
mdpi.com/journal/mathematics

Special Issue Reprint

Analytical Methods and 
Convergence in Probability 
with Applications, 2nd Edition

Edited by 

Irina Shevtsova and Victor Korolev 



Analytical Methods and Convergence
in Probability with Applications,
2nd Edition





Analytical Methods and Convergence
in Probability with Applications,
2nd Edition

Guest Editors

Irina Shevtsova

Victor Korolev

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Guest Editors

Irina Shevtsova

Moscow State University

Moscow

Russia

Victor Korolev

Moscow State University

Moscow

Russia

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal Mathematics (ISSN

2227-7390), freely accessible at: https://mdpi.com/si/143635.

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-2695-7 (Hbk)

ISBN 978-3-7258-2696-4 (PDF)

https://doi.org/10.3390/books978-3-7258-2696-4

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).



Contents

Vladimir Bening and Victor Korolev

Comparing Compound Poisson Distributions by Deficiency: Continuous-Time Case
Reprinted from: Mathematics 2022, 10, 4712, https://doi.org/10.3390/math10244712 . . . . . . . 1

Vladimir Makarenko and Irina Shevtsova

Delicate Comparison of the Central and Non-Central Lyapunov Ratios with Applications to the
Berry–Esseen Inequality for Compound Poisson Distributions
Reprinted from: Mathematics 2023, 11, 625, https://doi.org/10.3390/math11030625 . . . . . . . . 13

Elena Filichkina and Elena Yarovaya

Branching Random Walks with One Particle Generation Center and Possible Absorption at
Every Point
Reprinted from: Mathematics 2023, 11, 1676, https://doi.org/10.3390/math11071676 . . . . . . . 45

Alexey Kudryavtsev and Oleg Shestakov

Limit Distributions for the Estimates of the Digamma Distribution Parameters Constructed
from a Random Size Sample
Reprinted from: Mathematics 2023, 11, 1778, https://doi.org/10.3390/math11081778 . . . . . . . 61

Alexander G. Tartakovsky

Quick and Complete Convergence in the Law of Large Numbers with Applications to Statistics
Reprinted from: Mathematics 2023, 11, 2687, https://doi.org/10.3390/math11122687 . . . . . . . 74

Victor Korolev

Analytic and Asymptotic Properties of the Generalized Student and Generalized Lomax
Distributions
Reprinted from: Mathematics 2023, 11, 2890, https://doi.org/10.3390/math11132890 . . . . . . . 104

Peiyu Sun, Dehui Wang and Xili Tan

Equivalent Conditions of Complete p-th Moment Convergence for Weighted Sum of ND
Random Variables under Sublinear Expectation Space
Reprinted from: Mathematics 2023, 11, 3494, https://doi.org/10.3390/math11163494 . . . . . . . 131

Leonid Hanin and Lyudmila Pavlova

A Rényi-Type Limit Theorem on Random Sums and the Accuracy of Likelihood-Based
Classification of Random Sequences with Application to Genomics
Reprinted from: Mathematics 2023, 11, 4254, https://doi.org/10.3390/math11204254 . . . . . . . 147

Alexey Kudryavtsev and Oleg Shestakov

Estimates of the Convergence Rate in the Generalized Rényi Theorem with a Structural
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Comparing Compound Poisson Distributions by Deficiency:
Continuous-Time Case
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Abstract: In the paper, we apply a new approach to the comparison of the distributions of sums of
random variables to the case of Poisson random sums. This approach was proposed in our previous
work (Bening, Korolev, 2022) and is based on the concept of statistical deficiency. Here, we introduce
a continuous analog of deficiency. In the case under consideration, by continuous deficiency, we will
mean the difference between the parameter of the Poisson distribution of the number of summands in
a Poisson random sum and that of the compound Poisson distribution providing the desired accuracy
of the normal approximation. This approach is used for the solution of the problem of determination
of the distribution of a separate term in the Poisson sum that provides the least possible value of
the parameter of the Poisson distribution of the number of summands guaranteeing the prescribed
value of the (1 − α)-quantile of the normalized Poisson sum for a given α ∈ (0, 1). This problem is
solved under the condition that possible distributions of random summands possess coinciding first
three moments. The approach under consideration is applied to the collective risk model in order to
determine the distribution of insurance payments providing the least possible time that provides the
prescribed Value-at-Risk. This approach is also used for the problem of comparison of the accuracy of
approximation of the asymptotic (1 − α)-quantile of the sum of independent, identically distributed
random variables with that of the accompanying infinitely divisible distribution.

Keywords: limit theorem; compound Poisson distribution; Poisson random sum; asymptotic
expansion; asymptotic deficiency; kurtosis; accompanying infinitely divisible distribution

MSC: 60E15; 60F05; 60G50; 60G55; 91B05

1. Introduction

This paper is a complement to our previous work [1], where we considered a version
of the problem of stochastic ordering and proposed an approach based on the concept of de-
ficiency that is well-known in asymptotic statistics; see, e.g., [2] and later publications [3–6].
In the paper [1], we used the approach mentioned above in order to establish a kind of
stochastic order for the distributions of sums of independent random variables (r.v.s) based
on the comparison of the number of summands required for the distribution of the sum to
have the desired asymptotic properties (for the problems and methods related to stochastic
ordering, see, e.g., [7]). Here, we apply this approach to the comparison of the distributions
of sums of random variables to the case of Poisson random sums.

In statistics, as well as in [1], the deficiency is measured in integer units and corre-
spondingly has the meaning of either the number of additional observations required for a
statistical procedure to attain the same quality as the ‘optimal’ procedure in statistics or
the number of additional summands in the sum required to attain the desired accuracy of

Mathematics 2022, 10, 4712. https://doi.org/10.3390/math10244712 https://www.mdpi.com/journal/mathematics1
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the normal approximation in [1]. Unlike these cases, in the present paper, we deal with
the compound Poisson distributions and introduce a continuous analog of deficiency. The
extension of the approach proposed in [1] for non-random sums of independent r.v.s to Pois-
son random sums is possible due to the asymptotic normality of the latter as the parameter
of the Poisson distribution of the number of summands infinitely grows. In the case under
consideration, by continuous deficiency, we mean the difference between the parameter
of the Poisson distribution of the number of summands in a Poisson random sum and
that of the compound Poisson distribution providing the desired accuracy of the normal
approximation. This approach is used for the solution of the problem of determination of
the distribution of a separate term in the Poisson sum that provides the least possible value
of the parameter of the Poisson distribution of the number of summands guaranteeing
the prescribed value of the (1 − α)-quantile of the normalized Poisson sum for a given
α ∈ (0, 1).

This problem is solved under the condition that possible distributions of random
summands possess coinciding first three moments. Therefore, we can say that, in this
problem, we deal with ‘fine tuning’ of the distribution of a separate summand since we
assume that different possible distributions of random summands may differ only by their
kurtosis. In the setting under consideration, the best distribution delivers the smallest
value of the parameter of the compounding Poisson distribution. This problem is actually
a particular case of the problem of quantification of the accuracy of approximations of the
compound Poisson distributions provided by limit theorems of probability theory. The
main mathematical tools used in the paper are asymptotic expansions for the compound
Poisson distributions and their quantiles.

The formal setting mentioned above can be applied to solving some practical prob-
lems dealing with the collective risk insurance models where it is traditional to describe
the cumulative insurance payments by the compound Poisson process. The approach
under consideration makes it possible to determine the distribution of insurance payments
providing the least possible time that provides the prescribed Value-at-Risk.

To make the above-mentioned more clear, consider an insurance company that starts
its activity at time t0 = 0. Within the classical collective risk model [8], the total insurance
payments at some time t have the form of a sum of a random number (number of payments
by the time t) of independent identically distributed r.v.s (insurance payments), that is,
of a Poisson random sum. In this model, the number of insurance payments by time t
follows the Poisson process Nλ(t) with some intensity λ > 0. We assume that the parameter
λ is uncontrollable and fixed. Since Nλ(t) has the same distribution as N1(λt) and the
parameter λ is assumed fixed, the setting under consideration concerns the problem of
determination of the distribution of an individual insurance payment providing the least
possible t guaranteeing the prescribed Value-at-Risk for the average losses of the insurance
company within the time interval [0, t].

The approach considered in the paper can be used when the distributions of the
summands (possible losses) are known only up to their first three moments, and the exact
Value-at-Risk is not known for sure.

Within the framework of the collective risk model in the setting under consideration,
the problem consists in the description of the best strategy of the insurance company. Here,
the choice of the terms of a contract (e.g., the amount of insurance payment related to
each possible insurance event) is meant as a strategy. That is, a strategy consists in the
determination of the distribution of an insurance payment. Briefly, the problem is to choose
an optimal distribution of a separate insurance payment among the distributions that have
the same first three moments so that the desired goal is achieved within the least possible
time interval.

We also consider the application of the proposed approach to the study of the asymp-
totic properties of non-random sums of independent identically distributed r.v.s as com-
pared to those of the compound Poisson distributions with the same expectation. It is
well-known that, in many respects, these properties coincide. This phenomenon mani-
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fests itself, for example, in the form of the method of accompanying infinitely divisible
distributions (see, e.g., [9], Chapter 4, Section 24). Therefore, it is of certain interest to
investigate the accuracy of the approximation of the characteristics of sums of independent
r.v.s as compared to that of the accompanying infinitely divisible (that is, corresponding
compound Poisson) laws. This problem was studied by many specialists; see, e.g., [10–13]
and the references therein. Unlike most preceding works where the approximation of
distribution functions was discussed, here we consider the application of accompanying
laws to a somewhat inverse problem of approximation of quantiles.

The paper is organized as follows. Section 2 contains a short overview of the results
concerning the asymptotic expansions for compound Poisson distributions. Here we also
formulate basic lemmas to be used in the next sections. The main results are presented in
Section 3. In Section 3.1, we introduce the notion of the α-reserve in the collective risk model
and present some asymptotic expansions for this quantity. In Section 3.2, a continuous-time
analog of the notion of deficiency is introduced. Here we also prove some general results
concerning the continuous-time deficiency. In Section 3.3, we consider the problem of
comparison of compound Poisson distributions by deficiency and present the asymptotic
formula for the deficiency of one compound Poisson distribution with respect to the other.
In Section 3.4, we deal with the problem of comparison of the distributions of Poisson
random sums with those of non-random sums. Actually, this problem consists in the
comparison of the accuracy of approximation of the asymptotic (1 − α)-quantile of the sum
of independent identically distributed random variables with that of the accompanying
infinitely divisible distribution.

2. Notation and Auxiliary Results

Throughout what follows, we will assume that all the random variables and processes
are defined on the same probability space (Ω,F,P). The expectation and variance with
respect to the measure P will be, respectively, denoted E and D. The set of real numbers
and natural numbers will be, respectively, denoted R and N. The distribution function of
the standard normal law will be denoted Φ(x),

Φ(x) =
1√
2π

∫ x

−∞
ϕ(y)dy, ϕ(x) =

1√
2π

exp
{
− x2

2

}
, x ∈ R.

The distribution of a random variable X will be denoted L(X).
Let X1, X2, . . . be independent identically distributed random variables. Let Nλ be the

random variable with the Poisson distribution with parameter λ. Assume that for each
λ > 0, the random variables Nλ, X1, X2, . . . are independent. Let Sλ be the Poisson random
sum, Sλ = X1 + . . . + XNλ

. If Nλ = 0, then Sλ is assumed to equal to zero. Assume that
EX1 = a and DX1 = σ2 > 0 exist. For integer k ≥ 0, denote EXk

1 = αk. Of course, α0 = 1,
α1 = a and α2 = σ2 + a2.

Recall some facts concerning the asymptotic expansions for the compound Poisson
distributions (sf. [8,14,15]).

Denote the characteristic functions of the random variables X1 and Sλ as f (t) and
hλ(t), respectively. It is well-known that if f (t) has r continuous derivatives, then, as t → 0,
we have

f (t) = 1 + iat − α2t2

2
+ (it)2 ∑r−2

k=1
(it)kαk+2
(k + 2)!

+ o(tr). (1)

A random variable X1 is said to satisfy the Cramér condition (C), if

lim sup
|t|→∞

| f (t)| < 1. (2)

3
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For k = 0, 1, 2, . . . define the function Hk(x) : R → R as

Hk(x) ≡ (−1)k φ(k)(x)
φ(x)

.

The function Hk(x), x ∈ R, so defined, is a polynomial of degree k and is called the
Hermite polynomial of degree k.

It is easy to calculate that

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3,

H5(x) = x5 − 10x3 + 15x, H6(x) = x6 − 15x4 + 45x2 − 15.

Let m be a nonnegative integer and qk ∈ R, k = 0, . . . , m. Consider the polynomial

q(x) = ∑m
k=0 qkxk.

Let H0(x), . . . , Hm(x) be Hermite polynomials. Let

Q(x) = ∑m
k=0 qk Hk(x).

Then it is easy to make sure that the function v(t) = q(it) exp{−t2/2} is the Fourier
transform of the function V(x) = Q(x)φ(x). Throughout what follows, we will assume
that r ≥ 3 is a fixed integer number.

For a complex z, let

f̃ (z) = ∑r−2
k=1

αk+2zk

(k + 2)!
.

Obviously, f̃ (z) is a polynomial of degree ≤ r − 2 with real coefficients; moreover,
f̃ (0) = 0. From (1), it follows that

f (t)− 1 − iat +
α2t2

2
= (it)2 f̃ (it) + o(tr)

as t → 0. For λ > 0 and a complex z let

pλ(z) = ∑r−2
k=1

1
k!

[
z2

α2
f̃
(

z√
λα2

)]k

. (3)

It can be easily made sure that there exist integer m ≥ 3 and polynomials qk(z) with
real coefficients, k = 3, . . . , m, not depending on λ such that

pλ(z) = ∑m
k=3 λ−k/2+1qk(z) (4)

for all λ > 0 and complex z. Moreover, these polynomials qk(z) are uniquely determined
by (3) and (4). Let

qk(z) = ∑Lk
j=3 qk,jzj (5)

be the corresponding representation of qk(z) with qk,j ∈ R (j = 3, . . . , Lk), Lk ≥ 3
(k = 3, . . . , m). Let Hj(x) be the Hermite polynomials. For x ∈ R and k = 3, . . . , m let

Rk(x) = −∑Lk
j=3 qk,j Hj−1(x). (6)

The function Rk(x) is called the Edgeworth polynomial of degree k.
For λ > 0 and complex z from (3) and (4), we easily obtain

pλ(z) = ∑(r−2)2+2
k=3 λ−k/2+1 ∑ k−2

r−2 ≤j≤k−2 αk,jzk+2(j−1),

4
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where
j!αk,j = ∑ 3≤n1≤...≤nj≤r

n1+...+nj=k+2(j−1)

αn1 · . . . · αnj

n1! · . . . · nj!
α
−k/2−j+1
2 .

Therefore, in (4) and (5), we should set m = (r − 2)2 + 2 and Lk = 3(k − 2) (k =
3, . . . , m).

For x ∈ R, λ > 0 and r ∈ N define the functions Gλ,r(x) as

Gλ,r(x) = Φ(x) + φ(x)∑r
k=3 λ−k/2+1Rk(x).

In particular, for r = 3, we have

R3(x) = − α3

6α3/2
2

H2(x)

and
Gλ,3(x) = Φ(x)− α3

6α3/2
2

√
λ
(x2 − 1)φ(x). (7)

For r = 4, we have

R4(x) = − α4

24α2
2

H3(x)− α2
3

72α3
2

H5(x)

and

Gλ,4(x) = Φ(x)− α3

6α3/2
2

√
λ
(x2 − 1)φ(x)− φ(x)

λ

[
α4

24α2
2
(x3 − 3x)− α2

3
72α3

2
(x5 − 10x3 + 15x)

]
. (8)

Moreover, if κ3(Sλ) and κ4(Sλ) are the skewness and kurtosis of the random variable
Sλ,

κ3(Sλ) ≡ E

(
Sλ − ESλ√

DSλ

)3

= E

(
Sλ − α1λ√

λα2

)3

=
α3√

λα3/2
2

,

κ4(Sλ) ≡ E

(
Sλ − ESλ√

DSλ

)4

− 3 = E

(
Sλ − α1λ√

λα2

)4

− 3 =
α4

λα2
2

,

then (7) and (8) can be rewritten as

Gλ,3(x) = Φ(x)− κ3(Sλ)

6
Φ(3)(x)

and

Gλ,4(x) = Φ(x)− κ3(Sλ)

6
Φ(3)(x) +

κ4(Sλ)

24
Φ(4)(x) +

κ2
3(Sλ)

72
Φ(6)(x).

Lemma 1. Let r > 3. Assume that the distribution of the random variable X1 satisfies the Cramér
condition (C) (see (2)). Then

sup
x

∣∣∣∣P( Sλ − aλ√
λ(a2 + σ2)

< x
)
− Gλ,r(x)

∣∣∣∣ = o
(
λ−r/2+2),

that is,

lim
λ→∞

λr/2−1 sup
x

∣∣∣∣P( Sλ − aλ√
λ(a2 + σ2)

< x
)
− Gλ,r(x)

∣∣∣∣ = 0.

This statement is a particular case of Theorem 4.4.1 in [15].
Our further reasoning is based on the following general statement dealing with the

asymptotic behavior of the quantiles of univariate distributions of a random process.

5
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Let Z(t), t ≥ 0, be a random process. Assume that for each t ≥ 0 the distribution of
the random variable Z(t) is continuous. For β ∈ (0, 1) and t ≥ 0, the left β-quantile of the
random variable Z(t) will be denoted uβ(t):

uβ(t) = inf{u : P(Z(t) < u) ≥ β}.

Lemma 2. Assume that, as t → ∞, the distribution function of the random process Z(t) admits
the asymptotic expansion of the form

P(Z(t) < x) = Ψ0(x) + t−1/2Ψ1(x) + t−1Ψ2(x) + o(t−1).

Moreover, let the functions Ψ′′
0 (x), Ψ′

1(x) and Ψ2(x) be continuous and Ψ′
0(x) > 0. Then for

any β ∈ (0, 1), we have

uβ(t) = uβ −
Ψ1(uβ)

Ψ′
0(uβ)

√
t
+

Ψ′
0(uβ)Ψ1(uβ)Ψ′

1(uβ)−
(
Ψ′

0(uβ)
)2Ψ2(uβ)− 1

2 Ψ2
1(uβ)Ψ′′

0 (uβ)(
Ψ′

0(uβ)
)3t

+ o(t−1),

where uβ is the left β-quantile of the distribution function Ψ0(x): Ψ0(uβ) = β.

For the proof of this statement, see [15], Section 4.5.

Remark 1. If we set

uβ(t) = uβ −
Ψ1(uβ)

Ψ′
0(uβ)

√
t
+

Ψ′
0(uβ)Ψ1(uβ)Ψ′

1(uβ)−
(
Ψ′

0(uβ)
)2Ψ2(uβ)− 1

2 Ψ2
1(uβ)Ψ′′

0 (uβ)(
Ψ′

0(uβ)
)3t

,

then it is not difficult to make sure that under the conditions of Lemma 2, we have

P(Z(t) < uβ(t)) = β + o(t−1).

From Lemmas 1 and 2, it follows that if α4 = EX4
1 < ∞ and the random variable X1

satisfies the Cramér (C) condition (2), then

P

(
Sλ − aλ√
λ(a2 + σ2)

< x
)
= Φ(x) +

Ψ1(x)√
λ

+
Ψ2(x)

λ
+ o(λ−1) (9)

where

Ψ1(x) = − α3

6α3/2
2

φ(x)H2(x), Ψ2(x) = −φ(x)
[

α4

24α2
2

H3(x) +
α2

3

72α3
2

H5(x)
]

.

Therefore, setting t = λ, Z(t) = Sλ, Ψ0(x) = Φ(x), from Lemma 2, we obtain the
following result. For β ∈ (0, 1), let wβ(λ) and uβ be the β-quantiles of the random variable
Sλ and of the standard normal distribution, respectively.

Lemma 3. Let EX4
1 < ∞, and let the random variable X1 satisfy the Cramér (C) condition (2).

Then, as λ → ∞, we have

wβ(λ) = aλ + uβ

√
λα2 +

α3H2(uβ)

6α2
+

+
1√

λα5/2
2

[
α2

3
72
(

H5(uβ)− 2H2(uβ)H3(uβ) + 4uβH2
2(uβ)

)
+

α4α2

24
H3(uβ)

]
+ o(λ−1/2)

where Hk(x) are the Hermite polynomials.

6
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3. Main Results

3.1. The Asymptotic Expansions for the α-Reserve in the Collective Risk Model

Let X1, X2, . . . be independent identically distributed r.v.s such that

X2
1 > 0, |X1|4+δ < ∞, δ > 0. (10)

Assume that the r.v. X1 satisfies the Cramér (C) condition (2). For t > 0, let the r.v. Nt
have the Poisson distribution with parameter λt, where λ > 0 is a fixed parameter. Assume
that for each t > 0 the r.v.s Nt, X1, X2, . . . are independent. Consider the Poisson random sum

St = X1 . . . + XNt .

In terms of the collective risk model, the r.v.s Xj can be interpreted as individual
insurance claims, and the r.v. St can be interpreted as the total insurance payment of an
insurance company by the time t.

Let α ∈ (0, 1). Define the standardized α-reserve C∗
α(t) by the formula

P

(
St − λtEX1√

λtEX2
1

≥ C∗
α(t)
)
= α + o(t−1), t → ∞. (11)

Along with the set X1, X2, . . . consider another set Y1, Y2, . . . of independent identically
distributed r.v.s such that

Y2
1 > 0, |Y1|4+δ < ∞, δ > 0. (12)

Assume that the r.v. Y1 satisfies the Cramér (C) condition (2). Also assume that for
each t > 0, the r.v. Nt having the Poisson distribution with parameter λt is independent of
the set Y1, Y2, . . . Denote

Tt = Y1 + . . . + YNt .

In the same way as (11), define the standardized α-reserve C∗∗
α (t) for the sequence

Y1, Y2, . . . as

P

(
Tt − λtEY1√

λtEY2
1

≥ C∗∗
α (t)

)
= α + o(t−1), t → ∞.

Lemmas 2 and 3 directly imply the following statement. For α ∈ (0, 1) let uα be the
1 − α-quantile of the standard normal distribution, that is, Φ(uα) = 1 − α.

Theorem 1. Let α ∈ (0, 1) and the r.v.s X1, X2, . . . and Y1, Y2, . . . satisfy conditions (10), (12) and
(2). Then, as t → ∞,

C∗
α(t) = uα +

EX3
1(u

2
α − 1)

6
√

λt(EX2
1)

3/2
+

1
12λtEX2

1

[
(EX3

1)
2

EX2
1

(5uα − 2u3
α) +

EX4
1

2(EX2
1)

2
(u3

α − 3uα)

]
+ o(t−1),

C∗∗
α (t) = uα +

EY3
1 (u

2
α − 1)

6
√

λt(EY2
1 )

3/2
+

1
12λtEY2

1

[
(EY3

1 )
2

EY2
1

(5uα − 2u3
α) +

EY4
1

2(EY2
1 )

2
(u3

α − 3uα)

]
+ o(t−1).

We see that if the first three moments of X1 and Y1 coincide, then C∗
α(t) and C∗∗

α (t)
differ only by the terms of order O(t−1).

Now if we define the α-reserves C̃∗
α(t) and C̃∗∗

α (t) as

P
(
St ≥ C̃∗

α(t)
)
= α + o(t−1), and P

(
Tt ≥ C̃∗∗

α (t)
)
= α + o(t−1), t → ∞,

then

C̃∗
α(t) =

√
λtEX2

1 · C∗
α(t) + λtEX1 and C̃∗∗

α (t) =
√

λtEY2
1 · C∗

α(t) + λtEY1.

7
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3.2. A Continuous-Time Analog of Deficiency

In this section, we will propose an approach to the comparison of the two compound
Poisson distributions in terms of the ‘continuous’ analog of deficiency. For the traditional
definition of deficiency as the number of additional observations required for a statistical
procedure to attain the desired quality, we refer the reader to the papers [1–3,5,6]. Here, we
will introduce its continuous-time analog.

Consider two stochastic processes X(t) and Y(t), t ≥ 0. We will be interested in the
asymptotic behavior of the probabilities of X(t) and Y(t) to exceed a given threshold.

For α ∈ (0, 1) let cα(t) be the asymptotic (1 − α)-quantile of X(t):

P
(
X(t) ≥ cα(t)

)
= α + o(t−1), t → ∞.

Lemma 2 directly implies the following statement.

Proposition 1. Assume that there exist distribution function G(x) and the functions g1(x) and
g2(x) such that

sup
x∈R

∣∣∣P(X(t) < x
)− G(x)− 1√

t
g1(x)− 1

t
g2(x)

∣∣∣ = o(t−1), (13)

where the functions G(x), g1(x) and g2(x) are smooth enough. Then the the asymptotic (1 − α)-
quantile of X(t) admits the asymptotic expansion

cα(t) = cα − g1(cα)

G′(cα)
√

t
− 1

t

[
G′′(cα)g2

1(cα)

2(G′(cα))3 +
G′(cα)g2(cα)− g1(cα)g1

′(cα)

(G′(cα))2

]
+ o(t−1),

where cα is the (1 − α)-quantile of the distribution function G(x), that is, G(cα) = 1 − α.

Assume that the asymptotic expansion for the distribution function of Y(t) has
the form

P
(
Y(t) < x

)
= G(x) +

1√
t
g1(x) +

1
t

g2(x) + o(t−1), (14)

where the functions G(x), g1(x) and g2(x) are smooth enough. The asymptotic expansion (14)
differs from that for the distribution function of X(t) in Proposition 1 only by the term of
order t−1, that is, the two distributions are close enough.

Define the positive function m(t), t > 0, by the equality

P
(√

t Y(m(t)) ≥ cα(m(t))
)
= α + o(t−1), t → ∞. (15)

If m(t) − t = d + o(1), d ∈ R, t → ∞, then the number d is called the asymptotic
deficiency of the distribution L(Y(t)) with respect to the distribution L(X(t)). In other
words, d is the asymptotic ‘additional’ time required for the process Y(t) to attain the
quantile of the same order as that of X(t).

Theorem 2. Assume that conditions (13) and (14) hold. Then the asymptotic deficiency d of the
distribution L(Y(t)) with respect to the distribution L(X(t)) has the form

d =
2
[
g2(cα)− g2(cα)

]
G′(cα)cα

+ o(1).

The proof of this statement repeats that of Theorem 3.1 in [1] up to notation (further-
more, unfortunately, in formula (16) of [1], the coefficient

√
n analogous to

√
t in (15) of the

present paper was erroneously omitted).

8
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3.3. The Comparison of Compound Poisson Distributions by Deficiency

In this section, we will discuss the asymptotic deficiency of the compound Poisson
distributions providing a given (1 − α)-quantile of the normalized Poisson random sums.
For this purpose, we will use Theorem 2.

Define the average Poisson random sums St and Tt by the formulas

St =
St − λtEX1

t
√

λEX2
1

, Tt =
Tt − λtEY1

t
√

λEY2
1

.

Define the asymptotic deficiency d ∈ R of Tt with respect to St by the formula

P
(√

t · Tt ≥ C∗
α(t)
)
= α + o(t), t → ∞,

where t = t+ d+ o(1), that is, d is the ‘additional time’ required for the normalized average
Poisson random sum

√
t · Tt to exceed the asymptotic α-reserve C∗

α(t) of the normalized
average Poisson random sum

√
t · St.

To apply Theorem 2, assume that

EX3
1

(EX2
1)

3/2
=

EY3
1

(EY2
1 )

3/2
. (16)

Condition (16) holds, e.g., if the first three moments of X1 and Y1 coincide.
Theorem 2 directly implies the following statement.

Theorem 3. Assume that the r.v.s Nt, X1, X2, . . . ; Y1, Y2, . . . satisfy conditions (2), (10) and (16).
Then, as t → ∞, the ‘additional time’ d has the form

d =
(3 − u2

α)

12

[
EX4

1
(EX2

1)
2
− EY4

1
(EY2

1 )
2

]
+ o(1). (17)

Remark 2. If EX1 = EY1 = 0, then (17) can be rewritten as

d = 1
12 (3 − u2

α)
(
κ4(X1)−κ4(Y1)

)
+ o(1),

That is, in this case, the continuous-time analog of asymptotic deficiency is determined by the
difference of kurtoses.

3.4. Comparing the Distributions of Poisson Random Sums with Those of Non-Random Sums

It is well-known that the asymptotic properties of non-random sums of independent
identically distributed r.v.s coincide with those of the compound Poisson distributions
with the same expectation. This phenomenon manifests itself, for example, in the form
of the method of accompanying infinitely divisible distributions (see, e.g., [9], Chapter 4,
Section 24). Therefore, it is of certain interest to investigate the accuracy of the approxima-
tion of the characteristics of sums of independent r.v.s as compared to that of the accompa-
nying infinitely divisible (that is, corresponding compound Poisson) laws. This problem
was studied by many specialists, see, e.g., [10–13]. Unlike most preceding works where the
approximation of distribution functions was discussed, here we consider the application of
accompanying laws to a somewhat inverse problem of approximation of quantiles.

Here, we will not assume the possibility of the interpretation of the presented results
in terms of a collective risk model where at least the expectations of Xj should be positive.
Assume that the independent identically distributed r.v.s X1, X2, . . . are standardized:

EX1 = 0, EX2
1 = 1. (18)

9
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Again, let Nt be an r.v. with the Poisson distribution with parameter λt, where
λ > 0 is fixed. Assume that for each t > 0 the random variables Nt, X1, X2, . . . are
independent. Consider the problem of comparison of the distribution of a normalized
Poisson random sum

S∗
t =

X1 + . . . + XNt√
λt

with the distribution of the corresponding non-random sum

U∗
t =

X1 + . . . + X[λt]√
[λt]

as t → ∞, where the symbol [a] denotes the integer part of a real number a. For definiteness,
if Nt = 0, then S∗

t is assumed to be equal to zero.
If conditions (18), (10) and (2), then Lemmas 1 and 2 imply (see (9)) that, as t → ∞,

P(S∗
t < x) = Φ(x)− EX3

1

6
√

λt
ϕ(x)(x2 − 1)−

− ϕ(x)
24λt

[
EX4

1(x3 − 3x) +
(EX3

1)
2

3
(x5 − 10x + 15x)

]
+ o(t−1), (19)

whereas the classical theory of asymptotic expansions in the central limit theorem (e.g.,
see [16]) yields that

P(U∗
t < x) = Φ(x)− EX3

1

6
√
[λt]

ϕ(x)(x2 − 1)−

− ϕ(x)
24[λt]

[
(EX4

1 − 3)(x3 − 3x) +
(EX3

1)
2

3
(x5 − 10x + 15x)

]
+ o(t−1). (20)

Note that (19) and (20) differ in that, in (19), the kurtosis of X1 is present in the non-
normalized form κ∗

4 (X1) = EX4
1, whereas in (20), there stands the normalized kurtosis

κ4(X1) = EX4
1 − 3.

From the obvious inequalities

λt − 1 ≤ [λt] ≤ λt

it follows that, as t → ∞,

1
λt

≤ 1
[λt]

≤ 1
λt − 1

=
1
λt

(
1 +

1
λt

+ O(t−2)
)

and
1√
[λt]

=
1√
λt

+ O(t−3/2).

Therefore, relation (20) can be rewritten as

P(U∗
t < x) = Φ(x)− EX3

1

6
√

λt
ϕ(x)(x2 − 1)−

− ϕ(x)
24λt

[
E(X4

1 − 3)(x3 − 3x) +
(EX3

1)
2

3
(x5 − 10x + 15x)

]
+ o(t−1). (21)

Denote U∗
t = U∗

t /
√

t. Let α ∈ (0, 1). Define the asymptotic (1 − α)-quantile Cα(t) of
S∗

t by the relation
P
(
S∗

t ≥ Cα(t)
)
= α + o(t−1), t → ∞.

10
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Define the number d ∈ R by the formula

P
(√

t U∗
t ≥ Cα(t)

)
= α + o(t−1), t → ∞,

where t = t + d + o(1). Now relations (19), (21) and Theorem 2 directly imply the follow-
ing statement.

Theorem 4. Let α ∈ (0, 1). Assume that the r.v.s Nt, X1, X2, . . . satisfy conditions (18), (10) and
(2). Then

d =
3 − u2

α

4
+ o(1)

as t → ∞, where Φ(uα) = 1 − α.

Remark 3. The quantity d can be interpreted as the asymptotic deficiency of the distribution of a
non-random sum with respect to the corresponding accompanying compound Poisson distribution.
Note that under the conditions of Theorem 4, d does not depend on the distribution of X1. If
α > 0.0417..., then d is asymptotically positive, that is, the (accompanying) compound Poisson
distribution of the r.v. S∗

t provides better accuracy for the approximation of the asymptotic (1 − α)-
quantile of U∗

t .

4. Conclusions

This paper is a continuation of our previous work [1] and deals with a version of
the problem of stochastic ordering. We follow an approach based on the concept of
deficiency, which is well-known in asymptotic statistics. In the present paper, we considered
compound Poisson distributions and introduced a continuous analog of deficiency. It was
suggested to understand the continuous deficiency as the difference between the parameter
of the compounding distribution of a Poisson random sum and that of the compound
Poisson distribution providing the desired accuracy of the normal approximation. The
asymptotic representations for the continuous deficiency were obtained under the condition
that possible distributions of random summands possess coinciding first three moments.
Therefore, we can say that, in this problem, we deal with ‘fine tuning’ of the distribution
of a separate summand since we assume that different possible distributions of random
summands can differ only by their kurtosis. In the setting under consideration, the best
distribution delivers the smallest value of the parameter of the compounding Poisson
distribution. The main mathematical tools used in the paper are asymptotic expansions
for the compound Poisson distributions and their quantiles. The formal setting mentioned
above was applied to solving some practical problems dealing with the collective risk
insurance models where it is traditional to describe the cumulative insurance payments
by the compound Poisson process. The approach under consideration makes it possible
to determine the distribution of insurance payments providing the least possible time
that provides the prescribed Value-at-Risk. We also considered the application of the
proposed approach to the study of the asymptotic properties of non-random sums of
independent identically distributed r.v.s as compared to those of the compound Poisson
distributions with the same expectation. We investigate the accuracy of the approximation
of the characteristics of sums of independent r.v.s as compared to that of the accompanying
infinitely divisible (that is, corresponding compound Poisson) laws. Unlike most preceding
works where the approximation of distribution functions was discussed, here we considered
the application of accompanying laws to a somewhat inverse problem of approximation
of quantiles.
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Abstract: For each t ∈ (−1, 1), the exact value of the least upper bound H(t) = sup{E|X|3/E|X − t|3}
over all the non-degenerate distributions of the random variable X with a fixed normalized first-order

moment EX1/
√
EX2

1 = t, and a finite third-order moment is obtained, yielding the exact value of

the unconditional supremum M := sup L1(X)/L1(X −EX) =
(√

17 + 7
√

7
)
/4, where L1(X) =

E|X|3/(EX2)3/2 is the non-central Lyapunov ratio, and hence proving S. Shorgin’s (2001) conjecture
on the exact value of M. As a corollary, an analog of the Berry–Esseen inequality for the Poisson ran-
dom sums of independent identically distributed random variables X1, X2, . . . is proven in terms of
the central Lyapunov ratio L1(X1 −EX1) with the constant 0.3031 · H(t)(1− t2)3/2 ∈ [0.3031, 0.4517),

t ∈ [0, 1), which depends on the normalized first-moment t := EX1/
√
EX2

1 of random summands
and being arbitrarily close to 0.3031 for small values of t, an almost 1.5 size improvement from the
previously known one.

Keywords: Lyapunov fraction; extreme problem; moment inequality; central limit theorem; Berry–
Esseen inequality; compound Poisson distribution; normal approximation

MSC: 60F05; 60E15; 26D05

1. Introduction

Let X, X1, X2, . . . be independent and identically distributed random variables (i.i.d.
r.v.’s), Nλ be a Poisson r.v. with expectation λ > 0 and independent of the sequence
{Xn}n�1 for each λ > 0. The r.v. is

Sλ = X1 + X2 + . . . + XNλ

and is called a Poisson random sum, and its distribution is called a compound Poisson.
Here, for definiteness, we assume that ∑0

k=1( · ) = 0. Poisson random sums Sλ are popular
mathematic models in many fields. In particular, in the classical collective risk model [1],
the r.v. Sλ describes the total insurance claim amount per time unit with the intensity of the
claim arrivals equaling λ. Many examples of applied problems that make use of Poisson
random sums can be found, e.g., in the books [2–4]. As a rule, these problems can be
successfully solved only if the distribution of the r.v. Sλ is either known or approximated
accurately enough.

Mathematics 2023, 11, 625. https://doi.org/10.3390/math11030625 https://www.mdpi.com/journal/mathematics13
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Assume that EX2 ∈ (0, ∞). We denote

S̃λ =
Sλ −ESλ√

DSλ
=

Sλ − λEX√
λEX2

,

Fλ(x) := P(S̃λ < x), Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt, x ∈ R.

As is well known, under the above assumptions, the compound Poisson distributions
are asymptotically normal:

Δλ(X) := sup
x
|Fλ(x)− Φ(x)| → 0, λ → ∞.

Therefore, irrespective of the common distribution L (X) of the summands X1, X2, . . . ,
the distribution function (d.f.) of the Poisson random sum Sλ can be approximated by
the normal law with the corresponding location and scale parameters under reasonable
(”convenient,” computable) estimates Δλ � Δλ for the uniform distance Δλ:

Φ(x)− Δλ � Fλ(x) � Φ(x) + Δλ, x ∈ R.

Under the above assumptions, Δλ may converge to zero arbitrarily and
slowly ([5], Theorems 5 and 8). Some possible upper bounds for Δλ in this situation were
presented in [6]. However, under some additional moment-type conditions, the rate of con-
vergence of Δλ to zero can be rather universally estimated by a “convenient” power-type
function. For example, if E|X|2+δ < ∞ for some δ ∈ (0, 1], then Δλ = O

(
λ−δ/2), as λ → ∞.

A particular form of O(. . .) is determined by the available moment characteristics of L (X).
The main attention was traditionally given to the case δ = 1 since, generally, for δ > 1,

the convergence rate remains the same as for δ = 1. Moreover, by analogy with convergence
rate bounds for the sums of a non-random number of independent r.v.s’, central moments
were initially used in the moment-type bounds for Δλ since these bounds themselves were
obtained by a more or less ingenious application of the formula of total probability in order
to extend to random sums the bounds initially constructed for non-random sums. These
bounds had a rather cumbersome form, as shown in [7,8].

However, in the construction of the estimates of the accuracy of the normal approxi-
mation to compound Poisson distributions, it turned out to be convenient and reasonable
to use non-central moments. In these terms, the bounds take a pretty simple form [9,10]

Δλ(X) � C1√
λ
· L1(X), λ > 0, (1)

where

L1(X) =
E|X|3

(EX2)3/2 (2)

is the non-central Lyapunov ratio or non-central Lyapunov fraction. Estimate (1) is an analog of the
Berry–Esseen inequality for Poisson random sums (or for compound Poisson distributions).

The first upper bounds for the constant C1 [9–11] were greater than the then best-known
upper bounds for the absolute constant C in the classical Berry–Esseen inequality [12,13]

sup
x∈R

∣∣∣∣P(X1 + . . . + Xn − nEX√
nDX

< x
)
− Φ(x)

∣∣∣∣ � C√
n
· L0(X), n ∈ N,

where

L0(X) =
E|X −EX|3
(DX)3/2 = L1(X −EX) (3)

is known as the central Lyapunov ratio or the central Lyapunov fraction. Michel [14] was
the first to prove that C1 � C (four years later, this result was independently re-proved

14
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in [15]). Finally, the authors of [16] succeeded in proving that C1 < C. Namely, in that
paper, the upper bound of C1 � 0.345 was obtained, which was strictly less than the lower
bound CE := (

√
10 + 3)/(6

√
2π) = 0.4097 . . . [17] for the absolute constant C. Later the

upper bound of 0.345 for C1 was lowered to 0.3041 [18] (see also [19], Theorem 2.4.3) and
0.3031 ([20], Theorem 4). The first lower bound, C1 � 0.2344, for C1, was obtained in the
paper [21]. In ([5], Theorem 5) and ([22], Chapter 3, p. 50), this estimate was improved to

C1 � sup
γ>0,m∈N0

√
γ

(
e−γ

m

∑
k=0

γk

k!
− Φ
(

m − γ√
γ

))
� 0.266012 . . . =

2
3
√

2π
+ 0.0000505 . . .

In [5], an intermediate estimate was obtained in terms of the least upper bound with
respect to γ and m, whereas in [22], exact values γ = 6.4206, m = 6, were found to provide
the lower bound for this supremum. However, if we let γ = m → ∞, then the limit value is
2/(3

√
2π) only. The lower bound for the constant C1 is presented here with the separation

of the term 2/(3
√

2π), and due to that, this number plays the same asymptotic role in
inequality (1), as the Esseen lower bound CE in the classical Berry–Esseen inequality. For
more details concerning the asymptotically exact constants, see [5,23]. A detailed survey of
the moment-type bounds for the accuracy of the normal approximation to the compound
Poisson distribution, including both the case 0 � δ < 1 and asymptotic settings, can be
found in [5] (for the case δ = 1 and non-asymptotic setting see also [18], Section 3).

It should be noted that the estimate (1) in terms of the non-central Lyapunov ratio
L1(X) implies a similar estimate in terms of the central Lyapunov ratio

Δλ(X) � C0√
λ
· L0(X), λ > 0, (4)

where C0 is an absolute constant, but not vice versa. Namely, let

J(X) = J(L (X)) :=
L1(X)

L0(X)
=

E|X|3
E|X −EX|3

(
DX
EX2

)3/2
,

and let P be the class of all distributions on R with finite third moments. In 1996
S. Shorgin [24] proved that for any L (X) ∈ P

J(X) � 2
√

2 < 2.8285 and inf
L (X)∈P

J(X) = 0,

hence, with the account of the upper bound C1 � 0.3031 [20], it follows that C0 � 2
√

2C1 <
0.8573, and also that inequality (4) does not imply (1); that is, bounding (1) in terms of
the non-central Lyapunov ratio not only obtains in a more natural way than (4) but is
also more accurate. However, inequality (4) is more natural and extremely convenient in
estimating the rate of convergence of distributions of randomly stopped random walks
with equivalent elementary trends and variances to variance-mean mixtures of normal
laws [25–29], in particular, to skew the exponential power law, skew the Student’s law, and
more generally, the variance-generalized gamma and generalized hyperbolic distributions.
Note that such asymptotic behavior of the elementary trends and variances is typical for
the increments of a Wiener process with drift, and due to the considerable trends, the
central moments of elementary increments are computed in a much simpler way than the
non-central ones, which gives an advantage to inequality (4) over inequality (1).

In 2001, S. Shorgin [30] suggested that

sup
L (X)∈P

J(X) = sup
L (X)∈P

L1(X)

L0(X)
=

√
17 + 7

√
7

4
= 1.48997 . . . =: CSH (5)

and described the hypothetical extreme of the two-point distribution of the r.v. X.
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In 2011, Korolev, Shevtsova, and Shorgin [31] demonstrated that the least upper bound
sup

L (X)∈P

J(X) can be found in the class of distributions concentrated in at most three points,

and that the estimate sup
L (X)∈P

J(X) � 1.49 was computed numerically, which implies

that C0 < 1.49C1 � 1.49 · 0.3031 < 0.4517, see also ([19], Section 2.4). Note that, as of
2011, the best-known upper bound for C1 was 0.3041 [18], yielding a worse upper bound
C0 < 1.49 · 0.3041 < 0.4532, published in the cited works.

In the present paper, a complete proof of hypothesis (5) is given, but the main result
consists of the solution to this problem in a more delicate setting. Namely, we suggest
the fixing of the value of the normalized mathematical expectation EX/

√
EX2 = t ∈

(−1, 1) and instead of the unconditional optimization problem (5), we solve the problem of
conditional optimization

sup
L (X)∈P :
EX=t

√
EX2

J(X) = sup
L (X)∈P :
EX=t,EX2=1

L1(X)

L1(X − t)
=
(
1 − t2)3/2 sup

L (X)∈P :
EX=t,EX2=1

E|X|3
E|X − t|3 , (6)

which allows us to take the possible smallness of the centering parameter EX/
√
EX2 into

account and majorize the ratio J(X) = L1(X)/L0(X) by a quantity close to unity, which is
almost one and a half times more accurate, than is allowed by (5). The values t = ±1 are not
considered here because the only distribution satisfying the conditions EX = t = ±1 and
EX2 = 1 is the degenerate in the point t one. The solution to the conditional optimization
problem (6) reduces the calculation of the least upper bound to

H(t) := sup
{

E|X|3
E|X − t|3 : L (X) ∈ P , EX = t, EX2 = 1

}
, −1 < t < 1. (7)

In the present paper, H(t) is calculated for each value of the centering parameter
t ∈ (−1, 1) (Theorem 1 and Table 1), and hypothesis (5) is proved by writing the sup J(X)
in the form

sup
L (X)∈P

J(X) = sup
t∈(−1, 1)

H(t)
(
1 − t2)3/2

and calculating the latest upper bound with respect to t ∈ (−1, 1) (Theorem 2 and Table 1).
In particular, from (7), it follows that for any L (X) ∈ P , we have

J(X) =
L1(X)

L0(X)
� H
(

EX√
EX2

)(
1 − (EX)2

EX2

)3/2

,

and hence, for any distribution L (X) ∈ P with the known value of the normalized
first-order moment EX/

√
EX2 = t ∈ (−1, 1), inequality (4) holds with a sharper value of

the constant

C0 = C0(t) := C1 · H(t)
(
1 − t2)3/2 � 0.3031 ·

√
17 + 7

√
7

4
< 0.4517.

The values of C0(t) rounded up to the fourth digit are presented for some t ∈ [0, 1)
in the fourth column of Table 1. In addition, in Theorem 3, the form of the constant C0(t),
t ∈ (−1, 1), is presented for the case where only an upper bound |EX|/

√
EX2 � t is known

for the normalized expectation.
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Table 1. The values of the functions H(t), H(t)(1 − t2)3/2, C0(t) = 0.3031 · H(t)(1 − t2)3/2, and the
mass p(t) of one of the atoms of the extreme distribution rounded up, for some t ∈ [0, 1).

t H(t) H(t)(1 − t2)3/2 C0(t) p(t)

0 1 1 0.3031 3−√
3

6

0.001 1.00111 1.00111 0.3035 0.2116

0.01 1.0108 1.0107 0.3064 0.21405

0.05 1.057 1.053 0.3192 0.22494

0.1 1.1225 1.1057 0.3352 0.23856

0.2 1.285 1.20871 0.3664 0.26593

0.3 1.5034 1.3051 0.3956 0.29365

0.4 1.805 1.3896 0.4212 0.32205

0.5 2.2392 1.4544 0.4409 0.35168

0.6 2.9067 1.4882 0.4511 0.38345√
5−√

7
6

1+2
√

7
2

√
17+7

√
7

4 0.4517 5−√
7

6

0.7 4.04901 1.4747 0.447 0.41691

0.8 6.4739 1.3984 0.4239 0.44833

0.9 15.041 1.2457 0.3776 0.47783

1− +∞ 1 0.3031 0.5

Regarding the methods, computation of the least upper bound in (7) is implemented
in two steps: a reduction to the distributions concentrated in two points at most (see
Section 3, “Reduction to the case of two-point distributions”), and the analysis of the two-
point distributions (see Section 4, “Analysis of the two-point distributions”), the last step is,
in fact, the most difficult one from a technical point of view. It also should be noted here
that the standard technique based on the works [32–34] (see also [35]) allows the reduction
of only up to the three-point distributions, since there are three linear conditions in total for
L (X) in (6) and (7): the two moment conditions EX = t and EX2 = 1, plus one probability
normalization condition EX0 ≡ E1 = 1. In fact, the same moments should be fixed in (5)
to make the objective function

L1(X)− CSH · L0(X) =
E|X|3

(EX2)3/2 − CSH · E|X −EX|3
(DX)3/2 ,

linear with respect to L (X), and hence, no further reduction in (5) can be allowed by just the
standard techniques. Therefore, we used an alternative approach based on the construction
of a special lower bound to |x − t|3 with two tangency points in the form of a linear
combination of the functions 1, x, x2, and|x|3, generating the required moment conditions
E1 = 1, EX = t, EX2 = 1, E|X|3 < ∞ (Lemma 1 in Section 3), and then integrating
the obtained inequality with respect to x (Lemma 2 in Section 3). This trick allows us to
immediately reduce the calculation of the least upper bound in (7) to the analysis of the
two-point distributions, which is implemented in Lemma 4 of Section 4.

Section 2, “Formulations of main results,” contains accurate formulations of the main
results, and Section 5, “Proofs of main results,” contains their proofs.
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To conclude this introductory overview, note as well that an “opposite” problem of
comparing the central and non-central absolute moments

E|X −EX|p
E|X|p −→ sup

was considered in the papers [36], with p = 3 and [37], with an arbitrary p > 1; for a wider
class of functions of X and X − EX, including | · |p; and also in [38] with p = 3 under an
additional restriction EX/

√
EX2 = t for each t ∈ (−1, 1).

2. Formulations of Main Results

Theorem 1. For every t ∈ (−1, 1)

H(t) := sup
L (X)∈P :
EX=t

√
EX2

E|X|3
E|X − t|3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, t = 0,

1 +
3t2

1 − t2 · 1 − z2(t)
1 − 3z2(t)

, 0 < |t| < t0,

2
z(t)(3 − z2(t))

, t0 � |t| < 1,

(8)

where t0 =
√

5−√
7

6 = 0.6263 . . . ,

z(t) =

{
u(t), 0 < t < t0,
v(t), t0 � t < 1,

(9)

u(t), 0 < t <
√

3/2 = 0.8660 . . . , is the unique root of the equation

4u
√

1 − u2

3u2 − 1
=

4t2 − 3

3t
√

1 − t2
(10)

on the interval 0 < u <
√

3
3 ; and v(t), t ∈ (0, 1), is the unique root of the equation

2(1 − v2)3/2

v(3 − v2)
=

t(3 − 2t2)

(1 − t2)3/2 (11)

on the interval 0 < v < 1. The function H(t) is continuous and monotonically increasing on [0, 1)
with lim

t→1−
H(t) = +∞. The supremum in (7) is attained for 0 < t < 1 only on the two-point

distribution of the form

P(X = x) = p = 1 − P(X = y) =: 1 − q, (12)

where x = x(t) = t +
√
(1 − t2)q/p, y = y(t) = t −√(1 − t2)p/q, and

p = p(t) = 1
2 (1 − z(t)), t ∈ (0, 1). (13)

The values of the functions H(t) and p(t) for some t ∈ [0, 1) rounded up to the fourth
digit are given in the second and fifth columns of Table 1. Since the function p(t) is close
to linear (see the left graph in Figure 1), for more clarity, the right graph in Figure 1 also
represents the normalized function

p̃(t) :=
p(t)

p(0+) + t(p(1−)− p(0+))
=

p(t)
3−√

3
6 + t

( 1
2 − 3−√

3
6
) , 0 < t < 1. (14)
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Figure 1. Plots of the functions p(t) and p̃(t) defined in (13) and (14), respectively.

The next statement provides a simple upper bound for H(t) for small |t| in the form
of a fractional-rational expression.

Proposition 1. The function H defined in (8) admits the upper bound

H(t) � Ĥ(t) :=
5t + 6

√
2

2(1 − t2)(3
√

2 − 2t)
for every 0 � t � t0, (15)

where Ĥ is continuous and monotonically increasing on [0, t0] with

lim
t→0+

Ĥ(t)− 1
H(t)− 1

= 1.

Theorem 2. For every t ∈ (−1, 1), we have

sup
L (X)∈P :
EX=t

√
EX2

J(X) = sup
L (X)∈P :
EX=t

√
EX2

E|X|3
E|X − t|3 (1 − t2)3/2 = H(t)(1 − t2)3/2,

where the function H(t)(1 − t2)3/2 is even and continuous on the interval (−1, 1), increases on

the interval 0 < t < t0 =
√

5−√
7

6 = 0.6263 . . . , decreases on the interval t0 < t < 1, and

lim
t→±1

H(t)(1 − t2)3/2 = 1, (16)

sup
−1<t<1

H(t)(1 − t2)3/2 = sup
L (X)∈P

J(X) =

√
1 − t2

0

1 − 2t2
0 + 2t4

0
=

√
17 + 7

√
7

4
= 1.489971 . . . , (17)

with the supremums attained only at the points t = ±t0 and only on the two-point distribution of
the form

P
(
X = t−1

0
)
= t2

0, P(X = 0) = 1 − t2
0.

The existence of the upper bound (15) for H allows us to immediately construct a
simple and rather tight majorant for the function H(t)(1 − t2)3/2 for a small t.

