.87 0.60

F7
1352.0 8 0.60 0.52 0.15

1352.0 7 1.00 0.94 0.46

F8
1258.0 9 0.32 0.29 0.21

1258.0 8 0.61 0.59 0.51

F9
1205.0 10 0.02 0.01 0.00

1205.0 9 0.32 0.31 0.30

F10
1195.0 6 0.03 0.01 0.01

1195.0 7 0.98 1.01 0.60

F11
2039.0 11 0.02 0.01 0.005

2039.0 12 0.32 0.54 0.48

F12
2943.0 12 0.29 0.45 0.34

2943.0 — 0.02 0.00 0.00

Observably, the HOC approach reduces the trip time of all OCRs compared to the
SIC and CVC approaches. The use of the HOC method as mentioned in Table 2 reveals
the tendency of all OCRs to create an exact CTI among all fault conditions. In addition,
the OCR times satisfy all optimisation constraints when the HOC approach is applied. As
shown in Table 2, the sensitivity task is adequately provided using the HOC, demonstrating
the superiority of the suggested method.

3.3. Test Results for CIGRE Distribution Network with PVs

To evaluate the effects of the novel HOC approach, the ideal OCR configuration for
the CIGRE distribution network fed by a utility feeder and two PV systems was found, as
illustrated in Figure 7. Table 3 displays the trip time for the primary and backup OCR pairs
for three-phase faults for the HOC, SIC, and CVC characteristics under grid-connected PV
mode. The HOC strategy outperforms both the standard OCRs method (SIC) and CVC. The
operational time of all OCRs, as provided in Table 3, indicates that the HOC decreased with
the maintaining of sufficient CTI between primary and backup OCR pairs, as compared to
SIC and CVC approaches. For example, the HOC approach achieved a trip time of 0.535 s
for OCR 2 during F4, while the SIC and CVC approach achieved times of 0.894 and 0.817 s,
respectively. By decreasing the time it takes for relays to trip, the HOC technique has the
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potential to shorten the amount of time relays need to be in operation, which in turn would
improve the reliability of the power grid.

Table 3. The operating time values in seconds (S.) of OCR for the SIC, CVC and HOC approaches for
the CIGRE distribution network with PVs.

Fault Fault Current (A) OCR SIC (S.) CVC (S.) HOC (S.)

F1
1223.0 5 0.021 0.009 0.004

1223.0 4 0.322 0.309 0.305

F2
1415.0 4 0.309 0.259 0.102

1415.0 3 0.604 0.554 0.411

F3
1500.0 3 0.593 0.518 0.249

1500.0 2 0.894 0.817 0.564

F4
1603.0 2 0.871 0.772 0.535

1603.0 1 1.171 1.072 0.820

F5
3239.0 1 0.914 0.692 0.533

3239.0 —- 0.000 0.000 0.000

F6
1394.0 7 0.898 0.796 0.406

1394.0 2 0.925 0.868 0.599

F7
1352.0 8 1.610 0.519 0.192

1352.0 7 0.904 0.821 0.466

F8
1258.0 9 0.317 0.293 0.213

1258.0 8 1.647 0.593 0.516

F9
1205.0 10 0.021 0.008 0.002

1205.0 9 0.321 0.310 0.300

F10
1195.0 6 0.029 0.013 0.006

1195.0 7 0.886 0.899 0.610

F11
2039.0 11 0.018 0.009 0.005

2039.0 12 0.318 0.541 0.476

F12
2943.0 12 0.292 0.449 0.347

2943.0 —- 0.000 0.000 0.000

3.4. Discussion and Comparison

This section contrasts the efficiency of the suggested HOC approach compared to
traditional SIC and CVC strategies in the two power grid scenarios (with and without
PV). In general, Table 4 displays the overall OCRs’ tripping times for the two power grid
scenarios. The TMS and overall operational time in each power grid scenario are reported
in Table 4 and were computed using the VPS optimisation technique. To analyse the
effectiveness of these acquired settings in terms of total operational time and CTI, we used
ETAP software to simulate fault scenarios and then investigated their performance using
HOC, SIC, and CVC techniques. In Table 4, we can see that the comparison results in
shorter operating times for all OCRs in all cases. The overall operational times for the
power grid connected to PVs were 11.86, 11.14, and 7.68 s for the SIC, CVC, and HOC
approaches, respectively. Furthermore, the reduction in the overall time for HOC was
35.3% and 33% compared to SIC and CVC, respectively, for the scenario of a power grid
without PV.
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Table 4. The overall operating time in seconds (S.) and TMS values of OCRs for the SIC, CVC, and
HOC approaches for the CIGRE distribution network with and without PVs.

