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Mechanisms of Shock Dissipation in Semicrystalline Polyethylene
John P. Mikhail 1,2 and Gregory C. Rutledge 1,2,*

1 Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue,
Cambridge, MA 02139, USA

2 Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 500 Technology Square,
Cambridge, MA 02139, USA

* Correspondence: rutledge@mit.edu

Abstract: Semicrystalline polymers are lightweight, multiphase materials that exhibit attractive shock
dissipation characteristics and have potential applications as protective armor for people and equip-
ment. For shocks of 10 GPa or less, we analyzed various mechanisms for the storage and dissipation
of shock wave energy in a realistic, united atom (UA) model of semicrystalline polyethylene. Systems
characterized by different levels of crystallinity were simulated using equilibrium molecular dynam-
ics with a Hugoniostat to ensure that the resulting states conform to the Rankine–Hugoniot conditions.
To determine the role of structural rearrangements, order parameters and configuration time series
were collected during the course of the shock simulations. We conclude that the major mechanisms
responsible for the storage and dissipation of shock energy in semicrystalline polyethylene are those
associated with plastic deformation and melting of the crystalline domain. For this UA model, plastic
deformation occurs primarily through fine crystallographic slip and the formation of kink bands,
whose long period decreases with increasing shock pressure.

Keywords: molecular simulation; semicrystalline; polyethylene; shock; deformation mechanism; slip;
kink band

1. Introduction

Shock waves are supersonic, high pressure waves that propagate through a material
as a result of an extreme deformation or disturbance [1,2]. They are encountered in military
settings, resulting from ballistic or explosive impact, and pose major safety hazards to
people and equipment. Additionally, they are an important safety consideration when
designing supersonic aircraft [3] and in controlling ignition or pressure waves from certain
chemical processes [4,5]. The design of materials that are capable of withstanding and dissi-
pating the energy from these shock waves decreases the danger to the user; however, many
traditional materials are incapable of either dissipating the shock energy effectively or main-
taining their structural integrity after shock for continued use. For this purpose, polymeric
materials offer a promising area of design due to their wide diversity of useful material
properties, a result of flexibility in both chemical composition and molecular organization.

The design of materials capable of withstanding extreme shock pressure requires
knowledge of the relevant shock dissipation mechanisms, in order to anticipate the amount
of energy that can be absorbed by the material. At high shock pressures, chemical dissocia-
tion is a significant mechanism for energy dissipation. In fact, there are certain chemical
reaction pathways that are unique to shock events [6]. At low shock pressures below the
threshold for breaking chemical bonds, other essentially thermophysical mechanisms to
dissipate energy must be activated. For example, simulations of shocked diblock copoly-
mers in a lamellar morphology revealed that the polymers can absorb the energy of a shock
wave by decreasing the segregation of their initially distinct phases [7].

Shock waves induce nonlinear responses in materials due to the extreme pressure and
temperature applied, complicating a mechanistic analysis. The first step in understanding

Polymers 2023, 15, 4262. https://doi.org/10.3390/polym15214262 https://www.mdpi.com/journal/polymers1
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shock response is the construction of an equation of state for a particular material; this
equation gives the relationship between pressure and a specific volume, or between the
shock velocity and the particle velocity, for a material undergoing shock deformation.
The velocities can be derived from the pressure–volume description using the Rankine–
Hugoniot (RH) conditions, which describe the relationship between states on either side of
the shock wave [1,2,8]. The RH conditions are [8]

ρ0us = ρ
(
us − up

)
(1)

Pzz − P0 = ρ0usup (2)

∆E =
(P zz + P0)(v0 − v)

2
, (3)

where the subscript 0 designates the unshocked, or pre-shocked, state. ρ is the density,
v = ρ−1 is the specific volume, Pzz = −σzz where σ is the stress tensor and the subscript
zz indicates the normal component of the stress tensor in the direction of the shock wave,
in this case in the z-plane. up is the particle velocity, us is the shock velocity, and ∆E is
the change in total internal energy as a result of the shock. For typical shock pressures,
Pzz − P0 is well approximated as simply Pzz.

Pressure–volume relationships associated with shock in a specific material can be
measured experimentally, and they can be estimated theoretically or computationally.
Nonequilibrium molecular dynamics (NEMD) is typically used to simulate systems under
the application of a driving force such as a piston colliding with the system and forming a
shock wave from the resulting impact. Equilibrium simulation methods have also been
developed to study state points along the Hugoniot, a curve that satisfies the RH conditions
for all points along the curve. Examples include the NPzzHug method of Ravelo et al. [8]
and the Multiscale Shock Technique (MSST) of Reed et al. [9], each of which modify the
equations of motion to simulate a shocked system at equilibrium that lies on the Hugoniot.
The NPzzHug method of Ravelo, used in this work, employs a “uniaxial Hugoniostat,”
similar to a single (non-chain) Nosé–Hoover thermostat and barostat [10] in which the
target pressure is specified and the target energy at each time step is computed as a function
of the current configuration; the equilibrium value of the target energy is also consistent
with the RH conditions [8].

Semicrystalline polyethylene (e.g., Dyneema® or Spectra®) is a material that is com-
monly used in soft and hard body armor because it can be spun into fibers with excep-
tionally high specific strength and specific modulus, resulting in lightweight fabrics that
can be cut and sewn or laminated as reinforcing elements in composites. Polyethylene is
widely used in engineering materials to withstand extreme impacts; gel-spun polyethylene
strands have stiffnesses comparable to that of steel, while maintaining light weight and
ease of manufacturing [11]. Other applications of polyethylene that take advantage of its
high strength and toughness include the structural engineering of aerospace and military
components [12], packaging of consumer products, films, water and gas pipelines [13],
and components of artificial joints [14]. Polyethylene is also the prototype for many other
semicrystalline polymers. On the length scale of micrometers, semicrystalline polymers
comprise domains of both crystalline and noncrystalline materials, which differ in their
mechanical compliances (ease of deformation under an applied stress) and can contribute
to the dissipation of energy during shock wave progression. At the nanoscale, the represen-
tative motif of the system consists of alternating layers of crystalline and noncrystalline
material. Mechanical properties vary with the thickness of the crystalline lamellae [15,16].
Importantly, covalently bonded chains weave back and forth between crystalline and non-
crystalline domains, giving rise to a unique interfacial region called the “interphase,” in
which the constraints of connection to the crystalline domain strongly influence the topol-
ogy of the chains [17], making this region distinct from an amorphous melt or glass. Chains
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in the noncrystalline domain consist of loops (chain segments with typically non-adjacent
connections to the same crystal lamella), tails (chain segments that connect to the lamella at
one end and terminate in the noncrystalline domain at the other end), and bridges (chain
segments that traverse the noncrystalline domain to connect to distinct lamellae). For
the purposes of modeling the coupling between crystalline and noncrystalline domains,
the simplest representative volume element that includes both types of domains is the
“lamellar stack” model [18].

The first simulations of semicrystalline polyethylene were those reported by in’t Veld
et al. [19] using the Interphase Monte Carlo (IMC) method [16,17] to sample the distribu-
tions of loops, tails, and bridges in a thermodynamically consistent manner. In that method,
nonlocal reptation and end-bridging moves were introduced to sample different topologies
within a single Monte Carlo simulation. The resulting configurations were then used in a
series of studies of isothermal deformations [20–25]. For nonisothermal deformations like
shock, chemical as well as thermophysical rearrangements can occur at sufficiently high
pressure, necessitating the use of bond-breaking methods like density functional theory
(DFT) or reactive force fields such as ReaxFF [26] or AIREBO-M [27]. Shock studies of PE
using DFT simulations have been used to obtain chemical [28] and thermodynamic [29]
information for shock pressures up to 250 GPa. Typically, simulations of shock waves in
polyethylene consider crystalline and noncrystalline domains separately. Elder et al. [30]
first considered semicrystalline polyethylene (SCPE) models that comprised the two types
of domains together, using a method involving deletion, cutting, and melting (DCM) to
reduce density and introduce conformational disorder to the noncrystalline domain. They
then used NEMD simulations to investigate how the interfaces between crystalline and
noncrystalline domains of SCPE transmit and reflect propagating shock waves, based on
the impedance of each region. The DCM method is analogous in many respects to the IMC
method, except that it lacks the ability to sample alternative connectivities efficiently once
the initial structure is generated. As a result, the interphase topology obtained does not
minimize free energy. The DCM method also retains some memory in the noncrystalline
region of the crystalline region from which it was generated. It remains an open question
whether the shock response of a semicrystalline polymer is sensitive to the topological
nature of the interphase.

Crystalline regions in general deform through a variety of mechanisms, including
defect-mediated mechanisms (slip, kinking, twinning, Martensitic transformation, etc.)
and melting–recrystallization [21,31]. Deformation of noncrystalline regions are relatively
simpler, only straining due to interlamellar compression and shear. Previous studies of
crystalline polyethylene have found that the (100)[001] and (100)[010] fine crystallographic
slip mechanisms are dominant in compression because they have the lowest activation
energy barriers [31]. The notation (hkl)[uvw] refers to slip in the (hkl) plane and [uvw]
direction, where h, k, l, u, v, and w are Miller indices. Galeski et al. showed that, for
plane strain compression of high-density polyethylene (HDPE), spontaneous generation
of dislocations within polyethylene lamellae sufficient to cause coarse crystallographic
slip, involving the translation of blocks of material within the crystal phase, only occur for
compression ratios greater than three [32], which is far greater than those considered for
this work.

There is much prior research on the sub-shock compression of SCPE under various
deformation modes; one common method of deformation in both experiments and simula-
tions is isothermal uniaxial compression—also called unconfined compression—where the
system is deformed along one axis, labelled z, while the x and y axes have a constant stress
condition, which allows them to expand according to the Poisson’s ratio of the material [21].
In contrast, shock simulations typically consider confined compression under a uniaxial
Hugoniostat that keeps dimensions transverse to the compression at a fixed length. This is
done to isolate the study to a 1D propagating shock wave in the z-direction, which avoids
complications relating to the nonlinear superposition of shock waves [1,33]. When the
transverse (x and y) lengths are kept fixed, the total system pressure naturally increases to
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a much greater level than when the transverse stresses are controlled at some small value,
e.g., atmospheric or vacuum pressure.

Several studies involving unconfined compression have been used to identify defor-
mation mechanisms as functions of strain rate. Kazmierczak et al. studied the mechanisms
of plastic deformation of polyethylene crystals for strain rates of 5.5 × 10−5, 1.1 × 10−3,
and 5.5 × 10−3 s−1, and different crystal thicknesses [34]. For uniaxial compression of
HDPE, the relationship between true stress and strain rate was shown to follow a loga-
rithmic dependence for a wide range of strain rates between 10−4 and 2.6 × 103 s−1 [35].
Furthermore, Brown et al. show that the relationship between true stress and temperature
follows a linear trend [35]. Kim et al. simulated SCPE models under unconfined com-
pression at two different strain rates, 5 × 106 s−1 and 5 × 107 s−1 [21]. They found that
the crystallographic slip mechanism dominated the deformation response for the slower
strain rate. For the faster strain rate, they first observed an increase in stress and then a
subsequent crystallographic slip. Jordan et al. examined the behavior of the speed of sound
in polyethylene, elastic moduli, unit cell parameters, and other variables, as a function of
pressure, using confined compression [36].

In this work, we examine the effect of shock deformation on lamellar stacks of semicrys-
talline polyethylene with realistic topological distributions in the noncrystalline regions.
Uniaxial Hugoniostatted (NPzzHug) equilibrium molecular dynamics simulations are used
to sample state points along the Hugoniot curve for shock pressures up to 10 GPa. From
these state points, measures of orientational and nematic order are obtained. The evolution
of density and stress profiles during the transient equilibration period are also examined.
Changes in potential energy as a result of shock are analyzed according to the contributions
from the different terms of the potential. From such analyses, we propose some mechanistic
interpretations for the storage and dissipation of shock wave energy in a prototypical
semicrystalline polyethylene lamellar stack model.

2. Materials and Methods
2.1. Model Generation

The united atom (UA) force field used in this work was adapted from the original
Transferable Potential for Phase Equilibria (TraPPE-UA) [37] by including a harmonic bond
potential, as in Bolton et al. [38]. The TraPPE-UA potential was parameterized to capture
realistic behavior of vapor–liquid coexistence curves as well as densities at pressures of
several hundred MPa [37].

Following the work of Lee et al. [20], semicrystalline polyethylene systems were gener-
ated using the Interface Monte Carlo (IMC) method [16,19]. Building and pre-equilibration
of the PE systems were conducted using the Enhanced Monte Carlo (EMC) software (ver-
sion 9.3.4) [39], which has been shown to realistically simulate the crystalline and noncrys-
talline (i.e., amorphous plus interphase) domains of semicrystalline polyethylene [16,21].
Following the procedures of Ranganathan et al. [25] and Kumar et al. [24], all systems were
generated in EMC by first creating a fully crystalline system of 4 × 6 × 112 (a × b × c)
orthorhombic PE unit cells. For the fully crystalline system (χc = 1.0), henceforth referred
to as crystalline polyethylene (CPE), the a, b, and c axes of the orthorhombic unit cells were
aligned with the x, y, and z Cartesian axes, respectively. χc is the mass-weighted crys-
tallinity fraction as defined in Section 2.5.2. The semicrystalline polyethylene systems with
mean, pre-shock values of χc equal to approximately 0.44 and 0.81, are henceforth referred
to as SCPE44 and SCPE81, respectively. The crystal unit cells were oriented such that the
{201} Miller plane was perpendicular to the z-axis, where the crystal–amorphous interface
is eventually formed; experimental studies by Bassett et al. determined the mean angle
between crystalline chains and the normal vector to the crystalline–amorphous interface
to be 35◦, approximately corresponding with the {201} facet [40]. Subsequent computa-
tional studies also showed that this facet resulted in the lowest interfacial energy [16,41].
Next, central layers of amorphous-like density, 72 and 35 unit cells thick between fixed
crystals, were created by cutting UA sites from each of the 16 chains, for a total of 2265 and
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1046 methylene sites removed from SCPE44 and SCPE81, respectively. The 32 methylene
sites at the end of each cut were replaced with methyl sites for both systems. The central
layer was then amorphized using 10,000 cycles of both local and global Monte Carlo moves
at 10,000 K. A set of MC moves was chosen that preserves the number of tails and the sum
of loop and bridge segments while changing the overall topology of segments in the amor-
phous domain (the NNeVT ensemble, where Ne is the number of methyl sites) [16]. This
step was followed by a step-wise cooling sequence at temperatures of 10,000, 5000, 2000,
1000, 750, 500, 400, and 300 K, each step lasting for 20,000 Monte Carlo (MC) simulation
cycles. Ten independent configurations for each SCPE system were generated in this way.

After generation, SCPE44 and SCPE81 were simulated using molecular dynamics
(MD) in the canonical (NVT) ensemble for 2 ps to stabilize the temperature at approxi-
mately 300 K. For CPE, one perfectly crystalline configuration was created and 10 different
trajectories were initiated by assigning velocity distributions at 300 K with different start-
ing seeds and allowing each to equilibrate under isothermal–isobaric (NPT) conditions.
All molecular dynamics (MD) simulations were conducted using the LAMMPS software
package [42,43] and thermalized throughout both crystalline and noncrystalline layers by
MD in either the NVT or NPT ensemble. The time step of integration was 2 fs. To control
pressure and temperature, respectively, the barostat and thermostat methods implemented
in LAMMPS follow the form of Shinoda et al. [44], which combines the Nosé–Hoover
and Parrinello–Rahman methods; the pressure damping parameter was 2000 fs and the
temperature damping parameter was 200 fs. Equilibration was confirmed by ensuring that
the thermodynamic parameters (total energy, enthalpy, pressure, and density) of the system
fluctuated about the mean values with negligible drift over a period of at least 10 ns. The
deviation from the mean was measured by calculating the coefficient of determination, r2,
for the thermodynamic parameters vs. time; if this value is small (<0.01 for this work), then
the deviation of the trend from its mean value is better explained by random fluctuations
rather than any change in the mean value itself.

2.2. Shock Simulation

Following equilibration in the unshocked state (pressure P = 0 GPa), the systems
were then re-equilibrated to a new state consistent with uniaxial shock using the NPzzHug
method of Ravelo et al. [8], which is an equilibrium Hugoniostat method that drives the
system to a new equilibrium state consistent with the RH conditions. Compression was
limited to the lamellar stack direction for the SCPE models, and the crystallographic chain
direction for the CPE model. Lateral dimensions were held at fixed length. The method
approaches the Hugoniot state by adjusting the equations of motion in a manner similar
to the Nosé–Hoover barostat and thermostat, such that the system pressure and energy
oppose deviations from values prescribed by the RH conditions. To avoid complications
due to bond breaking and the more intricate reactive force fields required to describe them,
10 GPa was chosen as the upper limit of shock pressures, at or below which chemical
reactivity is insignificant in real polyethylene systems (c.f. [28]). The Hugoniot state up to
10 GPa was also validated against Hugoniot curve data from both experiments and density
functional theory simulations [28,45,46]. Each Hugoniostat simulation was carried out in
seven subsequent levels of 11 output steps each; at each level, k, data were output every
10k time steps for 0 ≤ k ≤ 6. This was done in order to probe long-term behavior while also
focusing on trends that may occur at intermediate and short time scales. Averages reported
henceforth for each system either consider the final equilibrium state of the Hugoniostat
simulation or are temporal averages at intermediate points during extended Hugoniostat
trajectories after equilibration. The pressure and temperature damping parameters for the
Hugoniostat simulations were the same as those used for NPT simulations.

For Hugoniostat shock simulations in which the z-axis is compressed while the x-
and y-axes are held at constant length, symmetry prevents any significant transverse slip
mechanisms, e.g., (100)[010]. According to Bartczak and Galeski, coarse crystallographic
slip is generally caused by the heterogeneous nucleation of dislocations [31]; one should
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note that, in this somewhat idealized computational model, there are relatively few crystal
defects that would encourage such a coarse slip. The only ones that may occur are methyl
groups that moved into the crystalline region near the lamellar interface.

2.3. All-Atom Models

To check the validity of simulations conducted using the TraPPE-UA force field in
select situations, a few representative configurations were converted to all-atom (AA) rep-
resentations and modeled using the OPLS-AA force field [47]. Because of the considerably
larger computational and memory costs of the AA models compared to the UA models, only
one configuration for each system type was converted and then run using the Hugoniostat.

To convert a UA model to AA, each UA site was first converted to either a methylene
or methyl carbon. Next, explicit hydrogens were inserted using geometric criteria based
on the local configuration of the alkane chain, in a manner similar to the reverse-mapping
procedure described by Brayton et al. [48]. Newly formed angles and dihedrals were
identified based on the bond connectivity of the AA representation of the chain. Then, the
potential energy was minimized, followed by MD simulation using the OPLS-AA force
field with a timestep of 1 fs for 1 ps in an NVT ensemble to stabilize the temperature. Finally,
the output data file from the NVT run was used as input for the Hugoniostat simulations.

2.4. Order Parameters

Using position and velocity information from the MD trajectory, three order param-
eters are calculated on a per-UA basis. These are the nematic order parameter, p2, the
orientational order parameter, Sz, and the specific volume, v. Here, the nematic order
describes the degree of coalignment of nearby bond chords with a reference bond chord
within a local region of space, whereas the orientational order describes the degree of
alignment of each bond chord with a reference direction, in this case the direction in which
shock pressure is applied. Specifically, the p2 order parameter for atom i was calculated
using [49]

p2,i =
3
2

〈
cos2 θij

〉
j
− 1

2
, (4)

where i is the index of the bond chord from atom i − 1 to atom i + 1 within the chain
under consideration, and j indexes the neighboring chords within a cutoff radius rij < rp2,
here taken to be 1 nm. p2 takes values close to 1 for chords oriented nearly parallel (or
antiparallel) to their neighbors, 0 for randomly oriented chords, and −1/2 for chords
oriented perpendicular to their neighbors. Sz for atom i takes a similar form except that the
angle, φ, is that between the bond chord and the Cartesian unit vector ẑ:

Sz,i =
3
2

cos2 φi −
1
2

. (5)

The third order parameter, v, is determined via Voronoi tessellation [50], which deter-
mines the convex polyhedron surrounding each UA containing the space closer to that UA
than any other UA in the system. The specific volume defined on a per-UA basis is then
the ratio of the volume occupied by that polyhedron to the mass of the UA. The periodic
boundary conditions in the system are accounted for by first replicating the system across
each plane of the simulation box (resulting in 33 identical subsystems) and then computing
the Voronoi tessellation for this larger system, using the Voronoi polyhedra of the central
subsystem for the calculation of specific volumes.

2.5. Clustering Analysis
2.5.1. Selection of the Clustering Method

To distinguish trends in the different regions of the system (crystalline vs. non-
crystalline), a clustering algorithm was used to segregate the UAs into the two different
populations. A clustering algorithm was chosen for this purpose, primarily due to its
ability to classify atoms optimally into a finite set of distinct populations. This approach
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avoids the requirement of selecting, a priori, a threshold value for the classification of sites
into one cluster or the other. For example, in prior work we have used a local nematic
order parameter (p2) to classify UAs as crystalline or noncrystalline, with a threshold based
on the minimum in the distribution function of p2 for a thermally equilibrated, partially
crystallized system [49]. However, under nonequilibrium conditions such as flow, this
distribution function changes dynamically, so that the threshold value should change as
well [51]. The clustering algorithm avoids this difficulty by defining clusters such that a
loss function L(p2), defined as the sum of squared distances in the p2 space from each UA
to the mean p2 value for the cluster to which it is assigned, is minimal [50,52]. One needs
only to specify the number of clusters a priori and provide an initial guess for the mean of
each cluster, which can be handled automatically by algorithms such as kmeans++ [53].

Both fuzzy c-means (FCM) [54] and k-means [53,55] were employed for clustering, but
it was found that FCM provided more consistent results among different initial configura-
tions, resulting in lower standard errors of several variables as functions of pressure (see
Supplementary Materials for extended discussion). FCM assigns to each UA a probability
of membership in each cluster (see Section 2.5.2). The improved consistency of FCM makes
physical sense because SCPE contains interphase regions where a transition occurs between
fully crystalline and fully noncrystalline UAs; FCM can account for the partially crystalline
character of sites within the interphase by assigning to each UA a finite probability of
being crystalline, with the complementary probability of being noncrystalline, whereas
k-means uses a strictly binary classification (i.e., a UA is either crystalline or noncrystalline).
Thus, to calculate the mean values of variables not included in the clustering, FCM weights
contribute to the mean via membership probability, so that outliers have less influence on
the statistic. FCM requires an additional adjustable parameter, m, that is the exponent of
the fuzzy partition matrix; the exact meaning of this parameter is clarified in Section 2.5.2.
Different values of the exponent could be chosen for a particular problem, but in this work
reasonable results were obtained using a constant value of 2. This value is consistent with
the sum of the squared errors objective function [56].

In addition to the nematic order parameter, p2, two other order parameters were
considered individually or together for clustering purposes: specific volume, v, and orien-
tational order, Sz. Using different combinations of these order parameters in the clustering
leads to 23 possible clustering criteria. Silhouette plots [57] were used to evaluate the
different combinations, leading to the conclusion that p2 alone provides the best qual-
ity clustering. All Silhouette plots used to judge the clustering quality are shown in the
Supplementary Materials. Figure 1 illustrates a typical result of this clustering method for
an SCPE system. Importantly, clustering in this way has no explicit dependence on the UAs’
positions in Cartesian space and in fact does not guarantee spatial contiguity. However, by
definition, a UA with a p2 value near 1 must be in a local neighborhood with consistent
alignment of its bond chords, so spatial segregation typically accompanies nematic order
segregation, as is depicted in Figure 1.

Before clustering with the above variables, they were converted to Z-scores on a
per-variable basis. In other words, the data were centered using their mean value and
then scaled using the inverse of their standard deviation. This was carried out because
the clustering algorithms operate by minimizing the sum of squared distances from each
observation to the centroid of its cluster (the mean position of all members within the
cluster); if the data were given in different units, the weighting of that variable would be
affected. Z-scores, on the other hand, are dimensionless and weight each variable roughly
equally. For a different application, it may be desirable to control the weighting of each
variable, in which case a different scaling may be used.

2.5.2. Statistics of Order Parameters Using Clustering

FCM assigns a probability fik that the ith UA belongs to the kth cluster for all i ∈ {1, . . ., ni}
and k ∈ {1, . . ., nk}. ∑k f k

i = 1 for all i, so that the ith UA must be fully accounted for in the
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defined clusters. The centroid of each cluster is denoted by Ck. Ck and fik are defined by the
following simultaneous equations [56]:

f k
i =




nk

∑
j=1

(
‖xi − Ck‖2

∥∥xi − Cj
∥∥2

)1/(m−1)


−1

(6)

Ck =
∑ni

i=1

(
f k
i

)m
xi

∑ni
i=1

(
f k
i
)m , (7)

where m is the exponent of the fuzzy partition matrix (m = 2 in this work) and xi is the
datum for the ith UA used for clustering. The dimensionalities of both Ck and xi are equal
to the number of variables used for clustering. For any order parameter qi assignable to UA
i, the mean value of that order parameter for each cluster k is defined as

〈
qk
〉
=

∑i f k
i qi

∑i f k
i

. (8)

Equation (8) is used in this work to calculate averages separately for crystalline and
noncrystalline populations of SCPE systems. The probability assignments to each UA can
also be used to define a cluster fraction, χk, representing the contribution of the cluster k to
the entire system. The cluster fraction is defined as

χk =
1
ni

∑
i

f k
i . (9)

Note that, in the UA representation of the PE systems, all methylene UAs have the
same mass. Thus, the definition in Equation (9) is essentially the mass-weighted cluster
fraction of the system.

In certain contexts, especially when comparing computational and experimental meth-
ods of partitioning systems into distinct populations, it is desirable to calculate a cluster
fraction that is weighted by a specific order parameter, q. Different experimental techniques
may naturally measure crystallinity in terms of volume fraction (e.g., with Raman scat-
tering [58]) or other intensive properties [59]. The output of a clustering algorithm also
provides a means to compute such parameter-weighted cluster fractions as

χk
q =

∑i f k
i qi

∑i qi
(10)

for a specific order parameter, q, and any cluster, k. Note that the definitions of cluster
fractions in Equations (9) and (10) have the property that ∑k χk

q = 1. Henceforth, for nk = 2,
the superscript “c” denotes the crystalline cluster while the superscript “nc” denotes the
noncrystalline cluster.
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Figure 1. An example of clustering an SCPE44 configuration by the per-atom variable p2 using the
FCM algorithm. United atoms are colored by their probability of being included in the crystalline
population. (a) shows the UAs in Cartesian space while (b) shows a probability density function
(PDF) of p2 with shading under the curve denoting the crystal cluster probability (f i

c) as calculated
via FCM. The PDF was smoothed using a kernel density estimate with normal distribution kernel
functions [60]. Kernel density estimation is a nonparametric method to estimate a PDF using kernel
functions as weights for the contributions from each of the discrete sample points.

3. Results and Discussion
3.1. Hugoniot Post-Shock States
3.1.1. Pressure versus Specific Volume

To validate the models and simulations used in this work over the pressure range
of interest, Hugoniot curves were constructed using the equilibrated states of systems
shocked to different pressures. Figure 2a shows a comparison of these curves in P-v space
to experimental data and other simulation results previously reported in the literature
for polyethylene. The CPE data in Figure 2a are essentially the same as those previously
reported in Hsieh et al. [61]. The results obtained in this work are quite close to the
experimental trend reported by Marsh [46]. The results of MD simulations by Agrawal
et al. [48] deviate the most from experimental data, behavior which they attribute to a
low initial density. However, Agrawal et al. noted that scaling all specific volumes by
their respective ambient or zero-pressure values brought their data into accord with the
theoretical trends of Pastine [62].

The work of Chantawansri et al. also presented results for a model of semicrystalline
polyethylene [45]; they used a simplified “layered” structure that fused together purely
crystalline and purely amorphous PE (APE) chains such that the crystallographic c-axis was
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perpendicular to the interface between the two regions. They observed larger shifts in the
curves of pressure vs. volume with increased crystallinity compared to that observed here.
To provide a closer look at the effect of crystallinity, Figure 2b compares the simulation data
obtained in this work, converted to us-up space using Equations (1)–(3), with the simulation
data from Chantawansri [45] as well as the theoretical curves for purely amorphous and
purely crystalline PE from Pastine [62]. For crystalline and noncrystalline regions of SCPE
simulations, the conversion is applied using the mean specific volumes of the corresponding
clusters. For CPE and the crystalline regions of semicrystalline models, all three sets of data
are fairly consistent for up approximately equal to or exceeding 1 km/s. SCPE81 shows
a lower shock speed than the other data sources for lesser values of up. For APE and the
noncrystalline populations of the current semicrystalline models, the simulation data from
Chantawansri et al. and the current work are fairly consistent, while the Pastine curve
shows greater values of us. Plots of us vs. up tend to decrease emphasis on the initial
density of the system because both speeds are linearly proportional to the square root
of initial density [8]; trends in us vs. up are empirically known to often follow a linear
relationship [63], although the intercept of the relationship does also scale with the square
root of initial density.
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Figure 2. (a) Hugoniot P-v curves for SCPE models compared to experimental data and other
simulations results reported in the literature. Values for SCPE (χc = 0.44 and 0.81) and CPE are from
the current work (filled symbols). Experimental values (gold stars) were obtained from the LASL
Shock Handbook [46], where data are reported for experiments in which an explosively driven flying
plate was used to induce shock waves in bulk polyethylene (ρ0 = 0.916 g/cm3). MSST molecular
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dynamics simulation data of an AA model of amorphous PE (magenta diamonds) come from
Agrawal et al. [64]. DFT simulation data for three different crystallinities of PE (triangles) come from
Chantawansri et al. [45]. DFT-AM05 temperature ramp simulation data of CPE (blue circles) come
from Mattsson et al. [28]. (b) Hugoniot us vs. up curves for SCPE models compared with results
reported in the literature. Values for SCPE44 (blue circles), SCPE81 (green triangles), and CPE (orange
squares) are from the current work. Simulation data used for comparison come from Chantawansri
et al. [45] (black diamonds). For all of the simulation data, filled symbols indicate CPE (or crystalline
regions, in the case of semicrystalline models) while empty symbols indicate APE (or noncrystalline
regions, in the case of semicrystalline models). Data are also compared with the theoretical curves of
Pastine [62] for CPE (black line) and APE (grey line).

3.1.2. Temperature

The temperature increase associated with the application of shock pressure depends
on the heat capacity of the system. Heat capacity tends to be strongly model-dependent.
Molecular dynamics simulations of fully flexible AA models tend to overestimate heat ca-
pacity because they treat all degrees of freedom classically, including those associated with
high frequency vibrations that would be more properly considered as quantum mechanical
in nature [65]. On the other hand, UA models tend to underestimate heat capacity because
they eliminate numerous vibrational degrees of freedom, including some that would be
activated at the temperatures experienced by the system. Thus, the temperature of the UA
systems under shock always increases more than that of the AA systems. To bracket the
actual temperature increase, a few Hugoniostat simulations using the AA force field were
performed. The variation of temperature with shock pressure is shown in Figure 3. When
comparing the temperature increases in SCPE44 and SCPE81 as functions of the shock
pressure, the UA systems increase by approximately twice as much as the corresponding
AA systems. However, this trend was not observed for the CPE systems. The temperature
increase in the AA systems is very small for all pressures up to approximately 10 GPa,
where it is approximately 30 K. The corresponding UA system increased by approximately
260 K, or approximately 8.6 times the AA pressure increase. Along a Hugoniot curve,

(
∂T
∂P

)

Hug
=

(
∂T
∂v

)

Hug

(
∂v
∂P

)

Hug
, (11)

where v is the specific volume. From Figure 4, the compressibility along the Hugoniot
curve ((∂v/∂P)Hug) is only about 10% different between the UA and AA systems, clearly
not enough to compensate for the temperature difference. We hypothesize that the ratio of
constant-pressure to constant-volume heat capacities is closer to unity in the AA CPE than
it is for the other systems, so the temperature increase in this system along the Hugoniot
curve is correspondingly reduced. The basis for this hypothesis lies in consideration of a
much simpler system—an ideal gas heated adiabatically. Although this simpler system
is unsuitable for quantitative comparison with CPE in the current work, the temperature
increase in CPE may be strongly dependent on the heat capacity ratio, by analogy to the
ideal gas.

3.1.3. Orientational Order Parameter

The orientational order parameter, Sz, is used to track the shift in orientation of the
bond chords in the crystalline domain with respect to the z-axis, which is both the direction
in which the shock compression is applied and the direction normal to the interfaces
between the crystalline and noncrystalline regions in the lamellar stack. Changes in values
of the mean orientational order parameter for the crystalline domains, 〈Sz

c〉, are potentially
indicators of crystallographic slip + compression in the SCPE systems, necessitated by the
geometric confinement placed on the bond chords due to the compression. It is important to
note that UA models tend to underestimate the energy barrier preventing crystallographic
slip; see, e.g., Olsson et al. [66]. Thus, while configurational changes to the UA PE systems
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due to crystallographic slip are realistic, it is possible that the role of crystallographic slip
may be overemphasized in these systems relative to other deformation mechanisms that
would be more prominent in a more detailed atomistic model.
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Figure 5 shows all of the methylene UAs in an SCPE44 system colored according to the
Sz value of the associated bond chord. Methyl UAs are not shown because they cannot be
assigned a bond chord in the same way. At low pressures, as the shock pressure increases,
bond chords in the crystalline region tilt uniformly away from the z-axis, so their Sz values
decrease on average. At the highest pressure (10 GPa) the crystalline clusters begin to
exhibit greater variance in Sz, an indication of the decrease in crystallographic order.
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parameter Sz.

Figure 6 shows the UAs of one system of SCPE81 colored according to the Sz for
different pressures. Interestingly, kink band formation is observed in SCPE81 at 5 GPa
for this configurational seed. A kink band forms when crystallographic slip is inadequate
to accommodate compression within a crystal uniformly, so that a section of the crystal
rotates cooperatively, localizing the deformation [31]. For different configurational seeds
(not shown), kink bands occur in different locations and with different numbers of bands.
Kink bands with widths of roughly 10 bond lengths across were observed in 7 out of
10 configurational seeds at 5 GPa, while the remaining seeds exhibited shorter crystalline
defects roughly 2 bond lengths across. This kink band formation in the crystalline structure
is identified as another feature of shock energy absorption that appears under special
conditions. For P < 5 GPa, the bond chords tilt uniformly, and thus crystallographic
slip + compression is the dominant mechanism at low shock pressures. At 10 GPa, the
combination of the decreased nematic order of the crystal and higher temperature ap-
parently decrease the barrier to tilt and disrupt the organized formation of large kink
bands; only 2 out of 10 configurational seeds exhibit kink bands with widths of roughly
ten bond lengths across while the remaining seeds exhibit shorter crystalline defects roughly
two bond lengths across. Thus, prominent kink bands are observed mainly at intermediate
shock pressures and in systems with sufficiently thick crystalline lamellae.

Figure 7 shows the UAs of one system of CPE colored according to the Sz for different
pressures. An important observation is that the CPE system, due to constraints on the
system geometry, is not free to tilt by large angles as the crystalline regions of SCPE systems
are. In CPE, UAs on each side of the periodic boundaries perpendicular to the z-direction
must be bonded, so tilting in one direction must be accompanied by tilting in the opposite
direction elsewhere in the crystal and the formation of kink bands, such that the long period
of deformation is commensurate with the simulation cell size. Such kink band formation
is a typical case of buckling in response to compression. For low pressures, the systems
have only two bends separating regions of tilt by different angles but similar Sz values. At
5 GPa, the long period or wavelength of buckling is reduced, resulting in the formation of
multiple kink bands and higher tilt angles. Finally, at 10 GPa most of the nematic order in
the crystal has diminished and the system loses long-range spatial correlations, forming
numerous small regions of different alignment. Thus, for fully crystalline systems, kink
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bands are observed at all shock pressures, but the long period decreases with increasing
pressure and eventually breaks up into disordered domains at the highest shock pressure,
analogous to the large crystalline domain in SCPE81.
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Figure 7. Example CPE system under ambient conditions (0 GPa) and after equilibration at several
pressures in Hugoniostatted shock simulations. Atoms are colored according to the orientational
parameter Sz.

Figure 8 shows the mean Sz values (〈Sz
c〉 as defined in Section 2.5.2, Equation (8)) of

the crystalline cluster as a function of pressure for the three systems. Through construction,
the CPE system at P = 0 GPa is almost perfectly aligned with the z-axis; however, the
bond chords of this system tilt to form kink bands in response to the strain imposed
by the compression. Fluctuations of UA coordinates about those of the perfect crystal
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may dictate the direction that the bond chords tilt—this direction is not always consistent
among the different starting seeds, but the absolute value of the angle is fairly consistent.
Also shown in Figure 8 is a theoretical prediction of 〈Sz

c〉 vs. P for CPE using Pastine’s
model [62], assuming that the strain in the crystal manifests entirely as tilt of the bond
chords. Assuming that the strain in the crystal is

εc = 1− |cos φ|, (12)

where φ is the angle the bond chords make with the z-axis, 〈Sz
c〉 is calculated according

to Equation (5) and εc(P) is determined from Pastine’s theory. The theoretical prediction
and the simulation data have a root-mean-square deviation of approximately 0.032; devi-
ations between the data and model may be due to crystallographic strain caused by an
excess compression in the a or b unit cell dimensions (beyond that caused by chain tilt) or
differences between the crystallographic unit cell in the current work and that of Pastine.
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Figure 8. Mean orientational parameter, 〈Sz
c〉, vs. P for the crystalline populations of SCPE44 (blue

circles), SCPE81 (green triangles), and CPE (orange squares). Also shown is a theoretical prediction
of 〈Sz

c〉 vs. P for CPE based on the model of Pastine [62].

Figure 8 also shows the dependence of 〈Sz
c〉 on shock pressure for the crystalline

domains of the SCPE systems. The orientational order within the crystalline domains for
the two different SCPE systems are in close agreement up to 5 GPa but deviate at 10 GPa.
The values for SCPE44 exhibit an upward shift after 5 GPa, while the values for SCPE81
appear to be “noisy” for 5 and 10 GPa. The non-monotonic decrease in the 〈Sz

c〉 values
with increasing pressure for SCPE44 systems must be a result of interactions with the
noncrystalline population because neither the theoretical nor simulation data for CPE show
such features. An interchange of strain between the crystalline and noncrystalline regions
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is not likely because it would be reflected as non-monotonicity in v vs. P in Figure 2a,
for example. Rather, it seems that, for P ≈ 10 GPa, there is growth of the population of
noncrystalline UAs at the expense of crystalline UAs (i.e., “melting”), thus eliminating
some of the less crystalline UAs from the crystalline cluster and increasing the average
orientation of the crystalline cluster. The kink boundaries observed for SCPE81 in Figure 6
result in the large error bars observed in Figure 8.

3.1.4. Crystallinity

To characterize the crystallinity of each of the systems, two different metrics are used.
The first is the mass fraction of the crystalline population—χc, as defined in Section 2.5.2,
Equation (9). χc alone is insufficient to fully characterize the crystalline order of the system
when the crystalline region is imperfect (i.e., without perfect periodicity). For example,
this definition always assigns a crystallinity of 100% to the CPE systems because these
systems are characterized as a single cluster, even in the presence of kink bands (see the
Supplementary Materials for further discussion). However, with increasing shock pressure,
the nematic order of the CPE system decreases. Supplementary information is provided
by the mean value of the nematic order parameter for the crystalline population, 〈p2

c〉,
calculated using Equation (8). Trends for both χc and 〈p2

c〉 in all three systems are shown
in Figure 9. Notice that 〈p2

c〉 for SCPE81 at 5 GPa is less than the value for SCPE44 due to
the formation of kink bands and the loss of the nematic order of UAs in between these kink
bands. It appears that the crystallinity, χc, changes relatively little under the application of
shock, but the nematic order within the crystalline lamellae, 〈p2

c〉, decreases significantly.
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Figure 9. (a) χc and (b) 〈p2
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squares). Data are averages among the ten different starting configurations with error bars indicating
three standard errors.

3.1.5. Potential Energy Contributions

The FCM clustering analysis is used to determine the mean potential energy con-
tributions of both the crystalline and noncrystalline clusters of the systems separately.
Potential energy contributions for the TraPPE-UA force field include nonbonded (pair)
and bonded (bond, angle, and dihedral) contributions; these contributions are shown in
Figure 10. The pair contribution, shown in Figure 10a, is lower for crystalline clusters than
noncrystalline clusters because the former has a more stable chain packing arrangement.
As pressure increases, the mean pair contributions of the crystalline clusters of both SCPE44
and SCPE81 increase nearly to the levels of the mean pair contributions of the noncrystalline
clusters, indicative of decreasing order within the crystal cluster. In contrast, the mean
bond contributions in Figure 10b are the same for both clusters within a single system.
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The bond potential is by far the stiffest in the system, so the sensitivity of bond length
displacements to the local environment (crystalline or noncrystalline) is negligible. Thus,
the bond potential energy increase can mainly be attributed to the increase in temperature
that accompanies increasing pressure along the Hugoniot curve. The angle energy, shown
in Figure 10c, is the next stiffest mode in the systems. At low pressure, it is the same for
both crystalline and noncrystalline clusters, similar to the bond energy. However, at ele-
vated shock conditions it begins to differentiate for crystalline and noncrystalline clusters,
indicating a sensitivity to the local environment. The mean angle contribution of the crystal
cluster in SCPE81 closely tracks that of CPE, while the mean angle contribution of the
crystal cluster in SCPE44 tracks more closely with that of the noncrystalline population
for pressures as high as 10 GPa. Finally, the dihedral energy contribution is shown in
Figure 10d; like the pair contribution, it is indicative of decreasing crystallographic order,
especially for the case with the lowest crystallinity (SCPE44).
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pressive load is borne more by the softer nonbonded, intermolecular interactions and less 
by the stiffer bonded, intramolecular interactions; similar behavior was observed for small 
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Figure 10. Potential energy contributions per UA for crystalline (filled symbols) and noncrystalline
(empty symbols) populations of SCPE44 (blue circles), SCPE81 (green triangles), and CPE (orange
squares, no non-crystalline population). The contributions are (a) pair (Van der Waals) energy,
(b) bond energy, (c) angle energy, and (d) dihedral energy.

3.2. Hugoniostat Transient Evolution

Upon the initial application of the shock pressure, one observes two major regimes of
compression, as illustrated by the evolution of local order parameters with logarithmic time
in Figures 11–13. Figure 11 shows the spatial evolution of stress during the equilibration of
shock. In the first, transient regime, which extends from approximately t = 0.01 to 10 ps,
shear stress builds up in the crystalline domains of the systems, followed by compression of
the crystalline and noncrystalline domains. The information computed by LAMMPS is Sαβ,
where S is the negative of the per-UA stress tensor multiplied by volume, and the subscripts
denote the components. To calculate per-UA pressure values, components of S are negated
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and then divided by per-UA volumes, calculated via Voronoi tessellation (see Section 2.4
for details). The shear stress for compression in the z-direction is computed as [8]

τ =
1
2

(
Pzz −

Pxx + Pyy

2

)
. (13)
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Figure 11. Heat plots for the shear stress as a function of position along the compression direction
and time, for two systems and two applied pressures during Hugoniostatted simulations. The color
scale is proportional to the shear stress. Plots for all systems and pressures are included in the
Supplementary Materials.

Polymers 2023, 15, x FOR PEER REVIEW 20 of 25 
 

 

 
Figure 12. Heat plots of the p2 order parameter for the SCPE44 as a function of position along the 
compression direction and time, for three different applied pressures in Hugoniostatted simula-
tions. The color scale is proportional to p2. Plots for all systems and pressures are included in the 
Supplementary Materials. 

 
Figure 13. Heat plots of the Sz orientation parameter for SCPE44 as a function of position along the 
compression direction and time, for three different applied pressures in Hugoniostatted simula-
tions. The color scale is proportional to Sz. Plots for all systems and pressures are included in the 
Supplementary Materials. 

Figure 12. Heat plots of the p2 order parameter for the SCPE44 as a function of position along the
compression direction and time, for three different applied pressures in Hugoniostatted simula-
tions. The color scale is proportional to p2. Plots for all systems and pressures are included in the
Supplementary Materials.

18



Polymers 2023, 15, 4262

Polymers 2023, 15, x FOR PEER REVIEW 20 of 25 
 

 

 
Figure 12. Heat plots of the p2 order parameter for the SCPE44 as a function of position along the 
compression direction and time, for three different applied pressures in Hugoniostatted simula-
tions. The color scale is proportional to p2. Plots for all systems and pressures are included in the 
Supplementary Materials. 

 
Figure 13. Heat plots of the Sz orientation parameter for SCPE44 as a function of position along the 
compression direction and time, for three different applied pressures in Hugoniostatted simula-
tions. The color scale is proportional to Sz. Plots for all systems and pressures are included in the 
Supplementary Materials. 

Figure 13. Heat plots of the Sz orientation parameter for SCPE44 as a function of position along
the compression direction and time, for three different applied pressures in Hugoniostatted simula-
tions. The color scale is proportional to Sz. Plots for all systems and pressures are included in the
Supplementary Materials.

After a compression time on the order of picoseconds, the crystalline domains show
a rise in shear stress to levels approximately half of the applied shock pressure in the
z-direction. The low resistance to crystallographic slip in the UA models permits rotation
of the chain stems in the crystalline domains in response to the shear stress, so that the com-
pressive load is borne more by the softer nonbonded, intermolecular interactions and less
by the stiffer bonded, intramolecular interactions; similar behavior was observed for small
extensional strains (< 0.08) of UA SCPE models under isothermal uniaxial compression by
Kim et al. [21]. At this point, the system experiences significant strain in both the crystalline
and noncrystalline domains in response to the applied compressive stress. This behavior
indicates that (1) there is a short delay during which the crystalline domain experiences
the buildup of transverse and longitudinal stresses with respect to the shock direction
that drive crystallographic slip, followed by (2) compression of the crystalline domain to
equalize stress. The noncrystalline domain equalizes the stress in the different directions
much more rapidly and thus never experiences a significant shear stress. The rise in shear
stress would not be expected for compression of pure APE, due to the fast equalization of
its stresses.

Once the final system volume is reached, the shear stress is nearly zero, indicating that
the strain response serves to equalize the stress in all directions. The pressure also becomes
uniform throughout the system, as a result of equilibration to the post-shock Hugoniot
state. Figure 12 shows the local p2 order parameter for several systems. The crystalline and
noncrystalline domains remain clearly defined over the entire range of pressure. However,
referring to Figure 9b, SCPE44 maintains high nematic order in the crystalline domain up
to 5 GPa, although this order decreases dramatically at 10 GPa. SCPE81, on the other hand,
exhibits a decrease in nematic order at 5 GPa, but with large variance; we hypothesize that
this behavior is a consequence of the formation of kink bands in that system. Meanwhile,
the orientational order parameter 〈Sz

c〉 confirms the tilting of chain stems in the crystalline
domain away from the direction of applied load, as shown in Figure 11. One exception
to this general trend is SCPE44, for which crystalline orientational order increases very
slightly at high pressure, from 0.270 at 5 GPa to 0.275 at 10 GPa. This counterintuitive
increase in 〈Sz

c〉 can be explained by a decrease in χc over the same range of pressure.
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Finally, considering the trends for the CPE system, the uniformity of all metrics
throughout the simulation is preserved during all simulations. The density increases uni-
formly during the transient regime, while the p2 order parameter (not shown) decreases
uniformly at higher pressures to values near 0.6 and 0.3 at 5 and 10 GPa, respectively. The
orientational order parameter (Figure 14) decreases for all pressures in order to accommo-
date compression of the crystal region through buckling, kink band formation, and the
mechanism of fine crystallographic slip. Interestingly, increasing the applied pressure from
5 to 10 GPa increases the amount of time required for the reorientation to complete, as
shown by the intermediate values of Sz during the equilibration regime. In both cases,
the decrease in Sz occurs gradually and monotonically even after the final system volume
is achieved.
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4. Conclusions

This work analyzes the shock wave response of model SCPE and CPE systems for the
purpose of understanding the changes to the configurational states associated with shocks
of different pressures. Shock simulations were conducted using molecular dynamics with
an equilibrium Hugoniostat called NPzzHug [8]. Clustering based on the FCM algorithm
is introduced to allow adaptive clustering in response to changes in the distribution of
the nematic order parameter, p2, so that the trends of individual populations may be
analyzed separately. The nematic order parameter is found to distinguish crystalline and
noncrystalline UAs within each SCPE system with high fidelity and simplicity. We take
advantage of this clustering to focus on the response of the crystalline populations in this
work, because they exhibit a variety of deformation mechanisms depending on their initial
degree of crystallinity and the applied shock pressure.

Examining the Hugoniostat trajectories, two potential energy storage mechanisms are
identified: loss of nematic order within the crystal domain and change in the orientation of
the crystal stems with respect to the crystalline–noncrystalline interface via crystallographic
slip + compression. Both of these mechanisms increase the potential energy of the system
and thus store energy of the shock wave by changing the system configuration. Additionally,
for systems of sufficiently high crystallinity (or lamellar thickness), the formation of kink
bands is observed within the crystalline region, as evidenced by the data for SCPE81 at
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5 GPa in some instances, and for CPE at all shock pressures. The long period of these
kink bands decreases with increasing shock pressure, consistent with a increasing energy
buckling phenomenon. The formation of kink bands may be more prevalent in experiments
than observed here, due to the ease with which crystallographic slip occurs in the UA model.
Finally, at the highest pressure (10 GPa), kink bands apparently break up or disappear; we
hypothesize that a higher temperature and lower nematic order lead to a decreased energy
barrier for local slip and bend formation, and a degree of melting. For CPE, the angle of the
chain tilt as a function of shock pressure is well-approximated by Pastine’s theory [62].

At low shock pressures (up to about 1 GPa), all systems exhibit fine crystallographic
slip. For the CPE systems, however, this slip is necessarily accompanied by kink band
formation because of the lack of compliance imposed by the periodic boundary condi-
tions. For the SCPE systems, on the other hand, the noncrystalline regions act as damping
boundary conditions for the crystal chains, allowing them to tilt without kink band for-
mation in response to the development of shear stress. At higher shock pressures, kink
bands also begin to form in SCPE81 as further tilt of the crystal chains becomes energet-
ically unfavorable. The SCPE44 systems do not form kink bands at any of the pressures
simulated; instead, at 10 GPa and elevated temperature in the Hugoniot state, some of
the crystalline population “melts” into the noncrystalline population in order to satisfy
the geometric constraints caused by confinement while not altering the tilt angle. This
melting is also observed in the convergence of the potential energy contributions of the
crystalline populations to those of the noncrystalline populations in SCPE44 at 10 GPa, but
not in SCPE81. This is also supported by the lower 〈p2

c〉 values in SCPE44 compared to
SCPE81 at 10 GPa. In fact, the 〈p2

c〉 values in SCPE81 exceed those of the CPE systems
at 10 GPa. This behavior suggests that the presence of some noncrystalline material can
actually stabilize the crystalline domains against melting in an SCPE system by acting as
something of a “shock absorber,” but that too much noncrystalline material (which in this
case correlates with lower crystallinity and thinner crystalline domains) can destabilize the
crystalline domains with respect to melting. Further study of these systems may be able to
more accurately determine an optimal combination of crystallinity and crystalline domain
thickness to maintain the integrity of the crystal according to one of the aforementioned
metrics.

Fundamentally, the deformation mechanisms observed in all of the simulated PE
systems are consequences of the geometric confinement caused by the confined compression
of the shock, the temperature increase in the Hugoniot state, and the atomic configuration
in the initial state of the system. The modulus for intramolecular compression along the
crystallographic c-axis (the chain axis) is an order of magnitude greater than the moduli for
intermolecular compression along the a- or b-axes of the unit cell, so most of the deformation
occurs through rotation of the unit cell to accommodate compression intermolecularly [62].
If the nematic order of the crystalline regions remains high, then the assumptions used by
Pastine’s model hold—namely, that there is at most a linear correction for compression
along the c-axis and that the spatial arrangement of atoms remains periodic. Thus, we
see for shock pressures of < 10 GPa that Pastine’s prediction for stress as a function of
strain in CPE can be used to predict the tilt of crystal stems leading to crystallographic
slip + compression. These assumptions also approximately hold for the SCPE systems
under the same pressure condition, as evidenced by the superposition of the SCPE curves
in Figure 8; the downward shift of the SCPE results relative to the CPE result is due to the
initial tilt of the crystal stems with respect to the direction of compression. Additionally, the
SCPE systems exhibit some melting at high pressure, as indicated by a decrease in χc that
is not observed for CPE or Pastine’s model. This melting behavior accommodates a portion
of the shock energy, as a result of which the nematic order within the crystal clusters does
not decay as much for SCPE as it does for CPE.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym15214262/s1, Hugoniostat Transient Evolution, Figures S1–S3;
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Evaluation of Clustering Methods by Silhouette Scores, Figures S4–S8. Reference [67] is cited in the
Supplementary Materials.
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Abstract: This research focuses on modeling heat transfer in heterogeneous media composed of
stacked spheres of paraffin as a perspective polymeric phase-change material. The main goal is to
study the requirements of the numerical scheme to correctly predict the thermal conductivity in a
periodic system composed of an indefinitely repeated configuration of spherical particles subjected
to a temperature gradient. Based on OpenFOAM, a simulation platform is created with which
the resolution requirements for accurate heat transfer predictions were inferred systematically. The
approach is illustrated for unit cells containing either a single sphere or a configuration of two spheres.
Asymptotic convergence rates confirming the second-order accuracy of the method are established in
case the grid is fine enough to have eight or more grid cells covering the distance of the diameter of a
sphere. Configurations with two spheres can be created in which small gaps remain between these
spheres. It was found that even the under-resolution of these small gaps does not yield inaccurate
numerical solutions for the temperature field in the domain, as long as one adheres to using eight or
more grid cells per sphere diameter. Overlapping and (barely) touching spheres in a configuration can
be simulated with high fidelity and realistic computing costs. This study further extends to examine
the effective thermal conductivity of the unit cell, particularly focusing on the volume fraction of
paraffin in cases with unit cells containing a single sphere. Finally, we explore the dependence
of the effective thermal conductivity for unit cells containing two spheres at different distances
between them.