Proposition 2. For 0 � t � t0, we have

H(t)(1 − t2)3/2 < Ĥ(t)(1 − t2)3/2 =

√
1 − t2(5t + 6

√
2)

2(3
√

2 − 2t)
, (18)

where Ĥ(t)(1 − t2)3/2 is continuous and monotonically increasing on [0, t0] and satisfies

lim
t→0+

Ĥ(t)(1 − t2)3/2 − 1
H(t)(1 − t2)3/2 − 1

= 1,
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Ĥ(t0)(1 − t2
0)

3/2 = 1.5144 . . . = H(t0)(1 − t2
0)

3/2 + 0.0244 . . .

The values of the function H(t)(1− t2)3/2 for some t ∈ [0, 1), rounded up to the fourth
digit, are presented in the third column of Table 1. The plots of the functions H(t)(1− t2)3/2

and Ĥ(t)(1 − t2)3/2 are given in Figure 2.

0 0.25 0.5 √5− √7
6

0.75 1.0

t

1.0

1.3

√17+7√7
4

= 1.4899…
1.5144… H(t)(1− t

2)3/2

Ĥ(t)(1− t
2)3/2

Figure 2. Plots of the functions H(t)(1 − t2)3/2 and Ĥ(t)(1 − t2)3/2.

Theorem 2 and inequality (1) directly imply the following estimate of the accuracy
of the normal approximation to the distribution of a Poisson random sum in terms of the
central moments of the summands.

Theorem 3. Using the notation from Section 1, for every t ∈ (−1, 1) and for any common
distribution of random summands L (X) ∈ P with EX = t

√
EX2, we have

Δλ(X) � C0(t)√
λ

· L0(X), λ > 0, (19)

where

C0(t) = C1 · H(t)(1 − t2)3/2 � 0.3031 ·
√

17 + 7
√

7
4

< 0.4517, t ∈ (−1, 1).

If |EX| � t
√
EX2, then inequality (19) holds for each t ∈ [0, 1) with C0(t) replaced by C0

(
t ∧ t0

)
,

where t0 =
√

5−√
7

6 = 0.6263 . . . is defined in Theorem 1. Moreover, C0(t) admits the estimate

C0(t) � 0.3031 ·
√

1 − t2(5t + 6
√

2)
2(3

√
2 − 2t)

, 0 � t � t0,

whose right-hand side is monotonically increasing on (0, t0).

The values of C0(t), rounded up to the fourth digit, are presented for some t ∈ [0, 1)
in the fourth column of Table 1.

Before turning to the proofs of these theorems, note that we obviously have H(0) = 1,

H(t) = sup
L (X)∈P :
EX=t,
EX2=1

E|X|3
E|X − t|3 = sup

L (X)∈P :
EX=t,
EX2=1

E|(−X)|3
E|(−X)− (−t)|3

= sup
Y∈P :
EY=−t,
EY2=1

E|Y|3
E|Y − (−t)|3

= H(−t),

and hence, it suffices to consider t ∈ (0, 1) only.

3. Reduction to the Case of Two-Point Distributions

The aim of the present section is to prove that for every r.v. X with EX = t and
EX2 = 1, there exists an r.v. Y with the same expectation and variance, and with the
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third absolute moment matching X (and whose distribution is then uniquely defined),
such that E|X − t|3 � E|Y − t|3. Since E|X|3 = E|Y|3, this would immediately imply that
E|X − t|3/E|X|3 � E|Y − t|3/E|Y|3, and, hence, the investigation of the least upper bound
in

H(t) = sup
L (X)∈P :
EX=t,EX2=1

E|X|3
E|X − t|3 = sup

ρ�1
sup

L (X)∈P :
EX=t,EX2=1,E|X|3=ρ

ρ

E|X − t|3

can be restricted to the analysis of the two-point distributions only.
Following Richter [39], we start with the construction (Lemma 1) of a special lower bound

for the function |x − t|3, x ∈ R, which satisfies the following two important properties:

• it is a linear combination a+ bx + cx2 + d|x|3, a, b, c, d ∈ R, of the functions 1, x, x2, |x|3
generating the given moment conditions E1 = 1, EX = t, EX2 = 1, E|X|3 = ρ ∈
[1, ∞); and

• it has exactly two tangent points with |x − 1|3.

Afterward, we integrate (Lemma 2) the obtained inequality with respect to x to
construct a lower bound to E|X − t|3 as a linear combination of 1, EX, EX2, and E|X|3
and note that equality in the obtained inequality is attained iff X is a two-point r.v. with
possible special values. Finally, we prove in Lemma 3 that for every ρ � 1 and any r.v. X
satisfying the above three moment conditions EX = t, EX2 = 1, and E|X|3 = ρ, there exists
a two-point distribution (of the r.v. Y), whose support satisfies all the conditions in the
coefficients a, b, c, and d of 1, x, x2, and|x|3 imposed by Lemma 2 and which then satisfies
the required inequality

E|X − t|3 � a + bEX + cEX2 + dE|X|3 = a + b · t + c + d · ρ = E|Y − t|3.

The last statement allows us to immediately conclude that only the two-point distribu-
tions may be extremal.

Lemma 1. Let t ∈ R \ {0}. Then for all u, v ∈ R such that{
u + v > 0,
u < 1 < v,

the inequality
|x − t|3 � a + bx + cx2 + d|x|3, x ∈ R, (20)

holds, where

a = at(u, v) = |t|3a1(u, v), (21)

b = bt(u, v) = t|t|b1(u, v), (22)

c = ct(u, v) = |t|c1(u, v), (23)

d = d(u, v), (24)
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a1(u, v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− (2uv − u − v)

(
2u2v2 − 2u2v − u2 − 2uv2 + 4uv − v2)

(u − v)3 , u � 0,

6u4v2 − u4 − 12u3v2 + 4u3v + 6u2v4 − 12u2v3 + 6u2v2 + 4uv3 − v4

(u − v)(u + v)(u2 − 4uv + v2)
, u < 0,

b1(u, v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3
(
2u3v2 − 4u3v + u3 + 2u2v3 − 4u2v2+

+5u2v − 4uv3 + 5uv2 − 4uv + v3)/(u − v)3, u � 0,

−3
(
4u3v − u3 − 4u2v2 − 3u2v + 4uv3 − 3uv2 + 4uv − v3)

(u − v)(u2 − 4uv + v2)
, u < 0,

c1(u, v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3
(
u3 − 4u2v2 + 5u2v − 4u2 + 5uv2 − 4uv + 2u + v3 − 4v2 + 2v

)
(u − v)3 , u � 0,

3
(
u4 + 4u3v − 4u3 − 6u2v2 + 2u2 + 4uv3 + v4 − 4v3 + 2v2)

(u − v)(u + v)(u2 − 4uv + v2)
, u < 0,

d(u, v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− (u + v − 2)

(
u2 − 4uv + 2u + v2 + 2v − 2

)
(u − v)3 , u � 0,

(u + v − 2)
(
u2 − 4uv + 2u + v2 + 2v − 2

)
(u + v)(u2 − 4uv + v2)

, u < 0,

with equality attained exactly in the two points: ut and vt.

Remark 1. In [38], Lemma 1, it was demonstrated that for any t ∈ R \ {0} and real u, v such that{
u + v < 0,
v > 1,

the inequality

|x − t|3 � at(u, v) + bt(u, v)x + ct(u, v)x2 + dt(u, v)|x|3, x ∈ R,

holds with the same functions at, bt, ct, and dt, as in Lemma 1 for the case where u < 0 with equality
attained exactly the two points ut and vt.

Let
f (x) = |x − 1|3 and g(x) = a + bx + cx2 + d|x|3, x ∈ R,

be the left-hand and right-hand sides of (20) with t = 1, respectively. Figures 3–5 illustrate
that several variants of the location of tangency points of the functions f and g with respect
to the stationary points of g are possible. On the left side of these figures are the plots
of f (x) (solid line) and g(x) (dotted line), whereas on the right side, for clarity, is the plot
of the difference f (x)− g(x).
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Figure 3. The graphs of the functions f (x) = |x − 1|3 and g(x) = a + bx + cx2 + d|x|3 from Lemma 1
(left) and the graph of the difference f − g (right) for u = −5, v = 10 (d > 0). The unique minimum
point of g lies between the tangency points u and v.
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Figure 4. Plots of the functions f (x) = |x − 1|3 and g(x) = a + bx + cx2 + d|x|3 from Lemma 1 (left),
and the plot of the difference f − g (right) for u = −1, v = 2 (d < 0). The unique minimum point
of g lies between the tangency points u and v. The maximum points lie to the left from u and to the
right from v.
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Figure 5. Plots of the functions f (x) = |x − 1|3 and g(x) = a + bx + cx2 + d|x|3 from Lemma 1 (left),
and the plot of the difference f − g (right) for u = 0.5, v = 3 (d > 0). The unique minimum point
of g lies between the tangency points u and v. Two more stationary points, the minimum and the
maximum points, lie to the left of u.

Proof. By virtue of the relations (21)–(24), the problem is reduced to the case of t = 1 by
the scale transformation. We let

f (x) = |x − 1|3, g(x) = a + bx + cx2 + d|x|3, h(x) = f (x)− g(x), x ∈ R.
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The coefficients a, b, c, and d given in the formulation of the lemma, were constructed so
that points u and v were the tangency points of the functions g(x) and f (x); that is, these
coefficients are defined as the solution to the system of the following four linear equations:⎧⎪⎪⎨⎪⎪⎩

g(u) = f (u),
g′(u) = f ′(u),
g(v) = f (v),
g′(v) = f ′(v),

⇐⇒

⎧⎪⎪⎨⎪⎪⎩
a + bu + cu2 + d|u|3 = (1 − u)3,
b + 2cu + 3du|u| = −3(1 − u)2,
a + bv + cv2 + dv3 = (v − 1)3,
b + 2cv + 3dv2 = 3(v − 1)2.

Next, we proved that h(x) � 0 for any x ∈ R.

1. Let 0 � u < 1. Then

a1(u, v) = − (2uv − u − v)
(
2u2v2 − 2u2v − u2 − 2uv2 + 4uv − v2)

(u − v)3 ,

b1(u, v) =
3
(
2u3v2 − 4u3v + u3 + 2u2v3 − 4u2v2 + 5u2v − 4uv3 + 5uv2 − 4uv + v3)

(u − v)3 ,

c1(u, v) =
3
(
u3 − 4u2v2 + 5u2v − 4u2 + 5uv2 − 4uv + 2u + v3 − 4v2 + 2v

)
(u − v)3 , and

d(u, v) = − (u + v − 2)
(
u2 − 4uv + 2u + v2 + 2v − 2

)
(u − v)3 .

(1a) Let x � 1. We have

h(x) =
2(u − 1)2(x − v)2(2uv + ux − 3u − 3vx + v + 2x)

(u − v)3 .

Since
2(u − 1)2(x − v)2 � 0, (u − v)3 < 0,

it suffices to show that

s1(x) := 2uv + ux − 3u − 3vx + v + 2x � 0.

We have
s1(1) = 2(u − 1)(v − 1) < 0 and

s′1(x) = u − 3v + 2 < 0, since v > 1 � u + 2
3

,

therefore, s1(x) < 0 and h(x) � 0. Moreover, h(x) = 0 if and only if x = v.

(1b) Let 0 � x < 1. Then

h(x) =
2(x − u)2(v − 1)2(2uv − 3ux + u + vx − 3v + 2x)

(u − v)3 .

Since
2(x − u)2(v − 1)2 � 0, (u − v)3 < 0,

it suffices to show that

s2(x) := (v − 3u + 2)x + 2uv + u − 3v � 0.

We have
s2(0) = 2uv + u − 3v < 0, since v > 1 >

u
3 − 2u

; and

s2(1) = 2(u − 1)(v − 1) < 0,
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min{s2(0), s2(1)} � s2(x) � max{s2(0), s2(1)},

therefore, s2(x) < 0 and h(x) � 0. Moreover, h(x) = 0 if and only if x = u.

(1c) Let x < 0. Then
h′(x) = −3(1 − x)2 − b − 2cx + 3dx2,

h′′(x) = 6(d − 1)x + 2(3 − c),

h(0) � 0,

moreover, h(0) = 0 if and only if u = 0 (as it was proved above),

h′(0) = −b − 3 =
6u(v − 1)2(u2 + uv − 2v

)
(v − u)3 ,

d − 1 =
2(u − 1)2(u − 3v + 2)

(v − u)3 ,

3 − c =
6(v − 1)2(2u2 − u − v

)
(u − v)3 .

Taking into account the relations

6u(v − 1)2

(v − u)3 � 0,

u2 + uv − 2v < 0, since v > 1 >
u2

2 − u
,

we have h′(0) � 0. Moreover, h′(0) = 0 if and only if u = 0. Note that

2(u − 1)2

(v − u)3 > 0,

u − 3v + 2 < 0, since v > 1 >
u + 2

3
,

6(v − 1)2

(u − v)3 < 0,

2u2 − u − v < 0, since v > 1 > 2u2 − u,

therefore, d− 1 < 0, 3− c > 0, and h′′(x) > 0. Hence, h′(x) increases, and with the account
of h′(0) � 0, we find that h′(x) < 0 for x < 0; that is, h(x) decreases for x < 0. Since
h(0) � 0, we have h(x) > 0 for x < 0.

2. Now let u < 0. We have

a1(u, v) =
6u4v2 − u4 − 12u3v2 + 4u3v + 6u2v4 − 12u2v3 + 6u2v2 + 4uv3 − v4

(u − v)(u + v)(u2 − 4uv + v2)
,

b1(u, v) = −3
(
4u3v − u3 − 4u2v2 − 3u2v + 4uv3 − 3uv2 + 4uv − v3)

(u − v)(u2 − 4uv + v2)
,

c1(u, v) =
3
(
u4 + 4u3v − 4u3 − 6u2v2 + 2u2 + 4uv3 + v4 − 4v3 + 2v2)

(u − v)(u + v)(u2 − 4uv + v2)
,

d(u, v) =
(u + v − 2)

(
u2 − 4uv + 2u + v2 + 2v − 2

)
(u + v)(u2 − 4uv + v2)

.
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(2a) Let x � 1. Then

h(x) =
2(x − v)2s3(x)

(v − u)(u + v)(u2 − 4uv + v2)
,

where

s3(x) = 3u4 − 6u3 + 3u2v2 + 6u2vx − 6u2v − 3u2x + 3u2 − 6uv2x + 4uv + 2ux + 3v2x − v2 − 2vx.

Note that
2(x − v)2

(v − u)(u + v)(u2 − 4uv + v2)
� 0

with the equality attained iff x = v. Therefore, it suffices to show that s3(x) > 0. However,
this follows from the relations

s3(1) = 3u4 − 6u3 + 3u2v2 − 2u(v − 1)(3v + 1) + 2v(v − 1) > 0,

s′3(x) = 3u2(2v − 1)− 2u(3v2 − 1) + v(3v − 2) > 0.

(2b) Let x � 0. Then

h(x) =
2(x − u)2s4(x)

(v − u)(u + v)(u2 − 4uv + v2)
,

where

s4(x) = 3u2v2 − 6u2vx + 3u2x − u2 + 6uv2x − 6uv2 + 4uv − 2ux + 3v4 − 6v3 − 3v2x + 3v2 + 2vx.

Note that
2(x − u)2

(v − u)(u + v)(u2 − 4uv + v2)
� 0,

with the equality attained iff x = u. Therefore, it suffices to show that s4(x) > 0. However,
this follows from the relations

s4(0) = u2(3v2 − 1)− 2uv(3v − 2) + 3v2(v − 1)2 > 0,

s′4(x) = (v − u)(3u(2v − 1)− (3v − 2)) < 0.

(2c) Let 0 < x < 1. For all u < 0, v > 1, u + v > 0, we have

h(0) =
2u2
(

u2(3v2 − 1)− 2uv(3v − 2) + 3v2(v − 1)2
)

(v − u)(u + v)(u2 − 4uv + v2)
> 0,

h(1) =
2(v − 1)2

(
3u4 − 6u3 + 3u2v2 − 2u

(
3v2 − 2v − 1

)
+ 2v(v − 1)

)
(v − u)(u + v)(u2 − 4uv + v2)

> 0,

h′(0) = −
6u
(

u2(2v − 1)− uv(2v − 1) + 2v(v − 1)2
)

(v − u)(u2 − 4uv + v2)
> 0.

Moreover,

h′′′(x) =
12(1 − u − v)(u2 + u(1 − 4v) + v2 + v − 2)

(u + v)(u2 − 4uv + v2)
� 0 ⇐⇒ u + v � 1.

Consider the case u + v � 1. Since h′′′(x) � 0, the function h′ is concave. Since h′(0) > 0,
the function h′ has at most one root x0 on the interval 0 � x � 1. Moreover, h′(x) � 0 for
0 � x � x0 and h′(x) � 0 for x0 � x � 1. Therefore, h(x) either increases on the whole
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interval 0 � x � 1 (if h′ is nonnegative), or increases on 0 � x � x0 and decreases on
x0 � x � 1, so that

min
0�x�1

h(x) = min{h(0), h(1)}.

Since h(0) > 0 and h(1) > 0, we have h(x) > 0.
Now consider the case 0 < u + v < 1. In this case, h′ is convex. Note that

h′(1) =
6(v − 1)(2 − u − v)

(
2u3 − 2u2v + u

(
2v2 − v − 1

)− v(v − 1)
)

(v − u)(u + v)(u2 − 4uv + v2)
< 0.

Since h′(0) > 0, h′(1) < 0, and h′ is convex, the function h′ has exactly one root x1 on the
interval 0 � x � 1. Moreover, h′(x) � 0 for 0 � x � x1 and h′(x) � 0 for x1 � x � 1. So,
the function h increases on the interval [0, x1] and decreases on [x1, 1]. Therefore,

min
0�x�1

h(x) = min{h(0), h(1)}.

With the account of h(0) > 0 and h(1) > 0, we have h(x) > 0 for all 0 � x � 1.

Lemma 1 trivially yields the following statement.

Lemma 2. For any L (X) ∈ P , t ∈ R \ {0} and every u, v ∈ R such that{
u + v > 0,
u < 1 < v,

the inequality

E|X − t|3 � at(u, v) + bt(u, v)EX + ct(u, v)EX2 + d(u, v)E|X|3,

holds with equality attained iff the distribution of the r.v. X is concentrated in the two points: ut
and vt.

By P2, let us denote the class of all the non-degenerate two-point distributions.
Obviously, P2 ⊂ P .

Lemma 3. For any t ∈ (0, 1)

H(t) := sup
L (X)∈P :
EX=t,
EX2=1

E|X|3
E|X − t|3 = sup

L (X)∈P2:
EX=t,
EX2=1

E|X|3
E|X − t|3 ,

moreover, the least upper bound on the right-hand side can be attained only on the two-point distributions.

Proof. It suffices to prove that for any � � 1 and r.v. X with

EX = t, EX2 = 1, and E|X|3 = �

there exists a two-point r.v. Y with

EY = t, EY2 = 1, and E|Y|3 = �,

satisfying the inequality
E|X − t|3 � E|Y − t|3.
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Indeed, the above moment conditions imply that

H(t) = sup
��1

sup
L (X)∈P : EX=t,
EX2=1,E|X|3=�

�

E|X − t|3 � sup
��1

sup
Y∈P2 : EY=t,
EY2=1,E|Y|3=�

�

E|Y − t|3 , 0 < t < 1,

where only equality is possible since P2 ⊂ P .

(1) Let � > 1. Consider a two-point r.v. Yp that takes values x > y with probabilities p and
q = 1 − p, respectively, and satisfies EYp = t,EY2

p = 1. Then we necessarily have

x = x(p) = t +
√
(1 − t2)q/p, y = y(p) = t −

√
(1 − t2)p/q.

We show that x + y > 0 iff p < 1+t
2 . We have

x + y > 0 ⇐⇒ 2t
√

pq +
√

1 − t2(q − p)√
pq

> 0 ⇐⇒ 2t
√

p(1 − p) >
√

1 − t2(2p − 1).

The last inequality trivially holds for 0 < p � 1
2 since the left-hand side is positive, whereas

the right-hand side is non-positive. If 1
2 < p < 1, then both sides of this inequality are

positive. Therefore, they can be squared:

4t2 p(1 − p) > (1 − t2)(4p2 − 4p + 1) ⇐⇒ t2 > (2p − 1)2 ⇐⇒ p <
1 + t

2
.

Unifying the intervals under consideration, we obtain the desired statement. Note that on(
0, 1+t

2
)

the function

�̃(p) ≡ E
∣∣Yp
∣∣3 = p

(
t +
√

q
p (1 − t2)

)3
+ q
∣∣∣t −√ p

q (1 − t2)
∣∣∣3

of the argument, p takes all the values from the interval (1,+∞) because, for any 0 < t < 1,
we have

�̃

(
1 + t

2

)
= 1, lim

p→0+
�̃(p) = +∞

and �̃(p) is continuous. Hence, for every � > 1 there exists p0 = p0(�) ∈
(
0, 1+t

2
)

such that

E
∣∣Yp0

∣∣3 = �. Furthermore, note that,{
y(p0) < t < x(p0),
x(p0) + y(p0) > 0,

and, hence, the couple u = y(p0)/t and v = x(p0)/t satisfy all the conditions of Lemma 2,
according to which, with the account of the definition of the r.v. Yp0 , we have

E|X − t|3 � at(u, v) + bt(u, v)t + ct(u, v) + d(u, v)� = E
∣∣Yp0 − t

∣∣3,

where the equality is attained iff the distribution of the r.v. X is concentrated in exactly two

points ut = y(p0) and vt = x(p0); that is, iff X d
= Yp0 . Therefore, the desired statement

holds with the r.v. Y d
= Yp0 .

(2) Now let � = 1. By virtue of Jensen’s inequality, for the strictly convex function f (x) =
x3/2, x � 0, we have

1 = E|X|3 = E f (X2) � f (EX2) = f (1) = 1,
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where the equality holds iff

P(X2 = EX2) = 1, i.e., P(|X| = 1) = 1.

The condition EX = t immediately implies that, in this case, the r.v. X must have the
two-point distribution of the form P(X = ±1) = (1 ± t)/2. So, the desired statement holds

with Y d
= X.

4. Analysis of Two-Point Distributions

Recall that by P2, we denoted the class of all the non-degenerate two-point distribu-
tions.

Lemma 4. (a) For any t ∈ (0, 1)

sup
L (X)∈P2:

EX=t, EX2=1

E|X|3
E|X − t|3 = max

−1<z<1
M(z, t) = M(z(t), t), (25)

where the function z(t), t ∈ (0, 1), is defined in Theorem 1 (see (9))

M(z, t) =

{
M1(z, t), −1 < z < 1 − 2t2,
M2(z, t), 1 − 2t2 � z < 1,

M1(u, t) = 1 +
3t2

1 − t2 · 1 − u2 − a(t)u
√

1 − u2

1 + u2 , u ∈ (−1, 1),

M2(v, t) =
b(t)

√
1 − v2 + 2v
v2 + 1

, v ∈ (−1, 1),

a(t) =
4t2 − 3

3t
√

1 − t2
, b(t) =

t(3 − 2t2)

(1 − t2)3/2 , t ∈ (0, 1).

Moreover, the supremum in (25) is attained only on the two-point distribution defined in Theorem 1
(see (12)).

(b) The functions M, M1, and M2 are differentiable in the domain (z, t) ∈ (−1, 1)× (0, 1)
and have continuous derivatives there.

(c) There hold the equalities

lim
z→−1+

M1(z, t) = lim
z→1−

M1(z, t) = 1, t ∈ (0, 1),

lim
z→−1+

M2(z, t) = −1, lim
z→1−

M2(z, t) = 1, t ∈ (0, 1),

lim
t→0

M1(z, t) = 1, lim
t→0

M2(z, t) =
2z

z2 + 1
, z ∈ (−1, 1),

lim
t→1

M2(z, t) = +∞, z ∈ (−1, 1).

(d) The function z(t) is continuously differentiable and monotonically decreasing on the
interval t ∈ (0, 1) with

z(0+) =

√
3

3
, z(t0) =

√
7 − 2
3

, z(1−) = 0.

Moreover, the inequalities
z(t) � 1 − 2t2, t ∈ (0, t0],

z(t) � 1 − 2t2, t ∈ [t0, 1),
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hold, and the equality in each of them is attained only at the endpoint t = t0 :=
√

5−√
7

6 =
0.6263 . . . , defined in Theorem 1.

Proof. (a) Consider a two-point distribution

P(X = x) = p = 1 − P(X = y) = 1 − q, (26)

with some x > t > y, p ∈ (0, 1). From the conditions

EX = t and EX2 = 1,

it follows that
x = t +

√
q
p (1 − t2) and y = t −

√
p
q (1 − t2). (27)

Denote

H̃(p, t) =
E|X|3

E|X − t|3 =
p|x|3 + q|y|3

p(x − t)3 + q(t − y)3 , p ∈ (0, 1), t ∈ (0, 1). (28)

Then

H̃(t) := sup
L (X)∈P2:

EX=t, EX2=1

E|X|3
E|X − t|3 = sup

0<p<1
H̃(p, t). (29)

Let us show that the last supremum has the form (25) with z(t) defined in (9).
For 0 < p � t2, we have y � 0 and

H̃(p, t) =
px3 + qy3

p(x − t)3 + q(t − y)3 =
t(3 − 2t2) + q−p√

pq (1 − t2)3/2

p2+q2√
pq (1 − t2)3/2

=
b(t)

√
pq + (q − p)
p2 + q2 .

For t2 < p < 1, we have y < 0 and

H̃(p, t) = 1 +
t(4t2 − 3)(p − q) + 6t2

√
1 − t2√pq

p2+q2√
pq (1 − t2)3/2

= 1 +
3t2

1 − t2 · a(t)
√

pq(p − q) + 2pq
p2 + q2 .

In terms of a new variable
z = q − p = 1 − 2p, (30)

we have

pq =
1 − z2

4
, p2 + q2 =

1 + z2

2
, and sup

p∈(0,1)
H̃(p, t) = sup

z∈(−1,1)
H̃
(

1 − z
2

, t
)

Observing that

H̃
(

1 − z
2

, t
)
= M(z, t), (31)

we may finally write

H̃(t) := sup
p∈(0,1)

H̃(p, t) = sup
−1<z<1

M(z, t), t ∈ (0, 1).

We show that z(t) is the unique global maximum point of the function M( · , t) for each
t ∈ (0, 1), whence, with the account of relations (26), (27), (30), the item (a) would follow.
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For M1, we have

∂M1(u, t)
∂u

=
3t2

1 − t2 · a(t)(3u2 − 1)− 4u
√

1 − u2
√

1 − u2 · (1 + u2)2
,

and hence, the stationary points of M1( · , t) can be determined from the equation

g(u) :=
4u

√
1 − u2

3u2 − 1
= a(t),

which coincides with (10).
Note that the function g(u) is even, continuously differentiable and monotonically

decreasing on the intervals (−1,−√
3/3), (−√

3/3,
√

3/3), and (
√

3/3, 1) and has discon-
tinuity points of the second kind in the points u = ±√

3/3 (see the plot of g(u) in Figure 6).
Therefore, there exist the inverse functions

g−1
1 : (−∞, 0) → (−1,−

√
3/3),

g−1
2 : R → (−

√
3/3,

√
3/3),

g−1
3 : (0,+∞) → (

√
3/3, 1),

each of which is differentiable and monotonically decreasing in its domain.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

u

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

g
(u
)

Figure 6. The plot of the function g(u) = 4u
√

1−u2

3u2−1 .

If a(t) = 0 (that is, t =
√

3/2), then it is easy to make sure that u = 0 is the unique
maximum point and unique stationary point of the function M1( · , t) on (−1, 1).

Now let a(t) �= 0. By u1(t) < u2(t) denote the roots of the equation g(u) = a(t)
on the interval u ∈ (−1, 1). If a(t) > 0 (that is, t >

√
3/2), then u1(t) = g−1

2 (a(t)),
u2(t) = g−1

3 (a(t)) are respectively the points of local maximum and minimum of the
function M1( · , t) (see the plots of the function M1( · , t) for some t in Figure 7). Moreover,
a(t)u1(t) < 0 and M1(u1(t), t) > 1. Since a(t) is continuously differentiable and monoton-
ically increasing, both u1(·) and u2(·) are continuously differentiable and monotonically
decreasing with

u1(
√

3/2+) = 0, u1(1−) = −
√

3/3,

u2(
√

3/2+) = 1, u2(1−) =
√

3/3.
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Figure 7. Plots of the functions M1( · , t) for some t.

And if a(t) < 0 (that is, t <
√

3/2), then u1(t) = g−1
1 (a(t)), u2(t) = g−1

2 (a(t)) are
the points of local minimum and maximum, respectively. Moreover, a(t)u2(t) < 0 and
M1(u2(t), t) > 1. Since a(t) is continuously differentiable and monotonically increasing,
both u1(t) and u2(t) are continuously differentiable and monotonically decreasing on the
interval t ∈ (0,

√
3/2) with

u1(0+) = −
√

3/3, u1(
√

3/2−) = −1,

u2(0+) =
√

3/3, u2(
√

3/2−) = 0.

Since M1(±1, t) = 1, the local maximum point of the function M1( · , t) is the point of
its global maximum on the whole interval u ∈ (−1, 1).

So, for an arbitrary s ∈ (−1, 1), we have

sup
−1<u<s

M1(u, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M1(0 ∧ s, t), a(t) = 0,

M1(u1(t) ∧ s, t), a(t) > 0,

M1(u2(t) ∧ s, t) ∨ 1, a(t) < 0

(here, the symbols ∨ and ∧ denote the maximum and minimum, respectively). For s =
1 − 2t2, we have

sup
−1<u<1−2t2

M1(u, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M1

(
− 1

2 ,
√

3
2

)
= 32

5 , t =
√

3/2,

M1(u1(t) ∧ (1 − 2t2), t),
√

3/2 < t < 1,

M1(u2(t) ∧ (1 − 2t2), t) ∨ 1, 0 < t <
√

3/2.

Compare 1 − 2t2 with u2(t) for 0 < t <
√

3
2 and with u1(t) for

√
3

2 < t < 1.

If
√

3
2 < t < 1, then, as it has already been noted, −√

3/3 < u1(t) < 0, and hence,

u1(t) > −√
3/3 � 1 − 2t2 trivially for

√
1
2 +

√
3

6 � t < 1. And if t ∈
(√

3
2 ,
√

1
2 +

√
3

6

)
=

(0.866 . . . , 0.888 . . .), then 1− 2t2 ∈
(
−

√
3

3 ,− 1
2

)
⊂
(
−

√
3

3 ,
√

3
3

)
, that is, point 1− 2t2 belongs

to the same interval
(− √

3
3 ,

√
3

3
)

of the monotonic decrease of the function g(u), as u1(t),
and hence, on the interval of the values of t under consideration, we have

1 − 2t2 � u1(t) ⇔ g(1 − 2t2) � g(u1(t)) ≡ a(t) ⇔

⇔ 4t(2t2 − 1)
√

1 − t2

−6t4 + 6t2 − 1
� 4t2 − 3

3t
√

1 − t2
⇔

⇔ 12t2(2t2 − 1)(1 − t2) � (4t2 − 3)(−6t4 + 6t2 − 1) ⇔ 6t4 − 10t2 + 3 � 0 ⇔
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⇔ t ∈
[√

5−√
7

6 ,
√

5+
√

7
6

]
∩
(√

3
2 ,
√

1
2 +

√
3

6

)
=
(√

3
2 ,
√

1
2 +

√
3

6

)
.(

In the third step here, we also took into account that −6t4 + 6t2 − 1 > 0 for t ∈
(√

1
2 −

√
3

6 ,√
1
2 +

√
3

6

)
⊃
(√

3
2 ,
√

1
2 +

√
3

6

))
. So, unifying the obtained interval with the domain t �√

1
2 +

√
3

6 , we finally conclude that

u1(t) > 1 − 2t2 for all t ∈ (√3
2 , 1
)
.

It remains to compare 1 − 2t2 with u2(t) on the interval 0 < t <
√

3
2 . As it has

already been noted, on this interval, we have 0 < u2(t) <
√

3
3 , and hence, u2(t) > 0 �

1 − 2t2 a fortiori for 0.707 . . . =
√

2
2 � t <

√
3

2 and u2(t) <
√

3/3 � 1 − 2t2 for 0 < t �√
1
2 −

√
3

6 = 0.459 . . . If t ∈
(√

1
2 −

√
3

6 ,
√

2
2

)
, then 1 − 2t2 ∈

(
0,

√
3

3

)
⊂ (− √

3
3 ,

√
3

3
)
; that is,

the point 1 − 2t2 belongs to the same interval
(− √

3
3 ,

√
3

3
)

of the monotonic decrease of the
function g(u), as u2(t), and hence,

1 − 2t2 � u2(t) ⇔ g(1 − 2t2) � g(u2(t)) ≡ a(t).

Further calculations completely coincide with what has been done for the comparison
of u1(t) and 1 − 2t2, including the remark on the positiveness of the polynomial −6t4 +

6t2 − 1 on the interval t ∈
(√

1
2 −

√
3

6 ,
√

2
2

)
. Therefore, for t under consideration, we have

u2(t) � 1 − 2t2 ⇔ t ∈
[√

5−√
7

6 ,
√

5+
√

7
6

]⋂(√
1
2 −

√
3

6 ,
√

2
2

)
=
[√

5−√
7

6 ,
√

2
2

)
,

u2(t) < 1 − 2t2 ⇔ t ∈
(√

1
2 −

√
3

6 ,
√

5−√
7

6

)
.

Unifying the obtained domains of the values of t, we finally get

u2(t) � 1 − 2t2 on the interval t ∈ (0,
√

3
2
) ⇔

√
5−√

7
6 =: t0 � t <

√
3

2 ,

with equality attained only at the point t = t0.
Taking into account that u2(t) is the global maximum point of the function M1( · , t)

for 0 < t <
√

3/2, and also that

M1(1 − 2t2, t)
∣∣∣∣
t=

√
3/2

= M1

(
− 1

2
,

√
3

2

)
,

we conclude that

max
−1<u<1−2t2

M1(u, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M1(u2(t), t), 0 < t < t0,

M1(1 − 2t2, t) ∨ 1, t0 � t <
√

3
2 ,

M1(1 − 2t2, t),
√

3
2 � t < 1.

(32)

We now consider the behavior of the function M2( · , t). Since both functions√
1 − v2/(v2 + 1) and v/(v2 + 1) increase for v ∈ (−1, 0], M2(v, t) increases in v ∈ (−1, 0]

for every t ∈ (0, 1).
The numerator of the derivative

∂M2(v, t)
∂v

=
b(t)v(v2 − 3) + 2(1 − v2)3/2

√
1 − v2 · (v2 + 1)2

33
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decreases on the interval v ∈ (0, 1) and takes the values 2 > 0 and −2b(t) < 0 of different
signs at the endpoints. Therefore, the equation ∂M2

∂v = 0, which is equivalent to

f (v) :=
2(1 − v2)3/2

v(3 − v2)
= b(t) (33)

and coincides with (11), has a unique root on (0, 1), which is the maximum point of
M2(v, t) on the interval v ∈ [0, 1]. Since the function f (v) is continuously differentiable and
monotonically decreasing on the interval v ∈ (0, 1) with f (+0) = +∞, f (1−) = 0, there
exists an inverse function

f−1 : (0,+∞) → (0, 1),

which is also continuously differentiable and monotonically decreasing. Furthermore, since
the function b(t) is continuously differentiable and monotonically increasing on the interval
t ∈ (0, 1), Equation (33) has a unique root

v(t) = f−1(b(t)),

on v ∈ (0, 1), which is the global maximum point of the function M2( · , t) on the whole
interval (−1, 1) (see the plots of the function M2( · , t) for some t in Figure 8). Moreover, v(t)
is continuously differentiable and monotonically decreasing for t ∈ (0, 1), as a superposition
of two continuously differentiable functions, one of which (b(t)) increases, whereas the
other one ( f−1(b)) decreases. By conducting direct calculations we make sure that b(0) = 0,
b(1−) = +∞, and hence, v(0+) = 1, v(1−) = 0.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

v

−1

0

1

2

3

4

M
2
(v
,
t
)

t=0.1

t=0.3

t=0.5

t=0.7

Figure 8. Plots of the function M2( · , t) for some t.

So, for an arbitrary s ∈ (−1, 1), we have

sup
s�v<1

M2(v, t) = M2(v(t) ∨ s, t).

In particular, for s = 1 − 2t2 we obtain

sup
1−2t2�v<1

M2(v, t) = M2(v(t) ∨ (1 − 2t2), t).

Compare v(t) and 1 − 2t2. Since v(t) ∈ (0, 1) for all t ∈ (0, 1) by definition, a fortiori
v(t) > 0 � 1 − 2t2 for

√
2

2 � t < 1. On the interval 0 < t <
√

2
2 , we have

1 − 2t2 � v(t) ⇔ f (1 − 2t2) � f (v(t)) ≡ b(t) ⇔

34
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⇔ 8t3(1 − t2)3/2

(2t2 − 1)(2t4 − 2t2 − 1)
� t(3 − 2t2)

(1 − t2)3/2 ⇔

⇔ 8t2(1 − t2)3 � (3 − 2t2)(2t2 − 1)(2t4 − 2t2 − 1) ⇔ 6t4 − 10t2 + 3 � 0

⇔ t ∈
[√

5−√
7

6 ,
√

5+
√

7
6

]
∩ (0,

√
2

2
)
=
[√

5−√
7

6 ,
√

2
2

)
= [0.626 . . . , 0.707 . . .).

On the third step here we also took into account the fact that 2t2 − 1 < 0, 2t4 − 2t2 − 1 < 0
in the domain of the values of t under consideration. Thus, unifying the obtained interval
with the domain t �

√
2/2, we arrive at

v(t) � 1 − 2t2 on the interval t ∈ (0, 1) ⇔ t0 � t < 1,

with equality attained only at the point t = t0.
So, for s = 1 − 2t2 we finally obtain

max
1−2t2�v<1

M2(v, t) =

⎧⎨⎩M2(1 − 2t2, t), 0 < t < t0,

M2(v(t), t), t0 � t < 1.
(34)

As a by-product we showed that

u2(t0) = v(t0) = 1 − 2t2
0 =

√
7 − 2
3

= 0.21525 . . . . (35)

In addition, note that the function

M1(1 − 2t2, t) =
1

(1 − t2)(2t4 − 2t2 + 1)
= M2(1 − 2t2, t), t ∈ (0, 1), (36)

increases monotonically on the interval t0 � t �
√

3
2 .

Finally, from (29), (31), (32), (34), (36), it follows that

H̃(t) = sup
−1<z<1

H̃
(

1 − z
2

, t
)
= max

{
max

−1<u<1−2t2
M1(u, t), max

1−2t2�v<1
M2(v, t)

}
=

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M1(u2(t), t) ∨ M2(1 − 2t2, t), 0 < t < t0,

M1(1 − 2t2, t) ∨ M2(v(t), t) ∨ 1, t0 � t <
√

3
2 ,

M1(1 − 2t2, t) ∨ M2(v(t), t),
√

3
2 � t < 1,

=

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M1(u2(t), t) ∨ M1(1 − 2t2, t), 0 < t < t0,

M2(1 − 2t2, t) ∨ M2(v(t), t) ∨ 1, t0 � t <
√

3
2 ,

M2(1 − 2t2, t) ∨ M2(v(t), t),
√

3
2 � t < 1.

Taking into account that

M1(1 − 2t2
0, t0) = M2(1 − 2t2

0, t0) =
54

8
√

7 − 4
= 3.14575 . . . > 1,

we obtain

H̃(t) =

⎧⎨⎩M1(u2(t), t) ∨ M1(1 − 2t2, t), 0 < t < t0,

M2(1 − 2t2, t) ∨ M2(v(t), t), t0 � t < 1.
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Recalling that v(t) is the unique point of global maximum of M2(v, t) on the interval
v ∈ (−1, 1), and u2(t) is the unique point of global maximum of M1(u, t) on the interval
u ∈ (−1, 1) for t ∈ (0, t0] ⊂

(
0,

√
3

2

)
(when a(t) < 0), we conclude that

H̃(t) =

⎧⎨⎩M1(u2(t), t), 0 < t < t0,

M2(v(t), t), t0 � t < 1,
= M(z(t), t).

Thus, the function u2(t) defined for t ∈ (0,
√

3/2) (which corresponds to the case
a(t) < 0) and monotonically decreasing in its domain, acts as the function u(t) given in
the formulation of Theorem 1 and the lemma being proved, whereas the role of the global
maximum point z(t) of the function M( · , t) is played by the functions u(t) = u2(t) for
t ∈ (0, t0) and v(t) for t ∈ [t0, 1), which completely agrees with (9).

(b) The functions M1 and M2 are obviously differentiable in the domain (z, t) ∈ (−1, 1)×
(0, 1) and have continuous partial derivatives there. It is easy to see from (27) and (28) that
the function H̃(p, t) is differentiable in the domain (p, t) ∈ (0, 1)× (0, 1) and has continuous
partial derivatives there. With the account of (31) we conclude that M is differentiable in
the domain (z, t) ∈ (−1, 1)× (0, 1) and has continuous partial derivatives there.

(c) This statement can be verified directly.

(d) We show that z(t) is continuously differentiable and decreases on the interval t ∈ (0, 1).
Since u2(t) is continuously differentiable and monotonically decreasing on the interval
t ∈ (0,

√
3

2
) ⊃ (0, t0] and the function v(t) is continuously differentiable and monotonically

decreasing on the interval t ∈ (0, 1) ⊃ [t0, 1], with the account of (35), we conclude that
the function z(t) is continuous and monotonically decreasing on the interval t ∈ (0, 1).
Furthermore, the function z(t) is continuously differentiable on each of the intervals (0, t0)
and (t0, 1). In addition, we show that u′

2(t0) = v′(t0), whence it will follow that the function
z is continuously differentiable in the point t0, and hence, on the whole, interval t ∈ (0, 1).
In the neighborhood of t0, we have

u2(t0) = g−1(a(t0)), v(t0) = f−1(b(t0)),

therefore,

u′
2(t0) =

a′(t0)

g′(u2(t0))
, v′(t0) =

b′(t0)

f ′(v(t0))
,

whence by virtue of (35), we obtain

u′
2(t0) =

a′(t0)

g′(1 − 2t2
0)

, v′(t0) =
b′(t0)

f ′(1 − 2t2
0)

.

By direct calculations, we make sure that

u′
2(t0) = v′(t0) = −2

√
3−√

7
3 = −0.687263 . . . .

Thus, the function z(t) is differentiable on the interval t ∈ (0, 1).
Now to complete the proof of item (d), it remains to recall that

z(0+) = u2(0+) =

√
3

3
, z(1−) = v(1−) = 0, z(t0) = u2(t0) = v(t0) =

√
7 − 2
3

,

and that (see the proof of item (a)) each of the equations

u2(t) = 1 − 2t2, t ∈ (0,
√

3/2
)
,

v(t) = 1 − 2t2, t ∈ (0, 1),

36
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has the unique root t = t0.

5. Proofs of Main Results

Proof of Theorem 1. It is obvious that H(0) = 1 and H is an even function. Since J(X) is
invariant with respect to the scale transform of X, the single non-linear condition in (8) can
be replaced by the two linear ones: EX = t, EX2 = 1. Further, from Lemmas 3 and 4 (a), (d),
it follows that for t ∈ (0, 1), we have

H(t) = M(z(t), t) =

{
M1(z(t), t), −1 < z(t) < 1 − 2t2,
M2(z(t), t), 1 − 2t2 � z(t) < 1,

=

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 +

3t2

1 − t2 · 1 − z2(t)− a(t)z(t)
√

1 − z2(t)
1 + z2(t)

, 0 < t < t0,

b(t)
√

1 − z2(t) + 2z(t)
z2(t) + 1

, t0 � t < 1.

By the definition of the function z(t), we have

a(t) =
4z(t)

√
1 − z2(t)

3z2(t)− 1
, 0 < t < t0,

b(t) =
2(1 − z2(t))3/2

z(t)(3 − z2(t))
, t0 � t < 1.

Hence,

H(t) =

⎧⎪⎪⎨⎪⎪⎩
1 +

3t2

1 − t2 · 1 − z2(t)
1 − 3z2(t)

, 0 < t < t0,

2
z(t)(3 − z2(t))

, t0 � t < 1,

which coincides with (8). The form and uniqueness of the extreme distribution were proved
in Lemma 4 (a).

It remains to be proven that the function H is continuous and monotonically increasing
on the interval t ∈ [0, 1) and that H(1−) = +∞. By virtue of Lemma 4 (a) for t ∈ (0, 1), we
have H(t) = M(z(t), t), moreover, M is continuous in the domain (z, t) ∈ (−1, 1)× (0, 1),
whereas z is continuous on the interval t ∈ (0, 1), whence H(t) is continuous on the interval
t ∈ (0, 1). Since

H(0+) = M(z(0+), 0+) = 1 = H(0),

H is also continuous in zero.
Finally, prove that the function H is monotonically increasing. From the definition of

the function z(t), it follows that

1
1 − 3z2(t)

=
3 − 4t2

12tz(t)
√
(1 − t2)(1 − z2(t))

, t ∈ (0, t0),

and hence, we can write

H(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 +

t(3 − 4t2)
√

1 − z2(t)
4z(t)(1 − t2)3/2 , 0 < t < t0,

2
z(t)(3 − z2(t))

, t0 � t < 1.

Note that the function t(3 − 4t2)(1 − t2)−3/2 is positive and monotonically increasing on
the interval 0 < t < t0, whereas the function z−1

√
1 − z2 is positive and monotonically

decreasing on the interval 0 < z < 1. Since the function z(t) decreases on the interval
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0 < t < t0 as well, we conclude that H increases on the interval (0, t0) as a product of two
positive monotonically increasing functions (up to an additive constant). Furthermore,
since the function 2/

(
z(3 − z2)

)
decreases on the interval 0 < z < 1 and the function z(t)

decreases on the interval t0 � t < 1, the function H(t) increases on the interval t0 � t < 1,
as a superposition of two decreasing functions. Finally, the existence of an infinite limit of
H(t), as t → 1−, follows from that z(t) → 0+, as t → 1−.

Proof of Proposition 1. By virtue of the continuity of H and Ĥ, it suffices to prove inequal-
ity (15) only on the interval (0, t0). By the definition of z(t) for 0 < t < t0, as a unique root
of the equation

g(z) :=
4z
√

1 − z2

3z2 − 1
=

4t2 − 3

3t
√

1 − t2
=: a(t),

on the interval 0 < z <
√

3/3, we have

lim
t→0+

z(t) =
√

3
3

, lim
t→0+

z′(t) = lim
t→0+

a′(t)
g′(z(t)) = −2

√
6

9
,

hence, by the Lagrange theorem,

z(t) = z̃(t) + o(t), z̃(t) :=

√
3

3
− 2

√
6

9
t.

We show that z(t) < z̃(t) for 0 < t < t0. By virtue of the monotonic decrease of g(u) for
0 < u <

√
3/3, we have

z(t) < z̃(t) ⇐⇒ g(z(t)) > g(z̃(t)) ⇐⇒

⇐⇒ − 3 − 4t2

3t
√

1 − t2
> −

(
3
√

2 − 4t
)√

−4t2 + 6
√

2t + 9

3t
(

3
√

2 − 2t
) ⇐⇒

⇐⇒ (3 − 4t2)(3
√

2 − 2t) < (3
√

2 − 4t)
√
(−4t2 + 6

√
2 + 9)(1 − t2) ⇐⇒

⇐⇒ 96
√

2t5 + t4(− 328 − 96
√

2
)
+ t3(24

√
2 + 288

)
+ t2(306 − 12

√
2
)
+

+t
(− 288 − 108

√
2
)
+ 108

√
2 =: s(t) > 0.

We show that s(t) > 0 for 0 < t < t0. We have

s′(t) = 480
√

2t4 + t3(− 1312− 384
√

2
)
+ t2(72

√
2+ 864

)
+ t
(
612− 24

√
2
)− 288− 108

√
2,

s′′(t) = 1920
√

2t3 + t2(− 3936 − 1152
√

2
)
+ t
(
144

√
2 + 1728

)− 24
√

2 + 612,

s(3)(t) = 5760
√

2t2 + t
(− 7872 − 2304

√
2
)
+ 144

√
2 + 1728,

s(4)(t) = 11520
√

2t − 7872 − 2304
√

2 < 0, t ∈ (0, t0),

therefore, s(3)(t) decreases for t ∈ (0, t0). Since

s(3)(0+) = 144
√

2 + 1728 > 0, s(3)(t0−) = −1844.1499 . . . < 0,

s′′(t) has a unique stationary point on the interval t ∈ (0, t0), namely, the local maximum
point. Taking into account that

s′′(0+) = 612 − 24
√

2 > 0, s′′(t0−) = 271.7769 . . . > 0,

we conclude that s′′(t) > 0 for t ∈ (0, t0), and whence, s′(t) increases for t ∈ (0, t0]. Since
s′(t0) = −51.1066 < 0,, we have s′(t) < 0 for all t ∈ (0, t0] and hence, s(t) decreases for

38
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t ∈ (0, t0]. Finally, s(t0) = 10.8876 . . . , therefore, s(t) > 0 for t ∈ (0, t0]. So, the inequality
z(t) < z̃(t) is proved for t ∈ (0, t0).

Note that

H(t) = M(z(t), t) = 1 +
3t2

1 − t2 · 1 − z2(t)
1 − 3z2(t)

for 0 < t < t0, moreover, the function M( · , t) increases on the interval 0 < z <
√

3/3,
therefore, taking into account that 0 < z(t) < z̃(t) <

√
3/3 and

z̃2(t) =
1
3
− 4

√
2

9
t +

24
81

t2,

we obtain

H(t) � M(z̃(t), t) = 1 +
3t2

1 − t2 ·
2
3 + 4

√
2

9 t − 24
81 t2

4
√

2
3 t − 24

27 t2
=

5t + 6
√

2
2(1 − t2)(3

√
2 − 2t)

= Ĥ(t).

The function Ĥ(t) obviously increases on (0, t0). It now remains to note that, as t → 0,

z2(t) =
(√3

3
− 2

√
6

9
t + o(t)

)2
=

1
3
− 4

√
2

9
t + o(t) = z̃2(t),

H(t)− 1 =
3t2

1 − t2 · 1 − z2(t)
1 − 3z2(t)

=
3t2

1 − t2 ·
2
3 + 4

√
2

9 t + o(t)
4
√

2
3 t + o(t)

=

=
3t

1 − t2 · 2 + o(1)
4
√

2 + o(1)
=

3t2

1 − t2 · 1 − z̃2(t)
1 − 3z̃2(t)

= Ĥ(t)− 1, (37)

and hence,

lim
t→0+

Ĥ(t)− 1
H(t)− 1

= lim
t→0+

2 + o(1)
4
√

2 + o(1)
· 4

√
2 + o(1)

2 + o(1)
= 1.

Proof of Theorem 2. Lemma 4 (a) implies that H(t) = M(z(t), t), where z(t), t ∈ (0, 1),
is the unique global maximum point of the function M( · , t), t ∈ (0, 1). Moreover, the
function M(z, t) is differentiable in the domain (z, t) ∈ (−1, 1)× (0, 1) and has continuous
partial derivatives there, whereas the function z(t) is continuously differentiable on the
interval t ∈ (0, 1) and takes values from the interval

(
0,

√
3

3

)
. So,

sup
0<t<1

H(t)(1 − t2)3/2 = sup
0<t<1

h(t),

where h(t) = M(z(t), t)(1 − t2)3/2, t ∈ (0, 1). It is obvious that h is continuously differen-
tiable on the interval t ∈ (0, 1).

We find the stationary points of the function h on the interval t ∈ (0, 1). We have

h′(t) = (1 − t2)3/2(M(z(t), t))′t − 3t
√

1 − t2M(z(t), t),

(M(z(t), t))′t = M′
z(z, t)

∣∣
z=z(t) · z′(t) + M′

t(z, t)
∣∣
z=z(t) = M′

t(z, t)
∣∣
z=z(t).

For t ∈ [t0, 1), we have

1
3 h′(t) = (1 − 2t2)

√
1 − z2(t)− 2tz(t)

√
1 − t2

z2(t) + 1
.
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In the domain (z, t) ∈
(

0,
√

3
3

)
× [t0, 1) the equation

(1 − 2t2)
√

1 − z2 − 2tz
√

1 − t2 = 0

is only satisfied by the couples (1 − 2t2, t), t ∈ [t0,
√

2
2
)
, whence with the account of the fact

that z(t) = 1 − 2t2 only for t = t0 (see Lemma 4 (d)), we conclude that t = t0 is the unique
stationary point of the function h on the interval [t0, 1).

For t ∈ (0, t0], we have

1
3 h′(t) =

−2t3 + t + z2(t)
(
4t2 − 3

)
t + z(t)

(
1 − 4t2)√1 − t2

√
1 − z2(t)√

1 − t2(z2(t) + 1)
.

Find the solutions to the equation

z
(
1 − 4t2)√1 − t2

√
1 − z2 = t(2t2 − 1 − z2(4t2 − 3))

in the domain (z, t) ∈ (0,
√

3
3
)× (0, t0]. Squaring both sides, we obtain

z2(1 − 4t2)2(1 − t2)(1 − z2) = t2(2t2 − 1 − z2(4t2 − 3))2,

which is equivalent to

(t − z)(t + z)(z − 2t2 + 1)(z + 2t2 − 1) = 0.