OCR

Without PVs With PVs

TMS

SIC CVC HOC SIC CVC HOC

1 0.445 0.464 0.597 0.445 0.464 0.584

2 0.330 0.465 0.474 0.331 0.465 0.472

3 0.299 0.666 1.28 0.298 0.66 1.19

4 0.151 0.328 0.62 0.155 0.328 0.524

5 0.01 0.01 0.01 0.01 0.01 0.01

6 0.01 0.01 0.01 0.01 0.01 0.01

7 0.416 0.977 0.995 0.424 0.873 1

8 0.293 0.667 1.31 0.3 0.667 1.61

9 0.150 0.354 0.88 0.154 0.354 0.862

10 0.01 0.01 0.01 0.01 0.01 0.01

11 0.01 0.01 0.01 0.01 0.01 0.01

12 0.175 0.339 0.615 0.177 0.339 0.627

Overall operational time (S.) 11.84 11.44 7.66 11.86 11.14 7.68

3.5. Results of the Proposed Coordination Schemes Based on Different Optimisation Algorithms

Two optimisation methods (PSO and VPS), as common and new powerful optimisation
algorithms, respectively, were utilised to determine the optimal coordination setting for all
OCRs, and their results were compared to those of the SIC, CVC, and HOC approaches in
each of the two power grid scenarios (with and without PV). It is clear from Table 5 that
the suggested HOC approach is the best option for reducing the overall operating time
of OCRs for both optimisation algorithms (PSO and VPS). In addition, for the SIC, CVC,
and HOC approaches, the coordination performance is slightly enhanced by the use of the
VPS optimisation algorithm compared to the PSO algorithm. For the power grid connected
to PVs, the VPS algorithm achieved an overall tripping time of 7.68, 11.14, and 11.86 s for
HOC, CVC, and SIC, respectively, compared to 7.73, 11.25, and 12 s for the PSO algorithm.
However, the main improvement in the OCRs’ coordination and time-tripping performance
was shown through the use of the novel protection scheme in this work (HOC) compared
to the SIC and CVC protection schemes.

Table 5. The overall operating time in seconds (S.) of OCRs for the SIC, CVC, and HOC approaches
using PSO and VPS optimisation algorithms for the CIGRE network with and without PVs.

Coordination Scheme

Without PVs With PVs

Optimisation Algorithms

PSO VPS PSO VPS

SIC 11.9 11.84 12 11.86

CVC 11.6 11.44 11.25 11.14

HOC 7.7 7.66 7.73 7.68

It is intriguing to examine the convergence rate of the proposed optimisation technique
(VPS) under different protection schemes. Figures 9 and 10 depict the convergence curves
for the VPS technique under the different protection schemes (SIC, CVC, and HOC) and
both power network scenarios (with and without PVs). First, Figure 9 demonstrates and
compares the performance of VPS for the SIC, CVC, and HOC schemes for power networks
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without PV scenarios in terms of convergence. In general, the HOC algorithm has a faster
and smoother convergence curve, achieving optimal results compared to SIC and CVC.
This shows that the HOC has reduced computation costs while increasing CPU utilisation
efficiency. Second, the convergence rate results for a PV power network with PVs are
presented in Figure 10. The convergence curve of the HOC is smoother, especially when
the number of iterations exceeds 400 while the curves of CVC and SIC were stochastic and
volatile over all iterations.
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3.6. Evaluation Using Industrial Software (ETAP)

ETAP is a typical simulation tool and industrial software that is widely used to
show the model of power networks with various types of relays. ETAP is a user-friendly
interface for analysing the effectiveness, performance, and viability of protection and power
operating systems. In this study, ETAP was used to investigate the performance of OCR
settings under different protection schemes (SIC, CVC, and HOC) for the given coordination
problem, without introducing misoperation. In this section, a simulation model example
was developed to demonstrate optimal OCR coordination utilising ETAP for the power
network with PVs using the VPS algorithm, as depicted in Figures 11 and 12. The purpose
of these figures is to illustrate the Time Current Curve (TCC) and the OCR coordination
between primary and backup OCRs. Figure 11 presents the OCRS coordination between
relays 3 and 4 at F2. The proposed HOC scheme outperformed SIC and CVC for the
primary relay (4) and the backup relay (3). The primary relay (4) will operate in 0.109, 0.259,
and 0.318 s for HOC, CVC, and SIC, respectively. The OCRs coordination at F6 (1.481 Ka
at 20 kV) is presented and compared in Figure 12. The proposed HOC scheme recorded
the minimum tripping time for primary and backup relays compared to the SIC and CVC
schemes. The backup relay at F6 will operate in 0.597, 0.828, and 0.931 s for HOC, CVC,
and SIC, respectively.
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4. Conclusions

The goal of this work was to implement a rapid response hybrid tripping scheme
for the OCR protection system in modern power network architecture (with and without
PVs). The suggested HOC scheme controls and minimises the total operational time for all
OCRs by utilizing a new current–voltage characteristic. The optimal OCRs coordination
problem under grid constraints was established using the HOC method. The suggested
HOC was formulated and solved to provide optimal OCR settings under various fault
conditions and different network topologies. The VPS and PSO algorithms were employed
to fine-tune and resolve the optimal configuration of all OCRs. The consequences of the
suggested HOC approach were not only the fulfilment of the coordination assignment but
also a significant reduction in the overall operating time compared to the common SIC
and CVC. For example, the overall operational times for the power grid connected to PVs
were 11.86, 11.14, and 7.68 s for SIC, CVC, and HOC approaches, respectively. In addition,
the VPS and PSO optimisation methods were evaluated to identify a solution with a rapid
trip time. The high and complex protection challenges will, in the future, require using
machine learning, artificial intelligence, and different optimisation algorithms to minimise
the tripping time and improve the protection selectivity performance.
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Nomenclature

CIGRE Conseil International des Grands tr,f The operational time of the
Réseaux Electriques relay, r, at the fault location, f

PV Photovoltaic tbackup Backup OCR
DGs Distributed generators tprimary Primary OCR
DN Distribution network TMSmin Minimum TMS
OCRs Overcurrent relays TMSmax Maximum TMS
HOC The proposed new hybrid tripping I f Fault current

OCR scheme
SIC The common inverse Ipi Pickup current

time–current characteristic
CVC The time–current–voltage characteristic A, B A and B are constants
VPS Vibrating particles system V The phase fault voltage
PSO Particle swarm optimisation HOP Highest optimal position
CTI Coordination Time Interval GOP Good optimal particle
OT Objective function BOP Bad optimal particle
TMS Time Multiplier Settings maxNFES OF evaluation iterations

OF evaluation iterations
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