Keywords: conjugate heat transfer; high-fidelity simulation; effective thermal conductivity; OpenFOAM;
resolution requirements; periodic systems

1. Introduction

The prediction of effective heat transfer is of great importance in a wide range of
applications, particularly in the study of composite materials used for thermal energy
storage (TES) [1]. TES refers to a system that stores heat energy for later usage and is based
on the working principles of sensible and latent heat. A TES system is a sustainable energy
solution that is commonly referred to as a ‘heat battery’. These systems play a critical role in
efficiently storing and releasing thermal energy, thereby resolving the problem that energy
is often generated and consumed at different moments in time [2].

The properties of composite materials can vary greatly due to their heterogeneous
nature. In fact, the desired properties for TES materials are a combination of high thermal
conductivity and a significant sensible and latent heat capacity. In this context, paraffin
emerges as a particularly compelling candidate material because of its latent heat prop-
erties (150–250 kJ kg−1) [3,4] and widespread availability. Moreover, paraffin undergoes
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phase transitions within temperature ranges (0 to 90 ◦C) [3] that correspond closely to the
requirements for domestic heating, thereby substantially enhancing its applicability [1].
However, the thermal conductivity of around 0.2 W m−1K−1 in the solid state, and even
0.08 W m−1K−1 [5] in the liquid state, would imply an impractically slow response to the
loading and unloading of such a heat battery. Therefore, paraffin spheres encapsulated in
polymer aerogels to prevent leakage [6], in combination with highly conductive nano-fillers,
e.g., graphene [7,8], presents itself as a promising candidate composite material. With such
materials, both a large storage heat capacity as well as high heat transfer rates may be
achieved. These materials undergo a phase change as part of the heat storage process and
will be referred to as phase-change materials (PCMs).

Accurately predicting the temperature distribution in structured heterogeneous ma-
terials is essential for understanding their functioning in heat batteries [9,10]. For system
design, it becomes imperative to study the parameters governing heat transport on a small
scale in a heat battery composed of paraffin for storage and nano-fillers for enhanced heat
transport. We present the development of a fundamental simulation model and deter-
mine the spatial resolution requirements that should be met in order to achieve accurate
predictions of the temperature distribution inside the material.

The analysis of the conjugate heat transfer (CHT) is challenging when aiming for
an analytical temperature solution for complex heterogeneous media. In such cases, a
numerical method is the only viable approach [11,12]. To understand the macroscopic heat
transfer properties of a material, we will treat it as a continuum. Fourier first introduced
the concept of thermal conductivity at a macroscopic scale [13], which led to the early
development of Effective Medium Theory models by Maxwell-Garnett [14]. Numerous
models to approximate the effective heat conductivity have been proposed since, which are
either empirical, numerical or a combination of both [15]. However, these models often
have unknown limitations. To overcome these uncertainties, our study uses a numerical
approach to solve the complete underlying model formulated in terms of the governing
partial differential equations.

Numerical discretization methods, including the finite volume method (FVM), finite
element method (FEM) and finite difference method (FDM), are utilized to solve partial
differential equations (PDEs). We adopt OpenFOAM [16,17], an open-source FVM computa-
tional fluid dynamics (CFDs) package. This simulation platform provides an option to add
new solvers and post-processing to address specific problems specifically. This approach is
suitable for the current heat battery study as it allows for proven numerical methods to be
combined with tailored solutions to the problem of heat transfer in a configuration with
multiple spheres in a temperature gradient.

This research focuses on numerically solving conduction-driven CHT in heterogeneous
media composed of periodic configurations of stacked spheres of paraffin. The governing
heat equations are discretized using OpenFOAM version 10 [16,17], where the use is
made of the CHTMULTIREGIONFOAM solver, which provides the numerical solution to
diffusive heat transport in domains containing various materials. The primary objective is to
determine the accuracy with which the solution can be obtained and at what computational
costs. In particular, the convergence of the solution upon refinement of the spatial grid is
focused on. Ultimately, the rate of convergence obtained by OpenFOAM in multi-region
simulations is determined and, correspondingly, the necessary spatial resolution needed to
achieve a desired level of accuracy is quantified. By doing so, the reliability of the numerical
approach for simulations of the heat transfer in stacked spherical particles is determined.
This is crucial for the future investigation of heat conduction in genuinely complex systems,
specifically focusing on the effective thermal conductivity (ETC) within spatially extended
systems of randomly stacked spheres. The ETC of a one- and a two-sphere system per
unit cell is determined to quantify the resolution requirements and specify the dependence
of the effective conductivity on system parameters, such as the radius of the spheres
and separation between spheres. The current investigations establish the feasibility and
simulation conditions that should be adopted in simulations of more complex general

26



Polymers 2024, 16, 1015

configurations that are adopted to be determine the effective heat transfer in a so-called
Representative Elementary Volume (REV), i.e., a unit cell for the periodic domain that
contains a large number of spheres in an arbitrary configuration.

The numerical investigations have established that OpenFOAM can yield high-fidelity
solutions, provided that a sufficient spatial resolution is employed. Achieving engineering
accuracy, with errors in the temperature field within a few percent, necessitates approx-
imately eight grid cells per diameter of the paraffin spheres. Nearly full convergence
was attained with resolutions ranging from 32 grid cells per diameter and beyond. For
these spatial resolutions, the approach displayed second-order convergence. A comparison
between the ETC predicted by the Maxwell-Garnett model [14] and the numerical solution
revealed close agreement up to a paraffin volume fraction of 30%. Beyond this volume
fraction, gradual deviations were seen of 5–10%, e.g., at a 40–50% volume fraction. The
successful modeling of the temperature field effects arising from the proximity of multiple
spheres was achieved using OpenFOAM. The basic CHTMULTIREGIONFOAM solver was
found to accurately predict the heat transfer and ETC in general unit cells with two paraffin
spheres, including two overlapping as well as just touching spheres. This supports the
potential extension of the simulation approach to configurations with multiple spheres
per unit cell. The identified resolution requirement of eight grid cells or more per sphere
diameter was seen to be sufficient even for configurations comprising multiple spheres.

The organization of this paper is as follows. In Section 2, the physical model and its
mathematical formulation are introduced. The OpenFOAM implementation is described in
Section 3. The simulation results specifying the temperature field and convergence upon
grid refinement are discussed in Section 4. Finally, the concluding remarks are presented in
Section 5.

2. Physical Model and Governing Equations

In this section, we first present the physical model of a heat battery in Section 2.1.
The mathematical formulation of the governing equations is discussed subsequently in
Section 2.2.

2.1. Physical Model of Heat Battery

The TES materials for phase-change materials (PCMs) exhibit diverse microstructures,
designed to enhance heat transfer and facilitate rapid storage and release. The heat batteries
that motivate the current study exploit a multiscale structure in which a large block of
porous metal foam (O(10−1 m)) is used to transfer heat quickly and over comparably large
distances. Within the pores (O((10−3–10−2) m) [10] of this foam, spheres of paraffin of a
typical radius r = O((10−5–10−4) m) are stacked in a random configuration, available for
sensible and latent heat storage. Figure 1 provides a 2D representation illustrating the
stacked spherical particles of different sizes within the foam.

In Figure 1, it is apparent that a single pore comprises three materials with distinct
properties. The paraffin spherical inclusions within the pore exhibit a low thermal con-
ductivity of approximately 0.2 W m−1K−1 in the solid state and 0.08 W m−1K−1 in its
liquid state [5]. This is tremendously small compared to, e.g., the copper from which the
metal foam is composed, which has a thermal conductivity of around 400 W m−1K−1 [18].
Furthermore, the pore is saturated with still air, characterized by an even lower thermal
conductivity of 0.0265 W m−1K−1 [19]. The thermal conductivity ratio of solid and fluid
phases (κs/κl) for air-saturated metal foams is over 8000, indicating that the contribution of
heat transfer by air can be largely neglected [19].

Motivated by Figure 1, we will consider approximate configurations to develop reliable
computational methods for the simulation of the temperature field that develops when
such a configuration is subjected to a steady temperature gradient (Dirichlet boundary) in
the Z direction. To that end, we consider spatially periodic systems in the X-Y directions
generated by repeating a suitable unit cell (periodic boundaries). In this paper, we focus on
periodic unit cells with one or two paraffin spheres of the same diameter inside to study
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the numerical capturing of the effect of such inclusions. This generic problem corresponds
to an approximate stacking of the spheres and enables precise numerical investigations.

Figure 1. A two-dimensional representation of a TES microstructure composed of different size
paraffin particles (orange) stacked in the pores of a foam (blue). The pores are bounded by a metal
border, indicated symbolically by the thin black lines. In the actual porous metal foam, direct
pathways connecting one pore with another are also contained—this is not included in the sketch.

After establishing the physical simulation domain, the PDE model for the heat transfer
developing from a temperature gradient across the boundaries of the simulation box is
specified next.

2.2. Mathematical Model

To accurately predict the thermal transport in composite domains, a CHT simulation
provides a complete macroscopic model. This computational model enables the analysis
of the contribution of conduction and convection mechanisms to the total heat transfer,
consistently coupling all domains with appropriate interface conditions. We focus on
process conditions that do not involve the melting of the paraffin—only heating and
cooling are included at this stage. In this case, the heat battery problem considered needs to
handle both the gaseous air (fluid domain) in the interstitial space left between the paraffin
spheres, as well as the solid paraffin (solid domain). The system of partial differential
equations (PDEs) governing the heat transfer in both the solid and fluid domains will be
specified next. The numerical treatment of this model will be discussed in Section 3.1.

2.2.1. Conservation of Energy

The basic principle of conservation of energy can be expressed concisely in terms of
the evolution of the specific total energy (per unit mass) e. Closely following [20], we can
include all the relevant mechanisms for our problem. Taking into account the pressure and
shear forces, as well as the force of gravity as a body force, we may apply the Reynolds
transport theorem to the fundamental first law of thermodynamics [20] and arrive after
some simplification at:

∂(ρe)
∂t

+∇ · (ρue) = −∇ · q̇S −∇ · (pu) +∇ · (τττ · u) + ρg · u + q̇V (1)

In this equation, u is the flow velocity, ρ denotes the material density, e stands for the
specific total energy, p represents the pressure acting on the body, τττ is the viscous tensor

28



Polymers 2024, 16, 1015

and g represents gravity. Additionally, q̇V accounts for the heat generated or destroyed per
unit volume, while q̇S corresponds to heat transfer by diffusion, following Fourier’s law:

q̇S = −κκκ · ∇T (2)

Here, κκκ denotes the thermal conductivity matrix, and ∇T represents the gradient of the
temperature field T. The thermal conductivity matrix κκκ is a material property that for
anisotropic media takes the form [21]:

κκκ(T) =




κ11 κ12 κ13
κ21 κ22 κ23
κ31 κ32 κ33


 (3)

To further understand the energy equation, we express the total energy in terms of the
specific enthalpy, denoted as H, implying:

e = H − p
ρ
+

1
2

u · u (4)

where u denotes the velocity field describing the motion of the medium. Enthalpy for
Newtonian fluids in thermodynamic equilibrium can be considered a function of the
pressure and temperature, i.e., H = H(p, T), and can be evaluated using the standard
equilibrium thermodynamic formula [22,23], which implies

dH =

(
∂H
∂T

)

p
dT +

(
∂H
∂p

)

T
dp = cpdT +

[
v − T

(
∂v
∂T

)

p

]
dp (5)

Here, cp represents the specific heat capacity at constant pressure, and v denotes the specific
volume. Equation (5) describes a chemically inert system of fixed mass [23]. Combining
Equation (1) with Equations (4) and (5), we can formulate the energy equation for an
incompressible fluid as:

∂

∂t
(ρcpT) +∇ · (ρcpuT) = ∇ · (κκκ · ∇T) + q̇w (6)

Equation (6) is a general equation where the source term q̇w considers heating by shearing
and pressure work. Equation (6) will be specified next for the solid and the fluid domain
and solved later as a part of the total mathematical model.

2.2.2. Heat Transfer in Solid Domain

When dealing with solid domains, Equation (6) can be significantly simplified as
there is no material flow and the density remains relatively constant with respect to the
temperature. We can simplify the equation as follows:

∂

∂t
(ρcpT) = ∇ · (κκκ · ∇T) + q̇V (7)

The thermal conductivity of paraffin was examined in [5,24] and observed to be nearly
isotropic and homogeneous, with variations in the heat conductivity of up to approximately
20% over a very wide temperature range of 300 to 650 K. Therefore, we make the simplifying
assumption that the storage material can be treated as isotropic, homogeneous and with
material properties that are independent of the temperature. This assumption enables
expressing thermal conductivity as κκκ = κIII, where III is the identity matrix. The formulation
in (7) can also be expressed in a non-dimensional form. In fact, upon introducing the
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reference time, length and temperature scales τ∗, L∗ and T∗ and assuming that ρ, cp and κ
are constant, we may write

∂T∗

∂τ∗ = ∇∗2(T∗) + q̇∗V (8)

in case the time scale and the forcing scale are chosen as

τ∗ =
κ

ρcpL2 t ; q̇∗V =
κ(Thot − Tcold)

L2 q̇V (9)

where L is the given characteristic length. It is convenient to impose standardized tempera-
ture boundary conditions if one defines the dimensionless temperature as

T∗ =
T − Tcold

Thot − Tcold
(10)

in terms of the temperatures Tcold and Thot that define the temperature forcing of the system.
Here, we use the same notation T for the dimensional and the non-dimensional formulation,
as the difference is clarified by the context.

2.2.3. Heat Transfer in the Fluid Domain

Spheres arranged in a stack within a pore in the metal foam are enclosed by air. This air
also contributes to the overall heat transfer. We approximate the air in the interstitial volume
as an incompressible fluid and consider convection and diffusion as driving mechanisms.
Correspondingly, the dynamics are governed by the continuity equation, the conservation
of linear momentum and the temperature equation as specified above. Because the flow of
air between the randomly stacked paraffin spheres is on a very small scale and subject to a
modest temperature difference on the scale of the diameter of an individual sphere, the
heat transfer is dominated entirely by diffusion. We substantiate this simplification next.

The problem of heat transfer by the air between the paraffin spheres is governed by the
Rayleigh number Ra [22], which characterizes the phenomena of heat transfer for natural
convection. For values below a critical Ra number, heat is transferred primarily through
thermal conduction and the effects of natural convection are considered negligible. Ra is
defined as

Ra =
βg∆TL3

νκ
(11)

Here, β, g, L, ν and κ represent the thermal expansion coefficient, gravitational accel-
eration, characteristic length, kinematic viscosity and thermal conductivity, respectively.
Collecting typical values for these quantities [10], we observe the thermal expansion co-
efficient of air β = 3.5 × 10−3 K−1 [25]. Likewise, we recall that g ≈ 10 m s−2 and take
as the length scale for the interstitial air-filled domain the diameter of a paraffin sphere
L = 5 × 10−6 m—this is likely to be an upper-bound for densely stacked spheres. The
kinematic viscosity of air at room temperature is ν = 1.5 × 10−5 m2 s−1 and the thermal
conductivity can be estimated at κ ≈ 2.6 × 10−2 W m−1K−1. Adopting a very large temper-
ature difference ∆T = 1 K over a distance of the radius of a sphere of approximately 5 µm,
we may estimate Ra = O(10−14), i.e., we infer that only dissipative heat transport is of
relevance here. Even in the case where one would consider an empty pore in the metal foam
with a much larger characteristic length of L = 5 × 10−3 m, the Rayleigh number is found
to be Ra ≈ O(10−5), i.e., much lower than the critical Ra ≈ O(102) for porous media [26].
Hence, the nonlinear convective transport is of little relevance here and diffusive transport
dominates the heat transfer both in the solid and the fluid domain.

2.2.4. Interface and Boundary Conditions

The heat transfer problem we consider here is characterized by interface conditions
that ensure (i) the continuity of the temperature and (ii) the continuity of the heat flux
across the interface. We discuss these conditions in more detail next:
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(i) Continuity of temperature: There is no temperature jump at the interface, meaning
that the temperature when approaching the interface from one side is equal to the
temperature when approaching the interface from the other side, i.e.,

(T)ij(xxx∗) = (T)ji(xxx∗) (12)

where (T)ij is the temperature at any point xxx∗ on the interface between regions i and
j, when approaching the interface from region i. Likewise, (T)ji is the temperature
when approaching the same interface point xxx∗ from region j.

(ii) Continuity of temperature flux: This condition ensures that the total heat flux density
is continuous when crossing the interface between regions i and j, at any location xxx∗.
This condition takes into account the thermal conductivity of each region:

(
(κκκ · ∇T) · nnn

)
ij
(xxx∗) =

(
(κκκ · ∇T) · nnn

)
ji
(xxx∗) (13)

expressing the continuity of the normal component of the heat flux density at any
location on the interface between regions i and j, irrespective of whether the interface
is approached from region i or region j. Here, nnn denotes the normal vector on the
interface at xxx∗.

2.2.5. Summary of Mathematical Model

The temperature distribution inside the domain consisting of air and paraffin is
dominated by conduction in the parameter regime considered here. In the remainder of
this paper, we will not consider explicit source terms. Hence, for region i, the problem is
governed by:

∂

∂t
(ρcpT)i(xxx) = ∇ · (κκκ · ∇T)i(xxx) (14)

Periodic boundary conditions are used in the xy directions and the temperature is
prescribed on the top and bottom of the unit cell in the z direction. Interface conditions
with domain j are given by:

(T)ij(xxx∗) = (T)ji(xxx∗) (15)

for the continuity of the temperature and
(
(κκκ · ∇T) · nnn

)
ij
(xxx∗) =

(
(κκκ · ∇T) · nnn

)
ji
(xxx∗) (16)

for the continuity of the heat flux across the interface.

3. Solver Description

In this section, we discuss the treatment of the governing heat equations in a finite
volume framework as provided by OpenFOAM (Section 3.1). Moreover, the treatment of
the adaptive meshing used for the accurate resolution of the finer details in the solution is
presented (Section 3.2).

3.1. OpenFOAM Finite Volume Framework

OpenFOAM [16] is an open-source simulation platform for continuum mechanics.
It utilizes the finite volume method (FVM) to discretize partial differential equations
representing a wide range of physical phenomena [17]. We adopt OpenFOAM (version 10)
in this study. OpenFOAM finds applications in diverse fields, including fluid dynamics,
heat transfer and computational physics. By providing a comprehensive platform for
numerical simulations, OpenFOAM enables the analysis of complex problems across
various scientific and engineering disciplines.

The finite volume method (FVM) discretizes the computational domain into discrete
control volumes, each representing a finite region within the domain. This numerical
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approach involves calculating fluxes across the faces of these control volumes and sub-
sequently updating the values of the variables within each volume. In Figure 2, the
conservation laws of a discrete volume Vc and fluxes ( fi) crossing through the discrete
element walls are illustrated. This process ensures adherence to conservation laws at the
discrete level. Consideration of a conservation equation for a general scalar variable ϕ is
expressed as:

∂(ρϕ)

∂t︸ ︷︷ ︸
transient term

+ ∇ · (ρUϕ)︸ ︷︷ ︸
convective term

= ∇ · (Γϕ∇ϕ)︸ ︷︷ ︸
diffusion term

+ Qϕ

︸︷︷︸
source/sink term

(17)

where Γϕ represents the diffusion coefficient of the ϕ property. Dropping the transient term
in Equation (17) to simplify our discussion on how the FVM discretizes, and integrating
over the element the volume V of an element C, yields:

∫

VC

∇ · (ρUϕ)dV =
∫

VC

∇ · (Γϕ∇ϕ)dV +
∫

VC

QϕdV (18)

Figure 2. Conservation of a general scalar variable in a discrete element C of volume Vc.

Applying the divergence theorem to Equation (18) for both the convection and diffu-
sive term and discretizing yields:

∑
f aces(Vc)

∫

f
(ρUϕ) · dS = ∑

f aces(Vc)

∫

f
(Γϕ∇ϕ) · dS +

∫

VC

QϕdV (19)

where S is the surface vector. Equation (19) expresses the conservative nature of the method,
emphasizing that a surface integral must be resolved along the faces that constitute the
volume Vc and a volume integral for the source Qϕ. In the FVM, a Gaussian quadrature
is employed to numerically evaluate the surface integral with the fluxes crossing and the
volume integral.

Figure 3 presents a grid cell in a structure, distinguishing between a uniform and an
irregular example. The temperature Equation (8) is discretized on this mesh arrangement
with the key variables stored in cell centers and at cell interfaces. For simulations involving
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stacked spherical particles in a domain, an unstructured mesh is well suited for accurately
representing the geometry and capturing the physics of the system.

Figure 3. Cell in a structured uniform grid (a) and in a structured irregular grid (b).

The presence of multiple paraffin particles can be modeled in OpenFOAM by treating
it as a multi-region case. OpenFOAM’s chtMultiRegionFoam solver is purpose-built
for simulating CHT problems involving general configurations. This solver enables the
accurate modeling of heat transfer phenomena across different materials and regions,
irrespective of whether these contain a fluid or a solid.

In structured grids, cells are arranged regularly, often in a Cartesian fashion, simplify-
ing the identification of neighboring cells and facilitating interpolation and flux calculations.
This regularity is particularly advantageous for simulations involving simple geometries
and where a regular mesh can be easily generated. In contrast, unstructured grid cells
lack a regular arrangement, offering flexibility in mesh generation but requiring more
sophisticated algorithms for interpolation and flux calculations due to irregular cell shapes.
Unstructured grids are highly recommended for complex geometries and situations where
mesh generation may be challenging with a structured approach, such as the case of paraf-
fin inclusions. However, a noteworthy consideration in unstructured grids is errors in the
calculations in cases of highly irregular cell shapes.

3.2. Meshing

This study focuses on the heat transfer simulation in a stack of spherical particles. The
fidelity of the simulation results depends on the spatial resolution and the quality of the
meshing of the domain. To achieve high-quality meshing, the SNAPPYHEXMESH mesh
generation tool in OpenFOAM was adopted. This tool is designed specifically for gener-
ating hexahedral (hex) and prismatic (wedge) meshes, suitable for subsequent numerical
treatment with any of the OpenFOAM solvers [16].

In the context of mesh generation using SNAPPYHEXMESH, an initial background
mesh comprising hexahedral cells covering the entire computational domain is established.
To maintain simplicity, a structured mesh serves as the starting background, offering a well-
defined foundation. Following this, a complex geometry surface within the computational
domain is added, along with its corresponding boundaries. The SNAPPYHEXMESH utility
then identifies the features on the specified surface, initiating an iterative process where the
cells surrounding the surface gradually conform to its shape. It refines the mesh around
specified geometries and according to the size of gradients, as illustrated in Figure 4.
The process starts with a base mesh, and refinement is applied around the edges of the
given geometry.

During this iterative process, systematic mesh refinement is applied to the newly
defined geometry region, guided by the number of cells in the background mesh. If
necessary, additional refinement may be introduced by splitting cells in specified regions.
Subsequently, the geometry region is removed from the background mesh and introduced
as a new region with independent properties. This comprehensive process ensures the
generation of a high-quality hexahedral mesh that accurately represents the complex
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geometry within the computational domain. Parameters governing the adaptation process
include cell size, surface feature refinement level, and surface curvature. Properly setting
these parameters is crucial for achieving an optimal balance between mesh resolution and
computational efficiency.

Figure 4. (a) Computation domain of structured cells constituting one region for the background
mesh. (b) Structured background mesh with spherical inclusion surface. (c) New computational
domain after SNAPPYHEXMESH consisting of two regions.

4. Convergence of Temperature Predictions upon Grid Refinement

In this section, we explore the resolution requirements that need to be met for an
accurate simulation of heat transfer in periodic domains. Such a system is generated by
repeating a unit cell in all three directions. We consider two types of periodically extended
systems: (a) containing a single sphere per unit cell and (b) containing two spheres per
unit cell. Apart from this difference, we may also consider periodic systems with different
volume fractions of spheres in the system. For a single sphere per unit cell, we assess
the convergence of the temperature field in terms of temperature profiles across selected
lines and the corresponding convergence of the L1-norm of the error. For systems with
two spheres per unit cell, we investigate in addition the resolution needed to resolve the
total temperature field even in the case of spheres separated by very small distances and
even overlap.

4.1. Convergence Study Setup

For an accurate simulation of conjugate heat transfer in configurations of stacked
particles, a spatial resolution analysis is essential to determine the number of grid cells per
unit cell needed to achieve a certain accuracy level. The periodic setting of stacked spheres
mimics more general configurations of such spheres within the pores of a metal foam, as
described in the Introduction.

We detail the simulation setup in a 2D representation for clarity next. The actual
simulations are all conducted in 3D. In Figure 5a, a 2D sketch of the simulation domain
is shown, divided into a large number of grid cells. Each grid cell is of size h3 where the
grid spacing is taken uniformly as h = L/n, with L the size of the periodic unit cell and
n the number of grid cells along each coordinate direction. Figure 5b presents a single
paraffin sphere with a diameter D embedded in air, and Figure 5c depicts two paraffin
spheres separated by a specified distance H. In the case of two spheres per unit cell, quite
general configurations are possible. To limit the convergence study, we consider two
spheres directly above each other, sensing maximal thermal gradients. Configurations with
the spheres at general relative placement will have somewhat smaller thermal gradients,
making these less demanding for our resolution study—these are therefore omitted here.
Future work is planned on several spheres in general relative configurations—preliminary
investigations show that the current OpenFOAM approach is capable of addressing these
problems as well.

The vertical direction will be identified as the z axis. In the z direction, a temperature
difference is imposed, characterized by a temperature difference ∆T over the distance L.
The steady temperature field T in the entire domain, including the spheres, is simulated and
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the accuracy of the predictions is quantified. For this study, we refine the spatial resolution
using n = 2k grid cells per direction with k = 1, 2, . . . , 7.

Figure 5. A two-dimensional representation of a periodic domain showing the following: (a) n2

cells of h size composing a L2 simulation box. (b) A single sphere with a diameter of D embedded
within the simulation box. (c) Two spheres, each with a diameter D, whose centers are separated by a
distance of H.

4.2. One Sphere per Unit Cell

The microstructure in the studied TES systems consists of multiple spherical particles
of various sizes, densely packed together. To approximate the effective heat conductivity
of such composite systems, we consider spatially extended periodic systems upon which
a temperature gradient is imposed. In this subsection, we investigate periodic systems
containing a single sphere per unit cell. This is a generic problem that is suitable to
investigate numerical requirements for reaching a desired accuracy level.

The spatial resolutions that we consider are labeled in terms of the number of grid
cells M that cover the diameter D of the sphere, i.e.,

M =
D

L/n
=

D
h

(20)

in terms of the domain size L and number of grid cells n. Figure 6 illustrates a cross-cut
displaying various resolutions at different M values. A temperature gradient directed
from top to bottom is imposed. The steady temperature fields show a clear qualitative
convergence with increasing M with coarse structures recognizable even as M = 2, as
illustrated in Figure 7. This impression of convergence is quantified next.

Figure 6. An embedded sphere in a periodic domain at different resolutions denoted by M = D/h.
The predicted temperature fields T are shown below in terms of T∗ = (T − T0)/(T1 − T0) in which
T0 and T1 are the imposed temperatures on the bottom and top, respectively.
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Figure 7. Temperature profile of sphere embedded in a cubic domain at different resolutions
M = D/h.

To assess the convergence of the temperature predictions, we compare as a function of
M the dimensionless, scaled temperature

T∗ =
T − T0

T1 − T0
(21)

where T0 and T1 are the imposed temperatures on the bottom and top of the periodic
unit, respectively. We evaluate T∗ along a vertical line through the middle of the sphere.
The corresponding temperature profiles are depicted in Figure 8 showing quantitative
convergence with nearly grid independence in the case M ≥ 8.

(a) (b)

Figure 8. (a) The L1—error for different spatial resolutions M. (b) The computational cost of the
solver and SNAPPYHEXMESH time against the total number of cells.
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To facilitate a further quantitative analysis of the convergence, we assess the L1—error
in the predicted temperature profiles using the result with M = 128 as the reference. We
define the error as

EL1(M) =
1

n(M)

n(M)

∑
i=1

|ei(M)| (22)

where n(M) denotes the total number of grid cells across the domain L at M = D/h.
Moreover, the local error

ei(M) = T∗(zi(M))− T∗(zi∗(Mre f )) (23)

where zi(M) is the i-th grid point in the vertical grid corresponding to a selected value M
and zi∗(Mre f ) is the corresponding grid point at i = i∗ in the Mre f = 128 grid in this study.

Figure 8a displays the convergence, indicating that indeed, for values of M ≥ 8,
convergence assumes asymptotic scaling equal to that of a second-order method. This
was expected from the spatial discretization adopted in OpenFOAM employing Gaus-
sian integration, which interpolates values from cell centers to face centers [16]. Finally,
Figure 8b shows the increase in computational cost, which is defined as the time it takes
for the complete mesh to be generated and the simulation to run, with increasing spatial
resolution. We observe cubic scaling, verified by the power of three guiding lines.

In the next subsection, we consider the prediction of the temperature field in the case
of two spheres per unit cell.

4.2.1. Effective Thermal Conductivity

In the preceding subsection, we introduced a parameter for the spatial resolution,
denoted as M, and observed consistent second-order convergence beyond a value of M = 8.

The calculation of the effective thermal conductivity of the basic unit cell that contains
the configuration of the paraffin spheres involves an examination of the overall thermal
transport characteristics of the composite material, including its heterogeneity. In the
numerical determination of ETC for a composite material, we assume steady conditions,
which implies that the heat transfer across any plane at constant height z through the
heterogeneous material remains constant. The total heat flow rate, denoted as Q̇, flowing
through a horizontal plane Γ at constant z is defined as follows:

Q̇ =
∫

Γ
dxdyκ(x, y, z)∂zT(x, y, z) ≡ κe f f

∆T
L

A (24)

Here, κ represents the local thermal conductivity, and ∂zT is the temperature in the z
direction evaluated plane. This expression also introduces effective thermal conductivity,
κe f f , including the temperature difference ∆T across the vertical length of the simulation
box L, and the simulation box plane area A. By rearranging this expression, we obtain for
the ETC:

κe f f =
L

A∆T

∫

Γ
dxdyκ(x, y, z)∂zT(x, y, z) (25)

In the steady state, the prediction of the ETC κe f f is independent of the particular plane
considered. We may also use this property to verify the numerical evaluation of the ETC.
For convenience and accuracy, we exploit this definition only at planes that traverse the
domain through air. Independence was also established for planes that traverse both air
and paraffin.

Examining the dependence of κe f f on the spatial resolution (M) is key for assessing
what spatial resolutions are appropriate for reliable predictions. Figure 9 presents the
temperature field (a) and the convergence of κe f f for a paraffin sphere with a thermal
conductivity of κpara f f in = 0.2 W m−1K−1 in the solid state [5] and surrounding air with
κair = 0.026 W m−1K−1 [27]. The observed accuracy of predicting ETC aligns well with the
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convergence of the underlying temperature field established earlier. In particular, also for
κe f f , sensible predictions are found beyond M = 8.

(a) (b)

Figure 9. (a) Temperature field with an embedded sphere at M = 16 with different sample planes
(z = 0.1, z = 1, z = 3 and z = 3.9) to determine κe f f and (b) κe f f at different spatial resolutions M
evaluated on different sample planes.

4.2.2. Volume Fraction

Building upon the dependency of κe f f on the spatial resolution M outlined in the
preceding subsection, we consider the dependence of the effective thermal conductivity on
the volume fraction of paraffin. Various constitutive (micro-mechanical) models [28] have
been devised to explore the effective thermal conductivity of composite materials, with the
Maxwell-Garnett [14] and Bruggeman [29] models as prominent examples. For unit cells
containing a single sphere, effective heat conductivity is given by:

κe f f = κm

(
1 +

3ϕ(δ − 1)
2 + δ − ϕ(δ − 1)

)
(26)

The Maxwell-Garnett model, as depicted in Equation (26), offers a formulation for
κe f f [14]. Here, κm represents the thermal conductivity of the matrix material, while ϕ sig-
nifies the volume fraction of the filler material. The ratio between the thermal conductivity
of the filler, denoted as κ f , and that of the matrix is expressed as δ = κ f /κm. Notably, the
Maxwell-Garnett model is tailored for spherical, non-overlapping particles, rendering it
suitable for comparison with the simulation results.

Figure 10 presents a comparison between the numerical approximation and the
Maxwell-Garnett model as a function of the volume fractions of the paraffin filler. Both
approaches demonstrate a strong agreement, particularly up to a volume fraction of 30%.
In these simulations, a constant spatial resolution of M = 32 per sphere diameter is upheld;
note that this implies a growing computational cost with a reduced volume fraction—this
posed no feasibility problem using OpenFOAM.
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Figure 10. Effective thermal conductivity of binary mixture of still air and paraffin inclusions. The
numerical approximation is compared with the Maxwell-Garnett model at a resolution of M = 32
per sphere diameter.

4.3. Two Spheres per Unit Cell

To further investigate the predictions for the temperature field when using a periodic
model for extended systems, we next investigate unit cells that contain two spheres. These
spheres can be in any relative configuration inside the basic unit cell, which poses different
challenges to the numerical method. We consider two extreme situations:

1. Horizontal. If the two spheres are aligned horizontally, i.e., the line through the
centers of the spheres lies in a constant z plane, the temperature gradient experienced
by the spheres would be quite similar to the temperature gradient experienced by a
single sphere. This is particularly true if the two spheres are separated far enough,
making their mutual interactions diminish. This situation was already studied in the
previous subsection.

2. Vertical. If the two spheres are aligned vertically, i.e., the line through the centers of
the spheres is in the z direction, the temperature gradient experienced by each of the
two spheres differs most from the single-sphere case. Moreover, the gradients seen in
this configuration are the largest among the different configurations. Therefore, this
configuration will be studied in this subsection.

Particles stacked within the unit cell may not always be well separated from each other.
This mimics the situation when multiple spheres are stacked inside a pore of the metal foam
in which a range of relative configurations may be expected. Therefore, we investigate
the implications of different distances between the centers of the spheres on the predicted
temperature field. We include overlapping, touching and separated configurations and
consider the convergence of the corresponding solution upon grid refinement. Figure 11
illustrates four distinct cases, each characterized by different distance ratios S = H/D,
measuring the distance between the centers of the spheres in units of the diameter of the
spheres D, cf. Figure 5c. In terms of S, we observe that 0 ≤ S ≤ 1 corresponds to partially
overlapping spheres and S > 1 denotes separated spheres that, in principle, would allow
for a grid fine enough to resolve the distance between the surfaces of the spheres with a
number of grid cells.

Figure 12 illustrates two spheres separated by a small distance, corresponding to
S = 1.05. In case a coarse mesh (M = 4) is used, SnappyHexMesh generates a compu-
tational grid that does not resolve the distance between the spheres but rather forms a
dumbbell shape. As the spatial resolution increases, this artificial contact area diminishes

39



Polymers 2024, 16, 1015

until the gap is fully resolved at a sufficiently high resolution of M = 32. Although there
are clear differences in the way the geometry is resolved at different resolutions, the main
question of course is how such differences affect the prediction of the temperature field.
We turn to this next.

Figure 11. Two-sphere cases, illustrated as a red and green sphere of the same material, for different
separations measured in terms of S = H/D, expressing the distance between the centers of the two
spheres in units D.

Figure 12. SnappyHexMesh refinement for spheres, illustrated as a red and green sphere of the same
material, separated by a small gap (S = 1.05) for different resolutions (M = 4, M = 8 and M = 32).

The cases depicted in Figure 11 (S = 0.5, S = 1, S = 1.05 and S = 2) have been
simulated at various resolutions M. The corresponding temperature profiles are presented
in Figure 13. We observe a characteristic convergence of the temperature profiles with an
increasing resolution as already presented for unit cells containing a single sphere only.
Again, for M ≥ 8, good general agreement with the grid-independent solution is observed,
where it is understood that the value of M refers to the number of grid cells across the
diameter of a sphere. This value of M also appeared for the single-sphere case, suggesting
that the interaction between the spheres in terms of the spatial temperature distribution is
rather modest and no particularly strong gradients emerge in the two-sphere configuration.
Finally, for the case S = 1.05 in which a small gap is present, even when not fully resolving
the gap, the solutions are close to the fully resolved gap reference simulation.
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Figure 13. Vertical temperature profiles for various separations S and spatial resolutions M.

Effective Thermal Conductivity

The study of the ETC of a two-sphere paraffin system embedded in air is considered
next as a function of the distance (S) between the sphere centers.

Figure 14 displays the dependence of κe f f on the inter-sphere distance S. In this
illustration, we used spheres of half the radius as used for the single-sphere case above. At
S = 0, the predicted value therefore does not agree with the single-sphere case considered
earlier. The two-sphere systems show a value of κe f f = 0.0263 W m−1K−1 in the fully
overlapping case at S = 0. With increasing S, the effective heat conductivity increases and
reaches a maximum near S = 1. In this configuration, the path along which the heat is
transported is for a large extent contained in paraffin for which the heat conductivity is
larger than in the surrounding air. For larger separations, the value of κe f f reduces again
to reach a plateau corresponding to two independent paraffin spheres. The simulation
method appears to yield accurate predictions that can be used to define upscale theory as
is considered in homogenization models.
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Figure 14. ETC of a vertically aligned two-sphere system at a spatial resolution of M = 16 as a
function of the distance S between the sphere centers.

5. Conclusions

In this paper, we developed a simulation method with which heat transfer in structured
heterogeneous media can be simulated. The heterogeneous medium is meant to represent
in detail the working material in a future thermal battery. Specifically, one may think
of spheres composed of paraffin, although the method developed here is general. The
working material contains a system of spheres placed in a certain configuration, which is
repeated periodically. The corresponding unit cell can have several such spheres inside to
represent actual stacked spheres in a realistic domain.

The approach is implemented in OpenFOAM, using second-order finite volume dis-
cretization. The full conjugate heat transfer problem of a periodic system was addressed, in
which a unit cell is repeated indefinitely in all three directions, subject to a steady tempera-
ture gradient. The heat transfer in the case of a unit cell with only one sphere inside was
considered in a grid refinement study. Visually, rapid convergence was appreciated upon
increasing the spatial resolution, which could be recognized in detail to be of second-order
accuracy. In fact, on grids with M ≥ 8 grid cells per diameter D of the spheres, good
engineering accuracy was observed, yielding high-fidelity results upon further refinement.
The computational effort was seen to scale as n3 where n is the number of grid cells in each
coordinate direction. The computational effort is sufficiently low to enable the simulation
of extensive periodic models of the composite material.

Further examples of this problem were investigated by considering unit cells with
two spheres inside. Grid refinement showed second-order convergence also in this case.
Moreover, in terms of the separation parameter S = H/D, we simulated two-sphere
problems with overlap (0 ≤ S ≤ 1) as well as without overlap (S > 1). Even in cases where
possible small gaps between the two spheres would be smaller than the grid spacing h, the
grid refinement showed continuous improvement upon increasing the resolution, with
solutions that are very close to the eventual grid-independent solution. Hence, it appears
that the under-resolution of tiny details in a complex stacking of spheres is not leading to
large inaccuracies in the temperature field and the corresponding thermal transport.

The simulation method developed here was also illustrated in terms of the effective
thermal conductivity κe f f . We observed that at spatial resolutions M ≥ 8 per sphere
diameter, the effective conductivity can be computed reliably. This method can hence
provide a basis for homogenization approaches to upscale the model to much larger
systems. As an example, we calculated κe f f as a function of the volume fraction of paraffin
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filler and compared this with the Maxwell-Garnett constitutive model. The numerical
approximation closely mirrors the Maxwell-Garnett model up to a 30% volume fraction
of paraffin filler. This correspondence diminishes for yet higher volume fractions, as the
periodic boundaries imply that the temperature distribution around the paraffin spheres
can no longer be described as independent of that around nearby spheres. Our method
was also adopted to compute the κe f f of a system of two spheres at different distances S.
The two-sphere system revealed distinctive trends in the effective thermal conductivity.
In fact, when going from overlapping to non-overlapping configurations, a peak ETC is
observed slightly below S = 1, attributed to the longer paraffin thermal pathway with
a higher heat conductivity compared to the embedding air. These findings contribute to
the data-driven upscaling of heat transfer models in truly complex systems of polymer
composite materials.

The new model developed in OpenFOAM will be extended to systems with coated
spheres, with which it will become possible to further improve the heterogeneous material
by assigning the coating to increase the overall heat transfer rate and increase the loading
and unloading of the core of the multiple spheres storing heat effectively in large quantities.
Specifically, paraffin spheres coated with graphene form an important example of such
composite materials. This type of extension is currently under investigation—the results
will be published elsewhere. The application of the new approach to extended systems
requires high-performance computations, which is well possible based on OpenFOAM. In
fact, a possible grid of n = 1024 and a resolution per diameter of M = 8–16 would enable
simulations of extended systems with 1283–643 spheres in a regular stack. This large-scale
modeling forms the basis of future homogenization approaches that will enable the analysis
of systems of realistic size and complexity.

Future research is devoted to effects due to variations in physical parameters, such as
the volume fraction of the spherical inclusions. This aims to study the effect of changes
in the physical system on the effective thermal conductivity. Additionally, the model will
be extended by adding a thin coating composed of a material with very high thermal
conductivity. A particular example would be the coating of paraffin spheres with graphene,
thereby combining the fast and slow transport of heat in the system needed to realize
particular designs for thermal batteries. Finally, after having established the resolution
requirement for a single sphere and a pair of spheres, we will develop simulation method-
ologies that can handle large numbers of spheres (multi-spheres) touching each other.
This would correspond closely to the situation motivated by Figure 1 and lead the way to
realistic configurations. The detailed exploration and findings of these three studies will be
presented elsewhere.
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Abstract: A precise prediction of the cure-induced shrinkage of an epoxy resin is performed using a
finite element simulation procedure for the material behaviour. A series of experiments investigating
the cure shrinkage of the resin system has shown a variation in the measured cure-induced strains.
The observed variation results from the thermal history during the pre-cure. A proposed complex
thermal expansion model and a conventional chemical shrinkage model are utilised to predict the
cure shrinkage observed with finite element simulations. The thermal expansion model is fitted
to measured data and considers material effects such as the glass transition temperature and the
evolution of the expansion with the degree of cure. The simulations accurately capture the exothermal
heat release from the resin and the cure-induced strains across various temperature profiles. The
simulations follow the experimentally observed behaviour. The simulation predictions achieve good
accuracy with 2–6% discrepancy compared with the experimentally measured shrinkage over a
wide range of cure profiles. Demonstrating that the proposed complex thermal expansion model
affects the potential to minimise the shrinkage of the studied epoxy resin. A recommendation of
material parameters necessary to accurately determine cure shrinkage is listed. These parameters are
required to predict cure shrinkage, allow for possible minimisation, and optimise cure profiles for
the investigated resin system. Furthermore, in a study where the resin movement is restrained and
therefore able to build up residual stresses, these parameters can describe the cure contribution of the
residual stresses in a component.

Keywords: cure shrinkage; epoxy; finite element; UMAT; thermal expansion; volumetric shrinkage

1. Introduction

Residual stresses in cured thermosets like epoxies, polyesters, and polyurethanes are
inherent to the curing process. Residual stresses can lead to unwanted warpage, which
can lead to issues during assembly, for instance in wind turbine blade the root sections [1].
Furthermore, crack growth, tunnelling cracks, and delamination are affected by residual
stresses in composites [2]. In some scenarios, reduced mechanical performance is observed,
i.e., the fatigue behaviour is reduced [3,4].

These cure-induced residual stresses can be directly coupled to the cure-induced
strains from combined thermal and chemical shrinkage [5]. The chemical shrinkage is
known to be related to the volumetric change the thermoset undergoes due to the poly-
merisation [6]. Bogetti and Gillespie [6] proposed a linear relationship between the degree
of cure and the volumetric shrinkage. This was experimentally confirmed by Shah and
Schubel [7] and Khoun et al. [8], using a rheometer to quantify the shrinkage. Later, a
non-linear model was proposed [9] allowing for a more complex shrinkage behaviour of
thermosets. This non-linear shrinkage was later observed by measuring the volumetric
shrinkage with a gravimetric/dilatometric setup by Li et al. [10]. Recently, experimental ob-
servations showed that the volumetric shrinkage determined using density measurements
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could be used to estimate the chemical shrinkage within reasonable accuracy, applying a
linear fit [5]. Even though there has been a lot of research in this field, it remains unclear
which approach yields the most accurate relationship between the degree of cure and the
volumetric shrinkage.

Several phenomenological models exist to quantify the cure development, or the
degree of cure as it is often referred to [11,12]. Some of these models capture only the kinetics
and reaction patterns of the thermoset mixture [11], while others include the diffusion-
controlled behaviour stemming from the influence of the glass transition temperature on the
reaction rate [12]. The most well-established model for the evolution of the glass transition
temperature in relationship with the degree of cure was coined by Dibenedetto [13]. As
this transition occurs, thermosets are known to suffer significant changes in properties and
behaviour [14], influencing the cure shrinkage.

Thermal shrinkage has also been a topic of substantial research over the years, with a
common method for measuring thermal expansion being Thermal Mechanical Analysis
(TMA) [8]. Previous studies have used this method to investigate glassy polymers, includ-
ing both thermosetting and thermoplastic systems [8,15,16]. One study of an epoxy system
using TMA [8] proposed a model for the non-linearity of thermal expansion approaching
and crossing glass transition temperature for cured samples. The same study demonstrated
that the thermal expansion is a function of the degree of cure above the glass transition
temperature. Studies have shown that thermal expansion could also be measured with
Dynamic Mechanical Analysis [15] and that glassy polymers can depend on heating and
cooling [15,16]. Korolev et al. [16] showed that the difference in thermal expansion coeffi-
cient between heating and cooling could lead to a variation in the strain observed, thus
demonstrating that thermal expansion in thermosets is complex.

This current work studies the cure shrinkage of a neat (i.e., without fibres) epoxy
resin type typically used in wind turbine blade manufacturing. A cure kinetic and glass
transition temperature model are used based on parameters found for a specific resin
system investigated by Jørgensen et al. [17]. These models are used in experimental trials
where the resin is free to contract and expand, with no external loads applied. The experi-
mental method applied was proposed by Mikkelsen et al. [5]. This method uses fibre optic
sensors with Fibre Bragg Gratings (FBG) similar to that used in other studies [3–5,18–20].
A conventional model describing the evolution of the chemical shrinkage with the degree
of cure is investigated in terms of how it reflects the chemical shrinkage observed in ex-
periments. In addition, a novel complex thermal expansion model is proposed to relate
thermal effects to the measured cure shrinkage. This material behaviour is implemented
into a simulation framework that considers the chemical and thermal shrinkage as the
governing constituents used by Jørgensen and Mikkelsen [21]. In the end, a procedure will
be delivered to accurately predict the shrinkage of thermosetting epoxy resins and allow
for realistic minimisation in reducing residual stresses.

2. General Theory

This section describes the equations and models applied for both experimental and
numerical aspects of this study.

2.1. Cure Kinetic Model

A cure kinetic model [12] accounting for the interaction between the glass transition
temperature, Tg, and the evolution of the degree of cure, X, is used to account for the
reduced molecular mobility effect by diffusion control into the cure predictions, resulting
in a model defined as:
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dX
dt

=
K(T)Xm(1− X)n

1 + exp
[
C(X− Xc(T))

] , (1)

K(T) = A exp
(
− ea

RT

)
,

Xc(T) = XcTT + Xc0.

The model incorporates the Arrhenius reaction equation, K(T), which consists of the
preexponential factor, A, the activation energy, ea, and the universal gas constant, R, and
is commonly used to model the cure behaviour in epoxy resin systems. Furthermore, n
and m are power law coefficients and in the denominator, the model is described by an
exponential function which captures the reduction in rate of cure caused by the reduced
molecular mobility at higher decrees of cure. This behaviour is governed by the diffusion
constant, C, which captures how abruptly the cure reaction slows down and the critical
degree of cure, Xc, which captures the degree of cure at which the polymer chains length
and cross-links begin to prevent remaining reaction sites from meeting. This value depends
on temperature through the glass transition temperature, Tg, as temperatures above Tg
result in higher molecular mobility, which facilitates the meeting of reaction sites, and
therefore, delays the drop in reaction rate. The critical degree of cure is computed using the
baseline critical degree of cure at a temperature of zero, Xc0, and the increase in the critical
degree of cure per degree increase in temperature, XcT . The degree of cure X is calculated
through numerical integration (2) in time as:

X =
∫ t

0

dX
dt

dt. (2)

The integrated X values, thus, depend on temperature, T, and time, t, relating the cure
kinetic model to the specific curing profile applied to the studied epoxy resin.

2.2. Glass Transition Temperature

The DiBenedetto relation [13] in (3) relates X to the midpoint value of the Tg range.
The relation involves the final Tg for a state of complete cure, Tg∞, the initial Tg for a state of
zero cure, Tg0, and a fitting parameter, ξ, and represents the ratio of the segmental mobility
of the fully cured polymer to that of the initial monomers under the assumption of constant
lattice energies [22] in the form:

Tg(X) = Tg0 +
ξX(Tg∞ − Tg0)

1− (1− ξ)X
. (3)

2.3. Cure-Dependent Load-Transferring Volumetric Shrinkage

In the experimental setup, shrinkage can only be measured if there is load transfer
between the resin and the fibre optic sensor. The ability to carry a load is also needed
for residual stresses to develop. Thus, the volumetric shrinkage of the resin in the liquid
phase is ignored. The shrinkage model (4) only considers the load-transferring volumetric
shrinkage, Vsh. To this end, the degree of cure at which the resin begins to transfer the load
is denoted by Xσ, which is close to but not the same as the degree of cure at gelation, Xgel .
The magnitude of Xσ is found experimentally based on a strain tolerance of |ε| > 0.005%
from the optical fibre with FBG [5] and using the cure kinetic model with the thermal history
measured using the thermocouple. This shrinkage model assumes that the shrinkage from
the load transfer point until the end of the cure, Xend, results in the load-transferring
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volumetric shrinkage, Vend
sh . The shrinkage model is dependent on X through a second-

order term Johnston [9] following the conditions:

Vsh =





0, X < Xσ

Vend
sh

(
X−Xσ

Xend−Xσ

)2
, Xσ ≤ X < Xend

Vend
sh , X ≥ Xend

. (4)

The parameters used in the shrinkage model are determined in Section 6.

2.4. Complex Thermal Expansion

The thermal expansion model extends an earlier model [8] by segmenting the thermal
expansion development into several transitional stages. This modification was motivated
by the observed behaviour, which was judged to be best captured using a piece-wise
linear curve. The expanded model also captures heat-up- and cooldown-dependent be-
haviour [15] not previously present. The structure of the thermal expansion transition is
shown in Figure 1.

Figure 1. The thermal expansion model involving the transition for the difference between the
instantaneous cure temperature T and the glass transition temperature, Tg.

The expanded model divides the thermal expansion into a thermal expansion for
heat-up, αh

resin, and one for the cooldown, αc
resin. The expansion is related to the parameter

T∗, which is the difference between the instantaneous temperature, T, and Tg. Before
the load-transfer point, i.e., in the liquid phase, the thermal expansion of the resin is
ignored (5) as it would not contribute to the cure-induced strain, and hence:

αh
resin = αc

resin = 0, X < Xσ. (5)

Figure 1 shows the behaviour below the glass transition T∗ < 0 and after the glass
transition temperature is passed T∗ > 0. Far from the glass transition temperature, below
T′1, the thermal expansion is constant, but above T′1 and through T′2, T′3, and T′4, the thermal
expansion increases, still in the glassy regime as T∗ < 0. Below T′3, the heat-up and
cooldown increase in thermal expansion is described by a1 and a2. Above T′3, it becomes
important to distinguish between heat-up and cooldown. The increase in thermal expansion
during heat-up follows ah

3. This is followed by a decrease in thermal expansion ah
4 across

the glass transition temperature from T′4 to T′5. During heat-up, the thermal expansion is
constant relative to Tg above T′5, and similarly, during cooldown from T′4. In both cases, the
thermal expansion depends on the degree of cure when the glass transition is exceeded [8]
and denoted αXr. The relationship with the degree of cure follows a parabolic development.
The equations describing the thermal expansion development during heat-up are as follows:
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αh
resin =





αg, T∗ < T′1
a1(T∗ − T′1) + αg, T′1 ≤ T∗ < T′2
a2(T∗ − T′2) + a1(T′2 − T′1) + αg, T′2 ≤ T∗ < T′3
ah

3(T
∗ − T′3) + a2(T′3 − T′2) + a1(T′2 − T′1) + αg, T′3 ≤ T∗ < T′4

ah
4(T
∗ − T′4) + ah

3(T
′
4 − T′3) + a2(T′3 − T′2) + a1(T′2 − T′1) + αg, T′4 ≤ T∗ < T′5

αXr, T∗ ≥ T′5

. (6)

Similarly to the set of equations describing the heat-up (6), a set of equation prevail for the
cooldown (7):

αc
resin =





αg, T∗ < T′1
a1(T∗ − T′1) + αg, T′1 ≤ T∗ < T′2
a2(T∗ − T′2) + a1(T′2 − T′1) + αg, T′2 ≤ T∗ < T′4
αXr, T∗ ≥ T′4

. (7)

The parabolic equation describes the cure-dependent thermal expansion αXr in (8) as:

αXr = aX2X2 + aX1X + aX0. (8)

The parameters describing the increase in the cure-dependent thermal expansion are aX2,
aX1 and aX0. The thermal expansion parameters necessary in the proposed model (5)–(8)
are fitted in Section 6.