Therefore, the original equation can only be satisfied by the points

(t, t), (−t, t), (1 − 2t2, t), (−1 + 2t2, t), 0 < t < 1.

By direct calculations, we make sure that in the domain (z, t) ∈ (0,
√

3
3
)× (0, t0] the original

equation is only satisfied by the couple (1 − 2t2, t), t ∈
(√

3−√
3

6 , t0

]
and the couple

( 1
2 , 1

2
)
.

Since z(t) = 1 − 2t2 iff t = t0, we conclude that t = t0 is the stationary point of the
function h, and h has no other stationary points except for t = 1

2 . We show that z
( 1

2
) �= 1

2
and, hence, t = 1

2 cannot be a stationary point of h. Recall (see Theorem 1), that z(t) turns
the equation

g(z) :=
4z
√

1 − z2

3z2 − 1
=

4t2 − 3

3t
√

1 − t2

into identity on the interval t ∈ (0, t0). By direct verification, we make sure that (z, t) =( 1
2 , 1

2
)

is not a root of this equation.
Thus, the function h has a unique stationary point t = t0 on the interval t ∈ (0, 1).

Moreover,

h(t0) =

√
1 − t2

0

1 − 2t2
0 + 2t4

0
=

√
17 + 7

√
7

4
= 1.489971 . . . .

Also, note that
lim
t→0

h(t) = h(0) = 1 < h(t0),

lim
t→1

h(t) =
(1 − t2)3/2(b(t)

√
1 − z2(t) + 2z)

z2(t) + 1
=

= lim
t→1

t
√

1 − z2(t)
(
3 − 2t2)+ 2z(t)

(
1 − t2) 3

2

z2(t) + 1
= 1 < h(t0),
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therefore, the point t0 is the global maximum point of the function h on the interval (0, 1),
and h increases on [0, t0] and decreases on [t0, 1). The fact that the maximum is attained on
the two-point distribution follows from Theorem 1.

Proof of Proposition 2. Inequality (18) for 0 � t � t0 follows trivially from Proposition 1.
Let us prove the equivalence of the left-hand and right-hand sides of this inequality as
t → 0. From the proof of Proposition 1 (see (37)), we have

H(t) = 1 +
3t

1 − t2 · 2 + o(1)
4
√

2 + o(1)
= Ĥ(t), t → 0,

whence with the account of the asymptotics (1− t2)α = 1+ o(t), t → 0, α ∈ R, it follows that

H(t)(1 − t2)3/2 = (1 − t2)3/2 + 3t
√

1 − t2 2 + o(1)
4
√

2 + o(1)
=

= 1 + o(t) + 3t(1 + o(t))(2 + o(1))
(

1
4
√

2
+ o(1)

)
=

= 1 + o(t) + 3t
(

2
4
√

2
+ o(1)

)
= 1 + 3

√
2

4 t + o(t) = Ĥ(t)(1 − t2)3/2,

and hence,

lim
t→0+

Ĥ(t)(1 − t2)3/2 − 1
H(t)(1 − t2)3/2 − 1

= lim
t→0+

3
√

2
4 t + o(t)

3
√

2
4 t + o(t)

= 1.

The function

Ĥ(t)(1 − t2)3/2 =

√
1 − t2(5t + 6

√
2)

2(3
√

2 − 2t)
=: s(t)

is continuous on [0, t0] by virtue of the continuity of Ĥ. To prove that Ĥ(t)(1 − t2)3/2

increases on (0, t0), consider the derivative

s′(t) = 10t3 − 30
√

2t2 − 36t + 27
√

2

2
√

1 − t2(2t − 3
√

2)2
.

With the account of the positiveness of the denominator for t ∈ (0, t0), it suffices to prove
that the numerator of s′(t) is positive; that is,

s1(t) := 10t3 − 30
√

2t2 − 36t + 27
√

2 > 0, t ∈ (0, t0).

Since 5t2 − 6 < −1 for all t ∈ (0, 1),, we have

s′1(t) = 6(5t2 − 10
√

2t − 6) < 6(−1 − 10
√

2t) < 0, t ∈ (0, t0),

therefore, s1(t) decreases on the interval t ∈ (0, t0) and, hence, for all t ∈ (0, t0), we have

s1(t) � s1(t0) = 1.4442 . . . > 0.

Proof of Theorem 3. According to the Berry–Esseen inequality (1), the following estimate
in terms of the non-central Lyapunov ratio holds:

Δλ(X) � C1 · L1(X)√
λ

, λ > 0.
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From Theorem 2, it follows that for any L (X) ∈ P with EX/
√
EX2 = t ∈ (−1, 1)

L1(X)

L0(X)
=

E|X|3
E|X −EX|3

(
DX
EX2

)3/2
=

E|X|3(1 − t2)3/2

E|X −EX|3 � H(t)
(

1 − t2
)3/2

�
√

17 + 7
√

7
4

,

and hence,

Δλ(X) � C1 · H(t)
(
1 − t2)3/2 L0(X)√

λ
�
√

17 + 7
√

7
4

C1 · L0(X)√
λ

,

that is, inequality (19) holds with C0(t) = C1 · H(t)
(
1 − t2)3/2 �

√
17+7

√
7

4 C1. The estimate
C1 � 0.3031 was obtained in ([20], Theorem 4).

In Theorem 2, it was also shown that H(t)
(
1 − t2)3/2 increases for 0 � t � t0 and

decreases for t0 � t < 1. Therefore,

C0(t) � C0(t ∧ t0), 0 � t < 1,

and the function C0(t ∧ t0) does not decrease for 0 � t < 1. Hence, for |EX|/
√
EX2 = s � t

in accordance with what has just been proven, we have

Δλ(X) � C0(s)
L0(X)√

λ
� C0(s ∧ t0) · L0(X)√

λ
� C0(t ∧ t0) · L0(X)√

λ
.

Finally, the upper bound of C0(t) for 0 � t � t0 declared in the formulation of the
theorem trivially follows from the inequality H(t) � Ĥ(t) obtained in Proposition 1 with
the account of the particular upper bound 0.3031 for the constant C1:

C0(t) � C1 · Ĥ(t)(1 − t2)3/2 � 0.3031 ·
√

1 − t2(5t + 6
√

2)
2(3

√
2 − 2t)

, 0 � t � t0.

The monotonicity of these upper bounds follows from that of the function Ĥ(t)(1 − t2)3/2

proved in Proposition 2.

6. Conclusions

In this paper, we posed and solved a new problem of a delicate comparison of Lya-
punov ratios, where the word “delicate” addresses the presence of additional moment
conditions (on the first two moments) in the originally [24] unconditional problem of
optimization of the ratio of Lyapunov fractions.

The problem of comparison of Lyapunov fractions arises naturally in the construction
of convergence rate estimates for random sums of independent random variables, in
particular, compound Poisson random sums, as was observed in [24]. As a possible
application of the results in Theorem 2, we introduced a new Berry–Esseen-type error bound
for the accuracy of the normal approximation to distributions of Poisson random sums in
terms of the classical central Lyapunov fraction whose factor depends on the value of the
normalized expectation of random summands. The introduced error bound improves up to
1.5 times the best-known one [31], where the factor of the Lyapunov fraction was constant.
In addition to an independent interest, the Berry–Esseen-type inequality (4), namely with
the central Lyapunov fraction, plays an important role in the construction of moment-
type estimates of the rate of convergence of random walks with equivalent elementary
trends and variances to variance-mean mixtures of normal laws [25–29], including skew
exponential power law, skew Student’s law, and more generally, variance-generalized
gamma law and generalized hyperbolic distributions. In addition, the introduction of
the non-constant factor of the central Lyapunov fraction in this inequality, as proposed in
Theorem 3, will allow, in particular, to improve the above-cited results considerably.
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Abstract: We consider a new model of a branching random walk on a multidimensional lattice with
continuous time and one source of particle reproduction and death, as well as an infinite number of
sources in which, in addition to the walk, only the absorption of particles can occur. The asymptotic
behavior of the integer moments of both the total number of particles and the number of particles at
a lattice point is studied depending on the relationship between the model parameters. In the case of
the existence of an isolated positive eigenvalue of the evolution operator of the average number of
particles, a limit theorem is obtained on the exponential growth of both the total number of particles
and the number of particles at a lattice point.

Keywords: branching random walks; moments of particle numbers; evolution operator; Green’s
function

MSC: 60J27; 60J80; 05C81; 60J85

1. Introduction

We consider a continuous-time branching random walk (BRW) on the multidimen-
sional lattice Zd, d ∈ N, with one source of particle reproduction and death located at the
origin and an infinite number of absorbing sources located at all other points of the lattice
in which, in addition to walk, the particle can only disappear.

The behavior of a BRW with a single source of particle generation (branching) located
at the origin and no absorption at other points under the assumption of a finite variance of
jumps has been studied, for example, in [1], and with infinite variance in [2,3]. The random
walk underlying the processes under consideration is defined using the transition intensity
matrix A = (a(x, y))x,y∈Zd and satisfies conditions of regularity a(x, y) ≥ 0 for x �= y and
a(x, x) < 0, symmetry and spatial homogeneity a(x, y) = a(y, x) = a(0, y − x) = a(y − x),
where ∑

z
a(z) = 0 (which allows us to consider a(x, y) as a function of one argument

a(y − x)), and irreducibility, i.e., for every z ∈ Zd there exists a set of vectors z1, z2, . . . , zk ∈
Zd such that z = ∑k

i=1 zi and a(zi) �= 0 for i = 1, 2, . . . , k. In these models, the operator that
specifies the evolution of the average number of particles has the form

H = A+ βΔ0,

where the operator A : lp(Zd) → lp(Zd) generated by the matrix A acts on the function
ϕ ∈ lp(Zd) by the formula

(Aϕ)(x) = ∑
y∈Zd

a(x − y)ϕ(y), x ∈ Z
d, (1)
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and the operator Δ0 is defined by the equality Δ0 = δ0δT
0 , where δ0 = δ0(·) denotes a

column-vector on the lattice taking the unit value at the point 0 ∈ Zd and vanishing at
other points. The parameter β in the definition of the operator H is given by the equality
β := ∑n>1(n − 1)bn − b0, where bn is the intensity of occurrence of n > 1 descendants of
the particle, including the particle itself, b0 is the absorption intensity of the particle. Thus,
the operator βΔ0 determines the process of particle branching at the origin.

As shown in [1], the operator A appears in the system of differential-difference equa-
tions (backward Kolmogorov equations) for the transition probability p(t, x, y):

∂p(t, x, y)
∂t

= Ap(t, x, y), p(0, x, y) = δy(x),

where δy(·) is the Kronecker delta on Zd. Schur’s lemma shows that the operator A :
lp(Zd) → lp(Zd), given by the Formula (1), is bounded linear operator in lp(Zd) for
1 ≤ p ≤ ∞.

In a BRW with an infinite number of absorbing sources, the evolution operator of the
average number of particles is modified as follows:

E = A+ β∗Δ0 − b0 I,

where I is the identity operator and the last term specifies the process of absorption
of particles at every lattice point. Note that the parameter β∗ := ∑n>1(n − 1)bn in the
considered BRW differs from the parameter β = β∗ − b0 in that for b0 > 0 the parameter
β can take values from the interval (−∞,+∞), while the parameter β∗ is non-negative:
β∗ ≥ 0.

Let the parameter βc be determined by the formula βc := 1/G0(0, 0), where Gλ(x, y)
is the Green’s function of the random walk. Many properties of the transition probabilities
of a random walk p(t, x, y), see details in Section 2, are expressed in terms of the Green’s
function, while the Green’s function can be defined as the Laplace transform of the transition
probability p(t, x, y) by the formula:

Gλ(x, y) :=
∫ ∞

0
e−λt p(t, x, y) dt, λ ≥ 0. (2)

As shown, for example, in [1], when the relation β∗ > βc holds, the operator A+ β∗Δ0
has an isolated positive eigenvalue λ0, which is the solution of the equation β∗Gλ(0, 0) = 1.
The asymptotic behavior of the integer moments of the total number of particles and the
number of particles at every point of the lattice in the process under consideration depends
on the dimension of the lattice d, the relation between the parameters β∗ and βc, and for
β∗ > βc also on the relation between λ0 and b0.

In the case of β > βc, a BRW with one source of particle generation and no absorbing
sources is called supercritical. The operator H in this case has an isolated positive eigenvalue
and there is an exponential growth in the number of particles at every point and in the
total number of particles [1]. In the process under consideration, if the relation β∗ > βc
holds, the operator E has an isolated eigenvalue λE = λ0 − b0, where λ0 > 0 is an isolated
eigenvalue of the operator A + β∗Δ0. Note that the eigenvalue λE of the operator E is
not always positive, so the behavior of the process differs significantly depending on the
relation between the parameters λ0 and b0.

The structure of the paper is as follows. In Section 2, we give a formal description
of a BRW with particle reproduction at the origin and absorption at every point of the
lattice. Section 3 presents the key equations. Section 4 gives a complete classification of
the asymptotic behavior of the first moments of particle numbers. In Section 5 the limit
Theorem 7 is obtained, which states that despite the infinite number of absorbing sources,
an exponential growth of both the total number of particles and the number of particles at
every point can be observed in the considered BRW. This happens when λE > 0, which is
equivalent to λ0 > b0. In Section 6, we study the asymptotic behavior of the particle number
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moments for β∗ > βc and λE = 0 (λ0 = b0), and it is found that the integer moments of
both the total number of particles and the number of particles at every point grow in a
power-law manner as t → ∞, with the first moments behaving as constants at infinity.
In Section 7 we consider the remaining cases, that is, the case when β∗ > βc and λE < 0
(λ0 < b0), and also, when the operator E does not have an isolated eigenvalue, that is, when
β∗ ≤ βc. Theorems 9–11 are obtained, stating that the moments of particle numbers in these
cases decrease exponentially as t → ∞. It turned out that the results of Sections 5 and 6, as
well as Theorem 9 of Section 7, do not depend on the conditions imposed on the variance of
random walk jumps, while the behavior of the process for β∗ ≤ βc turns out to be different
for the finite and infinite variance of jumps (Theorems 10 and 11).

We will call the considered BRW supercritical if β∗ > βc and λE > 0, critical if β∗ > βc
and λE = 0 and subcritical if β∗ > βc and λE < 0 or β∗ ≤ βc.

Note that there is no exponential decrease of moments in a BRW with a single source
of particle generation (and the absence of other absorbing sources) [1]. The classification of
the asymptotic behavior of the BRW with possible absorption of particles at every point Zd

turns out to be closer to the classification of the behavior of the Markov branching process
μ(t) with continuous time, where the average number of particles Eμ(t) = eat. A branching
process is called supercritical if Eμ(t) > 1 (a > 0), critical if Eμ(t) = 1 (a = 0) and subcritical
if Eμ(t) < 1 (a < 0), that is, the average number of particles in the supercritical branching
process increases exponentially, in the critical it tends to a constant and in the subcritical it
decreases exponentially [4].

The main results of the paper are Theorem 7 on the exponential growth of particle
numbers in the supercritical case, as well as Theorem 8 and Theorems 9, 10, and 11 on
the asymptotic behavior of the particle number moments in the critical and subcritical
cases, respectively.

2. Description of the Model

Let us proceed to a formal description of the BRW with one source of particle reproduc-
tion and death located at the origin of the coordinates and an infinite number of absorbing
sources located at the remaining points of the lattice Zd, d ∈ N.

The random walk underlying the process is specified using the transition intensity
matrix A = (a(x, y))x,y∈Zd and satisfies the conditions regularity, symmetry, spatial homo-
geneity (which allows us to consider a(x, y) as a function of one argument a(y − x)), time
homogeneity and irreducibility (a particle can be at any point of the lattice).

The transition probability of a random walk, that is, the probability that at time t ≥ 0
the particle is at point y, provided that at time t = 0 it was at point x, is denoted by p(t, x, y).
Asymptotically for h → 0 the transition probabilities are expressed in terms of the transition
intensities as follows:

p(h, x, y) = a(x, y)h + o(h), x �= y,

p(h, x, x) = 1 + a(x, x)h + o(h).

Note that the condition for the finite variance of jumps in terms of the transition
intensity matrix is written as ∑z∈Zd |z|2a(z) < ∞. In situations where the finiteness of the
variance of jumps turns out to be essential, we will separately consider the case when the
function a(z) has the following behavior at infinity:

a(z) ∼ H(z/|z|)
|z|d+α

, |z| → ∞, (3)

where | · | is Euclidean norm on Rd, H(z/|z|) = H(−z/|z|) is a positive continuous function
on Sd−1 = {z ∈ Rd : |z| = 1}, α ∈ (0, 2) and the symbol ∼ here and below will denote the
asymptotic equivalence of functions. Under this assumption, the variance of jumps becomes
infinite (see [5]). Random walks with an infinite variance of jumps are commonly referred to
in the literature as random walks with heavy tails. We will consider the simplest case, when
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H(z/|z|) ≡ C > 0, and use the results obtained in [2,3], where a BRW with one particle
generation center and the absence of absorbing sources was considered under condition (3).

To describe the behavior of a random walk, it is convenient to use the Green’s function
Gλ(x, y), which, as mentioned in the introduction, can be defined as the Laplace transform
of the transition probability p(t, x, y) by the Formula (2).

As in [1], we will call the random walk recurrent if G0(0, 0) = ∞ and nonrecurrent
or transient if G0(0, 0) < ∞. In the case of a finite variance of jumps the random walk is
transient for d ≥ 3 and is recurrent for d = 1, 2, while in the case of an infinite variance of
jumps (when the condition (3) is satisfied) the transience of a random walk turns out to be
possible in the dimension d = 1 for α ∈ (0, 1) and in the dimension d = 2 for α ∈ (0, 2).

The branching process at the particle generation center is specified using the infinites-
imal generating function f (u) = ∑∞

n=0 bnun, 0 ≤ u ≤ 1, where bn ≥ 0 for n �= 1, b1 < 0,
∑∞

n=0 bn = 0. The coefficients bn determine the main linear part of the probability p∗(h, n)
of having n particles at time h provided that there was one particle at the initial time t = 0:

p∗(h, n) = bnh + o(h) for n �= 1,

p∗(h, 1) = 1 + b1h + o(h).

The coefficients bn for n ≥ 1 can be interpreted as the intensities of appearance of n
descendants of the particle, including the particle itself, while b0 is interpreted as the
intensity of death, or absorption, of the particle. The generating function at other points of
the lattice has a simpler form: f (u) = b0 + b1u = b0(1 − u). Further, we assume that the
intensity of death is the same at all lattice points.

The evolution of particles in the system occurs as follows: a particle located at
some time t > 0 at the point x ∈ Zd in a short time dt → 0 can either jump to the point
y �= x, y ∈ Zd, with probability a(x, y)dt + o(dt), or die with probability b0dt + o(dt). If the
point x is the center of particle generation (x = 0), then the particle can also produce n > 1
descendants, including itself, with probability bndt + o(dt). Otherwise, with probability
1 + a(x, x)dt + δ0(x)b1dt + (1 − δ0(x))(−b0dt) + o(dt), the particle remains at the point
x during the entire time interval [t, t + dt]. We assume that each new particle evolves
according to the same law, independently of other particles and of the entire prehistory.

The main objects of study in BRW are the number of particles at the time t ≥ 0 at
the point y ∈ Zd (the local number of particles), denoted by μ(t, y), the total number of
particles (particle population), denoted by μ(t) = ∑y∈Zd μ(t, y), and their integer moments,
which are denoted as mn(t, x, y) := Exμn(t, y) and mn(t, x) := Exμn(t), n ∈ N, where Ex is
the mean on condition μ(0, y) = δ(x − y), δ(·) is the Kronecker delta on Zd. We will assume
that at the initial moment of time t = 0 the system consists of one particle located at the
point x ∈ Zd, so the expectations of the local and total number of particles satisfy the initial
conditions m1(0, x, y) = δy(x) and m1(0, x) ≡ 1, respectively.

3. Key Equations

Let us present the key equations that will be required to study the behavior of the
considered BRW. The proofs of the theorems presented in this section are based on the
methods developed in [1] and follow the same scheme, so the corresponding theorems will
be presented below without proof.

We introduce the Laplace generating functions of the random variables μ(t, y) and
μ(t) for z ≥ 0:

F(z; t, x, y) := Exe−zμ(t,y), F(z; t, x) := Exe−zμ(t).

Taking into account the evolution of particles in the system and using the Markov
property of the process, the following statement can be proved for the generating functions.
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Theorem 1. The functions F(z; t, x) and F(z; t, x, y) are continuously differentiable with respect
to t uniformly with respect to x, y ∈ Zd for all 0 ≤ z ≤ ∞. They are the solutions to the following
Cauchy problems:

∂tF(z; t, x) = (AF(z; t, ·))(x) + δ0(x) f (F(z; t, x))+

+ (1 − δ0(x))b0(1 − F(z; t, x)),

∂tF(z; t, x, y) = (AF(z; t, ·, y))(x) + δ0(x) f (F(z; t, x, y))+

+ (1 − δ0(x))b0(1 − F(z; t, x, y))

with the initial conditions F(z; 0, x) = e−z and F(z; 0, x, y) = e−zδy(x), respectively. Here,
A : lp(Zd) → lp(Zd), 1 ≤ p ≤ ∞, is a walk operator that acts on the function ϕ ∈ lp(Zd) by the
Formula (1).

Note that the proof of this theorem repeats the arguments from the proof of Lemma 1.2.1
in [1] and differs only in technical details.

The following theorem turns out to be true for the moments of particle numbers.

Theorem 2. The moments mn(t, ·, y) ∈ l2(Zd) and mn(t, ·) ∈ l∞(Zd) satisfy the following
differential equations in the corresponding Banach spaces for all natural n ≥ 1:

dm1

dt
= Em1 = Am1 + β∗Δ0m1 − b0m1, (4)

dmn

dt
= Emn + δ0(·)gn(m1, . . . , mn−1), n ≥ 2, (5)

with the initial conditions mn(0, ·, y) = δy(·) and mn(t, ·) ≡ 1, respectively. Here, β∗ :=
∑n>1(n − 1)bn, the operator A : lp(Zd) → lp(Zd) is given by the Formula (1), the operator Δ0 is
defined by the equality Δ0 = δ0δT

0 , where δ0 = δ0(·) denotes a column-vector on the lattice taking
the unit value at the point 0 ∈ Zd and vanishing at other points and the function gn(m1, . . . , mn−1)
is given by the formula

gn(m1, . . . , mn−1) :=
n

∑
r=2

β(r)

r! ∑
i1,...,ir>0

i1+···+ir=n

n!
i1! · · · ir!

mi1 · · ·mir ,

where β(r) := f (r)(1).

The proof of this theorem repeats the argument of the proof of Theorem 1.3.1 from [1].
It also uses equations for generating functions, the Faà di Bruno’s formula and the
following property:

mn(t, x) = (−1)n lim
z→0+

∂n
z F(z; t, x),

mn(t, x, y) = (−1)n lim
z→0+

∂n
z F(z; t, x, y).

Considering separately the case β∗ = 0, this condition is equivalent to the fact that
all bn for n > 1 are equal to zero. That is, in this case the particle does not produce new
descendants and only the death and movement of the particle along the lattice is possible.
The operator describing the evolution of the average number of particles in this particular
case has the form E = A− b0 I and the equations for the moments for all n ∈ N take the form

∂tmn = Amn − b0mn.

Making the change of variables mn = qne−b0t in the last equation, we find that the functions
qn satisfy the equation

∂tqn = Aqn.
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The equation for the transition probabilities of a random walk p(t, x, y) has the same form,
whence we find that

mn(t, x, y) = e−b0t p(t, x, y), mn(t, x) = e−b0t,

for all d, n ∈ N.
Further, we will assume that the parameter β∗ is strictly positive (a particle in the

generation source can produce at least one new particle).
Integral equations for the moments will play an important role in the further analysis,

the derivation of which is carried out according to the same scheme as in (Theorem 1.4.1 [1]).

Theorem 3. The moment m1(t, x, y) satisfies both integral equations

m1(t, x, y) = p(t, x, y) +
∫ t

0
(β∗p(t − s, x, 0)− b0eA(t−s))m1(s, 0, y) ds, (6)

m1(t, x, y) = p(t, x, y) +
∫ t

0
(β∗p(t − s, 0, y)− b0eA(t−s))m1(s, x, 0) ds. (7)

The moment m1(t, x) satisfies both integral equations

m1(t, x) = 1 +
∫ t

0
(β∗p(t − s, x, 0)− b0eA(t−s))m1(s, 0) ds,

m1(t, x) = 1 +
∫ t

0
(β∗ − b0eA(t−s))m1(s, x, 0) ds.

(8)

For k > 1, the moments mk(t, x, y) and mk(t, x) satisfy the equations

mk(t, x, y) = m1(t, x, y)+

+
∫ t

0
m1(t − s, x, 0)gk(m1(s, 0, y), . . . , mk−1(s, 0, y)) ds,

mk(t, x) = m1(t, x)+

+
∫ t

0
m1(t − s, x, 0)gk(m1(s, 0), . . . , mk−1(s, 0)) ds.

(9)

Note that the derivation of the differential and integral equations presented in this
section does not depend on the conditions imposed on the variance of random walk jumps,
as noted, for example, in [2,6].

4. Classification of the Asymptotic Behavior of the First Moments

Let us first study the asymptotic behavior of the first moments. To do this, we pass
from the functions m1(t, ·, y) and m1(t, ·) to the functions q(t, ·, y) and q(t, ·), making a
change of variables m1 = qe−b0t. We obtain an equation for the functions q(t, ·, y) and q(t, ·)
of the form

dq
dt

= Aq + β∗Δ0q

with the initial conditions q(0, ·, y) = δy(·) and q(0, ·) ≡ 1, respectively.
Note that the resulting equation has exactly the same form as the equation for the

first moments in the BRW without absorbing sources, considered in [1] (or in [3] for the
case of heavy tails), which greatly simplifies the study. The classification of the asymptotic
behavior of the first moments of the local number of particles and the total number of
particles for arbitrary d−dimensional lattices in the considered BRW can be obtained using
the classification of the asymptotic behavior for the functions q(t, x, y) and q(t, x), obtained
in [1,3], and the relation m1 = qe−b0t.

As in [1] we denote βc := 1/G0(0, 0), where Gλ(x, y) is the Green’s function of the
random walk. When β∗ > βc, the operator A+ β∗Δ0 has a single isolated positive eigen-
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value λ0, which is a solution of the equation β∗Gλ(0, 0) = 1. However, the eigenvalue
λE of the operator E that arises in this case is equal to λ0 − b0 and is not always positive,
which complicates the problem. In contrast to the BRW considered in [1], the asymptotic
behavior of the process considered in this paper differs significantly depending on the
relation between the parameters λ0 and b0, namely, for λ0 > b0, λ0 = b0 and λ0 < b0.

So, in the case of a finite variance of jumps, we obtain the following classification of
the asymptotic behavior of the first moments.

Theorem 4. Let the variance of jumps of the random walk be finite, then for t → ∞ the asymptotic
behavior of the first moments can be represented as

m1(t, x, y) ∼ C(x, y)u∗(t), m1(t, x) ∼ C(x)v∗(t),

where C(x, y), C(x) are some positive functions, whose explicit form was obtained in [1], and the
functions u∗(t) and v∗(t) have the following form:

(a) for β∗ > βc: u∗(t) = eλE t, v∗(t) = eλE t;
(b) for β∗ = βc:

d = 3: u∗(t) = t−1/2e−b0t, v∗(t) = t1/2e−b0t;
d = 4: u∗(t) = (ln t)−1e−b0t, v∗(t) = t(ln t)−1e−b0t;
d ≥ 5: u∗(t) = e−b0t, v∗(t) = te−b0t;

(c) for β∗ < βc, d ≥ 3: u∗(t) = t−d/2e−b0t, v∗(t) = e−b0t.

Note that for a recurrent random walk βc = 0, and since the parameter β∗ is assumed
to be positive, then assuming a finite variance of jumps for d ≤ 2 the relation β∗ > βc
always holds, due to which in the above classification, in contrast to [1], there are no cases
of d = 1, 2 for β∗ ≤ βc.

We also note that for β∗ ≤ βc for all d, an exponential decrease in the first moments of
both the local number and the total number of particles is observed.

Let us separately consider the result obtained for β∗ > βc. In this case, since λE =
λ0 − b0, the asymptotic behavior of the first moments depends on the relation between λ0
and b0: three different cases are possible. For λ0 > b0, an exponential growth of the first
moments is observed, for λ0 = b0 the first moments tend to a constant and for λ0 < b0 an
exponential decrease is observed, and these cases correspond to supercritical, critical and
subcritical cases in the theory of branching processes [4].

The classification of the asymptotic behavior of the first moments in the case of heavy
tails uses the classification of the behavior of the functions q(t, x, y) and q(t, x) obtained
in [3].

Theorem 5. Under the condition (3), the asymptotic behavior of the first moments for α ∈ (0, 2)
and t → ∞ can be represented as

m1(t, x, y) ∼ C(x, y)u∗(t), m1(t, x) ∼ C(x)v∗(t),

where C(x, y), C(x) > 0 and the functions u∗(t) and v∗(t) have the following form:

(a) for β∗ > βc: u∗(t) = eλE t, v∗(t) = eλE t;
(b) for β∗ = βc:

u∗(t) = td/α−2e−b0t, v∗(t) = td/α−1e−b0t, if d/α ∈ (1, 2);
u∗(t) = (ln t)−1e−b0t, v∗(t) = t(ln t)−1e−b0t, if d/α = 2;
u∗(t) = e−b0t, v∗(t) = te−b0t, if d/α ∈ (2,+∞);

(c) for β∗ < βc: u∗(t) = t−d/αe−b0t, v∗(t) = e−b0t, d/α ∈ (1,+∞).

Note that for β∗ > βc, the obtained asymptotic relations do not depend on the con-
ditions imposed on the variance of random walk jumps (see [6]). In addition, β∗ > 0,
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while βc = 0 for d/α ∈ (1/2, 1], so in the above classification for β∗ ≤ βc there are no cases
where d/α ∈ (1/2, 1], in contrast to the classification of the asymptotic behavior of the first
moments in [3].

5. Supercritical Case

Theorem 6. Let β∗ > βc and λE > 0. Then, for t → ∞ and all n ∈ N, the following statements
hold:

mn(t, x, y) ∼ Cn(x, y)enλE t, mn(t, x) ∼ Cn(x)enλE t,

where

C1(x, y) =
Gλ0(x, 0)Gλ0(0, y)

‖Gλ0(0, y)‖2 , C1(x) =
Gλ0(x, 0)

λ0‖Gλ0(0, 0)‖2 ,

and the functions Cn(x, y), Cn(x) > 0 for n ≥ 2 are defined as follows:

Cn(x, y) = gn(C1(0, y), . . . , Cn−1(0, y))Dn(x),

Cn(x) = gn(C1(0), . . . , Cn−1(0))Dn(x),

where Dn(x) are certain functions satisfying the estimate |Dn(x)| ≤ 2
nλE for n ≥ n∗ and some

n∗ ∈ N.

Proof. In the case under consideration, the operator E has an isolated positive eigenvalue
λE = λ0 − b0, where λ0 is an isolated positive eigenvalue of the operator H = A+ β∗Δ0.

For n ∈ N, we consider the functions νn := νn(t, x, y) = mn(t, x, y)e−nλE t. From
Theorem 2, we obtain the following equations for νn:{

∂tν1 = Eν1 − λEν1,
∂tνn = Eνn − nλEνn + δ0(x)gn(ν1, . . . , νn−1), n ≥ 2

with the initial conditions νn(0, ·, y) = δy(·), n ∈ N.
We define the operator En by setting En := E − nλE I. Since λE is the largest eigenvalue

of E , the spectrum of En for n ≥ 2 is included into (−∞,−(n − 1)λE ], that is, it is on the
negative semiaxis, since λE > 0.

Further, arguments similar to those given in [6] in the proof of a similar theorem
remain valid.

The value of n∗ from the statement of the theorem is determined by the formula
n∗ := 2‖E‖

λE . The theorem is proved.

For the number of particles in the case under consideration, the following limit theorem
is true, the proof of which is carried out according to the scheme of proof of the limit theorem
obtained in [6], so we present only the main parts of the proof.

Theorem 7. Let β∗ > βc and λE > 0. If β(r) = O(r!rr−1) for all sufficiently large r ∈ N, then
the following statements hold in the sense of convergence in distribution

lim
t→∞

μ(t, y)e−λE t = ξψ(y), lim
t→∞

μ(t)e−λE t = ξ,

where ψ(y) is some non-negative function and ξ is a non-degenerate random variable.

Proof. Let us define the functions

m(n, x, y) := lim
t→∞

Exμn(t, y)
mn

1 (t, x, y)
= lim

t→∞

mn(t, x, y)
mn

1 (t, x, y)
=

Cn(x, y)
Cn

1 (x, y)
,

m(n, x) := lim
t→∞

Exμn(t)
mn

1 (t, x)
= lim

t→∞

mn(t, x)
mn

1 (t, x)
=

Cn(x)
Cn

1 (x)
.
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As shown, for example, in [6], the functions Cn(x, y) and Cn(x) for β∗ > βc for all
n ∈ N are related by the relation Cn(x, y) = ψn(y)Cn(x), where ψ(y) is some function, from
which the next equalities follow:

m(n, x, y) = m(n, x) =
Cn(x)
Cn

1 (x)
=

Cn(x, y)
Cn

1 (x, y)
.

From Theorem 6, we have this theorem statements in terms of convergence of the
moments of the random variables ξ(y) = ψ(y)ξ and ξ.

The distributions of the limit random variables ξ(y) and ξ are to be uniquely deter-
mined by their moments if the Carleman condition is satisfied.

∞

∑
n=1

m(n, x, y)−1/(2n) = ∞,
∞

∑
n=1

m(n, x)−1/(2n) = ∞.

Assuming N = 1 in the notation from [6] and defining n∗ as in Theorem 6, we obtain
Cn(x) ≤ γn−1n!nn, where γ is some constant, from here and from the estimate n! ≤ ((n +
1)/2)n we obtain

∞

∑
n=1

m(n, x)−1/(2n) =
∞

∑
n=1

(
Cn(x)
Cn

1 (x)

)−1/(2n)
= ∞.

The proof for m(n, x, y) is similar.
Thus, the Stieltjes moment problem has a unique solution, hence the relations from the

formulation of the theorem are valid in terms of convergence in distribution. The theorem
is proved.

Note that the obtained limit theorem is true without restrictions on the variance of
random walk jumps, see [6].

6. Moments in a Critical Case

Theorem 8. Let β∗ > βc and λE = 0. Then, for t → ∞ and all n ∈ N the following state-
ments hold

mn(t, x, y) ∼ Jn(x, y)tn−1, mn(t, x) ∼ Jn(x)tn−1,

where Jn(x, y) and Jn(x) are some constants.

Proof. The proof will be carried out for mn(t, x, y) using the asymptotic relation for the
first moment and the equations for the higher moments. The limit relations for mn(t, x)
follow from the form of the integral Equation (3) and the asymptotics for mn(t, x, y).

In the case β∗ > βc, the operator E has a unique isolated eigenvalue λE = λ0 − b0,
which is zero in this case, consider its corresponding eigenfunction f (x) ∈ l2(Zd).

Consider first the second moment m2(t, x, y), which satisfies the equation

∂tm2(t, x, y) = Em2(t, x, y) + δ0(x)g2(m1(t, x, y)).

Multiplying this equation scalarly by f , we obtain

∂t〈 f , m2(t, x, y)〉 = f (0)g2(m1(t, 0, y)).

Denote h(t, y) := 〈 f , m2(t, x, y)〉, then the function h(t, y) satisfies the equation

∂th(t, y) = f (0)g2(m1(t, 0, y))

with the initial condition

h(0, y) = 〈 f , m2(0, x, y)〉 = 〈 f , δ0(x − y)〉 = f (y),
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whose solution has the form

h(t, y) = f (y) +
∫ t

0
f (0)g2(m1(τ, 0, y)) dτ.

Since for m1(t, 0, y) we have m1(t, 0, y) ∼ C(0, y) as t → ∞, then for h(t, y) as t → ∞ the
following limit relation holds:

h(t, y) ∼ t f (0)g2(C(0, y)).

Denote by Ef the eigensubspace of the operator E corresponding to the eigenvalue λE ,
i.e., Ef := {t f : t ∈ R}. Via E⊥

f , we will further denote the orthogonal complement to the

subspace Ef . Then, l2(Zd) = Ef ⊕ E⊥
f , that is, for any v ∈ l2(Zd) there are unique α ∈ C

and v1 ∈ E⊥
f such that v = α f + v1. Since f is an eigenfunction of the self-adjoint operator

E , then E⊥
f is an eigensubspace of the operator E , that is, EE⊥

f ⊆ E⊥
f .

Since λE = 0 is a simple eigenvalue corresponding to the eigenfunction f , it is not a
point of the spectrum of the operator E restricted to E⊥

f , so the spectrum of this operator
lies on the negative semiaxis and is separated from zero. Let us use the property, which
was noted, for example, in [1]: if the spectrum of a self-adjoint continuous operator H on
a Hilbert space is included into (−∞,−s], s > 0, and also f (t) → f∗ as t → ∞, then the
solution of the equation

dν

dt
= Hν + f (t)

satisfies ν(t) → −H−1 f∗ condition.
Since m2(t, x, y) satisfies the equation

∂tm2(t, x, y) = Em2(t, x, y) + δ0(x)g2(m1(t, x, y))

and for t → ∞ we have the relation

δ0(x)g2(m1(t, x, y)) ∼ δ0(x)g2(C(x, y)),

we obtain the limit relation that holds on E⊥
f :

m2(t, x, y)) ∼ −E−1(δ0(x)g2(C(x, y))) =: v∗1(x, y).

We have m2(t, x, y) = α f + v1, where α = 〈 f ,m2(t,x,y)〉
〈 f , f 〉 = h(t,y)

〈 f , f 〉 and v1 ∼ v∗1. For t → ∞
we obtain the relation

m2(t, x, y) ∼ t f (x) f (0)g2(C(0, y))
〈 f , f 〉 .

Denoting J2(x, y) := f (x) f (0)g2(C(0,y))
〈 f , f 〉 , we find that m2(t, x, y) ∼ J2(x, y)t.

Further, we continue similarly, using the asymptotics for the moments obtained at the
previous step. On the subspace Ef , carrying out similar reasoning for mn(t, x, y), we obtain
the asymptotics

mn(t, x, y) ∼ J(1)n tn−1,

where J(1)n is some constant. On the subspace E⊥
f we use the following property: if the spec-

trum of a self-adjoint continuous operator H on a Hilbert space is included into (−∞,−s],
s > 0, and f (t) = Pn(t), where Pn(t) is a polynomial of degree n, then the solution of
the equation

dν

dt
= Hν + f (t)

satisfies ν(t) = Qn(t) + u(t) condition, where Qn(t) is a polynomial of degree n and u(t)
is a function that decreases exponentially in t. We find that on the subspace E⊥

f the
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asymptotics mn(t, x, y) ∼ J(2)n tn−2 is true, where J(2)n is some constant. So, for mn(t, x, y)
we have

mn(t, x, y) ∼ Jn(x, y)tn−1

as t → ∞. The theorem is proved.

7. Moments in a Subcritical Case

To study the asymptotic behavior of the particle number moments for λE < 0, we
need an auxiliary lemma.

Lemma 1. If the spectrum of a self-adjoint continuous operator H on a Hilbert space is included
into (−∞,−σ], σ > 0, and f (t) is a function such that ‖ f (t)‖ < Ce−αt, where C, α > 0 are some
constants, then the solution of the equation

dν

dt
= Hν + f (t)

satisfies ‖ν‖ ≤ C̃1e−min(α,σ)t for α �= σ and ‖ν‖ ≤ C̃2te−σt otherwise, where C̃1, C̃2 are some constants.

Proof. The solution of the considered equation with the given initial condition ν(0) = ν0
can be represented explicitly:

ν(t) = eHtν0 +
∫ t

0
eH(t−s) f (s) ds. (10)

Let us estimate the norm of each of the terms. To estimate the norm of the first term,
we recall some properties of the spectrum of a self-adjoint continuous operator on a Hilbert
space, denoting the operator’s spectrum as spec(·).
1. Theorem 7.2.6 in [7]: for any self-adjoint operator H on a Hilbert space, the following

equality holds

‖H‖ = sup{|λ| : λ is the point of the spectrum H}.

2. Corollary 7.8.10 in [7]: let H be a self-adjoint operator and f be a continuous complex
function on spec(H). Then,

spec( f (H)) = f (spec(H)).

In particular, spec(eHt) = espec(H)t.

Using these properties, we find that the first term in (10) satisfies the estimate
‖eHtν0‖ ≤ ‖eHt‖‖ν0‖ = e−σt‖ν0‖. Additionally, for the second term for α �= σ, we have:∥∥∥∥∫ t

0
eH(t−s) f (s) ds

∥∥∥∥ ≤ ∫ t

0

∥∥∥eH(t−s)
∥∥∥‖ f (s)‖ ds ≤

∫ t

0
e−σ(t−s)Ce−αs ds =

= Ce−σt
∫ t

0
e(σ−α)s ds =

Ce−σt

σ − α
e(σ−α)s

∣∣∣t
0
=

=
Ce−σt

−(σ − α)

(
1 − e(σ−α)t

)
=

C
−(σ − α)

(
e−σt − e−αt) ≤

≤ Ĉe−min(α,σ)t.

In the case α > σ, we set C̃1 = ‖ν0‖+ Ĉ and in the case α < σ: C̃1 = Ĉ. It remains to
note that for α = σ the following equality holds

Ce−σt
∫ t

0
e(σ−α)s ds = Cte−σt,
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so we can put C̃2 = ‖ν0‖+ C, which completes the proof of Lemma 1.

Theorem 9. Let β∗ > βc and λE < 0. Then, for t → ∞ and all n ∈ N the following state-
ments hold:

mn(t, x, y) ∼ Dn(x, y)eλE t, mn(t, x) ∼ Dn(x)eλE t,

where Dn(x, y) and Dn(x) are some constants.

Proof. The proof will be carried out for mn(t, x, y). The limit relations for mn(t, x) follow
from the form of the integral Equation (3) and the asymptotics for mn(t, x, y).

As in the proof of Theorem 8, we consider the eigenfunction f (x) ∈ l2(Zd) with
the eigenvalue λE of the operator E and denote by E⊥

f the subspace in l2(Zd), which is
orthogonal to the element f (see the corresponding definition in the proof of Theorem 8).

Multiplying the equation for m2(t, x, y) scalarly by f , we obtain

∂t〈 f , m2(t, x, y)〉 = λE 〈 f , m2(t, x, y)〉+ f (0)g2(m1(t, 0, y)).

Let h(t, y) := 〈 f , m2(t, x, y)〉. This function satisfies the equation

∂th(t, y) = λEh(t, y) + f (0)g2(m1(t, 0, y))

with the initial condition h(0, y) = 〈 f , m2(0, x, y)〉 = 〈 f , δ0(x − y)〉 = f (y), whose solution
has the form

h(t, y) = eλE t f (y) +
∫ t

0
eλE (t−s) f (0)g2(m1(s, 0, y)) ds.

Since the relation m1(t, 0, y) ∼ C(0, y)eλE t holds for m1(t, 0, y), and this and the explicit
form of the function g2(m1) imply the relation g2(m1(t, 0, y)) ∼ K̃e2λE t, where K̃ is some
constant, then h(t, y) satisfies the limit relation

h(t, y) ∼ K1(y)eλE t + K2e2λE t,

where K1(y), K2 are constant.
Consider now the subspace E⊥

f . The function m2(t, x, y) satisfies the equation

∂tm2(t, x, y) = Em2(t, x, y) + δ0(x)g2(m1(t, x, y))

and the spectrum of the operator E restricted to E⊥
f is included into (−∞,−σ], σ > 0. Using

Lemma 1, we find that on the subspace E⊥
f for −2λE �= σ the following estimate holds

‖m2(t, x, y)‖ ≤ C̃1e−min(−2λE ,σ)t

and ‖m2(t, x, y)‖ ≤ C̃2te2λE t otherwise, with some constants C̃1, C̃2.
As in the proof of Theorem 8, taking into account the representation l2(Zd) = Ef ⊕ E⊥

f ,
we find for m2(t, x, y) as t → ∞ the relation

m2(t, x, y) ∼ D2(x, y)eλE t.

It remains to be noted that for all n ≥ 2 and t → ∞ the relation gn(m1, . . . , mn−1) ∼
K̃ne2λE t holds, where K̃n is some constant. This follows from the explicit form of the
function gn(m1, . . . , mn−1). Additionally, the above reasoning remains true for mn(t, x, y)
for all n ∈ N.

So, for mn(t, x, y) for all n ∈ N and for t → ∞, we have

mn(t, x, y) ∼ Dn(x, y)eλE t.

The theorem is proved.
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Note that in proving Theorems 8 and 9 in addition to the asymptotic behavior of the
first moments, which for β∗ > βc does not depend on the variance of jumps of the random
walk, we also use differential equations for higher moments, which, as noted above, also
do not depend on the conditions imposed on the variance of jumps. Consequently, all
the results obtained for the case β∗ > βc do not depend on the variance of jumps of the
random walk.

To study the asymptotic behavior of the particle number moments in the case β∗ ≤ βc,
when there is no isolated eigenvalue λE , we need the following auxiliary lemma.

Lemma 2. Let continuous functions ϕ(t), χ(t) ≥ 0, t ≥ 0, satisfy the following asymptotic rela-
tions as t → ∞

ϕ(t) ∼ ϕ0tα(ln t)βe−b0t, χ(t) ∼ χ0t2α(ln t)2βe−2b0t,

where α, β ∈ R, b0 ∈ R+ and let W(t) :=
∫ t

0 ϕ(t − s)χ(s) ds. Then, for W(t) the following
asymptotic relation holds as t → ∞

W(t) ∼ W0tα(ln t)βe−b0t.

Proof. It follows from the form of the asymptotics for the functions ϕ(t) and χ(t), that for
any ε > 0 there exists δ > 0 such that the following relations hold for t ≥ δ

(1 − ε)tα(ln t)βe−b0t ≤ ϕ(t) ≤ (1 + ε)tα(ln t)βe−b0t,

(1 − ε)t2α(ln t)2βe−2b0t ≤ χ(t) ≤ (1 + ε)t2α(ln t)2βe−2b0t.

We choose t ≥ 2δ and represent the function W(t) as a sum

W(t) = W1,δ(t) + W2,δ(t),

where

W1,δ(t) =
∫ t−δ

0
ϕ(t − s)χ(s) ds, W2,δ(t) =

∫ t

t−δ
ϕ(t − s)χ(s) ds.

To estimate W1,δ(t), note that for 0 ≤ s ≤ t − δ the inequality t − s ≥ δ holds. Hence,
we find that

∫ t−δ

0
(1 − ε)(t − s)α(ln(t − s))βe−b0(t−s)χ(s) ds ≤ W1,δ(t) ≤

≤
∫ t−δ

0
(1 + ε)(t − s)α(ln(t − s))βe−b0(t−s)χ(s) ds.

Note that

∫ t−δ

0
(t − s)α(ln(t − s))βe−b0(t−s)χ(s) ds =

= e−b0ttα(ln t)β
∫ t−δ

0
(1 − s/t)α

(
ln t + ln(1 − s/t)

ln t

)β

eb0sχ(s) ds,

in this case the functions (1 − s/t)α and
(

ln t+ln(1−s/t)
ln t

)β
tend monotonically to 1 as t → ∞

and eb0sχ(s) ∼ χ0s2α(ln s)2βe−b0s as s → ∞, i.e., eb0sχ(s) ∈ L[0,+∞).
So, we obtain∫ t−δ

0
(t − s)α(ln(t − s))βe−b0(t−s)χ(s) ds = e−b0ttα(ln t)β

(∫ +∞

0
eb0sχ(s) ds + o(1)

)
.
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Consider now W2,δ(t). Since t ≥ 2δ, we have

W2,δ(t) =
∫ t

t−δ
ϕ(t − s)χ(s) ds ≤

≤ (1 + ε)(t − δ)2α(ln(t − δ))2βe−2b0(t−δ)
∫ δ

0
ϕ(s) ds =

= e−b0ttα(ln t)βo(1).

Finally, denoting W0 :=
∫ +∞

0 eb0sχ(s) ds, we obtain the required asymptotic relation
and Lemma 2 is proved.

Theorem 10. Let the variance of jumps of the random walk be finite, then for t → ∞ and all n ∈ N,
the following statements hold:

(a) for β∗ = βc:

d = 3: mn(t, x, y) ∼ An(x, y)t−1/2e−b0t, mn(t, x) ∼ An(x)t1/2e−b0t,
d = 4: mn(t, x, y) ∼ Bn(x, y)(ln t)−1e−b0t, mn(t, x) ∼ Bn(x)t(ln t)−1e−b0t,
d ≥ 5: mn(t, x, y) ∼ Cn(x, y)e−b0t, mn(t, x) ∼ Cn(x)te−b0t,

(b) for β∗ < βc:

d ≥ 3: mn(t, x, y) ∼ Dn(x, y)t−d/2e−b0t, mn(t, x) ∼ Dn(x)e−b0t,

where An(x, y), An(x), Bn(x, y), Bn(x), Cn(x, y), Cn(x), Dn(x, y) and Dn(x) are some constants.

Proof. The limit relations for the first moments are obtained in Theorem 4. The second mo-
ments are expressed in terms of the first moments and their convolutions with the functions
g2(m1(t, 0, y)) and g2(m1(t, 0)) using Theorem 3. Note that the asymptotic relations for
the first moments for all d in the case β∗ ≤ βc have the form m1 ∼ C̃1tα(ln t)βe−b0t and for
the functions g2(m1) the following asymptotic relations hold: g2(m1) ∼ G̃2t2α(ln t)2βe−2b0t,
where G̃2 is some constant and α and β are the same, as in the asymptotics of the corre-
sponding first moment m1. Using Lemma 2 for the functions m1 and g2, we find that∫ t

0
m1(t − s)g2(m1(s)) ds ∼ W0tα(ln t)βe−b0t.

Finally, we find that for the second moments the relation m2 ∼ C̃2tα(ln t)βe−b0t holds,
i.e., the second moments behave at infinity in the same way as the corresponding first
moments, up to a constant.

To complete the proof, we note that for all n ≥ 2 the following relation will hold
gn(m1, . . . , mn−1) ∼ G̃nt2α(ln t)2βe−2b0t, where G̃n is some constant. This means that for
all n ∈ N and t → ∞ the following limit relations will hold: mn ∼ C̃ntα(ln t)βe−b0t. The
theorem is proved.

When the condition (3) is satisfied, which leads to an infinite variance of jumps, the
following theorem turns out to be true.

Theorem 11. Under the condition (3) for t → ∞ and all n ∈ N, the following statements hold:

(a) for β∗ = βc:

mn(t, x, y) ∼ Bn,d/α(x, y)u∗(t), mn(t, x) ∼ Bn,d/α(x)v∗(t),

where Bn,d/α(x, y), Bn,d/α(x) > 0 and

u∗(t) = td/α−2e−b0t, v∗(t) = td/α−1e−b0t, if d/α ∈ (1, 2);
u∗(t) = (ln t)−1e−b0t, v∗(t) = t(ln t)−1e−b0t, if d/α = 2;
u∗(t) = e−b0t, v∗(t) = te−b0t, if d/α ∈ (2,+∞);
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(b) for β∗ < βc:
mn(t, x, y) ∼ An(x, y)u∗(t), mn(t, x) ∼ An(x)v∗(t),

where An(x, y), An(x) > 0, u∗(t) = t−d/αe−b0t, v∗(t) = e−b0t.

Proof. Asymptotic relations for the first moments in the case of the condition (3) are
obtained in Theorem 5. Note that for all possible values of the parameter d/α for β∗ ≤ βc
these relations have the form

m1 ∼ Ctα(ln t)βe−b0t,

where α and β are some known constants.
Furthermore, carrying out the arguments from the proof of the Theorem 10 without

changes, we find that all integer moments in the case under consideration behave at infinity
in the same way as the corresponding first moments, up to a constant. The theorem is
proved.

8. Conclusions

We study a model of a BRW, apparently not previously considered, with one branching
source and possible absorption at every point of the lattice. The possibility of particle
absorption at every point makes the model more realistic for some applications compared
to the process considered in [1–3], where there is one branching source and at other points
only particle movement is possible.

One of the main results is Theorem 7, which states that, despite the possible absorption
at every point, an exponential growth of both the total number of particles and the number
of particles at a lattice point can be observed. Also in the process under consideration,
an exponential decrease in the moments of the particle numbers can be observed, which
distinguishes it from the previously considered BRWs. The resulting classification of the
behavior of the moments of particle numbers turned out to be close to the classification of
the behavior of a Markov branching process with continuous time [4].

As is well-known, an irregular growth of moments characterizes such a phenomenon
as the intermittency of the field of particles intensively studied in different areas of
physics [8], in particular in hydrodynamics [9]. We established that in the supercriti-
cal case for our model, the intermittency of the particle field is not observed, see Theorem 7.
However, the proposed model can be developed for further study of BRW models with the
so-called random potential, which find numerous applications in statistical physics. As a
rule, such a phenomenon occurs in BRW models under assumption that the intensities of
particle birth and death are random, i.e., the operator A is perturbed by a random potential.

In conclusion, we note that in addition to the method of moments, a martingale
approach can be used to prove the limit theorems on the behavior of particle numbers at
lattice points for some BRW models, which allows us to establish the convergence of the
limiting process in the mean square [10].
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Abstract: In this paper, we study a new type of distribution that generalizes distributions from the
gamma and beta classes that are widely used in applications. The estimators for the parameters of
the digamma distribution obtained by the method of logarithmic cumulants are considered. Based
on the previously proved asymptotic normality of the estimators for the characteristic index and
the shape and scale parameters of the digamma distribution constructed from a fixed-size sample,
we obtain a statement about the convergence of these estimators to the scale mixtures of the normal
law in the case of a random sample size. Using this result, asymptotic confidence intervals for the
estimated parameters are constructed. A number of examples of the limit laws for sample sizes with
special forms of negative binomial distributions are given. The results of this paper can be widely
used in the study of probabilistic models based on continuous distributions with an unbounded
non-negative support.

Keywords: parameter estimation; digamma distribution; mixed distributions; generalized gamma
distribution; generalized beta distribution; method of moments; cumulants; transfer theorem

MSC: 62F12

1. Introduction

Distributions belonging to beta and gamma classes play an essential role in prob-
ability theory and mathematical statistics. Such distributions have proven themselves
as convenient and efficient tools in modeling a large number of real processes and phe-
nomena [1–6]. Special cases of the generalized beta distribution of the second kind and
the generalized gamma distribution can have the properties of infinite divisibility and
stability, which makes it possible to use them as asymptotic approximations in various limit
theorems. Ref. [7] proposed a new probability distribution closely related to both beta and
gamma classes.

Definition 1. We say that the random variable ζ has the digamma distribution DiG(r, ν, p, q, δ)
with a characteristic index r ∈ R and the parameters of shape ν �= 0, concentration p, q > 0, and
scale δ > 0, if its Mellin transform is

Mζ(z) =
δzΓ(p + z/ν)Γ(q − rz/ν)

Γ(p)Γ(q)
, p +

Re(z)
ν

> 0, q − rRe(z)
ν

> 0, (1)

where Re(z) is the real part of a complex number z, and Γ(z) is Euler’s gamma function.

Particular types of digamma distribution include the generalized gamma distribu-
tion (also known as the Amoroso distribution with zero shift) [8], the generalized beta

Mathematics 2023, 11, 1778. https://doi.org/10.3390/math11081778 https://www.mdpi.com/journal/mathematics61
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distribution of the second kind (also known as the McDonald distribution) [9], and the
gamma-exponential distribution [10].

The digamma distribution (1) can be represented as a scale mixture of two general-
ized gamma-distributed random variables, i.e., for ζ ∼ DiG(r, ν, p, q, δ) and independent
random variables λ ∼ Γ(p, 1) and μ ∼ Γ(q, 1) with gamma distributions

ζ
d
= δ

(
λ

μr

)1/ν

. (2)

This representation makes it possible [11] to use the digamma distribution for an
adequate description of the Bayesian balance models proposed in [12].

Assuming that the process is modeled using the digamma distribution, the problem
of statistical estimation of its unknown parameters inevitably arises [5,13,14]. As shown
in Ref. [7], the density of the digamma distribution is expressed in terms of the special
Fox’s H-function. This significantly complicates the application of the maximum likelihood
method. The form of the Mellin transform (1) of the digamma distribution also indicates
the infeasibility of using the direct method of moments. Refs. [15–17] originally proposed
a modified method for estimating the parameters of the gamma-exponential distribution
based on logarithmic moments and cumulants. Due to the fact that the digamma distribu-
tion and the gamma-exponential distribution have the Mellin transform of the same type
(up to the range of the parameter r), all previously obtained conclusions about the form of
estimates by the method of logarithmic cumulants for the gamma-exponential distribution
automatically remain valid for the digamma distribution, taking into account the formal
expansion of the characteristic index range from a unit interval to the entire real line.

In today’s rapidly changing world, it is quite problematic to use the traditional statisti-
cal approach based on the analysis of fixed-size samples. Thus, in the context of the global
crisis caused by the COVID-19 epidemic, it is necessary to have a mechanism to respond
to negative impacts using only the currently available data. Since the accumulation of a
sufficient fixed amount of statistics can often take an indefinite time, it makes sense to
strive for the possession of methods that allow one to draw adequate conclusions based
on an a priori indefinite number of observations. This approach inevitably leads to the
consideration of models with randomized sample sizes and is usually found not only in
medicine but also in other fields in situations where the accumulation of statistical data
continues not up to a certain amount but, rather, over a given period of time. For example, a
similar situation can be observed in insurance when a different number of insurance events
(insurance payments and/or insurance contracts) occur during different reporting periods
of the same length (say, months), etc. Due to these circumstances, it becomes quite natural
to study the asymptotic behavior of distributions of fairly general statistics based on the
random size samples. When replacing a non-random sample size with a random variable,
the asymptotic properties of statistics can radically change. This fact was apparently first
noted by B.V. Gnedenko in 1989 [18,19]. It was shown that if the sample size is a geometri-
cally distributed random variable, then instead of the normal law expected in accordance
with the classical theory, a Student distribution with two degrees of freedom arises as an
asymptotic distribution for the sample median, whose tails are so heavy that it does not
have second-order moments. The “heaviness” of the tails of asymptotic distributions is of
critical importance, in particular, in problems of testing hypotheses.

The distributions from the gamma class and their derivatives have become very popu-
lar for modeling random non-negative parameters, and, when modeling a random number
of events and studying an a priori unknown number of observations, their discrete analogs
are widely used, which are mixed Poisson distributions with corresponding continuous
structural distributions.
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The discrete analog of the gamma distribution Γ(p, δ) is the negative binomial distri-
bution, whose partial probabilities for n = 0, 1, . . . are

P(N = n) =
∞∫

0

λn+p−1e−(1+1/δ)λ

δpΓ(p)n!
dλ =

Γ(n + p)
Γ(n + 1)Γ(p)

(
δ

δ + 1

)n( 1
δ + 1

)p
. (3)

A natural generalization of the distribution (3) is the mixed Poisson distribution whose
structure is given by the generalized gamma distribution GG(ν, p, δ) with the density

f (x) =
|ν|xνp−1e−(x/δ)ν

δνpΓ(p)
, ν �= 0, p > 0, x > 0. (4)

Such distributions are called generalized negative binomial distributions and are
widely used in insurance, financial mathematics, physics, and other fields [20–24].

The purpose of this article is to study the asymptotic behavior of digamma distribution
parameter estimates under conditions of an a priori unknown sample size.

The article has the following structure. Section 2 describes a method for obtaining
digamma distribution parameter estimates; auxiliary relations are given. Section 3 contains
the main statement of this paper on the asymptotic behavior of the digamma distribution
parameter estimates constructed from random size samples. Section 4 discusses special
cases of limit distributions. This paper also contains a section with our conclusions.

2. Auxiliary Relations

This section describes a method based on logarithmic cumulants for obtaining es-
timators for the parameters r, ν, and δ of the digamma distribution (1) with fixed con-
centration parameters p and q and a sample of a non-random size n. Estimating the
parameters p and q is a separate problem due to the analytical complexity of inverting the
polygamma function.

The results and relations of this section were published in Ref. [17] and are provided
as auxiliary statements.

To obtain an explicit form of theoretical logarithmic cumulants, consider the
polygamma functions

ψ(z) =
d
dz

ln Γ(z), ψ(m)(z) =
dm+1

dzm+1 ln Γ(z), m = 1, 2, . . .

The theoretical cumulants of the random variable ln ζ for ζ ∼ DiG(r, ν, p, q, δ) have
the form

κ1(r, ν, δ) = E ln ζ =
ν ln δ + ψ(p)− rψ(q)

ν
;

κm(r, ν) = (−i)m dm

dym lnEζ iy
∣∣∣
y=0

=
ψ(m−1)(p) + (−r)mψ(m−1)(q)

νm , m > 1.

The moments of the random variable ln ζ can be represented as [25]

μm(r, ν, δ) ≡ E lnm ζ = Bm(κ1(r, ν, δ), κ2(r, ν), . . . , κm(r, ν)), (5)

where Bm is a complete (exponential) Bell polynomial that can be recurrently defined as

Bm+1(x1, . . . , xm+1) =
m

∑
k=0

Ck
mBm−k(x1, . . . , xm−k)xk+1, B0 = 1.

An explicit form of the necessary relations connecting moments and cumulants can be
found in Ref. [25].
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In addition, we will need the following moment characteristics of the logarithm of a
random variable with a digamma distribution:

σ2
m(r, ν, δ) ≡ D lnm ζ = μ2m(r, ν, δ)− μ2

m(r, ν, δ);

σml(r, ν, δ) ≡ cov(lnm ζ, lnl ζ) = μm+l(r, ν, δ)− μm(r, ν, δ)μl(r, ν, δ). (6)

To define the sample logarithmic cumulants, we introduce a notation for the sample
logarithmic moments of the random variable ζ:

Lm(Xn) =
1
n

n

∑
i=1

lnm Xi,

where Xn = (X1, . . . , Xn) is a sample from the distribution ζ of non-random size n.
Let us denote l = (l1, l2, l3, l4). Consider the functions

K1(l) ≡ K1(l1) = (ψ(q))−1l1;

K2(l) ≡ K2(l1, l2) = (ψ′(q))−1(l2 − l2
1);

K3(l) ≡ K3(l1, l2, l3) = (ψ′′(q))−1(l3 − 3l2l1 + 2l3
1);

K4(l) ≡ K4(l1, l2, l3, l4) = (ψ′′′(q))−1(l4 − 4l3l1 − 3l2
2 + 12l2l2

1 − 6l4
1).

Consider the statistics
K1(Xn) ≡ K1(L1(Xn));

K2(Xn) ≡ K2(L1(Xn), L2(Xn)); (7)

K3(Xn) ≡ K3(L1(Xn), L2(Xn), L3(Xn));

K4(Xn) ≡ K4(L1(Xn), L2(Xn), L3(Xn), L4(Xn)). (8)

Note that the statistics ψ(m−1)(q)Km(Xn) are the m-th sample logarithmic cumulants
of the digamma distribution.

The method for estimating the unknown parameters considered in this paper is based
on solving the system for logarithmic cumulants:

κm(r, ν, δ) = ψ(m−1)(q)Km(Xn), m = 1, 2, 3, 4.

To describe the solution of this system, we introduce a number of functions of sample
logarithmic cumulants with the arguments k = (k1, k2, k3, k4):

φm =
ψ(m)(p)
ψ(m)(q)

; τ(k) ≡ τ(k2, k4) = φ2
1k4 + φ3

(
k4 − k2

2

)
; (9)

R±(k) ≡ R±(k2, k4) =

√
φ1k4 ± k2

√
τ(k)

k2
2 − k4

;

V±(k) ≡ V±(k2, k4) =

√
φ1k2 ±

√
τ(k)

k2
2 − k4

;

D±(k) ≡ D±(k1, k2, k4) = exp
{

ψ(q)k1 +
ψ(q)R±(k)− ψ(p)

V±(k)

}
. (10)
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In what follows, we will need the derivatives of functions (10), expressed in terms of
the functions φm and τ, defined in (9). Note that

Rk2,±(k) ≡ ∂R±
∂k2

(k2, k4) = ∓
k4

(
φ2

1k2
2 + τ(k)± 2φ1k2

√
τ(k)
)

2
(
k2

2 − k4
)3/2√

τ(k)
√

φ1k4 ± k2
√

τ(k)
;

Rk4,±(k) ≡ ∂R±
∂k4

(k2, k4) = ±
k2

(
φ2

1k2
2 + τ(k)± 2φ1k2

√
τ(k)
)

4(k2
2 − k4)3/2

√
τ(k)
√

φ1k4 ± k2
√

τ(k)
;

Vk2,±(k) ≡ ∂V±
∂k2

(k2, k4) = ∓ k2
(
φ2

1k4 + τ(k)
)± φ1(k2

2 + k4)
√

τ(k)

2(k2
2 − k4)3/2

√
τ(k)
√

φ1k2 ±
√

τ(k)
;

Vk4,±(k) ≡ ∂V±
∂k4

(k2, k4) = ± φ2
1k2

2 + τ(k)± 2φ1k2
√

τ(k)

4(k2
2 − k4)3/2

√
τ(k)
√

φ1k2 ±
√

τ(k)
;

Dk1,±(k) ≡ ∂D±
∂k1

(k1, k2, k4) = ψ(q) exp
{

ψ(q)k1 +
ψ(q)R±(k)− ψ(p)

V±(k)

}
;

Dk2,±(k) ≡ ∂D±
∂k2

(k1, k2, k4) = exp
{

ψ(q)k1 +
ψ(q)R±(k)− ψ(p)

V±(k)

}
×

×ψ(p)Vk2,±(k) + ψ(q)Rk2,±(k)V±(k)− ψ(q)R±(k)Vk2,±(k)
V2±(k)

;

Dk4,±(k) ≡ ∂D±
∂k4

(k1, k2, k4) = exp
{

ψ(q)k1 +
ψ(q)R±(k)− ψ(p)

V±(k)

}
×

×ψ(p)Vk4,±(k) + ψ(q)Rk4,±(k)V±(k)− ψ(q)R±(k)Vk4,±(k)
V2±(k)

.

Using the formula for the derivative of a composite function, we obtain

∂R±
∂l1

(l) = − 2l1
ψ′(q)Rk2,±(K2(l), K4(l))−

4l3 − 24l2l1 + 24l3
1

ψ′′′(q) Rk4,±(K2(l), K4(l));

∂R±
∂l2

(l) =
1

ψ′(q)Rk2,±(K2(l), K4(l))−
6l2 − 12l2

1
ψ′′′(q) Rk4,±(K2(l), K4(l));

∂R±
∂l3

(l) = − 4l1
ψ′′′(q)Rk4,±(K2(l), K4(l));

∂R±
∂l4

(l) =
1

ψ′′′(q)Rk4,±(K2(l), K4(l));
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∂V±
∂l1

(l) = − 2l1
ψ′(q)Vk2,±(K2(l), K4(l))−

4l3 − 24l2l1 + 24l3
1

ψ′′′(q) Vk4,±(K2(l), K4(l));

∂V±
∂l2

(l) =
1

ψ′(q)Vk2,±(K2(l), K4(l))−
6l2 − 12l2

1
ψ′′′(q) Vk4,±(K2(l), K4(l));

∂V±
∂l3

(l) = − 4l1
ψ′′′(q)Vk4,±(K2(l), K4(l));

∂V±
∂l4

(l) =
1

ψ′′′(q)Vk4,±(K2(l), K4(l));

∂D±
∂l1

(l) =
1

ψ(q)
Dk1,±(K1(l), K2(l), K4(l))− 2l1

ψ′(q)Dk2,±(K1(l), K2(l), K4(l))−

−4l3 − 24l2l1 + 24l3
1

ψ′′′(q) Dk4,±(K1(l), K2(l), K4(l));

∂D±
∂l2

(l) =
1

ψ′(q)Dk2,±(K1(l), K2(l), K4(l))−
6l2 − 12l2

1
ψ′′′(q) Dk4,±(K1(l), K2(l), K4(l));

∂D±
∂l3

(l) = − 4l1
ψ′′′(q)Dk4,±(K1(l), K2(l), K4(l));

∂D±
∂l4

(l) =
1

ψ′′′(q)Dk4,±(K1(l), K2(l), K4(l)). (11)

To formulate the statement about the asymptotic normality of estimators for the
parameters r, ν, and δ with fixed concentration parameters p and q for a fixed sample size
n, we introduce some notations. Let

Σ =

⎛⎜⎜⎝
σ2

1 (r, ν, δ) σ12(r, ν, δ) σ13(r, ν, δ) σ14(r, ν, δ)
σ12(r, ν, δ) σ2

2 (r, ν, δ) σ23(r, ν, δ) σ24(r, ν, δ)
σ13(r, ν, δ) σ23(r, ν, δ) σ2

3 (r, ν, δ) σ34(r, ν, δ)
σ14(r, ν, δ) σ24(r, ν, δ) σ34(r, ν, δ) σ2

4 (r, ν, δ)

⎞⎟⎟⎠;

dR± =

(
∂R±
∂l1

(l)
∣∣∣
l=μ

,
∂R±
∂l2

(l)
∣∣∣
l=μ

,
∂R±
∂l3

(l)
∣∣∣
l=μ

,
∂R±
∂l4

(l)
∣∣∣
l=μ

)
;

dV± =

(
∂V±
∂l1

(l)
∣∣∣
l=μ

,
∂V±
∂l2

(l)
∣∣∣
l=μ

,
∂V±
∂l3

(l)
∣∣∣
l=μ

,
∂V±
∂l4

(l)
∣∣∣
l=μ

)
;

dD± =

(
∂D±
∂l1

(l)
∣∣∣
l=μ

,
∂D±
∂l2

(l)
∣∣∣
l=μ

,
∂D±
∂l3

(l)
∣∣∣
l=μ

,
∂D±
∂l4

(l)
∣∣∣
l=μ

)
, (12)

where the variances σ2
m(r, ν, δ) and the covariances σml(r, ν, δ) are defined in the

relations (6), the partial derivatives ∂R±/∂lk(l), ∂V±/∂lk(l), and ∂D±/∂lk(l) are defined in
(11), and μ = (μ1, μ2, μ3) is the vector of moments (5).

Previously, in Ref. [17], the following result was obtained for the gamma-
exponential distribution.

Theorem 1. Let 0 ≤ r < 1 and ν > 0. Assume that the concentration parameters p and q
of the digamma distribution DiG(r, ν, p, q, δ) are fixed. Then, for r >

√
φ3/φ1, the estimators

r̂(Xn) = R+(K2(Xn), K4(Xn)) for the unknown characteristic index r, ν̂(Xn) = V+(K2(Xn),
K4(Xn)) for the unknown shape parameter ν and δ̂(Xn) = D+(K1(Xn), K2(Xn), K4(Xn)) for the
unknown scale parameter δ have the property of asymptotic normality when n → ∞:

√
n

r̂(Xn)− r√
dR+ΣdT

R+

=⇒ N(0, 1),
√

n
ν̂(Xn)− ν√

dV+ΣdT
V+

=⇒ N(0, 1);
√

n
δ̂(Xn)− δ√

dD+ΣdT
D+

=⇒ N(0, 1). (13)

Remark 1. In addition to the property of asymptotic normality, the estimators listed in Theorem 1
have the property of strong consistency [16].
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Remark 2. In Theorem 1, if 0 ≤ r <
√

φ3/φ1, then one should choose the statistics
r̂(Xn) = R−(K2(Xn), K4(Xn)), ν̂(Xn) = V−(K2(Xn), K4(Xn)), and δ̂(Xn) = D−(K1(Xn),
K2(Xn), K4(Xn)) with a corresponding modification of the normalizing constants in (13) [17].

Remark 3. In Theorem 1, if ν < 0, then one should choose as an estimator for the unknown parameter ν the
statistics ν̂(Xn) = −V+(K2(Xn), K4(Xn)) if r >

√
φ3/φ1, and ν̂(Xn) = −V−(K2(Xn), K4(Xn))

if 0 ≤ r <
√

φ3/φ1.

Remark 4. Since the gamma-exponential distribution and the digamma distribution have the
Mellin transform of the same type (1), the results of Theorem 1 and Remark 1 remain valid for all
r ≥ 0. In the case when r < 0, one should consider as an estimator for the parameter r the statistics
r̂(Xn) = −R+(K2(Xn), K4(Xn)) for r < −√φ3/φ1 and r̂(Xn) = −R−(K2(Xn), K4(Xn)) for
−√φ3/φ1 < r ≤ 0.

Remark 5. When processing real data, one should first choose one of the statistics ±R±(K2(Xn),
K4(Xn)), and ±V±(K2(Xn), K4(Xn)) as the estimators r̂(Xn) and ν̂(Xn), using the algorithm for
eliminating unnecessary solutions described in Ref. [17]. The estimator for the unknown parameter
δ is always defined by the formula

δ̂(Xn) = exp
{

ψ(q)K1(Xn) +
ψ(q)r̂(Xn)− ψ(p)

ν̂(Xn)

}
.

3. Main Result

Everywhere below we will assume that the sample size is random. To obtain asymp-
totic approximations, it is reasonable to consider a situation in which the random size of
the sample increases in some sense. We will consider a sequence Nn such that Nn −→ ∞ in
probability as n → ∞.

Let the non-random size sample Xn = (X1, . . . , Xn) and the random size sample
XNn = (X1, . . . , XNn) be from the digamma distribution DiG(r, ν, p, q, δ) with the known
concentration parameters p and q.

Using the Functions (7) and (8), we construct the statistics

K2(XNn) ≡ K2(L1(XNn), L2(XNn));

K4(XNn) ≡ K4(L1(XNn), L2(XNn), L3(XNn), L4(XNn)),

based on sample logarithmic moments

Lm(XNn) =
1

Nn

Nn

∑
i=1

lnm Xi.

Let Nn be a sequence of natural-valued random variables independent of X1, X2, . . .,
for each n, and let Nn tend toward infinity in probability as n → ∞.

The following statement holds.

Theorem 2. Let r >
√

φ3/φ1 and ν > 0. Suppose that the concentration parameters p and q of
the digamma distribution DiG(r, ν, p, q, δ) are fixed. Assume that there exists a numerical sequence
{bn > 0} and a random variable U such that

Nn

bn
=⇒ U (14)

when n → ∞. Then, the estimators r̂(XNn) = R+(K2(XNn), K4(XNn)) for the unknown char-
acteristic index r, ν̂(XNn) = V+(K2(XNn), K4(XNn)) for the unknown shape parameter ν, and
δ̂(XNn) = D+(K1(XNn), K2(XNn), K4(XNn)) for the unknown scale parameter δ converge in
distribution when n → ∞:
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√
bn

r̂(XNn)− r√
dR+ΣdT

R+

=⇒ Y√
U

,
√

bn
ν̂(XNn)− ν√

dV+ΣdT
V+

=⇒ Y√
U

,
√

bn
δ̂(XNn)− δ√

dD+ΣdT
D+

=⇒ Y√
U

, (15)

where Y has a standard normal distribution, and U can be considered independent of Y.

Proof of Theorem 2. We consider the statement of the theorem for estimating the charac-
teristic index r. The argument is based on the method proposed in Ref. [26].

Denote

an =

√
dR+ΣdT

R+√
bn

, cn =

√
dR+ΣdT

R+√
n

.

Let hn(t) be the characteristic function of a random variable

Yn ≡ √
n

r̂(Xn)− r√
dR+ΣdT

R+

≡ r̂(Xn)− r
cn

;

and fn(t) be the characteristic function of

Zn ≡
√

bn
r̂(XNn)− r√

dR+ΣdT
R+

≡ r̂(XNn)− r
an

.

Theorem 1 implies that when n → ∞

Yn =⇒ Y ∼ N(0, 1).

Denote by h(t) the characteristic function of a standard normal random variable Y.
Define the random variables

Un ≡ cNn

an
.

Let
gn(t) = Eh(tUn).

Let us show that for any t ∈ R

lim
n→∞

| fn(t)− gn(t)| = 0.

For some positive number γ and positive integer m, we define

K1,n ≡ K1,n(γ) = {m | cm ≤ γan}, K2,n ≡ K2,n(γ) = {m | cm > γan}.

For t = 0, the statement is obvious. Fix an arbitrary t �= 0. Then,

| fn(t)− gn(t)| = |E exp{itZn} − Eh(tUn)| =

=

∣∣∣∣∣ ∞

∑
m=1

P(Nn = m)

[
E exp

{
it

r̂(Xm)− r
an

}
− h
(

t
cm

an

)]∣∣∣∣∣ =
=

∣∣∣∣∣ ∞

∑
m=1

P(Nn = m)

[
E exp

{
it

cm

an
· r̂(Xm)− r

cm

}
− h
(

t
cm

an

)]∣∣∣∣∣ =
=

∣∣∣∣∣ ∞

∑
m=1

P(Nn = m)

[
hm

(
t
cm

an

)
− h
(

t
cm

an

)]∣∣∣∣∣ ≤ ∑
m∈K1,n

P(Nn = m)

∣∣∣∣hm

(
t
cm

an

)
− h
(

t
cm

an

)∣∣∣∣+
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+ ∑
m∈K2,n

P(Nn = m)

∣∣∣∣hm

(
t
cm

an

)
− h
(

t
cm

an

)∣∣∣∣ = I1 + I2.

Fix an arbitrary ε > 0. Consider I2.

I2 = ∑
m∈K2,n

P(Nn = m)

∣∣∣∣hm

(
t
cm

an

)
− h
(

t
cm

an

)∣∣∣∣ ≤ 2 ∑
m∈K2,n

P(Nn = m) = 2P(Un > γ) < ε/2

for all γ > γ2(ε), due to the convergence Un =⇒ 1/
√

U.
Now, consider I1. Let γ > γ2(ε). Since |tcm/an| ≤ |t|γ,

I1 = ∑
m∈K1,n

P(Nn = m)

∣∣∣∣hm

(
t
cm

an

)
− h
(

t
cm

an

)∣∣∣∣ ≤
≤

∞

∑
m=1

P(Nn = m) sup
|τ|≤γ|t|

|hm(τ)− h(τ)| = E sup
|τ|≤γ|t|

|hNn(τ)− h(τ)|.

Due to the uniform convergence of the sequence of characteristic functions hn(t) to
h(t) on any finite interval and the convergence Nn −→ ∞ in probability,

E sup
|τ|≤γ|t|

|hNn(τ)− h(τ)| < ε/2

starting from some n.
Since I1 + I2 < ε starting from some n, we conclude that for any t

lim
n→∞

| fn(t)− gn(t)| = 0.

Note that the function
φt(x) = h(tx)

is bounded and continuous. Therefore, the weak convergence condition Un =⇒
1/

√
U implies

lim
n→∞

Eφt(Un) = Eφt(1/
√

U) = Eh(t/
√

U).

By the Fubini theorem, the right-hand side of the last equality is the characteristic
function of the random variable Y/

√
U for a copy of the standard normal random variable

Y independent of U.
Since

| fn(t)− Eh(t/
√

U)| ≤ | fn(t)− gn(t)|+ |gn(t)− Eh(t/
√

U)| < 2ε

for all ε > 0 starting from some n,

lim
n→∞

fn(t) = Eh(t/
√

U),

which completes the proof of the theorem for the estimator of the characteristic index r.
The statements of the theorem for the estimators of the form parameter ν and the scale

parameter δ are proved in a completely similar way. The theorem is proved.

Remark 6. Similarly to Remarks 2–5, the statement of Theorem 2 remains valid in the cases
r < −√φ3/φ1, −√φ3/φ1 < r ≤ 0, 0 ≤ r <

√
φ3/φ1 and ν < 0 for the estimators

r̂(XNn) = ±R±(K2(XNn), K4(XNn)) and ν̂(XNn) = ±V±(K2(XNn), K4(XNn)) with the cor-
responding modification of the normalizing constants in (15). The choice of the “correct” signs of the
estimators is carried out using the algorithm for eliminating unnecessary solutions from Ref. [17].
The estimator for the unknown parameter δ is always defined by the formula
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δ̂(XNn) = exp
{

ψ(q)K1(XNn) +
ψ(q)r̂(XNn)− ψ(p)

ν̂(XNn)

}
.

Let us introduce additional notation

smm(XNn) ≡ σ2
m(r̂(XNn), ν̂(XNn), δ̂(XNn));

sml(XNn) = slm(XNn) ≡ σml(r̂(XNn), ν̂(XNn), δ̂(XNn));

d[m]
r (XNn) ≡

∂r̂(XNn)

∂lm
; d[m]

ν (XNn) ≡
∂ν̂(XNn)

∂lm
; d[m]

δ (XNn) ≡
∂δ̂(XNn)

∂lm
, (16)

where σ2
m(r, ν, δ) and σml(r, ν, δ) are defined in (6) and r̂(XNn), ν̂(XNn), and δ̂(XNn) satisfy

the conditions of Theorem 2.
Theorem 2 implies a statement about the form of the asymptotic confidence intervals

for unknown parameters of the digamma distribution. Denote by uγ the (1+ γ)/2-quantile
of the limiting random variable Y/

√
U.

Corollary 1. Suppose that the conditions of Theorem 2 are met; then the asymptotic confidence
intervals with a confidence level γ based on the estimators r̂(XNn), ν̂(XNn), and δ̂(XNn) for the
unknown parameters r, ν, and δ have the form

(Ar(XNn), Br(XNn)) =

(
r̂(XNn)−

uγ√
n

Cr(XNn), r̂(XNn) +
uγ√

n
Cr(XNn)

)
;

(Aν(XNn), Bν(XNn)) =

(
ν̂(XNn)−

uγ√
n

Cν(XNn), ν̂(XNn) +
uγ√

n
Cν(XNn)

)
;

(Aδ(XNn), Bδ(XNn)) =

(
δ̂(XNn)−

uγ√
n

Cδ(XNn), δ̂(XNn) +
uγ√

n
Cδ(XNn)

)
,

where

Cr(XNn) =

√√√√ 4

∑
m=1

4

∑
l=1

d[m]
r (XNn)sml(XNn)d

[l]
r (XNn);

Cν(XNn) =

√√√√ 4

∑
m=1

4

∑
l=1

d[m]
ν (XNn)sml(XNn)d

[l]
ν (XNn);

Cδ(XNn) =

√√√√ 4

∑
m=1

4

∑
l=1

d[m]
δ (XNn)sml(XNn)d

[l]
δ (XNn),

and sml(XNn), d[m]
r (XNn), d[m]

ν (XNn), d[m]
δ (XNn) are defined in (16).

The proof is completely analogous to the proof of Corollary 2 from Ref. [17].

4. Examples of Limit Distributions

Let us give a number of examples of possible limit distributions in Theorem 2.
As noted in Section 1, special forms of the negative binomial distribution have gained

great popularity in modeling a random number of events. Since the negative binomial
distribution is concentrated on non-negative integers, it cannot be directly used as a random
sample size. We will consider such distributions with a shift by one, which will ensure
the natural value of the sample size. According to the generalized Slutsky theorem, all
conclusions concerning the asymptotic behavior of “shifted” distributions are equivalent
to the statements about the asymptotics for sequences of random variables that have a
classical negative binomial distribution or a mixed Poisson distribution with a structural
gamma distribution.
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Note that the gamma distribution belongs to the class of distributions with a scale

parameter. It means that if Λ ∼ Γ(s, θ), then Λ̂ d
=Λ/θ ∼ Γ(s, 1). The following state-

ments are based on the fact that for a standard Poisson process N1(t) independent of the
random variable Λ,

N1(Λn)
θn

=⇒ Λ̂, n → ∞.

Note also that if a random variable ξ has a generalized gamma distribution GG(v, s, θ)
with the density (4), then

1√
ξ
∼ GG

(
−2v, s,

1√
θ

)
.

Denote by Π(Λ) the mixed Poisson distribution whose structure is given by the
random variable Λ. To specify particular cases of Theorem 2, we consider the distribution
D(θ) degenerate at the point θ, the gamma distribution Γ(s, θ), the exponential distribution
E(θ) ≡ Γ(1, θ), and the scaled χ2-distribution χ2(k, θ) ≡ Γ(k/2, θ), k ∈ N as the structural
one. To determine the corresponding mixed Poisson distributions, consider the negative
binomial distribution NB(p, 1/(1 + θ)) whose partial probabilities are given by (3), and
the geometric distribution G(1/(1 + θ)) ≡ NB(1, 1/(1 + θ)). To determine the limit
distributions, consider the type VII Pearson distribution P7(m, α), m ≥ 1/2, α > 0, with
the density

fP7(x) =
α2m−1

B(m − 1/2, 1/2)
(α2 + x2)−m;

the Student distribution St(n) ≡ P7((n + 1)/2,
√

n); and the Cauchy distribution
K(α) ≡ P7(1, α).

For bn = θn, let us list several examples of limit distributions of the random variable
Y/

√
U from (15).

Let Nn − 1 d
=N1(Λn) ∼ Π(Λn). Then, the limit random variable U in (14) coincides

in distribution with Λ̂, and the distributions of the random variable Y/
√

U have the form
shown in Table 1.

Table 1. Special cases of the limit distribution.

Λ ∼ Π(Λn) Y /
√

U ∼
D(θ) Π(θn) N(0, 1)
E(θ) G

(
1

1 + θn

)
St(2)

χ2(1, θ) NB
(

1
2

,
1

1 + θn

)
K
(√

2
)

Γ(s, θ) NB
(

s,
1

1 + θn

)
P7
(

s +
1
2

,
√

2
)

Let us give some numerical examples of calculating the estimates of the parameters
r, ν, and δ of the digamma distribution DiG(r, ν, p, q, δ) from the model samples. The
concentration parameters p and q are fixed. The data given in Table 2 are obtained using
the algorithm described in Ref. [17].

The pseudorandom sample size Nn for each n is generated for the distributions Π(Λn)
from Table 1. The simulation of pseudorandom samples from the digamma distribution is
based on Relation (2).

Table 2 lists the values of the estimates r̂(XNn), ν̂(XNn), and δ̂(XNn) of the pa-
rameters r, ν, and δ, obtained by simulating a sample from the digamma distribution
DiG(0.5; 2.5; 2.4; 1.9; 1.0), and the corresponding boundaries of the confidence intervals.
The distributions of the random sample size are taken from Table 1 with θ = 1 and s = 2.

71



Mathematics 2023, 11, 1778

Table 2. Examples of parameter estimates and boundaries of confidence intervals for a model
distribution for r = 0.5, ν = 2.5, and δ = 1.0.

Nn − 1 ∼ r̂(XNn ) Ar(XNn ) Br(XNn ) ν̂(XNn ) Aν(XNn ) Bν(XNn ) δ̂(XNn ) Aδ(XNn ) Bδ(XNn )

Π(104) 0.5754 0.0458 1.1051 2.5877 1.8475 3.3278 1.0159 0.8915 1.1403
Π(105) 0.4693 0.3526 0.5859 2.4633 2.3205 2.6061 0.9912 0.9630 1.0195
Π(106) 0.5032 0.4631 0.5433 2.5039 2.4525 2.5554 1.0005 0.9909 1.0101

G
(

1
1 + 104

)
0.4073 −0.2401 1.0549 2.3678 1.6620 3.0735 0.9767 0.8180 1.1355

G
(

1
1 + 105

)
0.5613 0.1982 0.9243 2.5793 2.077 3.0808 1.0140 0.9284 1.0995

G
(

1
1 + 106

)
0.4942 0.4392 0.5493 2.4927 2.4229 2.5626 0.9985 0.9853 1.0118

NB
(

1
2 , 1

1 + 104

)
0.4575 −2.9511 3.8662 2.4297 −1.6338 6.4933 0.9884 0.1551 1.8217

NB
(

1
2 , 1

1 + 105

)
0.4137 −0.7791 1.6065 2.4056 1.0728 3.7384 0.9780 0.6893 1.2668

NB
(

1
2 , 1

1 + 106

)
0.5107 0.2524 0.7690 2.5133 2.1781 2.8485 1.0024 0.9404 1.0644

NB
(

2, 1
1 + 104

)
0.5700 0.2545 0.8855 2.5935 2.1529 3.0341 1.0148 0.9407 1.0888

NB
(

2, 1
1 + 105

)
0.5317 0.3867 0.6767 2.5418 2.3483 2.7353 1.0079 0.9733 1.0424

NB
(

2, 1
1 + 106

)
0.5052 0.4848 0.5256 2.5056 2.4793 2.5319 1.0009 0.9960 1.0058

5. Conclusions

This paper has considered the problem of estimating the parameters of the digamma
distribution with a random sample size. The consideration of a random sample size is very
important since the accumulation of a sufficient fixed amount of statistical data can often
take an indefinite amount of time, and, sometimes, it is impossible, in principle. Therefore, it
becomes natural to study the asymptotic behavior of statistics based on random size samples.

The digamma distribution is a generalization of popular distributions from the gamma
and beta classes, as well as the gamma-exponential distribution. This paper has discussed
a method for estimating unknown parameters of the digamma distribution based on the
logarithmic cumulants. Assuming that the sample size is random, the weak convergence of
the studied estimators to the scale mixtures of the normal law is proved. This result allows
for the construction of asymptotic confidence intervals for the estimated parameters. It is
shown that the asymptotic properties of the statistics can change radically when passing
from a fixed sample size to a random one. In particular, it leads to heavier tails of the limit
distribution. For example, the type VII Pearson distribution may appear to be a limiting
distribution whose representatives may not have a mathematical expectation.

The results proposed in this paper concern the estimation of the characteristic in-
dex and the shape and scale parameters of the digamma distribution assuming that the
concentration parameters are known. Naturally, the question arises about the form of
statistical estimates in the case in which all five parameters are unknown. The equations
for constructing the estimates contain polygamma functions with arguments depending on
the concentration parameters. Theoretical methods for inverting polygamma functions are
being actively developed at the present time, but, apparently, there are currently no effective
tools suitable for use in the method under consideration. At the same time, polygamma
functions have nice properties that make their inversion easy using numerical methods.
The authors plan to continue their studies in this direction.
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Abstract: In the first part of this article, we discuss and generalize the complete convergence intro-
duced by Hsu and Robbins in 1947 to the r-complete convergence introduced by Tartakovsky in
1998. We also establish its relation to the r-quick convergence first introduced by Strassen in 1967
and extensively studied by Lai. Our work is motivated by various statistical problems, mostly in
sequential analysis. As we show in the second part, generalizing and studying these convergence
modes is important not only in probability theory but also to solve challenging statistical problems in
hypothesis testing and changepoint detection for general stochastic non-i.i.d. models.

Keywords: complete convergence; r-quick convergence; sequential analysis; hypothesis testing;
changepoint detection.
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1. Introduction

In [1], Hsu and Robbins introduced the notion of complete convergence which is
stronger than almost sure (a.s.) convergence. Hsu and Robbins used this notion to discuss
certain aspects of the law of large numbers (LLN). In particular, let X1, X2, . . . be indepen-
dent and identically distributed (i.i.d.) random variables with the common mean μ = E[X1].
Hsu and Robbins proved that, while in Kolmogorov’s strong law of large numbers (SLLN),
only the first moment condition is needed for the sample mean n−1 ∑n

t=1 Xt to converge
to μ as n → ∞, the complete version of the SLLN requires the second-moment condition
E|X1|2 < ∞ (finiteness of variance). Later, Baum and Katz [2], working on the rate of con-
vergence in the LLN established that the second-moment condition is not only necessary
but also sufficient for complete convergence. Strassen [3] introduced another mode of
convergence, the r-quick convergence. When r = 1, these two modes of convergence are
closely related. In the case of i.i.d. random variables and the sample mean n−1 ∑n

t=1 Xt,
they are identical. This fact and certain statistical applications motivated Tartakovsky [4]
(see also Tartakovsky [5] and Tartakovsky et al. [6]) to introduce a natural generalization of
complete convergence—the r-complete convergence, which turns out to be identical to the
r-quick convergence in the i.i.d. case.

The goal of this overview paper is to discuss the importance of quick and complete
convergence concepts for several challenging statistical applications. These modes of
convergence are discussed in detail in the first part of this paper. Statistical applications,
which constitute the second part of this paper, include such fields as sequential hypothesis
testing and changepoint detection in general non-i.i.d. stochastic models when observations
can be dependent and highly non-stationary. Specifically, in the second part, we first address
near optimality of Wald’s sequential probability ratio test (SPRT) for testing two hypotheses
regarding the distributions of non-i.i.d. data. We discuss Lai’s results in his fundamental
paper [7], which was the first publication that used the r-quick convergence of the log-
likelihood ratio processes to establish the asymptotic optimality of the SPRT as probabilities
of errors go to zero. We then go on to tackle the much more difficult multi-decision problem
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of testing multiple hypotheses and show that certain multi-hypothesis sequential tests
asymptotically minimize moments of the stopping time distribution up to the order r
when properly normalized log-likelihood ratio processes between hypotheses converge
r-quickly or r-completely to finite positive numbers. These results can be established
based on the former works of the author (see, e.g., Tartakovsky [4,5] and Tartakovsky
et al. [6]). The second challenging application is the quickest change detection when it
is necessary to detect a change that occurs at an unknown point in time as rapidly as
possible. We show, using the works of the author (see, e.g., [5,6] and the references therein),
that certain popular changepoint detection procedures such as CUSUM, Shiryaev, and
Shiryaev–Roberts procedures are asymptotically optimal as the false alarm rate is low when
the normalized log-likelihood ratio processes converge r-completely to finite numbers.

The rest of the paper is organized as follows. Section 2 discusses pure probabilistic
issues related to r-complete convergence and r-quick convergence. Section 3 explores
statistical applications in sequential hypothesis testing and changepoint detection. Section 4
outlines sufficient conditions for the r-complete convergence for Markov and hidden
Markov models, which is needed to establish the optimality properties of sequential
hypothesis tests and changepoint detection procedures. Section 5 provides a final discussion
and concludes the paper.

2. Modes of Convergence and the Law of Large Numbers

We begin by listing some standard definitions in probability theory. Let (Ω, F ) be
a measurable space, i.e., Ω is a set of elementary events ω and F is a sigma-algebra (a
system of subsets of Ω satisfying standard conditions). A probability space is a triple
(Ω, F ,P), where P is a probability measure (completely additive measure normalized to 1)
defined on the sets from the sigma-algebra F . More specifically, by Kolmogorov’s axioms,
probability P satisfies: P(A) ≥ 0 for any A ∈ F ; P(Ω) = 1; and P(∪∞

i=1Ai) = ∑∞
i=1 P(Ai)

for Ai ∈ F , Ai ∩Aj = ∅, i �= j, where ∅ is an empty set.
A function X = X(ω) defined on (Ω, F ) with values in X is called a random variable

if it is F -measurable, i.e., {ω : X(ω) ∈ B} belongs to the sigma-algebra F . The function
F(x) = P(ω : X(ω) ≤ x) is the distribution function of X. It is also referred to as a
cumulative distribution function (cdf). The real-valued random variables X1, X2, . . . are
independent if the events {X1 ≤ x1}, {X2 ≤ x2}, . . . are independent for every sequence
x1, x2, . . . of real numbers. In what follows, we shall deal with real-valued random variables
unless specified otherwise.

2.1. Standard Modes of Convergence

Let X be a random variable and let {Xn}n∈Z+
(Z+ = {0, 1, 2, . . . }) be a sequence of

random variables, both defined on the probability space (Ω, F ,P). We now give several
standard definitions and results related to the law of large numbers.

Convergence in Distribution (Weak Convergence). Let Fn(x) = P(ω : Xn ≤ x) be the cdf
of Xn and let F(x) = P(ω : X ≤ x) be the cdf of X. We say that the sequence {Xn}n∈Z+

converges to X in distribution (or in law or weakly ) as n → ∞ and write Xn
law−−−→

n→∞
X if

lim
n→∞

Fn(x) = F(x)

at all continuity points of F(x).

Convergence in Probability. We say that the sequence {Xn}n∈Z+
converges to X in proba-

bility as n → ∞ and write Xn
P−−−→

n→∞
X if

lim
n→∞

P(|Xn − X| > ε) = 0 for every ε > 0.
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Almost Sure Convergence. We say that the sequence {Xn}n∈Z+
converges to X almost

surely (a.s.) or with probability 1 (w.p. 1) as n → ∞ under probability measure P and write

Xn
P−a.s.−−−→
n→∞

X if

P
(

ω : lim
n→∞

Xn = X
)
= 1. (1)

It is easily seen that (1) is equivalent to the condition

lim
n→∞

P

(
ω :

∞

∑
t=n

|Xt − X| > ε

)
= 0 for every ε > 0,

and that the a.s. convergence implies convergence in probability, and the convergence
in probability implies convergence in distribution, while the converse statements are not
generally true.

The following double implications that establish necessary and sufficient conditions
(i.e., equivalences) for the a.s. convergence are useful:

Xn
a.s.−−−→

n→∞
X ⇐⇒ P

(
sup
t≥n

|Xt − X| > ε

)
−−−→
n→∞

0 for all ε > 0. (2)

The following result is often useful.

Lemma 1. Let f (t) be a non-negative increasing function, limt→∞ f (t) = ∞. If

Xn

f (n)
P−a.s.−−−→
n→∞

0,

then

lim
n→∞

P

(
1

f (n)
max

0≤t≤n
Xt > ε

)
= 0 for every ε > 0. (3)

Proof. For any ε > 0, n0 > 0 and n > n0, we have

P

(
1

f (n)
max

0≤t≤n
Xt > ε

)
≤ P

(
1

f (n)
max

0≤t≤n0
Xt > ε

)
+ P

(
1

f (n)
max

n0<t≤n
Xt > ε

)
≤ P

(
1

f (n)
max

0≤t≤n0
Xt > ε

)
+ P

(
sup
t>n0

Xt

f (t)
> ε

)
.

Letting n → ∞ and taking into account that

lim
n→∞

P

(
1

f (n)
max

0≤t≤n0
Xt > ε

)
= 0,

we obtain

lim sup
n→∞

P

(
1

f (n)
max

0≤t≤n
Xt > ε

)
≤ P

(
sup
t>n0

Xt

f (t)
> ε

)
.

Since n0 can be arbitrarily large, we can let n0 → ∞ and since, by assumption, Xn/ f (n) a.s.−−−→
n→∞

0, it follows from (2) that the upper bound approaches 0 as n0 → ∞. This completes the
proof.

Random Walk. Let X0, X1, X2, . . . be i.i.d. random variables with the mean E[Xn] = μ for
n ≥ 1 and the initial condition X0 = x. Then, Sn = ∑n

t=0 Xt is called a random walk with
the mean x + μ n.
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In what follows, in the case where X1, X2, . . . are i.i.d. random variables and Sn = ∑n
t=0 Xt,

we prefer to formulate the results in terms of the random walk {Sn}n∈Z+
(typically but not

necessarily S0 = 0).
We now recall the two strong law of large numbers (SLLN). Write Sn = X0 + X1 +

· · ·+ Xn for the partial sum (X0 = S0 = 0), so that {Sn}n∈Z+
is a random walk with an

initial condition of zero as long as X1, X2, . . . are i.i.d. with mean μ.

Kolmogorov’s SLLN. Let {Sn}n∈Z+
be a random walk under probability measure P. If

E[S1] exists, then the sample mean Sn/n converges to the mean value E[S1] w.p. 1, i.e.,

n−1Sn
P−a.s.−−−→
n→∞

E[S1]. (4)

Conversely, if n−1Sn
P−a.s.−−−→
n→∞

μ, where |μ| < ∞, then E[S1] = μ.

Marcinkiewicz–Zygmund’s SLLN. Let {Sn}n∈Z+
be a zero-mean random walk under

probability measure P. The two following statements are equivalent:

(i) E|S1|p < ∞ for 0 < p < 2;

(ii) n−1/pSn
P−a.s.−−−→
n→∞

0.

2.2. Complete and r-Complete Convergence

We begin with discussing the issue of rates of convergence in the LLN.

Rates of Convergence. Let {Xn}n∈Z+
be a sequence of random variables and assume

that Xn converges to 0 w.p. 1 as n → ∞. The question asks what the rate of convergence is.
In other words, we are concerned with the speed at which the tail probability P(|Xn| > ε)
decays to zero. This question can be answered by analyzing the behavior of the sums

Σ(r, ε) :=
∞

∑
n=1

nr−1P(|Xn| > ε) for some r > 0 and all ε > 0.

More specifically, if Σ(r, ε) is finite for every ε > 0, then the tail probability P(|Xn| > ε)
decays with a rate faster than 1/nr, so that nrP(|Xn| > ε) → 0 for all ε > 0 as n → ∞.

To answer this question, we now consider modes of convergence that strengthen the
almost sure convergence and therefore help determine the rate of convergence in the SLLN.
Historically, this issue was first addressed in 1947 by Hsu and Robbins [1], who introduced
the new mode of convergence which they called complete convergence.

Complete Convergence. The sequence {Xn}n∈Z+
converges to 0 completely if

lim
n→∞

∞

∑
i=n

P(|Xt| > ε) = 0 for every ε > 0, (5)

which is equivalent to

Σ(1, ε) =
∞

∑
n=1

P(|Xn| > ε) < ∞ for every ε > 0

Let {Sn}n∈Z+
be a random walk with a mean of E[Sn] = μ n. Kolmogorov’s SLLN (4)

implies that the sample mean Sn/n converges to μ w.p. 1. Hsu and Robbins [1] proved that,
under the same assumptions (i.e., under the only first-moment condition E|S1| < ∞) the
sequence {n−1Sn}n≥1 does not need to completely converge to μ, but it will do so under the
further second-moment condition E|S1|2 < ∞. Thus, the finiteness of variance is a sufficient
condition for complete convergence in the SLLN. They conjectured that the second-moment
condition is not only sufficient but also necessary for complete convergence. Thus, it
follows from these results that, if the variance is finite, then the rate of convergence in
Kolmogorov’s SLLN is limn→∞ nP(|Sn/n − μ| > ε) = 0 for all ε > 0.
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In 1965, Baum and Katz [2] made a further step towards this issue. In particular, the
following result follows from Theorem 3 in [2] for the zero-mean random walk {Sn}n∈Z+

.

Theorem 1. Let r > 0 and α > 1/2. If {Sn}n∈Z+
is a zero-mean random walk, then the following

statements are equivalent:

E[|S1|(r+1)/α] < ∞ ⇐⇒
∞

∑
n=1

nr−1P
{

n−α|Sn| > ε
}
< ∞ for all ε > 0

⇐⇒
∞

∑
n=1

nr−1P

{
sup
k≥n

1
kα

|Sk| > ε

}
< ∞ for all ε > 0.

(6)

Setting r = 1 and α = 1 in (6), we obtain the following equivalence

E[|S1|2] < ∞ ⇐⇒
∞

∑
n=1

P
{
|n−1Sn| > ε

}
< ∞ for all ε > 0,

which shows that the conjecture of Hsu and Robbins is correct—the second-moment
condition E|S1|2 < ∞ is both necessary and sufficient for complete convergence

n−1Sn
P−completely−−−−−−−−→

n→∞
0.

Furthermore, if for some r > 0, the (r + 1)-th moment is finite, E|S1|r+1 < ∞, then the rate
of convergence in the SLLN is limn→∞ nr P(|n−1Sn| > ε) = 0 for all ε > 0.

Previous results suggest that it is reasonable to generalize the notion of complete
convergence into the following mode of convergence that we will refer to as r-complete
convergence, which is also related to the so-called r-quick convergence that we will discuss
later on (see Section 2.3).

Definition 1 (r-Complete Convergence). Let r > 0. We say that the sequence of random
variables {Xn}n∈Z+

converges to X as n → ∞ r-completely under probability measure P and write

Xn
P−r−completely−−−−−−−−−→

n→∞
X if

Σ(r, ε) :=
∞

∑
n=1

nr−1P(|Xn − X| > ε) < ∞ for every ε > 0. (7)

Note that the a.s. convergence of {Xn} to X can be equivalently written as

lim
n→∞

P

(
∞

∑
t=n

|Xt − X| > ε

)
= 0 for every ε > 0,

so that the r-complete convergence with r ≥ 1 implies the a.s. convergence, but the converse
is not true in general.

Suppose that Xn converges a.s. to X. If Σ(r, ε) is finite for every ε > 0, then

lim
n→∞

∞

∑
t=n

tr−1P(|Xt − X| > ε) = 0 for every ε > 0

and probability P(|Xn − X| > ε) goes to 0 as n → ∞ with the rate faster than 1/nr. Hence,
as already mentioned above, the r-complete convergence allows one to determine the rate
of convergence of Xn to X, i.e., to answer the question of how fast the tail probability
P(|Xn − X| > ε) decays to zero.

The following result provides a very useful implication of complete convergence.
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Theorem 2. Let {Xn}n∈Z+
and {Yn}n∈Z+

be two arbitrary, possibly dependent sequences of
random variables. Assume that there are positive and finite numbers μ1 and μ2 such that

∞

∑
n=1

P

(∣∣∣∣ 1n Xn − μ1

∣∣∣∣ > ε

)
< ∞ for every ε > 0 (8)

and
∞

∑
n=1

P

(∣∣∣∣ 1n Yn − μ2

∣∣∣∣ > ε

)
< ∞ for every ε > 0, (9)

i.e., n−1Xn
P−completely−−−−−−−→

n→∞
μ1 and n−1Yn

P−completely−−−−−−−→
n→∞

μ2. If μ1 ≥ μ2, then for any random time T

P(XT < b, YT+1 ≥ b(1 + δ)) −→ 0 as b → ∞ for any δ > 0. (10)

Proof. Fix δ > 0, c ∈ (0, δ) and let Nb = �(1 + c)b/μ2� be the smallest integer that is larger
than or equal to (1 + c)b/μ2. Observe that

P(XT < b, YT+1 ≥ b(1 + δ)) ≤ P(XT ≤ b, T ≥ Nb) + P(YT+1 ≥ (1 + δ)b, T < Nb)

≤ P(XT ≤ b, T ≥ Nb) + P

(
max

1≤n≤Nb
Yn ≥ (1 + δ)b

)
.