3. Modelling Constituents

The following are the necessary constituents considered in the modelling used in
this study.

3.1. Thermal Behaviour

The thermal behaviour applied (9) follows the energy balance equation [1]:

∆U = cp∆T − HT
dX
dt

∆t. (9)

The incremental energy balance is described as ∆U for every time increment. The exother-
mal behaviour of the epoxy resin during curing is considered by including the total enthalpy
of the reaction, HT , multiplied by the cure rate and size of the time step. In addition, the
resin density is as follows:

ρresin = ρinit
resinX + (Xend − X)ρend

resin, (10)

which is modelled using the rule of mixture between resin density in uncured state, ρinit
resin,

and cured state, ρend
resin, which were experimentally measured, see Section 6.

3.2. Mechanical Constituents

The constituents used for the mechanical behaviour are based on the constituents
included in multiple studies [6,21]. The total, linear, cure-induced strain is taken as:

∆εtot = ∆εch + ∆εth. (11)

The incremental thermal strain, ∆εth, develops according to:

∆εth = αresin∆T, (12)
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and the load-transferring incremental linear chemical strain, ∆εch, in the model is defined
as the incremental isotropic change in the specific volumetric shrinkage following [6] with:

∆εch = 3
√

1 + ∆Vsh − 1. (13)

Finally, the incremental volumetric shrinkage, ∆Vsh, is defined by the volume change of a
cubic element normalised by its original volume and is thus unitless.

The development of the cure-dependent load transferring shrinkage over time can be
related to the incremental chemical strain in (13) by deriving (4) to incremental form by
differentiation for X and t as in (14). Giving the volumetric shrinkage in the incremental
form for the modelling perspective:

∆Vsh =
dVsh
dX

∆X ; ∆X =
dX
dt

∆t. (14)

4. Experimental Method
4.1. Material System

In the present study, an industrially available thermoset epoxy resin is investigated.
The resin is a conventional diglycidyl ether of bisphenol-A (DGEBA). The hardener is
a modified cyclo-aliphatic- and aliphatic-amine. A mixing ratio by weight used is base:
hardener; 100:31, following supplier guidance.

4.2. Reaction Mechanics

The parameters for the cure kinetics model (1) are based on the work performed in
a previous study [17]. The study included the fitting and analysis of DSC data from this
specific resin system. It finalised a set of cure parameters given in Table 1 together with the
total enthalpy of the reaction given later in Table 6. The parameters will predict the degree
of cure from (1) and the midpoint value of the glass transition temperature from (3).

Table 1. Parameters used for the prediction of X and Tg of the specific resin system [17].

A [s−1] ea [kJ/mol] n [-] m [-] C [-] XcT [K−1] Xc0 [-] Tg0 [] ξ [-] Tg∞ []

2.50 · 105 56.24 1.83 0.41 43.7 5.27 · 10−3 −0.885 −42.0 0.487 89.0

4.3. Experimental Setup

The experimental setup applied in this study is equivalent to that used in a previous
study [5] and similar to others [3,4,18–20]. The resin is in a stress-free state because there
are no outer loads or constraining elements, allowing the resin to contract and expand and,
therefore, to be considered unconstrained [5]. The setup shown in Figure 2 consists of a thin
polymer bag, an optic fibre with Fibre Bragg Gratings (FBG), placed with a thermocouple
inside the bag. The thermocouple monitors the temperature response during curing, and
the FBG monitors the strain. The error of measurement from the optic sensor in a setup
similar to this was discussed in the appendix of an earlier study [5]. Furthermore, the tail
length of the optical sensor, from the FBG to the end of the sensor, is important for the
accuracy of optical sensors [19]. It was found that the possible error from shear lag on the
strain measured using this setup is negligible. As the tail length, l f of the optical sensor was
well above 420r f , where r f is the optic fibre radius. This ratio was reported to give high
sensibility even with low resin stiffness [19]. The resin is mixed, degassed, and injected into
the polymer bag. Possible air entrapments during infusion are then removed from the bag.
The dimensions of the neat resin after infusion are 150 × 150 mm and a thickness of 4 mm.
The optic sensor and thermocouple are placed near the middle of the thickness.
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Figure 2. The experimental setup consists of a thin polymer bag. The specimen size is approx
150 × 150 mm and has an average thickness of 4 mm. A fibre optic sensor with an FBG and thermo-
couple is placed near the middle of the thickness.

5. Numerical Implementation

The numerical implementation was performed in the commercial finite element soft-
ware Abaqus®2023. The applied material behaviour lies outside the boundaries of the
built-in behaviour of the software. Therefore, the implementation used a user-defined mate-
rial description through a FORTRAN programming-based subroutine offered by Abaqus®.
This section gives a brief overview of the subroutines used and which parts of the models
they were used to implement. A more detailed description and the actual subroutine can
be obtained on request to the authors.

5.1. User-Defined Material Heat Transfer—UMATHT

The first part of the user-subroutine is the UMATHT, which handles the resin heat
transfer and updates any changes in thermal properties. It is in this subroutine that the
cure development is implemented. The main equations are the energy balance Equation (9),
the degree of cure (1), the glass transition temperature (3), and the change in density (10).

5.2. User-Defined Expansion—UEXPAN

Coupled with the UMATHT, the subroutine UEXPAN is passed the necessary state variables
from UMATHT to determine the thermal expansion (12) with framework from Figure 1 and
the volumetric shrinkage (4) resulting in chemical strains (13). This results in the strain
governed by (11).

6. Experimental Results
6.1. Cure Experiments

The cure profiles investigated with the setup explained in Section 4.3 are presented
in Table 2. These profiles have been chosen to investigate the effects of different pre-cure
temperatures and the effects of the length of the pre-cure on the resulting shrinkage. The
notation of the naming follows that of a previous study [5]. The number refers to the cure
temperature and the brackets [] denote the part of the cure profile considered the pre-cure,
e.g., in [40L]80L, the [40] refers to 40 as the pre-cure isothermal temperature and 80 refers
to an 80 isothermal post-cure. Additionally, the ()L stands for a long cure time of 8 h or
more, the ()M stands for medium-length cure time, which is more than 2 h and less than
8 h, and ()S stands for a short cure time of 2 h or less.
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Table 2. Cure profiles for investigations of cure-induced strains for an unconstrained resin. The
ramps for heating are 1 K/min for all cases. Cooling ramps are approximately −0.1 K/min for
cases with cooling during pre-cure. Each investigated case’s degree of cure results, and the final
cure-induced strains measured at Troom = 21 are given.

Cure ID 1. Pre-Cure 2. Pre-Cure Post-Cure Xσ Xpce Xend ε21◦C
CI

[h @ ] [h @ ] [h @ ] [%] [%] [%] [%]

[40L]80L 12 @ 40 - 10 @ 80 71.6 78.5 98.3 −0.500
[50L]80L 10 @ 50 - 10 @ 80 68.9 85.2 98.2 −0.536
[50M]80M 5 @ 50 - 6 @ 80 67.7 79.2 97.3 −0.603

[50S70S]80M 2 @ 50 2 @ 70 6 @ 80 66.8 90.0 97.5 −0.759
[50S60M]80M 2 @ 50 4 @ 60 6 @ 80 70.8 88.3 97.7 −0.629
[50S60L]80M 2 @ 50 8 @ 60 6 @ 80 72.8 90.3 97.8 −0.596
[50S30S]80M 1.5 @ 50 3 @ 30 6 @ 80 69.6 69.6 97.4 −0.791
[50S30M]80M 1.5 @ 50 6 @ 30 6 @ 80 69.7 72.9 97.4 −0.633

Figure 3 shows case [50S70S]80M and the resulting temperature and cure-induced
strain monitored over the duration of the cure profile. The degree of cure and, subsequently,
the glass transition temperature are predicted based on the models in (1) and (3), respec-
tively. A strain tolerance [5] determines the load transfer point. Based on the load transfer
point, the time, the degree of cure, and the temperature at which load transfer occurs are
found. The index ()σ denotes the values at the load transfer point and in the plot it is
denoted by narrow diamond-shaped points on the curves. Past the load transfer point,
the points denoting the end of pre-cure ()pce, shown by wide diamond points, are plotted
on the temperature and the degree of cure curves. The value of the degree of cure at the
pre-cure end, Xpce, will be used to evaluate the effect of pre-cure length on the measured
cure-induced strain. When the resin has cooled to room temperature Troom = 21 at the very
end of the cure, the final cure-induced strain ε21◦C

CI is found together with the final degree
of cure. At this instance, the cure-induced strain is ε21◦C

CI = −0.759% and the corresponding
degree of cure Xend = 97.5%. The main results from the cases studied are compiled into
Table 2 next to the cure profile parameters. The whole data figure set, like for the case
illustrated in Figure 3, is available for download [23].
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Figure 3. Cure experiment [50S70S]80M—strain measured with the optic FBG and temperature
developing in the oven Toven, the temperature recorded inside the resin Tresin by the thermocouple,
as well as the degree of cure X and Tg predicted based on the recorded resin temperature. The blue
dotted lines represent zero strain. the green dotted line represents a level of 100% cure.

Based on data analysis of all the cure experiments listed in Table 2, Figure 4 shows
Xσ as a function of the temperature difference, ∆T, which is calculated as the difference
between the temperature at the load transfer point, Tσ, and room temperature, Troom. Each
case has a value of Xpce, which is colour-mapped across the investigated cases. This way,
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the plot demonstrates if the temperature and the length of pre-cure influence the degree of
cure at the load transfer point. In the case of Figure 4, there is no obvious trend between
∆T and Xσ or Xpce and Xσ. Confirming that the parameter Xσ should be independent of
the cure temperature and the length of the pre-cure. Thus, the overall behaviour agrees
with a previous study [5]. The average degree of cure at load transfer was Xσ = 69.7%,
with a reasonably low variation.
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Figure 4. The degree of cure at the load transfer point, Xσ recorded for the experiments in Table 2. As
a function of the difference in temperature between the load transfer point and room temperature,
∆T. Colour-mapped according to the degree of cure at the end of pre-cure.

The cure-induced strain has been plotted as a function of the temperature difference ∆T
in Figure 5 for the cases. It is observed that there is a substantial scatter in the measurements.
However, by using a linear fit, a trend between the temperature difference and the strain can
be observed. The two measurements at ∆T = −10 K have been excluded from the linear
fit indicated by the grey line. This is due to these measurements seeming to be governed
by other mechanisms. Therefore, the region from ∆T −20 K to 0 K is associated with
some uncertainty. Hence, the grey-coloured trendline is used to demonstrate the region
of uncertainty. The slope of 7.9× 10−5 K−1 is similar to the slope found by a previous
study for a similar unconstrained resin [5]. As there is a larger scatter around the linear fit
than in the previous study, it is relevant to study the effect of Xpce for the different cases in
Figure 5. The degree of cure at the pre-cure end, Xpce, seems to influence the cure-induced
strain. If one observes the colour bar and the two measurements with ∆T ≈ −10 , there is a
significant difference in Xpce of around 5% reflected by the difference in colour. Similarly,
for the two cases at ∆T ≈ −30 , the difference in colour on the measurements lead to 4%
difference in Xpce.

To better clarify the influence of Xpce on ε21◦C
CI , Figure 6, shows the cure-induced strain

ε21◦C
CI as a function of Xpce with a colour-map represented by the load transfer temperature

Tσ. The figure shows that the strain observed differs even with the same Tσ, i.e., points
with the same colour. However, the Xpce values on the horizontal axis differ for the same
Tσ. Therefore, Figure 6 demonstrates a clear effect on the observed cure-induced strain
with the evolution of cure past the load transfer point during pre-cure.

This pre-cure effect is investigated in more detail with Figure 7 for cases that lead
to differences in cure-induced strain. Four cases have been selected: Figure 7a show the
two cases [50S30S]80M and [50S30M]80M with Tσ ≈ 30 , and Figure 7b show two cases,
[50L]80L and [50M]80M with Tσ ≈ 50 . The colours applied for each case follow that of the
colour-mapping for Xpce applied in both Figures 4 and 5.
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Figure 5. The final cure-induced strains measured at Troom as function of ∆T and colour-mapped
according to Xpce.
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Figure 6. The relationship between ε21◦C
CI and Xpce, demonstrating the effect of pre-cure length on the

measured strain.

In Figure 7a, it can be seen that the added time in [50S30M]80M, and thereby higher
Xpce, allows the resin to expand a little more than [50S30S]80M in the heat-up followed by
the pre-cure. This is reflected in the observed final cure-induced strain, ε21◦C

CI . The difference
in expansion towards the post-cure between the two cases covers, for the most part, the
difference in the cure-induced strain. Similarly, in Figure 7b, the longer pre-cure of the
[50L]80L case allows the resin to cure substantially more, resulting in a higher expansion
relative to [50M]80M. Again, this results in a difference in the final cure-induced strain
observed. Figure 7b also shows that the difference in pre-cure length affects the chemical
strain, dominating the pre-cure and post-cure isothermals. For case [50L]80L, which has a
substantially higher value of Xpce, the shrinkage at the end of the post-cure more or less has
cancelled out, unlike [50M]80M, which is already in the negative strain regime at the end of
post-cure. It is seen that the shrinkage during the pre-cure influences the total cure-induced
strain by the end. This shrinkage is mostly chemical strain as the temperature changes
are relatively small. The thermal expansion and the chemical shrinkage seem to relate to
the magnitude of Xpce when the resin is heated up for post-curing. A similar effect, as
demonstrated in Figure 7, has been observed previously [5]. However, the resin system
studied then seemed to be less susceptible to the effect of pre-cure length.
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Figure 7. (a) The strain measured for case [50S30S]80M and [50S30M]80M, demonstrating the effect of
the length of pre-cure on these similar cases. (b) Strain measured for the cases [50L]80L and [50M]80M

to show the effect pre-cure length.

6.2. Determining Volumetric Shrinkage

To evaluate the pre-cure effects in a simulation context, it is necessary to quantify the
volumetric shrinkage related to the chemical strain and the thermal expansion behaviour of
the resin. The following will quantify these shrinkages to create the necessary inputs for the
model. For quantifying the volumetric shrinkage, the experiment [50M]80M (see Figure 8)
is used to fit the load-transferring linear chemical strain during the initial pre-cure hold at
the constant temperature of 50 . The [50M]80M case was ideal, as the temperature changes
are small and the cure temperature is far away from Tg during the pre-cure, avoiding the
vitrification effects from the glass transition.
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Figure 8. Fitting and extrapolation to determine the volumetric shrinkage based on strain measure-
ments at pre-cure of [50M]80M. The blue line represents the strain measured, similar to Figure 3. The
dashed orange line represents the fitted behaviour. The black dot represents the load transfer point,
corresponding to Xσ.

The strain used to determine volumetric shrinkage is that measured from the load
transfer point until just before the heat-up to the post-cure, which is combined with the
predicted degree of cure using the cure kinetics model and the thermal history measured
by the thermocouple. The temperature changes are so small in this region that the thermal
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contribution is assumed to have no influence. By applying the equation for the linear
chemical strain (13) to the strain measured in this region as a function of degree of cure
and substituting the incremental volumetric shrinkage with (4), the strain can be used to fit
the evolution of the chemical shrinkage in the measured region. The parameters Xσ and
Xend are input parameters ,where Xσ is the average from Figure 4 and Xend is the maximum
achievable, judged unlikely ever to exceed much more than 98%. Extrapolation from the
fitted region can estimate the end value of the load-transferring volumetric shrinkage Vend

sh .
By doing so, the extrapolated shrinkage is found to be −1.1%. This extrapolated value of
Vend

sh together with the values of Xσ and Xend are found in Table 3.

Table 3. Volumetric shrinkage for the Johnston shrinkage model determined for [50M]80M [9]. Xσ is
the average taken from Figure 4 and Xend is upper realistic achievable bound.

Cure ID Xσ [%] Xend [%] V end
sh [%]

[50M]80M 69.7 98.0 −1.1

The total volumetric shrinkage from the liquid to the fully cured state is Vtot
sh of −5.2%

based on density measurements. The resin density in liquid state ρinit
resin was found using

a liquid pycnometer, and the value was found to be 1088 kg/m3, based on an average of
three measurements. The cured density ρend

resin was found using Archimedes principle on
five samples cut from a cured panel with X > 95%. The average value was found to be
1145 kg/m3 and is judged to be fairly independent of the cure conditions [5]. Judging by
the magnitude of the total shrinkage Vtot

sh , the load-transferring part Vtot
sh , induced from Xσ

until Xend, is considered reasonable, especially when compared with another study [19]
estimating the load-transferring chemical shrinkage to be within −0.25% to −0.47%. The
volumetric shrinkage fitted in this study would lead to a linear chemical strain of −0.36%
when applying (13).

6.3. Fitting of Complex Thermal Expansion

A previously cured specimen, [50M]80M, was selected to fit the thermal expansion
behaviour in a fully cured state. Before measuring the thermal expansion, the specimen
was post-cured at 100 for 4 h to ensure no residual cure was left. According to a previous
DSC analysis of this resin system, this should be sufficient to remove any residual cure of
influence [17].

The conditions selected to measure the thermal expansion were 1 K/min and 3 K/min.
Figure 9 shows the measured strain response of [50M]80M by heating up and cooling down
three times with the selected rates. The negative magnitude strains observed at the start be-
fore heat-up are the cure-induced strain of [50M]80M. Heating with two different rates was
observed to have no significant effects on the measurements. Furthermore, the continuous
heating and cooling of the sample at both rates showed no noteworthy hysteresis.

Based on the measured strain in Figure 9, the gradients can be found to fit the thermal
expansion. The gradients are determined based on the 1 K/min data, segmented between
heat-up and following cooldown. This is presented in Figure 10. The gradients of the
measurements follow the behaviour described in Section 2.4 of the model proposed. The
heat-up path is fitted to (6) and the cooldown to (7). The fitted thermal expansion in the
glassy state αg and the increase in thermal expansion a1 to ah

4 are listed in Table 4 together
with the values of T′1 to T′5.
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Figure 9. Strain measured based on a reheated [50M]80M at both 1 K/min an 3 K/min after fully
curing the specimen for 4 h at 100 .
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Figure 10. The thermal expansion evolution found by the derivative of the strain measured in Figure 9
for data measured at 1 K/min.

Table 4. Parameters fitted for the thermal expansion model (6) and (7) based on FBG measurements
of reheated cured specimen.

αg [K−1] a1 [K−2] a2 [K−2] ah
3 [K−2] ah

4 [K−2]

7.11× 10−5 6.85× 10−7 2.67× 10−6 1.08× 10−5 −9.19× 10−6

T ′1 [K] T ′2 [K] T ′3 [K] T ′4 [K] T ′5 [K]

−50 −22 −11 −3 2.5

For temperatures where T∗ > T′5, the cooldown and heat-up expansion are constant
relative to the influence of Tg. However, as the resin is curing, thermal expansion changes
during curing above Tg [8]. To determine the curing effect on thermal expansion, the cases
listed in Table 2 have been measured during heat-up, past Xσ. The chemical shrinkage,
based on the fit in Section 6.2, was subtracted from the measured cure-induced strain
during the heat-up of the samples. The thermal expansion, αXr, was then fitted to the linear
gradient observed from the point where T∗ = T′5 and until the heat-up ends. The fitted
thermal expansion in the heat-up was correlated with the degree of cure, X, at the point
where T∗ = T′5, ignoring possible changes in the degree of cure over the fitted interval.
In Figure 11, the measured thermal expansion values for the different cases are plotted
together with the fit of (8). The second-order fit of the cure-dependent thermal expansion
above Tg seems to follow the measurements well. The fitted values are listed in Table 5.
The function αXr will govern the cure-dependent thermal expansion during cooldown
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and heat-up, based on the little difference observed for the fully cured measurements in
Figure 10.
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Figure 11. Evolution of thermal expansion for T∗ > T′5 as function of X, for heating and cooldown.

Table 5. The fitted parameters for the function αXr (8). This relation is only valid for values of
X > Xσ.

aX0 [K−1] aX1 [K−1] aX2 [K−1]

−96.0× 10−5 209.6× 10−5 −98.1× 10−5

7. Simulation of Cure Shrinkage

This section will predict the previously investigated cure-induced shrinkage with a
simple 1D thermomechanical finite element model. The material models and behaviours
described in Section 2 have been built into a modelling framework described in Section 5
and will be applied to elaborate on the material behaviour observed in Section 6.

Model for the Thermal and Cure-Induced Strain Predicitions

The model for predicting the resin shrinkage is based on a finite element frame-
work [24] and is a simple 1D thermomechanical model. Earlier work has shown that
cure-induced strain can be captured with a material point model [21]. In this study, a simi-
lar approach is applied. However, to predict the thermal behaviour, the through-thickness
response of the resin is required. This allows for the additional effect of the exothermal
release of heat during the curing. The model is illustrated with Figure 12. Here, the resin
bulk is illustrated in an xy-plane, with y as the principal model direction through the
thickness. The region presented in Figure 12 is a narrow cutout of a vast resin bulk. The
length and width of the domain are much larger than the thickness of the observed area,
and possible thermal effects from possible edges can be ignored. Then, by only considering
the thickness, the model stretches from the surface of the resin, called boundary B, to
boundary A, in the middle of the resin. Imposing the conditions listed below:

A (uy) = (0), h = 0 (symmetry of heat flow and displacement);
B (uy) = ( f ree), h = hc, T = Toven(t).

Boundary A is a symmetry condition for both the thermal and mechanical behaviour.
As the resin is unconstrained, the model can contract in the y-direction. The heat flow
h, from the surface of B, hc, is the heat transfer coefficient enforced by the air movement
possible from inside the oven. The temperature applied in this boundary, Toven(t), is the
oven temperature measured for each case in Table 2. The thermal response of the simulation
is monitored at boundary A, at the location corresponding to that of the thermocouple and
the FBG sensor in the experiment. The strain produced in the simulation is evaluated at
Boundary B.
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Figure 12. A cutout of the experimental setup showing the thermocouple and FBG. It illustrates
how the 1D thermomechanical model is built to simulate the cure behaviour of the resin through
the thickness.

For the prediction of the thermal behaviour, the necessary parameters are tabulated
in Table 6. The total enthalpy of the reaction HT has been measured with DSC for the
specific resin system [17]. The densities in Table 6, as reported in Section 6, have been
determined experimentally. The heat capacity cp,resin and conductivity kresin were taken
from [25,26], respectively. The convection coefficient for the air inside the oven has been
taken from Carson et al. [27]. The cure-induced strain predicted by the model develops
following the theory in Section 2. The primary components are the chemical and thermal
strain, adding to the simulated cure-induced strain. In Figure 13, the simulation of the cure
experiment [50S70S]80M is plotted, and the strain and temperature and strain from Figure 3
are included on top of the predicted strain and temperature by the model. In Appendix A,
figures of the remaining cases for comparison based on the cases in Table 2 are compiled.
To assist the description of the model behaviour, the following notation is used:

I 1. Isothermal— Pre-cure;
II 1. Ramp—Pre-cure;
A 2. Isothermal—Pre-cure;
B 2. Ramp —Pre-cure;
C Isothermal—Post-cure;
D Cooldown after Post-cure.

Table 6. Thermal properties for the simulations.

cp,resin [J/(kgK)] kr [W/(m2K)] HT [ J
kg ] ρinit

resin [kg/m3] ρend
resin [kg/m3] hc [W/(m2K)]

1900 [25] 0.14 [26] 4.7× 105 1088 1145 15 [27]
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Figure 13. The predicted and measured values of temperature and strain over time for case
[50S70S]80M as well as predicted X and Tg by the simulation. The final values of the predicted
and measured strain are shown in the plot.
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The predicted temperature in the simulation results from the temperature load Toven(t),
the thermal boundary condition and the cure kinetic behaviour. This results in the devel-
opment of the noticeable exotherm during the two parts of the pre-cure, I and A . The
predicted temperature by the simulation matches well with the monitored temperature
from the thermocouple inside the resin. This is also observed in the remaining eight cases
studied, found in Appendix A.

The strain predicted depends on the thermal behaviour, as the temperature, corre-
sponding degree of cure X, and glass transition temperature Tg are computed for every
increment in the simulation. Once the load transfer point is reached, the incremental
thermal and chemical strains develop. In Figure 13, the simulated cure-induced strain is
predicted well. Both in terms of the shrinkage occurring during A , which is influenced
heavily by the thermal and chemical strain occurring simultaneously. Followed by the
heat-up B , then the post-cure C and the cooldown D , these also show good correlation
between experiment and simulation. At the end of the cure, both the experimental observed
cure-induced strain ε21◦C

CI and the simulated ε21◦C
sim are shown in Figure 13, as well as the

final value of the simulated X. A comparison of the final simulated degree of cure with the
final predicted one based on the thermocouple temperature monitored shown in Figure 3
is relevant. The differences are negligible; thus, the simulated cure development is accurate
within the experimentally predicted. In terms of the differences observed between the
simulated and measured strain, the deviation relative to the experiment was found to be
within 2%. Hence, the simulation is overall satisfactory. The deviations and cure-induced
strains observed for all the simulations and corresponding experiments are tabulated in
Table 7. The overall deviation was found to be within 2–6% and the average deviation
around 3%. With a simulation that matches the observed experimental behaviour well in all
cases. The results from both experiments and simulations are available for download [23].

Table 7. End value of ε for experiments and simulations after the cure profiles evaluated at Troom = 21
and the deviation.

Cure ID [40L]80L [50L]80L [50M ]80M [50S70S]80M [50S60M ]80M [50S60L]80M [50S30S]80M [50S30M ]80M

ε21◦C
CI [%] −0.500 −0.536 −0.603 −0.759 −0.629 −0.596 −0.791 −0.633

ε21◦C
sim [%] −0.532 −0.511 −0.608 −0.773 −0.642 −0.583 −0.758 −0.609

Dev. [%] 6 5 2 2 2 2 4 4

To better clarify how the thermal strain prediction affects the model behaviour during
the curing, the experimental and simulated cure-induced strain is plotted in Figure 14 as a
function of temperature. The figure demonstrates that the model predicts the cooldown
during A well, although it underestimates the shrinkage somewhat in magnitude. During
the following heat-up B , the expansion observed in the experiment is parallel with the
expansion simulated. Therefore, the simulation can capture the expansion and contraction
observed experimentally while curing progresses. This is important as the contraction
and expansion occurring during A and B both occur well above Tg. This means that the
expansion and contraction should be influenced by curing as per the thermal expansion
model applied in Section 2.4.

The final cooldown D that occurs from C and down to room temperature is unaf-
fected by any significant changes in X and demonstrates that the model can also capture the
cured contraction well from just below Tg and until far away from Tg. The simulated strain
is plotted as a function of the degree of cure, X, against the experiment in Figure 15, where
Figure 15a demonstrates the temperature development of the experiment Tresin, simulation
Tsim and the oven temperature Toven as a function of X. The temperatures of the experiment
and simulation agree. There is a slight variation between the oven temperature and the
resin temperatures.
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Figure 14. The predicted and measured values of strain as function of temperature for case
[50S70S]80M.
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Figure 15. (a) The predicted and measured temperature in the resin as well as oven temperature as a
function of the degree of cure. (b) The predicted and measured values of strain as a function of the
degree of cure for case [50S70S]80M.

This lag appears due to the heat flow through the thickness of the sample. Figure 15b
demonstrates the experimental and simulation strains as a function of X. This makes it
easy to distinguish the thermal strain from the chemical strain observed in the simula-
tion. As the temperature drops during the pre-cure A , the simulated thermal strain is
also observed to drop. The simulated chemical strain also decreases continuously as the
degree of cure increases. It should be possible to check whether the chosen volumetric
shrinkage model (4) adapted for the chemical strain matches the experimentally observed
behaviour. The simulated strain εsim is seen to under-predict the shrinkage occurring
during slightly A , but follows in parallel with the experimental strain for the duration
of C . After that, the curing ends with the cooldown D . Even though there generally is
this slight offset between experimental and simulated, the offset does not increase or de-
crease slightly. Indicating that the proposed shrinkage behaviour follows the experimental
behaviour well. The simulations are, therefore, quite capable of determining the effects
observed experimentally.
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To demonstrate this graphically across the range of cases, Figure 16 shows an extended
version of Figure 5. The final simulated and measured values of cure-induced strains are
plotted together, and the possible differences are shown. The trendline adapted in Figure 5
is not applied here as the pre-cure has shown a high dependency on cure-induced strains.
The fact that a very low achieved ∆T for case [50S30S]80M and [50S30M]80M results in high
cure-induced strain signifies the dominating effect due to pre-cure and, more precisely,
Xpce. This is attributed mainly to the thermal expansion model applied. Stressing that even
though ∆T influences the level of cure-induced strain observed it is necessary to consider
the complex thermal expansion to determine the cure-induced strain accurately.
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Figure 16. Comparison between the cure-induced strain from the experiments and simulations plotted
together and linear and second-order tendencies plotted together. Circles indicate the measured
shrinkages and the crosses represent the simulated shrinkage.

Adapted in the simulation, this cure-dependent thermal expansion results in a similar
low expansion during the heat-up for the cases [50S30S]80M and [50S30M]80M, as observed
in Figure 17a. Demonstrating that the simulation can capture the complex thermal expan-
sion behaviour observed. The low thermal expansion at a lower degree of cure results in
more shrinkage being transferred at the cooldown after post-curing. As simulated for the
two cases, [50S30S]80M and [50S30M]80M agreed well with the measured strain. This limits
the ability to reduce the cure-induced strain for ∆T from −20 K to 0 K for this specific
resin system. At the other end of the ∆T axis in Figure 16, the cases [50L]80L and [50M]80M
as well as [50S60M]80M and [50S60L]80M show that an increase in cure-induced strain is
present. However, the difference in Xpce between [50M]80M and [50L]80L is approximately
5% which, even though it is a more considerable difference than the 3.4% [50S30S]80M
and [50S30M]80M, the effect of ∆T is more dominating for higher values of Xpce. This is
because the resin has cured significantly more; thus, the cure-dependent thermal expansion
has developed much more, making the temperature at load transfer much more critical.
This effect is reflected in the simulation and is due primarily to the implemented thermal
expansion model. Therefore, the developed simulation can accurately predict the complex
shrinkage observed over various experimental cases.
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Figure 17. The comparison of pre-cure effects between the experiments with solid lines and simula-
tions with dashed lines. The colours for the cases refer to the same colour bar for Xpce in Figure 16.
(a) The experiments and simulations of case [50S30S]80M [50S30M]80M. (b) The experiments and
simulations of case [50L]80L and [50M]80M.

8. Conclusions

A specific epoxy resin system has been studied to quantify the cure-induced strain
expected to develop during the curing in an unconstrained experimental setup. The cure-
induced strains arising from various experiments were rather complex for the cure profiles
investigated. The thermal expansion during the heat-up at the end of the pre-cure was cure-
dependent and dependent on the glass transition temperature. A novel complex thermal
expansion model and a model for the load-transferring volumetric shrinkage related to
chemical cross-linking of the resin were proposed. The governing factors, such as chemical
and thermal shrinkage leading to the experimentally observed cure-induced strain, could
be quantified by fitting experimental observations to the proposed models. This was
performed to investigate the ability of the proposed models to capture the behaviour of the
cure-induced strain seen experimentally.

A simulation method was proposed to simulate the cure-induced strain across various
cases accurately. The simulations correlated well with the experiments and agreed with
the experimental observations, thus validating the simulation method. The simulations
showed that the complex thermal expansion and the conventional volumetric shrinkage
models were necessary for accurately predicting the cure-induced strain. The behaviour
of the resin studied depended on the load transfer temperature and the development of
the degree of cure at the pre-cure stage. This makes the complex thermal expansion model
especially essential for accurately predicting cure-induced strains in simulations.

To lower the cure-induced strain in an unconstrained system, like the one investigated,
it is henceforth essential to consider the investigated effects to minimise potential residual
stresses in a setup, constraining the resin behaviour, and thus, inducing residual stresses. In
a compact sense, a list can be drawn of the parameters necessary to make precise predictions
of cure shrinkage:

• Perform DSC analysis to characterise the cure behaviour and determine the parameters
for the cure kinetic model, glass transition temperature evolution, and the enthalpy of
the reaction;

• Determine the load transfer initiation in the resin and determine/estimate the load
transferring part of the volumetric shrinkage;
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• Define the complex nature of the thermal expansion of the specific resin.

The listed parameters are the key aspects necessary to define the field to potentially
minimise cure-induced strains from the curing of thermosetting epoxy resins. The parame-
ters and material behaviour presented in this work can be further utilised in experiments
where epoxy is mechanically constrained by surroundings. Leading to accurate predictions
of the thermal and chemical behaviour for the build-up of residual stresses.
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Appendix A. Simulation Cases
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Figure A1. (a) Case [40L]80L strain over time. (b) Case [50L]80L strain over time.
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(b)
Figure A2. (a) Case [50M]80M strain over time. (b) Case [50S70S]80M strain over time.
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Figure A3. (a) Case [50S60M]80M strain over time. (b) Case [50S60L]80M strain over time.
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Figure A4. (a) Case [50S30S]80M strain over time. (b) Case [50S30M]80M strain over time.
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Abstract: In this paper, the research on the fatigue damage mechanism of tire rubber materials is
the core, from designing fatigue experimental methods and building a visual fatigue analysis and
testing platform with variable temperature to fatigue experimental research and theoretical modeling.
Finally, the fatigue life of tire rubber materials is accurately predicted by using numerical simulation
technology, forming a relatively complete set of rubber fatigue evaluation means. The main research
is as follows: (1) Mullins effect experiment and tensile speed experiment are carried out to explore
the standard of the static tensile test, and the tensile speed of 50 mm/min is determined as the speed
standard of plane tensile, and the appearance of 1 mm visible crack is regarded as the standard of
fatigue failure. (2) The crack propagation experiments were carried out on rubber specimens, and
the crack propagation equations under different conditions were constructed, and the relationship
between temperature and tearing energy was found out from the perspective of functional relations
and images, and the analytical relationship between fatigue life and temperature and tearing energy
was established. Thomas model and thermo-mechanical coupling model were used to predict the
life of plane tensile specimens at 50 ◦C, and the predicted results were 8.315 × 105 and 6.588 × 105,
respectively, and the experimental results were 6.42 × 105, with errors of 29.5% and 2.6%, thus
verifying the accuracy of thermo-mechanical coupling model.

Keywords: tire rubber; fatigue damage; numerical simulation

1. Introduction
1.1. Theory of Fatigue Research

Tires, seals, shock absorbers and other rubber-based materials will work to produce
deformation, long-term exposure to alternating loads will lead to performance degradation,
that is, fatigue damage. It is known that fatigue damage accounts for 80% of the failure of
rubber products, so it is important to study the fatigue of rubber materials to improve their
fatigue performance.

The fatigue damage of rubber materials is divided into two stages: the first stage
is the gathering and sprouting of tiny defects inside the rubber to produce tiny cracks,
i.e., the crack sprouting stage; the second stage is the expansion of the tiny cracks produced
in the previous stage until the rubber material fails by fracture, i.e., the crack expansion
stage [1]. Scholars classify the research methods into crack emergence and crack extension
methods according to the two stages. The theory of fracture mechanics suggests that there
are inherent defects in rubber materials, and when reinforcing materials are added to
rubber products, the agglomeration of fillers also causes small defects inside the rubber,
and this defect is the source of crack extension. Glanowski et al. [2] used X-ray computed
microtomography to observe the fatigue of carbon filled natural rubber and came up
with two damage mechanisms: one is the cavitation phenomenon at the poles of the
agglomerates, and the other is fracture of the agglomerates, and Huneau et al. [3] studied
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the fatigue cracking of carbon filled natural rubber and found that the crack initiation
mechanisms of carbon black aggregates and oxide aggregates were different, and only the
cracks initiated by carbon black aggregates were accompanied by crack extension, because
carbon black has stronger cohesion and adhesion to the matrix, and its cohesion is stronger
than adhesion, so the crack budding is actually also the crack Therefore, it is of scientific
significance to apply fracture mechanics to study the fatigue process of rubber materials.

According to fracture mechanics, when rubber cracks grow, a new surface will be
generated, and the generation of a new surface will inevitably consume energy, that is,
surface energy. When the mechanical energy storage consumed by the crack per unit area
of expansion is greater than this re-sistance, the crack will expand [4]. The tearing energy
is defined as the mechanical storage energy dU required to produce a crack per unit area
dA [5], in which:

T = −dU
dA

(1)

where the negative sign indicates that the strain energy required to produce cracks in
rubber materials decreases as the crack area increases.

The study of rubber fatigue life dates back to 1940, when Cadwell [6] studied the
dynamic fatigue life of natural rubber, followed by Thomas [7], Lake [8], Lindley [9],
Rivlin [10], and William V. Mars [11], which was developed over the years to form a whole
set of theories, namely the crack extension theory based on fracture mechanics. They
combined a large number of experimental data of crack extension under transverse loading,
and divided the crack tip energy release rate-crack growth rate into four regions according
to the maximum energy release rate in the cycle, as shown in Figure 1 [12], T0 indicates the
threshold tear energy, and the peak tear energy of stage I, Tmax ≤ T0, at this stage the crack
will not expand due to the external load; Tt is the transition tear energy, which indicates
the transition from stage II to stage Tt is the transition tear energy, which indicates the tear
energy corresponding to the transition from stage II to stage III; Tc indicates the critical
tear energy, when Tmax ≥ Tc, the crack reaches stage IV, i.e., the destabilization expansion
process. The approximate expressions for the crack growth rates of the four stages are also
given, as follows 




da
dN = rz Tmax < T0
da
dN = A0(Tmax − T0) + rz T0 ≤ Tmax < Tt
da
dN = BTF

max Tt ≤ Tmax < Tc
da
dN = ∞ Tmax = Tc

(2)

where rz is the crack extension rate when the tear energy is less than the threshold tear
energy, and A0, B, and F are the constants associated with the rubber material.
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Among the above four stages, stage II and stage III belong to the stable expansion stage,
and only the crack expansion rate of stage III satisfies the power exponential relationship
with the peak tear energy, and this is also the stage in which the rubber products are often in
when fatigue problems arise, so stage III can be used instead of the actual crack expansion
process.

The visual representation can be obtained by taking the logarithm of both sides of the
equation of stage III at the same time

log
da
dN

= log B + Flog Tmax (3)

Therefore, this equation becomes a straight line in logarithmic coordinates, and the
influence of various factors on the crack extension of the rubber material can be shown
more intuitively by the slope. Moreover, by establishing a fatigue life model to evaluate the
crack expansion law, the data distortion caused by one experiment can be avoided.

After the crack extension rate is measured by the experimental platform built in this
paper, it is also necessary to know the maximum tear energy density at the current strain
level, and the equation of tear energy density is shown in Equation (4):

Tmax = 2k(λ)l0E0 (4)

where is the strain energy density of the rubber specimen without pre-crack, is the length
of the pre-crack, and is a function of the strain related to the rubber specimen, which is
calculated as

k(λ) =
π√
λ

(5)

where is the elongation of the test piece.
Substituting Equation (5) into (4) yields

Tmax =
2πlE0√

λ
(6)

Combining Equations (3) and (6) yields

N =

lc∫

l0

B−1T−Fda =
1

B(F− 1)
(

2π√
λ

E0

)F (
1

lF−1
0

− 1
lF−1
c

) (7)

where, is the length of the preset crack, is the length of the crack at fatigue failure. The
Formula (7) is the formula for calculating the fatigue life of rubber materials.

1.2. The Effect of Temperature on Rubber Fatigue

Most rubber products are used in air and therefore most rubber fatigue studies are
in air medium. Le-Gorju et al. [13] found that rubber exposed to air reacts with oxygen,
especially at high temperatures where oxidation is more intense. Temperature is a crucial
factor affecting the fatigue life of rubber, which is a temperature-sensitive material, and
different types of rubber have different sensitivity to temperature; for example, the life of
natural rubber at 110 ◦C is 1/4 of that at 0 ◦C, while the life of butadiene rubber decreases
by 10,000 times [14]. Ruellan et al. [15] conducted uniaxial tensile fatigue experiments on
filled natural rubber at different temperatures and found that strain crystallization was
clearly observed on the fracture surface at room temperature, while at 90 ◦C, a significant
decrease in crystallization could be observed on the fracture surface, and the crystallization
disappeared completely at 110 ◦C. Therefore, high temperature affects the crystallization
of natural rubber; Ngolemasango et al. [16] also found such a situation in their experi-
ments. Rey et al. [17] studied the change in the properties of silicone rubber at different
temperatures, and when the microstructure stable, the hardness of unfilled silicone rubber
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increased continuously with increasing temperature; while for filled silicone rubber, its
hysteresis, stress relaxation and stress softening decreased continuously with increasing
temperature. Haroonabadi et al. [18] thermally aged allene nitrile butadiene rubber (NBR)
for 7 days and found that its crosslink density increased while its tensile and tear strength
decreased. Chou et al. [19] thermally aged EPDM rubber for 6 months and then conducted
fatigue experiments, which showed that the rubber life was reduced regardless of whether
it was filled with carbon black. This is due to the fact that high temperature accelerates
the thermal oxygen reaction, which continuously degrades the cross-linked network, so
the increase in aging temperature and time irreversibly reduces the fatigue life of the
rubber [20]. Luo et al. [21] conducted fatigue experiments on hourglass-type rubber speci-
mens, in which real-time monitoring of the surface temperature revealed that the surface
temperature remained in a stable interval for a long time, which accounted for most of the
fatigue life. Then, the surface temperature increases sharply when the specimen is close to
destruction, so the change in temperature can be used to determine when the specimen
is reaching its fatigue limit. Then, the relationship between the steady-state temperature
rise and the maximum principal strain is determined so as to determine the fatigue life
of rubber.

The most important feature of natural rubber that distinguishes it from synthetic rub-
ber is the crystallization phenomenon, which includes strain-induced crystallization and
low-temperature-induced crystallization, and a large number of studies have shown that
the fatigue life of natural rubber is substantially enhanced under non-relaxation loading
(i.e., the ratio of minimum loading to maximum loading > 0) [22]. The crystallization phe-
nomenon is considered to be the reason for the high fatigue resistance of rubber materials.
Rubber materials exhibit different properties at different temperatures, for example, below
the glass transition temperature, rubber is in a glassy state, and above that temperature, it
is in a highly elastic state, indicating that rubber materials are highly temperature-sensitive
materials. Most rubber products work in environments ranging from ambient temperature
to 100 ◦C. Federico et al. [23] showed that microdefects in rubber materials at ambient
temperature mainly originate from cavities generated by the separation of agglomerates
from the rubber matrix, while at high temperature, they mainly originate from the fracture
of agglomerates. Schieppati et al. [24] studied the fatigue properties of NBR, and found
that the higher the temperature, the faster the crack growth rate, while the crack growth
rate changed slightly at 25 ◦C~40 ◦C. Liu Xiangnan et al. [25] conducted uniaxial tensile
fatigue tests on dumbbell-shaped natural rubber specimens, and found that the fatigue
life was dispersive under the same conditions, so three probability distribution models,
namely normal distribution, lognormal distribution and Weibull distribution were used
to quantify the life distribution. Demiral et al. [26] made a finite element simulation of a
bonded joint and used the user-defined UMAT subroutine of ABAQUS/Standard to link
the static damage and fatigue damage models of the bonded zone to express the response
of the bonded layer. Fang Yunzhou et al. [27] adopted the Arrhenius model, introduced the
high temperature aging factor into the fatigue model with the engineering strain peak as
the damage parameter, and accurately predicted the fatigue life of rubber bushing using
finite element analysis. Weng et al. [28] subjected natural rubber to a high temperature
(85 ◦C) and cyclic loading at the same time. SEM images confirmed the appearance of
nano-scale cracks and cavities under the combined action of high temperature and cyclic
loading. Unlike the fatigue loading conditions at room temperature, the cracks were caused
by the nucleation effect of dissolved steam and gas in the low-molecular-weight domain of
NR. The appearance of a low-molecular-weight domain is caused by thermal degradation
products. Zhang et al. [29], based on the uniaxial tensile fatigue data of dumbbell-shaped
rubber specimens, used the least square method to fit the functional relationship between
the strain energy and temperature, established the high-temperature life-prediction formula
and achieved good results. Luo et al. [30] studied the static tearing behavior of carbon-
black-filled rubber at different temperatures and measured the critical tearing energy. The
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results showed that the critical tearing energy decreased exponentially with the increase of
temperature.

1.3. Research Significance

The fatigue performance of rubber is affected by many factors, among which the
temperature is the most significant. Many factors that affect the fatigue performance of
rubber actually affect its fatigue by changing the temperature of rubber. For example,
frequency itself has no effect on fatigue performance, and high frequency increases the
temperature of rubber, thus affecting its fatigue life. Seichter et al. [31] reached the same
conclusion when studying the effect of frequency on rubber fatigue. Therefore, the study of
rubber fatigue should be based on temperature and establish the analytical relationship
between temperature and fatigue life. At present, there are few studies on fatigue prediction
of rubber based on crack propagation method, and no unified conclusion has been formed.

The main purpose of this paper is to build a fatigue experiment platform and design
a fatigue experiment method based on the crack propagation method, so as to form a
set of evaluation methods for studying rubber fatigue at variable temperature, and then
establish a rubber thermal-mechanical coupling fatigue prediction model according to a
large number of experimental results, which provides valuable reference for rubber fatigue
research. Figure 2 is the technical route of research.
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2. Construction of Fatigue Test Rig and Parameter Acquisition
2.1. Mullins Effect Study

When the rubber undergoes such a cyclic loading of stretching-unloading-restretching,
the stresses of unloading and restretching are smaller than those of stretching, which is the
Mullins effect of rubber, also known as stress softening phenomenon, and is a special me-
chanical property in rubber, especially in filled rubber, which has an important influence on
the acquisition of stress-strain experimental data. This experiment was conducted to study
the Mullins effect at different stretching speeds, starting from 2 mm/min and increasing to
500 mm/min, which were divided into low-speed stretching and high-speed stretching in
order to distinguish them. In order to minimize the effect of speed during unloading in
cyclic loading experiments, the unloading speed was unified to 2 mm/min when low-speed
experiments were conducted, and the unloading speed was set to 50 mm/min under high-
speed experiments. low-speed experiments were set to stretch at 2 mm/min, 5 mm/min,
10 mm/min, 20 mm/min; high-speed experiments were set to stretch at 50 mm/min,
100 mm/min, 500 mm/min.
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2.1.1. Low-Speed Stretching (≤50 mm/min), the Effect of Stretching Speed on the
Mullins Effect

In this experiment, experimental tests were conducted to stretch 12.5 mm, 25 mm,
37.5 mm, 50 mm, and 62.5 mm, i.e., strain levels of 50%, 100%, 150%, 200%, and 250% to
study the effect of different stretching speeds on the Mullins effect, and the experimental
data for 50% and 150% strains were selected in this case, as shown in Figures 3 and 4. It
can be seen that the faster the stretching speed is, the higher the required stress is when
stretching to the maximum strain, whether it is 50% or 150% strain; and it can be seen that
the stretching curve for the larger stretching speed is above the curve for the lower speed.
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In this experiment, experimental tests were conducted to stretch 12.5 mm, 25 mm,
37.5 mm, 50 mm, and 62.5 mm, i.e., strain levels of 50%, 100%, 150%, 200%, and 250%
to study the effect of different stretching speeds on the Mullins effect. The experimental
data for 50% and 150% strain were selected in this case, as shown in Figures 5 and 6. It
can be seen that the faster the stretching speed is, the higher the required stress is when
stretching to the maximum strain, whether it is 50% or 150% strain. It can also be seen that
the stretching curve for the higher stretching speed is above the curve for the lower speed.
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This can be explained by the high elasticity deformation theory of rubber [32]. The
molecular structure of rubber creates a special property of high elasticity, where many
elongated molecular chains are either adsorbed on the filler particles or in a free curl, with
a large amount of flexibility and mobility. When the rubber is subjected to tensile load,
the molecular chains are gradually stretched from the initial free-curl state so that the
molecular chains are oriented and therefore the conformational entropy of the molecular
chains decreases. From the thermodynamic point of view [33], the tensile load transmits
mechanical energy to the rubber molecules, and this energy is converted into the thermal
motion of the rubber molecules, which induces the rubber molecular chains to return from
the stretched state to the free-curl state, increasing the conformational entropy. This is
why the rubber material can return to its original length after intense deformation. The
greater the stretching speed, the greater the strain rate, the higher the frequency, the more
intensified the thermal movement of molecules, and the more high-speed stretching in a
very short period of time. This means that the high-speed stretching process is somewhat
adiabatic, that is, the heat generated by the thermal movement of molecules cannot be
dissipated and can only increase, so it accelerates the increase in conformational entropy.

2.1.2. High-Speed Stretching (≥50 mm/min), the Effect of Stretching Speed on the
Mullins Effect

As shown in Figure 5, the cyclic stretching curve at a high speed is similar to that at a
low speed.

And it can also be seen that the curve has a tendency to rise suddenly at 500 mm/min
stretching speed, which may be a sudden increase in stress caused by the strain crystalliza-
tion of natural rubber.

As shown in Figure 6, the cyclic stretching curves are plotted for stretching speeds
of 50 mm/min, 100 mm/min and 500 mm/min, respectively, and it can be seen that the
rising curve (c) has a sudden upward trend at the beginning of loading, which also proves
the possibility of strain crystallization of natural rubber as described above. At the same
time, it can be seen that the unloading curve of each cyclic stretching is steeply decreasing,
which indicates that the cohesive structure inside the rubber is destroyed in a large amount,
and the stress required for unloading decreases after each destruction, and the loading
curve of the latter stretching is suddenly increasing near the top of the loading curve of
the previous stretching, which also reflects the continuous destruction of the cohesive
structure inside the molecule. From the thermodynamic point of view, the loading process
stretches the molecular chain to the straightened state at each cycle of stretching, and the
conformational entropy decreases accordingly, and the rubber deformation decreases when
unloading, but the molecular chain does not return to the curled state completely, and the
conformational entropy does not decrease again from the equilibrium state when loading
again, but decreases from below the equilibrium state, so the required stress decreases
when stretching again.

An explanation for the Mullins effect was given by Diani and Marckmann et al. [34,35],
who explained the Mullins effect in terms of chain breakage, where they suggested that
the rubber matrix reacts with the filler by cross-linking during vulcanization to form a
cross-linked structure, and the applied load leads to the stretching and breaking of the
molecular chains.

As shown in Figure 7, (a) is the state of the molecular chain when the rubber is not
subjected to tensile load, and the molecular chains A, B and C are adsorbed on the filler
particles through chemical adsorption and physical adsorption, and are in the bent state;
(b) is the state of the rubber specimen when it is stretched. When the stretching experiment
is carried out, the internal molecular chains of the rubber start to be stretched, firstly the
shorter molecular chain C is stretched from the bent state to the straightened state, at this
time the straightened molecular chain bears most of the stress and continues to stretch, the
longer molecular chain A is also gradually stretched from the bent state to the straightened
state, while the shorter molecular chain C is pulled off due to overload. This is the reason
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why the stress-strain curve of the re-stretching in the above cyclic stretching experiment is
always lower than the stress-strain curve of the first stretching.
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The Mullins effect has an impact on the acquisition of rubber material parameters, so
it is necessary to eliminate the Mullins effect of rubber materials when testing material
parameters, as shown in Figure 8. The parameters of the rubber materials were first
stretched in five cycles, and the data of the sixth stretching were taken.

Polymers 2023, 15, x FOR PEER REVIEW 11 of 42 
 

 

 

 

Figure 8. Graph of cyclic tensile stress-strain curve of rubber material. 

2.2. Fatigue Test Bench Construction 

From the previous section, it is known that the crack expansion stage can be divided into four stages, and the third 

stage is the focus of calculation. To accurately calculate the fatigue life, accurate material parameters should be 

obtained, and as a polymer material capable of withstanding intense deformation and with nonlinear characteristics, 

an accurate description of its constitutive model is the key to calculate its fatigue life. From previous studies, it is 

necessary to fit the experimental data of uniaxial tensile, equiaxial tensile and plane tensile to describe the hyperelastic 

constitutive model of rubber, and the loading schematic is shown in Figure 9. These three experiments characterize 

the mechanical behavior of rubber materials in uniaxial tension, uniaxial compression, and pure shear states, 

respectively, and the alternating loads on rubber products in actual use can be represented by the coupling of these 

three force states [37].  

Figure 8. Graph of cyclic tensile stress-strain curve of rubber material.

From the above experiments on the effect of stretching speed on the Mullins effect, it is
concluded that the damage to the internal structure of the rubber material is different when
stretched to different strain levels, and when subjected to smaller strains, the filler network
inside the rubber is damaged first, and when the strain level continues to increase, the
reinforcement network generated by the rubber matrix and the filler starts to be damaged,
and when stretched to a larger strain level, the interpolymer The network structure between
the polymers also starts to be destroyed when the strain level is increased [36]. At the
same time, this experiment also leads to another conclusion that the tensile experiments of
rubber materials cannot be simply classified as static or dynamic, because the boundary
of distinction is blurred, and this experiment was conducted by varying the tensile speed,
and it was concluded that as the tensile speed increases, the stress required to stretch the
rubber material to the same strain level also increases, which is due to the fact that the main
unit of motion of rubber in the high-elastic state is “When increasing the stretching speed,
the strain rate of rubber molecules increases, and the smaller “chain segments” are first
subjected to tension and are the main units of motion, so the stress required for stretching
is greater.

2.2. Fatigue Test Bench Construction

From the previous section, it is known that the crack expansion stage can be divided
into four stages, and the third stage is the focus of calculation. To accurately calculate the
fatigue life, accurate material parameters should be obtained, and as a polymer material
capable of withstanding intense deformation and with nonlinear characteristics, an accurate
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description of its constitutive model is the key to calculate its fatigue life. From previous
studies, it is necessary to fit the experimental data of uniaxial tensile, equiaxial tensile and
plane tensile to describe the hyperelastic constitutive model of rubber, and the loading
schematic is shown in Figure 9. These three experiments characterize the mechanical
behavior of rubber materials in uniaxial tension, uniaxial compression, and pure shear
states, respectively, and the alternating loads on rubber products in actual use can be
represented by the coupling of these three force states [37].
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Figure 9. Loading diagram of uniaxial tension, plane tension and equal biaxial tension.