Thus, to prove (10), it suffices to show that the two terms on the right-hand side go to 0 as
b → ∞.

For the first term, we notice that, for any n ≥ Nb,

b
n
≤ b

Nb
≤ μ2

1 + c
≤ μ1

1 + c
< μ1,

so that

P(XT ≤ b, T ≥ Nb) =
∞

∑
n=Nb

P(Xn ≤ b, T = n) ≤
∞

∑
n=Nb

P

(
Xn

n
≤ b

n

)

≤
∞

∑
n=Nb

P

(
Xn

n
≤ μ1

1 + c

)
=

∞

∑
n=Nb

P

(
Xn

n
− μ1 ≤ − c

1 + c
μ1

)
.

Since Nb → ∞ as b → ∞, the upper bound goes to 0 as b → ∞ due to condition (8).
Next, since c ∈ (0, δ), there exists ε′ > 0 such that

(1 + δ)b
Nb

=
(1 + δ)b

�b(1 + c)/μ2� ≥ (1 + ε′)μ2.

As a result,

P

(
max

1≤n≤Nb
Yn ≥ (1 + δ)b

)
≤ P

(
1

Nb
max

1≤n≤Nb
Yn ≥ (1 + ε′)μ2

)
,

where the upper bound goes to 0 as b → ∞ by condition (9) (see Lemma 1).

Remark 1. The proof suggests that the assertion (10) of Theorem 2 holds under the following
one-sided conditions

P

(
n−1 max

1≤s≤n
Ys − μ2 > ε

)
−−−→
n→∞

0,
∞

∑
n=1

P
(

n−1Xn − μ1 < −ε
)
< ∞.

Complete convergence conditions (8) and (9) guarantee both these conditions.
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Remark 2. Theorem 2 can be applied to the overshoot problem. Indeed, if Xn = Yn = Zn and the
random time T is the first time n when Zn exceeds the level b, T = inf{n ≥ 1 : Zn > b}, then
Theorem 2 shows that the relative excess of boundary crossing (overshoot) (ZT − b)/b converges to
0 in probability as b → ∞ when Zn/n completely converges as n → ∞ to a positive number μ.

2.3. r-Quick Convergence

In 1967, Strassen [3] introduced the notion of r-quick limit points of a sequence of
random variables. The r-quick convergence has been further addressed by Lai [7,8], Chow
and Lai [9], Fuh and Zhang [10], and Tartakovsky [4,5] (see certain details in Section 2.4).

We define r-quick convergence in a way suitable for this paper. Let {Xn}n∈Z+
be a

sequence of real-valued random variables and let X be a random variable defined on the
same probability space (Ω, F ,P).

Definition 2 (r-Quick Convergence). Let r > 0 and for ε > 0, let

Lε = sup{n ≥ 1 : |Xn − X| > ε} (sup{∅} = 0)

be the last entry time of Xn in the region (X + ε, ∞) ∪ (−∞, X − ε). We say that the se-
quence {Xn}n∈Z+

converges to X r-quickly as n → ∞ under the probability measure P and

write Xn
P−r−quickly−−−−−−−→

n→∞
X if and only if

E[Lr
ε] < ∞ for every ε > 0, (11)

where E is the operator of expectation under probability P.

This definition can be generalized to random variables X, {Xn}n∈Z+
taking values in

a metric space (X , d) with distance d: Xn
r−quickly−−−−−→

n→∞
X if

E
[
(sup{n ≥ 1 : d(X, Xn) > ε})r] < ∞ for every ε > 0.

Note that the a.s. convergence Xn → μ (|μ| < ∞) as n → ∞ to a constant μ can be
expressed as P(Lε(μ) < ∞) = 1, where Lε(μ) = sup{n ≥ 1 : |Xn − μ| > ε}. Therefore, the
r-quick convergence implies the convergence w.p. 1 but not conversely.

Also, in general, r-quick convergence is stronger than r-complete convergence. Specifi-
cally, the following lemma shows that

max
1≤i≤n

Xt
r−completely−−−−−−−→

n→∞
μ =⇒ Xn

r−quickly−−−−−→
n→∞

μ =⇒ Xn
r−completely−−−−−−−→

n→∞
μ. (12)

Lemma 2. Let {Xn}n∈Z+
be a sequence of random variables. Let f (t) be a non-negative increasing

function, f (0) = 0, limt→∞ f (t) = +∞, and let for ε > 0

Lε( f ) = sup{n ≥ 1 : |Xn| > ε f (n)} (sup{∅} = 0)

be the last time that Xn leaves the interval [−ε f (n),+ε f (n)].

(i) For any r > 0 and any ε > 0, the following inequalities hold:

r
∞

∑
n=1

nr−1P{|Xn| ≥ ε f (n)} ≤ E
[
Lε( f )r] ≤ r

∞

∑
n=1

nr−1P

{
sup
t≥n

|Xt|
f (t)

≥ ε

}
. (13)

Therefore,

∞

∑
n=1

nr−1P

{
sup
t≥n

|Xt|
f (t)

≥ ε

}
< ∞ for all ε > 0 =⇒ Xn

r−quickly−−−−−→
n→∞

0.
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(ii) If f (t) is a power function, f (t) = tγ, γ > 0, then the finiteness of
∞

∑
n=1

nr−1P

{
max

1≤t≤n
Xt ≥ εnγ

}
for some r > 0 and every ε > 0 implies the r-quick convergence of Xn to 0:{

∞

∑
n=1

nr−1P

(
max

1≤t≤n
Xt ≥ εnγ

)
< ∞ ∀ ε > 0

}
=⇒ {E[Lε(γ)

r] < ∞ ∀ ε > 0}, (14)

where Lε(γ) = sup{n ≥ 1 : |Xn| > ε nγ}.

Proof. Proof of (i). Obviously,

P{|Xn| ≥ ε f (n)} ≤ P
{

Lε( f ) ≥ n
} ≤ P

{
sup
t≥n

1
f (t) |Xt| ≥ ε

}

from which the inequalities (13) follow immediately.
Proof of (ii). Write Mu = max1≤n≤�u�|Xn|, where �u� is a smallest integer greater or

equal to u. We have the following chain of inequalities and equalities:

E
[
L2ε(γ)

r] ≤ r
∫ ∞

0
tr−1P

{
sup
u≥t

u−γ|Xu| ≥ 2ε

}
dt

≤ r
∫ ∞

0
tr−1P

{
sup
u≥t

[|Xu| − εuγ
] ≥ εtγ

}
dt

≤ r
∫ ∞

0
tr−1P

{
sup
u>0

[|Xu| − εuγ
] ≥ εtγ

}
dt

≤ r
∞

∑
n=1

∫ ∞

0
tr−1P

{
sup

(2n−1−1)tγ<uγ≤(2n−1)tγ

[|Xu| − εuγ] ≥ εtγ

}
dt

≤ r
∞

∑
n=1

∫ ∞

0
tr−1P

{
sup

uγ≤2ntγ
|Xu| ≥ 2n−1εtγ

}
dt

= r
∞

∑
n=1

∫ ∞

0
tr−1P

{
M2n/γu ≥ 2n−1εtγ

}
dt

= r

[
∞

∑
n=1

2−n/γ

] ∫ ∞

0
ur−1P{Mu ≥ (ε/2)uγ}du.

It follows that

E
[
L2ε(γ)

r] ≤ r
(
21/γ − 1

)−1
∫ ∞

0
ur−1P{Mu ≥ (ε/2)uγ}du ≤

≤ r
(
21/γ − 1

)−1
∞

∑
n=1

nr−1P

{
max

1≤t≤n
Xn ≥ εnγ

}
which yields the implication (14) and completes the proof.

The following theorem shows that, in the i.i.d. case, the implications in (12) become
equivalences.

Theorem 3. Let {Sn}n∈Z+
be a zero-mean random walk. The following statements are equivalent

E|S1|r+1 < ∞ ⇐⇒ n−1Sn
r−completely−−−−−−−→

n→∞
0, (15)
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E|S1|r+1 < ∞ ⇐⇒ n−1Sn
r−quickly−−−−−→

n→∞
0, (16)

E|S1|r+1 ⇐⇒
∞

∑
n=1

nr−1P

{
sup
t≥n

1
t
|St| > ε

}
< ∞ for all ε > 0. (17)

Proof. By Theorem 1, in the i.i.d. case,

E|S1|r+1 < ∞ ⇐⇒
∞

∑
n=1

nr−1P

(
1
n
|Sn| > ε

)
< ∞ ∀ε > 0 (18)

and

E|S1|r+1 < ∞ ⇐⇒
∞

∑
n=1

nr−1P

(
sup
t≥n

1
t
|St| > ε

)
< ∞ ∀ε > 0, (19)

so that assertion (15) follows from (18) and (17) from (19).
Next, let

Lε = sup{n ≥ 1 : |Sn| ≥ n ε} (sup∅ = 0).

By Lemma 2(i),

E[Lr
ε] ≤ r

∞

∑
n=1

nr−1P

{
sup
t≥n

(|St|/t) ≥ ε

}
∀ε > 0, (20)

which, along with (19), implies (16).

2.4. Further Remarks on r-Complete Convergence, r-Quick Convergence, and Rates of Convergence
in SLLN

Let {Sn}n∈Z+
be a random walk. Without loss of generality, let S0 = 0 and E[S1] = 0.

1. Strassen [3] proved, in particular, that if f (n) = (2n log n)1/2 in Lemma 2, then for r > 0

lim sup
n→∞

Sn√
2n log n

=
√

r E[S2
1] r − quickly (21)

whenever E|S1|p < ∞ for p > (2r + 1). He also proved the functional form of the law of
the iterated logarithm.

2. Lai [8] improved this result, showing that Strassen’s moment condition E|S1|p < ∞ for
p > (2r + 1) can be relaxed. Specifically, he showed that a weaker condition

E
[
|S1|2(r+1)(log+ |S1|+ 1)−(r+1))

]
< ∞ for r > 0 (22)

is the best one can do (i.e., both necessary and sufficient):

E
[
|S1|2(r+1)(log+ |S1|+ 1)−(r+1)

]
< ∞ ⇐⇒ lim sup

n→∞

Sn√
2n log n

< ∞ r − quickly,

in which case equality (21) holds.
Note, however, that for r = 0, in terms of the a.s. convergence,

E
[
|S1|2

]
< ∞ ⇐⇒ lim sup

n→∞

Sn√
2n log log n

=
√

E[|S1|2] a.s.

but under condition (22) for all r > 0

lim sup
n→∞

Sn√
2n log log n

= ∞ r − quickly.

3. Let α > 1/2 and r > 0. Chow and Lai [9] established the following one-sided inequality
for tail probabilities:
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∞

∑
n=1

nr−1P

(
max

1≤t≤n
St ≥ nα

)
≤ Cr,α

{
E
[
(S+

1 )(r+1)/α
]
+
(
E[S2

1]
)r/(2α−1)

}
(23)

whenever E|S1|2 < ∞. Under the same hypotheses, this one-sided inequality implies the
two-sided one:

∞

∑
n=1

nr−1P

(
max

1≤t≤n
|St| ≥ nα

)
≤ Cr,α

{
E
[
|S1|(r+1)/α

]
+
(
E[S2

1]
)r/(2α−1)

}
. (24)

The upper bound in (24) turns out to be sharp since the lower bound also holds:

∞

∑
n=1

nr−1P

(
max

1≤t≤n
|St| ≥ nα

)
≥ 1 + Br,α

{
E
[
|S1|(r+1)/α

]
+
(
E[S2

1]
)r/(2α−1)

}
.

Here, the constants Cr,α and Br,α are universal only depending on r, α.
The results of Chow and Lai [9] provide one-sided analogues of the results of Baum

and Katz [2] as well as extend their results. Indeed, the one-sided inequality (23) implies
that the following statements are equivalent for the zero-mean random walk {Sn}n∈N:

(i) E[(S+
1 )(r+1)/α] < ∞;

(ii) ∑∞
n=1 nr−1P(n−αSn ≥ ε) < ∞ for all ε > 0;

(iii) ∑∞
n=1 nr−1P

(
supk≥n k−αSk ≥ ε

)
< ∞ for all ε > 0,

where α > 1/2.
Clearly, the two-sided inequality (24) yields the assertions of Theorem 1.

4. The Marcinkiewicz–Zygmund SLLN states that, for α > 1/2, the following implications
hold:

E|S1|1/α < ∞ ⇐⇒ n−αSn
a.s.−−−→

n→∞
0. (25)

The strengthened r-quick equivalent of this SLLN is: for any r > 0 and α > 1/2, the
following statements are equivalent,

E[|S1|(r+1)/α] < ∞ ⇐⇒
∞

∑
i=1

nr−1P

{
1

nα
|Sn| > ε

}
< ∞ for all ε > 0

⇐⇒
∞

∑
n=1

nr−1P

{
sup
k≥n

1
kα

|Sk| > ε

}
< ∞ for all ε > 0

⇐⇒ n−αSn
r−quickly−−−−−→

n→∞
0.

(26)

Implications (26) follow from Theorem 1, Theorem 3 and inequality (24). The proof is
almost obvious and omitted.

3. Applications of r-Complete and r-Quick Convergences in Statistics

In this section, we outline certain statistical applications which show the usefulness of
r-complete and r-quick versions of the SLLN.

3.1. Sequential Hypothesis Testing

We begin by formulating the following multi-hypothesis testing problem for a general
non-i.i.d. stochastic model. Let (Ω, F , Fn,P), n ∈ Z+ = {0, 1, 2, . . .} be a filtered probabil-
ity space with standard assumptions about the monotonicity of the sub-σ-algebras Fn. The
sub-σ-algebra Fn = σ(Xn) of F is assumed to be generated by the sequence Xn = {Xt, 1 ≤
t ≤ n} observed up to time n, which is defined on the space (Ω, F ). The hypotheses are
Hi : P = Pi, i = 0, 1, . . . , N, where P0,P1, . . . ,PN are given probability measures assumed
to be locally mutually absolutely continuous, i.e., their restrictions Pn

i and Pn
j to Fn are
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equivalent for all 1 ≤ n < ∞ and all i, j = 0, 1, . . . , N, i �= j. Let Qn be a restriction to Fn of
a σ-finite measure Q on (Ω, F ). Under Pi, the sample Xn = (X1, . . . , Xn) has a joint density
pi,n(X

n) with respect to the dominating measure Qn for all n ∈ N, which can be written as

pi,n(X
n) =

n

∏
t=1

fi,t(Xt|Xt−1), (27)

where fi,n(Xn|Xn−1), n ≥ 1 are corresponding conditional densities.
For n ∈ N, define the likelihood ratio (LR) process between the hypotheses Hi and Hj

Λij(n) =
dPn

i
dPn

j
(Xn) =

pi,n(X
n)

pj,n(Xn)
=

n

∏
t=1

fi,t(Xt|Xt−1)

f j,t(Xt|Xt−1)

and the log-likelihood ratio (LLR) process

λij(n) = log Λij(n) =
n

∑
t=1

log

[
fi,t(Xt|Xt−1)

f j,t(Xt|Xt−1)

]
.

A multi-hypothesis sequential test is a pair δ = (d, T), where T is a stopping time with
respect to the filtration {Fn}n∈Z+

and d = d(XT) is an FT-measurable terminal decision
function with values in the set {0, 1, . . . , N}. Specifically, d = i means that the hypothesis Hi
is accepted upon stopping, i.e., {d = i} = {T < ∞, δ accepts Hi}. Let αij(δ) = Pi(d = j),
i �= j, i, j = 0, 1, . . . , N denote the error probabilities of the test δ, i.e., the probabilities of
accepting the hypothesis Hj when Hi is true.

Introduce the class of tests with probabilities of errors αij(δ) that do not exceed the
prespecified numbers 0 < αij < 1:

C(α) =
{

δ : αij(δ) ≤ αij for i, j = 0, 1, . . . , N, i �= j
}

, (28)

where α = (αij) is a matrix of given error probabilities that are positive numbers less than 1.
Let Ei denote the expectation under the hypothesis Hi (i.e., under the measure Pi). The

goal of a statistician is to find a sequential test that would minimize the expected sample
sizes Ei[T] for all hypotheses Hi, i = 0, 1, . . . , N at least approximately, say asymptotically
for small probabilities of errors, i.e., as αij → 0.

3.1.1. Asymptotic Optimality of Walds’s SPRT

First, assume that N = 1, i.e., that we are dealing with two hypotheses H0 and H1.
In the mid-1940s, Wald [11,12] introduced the sequential probability ratio test (SPRT) for the
sequence of i.i.d. observations X1, X2, . . . , in which case fi,t(Xt|Xt−1) = fi(Xt) in (27) and
the LR Λ1,0(n) = Λn is

Λn =
n

∏
t=1

f1(Xt)

f0(Xt)
.

After n observations have been made, Wald’s SPRT prescribes for each n ≥ 1:

stop and accept H1 if Λn ≥ A1;

stop and accept H0 if Λn ≤ A0;

continue sampling if A0 < Λn < A1,

where 0 < A0 < 1 < A1 are two thresholds.
Let Zt = log[ f1(Xt)/ f0(Xt)] be the LLR for the observation Xt, so the LLR for the

sample Xn is the sum

λ10(n) = λn =
n

∑
t=1

Zt, n = 1, 2, . . .
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Let a0 = − log A0 > 0 and a1 = log A1 > 0. The SPRT δ∗(a0, a1) = (d∗, T∗) can be
represented in the form

T∗(a0, a1) = inf{n ≥ 1 : λn /∈ (−a0, a1)}, d∗(a0, a1) =

{
1 if λT∗ ≥ a1

0 if λT∗ ≤ −a0.
(29)

In the case of two hypotheses, the class of tests (28) is of the form

C(α0, α1) = {δ : α0(δ) ≤ α0 and α1(δ) ≤ α1}.

That is, it includes hypothesis tests with upper bounds α0 and α1 on the probabilities of
errors of Type 1 (false positive) α0(δ) = α0,1(δ) and Type 2 (false negative) α1(δ) = α1,0(δ),
respectively.

Wald’s SPRT has an extraordinary optimality property: it minimizes both expected
sample sizes E0[T] and E1[T] in the class of sequential (and non-sequential) tests C(α0, α1)
with given error probabilities as long as the observations are i.i.d. under both hypotheses.
More specifically, Wald and Wolfowitz [13] proved, using a Bayesian approach, that if
α0 + α1 < 1 and thresholds −a0 and a1 can be selected in such a way that α0(δ∗) = α0 and
α1(δ∗) = α1, then the SPRT δ∗ is strictly optimal in class C(α0, α1). A rigorous proof of this
fundamental result is tedious and involves several delicate technical details. Alternative
proofs can be found in [14–18].

Regardless of the strict optimality of SPRT which holds if and only if thresholds are
selected so that the probabilities of errors of SPRT are exactly equal to the prescribed values
α0, α1, which is usually impossible, suppose that thresholds a0 and a1 are so selected that

a0 ∼ log(1/α1) and a1 ∼ log(1/α0) as αmax → 0. (30)

Then

E1[T∗] ∼ | log α0|
I1

, E0[T∗] ∼ | log α1|
I0

as αmax → 0, (31)

where I1 = E1[Z1] and I0 = E0[−Z1] are Kullback–Leibler (K-L) information numbers so
that the following asymptotic lower bounds for expected sample sizes are attained by SPRT:

inf
δ∈C(α0,α1)

E1[T] ≥ | log α0|
I1

+ o(1), inf
δ∈C(α0,α1)

E0[T] ≥ | log α1|
I0

+ o(1) as αmax → 0

(cf. [6]). Hereafter, αmax = max(α0, α1).
The following inequalities for the error probabilities of the SPRT hold in the most

general non-i.i.d. case

α1(δ∗) ≤ exp{−a0}[1 − α0(δ∗)], α0(δ∗) ≤ exp{−a1}[1 − α1(δ∗)]. (32)

These bounds can be used to guarantee asymptotic relations (30).
In the i.i.d. case, by the SLLN, the LLR λn has the following stability property

n−1λn
P1−a.s.−−−−→
n→∞

I1, n−1(−λn)
P0−a.s.−−−−→
n→∞

I0. (33)

This allows one to conjecture that, if in the general non-i.i.d. case, the LLR is also stable in
the sense that the almost sure convergence conditions (33) are satisfied with some positive
and finite numbers I1 and I0, then the asymptotic formulas (31) still hold. In the general
case, these numbers represent the local K-L information in the sense that often (while not
always) I1 = limn→∞ n−1E1[λn] and I0 = limn→∞ n−1E0[−λn]. Note, however, that in the
general non-i.i.d. case, the SLLN does not even guarantee the finiteness of the expected
sample sizes Ei[T∗] of the SPRT, so some additional conditions are needed, such as a certain
rate of convergence in the strong law, e.g., complete or quick convergence.
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In 1981, Lai [7] was the first to prove the asymptotic optimality of Wald’s SPRT in
a general non-i.i.d. case as αmax = max(α0, α1) → 0. While the motivation was the near
optimality of invariant SPRTs with respect to nuisance parameters, Lai proved a more
general result using the r-quick convergence concept.

Specifically, for 0 < I0 < ∞ and 0 < I1 < ∞, define

L1(ε) = sup
{

n ≥ 1 : |n−1λn − I1| ≥ ε
}

and L0(ε) = sup
{

n ≥ 1 : |n−1λn + I0| ≥ ε
}

(sup{∅} = 0) and suppose that Ei[Li(ε)
r] < ∞ (i = 0, 1) for some r > 0 and every ε > 0,

i.e., that the normalized LLR converges r-quickly to I1 under P1 and to −I0 under P0:

n−1λn
P1−r−quickly−−−−−−−−→

n→∞
I1 and n−1λn

P0−r−quickly−−−−−−−−→
n→∞

−I0. (34)

Strengthening the a.s. convergence (33) into the r-quick version (34), Lai [7] established
the first-order asymptotic optimality of Wald’s SPRT for moments of the stopping time
distribution up to order r: If thresholds a1(α0, α1) and −a0(α0, α1) in the SPRT are so
selected that δ∗(a0, a1) ∈ C(α0, α1) and asymptotics (30) hold, then as αmax → 0,

inf
δ∈C(α0,α1)

E1[Tr] ∼
( | log α0|

I1

)r
∼ E1[Tr∗],

inf
δ∈C(α0,α1)

E0[Tr] ∼
( | log α1|

I0

)r
∼ E0[Tr∗].

(35)

Wald’s ideas have been generalized in many publications to construct sequential
tests of composite hypotheses with nuisance parameters when these hypotheses can be
reduced to simple ones by the principle of invariance. If Mn is the maximal invariant
statistic and pi(Mn) is the density of this statistic under hypothesis Hi, then the invariant
SPRT is defined as in (29) with the LLR λn = log[p1(Mn)/p0(Mn)]. However, even if
the observations X1, X2, . . . are i.i.d. the invariant LLR statistic λn is not a random walk
anymore and Wald’s methods cannot be applied directly. Lai [7] has applied the asymptotic
optimality property (35) of Wald’s SPRT in the non-i.i.d. case to investigate the optimality
properties of several classical invariant SPRTs such as the sequential t-test, the sequential
T2-test, and Savage’s rank-order test.

In the sequel, we will call the case where the a.s. convergence in the non-i.i.d. model
(33) holds with the rate 1/n asymptotically stationary. Assume now that (33) is generalized to

λn/ψ(n)
P1−a.s.−−−−→
n→∞

I1, (−λn)/ψ(n)
P0−a.s.−−−−→
n→∞

I0, (36)

where ψ(t) is a positive increasing function. If ψ(t) is not linear, then this case will be
referred to as asymptotically non-stationary.

A simple example where this generalization is needed is testing H0 versus H1 regarding
the mean of the normal distribution:

Xn = i Sn + ξn, n ∈ Z+, i = 0, 1,

where {ξn}n≥1 is a zero-mean i.i.d. standard Gaussian sequence N (0, 1) and Sn = ∑k
j=0 cjnj

is a polynomial of order k ≥ 1. Then,

λn =
n

∑
t=1

StXt − 1
2

n

∑
t=1

S2
t ,

E1[λn] = −E0[λn] =
1
2 ∑n

t=1 S2
t ∼ c2

kn2k for a large n, so ψ(n) = n2k and I1 = I0 = c2
k/2

in (36). This example is of interest for certain practical applications, in particular, for the
recognition of ballistic objects and satellites.
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Tartakovsky et al. ([6] Section 3.4) generalized Lai’s results for the asymptotically
non-stationary case. Write Ψ(t) for the inverse function of ψ(t).

Theorem 4 (SPRT asymptotic optimality). Let r ≥ 1. Assume that there exist finite positive
numbers I0 and I1 and an increasing non-negative function ψ(t) such that the r-quick convergence
conditions

λn

ψ(n)
P1−r−quickly−−−−−−−→

n→∞
I1,

−λn

ψ(n)
P0−r−quickly−−−−−−−→

n→∞
I0

hold. If thresholds −a0(α0, α1) and a1(α0, α1) are selected so that δ∗(a0, a1) ∈ C(α0, α1) and
a0 ∼ | log α1| and a1 ∼ | log α0|, then, as αmax → 0,

inf
δ∈C(α0,α1)

E1[Tr] ∼
[

Ψ
( | log α0|

I1

)]r
∼ E1[Tr∗],

inf
δ∈C(α0,α1)

E0[Tr] ∼
[

Ψ
( | log α1|

I0

)]r
∼ E0[Tr∗].

(37)

This theorem implies that the SPRT asymptotically minimizes the moments of the
stopping time distribution up to order r.

The proof of this theorem is performed in two steps which are related to our previous
discussion of the rates of convergence in Section 2. The first step is to obtain the asymptotic
lower bounds in class C(α0, α1):

lim inf
αmax→0

infδ∈C(α0,α1)
E1[Tr]

[Ψ(| log α0|/I1)]r
≥ 1, lim inf

αmax→0

infδ∈C(α0,α1)
E0[Tr]

[Ψ(| log α1|/I0)]r
≥ 1.

These bounds hold whenever the following right-tail conditions for the LLR are satisfied:

lim
M→∞

P1

{
1

ψ(M)
max

1≤n≤M
λn ≥ (1 + ε)I1

}
= 1,

lim
M→∞

P0

{
1

ψ(M)
max

1≤n≤M
(−λn) ≥ (1 + ε)I0

}
= 1.

Note that, by Lemma 1, these conditions are satisfied when the SLLN (36) holds so that the
almost sure convergence (36) is sufficient. However, as we already mentioned, the SLLN
for the LLR is not sufficient to guarantee even the finiteness of the SPRT stopping time.

The second step is to show that the lower bounds are attained by the SPRT. To do so, it
suffices to impose the following additional left-tail conditions:

∞

∑
n=1

nr−1P1{λn ≤ (I1 − ε)ψ(n)} < ∞,
∞

∑
n=1

nr−1P0{−λn ≤ (I0 − ε)ψ(n)} < ∞

for all 0 < ε < min(I0, I1). Since both right-tail and left-tail conditions hold if the LLR
converges r-completely to Ii,

∞

∑
n=1

nr−1P1

{∣∣∣∣ λn

ψ(n)
− I1

∣∣∣∣ ≥ ε

}
< ∞,

∞

∑
n=1

nr−1P0

{∣∣∣∣ λn

ψ(n)
+ I0

∣∣∣∣ ≥ ε

}
< ∞,

and since r-quick convergence implies r-complete convergence (see (12)), we conclude that
the assertions (37) hold.

Remark 3. In the i.i.d. case, Wald’s approach allows us to establish asymptotic equalities (37)
with I1 = E1[λ1] and I0 = −E0[λ1] being K-L information numbers under the only condition of
finiteness Ii. However, Wald’s approach breaks down in the non-i.i.d. case. Certain generalizations in
the case of independent but non-identically and substantially non-stationary observations, extending
Wald’s ideas, were considered in [19–21]. Theorem 4 covers all these non-stationary models.
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Fellouris and Tartakovsky [22] extended previous results on the asymptotic optimality
of the SPRT to the case of the multistream hypothesis testing problem when the observations
are sequentially acquired in multiple data streams (or channels or sources). The problem is
to test the null hypothesis H0 that none of the N streams are affected against the composite
hypothesis HB that a subset B ⊂ {1, . . . , N} is affected. Write PB and EB for the distribution
of observations and expectation under hypothesis HB. Let P denote a class of subsets of
{1, . . . , N} that incorporates prior information which is available regarding the subset of
affected streams, e.g., not more than K < N streams can be affected. (In many practical
problems, K is substantially smaller than the total number of streams N, which can be
very large.)

Two sequential tests were studied in [22]—the generalized sequential likelihood ratio
test and the mixture sequential likelihood ratio test. It has been shown that both tests are
first-order asymptotically optimal, minimizing the moments of the sample size E0[Tr] and
EB[Tr] for all B ∈ P up to order r as max(α0, α1) → 0 in the class of tests

CP (α0, α1) =

{
δ : P0(d = 1) ≤ α0 and max

B∈P
PB(d = 0) ≤ α1

}
, 0 < αi < 1.

The proof is essentially based on the concept of r-complete convergence of LLR with
the rate 1/n. See also Chapter 1 in [5].

3.1.2. Asymptotic Optimality of the Multi-hypothesis SPRT

We now return to the multi-hypothesis model with N > 1 that we started to discuss
at the beginning of this section (see (27) and (28)). The problem of the sequential testing
of many hypotheses is substantially more difficult than that of testing two hypotheses.
For multiple-decision testing problems, it is usually very difficult, if even possible, to
obtain optimal solutions. Finding an optimal non-Bayesian test in the class of tests (28)
that minimizes expected sample sizes Ei[T] for all hypotheses Hi, i = 0, 1, . . . , N is not
manageable even in the i.i.d. case. For this reason, a substantial part of the development of
sequential multi-hypothesis testing in the 20th century has been directed towards the study
of certain combinations of one-sided sequential probability ratio tests when observations
are i.i.d. (see, e.g., [23–28]).

We will focus on the following first-order asymptotic criterion: Find a multi-hypothesis
test δ∗(α) = (d∗(α), T∗(α)) such that, for some r ≥ 1,

lim
αmax→0

infδ∈C(α) Ei[Tr]

Ei[T∗(α)r]
= 1 for all i = 0, 1, . . . , N, (38)

where αmax = max0≤i,j≤N,i �=j αij.
In 1998, Tartakovsky [4] was the first who considered the sequential multiple hy-

pothesis testing problems for general non-i.i.d. stochastic models following Lai’s idea of
exploiting the r-quick convergence in the SLLN for two hypotheses. The results were
obtained for both discrete and continuous-time scenarios and for the asymptotically non-
stationary case where the LLR processes between hypotheses converge to finite numbers
with the rate 1/ψ(t). Two multi-hypothesis tests were investigated: (1) the rejecting test,
which rejects the hypotheses one by one, and the last hypothesis, which is not rejected, is
accepted; and (2) the matrix accepting test that accepts a hypothesis for which all component
SPRTs that involve this hypothesis vote for accepting it.

We now proceed with introducing this accepting test which we will refer to as the
matrix SPRT (MSPRT). In the present article, we do not consider the continuous-time
scenarios. Those who are interested in continuous time are referred to [4,6,19,21,29].
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Write N = {0, 1, . . . , N}. For a threshold matrix (Aij)i,j∈N , with Aij > 0 and the Aii

being immaterial (say 0), define the matrix SPRT δN∗ = (TN∗ , dN∗ ), built on (N + 1)N/2
one-sided SPRTs between the hypotheses Hi and Hj, as follows:

Stop at the first n ≥ 1 such that, for some i, Λij(n) ≥ Aji for all j �= i, (39)

and accept the unique Hi that satisfies these inequalities. Note that, for N = 1, the MSPRT
coincides with Wald’s SPRT.

In the following, we omit the superscript N in δN∗ = (TN∗ , dN∗ ) for brevity. Obviously,
with aji = log Aji, the MSPRT in (39) can be written as

T∗ = inf
{

n ≥ 1 : λij(n) ≥ aji for all j �= i and some i
}

, (40)

d∗ = i for which (40) holds. (41)

Introducing the Markov accepting times for the hypotheses Hi as

Ti = inf

⎧⎪⎨⎪⎩n ≥ 1 : λi0(n) ≥ max
1≤j≤N

j �=i

[λj0(n) + aji]

⎫⎪⎬⎪⎭, i = 0, 1, . . . , N, (42)

the test in (40), (41) can be also written in the following form:

T∗ = min
0≤j≤N

Tj, d∗ = i if T∗ = Ti. (43)

Thus, in the MSPRT, each component SPRT is extended until, for some i ∈ N , all N SPRTs
involving Hi accept Hi.

Using Wald’s likelihood ratio identity, it is easily shown that αij(δ∗) ≤ exp(−aij) for
i, j ∈ N , i �= j, so selecting aji = | log αji| implies that δ∗ ∈ C(α). These inequalities are
similar to Wald’s ones in the binary hypothesis case and are very imprecise. In his ingenious
paper, Lorden [27] showed that, with a very sophisticated design that includes the accurate
estimation of thresholds accounting for overshoots, the MSPRT is nearly optimal in the
third-order sense, i.e., it minimizes the expected sample sizes for all hypotheses up to an
additive disappearing term: infδ∈C(α) Ei[T] = Ei[T∗] + o(1) as αmax → 0. This result only
holds for i.i.d. models with the finite second moment Ei[λij(1)2] < ∞. In the non-i.i.d. case
(and even in the i.i.d. case for higher moments r > 1), there is no way to obtain such a
result, so we focus on the first-order optimality (38).

The following theorem establishes asymptotic operating characteristics and the opti-
mality of MSPRT under the r-quick convergence of λij(n)/ψ(n) to finite K-L-type numbers
Iij, where ψ(n) is a positive increasing function, ψ(∞) = ∞.

Theorem 5 (MSPRT asymptotic optimality [4]). Let r ≥ 1. Assume that there exist finite
positive numbers Iij, i, j = 0, 1, . . . , N, i �= j and an increasing non-negative function ψ(t) such
that, for some r > 0,

λij(n)
ψ(n)

Pi−r−quickly−−−−−−−→
n→∞

Iij for all i, j = 0, 1, . . . , N, i �= j. (44)

Then, the following assertions are true.

(i) For i = 0, 1, . . . , N,

Ei[Tr∗] ∼

⎡⎢⎣Ψ

⎛⎜⎝max
0≤j≤N

j �=i

aji

Iij

⎞⎟⎠
⎤⎥⎦

r

as min
j,i

aji → ∞. (45)
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(ii) If the thresholds are so selected that αij(δ
∗) ≤ αij and aji ∼ | log αji|, particularly as

aji = | log αji|, then for all i = 0, 1, . . . , N

inf
δ∈C(α)

Ei[Tr] ∼

⎡⎢⎣Ψ

⎛⎜⎝max
0≤j≤N

j �=i

| log αji|
Iij

⎞⎟⎠
⎤⎥⎦

r

∼ Ei[Tr∗] as αmax → 0. (46)

Assertion (ii) implies that the MSPRT asymptotically minimizes the moments of the
stopping time distribution up to order r for all hypotheses H0,H1, . . . ,HN in the class of
tests C(α).

Remark 4. Both assertions of Theorem 5 are correct under the r-complete convergence

λij(n)
ψ(n)

Pi−r−complete−−−−−−−−→
n→∞

Iij for all i, j = 0, 1, . . . , N, i �= j,

i.e., when
∞

∑
n=1

nr−1Pi

{∣∣∣∣ 1
ψ(n)

λij(n)− Iij

∣∣∣∣ > ε

}
< ∞ for all ε > 0.

While this statement has not been proven anywhere to date, it can be easily proven using the methods
developed for multistream hypothesis testing and changepoint detection ([5] Ch 1, Ch 6).

Remark 5. As shown in the example given in Section 3.4.3 of [6], the r-quick convergence condi-
tions in Theorem 5 (or corresponding r-complete convergence conditions for LLR processes) cannot
be generally relaxed into the almost sure convergence

λij(n)
ψ(n)

Pi−a.s.−−−−→
n→∞

Iij for all i, j = 0, 1, . . . , N, i �= j. (47)

However, the following weak asymptotic optimality result holds for the MSPRT under the a.s.
convergence: if the a.s. convergence (47) holds with the power function ψ(t) = tk, k > 0, then, for
every 0 < ε < 1,

inf
δ∈C(α)

Pi(T > ε T∗) → 1 as αmax → 0 for all i = 0, 1, . . . , N (48)

whenever thresholds aji are selected as in Theorem 5 (ii).

Note that several interesting statistical and practical applications of these results to
invariant sequential testing and multisample slippage scenarios are discussed in Sections
4.5 and 4.6 of Tartakovsky et al. [6] (see Mosteller [30] and Ferguson [16] for terminology
regarding multisample slippage problems).

3.2. Sequential Changepoint Detection

Sequential (or quickest) changepoint detection is an important subfield of sequential
analysis. The observations are made one at a time and as long as their behavior suggests that
the process of interest is in control (i.e., in a normal state), the process is allowed to continue.
If the state is believed to have lost control, the goal is to detect the change in distribution
as rapidly as possible. Quickest change detection problems have an enormous number of
important applications, e.g., object detection in noise and clutter, industrial quality control,
environment surveillance, failure detection, navigation, seismology, computer network
security, genomics, and epidemiology (see, e.g., [31–40]). Many challenging application
areas are discussed in the books by Tartakovsky, Nikiforov, and Basseville ([6] Ch 11) and
Tartakovsky ([5] Ch 8).
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3.2.1. Changepoint Models

The probability distribution of the observations X = {Xn}n∈N is subject to a change
at an unknown point in time ν ∈ {0, 1, 2, . . . } = Z+ so that X1, . . . , Xν are generated
by one stochastic model and Xν+1, Xν+2, . . . are generated by another model. A sequen-
tial detection rule is a stopping time T for an observed sequence {Xn}n≥1, i.e., T is an
integer-valued random variable such that the event {T = n} belongs to the sigma-algebra
Fn = σ(X1, . . . , Xn) generated by observations X1, . . . , Xn.

Let P∞ denote the probability measure corresponding to the sequence of observations
{Xn}n≥1 when there is never a change (ν = ∞) and, for k = 0, 1, 2, . . . , let Pk denote
the measure corresponding to the sequence {Xn}n≥1 when ν = k < ∞. We denote the
hypothesis that the change never occurs by H∞ : ν = ∞ and we denote the hypothesis that
the change occurs at time 0 ≤ k < ∞ by Hk : ν = k.

First consider a general non-i.i.d. model assuming that the observations may have a
very general stochastic structure. Specifically, if we let, as before, Xn = (X1, . . . , Xn) denote
the sample of size n, then when ν = ∞ (there is no change), the conditional density of
Xn given Xn−1 is gn(Xn|Xn−1) for all n ≥ 1 and when ν = k < ∞, then the conditional
density is gn(Xn|Xn−1) for n ≤ k and fn(Xn|Xn−1) for n > k. Thus, for the general non-
i.i.d. changepoint model, the joint density p(Xn|Hk) under hypothesis Hk can be written
as follows

p(Xn|Hk) =

{
∏n

t=1 gtXt|Xt−1) for ν = k ≥ n,

∏k
t=1 gt(Xt|Xt−1)× ∏n

t=k+1 ft(Xt|Xt−1) for ν = k < n,
(49)

where gn(Xn|Xn−1) is the pre-change conditional density and fn(Xn|Xn−1) is the post-
change conditional density which may depend on ν, fn(Xn|Xn−1) = f (ν)n (Xn|Xn−1), but
we will omit the superscript ν for brevity.

The classical changepoint detection problem deals with the i.i.d. case where there is
a sequence of observations X1, X2, . . . that are identically distributed with a probability
density function (pdf) g(x) for n ≤ ν and with a pdf f (x) for n > ν. That is, in the i.i.d.
case, the joint density of the vector Xn = (X1, . . . , Xn) under hypothesis Hk has the form

p(Xn|Hk) =

{
∏n

t=1 g(Xt) for ν = k ≥ n,

∏k
t=1 g(Xt)× ∏n

t=k+1 f (Xt) for ν = k < n.
(50)

Note that, as discussed in [5,6], in applications, there are two different kinds of
changes—additive and non-additive. Additive changes lead to a change in the mean value
of the sequence of observations. Non-additive changes are typically produced by a change
in variance or covariance, i.e., these are spectral changes.

We now proceed by discussing the models for the change point ν. The change point ν
may be considered either as an unknown deterministic number or as a random variable. If
the change point is treated as a random variable, then the model has to be supplied with the
prior distribution of the change point. There may be several changepoint mechanisms, and,
as a result, a random variable ν may be dependent on or independent of the observations.
In particular, Moustakides [41] assumed that ν can be a {Fn}-adapted stopping time. In
this article, we will not discuss Moustakides’s concept by allowing the prior distribution
to depend on some additional information available to “Nature” (see [5] for a detailed
discussion); rather, when considering a Bayesian approach, we will assume that the prior
distribution of the unknown change point is independent of the observations.

3.2.2. Popular Changepoint Detection Procedures

Before formulating the criteria of optimality in the next subsection, we begin by
defining the three most popular and common change detection procedures, which are
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either optimal or nearly optimal in different settings. To define these procedures, we need
to introduce the partial likelihood ratio and the corresponding log-likelihood ratio

LRt =
ft(Xt|Xt−1)

gt(Xt|Xt−1)
, Zt = log

ft(Xt|Xt−1)

gt(Xt|Xt−1)
, t = 1, 2, . . .

It is worth iterating that, for general non-i.i.d. models, the post-change density often
depends on the point of change, ft(Xt|Xt−1) = f (ν)t (Xt|Xt−1), so in general LRt = LR

(ν)
t

and Zt = Z(ν)
t also depend on the change point ν. However, this is not the case for the i.i.d.

model (50).

The CUSUM Procedure

We now introduce the Cumulative Sum (CUSUM) algorithm, which was first proposed
by Page [42] for the i.i.d. model (50). Recall that we consider the changepoint detection
problem as a problem of testing two hypotheses: Hν that the change occurs at a fixed-point
0 ≤ ν < ∞ against the alternative H∞ that the change never occurs. The LR between these
hypotheses is Λν

n = ∏n
t=ν+1 LRt for ν < n and 1 for ν ≥ n. Since the hypothesis Hν is

composite, we may apply the generalized likelihood ratio (GLR) approach maximizing the
LR Λν

n over ν to obtain the GLR statistic

Vn = max
0≤ν<n

n

∏
t=ν+1

LRt, n ≥ 1.

It is easy to verify that this statistic follows the recursion

Vn = max{1, Vn−1}LRn, n ≥ 1, V0 = 1 (51)

as long as the partial LR LRn does not depend on the change point, i.e., the post-change
conditional density fn(Xn|Xn−1) does not depend on ν. This is always the case for i.i.d.
models (50) when fn(Xn|Xn−1) = f (Xn). However, as we already mentioned, for non-
i.i.d. models, fn(Xn|Xn−1) = f (ν)n (Xn|Xn−1) often depends on the change point ν, so
LRn = LR

(ν)
n , in which case the recursion (51) does not hold.

The logarithmic version of Vn, Wn = log Vn, is related to Page’s CUSUM statistic Gn
introduced by Page [42] in the i.i.d. case as Gn = max(0, Wn). The statistic Gn can also
be obtained via the GLR approach by maximizing the LLR λν

n = log Λν
n over 0 ≤ ν < ∞.

However, since the hypotheses H∞ and Hν are indistinguishable for ν ≥ n, the maximization
over ν ≥ n does not make very much sense. Note also that, in contrast to Page’s CUSUM
statistic Gn, the statistic Wn may take values smaller than 0, so the CUSUM procedure

TCS = inf{n ≥ 1 : Wn ≥ a} (52)

makes sense even for negative values of the threshold a. Thus, it is more general than
Page’s CUSUM. Note the recursions

Wn = W+
n−1 + Zn, n ≥ 1, W0 = 0 (53)

and
Gn = (Gn−1 + Zn)

+, n ≥ 1, G0 = 0

in cases where Zn = log[ fn(Xn|Xn−1)/gn(Xn|Xn−1)] does not depend on ν.
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Shiryaev’s Procedure

In the i.i.d. case and for the zero-modified geometric prior distribution of the change
point, Shiryaev [43] introduced the change detection procedure that prescribes the thresh-
olding of the posterior probability P(ν < n|Xn). Introducing the statistic

Sπ
n =

P(ν < n|Xn)

1 − P(ν < n|Xn)

one can write the stopping time of the Shiryaev procedure in the general non-i.i.d. case and
for an arbitrary prior π as

TSH = inf{n ≥ 1 : Sπ
n ≥ A}, (54)

where A (A > 0) is a threshold controlling for the false alarm risk. The statistic Sπ
n can be

written as

Sπ
n =

1
P(ν ≥ n)

n−1

∑
k=0

πkΛk
n

=
1

P(ν ≥ n)

n−1

∑
k=0

πk

n

∏
t=k+1

LRt, n ≥ 1, Sπ
0 = 0,

(55)

where the product ∏
j
t=i LRt = 1 for j < i.

Often (following Shiryaev’s assumptions), it is supposed that the change point ν is
distributed according to the geometric distribution Geometric(�)

P(ν = k) = �(1 − �)k for k = 0, 1, 2, . . . , (56)

where � ∈ (0, 1).
If LRn does not depend on the change point ν and the prior distribution is geometric (56),

then the statistic S̃
�
n = Sπ

n /� can be rewritten in the recursive form

S̃
�
n =
(

1 + S̃
�
n−1

) LRn

1 − �
, n ≥ 1, S̃

�
0 = 0. (57)

However, as mentioned above, this may not be the case for non-i.i.d. models, since LRn
often depends on ν.

Shiryaev–Roberts Procedure

The generalized Shiryaev–Roberts (SR) change detection procedure is based on the
thresholding of the generalized SR statistic

Rr0
n = r0Λ0

n +
n−1

∑
k=0

Λk
n = r0

n

∏
t=1

LRt +
n−1

∑
k=0

n

∏
t=k+1

LRt, n ≥ 1, (58)

with a non-negative head-start R0 = r0, r0 ≥ 0, i.e., the stopping time of the SR procedure
is given by

Tr0
SR = inf

{
n ≥ 1 : Rr0

n ≥ A
}

, A > 0. (59)

This procedure is usually referred to as the SR-r detection procedure in contrast to the
standard SR procedure TSR ≡ Tr0

SR, r0 = 0 that starts with a zero initial condition r0 = 0. In
the i.i.d. case (50), this modification of the SR procedure was introduced and studied in
detail in [44,45].

If LRn does not depend on the change point ν, then the SR-r detection statistic satisfies
the recursion

Rr0
n = (1 + Rr0

n−1)LRn, n ≥ 1, Rr0
0 = r0.
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Note that, as the parameter of the geometric prior distribution � → 0, the Shiryaev
statistic S̃

�
n converges to the SR statistic Rr0=0

n .

3.2.3. Optimality Criteria

The goal of online change detection is to detect the change with the smallest delay
controlling for a false alarm rate at a given level. Tartakovsky et al. [6] suggested several
changepoint problem settings, including Bayesian, minimax, and uniform (pointwise)
approaches.

Let Ek denote the expectation with respect to measure Pk when the change occurs at
ν = k < ∞ and E∞ with respect to P∞ when there is no change.

In 1954, Page [42] suggested measuring the risk due to a false alarm by the mean
time to false alarm E∞[T] and the risk associated with a true change detection by the mean
time to detection E0[T] when the change occurs at the very beginning. He called these
performance characteristics the average run length (ARL). Page also introduced the now most
famous change detection procedure—the CUSUM procedure (see (52) with Wn replaced by
Gn)—and analyzed it using these operating characteristics in the i.i.d. case.

While the false alarm rate can be reasonably measure by the ARL to false alarm

ARL2FA(T) = E∞[T],

as Figure 1 suggests, the risk due to a true change detection can be reasonably measured by
the conditional expected delay to detection

CEDDν(T) = Eν[T − ν|T > ν], ν = 0, 1, 2, . . .

for any possible change point ν ∈ Z+ = {0, 1, 2, . . . } but not necessarily by the ARL to
detection E0[T] ≡ CEDD0(T). A good detection procedure has to guarantee small values of
the expected detection delay CEDDν(T) for all change points ν ∈ Z+ when ARL2FA(T) is
set at a certain level. However, if the false alarm risk is measured in terms of the ARL to
false alarm, i.e., it is required that ARL2FA(T) ≥ γ for some γ ≥ 1, then a procedure that
minimizes the conditional expected delay to detection CEDDν(T) uniformly over all ν does
not exist. For this reason, we must resort to different optimality criteria, e.g., to Bayesian
and minimax criteria.

Figure 1. Illustration of a single-run sequential changepoint detection. Two possibilities in the
detection process: false alarm (left) and correct detection (right).

Minimax Changepoint Optimization Criteria

There are two popular minimax criteria. The first one was introduced by Lorden [46]:

inf
T

sup
ν∈Z+

ess supEν[T − ν | T > ν, Fν] subject to ARL2FA(T) ≥ γ.
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This requires minimizing the conditional expected delay to detection Eν[T − ν | T > ν, Fν]
in the worst-case scenario with respect to both the change point ν and the trajectory
(X1, . . . , Xν) of the observed process in the class of detection procedures

CARL(γ) = {T : ARL2FA(T) ≥ γ}, γ ≥ 1,

for which the ARL to false alarm exceeds the prespecified value γ ∈ [1, ∞). Let ESADD(T) =
supν≥0 ess supEν[T − ν | T > ν, Fν] denote Lorden’s speed detection measure. Under
Lorden’s minimax approach, the goal is to find a stopping time Topt ∈ CARL(γ) such that

ESADD(Topt) = inf
T∈CARL(γ)

ESADD(T) for any γ ≥ 1.

In the classical i.i.d. scenario (50), Lorden [46] proved that the CUSUM detection
procedure (52) is asymptotically first-order minimax optimal as γ → ∞, i.e.,

inf
T∈CARL(γ)

ESADD(T) = ESADD(TCS)(1 + o(1)), γ → ∞.

Later on, Moustakides [47], using optimal stopping theory, in his ingenious paper, estab-
lished the exact optimality of CUSUM for any ARL to the false alarm γ ≥ 1.

Another popular, less pessimistic minimax criterion is from Pollak [48]:

inf
T

sup
ν∈Z+

CEDDν(T) subject to ARL2FA(T) ≥ γ,

which requires minimizing the conditional expected delay to detection CEDDν(T) = Eν[T −
ν | T > ν] in the worst-case scenario with respect to the change point ν in class CARL(γ).
Under Pollak’s minimax approach, the goal is to find a stopping time Topt ∈ CARL(γ)
such that

sup
ν∈Z+

CEDDν(Topt) = inf
T∈CARL(γ)

sup
ν∈Z+

CEDDν(T) for any γ ≥ 1.

For the i.i.d. model (50), Pollak [48] showed that the modified SR detection procedure
that starts from the quasi-stationary distribution of the SR statistic (i.e., the head-start r0 in
the SR-r procedure is a specific random variable) is third-order asymptotically optimal as
γ → ∞, i.e., the best one can attain up to an additive term o(1):

inf
T∈CARL(γ)

sup
ν∈Z+

CEDDν(T) = sup
ν∈Z+

CEDDν(T
r0
SR) + o(1), γ → ∞,

where o(1) → 0 as γ → ∞. Later, Tartakovsky et al. [49] proved that this is also true for
the SR-r procedure (59) that starts from the fixed but specially designed point r0 = r0(γ)
that depends on γ, which was first introduced and thoroughly studied by Moustakides
et al. [44]. See also Polunchenko and Tartakovsky [50] on the exact optimality of the
SR-r procedure.

Bayesian Changepoint Optimization Criterion

In Bayesian problems, the point of change ν is treated as random with a prior distribu-
tion πk = P(ν = k), k ∈ Z+. Define the probability measure on the Borel σ-algebra B in
R∞ ×Z+ as

Pπ(A×K) = ∑
k∈K

πkPk(A), A ∈ B(R∞), K ∈ Z+.

Under measure Pπ , the change point ν has a distribution π = {πk} and the model for the
observations is given in (49).
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From the Bayesian point of view, it is reasonable to measure the false alarm risk with
the weighted probability of false alarm (PFA) defined as

PFAπ(T) := Pπ(T ≤ ν) =
∞

∑
k=0

πkPk(T ≤ k) =
∞

∑
k=0

πkP∞(T ≤ k). (60)

The last equality follows from the fact that Pk(T ≤ k) = P∞(T ≤ k) because the event
{T ≤ k} depends on the first k observations which under measure Pk correspond to the
no-change hypothesis H∞. Thus, for α ∈ (0, 1), introduce the class of changepoint detection
procedures

Cπ(α) = {T : PFAπ(T) ≤ α} (61)

for which the weighted PFA does not exceed a prescribed level α.
Let Eπ denote the expectation with respect to the measure Pπ .
Shiryaev [18,43] introduced the Bayesian optimality criterion

inf
T∈Cπ(α)

Eπ [(T − ν)+],

which is equivalent to minimizing the conditional expected detection delay EDDπ(T) =
Eπ [T − ν|T > ν]

inf
T

EDDπ(T) subject to PFAπ(T) ≤ α.

Under the Bayesian approach, the goal is to find a stopping time Topt ∈ Cπ(α) such that

EDDπ(Topt) = inf
T∈Cπ(α)

EDDπ(T) for any α ∈ (0, 1). (62)

For the i.i.d. model (50) and for the geometric prior distribution Geometric(�) of the
changepoint ν (see (56)), this problem was solved by Shiryaev [18,43]. Shiryaev [18,43,51]
proved that the detection procedure given by the stopping time TSH(A) defined in (54)
is strictly optimal in class Cπ(α) if A = Aα in (54) can be selected in such a way that
PFAπ(TSH(Aα)) = α, that is

inf
T∈Cπ(α)

EDDπ(T) = EDDπ(TSH(Aα)) for any α ∈ (0, 1).

Uniform Pointwise Optimality Criterion

In many applications, the most reasonable optimality criterion is the pointwise uniform
criterion of minimizing the conditional expected detection delay CEDDν(T) = Eν[T −
ν|T ≥ ν] for all ν ∈ Z+ when the false alarm risk is fixed at a certain level. However,
as we already mentioned, if it is required that ARL2FA(T) ≥ γ for some γ ≥ 1, then
a procedure that minimizes CEDDν(T) for all ν does not exist. More importantly, as
discussed in ([5] Section 2.3), the requirement of having large values of the ARL2FA(T)
generally does not guarantee small values of the maximal local probability of false alarm
MLPFA(T) = sup�≥0 P∞(T ≤ �+ m|T > �) in a time window of a length m ≥ 1, while the
opposite is always true (see Lemmas 2.1–2.2 in [5]). Hence, the constraint MLPFA(T) ≤ β
is more stringent than ARL2FA(T) ≥ γ.

Another reason for considering the MLPFA constraint instead of the ARL to false
alarm constraint is that the latter one makes sense if and only if the P∞-distribution of
stopping times are geometric or at least close to geometric, which is often the case for
many popular detection procedures such as CUSUM and SR in the i.i.d. case. However, for
general non-i.i.d. models, this is not necessarily true (see [5,52] for a detailed discussion).
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For these reasons, introduce the most stringent class of change detection procedures
for which the MLPFA(T) is upper-bounded by the prespecified level β ∈ (0, 1):

CPFA(m, β) =

{
T : sup

�≥0
P∞(T ≤ �+ m|T > �) ≤ β

}
. (63)

The goal is to find a stopping time Topt ∈ CPFA(m, β) such that

CEDDν(Topt) = inf
T∈CPFA(m,β)

CEDDν(T) for all ν ∈ Z+ and any 0 < β < 1. (64)

3.2.4. Asymptotic Optimality for General Non-i.i.d. Models via r-Quick and
r-Complete Convergence
Complete Convergence and General Bayesian Changepoint Detection Theory

First consider the Bayesian problem assuming that the change point ν is a random
variable independent of the observations with a prior distribution π = {πk}. Unfortunately,
in the general non-i.i.d. case and for an arbitrary prior π, the Bayesian optimization
problem (62) is intractable for arbitrary values of PFA α ∈ (0, 1). For this reason, we will
consider the first-order asymptotic problem assuming that the given PFA α approaches
zero. To be specific, the goal is to design such a detection procedure T∗ that asymptotically
minimizes the expected detection delay EDDπ(T) to first order as α → 0:

inf
T∈Cπ(α)

EDDπ(T) = EDDπ(T∗)(1 + o(1)) as α → 0, (65)

where o(1) → 0 as α → 0. It turns out that, in the asymptotic setting, it is also possible
to find a procedure that minimizes the conditional expected detection delay EDDk(T) =
Ek[T − k | T > k] uniformly for all possible values of the change point ν = k ∈ Z+, i.e.,

lim
α→0

infT∈Cπ(α) EDDk(T)
EDDk(T∗) = 1 for all k ∈ Z+. (66)

Furthermore, asymptotic optimality results can also be established for higher moments of
the detection delay of the order of r > 1

Ek[(T − k)r | T > k] and Eπ [(T − ν)r | T > ν].

Since the Shiryaev procedure TSH(A), which was defined in (54), (55), is optimal for
the i.i.d. model and Geometric(�) prior, it is reasonable to assume that it is asymptotically
optimal for the more general prior and the non-i.i.d model. However, to study asymptotic
optimality, we need certain constraints imposed on the prior distribution and on the
asymptotic behavior of the decision statistics as the sample size increases, i.e., on the
general stochastic model (49).

Assume that the prior distribution {πk} is fully supported, i.e., πk > 0 for all k ∈ Z+

and π∞ = 0 and that the following condition holds:

lim
n→∞

1
n

∣∣∣∣∣log
∞

∑
k=n+1

πk

∣∣∣∣∣ = μ for some 0 ≤ μ < ∞. (67)

Obviously, if μ > 0, then the prior π has an exponential right tail (e.g., the geometric
distribution Geometric(�), in which case μ = | log(1 − �)|). If μ = 0, then it has a heavier
tail than an exponential tail. In this case, we will refer to it as a heavy-tailed distribution.

Define the LLR of the hypotheses Hk and H∞

λk
n = log

dPn
k

dPn
∞

=
n

∑
t=k+1

ft(Xt|Xt)

gt(Xt|Xt)
, n > k
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(λk
n = 0 for n ≤ k). To obtain asymptotic optimality results, the general non-i.i.d. model

for observations is restricted to the case that the normalized LLR n−1λk
k+n obeys the SLLN

as n → ∞ with a finite and positive number I under the probability measure Pk and its
r-complete strengthened version

∞

∑
n=1

nr−1 sup
k∈Z+

Pk

{
|n−1λk

k+n − I| > ε
}
< ∞ for every ε > 0. (68)

It follows from Lemma 7.2.1 in [6] that, for any A > 0,

PFAπ(TSH(A)) ≤ (1 + A)−1,

so that TSH(Aα) ∈ Cπ(α) if A = Aα = (1 − α)/α.
The following theorem that can be deduced from Theorem 3.7 in [5] shows that the

Shiryaev detection procedure is asymptotically optimal if the normalized LLR n−1λk
k+n

converges r-completely to a positive and finite number I and the prior distribution satisfies
condition (67).

Theorem 6. Suppose that the prior distribution π = {πk}k∈Z+
of the change point satisfies

condition (67) with some 0 ≤ μ < ∞. Assume that there exists some number 0 < I < ∞ such
that the LLR process n−1λk

k+n converges to I uniformly r-completely as n → ∞ under Pk, i.e.,
condition (68) holds for some r ≥ 1. If threshold A = Aα in the Shiryaev procedure is so selected
that PFAπ(TSH(Aα)) ≤ α and log Aα ∼ | log α| as α → 0, e.g., as A = (1 − α)/α, then as
α → 0

inf
T∈Cπ(α)

Ek[(T − k)r | T > k] ∼
( | log α|

I + μ

)r
∼ Ek[(TSH − k)r |TSH > k] for all k ∈ Z+

and

inf
T∈Cπ(α)

Eπ [(T − ν)r | T > ν] ∼
( | log α|

I + μ

)r
∼ Eπ [(TSH − ν)r |TSH > ν].

Therefore, the Shiryaev procedure TSH(Aα) is first-order asymptotically optimal as α → 0 in class
Cπ(α), minimizing the moments of the detection delay up to order r whenever the r-complete
version of the SLLN (68) holds for the LLR process.

For r = 1, the assertions of this theorem imply the asymptotic optimality of the
Shiryaev procedure for the expected detection delays (65) and (66) as well as asymptotic
approximations for the expected detection delays.

Remark 6. The results of Theorem 6 can be generalized to the asymptotically non-stationary case
where λk

k+n/ψ(n) converges to I uniformly r-completely as n → ∞ under Pk with a non-linear
function ψ(n) similarly to the hypothesis testing problem discussed in Section 3.1. See also the
recent paper [53] for the minimax change detection problem with independent but substantially
non-stationary post-change observations.

It is also interesting to see how two other most popular changepoint detection
procedures—the SR and CUSUM—perform in the Bayesian context.

Consider the SR procedure defined by (58), (59). By Lemma 3.4 (p. 100) in [5],

PFAπ(Tr0
SR(A)) ≤ r0 ∑∞

k=1 πk + ∑∞
k=1 kπk

A
for every A > 0,
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and therefore, setting A = Aα = α−1(r0 + ∑∞
k=1 kπk) implies that Tr0

SR(Aα) ∈ Cπ(α).
If threshold A = Aα in the SR procedure is so selected that PFAπ(T

r0
SR(Aα)) ≤ α and

log Aα ∼ | log α| as α → 0, e.g., as Aα = α−1(r0 + ∑∞
k=1 kπk), then as α → 0

Ek
[
(Tr0

SR − k)r |Tr0
SR > k

] ∼ ( | log α|
I

)r
for all k ∈ Z+ (69)

and

Eπ
[
(Tr0

SR − ν)r |Tr0
SR > ν

] ∼ ( | log α|
I

)r
(70)

whenever the uniform r-complete convergence condition (68) holds. Therefore, the SR
procedure Tr0

SR(Aα) is first-order asymptotically optimal as α → 0 in class Cπ(α), mini-
mizing the moments of the detection delay up to order r, when the prior distribution π is
heavy-tailed (i.e., when μ = 0) and the r-complete version of the SLLN holds. In the case
where μ > 0 (i.e., the prior distribution has an exponential tail), the SR procedure is not
optimal. This can be expected since it uses the improper uniform prior in the detection
statistic.

The same asymptotic results (69), (70) are true for the CUSUM procedure TCS(a)
defined in (52) if threshold a = aα is so selected that PFAπ(TCS(aα)) ≤ α and aα ∼ | log α|
as α → 0 and the uniform r-complete convergence condition (68) holds.

Hence, the r-complete convergence of the LLR process is the sufficient condition for
the uniform asymptotic optimality of several popular change detection procedures in
class Cπ(α).

Complete Convergence and General Non-Bayesian Changepoint Detection Theory

Consider the non-Bayesian problem where the change point ν is an unknown deter-
ministic number. We focus on the most interesting for a variety of applications uniform
optimality criterion (64) that requires minimizing the conditional expected delay to detec-
tion CEDDν(T) = Eν[T − ν|T > ν] for all values of the change point ν ∈ Z+ in the class
of change detection procedures CPFA(m, β) defined in (63). Recall that this class includes
change detection procedures with the maximal local probability of false alarm in the time
window m,

MLPFA(T) = sup
�≥0

P∞(T ≤ �+ m|T > �),

which does not exceed the prescribed value β ∈ (0, 1). However, the exact solution to this
challenging problem is unknown even in the i.i.d. case.

Instead consider the following asymptotic problem assuming that the given MLPFA β
goes to zero: find a change detection procedure T� which asymptotically minimizes the
expected detection delay Eν[T − ν|T > ν] to the first order as β → 0. That is, the goal is to
design such a detection procedure T� that

inf
T∈CPFA(m,β)

Eν[T − ν|T > ν] = Eν[T� − ν|T� > ν](1 + o(1)) for all ν ∈ Z+ as β → 0.

More generally, we may focus on the asymptotic problem of minimizing the moments
of the detection delay of order r ≥ 1:

inf
T∈CPFA(m,β)

Eν[(T − ν)r|T > ν] = Eν[(T� − ν)r|T� > ν](1 + o(1)) for all ν ∈ Z+ as β → 0.

To solve this problem, we need to assume that the window length m = mβ is a function
of the MLPFA constraint β and that mβ goes to infinity as β → 0 with a certain appropriate
rate. Using [54], the following results can be established.

Consider the SR procedure defined by (58), (59) with r0 = 0, in which case write
Tr0
SR(A) = TSR(A). Let r ≥ 1 and assume that the r-complete version of the SLLN holds

with some number 0 < I < ∞, i.e., n−1λν
ν+n converges to I uniformly r-completely as
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n → ∞ under Pν. If mβ = O(| log β|2) as β → ∞ and threshold A = Aβ in the SR procedure
is so selected that MLPFA(TSR(Aβ)) ≤ β and log Aβ ∼ | log β| as β → 0, e.g., as defined
in [54], then as β → 0

inf
T∈CPFA(mβ ,β)

Eν[(T − ν)r | T > ν] ∼
( | log β

I

)r
∼ Eν[(TSR − ν)r |TSR > ν] for all ν ∈ Z+.

A similar result also holds for the CUSUM procedure TCS(a) if threshold a = aβ

is selected so that MLPFA(TCS(aβ)) ≤ β and aβ ∼ | log β| as β → 0 and the r-complete
version of the SLLN holds for the normalized LLR n−1λν

ν+n as n → ∞.
Hence, the r-complete convergence of the LLR process is the sufficient condition for

the uniform asymptotic optimality of SR and CUSUM change detection procedures with
respect to the moments of the detection delay of order r in class CPFA(mβ, β).

4. Quick and Complete Convergence for Markov and Hidden Markov Models

Usually, in particular problems, the verification of the SLLN for the LLR process is
relatively easy. However, in practice, verifying the strengthened r-complete or r-quick
versions of the SLLN, i.e., checking condition (68), can cause some difficulty. Many interest-
ing examples where this verification was performed can be found in [5,6]. However, it is
interesting to find sufficient conditions for the r-complete convergence for a relatively large
class of stochastic models.

In this section, we outline this issue for Markov and hidden Markov models based
on the results obtained by Pergamenchtchikov and Tartakovsky [54] for ergodic Markov
processes and by Fuh and Tartakovsky [55] for hidden Markov models (HMM). See also
Tartakovsky ([5] Ch 3).

Let {Xn}n∈Z+
be a time-homogeneous Markov process with values in a measurable

space (X , B) with the transition probability P(x, A) with density p(y|x). Let Ex denote
the expectation with respect to this probability. Assume that this process is geometrically
ergodic, i.e., there exist positives constants 0 < R < ∞, κ > 0, and probability measure κ

on (X , B) and the Lyapunov X → [1, ∞) function V with κ(V) < ∞ such that

sup
n∈Z+

eκn sup
0<ψ≤V

sup
x

1
V(x)

|Ex[ψ(Xn)]−κ(ψ)| ≤ R.

In the change detection problem, the sequence {Xn}n∈Z+
is a Markov process, such

that {Xn}1≤n≤ν is a homogeneous process with the transition density g(y|x) and {Xn}n>ν

is homogeneous positive ergodic with the transition density f (y|x) and the ergodic (sta-
tionary) distribution κ. In this case, the LLR process λk

n can be represented as

λk
n =

n

∑
t=k+1

G(Xt, Xt−1), n > k,

where G(y, x) = log[ f (y|x)/g(y|x)].
Define

I =
∫
X

{∫
X

G(y, x) f (y|x)dy
}
κ(dx).

Under a set of quite sophisticated sufficient conditions, the LLR λn
k+n/n converges to I as

n → ∞ r-completely (cf. [54]). We omit the details and only mention that the main condition
is the finiteness of (r + 1)-th moment of the LLR increment, E0[(G(X1, X0))

r+1] < ∞.
Now consider the HMM with finite state space. Then again, as in the pure Markov

case, the main condition for the r-complete convergence of λn
k+n/n to I, where I is specified

in Fuh and Tartakovsky [55], is E0[(λ
0
1)

r+1] < ∞. Further details can be found in [55].
Similar results for Markov and hidden Markov models hold for the hypothesis testing

problem considered in Section 3.1. Specifically, if in the Markov case we assume that the
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observed Markov process {Xn}n∈Z+
is a time-homogeneous geometrically ergodic with a

transition density fi(y|x) under hypothesis Hi (i = 0, 1, . . . , N) and invariant distribution
κi, then the LLR processes are

λij(n) =
n

∑
t=1

Gij(Xt, Xt−1), i, j = 0, 1, . . . , N, i �= j,

where Gij(y, x) = log[ fi(y|x)/ f j(y|x)]. If Ei[(Gij(X1, X0))
r+1] < ∞, then the LLR n−1λij(n)

converges r-completely to a finite number

Iij =
∫
X

{∫
X

Gij(y, x) fi(y|x)dy
}
κi(dx).

5. Discussion and Conclusions

The purpose of this article is to provide an overview of two modes of convergence in
the LLN—r-quick and r-complete convergences. These strengthened versions of the SLLN
are often neglected in the theory of probability. In the first part of this paper (Section 2),
we discussed in detail these two modes of convergence and corresponding strengthened
versions of the SLLN. The main motivation was the fact that both r-quick and r-complete
versions of the SLLN can be effectively used for establishing near optimality results in
sequential analysis, in particular, in sequential hypothesis testing and quickest changepoint
detection problems for very general stochastic models of dependent and non-stationary
observations. These models are not limited to Markov and hidden Markov models. The
results presented in the second part of this paper (Section 3) show that the constraints
imposed on the models for observations can be formulated in terms of either the r-quick or
r-complete convergence of properly normalized log-likelihood ratios between hypotheses
to finite numbers, which can be interpreted as local Kullback–Leibler information numbers.
This is natural and can be intuitively expected since optimal or nearly optimal decision-
making rules are typically based on a combination of log-likelihood ratios. Therefore, if
one is interested in the asymptotic optimality properties of decision-making rules, the
asymptotic behavior of log-likelihood ratios as the sample size goes to infinity not only
matters but provides the main contribution.

The results presented in this article allow us to conclude that the strengthened r-quick
and r-complete versions of the SLLN are useful tools for many statistical problems for
general non-i.i.d. stochastic models. In particular, r-quick and r-complete convergences
for log-likelihood ratio processes are sufficient for the near optimality of sequential hy-
pothesis tests and changepoint detection procedures for models with dependent and
non-identically distributed observations. Such non-i.i.d. models are typical for modern
large-scale information and physical systems that produce big data in numerous practical
applications. Readers interested in specific applications may find detailed discussions
in [4–7,21,22,33,35,37,53–58].
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Abstract: Analytic and asymptotic properties of the generalized Student and generalized Lomax
distributions are discussed, with the main focus on the representation of these distributions as scale
mixtures of the laws that appear as limit distributions in classical limit theorems of probability
theory, such as the normal, folded normal, exponential, Weibull, and Fréchet distributions. These
representations result in the possibility of proving some limit theorems for statistics constructed from
samples with random sizes in which the generalized Student and generalized Lomax distributions
are limit laws. An overview of known properties of the generalized Student distribution is given,
and some simple bounds for its tail probabilities are presented. An analog of the ‘multiplication
theorem’ is proved, and the identifiability of scale mixtures of generalized Student distributions
is considered. The normal scale mixture representation for the generalized Student distribution is
discussed, and the properties of the mixing distribution in this representation are studied. Some
simple general inequalities are proved that relate the tails of the scale mixture with that of the mixing
distribution. It is proved that for some values of the parameters, the generalized Student distribution
is infinitely divisible and admits a representation as a scale mixture of Laplace distributions. Necessary
and sufficient conditions are presented that provide the convergence of the distributions of sums
of a random number of independent random variables with finite variances and other statistics
constructed from samples with random sizes to the generalized Student distribution. As an example,
the convergence of the distributions of sample quantiles in samples with random sizes is considered.
The generalized Lomax distribution is defined as the distribution of the absolute value of the random
variable with the generalized Student distribution. It is shown that the generalized Lomax distribution
can be represented as a scale mixture of folded normal distributions. The convergence of the
distributions of maximum and minimum random sums to the generalized Lomax distribution is
considered. It is demonstrated that the generalized Lomax distribution can be represented as a scale
mixture of Weibull distributions or that of Fréchet distributions. As a consequence, it is demonstrated
that the generalized Lomax distribution can be limiting for extreme statistics in samples with random
size. The convergence of the distributions of mixed geometric random sums to the generalized Lomax
distribution is considered, and the corresponding extension of the famous Rényi theorem is proved.
The law of large numbers for mixed Poisson random sums is presented, in which the limit random
variable has a generalized Lomax distribution.

Keywords: generalized Student distribution; generalized Lomax distribution; exponential power
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random size
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1. Introduction

1.1. History of the Problem and Motivation

The t-distribution, which is more often called the Student distribution, was proposed
in 1908 in the fundamental paper [1] by William Sealy Gosset published in Biometrika under
the pseudonym ‘Student’. Originally, this distribution played only a technical role in the
so-called theory of errors. In the paper [2], R. Fisher gave a detailed description of the
application of the Student distribution in problems related to the statistical analysis of
normal samples. However, when, in the middle of the 20th century, it was noticed that
the distributions of various financial data (e.g., increments of stock prices) do not meet
the normal model and have noticeably heavier tails with power-type decreases, some
specialists turned to the Student distribution as a heavy-tailed alternative to the normal
distribution. Now, the Student distribution is one of the most popular models for economic
and financial data [3]. In the paper [4], an attempt was made to explain the adequacy of
the Student model from the viewpoint of limit theorems of probability theory, and it was
demonstrated that, in descriptive statistics, this distribution can be used as an asymptotic
approximation since it appears as the limit law for statistics constructed from samples
when the sample size obeys the negative binomial distribution.

In recent years, many generalizations of the Student distribution have been proposed,
including those that are purely analytic [5] and purely artificial [6]. A comprehensive
review of generalizations of the Student distribution was presented in [3]. Unfortunately,
many generalizations are in some sense formal, not-so-well theoretically justified, and
are based on the reasons of convenience of fitting to particular data. In the present paper,
primary attention is paid to the generalization of the Student distribution that is based on
the representation of a so-distributed random variable as a quotient of two independent ran-
dom variables. The numerator in this quotient is the random variable with the exponential
power distribution, whereas the denominator is the power of a gamma-distributed random
variable with identical shape and scale parameters. This generalization is due to Mcdonald
and Newey [7] (see also [8,9]), who noticed that the generalized Student distribution as
defined can be obtained as the scale mixture of a power exponential distribution where the
mixing law is the inverse generalized gamma distribution. The scale mixture representation
opens the way to construct rather simple asymptotic settings in which the appropriately
defined generalized Student distribution appears as a limit law. Consequently, the general-
ized Student distribution obtains a theoretic foundation as an asymptotic approximation.
Apparently, it is this property that makes the generalized Student distribution an attractive
model for financial data [10–13]. This approach is also very promising for the construction
of multivariate and asymmetric generalizations, e.g., see [14].

Since heavy-tailed distributions are widely encountered in many practical problems,
they are under serious theoretic study. For example, there are developments in the context
of the Tsallis entropy that result in power-law distributions and fractional differential oper-
ators. In both cases, we also have a connection with stable distributions and Lévy processes
(see, e.g., [15]). Although stable Lévy processes with power-type tails have very serious
theoretic grounds, they are not so easily statistically treated because, with four rather trivial
exceptions, stable densities cannot be represented in terms of elementary functions. Simple
representations for the generalized Student densities make them promising alternatives to
stable laws. Moreover, the analytic properties (e.g., the infinite divisibility) of the general-
ized Student distributions and limit theorems for sums of independent random variables
with the generalized Student distributions as the limit laws presented below, together with
the functional limit theorems for compound Cox processes proved in [16], guarantee the
possibility to construct a Lévy process (more exactly, a subordinated Wiener process) whose
finite-dimensional distributions are of the generalized Student type.

Another benefit of the approach based off the scale mixture representation is that it
makes it possible to easily trace the relationship of the generalized Student distribution
with the generalized Lomax distribution, which is a popular power-type heavy-tailed
model that was used in many applied problems after it was introduced in [17], where
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it was used to analyze business failure data. The Lomax distribution appeared to be a
convenient heavy-tailed alternative to exponential, gamma, and Weibull distributions [18].
Possible applications of the Lomax distribution and its generalizations involve many fields,
from modelling business records [19] to reliability and lifetime testing [20]. An extensive
bibliography can be found in [21]. Various generalizations of the Lomax distribution were
used in [22–26] and many other studies; see the extensive bibliography in [21].

In accordance with the approach that is used in the present paper, the generalized
Lomax distribution is just the distribution of the absolute value of a random variable
with the generalized Student distribution. This definition makes it possible to study
the important analytic properties of the so-generalized Lomax distribution, such as its
infinite divisibility, identifiability, and mixture representability. In turn, these properties
open the way to proving limit theorems in rather simple asymptotic settings in which the
generalized Lomax distribution appears to be the limit law. These limit theorems may serve
as a theoretical foundation for the adequacy of the generalized Lomax distribution as an
asymptotic approximation in descriptive statistics and an explanation of the excellent fit of
this distribution to real data in many cases.

In the present paper, we study analytic and asymptotic properties of the generalized
Student and generalized Lomax distributions, paying main attention to the representation
of these distributions as scale mixtures of the laws that appear as limit distributions in
classical limit theorems of probability theory, such as the normal, folded normal, exponen-
tial, Weibull, and Fréchet distributions. These representations result in the possibility of
proving some limit theorems for statistics constructed from samples with random sizes in
which the generalized Student and generalized Lomax distributions are limit laws. Unlike
the conventional analytical approach used in most papers on generalized Student or gen-
eralized Lomax distributions, in the present paper, we use a kind of ‘arithmetic’ way of
reasoning within the space of random variables. According to this approach, instead of
the operation of scale mixing distributions, we consider the operation of multiplication
of random variables, provided the multipliers are independent. Nevertheless, speaking
of random variables, we actually deal with their distributions. This approach makes the
reasoning substantially simpler, the proofs shorte, and reveals some general features of the
distributions under consideration.

The paper is organized as follows. Section 1.2 contains auxiliary definitions and in-
troduces some basic properties of the distributions involved in the subsequent reasoning.
In Section 2.1, an overview of known the properties of the generalized Student distribution
is given, and some simple bounds for its tail probabilities are presented; furthermore,
an analog of the ‘multiplication theorem’ is proved, and the identifiability of scale mixtures
of generalized Student distributions is considered. In Section 2.2, the normal scale mixture
representation for the generalized Student distribution is discussed, and the properties of
the mixing distribution in this representation are studied. In particular, in order to study the
tail probabilities of the mixing distributions, some simple general inequalities are proved
here that relate the tails of the scale mixture with those of the mixing distribution. It is
proved here that for some values of the parameters, the generalized Student distribution
is infinitely divisible and admits a representation as a scale mixture of Laplace distribu-
tions. In Section 2.3, necessary and sufficient conditions are presented that provide the
convergence of the distributions of sums of a random number of independent random
variables with finite variances to the generalized Student distribution. Section 2.4 presents
necessary and sufficient conditions that provide the convergence of the distributions of
‘asymptotically normal’ statistics constructed from samples with random sizes to the gener-
alized Student distribution. As an example, the convergence of the distributions of sample
quantiles in samples with random sizes is considered. Section 3.1 contains the definition
and basic properties of the generalized Lomax distribution. In Section 3.2, it is shown that
the generalized Lomax distribution can be represented as a scale mixture of the folded
normal distribution (the distribution of the maximum of the standard Wiener process on
the unit interval). In Section 3.3, the convergence of the distributions of maximum and
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minimum random sums to the generalized Lomax distribution is considered. In Section 3.4,
it is demonstrated that the generalized Lomax distribution can be represented as a scale
mixture of Weibull distributions or as a mixture of Fréchet distributions. These representa-
tions make it possible to demonstrate in Section 3.5 that the generalized Lomax distribution
can be limiting for extreme statistics in samples with a random size. Finally, in Section 3.6,
the convergence of the distributions of mixed geometric random sums to the generalized
Lomax distribution is considered, and the corresponding extension of the famous Rényi
theorem is proved.

1.2. Auxiliary Definitions and Notation

All the random variables are assumed to be defined on one and the same probability
space (Ω,A, P).

The product of independentrandom elements will be denoted by the symbol ◦. The sym-

bols d
= and =⇒ will stand for the coincidence of distributions and convergence in distribu-

tion, respectively. The symbol � marks the end of the proof. The indicator function of a set
A will be denoted IA(z): if z ∈ A, then IA(z) = 1; otherwise, IA(z) = 0.

A random variable with the standard exponential distribution will be denoted W1,
as follows:

P(W1 < x) =
[
1 − e−x]

I[0, ∞)(x).

For x > 0 and r > 0, the (lower) incomplete gamma function will be denoted as
Γ(r; x):

Γ(r; x) =
∫ x

0
zr−1e−zdz.

Let Γ(r) def
= Γ(r; ∞) be the ‘usual’ Euler’s gamma function.

A random variable having a gamma distribution with a shape parameter r > 0 and a
scale parameter λ > 0 will be denoted as Gr,λ, where

P(Gr,λ < x) =
∫ x

0
g(z; r, λ)dz, with g(x; r, λ) =

λr

Γ(r)
xr−1e−λx

I[0, ∞)(x),

Obviously, in this notation, G1,1 is a random variable with the standard exponential distri-
bution G1,1 = W1.

A generalized gamma distribution is an absolutely continuous distribution defined by
the density

ggr,α,μ(x) =
|α|μr

Γ(r)
xαr−1e−μxα

I[0, ∞)(x)

with α ∈ R, μ > 0, and r > 0. A random variable with the density ggr,α,μ(x) will be denoted
as Gr,α,μ. It is easy to see that

Gr,α,μ
d
= G1/α

r,μ
d
= μ−1/αG1/α

r,1
d
= μ−1/αGr,α,1. (1)

Let γ > 0. The distribution of the random variable Wγ:

P
(
Wγ < x

)
=
[
1 − e−xγ]

I[0, ∞)(x),

is called the Weibull distribution with a shape parameter γ. It is easy to see that

W1/γ
1

d
= Wγ

d
= G1,γ,1. (2)

The random variable W−1
α is said to have an inverse Weibull or Fréchet distribution,

as follows:
P(W−1

α < x) = P(Wα ≥ 1
x ) = exp{x−α}, x ≥ 0.
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The standard normal distribution function and its density will be denoted by Φ(x)
and φ(x), where

φ(x) =
1√
2π

e−x2/2, Φ(x) =
∫ x

−∞
φ(z)dz,

respectively. A random variable with the standard normal distribution will be denoted
by X.

A random variable with the strictly stable characteristic function

gα,θ(t) = exp
{
− |t|α exp

{
− iπθα

2
signt

}}
, t ∈ R, (3)

where 0 < α ≤ 2, |θ| ≤ θα = min{1, 2
α − 1}, will be denoted by Sα,θ . The probability

density of the random variable Sα,θ will be denoted by Sα,θ . For the properties of stable
distributions with characteristic functions (3), see, e.g., [15,27,28].

It is easy to see that S2,0
d
=

√
2X.

If θ = 1 and 0 < α ≤ 1, the corresponding strictly stable random variable takes only
nonnegative values. If α = 1 and θ = ±1, then the corresponding stable distributions are
degenerate in ±1, respectively. All the other strictly stable distributions are absolutely
continuous. There are no explicit representations for stable distributions in terms of ele-
mentary functions with four exceptions: the normal distribution (α = 2, θ = 0), the Cauchy
distribution (α = 1, θ = 0), the Lévy distribution (α = 1

2 , θ = 1) and the distribution
symmetric to the Lévy law (α = 1

2 , θ = −1). Expressions for stable densities in terms of
generalized Meijer G-functions (Fox functions) can be found in [29,30].

According to the ‘multiplication theorem’ (see, e.g., Theorem 3.3.1 in [27]), for any
admissible pair of parameters (α, θ) and any α′ ∈ (0, 1], the product representation

Sαα′ ,θ
d
= S1/α

α′ ,1 ◦ Sα,θ

holds. In particular, for any α ∈ (0, 2],

Sα,0
d
=
√

2Sα/2,1 ◦ X,

that is, any symmetric strictly stable distribution is a scale mixture of the normal distributions.
Let α > 0. The symmetric exponential power distribution is an absolutely continuous

distribution defined by its Lebesgue probability density

pα(x) =
α

2Γ( 1
α )

· e−|x|α , −∞ < x < ∞. (4)

To simplify the notation and calculation, here and in what follows, we will use a single
parameter α in Representation (4) since this parameter is, in some sense, characteristic of
and determines the shape of the distribution (4). With α = 1, Relationship (4) defines the
classical Laplace distribution as

p1(x) = 1
2 e−|x|, x ∈ R

with zero mean and a variance of 2. With α = 2, Relationship (4) defines the normal
(Gaussian) distribution with a zero mean and a variance of 1

2 . Any random variable with a
probability density pα(x) will be denoted by Qα.

The class of distributions (4) was introduced and studied in 1923 in the paper [31] by
M. T. Subbotin. For more details concerning the properties of exponential power distribu-
tions, see [32,33] and the references therein.

It is easy to make sure that

|Qα|α d
= G1/α,1. (5)
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In our further reasoning, we will exploit the following properties of exponential power
distributions. For convenience, we present them as lemmas.

Lemma 1 (e.g., see [32]). For δ > −1, we have

E|Qα|δ = α

Γ( 1
α )

∫ ∞

0
xδe−xα

dx =
Γ( δ+1

α )

Γ( 1
α )

.

Lemma 2 ([32]). Let α ∈ (0, 2], α′ ∈ (0, 1]. Then,

Qαα′
d
= Qα ◦ U−1/α

α,α′ , (6)

where Uα,α′ is a random variable such that if α′ = 1, then Uα,α′ = 1 for any α ∈ (0, 2], and if
0 < α′ < 1, then Uα,α′ is absolutely continuous with a probability density

uα,α′(x) =
α′Γ( 1

α )

Γ( 1
αα′ )

· sα′ ,1(x)
x1/α

· I(0,∞)(x).

Corollary 1 ([34]). Any symmetric exponential power distribution with α ∈ (0, 2] is a scale
mixture of normal laws:

Qα
d
=
√

1
2 U−1

2,α/2 ◦ X.

Corollary 2 (e.g., see [32]). Any symmetric exponential power distribution with α ∈ (0, 1] is a
scale mixture of Laplace laws:

Qα
d
= U−1

1,α ◦ Q1.

Lemma 3 ([32]). For any α ∈ (0, 1], the distribution of the random variable U−1
2,α/2 is a mixed

exponential:

U−1
2,α/2

d
= 4U−2

1,α ◦ W1.

Recall that a distribution function F(x) whose characteristic function is denoted f (t)
is infinitely divisible if, for each n ∈ N, there exists a characteristic function fn(t) such that
f (t) = f n

n (t) and t ∈ R. In terms of random variables (if the probability space (Ω,A, P) is
rich enough), this means that for each n ∈ N, there exist independent identically distributed
random variables Yn,1, Yn,2, . . . , Yn,n such that a random variable Y whose distribution
function is F(x) admits the representation Y = Yn,1 + Yn,2 + . . . + Yn,n. The property of
infinite divisibility is very important in some problems. For example, infinite divisible
distributions exist, and only they can be limiting for sums of independent asymptotically
negligible (in particular, identically distributed) random variables (see [35]. Moreover, this
is crucial in the construction of Lévy processes (see, e.g., [15,16]).

Corollary 3 ([32]). For any α ∈ (0, 1], the distribution of the random variable U−1
2,α/2 is infinitely

divisible.

In the present paper, we consider the generalizations of the Student and Lomax
distributions.

The Student distributionwas introduced in [1] and is defined as the distribution of the
random variable

Tr
d
= X ◦ G−1/2

r,r ,
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where r > 0 is the shape parameter usually called ‘the degrees of freedom’. The probability
density of the Student distribution, up to scale and location transformation, has the form

fr(x) =
Γ(r + 1

2 )√
πrΓ(r)

(
1 +

x2

r

)−(r+1/2)
, x ∈ R.

The Lomax distribution, also called the Pareto Type II distribution, was introduced
in [17]. The probability density of the Lomax distribution, up to scale and location transfor-
mation, has the form

f ∗r (x) =
r

(1 + x)r+1 , x ≥ 0,

where r > 0 is the shape parameter.

2. The Generalized Student Distribution

2.1. The Definition and Elementary Properties of the Generalized Student Distribution

Let α ∈ (0, 2] and r ∈ R be such that αr ≥ 1. Assume that the random variables Qα

and Gr,r are independent. Consider the random variable Tr,α, defined as the product

Tr,α
def
= Qα ◦ G−1/α

r,r . (7)

The distribution of the random variable Tr,α will be called a generalized Student
distribution with parameters α and r. (It should be noted that in [14], instead of − 1

α ,
the exponent of Gr,r is − 1

2 , which does not restrict generality but leads to more complicated
notation).

Find the probability density function fr,α(x) of Tr,α. Since Qα and Gr,r are independent,
by the Fubini theorem, we have

fr,α(x) =
αrr

2Γ(r)Γ( 1
α )

∫ ∞

0
u1/αe−u|x|α ur−1e−rudu =

=
αrr

2Γ(r)Γ( 1
α )(r + |x|α)r+1/α

∫ ∞

0
ur+1/α−1e−udu =

=
αΓ(r + 1

α )

2r1/αΓ(r)Γ( 1
α )

(
1 +

|x|α
r

)−(r+1/α)
=

α

2r1/αB(r, 1
α )

(
1 +

|x|α
r

)−(r+1/α)
, x ∈ R. (8)

Here and in what follows, B(a, b) is the beta-function:

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

, a > 0, b > 0.

It is easily seen that with α = 2, the generalized Student distribution turns into the
classical Student distribution up to the re-parametrization. If, in addition, r = 1, the
generalized Student distribution is a Cauchy distribution.

When α = 1, the generalized Student distribution turns into a two-sided Lomax
distribution.

We see that the family of generalized Student distributions is wide enough and
contains popular power-type-tailed laws.

Moreover, this family is flexible enough since it contains distributions with various
shapes of their vertices. Consider this variety in more detail. First, from (8), it follows that
the densities of all the generalized Student distributions are finite:

max
x

fr,α(x) = fr,α(0) =
αB(r, 1

α )

2r1/α
.
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Second, consider the behavior of the derivative of the density fr,α(x) in the neigh-
borhood of zero. Since fr,α(x) is symmetric, it suffices to consider x > 0. For such x,
we have

d
dx

fr,α(x) = −α2B(r, 1
α )xα−1

2r1/α

(
1 +

xα

r

)−(r+1)
.

Therefore, if α > 1, then

lim
x→0+

d
dx

fr,α(x) = 0;

that is, the vertex of fr,α(x) is smooth and rather flat.
If α = 1, then

lim
x→0+

d
dx

fr,α(x) = − α2

2r1/αB(r, 1
α )

;

that is, the vertex of fr,α(x) looks like a non-zero angle.
If α < 1, then

lim
x→0+

d
dx

fr,α(x) = −∞;

that is, in this case, the vertex of fr,α(x) is ‘infinitely’ sharp.
The two last cases noticeably differ from the traditional Student density shape.
As is demonstrated by the two following statements, when r increases, the tails of a

generalized Student distribution become less heavy, so that finally, a generalized Student
distribution turns into an exponential power distribution.

Proposition 1. The following asymptotic relationship holds:

lim
r→∞

sup
x

∣∣∣ fr,α(x)− αe−|x|α

2Γ( 1
α )

∣∣∣ = 0. (9)

Proof. Note that the relationships

lim
r→∞

(
1 +

|x|α
r

)r
= e|x|

α
and lim

r→∞

Γ(r + 1
α )

r1/αΓ(r)
= 1

imply the point-wise convergence of the densities. Since the limit exponential power
density function is monotone on each semi-axis, as well as bounded and continuous, by the
Dini theorem, the convergence is uniform in x ∈ R.

This property of the generalized Student distributions can be mathematically for-
mulated in terms of distribution functions as well. For α ∈ (0, 2] and r > 0, denote
Fr,α(x) = P(Tr,α < x), x ∈ R,

Hα(x) def
= P(Qα < x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2
+

Γ( 1
α ; xα)

2Γ( 1
α )

, x ≥ 0,

1
2
− Γ( 1

α ; |x|α)
2Γ( 1

α )
, x < 0.

Corollary 4. For any α ∈ (0, 2], as r → ∞, the distribution functions of the random variables Tr,α
converge to the exponential power distribution function Hα(x) uniformly in x ∈ R:

lim
r→∞

sup
x

|Fr,α(x)− Hα(x)| = 0.

Proof. This statement follows from Proposition 4 by the Lebesgue-dominated convergence
theorem and the Dini theorem mentioned above.
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Another way of proving this result is as follows. Let [a] and {a}, correspondingly,
denote the integer part and the fractional part of a real number a. Represent r as r =
[r] + {r}. Then, the random variable Gr,r can be represented as

Gr,r
d
= 1

r Gr,1
d
=

1
r

[r]

∑
j=1

G1,1 +
G{r},1

r
.

As r → ∞, the first summand on the right-hand side of this relation almost surely converges
to 1 by the strong law of large numbers, whereas the second summand almost surely
converges to zero. This means that Gr,r −→ 1 almost surely converges to 1. Now, by the
Slutsky theorem [36] (see also [37], Sect. 20.6), it follows from the definition of Tr,α that
Tr,α =⇒ Qα. Since the limit function Hα(x) is monotone, bounded, and continuous, by the
Dini theorem, the convergence of distribution functions is uniform in x ∈ R.

Now consider the moments of the generalized Student distribution.

Proposition 2. For any δ ∈ (−1, αr)

E|Tr,α|δ = EG−δ/α
r,r · E|Qα|δ = rδ/αΓ(r − δ

α )Γ(
δ+1

α )

Γ(r)Γ( 1
α )

.

Proof. This relationship follows from (7) and Lemma 1.

The distribution function of Tr,α, in general, cannot be expressed in terms of elementary
functions. The integral of fr,α(x) can be written (e.g., see [38], item 3.194) in terms of the
hypergeometric function 2F1(·, ·, ·, ·) (e.g., see [38], item 9.111):

Fr,α(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2
+

αx
2r1/αB(r, 1

α )
2F1
(
r + 1

α , 1
α ; 1 + 1

α ;− xα

r
)
, x ≥ 0,

1
2
− α|x|

2r1/αB(r, 1
α )

2F1
(
r + 1

α , 1
α ; 1 + 1

α ;−|x|α
r
)
, x < 0.

Nevertheless, we can obtain very simple two-sided bounds for the tail probabilities
of Tr,α.

Proposition 3. For any x > 0, we have

rr−1

B(r, 1
α )xαr

· xαr+1

(r + xα)r+1/α
≤ P(|Tr,α| ≥ x) ≤ rr−1

B(r, 1
α )xαr

.

Proof. For any x > 0, we obviously have

P(|Tr,α| ≥ x) = 2
∫ ∞

x
fr,α(y)dy =

α

r1/αB(r, 1
α )

∫ ∞

x

(
1 +

|y|α
r

)−(r+1/α)
dy. (10)

For the integral on the right-hand side of (10), we easily obtain the following lower bound:

∫ ∞

x

(
1 +

|y|α
r

)−(r+1/α)
dy = rr+1/α

∫ ∞

x

( r
yα

+ 1
)−(r+1/α) dy

yαr+1 ≥

≥ rr+1/αxαr+1

(r + xα)r+1/α

∫ ∞

x

dy
yαr+1 =

rr+1/α−1

αxαr · xαr+1

(r + xα)r+1/α
. (11)
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The upper bound for this integral is obvious:

∫ ∞

x

(
1 +

|y|α
r

)−(r+1/α)
dy = rr+1/α

∫ ∞

x

( r
yα

+ 1
)−(r+1/α) dy

yαr+1 ≤

≤ rr+1/α
∫ ∞

x

dy
yαr+1 =

rr+1/α−1

αxαr . (12)

Now, the desired statement easily follows from (11), (12), and (10).

Since

lim
x→∞

xαr+1

(r + xα)r+1/α
= 1, (13)

we immediately obtain the following statement.

Corollary 5. The tailprobabilities of Tr,α satisfy the following asymptotic relation:

lim
x→∞

xαrP(|Tr,α| ≥ x) =
rr−1

B(r, 1
α )

.

Lemma 2 was proved in [32] with the application of the ‘multiplication theorem’ for
stable distributions (Theorem 3.3.1 in [27]). Therefore, this lemma can be regarded as a ‘mul-
tiplication theorem’ for exponential power distributions. This lemma can be used to establish
a kind of an analog of ‘multiplication theorem’ for generalized Student distributions.

Proposition 4. For any 0 < α ≤ β ≤ 2 and any r > 1
β , we have

G−1/β
r,r ◦ Tr,α

d
= G−1/α

r,r ◦ Tr,β ◦ U−1/β
β,α/β.

Proof. The assertion of Lemma 2 can be rewritten as

Qα
d
= Qβ ◦ U−1/β

β,α/β.

Now, the desired statement follows from the definition of Tr,α.

One more representation of a random variable with the generalized Student distribu-
tion is possible.

Proposition 5. The following relationship holds:

Tr,α
d
= r1/αQα ◦ |Q1/r|−1/αr.

Proof. According to (5), we have

Gr,r
d
= 1

r Gr,1
d
= 1

r |Q1/r|1/r,

whence follows the desired result.

Now consider the property of the identifiability of scale mixtures of generalized
Student distributions. Recall the definition of the identifiability of scale mixtures. Let T be a
random variable with the distribution function FT(x) and let V1 and V2 be two nonnegative
random variables. The family of scale mixtures of FT is said to be identifiable if the equality

T ◦ V1
d
= T ◦ V2 implies V1

d
= V2.
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Proposition 6. For any fixed α ∈ (0, 2] and r > 1
α , the family of scale mixtures of generalized

Student distributions is identifiable; that is, if V1 and V2 are two nonnegative random variables,

then the equality Tr,α ◦ V1
d
= Tr,α ◦ V2 implies V1

d
= V2.

Proof. In [32], it was proved that the family of scale mixtures of exponential power distri-
butions is identifiable. Hence, if V1 and V2 are two nonnegative random variables, then

the equality Tr,α ◦ V1
d
= Tr,α ◦ V2 implies V1 ◦ G−1/α

r,r
d
= V2 ◦ G−1/α

r,r or, which is the same,

Gr,1 ◦ V−α
1

d
= Gr,1 ◦ V−α

2 . As was proved in [39], the family of scale mixtures of gamma

distributions is identifiable. Hence, the last relationship implies V−α
1

d
= V−α

2 or V1
d
= V2,

which is the same.

2.2. Mixture Representation for the Generalized Student Distribution and Related Topics
2.2.1. Normal Mixture Representation

Proposition 7. For any α ∈ (0, 2] and any r > 1
α the generalized Student distribution is a scale

mixture of normal distributions:

Tr,α
d
=
√

Dr,α ◦ X, (14)

where
Dr,α

def
= 1

2
(
U2,α/2 ◦ G2/α

r,r
)−1 d

= 1
2
(
U2,α/2 ◦ Gr,α/2,r

)−1,

so that
P(Tr,α < x) =

∫ ∞

0
Φ
( x√

y

)
dP(Dr,α < y). (15)

This statement directly follows from (7) and Corollary 1.
In accordance with Lemma 2, for α ∈ (0, 2), the probability density u∗

2,α/2(x) of the
random variable U−1

2,α/2 has the form

u∗
2,α/2(x) =

α
√

π

2Γ( 1
α )

· sα/2,1(
1
x )

x3/2 , x > 0.

If α = 2, then the distribution of U−1
2,α/2 is degenerate at Point 1.

The generalized gamma probability density ggr,α/2,r(x) of the random variable G2/α
r,r

has the form
ggr,α/2,r(x) =

rr

Γ(r)
uα(r+1)/2−2e−ruα/2

, x > 0.

Therefore, the mixing random variable Dr,α in (15) has the probability density

qr,α(x) =
rrα

√
2π

Γ( 1
α )Γ(r)x3/2

∫ ∞

0
sα/2,1

( 2
ux
)
uα(r+1)/2−5/2e−ruα/2

du, x > 0.

This expression is cumbersome and can hardly be used either for the purpose of
clarifying the analytic and asymptotic properties of the mixing distribution or its statistical
analysis. However, as will be shown in the next subsection, it is possible to obtain rather
accurate (asymptotic) two-sided bounds for the tail probability of the distribution of Dr,α.

2.2.2. The Properties of the Mixing Distribution And Inequalities for the Tail Probabilities

Proposition 8. There exist finite positive constants C = C(r, α) and C = C(r, α) such that for
any δ ∈ (0, 1)

lim inf
x→∞

xαr/2+δP(Dr,α ≥ x) ≥ C (16)

and
lim sup

x→∞
xαr/2P(Dr,α ≥ x) ≤ C. (17)
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For example, as C and C, one can take

C =
rr−1

B(r, 1
α )

, C =
rr−1

2B(r, 1
α )[1 − Φ(1)]

.

Roughly speaking, Proposition 8 states that the distribution of the mixing random
variable Dr,α in Proposition 4 has the power-type tails decreasing such that O(x−αr/2) as
x → ∞.

In order to prove this proposition, we need to formulate and prove some general
inequalities relating the tails of a scale mixture with that of the mixing distribution. These
inequalities will be formulated as lemmas.

Lemma 4. Let Y be a random variable with a symmetric distribution. Let U be a positive random
variable. Then, for any x > 0 and u > 0,

P(|Y ◦ U| > x) ≥ P
(
|Y| > x

u

)
P(U > u).

Proof. Denote the distribution function of Y as F(x). Then, for any x > 0 and u > 0, due
to the monotonicity of F, we have

P(|Y ◦ U| > x) = 2
∫ ∞

0

[
1 − F

( x
y

)]
dP(U < y) ≥ 2

∫ ∞

u

[
1 − F

( x
y

)]
dP(U < y) ≥

≥ 2
[
1 − F

( x
u

)] ∫ ∞

u
dP(U < y) = P

(
|Y| > x

u

)
P(U ≥ u).

Now, if we set Y = X (that is, F = Φ), U =
√

Dr,α, and u = xε with arbitrary ε ∈ [0, 2],
then for any x > 0, Proposition 2, Lemma 4, and Proposition 3 yield the bound

rr−1

B(r, 1
α )xαr

≥ P(|Tr,α| > x) ≥ P(Dr,α ≥ xε)P(|X| ≥ x1−ε/2). (18)

Additionally, if ε = 2, then (18), in turn, implies

xαrP(Dr,α ≥ x2) ≤ rr−1

2B(r, 1
α )[1 − Φ(1)]

, (19)

thus proving (17).
Lemma 4 generalizes a result of [40].

Lemma 5. Let Y be a random variable independent of a positive random variable U. Then, for any
x > 0 and δ ∈ (0, 1),

P(|Y ◦ U| ≥ x) ≤ P(|Y| ≥ x1−δ) + P(U ≥ xδ)P(|Y| < x1−δ) =

= P(|Y| ≥ x1−δ)P(U < xδ) + P(U ≥ xδ) ≤ P(|Y| ≥ x1−δ) + P(U ≥ xδ).

Proof. It is not difficult to verify that for any δ ∈ (0, 1),{
ω : ln |Y(ω)|+ ln U(ω) ≥ ln x

} ⊆ {ω : ln |Y(ω)| ≥ (1 − δ) ln x
} ∪ {ω : ln U(ω) ≥ δ ln x

}
.

Therefore,

P(|Y ◦ U| ≥ x) = P(ln |Y ◦ U| ≥ ln x) = P(ln |Y|+ ln U ≥ ln x) ≤

≤ P
({ln |Y| ≥ (1 − δ) ln x} ∪ {ln U ≥ δ ln x})} =
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= P(ln |Y| ≥ (1 − δ) ln x) + P(ln U ≥ δ ln x)− P(ln |Y| ≥ (1 − δ) ln x) · P(ln U ≥ δ ln x) ≤
= P(|Y| ≥ x1−δ) + P(U ≥ xδ)− P(|Y| ≥ x1−δ) · P(U ≥ xδ)

}
=

= P(|Y| ≥ x1−δ) + P(U ≥ xδ)P(|Y| < x1−δ) = P(|Y| ≥ x1−δ)P(U < xδ) + P(U ≥ xδ) ≤
≤ P(|Y| ≥ x1−δ) + P(U ≥ xδ).

The lemma is proved.

It should be noted that in Lemma 5, no conditions were imposed on the distribution
of the random variable Y.

Now, if we set Y = X (that is, F = Φ) and U =
√

Dr,α, then for any x > 0 and
ε ∈ (0, 2), Proposition 4 and Lemma 5 yield the bound

P(|Tr,α| > x) ≤ P(|X| ≥ x1−ε/2) + P(Dr,α ≥ xε),

which is valid for any ε ∈ (0, 2). Hence, in turn, it follows that

P(Dr,α ≥ xε)

P(|Tr,α| > x)
≥ 1 − P(|X| ≥ x1−ε/2)

P(|Tr,α| > x)
. (20)

It is well-known that for any y > 0,

P(|X| ≥ y) ≤
√

2√
πy

exp
{
− y2

2

}
. (21)

From the left inequality of Proposition 3 and (21), it follows that for any ε ∈ (0, 2),

lim
x→∞

P(|X| ≥ x1−ε/2)

P(|Tr,α| > x)
≤

√
2B(r, 1

α )√
πrr−1 · lim

x→∞
(r + xα)r+1/αxε/2−2 exp

{
− x2−ε

2

}
= 0.

Hence, with the account of (13), from (20) and the left inequality of Proposition 3, it
follows that for any ε ∈ (0, 2)

lim inf
x→∞

xαrP(Dr,α ≥ xε) ≥ rr−1

B(r, 1
α )

,

thus proving (35). Thus, Proposition 8 is completely proved. �

Proposition 9. If α ∈ (0, 1] and r > 1
α , then the random variable Dr,α has the mixed exponential

distribution
Dr,α

d
= 2
(
G1/α

r,r ◦ U1,α
)−2 ◦ W1.