From the mechanical point of view, The fatigue test in this paper is shear fatigue, and
there is no equal biaxial tensile stress field. Only the experimental data of uniaxial tension
and planar tension are needed to fit the hyperelastic constitutive model of rubber more
accurately.

From Figure 9, it can be seen that the stress field of the rubber material is different for
different specimen shapes and tensile states, and the rubber specimen required for uniaxial
tensile is a flat dumbbell specimen, and the flat tensile specimen is self-designed, as shown
in Figure 10. Mechanically, when the length-width ratio of the specimen is greater than or
equal to 10, it can be approximately considered that the stress state is in a pure shear state,
so the size of the specimen is designed to be 140 mm long, the height of the working area
is 10 mm, and the thickness is 2 mm. For fatigue test, it is necessary to preset a crack of
25 mm, as shown in Figure 11.
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In the uniaxial tensile experiments, the Mullins effect has a greater impact on the
acquisition of experimental data, which can be essentially eliminated after 5–6 times of
stretching, so the stress–strain data from the sixth stretch is selected after five cycles of
stretching first. However, it should be noted that the creep phenomenon also exists in
rubber materials, so after five times of cyclic stretching, the equipment should be allowed
pause for 1 min so that the creep phenomenon can be alleviated, then the extensometer
should be reclamped to maintain the standard distance and straightened state to ensure the
length of 25 mm, and then the sixth stretching can be carried out.

The equipment used for uniaxial stretching of rubber is the universal experiment
machine of high speed rail and its own fixture. The plane stretching experiment requires
self-designed fixture for the experiment because there is no national standard, and the
fixture is shown in Figure 11. To ensure the accuracy of the experimental data, each test was
conducted three times and the average value was taken. The process of obtaining tensile
stress-strain data is shown in Figure 12, with a tensile speed of 50 mm/min first 5 cycles of
tensile to eliminate the Mullins effect, and the sixth tensile to obtain stress-strain data after
resting for 1 min.
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Figure 12. Stress-strain curve.

In this paper, based on the relationship between the crack expansion rate and tearing
energy established by Thomas et al., the fatigue life calculation model of rubber materials
was established in order to obtain the material parameters required for calculating the
fatigue life of rubber using the crack expansion method. We designed the fixture, specimen
and vulcanization mold used in the shear fatigue experiment of rubber materials and built
the planar tensile and fatigue experimental platform according to the characteristics of
fatigue experiments, as shown in Figure 13a. Since the conventional fixture is prone to
screw loosening after a long period of fatigue experiments, which leads to the problem of
the specimen clamping sliding and eventually distorting the stress–strain data during the
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test, the new fixture and specimen used in this paper can avoid the above problems. These
two reasons are likely to lead to errors in the experimental results and affect the accuracy
of the subsequent life calculation process. Therefore, after considering various factors,
we designed our own fixture and specimen. The designed specimen is vulcanized into a
cylindrical shape at the upper and lower ends, and the upper and lower two cylinders are
embedded in the cylindrical groove of the designed fixture. The computer can display the
tensile stress in real time, and adjust the stress to 0, that is, to reach the initial unstressed
state of the specimen, after which the experiment can begin. This fixture can avoid the
clamp loosening caused by the screw becoming loose accurately capture any quick changes
in any part of the specimen, and also avoid errors caused by the inaccurate height of the
single measurement work area. When carrying out fatigue test, a 25 mm crack is preset on
one side of the specimen, as shown in Figure 13b, According to fracture mechanics, when
the crack length is greater than or equal to twice the height, the influence of edge effect on
the shear fatigue test can be ignored. Additionally, the accuracy when measuring the crack
expansion length affects the accuracy when constructing the fatigue life calculation model,
so this test bench is designed with a vision system for measuring the crack expansion
length, as shown in Figure 13b.
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2.3. Selection of Constitutive Model

This experiment is conducted as a shear fatigue experiment, and its stress field is a
combination of uniaxial and planar tension, so fitting the intrinsic parameters requires the
use of stress-strain data from uniaxial and planar tension, however, some literature uses
only data from uniaxial tension experiments for fitting, and the accuracy of the fitting results
needs to be considered. Assuming that the rubber deformation is within the Gaussian chain
and conforms to the Gaussian distribution function, the strain energy function equation [38],

W =
1
2

G
(

λ2
1 + λ2

2 + λ2
3 − 3

)
(8)

where is the strain energy of the rubber, is the shear modulus, and is the elongation in the
x, y, and z directions, respectively.
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In uniaxial stretching, the elongation in the three directions are λ1 = λ, λ2 = λ3 = λ − 1/2,
so the (8) equation becomes

W =
1
2

G
(

λ2 +
2
λ
− 3
)

(9)

Derivation of Equation (9) yields

σ = G
(

λ− 2
λ2

)
(10)

Equation (10), which is the equation of state for uniaxial stretching of rubber materials;
Similarly, the equation of state for plane stretching is obtained for the state of λ1 = λ,

λ2 = 1 and λ3 = λ − 1.

σ = G
(

λ− 1
λ3

)
(11)

Isobiaxial stretching with λ1 = λ2 = λ and λ3 = λ − 2 gives the equation of state for
isobiaxial stretching

σ = 2G
(

λ− 1
λ5

)
(12)

From the state equations of the above three stress fields, it can be seen that the speci-
mens in the same elongation ratio have the highest stress when subjected to equal biaxial
stretching, followed by planar stretching, and the lowest is seen in uniaxial stretching. The
gap between them can be seen more clearly from the experimental graph.

As shown in Figure 14 for the experimental data and simulation data of uniaxial
stretching and plane stretching, it can be seen that there is a large gap between the stress-
strain curves of uniaxial stretching and plane stretching, and the hyperelastic model needs
to be used in calculating the strain energy density of rubber, so for the stress field of the
combination of uniaxial stretching and plane stretching, the data of uniaxial stretching
cannot be used only, which will cause large deviation, so it is necessary to The uniaxial
tensile and planar tensile data need to be obtained simultaneously. In this paper, we
use Ogden model to fit the experimental data with a high degree of overlap with the
experimental data, which can meet the calculation requirements. The results are shown
in Table 1.
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Figure 14. Uniaxial tensile and planar tensile experimental data and fitted data.

Table 1. Material parameters fitted by Ogden model.

No. MU1 MU2 MU3 ALPHA1 ALPHA2 ALPHA3

Parameters 1.485 −5.016 10.038 1.704 12.501 −24.999
Note: The unit of each parameter is MPa.
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The non-working area of the specimen in this experiment is cylindrical, which is
likely to cause convergence problems for the finite element simulation, and deleting this
part during the simulation will not affect the simulation results, so the non-working
area is removed from the simulation. As shown in Figure 15, the strain energy density
is required in the calculation model of ABA fatigue life, and the strain energy density
is calculated by finite element simulation in this paper. The size of the rubber fatigue
specimen in this experiment is 140 mm × 30 mm × 2 mm, and the size of the working
area is 140 mm × 10 mm × 2 mm. As the finite element model is established in QUS, the
material parameters are set and submitted for calculation. The maximum strain energy
density of the working area is obtained. As shown in Figure 15, the grid division diagram
of the finite element model is shown, and Figure 16 shows the loading mode.
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Figure 16. Loading Mode.

There is an edge effect in the calculation of the finite element model, as shown in
Figure 17b, which needs to be removed manually, so the maximum strain energy density
should be selected after removing the value of the fixture edge. The strain energy densities
at different strain levels are shown in Table 2. The maximum tear energy Tmax can be
obtained by substituting the maximum strain energy density under different strains into
Equation (4).

Table 2. Strain energy density at different strain levels.

Strain 30% 50% 80% 100%

strain energy density 0.745 1.385 2.311 3.370

Tearing energy 102.637 177.633 270.572 374.313

Note: The unit of strain energy density is mJ/mm3.
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3. The Relationship between Fatigue and the Variables

Rubber is a temperature-sensitive polymer material, and different working conditions
will have different effects on its fatigue performance, especially the temperature. High tem-
perature will make the rubber material soft, so the stress-strain curve at high temperature
will also be different. This paper intends to investigate the effects of different factors on the
fatigue performance of rubber by conducting fatigue experiments at different temperatures,
different frequencies, different orientations and different loading methods.

3.1. Stress Ratio

The stress ratio R is the ratio of the minimum stress to the maximum stress that the
rubber specimen is subjected to during cyclic loading. For different rubber materials, the
effect of stress ratio on fatigue life is different. Scholars at home and abroad have conducted
a large number of experiments to study the effect of stress ratio, and although some useful
conclusions have been drawn, the overall law is not universal, so to understand the effect of
stress ratio of the formulation used in this experiment, it needs to be studied by experiment.

Poisson et al. [39] conducted uniaxial tensile fatigue experiments using neoprene and
showed that when the stress ratio R≥ 0.2, the fatigue life of the specimen increased with the
increase of the stress ratio, which means that the crack expansion rate was decreasing. In
the study of magneto-rheological elastomers, Yong [40] concluded that the life of magneto-
rheological elastomers remained almost unchanged as the stress ratio increased, which he
attributed to the fact that the fatigue of magneto-rheological elastomers belongs to high
circumferential fatigue and the stresses applied during the experiments were much less
than their fatigue limits.

While this experiment was conducted with different stress ratios, as shown in Table 3,
it was found that the fatigue life of the rubber material surged when the stress ratio was
applied for the experiment, and the fatigue life increased by an order of magnitude with
the stress ratio, and the fatigue life of the rubber increased with the increase of the stress
ratio, which indicates the possibility of crystallization of natural rubber in the tensile state,
as observed by Beatty et al. [41] in their study Non-crystalline rubber in the stress ratio
R > 0 was not observed to enhance the life; and the rubber material has creep phenomenon,
the rubber material creep during long time clamping, as the experiment proceeds, the stress
ratio R due to the creep of rubber will become smaller and smaller, so the change in rubber
strain caused by the stress ratio R will be smaller and smaller, then the transfer to the crack
interface, caused by the damage to the crack tip should be small. This may be the reason
why the increase of stress ratio will cause the fatigue life to increase.
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Table 3. Crack expansion rates at different stress ratios.

No. R Frequency Waveform Strain dc/dN

1 0 4 Hz Sine wave 80% 6.143 × 10−4

2 1/3 4 Hz Sine wave 80% 6.944 × 10−5

3 1/2 4 Hz Sine wave 80% 3.472 × 10−5

Note: The unit of crack expansion rate is mm/c.

3.2. Loading Method

As shown in Figure 18, the effect of different loading methods on fatigue life is
negligible, and the fitted function curves are

log
(

dc
dN

)
= 3.117log(Tmax)− 10.571 (13)

log
(

dc
dN

)
= 3.114log(Tmax)− 10.561 (14)

log
(

dc
dN

)
= 3.137log(Tmax)− 10.614 (15)
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2 1/3 4 Hz Sine wave 80% 6.944 × 10−5 

3 1/2 4 Hz Sine wave 80% 3.472 × 10−5 

Note: The unit of crack expansion rate is mm/c. 
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The above Equations (13)–(15) are the fitted curves under triangle wave, square
wave and sine wave loading respectively, and it can be seen that the slope and intercept
difference of the three equations are very small, because the different loading methods
affect the change of strain following stress, and the same material has the same kinematic
unit, so the relaxation time of strain relative to stress change is unchanged at the same
frequency; meanwhile At the same time, the temperature of the specimen will not rise
when loading at low frequency, so it will not produce the change of temperature and thus
affect the change of internal energy. These two reasons may be the reason why the loading
method does not affect the fatigue life of rubber materials.

3.3. Frequency

The effect of frequency on the rubber material is reflected in the fact that high frequency
increases the temperature of the rubber material, which affects the crack expansion rate.
As shown in Figure 19, fatigue experiments were conducted at 1 Hz, 5 Hz, 8 Hz, 12 Hz,
and 15 Hz, respectively, and it can be seen that the change in crack expansion rate at 1 Hz,
5 Hz, and 8 Hz is small, while the crack expansion rate increases significantly at 12 Hz and
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15 Hz frequencies. The fitting equations for the five frequencies are shown in the following
Equations (16)–(20).

log
(

dc
dN

)
= 3.259log(Tmax)− 10.803 (16)

log
(

dc
dN

)
= 3.283log(Tmax)− 10.845 (17)

log
(

dc
dN

)
= 3.282log(Tmax)− 10.831 (18)

log
(

dc
dN

)
= 3.389log(Tmax)− 10.948 (19)

log
(

dc
dN

)
= 3.507log(Tmax)− 11.128 (20)
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From the first three equations, the slope and intercept difference is very small, while
the slope of the last two equations increases significantly, indicating the enhanced crack
expansion rate. It indicates that the first three frequencies did not lead to a significant
increase in the temperature of the rubber specimen, so the change in frequency did not
have an effect on the fatigue life, while the high frequencies led to an increase in the
temperature of the rubber, so the internal energy and conformational entropy of the rubber
increased, making the generation of new surfaces easier and therefore accelerating the
crack extension rate.

3.4. Effect of Orientation on Fatigue Life

As shown in Table 4, the fatigue life of the specimens under different orientations has
a large difference, and the orientation refers to the direction of the rubber material taken
during vulcanization of the rubber specimen. The polymer chain of the rubber material
is a long chain linear structure, so the direction of the molecular chain will be affected by
the process. Generally, the direction of the molecular chain is the same as the calendering
direction, so the way of taking rubber during vulcanization is also very important. If
the orientation of the vulcanized specimen is the same as the calendering direction, the
modulus and strength of the specimen can be improved; when the direction of the preset
crack of the fatigue specimen is the same as the calendering direction, which is equivalent
to the tearing direction and the molecular chain direction is parallel to the direction of
calendering, and the direction of the preset crack is perpendicular to the direction of
calendering, then the molecular chain must be torn off if the crack wants to expand, so the
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crack expansion rate is lower when the orientation is perpendicular, i.e., the fatigue life
is higher.

Table 4. Crack extension rate under different orientations.

No. Orientation Strain Waveform dc/dN

1 Vertical 50% Sine wave 2.778 × 10−4

2 Parallel 50% Sine wave 3.543 × 10−4

Note: The unit of crack expansion rate is mm/c.

3.5. Effect of Mullins Effect on Fatigue Life

From the crack expansion rates in Table 5, it can be seen that the Mullins effect has
some influence on the fatigue life. Of course, the difference between the specimens with
and without the Mullins effect eliminated from the crack expansion rate is not large, which
can also be considered as being caused by the experimental error. The elimination of the
Mullins effect will cause a certain degree of damage since the cyclic tension process will
cause the destruction of the filler network, the debonding between the rubber matrix and
the filler, etc., which can create internal micro-defects of different degrees in the rubber.
However, it cannot be simply assumed that the Mullins effect causes a reduction in fatigue
life because the 5–6 cycles of stretching required to eliminate the Mullins effect are negligible
compared to the fatigue life of tens of thousands of cycles. But whether it is reasonable to
stretch to a higher strain level to eliminate the Mullins effect or whether it has an effect on
the fatigue life requires further systematic experiments to verify.

Table 5. Effect of Mullins effect on crack expansion rate.

No. Mullins Effect Strain Waveform dc/dN

1 Eliminated 50% Sine wave 2.454 × 10−4

2 Not eliminated 50% Sine wave 2.315 × 10−4

Note: Eliminating the Mullins effect means stretching the specimen to 200% strain for 5 times and then presetting
the crack for the fatigue test.

3.6. Construction of a Thermodynamic Coupling Model for Fatigue Life of Rubber

The importance of temperature for rubber is self-evident, and scholars started to study
the effect of temperature on the fatigue life of rubber materials a long time ago. Mars
found that the life of butadiene rubber decreased by 104 and that the life of natural rubber
decreased by four times when the temperature increased from 0 ◦C to 100 ◦C. Viscoelasticity
is one of the characteristics of rubber, and its elastic energy storage is transformed into heat
energy when subjected to alternating load for a long time, which increases the temperature
of rubber, especially for tire products, and the internal temperature of tires can reach nearly
100 ◦C when rotating at high speed, so it is of great significance to study the effect of
temperature on rubber.

In this experiment, the crack expansion behavior and static tearing behavior of rubber
materials are studied by changing the ambient temperature, the critical tearing energy is
determined by static tearing experiments at different temperatures, and the critical tearing
energy is the criterion on which to judge whether the rubber crack expansion is destabilized.
Firstly, the specimens with preset cracks are stretched at a speed of 50 mm/min until they
tear, and the state of instantaneous fracture is the strain corresponding to the critical
tear energy.

In order to prevent damage to rubber caused by excessive thermal aging, the specimens
were preheated at a predetermined temperature for 12 min before each trial, the surface
temperature of rubber was measured to reach the predetermined temperature, and then
the experiment was started.
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As shown in Figure 20, the fatigue life fitting curves at different temperatures are
plotted, and the fitting functions are, respectively

log
(

dc
dN

)
= 3.019log(Tmax)− 10.779 (21)

log
(

dc
dN

)
= 3.157log(Tmax)− 10.658 (22)

log
(

dc
dN

)
= 3.106log(Tmax)− 10.380 (23)

log
(

dc
dN

)
= 4.020log(Tmax)− 11.906 (24)

log
(

dc
dN

)
= 4.263log(Tmax)− 12.583 (25)
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Equations (21)–(25) are the fitting functions at 0 ◦C, 20 ◦C, 30 ◦C, 50 ◦C and 70 ◦C,
respectively. It can be seen that the slope of the curve gradually increases with the increase
of temperature, but the slope at 20 ◦C is larger than that at 30 ◦C, which means that the crack
expansion rate is higher at 20 ◦C. The possible reason is that the increase in temperature
makes the rubber soft, and the stress is smaller when reaching the same strain, so the stress
concentration of the crack tip is low, and the failure stress is not reached. This means
that crack branching is more likely to occur and that there is more energy dissipation
in the generation of new surfaces, therefore hindering the expansion of the crack. The
phenomenon of crack branching was also observed in the experiment. Meanwhile, the fitted
curve at 0 ◦C is lower than other that at temperatures, indicating that the rubber material
is more prone to crack defects at higher temperatures, thus intensifying crack expansion.
While continuing to increase the temperature, the crack expansion rate in the temperature
range of 50–70 ◦C continues to increase, indicating that in this temperature range, the
fatigue life of the rubber material decreases sharply due to the high temperature, and
more micro-defects are generated inside the rubber when bearing the load. The long time
spent bearing the alternating load makes the micro-defects gather and expand, while the
temperature increase as the activation energy of the crack tip increases, causing the cracks
expand rapidly. From above, it can be seen that high temperatures limit the strain-induced
crystallization of rubber, so the life strengthening disappears. The above two aspects may
be the reason for the poor fatigue resistance of rubber materials under high temperature.

Therefore, it can be concluded that the fatigue performance of rubber materials with
the change of temperature is not a linear increase or decrease, but rather there are three
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stages: from 0 ◦C to about 20 ◦C, the crack expansion rate increases with the increase in
temperature; while from 20 ◦C to 30 ◦C, temperature instead appears to increase the fatigue
life; and when continuing to increase the temperature to between 50 ◦C and 70 ◦C, the
fatigue life decreases sharply.

It can be seen that temperature has a great influence on the fatigue life of rubber
materials, and the working environment of many rubber products is not room temperature,
so it is necessary to take the influence of temperature into account when establishing the
calculation model. From the above study, it is found that the tearing energy is related to
temperature, so the tearing energy is considered as a function of temperature, and from the
calculation formula of tearing energy:

Tmax = 2k(λ)l0E0 (26)

k(λ) is a function related to the strain of the rubber specimen, which is calculated as

k(λ) =
π√
λ

(27)

Substituting (27) into (26) yields

Tmax =
2πlE0√

λ
(28)

The tearing energy obtained at different temperatures is plotted in Figure 21, and
fitting the experimental data points yields that the temperature and tearing energy satisfy a
power-of-three relationship, as in Equation (29):

f (t) = a1t3 + a2t2 + a3t + a4 (29)

where t is the temperature, a1, a2, a3, and a4 are the relevant constants. Thus the equation
for correcting the tearing energy, the

Tmax =
2πlE0 f (t)√

λ
(30)
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The following are fitted in this paper at 30%, 50%, 80% and 100% strain with critical
tearing energy respectively as shown below:

f (t) = −3.128e−6t3 + 3.810e−4t2 − 0.016t + 0.985 (31)

f (t) = −3.251e−6t3 + 3.911e−4t2 − 0.016t + 0.982 (32)
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f (t) = −6.316e−6t3 + 7.214e−4t2 − 0.026t + 0.975 (33)

f (t) = −7.501e−6t3 + 8.576e−4t2 − 0.031t + 0.970 (34)

f (t) = −3.963e−6t3 + 4.430e−4t2 − 0.020t + 0.971 (35)

Thus, the rubber thermodynamic coupling fatigue model can be obtained as

N =

lc∫

l0

B−1T−Fda =
1

B(F− 1)
(

2π f (t)√
λ

E0

)F (
1

lF−1
0

− 1
lF−1
c

) (36)

An interesting phenomenon was also found in the experimental observation of crack
extension paths. In the range of 30–100% of strain level, the crack paths of crack extension
experiments at room temperature were more regular, basically expanding perpendicular to
the direction of loading, while the extension paths at high temperature were more tortuous,
usually zigzagging forward. The possible reason is that the temperature of the rubber crack
surface is higher in high temperature environment, and the surface molecules are more
easily activated, which accelerates the rate of crack expansion.

3.7. Validation of Fatigue-Thermal Coupling Model

The hyperelastic intrinsic model and fatigue life prediction model of rubber were
established in the previous section. In order to ensure the accuracy of the subsequent
tire simulation calculation, the prediction effect of the constructed model needs to be
verified, so the fatigue life of the specimen at 50 ◦C was predicted by establishing the
finite element model of the planar tensile specimen and compared with the Thomas model
and experimental results to verify the prediction effect of the constructed thermodynamic
coupling model, as shown in Figure 22 is the finite element model of the plane tensile
specimen. Figure 23 shows the loading amplitude curve.
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The stress–strain clouds at 50% strain under planar tension are shown in Figure 24.
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Figure 24. Stress-strain cloud of plane tensile specimen.

The calculated ODB file is imported into Endurica2020 software to calculate its fatigue
life, and the Thomas model in the software library is selected for the calculation of life, and
the finite element calculation result of life is shown in Figure 25, which is 8.315 × 105 times.
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Figure 25. Life nephogram of plane tensile specimen.

As shown in Figure 26, the cloud plot of rubber specimen life calculated by using the
thermally coupled fatigue model built in the previous section, the result is 6.588 × 105 times,
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and the experimental result is shown in Figure 27, which is measured as 6.42 × 105 times,
as shown in Table 6, the deviation between the predicted result of Thomas model and the
actual one is 29.5%, and the error between the predicted result of the thermally coupled
fatigue model built in this paper and the experimental result is 2.6%. It indicates that the
calculation accuracy of the proposed thermodynamic coupling fatigue model is high and
can meet the requirements of the subsequent tire fatigue life calculation.
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Table 6. Comparison of life prediction effects.

Different Models Thomas Model Thermodynamic
Coupling Model

Experimental
Results

Fatigue life 8.315 × 105 6.588 × 105 6.42 × 105

4. Study of Fatigue Micromechanisms in Rubber

Many scholars, when studying fatigue, often characterize it by macroscopic features
such as the length, type, and lifetime of cracks, while the damage of polymeric materials
such as rubber often begins with the breakdown of the bonding between the atoms of
polymer chains. And by Champy et al. [42], who studied the fatigue process of natural
rubber, it was concluded that cracking starts with debonding of the agglomerates from
the rubber matrix and cavities at the ends of the agglomerates, and Pérocheau et al. [43]
also found the phenomenon of cavities at the ends of the agglomerates, and Le Cam,
who studied [44] the fatigue life of carbon black-filled natural rubber, came to a similar
conclusion that the agglomerates and rubber matrix debonded to produce cracks.

Therefore, it is known from the above studies that rubber products need a variety of
fillers in the rubber matrix to meet different requirements for use, and the addition of fillers
will inevitably form agglomerates, and when subjected to alternating loads, defects will be
formed between the rubber matrix and the agglomerates, and these defects will gradually
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expand and gather to form microcracks, and the fatigue failure of rubber materials starts
from these microcracks. From a large number of scholars’ studies, it is known that the
size of the initial microcrack has a large influence on the fatigue life of rubber materials,
and the size of the initial crack mainly depends on the size of the agglomerates and the
aggregates of inorganic fillers such as ZnO, and observing the scale of the agglomerates by
scanning electron microscopy (SEM) is the best way at present. This chapter attempts to
verify whether the use of the crack extension method is consistent with reality by studying
the surface morphology of rubber materials before and after fatigue, and to explore the
connection between the macroscopic and microscopic aspects of fatigue.

4.1. Experiments and Discussion of Results
4.1.1. Experiment

In order to visually observe the changes of surface morphology of rubber materials
before and after fatigue, this experiment was first conducted using a fatigue test bench,
and then the new surface generated by crack expansion of the experimental specimen
was cut off; the specimen without fatigue test was also quickly cut with a blade to expose
the surface, and then the prepared specimen was vacuum-treated and scanned by SEM
instrument.

4.1.2. Discussion of the Results

Figure 28 shows the fast cut surface of the specimen without fatigue experiments.
From the photo with 10,000 times magnification, it can be seen that the fillers are all well
dispersed, in which the rubber matrix is the continuous phase and the other fillers are the
dispersed phase. And it can be seen from the figure that the infiltration of the filler and
the rubber matrix is relatively good, the vast majority of the filler is wrapped in the rubber
matrix, and only a small part of the filler particles are not wrapped by the rubber, which is
the source of the fatigue cracks in the rubber material.
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Figure 29. Three-dimensional photos of fatigue surface.

Figure 30 is a 100-fold SEM photograph of the fatigue surface and the cut-off surface
of the specimen without fatigue experiments, we can see that the surface before and after
fatigue is very different, the surface without fatigue experiments is very smooth and has a
beach-like ripple, which is a sign of cut-off; while the fatigue interface can be The surface
without fatigue test is very smooth and has beach-like ripples, which is a sign of cut-off;
while the fatigue interface can be seen to have peeling phenomenon, which is layer by layer
overlapping, which is the rough surface formed by long time shear fatigue.
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Figure 30. Morphology of Rubber Specimen under SEM100 times.

Figure 31 shows the SEM scanning photos of the unfatigued specimens. It can be
observed that the fatigue-free interface is smooth, but there are pits. This is because the
rubber specimen hardly stretches when it is cut off, so when the material is cut off, the filler
sticks to the fracture surface.
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Figure 31. SEM surface morphology of cut-off surface.

Figure 32 is a 5000-fold scanning photo of SEM. It can be seen that the combination of
filler and rubber is good, and many irregular gullies and holes are produced after fatigue.
This structure is helpful to improve the fatigue life of rubber, because it is a process of
generating new surfaces and can consume some energy.
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Figure 32. Morphology of Rubber Specimen at 5000 times of SEM.

Figure 33a shows a scanning photo of the surface of the rubber specimen cut off with a
blade after it has been stretched to 200% strain for six times, and (b) shows a scanning photo
of the surface of the specimen that has not been stretched. It can be seen that (b) the surface
is smooth and the bonding degree between the filler and the rubber matrix is good, but
after the Mullins effect is eliminated, it can be found that some fillers have been separated
from the rubber matrix, indicating that the network formed by the filler and the rubber has
begun to be destroyed.
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4.2. Micromechanism of Rubber Fatigue

From a classical mechanical calculation—the stress problem of a perforated flat plate—it
is known that a round hole, i.e., a defect in a flat plate, generates a stress concentration
in the place where the defect exists, and when the stress exceeds the critical value, this
becomes the initial part of the damage. Similarly, the fatigue damage of rubber is also a
concentration of stress at the defective part, which causes the molecular chain to break. The
three-dimensional cross-linked network is produced when the rubber is vulcanized, and
the molecular chain with low bond energy is destroyed first when the stress is concentrated.
The stress condition at the crack tip of the rubber material is an important factor influencing
its crack expansion. The shear fatigue test presets the crack to simulate the expansion
process of the material after it is cracked. Rubber material is a weak but tough material, and
it can be observed that it can have a large deformation with a small force when it is slowly
stretched. When the crack tip becomes blunt, then its ability to resist tearing becomes
stronger, because at this time the stress is dispersed in several directions, so the reason why
rubber can still bear the load when there is damage is the blunting of the crack tip.

Fatigue damage of rubber is actually the result of both physical and chemical damage.
When the rubber material is loaded, the chain segments between the cross-linked bonds are
oriented, all chain segments are stressed, and the chain segments are Gaussian-distributed,
so the stress is also Gaussian-distributed. When the rubber is under a low load and has a
small deformation, the conformation of the cross-linked network is sufficient to withstand
the current deformation, so it is almost not destroyed, but as the deformation increases, the
molecular chain is continuously stretched, and when the maximum deformation is reached,
it cannot meet the current deformation. This causes the molecular chain to break and release
the strain energy, which is partly used to overcome the new surface energy and partly
transferred to the adjacent cross-linked network. Therefore, these adjacent cross-linked
networks will also be damaged by the excessive energy. Many fillers are added to rubber
products, and when the particle size of these inorganic particles is larger than microns,
their interface with the rubber matrix is a defect. When rubber materials are subjected to
alternating loads, damage is actually produced in the first cycle, as demonstrated in the
previous sections on the Mullins effect. After experiencing the first tension cycle, many
microdefects have formed inside the rubber, but the effect of the first few tensile loads on
the fatigue life is minimal due to the fact that when the loading is stopped without causing
macroscopic visible cracks. These microcracks cause physical–chemical effects, such as
infiltration and diffusion, but will be repaired automatically. After undergoing many cycles
of loading, more and more molecular chains are damaged, which eventually leads to visible
cracks. So one way to improve the fatigue life of rubber is to improve the dispersion of the
filler in the rubber.

Fatigue damage often does not occur immediately, but rather over a long period of
time since it involves chemical reactions. Chemical reactions generally refer to the erosion
of rubber molecular chains by gases, the most important of which is to react with oxygen.
When using the universal tensile machine in accordance with national standards for rubber
specimens in the tensile test, it was found that the results in the air environment and
nitrogen environment are essentially the same, which also shows that chemical reactions
need a certain amount of time to occur. A single stretch in oxygen cannot immediately
cause it to react with the rubber as the process is not instantaneous. But in different gas
environments for fatigue experiments, the results are very different. Sainter studied the
fatigue life of styrene–butadiene rubber in air and oxygen environments and found that
the fatigue life in air was eight times higher than that in oxygen. In the presence of oxygen,
cross-linking and chain breaking occur simultaneously, and the more oxygen content, the
more violent the reaction. When cross-linking is predominant, the rubber will harden and
become brittle, eventually leading to fracture, and if chain breaking is predominant, then the
rubber will become soft and eventually be destroyed because the strength becomes smaller.
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5. Conclusions

In this paper, the rubber fatigue test platform was built. The thermal coupling fatigue
prediction model of rubber was established based on a large number of experimental data,
and the microscopic mechanism of rubber fatigue was analyzed. The main contents include:

(1) By conducting Mullins effect experiments on different formulations of vulcanized
rubber, it is found that the Mullins effect can be eliminated after 5–6 stretches.

(2) The effect of different stretching speeds on the stress-strain curves was investigated
and it was found that as the stretching speed increased, the stress required to achieve the
same strain also increased.

(3) By conducting fatigue experiments under different working conditions, it was
found that the life is longer when there is a stress ratio, and the life continues to increase
as the stress ratio increases; the effect of the loading method on the crack extension rate is
negligible; frequency itself has no effect on fatigue, high frequency makes the rubber rubber
temperature rise, thus accelerating the crack extension; the effect of the Mullins effect on
the fatigue life of rubber needs to be verified by subsequent system experiments to verify;

(4) By fitting the experimental data, it was found that temperature and tearing energy
could fit a power-of-three function, so the influence of temperature was considered in the
calculation of tearing energy, and a rubber thermodynamic coupling fatigue prediction
model was established; the fatigue life of the specimen at high temperature was calculated
using the thermodynamic coupling model, and the error was 2.6% compared with the
experimental results, which verified the accuracy of the model;

(5) The surface morphology of rubber before and after fatigue was observed by SEM,
and it was concluded that the source of crack extension was the debonding of rubber matrix
and agglomerates; from the perspective of molecular mechanism, it was explained that the
process of rubber fatigue damage was actually the process of overloading the cross-linked
network and thus being destroyed.
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Abstract: Delamination in reinforced panels is one of the primary challenges facing the safety and
reliability of aerospace structures. This article presents a sensitivity analysis of the fatigue behaviour
during the compression of a composite aeronautical stiffened panel experiencing delamination. The
main objective is to assess the impact of delamination size and depth on the lifecycle and structural
integrity of the panel. Different dimensions and positions of delamination are considered to cover a
comprehensive range of damage scenarios. The key feature of this sensitivity analysis is the adoption
of a numerical procedure that is mesh- and load-step-independent, ensuring reliable results and
providing valuable insight into the criticality of delamination and its impact on the fatigue behaviour
during the compression of reinforced aeronautical panels. Sensitivity analyses are essential for
enhancing the design process of aerospace structures, thereby contributing to the increased safety
and reliability of structural components. In this regard, the use of robust and effective numerical
procedures is of crucial significance. This may be seen as the real added value of this paper.

Keywords: stiffened panel; circular delamination; structural design; finite element analysis

1. Introduction

Fracture has always been a significant issue for the aerospace industry during the
fabrication of aerospace structures, and, over the years, it has become more severe due to
the extensive use of innovative materials, such as composite materials [1,2], which are very
prone to interlaminar fractures [3]. To take full advantage of the benefits offered by these
materials, they are used to fabricate stiffened panels that are used in the aircraft fuselages,
wings, and horizontal/vertical tail planes. However, the latter, when in service, are exposed
to impact phenomena, which can cause extensive damage, sometimes not visible on first
visual inspection, leading to catastrophic events [4–6]. Moreover, manufacturing flaws
and maintenance processes may cause the onset of cracks that can easily propagate under
service loads [7,8]. The phenomenon of fatigue amplifies these issues, significantly reduc-
ing the strength properties of stiffened composite aircraft components through material
degradation [9,10].

Many studies have been carried out in the literature to consider the delamination
phenomenon due to a variety of causes. The study in [11] introduced a mesh-independent
computational method, utilising the extended finite element methodology, to predict
transverse matrix crack and delamination evolution. The approach demonstrated good
agreement with conventional numerical methods and experiments. In [12], a review on
how delamination contributes to the failure of fibre-reinforced composites is presented.
The study in [13] explored hydrothermal aging in a carbon-fibre-reinforced laminate and
its epoxy matrix in bulk conditions. Minimal changes in bulk resin fracture toughness
but variable trends in composite interlaminar fracture toughness were observed. In [14],
composite laminates impacted at low velocities were studied. Drop weight tests and
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ultrasonic C-scan were employed to assess delamination evolution. Numerical modelling,
including the cohesive contact method, has been used to simulate delamination. The FEM
results have been proven to be aligned with experiments. Liu et al. [15] conducted a 2D
and 3D parametric finite element analysis of composite flat laminates with two types of
through-the-width delamination. The effect of multiple delaminations on postbuckling
properties has been studied by using the virtual crack closure technique. The study
in [16] employed Abaqus, enhancing fatigue analysis by integrating R-curve effects into
the Paris law through an empirical method. Implemented via a user-defined subroutine,
the novel method accurately predicts fatigue life within 5% of the test results. The work
in [17] explored disbonding in adhesively bonded panels through Lamb waves during
fatigue tests, emphasising frequency, mode, sensor placement, and parameter selection.
Piezoelectric transducers act as actuators and sensors, correlating crack propagation rate
with A0 mode velocity. Šedková et al. [18] investigated debonding and delamination
assessment by means of Lamb waves in adhesively bonded composite joints.

The study of damage propagation in aircraft structures must begin at the preliminary
design stage. Indeed, the use of new design concepts and innovative materials, whose
damage behaviour is not well understood, often leads to the over-dimensioning of aircraft
structures. Furthermore, in a damage-tolerant design philosophy, the loads and stresses
that the aircraft is expected to withstand in operation must be considered in detail, and the
effects of the damages on the structural integrity of the component must be assessed. The
work in [19] delved into the numerical methods employed to forecast impact damage in
advanced composite structures, emphasising their significance for industry approval in
designing and certifying composite aircraft. The article in [20] addresses the low-velocity
impact (LVI) challenge in the composites industry, highlighting how factors are crucial
for improving the impact resistance and damage tolerance of fibre-reinforced composites
(FRCs). The review identifies gaps in the literature and suggests future research directions,
while also discussing various damage modelling strategies to predict the impact resistance
and damage tolerance of FRCs. Jones [21] addressed challenges related to aging aircraft
and infrastructure, emphasising the need for tools to predict crack growth from small
material discontinuities. They discuss the differences in the analysis tools used for design
and sustainment, modelling crack growth, determining short crack data, predicting growth
using existing equations, and accounting for variations in crack growth histories. In [22],
the damage tolerance of a stitched carbon/epoxy laminate was studied. Investigating
the impact of stitching on a carbon fibre epoxy laminate revealed significantly improved
damage tolerance compared with that of brittle epoxy.

Appropriate experimental testing campaigns should be conducted to identify struc-
tural weaknesses. However, the production of aircraft structures, even on a small scale, to
identify the best structural configurations can be very expensive as well as time-consuming.
Aircraft designers and engineers use a variety of tools and techniques to analyse and predict
the behaviour of materials and structures under operating loads, including finite element
analyses [23–28].

Sensitivity analyses are essential in structural design and projects to identify the
critical geometrical parameters that have the most significant impact on the structural
design or project outcome [15,29–31]. By adapting these variables (within a reasonable
range), engineers can understand which factors play a crucial role in the performance
and damage behaviour of a structure. Moreover, sensitivity analysis allows engineers to
evaluate the robustness of the design against variations in input parameters. In general,
sensitivity analyses provide valuable insights into the behaviour and performance of
structural configurations. This helps designers make proper decisions, optimise designs,
manage risks, and ensure the structural integrity and efficiency of the final product.

The main added value of this article is the use of the FT-SMXB methodology, due to its
inherent characteristics, to study, specifically, the influence of the size and depth of typical
impact damage on composite panels. The standard virtual crack closure technique (VCCT)
would probably influence the results due to its dependence on the mesh and time step of
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the finite element analysis. On the contrary, one of the advantages of the cohesive zone
model (CZM) methodology is its lower sensitivity to mesh size. However, defining the
correct cohesive stiffness is still a challenge [32], and a rigorous calibration of the cohesive
parameters is needed to avoid mesh sensitivity [33]. For the finite element method, the
dependence of the results on the size of the elements selected for the numerical model
discretisation and the timestep used for the load application during the analyses play a
key role in the obtained results. The FT-SMXB numerical approach has been proven to
overcome these FEM limitations. This procedure has been validated both at the coupon
level, such as in the double cantilever beam test, end-notched flexure test and single leg
bending shear test, and for more complex structures, such as stiffened panels characterised
by skin-stringer debonding [34,35]. The use of this numerical procedure is the real added
value of this work, which includes a sensitivity analysis of a typical aeronautical reinforced
panel subjected to typical impact damage of varying size and depth in the skin panel bay.
This manuscript can be considered an evolution of previous work [36], where the static
failure of an aeronautical stiffened composite panel under compressive loading conditions
was studied. The results showed a strong dependence of the panel compressive behaviour
on the geometric parameters, including the depth and size of the circular delamination.
Here, the fatigue behaviour of the panel was assessed by varying the radius and the
position in the thickness of a circular delamination. The influence of such variables on
the delamination evolution and the stiffness degradation was assessed. The delamination
between two interfaces was considered. The FT-SMXB procedure does not consider the
delamination migration phenomenon.

2. Numerical Model Description

A typical aeronautical stiffened panel was studied under compressive fatigue loading
conditions. The panel was 300 mm in length and 400 in width. Two T-shape stringers
were tied on the skin, which has a 60 mm foot and 30 mm web. The stacking sequences
of the different panel components, which are listed in Table 1, were chosen according
to typical manufacturing process needs. A 0.165 mm ply of a carbon fibre/epoxy resin
material system was used to model the thicknesses of the panel parts. Circular delamination
damage in the panel bay was placed, representing a typical impact damage. It is known
that the shape of delamination after impact in composite structures can change depending
on several factors, including the nature and extent of the impact, the material properties,
and the geometry of the structure. While circular delamination is commonly used in
theoretical and analytical models for simplicity, real delamination resulting from impacts
can have different shapes. However, in some cases, the delamination may have a circular
or nearly circular shape, especially if the impact is relatively symmetrical and occurs at a
specific point.

Table 1. Stacking sequences.

Component Number of Plies Layup Thickness

Skin panel 16 [45,90,0,−45]2s 2.64 mm
Foot stringer 24 [(0,90,90,0)s(45,90,0,−45)2s] 3.96 mm
Web stringer 8 [0,90,90,0]s 1.32 mm

The elastic and interlaminar properties of the material were evaluated through an
experimental characterisation, based on the ASTM standards in [37–42], and are reported
in Table 2. Static tensile, compressive, and shear tests were performed on samples manufac-
tured according to the standards. The tests summary is shown in Figure 1.
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Figure 1. Experimental characterisation of the material: (a) matrix tensile test; (b) double cantilever
beam test; (c) end-notched flexure test; (d) fibre tensile test; (e) matrix tensile specimens; (f) fibre
compressive specimens.

Table 2. Material properties.

Property Value Description

E11 122,000 MPa Young’s modulus in the fibre’s direction
E22 = E33 6265 MPa Young’s modulus in the transverse direction
G12 = G13 4649 MPa Shear modulus in the 1–2 and 1–3 planes
G23 4649 MPa Shear modulus in the 2–3 plane
ν12 = ν13 0.3008 Poisson’s ratio in the 1–2 and 1–3 planes
ν23 0.02 Poisson’s ratio in the 2–3 plane
GIc 180 J/m2 Mode I critical energy release rate
GIic = GIIIc 1900 J/m2 Mode II and Mode III critical strain energy release rate
c1 0.7188 Mode I Paris constant
n1 8 Mode I Paris exponent
c2 6.5938 Mode II Paris constant
n2 6 Mode II Paris exponent

The panel was modelled through the Ansys Parametric Design Language (APDL) to
easily modify the value of the variable parameters (radius and depth). The global–local
approach was chosen as modelling strategy in order to reduce the computational cost
and the analyses’ duration. Indeed, a coarse mesh was considered for the global part,
while a more refined discretisation was performed in the local zone, which is the region
characterised by the delamination damage and is involved in the propagation. Elements of
12.5 mm were used for the global model, while elements of approximately 2 mm and 5 mm
were considered in the local region. According to the fail release approach, typically used
in conjunction with the virtual crack closure technique (VCCT), the local zone was built
with two overlapping identical solids, as shown in Figure 2a. Identical discretisation was
carried out, and the nodes, which are characterised by the same spatial coordinates, were
connected with constraints with “birth and death” capabilities, except in the delaminated
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area, where nodes are released, and only interactions were considered to avoid penetration.
The FEM model is displayed in Figure 2b. A schematic of the panel is reported in Figure 2c.
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Figure 2. (a) Fail release approach; (b) FEM model of the panel; (c) schematic of the panel.

The translational and rotational degrees of freedom on one side of the panel were
clamped (interlocking constraint); on the other side, the terminal nodes were connected
through rigid connections to a reference point (pilot node) on which the compressive force
was applied. The scheme of the boundary conditions is shown in Figure 3.
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Figure 3. Boundary conditions of the fatigue analyses.

2.1. FT-SMXB Approach

Fracture mechanics relations are the basis of the FT-SMXB numerical method. In partic-
ular, the modified virtual crack closure technique (VCCT) equations were implemented to
calculate the energy release rate (ERR) values on the nodes of the delamination front. Such
values were compared with the critical fracture toughness values to assess the propagation
of delamination, as described by Equation (1).

GI
GIc

+
GI I
GI Ic

+
GI I I
GI I Ic

= Ed ≥ 1 (1)

The ERR Gj with j = I, I I, I I I depends on the increase in delaminated area ∆A, as
reported in Equation (2), where Fj is the force at the crack tip, and uj is the opening
displacement (see Figure 4).

Gj =
Fjuj

2∆A
with j = I, I I, I I I (2)
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According to the VCCT, Gj is the amount of energy needed to close an area ∆A of
the fracture surface, while Gjc is the critical value that the energy must reach to open the
crack. However, considering the FEM approach, the delamination growth is influenced by
the chosen element size. Therefore, even if, at a specific load step, the delaminated area is
smaller than that of an entire element (for the computed energy values), it is overestimated.
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In the FT-SMXB approach, the VCCT limits in terms of mesh and dependence on load
step size are avoided through the implementation of an iterative procedure, named SMART
TIME, that can iteratively change the load step size until the calculated energy corresponds
exactly to the amount needed to propagate an area equal to that of one or more elements.
In detail, the equivalence in Equation (3) must be satisfied. The subscript i refers to the
nodes of the delamination front.

N

∑
i=1

Ai =
N

∑
i=1




3

∑
j=1

F(t+1)
ji u(t+1)

ji

2Gjc


 ∼=

N
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AElement
i (3)

Cyclic load can be applied on the structure via a succession of static analyses, which
can be considered as fatigue cycles. The load applied on the structure in each static analysis
is calculated as a percentage of the maximum load that the structure can support when
subjected to static loading conditions. Basically, a first static analysis is performed, and the
ERR values on the delamination front nodes are calculated and used as input in the Paris
law criterion, defined by Equation (4). N represents the number of cycles, while C and n
are the Paris law constants evaluated experimentally.

∆Ai
∆Ni

= C f (G)n (4)

The number of cycles needed to propagate delamination damage is calculated by
reversing the Paris law, as described in Equation (5). Finally, the node with the higher
criterion value, which is the node where the energy values are closest to the critical values,
is selected and released.

∆Ni =
∆At

i
C f (G)n (5)

Starting from the last converged solution, subsequent analyses are performed until
the number of cycles to failure is reached, or until the user-defined limits are encountered.
Damage accumulation is considered. A damage variable is considered in each node of the
delamination front to account for damage accumulation, and the number of cycles starts
from that reached in the previous analysis.

2.2. Preliminary Static Analysis

Three different radii of circular delamination were studied: 20 mm (R20), 30 mm (R30),
and 40 mm (R40). Each of them was positioned at three depths along the thickness (see
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Table 3). This placed the delamination between plies of different orientations. Specifically,
under two laminae (2PLY), the delamination was between 0 and 90 degrees; under three
laminae (3PLY), the delamination was between 90 and 45 degrees; and under four laminae
(4PLY), it was between 45 and −45 degrees.

Table 3. Panel configurations.

Id Configuration Delamination Radius Delamination Depth

R20-2PLY 20 mm 0.33 mm
R20-3PLY 20 mm 0.495 mm
R20-4PLY 20 mm 0.66 mm
R30-2PLY 30 mm 0.33 mm
R30-3PLY 30 mm 0.495 mm
R30-4PLY 30 mm 0.66 mm
R40-2PLY 40 mm 0.33 mm
R40-3PLY 40 mm 0.495 mm
R40-4PLY 40 mm 0.66 mm

The propagation initiation load and the overall buckling behaviour of the panel under
static loading conditions were needed to proceed with fatigue analyses. Hence, preliminary
analyses were conducted considering the panel with one edge fixed (all degrees of freedom
constrained) and the other subjected to compressive displacement (free degrees of freedom
in the compression direction). Figure 5 shows the boundary conditions.
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Figure 5. Boundary conditions of the static analyses.

Figure 5 shows the load as a function of applied displacement curves and the trend of
delaminated area with the load for each considered configuration. The charts in Figure 6
indicate that increasing the depth of delamination, with the same radius, reduces the
load supported by the structure, and the propagation of delamination becomes unstable
and rapid, leading to sudden delamination evolution. The ultimate displacement applied
to the structure, visible in Figure 6, does not represent its point of failure but only the
displacement applied in the last step of the analysis. The end of the simulation is due to
the achievement of the maximum extent of delamination, which is limited to the circular
region around the initial defect.

Fixing the position along the thickness of the delamination damage, as the radius
increases, there are no significant variations in the delaminated area trend with increasing
load; as demonstrated in Figure 7, only a slight increase in the speed of propagation can be
noticed for larger radii.
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Figure 6. Load vs. applied displacement and delaminated area vs. load curves—static analyses:
(a) R20 panel; (b) R30 panel; (c) R40 panel.

Figure 7. Delaminated area vs. load curves at fixed delamination depth—static analyses: (a) 2-ply
depth of delamination; (b) 3-ply depth of delamination; (c) 4-ply depth of delamination.
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It is worth specifying that the analyses automatically terminate when the delamination
(and thus, the nodes released using the fail release approach) reach the user-defined limit.
In this specific case, the limit was set at the outmost nodes of the circular propagation
crown considered, as shown in Figure 8.
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Based on the obtained results, considering the load at which delamination starts
propagating, fatigue analyses were conducted, according to Table 4.

Table 4. Fatigue analyses.

Id Configuration Static Delamination
Onset Load Fatigue Loads Onset Cycle Failure Cycle

R20-3PLY 147 kN 80%
90%

113,593
939

>1 × 106

16,459

R20-4PLY 158 kN 80%
90%

>1 × 106

>1 × 106 -

R30-3PLY 130 kN 80%
90%

50,507
461

672,364
44,866

R30-4PLY 135 kN 80%
90%

>1 × 106

37,493
-

200,678

R40-3PLY 121 kN 80%
90%

15,049
792

>1 × 106

91,584

R40-4PLY 130 kN 80%
90%

170,487
1562

>1 × 106

20,665

3. Results and Discussion

The summary of the performed fatigue analysis is reported in Table 4. The config-
uration R20/30/40 2P was not considered for fatigue assessment because the results in
Figure 7 show that a slight propagation of the damage is experienced by the panel, which
undergoes global buckling by preventing the growth in the delamination.

The fatigue damage initiation life refers to the duration or number of loading cycles
that a material or structure can undergo before the initiation of fatigue damage. Evaluating
fatigue damage initiation life involves analytical methods, such as cycle counting methods
and the damage accumulation model, which are taken into account in FT-SMXB. The
delamination initiation cycle was determined through the Paris law relation, as defined
in Equation (5). Figure 9 shows a graph of the fatigue crack initiation life values for the
various configurations analysed at 90% and 80% of the static delamination initiation load.
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Figure 9. Fatigue crack initiation life curves.

Figure 10 displays the delamination evolution over as a function of the number of
cycles for three different radii of circular delamination under three plies. According to the
curves’ trend, the larger delamination size (R40-3PLY) resulted in better fatigue behaviour
of the composite panel. Indeed, a smoother growth of the delaminated area can be seen,
achieving a higher number of cycles, although with a lower value of total delaminated area.
In fact, in some specific cases, a larger delamination in a composite panel may create a more
gradual stress transition in the surrounding area, which means that there are lower stress
gradients in the material surrounding the delamination, thus reducing stress concentrations
and the probability of further cracking and propagation.
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Increasing the depth of delamination for the same radius can have complex effects on
the fatigue behaviour of a composite panel. According to Figure 11, increasing the depth of
the delamination can increase the onset cycle, which is the number of cycles required for
the crack to initiate. The relationship between delamination depth and fatigue behaviour is
typically not linear. Primarily, deeper delamination could delay crack initiation due to the
higher load required to propagate the crack deeper into the material [43,44]. However, as
the delamination extends, it becomes a more significant structural defect, leading to higher
stress concentrations and potentially accelerated crack growth.
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Figure 11. Delaminated area vs. number of cycles (log-scale)—fatigue analyses: (a) R30 configuration;
(b) R40 configuration; (c) R20 configuration.

According to Figure 12, the stiffness (defined as load/displacement and measured on
the nodes of load application) of all the analysed configurations decreased by less than 5%
because, in the considered cases, the delamination extension is limited and hence does not
affect the overall stiffness of the structure. The investigated structures maintain their overall
integrity, with relatively small changes in stiffness within an acceptable range. Even if the
stiffness remains almost constant, different levels of damage size and depth can influence
the stress intensity in the damaged region. This can affect the number of loading cycles
required for crack initiation and the rate of crack growth during propagation.
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The evolution of delamination for different numbers of cycles is shown in Figure 13
for one of the analysed configurations (R30 4PLY), as an example. The red region indicates
the elements that correspond to the nodes released by the VCCT, which reached complete
failure according to the Paris law calculations. Therefore, the red portion represents the
growth achieved in the delaminated area.
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4. Final Remarks

In this work, the mesh- and load-step-independent FT-SMXB numerical methodology
was employed to assess the compressive fatigue behaviour of a composite material, an
aeronautical stiffened panel, affected by typical impact damage in the bay region. Two
percentages of the static damage initiation load were considered (80% and 90%). The
results revealed that for greater radii of the circular delamination, at a fixed damage depth,
delaminated areas experience smooth growth, achieving a higher number of fatigue cycles
with a lesser damage extent. Furthermore, increasing the depth of the damage, at a fixed
radius, increases the delamination onset cycle but leads to faster and unstable delamination
evolution. The overall stiffness of the panel remains almost constant with the fatigue cycles
for all the considered radii and depths of delamination.