Proof. From Corollary 1, Lemma 3, and the definition of the generalized Student distribu-
tion, we obtain the representation

Tr,α
d
= Qα ◦ G−1/α

r,r
d
=

√
2
(
G1/α

r,r ◦ U1,α
)−2 ◦ W1 ◦ X.

Now the desired result follows from the identifiability of scale mixtures of normal
distributions (see, e.g., [39]).

Corollary 6. For α ∈ (0, 1]∪ {2} and any r > 1
α , the generalized Student distribution is infinitely

divisible.

Proof. According to Proposition 6, for α ∈ (0, 1] in Representation (14), the scaling (mixing)
distribution is mixed exponential and, hence, in accordance with the result of [41], infinitely
divisible. In turn, if the mixing distribution in a normal scale mixture is infinitely divisible,
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then, in accordance with [42], Ch. XVII, Sect. 3, the normal scale mixture is infinitely
divisible itself.

In the case that α = 2, the infinite divisibility of the generalized Student distribution
(in this case, the conventional Student distribution) for any r > 0 was proved in [43].

Proposition 10. If α ∈ (0, 1] and r > 1
α , then the generalized Student distribution is a scale

mixture of the Laplace laws,

Tr,α
d
= Yr,α ◦ Q1,

where
Yr,α

d
=
(
G1/α

r,r ◦ U1,α
)−1.

Proof. This statement follows from Corollary 2 and the definition of the random variable
Tr,α.

2.3. Convergence of the Distributions of Random Sums to the Generalized Student Law

In applied probability, it is a convention, probably based on some topics of [35],
that to make sure that a probability distribution can serve as a well-justified model of a
real phenomenon, one should construct a limit setting where this distribution is a limit
distribution or asymptotic approximation (say, a scheme of maximum or summation of
random variables). The existence of such a limit setting with specific conditions providing
the convergence to the assumed distribution can provide a better understanding of real
mechanisms that generate observed statistical regularities.

The representation for the generalized Student distribution as a scale mixture of
normals obtained in Proposition 4 opens the way for the construction in this section of
an ‘if and only if’ version of the random-sum central limit theorem with the generalized
Student distribution as the limit law.

Consider independent not necessarily identically distributed random variables X1, X2,
. . . with EXi = 0 and 0 < σ2

i = EX2
i < ∞, i ≥ 1. For n ∈ N, denote

Sn = X1 + . . . + Xn, B2
n = σ2

1 + . . . + σ2
n .

Assume that the random variables X1, X2, . . . satisfy the Lindeberg condition such that
for any τ > 0,

lim
n→∞

1
B2

n

n

∑
i=1

∫
|x|≥τBn

x2dP(Xi < x) = 0. (22)

It is well-known that under these assumptions,

P
(
Sn < Bnx

)
=⇒ Φ(x)

(this is the classical central limit theorem due to Lindeberg).
Let N1, N2, . . . be a sequence of integer-valued nonnegative random variables defined

on the same probability space so that for each n ∈ N, the random variable Nn is independent
of the sequence X1, X2, . . .. Denote SNn = X1 + . . . + XNn . For definiteness, in what follows,
we assume that ∑0

j=1 = 0. In what follows, the convergence will be meant as n → ∞.
Recall that a random sequence N1, N2, . . . is said to be infinitely increasing in probabil-

ity if P(Nn ≤ m) −→ 0 for any m ∈ (0, ∞).
Let {dn}n≥1 be an infinitely increasing sequence of positive numbers.
The following version of the central limit theorem for random sums is the base for the

proof of the main result of this section.

Lemma 6 ([44]). Assume that the random variables X1, X2, . . . and N1, N2, . . . satisfy the condi-
tions specified above. In particular, let the Lindeberg condition (22) hold. Moreover, let Nn → ∞ in
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probability. The distribution functions of appropriately normalized random sums SNn converge to
some distribution function F(x),

P
(SNn

dn
< x
)
=⇒ F(x),

if and only if there exists a distribution function H(x) satisfying the conditions

H(0) = 0, F(x) =
∫ ∞

0
Φ
( x√

y

)
dH(y), x ∈ R,

and P(B2
Nn

< xd2
n) =⇒ H(x).

Proof. This statement is a particular case of a result proved in [44]; also see Theorem 3.3.2
in [45].

The main result of this section is the following statement presenting necessary and
sufficient conditions for the convergence of the distributions of random sums of independent
random variables with finite variances to the generalized Student distribution.

Proposition 11. Let α ∈ (0, 2], r > 1
α . Assume that the random variables X1, X2, . . . and

N1, N2, . . . satisfy the conditions specified above. In particular, let the Lindeberg condition (22) hold.
Moreover, let Nn → ∞ in probability. Then, the distributions of the normalized random sums SNn

converge to the generalized Student law with parameters r and α; that is,

SNn

dn
=⇒ Tr,α

with some dn > 0, dn → ∞, if and only if

B2
Nn

d2
n

=⇒ Dr,α
d
= 1

2
(
U2,α/2 ◦ Gr,α/2,r

)−1. (23)

Proof. This statement is a direct consequence of Lemma 4 with H(x) = P(Dr,α < x) and
Proposition 4.

Note that if the random variables X1, X2, . . . are identically distributed, then σi = σ,
i ∈ N, and the Lindeberg condition holds automatically. In this case, it is reasonable to take
dn = σ

√
n. Hence, from Proposition 11, in this case, it follows that for the convergence

SNn

σ
√

n
=⇒ Tr,α

to take place, it is necessary and sufficient that

Nn

n
=⇒ Dr,α. (24)

It should be especially noted that despite the requirement that the summands in the sum
have finite variances, the resulting generalized Student distribution in Proposition 11 may
have arbitrarily heavy tails. The parameters of the limit-generalized Student distribution are
entirely defined by the asymptotic behavior of the random index Nn (see Relationship (24)).

One more remark concerns the curious form of the random variable Dr,α due to which
the realization of Conditions (23) and (24) in practical situations may seem doubtful. How-
ever, in many practical problems, the flow of informative events producing observations
can be successfully modelled by a doubly stochastic Poisson process (also called a Cox
process). Such a process is defined as a Poisson process with stochastic intensity.
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Namely, a doubly stochastic Poisson process is a stochastic point process of the form

N(t) def
= Π(L(t)), where Π(t), where t ≥ 0, is a homogeneous Poisson process with unit

intensity, and the stochastic process L(t), where t ≥ 0, is independent of Π(t) and possesses
the following properties: L(0) = 0, P(L(t) < ∞) = 1 for any t > 0, and the sample paths
of L(t) do not decrease and are right-continuous. In this context, the Cox process N(t) is
said to be lead by the process L(t). For more details concerning Cox and more general
subordinated processes, see, e.g., [46–48].

In real problems, the process L(t) characterizing the cumulative intensity of the flow
of informative events depends on many factors whose influence is hardly predictable, and
it is quite likely that the statistical regularities in its behavior can be approximated by the

distribution of the random variable Dr,α. Now, if Nn
def
= N(n), then for Condition (24) to

hold, it is necessary and sufficient that n−1L(n) =⇒ Dr,α [49]. This means that actually,
Conditions (23) and (24) are not as artificial as it may seem at the first sight.

2.4. Convergence of the Distributions of Statistics Constructed from Samples with Random Sizes to
the Generalized Student Distribution

In practice, rather often, the data are collected or registered during a certain period
of time so that the sequence (flow) of informative events, each of which brings the next
observation, is a random point process. Hence, the number of available observations may
be unknown until the termination of the process of their registration. Therefore, the number
of accumulated observations (sample size) should also be treated as a (random) obser-
vation. This means that the problems and results of the classical mathematical statistics,
in which the size of the available sample is usually assumed to be deterministic, deals with
conditional distributions given the concrete value of the sample size. In the asymptotic
settings, this value plays the role of an infinitely increasing known parameter. However, the
asymptotic behavior of the (unconditional) distributions of statistics constructed from sam-
ples with random sizes noticeably differs from that of the distributions of statistics in the
classical case, which are actually conditional distributions given the particular value of the
sample size. For a more detailed motivation for the consideration of statistics constructed
from samples with random sizes, see, e.g., [32].

The randomness of the sample size usually leads to the limit distributions for the
corresponding statistics being heavy-tailed, even in situations where the conditional distri-
butions of the same statistics given a non-random sample size are asymptotically normal;
see, e.g., [4,45,50].

Consider a traditional setting of mathematical statistics. As in the preceding section,
consider the random variables N1, N2, . . . , X1, X2, . . . defined on one and the same proba-
bility space so that for each n ≥ 1, the random variable Nn takes only natural values and
is independent of the ‘observations’ X1, X2, . . . . Let tn = tn(X1, . . . , Xn) be a statistic, that
is, a measurable function of X1, . . . , Xn. For every n ≥ 1 and ω ∈ Ω, define the random
variable tNn = tNn(ω)(ω) as

tNn = tNn(ω)

(
X1(ω), . . . , XNn(ω)(ω)

)
.

A statistic tn is said to be asymptotically normal if there exist δ > 0 and θ ∈ R such that

P
(
δ
√

n
(
tn − θ

)
< x
)
=⇒ Φ(x). (25)

Lemma 7 ([51]). Assume that Nn −→ ∞ in probability and the statistic tn is asymptotically
normal in the sense of (25). A distribution function F(x) such that

P
(
δ
√

n
(
tNn − θ

)
< x
)
=⇒ F(x),
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exists if and only if there exists a distribution function H(x) satisfying the conditions

H(0) = 0, F(x) =
∫ ∞

0
Φ
(
x
√

y
)
dH(y), x ∈ R, P(Nn < nx) =⇒ H(x).

The following theorem presents necessary and sufficient conditions for the conver-
gence of the distributions of statistics, which are suggested to be asymptotically normal in
the traditional sense but are constructed from samples with random sizes, to the generalized
Student distribution.

Proposition 12. Let α ∈ (0, 2], r > 1
α . Assume that the random variables X1, X2, . . . and

N1, N2, . . . satisfy the conditions specified above. Moreover, let Nn → ∞ in probability and let the
statistic tn be asymptotically normal in the sense of (25). Then, the distribution of the statistic tNn

constructed from samples with random sizes Nn converges to the generalized Student law Fr,α(x);
that is,

P
(
δ
√

n
(
tNn − θ

)
< x
)
=⇒ Fr,α(x),

if and only if
Nn

n
=⇒ D−1

r,α
d
= 2U2,α/2 ◦ Gr,α/2,r. (26)

Proof. This statement is a direct consequence of (14) and Lemma 7 with H(x) = P(D−1
r,α < x).

As an example of an application of Proposition 12, consider the following statement
establishing necessary and sufficient conditions for the sample quantiles to have the gener-
alized Student asymptotic distribution.

In addition to the notation introduced above, for each n ∈ N, let X(1), X(2), . . . , X(n) be
order statistics constructed from the sample X1, X2, . . . , Xn so that X(1) ≤ X(2) ≤ . . . ≤ X(n).
Assume that the common distribution of Xj is absolutely continuous and denote the
corresponding probability density as p(x). Let q ∈ (0, 1). The quantile of order q of the
random variable X1 will be denoted ξq. For a fixed n ∈ N, define the sample quantile as
X([nq]+1), where [a] stands for the integer part of a real number a. The following Lemma is
a particular case of a result from [52].

Lemma 8. Assume that the density p(x) is differentiable in the neighborhood of ξq and p(ξq) �= 0.
Then, as n → ∞,

p(ξq)√
q(1 − q)

· √n
(
X([nq]+1) − ξq

)
=⇒ X.

This statement means that the sample quantile X([nq]+1) is asymptotically normal in
the sense of (25) with δ = p(ξq)/

√
q(1 − q) and θ = ξq.

In [4], an example was presented of the convergence of the distributions of some
statistics constructed from samples with random sizes to the classical Student distribution.
In that paper, it was assumed that the sample size had a negative binomial distribution.
Here, we will present a generalization of this result. As is known, the negative binomial
distribution considered in [4] is a mixed Poisson distribution with a mixing gamma distri-
bution. A random variable N with a negative binomial distribution can be represented as
N = Π(Gr,λ), where r > 0, λ > 0, and Π(t) is the Poisson process with the unit intensity
independent of the gamma-distributed random variable Gr,λ. Here, we will use the same
construction and assume that for each n ∈ N, the random sample size Nn has the mixed
Poisson distribution of the form

Nn = Π(nD−1
r,α ). (27)

With α = 2 the random variable D−1
r,α obviously turns into Gr,r so that, as in this case,

we deal with the negative binomially distributed sample size considered in [4].
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Corollary 7. Let α ∈ (0, 2] where r > 1
α . Let the random variable Nn be defined as (27) and

be independent of the sequence X1, X2, . . . for each n ∈ N. Then, the distribution of the sample
quantiles constructed from samples with random sizes Nn converges to the generalized Student law
Fr,α(x); that is,

P
( p(ξq)√

q(1 − q)
· √n
(
X([qNn ]+1) − ξq

)
< x
)
=⇒ Fr,α(x).

Proof. It is easy to verify that the random variables Nn defined as (27) satisfy Condition (26)
so that the desired result follows from Proposition 12.

It should be noted that in Proposition 12 and Corollary 6, a non-random normalization
and centering was used for the statistics constructed from samples with random sizes.
This was performed because a reasonable approximation to the distribution of the basic
statistics can be constructed only if both centering and normalizing values are non-random.
Otherwise (that is, if normalization is random depending on the random sample size),
the approximate asymptotic distribution function becomes random itself. For example,
random normalization makes the problem of the evaluation of significance levels from the
asymptotic distribution of the test statistic senseless.

3. Generalized Lomax Distribution

3.1. Definition and Basic Properties of the Generalized Lomax Distribution

The distribution of the random variable

|Tr,α| d
= |Qα| ◦ G−1/α

r,r

will be called a generalized Lomax distribution. When α = 1, this distribution is known as
Lomax distribution. In general, with an arbitrary α ∈ (0, 2], the distribution of |Tr,α| can just
as well be called folded generalized Student or one-sided generalized Student distribution.
However, in what follows, we will keep to the term generalized Lomax distribution.

From (8), it is easy to see that the probability density f ∗r,α(x) of the generalized Lomax
distribution has the form

f ∗r,α(x) =
α

r1/αB(r, 1
α )

(
1 +

xα

r

)−(r+1/α)
, x ≥ 0.

Recall that here, α ∈ (0, 2] and r > 0 so that αr > 1.
The expression for the moments of the generalized Lomax distribution is given by

Proposition 2.

Proposition 13. For α ∈ (0, 1] and r > 1
α , the generalized Lomax distribution is mixed exponential.

Proof. Since |Q1| d
= W1, from Proposition 10, it directly follows that

|Tr,α| d
=
(
U1,α ◦ G1/α

r,r
)−1 ◦ W1. (28)

Corollary 8. For α ∈ (0, 1] and r > 1
α , the generalized Lomax distribution is infinitely divisible.

Proof. The statement follows from Proposition 13 and the result of [41], according to which
it is sufficient that F is mixed exponential in order for a distribution function F(x) such that
F(0) = 0 to be infinitely divisible.
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Proposition 14. For α ∈ (0, 2] and r > 1
α , the scale mixtures of generalized Lomax distributions

are identifiable; that is, if V1 and V2 are two nonnegative random variables, then the equality

|Tr,α| ◦ V1
d
= |Tr,α| ◦ V2 implies V1

d
= V2 .

Proof. The proof is similar to that of Proposition 6.

The generalized Lomax distribution can be just as well defined in terms of only (gen-
eralized) gamma distributions or only exponential power distributions, as is demonstrated
in the following statement implied by Relationship (5).

Proposition 15. For α ∈ (0, 2] and r > 1
α , the following relationships hold:

|Tr,α| d
=
(
r|Qα| ◦ |Q1/r|−1/r)1/α d

=
(
rG1/α,1 ◦ |Q1/r|−1/r)1/α d

=

d
=
(
G1/α,r ◦ |Q1/r|−1/r)1/α d

=
(
G1/α,r ◦ G−1

r,1
)1/α. (29)

3.2. Generalized Lomax Distribution as a Scale Mixture of Folded Normal Distributions

From Proposition 7, we obviously obtain the following statement.

Corollary 9. For any α ∈ (0, 2] and any r > 1
α , the generalized Lomax distribution is a scale

mixture of folded normal distributions:

|Tr,α| d
=
√

Dr,α ◦ |X|, (30)

where
Dr,α

def
= 1

2
(
U2,α/2 ◦ G2/α

r,r
)−1 d

= 1
2
(
U2,α/2 ◦ Gr,α/2,r

)−1,

so that
P(|Tr,α| < x) = 2

∫ ∞

0
Φ
( x√

y

)
dP(Dr,α < y)− 1. (31)

Moreover, if α ∈ (0, 1], then Dr,α
d
= 2W1 ◦

(
U1,α ◦ G1/α

r,r
)−2.

3.3. Convergence of the Distributions of Maximum and Minimum Random Sums to the
Generalized Lomax Distribution

In this section, it will be demonstrated that the generalized Lomax distribution can be
the limit law for maximum sums of a random number of independent random variables
(maximum random sums), minimum random sums, and absolute values of random sums.

In addition to the notation Sn = X1 + . . . + Xn introduced in Section 2.3, for n ∈ N,
denote Sn = max1≤i≤n Si, where Sn = min1≤i≤n Si. The random variables X1, X2, . . .
will be assumed to satisfy the Lindeberg condition (22). It is well-known that under
these assumptions, not only does P

(
Sn < Bnx

)
=⇒ Φ(x) (see Section 2.3), but also

P
(
Sn < Bnx

)
=⇒ 2Φ(x)− 1, x ≥ 0, and P

(
Sn < Bnx

)
=⇒ 2Φ(x), x ≤ 0.

Let, as usual, N1, N2, . . . be a sequence of nonnegative random variables such that
for each n ∈ N the random variables Nn, X1, X2, . . . are independent. For n ∈ N, let
SNn = X1 + . . . + XNn , SNn = max1≤i≤Nn Si, and SNn = min1≤i≤Nn Si (for definiteness,
assume that S0 = S0 = S0 = 0). Let {dn}n≥1 be an arbitrary infinitely increasing sequence
of positive numbers. Here, the convergence is meant as n → ∞.

Lemma 9 ([44]). Assume that the random variables X1, X2, . . . and N1, N2, . . . satisfy the con-
ditions specified above. In particular, let the Lindeberg Condition (22) hold and let Nn → ∞ in
probability. Then, the distributions of normalized random sums weakly converge to some distribu-
tion; that is, there exists a random variable Y such that d−1

n SNn =⇒ Y if and only if there exists a

nonnegative random variable U such that Y d
=

√
U ◦ X and if any of the following conditions holds:
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(i) d−1
n |SNn | =⇒ |Y|;

(ii) There exists a random variable Y such that d−1
n SNn =⇒ Y;

(iii) There exists a random variable Y such that d−1
n SNn =⇒ Y;

(iv) There exists a nonnegative random variable U such that d−2
n B2

Nn
=⇒ U.

Moreover,

P
(
Y < x

)
= 2EΦ

(
xU−1/2), x ≤ 0; P

(
Y < x

)
= P
(|Y| < x

)
= 2EΦ

(
xU−1/2)− 1, x ≥ 0.

Lemma 9 and Corollary 8 imply the following statement.

Proposition 16. Let α ∈ (0, 2]. Assume that the random variables X1, X2, . . . and N1, N2, . . .
satisfy the conditions specified above. In particular, let the Lindeberg Condition (22) hold. Moreover,
let Nn → ∞ in probability. Then the following five statements are equivalent:

d−1
n SNn =⇒ Tr,α; d−1

n SNn =⇒ |Tr,α|; d−1
n SNn =⇒ −|Tr,α|;

d−1
n |SNn | =⇒ |Tr,α|; d−2

n B2
Nn

=⇒ Dr,α.

3.4. Generalized Lomax Distribution as a Mixed Weibull Distribution (with 1 ≤ α ≤ 2) and as a
Mixed Fréchet Distribution (with 0 < α ≤ 1)

In addition to the auxiliary information presented in the Introduction, in this section,
we will need some more definitions and auxiliary results.

In the paper [53], it was shown that any gamma distribution with a shape parameter
no greater than one is mixed exponential. Namely, the density g(x; r, μ) of a gamma
distribution with 0 < r < 1 can be represented as

g(x; r, μ) =
∫ ∞

0
ze−zx p(z; r, μ)dz,

where

p(z; r, μ) =
μr

Γ(1 − r)Γ(r)
· I[μ, ∞)(z)
(z − μ)rz

. (32)

Moreover, a gamma distribution with a shape parameter r > 1 cannot be represented
as a mixed exponential distribution.

In [54], it was proved that if r ∈ (0, 1), μ > 0, and Gr, 1 and G1−r, 1 are independent
gamma-distributed random variables, then the density p(z; r, μ) defined by (32) corre-
sponds to the random variable

Zr,μ =
μ(Gr, 1 + G1−r, 1)

Gr, 1

d
= μZr,1

d
= μ
(
1 + 1−r

r R1−r,r
)
, (33)

where R1−r,r is a random variable with the Snedecor–Fisher distribution defined by the
probability density

f (x; 1 − r, r) =
(1 − r)1−rrr

Γ(1 − r)Γ(r)
· I(0, ∞)(x)

xr[r + (1 − r)x]
. (34)

In other words, if r ∈ (0, 1), then

Gr, μ
d
= Z−1

r, μ ◦ W1. (35)

In [32], it was proved that if α ≥ 1, then the one-sided EP distribution is a scale mixture
of Weibull distributions:

|Qα| d
= Z−1/α

1/α, 1 ◦ Wα. (36)
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Recall that the random variable W−1
α is said to have an inverse Weibull or Fréchet

distribution:
P(W−1

α < x) = P(Wα ≥ 1
x ) = exp{x−α}, x ≥ 0.

From (5) and Gleser’s result (35), we obtain the following statement.

Proposition 17. (i). If 1 < α ≤ 2 and 1
α < r < 1, then the generalized Lomax distribution is a

scale mixture of Fréchet distributions:

|Tr,α| d
= |Qα| ◦ Z1/α

r,r ◦ W−1
α

d
=
(
G1/α,r ◦ Zr,1

)1/α ◦ W−1
α . (37)

(ii). If 1 < α ≤ 2 and r > 1
α , then the generalized Lomax distribution is a scale mixture of Weibull

distributions:
|Tr,α| d

=
(
Z1/α,1 ◦ Gr,r

)−1/α ◦ Wα. (38)

Proof. Relationship (37) follows from Proposition 15 and (35). Relationship (38) follows
from Proposition 15, (36), and (2) with γ = α.

3.5. Some Limit Theorems for Extreme Order Statistics in Samples with Random Sizes

Proposition 17 states that the generalized Lomax distributions with α ≥ 1 can be
represented as scale mixtures of the Weibull distribution or as scale mixtures of the Fréchet
distribution. In other words, Relationship (38) can be expressed in the following form: for
any x ≥ 0,

P(|Tr,α| < x) =
∫ ∞

0
(1 − e−zxα

)dP(Z1/α,1 ◦ Gr,r < z), (39)

whereas Relationship (37) can be rewritten as

P(|Tr,α| < x) =
∫ ∞

0
e−zx−α

dP(Zr,1 ◦ G1/α,r < z). (40)

At the same time, in the case that 0 < α ≤ 1, Relationship (28) can be written in the form

P(|Tr,α| < x) =
∫ ∞

0
(1 − e−zx)dP(U1,α ◦ G1/α

r,r < z). (41)

As is well known, all the parent distributions in these mixtures can be limiting for
extreme-order statistics.

From (39) and (40), it follows that the generalized Lomax distribution with α ≥ 1
can appear as a limit distribution in limit theorems for extreme-order statistics in samples
with random sizes. To illustrate this, we will consider the limit setting dealing with the
max-compound and min-compound doubly stochastic Poisson processes.

Recall that the definition of a doubly stochastic Poisson process (Cox process) was
given in Section 2.3.

Now, let N(t), where t ≥ 0, be the a doubly stochastic Poisson process (Cox process)
lead by the process L(t). Let T1, T2, . . . be the jump points of the process N(t). Consider
a marked Cox point process {(Ti, Xi)}i≥1, where X1, X2, . . . are independent identically
distributed random variables independent of the process N(t). Most studies dealing with
the point process {(Ti, Xi)}i≥1 deal with a traditional compound Cox process S(t) defined
for each t ≥ 0 as the sum of all marks Xi of the points Ti of the marked Cox point process
that do not exceed the time t. In S(t), the compounding operation is summation. In many
applied problems, of no less importance are the other functions of the marked Cox point
process {(Ti, Xi)}i≥1: the so-called max-compound Cox process or min-compound Cox
process that differ from S(t) in that the compounding operation of summation is replaced
by the operation of taking the maximum or minimum of the marking random variables,
respectively. The analytic and asymptotic properties of max-compound and min-compound
Cox processes were considered in [55–57].
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Let N(t) be a Cox process. The process M(t) defined as

M(t) =

⎧⎨⎩−∞, if N(t) = 0,

max
1≤k≤N(t)

Xk, if N(t) ≥ 1,

where t ≥ 0, is called a max-compound Cox process.
The process m(t) defined as

m(t) =

⎧⎨⎩+∞, if N(t) = 0,

min
1≤k≤N(t)

Xk, if N(t) ≥ 1,

where t ≥ 0, is called a min-compound Cox process.
The common distribution function of the random variables Xj will be denoted F(x).

In what follows, we will use the conventional notation

lext(F) = inf{x : F(x) > 0}, rext(F) = sup{x : F(x) < 1}.

Lemma 10. Assume that there exists a positive infinitely increasing function d(t) and a positive
random variable L such that

L(t)
d(t)

=⇒ L (42)

as t → ∞. Let us also assume that lext(F) > −∞ and the distribution function PF(x) ≡
F
(
lext(F)− x−1) satisfies the condition that there exists a number γ > 0 such that for any x > 0

lim
y→∞

PF(yx)
PF(y)

= x−γ. (43)

Then, there exist functions a(t) and b(t) such that

P
(m(t)− a(t)

b(t)
< x
)
=⇒ H(x)

as t → ∞, where

H(x) =

⎧⎪⎨⎪⎩
∫ ∞

0
(1 − e−zxγ

)dP(L < z), x ≥ 0,

0, x < 0.

Moreover, the functions a(t) and b(t) can be defined as

a(t) = lext(F), b(t) = sup
{

x : F(x) ≤ 1
d(t)

}
− lext(F). (44)

Proof. This lemma can be proved in the same way as Theorem 2 in [55] dealing with max-
compound Cox processes using the fact that

min{X1, . . . , XN(t)} = −max{−X1, . . . ,−XN(t)}.

Proposition 18. Let 0 < α ≤ 1, r > 1
α . Assume that there exists a positive infinitely increasing

function d(t) such that condition (42) holds with

L d
= U1,α ◦ G1/α

r,r .
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Let us also assume that lext(F) > −∞ and the distribution function PF(x) ≡ F
(
lext(F)−

x−1) satisfies Condition (43) with γ = 1. Then, there exist functions a(t) and b(t) such that

m(t)− a(t)
b(t)

=⇒ |Tr,α| (45)

as t → ∞. Moreover, the functions a(t) and b(t) can be defined by (44).

Proof. This statement directly follows from Lemma 10 with the account of (41).

Proposition 19. Let 1 ≤ α ≤ 2, where r > 1
α . Assume that there exists a positive infinitely

increasing function d(t) such that Condition (42) holds with

L d
= Z1/α,1 ◦ Gr,r.

Let us also assume that lext(F) > −∞ and the distribution function PF(x) ≡ F
(
lext(F)−

x−1) satisfies Condition (43) with γ = α. Then, there exist functions a(t) and b(t) such that

m(t)− a(t)
b(t)

=⇒ |Tr,α| (46)

as t → ∞. Moreover, the functions a(t) and b(t) can be defined by (44).

Proof. This statement directly follows from Lemma 10 with the account of (39).

Lemma 11. Assume that there exist a positive infinitely increasing function d(t) and a nonnegative
random variable L such that Condition (42) holds. Let us also assume that rext(F) = ∞ and there
exists a positive number γ such that

lim
y→∞

1 − F(yx)
1 − F(y)

= x−γ (47)

for any x > 0. Then, there exist a positive function b(t) and a distribution function H1(x) such
that

P
(M(t)

b(t)
< x
)
=⇒ H1(x)

as t → ∞. Moreover,

H1(x) =

⎧⎪⎨⎪⎩
0, x < 0,∫ ∞

0
e−zx−γ

dP(L < z), x ≥ 0,

and the function b(t) can be defined as

b(t) = inf
{

x : 1 − F(x) ≤ 1
d(t)

}
. (48)

Proposition 20. Let 1 ≤ α ≤ 2, r > 1
α . Assume that there exists a positive infinitely increasing

function d(t) such that Condition (42) holds with

L d
= Zr,1 ◦ G1/α,r.

Let us also assume that rext(F) = ∞ and Condition (47) holds with γ = α. Then, there exists
a positive function b(t) such that

M(t)
b(t)

=⇒ |Tr,α| (49)

as t → ∞. Moreover, the function b(t) can be defined by (48).
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Proof. This statement directly follows from Lemma 10 with the account of (40).

It is very simple to give examples of processes satisfying the conditions described
in Propositions 18 and 19. Let L(t) ≡ Ut and d(t) ≡ t, where t ≥ 0, where U is a
positive random variable. Then, choosing an appropriately distributed U, we can provide
the validity of the corresponding condition for the convergence of L(t)/d(t). Moreover,
the parameter t may not have the meaning of physical time. For example, it may be some
location parameter of L(t), so that the statements of this section concern the case of the
large mean intensity of the Cox process.

3.6. Convergence of the Distributions of Mixed Geometric Random Sums to the Generalized Lomax
Distribution And Extensions of the Rényi Theorem

In the preceding section, we made sure that the generalized Lomax distribution
can be limiting for extreme-order statistics in samples of random sizes. Here, it will be
demonstrated that this distribution can also be used as an asymptotic approximation for
the distributions of sums of independent random variables.

According to Proposition 13, if α ∈ (0, 1] and r > 1
α , then the generalized Lomax

distribution is mixed exponential. According to Corollary 7, it is infinitely divisible and
hence, by the Lévy–Khintchin theorem, can be limiting for sums of independent random
variables in the double array limit scheme under the condition of the uniform negligibility
of summands.

However, the classical summation scheme is far from the only summation model
within which the generalized Lomax distribution can be an asymptotic distribution. To be
sure of this, consider two limit settings dealing with mixed geometric and mixed Pois-
son random sums. In both of these settings, we will deal with versions of the law of
large numbers for random sums where, unlike the classical situation, the limit may be
random [45].

First, consider mixed geometric random sums.
Let p ∈ (0, 1) and let Vp be a random variable having a geometric distribution with

the parameter p: P(Vp = k) = p(1 − p)k−1, k = 1, 2, . . . . This means that

P(Vp > m) =
∞

∑
k=m+1

p(1 − p)k−1 = (1 − p)m

for any m ∈ N. Let (πn)n≥1 be a sequence of positive random variables taking values in
the interval (0, 1), and, moreover, for each n ≥ 1 and all p ∈ (0, 1), the random variables
πn and Vp are independent.

For each n ∈ N, let Nn = Vπn . Hence,

P(Nn > m) =
∫ 1

0
(1 − z)m dP(πn < z) (50)

for any m ∈ N. The distribution of the random variable Nn will be called πn-mixed geometric
(for more details, see [58]).

Let X1, X2, . . . be a sequence of independent identically distributed random variables
such that the expectation EX1 exists. Assume that EX1 ≡ a �= 0. According to the
Kolmogorov strong law of large numbers, this condition implies that

1
na

n

∑
j=1

Xj −→ 1 (51)

almost surely as n → ∞.
For n ∈ N, let Sn = X1 + · · ·+ Xn. Let Nn be a random variable with a πn-mixed

geometric distribution (50). Assume that for each n ∈ N, the random variable Nn is inde-
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pendent of the sequence X1, X2, . . . . Our nearest aim is to study the asymptotic behavior of
the random sum SNn as n → ∞.

Lemma 12 ([58]). Assume that the random variables X1, X2, . . . satisfy Condition (51). Let for
each n ∈ N the random variable Nn have a πn-mixed geometric distribution (50) and be independent
of the sequence X1, X2, . . . . Assume that there exists a positive random variable N such that

nπn =⇒ N

as n → ∞. Then
SNn

n
=⇒ aN−1 ◦ W1 (n → ∞).

Proposition 21. Let α ∈ (0, 1] and r > 1
α . Assume that the random variables X1, X2, . . .

satisfy Condition (51). Let for each n ∈ N the random variable Nn have a πn-mixed geometric
distribution (50) and be independent of the sequence X1, X2, . . . . Assume that

nπn =⇒ U1,α ◦ G1/α
r,r (52)

as n → ∞. Then,
lim

n→∞
sup
x≥0

∣∣P(SNn < na · x)− P(|Tr,α| < x)
∣∣ = 0.

Proof. By Lemma 12 with N d
= U1,α ◦ G1/α

r,r and (28), Condition (52) implies

SNn

na
=⇒ (U1,α ◦ G1/α

r,r
)−1 ◦ W1

d
= |Tr,α|. (53)

Now it remains for us to refer to the Dini theorem, according to which, since the distribution
function of the limit random variable is continuous, convergence in distribution (53) implies
the uniform convergence of the distribution functions.

Proposition 21 is an example of extension of the famous Rényi theorem on the asymp-
totic behavior of the distributions of geometric sums (or rarefied renewal processes) [59]
to the case of mixed geometric sums. In turn, the Rényi theorem can be regarded as an
example of the law of large numbers for geometric random sums.

Now, we turn to mixed Poisson random sums. For each n ∈ N, define the random
variable Nn as Nn = Π(Ln), where Π(t), with t ≥ 0, is the Poisson process with unit inten-
sity and Ln is a positive random variable independent of the process Π(t). The distribution
of Nn is a mixed Poisson distribution, as follows:

P(Nn = k) =
1
k!

∫ ∞

0
e−uukdP(Ln < u), k = 0, 1, 2, . . . (54)

Proposition 22. Let α ∈ (0, 2] and let r > 1
α . Assume that the random variables X1, X2, . . . satisfy

Condition (51). Let for each n ∈ N the random variable Nn have a mixed Poisson distribution (54).
Then,

lim
n→∞

sup
x

|P(SNn < na · x)− P(|Tr,α| < x)
∣∣ = 0

if and only if
Ln

n
=⇒ Dr,α

d
= 1

2
(
U2,α/2 ◦ Gr,α/2,r

)−1.

Proof. This statement is the direct consequence of Theorem 1 in [60] and the Dini theorem
mentioned above.
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Abstract: We investigate the complete convergence for weighted sums of sequences of negative
dependence (ND) random variables and p-th moment convergence for weighted sums of sequences
of ND random variables under sublinear expectation space. Using moment inequality and trunca-
tion methods, we prove the equivalent conditions of complete convergence for weighted sums of
sequences of ND random variables and p-th moment convergence for weighted sums of sequences of
ND random variables under sublinear expectation space.
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1. Introduction

The nonadditive probabilities theory and nonadditive expectations theory are useful
tools for researching measures of risk, uncertainties in statistics, non-linear stochastic calcu-
lus and superhedging in finance, cf. Peng [1,2], Denis [3], Gilboa [4], Marinacci [5]. This
paper considers the general sublinear expectations which were introduced by Peng [6–8]
in a general space by relaxing the linear property of the classical expectation to the sub-
additivity and positive homogeneity (cf. Definition 1 below). The sublinear expectation
conception provided a very flexible framework to model the problems which are not
additive. Inspired by the work of Peng, researchers have tried to study lots of limit the-
orems under linear expectation space to extend the corresponding results in probability
and statistics. Zhang [9–11] studied the exponential inequalities, Rosenthal’s inequali-
ties, Hölder’s inequalities and Donsker’s invariance principle under sublinear expectation
space. Chen [12–14] studied the strong laws of large numbers, the weak laws of large
numbers, and the large deviation for ND random variables under sublinear expectations,
respectively. Wu [15] obtained precise asymptotics for complete integral convergence
under sublinear expectation space. For more research about limit theorems of sublin-
ear expectation space, the reader could refer to the articles of Hu and Peng [15], Li and
Li [16], Liu [17], Ding [18], Wu [19], Guo and Zhang [20,21], Dong and Tan [22].

Recently, Guo and Shan [23] studied equivalent conditions of complete q-th moment
convergence for sums of sequences of negatively orthant dependent (NOD) variables
under the classical space. Xu and Cheng [24,25] obtained equivalent conditions of complete
convergence for sums of independence identical distribution (i.i.d.) random variables
sequences and p-th moment convergence for sums of i.i.d. random variables sequences
under sublinear expectation space. ND sequences have wide applications in penetration
theory, multivariable statistics, etc. Therefore, it is necessary to generalize the properties of
independent sequences to ND sequences. Hence, it is meaningful to extend the results of
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Xu and Cheng [24,25] to ND random variables under sublinear expectation space. In this
paper, we try to prove the equivalent conditions of complete convergence random variables
and p-th moment convergence for weighted sums of sequences of ND random variables
under sublinear expectation space.

2. Preliminaries

We use the framework of Peng [8]. Suppose that (Ω,F ) is a given measurable space, H
is a linear space of real functions defined on Ω such that IA ∈ H, where A ∈ F , IA denotes
the indicator function of A, and if (X1, X2, . . . , Xn) ∈ H, then ϕ(X1, X2, . . . , Xn) ∈ H for
each ϕ ∈ Cl,Lip(R

n), where Cl,Lip(R
n) is the linear space of local Lipschitz continuous

functions ϕ satisfying

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|m + |y|m)|x − y|, ∀x, y ∈ R
n,

for some C > 0, m ∈ N depending on ϕ. We also denote Cb,Lip(R
n) as the linear space of

bounded Lipschitz continuous functions, for some C > 0, ϕ satisfying

|ϕ(x)− ϕ(y)| ≤ C|x − y|, ∀x, y ∈ R
n.

Definition 1. A sublinear expectation E on H is a function E : H → R satisfying the following
properties: for all X, Y ∈ H, we have

(1) Monotonicity: if X ≥ Y then E[X] ≥ E[Y] ;
(2) Constant preserving: E[c] = c;
(3) Sub-additivity: E[X +Y] ≤ E[X] +E[Y] whenever E[X] +E[Y] is not of the form +∞−∞

or −∞ + ∞;
(4) Positive homogeneity: E[λX] = λE[X], λ ≥ 0.

Here, R = [−∞, ∞]. The triple (Ω,H,E) is called a sublinear expectation space. Give a
sublinear expectation E, let us denote the conjugate expectation E of E by

E [X] := −E[−X], ∀X ∈ H.

A set function V : F  → [0, 1] is called a capacity if

(1) V(∅) = 0, V(Ω) = 1;
(2) V(A) ≤ V(B), A ⊂ B, A, B ∈ F .

In this paper, given a sublinear expectation space (Ω,H,E), we set the capacity
V(A) := E[IA] for A ∈ F . We set the Choquet expectations CV by

CV :=
∫ 0

−∞
(V(X ≥ x)− 1) +

∫ ∞

0
V(X ≥ x)dx.

Definition 2. Let X1 be a n-dimensional random vector defined in sublinear expectation space
(Ω1,H1,E1) and X2 be a n-dimensional random vector defined in sublinear expectation space

(Ω2,H2,E2). They are called ’identically distributed’, denoted by X1
d
= X2, if

E1[ϕ(X1)] = E2[ϕ(X2)], ∀ϕ ∈ Cb,Lip(Rn).

Definition 3. In a sublinear expectation space (Ω,H,E), a random vector Y = (Y1, . . . , Yn), Yi ∈
H is said to be independent to another random vector X = (X1, . . . , Xm), Xi ∈ H under E if

E[ϕ(X, Y)] = E[E[ϕ(x, Y)]|x=X ], ∀ϕ ∈ Cb,Lip(Rm ×Rn).

Random variables {Xn, n ≥ 1} are said to be independent, if Xi+1 is independent to (X1, . . . , Xi)
for each i ≥ 1.
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From the definition of independence, it is easily seen that, if Y is independent to X
and X, Y ∈ L , L = {X ∈ H : E[|X|] < ∞}. X ≥ 0,E[Y] ≥ 0, then

E[XY] = E[X]E[Y].

Further, if Y is independent to X and X, Y ∈ L and X ≥ 0, Y ≥ 0, then

E [XY] = E [X]E [Y].

Definition 4. A sequence of random variables {Xn, n ≥ 1} is said to be i.i.d., if Xi
d
= X1 and

Xi+1 is independent to (X1, . . . , Xi) for each i ≥ 1.

Definition 5. (i) In a sublinear expectation space (Ω,H,E), a random vector Y = (Y1, . . . , Yn),
Yi ∈ H is said to be ND to another random vector X = (X1, . . . , Xm), Xi ∈ H under E if for
each pair of test functions ϕ1 ∈ Cl,Lip(Rm) and ϕ2 ∈ Cl,Lip(Rn), we have E[ϕ1(X)ϕ2(Y)] ≤
E[ϕ1(X)]E[ϕ2(Y)] whenever ϕ1(X) ≥ 0, E[ϕ2(Y)] ≥ 0, E[ϕ1(X)ϕ2(Y)] < ∞, E[ϕ1(X)] <
∞, E[ϕ2(Y)] < ∞, and either ϕ1 and ϕ2 are coordinate-wise non-increasing.
(ii) Let {Xn, n ≥ 1} be a sequence of random variables in the sublinear expectations. X1, X2, . . . are
said to be ND if Xi+1 is ND to (X1, . . . , Xi) for each i ≥ 1.

From the definition of independence and ND, if Y is independent to X, then Y is ND
to X. Furthermore, let {Xn, n ≥ 1} be a sequence of independent random variables and
f1(x), f2(x), . . . ∈ Cl,Lip(R), then { fn(Xn), n ≥ 1} is also a sequence of independent random
variables; let {Xn, n ≥ 1} be a sequence of ND random variables, f1(x), f2(x), . . . ∈ Cl,Lip(R)
are non-decreasing (non-increasing) functions, then { fn(Xn), n ≥ 1} is also a sequence
of ND.

In the sequel we suppose that E is sub-additive. Let C denote a positive constant
which may differ from place to place. an ! bn denote that there exists a constant C > 0
such that an ≤ Cbn for n large enough, an ≈ bn means that an ! bn and bn ! an, log x
means ln(max{e, x}). I(A) or IA represents the indicator function of A.

We present several necessary lemmas to prove our main results.

Lemma 1 ([9]). Let p, q > 1 be two real numbers satisfying 1
p + 1

q = 1. Then, for two random

variables X, Y in (Ω,H,E) we have E[|XY|] ≤ (E[|X|p]) 1
p (E[|X|q]) 1

q .

Lemma 2 ([9]). If E is countably subadditive and CV(|X|) < ∞, then

E[|X|] ≤ CV(|X|).

Lemma 3 ([9]). Suppose that Xk is ND to (Xk+1, . . . , Xn) for each k = 1, . . . , n − 1, or Xk+1 is
ND to (X1, . . . , Xk) for each k = 1, . . . , n − 1. Then, for p ≥ 2,

E

[
max
k≤n

|Sk|p
]
≤ Cp

⎧⎨⎩ n

∑
k=1

E[|Xk|p] +
(

n

∑
k=1

E

[
|Xk|2

])p/2

+

(
n

∑
k=1

(
(E [Xk])

− + (E[Xk])
+
))p
⎫⎬⎭,

where Sk =
k
∑

i=1
Xk, Cp is a positive constant depending only on p.
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Lemma 4 ([24]). Let Y be a random variable under sublinear expectation space (Ω,H,E). Then,
for any α > 0, γ > 0, and β > −1

(i)
∫ ∞

1
uβCV(|Y|α I(|Y| > uγ))du ≤ CCV(|Y|(β+1)/γ+α),

(ii)
∫ ∞

1
uβ log(u)CV(|Y|α I(|Y| > uγ))du ≤ CCV(|Y|(β+1)/γ+α) log(1 + |Y|).

Lemma 5. Let {Xn, n ≥ 1} be a sequence of ND random variables under sublinear expectation
space (Ω,H,E). Then, the condition that for all x > 0,

lim
n→∞

V

(
max

1≤j≤n
|Xj| > x

)
= 0, (1)

implies that there exist constants C such that for all x > 0, and n large enough,[
1 −V

(
max

1≤j≤n
|Xj| > x

)]2 n

∑
j=1

V
(|Xj| > x

) ≤ CV
(

max
1≤j≤n

|Xj| > x
)

. (2)

Proof. Write αn = V

(
max

1≤j≤n
|Xj| > x

)
. Without the loss of generality, we may assume that

αn > 0. Since {I(Xk > x)−EI(Xk > x), k ≥ 1} and {I(Xk < −x)−EI(Xk < −x), k ≥ 1}
are sequences of ND under sublinear expectation space, denote Ak = (Xk > x), Bk = (Xk <
−x), Dk = (|Xk| > x), combining Cr inequality and Lemma 3 results in

E

[
n

∑
k=1

(I(Ak)−EI(Ak))

]2

≤C
n

∑
k=1

E

[
(I(Ak)−EI(Ak))

2
]
+ C

(
n

∑
k=1

(
(E [I(Ak)−EI(Ak)])

− + (E[I(Ak)−EI(Ak)]
)+)2

≤C
n

∑
k=1

E

[
(I(Ak)−V(Ak))

2
]
+ C

(
n

∑
k=1

2E[|I(Ak)−EI(Ak)|]
)2

≤C
n

∑
k=1

E

[
I(Ak)− (V(Ak))

2
]
+ C

(
n

∑
k=1

E[I(Ak)−V(Ak)]

)2

≤C
n

∑
k=1

V(Ak) + C

(
n

∑
k=1

V(Ak)

)2

.

In the same way, we could obtain

E

[
n

∑
k=1

(I(Bk)−EI(Bk))

]2

≤ C
n

∑
k=1

V(Bk) + C

(
n

∑
k=1

V(Bk)

)2

.

It follows that

E

[
n

∑
k=1

(I(Dk)−EI((Dk))

]2

≤E

[
n

∑
k=1

((I(Ak)−EI(Ak)) + (I(Bk)−EI(Bk))

]2
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≤2E

[
n

∑
k=1

(I(Ak)−EI(Ak))

]2

+ 2E

[
n

∑
k=1

(I(Bk)−EI(Bk))

]2

≤C
n

∑
k=1

V(Ak) + C

(
n

∑
k=1

V(Ak)

)2

+ C
n

∑
k=1

V(Bk) + C

(
n

∑
k=1

V(Bk)

)2

≤C
n

∑
k=1

V(Dk) + C

(
n

∑
k=1

V(Dk)

)2

.

Similar to the proof of Lemma 2.5 in Xu [24], by positive homogeneity of sublinear
expectation space, Lemma 1 and the subadditivity of expectations, we conclude that

n

∑
k=1

V(Dk) =
n

∑
k=1

E[I(Dk)] =
n−2

∑
k=1

E[I(Dk)] +E[I(Dn−1) +E[I(Dn)]]

=
n−2

∑
k=1

E[I(Dk)] +E[I(Dn−1) + I(Dn)] = . . . = E

[
I(D1) +E

[
n

∑
k=2

I(Dk)

]]

=E

[
n

∑
k=1

I(Dk)

]
= E

⎡⎣ n

∑
k=1

I(Dk

n⋃
j=1

Dj)

⎤⎦ = E

⎡⎣ n

∑
k=1

I(Dk)I(
n⋃

j=1

Dj)

⎤⎦
≤E

⎡⎣ n

∑
k=1

(I(Dk)−EI(Dk))I

⎛⎝ n⋃
j=1

Dj

⎞⎠⎤⎦+ n

∑
k=1

V(Dk)V

⎛⎝ n⋃
j=1

Dj

⎞⎠

≤
⎛⎝E[ n

∑
k=1

(I(Dk)−EI(Dk))

]2

E

⎡⎣I

⎛⎝ n⋃
j=1

Dj

⎞⎠⎤⎦⎞⎠ 1
2

+ αn

n

∑
k=1

V(Dk)

≤
⎛⎝Cαn

⎛⎝ n

∑
k=1

V(Dk) +

(
n

∑
k=1

V(Dk)

)2
⎞⎠⎞⎠ 1

2

+ αn

n

∑
k=1

V(Dk)

≤Cα
1
2
n

n

∑
k=1

V(Dk) +
1
2

(
Cαn

1 − αn
+ (1 − αn)

n

∑
k=1

V(Dk)

)
+ αn

n

∑
j=1

V(Dk).

which combined with (1) results in (2) immediately. Therefore the proof is finished.

Lemma 6 ([25]). Assume that Y is a random variable under sublinear expectation space (Ω,H,E).
Then, for p > 0, q > 0, r > 0, the following is equivalent:
(i) ⎧⎨⎩

CV(|Y|p) < ∞, for p > r/q,
CV(|Y|r/q log |Y|) < ∞, for p = r/q,
CV(|Y|r/q) < ∞, for p < r/q.

(ii) ∫ ∞

1
dy
∫ ∞

1
yr−1

V(|Y| > x1/pyq)dx < ∞.

Lemma 7 ([25]). Assume that Y is a random variable under sublinear expectation space (Ω,H,E).
Then, for p > 0, q > 0, r > 0, the following is equivalent:
(i) ⎧⎨⎩

CV(|Y|p) < ∞, for p > r/q,
CV(|Y|r/q log2 |Y|) < ∞, for p = r/q,
CV(|Y|r/q log |Y|) < ∞, for p < r/q.

(ii) ∫ ∞

1
dy
∫ ∞

1
yr−1

V(|Y| > x1/pyq)dx < ∞.
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3. Main Results

Our main results are as follows.

Theorem 1. Assume that {Xn, n ≥ 1} is a ND random variables sequence under sublinear
expectation space (Ω,H,E), which is identically distributed as X. Suppose that r > 1, q > 1

2 ,
β + q > 0, moreover, for 1

2 < q ≤ 1,

E(X) = −E(−X) = 0.

Furthermore, let {ani ≈ (i/n)β(1/n)q, 1 ≤ i ≤ n, n ≥ 1} be a triangular array of real
numbers. Then, the following is equivalent:
(i) ⎧⎨⎩

CV(|X|r/q) < ∞, for β > −q/r,
CV(|X|(r−1)/(q+β)) < ∞, for − q < β < −q/r,
CV(|X|r/q log(1 + |X|)) < ∞, for β = −q/r.

(3)

(ii)

∞

∑
n=1

nr−2
V

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ > ε

)
< ∞, ∀ε > 0 (4)

Theorem 2. Assume that {Xn, n ≥ 1} is a ND random variables sequenceunder sublinear
expectation space (Ω,H,E), which is identically distributed as X. Suppose that r > 1, q > 1

2 ,
β > −q/r, moreover, for 1

2 < q ≤ 1,

E(X) = −E(−X) = 0.

Furthermore, let {ani ≈ (i/n)β(1/n)q, 1 ≤ i ≤ n, n ≥ 1} be a triangular array of real
numbers. Then the following is equivalent:
(i) ⎧⎨⎩

CV(|X|p) < ∞, for p > r/q,
CV(|X|r/q) < ∞, for p < r/q,
CV(|X|r/q log |X|) < ∞, for p = r/q.

(5)

(ii)

∞

∑
n=1

nr−2CV
⎛⎝( max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣
p

− ε

)+
⎞⎠ < ∞, ∀ε > 0 (6)

Theorem 3. Assume that {Xn, n ≥ 1} is a ND random variables sequence under sublinear
expectation space (Ω,H,E), which is identically distributed as X. Suppose that r > 1, q > 1

2 ,
β = −q/r < 0, moreover, for 1

2 < q ≤ 1,

E(X) = −E(−X) = 0.

Furthermore, let {ani ≈ (i/n)β(1/n)q, 1 ≤ i ≤ n, n ≥ 1} be a triangular array of real
numbers. Then, (6) equivalent to⎧⎨⎩

CV(|X|p) < ∞, for p > r/q,
CV(|X|r/q log |X|) < ∞, for p < r/q,
CV(|X|r/q log2 |X|) < ∞, for p = r/q.

(7)
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Theorem 4. Assume that {Xn, n ≥ 1} is a ND random variables sequence under sublinear
expectation space (Ω,H,E), which is identically distributed as X. Suppose that r > 1, q > 1

2 ,
−q < β < −q/r < 0, moreover, for 1

2 < q ≤ 1,

E(X) = −E(−X) = 0.

Furthermore, let {ani ≈ (i/n)β(1/n)q, 1 ≤ i ≤ n, n ≥ 1} be a triangular array of real
numbers. Then (6) equivalent to⎧⎨⎩

CV(|X|p) < ∞, for p > (r − 1)/(q + β),
CV(|X|(r−1)/(q+β)) < ∞, for p < (r − 1)/(q + β),
CV(|X|(r−1)/(q+β) log |X|) < ∞, for p = (r − 1)/(q + β).