It is important to note that the specific behaviour of composites and the effect of
delamination depend on various factors, including the type of composite material, its layup
configuration, the loading conditions, and the size and shape of the delamination. However,
the use of effective and robust computational methodologies can provide help in designing
damage-tolerant composite structures for various applications and loads, thus reducing
the waste of money and time derived from manufacturing and experimental tests. The
primary contribution of this article lies in the application of the FT-SMXB methodology,
which, owing to its intrinsic characteristics, proves exceptionally valuable in examining
the impact of size and depth variations in a typical damage scenario on composite panels.
Unlike the standard VCCT and CZM methodologies, which are likely to impact the results
due to their reliance on the mesh and time step parameters in finite element analysis, the
FT-SMXB methodology stands out for its independence from these factors.
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Abstract: Due to the difficulty of accurately characterizing properties such as the molecular weight
(Mn) and grafting density (σ) of gradient brushes (GBs), these properties are traditionally assumed to
be uniform in space to simplify analysis. Applying a stochastic reaction model (SRM) developed for
heterogeneous polymerizations, we explored surface-initiated polymerizations (SIPs) with initiator
gradients in lattice Monte Carlo simulations to examine this assumption. An initial exploration of SIPs
with ‘homogeneously’ distributed initiators revealed that increasing σ slows down the polymerization
process, resulting in polymers with lower molecular weight and larger dispersity (Ð) for a given
reaction time. In SIPs with an initiator gradient, we observed that the properties of the polymers are
position-dependent, with lower Mn and larger Ð in regions of higher σ, indicating the non-uniform
properties of polymers in GBs. The results reveal a significant deviation in the scaling behavior of
brush height with σ compared to experimental data and theoretical predictions, and this deviation is
attributed to the non-uniform Mn and Ð.

Keywords: gradient brush; surface-initiated polymerization; stochastic reaction model; Monte
Carlo simulation

1. Introduction

Gradient brushes (GBs) are polymer brushes wherein properties, such as molecular
weight, grafting density, or chemical composition, gradually vary in one or more directions
along the substrate. GBs are powerful tools for high-throughput and low-cost investigations
in the areas of physics, chemistry, biomaterials science, and biology [1–8]. In a single sample,
a given surface parameter across a wide range can be systematically explored, avoiding
the need for lengthy repetitive procedures and enhancing the efficiency of research and
development [8]. Additionally, GBs are widely used to study interfacial phenomena like
the directional transport of liquids, cell adhesion, and migration [9,10].

Surface-initiated polymerization (SIP) is a promising approach to synthesizing GBs
with higher grafting density. There are two major forms of SIP classified by initiator distri-
bution [3,11]: one with a homogeneous distribution of initiators and another with a gradient
distribution. In the former case, GBs are obtained by controlling the spatial polymerization
time, for example, using a movable mask or reaction solution, or by adjusting the spatial
polymerization rate through methods such as varying the intensity of transmitted light
with a filter in photopolymerization [12–16]. In the latter case, initiators with a gradient
density are firstly anchored to the surface using methods such as the silane diffusion
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method, nanolithography methods, or methods involving gradients of temperature or
electrochemical potential [15–21]. Subsequently, SIP is carried out to yield GBs. Generally,
the former is a simpler and more feasible method, while the latter is suitable for small-sized
patterns and arbitrary structures [3].

Despite significant progress in the preparation of GBs, characterizing crucial properties
such as grafting density (σ), molecular weight (Mn), and molecular weight distribution
remains a challenging task [13,22,23]. The characterization of σ and Mn is interrelated since

σ = hρNA/Mn, (1)

where h is the height of a brush in the dry state, ρ is the density of a polymer, and NA is
Avogadro’s constant. Gel permeation chromatography (GPC) is the most common method
for directly determining the molecular weight of grafted polymers, involving the degraft-
ing of polymer chains from a substrate. However, the GPC method requires a sufficient
amount of a sample, posing a challenge for SIP, especially regarding polymerization on
a flat substrate [2]. On the other hand, the accuracy of indirect measurement, achieved
by incorporating sacrificial initiators for simultaneous bulk- and surface-initiated poly-
merizations and characterizing the resulting polymers in solution, has been a topic of
debate [22,23]. Notably, neither direct nor indirect GPC methods offer insights into the
spatial distribution of these properties in GBs.

The lack of information on molecular weight and grafting density has significantly
hindered efforts toward comprehensively understanding gradient polymer brushes and
applying them. An early study examined the scaling behavior between brush height and
grafting density for a gradient polymer brush [17]. In this study, a polyacrylamide (PAAm)
brush with a grafting density gradient was obtained via atom-transfer radical polymeriza-
tion (ATRP) with an initiator gradient generated via the silane diffusion method [17,24].
Due to the absence of information on molecular weight, two assumptions were made to
determine the grafting density in space: (1) the molecular weight of polymers along the
substrate in GBs is uniform, and (2) there is similarity in the molecular weight between poly-
mers in the GBs and those obtained in solution polymerization under the same conditions.
Upon determining the dry brush height using variable-angle spectroscopic ellipsometry,
the spatial distribution of grafting density was obtained using Equation (1). Subsequently,
we examined the scaling relationship between the wet height of the brush and grafting
density, revealing only a slight deviation from the theoretical prediction [17].

Although researchers have recognized the limitations of the uniform molecular weight
assumption [17], it remains prevalent in experimental studies due to its simplicity. This
raises a question: what is the significance of the effect of this assumption?

To answer this question, the polymerization mechanism should be examined, as it
strongly influences properties such as molecular weight and dispersity. Computer simu-
lations have played an important role in revealing the mechanisms of SIPs. A pioneering
study was performed by Genzer using a Monte Carlo (MC) simulation [25], and it inspired
studies using different simulation methods [26–35]. Typically, SIPs result in polymers
with larger dispersity and smaller molecular weight compared to those generated via
bulk-initiated polymerizations (BIPs). This trend holds even in simultaneous bulk- and
surface-initiated polymerization [26,28,35]. Moreover, grafting density is a key parameter
in SIP, impacting both the kinetics of the reaction and the properties of the polymers,
such as molecular weight and dispersity. The main reason is that SIP is a heterogeneous
polymerization, as the homogeneous distribution of free monomers is altered by the newly
formed polymer brush [34], while BIP is a homogeneous polymerization.

According to the existing simulations of SIPs, it is natural to expect that the molec-
ular weight should be non-uniform in an SIP with an initiator gradient. However, the
significance of this difference in molecular weight and its potential impact on the scaling
behavior observed in Ref. [17] remain uncertain because no simulations, to the best of our
knowledge, have directly addressed this issue.
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To address this gap, we conducted a lattice Monte Carlo simulation to examine
SIP with initiator gradients (referred to as gradient polymerization in the remainder
of this paper), using a stochastic reaction model (SRM) developed for heterogeneous
polymerizations [34–36]. We explored two systems: one with a series of homogeneous SIPs
with varying grafting densities, wherein the initiators were homogeneously distributed,
and the other with SIPs with an initiator gradient. In both systems, the properties of the
polymers are significantly affected by grafting density. Notably, the scaling relationship
between the brush height and grafting density in GBs, as obtained in the simulation, di-
verges from the experimental results, highlighting the need for a more in-depth exploration
of gradient polymerization. The lattice MC model and SRM algorithms are introduced
in Section 2, while the results of living polymerizations with homogeneous and gradient
initiators are shown in Section 3. Brief conclusions are provided in Section 4.

2. Models and Simulation Methods
2.1. Lattice Monte Carlo Simulation

In this study, we employed the Larson-type bond fluctuation model [37,38], which
was previously utilized in our investigations of SIP and the flow behavior of polymer
brushes [34–36,39]. Briefly, the simulation was carried out in a simple cubic lattice with
a volume, V, equal to Lx × Ly × Lz. Each lattice site can be occupied by a monomer or
initiator only once, and the bond length was set to 1 or

√
2 . During relaxation, a monomer

is randomly selected to be exchanged with one of its 18 nearest or next-nearest neighbor
sites. This exchange will be accepted under the conditions that the neighbor site is vacant
and that the exchange would not break the chain and cause bond intersection (possible
bond intersections are shown in Figure S1). The excluded volume effect and entanglement
were well considered in this model. The simulation time was measured in units of Monte
Carlo steps (MCs), defined as all monomers attempting to move once, on average.

Two impenetrable walls were set in the y = 1 and Ly planes, respectively, while periodic
boundary conditions were applied in both the x and z directions. In this simulation,
the x direction represents the initiator gradient direction, the y direction indicates the
chain growth direction, and the z direction corresponds to the equivalent direction. In
the beginning, all the free monomers were randomly distributed in the system. The
immobilized initiators were randomly positioned on the y = 1 plane during the investigation
of homogeneous SIP. It should be noted that the term ‘homogeneous’ does not imply a
perfectly ‘regular’ distribution of initiators, as shown in Figure S2. The properties of these
two systems show subtle differences [30]. Instead, “homogeneous” is used in comparison
to the gradient polymerization.

While studying gradient polymerization, the y = 1 plane was divided into multiple
stripes in the x direction (initiator gradient direction), as illustrated in Scheme 1. Each stripe
has a width w, resulting in a total number of Lx/w stripes. In the left part of the simulation
box, the grafting density of the leftmost stripe is σmin and gradually increases with the value
of ∆σ (the difference in density between successive stripes) with an increasing number of
stripe locations until it reaches the maximum grafting density σmax. The grafting density
in the right part mirrored that of the left part, i.e., the grafting density decreased from the
middle to the rightmost stripe as the location of stripes shifted forward further. Within
each stripe, the number of initiators can be calculated as σ(x) × w × Lz, with σ(x) denoting
the grafting density of a stripe, and these initiators exhibited a random distribution within
the stripes.
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2.2. Implementation of Polymerization

In this study, a living polymerization was considered, which occurred at intervals of
every τ MCs during the relaxation process. Here, τ is defined as the characteristic delay
time, or reaction interval time [27,34–36,40]. By decreasing or increasing the value of τ, the
reaction can be adjusted to make it diffusion-limited or reaction-limited.

The stochastic reaction model (SRM) proposed by our group was applied to model the
polymerization [34–36]. Firstly, an initiator or active center was randomly selected. Then,
the number of free monomers m within the radius of

√
2 was determined. The initiator or

active center tries to react with a random monomer among these m free monomers with
a given probability Pr, which is determined by the local number of free monomers and
calculated as mP0 (where P0 is a constant representing the elementary reaction probability
between one active center and one free monomer). If the reaction is accepted, the free
monomer transforms into an active center for future reactions. Since Pr is determined by
the local reaction environment, each active center reacts with its own probability. Thus, our
SRM model fully accounts for the heterogeneous reaction microenvironment, which is the
inherent character of SIP [34–36]. As demonstrated by living bulk-initiated polymerization,
the polymerization kinetics obtained by this SRM were found to be very consistent with
the theoretical predictions [34,36].

3. Results and Discussion
3.1. Homogeneous Surface-Initiated Polymerization

We first investigated a series of homogeneous SIPs with varying grafting densities and
compared the properties at the same polymerization times. The parameters were fixed and
set as follows: the dimensions of the simulation box were Lx × Ly × Lz = 50 × 77 × 50, the
initial concentration of free monomers was [M]0 = 0.4 monomers per lattice, the reaction
interval time was τ = 10 MCs, the simulation time was 2 × 106 MCs, and the elementary
reaction probability was P0 = 0.001. The results were averaged over 60 independent runs.

Figure 1a shows the number-average molecular weight Mn during polymerization
with a given grafting density σ. It is evident that σ significantly influences the polymer-
ization kinetics, with Mn increasing more rapidly at lower σ compared to higher values.
Figure 1b shows Mn as a function of σ with a given polymerization time t. When σ is
very low, Mn is nearly constant. However, when σ is high, Mn exhibits a monotonic
decrease with an increasing σ. The decrease in Mn with increasing σ is related to the
polymerization time. For example, when t = 400,000 MCs, the values of Mn are 21.7 and
13.5 at σ = 0.1 and 0.4, respectively. The latter (Mn = 13.5) is only about 62% of the former,
and by t = 800,000 MCs, this ratio further decreases to 54%. Besides Mn, the dispersity
(Ð = Mw/Mn) and molecular weight distribution (MWD) are also influenced by σ. The
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dispersity increases with increasing σ (Figure 1c), and MWD becomes broader and more
asymmetric (Figure 1d).
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Figure 1. Influence of grafting density σ on surface-initiated polymerization with a homogeneous
distribution of initiators. (a) Number-average molecular weight Mn as a function of polymerization
time t with a given σ. The molecular weight with σ = 0.1 was saturated at the end of the simulation
(2 × 106 MCs). (b) Mn as a function of σ with a given t. (c) Dispersity (Ð) as a function of t. (d) The
molecular weight distribution P(N) with a given σ.

The results suggest that in SIP, systems with different values of σ exhibit variations
in polymer properties at the same polymerization time, preliminarily indicating that the
molecular weight in GBs might be non-uniform due to the initiator gradient. It should be
pointed out that molecular weight is independent of the concentration of initiators in living
BIPs with low monomer conversion, and this can be proved as follows. The monomer
conversion C of BIP can be written as

C = 1− [M]t
[M]0

= 1− exp(−(mmax − 1)[I]0P0t/τ), (2)

where [M]t is the concentration of free monomers at time t, [I]0 is the concentration of the
initiator, and mmax is the maximum number of free monomers around an active center,
equal to 18 in this simulation. At low conversion, Mn linearly increases with t as

Mn =
[M]0C
[I]0

≈ [M]0(mmax − 1)P0t/τ. (3)
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Thus, in BIP, molecular weight is only determined by reaction time, and it is indepen-
dent of the number of initiators.

Why does this assumption hold for BIP but not SIP? The reason is that Equation (1)
was deduced from a homogeneous polymerization system, such as BIP. However, SIP is a
heterogeneous system, especially when σ is high. When σ is low, the active centers are far
apart and react with free monomers like isolated active centers, resembling a homogeneous
polymerization system. Conversely, when σ is large, brush-like polymers are obtained,
and the system is no longer homogeneous as free monomers are expelled by the nascent
polymers from the surface. The active centers near the surface react in an environment with
a lower concentration of free monomers compared with those far from the surface. Such a
heterogeneous reaction environment is the key feature of SIP, and the heterogeneity of the
reaction environment increases with σ [34,35].

3.2. Surface-Initiated Polymerization with Initiator Gradient

We further investigated the gradient polymerization with a simulation box for which
Lx × Ly × Lz = 288 × 72 × 100. The initial concentration of free monomers was [M]0 = 0.4
monomers per lattice. As shown in Scheme 1, the grafting plane was divided into stripes
with a width w = 4. In this study, the maximum grafting density of a stripe is σmax = 0.42,
and the minimum is σmin = 0.07. We did not explore lower grafting densities as our primary
interest lay in the scaling behavior of polymer brushes within regions with high grafting
density. The difference in grafting density between the adjacent stripes is ∆σ = 0.01. The
corresponding steepness of the gradient is δ = ∆σ/w = 0.0025. As discussed later, such a
steepness is low enough to examine the gradient polymerization process. Polymerization
stops when the number-average molecular weight of the brush reaches 50. Such a molecular
weight is large enough to ensure the system stays in the brush region; meanwhile, it can
avoid the situation wherein some very long chains might approach the y = Ly plane.

The density contour map (Figure 2a) clearly confirms the formation of a gradient brush.
In the vertical direction, the polymer density decreases with an increasing distance from
the surface. Horizontally, there is a gradient increase in the density from the low-grafting
region (x = 1) to the high-grafting region (x = 144), which then decreases upon further
shifting the x position forward. Meanwhile, the density contour map of free monomers
exhibits the opposite trend (Figure 2b).
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The molecular weights of the polymers at each stripe were examined (Figure 3a),
with the results clearly proving that there is a non-uniform molecular weight in GBs. Mn
decreases from the low-grafting regions (outsides) to the high-grafting regions (middle).
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Although the overall Mn of the system is 50, it is only 42.4 in the middle, contrasting with
the higher value of 65.5 on the outside areas. Such a notable difference in Mn should not
be overlooked. We further compared the molecular weight and dispersity in gradient
polymerization with those in SIP at the same reaction time (Figure 3b). The variation in
Mn between different grafting density positions in gradient polymerization is smaller than
that in SIP. This might be attributed to the competition among different polymerization
regions in gradient polymerization. Higher-grafting-density regions tend to consume more
monomers during the reaction. The dispersity of polymers in gradient polymerization
increases with grafting density, which is similar to the trend observed in SIP (Figure 3b).
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In experiments, the height of a brush in the dry state is widely used to estimate grafting
density in accordance with Equation (1). In this study, we have supposed that the brush
shown in Figure 2a vertically collapses onto the surface; thus, the dry height at position x,
denoted as h(x), can be calculated as follows:

h(x) =
Ly

∑
y=1

ρ(x, y). (4)

Figure 4a suggests that a gradient brush is obtained but that the dry height h(x) does not
linearly increase with the grafting density σ(x), as depicted by Equation (1). This deviation
from a linear relationship is evidently caused by the variations in Mn at different positions,
as shown in Figure 3a. After normalizing the height with respect to the corresponding
molecular weight, a linear relationship between h(x) and σ(x) can be restored.

The height in solution H is a key property of a polymer brush and is calculated
as follows:

H(x) =
Ly

∑
y=1

yρ(x, y)/
Ly

∑
y=1

ρ(x, y) (5)

Figure 4b suggests that H increased from the outside areas to the middle, indicating
the formation of a gradient brush. We are more interested in the relationship between H(x)
and σ(x). In the low-grafting-density region, H increases only slightly with σ (Figure 4c).
Subsequently, a scaling relationship between them with a scaling exponent of 0.15 can
be observed. In the even-higher-grafting-density region, the increase in thickness slows
down again. We speculate that the absence of pronounced scaling behavior on both sides is
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due to the unidirectional extension of the chains. In the region with the highest grafting
density, the chains primarily extend towards the low-density region due to the significant
compression between chains. The opposite behavior is observed in the low-density region.
This explanation is supported by Figure S3. In the high (low)-grafting-density region, the
number of monomers consumed by corresponding initiators during polymerization is
greater (less) than the actual number of monomers in that region.
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Figure 4. (a) The height of gradient brush in dry state h (circles) and the normalized height h/Mn

(squares) as a function of grafting density. (b) The height of gradient brush in solution as a function
of position x. (c) The height of gradient polymer brush (square) as a function of grafting density. For
comparison, the heights of series polymer brushes formed by surface-initiated polymerization (SIP)
at the same reaction time as the gradient polymerization are represented (circles). (d) The effect of
steepness on the height of gradient brushes induced by varying the width of the stripes (w) and the
difference in grafting density between the adjacent stripes (∆σ). It should be pointed that the gradient
brushes shown in (d) are formed by monodisperse polymers for which Mn = 50. The slope of the
dashed line is 0.3.

If we focus on the scaling behavior in the middle region, the obtained scaling exponent
(0.15) is much smaller than both the theoretical value (1/3) [41,42] and the experimental
value (0.37–0.4) obtained in Ref. [17]. The theoretical scaling exponent has been extensively
validated through simulations [39,43–46], although some simulations suggest that it may
not be a constant but instead slightly vary with the grafting density [47]. This raises the
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following question: how can we interpret such a smaller scaling exponent obtained in
this simulation?

First, the theoretical scaling exponent of one-third was validated for brushes of
monodisperse polymers in good solvents. As shown in Figure 3a, in gradient polymeriza-
tion, Mn decreases with an increasing grafting density in the x direction, and the difference
in Mn is significant. Moreover, the polymers at each stripe are polydisperse, and the
dispersity increases with the increase in grafting density. Studies have shown that the dis-
persity of polymers also influences the height of polydisperse polymer brushes [34,48,49].
Thus, in a gradient polymerization system, if we only examine the relationship between
height and grafting density, the scaling exponent does not need to adhere to the one-third
scaling behavior. We are particularly interested in the experimental value [17], as the
non-uniform molecular weight and the dispersity should also be present in the experiment
as in this simulation. The fact that the experimental value is close to the theoretical predic-
tion might be related to the method used to calculate the grafting density or instead be a
coincidental approximation.

The observed small exponent might relate to the steepness of the initiator gradient.
In GBs, polymers experience unbalanced lateral compression in the gradient direction,
causing chains in high-grafting-density regions to extend towards regions with lower
grafting density. In the experiment, the steepness is negligible as the lateral size of the
substrate is 106 times larger than the height of the polymer brush [17], while in simulations,
the role of steepness should be considered due to the finite simulation size. We can expect
that the larger the steepness, the smaller the exponent.

To address this, we studied GBs with different levels of steepness (Figure 4d). It should
be pointed out that these GBs consist of polymers with a fixed value of Mn = 50, avoiding
the influence of non-uniform molecular weight and dispersity observed in gradient poly-
merization. Figure 4d shows the relationship between brush height and grafting density.
When the steepness decreases from 0.005 to 0.0025, the curve exhibits a steeper incline,
indicating the influence of steepness. A further reduction in steepness to 0.00125 causes
only a minor change in the curve. In this case, the scaling exponent in the middle region is
about 0.3, close to the theoretical value. Additionally, we varied the stripe width from w = 4
to w = 1 while fixing the steepness (Figure 4d), revealing almost identical results. Thus, we
believe that the applied steepness is small enough, and this factor is not the main cause of
the observed small scaling exponent.

Although the steepness cannot be infinitely small in simulations, we can examine a
series of homogeneous SIPs with different initiator densities, the reaction time of which is
the same as that of gradient polymerization. This special case allows us to approximate
the behavior of gradient brushes with zero steepness. Figure 4c demonstrates that the
heights of brushes obtained through SIP display a certain scaling relationship, with a
scaling exponent (0.17) slightly larger than that of gradient polymerization (0.15). Thus,
we can conclude that the steepness is not the primary cause of the observed small scaling
exponent in our simulation.

4. Conclusions

The application of gradient brushes requires critical information regarding properties
such as molecular weight and grafting density, which are difficult to characterize exper-
imentally. The assumption that polymers in gradient brushes have uniform properties
was commonly adopted in previous experiments, and its validity was questioned but not
directly examined. In this study, we employed a stochastic reaction model to investigate
surface-initiated polymerization with initiator gradients and analyzed the properties of the
resulting gradient brushes.

We first examined surface-initiated polymerizations with homogeneously distributed
initiators. The results indicated that, at a given reaction time, polymers with lower molecu-
lar weight and higher dispersity were obtained when there was increasing grafting density.
This trend can be attributed to the heterogeneous reaction environment inherent in SIP.
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Similarly, in SIPs with an initiator gradient, the corresponding polymers exhibited position-
dependent properties, with lower molecular weights and higher dispersity at positions with
higher grafting density. The difference in molecular weight in gradient brushes, reaching
up to 154% (65.5/42.4) in this study, strongly supports the notion that the properties of
polymers in gradient brushes are non-uniform.

Subsequent investigation into the height of gradient brushes in solution revealed a
small scaling exponent (0.15) in scaling behavior with respect to grafting density, notably
deviating from the expected scaling exponent of 1/3. We attributed this discrepancy to
the variations in molecular weight and dispersity across space while also excluding the
influence of the steepness of initiator gradient. It is noteworthy that a 1/3 scaling exponent
is conventionally applied to monodispersed polymer brushes.

We are intrigued by the proximity of the experimental scaling exponent to the theo-
retical value since the non-uniform properties of polymers should also be present in an
experiment. However, we failed to find any other experimental studies of scaling behavior
with respect to gradient brushes, and we are uncertain whether this behavior is just a coin-
cidence or if there are underlying mechanisms. It is important to recognize the differences
between the simulation and experiments. In the simulation, a living polymerization was
modeled, and all initiators reacted, while in the experiment, ATRP was applied [17], and
the initiator efficiency was typically low [23].

In summary, this study provides direct evidence of the significant non-uniform prop-
erties of polymers in surface-initiated polymerizations with initiator gradients. We hope
experimental studies are conducted in the future to better clarify the experimental re-
sults in Ref. [17]. Additionally, it would be interesting to investigate surface-initiated
polymerizations with other gradients, such as reaction time [13].

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/polym16091203/s1. Figure S1: Illustration of two possible exchanges
between a monomer and a vacancy, which involve bond intersections and are forbidden in this
simulation; Figure S2: Illustration of initiators with a homogeneous distribution (left) and a regular
distribution (right). Here, the homogeneous distribution means that all initiators are randomly placed
on the substrate. While the regular distribution means that initiators are arranged in a certain lattice
patter; Figure S3: In surface-initiated polymerization with initiator gradient, at a given stripe, the
number of free monomers consumed by corresponding initiators (red circles), and the number of
actual beads of polymers above the stripe (black squares). The former equals the number of chains
Nchain(x) multiplied by the corresponding number-average molecular weight Mn(x). While the
latter equals the area (w × Lz) multiplied by the corresponding dry height h(x). A smaller number of
polymer beads are found in the high grafting regions since the chains tend to the extend to lower
grafting regions due to the unbalance lateral compression.
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Abstract: Polyurethane and polyurea-based adhesives are widely used in various applications, from
automotive to electronics and medical applications. The adhesive performance depends strongly on
its composition, and developing the formulation–structure–property relationship is crucial to making
better products. Here, we investigate the dependence of the linear viscoelastic properties of polyurea
nanocomposites, with an IPDI-based polyurea (PUa) matrix and exfoliated graphene nanoplatelet
(xGnP) fillers, on the hard-segment weight fraction (HSWF) and the xGnP loading. We characterize
the material using scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). It
is found that changing the HSWF leads to a significant variation in the stiffness of the material, from
about 10 MPa for 20% HSWF to about 100 MPa for 30% HSWF and about 250 MPa for the 40% HSWF
polymer (as measured by the tensile storage modulus at room temperature). The effect of the xGNP
loading was significantly more limited and was generally within experimental error, except for the
20% HSWF material, where the xGNP addition led to about an 80% increase in stiffness. To correctly
interpret the DMA results, we developed a new physics-based rheological model for the description of
the storage and loss moduli. The model is based on the fractional calculus approach and successfully
describes the material rheology in a broad range of temperatures (−70 ◦C–+70 ◦C) and frequencies
(0.1–100 s−1), using only six physically meaningful fitting parameters for each material. The results
provide guidance for the development of nanocomposite PUa-based materials.

Keywords: polyurea; nanocomposite; graphene; elastomer; adhesive; DMA; SEM; fractional
Maxwell model

1. Introduction

Polyurethanes (PUs), polyureas (PUas), and poly(urethaneureas) (PUUs), represent a
class of polymers with a wide variety of applications [1–4]. Understanding the structure–
property–performance relationship is critical in designing materials for specific applications.
Critical parameters include the chemical structure of polymer constituents, extent of hy-
drogen bonding, and volume fraction of hard and soft segments [5–12]. In general, these
classes of polymers are produced from a reaction between polyisocyanate (typically a
diisocyanate) and a polyol in the case of pure PU and a polyamine in the case of pure PUa
and both polyol and polyamine for PUU. In PUa, which will be the focus of this paper, the
reaction of the diisocyanate and a polyamine forms the hard segments that have strong
bidentate hydrogen bonds [1]. PUa can then be thought of as a multiblock copolymer in
which the soft segment blocks alternate with the hard segment blocks. The strong hydrogen
bonding within the hard segments drives microphase separation from the soft segments,
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resulting in a two-phase system—a percolated hard phase, consisting entirely of the hard
segments, and a soft phase, consisting of the soft segments along with small amounts of
non-percolated hard segments [10]. This microphase separation is similar to that of classical
block copolymers, where various soft-crystalline phases (spherical, cylindrical, lamellar,
etc.) are seen for different values of composition, f, and segregation strength, χN [13–15].
The morphology of the polymer, especially the total volume and the connectivity of the
hard phase, has a decisive impact on the overall material properties (mechanical, transport,
and thermophysical) [10,16–18].

Much of the PU and PUa literature has concentrated on the linear elasticity and espe-
cially the “temperature sweep” dynamic mechanical analysis (DMA), where the storage
and loss moduli are measured as functions of temperature at a constant frequency (usually
1 Hz). However, many applications (automotive, electronics, etc.) require a good under-
standing of material performance in a wide range of temperatures and frequencies/strain
rates. Thus, recently, Tzelepis et al. [19] used both temperature-sweep and frequency-sweep
DMA to study the properties of PUa elastomers with different hard-segment weight frac-
tions (HSWF). It was shown that the studied PUa materials obeyed the time–temperature
superposition (TTS) principle. (We note that the application of TTS to PU and PUa was
discussed earlier, e.g., by Velankar and Cooper [20] and Ionita et al. [21], but whether it
is universally applicable to all PUs and PUas is still uncertain). The TTS shift factor, aT,
was successfully described using the TS2 function [22] that combines Arrhenius tempera-
ture dependence at high temperatures with a strong, but non-divergent, increase near the
glass transition temperature. The storage and loss modulus master curves showed broad
transition regions, indicating a wide distribution of relaxation times. Tzelepis et al. found
that such a distribution was well-described by the so-called fractional Maxwell model
(FMM) [23–29]—or, to be more precise, a sum of two fractional Maxwell gels (FMG), with
one FMG element describing the continuous soft phase (with dispersed hard domains and
dissolved hard segments) and the second FMG element representing the percolated hard
phase. The plateau modulus of the first element was found to be nearly independent of the
HSWF, while the plateau modulus of the second element was a strong function of HSWF,
consistent with earlier experiments and theories [10].

In this study, we extend our previous work to investigate a set of PUa nanocomposites
with exfoliated graphene nanoplatelets (xGnP), varying both HSWF and the xGnP weight
fraction. The use of nanofillers, such as clay, talc, graphene, and graphene oxide, to modify
the properties of polymers has been widespread since at least the 1980s [30–41]. The fillers
are expected to significantly increase the modulus and strength of the material relative to
the “neat” matrix polymer. For high-aspect-ratio nanoplatelets in rubbery polymers, the
“reinforcement factor” (RF)—defined as the ratio of the nanocomposite modulus to the
matrix modulus—can be as high as 2–4 at particle loadings of 1–4 weight percent [42,43].
Multiple models have been developed to predict reinforcement in simple two-component
nanocomposites [42–44]. In general, the stiffness of the material increases strongly at the
beginning, but often stays constant or even decreases as the filler loading is increased
further—this is typically ascribed to the onset of nanofiller aggregation. Obviously, the
problem becomes even more challenging when the matrix itself is multicomponent, like
segmented polyurea. Are the nanofillers simply interacting with the pre-set domain nanos-
tructure? Or are they modifying the arrangement of the hard domain itself—perhaps
by nucleating their formation or by linking multiple domains? Here, we will attempt to
address this problem by preparing multiple PUa-xGnP nanocomposites and investigating
their structure and linear viscoelasticity. Starting with three neat PUa materials (20, 30, and
40 percent hard segment), we added xGnP nanofillers, with the xGnP weight percentage
(wt%) varying from 0 to 1.5 wt% with increments of 0.5 wt%. We expected that this experi-
mental design would capture the main reinforcement effect due to the nanofillers. On one
hand, reinforcement effects are unlikely to be significant at loadings below 0.5 wt%, based
on many earlier polymer nanocomposite studies (see, e.g., Pinnavaia and Beall [45]). On
the other hand, as it will be seen later, at loadings of 1.5 wt% and above, the reinforcement
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effects diminish, possibly due to the nanoparticle interactions and transition from a fully to
partially exfoliated morphology. For all twelve materials (neat PUa and nanocomposites),
we measured the linear viscoelasticity and successfully fit it with the two-FMG model. The
model parameters were then used to elucidate the structural details of the material and
provide guidance for the impact of the design parameters (HSWF and wt% xGnP) on the
nanocomposite properties.

2. Materials and Methods
2.1. Polymer Synthesis

The synthesis of the PUa-Neat materials is described in detail in our earlier paper [19].
We used isophorone diisocyanate (IPDI)-Vestanat from Evonik Corporation, Pisca-taway,
NJ, USA; Jeffamine T5000 and D2000 polyetheramines from the Huntsman Corporation,
The Woodlands, TX, USA; and the diethyltoluene diamine (DETDA) (Lonzacure) chain
extender from Lonza, Morristown, NJ, USA. Toluene was purchased from Fisher Scientific,
Hampton, NH, USA. All the materials were employed in our research “as received”, with no
further processing. The formulations for the three neat PUa-s having hard segment weight
fractions of 20%, 30%, and 40%, are provided in Table 1. We produced polyurea prepolymer
(A-side) by placing IPDI in the reactor, then adding toluene to prevent any possible gelling.
Next, the amine blend for the prepolymer (comprised of Jeffamine D2000 and T5000) was
mixed for 5 min in a separate 250 mL beaker at room temperature, subsequently degassed
for approximately 10 min, and added to the IPDI–toluene mixture. Similarly, the amine
blend for the B-side, comprised of Jeffamine D2000 and Lonzacure DETDA, was mixed
for 5 min in a separate 250 mL beaker followed by vacuum degassing for approximately
10 min and then poured into a separate additional funnel. The reactor was assembled
and then a vacuum was drawn for five minutes, followed by the addition of N2 gas at a
0.3–0.4 L/min flow rate. The reactor temperature was increased to 80 ◦C and then A-side
amine blend was added dropwise under mechanical stirring at 120 RPM. The mixture was
subsequently stirred for another hour at 80 ◦C. Afterward, the reactor was cooled to 0 ◦C
and the B-side amine blend was added dropwise, with mechanical stirring maintained at
120 RPM. Once all the B-side was added, the contents of the reactor were transferred into a
600 mL beaker, degassed for 5 min, and poured into molds. The molds were maintained at
room temperature for 24 h to allow for gelation and solvent evaporation. After 24 h, the
samples were placed in an oven at 40 ◦C for 12–24 h to accelerate the solvent evaporation.
The curing of the PUa was then completed at 60 ◦C for 72 h.

Table 1. Summary of the constituents used in the synthesis of the model PUa-Neat. (Adapted with
permission from Ref. [19]).

Isocyanate
Prepolymer

(A-Side)

Component IPDI-2k-20HS IPDI-2k-30HS IPDI-2k-40HS
IPDI 30.8 g 41.6 g 52.1 g

T5000 14.5 g 12.1 g 10.1 g
D2000 57.1 g 48.5 g 40.4 g

Toluene 82.7 g (95 mL) 165.3 g (190 mL) 208.8 g (240 mL)
%NCO 8.7% 12.9% 15.3%

Amine Blend
(B-Side)

DETDA 10 g 19.4 g 29.3 g
D2000 90 g 80.6 g 70.7 g

For each of the three PUa formulations described in Table 1, four nanocomposites
were then prepared, with the xGnP weight percentage (wt%) varying from 0 to 1.5 wt%
with increments of 0.5 wt%. For all the PUa-GnP nanocomposites, the process was identical
to that for the neat systems with the following additional steps. Exfoliated nano-graphene
(grade R-10, obtained from XG Sciences) was heat-treated at 400 ◦C for 1 h and allowed
to furnace-cool. The required amount of xGnPs was placed in a 500 mL beaker, 190 mL of
toluene was added to the beaker, and the slurry was simultaneously mechanically stirred

126



Polymers 2023, 15, 4434

and sonicated. The mechanical stirring was accomplished by magnetic stirring at 200 rpm.
The sonication was accomplished using a Qsonica sonicator, manufac-tured by Qsonica
L.L.C, Newtown, CT, USA. The amplitude was set to 20 and the process time was set to
30 min with a pulse time of 10 s on and 10 s off. The temperature of the slurry never
exceeded 32 ◦C, and the total run time was ~1 h. The total amount of energy input was
38,610 J. The weight of xGnP added to the formulation is summarized as follows: for the
0.5 wt% xGnP formulations, 1.02 g of xGnP; for the 1.0 wt% xGnP formulations, 2.04 g of
xGnP; and for the 1.5 wt% xGnP formulation, 3.06 g of xGnP.

2.2. PUa–xGnP Characterization

The surface chemistry of the top 50–80 Å was determined with X-ray photoelectron
spectroscopy (XPS). The measurements were performed using a PHI 5400 ESCA system.
The base pressure of the instrument was less than 10−8 Torr. A 1 cm2 sample was mounted
onto the sample holder with double-sided copper tape. The X-ray was a monochromatic
Al source with a take-off angle of 45 degrees. Two types of scans were performed for each
sample: a survey scan from 0–1100 eV taken with a pass energy of 187.85 eV and regional
scans of each element at a pass energy of 23.70 eV. The data were fitted using the CASA
XPS software package, version 2.3.15.

The xGnP particle size and dispersion were characterized using a Hitachi (Schaumburg,
IL, USA) 3700 SEM. The acceleration was set to 5 keV to minimize charging effects. A
2-to-3-nanometer-thick gold coating was sputtered using a Quorum Q150R sputter coater.
Geometric measurements of the xGnP were performed utilizing PCI software, version 9.0.

Dynamic mechanical analysis was conducted using a TA Instruments (New Castle,
DE, USA) RSA-G2 rheometer. The curing of the polymer was determined by measuring the
change in storage modulus with respect to time. All film samples were loaded in tension.
Temperature sweeps, at a rate of 3 ◦C/min, were conducted from −95 ◦C to a maximum
temperature depending on the polyurea formulation hard segment content. Six repeats
per formulation were run for the temperature sweeps. The reference temperature for each
material was set to equal its glass transition temperature, defined as the maximum of the
loss modulus (see Table S1). All TTS shifts were completed with TA Instruments’ TRIOS
software package, version 5.1.1.46572.

2.3. Modeling
2.3.1. Fractional-Order Maxwell Gel Model

The Fractional Maxwell Model (FMM) can be employed in developing constitutive
models for both soft solids and complex fluids. The FMM consists of two spring-pot ele-
ments in series, which describe the complex modulus, E∗, as presented in Equation (1) [25].

E*(ω)
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=

(iωτc)
α

1 + (iωτc)
α−β

(1)

where E0 represents the characteristic modulus, τc denotes the characteristic relaxation
time, and both α and β are fractional-order power-law exponents. The storage, E′, and loss,
E′′ , moduli were obtained by splitting the complex modulus into its real and imaginary
components, respectively defined as
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Within the FMM framework, one possible special case that can occur is the fractional
Maxwell gel (FMG), denoted by β being set to 0, which models the material’s elastic
behavior past the gel point.

In our model of interest, two FMG elements were arranged in parallel, representing
the soft-phase matrix and percolated hard phase of polyurea, as illustrated in Figure 1. Given
the relatively low mass fraction of the added nanoparticles (only up to 1.5%), we assumed
that they were ultimately dispersed within the two phases and not forming a new phase
by themselves. Thus, no additional parallel branch was introduced, consistent with our
prior work [19]. Consequently, each polymer was characterized by six model parameters,
encompassing two characteristic moduli (often called plateau modulus) (E0,1 and E0,2), two
relaxation characteristic times (τc,1 and τc,2), and two power-law exponents (α1 and α2). We
expect these parameters—especially those related to the percolated hard phase (FMG2)—to
depend on the material formulation, including HSWF and xGnP loading.
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To integrate the DMA data across various temperatures, the time–temperature super-
position (TTS) principle was employed and the shift factor, denoted as aT , was assumed to
hold the same for both the soft and hard phases. As a result, the master curves could be
described through the following equations:
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where x = aTω. The equation for the shift factor as a function of temperature is discussed next.

2.3.2. The Shift Factor and the Two State, Two (Time) Scale (TS2) Model

In our previous paper [19], we applied three different functional forms to describe
the shift factor—the Arrhenius, the Williams–Landel-Ferry (WLF) [46], and the TS2 [22]
functions. The TS2 model describes the glass transition as the transition between the
high-temperature and low-temperature Arrhenius regions,
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where E1 and E2 are activation energies (in J/mol), ∆S/R is the dimensionless transition
entropy between the solid and liquid states of matter, T* is the transition temperature
(K) (typically, T* ≈ Tg), and To is the reference temperature of the TTS shifts. Equation (4)
was shown to successfully describe the TTS of neat PUa polymers in the temperature range
between −70 ◦C and +70 ◦C [19] and thus will be utilized here as well.

2.3.3. Optimization of the FMG Parameters

A global particle-swarm optimization (PSO) algorithm [47] was utilized to infer the
fitting parameters in the two FMG branches, depicted in Figure 1. This is the same method
that was employed in our previous paper [19]. Each optimization run maintained a constant
population size of Npop = 200 and performed Nit = 6000 iterations. Given the stochastic
nature of the PSO algorithm, 50 optimization runs were conducted, and the expected values
and standard deviations for each parameter of materials are reported.

The following parameter ranges are considered for all samples (20%, 30%, and 40%
HS, with 0, 0.5%, 1%, and 1.5% GnP). The characteristic moduli are confined to the ranges
of 0 ≤ E0,1 ≤ 104 MPa and 0 ≤ E0,2 ≤ 103 Mpa, the characteristic times are confined to the
range of 10−3 s ≤ τc,1(2) ≤ 102 s, and the fractional power law exponents α1 and α2 span
from 0 to 1.

Equation (5) establishes a scalar multi-objective cost function via a weighted summa-
tion for the simultaneous fitting of storage and loss moduli.

Min
θ
ω1 f1(θ) + ω2 f2(θ) (5)

where θ denotes the vector of fitting parameters, with ω1 = 1/2 and ω2 = 1/2, and the
cost functions corresponding to both moduli are provided as follows:

f1(θ) = ∑Nd
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Log(
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,
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)
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where Nd is the number of data points where our model is evaluated. The decision to
employ a logarithmic difference between experimental data and model predictions arises
from the significant variations in orders of magnitude for the storage and loss moduli
across decades of frequency ranges. Moreover, the quality of the two-branch FMG model
fits, if assessed by the relative error, is defined in Equation (7).
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ω1 f1(θ) + ω2 f2(θ)
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Log

(
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(7)

Both the two-branch FMG model and PSO codes—similar to our previous paper [19]—
were developed in MATLAB R2021b and executed in ICER MSU HPCC system with 1 node,
24 CPU, and 48 GB RAM.

Once again, we selected the GRG non-linear engine and imposed the following con-
straints: (1) E1 < 130 kJ/mol, (2) E2 < 350 kJ/mol, (3) ∆S/R < 25, and (4) T* < 350 K.
The reference temperature (To) was set to match the glass transition temperature, defined
as the maximum of the loss modulus (−60 ± 5 ◦C; for more details, see Table S1). The
minimization function utilized is the average absolute value of the difference in the natural
logarithm of the experimental and model shift factors, as defined in Equation (8).

error =
∣∣ln
(
aTexp

)
− ln(aTmodel)

∣∣ (8)

This concludes the discussion of materials and methods; we now turn to the results.
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3. Results
3.1. Experimental Results

Scanning electron microscopy (SEM) was used to determine the effect of sonication on
the xGnP. Figure S1 shows SEM micrographs at various magnifications. Estimates of the
particle diameter were produced by measuring the longest axis of the platelets, as shown in
Figure S2. The average particle diameter before sonication was 15.4 +/− 6.3 µm (1σ). The
average particle diameter after sonication was 15.0 +/− 4.5 µm (1σ). No change was seen
in the morphology of the xGnP. The xGnP remained exfoliated throughout the sonication
process and retained their shape and aspect ratio. Given that the technical data sheet for
the R10 grade specified an average particle diameter size of approximately 10 µm, and
accounting for the fact that the platelets in the images were at various angles, we conclude
that there was no difference between the as-received and sonicated xGnP.

X-ray photoelectron spectroscopy (XPS) was used to evaluate the surface chemistry of
the xGnP after heat treatment and after sonication. Figure 2 shows a survey of both a heat-
treated sample and heat-treated and sonicated sample. Both spectra showed two peaks.
The first at 281.6 eV and 282.4 eV for the heat-treated and sonicated samples, respectively,
are associated with the C 1s position. The second at 530.4 eV for both heat-treated and
sonicated samples is associated with the O 1s position. The atomic concentration was
estimated and is presented in Figure 2.
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The atomic percentage of C was significantly higher than that of O for both heat-treated
and heat-treated and sonicated samples. This is consistent with the expectation that the
majority of the xGnP was carbon with very little oxygen-based functionalization on the
edges of the basal plane. The approximate 1% difference seen between the two treatments
was not considered significant. In order to explore the source of the oxygen peaks, a decon-
volution of the XPS spectra for the heat-treated sample and the heat-treated and sonicated
sample in the binding energy region for C and O is shown in Figure S3 and Figure S4, re-
spectively. From Figure S3a, the peak at 283.2 eV, the largest peak, was associated with the
C=C double bonds of graphene. The remaining C 1s peaks were associated with hydroxyl
284.7 eV. The C 1s peak at 288.0 eV was associated with the C=O, and the C 1s peak at
289.7 was associated with a COOH/COOR [48]. From Figure S3b, the O 1s peak at 531.2 eV
was associated with COOH and the O 1s peak at 532.7 eV was associated with the –OH
functional group [49]. The deconvolution of the heat-treated and sonicated samples is
shown in Figure S4. Similar to the analysis for the heat-treated samples, the peak at 283.2 eV
(the largest peak in the spectrum) was associated with the C=C double bonds of graphene.
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The remaining C1s peak at 284.7 eV was associated with the –OH functional group. Like-
wise, the C 1s peak at 289.2 eV was associated with COOH/COOR functional groups (see
Figure S4a,b). In Figure S4b, the O 1s peak at 531.0 eV was associated with COOH, and the
O 1s peak at 532.4 eV was associated with the –OH functional group. From the analysis
above, one concludes that there was very little –OH or –COOH functionalization on the
xGnP; furthermore, the sonication process had very little effect on the chemistry, nor did it
reduce the particle size.

In order to investigate particle dispersion at various concentrations of xGnP, tensile
samples were placed in liquid nitrogen for about 5 min and then snapped in half. SEM
micrographs of the fracture surface were then used to study the nanoparticle dispersion
in the polymer matrix (see Figure 3 and also Figures S5–S7). In the lower-magnification
micrographs, the xGnP was brighter, due to electron interaction with the jagged edges of
the xGnP, than the polyurea matrix; examples of xGnP are highlighted by the arrows. No
agglomeration or continuous networks of xGnP were found in any of the formulations.
Figures S5f and S7f are higher-magnification micrographs (13 kX, and 10 kX respectively)
of the xGnP. The edges of the individual nano-plates can be seen, suggesting the GnP
remained exfoliated throughout the sample preparation process.
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Figure 3. SEM photomicrographs of the fracture surface for PUa-xGnP nanocomposites with 0.5 wt%
xGnP loading: (a) 20% HSWF at 500×, (b) photomicrograph of the white box in (a). (c) 30% HSWF at
500×, (d) photomicrograph of the white box in (c). (e) 40% HSWF at 500×, (f) photomicrograph of
the white box in (e). In all photomicrographs, the arrows point to the xGnP.
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Figure 4 shows the storage modulus curves for the DMA temperature sweeps (fre-
quency 1 Hz) for the (a) IPDI-2k-20HS, (b) IPDI-2k-30HS, and (c) IPDI-2k-40HS formulations
at various xGnP loadings. Note that the complete E′, E′′, and tan(δ) curves for all formu-
lations are shown in the supplemental section, Figures S8–S10. For all formulations, the
addition of xGnP did not have an appreciable effect on the Tg (as measured by E′, E′′ or
tan(δ) curves) of the PUa formulations, nor did it have a significant effect on the glassy
modulus. For these formulations, the Tg and glassy modulus were determined primarily
by the soft phase [19]. This would tend to indicate the xGnP had little effect on the soft-
phase microstructure, i.e., no crystallization or increase in the hydrogen bonding in the soft
phase. For the IPDI-2k-20HS and IPDI-2k-30HS PUas, the addition of xGnP increased the
plateau modulus and the temperature range of the plateau modulus. For the IPDI-2k-40HS
formulations, the addition of xGnP had no effect on the temperature sweeps.
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Figure 4. DMA temperature sweeps (tensile storage modulus, E’) showing the effect of both an
increase in % HS and an increase in xGnP loading: (a) IPDI-2k-20HS with 0, 0.5, 1.0, and 1.5 wt %
xGNP; (b) the same for the IPDI-2k-30HS polyurea; (c) the same for the IPDI-2k-40HS polyurea.

132



Polymers 2023, 15, 4434

3.2. Modeling Results

As previously discussed, the linear viscoelastic behavior of polyurea was described
by a model comprising two parallel fractional Maxwell gel (FMG) branches representing
the soft and hard phases. Even though, in the nanocomposites, there was a new phase
(xGnPs), we continued to use the two-FMG model and expected that the impact of the
nanofillers would be only in modifying the parameters of one or both of the FMGs, at least
at sufficiently low loadings (<1.5 wt% in our case). This modeling approach enabled us
to effectively capture the broad spectrum of relaxation times seen in these materials. The
parameterization process was previously detailed, and we now present the results.

To begin with, in Figure 5, we plot the shift factor as a function of temperature for
the IPDI-2k-20HS nanocomposites with (a) 0%, (b) 0.5%, (c) 1%, and (d) 1.5% xGnP. The
symbols are the results of the TTS shift of the data (as outlined above), and the lines are
the TS2 (Equation (4)) fits. Obviously, the addition of xGnPs did not have a qualitative
impact on the TTS or the temperature dependence of the shift factor, although the model
parameters (such as activation energies) changed slightly. Similar data and model fits for
the IPDI-2k-30HS and IPDI-2k-40HS nanocomposites are presented in Figures S10 and S11,
and the TS2 model parameters are summarized in Table S1.
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later to discuss the origins of its uniqueness. 

Next, let us consider the results of the two-FMG fitting to the master curves. 
Table 2 provides the mean values and corresponding standard deviations for all six 

parameters in our two-FMG model. The optimization runs showed excellent convergence 
and reproducibility, as manifested in the low standard deviation values for all the systems 
considered.  

Figure 5. Experimental (symbols) and TS2 fit (lines) shift factors for 20HS polyureas with: (a) No
added nanofillers; (b) 0.5 wt% xGnP; (c) 1.0 wt% xGnP; (d) 1.5 wt% xGnP.

In Figure 6, the storage and loss master curves are plotted for all nanocomposite
systems: (a) IPDI-2k-20HS matrix, (b) IPDI-2k-30HS matrix; and (c) IPDI-2k-40HS matrix.
Within each “family”, all curves were very close to each other, with a possible exception of
the IPDI-2k-20HS, 1% xGnP (blue symbols in Figure 6a). We will return to this system later
to discuss the origins of its uniqueness.
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Figure 7 presents the two-FMG model fits to the experimental shifted data for IPDI-
2k-40HS nanocomposites; the results for IPDI-2k-20HS and IPDI-2k-30HS are depicted in 
Figures S12 and S13, respectively. All fitted curves were generated using the expected 
values for the model parameters, since the standard deviation of each model parameter 
was negligible. For all the formulations, the relative error between the model and data 
was less than 3.1%, with data spanning a broad range of frequencies (between 10−4 and 102 
rad/s). However, for the 20 wt% hard segment sample at all nano-particle percentages, a 
minor deviation between the model and experimental data was observed above the glass 
transition point in the loss modulus, a phenomenon which was also noted in our prior 

Figure 6. Master curves for the tensile storage (filled symbols) and loss (open symbols) moduli.
(a) 20HS matrix with 0, 0.5, 1.0, and 1.5 wt % xGnP. (b) Same as (a) for the 30HS matrix. (c) Same as
(a) for the 40HS matrix.

Next, let us consider the results of the two-FMG fitting to the master curves.
Table 2 provides the mean values and corresponding standard deviations for all six

parameters in our two-FMG model. The optimization runs showed excellent convergence
and reproducibility, as manifested in the low standard deviation values for all the systems
considered.

Figure 7 presents the two-FMG model fits to the experimental shifted data for IPDI-
2k-40HS nanocomposites; the results for IPDI-2k-20HS and IPDI-2k-30HS are depicted
in Figures S12 and S13, respectively. All fitted curves were generated using the expected
values for the model parameters, since the standard deviation of each model parameter
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was negligible. For all the formulations, the relative error between the model and data
was less than 3.1%, with data spanning a broad range of frequencies (between 10−4 and
102 rad/s). However, for the 20 wt% hard segment sample at all nano-particle percentages,
a minor deviation between the model and experimental data was observed above the glass
transition point in the loss modulus, a phenomenon which was also noted in our prior work
for the neat 20% HWSF case. It should be noted that the experimental data points exhibiting
a high level of dispersion were excluded from the optimization and fitting process.
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exponents, α, for both branches. Again, the dependence of αI on the xGnP loading was 
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the average loss tangent decreasing. The hard-phase exponent, α2, was quite small for all 
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Figure 7. Experimental (symbols) and FMG-FMG fit (lines) master curves for 40HS polyureas with:
(a) no added nanofillers; (b) 0.5 wt% xGnP; (c) 1.0 wt% xGnP; (d) 1.5 wt% xGnP. Blue open circles
represent storage modulus data NS blue lines are the storage modulus model fits; orange open
squares correspond to the loss modulus data and orange lines are the loss modulus model fits.

Figure 8a,b depicts the influence of the nanofiller content on the mean characteristic
modulus of both branches. In general, the effect was very small, except for the significant
increase in E0,2 for the 1% xGnP in the IPDI-2k-20HS nanocomposite relative to the neat
polymer. In that system, two factors contributed to the effect. First, the stiffness ratio
between the filler and the matrix was the largest for the lower-HS polymers and became
smaller as HSWF increased. Second, the impact of the fillers usually had a maximum as a
function of filler loading. At low loadings, the effect was, obviously, very weak; at high
loadings, on the other hand, the platelets aggregated, the aspect ratio decreased, and the
overall effect decreased as well. Thus, 1% xGnP in the IPDI-2k-20HS represented the system
corresponding to the maximum reinforcement in terms of both HSWF and %xGnP.
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Using scanning electron microscopy (SEM), we verified that the heat treatment and 
the sonication in toluene resulted in no morphological changes in the xGnP. The average 
particle diameter did not change and the xGnPs remained exfoliated and well dispersed 
in the PUa matrix. Recall that the nanoparticles were placed on the isocyanate side (A-
side) of the PUa reaction sequence; therefore, albeit small, there was a potential for the 
isocyanate to react with any hydroxyl or carboxylic acid functional groups located on the 
edges of the nano particles. However, XPS showed very few, if any, available reaction 
sites, whether they be hydroxyl or carboxylic acid that could potentially react with the 

Figure 8. Effect of the nanofiller loading on the (a) characteristic modulus of the first branch (E0,1)
(b) characteristic modulus of the second branch (E0,2), (c) characteristic time of the first branch (τc,1),
(d) characteristic time of the second branch (τc,2), (e) power law exponent of the first branch (α1), and
(f) power law exponent of the first branch (α2).

In Figure 8c,d, the variations in relaxation times for both branches with respect to
the filler weight fraction are shown. These variations are also fairly small and do not
show a clear dependence on the nanoparticle loading. Finally, Figure 8e,f shows the power
law exponents, α, for both branches. Again, the dependence of αI on the xGnP loading
was fairly weak. The soft-phase exponent, α1, showed a strong dependence on HSWF,
decreasing as HSWF increased. This is consistent with the material becoming “more elastic”
and the average loss tangent decreasing. The hard-phase exponent, α2, was quite small for
all twelve neat and nanocomposite systems, indicating that they were almost always nearly
perfectly elastic.
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Table 2. FMG 1 and FMG 2 parameters. Rows represent hard segment weight fractions of 20%, 30%,
and 40%, while columns correspond to xGnP weight fractions of 0.0%, 0.5%, 1%, and 1.5%.

Model
Parameters

0.0% GnP 0.5% GnP 1% GnP 1.5% GnP

FMG 1 FMG 2 FMG 1 FMG 2 FMG 1 FMG 2 FMG 1 FMG 2

IP
D

I-
2k

20
H

S

E0,i (MPa)
2815 64 3097 51 2871 118 2837 71

± 3.3× 10−6 ± 3.8× 10−7 ± 3.4× 10−6 ± 3.9× 10−7 ± 2.6× 10−6 ± 6.2× 10−7 ± 2.6× 10−6 ± 4.1× 10−7

τc,i (s)
0.18 1.19 0.22 1.69 0.40 1.96 0.18 1.16

± 8.2× 10−10 ± 5.9× 10−10 ± 6.8× 10−10 ± 7.1× 10−9 ± 1.4× 10−9 ± 8.1× 10−9 ± 6.7× 10−10 ± 4.5× 10−9

αi
0.42 0.080 0.413 0.056 0.382 0.085 0.412 0.077

± 4.3× 10−10 ± 3.8× 10−10 ± 4.4× 10−10 ± 5.8× 10−10 ± 3.5× 10−10 ± 3.4× 10−10 ± 4.0× 10−10 ± 3.9× 10−10

IP
D

I-
2k

30
H

S

E0,i (MPa)
2757 342 2405 278 2793 341 2203 301

± 1.8× 10−5 ± 1.7× 10−6 ± 3.4× 10−6 ± 1.5× 10−6 ± 2.5× 10−6 ± 1.2× 10−6 ± 1.9× 10−5 ± 8.9× 10−6

τc,i (s)
1.14 3.23 0.68 2.00 0.66 1.90 0.89 2.41

± 4.1× 10−8 ± 1.0× 10−7 ± 5.8× 10−9 ± 1.2× 10−8 ± 2.7× 10−9 ± 6.3× 10−9 ± 2.7× 10−8 ± 3.0× 10−8

αi
0.314 0.054 0.307 0.061 0.307 0.061 0.312 0.071

± 1.1× 10−9 ± 3.6× 10−10 ± 5.7× 10−10 ± 3.4× 10−10 ± 3.4× 10−10 ± 2.2× 10−10 ± 2.5× 10−9 ± 2.0× 10−9

IP
D

I-
2k

40
H

S

E0,i (MPa)
2635 604 2476 622 2843 687 2567 378

± 2.6× 10−6 ± 2.0× 10−6 ± 2.0× 10−6 ± 1.7× 10−6 ± 2.8× 10−6 ± 2.8× 10−6 ± 1.3× 10−5 ± 1.1× 10−5

τc,i (s)
0.69 1.44 1.03 2.06 0.46 0.93 0.17 0.45

± 2.8× 10−9 ± 5.2× 10−9 ± 3.4× 10−9 ± 8.8× 10−9 ± 2.1× 10−9 ± 4.9× 10−9 ± 2.7× 10−9 ± 3.7× 10−9

αi
0.242 0.035 0.239 0.038 0.222 0.043 0.187 0.015

± 4.1× 10−10 ± 1.8× 10−10 ± 2.8× 10−10 ± 1.6× 10−10 ± 3.4× 10−10 ± 1.8× 10−10 ± 1.2× 10−9 ± 1.7× 10−9

4. Discussion

In this study, we investigated the structure and linear viscoelasticity of polyurea elas-
tomers to be used in adhesive applications. The two main variables of interest were the
polyurea hard segment (HS) weight fraction and the exfoliated graphene nanoplatelet
(xGnP) loading. The hypothesis tested was that the polyurea hard segment and the
nanofillers would interact strongly with each other and provide additional reinforcement
by forming a “combined hard phase”.

Using scanning electron microscopy (SEM), we verified that the heat treatment and
the sonication in toluene resulted in no morphological changes in the xGnP. The average
particle diameter did not change and the xGnPs remained exfoliated and well dispersed
in the PUa matrix. Recall that the nanoparticles were placed on the isocyanate side (A-
side) of the PUa reaction sequence; therefore, albeit small, there was a potential for the
isocyanate to react with any hydroxyl or carboxylic acid functional groups located on the
edges of the nano particles. However, XPS showed very few, if any, available reaction sites,
whether they be hydroxyl or carboxylic acid that could potentially react with the isocyanate.
Thus, we stipulate that the dispersed xGNPs had only weak physical interactions with the
PUa matrix.

Given the complex structure of any polyurea nanocomposite (soft-phase matrix,
hard-phase islands, percolated hard-phase domains, exfoliated nanofillers, aggregated
nanofillers, etc.), the data from direct characterization, such as electron microscopy, are
often inconclusive. Thus, here, we also concentrated on understanding the materials using
linear viscoelasticity and inferring the information about the matrix–filler interaction from
the DMA results.

Similar to the previous study [19], we observed that the DMA frequency sweeps in
these systems are amenable to time–temperature superposition (TTS), with the TTS shift
factors well-described by the TS2 [22] function. This was, in itself, a non-trivial result, since
polyurea materials are multi-phase; understanding the reason why TTS works still requires
additional analysis. We also found that the storage and loss master curves exhibited broad
transition regions and thus could not be described with a single Maxwell model. Therefore,
we used the fractional Maxwell model (FMM) approach [23–27] to quantify the viscoelastic
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response and fit the master curve. In particular, the material was well-described by the use
of two fractional Maxwell gel (FMG) elements, one representing the soft phase and another
one representing the percolated hard phase. We demonstrated that the plateau modulus
of the percolated hard phase (FMG2) increased strongly with the hard segment weight
fraction (HSWF), consistent with earlier studies [10]. Here, we used the same approach to
determine the combined impact of HSWF and xGnP loading.

Based on the FMM analysis, we observed that the effect of the xGnP was signifi-
cantly less pronounced than the effect of the HSWF change. The reinforcement factor
(RF) was physically meaningful (significantly greater than 1) only for one nanocomposite
system—HS20 with 1% xGnP. This result is consistent with expectations, as discussed
above. Further increases in the xGnP loading likely resulted in at least some aggregation,
thus blunting the effectiveness of the new fillers [50]. For polyureas with higher HSWF, the
percolated hard-phase modulus is already quite high, and the contribution of the nanofillers
becomes even less significant, regardless of their concentration. Thus, the addition of the
nanofillers did not seem to offer a significant increase in the linear elastic properties of the
polyureas studied here.

Of course, linear elasticity is not the only important property for adhesives—other
properties of interest include tensile strength, ultimate elongation, fracture toughness, etc.
The influence of nanofillers on those properties will be the subject of future work.

5. Conclusions

We investigated the structure and linear viscoelasticity of polyurea (PUa) elastomers
and their nanocomposites with expanded graphene nanoplatelets (xGNPs) as a function of
the hard segment weight fraction (HSWF) of the polyurea and the xGNP weight fraction in
the overall nanocomposites. Experimentally, we found that the room-temperature modulus
of the PUa-xGNP nanocomposites depended strongly on HSWF (about 10 MPa for the 20%
HSWF to about 100 MPa for the 30% HSWF and about 250 MPa for the 40% HSWF polymer),
but weakly on the xGNP weight fraction (for the weight fraction variations between 0 and
1.5 wt%, the modulus variations were generally within the experimental error, except for
the 20% HSWF, 1% xGNP nanocomposite exhibiting nearly two-fold stiffening compared
with the neat material).

Significantly, we have demonstrated that, despite their structural complexity, PUa-
xGNP nanocomposites exhibit time–temperature superposition (TTS). For the first time, we
demonstrated that the TTS master curves can be described by fractional calculus (FC)-based
models with a small number of physically meaningful parameters (as opposed to the
standard Prony-series modeling usually requiring twenty or more). The new model can
be adapted to describe other polymers and nanocomposites for both linear and nonlinear
mechanical tests.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/polym15224434/s1, Figure S1: SEM images at various magnifications
of the xGnP before (left column) and after sonication (right column). The images indicate that there
was no change in the morphology of the GnP with the sonication parameters used; Figure S2: SEM
micrographs showing the measurement of the estimated diameter of the xGnP before sonication
(a) and after sonication (b); Figure S3: Deconvolution of the XPS spectrum, for the heat-treated xGnP,
in the binding energy region for C (a) and O (b); Figure S4: Deconvolution of the XPS spectrum for
the heat-treated and sonicated xGnP and sonicated xGnP in the binding energy regions for C (a) and
O (b); Figure S5: SEM photomicrographs of the fracture surface for all IPDI-2k-20HS xGnP loadings:
(a) 0.5 wt% xGnP loading at 500×, (b) photomicrograph of the white box in (a). (c) 1.0 wt% xGnP
loading at 500×, (b) photomicrograph of the white box in (c). (d) 1.5 wt% xGnP loading; Figure S6:
SEM photomicrographs of the fracture surface for all IPDI-2k-30HS xGnP loadings: (a) 0.5 wt% xGnP
loading at 500×, (b) photomicrograph of the white box in (a). (c) 1.0 wt% xGnP loading at 500×,
(b) photomicrograph of the white box in (c). (d) 1.5 wt% xGnP loading at 650×. Photomicrograph
of the white box in (e). In all photomicrographs, the arrows point to the xGnP; Figure S7: SEM
photomicrographs of the fracture surface for all IPDI-2k-40HS xGnP loadings: (a) 0.5 wt% xGnP
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loading at 500×, (b) photomicrograph of the white box in (a). (c) 1.0 wt% xGnP loading at 500×,
(b) photomicrograph of the white box in (c). (d) 1.5 wt% xGnP loading at 650×. Photomicrograph
of the white box in (e). In all photomicrographs, the arrows point to the xGnP; Figure S8: DMA
temperature sweep showing the storage, loss modulus, and the tan (δ) for the IPDI-2k-20HS; Figure S9:
DMA temperature sweep showing the storage, loss modulus, and the tan (δ) for the IPDI-2k-30HS;
Figure S10: DMA temperature sweep showing the storage, loss modulus, and the tan (δ) for the
IPDI-2k-40HS; Figure S11: Experimental (symbols) and TS2 fit (lines) shift factors for IPDI-2k-30HS
polyureas with: (a) no added nanofillers; (b) 0.5 wt% xGnP; (c) 1.0 wt% xGnP; (d) 1.5 wt% xGnP.
Figure S12: Experimental (symbols) and TS2 fit (lines) shift factors for 40HS polyureas with: (a) no
added nanofillers; (b) 0.5 wt% xGnP; (c) 1.0 wt% xGnP; (d) 1.5 wt% xGnP; Figure S13: Experimental
(symbols) and FMG–FMG fit (lines) master curves for IPDI-2k-20HS polyureas with: (a) no added
nanofillers; (b) 0.5 wt% xGnP; (c) 1.0 wt% xGnP; (d) 1.5 wt% xGnP. Blue open circles represent storage
modulus data and blue lines are the storage modulus model fits; orange open squares correspond to
the loss modulus data and orange lines are the loss modulus model fits; Figure S14: Experimental
(symbols) and FMG–FMG fit (lines) master curves for 30HS polyureas with: (a) no added nanofillers;
(b) 0.5 wt% xGnP; (c) 1.0 wt% xGnP; (d) 1.5 wt% xGnP. Blue open circles represent storage modulus
data and blue lines are the storage modulus model fits; orange open squares correspond to the loss
modulus data and orange lines are the loss modulus model fits; Table S1: TTS reference temperatures
and TS2 fit parameters for all systems.
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17. Kolařk, J. Simultaneous Prediction of the Modulus, Tensile Strength and Gas Permeability of Binary Polymer Blends. Eur. Polym.

J. 1998, 34, 585–590. [CrossRef]
18. Bicerano, J. Prediction of Polymer Properties, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2002; ISBN 0203910117.
19. Tzelepis, D.A.; Suzuki, J.; Su, Y.F.; Wang, Y.; Lim, Y.C.; Zayernouri, M.; Ginzburg, V. V Experimental and Modeling Studies of

IPDI-Based Polyurea Elastomers—The Role of Hard Segment Fraction. J. Appl. Polym. Sci. 2023, 140, e53592. [CrossRef]
20. Velankar, S.; Cooper, S.L. Microphase Separation and Rheological Properties of Polyurethane Melts. 1. Effect of Block Length.

Macromolecules 1998, 31, 9181–9192. [CrossRef]
21. Ionita, D.; Cristea, M.; Gaina, C. Prediction of Polyurethane Behaviour via Time-Temperature Superposition: Meanings and

Limitations. Polym. Test 2020, 83, 106340. [CrossRef]
22. Ginzburg, V. A Simple Mean-Field Model of Glassy Dynamics and Glass Transition. Soft Matter 2020, 16, 810–825. [CrossRef]
23. Jaishankar, A.; McKinley, G.H. A Fractional K-BKZ Constitutive Formulation for Describing the Nonlinear Rheology of Multiscale

Complex Fluids. J. Rheol. 2014, 58, 1751–1788. [CrossRef]
24. Jaishankar, A.; McKinley, G.H. Power-Law Rheology in the Bulk and at the Interface: Quasi-Properties and Fractional Constitutive

Equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 2013, 469, 20120284. [CrossRef]
25. Rathinaraj, J.D.J.; McKinley, G.H.; Keshavarz, B. Incorporating Rheological Nonlinearity into Fractional Calculus Descriptions of

Fractal Matter and Multi-Scale Complex Fluids. Fractal Fract. 2021, 5, 174. [CrossRef]
26. Suzuki, J.; Gulian, M.; Zayernouri, M.; D’Elia, M. Fractional Modeling in Action: A Survey of Nonlocal Models for Subsurface

Transport, Turbulent Flows, and Anomalous Materials. J. Peridynamics Nonlocal Model. 2021, 5, 392–459. [CrossRef]
27. Suzuki, J.L.; Zayernouri, M.; Bittencourt, M.L.; Karniadakis, G.E. Fractional-Order Uniaxial Visco-Elasto-Plastic Models for

Structural Analysis. Comput. Methods Appl. Mech. Eng. 2016, 308, 443–467. [CrossRef]
28. Suzuki, J.L.; Naghibolhosseini, M.; Zayernouri, M. A General Return-Mapping Framework for Fractional Visco-Elasto-Plasticity.

Fractal Fract. 2022, 6, 715. [CrossRef]
29. Suzuki, J.L.; Tuttle, T.G.; Roccabianca, S.; Zayernouri, M. A Data-Driven Memory-Dependent Modeling Framework for Anomalous

Rheology: Application to Urinary Bladder Tissue. Fractal Fract. 2021, 5, 223. [CrossRef]
30. Winey, K.I.; Vaia, R.A. Polymer Nanocomposites. MRS Bull. 2007, 32, 314–322. [CrossRef]
31. Kim, H.; Abdala, A.A.; Macosko, C.W. Graphene/Polymer Nanocomposites. Macromolecules 2010, 43, 6515–6530. [CrossRef]
32. Ray, S.S.; Okamoto, M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci.

2003, 28, 1539–1641.
33. Lin, C.-L.; Li, J.-W.; Chen, Y.-F.; Chen, J.-X.; Cheng, C.-C.; Chiu, C.-W. Graphene Nanoplatelet/Multiwalled Carbon Nan-

otube/Polypyrrole Hybrid Fillers in Polyurethane Nanohybrids with 3D Conductive Networks for EMI Shielding. ACS Omega
2022, 7, 45697–45707. [CrossRef]

34. Kausar, A. Polyurethane Nanocomposite Coatings: State of the Art and Perspectives. Polym. Int. 2018, 67, 1470–1477. [CrossRef]
35. Chen, K.; Tian, Q.; Tian, C.; Yan, G.; Cao, F.; Liang, S.; Wang, X. Mechanical Reinforcement in Thermoplastic Polyurethane

Nanocomposite Incorporated with Polydopamine Functionalized Graphene Nanoplatelet. Ind. Eng. Chem. Res. 2017, 56,
11827–11838. [CrossRef]

36. Shah, R.; Kausar, A.; Muhammad, B.; Shah, S. Progression from Graphene and Graphene Oxide to High Performance Polymer-
Based Nanocomposite: A Review. Polym. Plast. Technol. Eng. 2015, 54, 173–183. [CrossRef]

37. Albozahid, M.; Naji, H.Z.; Alobad, Z.K.; Wychowaniec, J.K.; Saiani, A. Thermal, Mechanical, and Morphological Characterisations
of Graphene Nanoplatelet/Graphene Oxide/High-Hard-Segment Polyurethane Nanocomposite: A Comparative Study. Polymers
2022, 14, 4224. [CrossRef] [PubMed]

38. Kausar, A. Shape Memory Polyurethane/Graphene Nanocomposites: Structures, Properties, and Applications. J. Plast. Film
Sheeting 2020, 36, 151–166. [CrossRef]

39. Ginzburg, V.V.; Hall, L.M. Theory and Modeling of Polymer Nanocomposites; Springer: Berlin/Heidelberg, Germany, 2021;
ISBN 303060442X.

140



Polymers 2023, 15, 4434

40. Meng, Q.; Song, X.; Han, S.; Abbassi, F.; Zhou, Z.; Wu, B.; Wang, X.; Araby, S. Mechanical and Functional Properties of
Polyamide/Graphene Nanocomposite Prepared by Chemicals Free-Approach and Selective Laser Sintering. Compos. Commun.
2022, 36, 101396. [CrossRef]

41. Su, X.; Wang, R.; Li, X.; Araby, S.; Kuan, H.-C.; Naeem, M.; Ma, J. A Comparative Study of Polymer Nanocomposites Containing
Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets. Nano Mater. Sci. 2022, 4, 185–204. [CrossRef]

42. Balazs, A.C.; Bicerano, J.; Ginzburg, V.V. Polyolefin/Clay Nanocomposites: Theory and Simulation. In Polyolefin Composites;
Wiley: Hoboken, NJ, USA, 2007; pp. 415–448. ISBN 9780471790570.

43. Fornes, T.D.; Paul, D.R. Modeling Properties of Nylon 6/Clay Nanocomposites Using Composite Theories. Polymer 2003, 44,
4993–5013. [CrossRef]

44. Bicerano, J.; Douglas, J.F.; Brune, D.A. Model for the Viscosity of Particle Dispersions. J. Macromol. Sci. Rev. Macromol. Chem. Phys.
1999, 39C, 561–642. [CrossRef]

45. Pinnavaia, T.J.; Beall, G.W. Polymer-Clay Nanocomposites; John Wiley & Sons, Ltd.: Chichester, UK, 2000.
46. Williams, M.L.; Landel, R.F.; Ferry, J.D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and

Other Glass-Forming Liquids. J. Am. Chem. Soc. 1955, 77, 3701–3707. [CrossRef]
47. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
48. Chen, X.; Wang, X.; Fang, D. A Review on C1s XPS-Spectra for Some Kinds of Carbon Materials. Fuller. Nanotub. Carbon

Nanostructures 2020, 28, 1048–1058. [CrossRef]
49. Kwan, Y.C.G.; Ng, G.M.; Huan, C.H.A. Identification of Functional Groups and Determination of Carboxyl Formation Temperature

in Graphene Oxide Using the XPS O 1s Spectrum. Thin. Solid. Film. 2015, 590, 40–48. [CrossRef]
50. Brune, D.A.; Bicerano, J. Micromechanics of Nanocomposites: Comparison of Tensile and Compressive Elastic Moduli, and

Prediction of Effects of Incomplete Exfoliation and Imperfect Alignment on Modulus. Polymer 2002, 43, 369–387. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

141



Citation: Pei, X.; Huang, X.; Li, H.;

Cao, Z.; Yang, Z.; Hao, D.; Min, K.; Li,

W.; Liu, C.; Wang, S.; et al. Numerical

Simulation of Fatigue Life of Rubber

Concrete on the Mesoscale. Polymers

2023, 15, 2048. https://doi.org/

10.3390/polym15092048

Academic Editors: Alexey V. Lyulin

and Valeriy V. Ginzburg

Received: 14 March 2023

Revised: 23 April 2023

Accepted: 23 April 2023

Published: 25 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Numerical Simulation of Fatigue Life of Rubber Concrete
on the Mesoscale
Xianfeng Pei 1, Xiaoyu Huang 1, Houmin Li 1,*, Zhou Cao 2, Zijiang Yang 2, Dingyi Hao 1, Kai Min 1, Wenchao Li 1,
Cai Liu 1, Shuai Wang 3 and Keyang Wu 3

1 School of Engineering, Architecture and The Environment, Hubei University of Technology,
Wuhan 430068, China; 102100805@hbut.edu.cn (X.P.); huangxiaoyu202203@163.com (X.H.);
a424185749@163.com (D.H.); c1357962470@163.com (K.M.); csceczj319025@163.com (W.L.);
zjsjygszh2023@163.com (C.L.)

2 China Construction Third Bureau First Engineering Co., Ltd., Wuhan 430040, China;
haodingyi1015@163.com (Z.C.); mk294588366@163.com (Z.Y.)

3 Wuhan Construction Engineering Co., Ltd., Wuhan 430056, China; wangshuai@wceg.com.cn (S.W.);
wukeyang@wceg.com.cn (K.W.)

* Correspondence: lihoumin2000@163.com

Abstract: Rubber concrete (RC) exhibits high durability due to the rubber admixture. It is widely used
in a large number of fatigue-resistant structures. Mesoscale studies are used to study the composition
of polymers, but there is no method for fatigue simulation of RC. Therefore, this paper presents
a finite element modeling approach to study the fatigue problem of RC on the mesoscale, which
includes the random generation of the main components of the RC mesoscale structure. We also
model the interfacial transition zone (ITZ) of aggregate mortar and the ITZ of rubber mortar. This
paper combines the theory of concrete damage to plastic with the method of zero-thickness cohesive
elements in the ITZ, and it is a new numerical approach. The results show that the model can simulate
reasonably well the random damage pattern after RC beam load damage. The damage occurred in
the middle of the beam span and tended to follow the ITZ. The model can predict the fatigue life of
RC under various loads.

Keywords: numerical simulation; rubber concrete; fatigue life; three-point bending; polymer;
mesoscale model

1. Introduction

With rapid economic development, the production of cars has increased, leading
to the pollution of many waste tires, which are the primary source of waste rubber [1].
The combination of rubber, an excellent elastic material, and concrete, a brittle material,
produces rubber concrete (RC), which has the advantages of low modulus of elasticity,
high resistance to deformation, good crack resistance, good flexibility, and good wear
resistance [2–4]. Liu et al. [2] found that RC improved concrete toughness and fatigue
properties. Wang et al. [5] used the sounding technique to study the development of the
fatigue damage process in RC at three stress levels—0.6, 0.7, and 0.8. It is a continuous
process of the cumulative increase in damage, and it is divided into three processes: crack
initiation, stable extension, and destabilization damage. With the rapid development of
finite element theory and computer technology, concrete research is no longer limited to
experimental studies. The method of finite element numerical simulation has become the
primary research tool. Liu et al. [2] studied a mesoscale model of RC and analyzed its
compressive properties. However, the model considered factors so simple that the results
were unconvincing. Many scholars [6,7] have analyzed RC on microscopic, mesoscopic, and
macroscopic scales, but no one has used a finite element model (FEM) to study RC fatigue.
For this reason, this paper propose a finite element fatigue model of RC on the mesoscale.
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Concrete mesoscale modeling studies have established aggregate, mortar, admixture,
and interface transition zones (ITZ) over the last two decades [8]. Each component inter-
acts with the others through mechanical relationships, thus influencing the strength of
the overall structure. At the stage of concrete modeling, there are two ways of dealing
with how to characterize concrete components. One technique is digital image technology
recognition [9]. Zheng et al. [10] built a 2D concrete mesoscale model based on image
recognition and investigated concrete’s compressive strength and dimensional effects. He
provided a reliable method for predicting compressive strength. Second, by analyzing
the concrete composition and using computer programming to create a random aggregate
model (RAM) [11] that meets the requirements, Sharif et al. [12] simulated samples of
biphasic cubic concrete containing spherical aggregates embedded in homogeneous mortar
and successfully demonstrated the failure modes of the pieces. After the characterization
of the mesoscale aggregate composition method is completed, there are two methods of
computational modeling: one is an FEM based on a RAM [11], and the other is a mechan-
ical model based on a discrete element model (DEM) [13]. P.S.M. et al. [14] successfully
modeled finite element RAM of ultrahigh-strength concrete fracture under uniaxial com-
pression. It was found that damage initiation may occur in any of the three phases on
the mesoscale, a degree that is difficult to achieve by experimental means and DEM. In
addition, Zhou et al. [15] built a three-point bending-notched concrete beam as a model
structure to discuss the mechanism of crack sprouting. However, realistic concrete beams
have no prefabricated cracks. This paper uses an FEM with RAM to model three-point bent
concrete without prefabricated cracks for fatigue simulation.

FEM calculations are primarily based on elasticity mechanics [16], plasticity mechan-
ics [17], damage mechanics [18], and fracture mechanics [19] theories. The elastic model
treats concrete as an elastomer and studies the mechanical properties of concrete in its
elastic range. The disadvantage of the elastic model is that it is challenging to study the
properties of concrete after large deformation or cracking. The concrete-smeared cracking
model [20] uses a linear elastic model, which makes it difficult to calculate non-linear forms
of damage. Kim et al. [21] presented a plasticity model that considers the form of concrete
damage and the area of damage. The mechanical model of concrete damage first evolved
through the study of metal fatigue [22], which considered a concrete failure as a process
of quantitative damage triggered by microcracks in mesoscale structures. Ray et al. [23]
found that the influencing factor for concrete fatigue is size through fracture mechanics
models analyzed on a macroscopic structure. Concrete damage form is not determined
by one mechanical behavior but by various mechanical methods. This paper used the
concrete damaged plasticity (CDP) model, which combined concrete elasticity, plasticity,
and damage. The CDP model was first proposed by J. et al. [24], and then B. Xu et al. [25]
presented a damage model for the cyclic loading of concrete structures. B. Xu et al. [25]
found that this model can simulate the inelastic behavior of RC beam–column members
very well. In this paper, plastic damage theory is used, and the model conforms to the
requirements by improvement.

In a 2D mesoscale study, the RC components are mortar, aggregate, rubber, aggregate-
mortar ITZ, and rubber-mortar ITZ. The ITZ is complicated, and its thickness is usually
10–50 µm [26], which exceeds the minimum size for numerical simulations. With the
development of research in recent years, a method called a cohesive element (CE) [27] for
dealing with damage to very small-thickness elements has been proposed. Wang et al. [28]
investigated the effect of cohesion models on the tensile behavior of concrete. Zhao et al. [29]
developed a crystal plasticity model combining an extended finite element approach with a
CE model. They analyzed fatigue cracking and found that the simulations were consistent
with previous experimental observations.

The purpose of this paper is to present a fatigue damage model applicable to RC. This
model uses a new numerical simulation method. Different RC peak loads of static pressure
and fatigue life were simulated using the CDP and CE models. Based on the model’s
feasibility, the fatigue life of RC was predicted for different admixtures and loads, which
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can provide a basis for experimental reference in advance. Subsequent work can vary the
load application methods, such as random and variable frequency loading, and can also
consider a 3D mesoscale model study, which is of great significance.

2. Modeling Methods

The mesoscale model’s modeling approach begins by considering the geometry of the
model generation, which includes aggregate content, size, and location. Subsequently, the
constitutive model of concrete and the ITZ model is considered to make the model feasible.

2.1. Mesoscale Model Geometry Generation

In mesoscale studies, concrete is usually considered a three-phase material consisting
of aggregate, mortar, and ITZ. The rubber particles in RC replace part of the fine aggregates.
Concrete is regarded as a homogeneous material in conventional macroscopic concrete
FEM. This visual modeling approach makes it difficult to investigate how the concrete’s
inhomogeneity affects the macroscopic properties. This assumption of the homogeneity of
concrete ignored several vital influences, such as aggregate size, particle size distribution,
aggregate shape, and the effect of the ITZ. Zhong et al. [30] investigated the effect of
aggregate shape (circular, elliptical, and polygonal) on the results of numerical analysis of
the mesoscale model. They compared the stress–strain curves under different conditions
with the experimental results. The results showed that the circular aggregate model is
optimal for the numerical simulations. In this paper, circular aggregates are used so
that meshing is easier and computer solutions are faster. In contrast, irregularly shaped
aggregates are very complex to mesh and increase the computational burden.

In this paper, the coarse aggregates in the RC mesoscale model are aggregates of 5
mm or more in diameter and the fine aggregates are included in the mortar. The geometry
of the mesoscale model needs to comply with three requirements: firstly, all the particles
generated must be within the specified boundaries; secondly, none of the particles can
overlap; and thirdly, there must be a gap between each particle, as the aggregates are
wrapped in a layer of mortar and have no contact. Fuller’s particle size [31] distribution
curves are used in this paper. The Fuller curve is widely regarded as the grading curve,
which provides an optimum particle size distribution for the working condition of the
concrete. The Fuller curve equation is as follows:

P = 100

√
D0

Dmax
(1)

where P represents the percentage of aggregate passing through sieve hole diameter D0,
D0 represents the diameter of the sieve hole, and Dmax represents the diameter of the
largest aggregate.

As this paper focuses on the 2D level, it is impossible to deal with the 2D problem
directly with the help of the 3D Fuller set matching formula. It was used to obtain the best
particle size distribution curve in 2D by applying the Walraven formula [32]. The formula
is as follows:

Pc(D < D0) = Pk

(
1.065D0.5

0 D−0.5
max − 0.053D4

0D4
max − 0.012D6

0D−6
max − 0.0045D8

0D−8
max − 0.0025D10

0 D−10
max

)
(2)

where Pc represents the percentage of the aggregate area, where size D is smaller than D0.
Pk represents the percentage of the aggregate area of the total area. In this paper, Pk is taken
to be 0.7. Dmax represents the diameter of the largest aggregate size, and the maximum
diameter is taken as 20 mm.

The area of aggregate size distribution in the 550 mm × 150 mm area is listed by
Formula (2) in Table 1.
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Table 1. Size in 550 mm×150 mm area occupied by different particle sizes.

Rubber Replacement
Rate (%) 5–10 mm (mm2) 10–15 mm (mm2) 15–20 mm (mm2) Rubber (mm2)

0 5612 8851 12,547 0
2.5 5612 8851 12,547 768
5 5612 8851 12,547 1537

7.5 5612 8851 12,547 2305
10 5612 8851 12,547 3074

The random generation is implemented in Python according to the aggregate area in
Table 1, and the generated flowchart is shown in Figure 1.
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Figure 1. Flowchart of aggregate generation.

2.2. Constitutive Model of Concrete

The finite element software ABAQUS (2021 Version, Dassault systemes, France) and
the programming language Python 3.8 are interconnected, and the code generated in
Section 2.1 can be imported directly into ABAQUS. Aggregates are developed according
to the program, and different property values are assigned to the different components to
achieve the actual state of the mesoscale RC aggregates.
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In this paper, coarse aggregate and rubber are considered homogeneous elastomers,
and mortar is modeled numerically as a homogeneous continuum with elasticity. The
mortar can be regarded as a lower-strength type of concrete, and its constitutive law uses
the concrete–damage–plasticity (CDP) model. The CDP is a continuous, plasticity-based
damage model that defines the concrete state by defining two mechanical behaviors: tensile
cracking and compression damage. This model assumes that the concrete’s uniaxial tensile
and compressive response is characterized by plastic damage. The evolution of the yield
surface is controlled by two hardening variables, the tensile equivalent plastic strain ε̃

pl
t and

the compressive equivalent plastic strain ε̃
pl
c , which are related to the damage mechanisms

under tensile and compressive loading. The uniaxial tensile and compressive stress–strain
response is shown in Figure 2.
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Where ε̃
pl
t and ε̃

pl
c represent the equivalent plastic strains in tension and compression,

εel
t and εel

c represent the elastic strains corresponding to tension and compression, dt and
dt represent the two damage variables for elastic stiffness degradation, with the damage
variables taking values from 0 to 1, and d = 0 means the material is undamaged, d = 1
means the material is completely damaged, and E0 represents the initial Young’s modulus
of the material.

In the case of uniaxial tension, the concrete stress–strain response obeys linear elastic
variation up to the time of failure stress σt0, which is used to distinguish between the
elastic and plastic phases of concrete. After σt0, the concrete enters the damage phase,
and microcracking occurs in the macrostructure. In the case of uniaxial compression, the
concrete stress–strain response obeys a linear elastic change to the compressive elastic
ultimate stress, and σc0, and σc0 used to distinguish the elastic phase from the plastic phase
under uniaxial compression. Unlike uniaxial tension, there is a hardening phase to the
ultimate compressive stress σcu after σcu where the concrete is softened and microcracked.

When a concrete specimen is unloaded from any point in the strain-softening branch
of the stress–strain curve, the elastic stiffness of the material appears to be damaged. The
stress–strain relationships for uniaxial tensile and compressive loading are (Equation (3)):

σt = (1 − dt) E0

(
εt − ε̃

pl
t

)
(3)

σc = (1 − dc) E0

(
εc − ε̃

pl
c

)
(4)

This paper deals with the numerical simulation of the three-point bending of concrete,
where the general form of damage is tensile damage. After being subjected to cyclic loading,
the tensile stiffness after damage needs to be redefined, as shown in Figure 3.
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Where εel
0t represents elastic strain and ε̃ck

t represents cracking strain.
In the event of damage to the concrete, the cracking strain ε̃ck

t is defined by the
following equation:

ε̃ck
t = εt − εel

0t (5)

εel
0t =

σt

E0
(6)

ABAQUS automatically converts cracking strain to plastic strain for use:

ε̃
pl
t = ε̃ck

t − dt

(1 − dt)

σt

E0
(7)

According to the Structural Design Code for Concrete [33], considering the tensile
and compressive damage variables of the material, the specific concrete intrinsic model
is determined by Young’s modulus E and Poisson’s ratio λ in the elastic phase and by the
non-linear stress–strain equation in the inelastic phase. When the concrete structure is
under pressure:

σc = (1 − dc) Eεc (8)

dc =

{
1 − ρc n

n − 1 + xn x ≤ 1
1 − ρc

αc(x − 1)2 + x
x > 1 (9)

ρc =
fc,r

Ecεc,r
(10)

x =
ε

εc,r
(11)

n =
Ecεc,r

Ecεc,r − fc,r
(12)

where αc is the parameter value of the falling section of the uniaxial compressive stress−strain
curve for concrete, fc,r is the representative value of the uniaxial compressive strength of
concrete, εc,r is the peak compressive strain corresponding to fc,r, and dc is the evolutionary
parameter for uniaxial compressive damage to concrete.
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When the concrete structure is in tension:

σt = (1 − dt)Eεt (13)

dt =

{
1 − ρt

[
1.2 − 0.2x5]x ≤ 1

1 − ρt

αt(x − 1)1.7 + x
x > 1 (14)

x =
ε

εt,r
(15)

ρt =
ft,r

Ecεt,r
(16)

where αt is the parameter value of the falling section of the uniaxial tension stress−strain
curve for concrete, ft,r is the representative value of the uniaxial tension strength of concrete,
εt,r is the peak tension strain corresponding to ft,r, and dt is the evolutionary parameter for
uniaxial tension damage to concrete.

In accordance with the Structural Design Code for Concrete [33], specific values are
shown in Table 2.

Table 2. Parameters of CDP.

fc,r (MPa) εc,r
(
×10−6) αc ft,r(MPa) εt,r

(
×10−6) αt

40.26 1790 1.947 3.01 84 2.831

In addition to this, the plasticity parameters for CDP are self-contained in ABAQUS,
as shown in Table 3.

Table 3. Parameters of ABAQUS itself.

Dilation Angle Eccentricity fb0/fc0 K

30 0.1 1.16 0.666

The values in Table 3 have been verified by many academics to be generally consistent.
This is a fixed value [10].

2.3. CE Model of the ITZ

After the aggregate model has been built, there are two approaches to the ITZ. One
is establishing a solid FEM of the ITZ [34]. The advantage of this is that it can reflect the
thickness relationship of the interface composed of concrete. However, the ITZ’s actual
thickness is 10–50 µm, which is difficult to achieve with FEM. Even if the thickness is
expanded by a factor of 10 to a range that FEM can calculate, this will result in a dense and
small mesh division and a significant increase in computational effort. Secondly, the ITZ
is considered a zero-thickness element (ZTE) [35], which retains the relevant mechanical
properties of the actual ITZ to achieve the accuracy of the simulation, and all ITZs in
concrete can be represented by ZTE. In summary, we selected the ZTE.

The ZTE has three ways of simulating the behavior of the ITZ. Firstly, a layer of the
ZTE can be inserted using a shared node, which can be used if the CE is on the same mesh
as the surrounding element. Secondly, if the elements of the CE are divided differently
from the surrounding mesh or if the CE uses a finer discretization than the adjacent parts,
the tie constraint can be used to connect the CE to other parts. Thirdly, in some special
cases where the requirements are met, a connected interaction can be added directly to the
CE in contact without adding additional elements. Figure 4 shows the three methods of
CE processing.
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Based on the random aggregates generated by the simulations in this paper, a cohesive
zone will be added to the contact surface of the aggregate and mortar. The first ZTE
(Figure 4a) is chosen to insert a layer of CE using a shared node. The size and location of
each aggregate are uncertain, so choosing inserted CE is difficult. A Python program finds
the node number of the aggregate place and copies the new node at the node number to
create a zero-thickness CE. This fits perfectly with the shared node insertion approach. The
ITZ generates CE, as shown in Figure 5.
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The CE damage is divided into four parts: the linear elastic phase, the damage
initiation phase, the damage evolution phase, and complete damage.

The online resilience phase of the damage response of the CE is as follows:

t =





tn
ts
tt



 =




Enn Ens Ent
Ens Ess Est
Ent Est Ett







εn
εs
εt



 = Eε (17)

where tn is the nominal stress in the normal direction, ts is the nominal stress in shear in
the first direction, tt is the nominal stress in shear in the second direction, Eij is Young’s
modulus in each direction, and εi is the strain in the corresponding direction.
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The quadratic stress criterion formula is used for damage initiation. Damage initiation
occurs when the contact-stress ratio involved reaches 1:

{
tn

t0
n

}2
+

{
ts

t0
s

}2
+

{
tt

t0
t

}2
= 1 (18)

Damage evolution by way of traction separation is shown in Figure 6.
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where D is the damage value and 𝛿𝑚
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Where δ0
m is the separation displacement value at the onset of damage and δ

f
m is the

separation displacement at the maximum damage.
The material enters the damage phase judged by the damage value D. When D is 1,

the material is completely damaged by the following equation:

D =
δ

f
m
(
δmax

m − δ0
m
)

δmax
m

(
δ

f
m − δ0

m

) (19)

where D is the damage value and δmax
m is the additional amount of maximum separation

displacement during loading.
In this paper, the fracture energy is calculated using the Benzeggagh–Kenane

(BK) criterion:

GC = GC
n +

(
GC

s − GC
n

) { Gs

GT

}η

(20)

where GC is the hybrid fracture energy, GC
n is the type I fracture energy of the cohesive ele-

ment, GC
s is the type II fracture energy of the cohesive element, Gs is the shear deformation

energy, and GT is the tensile deformation energy.
The performance of ITZ is difficult to test on the experimental scale, so the determina-

tion of simulation parameters for ITZ is difficult to determine. Usually, the performance of
ITZ is approximated by the weak mortar composition, and researchers use the percentage
of mortar to study and judge the performance of ITZ. Xiao et al. [36] considered the strength
of ITZ to be 80% of the mortar. Kim et al. [37] considered the fracture energy of ITZ to be
equivalent to 50% of the mortar. Li et al. [38] considered it to be 80%. It was obvious that dif-
ferent researchers have different opinions on determining the mechanical properties of ITZ.
The ultimate purpose is to achieve unity between numerical simulations and experiments,
so the performance parameters of the ITZ on numerical simulations are determined by trial
and error to determine the optimum values of these relevant parameters. The parameters
used in this paper are shown in Table 4.
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Table 4. Parameters of ITZ.

Normal Strength
(MPa)

Tangential Strength
(Mpa)

Normal Fracture
Energy (N/mm)

Shear Fracture Energy
(N/mm)

Aggregate-mortar ITZ 1 3.1 9 0.03 0.09
Rubber-mortar ITZ 2 2.8 8.4 0.028 0.084

1 Data from [28], 2 trial values.

3. Verification of the Model
3.1. Experiment

The data for this summary test were obtained from Liu et al. [39]. He investigated
the effect of rubber substitution rate and rubber particle size on the fatigue life of rubber
concrete. The object of study was an RC beam with dimensions of 150 mm × 150 mm ×
550 mm. A static load test was conducted under a three-point bending load, and a fatigue
test was conducted under a cyclic load. The fatigue life and related fatigue life curves were
obtained for different rubber substitution rates, particle sizes, and stress levels.

3.1.1. Experimental Materials

Material parameters are shown in Tables 5 and 6.

Table 5. Parameters of cement.

Type
Coagulation Time (min) Compressive Strength (MPa) Flexural Strength (MPa)

Initial
Condensation

Final
Condensation 3d 28d 3d 28d

P·O 42.5 180 270 26.9 50.1 5.62 8.3

Table 6. Parameters of aggregates.

Type Gradation
(mm)

Fineness
Modulus

Apparent
Density
(kg/m3)

Stacking
Density
(kg/m3)

Water
Absorption

(%)

Mud Content
(%)

Crushing
Value (%)

Crushed stone 5–20 – 2775 1648 1.0 0.35 8.9
Sand – 2.76 26.58 1736 1.3 1.9 –

Rubber: Crushed rubber granules from waste tyros 1–4 mm.

3.1.2. Experimental Test Methods

RC specimens with different rubber replacement rates are first tested by static loading
to obtain the corresponding peak loads. The fatigue tests are carried out using models of
the same material proportions. The maximum and minimum loads are applied to the RC
beams using a load-controlled mode, which is an equal amplitude and uniform load mode.

3.2. Building Mesoscale Models

A 150 mm × 550 mm rubber concrete beam element is built according to Table 1, with
different dosing of rubber concrete beams as shown in Figure 7, where gray means mortar,
red means aggregate, and black means rubber.
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Figure 7. RC beams with different dosing: (a) 0; (b) 2.5%; (c) 5%; (d) 7.5%; (e) 10%. 
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in Figure 8. 

Figure 7. RC beams with different dosing: (a) 0; (b) 2.5%; (c) 5%; (d) 7.5%; (e) 10%.

The load loading point is in the middle of the upper part, with the bottom left constraint
100 mm from the left boundary and the right constraint 100 mm from the right, as in
Figure 8.
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The model is solved using the ABAQUS/Standard. First, apply a displacement
constraint of 2 mm at the upper load loading point, stop the calculation when the model
does not converge, and obtain the peak load Fmax for the model. Subsequently, the fatigue
life of the model is calculated at different stress levels, still using the same model with cyclic
concentrated force constraints applied at the upper load loading points. Load application
from minimum load Pmin to maximum load Pmax, where Pmin/Pmax = 0.1, fatigue load stress
levels S = Pmax/Fmax. In this paper, S takes the values 0.9, 0.85, 0.8, and 0.75. When S is too
high, the fatigue damage results are over in one go. When S is too small, the calculation
is too large in the numerical simulation phase. The Fourier series method controls the
equivalent mean amplitude load when fatigue loads are applied:

F(t) =
{

A0 + ∑N
n [An cos nω(t − t0) + Bn sin nω(t − t0)]t ≥ t0

A00 ≤ t ≤ t0
(21)

where the period is T, circle frequency ω = 2π/T, the loading initial time is A0, and the
number of steps parameters A1, B1, A2, B2, ···, A0, A0.

The parameters used for RC in this paper are shown in Table 7.

Table 7. Parameters of RC.

Type Young’s Modulus (GPa) Poisson’s Ratio

Mortar 36 0.2

Aggregate 72 0.16

Rubber 7 0.49

3.3. Experimental Versus Simulation

By comparing the results of this study with the three-point bending static load peak
load results and fatigue load results from the literature [39], the feasibility of the model
is verified.

3.3.1. Peak Load

The peak load tests and simulation results for this model under three-point bending
loads at different stress levels are summarized in Table 8. It can be seen that the magnitude
of the peak load decreases as the rubber content increases, which is in line with the
researchers’ judgment on the performance of RC. Comparing the test and simulation for
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peak loads at the same stress levels proved that the simulation and test results agree well.
The maximum absolute error is 3.6%. The new numerical model proved reliable for peak
loads under three-point bending loads.

Table 8. Experimental and simulated peak loads.

RC-0 RC-2.5 RC-5 RC-7.5 RC-10

Experimental peak loads (KN) 28.15 26.32 25.05 24.1 23.06
Simulated peak loads (KN) 28.62 25.94 25.52 24.44 22.23

Error (%) 1.67 −1.44 1.88 1.41 3.60

3.3.2. Fatigue Life

The results of tests and simulations with different dosing levels of rubber concrete
at stress levels S = 0.85 and S = 0.75 are summarized in Table 9. The increase in rubber
admixture can improve the fatigue resistance of RC and extend the fatigue life. Due to the
large dispersion of the fatigue life results, only the minimum and maximum lives are taken
as a reference in the test results. Moreover, the overall life trend improves with increasing
rubber doping. As shown in Figure 9, the results obtained from the numerical model of
rubber concrete in this paper are all between the maximum and minimum values of the
test results and meet the feasibility requirements of the model. This proves the reliability of
the new numerical model in fatigue life calculation. There are some differences between
the expected life and the experiment, but this is acceptable. Because the experiment phase
is a one-off for each test beam, the RC is already destroyed after the experiments with peak
load. Although each beam is made to the same size and aggregate content, the mechanical
properties are not the same. The different mechanical behaviors of the concrete beam can
be observed in [37].

Table 9. Experimental and simulated fatigue life.

RC-0 RC-2.5 RC-5 RC-7.5 RC-10

S = 0.85
experiment min/max 1615/4236 2281/3459 1485/5883 2261/6781 3827/6832

simulation 1742 2678 3824 5018 6779

S = 0.75
experiment min/max 8654/15,432 9876/19,536 14,876/23,654 15,245/31,132 20,268/34,538

simulation 11,812 14,208 19,081 24,085 32,742
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4. Analysis of Variables

Finite element static pressure simulations of three-point bending were carried out for
RC rubber admixtures of 0, 2.5%, 5%, 7.5%, and 10% to obtain the corresponding peak
load and displacement relationships. Based on the stress levels S = 0.85 and S = 0.75 above,
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add stress levels S = 0.9 and S = 0.8 to the loading method for the RC fatigue simulation
to analyze the effect of different rubber doping and stress levels on damage form and
fatigue life.

4.1. Force–Deflection Curves

The force–deflection curves for RC at different admixtures were obtained from numer-
ical simulations, as shown in Figure 10. The concrete deflection increases as the rubber
admixture increases and the peak load tends to decrease significantly. The rising and falling
phases of the curve for ordinary concrete are steeper than the gentle curve for RC. The trend
becomes more subdued as the amount of rubber added increases. The comparison of the
trends of the two curves RC-0 and RC-10 in Figure 10 is exceptionally different. It confirmed
the effect of rubber particles on concrete in the mesoscale study. Rubber was able to reduce
the extension of concrete damage and increase the toughness of concrete, reducing the
brittleness of concrete. This reflects the actual validity of the new numerical model.
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4.2. Types of Damage

In this paper, the damage to the RC is shown through stiffness in the form of two
factors: one is static compression, and the other is fatigue. The visual form of the damage is
represented by the SDEG cloud map output by ABAQUS (SDEG = 0 means no damage to
the structure, and SDEG = 1 means complete damage to the structure). Figure 11 shows
the damage to an ordinary concrete beam of 150 mm × 550 mm without rubber admixture
after a three-point bending static load. As the beam damage occurs in the middle of the
span, for ease of observation, the structure is taken in the middle of the beam, as shown in
the black box in Figure 11, with a size of 150 mm × 150 mm. The following are screenshots
of the damage obtained by this method.

The SDEG damage clouds for 0, 2.5%, 5%, 7.5%, and 10% rubber doping after damage
are shown in Figure 12. A form of static pressure damage to rubber concrete was observed
in the mesoscale study. The damage was mainly at the mid-span of the beam, with an
irregular damage zone extending from the bottom to the top. The damage course follows
the edges of the aggregate and rubber and is consistent with existing fracture and damage
mechanics theories. The point of damage to the zero rubber-doped concrete is only at the
opening of the damage zone, with no damage to the surrounding concrete aggregate, as
shown in Figure 12a. Damage points occur not only at the opening of the damage zone but
also minor damage to the rubber around the opening, as shown in Figure 12b–e. On the
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mesoscale, it is observed that the rubber particles take up a small part of the load-bearing
capacity under load. Furthermore, with the increase of rubber admixture, the damage
point at the bottom of the concrete increases, and the damage zone is influenced by the
surrounding rubber particles in the middle of the extension. The 10% and 7.5% rubber-
doped concrete leads particularly well, with multiple damage points at the bottom and tiny
branches of the damage zone midway through, as shown in Figure 12d,e. Various forms of
damage indicate that adding rubber particles to concrete helps to retard concrete damage,
which also provides the basis for research into the fatigue resistance of RC.
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The fatigue simulation of the same RC beam at different stress levels is a unique
advantage of the fine-view simulation. The stress levels are guaranteed to be the same
peak load each time, something that cannot be achieved experimentally. This paper uses
fatigue simulations for four stress levels of 0.9, 0.85, 0.8, and 0.75, with each stress level
corresponding to five rubber doping levels. Shown in Figure 13 are four forms of stress level
fatigue damage for ordinary concrete. It can be observed that fatigue damage to ordinary
concrete at different stress levels takes the same form, with the damage zone starting at the
same point of failure at the bottom of the concrete. In ordinary concrete, from the start of
the damage to the end, only the weakest point within the concrete bears the load, regardless
of the force acting. Its fatigue damage is also essentially the same as static pressure damage
(Figures 12a and 13), proving that ordinary concrete is relatively homogeneous regarding
internal forces when damaged, with the same place bearing the load.
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Figures 14–17 show fatigue damage at four stress levels for four doped RC. Unlike
ordinary concrete, the fatigue loads do not take the same form of damage at different stress
levels when rubber is added. As shown in Figure 14, the damage zone for 2.5% admixture
stress levels of 0.85, 0.8, and 0.75 differ, and the damage point is also different at the bottom
of the concrete. As shown in Figure 15, the location of the damage zone is different for 5%
doping stress levels of 0.9, 0.85, and 0.8, but the location of the bottom damage point is the
same for stress levels of 0.85, 0.8, and 0.75. As shown in Figure 16, the 7.5% doping stress
level only differs in the damage zone and damage at a stress level of 0.9; the damage zone
and damage point are essentially the same at other stress levels. As shown in Figure 17, the
orientation of the damage zone and the location of the initial damage point at the bottom
stabilize and remain the same when the doping level reaches 10%. The rubber dosing
ranges from 0 to 10%, with the damage zone orientation and initial damage point location
stabilizing from the beginning, through the disorder of the intermediate dosing, and to
final stability. The fatigue damage of RC is different from hydrostatic damage, which is also
different from ordinary concrete. The addition of the rubber creates a fragile ITZ between
the rubber and the mortar, even weaker than the ITZ between the aggregate and the mortar.
The model successfully simulated the effect of rubber doping.
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4.3. Fatigue Life

Table 10 shows the peak loads and the life of the fatigue loads at the corresponding
four stress levels for the five doped rubber concretes. At the same stress level, the fatigue
life increases as the rubber content increases, indicating that rubber concrete carries higher
cyclic loads than ordinary concrete for a given cyclic load. In the case of rubber concrete,
this result is because the rubber particles act as an energy absorber and load cushion in
the concrete. Rubber particles have better elastic properties on the mesoscale level than
concrete particles. In the case of concrete suffering from tension and compression, part of
the energy is converted into the elastic energy of the rubber particles. The fatigue life of
10% rubber is 7.3, 3.89, 4.45, and 2.77 times greater than that of ordinary concrete at four
stress levels.

Table 10. Fatigue life of different rubber doping at different stress levels.

RC-0 RC-2.5 RC-5 RC-7.5 RC-10

S = 0.9 135 243 581 792 986
S = 0.85 1742 2678 3824 5018 6779
S = 0.8 4212 5385 9821 12036 18735

S = 0.75 11,812 14,208 19,081 24,085 32,742

The relationship between rubber doping, stress level, and fatigue life is shown in
Figure 18. It is obvious that, within a specific range, an increase in rubber content and
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a decrease in stress level increase the fatigue life of RC. The increase in fatigue life is a
non-linear relationship, as shown in Figure 19.
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5. Discussion

This model simulation study generates the mesoscale structure of RC through random
aggregates, applies the improved properties of CDP to mortar, and combines modeling
of the aggregate-mortar ITZ and rubber-mortar ITZ to achieve the mesoscale structure
of actual RC. It is a new numerical approach. The model was subjected to a series of
three-point bending fatigue loads to analyze the causes of damage forms and fatigue life
from a mesoscale.

5.1. Causes of Damage Types

The structural form of the model after damage by static pressure and fatigue loading
is consistent with reality, and the appearance of concrete damage on the mesoscale can be
accurately observed from the mesoscale structure. Subsequent damage develops along
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the weakness of the ITZ around the aggregate and rubber particles. There are two main
reasons for producing an irregular damage band consistent with reality. First, the model
adds the damage theory in the CE model, setting a zero-thickness damage zone in the
aggregate-mortar and rubber-mortar layers. The material’s mechanical properties in the CE
are less than those of the mortar. When subjected to forces, the ITZ is more easily damaged
than the mortar aggregate. Secondly, the mesoscale model is randomly generated for
aggregate size and location, which aligns with the actual aggregate distribution of concrete
materials and better reflects the model’s realism. The rubber particles are smaller than the
coarse aggregate, and it is easier for damage to occur around the rubber than around the
coarse aggregate.

5.2. Factors Influencing Fatigue Life

The addition of rubber benefits the fatigue properties of rubber concrete. When the
model is damaged, there is some damage around the rubber particles not in the damage
zone. These share some of the fatigue load, confirming the effect of the rubber particles on
the mesoscale level. The mesoscale model can be applied to complex fatigue loads. The
model shows fatigue life agreement at stress levels of 0.75 to 0.9 and can simulate the effects
of fatigue life due to different doping levels of rubber. Rubber particles have better elastic
properties on the mesoscale level than concrete particles. When the concrete is loaded, part
of the energy is converted into the elastic energy of the rubber particles. RC life increases
with increasing rubber and decreases with increasing stress ratio. As a rule of thumb, the
magnitude of the stress ratio is related to the logarithm of the fatigue life [40]. After trying
various fitting formulae, the following relationship is assumed:

S = A + Bln(N) + Cln2(N)
(

N > e−
B

2C

)
(22)

where S is the concrete stress ratio, A, B, and C are constants whose magnitude is related to
the concrete admixture, and N is the concrete fatigue life.

According to Formula (22). for curve fitting, as shown in Figure 20, the specific
formula and correlation coefficient R results are shown in Table 11, and the fitted results
meet the requirements. It is found that the stress level is related to the quadratic function
of the logarithm of fatigue life. In addition, the results of this study allow for reasonable
extrapolation of the three-point bending fatigue life of rubber concrete at dosing levels
between 0.75 and 0.9. This provides a corresponding reference for the test, a model for
calculating fatigue life correctly on the mesoscale.
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Table 11. Fitting formulae for different rubber doping.

Type Fitting Formula R2

RC-0 S = 0.865 + 0.028 ln(N)− 0.0043 ln2(N) (N > 26) 0.999
RC-2.5 S = 0.671 + 0.087 ln(N)− 0.0083 ln2(N) (N > 189) 0.989
RC-5 S = 0.519 + 0.126 ln(N)− 0.0104 ln2(N) (N > 361) 0.997

RC-7.5 S = 0.475 + 0.135 ln(N)− 0.0107 ln2(N) (N > 550) 0.999
RC-10 S = 0.384 + 0.152 ln(N)− 0.0112 ln2(N) (N > 886) 0.996

5.3. Potential Applications and Developments

The mesoscale model proposed in this study can accurately represent the fatigue
life of rubber concrete under three-point bending fatigue loading. In addition, analysis
of the static pressure load’s damage form and the RC’s ultimate load reveals that the
model is also accurately represented. The study of RC is equally informative for ordinary
concrete and other polymer admixture concrete. The difference lies in the polymer’s
shape, size, location, and properties. Shape, size, and position are solved by Python code,
and performance could be solved by setting properties on the polymer. However, it is
often difficult to achieve the desired effect, and an interface layer is needed to change the
mechanical relationship between the different substances. This study could also be applied
to reinforced RC to simulate the location of damage and structural life of specific damaged
structures in macrostructures to provide an initial structural performance judgment for
actual structures.

The limitations of this research method lie in the 2D structure. When considering the
mesoscale design in the 3D structure, the lack of computer performance is challenging to
resolve, and the vast number of calculations leads to increased calculation time. Future
work could be improved to develop a 3D mesoscale concrete model to calculate fatigue life,
achieving the desired accuracy and computational efficiency requirements.

6. Conclusions

This paper proposed an RAM on the scope of a mesoscale study. The model used
plastic damage theory and the insertion of cohesive elements in the ITZ, and is a new
numerical model. This paper verifies the model’s correctness in peak load and fatigue life.
Peak loads were verified for five doping levels of 0, 2.5%, 5%, 7.5%, and 10%, and fatigue
life was verified for stress levels of 0.75 and 0.85. After this, the results for stress levels of 0.8
and 0.9 were simulated and analyzed. The peak static pressure load in three-point bending
was successfully modeled on a mesoscale as decreasing with increasing rubber doping,
and the resulting deflection increased with increasing rubber doping. Static pressure and
fatigue forms of damage could be observed in the mesoscale, where the point of damage
produced by RC damage is not unique and increases with the amount of rubber admixture.
The damage element produced by RC damage shows an order–disorder–order process
as the rubber dosing increases. It was observed from the model that when the damage
occurred to the RC, the internal rubber took the load. In addition, the model could simulate
the three-point bending fatigue life at different stress levels for various rubber doping on
a mesoscale. A quadratic function relating stress levels with different rubber doping to
fatigue life was fitted, which can predict fatigue life for stress levels between 0.75 and 0.9,
providing some reference value for the test. The mesoscale model in this paper satisfied
the fatigue life simulation requirements perfectly. The method, with model improvements,
could be applied to all RC fatigue structures in the future.
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Abstract: The self-excited oscillation system, owing to its capability of harvesting environmental
energy, exhibits immense potential in diverse fields, such as micromachines, biomedicine, communi-
cations, and construction, with its adaptability, efficiency, and sustainability being highly regarded.
Despite the current interest in track sliders in self-vibrating systems, LCE fiber-propelled track sliders
face significant limitations in two-dime nsional movement, especially self-rotation, necessitating the
development of more flexible and mobile designs. In this paper, we design a spatial slider system
which ensures the self-rotation of the slider propelled by a light-fueled LCE fiber on a rigid circular
track. A nonlinear dynamic model is introduced to analyze the system’s dynamic behaviors. The
numerical simulations reveal a smooth transition from the static to self-rotating states, supported
by ambient illumination. Quantitative analysis shows that increased light intensity, the contraction
coefficient, and the elastic coefficient enhance the self-rotating frequency, while more damping de-
creases it. The track radius exhibits a non-monotonic effect. The initial tangential velocity has no
impact. The reliable self-rotating performance under steady light suggests potential applications in
periodic motion-demanding fields, especially in the construction industry where energy dissipation
and utilization are of utmost urgency. Furthermore, this spatial slider system possesses the ability to
rotate and self-vibrate, and it is capable of being adapted to other non-circular curved tracks, thereby
highlighting its flexibility and multi-use capabilities.

Keywords: self-rotation; liquid crystal elastomer; light fueled; slider; curved track

1. Introduction

A self-oscillating system [1–3] refers to the phenomenon where a system relies on fixed
environmental stimuli to trigger and induce continuous and stable periodic motion [4–6]
without external drives. The system absorbs energy from external stimuli, inducing the
periodic amplification of its energy. This results in periodic energy conversion within the
system, compensating for the energy dissipation caused by damping in the process of
motion. Through this positive feedback mechanism, the system is propelled to generate
nonlinear responses [7] and amplify the control effect of the stimuli on its components
or motion, enabling the system to reach a novel steady state, and consequently perform
spontaneous periodic motion with invariant frequency [8–10]. The previous information
implies that a self-rotating system does not require a sophisticated controller [11], which
will result in more convenient and straightforward operation. Currently, the existing feed-
back mechanisms often involve multi-process coupling and internal adaptive feedback
to achieve the purpose of energy compensation, such as the multi-process coupling of
droplet evaporation with membrane deformation and movement [12], the coupling of air
expansion with liquid column movement [13], the coupling mechanism in plate buckling
and chemical reactions [14], the coupling of bridge vibrations with electrical energy [15],
and photo-induced thermo-surface tension gradients [16,17]. Additionally, the period and
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amplitude in the state of self-rotating system equilibrium are dictated solely by the inherent
properties of the system, regardless of the initial conditions. This unique characteristic guar-
antees the internal stability of the feedback system, enhancing its robustness [18–20] and
facilitating the deeper comprehension of non-equilibrium thermodynamic theories. Given
the unique characteristics and advantages of self-rotating systems, numerous self-rotating
machines [21–23] have been created to explore their practical application potential. The
commonly available self-rotating machines include miniaturized autonomous robots [24],
nano-generators [25], energy harvesting and capture systems [26], active machines [27–29],
autonomous separators [30], and mass transport equipment [31].

Moreover, the achievement of self-rotation necessitates the use of active materials
capable of responding to external stimuli. Such materials include dielectric elastomers [32],
liquid crystal elastomers, stimulation-responsive ionic gels [33], polyelectrolyte gels [34],
shape memory polymers, smart polymer hydrogels [35], and thermotropic liquid crystalline
polymer composites [36]. They possess immense application potential in diverse fields,
including biomedicine [37], agriculture, transportation, corrosion prevention, and material
science. LCEs, one of the emerging environmentally responsive materials [38–40], are
polymeric networks formed by the crosslinking of liquid crystal monomers, possessing
the characteristics of both liquid crystals and elastomers. Upon being exposed to external
environmental stimuli, the liquid crystal units within LCEs transition from anisotropy to
isotropy at the microscopic level, with the liquid crystal monomers undergoing rotation
or phase changes [41]. This leads to the conversion of trans-isomers in the liquid crystal
elastomer fibers to cis-isomers, causing the nonlinear unidirectional contraction of the
LCEs macroscopically [42]. Once the stimulus is removed, the LCEs exhibit their inherent
reversibility, enabling them to return to their original state, which contributes significantly
to the realization of non-driven spontaneous periodic motion.

Different types of LCE fibers demonstrate distinct responses to a variety of exter-
nal stimuli, such as light, heat, electricity, magnetism, and humidity. With continuous
development and in-depth research on LCE fibers, other researchers have been able to
fabricate LCEs that respond to a single or multiple coupled stimuli, including magnetically
responsive LCEs [43,44], light-responsive LCEs [45,46], thermally responsive LCEs [47],
humidity-responsive LCEs [48], electrically responsive LCEs [49,50], and multi-responsive
LCEs [51,52]. The self-rotating modes based on the stimulus-responsive behavior of LCEs
are constantly diversifying. They encompass various forms, such as vibration [53], bend-
ing [54,55], self-rotation [56], torsion [57,58], rolling [59], buckling [60], chaos [61,62], the
sitting up of LCE thin film [44], eversion [63], and inversion, as well as the synchronized
movement of multiple coupled self-oscillators [64].

Among the diverse stimulus-responsive LCEs, light emerges as a highly attractive
clean energy source due to its ease of accessibility and controllability [65]. Meanwhile, light-
fueled LCEs exhibit unique advantages [66–68], including significant strain resistance, re-
versible deformation, a rapid response, silence, etc. [69,70]. Therefore, the light–mechanical
coupled self-rotating system stands out prominently in terms of both its application po-
tential and value. The existing self-oscillating systems of LCEs have been applied in
self-rotating engines [71], self-oscillating flexible circuits [72], self-fluttering aircraft [73],
self-paddling boats [74], soft robots [75], self-moving automobiles [76], and other fields.

In the last few years, the intense focus on LCEs has been driven by extensive research
into self-sliding systems [77–79], particularly with regard to track-mounted sliders [80,81].
However, the potential of these systems is still constrained by the limitations in in-plane
motion, such as the difficulty in achieving self-rotation due to necessary deformation. To
address this challenge, this paper proposes a spatial LCE fiber-propelled slider system that
reduces the deformation of LCEs during energy conversion, enabling self-rotation. The
main contents of this paper are outlined as follows: In Section 2, we establish a theoretical
model of the system based on the proposed light–mechanical coupling dynamics and
the deformation mechanism of light-responsive LCE fibers. In Section 3, we explore the
system’s behavior in both the static and self-rotating states under constant illumination.
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Analysis reveals spontaneous periodic motion modes and the underlying mechanisms
governing these modes. In Section 4, we quantitatively investigate the impact of critical
dimensionless parameters on the cyclic frequency of the system through mathematical
modeling and data calculations. Finally, we conclude the key findings of this paper.

2. Theoretical Model and Formulation

In this section, we first describe a newly designed light-fueled self-rotating dynamic
system that comprises an LCE fiber, a slotted slider, and a rigid circular track. Subsequently,
based on the dynamic mechanical model of the LCE optical fiber and the theorem of
momentum moment, combined with spatial analytic geometry derivations, the dynamic
control equation of the periodic self-rotating system is calculated. Finally, to address the
dimensional impact among the parameters in the control equation, we normalize and
standardize the parameters using the dimensionless method and introduce the process of
numerical analytical calculation.

2.1. Dynamics of Self-Rotating System

Figure 1 and Video S1 illustrate the spatial structural model of a light-fueled self-
rotating system of an LCE fiber propelling a slider. This system consists of an LCE fiber, a
slotted slider, and a rigid circular track with a radius of r. The LCE fiber has an original
length of L0, with one end attached to the horizontal fixed end and the other end connected
to a slotted slider of mass m. The slider is firmly nested into the circular track through the
slot, while the circular track itself is fastened stably to horizontal fixed supports. Under
the given initial tangential velocity v0 and the stimulation of the designed light, the slider
propelled by the LCE fiber can perform self-sustaining periodic motion on the circular
track. Given that the mass of the LCE fiber is significantly smaller than that of the slider of
m, the influence of its mass on motion can be disregarded. In addition, while the slider is
moving on the circular track, the slider is subjected to damping force, acting in the opposite
direction of the slider’s motion. We took the center of the circular track as the origin o, with
the vertical upward direction as the positive z axis, the horizontal rightward direction as
the positive y axis, and the perpendicular outward direction in the paper as the positive
x axis. We define point A as the intersection of the negative y axis and the circular track,
which serves as the original position for movement. The connection point between the LCE
fiber and the horizontal fixed end is labeled as point M, where the projection of M onto the
xoy plane falls on the negative y axis, referred to as point N. Let P be the instantaneous
position of the mass block, with the angles ∠NPO = α, ∠MPN = β, and ∠AOP = θ.

As shown in Figure 1a,b, the yellow area represents the illuminated zone with an
angle θ0, ranging from π to 2π, while the colorless area represents the non-illuminated
zone in this paper. Driven by the initial tangential velocity, the slider moves in a tangential
direction within the plane, continuing its rotation until the slider reaches zero velocity
within the illuminated area. At this moment, the trans-isomers in the LCE fibers transforms
into the cis-isomers upon UV light irradiation, leading to the unidirectional contraction of
the LCE fiber. This contraction propels the slider to continue moving in a counterclockwise
direction, subsequently exiting the illuminated zone. Due to inertia, the slider continues to
move in the non-illuminated zone at a decelerated speed, until it re-enters the illuminated
zone and repeats the process. The repetition of this cycle results in spontaneous circular
motion, termed self-rotation.

As depicted in Figure 1c, with the vertical forces acting on the slider cancelling each
other out at all times, there is no chance of vertical displacement, allowing the slider
to move solely within the plane of the circular track. Therefore, we only consider the
dynamic response of the slider within the xoy plane. In Figure 1, θ is the angle which is the
projection of the LCE string rotating angular displacement on the horizontal plane. When
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θ falls within the interval from 0 to π, based on the theorem of momentum moment, the
mechanical control equation of the system is given as follows [82–84]:

mr2
..
θ = −rFLcos βsin α− rFD (1)

where
..
θ refers to the angular acceleration of the slider at its instantaneous position, FL

represents the tension of the LCE fiber, and FD denotes the damping force.
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When θ lies between π and 2π, the equation is given as follows:

mr2
..
θ = rFLcos βsin α− rFD (2)

The explanations of the variables
..
θ, FL, and FD in Equation (2) are the same as

those above in Equation (1). According to spatial geometric relationship of the struc-

ture in Figure 1c, we can determine that cos β =

√
(r−a)2+r2−2r(r−a)cosθ√

h2+(r−a)2+r2−2r(r−a)cosθ
and sin α =

(r−a)sin θ√
(r−a)2+r2−2r(r−a)cosθ

, where r is the radius of circular track, a represents the horizontal

distance of the LCE fiber on the plane at the initial location, and h denotes the height of the
LCE fiber in the z direction.

The tensile force in the LCE fiber is assumed to be directly proportional to the elastic
strain and can be formulated as follows [85,86]:

FL = KL0εe(t) (3)

where K signifies the elastic coefficient in the LCE fiber, and εe(t) designates the elastic
strain present within the LCE fiber. To simplify analysis, the elastic strain εe(t) in the case
of small deformations can be approximated as a linear sum of the total strain εtot(t) and
the strain due to light-activated contraction εL(t), namely, εtot(t) = εe(t) + εL(t). Hence,
the expression for the tension of the LCE fiber in Equation (3) can be rewritten as follows:

FL = KL0(ε tot(t)− εL(t)) (4)
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For simplicity, we define the total strain εtot(t) as the change in length from the original
length L0, expressed as εtot(t) = L−L0

L0
. Consequently, the tension FL in Equation (4) can be

reformulated as follows:
FL = K(L− L0(1 + εL(t))) (5)

where L is the instantaneous length of the LCE fiber, which can be mathematically expressed

as L =
√

h2 + (r− a)2 + r2 − 2r(r− a)cos θ using the cosine theorem of a triangle.
To simplify analysis, under the condition of low velocity, the damping force is typically

modeled as a quadratic function, always acting in the opposite direction of the motion.

FD = β1
.
θr + β2

( .
θr
)2

(6)

where
.
θ denotes the angular velocity of the slider within a horizontal plane, β1 represents

the first damping coefficient, and β2 signifies the second damping coefficient.
After integrating both Equations (5) and (6) into Equations (1) and (2), we can deduce

the corresponding Equation (7) for the range of θ spanning from 0 to π and Equation (8) for
the range between θ π and 2π.

mr2
..
θ = −Kr


1− L0(1 + εL(t))√

h2 + (r− a)2 + r2 − 2r(r− a)cos θ


(r− a)sin θ−β1

.
θr2 − β2

( .
θ
)2

r3 (7)

mr2
..
θ = Kr


1− L0(1 + εL(t))√

h2 + (r− a)2 + r2 − 2r(r− a)cos(2π − θ)


(r− a)sin(2π − θ)−β1

.
θr2−β2

( .
θ
)2

r3 (8)

2.2. Dynamic Model of LCE

This section primarily focuses on describing the dynamic characteristics of the con-
traction strain induced by light in the LCE fibers. To simplify analysis, the light-induced
contraction strain in the LCE fibers under small-scale deformation is considered to be
directly correlated with the numerical fraction ϕ(t) of cis-isomer within the LCE fibers, i.e.,

εL(t) = −Cϕ(t) (9)

where C is the coefficient that characterizes the contraction of the LCE fiber.
Yu et al. [87] discovered that LCE fibers integrated with azobenzene moieties ab-

sorb UV light around 360 nm, enabling repeatable deformation without fatigue. Upon
light exposure, molecular rearrangement leads to trans–cis isomerization and contraction.
Azobenzene moieties convert light energy to a mechanical force, allowing for optical-to-
mechanical coupling. When the LCE fiber is not illuminated, ϕ(t) remains zero, resulting
in no contraction strain. However, upon light exposure, the cis-isomer ϕ(t) increases, trig-
gering unidirectional contraction. This highlights that the cis-isomer fraction in the LCE
fiber determines the degree of contraction strain under light stimulus.

Given the negligible effect of strain on the LCE’s cis-trans isomerization, we disregard
it. The findings [88,89] shows that the fraction of cis-isomers is influenced by thermal
excitation, thermally driven relaxation, and light-responsive isomerization. However, the
thermal excitation’s impact is minor, so we omit it. Consequently, the governing equation
for the cis-isomer fraction is simplified as follows:

∂ϕ(t)
∂t

= η0 I(1− ϕ(t))− ϕ(t)
T0

(10)
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where η0 denotes the light absorption constant, T0 refers to the thermally driven relaxation
time from the cis to the trans state, and I signifies the light intensity. By solving Equation
(10), we can obtain the number fraction of the cis-isomer:

ϕ(t) =
η0T0 I

η0T0 I + 1
+

(
ϕ0 −

η0T0 I
η0T0 I + 1

)
exp
[
− t

T0
(η0T0 I + 1)

]
(11)

where ϕ0 represents the initial number fraction of cis photochromic molecules in the non-
illuminated zone. For simplicity, we assume that ϕ0 initially takes a value of zero upon
entering the illuminated zone; thus Equation, (11) can be simplified as follows:

ϕ(t) =
η0T0 I

η0T0 I + 1

{
1− exp

[
− t

T0
(η0T0 I + 1)

]}
(12)

In the non-illuminated zone, by setting the value of I to zero, the cis number fraction
of photosensitive molecules can be obtained as follows:

ϕ(t) = ϕ0exp
(
− t

T0

)
(13)

In Equation (12), at the initial time t = 0, the maximum possible value of ϕ0 is denoted
as ϕ0max = η0T0 I

η0T0 I+1 . Substituting this value into Equation (12) yields the following:

ϕ(t) =
η0T0 I

η0T0 I + 1
exp
(
− t

T0

)
(14)

2.3. Nondimensionalization

It is evident that the numerical calculations in this study involve multiple param-
eters. To reveal the characteristic properties of the system and simplify the equations,

the following dimensionless parameters are introduced:
.
θ =

.
θT0,

..
θ =

..
θT2

0 , t = t/T0,
K = KT2

0 /m, I = η0T0 I0, β1 = β1T0/m, β2 = β2r/m, ϕ(t) = ϕ(t) η0T0 I+1
η0T0 I . Substitut-

ing the dimensionless parameters into Equations (7) and (8), respectively, we can obtain
Equations (15) and (16) in a dimensionless form:

..
θ = −K


1− L0

r
1 + εL(t)√

1 + h2

r2 +
(
1− a

r
)2 − 2

(
1− a

r
)
cos θ



(

1− a
r

)
sin θ−β1

.
θ − β2

(
.
θ

)2
(15)

..
θ = K


1− L0

r
1 + εL(t)√

1 + h2

r2 +
(
1− a

r
)2 − 2

(
1− a

r
)
cos(2π − θ)



(

1− a
r

)
sin (2π − θ)−β1

.
θ − β2

(
.
θ

)2
(16)

When entering the illuminated zone, Equation (12) can be simplified as follows:

ϕ(t) = 1− exp
[
−
(
1 + I

)
t
]

(17)

When exiting the illuminated zone, Equation (14) can be simplified as follows:

ϕ(t) = exp
(
−t
)

(18)

Simultaneously, the horizontal tangential component FLτ of the tension of the LCE
fiber, as defined in Equation (5), and the damping force, as stated in Equation (6), can be
expressed in a dimensionless form as follows:
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When θ ranges from 0 to π, we can derive Equation (19):

FLτ = −K


1− L0

r
1 + εL(t)√

1 + h2

r2 +
(
1− a

r
)2 − 2

(
1− a

r
)
cos θ



(

1− a
r

)
sin θ (19)

When θ ranges from π to 2π, we can derive Equation (20):

FLτ = K


1− L0

r
1 + εL(t)√

1 + h2

r2 +
(
1− a

r
)2 − 2

(
1− a

r
)
cos(2π − θ)



(

1− a
r

)
sin(2π − θ) (20)

FD = β1
.
θ + β2

(
.
θ

)2
(21)

As observed from Equations (15) and (16), both the equations are second-order nonlin-
ear differential equations, which makes it impossible to find precise solutions. Consequently,
aiming for precision, we choose the fourth-order Runge–Kuttamethod to iteratively solve
the nonlinear high-order ordinary differential equations, with MATLAB R2021a software
facilitating numerical computations and analyses. By adjusting the relevant parameters
in Equations (15) and (16), including the mean values of I, K, C, β1, and β2, we can attain
the self-rotation of the system. At the same time, we can obtain the tensile force, the
damping force, the contraction strain, the angular velocity, and the position of the LCE
fiber light–mechanical coupling system under instantaneous conditions.

3. Two Dynamic States and Mechanism of Self-Rotation

In this section, utilizing the control equations outlined in Section 2, we analyze the
dynamic response of the light-fueled self-rotating system when it is subjected to constant
illumination. Initially, we present two characteristic dynamic modes of the static state and
the self-rotating state. Following this, we describe the underlying mechanisms that enable
self-rotation.

3.1. Two Dynamic States

Before investigating the self-rotating dynamic behavior and photoresponsive charac-
teristics of the system, it is necessary to obtain the range of actual typical values for the
dimensionless parameters. Based on the existing experimental verifications and research
results [90,91], the specific property parameter values of the materials and structure are
presented in Table 1. The corresponding dimensionless parameter values required in this
study are shown in Table 2.

The time–history graph and phase trajectory plot for the system are attainable through
the numerical solution of Equations (15) and (16), presented in Figure 2. The findings
reveal the existence of two characteristic dynamic states of the system, namely, the static
state and the self-rotating state, during constant exposure to light of I = 0.2 and I = 0.8.
During the numerical simulation, we establish the following dimensionless variables for
the system: C = 0.3, K = 1.0, v0 = 1.3, β1 = 0.015, β2 = 0.005, r = 1.5, L0 = 5,
a = 0.5, θ0 = π ∼ 2π. When I = 0.2, initially, the mass block rotates counterclockwise for
two revolutions. Subsequently, it begins to rotate clockwise and counterclockwise in an
alternating manner, with the rotating angle and angular velocity gradually decreasing, and
ultimately settling at zero as a result of the damping force, indicating that it has reached a
static state. Time–history curves of the vibrational response during this process are depicted
in Figure 2a,b. The corresponding phase trajectory plot in Figure 2c shows that the motion
trajectory eventually stabilizes at a single point. When I = 0.8, the angular velocity of the
slider gradually stabilizes, indicating that the system has entered a self-rotating state, as
shown in Figure 2d,e. Eventually, the maintenance of a limit cycle, resembling the phase
trajectory in Figure 2f, exemplifies a periodically stable operational mode.
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Table 1. Material properties and geometric parameters.

Parameter Definition Value Unit

I light intensity 0–80 kW/m2

C contraction coefficient of LCE fiber 0–0.4 /
K elastic coefficient of LCE fiber 20–40 N/m
T0 Cis to trans thermal relaxation time 0.02–0.45 s
η0 light absorption constant 0.002 m2/(s·W)
m mass of the slider 0–0.02 kg
β1 the first damping coefficient 0–0.3 kg/s
β2 the second damping coefficient 0–0.15 kg/m
v0 initial tangential velocity 0–5 m/s
θ0 range of illuminated zone 0–2π rad
r radius of circular track 0.01–5 m
a horizontal projection distance of LCE string 0.01–2.5 m

L0 original length of LCE fiber 0.1–5 m

Table 2. Dimensionless parameters.

Parameter I C K v0 θ0 β1 β2

Value 0–1 0–0.4 0–10 0–3 π–2π 0–0.2 0–0.1
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Figure 2. The two characteristic dynamic states of the system during constant exposure to light:
the static state and the self-rotating state. (a,b) Time–history graph of angular displacement when
I = 0.2. (c) Phase trajectory plot when I = 0.2. (d,e) Time–history graph of angular displacement
when I = 0.8. (f) Phase trajectory plot when I = 0.8.

3.2. Mechanism of Self-Rotation

In the investigation of the self-rotating mechanism, we particularly focus on how the
system counters energy loss stemming from the damping forces. To further clarify this
intricate dynamic, we utilize the visual aid of relationship curves to highlight the intricate
connections between the critical variables that contribute to the self-rotating process, as
visualized in Figure 3. For the purpose of analysis, we choose the following dimensionless
variables of I = 0.8, C = 0.3, K = 1.0, v0 = 1.3, β1 = 0.015, β2 = 0.005, r = 1.5, L0 = 5,

171



Polymers 2024, 16, 2263

a = 0.5, with θ0 ranging from π to 2π. In Figure 3a, we observe the changes in the rotating
angle of the system as time progresses. The illuminated region, highlighted in yellow,
indicates where the LCE fiber absorbs light. It is noticeable that the self-rotating system
exhibits a consistent pattern, with the slider rotating repeatedly between the illuminated
and non-illuminated sections. In Figure 3b, the fluctuation of the LCE fiber’s number
fraction over time is revealed in relation to light exposure. When the rotating angle of the
mass exceeds π, the LCE fiber comes into the illuminated areas, triggering a gradual rise
in its number fraction towards a defined maximum. However, as the slider shifts from
the illuminated to the non-illuminated regions, the LCE fiber’s number fraction drops
sharply to zero. This recurring pattern of the system’s traversal between the illuminated
and non-illuminated zones results in the periodic variations observed in the LCE fiber’s
number fraction.
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Figure 3. The self-rotating mechanism of the system. (a) The variation in rotating angle with time.
(b) The variation in the number fraction of cis-isomers in the LCE fiber with time. (c) A time–history
curve of horizontal tangential tension of LCE fiber. (d) A time–history curve of damping force.
(e) Rotating angle-dependent horizontal tangential tension in the LCE fiber. (f) The rotating angle-
dependent damping force.

Figure 3c demonstrates the temporal evolution of tension in the LCE fiber. The cyclical
self-rotating motion of the system is responsible for the periodic changes in tension. As
the LCE fiber moves into the illuminated areas, the increased number fraction of the LCE
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fiber leads to a corresponding rise in contraction strain, accompanied by an augmentation
in elastic strain. This ultimately results in an increment in tension within the LCE fiber.
Conversely, when the system exits the illuminated regions, the tension decreases due to the
reversal of light-induced contraction. As illustrated in Figure 3c, the variation in horizontal
tangential tension of the LCE fiber is consistent with the theoretical framework presented in
this study, particularly Equation (5). Figure 3d shows a time–history curve of the damping
force, which also follows a period cycle. In the non-illuminated region, the damping force
decreases, while in the illuminated region, it increases. This is due to the fact that the
damping force is directly proportional to velocity, and as depicted in Figure 2f, the velocity
initially decreases before subsequently increasing over time.

To gain a deeper understanding of the system’s energy absorption and compensation
mechanism, we chart the dependency of horizontal tangential tension on a rotating angle,
as depicted in Figure 3e, and we also represent the relationship of damping force with the
rotating angle in Figure 3f. The hysteresis loop in Figure 3e shows LCE fiber’s net work
(0.913) in a rotating cycle, balancing the absorbed energy from light-responsive contraction
and released energy during recovery. The loop in Figure 3f quantifies the damping force’s
energy consumption (also 0.913). These two balance, indicating the damping force losses
are precisely compensated by the LCE fiber’s energy differences. This demonstrates that
the LCE fiber-propelled slider system maintains its periodic rotation effectively.

4. Parameter Study

In the previous section, we analyze the dynamic behavior of the slider propelled by
the light-fueled LCE fiber based on Equations (15)–(21) and the following dimensionless
physical parameters: I, C, K, v0, β1, β2, r, L0, a, and θ0. In this section, under the condition
that L0 = 5, a = 0.5, and β2 = 0.005, and with the illumination region remaining stable
within the range θ0 of π to 2π, we proceed to conduct quantitative analysis on the dynamic
impact of each of the six major dimensionless parameters, i.e., I, C, K, v0, β1, and r,
specifically focusing on how they affect the self-rotating frequency, denoted as f .

4.1. Effect of Light Intensity

Given the specified dimensionless variables, C = 0.3, K = 1.0, v0 = 1.3, β1 = 0.015,
and r = 1.5, Figure 4 illustrates how the intensity of light affects the self-rotating mechanism
of the slider propelled by the light-fueled LCE fiber. As shown in Figure 4a, there is direct
proportionality between the light intensity and its impact on frequency, indicating that as
the intensity of light rises, the frequency also increases. This is due to the fact that higher
light intensities empower the LCE fiber to absorb a larger quantity of energy and convert
it into kinetic energy, which enables the system to cycle through a full revolution more
quickly. As evident from Figure 4a, the key intensity of light that divides the static state
and the self-rotating state is I = 0.25. Below this intensity of 0.25, the LCE fiber fails to
absorb enough light energy to counter damping dissipation, leading to the transition into
a static state due to its inability to maintain motion. Conversely, when the light intensity
surpasses 0.25, the LCE fiber absorbs sufficient energy to overcome damping dissipation,
enabling it to sustain a continuous and stable self-rotation, which defines the self-rotating
state. In Figure 4b, the respective limit cycles for self-rotation are exhibited for various
I values, including 0.3, 0.8, and 1.3. It is evident that as the light intensity rises at any
given point on the circular ring, the velocity of the slider’s rotation increases significantly.
This observation strongly suggests that boosting the light intensity plays a pivotal role in
improving the energy utilization efficiency of the LCE fiber-propelled slider system.
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4.2. Effect of Contraction Coefficient of LCE

Given the specified dimensionless variables, I = 0.8, K = 1.0, v0 = 1.3, β1 = 0.015,
r = 1.5, Figure 5 illustrates how the contraction coefficient of the LCE affects the self-
rotating mechanism of the slider propelled by the light-fueled LCE fiber. As depicted in
Figure 5a, there is a clear limiting value for the contraction coefficient, mathematically
identified as 0.12, marking a critical point for initiating self-rotation. Below this value of
0.12, the slider remains stationary. Nonetheless, upon exceeding 0.12, the system transitions
into a state of self-rotation. Moreover, there is a tendency for the frequency to rise as
C increases, which stems from the decrease in the LCE fiber’s capacity to absorb light,
triggered by a reduction in the contraction coefficient, ultimately causing a decrease in the
kinetic energy and frequency of the system. In Figure 5b, for various C values, including
0.2, 0.3, and 0.4, the corresponding limit cycles for self-rotation are displayed. In addition,
at any fixed position on the circular ring, the increase in the contraction coefficient is
accompanied by a marked augmentation in the slider’s rotational velocity. The observation
indicates that augmenting the contraction coefficient of an LCE fiber can enhance the
efficient transformation of light energy into mechanical energy.
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4.3. Effect of Elastic Coefficient of LCE

Given the specified dimensionless variables, I = 0.8, C = 0.3, v0 = 1.3, β1 = 0.015,
r = 1.5, Figure 6 illustrates how the elastic coefficient of the LCE affects the self-rotating
mechanism of the slider propelled by the light-fueled LCE fiber. As illustrated in Figure 6a,
the elastic coefficient serves as a crucial factor in determining the frequency of self-rotation.
As the elastic coefficient rises, so does the frequency of self-rotation. This is attributed
to the fact that a higher elastic coefficient yields a stronger elastic force from the LCE
fiber. Consequently, the system accumulates more elastic potential energy, which is then
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converted into kinetic energy, ultimately resulting in a greater frequency of self-rotation. As
seen in Figure 6a, an elastic coefficient of 0.42 acts as the vital value between the static and
self-rotating modes for the system. Under continuous illumination, if the elastic coefficient
falls below 0.42, the LCE fiber cannot harvest enough light energy to overcome the damping
force, resulting in a static mode. Conversely, when the coefficient exceeds 0.42, the LCE
fiber accumulates sufficient energy to counter the damping force and maintain continuous
self-rotation. Figure 6b shows the respective limit cycles of self-rotation corresponding
to the elastic coefficients of K = 0.5, 1.0, and 1.5. Notably, when considering a specific
point on the circular track, an increase in the elastic coefficient K leads to a corresponding
acceleration in the slider’s velocity, thereby enhancing the frequency. Therefore, when
designing an LCE propelling system, selecting the appropriate elastic coefficient is crucial
to achieving a superior performance.
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4.4. Effect of Initial Tangential Velocity

Given the specified dimensionless variables, I = 0.8, C = 0.3, K = 1.0, β1 = 0.015,
r = 1.5, Figure 7 illustrates how the initial tangential velocity affects the self-rotating
mechanism of the slider propelled by the light-fueled LCE fiber.
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Figure 7a depicts the relationship between the frequency of self-rotation and the
initial tangential velocity. It is clearly shown that under constant illumination, the initial
tangential velocity does not affect the system’s frequency. This is because the frequency of
self-rotation is primarily determined by the interaction between the energy dissipated by
the damping force and the net work generated by the light-fueled LCEs. These internal
dynamics, together with the material properties, constitute the inherent characteristics
of the system. It can be seen that when the initial tangential velocity is less than 0.75,
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the system attains a static state. This is attributed to the fact that with such a low initial
tangential velocity, the LCE fiber fails to enter the illumination zone, thus preventing it
from capturing sufficient light energy to sustain its dynamic movement. Conversely, when
the initial tangential velocity surpasses 0.75, specifically at v0 = 1.1, 1.3, and 1.5, the system
transitions into a self-rotating state. Furthermore, the corresponding limit cycle remains
the same for v0 = 1.1, 1.3, and 1.5, as depicted in Figure 7b. The results show that when
designing an LCE propelling self-rotating system, the initial velocity has little impact on
the system performance as long as it can trigger self-rotation.

4.5. Effect of the First Damping Coefficient

Given the specified dimensionless variables, I = 0.8, C = 0.3, K = 1.0, v0 = 1.3,
r = 1.5, Figure 8 illustrates how the first damping coefficient affects the self-rotating
mechanism of the slider propelled by the light-fueled LCE fiber. As can be observed
from Figure 8a, with the increase in the first damping coefficient, the system frequency
gradually decreases. When the damping coefficient exceeds the critical value of 0.04,
the system changes from a self-rotating state to a static state. The reason for this is that
as the damping coefficient increases, the dissipative energy generated by the damping
force also increases. When the slider propelled by the light-fueled LCE fiber enters the
illuminated area, the energy collected becomes insufficient to overcome the increased
dissipative energy, ultimately leading the system to enter a static state. When the system is
in a self-rotating state, numerical calculations are performed with different values of β1,
specifically 0.005, 0.015, and 0.025. The results indicate that as the first damping coefficient
increases, the corresponding limit cycle shifts downwards in the depiction. Conversely, for
smaller damping coefficients, the limit cycle is positioned higher, as illustrated in Figure 8b.
Consequently, decreasing the damping coefficient of the medium facilitates the efficient
transformation of light energy into mechanical energy.
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4.6. Effect of Radius of Circular Track

Given the specified dimensionless variables, I = 0.8, C = 0.3, K = 1.0, v0 = 1.3,
β1 = 0.015, Figure 9 illustrates how the radius of circular track affects the self-rotating
mechanism of the slider propelled by the light-fueled LCE fiber. As shown in Figure 9a,
as the radius increases, the system’s rotational frequency also increases. Owing to the
increase in radius, there is more conversion of light energy from the light-fueled LCE
into mechanical energy, which leads to an increase in the system’s internal kinetic energy.
In the self-rotating state, a larger radius enables the system to complete more rotation
cycles per unit time, thus increasing the rotational frequency. However, when the radius
exceeds the threshold value of 2.0, the situation changes. At this point, as the radius
continues to increase, the system’s rotational frequency begins to decrease until it finally
enters a static state. The reason for this is that as the radius increases, the damping force
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experienced by the system also increases, and these damping forces consume the energy
of the system’s rotation. When the dissipated energy reaches a certain level, the system
may no longer be able to maintain its self-rotating state, and eventually enters a static state.
Furthermore, as the radius continues to increase, it becomes increasingly challenging for the
slider propelled by the light-fueled LCE fiber to enter the illuminated area. Consequently,
the LCE fiber is unable to gather sufficient light energy to overcome the damping-induced
energy losses, which ultimately leads to the gradual transition into a stationary state. It
can also be observed from Figure 9a that the radius starts at 0.5 due to the assumption
that the horizontal projected distance a of the LCE string is less than the radius. Figure 9b
presents the corresponding limit cycles of self-rotation for r = 1.0, r = 1.5, and r = 2.0. It is
evident that in the self-rotating state, the limit cycle with a larger radius experiences faster
velocity variation. This is due to the negative work completed by the tensile force of the
LCE before entering the illuminated region. The larger the radius is, the longer the elastic
LCE becomes, coupled with the dissipative capability caused by damping, resulting in a
more significant impact on the velocity. The findings suggest that the selection of the radius
of circular track is essential for enhancing the energy efficiency of the LCE fiber-propelled
slider system.
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5. Conclusions

Despite the current interest in track sliders incorporating LCE fibers and their adapt-
ability, efficiency, and sustainability in self-vibrating systems, their movement within a
two-dimensional space is severely restricted. Specifically, self-rotation, a process requiring
the intricate shaping deformation of the sliders and the LCE fiber-based system, poses
a significant challenge. This limitation highlights the need for developing more flexible
and mobile track slider designs with enhanced kinematic capabilities. To address these
challenges, we present a novel light-fueled spatial system comprising an LCE fiber, a slotted
slider, and a rigid track. This innovative design ensures the smooth self-rotation of the
slider on a circular track under constant illumination, overcoming deformation issues
during operation. Based on the dynamic mechanical model of the LCE optical fiber and
the theory of momentum moment, combined with spatial analytic geometry derivations,
we have derived the dimensionless dynamic control equation for the periodic self-rotating
system. Utilizing the established fourth-order Runge–Kutta method and MATLAB R2021a
software, we numerically solved the dynamic control equations. Our findings reveal two
distinct motion states of the self-rotating slider system: the static state and the self-sliding
state. Notably, we elaborate on the self-rotating process and its accompanying energy
balancing mechanism. Here, the consistent external energy source compensates for the
dissipation caused by system damping, thereby maintaining the dynamic equilibrium of
the system.

In addition, quantitative analysis was carried out on the light intensity, the contraction
coefficient, the elastic coefficient, the initial tangential velocity, the damping coefficient, and
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the radius of the circular track. The numerical calculation results show that the increase in
the light intensity, the contraction coefficient, and the elastic coefficient lead to an increase
in the self-rotating frequency. In contrast, the increase in the damping coefficient results in a
significant decrease in the self-rotating frequency. Compared with the monotonic influence
of the other parameters, the effect of the track radius on the frequency is non-monotonic. As
the radius increases, the frequency first increases, and then decreases, and finally tends to
be static. It is worth noting that the initial tangential velocity has no effect on the frequency
of the system.

Although the simplicity, flexibility, and diverse motion capabilities of the proposed
LCE fiber-propelled slider system promise widespread adoption, limitations persist. No-
tably, the small-scale deformation assumption oversimplifies the mechanical behavior, and
the exclusion of viscoelastic effects in the LCE fibers, crucial under large actuation strains,
introduces challenges. Viscoelasticity’s time-dependent nature causes hysteresis and en-
ergy dissipation, reducing energy efficiency by hindering mechanical work extraction
from photomechanical coupling. Delayed deformation recovery further threatens motion
stability in dynamic environments with fluctuating illumination. To enhance the system’s
full potential, future research will integrate viscoelasticity into the model, enabling a deeper
understanding of its impact on energy efficiency and stability. Additionally, exploring the
system’s dynamic behavior under variable illumination and non-circular trajectories will
enhance its robustness and adaptability in complex environments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16162263/s1, Video S1: The process of self-rotation of
the system.
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Abstract: Self-vibrating systems based on active materials have been widely developed, but most of
the existing self-oscillating systems are complex and difficult to control. To fulfill the requirements
of different functions and applications, it is necessary to construct more self-vibrating systems that
are easy to control, simple in material preparation and fast in response. This paper proposes a
liquid crystal elastomer (LCE) string–mass structure capable of continuous vibration under steady
illumination. Based on the linear elastic model and the dynamic LCE model, the dynamic governing
equations of the LCE string–mass system are established. Through numerical calculation, two regimes
of the LCE string–mass system, namely the static regime and the self-vibration regime, are obtained.
In addition, the light intensity, contraction coefficient and elastic coefficient of the LCE can increase
the amplitude and frequency of the self-vibration, while the damping coefficient suppresses the
self-oscillation. The LCE string—mass system proposed in this paper has the advantages of simple
structure, easy control and customizable size, which has a wide application prospect in the fields of
energy harvesting, autonomous robots, bionic instruments and medical equipment.

Keywords: self-vibration; liquid crystal elastomer; light-driven; string

1. Introduction

Self-vibration exists widely in nature and engineering [1–7]. It is a non-attenuating vi-
bration in which the process of vibration is accompanied by some periodically varying force
by which the vibrating system can be replenished with energy to maintain the vibration.
A self-vibration system usually includes vibration elements, steady energy sources and
feedback mechanisms. Unlike forced vibration [8], self-vibration can independently obtain
energy from the external steady environment to maintain its continuous vibration without
additional periodic excitation. As a representative of nonlinear systems, self-vibration deep-
ens the understanding of nonequilibrium dynamical processes [9,10], and also has guiding
significance for constructing synchronous systems [11–13] and chaotic systems [14–16].
Self-vibration has autonomy, which is helpful to the design of autonomous components
such as autonomous robots [17] and actuators [18,19]. Furthermore, self-vibration has
significant application value in energy harvesting [20,21], soft robots [22,23], sensors [24],
medical equipment [25,26] and other fields.

In recent years, many efforts have been made to construct self-vibration systems,
among which a self-vibration system based on active materials has attracted extensive re-
search interest. Active materials are kinds of material that can change their shapes or motion
states when they are stimulated by external stimuli such as light [27,28], heat [29,30], elec-
tricity [31], magnetism [32,33] and so on. Common active materials include hydrogels [34],
ionic gels [35,36], photoresponsive or thermal responsive polymers [37–43], dielectric elas-
tomers [44], shape memory polymers [45] etc. Based on the response of active materials
to external steady stimuli, people have built a variety of self-vibration modes, such as
bending [46,47], swinging [48], rolling [49,50], twisting [51], vibrating [52], floating [53],
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buckling [54,55], jumping [56], stretching [57], shuttling [58], spinning [59] and curling [60].
In addition, some ingenious feedback mechanisms have been carefully designed, such as
the self-shading mechanism [61], coupling mechanism of large deformation and chemical
reaction [36], coupling mechanism of liquid volatilization and deformation [62] and pho-
tothermal surface tension gradient [63,64] to break the balance of the system, which leads to
a stable and sustained response of the active material and further generates self-vibration.

Among these active materials that can be used to construct self-vibration systems,
liquid crystal elastomers (LCEs) are widely considered because of their unique advantages.
LCE is a unique material that is a liquid crystal polymer with a network structure formed
after moderate cross-linking mesogens [65]. Its unique properties combine the characteris-
tics of liquid crystals and elastomers, and it is capable of demonstrating an amazing ability
to change shape. LCE presents a host of advantages, including substantial and reversible
deformability [66,67], rapid deformation and straightforward controllability, which have
garnered significant attention among researchers. Due to the rotation or phase transitions
of liquid crystal monomer, liquid crystal elastomers can show reversible morphological
changes when subjected to external stimuli, such as light [27,28], heat [29,30], electric-
ity [31], magnetism [32,33] etc., displaying a variety of shapes and structures. Among these
external stimuli, light stands out due to its fast response, environmental friendliness, easy
accessibility, noiselessness [15,68,69] and precise control [70]. Considering the advantages
of light, a rich variety of self-vibration systems based on light-driven LCE have been de-
veloped, such as bending [46,47], buckling [54,55], jumping [56], swimming [48] and other
self-vibration systems. These self-vibration systems based on light-driven LCE have broad
application prospects in bionic instruments [71], energy harvesting [20,21], actuators [19],
soft robots [22,23] and other fields.

Although self-vibrating systems based on LCE have been widely developed, the
design and construction of LCE self-vibration systems still have great limitations, such as
complex structure, difficulty to control and difficulty to prepare. Therefore, it is necessary to
construct more LCE self-vibration structures with simple structures and that are controllable
and convenient. The tension string system has been widely studied as a classical self-
vibration system. In this paper, we creatively propose a new self-vibrating system that is
different from the previous self-vibration systems, which consists of two LCE strings and a
mass block, and which can obtain sustained and stable vibration under steady illumination.
Compared with existing self-oscillating systems [52,53], the system proposed by us has a
simpler structure and is easier to implement. Our goal is to construct novel self-oscillating
systems based on active materials that are simple in structure, easy to control, customizable
in size and easy to prepare. Also, the effect of system parameters on self-oscillation is
discussed to provide guidance for regulating this system. Depending on its excellent
properties, the self-oscillating LCE string–mass system has significant application value in
autonomous actuators, energy collectors, bionic instruments and other fields.

The paper is as follows. Firstly, in Section 2, based on the LCE dynamic model, a
theoretical model of the LCE string system is established and the corresponding governing
equations are derived. Then, in Section 3, two motion regimes of the LCE string system
are described and the mechanism of self-vibration is explained in detail. In Section 4, the
effects of system parameters on the amplitude and frequency of self-vibration are further
discussed quantitatively. Finally, in Section 5, the results of this paper are summarized.

2. Theoretical Model and Formulation

In this section, firstly, a novelty light-driven self-vibration system consisting of two
LCE strings and a mass block is described. Secondly, we derive the governing equations of
the self-vibration system based on the dynamic LCE model, vibration theory and Newton’s
second law. Finally, the governing equation is dimensionless and the numerical calculation
method is introduced.
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2.1. Dynamics of Self-Vibration of LCE Strings

Figure 1 shows the physical model of the system of light-driven LCE self-vibration.
The system, which can vibrate continuously and steadily under a given initial speed and
designed illumination condition, consists of two LCE strings and a mass block, as shown in
Figure 1a. One end of each LCE string is fixed to a horizontal rigid base, and the other end
is attached to the mass block with a mass of m. The original length of each LCE string in
the unstressed state is L0. Considering that the gravity mg on the mass block is much less
than the elastic force on it, the gravity is ignored. We take the initial position of the mass
block as the origin of the coordinate system, with the horizontal direction as the x-axis and
the vertical direction as the y-axis, as shown in Figure 1a. Since the two LCE strings are
exactly the same, the tension of the two LCE strings is exactly the same, and the tension
generated by the two strings in the vertical direction cancels each other, so the mass block
only vibrates in the horizontal direction, and its displacement is x.
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Figure 1. Diagram of self-vibration system of LCE strings: (a) Reference state; (b) Initial state;
(c) Current state; (d) Force analysis. The mass block is subjected to the tension FL of the LCE strings
and the air damping force FD. The LCE string–mass system can vibrate continuously and periodically
under steady illumination.

As shown in Figure 1b,c, the yellow area represents the illumination zone and the
gray rhomboid area represents the shading (non-illumination zone); the distance from the
right end of the shading zone to the origin is δ. Due to the action of the initial velocity, the
mass block continues to move to the right until it reaches the illuminated zone. UV light
radiation can change the photochromic liquid crystal molecules in the material from straight
trans configuration to bent cis configuration [65]. Thus, under continuous illumination,
the chromophores (azobenzene) in the LCE fibers absorb light energy, followed by a
continuous cycle of cis–trans isomerization. This process results in the transformation of
the chromophores from the trans state to the cis state, thereby inducing the contraction of
the LCE fibers. With the contraction and stretching of the LCE strings in the illuminated
zone, the elastic potential energy of the system reaches its peak when the mass block
reaches the maximum distance. The next moment, under the action of the tension of
the LCE strings, the mass block moves in the opposite direction. When moving into the
non-illumination zone, the light-driven contraction of the LCE strings resumes, at which
point the tension of the LCE strings decreases until it reaches the illuminated zone on the
other side, accumulating elastic potential energy, and then repeating the process. The LCE
string–mass system can maintain continuous and stable self-vibration through the choice
of proper system parameters and initial conditions.

The mass block is subjected to the tension of the LCE strings and the air damping
force, as shown in Figure 1d. In the horizontal direction, the governing equation of mass
block can be described as:

m
..
x(t) = −2FLsgn(x) sin θ − FD, (1)
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where
..
x represents the acceleration of the mass block, FL indicates the tension of the LCE

strings, θ is the angle between the LCE strings and the y-axis, the sign function sgn(x) is a
function that returns the sign of a real number x, and FD denotes the air damping force.

It can be obtained by geometric relations that sin θ = x√
L2

0+x2
. where L0 is the original

length of each LCE string in the unstressed state and x indicates the horizontal displacement
of mass block.

The tension of the LCE strings is proportional to its elongation, with the formula being:

FL = K(
√

L2
0 + x(t)2 − L0 − L0εI(t)), (2)

where K denotes the elastic coefficient of the LCE and εI refers to the light-driven contraction
strain of the LCE strings.

The damping force is assumed to be linearly proportional to the velocity of the mass
block and can be expressed as:

FD = β
.
x(t), (3)

where β represents the air damping coefficient and
.
x denotes the velocity of the mass block.

Substituting Equations (2) and (3) into Equation (1), we can obtain:

m
..
x(t) = −2K(

√
L2

0 + x(t)2 − L0 − L0εI(t)) · sin θ − β
.
x(t). (4)

2.2. Dynamic LCE Model

This section mainly deduces the strain equation of the LCE strings under illumination and
non-illumination conditions. A linear model is adopted to describe the relationship between
the cis number fraction φ(t) in LCE and the light-driven contraction of the LCE, namely:

εI = −Cφ(t), (5)

where C indicates the contraction coefficient of the LCE.
The light-driven contraction strain of the LCE strings depends on the cis number

fraction φ(t) in the LCE. UV light radiation can change the photochromic liquid crystal
molecules (azobenzene) in the material from straight trans configuration to bent cis config-
uration, which is often accompanied with the contraction of a monodomain LCE along the
mesogen aligning direction [65]. For simplicity, the LC cis–trans switching is assumed to be
strain-independent. Furthermore, according to Nagele et al. [72], the cis number fraction
depends on the thermal excitation from trans to cis, the thermal drive relaxation from cis to
trans and the light-driven trans to cis isomerization. Assuming that the thermal excitation
from trans to cis can be ignored, the governing equation for the evolution of the number
fraction can be expressed as:

∂φ

∂t
= η0 I(1− φ)− φ

T0
, (6)

where η0 represents the light absorption constant, T0 represents the thermally driven
relaxation time from the cis to trans and I indicates the light intensity.

By solving Equation (6), we can get:

φ(t) =
η0T0 I

η0T0 I + 1
+ (φ0 −

η0T0 I
η0T0 I + 1

) exp
[
− t

T0
(η0T0 I + 1)

]
, (7)

where φ0 denotes the initial cis number fraction in non-illumination zone.
In the illumination zone, the initial number fraction φ0 = 0, so Equation (7) can be

simplified as:

φ(t) =
η0T0 I

η0T0 I + 1

{
1− exp

[
− t

T0
(1 + η0T0 I)

]}
. (8)
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In the non-illumination zone, by setting the light intensity I = 0, we can obtain:

φ(t) = φ0 exp
(
− t

T0

)
. (9)

In this case, φ0 can be chosen as the maximum value of φ0 in Equation (8) under
continuous illumination. Then we can obtain:

φ(t) =
η0T0 I

η0T0 I + 1
exp

(
− t

T0

)
. (10)

2.3. Nondimensionalization

For ease of calculation, we define the following dimensionless quantities: x = x/L0,
.
x =

.
xT0/L0,

..
x =

..
xT2

0 /L0, t = t/T0, δ = δ/L0, I = IT0η0, β = βT0/m and K = KT2
0 /m. So,

the dimensionless form of governing equation can be written as:

..
x(t) = −2K(

√
1 + x(t)2 − 1− εI(t))

x√
1 + x(t)2

− β
.
x(t). (11)

In the illuminated state, Equation (8) can be rewritten as:

φ(t) = 1− exp
[
−t(I + 1)

]
. (12)

In the non-illumination zone, we can obtain:

φ(t) = exp(−t). (13)

Obviously, Equation (11) is a second-order nonlinear differential equation, and it
is difficult to find the analytical solution of this kind of equation. Therefore, we use
Matlab software (version R2018b) and the four-order Runge–Kutta method for numerical
calculation. By adjusting the parameters within the program, for example I, C, K, v0, β and
δ, we can obtain the displacement, velocity, elastic force, damping force and light-driven
contraction strain of the self-vibration of the LCE string–mass system at each moment.

3. Two Motion Regimes and Mechanism of Self-Vibration

In this section, firstly, two typical motion regimes of the LCE string–mass system are
described, namely the static regime and the self-vibration regime. Secondly, the correspond-
ing mechanism of the self-vibration is elaborated in detail.

3.1. Two Motion Regimes

To study the self-vibration of the LCE string–mass system, it is necessary to calculate
the typical values of the dimensionless system parameters. According to the existing
experimental [72–75] and research results, the actual values of each system parameter are
summarized in Table 1, and the corresponding dimensionless system parameters are listed
in Table 2.

Table 1. Material properties and geometric parameters.

Parameter Definition Value Unit

I light intensity 0~100 kW/m2

C contraction coefficient 0~0.5 /
K elastic coefficient 1~50 N/m
T0 thermally driven relaxation time 0.01~0.5 s
η0 light absorption constant 0.00022 m2/s·W
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Table 1. Cont.

Parameter Definition Value Unit

m mass 0~2 kg
β damping coefficient 0~0.5 kg/s
v0 initial velocity 0~0.4 m/s
δ width of shade 0~0.1 m

L0 original length of LCE 0.01~0.2 m

Table 2. Dimensionless parameters.

Parameter I C K v0 β δ

Value 0~1 0~0.5 0~10 0~1 0~0.2 0~0.5

Through the numerical solution of Equation (11), the time history curve vibration
and phase trajectory diagram of the LCE string–mass system can be obtained, as shown
in Figure 2. In this case, the other system parameters in the numerical calculation are set
as C = 0.25, K = 2, v0 = 0.2, β = 0.1 and δ = 0.2. As can be seen from Figure 2, the
system of the LCE strings has two different regimes, namely the static regime and the
self-vibration regime. Figure 2a,b depict the static regime, where the vibration of the system
finally stops and the corresponding phase trajectory diagram terminates at a point. In
contrast, Figure 2c,d plot the self-vibration regime, in which the vibration of the system
tends to stabilize after a period of time and maintains a fixed amplitude and period, and
a limit cycle representing a single periodic motion appears in the corresponding phase
trajectory diagram. The reason for the self-vibration phenomenon is that the system obtains
enough light energy to compensate for the damping dissipation, so as to maintain its
self-sustained vibration. The emergence of the phenomenon of self-vibration proves the
rationality and feasibility of our constructed system. In the next section, we will elaborate
on the mechanism of the self-vibration phenomenon.
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3.2. Mechanism of Self-Vibration

This section aims to explain the mechanism of self-vibration, that is, the energy com-
pensation mechanism of the LCE string–mass system. To better understand the energy
compensation mechanism, it is necessary to plot the change curves of some key physical
quantities in the process of self-vibration, as shown in Figure 3. In this case, the dimension-
less parameters of the system are selected as I = 0.5, C = 0.25, K = 2, v0 = 0.2, β = 0.1 and
δ = 0.2. Figure 3a shows the curve of the mass block horizontal displacement over time,
where the yellow area indicates the LCE strings are illuminated. It can be easily found that
the LCE string–mass system at this time maintains a stable amplitude and period, and the
mass block shuttles in the illumination zone on both sides. Figure 3b plots that when the
displacement of the mass block is greater than the width of shade δ, the LCE strings are in
the illumination zone, and the number fraction in the LCE gradually increases and tends
to a limit value. When the displacement of the mass block is less than the width of shade
δ, the LCE strings are in the non-illumination zone, and the number fraction in the LCE
rapidly decreases to zero. As the mass block regularly enters and exits the illumination
zone, the number fraction in the LCE strings also changes periodically. In addition, Figure 4
illustrates several characteristic snapshots for the self-vibration of the LCE string–mass
system during one cycle under steady illumination.
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Figure 3. The mechanism of self-vibration of the LCE string–mass system. (a) Time history curve
of the displacement. (b) Time history curve of the number fraction. (c) Variation of the tension
of LCE strings with time. (d) Dependence of the tension of LCE strings on the displacement.
(e) Variation of the damping force with time. (f) Dependence of the damping force on the displace-
ment. The work done by the elastic force can compensate the damping dissipation, so the system can
maintain stable vibration.

188



Polymers 2023, 15, 3483Polymers 2023, 15, x FOR PEER REVIEW 9 of 17 
 

 

Light-powered 

self-vibration

light-driven 

contraction 

increases

light-driven 

contraction 

decreases

light-driven 

contraction 

increases

light-driven 

contraction 

decreases

 

Figure 4. Snapshots of the LCE string–mass system in one cycle during the self-vibration. Under 

steady illumination, the system exhibits a continuous periodic self-vibration. 

In order to understand the energy source and consumption of the LCE string–mass 

system, we plot the elastic force and damping force of the LCE with time and with dis-

placement, as shown in Figure 3c–f. Figure 3c shows the variation of tension of the LCE 

strings over time. With the periodic vibration of the LCE string–mass system, the variation 

of tension of the LCE strings is also periodic. When the LCE strings enter the illumination 

zone, the tension of the LCE strings increases due to the light-driven contraction of the 

LCE strings. When the LCE strings leave the illumination zone, the light-driven contrac-

tion of the LCE strings recovers and the tension of the LCE strings decreases, as shown in 

Figure 3c. Figure 3d shows the hysteresis loop of the tension of the LCE string, the area of 

which represents the net work done by the tension of the LCE strings in one cycle of vi-

bration, which is numerically calculated to be 0.018. Similarly to the tension of the LCE 

strings, Figure 3e plots the periodic change of damping force with time. Figure 3e shows 

the relationship between the damping force and displacement, and the hysteresis loop 

enclosed represents the work done by the damping force in one cycle of vibration, that is, 

the system damping dissipation. Through calculation, the area of the hysteresis loop in 

Figure 3f is also 0.018, which means that the energy lost by air damping during the self-

vibration is compensated for by the work done by the tension of the LCE strings. There-

fore, the self-vibration of the LCE string–mass system can be sustained.  

4. Parametric Study 

In this section, we quantitatively investigate the effects of system parameters such as 

light intensity, contraction coefficient, elastic coefficient, initial velocity, damping coeffi-

cient and width of shade on the amplitude A and frequency F of the self-vibration of the 

LCE string–mass system.  

  

Figure 4. Snapshots of the LCE string–mass system in one cycle during the self-vibration. Under
steady illumination, the system exhibits a continuous periodic self-vibration.

In order to understand the energy source and consumption of the LCE string–mass
system, we plot the elastic force and damping force of the LCE with time and with dis-
placement, as shown in Figure 3c–f. Figure 3c shows the variation of tension of the LCE
strings over time. With the periodic vibration of the LCE string–mass system, the variation
of tension of the LCE strings is also periodic. When the LCE strings enter the illumination
zone, the tension of the LCE strings increases due to the light-driven contraction of the LCE
strings. When the LCE strings leave the illumination zone, the light-driven contraction
of the LCE strings recovers and the tension of the LCE strings decreases, as shown in
Figure 3c. Figure 3d shows the hysteresis loop of the tension of the LCE string, the area
of which represents the net work done by the tension of the LCE strings in one cycle of
vibration, which is numerically calculated to be 0.018. Similarly to the tension of the LCE
strings, Figure 3e plots the periodic change of damping force with time. Figure 3e shows the
relationship between the damping force and displacement, and the hysteresis loop enclosed
represents the work done by the damping force in one cycle of vibration, that is, the system
damping dissipation. Through calculation, the area of the hysteresis loop in Figure 3f
is also 0.018, which means that the energy lost by air damping during the self-vibration
is compensated for by the work done by the tension of the LCE strings. Therefore, the
self-vibration of the LCE string–mass system can be sustained.

4. Parametric Study

In this section, we quantitatively investigate the effects of system parameters such as
light intensity, contraction coefficient, elastic coefficient, initial velocity, damping coefficient
and width of shade on the amplitude A and frequency F of the self-vibration of the LCE
string–mass system.

4.1. Effect of the Light Intensity

The light intensity influencing the self-vibration of the LCE string–mass system is
investigated in this section. In this case, the values of the other parameters are C = 0.25,
K = 2, v0 = 0.2, β = 0.1 and δ = 0.2. Figure 5a plots the limit cycles of self-vibration
for I = 0.4, I = 0.5 and I = 0.6. The horizontal width of the limit cycle represents the
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amplitude of the self-vibration, and the vertical height of the limit cycle indicates the
velocity of the self-vibration. It can be seen from Figure 5a that the limit cycle is the largest
for I = 0.6, which indicates that the amplitude and kinetic energy of the self-vibration
are largest in this case. Figure 5b shows the effect of the light intensity on amplitude and
frequency. When the light intensity is below 0.396, the LCE strings cannot absorb enough
light energy to offset the damping dissipation, and therefore cannot maintain continuous
motion, thus entering a static state. When the light intensity is higher than 0.396, the LCE
strings are able to absorb enough light energy to offset the damping dissipation and thus
maintain a continuous stable vibration, i.e., the self-vibration regime. In the regime of
self-vibration, the amplitude and frequency increase with the increase in light intensity.
This is because the higher the light intensity, the greater the contraction and the greater the
tension of the string. The greater tension is able to do more work on the system, producing
more kinetic energy and thus a greater amplitude. The above results show that increasing
the light intensity can make the light-driven system absorb more energy to achieve a larger
amplitude, which is consistent with the current findings [3].
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4.2. Effect of the Contraction Coefficient of LCE

This section presents a discussion on the effect of the contraction coefficient on the
self-vibration of the LCE strings. Here, the values of the other parameters are I = 0.5, K = 2,
v0 = 0.2, β = 0.1 and δ = 0.2. Figure 6a plots the limit cycles of the self-vibration of the LCE
string–mass system with different contraction coefficients. It can be observed from Figure 6a
that the limit cycle with a larger contraction coefficient completely wraps the limit cycle
with a smaller contraction coefficient, indicating that the larger the contraction coefficient,
the larger the energy of the LCE string–mass system, and thus the larger the amplitude
and kinetic energy. It can be seen from Figure 6b that the amplitude and frequency of the
self-vibration change with the change of the contraction coefficient. When the contraction
coefficient is less than 0.212, the system is in the static regime. On the contrary, when
the contraction coefficient is greater than 0.212, the system is in the self-vibration regime.
With the increase in the contraction coefficient, the amplitude and frequency also increase.
The reason for this phenomenon is similar to the reason for the effect of light intensity on
self-vibration: when the contraction coefficient is small, the LCE strings absorb insufficient
light energy when they are in the illumination zone, and cannot obtain enough energy to
compensate for the damping dissipation, so that the system eventually moves to the static
regime. When the contraction coefficient is large, the LCE strings absorb enough energy in
the illumination zone and have enough energy to compensate for the damping dissipation
of the system, so as to maintain the self-vibration. As the contraction coefficient continues
to increase, the light energy absorbed by the LCE strings further increases, and so does
the amplitude.
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4.3. Effect of the Elastic Coefficient of LCE

This section provides the influence of the elastic coefficient of the LCE strings on the
self-vibration for I = 0.5, C = 0.25, v0 = 0.2, β = 0.1 and δ = 0.2. Figure 7a shows the
limit cycle for different elastic coefficients of the LCE strings. When the elastic coefficient is
less than 1.627, the phase trajectory diagram of the self-vibration is a fixed point, which
indicates that the system is in the static regime. This is because when the elastic coefficient
is small, the tension generated by the LCE strings in the illumination zone is small, which
cannot provide enough elastic potential energy to compensate for the damping dissipation
of the system, so the system finally reaches a static state. It can be seen from Figure 7b
that the elastic coefficient has a significant influence on the amplitude and frequency of the
self-vibration. With the increase in the elastic coefficient, the amplitude and frequency of
the self-vibration increase. This is because as the elastic coefficient increases, the elastic force
generated by the LCE strings increases, the elastic potential energy that the system is able
to convert into kinetic energy increases, and therefore the amplitude of the self-vibration
increases. Therefore, in the design of a tension system based on LCEs, it is key to select the
appropriate elastic coefficient to obtain better performance.
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Figure 8. The effect of initial velocity on the self-vibration. (a) Limit cycles with 1.00 =v , 2.00 =v  
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Figure 7. The effect of elastic coefficient on the self-vibration. (a) Limit cycles with K = 2, K = 3 and
K = 4 (b) Variations of amplitude and frequency with different elastic coefficients. The larger the
elastic coefficient, the larger the amplitude and frequency of self-vibration.

4.4. Effect of the Initial Velocity

This section mainly focuses on the effect of initial velocity on the self-vibration of the
LCE string–mass system, with parameters I = 0.5, C = 0.25, K = 2, β = 0.1 and δ = 0.2.
It can be observed from Figure 8a that the self-vibration can be successfully triggered at
v0 = 0.1, v0 = 0.2 and v0 = 0.3. It is worth mentioning that the limit cycles at different
velocities coincide completely. Figure 8b plots the relationship between the initial velocity
and the amplitude and frequency of the self-vibration. It can be seen from Figure 8b that
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when the initial velocity is less than 0.066, the system is in the static regime, because the
low initial velocity cannot allow the LCE strings to reach the illumination zone to absorb
enough light energy, and it finally reaches the static regime. When the initial velocity is
greater than 0.066, the system is in the self-vibration regime and the final amplitude and
frequency are not affected. This is because the amplitude of the self-vibration depends
on the energy conversion between the work done by the LCE strings and the damping
dissipation, which belongs to the internal characteristics of the system, and the initial
velocity does not affect the energy conversion of the system, so the amplitude does not
change. Compared with other parameters, the initial velocity is more like a switch that
triggers the self-vibration, which is responsible only for activating the system and does not
affect the inherent characteristics of the system such as amplitude and frequency, which is
in agreement with the results of existing studies [59].
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Figure 8. The effect of initial velocity on the self-vibration. (a) Limit cycles with v0 = 0.1, v0 = 0.2
and v0 = 0.3. (b) Variations of amplitude and frequency with different initial velocities. The initial
velocity has no effect on the amplitude and frequency of self-vibration.

4.5. Effect of the Damping Coefficient

This section mainly studies the damping coefficient on the self-vibration of the LCE
string–mass system. In the calculation, we set I = 0.5, C = 0.25, K = 2, v0 = 0.2 and
δ = 0.2. The damping coefficient has a significant effect on the regime and amplitude of the
system, as shown in Figure 9. Figure 9a draws the limit cycles for β = 0.06, β = 0.08 and
β = 0.1. It can be seen from Figure 9a that the smaller the damping coefficient is, the larger
the limit cycle is. It can be seen from Figure 9b that there is a critical value between the
static regime and the self-vibration regime. The system is in the static regime for β > 0.113,
while the system is in the self-vibration regime for β < 0.113. In addition, it can be seen
from Figure 9b that the smaller the damping coefficient is, the larger the amplitude and
frequency of the self-vibration are. This can be explained in terms of energy compensation.
The greater the damping coefficient, the greater the damping force of the system, which
hinders the movement of the system and makes the LCE strings unable to reach the
illuminated zone to absorb light energy. The energy of the system decreases continuously
due to damping dissipation, so the system eventually reaches a static state. On the contrary,
the smaller the damping coefficient, the smaller the damping dissipation of the system and
the larger the converted kinetic energy, and thus the amplitude increases. Therefore, how
to reduce the damping dissipation of the system through reasonable structural design is an
important challenge.
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Figure 9. The effect of the damping coefficient on the self-vibration. (a) Limit cycles with β = 0.06,
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4.6. Effect of the Width of Shade

The effect of the width of shade on the self-vibration is discussed in the current section.
In this case, the other dimensionless parameters are selected as I = 0.5, C = 0.25, K = 2,
v0 = 0.2 and β = 0.1. It is not difficult to find that the width of shade affects the motion
regime of the system. Figure 10a plots the limit cycle with different widths of shade. It
can be seen from Figure 10b that there is a critical value between the static regime and the
self-vibration regime. When the width of shade is greater than 0.272, the system cannot
reach the illumination zone to absorb light energy, the initial kinetic energy is constantly
consumed and finally the system reaches the static state. When the shadow width is less
than 0.272, the system can reach the illumination to absorb light energy to compensate
for the damping dissipation, so it can continue stable vibration, namely, the self-vibration
regime. Figure 10b shows that, in the self-vibration regime, the amplitude of the system
increases with the increase in the width of shade. This is because when the width of shade
is small, the LCE strings soon enter the illumination zone, the elastic force of the LCE
strings rapidly increases and inhibits the further displacement of the mass block, and thus
the amplitude of the self-vibration is small. On the other hand, when the width of shade is
large, there is larger displacement before the LCE strings enter the illumination zone, so
that the whole amplitude of the self-vibration is larger.
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5. Conclusions

The self-vibration system can directly absorb energy from the steady external envi-
ronment to maintain its continuous motion without external periodic stimuli, which has
great application prospects in the fields of autonomous robotics, energy harvesting and
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bionic devices. Traditional self-vibration systems have the defects of complex structure,
difficult manufacturing and poor controllability, so there is a great necessity to construct
new self-vibration systems. In this paper, we construct a new self-vibration system, which
consists of two LCE strings and a mass block, and it can achieve continuous and stable
vibration under steady illumination. Based on the dynamic LCE model and linear elastic
model, the theoretical model of self-vibration of the LCE string–mass system is established
and the corresponding governing equations are derived. Based on the results of numerical
simulations, two motion regimes of the LCE string–mass system, namely the static regime
and self-vibration regime, are described, and the energy compensation mechanism of the
self-vibration is revealed. In addition, the effects of the system parameters on the amplitude
and frequency of the self-vibration are quantitatively discussed. The results show that
the amplitude and frequency of the system increase with the increase in light intensity,
contraction coefficient and elastic coefficient. By adjusting these coefficients, it is expected
that faster, more powerful active machines can be realized. The damping coefficient inhibits
the amplitude and frequency of the self-vibration, while the initial velocity does not affect
the amplitude and frequency of the self-vibration regimes. Meanwhile, the values of the
parameters can also determine the motion modes of the system, and there are critical values
between the self-vibrating and static modes. In addition, future goals are to increase the
credibility of our findings through experiments, as well as to build more active machines
based on active materials and to realize their applications in fields such as energy harvest-
ing, artificial muscles and autonomous robotics. The research in this paper deepens the
understanding of self-vibration systems and helps to design new self-vibration systems.
Meanwhile, the LCE string–mass system proposed in this paper has the advantages of
simple structure, easy control and customizable size, and has the prospect of application in
the field of autonomous robots and bionic instruments.
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Abstract: A new type of self-oscillating system has been developed with the potential to expand
its applications in fields such as biomedical engineering, advanced robotics, rescue operations, and
military industries. This system is capable of sustaining its own motion by absorbing energy from the
stable external environment without the need for an additional controller. The existing self-sustained
oscillatory systems are relatively complex in structure and difficult to fabricate and control, thus
limited in their implementation in practical and complex scenarios. In this paper, we creatively
propose a novel light-powered liquid crystal elastomer (LCE) fiber-cantilever system that can perform
self-sustained oscillation under steady illumination. Considering the well-established LCE dynamic
model, beam theory, and deflection formula, the control equations for the self-oscillating system are
derived to theoretically study the dynamics of self-vibration. The LCE fiber-cantilever system under
steady illumination is found to exhibit two motion regimes, namely, the static and self-vibration
regimes. The positive work done by the tension of the light-powered LCE fiber provides some
compensation against the structural resistance from cantilever and the air damping. In addition, the
influences of system parameters on self-vibration amplitude and frequency are also studied. The
newly constructed light-powered LCE fiber-cantilever system in this paper has a simple structure,
easy assembly/disassembly, easy preparation, and strong expandability as a one-dimensional fiber-
based system. It is expected to meet the application requirements of practical complex scenarios and
has important application value in fields such as autonomous robots, energy harvesters, autonomous
separators, sensors, mechanical logic devices, and biomimetic design.

Keywords: self-vibration; liquid crystal elastomer; light-powered; fiber-cantilever

1. Introduction

Self-excited oscillation refers to a recurring oscillatory phenomenon that arises from
external steady excitations. Conventional mechanical oscillation is usually subjected to peri-
odic external stimulus that generates periodic forced motion in time and space. In contrast
to forced oscillation, self-oscillation can actively adjust its own motion, provide feedback in
response to steady external stimulus, and obtain regular energy to maintain its periodic
motion [1–4]. Self-oscillation can not only obtain energy directly and independently from
the external environment to maintain its own motion mode, but also its vibration frequency
and amplitude depend only on the inherent parameters of the structure. It does not require
other complex controllers to achieve periodic oscillation [5,6], so from the perspective of
dynamics theory, self-oscillation is of great significance for understanding new behaviors
such as bifurcation, chaos, synchronization, and other non-equilibrium dynamics in non-
linear systems. It is a typical non-equilibrium dynamical process in nonlinear systems [7].
Self-oscillating systems have broad application prospects and revolutionary impact on
autonomous robots [8–12], energy harvesters [13,14], independent separators, sensors [15],
mechanical logic devices [16], and biomimetic design.

In recent years, active materials such as hydrogels [17,18], dielectric elastomers [19],
ion gels [20], and thermally responsive polymer materials [21] have exhibited different
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responses under different stimulus conditions. These responses generally change the
morphology and motion state of the active materials themselves. People have estab-
lished various self-oscillating systems and multiple self-sustained motion modes using the
properties of active materials, including bending [22–24], swimming [25], swinging [26],
rolling [2,9,10,27], rotating [28,29], twisting [30,31], vibration [6], and even synchronized
motion of several coupled self-oscillators [32,33]. In general, in all dynamic systems, there
is energy dissipation [34], and in practical environments, the vibrations tend to approach
an equilibrium state. Therefore, designing different types of self-oscillating systems is
a challenging process. In a constant environment, how to enable the system to absorb
energy autonomously, compensate for the damping dissipation, and maintain periodic
motion is the key to realize self-oscillation. A large number of self-excited oscillatory
systems have been established based on various feedback mechanisms. These different
feedback mechanisms typically lead to different self-sustained motion modes, such as
self-shadowing [35–37], coupling of liquid evaporation and membrane deformation [38],
coupling mechanism of air expansion and liquid column motion [39], and coupling of plate
bending and chemical reaction [40], all of which can cause self-excited oscillations.

The advantages of light in various stimuli are its sustainability, accuracy, controllability [41,42],
and non-contact. Optically-responsive materials that can convert near-infrared and visible
light into thermal energy, such as carbon nanotubes, graphene, and liquid crystal elas-
tomers (LCEs) [43–48] have good photomechanical effects [49–54]. Among them, LCEs are
important optically responsive materials, synthesized from anisotropic rod-shaped liquid
crystal molecules and stretchable long-chain polymers. When liquid crystal monomers are
subjected to external stimuli such as light, heat, electricity, and magnetism, they will rotate
or undergo phase transitions, thereby changing their configuration and generating macro-
scopic deformation [55,56]. LCEs typically offer advantages of large deformation, fast de-
formation response, recoverable deformation, low noise, easy remote control, and easy ma-
nipulation. Based on LCEs, photomechanical effects have been utilized to build various self-
sustained oscillatory systems, including but not limited to shuttling [57], bending [58], rota-
tion [29,30,55], spinning [59], curling [60], oscillating [61,62], buckling [63–65], rolling [28],
floating [66], twisting [67], vibration [68], swimming [25], chaos [69], and even several
synchronous motions coupled with self-excited oscillations [2,27,34]. These LCE-based
self-sustained oscillatory systems have attracted much attention in both fundamental and
applied research [55,70–72].

Although a large number of self-sustained oscillatory systems have been constructed,
these systems generally have complex structures, are difficult to manufacture and control,
and may not meet the requirements of complex practical applications. In this article, we
propose a novel and simple LCE fiber-cantilever system that exhibits self-sustained oscil-
lation under steady illumination and essentially functions as a “self-shadowing” system.
Compared to previous self-oscillating systems such as balls [66] and tubes [42], the structure
of one-dimensional fiber is relatively simple, making it easy to assemble and disassem-
ble. It should also be noted that the proposed LCE fiber-cantilever system may exhibit a
dependence on the angle of illumination in practice. Furthermore, the system is highly
extensible, holding potential for constructing more complex LCE fiber-based systems to
achieve advanced self-sustained motions. The objective of this research is to build the
LCE fiber-cantilever system and investigate its self-oscillation characteristics under stable
illumination. Meanwhile, we discuss the underlying mechanisms of self-oscillation and
systematically explore the impacts of various physical and geometric parameters on the
system’s amplitude and frequency.

The organization of this paper is as follows. First, in Section 2, considering the dynamic
LCE model and beam theory, the theoretical model and control equations for the LCE fiber-
cantilever system are established. Then, in Section 3, two motion regimes of the LCE
fiber-cantilever system are obtained by numerical calculations, and the mechanism of its
self-vibration is explained in detail. Next, in Section 4, the influences of various system
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parameters on the amplitude and frequency of self-vibration are discussed in detail. Finally,
the results are summarized.

2. Theoretical Model and Formulation

In this section, we first propose a light-powered self-oscillation system containing an
LCE fiber, an oblique bending cantilever, and a mass block. Then, we present a theoretical
model for the self-oscillation system based on the dynamic LCE model [8] and beam
theory [73]. The dynamic control equations of the system, the evolution law of the cis
number fraction in LCE, and the nondimensionalization of the system parameters are then
given in turn.

2.1. Dynamics of System

Figure 1 schematically describes the proposed LCE fiber-cantilever system, in which
an LCE fiber, a lightweight cantilever beam and a mass block are included. The lightweight
cantilever of length LB at an angle θ from the horizontal, is fixed on a vertical rigid base.
The mass block with mass m at the cantilever end is connected by the LCE fiber fixed on
another vertical rigid base to form a tension string system. The bending effect of gravity on
the cantilever can be ignored as it is much smaller than other forces. Both the torsion and
displacement of the cantilever along the length are small, so the mass block is assumed to
move in a plane. We take the initial position of the mass block as the origin of the coordinate
system and establish the coordinate axis along the direction of cantilever deflection. The
initial length of LCE fiber is L0. In addition, the masses of the LCE fiber and the cantilever
are much less than the mass m, so they are neglected.
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Figure 1. Schematic of an LCE fiber-cantilever system containing an LCE fiber, a lightweight cantilever
beam, and a mass block: (a) Reference state; (b) Current state; (c) Force analysis. FL denotes the
tension of the LCE fiber, FB represents the force exerted by the beam on the mass block, FD represents
the air damping force, γ is the angle between the cantilever deflection and the horizontal direction,
and θ is the inclined angle of cantilever.

The system is placed under steady illumination as shown in Figure 1b, with the yellow
region representing the illumination zone with a height of δ. Generally, chromophores
in the LCE fiber upon illumination undergo series of trans-cis-trans isomerization cycles
ending up in the change of the orientation of the trans-isomer long axis [74]. In case of
non-polarized light illumination, the long axes orient towards the illumination direction,
while in case of illumination with polarized light, the long axes orient perpendicular to
the light polarization, because of the direction-dependent absorption of the chromophore.
These changes can change the order parameter of the LCE and lead in some geometries to
contraction of the fiber. As the LCE fiber contracts, the cantilever bends further into the
dark zone. When the LCE fiber is in the dark, the azobenzene molecules in it switch from cis
to trans, causing the light-driven contraction of the LCE fiber to recover. Subsequently, the
tension of the LCE fiber decreases andthe cantilever returns to the illumination zone due
to the structural resistance. Through the proper adjustment of the system parameters and
initial conditions, the LCE fiber-cantilever system can maintain continuous self-oscillation.

The mass block is subjected to the tension of LCE fiber, the structural resistance form
cantilever, and the air damping force, as depicted in Figure 1c. In the deflection direction,
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the control equation for the nonlinear dynamics model of mass block can be expressed
as follows:

m
..
w = FL · cos γ− FB − FD (1)

where
..
w refers to the acceleration of the mass block, FL denotes the tension of the LCE fiber,

FB represents the force exerted by the beam on the mass block, FD represents the air damp-
ing force, and γ is the angle between the cantilever deflection and the horizontal direction.

Through the beam deflection theory, the moment of inertia formula, and the trigono-
metric function, it can be calculated γ = arctan[r2 tan θ]− θ, where r refers to the ratio of
cantilever height to width.

The tension of LCE fiber is related to its elongation and cross-sectional area, which can
be described as

FL =
EL AL · ∆L

L
=

EL AL{[L0 + 2w(t) · cos γ]− L0[1 + εL(t)]}
L0[1 + εL(t)]

(2)

where FL refers to the elastic modulus of the LCE fiber, AL refers to the cross-sectional area
of the LCE fiber, L0 is the original length of LCE fiber, w(t) represents the cantilever-end
deflection, i.e., the displacement of the mass block, and εL(t) represents the light-driven
contraction strain of LCE fiber.

It is assumed that the cantilever beam is always in a state of small deformation, while
the theory of linear elasticity is applied, thus the structural resistance from cantilever is
proportional to the displacement, that is

FB =
3EB IB

L3
B
· w(t) (3)

where LB is the cantilever length, EB IB is the bending stiffness of the cantilever.
The damping force is assumed to be linearly proportional to the velocity of the mass

block, with the formula being
FD = β · .

w(t) (4)

where β denotes the air damping coefficient and
.

w is the velocity of the mass block.
Thus far, substituting Equations (2)–(4) into Equation (1), we have

m
d2w(t)

dt2 = EL AL · cos γ · {[L0 + 2w(t) · cos γ]− L0[1 + εL(t)]}
L0[1 + εL(t)]

. (5)

2.2. Dynamic LCE Model

This section mainly describes the dynamic model of the light-driven contraction in
LCE fiber. The fiber radius is assumed to be much smaller than the penetration depth of
light, and no absorption gradient within the fiber is considered. The LCE fiber-cantilever
system uses a linear model, which is adopted to describe the relationship between the cis
number fraction ϕ(t) in LCE and the light-driven contraction of LCE, that is

εL = −C0 · ϕ(t) (6)

where C0 is the contraction coefficient.
The light-driven contraction in LCE depend on the cis number fraction ϕ(t) [75,76].

The study by Yu et al. found that the trans-to-cis isomerization of LCE could be induced by
UV or laser with wavelength less than 400 nm [77]. In this study, a ‘push-pull’ mechanism
is considered to calculate the cis number fraction [76]. The number fraction ϕ(t) of the cis-
isomer depends on the thermal excitation from trans to cis, the thermally driven relaxation
from cis to trans, and the light driven relaxation from trans to cis. Supposing that the thermal
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excitation from trans to cis can be ignored, the governing equation for the evolution of the
cis number fraction can be formulated as

∂ϕ

∂t
= η0 I0(1− ϕ)− ϕ

T0
(7)

where T0 refers to the thermally driven relaxation time from the cis to trans, I0 denotes
the light intensity, and η0 is the light absorption constant. By solving Equation (7), the cis
number fraction can be described as

ϕ(t) =
η0T0 I0

η0T0 I0 + 1
+ (ϕ0 −

η0T0 I0

η0T0 I0 + 1
) exp[− t

T0
(η0T0 I0 + 1)] (8)

where ϕ0 represents the initial cis number fraction at t = 0.
In illuminated state, for initially zero-number fraction, i.e., ϕ0 = 0, Equation (8) can be

simplified as

ϕ(t) =
η0T0 I0

η0T0 I0 + 1
{1− exp[− t

T0
(η0T0 I0 + 1)]} (9)

In non-illuminated state, namely I0 = 0, Equation (8) can be simplified as

ϕ(t) = ϕ0 exp(− t
T0

) (10)

where the undetermined ϕ0 can be set to be the maximum value of ϕ(t) in Equation (9),
namely, ϕ0 = η0T0 I0

η0T0 I0+1 . Then Equation (10) can be rewritten as

ϕ(t) =
η0T0 I0

η0T0 I0 + 1
exp(− t

T0
) (11)

2.3. Nondimensionalization

We introduce the following dimensionless quantities by defining: w = w
L0

, initial

velocity
.

w0 = T0
.

w0
L0

, t = t
T0

, spring constant KL =
EL AT2

0
mL0

, flexural stiffness KB =
3EB IBT2

0
mL3

B
,

β = βT0
m , I0 = η0T0 I0, δ = δ

L0
, and ϕ = ϕ(η0T0 I0+1)

η0T0 I0
, to simplify the governing equations

Equations (5) and (9)–(11).
The dimensionless form of Equation (5) can be expressed as

..
w(t) = KL · cos γ · [ 1

1− C0 · ϕ(t)
+

w(t) · cos γ

1− C0 · ϕ(t)
− 1]− KB · w(t)− β · .

w(t) (12)

In illuminated state, Equation (9) can be rewritten as

ϕ = 1− exp[−t(I0 + 1)] (13)

and in non-illuminated state, Equation (11) becomes

ϕ = exp(−t) (14)

Equations (12)–(14) are utilized to regulate the self-vibration of the LCE fiber-cantilever
system in the presence of steady illumination. These equations involve a time-varying
fractional quantity associated with the cis isomer and closely linked to the light intensity.
To solve these intricate linear equations, the fourth-order Runge–Kutta method is employed
for numerical computations using the Matlab software. Moreover, Equations (13) and (14)
are employed to determine the cis number fraction ϕ and time length t, enabling the
calculation of tension FL, air damping force FD, and structural resistance FB of the LCE
fiber. By iterating calculation with given parameters

.
w0, KL, KB, β, I0, C0, θ, r, and δ, the

dynamics of the LCE fiber-cantilever system can be obtained.
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3. Two Motion Regimes and Mechanism of Self-Vibration

In this section, through solving the control equation Equation (12), we first propose two
typical motion regimes of the LCE fiber-cantilever system, which are distinguished as static
regime and self-vibration regime. Next, the corresponding mechanism of self-vibration is
elaborated in detail.

3.1. Two Motion Regimes

In order to further study the self-vibration behavior of the LCE fiber-cantilever system,
we first need to determine the typical values for the dimensionless system parameters.
Based on the existing experiments and information [78–80], Table 1 gathers the typical val-
ues of the system parameters required in current paper. The corresponding dimensionless
parameters are listed in Table 2. In the following section, these values of parameters are
used to study the self-vibration of the LCE fiber-cantilever system under steady illumina-
tion. It is worth noting that the small deformation hypothesis can be verified under these
given parameters.

Table 1. Material properties and geometric parameters.

Parameter Definition Value Unit

I0 Light intensity 0~10 kW/m2

C0 Contraction coefficient 0~0.5 /

KL Spring constant 0.1~1 N/m

KB Flexural stiffness 0.3~3 N/m

β Damping coefficient 0~0.001 kg/s

w0 Initial velocity 0~0.5 mm/s

δ Height of illumination zone 0~0.1 m

r Ratio of cantilever height to width 1~20 /

θ Inclined angle of cantilever 0~1.2 rad

T0 Cis- to trans- thermal relaxation time 1~100 ms

η0 Light-absorption constant 0.001 m2/(s·W)

Table 2. Dimensionless parameters.

Parameter I0 C0 KL KB β
.

w0 δ r θ

Value 0~1 0~0.5 0~1.2 0~1 0~0.2 0~5 0~0.1 1~20 0~ π
2

By solving Equations (12)–(14), the time histories and phase trajectories for the LCE
fiber-cantilever system can be obtained, with examples for I0 = 0.25 and I0 = 0.5 shown
in Figure 2. The other parameters used in the calculation are set as C0 = 0.25, KL = 0.2,
KB = 0.7, β = 0.02,

.
w0 = 0, δ = 0.03, r = 2 and θ = π

4 . In Figure 2a,b, the amplitude of the
cantilever-end deflection gradually decreases with time due to the damping dissipation,
and the system eventually reaches a stationary position at equilibrium, which is referred
to as the static regime. In contrast, Figure 2c,d show that the system initially vibrates
from a static equilibrium position and then progressively increases in vibration amplitude
over time until it remains constant. On exposure to steady illumination, the LCE fiber-
cantilever system eventually presents a continuous periodic vibration, which we refer to as
the self-vibration regime.
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Figure 2. Two typical motion regimes of the LCE fiber-cantilever system under steady illumination:
static regime and self-vibration regime. (a) Time-history curve of the displacement with I0 = 0.25;
(b) Phase trajectory diagram with I0 = 0.25; (c) Time-history curve of the displacement with I0 = 0.5
and (d) Phase trajectory diagram with I0 = 0.5.

3.2. Mechanism of the Self-Vibration

In this section, the mechanism of self-vibration will be explained in detail. To better
understand the energy compensation mechanism of the LCE fiber-cantilever system, we
plot the relationship curves for some key physical quantities in the self-vibration process.
In this case, the system parameters are selected as I0 = 0.5, C0 = 0.25, KL = 0.25, KB = 0.7,
β = 0.02,

.
w0 = 0, δ = 0.03, r = 2, and θ = π

4 . Figure 3a illustrates the cantilever-end
deflection over time, with the yellow area indicating that the LCE fiber is in the illumination
zone. As the system vibrates continuously, the LCE fiber also oscillates back and forth
between the illumination and dark zones, and the change in the cis number fraction ϕ
over time is drawn in Figure 3b. It is clearly observed that as the illumination condition
changes, the cis number fraction changes rapidly at first and then slowly approaches a
critical value determined by the contraction coefficient C0. In addition, Figure 4 illustrates
several characteristic snapshots for the self-vibration of the LCE fiber-cantilever system
during one cycle under steady illumination.

Figure 3c presents the periodic time variation of the tension of the LCE fiber. The
tension decreases first and then increases in the illumination zone, while the opposite
is true in the dark zone. The hysteresis loop shown in Figure 3d indicates that the LCE
fiber-cantilever system maintains its oscillation as the LCE fiber absorbs light energy and
does work. The area enclosed by the loop represents the net work done by the tension
of the LCE fiber in one cycle, with a value of approximately 0.0029. Like the tension of
the LCE fiber, it is clear from Figure 3e that the damping force also presents a periodic
time variation. Figure 3f plots the dependence of the damping force on the cantilever-end
deflection, which also forms a closed loop representing the damping dissipation, with a
value being calculated to be about 0.0029. The net work done by the tension of LCE fiber is
exactly equal to the damping dissipation, implying that the energy consumed by the system
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motion is compensated by the light energy absorbed by the LCE fiber, thus maintaining
the self-vibration.
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4. Parametric Study

In the mechanical model of the self-vibration for the LCE fiber-cantilever system
described above, there are nine dimensionless system parameters: I0, C0, KL, KB, β,

.
w0,

δ, r, and θ. In this section, we investigate in detail the effects of these system parameters
on the self-vibration of the LCE fiber-cantilever system, including its frequency and am-
plitude. The dimensionless self-vibration frequency and amplitude are denoted by f and
A, respectively.

4.1. Effect of Light Intensity

The effect of light intensity on the self-vibration is discussed in current subsection. In
this case, the values of the other parameters are, C0 = 0.25, KL = 0.25, KB = 0.7, β = 0.02,
.

w0 = 0, δ = 0.03, r = 2, and θ = π
4 . The limit cycles of the self-vibration are depicted in

Figure 5a, where I0 = 0.39 is the critical value of light intensity between the static and
self-vibration regimes. When the light intensity is below 0.39, the system is in static regime,
while above 0.39, the system is in self-vibration regime. When the light intensity is relatively
small, the LCE fiber does not absorb enough light energy to offset the damping dissipation,
thus it cannot maintain its continuous motion and comes to rest. Conversely, when the
light intensity is large enough, the light energy absorbed by the system can compensate
for the damping dissipation, so as to maintain its own motion. Figure 5b describes the
effect of light intensity on the self-vibration amplitude and frequency. With the increasing
light intensity, the amplitude increases, while the frequency remains essentially constant.
Larger light intensity allows the system to absorb more light energy, thereby maintaining
oscillation with higher amplitude. These results suggest that increasing the light intensity
is crucial for improving the energy utilization efficiency of the LCE fiber-cantilever system.
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4.2. Effect of Contraction Coefficient

This subsection mainly discusses the effect of contraction coefficient on the self-
vibration. Here, the values of the other parameters are I0 = 0.5, KL = 0.25, KB = 0.7,
β = 0.02,

.
w0 = 0, δ = 0.03, r = 2, and θ = π

4 . Figure 6a plots the limit cycles for different
contraction coefficients. Obviously, there exists a critical value for contraction coefficient to
trigger the self-vibration, which is numerically determined to be 0.207. A small contraction
coefficient means a low light energy input, and there is not enough energy to compensate
for the damping dissipation. For C0 = 0.25, C0 = 0.35, and C0 = 0.45, the self-vibration
can be triggered. Figure 6b presents the dependencies of the self-vibration amplitude and
frequency on the contraction coefficient. The larger the contraction coefficient, the higher
the amplitude. As the contraction coefficient increases, the LCE fiber makes more efficient
use of the illumination, absorbs more light energy, and shifts the system from a static regime
to a self-vibration regime, resulting in an increase in the amplitude. The result implies that
increasing the contraction coefficient of LCE material can improve the efficient conversion
of light energy to mechanical energy.
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4.3. Effect of Spring Constant

This subsection mainly focuses on the effect of spring constant on the self-vibration.
In this case, the values of the other parameters are I0 = 0.5, C0 = 0.25, KB = 0.7, β = 0.02,
.

w0 = 0, δ = 0.03, r = 2, and θ = π
4 . Figure 7a displays the limit cycles for different spring

constants, among which two critical spring constants exist for triggering the self-vibration.
It is clear to see that the system is in the static regime when the spring constant is below
0.214 or above 0.951. This can be explained by the relationship between the spring constant
and the tension of the LCE fiber. When the spring constant is small, the tension of the LCE
fiber is small, which is not enough to force the system to remain in oscillation. When the
spring constant is large, the tension of the LCE fiber can be equal to the structural resistance,
thus allowing the whole system to equilibrate the forces and reach a static regime. Figure 7b
illustrates that the spring constant has a significant effect on the amplitude and frequency
of the self-vibration. As the spring constant increases, the amplitude increases, while the
frequency decreases. This is because the spring constant determines the driving force of
the system, which in turn affects the oscillatory behavior of the system. Therefore, when
we design the LCE fiber-cantilever system, the adjustment of the spring constant can be
used to control its amplitude and frequency to achieve better performance. For example,
in some robotic applications, the LCE fiber-cantilever system is required to realize stable
motion or grasp an object, we can select the appropriate spring constant according to the
desired motion mode and the weight of the object, so as to keep the system stable and have
good accuracy during operation. In addition, when designing suspended structures or
other oscillatory systems, the amplitude and frequency can also be controlled according to
the variation of the spring constant to achieve better performance.
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4.4. Effect of Flexural Stiffness

The influence of flexural stiffness on the self-vibration is provided for I0 = 0.5,
C0 = 0.25, KL = 0.25, β = 0.02,

.
w0 = 0, δ = 0.03, r = 2, and θ = π

4 . The limit
cycles for different flexural stiffnesses are drawn in Figure 8a. The flexural stiffness has
two critical values for the transition between the static and self-vibration regimes, which
are numerically calculated to be around 0.19 and 0.81. When the flexural stiffness is
small, the structural resistance of the cantilever is small, and the net work done by the
tension of the LCE fiber is not sufficient to maintain the self-vibration. When the flexural
stiffness is large, the structural resistance from the cantilever is so great that the tension
of the LCE fiber cannot drive the system to oscillate. Figure 8b plots the variations of
self-vibration amplitude and frequency with different flexural stiffnesses. As the flexural
stiffness increases, the amplitude decreases, while the frequency increases. This can be
explained by the beam theory, where the greater the flexural stiffness of the beam, the
greater the recovery force on the beam, thus preventing further bending of the beam. As a
result, the amplitude decreases. Therefore, to improve the system stability, it is a good way
to choose the appropriate flexural stiffness of the beam.
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4.5. Effect of Damping Coefficient

Figure 9 presents the influence of damping coefficient on the self-vibration, with
parameters I0 = 0.5, C0 = 0.25, KL = 0.25, KB = 0.7,

.
w0 = 0, δ = 0.03, r = 2, and

θ = π
4 . The limit cycles for different damping coefficients can be observed in Figure 9a. It

is not difficult to find that the variation of damping coefficient does not affect the motion
regime of the LCE fiber-cantilever system. For different damping coefficients, the system
is always in a self-vibration regime. The dependencies of the self-vibration amplitude
and frequency on the damping coefficient are depicted in Figure 9b. With the increase
of damping coefficient, the amplitude decreases sharply and then slowly, presenting the
characteristics of an exponential function. In contrast, changes in the damping coefficient
have little effect on the frequency. This suggests that the damping coefficient plays an
important role in influencing the amplitude and energy level of self-vibration systems.
Proper adjustment of the damping coefficient can control the vibration amplitude and
energy level of the system to ensure the system stability. Moreover, as the damping
coefficient has little effect on the frequency, the damping coefficient and frequency need to
be considered comprehensively during the system design process to obtain the optimal
scheme. These research results not only provide important application value in the field
of engineering design and manufacture, but also provide new ideas and methods for the
in-depth understanding of complex systems.
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4.6. Effect of Initial Velocity

The effect of initial velocity
.

w0 on the self-vibration is displayed in Figure 10, with
other parameters being I0 = 0.5, C0 = 0.25, KL = 0.25, KB = 0.7, β = 0.02, δ = 0.03, r = 2,
and θ = π

4 .
.

w0 = 0,
.

w0 = 0.5, and
.

w0 = 1 are found to successfully trigger the self-vibration,
and the limit cycles are plotted in Figure 10a. It is worth mentioning that the limit cycles
for these three initial velocities overlap. As can be seen in Figure 10b, the variation of
the initial velocity does not affect the amplitude and frequency of the system. Since the
self-vibration results from the energy conversion between the damping dissipation and the
network done by the tension of the LCE fiber, the self-vibration amplitude and frequency
are determined by the internal properties of the system, which is consistent with other
self-vibration systems. The initial velocity therefore has no effect on the final amplitude of
the system.
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.

w0 = 0,
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4.7. Effect of Illumination Zone Height

This subsection presents a discussion on the effect of illumination zone height on the
self-vibration. In the calculation, we set other parameters as I0 = 0.5, C0 = 0.25, KL = 0.25,
KB = 0.7, β = 0.02,

.
w0 = 0, r = 2, and θ = π

4 .As observed from Figure 11a, for the
phase transition between the static and self-vibration regimes, two critical illumination
zone heights exist with values of 0.001 and 0.037, respectively. When the illumination
zone height is less than 0.001 or greater than 0.037, the system is in astatic regime. When
the illumination zone height is within the interval of 0.001 and 0.037, the system is in
a self-vibration regime. The effect of illumination zone height on the amplitude and
frequency is shown in the Figure 11b. Obviously, the amplitude and frequency do not
vary with increasing the illumination zone height. This is contributed to the fact that as
the illumination zone expands, the tension of the LCE fiber increases, and the structural
resistance from cantilever also increases accordingly. Consequently, the system encounters
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greater resistance during self-vibration, resulting in a drop in amplitude. In conclusion,
adjusting the appropriate range of the illumination zone can be more effective in improving
the efficiency of light utilization.
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4.8. Effect of Ratio of Cantilever Height to Width

This subsection mainly discusses how the ratio of cantilever height to width affects
the self-vibration. In this case, the other dimensionless parameters are selected as I0 = 0.5,
C0 = 0.25, KL = 0.25, KB = 0.7, β = 0.02,

.
w0 = 0, δ = 0.03, and θ = π

4 . Figure 12a
shows the three limit cycles for ratios of cantilever height to width of r = 2, r = 4, and
r = 6. The system is in the static regime when the ratio is below 1.48, while it is in the
self-vibration regime when the ratio exceeds 1.48. This is due to the small deflection angle
of the cantilever end when the ratio of cantilever height to width is small. The longitudinal
deflection of the cantilever end is too small for the system to leave the illumination zone, so
the system becomes static. Figure 12b depicts how the ratio of cantilever height to width
affects the self-vibration amplitude and frequency. As the ratio of cantilever height to width
increases, the self-vibration amplitude will first decrease rapidly, and then a marginal effect
occurs, slowing down the reduction rate. At the same time, the self-vibration frequency
will first increase rapidly, and then a marginal effect appears, slowing down its increase.
These findings underscore the significance of meticulous selection of the ratio of cantilever
height to width and suggest that opting for an appropriate ratio can effectively enhance the
efficiency of converting light energy into mechanical energy.
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4.9. Effect of Inclined Angle of Cantilever

The inclined angle of cantilever affecting the self-vibration is investigated in this
subsection, where the other dimensionless parameters are chosen as I0 = 0.5, C0 = 0.25,

210



Polymers 2023, 15, 3397

KL = 0.25, KB = 0.7, β = 0.02,
.

w0 = 0, δ = 0.03, and r = 2. Figure 13a illustrates the
limit cycles for different inclined angles, in which θ = 2π

45 and θ = 123π
360 are the two critical

inclined angles for the phase transition between the static and the self-vibration regimes.
The self-vibration can be triggered with inclined angles of θ = π

6 , θ = π
4 , and θ = π

3 ,
while the system is in the static regime with θ < 2π

45 and θ > 123π
360 . Clearly observed from

Figure 13b that as the inclined angle of cantilever increases, the self-vibration frequency
first increases and then decreases, and conversely the amplitude first decreases and then
increases, indicating that there is an optimal inclined angle for the self-excited oscillation. In
summary, setting an appropriate inclined angle of cantilever can promote the self-vibration.
Too large- or too small- inclined angle of cantilever is not conducive to the self-vibration of
the system.
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complex in structure and difficult to fabricate and control, we creatively propose a novel 
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for the LCE fiber-cantilever system are derived based on the established LCE dynamic 
model, beam theory, and deflection formula. The solutions of the nonlinear control equa-
tions are obtained using the Runge–Kutta numerical calculation method with MATLAB 
software. The results show that the LCE fiber-cantilever system evolves into two motion 
regimes, namely the static and self-vibration regimes. We have described these two mo-
tion regimes specifically and also revealed the energy compensation mechanism of the 
system. In a constant illumination, the positive work done by the tension of the LCE fiber 
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the cantilever beam significantly affect the self-vibration frequency of the system. The il-
lumination zone height has little effect on the amplitude and frequency, and the amplitude 
and frequency are not affected by the initial velocity. The LCE fiber-cantilever system con-
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highly expandable one-dimensional fiber-based system. It is expected to meet the appli-
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5. Conclusions

Self-excited oscillatory systems can maintain continuous motion by absorbing energy
from the stable external environment, and possess potential applications in biomedicine,
advanced robotics, rescue operations, military industry, and other fields. In order to over-
come the disadvantages of existing self-sustained oscillatory systems that are relatively
complex in structure and difficult to fabricate and control, we creatively propose a novel
light-powered LCE fiber-cantilever system composed of an LCE fiber, a lightweight can-
tilever beam, and a mass block under steady illumination. The dynamic control equations
for the LCE fiber-cantilever system are derived based on the established LCE dynamic
model, beam theory, and deflection formula. The solutions of the nonlinear control equa-
tions are obtained using the Runge–Kutta numerical calculation method with MATLAB
software. The results show that the LCE fiber-cantilever system evolves into two motion
regimes, namely the static and self-vibration regimes. We have described these two motion
regimes specifically and also revealed the energy compensation mechanism of the system.
In a constant illumination, the positive work done by the tension of the LCE fiber is used to
compensate for the structural resistance from the cantilever and the air damping, resulting
in the contraction and relaxation.

Further numerical calculations show that the light intensity, contraction coefficient,
spring constant, flexural stiffness, damping coefficient, ratio of cantilever height to width,
and the inclined angle of the cantilever have a considerable effect on the self-vibration
amplitude of the system. The spring constant of the LCE fiber and the flexural stiffness
of the cantilever beam significantly affect the self-vibration frequency of the system. The
illumination zone height has little effect on the amplitude and frequency, and the amplitude
and frequency are not affected by the initial velocity. The LCE fiber-cantilever system
constructed in this paper is a simple, easy-to-assemble and disassemble, easy-to-prepare,
and highly expandable one-dimensional fiber-based system. It is expected to meet the
application requirements of practical complex scenarios and has important application
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sensors, mechanical logic devices, and bionic design.
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