(8)

4. Proof of the Main Results

4.1. Proof of Theorem 1

We first prove (3) ⇒ (4). Choose δ > 0, small enough, and a sufficiently large integer
K. For all 1 ≤ i ≤ n, n ≥ 1, we write

X(1)
ni = −n−τ I(aniXi < −n−τ) + aniXi I(|aniXi| ≤ n−τ) + n−τ I(aniXi > n−τ),

X(2)
ni = (aniXi − n−τ)I(n−τ < aniXi <

ε

K
),

X(3)
ni = (aniXi + n−τ)I(

ε

K
< aniXi < −n−τ),

X(4)
ni = (aniXi + n−τ)I(aniXi ≤ − ε

K
) + (aniXi − n−τ)I(aniXi ≥ ε

K
).

(9)

Obviously, ∑k
i=1 aniXi = ∑k

i=1 X(1)
ni + ∑k

i=1 X(2)
ni + ∑k

i=1 X(3)
ni + ∑k

i=1 X(4)
ni . Notice that(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ ≥ 4ε

)
⊆

4⋃
j=1

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

X(j)
ni

∣∣∣∣∣ ≥ ε

)
. (10)

Thus, in order to establish (4), it suffices to prove that

Ij :=
∞

∑
n=1

nr−2
V

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

X(j)
ni

∣∣∣∣∣ ≥ ε

)
< ∞, j = 1, 2, 3, 4. (11)

In order to estimate I1, we verify that

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

EX(1)
ni

∣∣∣∣∣→ 0 as n → ∞.

By Lemma 2 and (3), we could obtain E|X|1/q < ∞, E|X|r/q < ∞. When q > 1, notice
that |X(1)

ni | ≤ n−τ and |X(1)
ni | ≤ |aniXi|, it follows that

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

EX(1)
ni

∣∣∣∣∣ ≤ k

∑
i=1

E

∣∣∣X(1)
ni

∣∣∣
≤ n−τ(1−1/q)

k

∑
i=1

E|aniXi|1/q

! n−τ(1−1/q)
k

∑
i=1

n−(β+q)/qiβ/q

≈ n−τ(1−1/q) → 0 as n → ∞.
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When 1
2 < q ≤ 1, note that E(X) = −E(−X) = 0, by choosing τ small enough such

that−τ(1 − r/q) + 1 − r < 0, we obtain

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

EX(1)
ni

∣∣∣∣∣ ≤ 2
n

∑
i=1

E|aniXi|I(|aniXi| > n−τ)

≤ 2n−τ(1−r/q)
n

∑
i=1

E|aniXi|r/q

! n−τ(1−r/q)
n

∑
i=1

|ani|r/q

! n−τ(1−r/q)

(
n

∑
i=1

n−r(β+q)/qirβ/q

)

≈

⎧⎪⎨⎪⎩
nτ−r(−τ+β+q)/q, −q < β < −q/r,
n−τ(1−r/q)+1−r log n, β = −q/r,
n−τ(1−r/q)+1−r, β > −q/r,

→ 0 as n → ∞.

Hence, to prove I1 < ∞, it suffices to prove that

I∗1 :=
∞

∑
n=1

nr−2
V

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

(
X(1)

ni −EX(1)
ni

)∣∣∣∣∣ ≥ ε

)
< ∞.

From the property of ND random variables under sublinear expectation space, we
could obtain X(1)

ni is also a sequence of ND random variables under sublinear expectation
space. By Markov’s inequality and Cr’s inequality under sublinear expectation, Lemma 3, it
can be shown that for a suitably large M,

V

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

(
X(1)

ni −EX(1)
ni

)∣∣∣∣∣ ≥ ε

)

!
n

∑
i=1

E

[
|X(1)

ni |M
]
+

(
n

∑
i=1

E

[
|X(1)

ni |2
])M/2

+

(
n

∑
i=1

(
(E [X(1)

ni ])
− + (E[X(1)

ni ])
+
))M

Taking M sufficiently large such that −2 − τM + (τ − β)r/q < −1,−1 − τM + τr/q <
−1, we have

∞

∑
n=1

nr−2
n

∑
i=1

E

[
|X(1)

ni |M
]

!
∞

∑
n=1

nr−2
n

∑
i=1

n−τ(M−r/q)
E

[
|aniXi|r/q

]

≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞
∑

n=1
n−2−τM+(τ−β)r/q, −q < β < −q/r,

∞
∑

n=1
n−1−τM+τr/q log n, β = −q/r,

∞
∑

n=1
n−1−τM+τr/q, β > −q/r,

<∞.
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When r/q ≥ 2, (3) implies EX2 < ∞. Noting that β + q > 0, q > 1/2, we can choose a
sufficiently large M such that r − 2 − M(q + β) < −1, r − 2 − qM + M/2 < −1, then

∞

∑
n=1

nr−2

(
n

∑
i=1

E

[
|X(1)

ni |2
])M/2

!
∞

∑
n=1

nr−2

(
n

∑
i=1

a2
ni

)M/2

≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞
∑

n=1
nr−2−M(q+β), −q < β < −1/2,

∞
∑

n=1
nr−2−qM+M/2(log n)M/2, β = −1/2,

∞
∑

n=1
nr−2−qM+M/2, β > −1/2,

<∞.

When r/q < 2, we could choose a sufficiently large M such that r − 2 − (r + rβ/q +
(2 − r/q)τ)M/2 < −1, r − 2 − (r − 1 + (2 − r/q)τ)M/2 < −1, then

∞

∑
n=1

nr−2

(
n

∑
i=1

E

[
|X(1)

ni |2
])M/2

!
∞

∑
n=1

nr−2n−τM(2−r/q)/2

(
n

∑
i=1

ar/q
ni

)M/2

≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞
∑

n=1
nr−2−(r+rβ/q+(2−r/q)τ)M/2, −q < β < −q/r,

∞
∑

n=1
nr−2−(r−1+(2−r/q)τ)M/2(log n)M/2, β = −q/r,

∞
∑

n=1
nr−2−(r−1+(2−r/q)τ)M/2, β > −q/r,

<∞.

From β + q > 0, q > 1/2, |X(1)
ni | ≤ n−τ and |X(1)

ni | ≤ |aniXi|, choosing a sufficiently
large M such that r − 2− (τ + r − (τ − β)r/q)M < −1, r − 2− (r − 1− τ − τr/q)M < −1,
we obtain

∞

∑
n=1

nr−2

(
n

∑
i=1

(
(E [X(1)

ni ])
− + (E[X(1)

ni ])
+
))M

≤
∞

∑
n=1

nr−2

(
n

∑
i=1

(
E[|X(1)

ni |] +E[|X(1)
ni |]
))M

≤C
∞

∑
n=1

nr−2

(
n

∑
i=1

(
E[n−τ(1−r/q)|aniXi|r/q]

))M

≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞
∑

n=1
nr−2−(r−1−τ−τr/q)M, −q < β < −q/r,

∞
∑

n=1
nr−2−(τ+r−(τ−β)r/q)M(log n)M, β = −q/r,

∞
∑

n=1
nr−2−(τ+r−(τ−β)r/q)M, β > −q/r,

<∞.
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By the definition X(2)
ni , we have 0 < X(2)

ni < ε
K . It follows that

V

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

X(2)
ni

∣∣∣∣∣ ≥ ε

)

=V

(
n

∑
i=1

X(2)
ni ≥ ε

)
≤V
(
there are at least K indices i ∈ [1, n], such that aniXi > n−τ

)
≤ ∑

1≤i1<i2<...<iK≤n
V
(|ani1 Xi1 | > n−τ , . . . , |aniK XiK | > n−τ

)
≤
(

n

∑
i=1

E[I(|ani1 X| > n−τ , . . . , I(|aniK X| > n−τ)]

)

≤
(

n

∑
i=1

E[I(|aniX| > n−τ)]

)K

≤
(

n

∑
i=1

V(|aniX| > n−τ)

)K

.

Hence, by Markov’s inequality under sublinear expectation, it follows that

I2 ≤
∞

∑
n=1

nr−2

(
n

∑
i=1

V(|aniX| > n−τ)

)K

≤ C
∞

∑
n=1

nr−2

(
n

∑
i=1

nrτ/p|ani|r/p
E|X|r/p

)K

≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞
∑

n=1
nr−2−Kr(q+β−τ/q), −q < β < −q/r,

∞
∑

n=1
nr−2−K(r−1−rτ/q) logK n, β = −q/r,

∞
∑

n=1
nr−2−K(r−1−rτ/q), β > −q/r.

Notice that r > 1, q + β > 0, we could choose τ > 0, small enough, and a sufficiently
large integer K such that r − 2 − Kr(q + β − τ/q) < −1 and r − 2 − K(r − 1 − rτ/q) < −1.
Hence, by Lemma 2, we obtain I2 < ∞. Similarly, we could obtain I3 < ∞.

By the definition of X(4)
ni , we have(

max
1≤j≤n

∣∣∣∣∣ j

∑
i=1

X(4)
ni

∣∣∣∣∣ ≥ ε

)
⊆
(

max
1≤i≤n

|aniXi| ≥ ε

K

)
.

Since {ani ≈ (i/n)β(1/n)q}, by Lemma 4, we see that
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I4 ≤
∞

∑
n=1

nr−2
V

(
|aniXi| ≥ ε

K

)
≤

∞

∑
n=1

nr−2
V

(
|X| ≥ ε

K
nq+βi−β

)
≈
∫ ∞

1
xr−2

∫ x

1
V

(
|X| > ε

CK
xq+βy−β

)
dydx (Letting u = xq+β, v = y)

=
1

q + β

∫ ∞

1
du
∫ u1/q

1
u(r−1)/(q+β)−1vβ(r−1)/(q+β)

V

(
|X| ≥ ε

CK
u
)

dv

≈
⎧⎨⎩

C
∫ ∞

1 u(r−1)/(q+β)−1V
(|X| ≥ ε

CK u
)
du ! CV(|X|(r−1)/(q+β)), −q < β < −q/r;

C
∫ ∞

1 ur/q−1 ln(u)V
(|X| ≥ ε

CK u
)
du ! CV(|X|r/q log(1 + |X|)), β = −q/r;

C
∫ ∞

1 ur/q−1V
(|X| ≥ ε

CK u
)
du ! CV(|X|r/q), β > −q/r.

Then by (3), we conclude I4 < ∞. Now we prove (4) ⇒ (3). Since

max
1≤k≤n

|ankXk| ≤ 2 max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣,
applying (4), we have

V

(
max

1≤k≤n
|ankXk| ≥ ε

)
→ 0, n → ∞.

By Lemma 5, it follows that, for all ε > 0

n

∑
i=1

V(|aniXi| ≥ ε) ! V

(
max

1≤k≤n
|ankXk| ≥ ε

)
. (12)

Now, combining (12) with (4) gives

∞

∑
n=1

nr−2
n

∑
i=1

V(|aniXi| ≥ ε) < ∞. (13)

By the process of proof of I4 < ∞, we see that (13) is equivalent to (3). The proof of
Theorem 1 is finished.

4.2. Proof of Theorem 2

We first prove that (5) ⇒ (6). Notice that

∞

∑
n=1

nr−2CV
⎛⎝( max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣
p

− ε

)+
⎞⎠

=
∞

∑
n=1

nr−2
∫ ∞

0
V

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣
p

≥ ε + x

)
dx

=
∞

∑
n=1

nr−2
∫ 1

ε
V

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣
p

≥ x

)
dx +

∞

∑
n=1

nr−2
∫ ∞

1
V

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣
p

≥ x

)
dx

=
∞

∑
n=1

nr−2
∫ 1

ε
V

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ ≥ x1/p

)
dx +

∞

∑
n=1

nr−2
∫ ∞

1
V

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ ≥ x1/p

)
dx

:=I + I I

From Theorem 1, we see that I < ∞. We next establish I I < ∞. Choose 0 < α <
1/p, δ > 0, sufficiently small, and a large enough integer K. For every 1 ≤ i ≤ n, n ≥ 1, we

141



Mathematics 2023, 11, 3494

note the fact that n is sufficiently large to guarantee xαn−τ < x1/p

4K . Without the loss of
restrictions, we could write

Y(1)
ni = −xαn−δ I

(
aniXi < −xαn−τ

)
+ aniXi I

(|aniXi| ≤ xαn−τ
)
+ xαn−δ I

(
aniXi > xαn−τ

)
;

Y(2)
ni = (aniXi − xαn−τ)I

(
xαn−τ < aniXi <

x1/p

4K

)
;

Y(3)
ni = (aniXi + xαn−τ)I

(
− x1/p

4K
< aniXi < −xαn−τ

)
;

Y(4)
ni = (aniXi + xαn−τ)I

(
aniXi ≤ − x1/p

4K

)
+ (aniXi − xαn−τ)I

(
aniXi ≥ x1/p

4K

)
.

It is obvious that ∑k
i=1 aniYi = ∑k

i=1 Y(1)
ni + ∑k

i=1 Y(2)
ni + ∑k

i=1 Y(3)
ni + ∑k

i=1 Y(4)
ni . Notice

that (
max

1≤l≤n

∣∣∣∣∣ l

∑
i=1

aniYi

∣∣∣∣∣ ≥ x1/p

)
⊆

4⋃
j=1

(
max

1≤l≤n

∣∣∣∣∣ l

∑
i=1

Y(j)
ni

∣∣∣∣∣ ≥ x1/p/4

)
.

Thus, in order to establish (6), we only need to prove that

Jj :=
∞

∑
n=1

nr−2
∫ ∞

1
V

(
max

1≤l≤n

∣∣∣∣∣ l

∑
i=1

Y(j)
ni

∣∣∣∣∣ ≥ x1/p/4

)
dx < ∞, j = 1, 2, 3, 4.

In order to estimate J1, we verify that

sup
x≥1

1
x1/p max

1≤l≤n

∣∣∣∣∣ l

∑
i=1

EY(1)
ni

∣∣∣∣∣→ 0 as n → ∞.

Lemmas 1 and 2, and (5) imply that

E|X|1/q < ∞, E|X|r/q < ∞.

When q > 1, since |Y(1)
ni | ≤ xαn−τ and |Y(1)

ni | ≤ |aniXi|, by Lemma 2, it follows that

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

EY(1)
ni

∣∣∣∣∣
≤

n

∑
i=1

E

∣∣∣Y(1)
ni

∣∣∣
≤(xαn−τ)1−1/q

n

∑
i=1

E|aniXi|1/q

!xα(1−1/q)n−τ(1−1/q)
n

∑
i=1

|ani|1/q

≤xα(1−1/q)n−τ(1−1/q)n(r−1)/r

(
n

∑
i=1

|ani|r/q

)1/r

≈xα(1−1/q)n−τ(1−1/q). (14)

Since q > 1, 0 < α < 1, we could know (1 − 1/q)α < α < 1/p. Then by (14), for x ≥ 1,
we obtain

sup
x≥1

1
x1/p max

1≤l≤n

∣∣∣∣∣ l

∑
i=1

EY(1)
ni

∣∣∣∣∣! n−τ(1−1/q) → 0 as n → ∞.

142



Mathematics 2023, 11, 3494

When 1/2 < q ≤ 1, noticing that E(X) = −E(−X) = 0, taking a sufficiently small τ
such that −τ(1 − r/q) + 1 − r < 0, we obtain

max
1≤l≤n

∣∣∣∣∣ l

∑
i=1

EY(1)
ni

∣∣∣∣∣
≤2

n

∑
i=1

E|aniXi|I
(|aniXi| > xαn−τ

)
≤2xα(1−r/q)n−τ(1−r/q)

n

∑
i=1

E|aniXi|r/q

≤2xα(1−r/q)n−τ(1−r/q)
n

∑
i=1

E|ani|r/q

≈xα(1−r/q)n−τ(1−r/q)+1−r.

Observing that 1 − r/q < 0, we have

sup
x≥1

1
x1/p max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

EY(1)
ni

∣∣∣∣∣! n−τ(1−r/q)+1−r → 0 as n → ∞.

Then, to prove J1 < ∞, we only need to show

J∗1 :=
∞

∑
n=1

nr−2
∫ ∞

1
V

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

(
Y(1)

ni −EY(1)
ni

)∣∣∣∣∣ ≥ x1/p

8

)
dx < ∞.

It is obvious that Y(1)
ni is a sequence of negatively dependent random variables under

sublinear expectation space. It follows from Markov’s inequality and Cr’s inequality under
sublinear expectation, Lemma 3, that for a sufficiently large M,

V

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

(
Y(1)

ni −EY(1)
ni

)∣∣∣∣∣ ≥ x1/p

8

)

!x−M/pnM/2−1(log n)M
n

∑
i=1

E[|Y(1)
ni |]M.

Taking a suitably large M such that −(1/p − α)M − rα/q < −1, −2 − τ(M − r/q) +
M/2 < −1, we have

∞

∑
n=1

nr−2+M/2−1(log n)M
n

∑
i=1

∫ ∞

1
x−M/pE[|Y(1)

ni |]Mdx

!
∞

∑
n=1

nr−2+M/2−1n−τ(M−r/q)(log n)M
n

∑
i=1

|ani|r/q
∫ ∞

1
x−M(1/p−α)−rα/qdx

!
∞

∑
n=1

n−2−τ(M−r/q)+M/2 log nM < ∞.

Consequently, we obtain J∗1 < ∞. Similar to the proof of (9), we could obtain

V

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

Y(2)
ni

∣∣∣∣∣ ≥ x1/p/4

)
≤
(

n

∑
i=1

V(|aniX| > xαn−τ)

)K

.

From β > −q/r, and ani ≈ (i/n)β(1/n)q, we obtain

n

∑
i=1

ar/q
ni ≈

n

∑
i=1

n−r(q+β)/qiβr/q ≈ n1−r
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By Maokov’s inequality under sublinear expectations, we conclude that

J2 ≤
∞

∑
n=1

nr−2
∫ ∞

1

(
n

∑
i=1

V(|aniX| > μxαn−τ)

)K

dx

≤ C
∞

∑
n=1

nr−2
∫ ∞

1

(
n

∑
i=1

x−rα/qnrτ/q
E|X|r/q

)K

dx

≈
∞

∑
n=1

nr−2−K(r−1−rτ/q)
∫ ∞

1
x−rKα/qdx.

Since α > 0, r > 1, we could take a sufficiently small τ and sufficiently large K such that
−rKα/q < −1 and −2 + r − K(r − 1 − rτ/q) < −1. It follows that J2 < ∞. Similarly, we
can obtain J3 < ∞. It is obvious that β > −q/r implies β(r − 1)/(q + β) > −1. Then,

∫ s1/q

1
tβ(r−1)/(q+β)dt ≈ s

1
q +

β(r+1)
q(q+β) . (15)

It follows that

J4 ≤
∞

∑
n=1

nr−2
n

∑
i=1

∫ ∞

1
V

(
|aniXi| > x1/p

4K

)
dx

≈
∞

∑
n=1

nr−2
n

∑
i=1

∫ ∞

1
V

(
|X| > x1/p

4CK
nq+βi−β

)
dx

≈
∫ ∞

1
dx
∫ ∞

1
vr−2dv

∫ v

1
V

(
|X| > x1/p

4CK
vq+βu−β

)
du

≈
∫ ∞

1
dx
∫ ∞

1
ds
∫ s1/q

1
s(r−1)/(q+β)−1yβ(r−1)/(q+β)

V

(
|X| > x1/p

4CK
s

)
dy

≈
∫ ∞

1
dx
∫ ∞

1
sr/q−1

V

(
|X| > x1/p

4CK
s

)
ds.

Hence, from Lemma 6 and (5), we obtain J4 < ∞. Now we prove (6) ⇒ (5). By
Markov’s inequality under sublinear expectations, (6), and Lemma 2, we have

∞

∑
n=1

nr−2
V

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ ≥ ε

)

=
∞

∑
n=1

nr−2
E

[
I

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ ≥ ε

)]

≤
∞

∑
n=1

nr−2
E

⎡⎣⎛⎝( max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣
p

− (ε/2)p

)+

/(ε/2)p

⎞⎠I

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ ≥ ε

)⎤⎦
≤

∞

∑
n=1

nr−2
E

⎡⎣⎛⎝( max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣
p

− (ε/2)p

)+

/(ε/2)p

⎞⎠⎤⎦
≤

∞

∑
n=1

nr−2
E

⎡⎣( max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣
p

− (ε/2)p

)+
⎤⎦/(ε/2)p < ∞.

similar proofs of (3.17) are available in Guo [23], we have

V

(
max

1≤k≤n
|ankXk| > ε

)
→ 0, n → ∞.
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By Lemma 5, it follows that, for all ε > 0

n

∑
i=1

V(|aniXi| > ε) ! V

(
max

1≤k≤n
|ankXk| > ε

)
. (16)

Now, combining (16) with (4) gives

∞

∑
n=1

nr−2
∫ ∞

ε

n

∑
i=1

V

(
|aniXi| > x1/p

)
< ∞. (17)

By the process of proof of I4 < ∞, we see that (17) is equivalent to (3). The proof of
Theorem 2 is finished.

4.3. Proof of Theorem 3

From the supposition of Theorem 3, for β = −q/r, one can obtain

n

∑
i=1

ar/q
ni ≈

n

∑
i=1

n−r(q+β)/q log n, (18)

and ∫ s1/q

1
tβ(r−1)/(q+β)dt =

∫ s1/q

1
t−1dt ≈ log s, (19)

By the same argument as the proof of Theorem 2, with Lemma 7 in place of Lemma 6,
together with (18) and (19), we could prove Theorem 3. Therefore, the proof is omitted.

4.4. Proof of Theorem 4

From the supposition of Theorem 4, for β < −q/r, one can obtain

n

∑
i=1

ar/q
ni ≈

n

∑
i=1

n−r(q+β)/qiβr/q ≈ n−r(q+β)/q, (20)

and ∫ s1/q

1
tβ(r−1)/(q+β)dt ≈ C. (21)

By the same argument as the proof of Theorem 2, with (21) in place of (15), we could
prove Theorem 4. Therefore, the proof is omitted.

5. Conclusions

In this paper, using the moment inequality for ND random variables sequences under
sublinear expectation space and the truncation method, the authors establish the equivalent
conditions of complete convergence for sums of ND random variables sequences and p-th
moment convergence for sums of ND random variables sequences. The results extend
the corresponding results from the classical probability space to the sublinear expectation
space, as well as extending i.i.d random variables to ND random variables. In the future,
we will try to establish the corresponding results for other dependent sequences under
sublinear expectation space.
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Abstract: We study classification of random sequences of characters selected from a given alphabet
into two classes characterized by distinct character selection probabilities and length distributions.
The classification is based on the sign of the log-likelihood score (LLS) consisting of a random sum and
a random term depending on the length distributions for the two classes. For long sequences selected
from a large alphabet, computing misclassification error rates is not feasible either theoretically or
computationally. To mitigate this problem, we computed limiting distributions for two versions of the
normalized LLS applicable to long sequences whose class-specific length follows a translated negative
binomial distribution (TNBD). The two limiting distributions turned out to be plain or transformed
Erlang distributions. This allowed us to establish the asymptotic accuracy of the likelihood-based
classification of random sequences with TNBD length distributions. Our limit theorem generalizes a
classic theorem on geometric random sums due to Rényi and is closely related to the published results
of V. Korolev and coworkers on negative binomial random sums. As an illustration, we applied
our limit theorem to the classification of DNA sequences contained in the genome of the bacterium
Bacillus subtilis into two classes: protein-coding genes and standard noncoding open reading frames.
We found that TNBDs provide an excellent fit to the length distributions for both classes and that the
limiting distributions capture essential features of the normalized empirical LLS fairly well.

Keywords: Rényi theorem; sequence classification; classification accuracy; random sum; translated
negative binomial distribution; Kullback–Leibler distance; Erlang distribution; protein-coding gene;
open reading frame

MSC: 60F05; 92D20

1. Introduction

This study concerns classification of sequences of characters selected randomly and
independently of each other from a given alphabet of M ≥ 2 characters. The length, N, of
any such sequence is assumed to be a random variable (rv) independent of the sequence
content. Suppose that there are two models of sequence assembly: one where characters
are selected from the alphabet with positive probabilities p(1), p(2), . . . , p(M) and the
sequence length has a certain distribution P (model A), and another where characters are
selected with positive probabilities q(1), q(2), . . . , q(M) and the length has a distribution Q
(model B). The two vectors of character selection probabilities (or equivalently, probability
measures on {1, 2, . . . , M}) are assumed to be distinct and will be denoted by P and Q.
Then, the model-generating probabilities are PA = P × P and PB = Q× Q.

The sequence classification problem consists of deciding, for a given sequence of
characters C = (C1, C2, . . . , Cn), which model generated this sequence. To simplify our
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notation, in what follows we will adopt the following convention: if Ck is the nk-th character
of the alphabet, then we will write p(Ck) = p(nk) and likewise q(Ck) = q(nk), 1 ≤ k ≤ n.
A natural approach to solving the classification problem is to compare the likelihoods of a
sequence C associated with models A and B:

LA(C) = P(n)Πn
k=1 p(Ck) and LB(C) = Q(n)Πn

k=1q(Ck). (1)

Specifically, if LA(C) > LB(C), then we decide that sequence C is generated by model
A, while in the case where LB(C) > LA(C), the sequence C is attributed to model B (in
the unlikely case where LA(C) = LB(C), the sequence C is not assigned to any model).
Equivalently, denoting by L(C) the log-likelihood

L(C) = log
LA(C)
LB(C)

, (2)

we classify sequence C as being generated by model A if L(C) > 0 and by model B if
L(C) < 0.

Formulas (1) and (2) suggest that the log-likelihood ratio for a randomly and indepen-
dently generated sequence (C1, C2, . . . , CN) of random length N is a rv

X = log
P(N)

Q(N)
+

N

∑
n=1

log
p(Cn)

q(Cn)
= f (N) + U, (3)

where f (N) = log[P(N)/Q(N)] and

U =
N

∑
n=1

Xn (4)

is a random sum generated by independent and identically distributed (iid) rvs

Xn = log
p(Cn)

q(Cn)
.

The expected value of rvs Xn for sequences generated by models P and Q is given by

μP =
M

∑
m=1

p(m) log
p(m)

q(m)
and μQ =

M

∑
m=1

q(m) log
p(m)

q(m)
. (5)

It follows from Jensen’s inequality [1] that μQ < 0, hence also μP > 0. Note that μP repre-
sents the Kullback–Leibler distance [2] between distributions P and Q : μP = dKL(P ,Q)
and similarly μQ = −dKL(Q,P). We denote by σ2

P and σ2
Q the corresponding variances.

An alternative way of looking at rv U arises from the following observation. For 1 ≤
m ≤ M, denote by νm the number of occurrences of the m-th letter of the alphabet in a
random sequence of length N. Then, ν1 + ν2 + . . . + νM = N and

U =
M

∑
m=1

νm log
p(m)

q(m)
. (6)

Suppose the sequence is generated by model A. Note that, conditional on N = n, the ran-
dom vector (ν1, ν2, . . . , νM) follows the multinomial distribution Mult(n; p(1), p(2), . . . p(M)).
In particular, the distribution of rv νm is binomial B(n, p(m)), 1 ≤ m ≤ M. Then, from
Formulas (4)–(6), we obtain the following expression for the expected value of rv U under
model A:

EAU =
∞

∑
n=1

P(N = n)
M

∑
m=1

np(m) log
p(m)

q(m)
= μPEPN. (7)
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Similarly, under model B we have EBU = μQEQN. Thus, rv U is closely related to the
multinomial process with M outcomes and a random number of replications. The above
formulas for the expectation of rv U under models A and B can also be obtained directly by
applying Wald’s identity [3] to the random sum (4).

Computation of various measures of classification accuracy including important mis-
classification error rates PA(X ≤ 0) and PB(X ≥ 0) requires the knowledge of the distribu-
tion of the log-likelihood score X under models A and B. However, in applications with a
large alphabet size, computing these distributions for long sequences, let alone sequences of
variable length, in closed form is a daunting task. This motivates studying approximations
to the model-specific distributions of rv X arising for very long sequences. In this article,
such approximations will be derived from the asymptotic distributions of two normalized
versions of rv X,

Y =
X
EX

and Z =
X −EX

σ(X)
, (8)

where, as usual, EX is the expected value of rv X and σ(X) is its standard deviation under
a given model of sequence assembly. The two asymptotic distributions are identified in
Theorem 1 (see below). This theorem implies (see Section 4) that the two misclassification
error rates for very long sequences are negligible, i.e., that the likelihood-based classification
rule is asymptotically accurate (Theorem 2).

As an illustration of our results, we consider in Section 5 the classification of sequences
of triplets of nucleotides contained in the deoxyribonucleic acid (DNA) of a given organism
as protein-coding genes or noncoding open reading frames (ORFs). This classification
problem is central in computational gene finding for newly sequenced or incompletely
annotated genomes [4–6]. One of the most powerful tools used for this purpose is Hidden
Markov models, see, e.g., [5–8]. In this setting, triplets of nucleotides (or individual
nucleotides) generated by the same hidden state are emitted independently and have a
random length, i.e., they meet our model assumptions.

In many cases of practical interest, sequences of characters must be sufficiently long.
In the case of protein-coding genes, this is due to the fact that, in order to perform various
biological functions, e.g., to serve as enzymes, proteins must have certain structural features
that can only arise if they contain sufficiently many amino acids. Let � ≥ 1 be the minimum
allowed length, then N ≥ � with probability 1.

The limiting distribution of rvs Y and Z will be obtained in the case where the sequence
length in models A and B follows respective translated negative binomial distributions
(TNBDs) NB(a, p) + α and NB(b, q) + β, where 0 < p, q < 1 and a, b, α, β are integers
such that a, b ≥ 1 and α, β ≥ 0. Recall that there are two closely related kinds of negative
binomial distributions NB(r, p). The first is the distribution of the “waiting time” to r-th
“success” in a sequence of Bernoulli trials with the success probability p including the first r
successes, while the second is the distribution of the number of “failures" preceding the
r-th success. The latter distribution has a natural extension, sometimes called the Pólia
distribution, for any real number r > 0 [9]. For compelling biological reasons associated
with the structure of genes and elucidated in Section 5, see also [10], we will be modeling
the length of DNA segments using negative binomial distributions NB(r, p) of the first kind
with integer r ≥ 1. Thus,

P(N = n) =
(

n − α − 1
a − 1

)
pa(1 − p)n−α−a, n ≥ a + α, (9a)

and similarly

Q(N = n) =
(

n − β − 1
b − 1

)
qb(1 − q)n−β−b, n ≥ b + β. (9b)
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In what follows, the minimum sequence length under the two models will be assumed
the same:

� = a + α = b + β. (10)

Parameters a, b, α, β of TNBDs, related to each other through Formula (10), will be
assumed to be fixed. Therefore, limiting distributions of rvs Y and Z for very long sequences
under models A and B will be computed under the conditions p → 0 and q → 0.

Our main goal in Sections 2 and 3 is to prove the following limit theorem. To formulate
it, recall that the Erlang distribution E(a, λ) is a gamma distribution G(a, λ) with an integer
shape parameter a. Also, if S is a probability distribution on R and τ ∈ R, then S + τ
denotes the translated distribution and −S stands for the distribution S reflected about
the origin.

Theorem 1. Suppose the sequence length distributions under models A and B are P = NB(a, p) +
α and Q = NB(b, q) + β, respectively, with a + α = b + β = �.

(i) If p, q → 0 in such a way that p log q → 0, then under model A, rvs Y and Z converge in
distribution to E(a, a) and E(a,

√
a)−√

a, respectively;
(ii) If p, q → 0 in such a way that q log p → 0, then under model B, rvs Y and Z converge in

distribution to E(b, b) and
√

b − E(b,
√

b), respectively.

In the case where rv X is just the random sum U, see Formula (4), the limit theorem
for plain (untranslated) negative binomial distributions was known previously. Specifically,
for a = 1, the fact that the limiting distribution of rv Y is Exp(1) represents a classic
theorem due to Rényi [11], see also [12]. A generalization of Rényi’s theorem to negative
binomial distributions NB(r, p) of the second kind with arbitrary r > 0 was obtained by
Korolev and Zeifman [13] based on an estimate of the Zolotarev distance [14] between
the distributions of the normalized random sum U and E(r, r); for a review of relevant
results and methodology, see the article by Korolev [9] and references therein. Although it
is probably possible to prove Theorem 1 by reduction to the known limit theorems for the
normalized random sum U, we here prefer, for greater insight and the reader’s convenience,
to give a direct, self-contained, and fairly elementary proof of Theorem 1. In particular,
the proof clearly demonstrates that conditions p log q → 0 and q log p → 0 in Theorem 1
make the term f (N) in (3) negligible in the limit. The meaning of these conditions is that
the expected length of random sequences generated by one model cannot tend to infinity
exponentially faster than for sequences generated by the other model.

The article is organized as follows. In Section 2, we study the asymptotic behavior of
the expected value and variance of rv X for long sequences generated by models A or B
under the conditions of Theorem 1. Section 3 delivers the proof of Theorem 1. In Section 4,
we show that, under the conditions of Theorem 1, the likelihood-based classification of
random sequences is asymptotically accurate. In Section 5, we delve into genomics and
describe in detail the problem of classification of DNA sequences as protein-coding genes
or noncoding ORFs using the genome of bacterium Bacillus subtilis as an example. In the
same section, we estimate the sequence length distributions from data and make a visual
comparison of the empirical and theoretical distributions of rvs Y and Z. Finally, in Section 6,
we discuss our findings from mathematical and bioinformatics perspectives.

2. Asymptotic Behavior of the Expectation and Variance of the Log-Likelihood Score

Our goal in this section is to establish the following result:

Proposition 1. Let character selection probabilities under models A and B be governed by the
respective probability distributions P and Q with expected values μP and μQ. Also, let the respective
sequence length distributions under models A and B be P = NB(a, p) + α and Q = NB(b, q) + β
with a + α = b + β = �. Suppose that p, q → 0. Then, for the expected value and variance of the
log-likelihood score X under models A and B, we have the following asymptotic relations:
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(i) If p log q → 0, then p EAX → aμP and p2VarAX → aμ2
P ;

(ii) If q log p → 0, then q EBX → bμQ and q2VarBX → bμ2
Q.

The following two lemmas will be instrumental in proving Proposition 1.

Lemma 1. Let � ∈ Z+ and {Pp(k) : k ≥ �}, 0 < p < 1, be a family of probability distributions
on {�, �+ 1, �+ 2, . . . }. Suppose there is a constant C > 0 independent of p such that p EPp ≤ C
for all p. Then, for any sequence {c(j)}∞

j=0 such that

c(j)
j

→ 0 as j → ∞, (11)

we have

p
∞

∑
j=0

c(j)Pp(j + �) → 0 as p → 0. (12)

Proof. We may assume without loss of generality that c(j) ≥ 0 for all j ≥ 0. Fix ε > 0. In
view of (11), there exists K ≥ 0, which we will also fix, such that c(j) ≤ jε for all j > K. Let
MK = max{c(j) : 0 ≤ j ≤ K}. Then,

p
∞

∑
j=0

c(j)Pp(j + �) = p
K

∑
j=0

c(j)Pp(j + �) + p
∞

∑
j=K+1

c(j)Pp(j + �)

≤ pMK

K

∑
j=0

Pp(j + �) + εp
∞

∑
j=K+1

jPp(j + �)

≤ pMK + εp
∞

∑
j=K+1

(j + �)Pp(j + �) ≤ pMK + εp EPp ≤ pMK + Cε.

Clearly, pMK ≤ ε for all sufficiently small p. Therefore, for such p, we have

p
∞

∑
j=0

c(j)Pp(j + �) ≤ (C + 1)ε.

The second lemma concerns the asymptotic behavior of the Kullback–Leibler distance
dKL(P, Q) between two TNBDs.

Lemma 2. Let � ∈ Z+, P = NB(a, p) + α and Q = NB(b, q) + β with a + α = b + β = �.
Suppose that p, q → 0 in such a way that p log q → 0. Then, p dKL(P, Q) → 0.

Proof. We have

dKL(P, Q) =
∞

∑
n=�

P(n) log
P(n)
Q(n)

=
∞

∑
j=0

P(j + �) log
P(j + �)

Q(j + �)
. (13)

In view of Formulas (9),

P(j + �)

Q(j + �)
=

(
j + a − 1

a − 1

)
pa(1 − p)j(

j + b − 1
b − 1

)
qb(1 − q)j
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independently of �, so that

log
P(j + �)

Q(j + �)
= a log p − b log q + j log

1 − p
1 − q

+ c(j), (14)

where the sequence

c(j) = log

(
j + a − 1

a − 1

)
(

j + b − 1
b − 1

) , j ≥ 0, (15)

clearly has property (11). From (13) and (14), we conclude that

dKL(P, Q) = a log p − b log q + log
1 − p
1 − q

∞

∑
j=0

jP(j + �) +
∞

∑
j=0

c(j)P(j + �).

Recall that the expected value of the distribution NB(r, p) is r/p. Together with (10),
this implies

∞

∑
j=0

jP(j + �) =
∞

∑
j=0

(j + �)P(j + �)− � =
a
p
+ α − � = a

(
1
p
− 1
)

. (16)

Therefore,

dKL(P, Q) = a log p − b log q + a
(

1
p
− 1
)

log
1 − p
1 − q

+
∞

∑
j=0

c(j)P(j + �). (17)

We now apply Lemma 1 to the family of TNBDs Pp = NB(a, p) + α, 0 < p < 1, and
the sequence {c(j)}∞

j=0 given by (15). Note that the assumption of Lemma 1 regarding
distributions Pp is met because p EPp = a + αp ≤ a + α = � for all p. Therefore, using (12),
we infer from (17) that if

p, q → 0 in such a way that p log q → 0, (18)

then p dKL(P, Q) → 0, which completes the proof of Lemma 2.

Remark 1. A similar proof would show that if p, q → 0 in such a way that q log p → 0, then
q dKL(Q, P) → 0.

Proof. We now proceed to proving part (i) of Proposition 1 assuming that conditions (18)
are met. Recall that the expected value μP and variance σ2

P of the TNBD (9a) are given by
μP = a/p + α and σ2

P = a(1 − p)/p2. In view of (3) and (7), we find that

EAX = dKL(P, Q) + μP
(

a
p
+ α

)
. (19)

Then, according to Lemma 2, we have p EAX → aμP .
We turn to the asymptotic behavior of the variance of the log-likelihood score X

under model A. As a reminder, X = f (N) + U, where f (N) = log[P(N)/Q(N)] and
U = X1 + X2 + . . . + XN is a random sum, see (4). Then, for sequences generated by
model A, we have

VarA(X) = VarP[ f (N)] + VarP (U) + 2CovA[ f (N), U]. (20)

We begin with the term VarP[ f (N)] :

VarP[ f (N)] = EP f 2(N)− [EP f (N)]2 ≤ EP f 2(N). (21)
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Using the inequality (x + y + z)2 ≤ 3(x2 + y2 + z2), we find on account of (14) that

EP f 2(N) =
∞

∑
j=0

P(j + �) log2 P(j + �)

Q(j + �)
≤ 3 (a log p − b log q)2

+3 log2 1 − p
1 − q

∞

∑
j=0

j2P(j + �) + 3
∞

∑
j=0

c2(j)P(j + �). (22)

For the first term after the inequality sign in (22), we have, under the conditions in (18),
p2(a log p− b log q)2 → 0. Regarding the second term, we first estimate the second moment,

M2(P) =
∞

∑
j=0

(j + �)2P(j + �),

of the TNBD P = NB(a, p) + α as follows:

M2(P) =
a(1 − p)

p2 +

(
a
p
+ α

)2
≤ a + (a + α)2

p2 =
a + �2

p2 .

Therefore,

p2 log2 1 − p
1 − q

∞

∑
j=0

j2P(j + �) ≤ p2 log2 1 − p
1 − q

∞

∑
j=0

(j + �)2P(j + �)

≤ (a + �2) log2 1 − p
1 − q

→ 0 as p, q → 0.

Next, since c2(j)/j → 0 as j → ∞, we conclude from Lemma 1 that

p
∞

∑
j=0

c2(j)P(j + �) → 0.

Combining the above limit relations for the three terms in Formula (22), we obtain p2EP f 2(N)
→ 0, which, in view of (21), implies

p2VarP[ f (N)] → 0. (23)

We now focus on the second term in (20). According to the formula for the variance of
a random sum [3],

VarP (U) = σ2
P EPN + μ2

P VarP(N) =

(
a
p
+ α

)
σ2
P +

a(1 − p)
p2 μ2

P ,

then
p2VarP (U) → aμ2

P as p → 0. (24)

Finally, for the third term in (20), we obtain by the Cauchy–Schwarz inequality

p2 | CovA[ f (N), U] | ≤
√

p2VarP[ f (N)]
√

p2VarP (U).

It follows from (23) and (24) that p2CovA[ f (N), U] → 0.
In summary, Formula (20) and the limit relations for its terms yield p2VarAX → aμ2

P .
To prove part (ii) of Proposition 1, notice that, in the case of model B, Formula (19)

takes on the form

EBX = μQ
(

b
q
+ β

)
− dKL(Q, P),
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which implies that if p, q → 0 and q log p → 0, then q EBX → bμQ. The proof of the limit
relation for the variance of rv X under model B is identical to that for model A.

Remark 2. Asymptotic formulas for the expected value of rv X in Proposition 1 hold for any
sequence of iid rvs (Xn) with finite expectation and, similarly, asymptotic formulas for the variance
of rv X are valid for any such sequence of rvs with a finite second moment.

3. Proof of Theorem 1

Because models A and B can be treated similarly, we only prove Theorem 1 for model A.
As a preliminary, we compute the characteristic function (ch. f.) of rvs X and Y = X/EAX.
To compute the ch. f. of rv X, denote by ϕP the ch. f. of rvs Xn for sequences generated by
model A. Conditioning on rv N and using its independence of rvs X1, X2, . . . , we find that

ΦX(s) = EAeisX = EAeis[ f (N)+U] =
∞

∑
n=�

P(n)eis log[P(n)/Q(n)]
EP eis(X1+X2+. . . +Xn)

=
∞

∑
n=�

P(n)eis log[P(n)/Q(n)]ϕn
P (s). (25)

Also, for the ch. f. of rv Y, we have

ΦY(t) = EAeitY = ΦX(t/EAX). (26)

The following result shows that the presence of the exponential factor eis log[P(n)/Q(n)]

in (25) does not affect the asymptotic behavior of ΦX(t/EAX).

Lemma 3. Under the conditions in (18),

ΦX(t/EAX)−
∞

∑
n=�

P(n)ϕn
P (t/EAX) → 0 , t ∈ R.

Proof. Recall that | ϕP (s) | ≤ 1 for all s ∈ R. Using the inequality | eix − 1 | ≤ | x |, x ∈ R,
we obtain in view of (25)

| ΦX(s)−
∞

∑
n=�

P(n)ϕn
P (s) | = |

∞

∑
n=�

P(n)ϕn
P (s)
(

eis log[P(n)/Q(n)] − 1
)
|

≤
∞

∑
n=�

P(n) | eis log[P(n)/Q(n)] − 1 | ≤ | s |
∞

∑
n=�

P(n) | log
P(n)
Q(n)

| .

We set here s = t/EAX and invoke (14) and (16) to find that

| ΦX(t/EAX)−
∞

∑
n=�

P(n)ϕn
P (t/EAX) |

≤ | t |
p EAX

[
ap | log p | + bp | log q | + a(1 − p) | log

1 − p
1 − q

| + Sp

]
, (27)

where

Sp = p
∞

∑
j=0

| c(j) | P(j + �)

and sequence {c(j)} is defined by (15). By Lemma 1, we have Sp → 0 as p → 0. Also,
in view of Proposition 1,under the conditions in (18),

p EAX → aμP > 0. (28)
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The conclusion of Lemma 3 now follows immediately from (27).

Next, we prove Theorem 1 starting with the limiting distribution of rv Y. To identify
the latter, we have to find the limit of the ch. f. of rv Y given by (26). According to Lemma 3,
we only have to compute the limit of the function

Ω(s) =
∞

∑
n=�

P(n)ϕn
P (s) = ΨP[ϕP (s)]

evaluated at s = t/EAX, where

ΨP(z) =
∞

∑
n=�

P(n)zn = zα

[
pz

1 − (1 − p)z

]a
, | z | < 1

1 − p
,

is the probability generating function of the TNBD P = N(a, p) + α.
Since the distribution of rvs Xn under model P has a finite first moment, we can use

the first-order Taylor expansion of its ch. f.:

ϕP (s) = 1 + ϕ
′
P (0)s + sρ(s) = 1 + iμP s + sρ(s),

where ρ(s) → 0 as s → 0. Then,

Ω(s) = [ϕP (s)]α
[

pϕP (s)
1 − (1 − p)ϕP (s)

]a

= [1 + iμP s + sρ(s)]α
[

p(1 + iμP s + sρ(s))
1 − (1 − p)(1 + iμP s + sρ(s))

]a

= [1 + iμP s + sρ(s)]α
[

1 + iμP s + sρ(s)
1 − (1 − p)(iμP + ρ(s))s/p

]a
.

Setting here s = t/EAX, we find, due to (28), that under the conditions in (18), s/p has a
finite limit t/(aμP ), which implies that s → 0. Therefore, we conclude from (29) that

Ω(t/EAX) →
(

1 − it
a

)−a
.

Thus, by Lemma 3, we also have

ΦY(t) →
(

1 − it
a

)−a
. (29)

This limiting function represents the ch. f. of the Erlang distribution E(a, a).
To find the limiting distribution of rv Z under model A, notice that in view of (8)

Z = k(X)(Y − 1), (30)

where k(X) = EAX/σA(X). By Proposition 1, under the conditions in (18)

k(X) → aμP/(
√

aμP ) =
√

a. (31)

Therefore, from (30)–(32),

ΦZ(t) = e−ik(X)tΦY[k(X)t] → e−i
√

a t
(

1 − it√
a

)−a
.

Thus, the limiting distribution of rv Z under model A is the Erlang distribution E(a,
√

a)
translated by

√
a to the left, or symbolically E(a,

√
a)−√

a.

155



Mathematics 2023, 11, 4254

The limiting ch. f. for rv Y under model B can be computed along similar lines. In this
case, one has to take into account that μQ < 0, which brings about a change of the sign
in the analogs of formulas (28) and (32). As a result, under conditions p, q → 0 and
q log p → 0,

ΦY(t) →
(

1 − it
b

)−b
and ΦZ(t) → ei

√
b t
(

1 +
it√

b

)−b
.

Therefore, the limiting distributions of rvs Y and Z are, respectively, the Erlang distribu-
tion E(b, b) and the reflected Erlang distribution E(b,

√
b), translated by

√
b to the right,

or symbolically
√

b − E(b,
√

b).

Remark 3. Theorem 1 holds for any sequence (Xn) of iid rvs with a finite second moment that has
a positive expected value under model A and a negative expected value under model B.

Remark 4. It follows from (8) that, under model A, the distribution of rv X can be approximated
by either an Erlang distribution E(a, λ) with λ = aEAX or by a transformed Erlang distribution
E(a, γ) + τ with γ =

√
a σA(X) and τ = EAX −√

a σA(X). A similar remark also holds for
model B.

4. The Accuracy of the Likelihood-Based Classification of Random Sequences

Among the many measures of classification accuracy, perhaps the most informative
ones are misclassification error rates PA(X ≤ 0) and PB(X ≥ 0). The first of them represents
the probability that a sequence generated by model A is not assigned to this model by the
classification decision rule, i.e., it is either assigned to model B or not assigned to any model.
A similar interpretation holds for the other error rate. An important question is whether,
for very long sequences, the classification produces the correct result with a probability
approaching 1; equivalently, this means that both misclassification error rates approach 0.
We will call such a classification asymptotically accurate. The following statement about the
asymptotic accuracy of the likelihood-based classification of random sequences described
in the Introduction follows from Theorem 1.

Theorem 2. Suppose that character selection probabilities P and Q for models A and B are
distinct and that the sequence length distributions under these models are P = NB(a, p) + α
and Q = NB(b, q) + β, respectively, with a + α = b + β = �. If p, q → 0 in such a way that
p log q → 0 and q log p → 0, then the likelihood-based classification of such random sequences is
asymptotically accurate.

Proof. It follows from (28) that if p, q and p log q are all sufficiently small, then EAX > 0.
Therefore, in view of Theorem 1 and due to the fact that the limiting distribution E(a, a)
does not have an atom at 0, we obtain

PA(X ≤ 0) = PA

(
X

EAX
≤ 0
)
→ PA(V ≤ 0) = 0,

where V is a rv with Erlang distribution E(a, a). Similarly, if p, q and q log p are all suffi-
ciently small, then EBX < 0. Using Theorem 1, we conclude that

PB(X ≥ 0) = PB

(
X

EBX
≤ 0
)
→ PB(W ≤ 0) = 0,

where W is a rv with Erlang distribution E(b, b).

Recall that the meaning of the assumptions of Theorem 2 related to parameters p
and q is that the expected length of long sequences generated by either model cannot be
exponentially larger than that for sequences generated by the other model.
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5. An Application to Genomics: Classification of DNA Sequences as Protein-Coding
or Noncoding

In this section, we apply Theorem 1 to the classification of DNA sequences of bacterium
Bacillus subtilis strain 168 as protein-coding or noncoding. Bacillus subtilis is a model
bacterial organism with a well-annotated genome [15], which was extracted from the open
source National Center for Biotechnology Information (NCBI) database (https://www.ncbi.
nlm.nih.gov/nuccore/AF012532.1) accessed on 10 October 2023.

The annotated list of Bacillus subtilis genes is found at https://www.ncbi.nlm.nih.gov/
genome/browse/#!/proteins/665/300274%7CBacillus%20subtilis%20subsp.%20subtilis%
20str.%20168/chromosome/, accessed on 21 August 2023.

5.1. Background

Recall that (a) genetic information stored in the DNA can be represented as a sequence
of nucleotides, A, C, T, G (adenine, cytosine, guanine, and thymine, respectively); (b) a
protein is a sequence of amino acids; (c) each amino acid is encoded by one or several (up
to six) triplets of DNA nucleotides, called codons; (d) a protein-coding gene is a sequence of
codons encoding a protein; (e) the first codon of a gene is a START codon (typically ATG,
encoding the amino acid methionine) signaling the start of transcription; (f) every gene
is followed by a STOP triplet (TAA, TAG, or TGA) that does not encode an amino acid
and signals the termination of the transcription process; (g) each gene belongs to one of
the two complementary strands of the DNA; (h) genes of many prokaryotic organisms
including all bacteria do not contain noncoding DNA segments, called introns. Thus,
bacterial genes are contiguous sequences of codons starting with a START codon, followed
by one of the three STOP triplets and not containing other in-frame STOP triplets. DNA
sequences with these properties are called open reading frames (ORFs). DNA of various
organisms, including Bacillus subtilis, contain numerous ORFs other than protein-coding
genes. For more information about DNA, codons, genes, ORFs, amino acids, and proteins,
see [16].

In what follows, we compare the Erlang distributions identified in Theorem 1 with
the empirical distributions of the normalized log-likelihood scores Y and Z under models
A and B associated with two respective classes of DNA sequences extracted from the
Bacillus subtilis genome: protein-coding genes and a certain natural class, defined below,
of protein noncoding ORFs. Parameters of these models of DNA sequence assembly were
estimated based on the known membership of Bacillus subtilis ORFs in the two classes.
A similar comparison can be performed for any other well-annotated prokaryotic genome
without introns.

5.2. Protein-Coding Genes and Noncoding Open Reading Frames: Data and Models

The genome of Bacillus subtilis was found to contain no repeated genes or those with
in-frame internal STOP triplets. A peculiar feature of the Bacillus subtilis genome is that only
about 77.5% of its 4237 protein-coding genes begin with the standard START codon ATG.
The vast majority of the remaining protein-coding genes begin with alternative START
codons: TTG (coding for amino acid leucine) or GTG (coding for valine), which occur
in 13% and 9% of all protein-coding genes, respectively. Additionally, 15 Bacillus subtilis
protein-coding genes have nonstandard START codons: CTG encoding leucine and ATT
encoding isoleucine.

To identify all protein noncoding ORFs within the Bacillus subtilis genome, we deleted
all the protein-coding genes from the genome and read the resulting contiguous segments
of nucleotides in the 5

′ → 3
′

direction on the strand to which they belong. If the number, n,
of nucleotides in any such segment was divisible by three then the segment was read in its
natural frame; if n was of the form n = 3k + 1, then the segment was read in two reading
frames (i.e., starting with the first or second nucleotide), while in the case n = 3k + 2, it
was read in three reading frames (i.e., starting with the first, second, or third nucleotide).
From all these reads, sequences of triplets beginning with the main START codon ATG
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utilized by Bacillus subtilis, followed by one of the STOP triplets, and not containing other
in-frame STOP triplets were selected. This resulted in 4571 ORFs beginning with the
standard START codon ATG. We will call them standard noncoding ORFs.

Note that some of them may actually represent genes encoding various kinds of RNA.
The following idea, borrowed from [10], allows one to view protein-coding genes and

standard noncoding ORFs as randomly and independently assembled sequences of triplets
of the kind discussed in the Introduction. Recall that any DNA sequence from each of
these two classes is followed by a STOP triplet. Proceeding from any such STOP triplet, we
move backwards adding new nucleotide triplets other than STOP triplets randomly and
independently of each other. The alphabet used for such sequence assembly thus contains
M = 43 − 3 = 61 triplets. The character selection probabilities for protein-coding genes and
standard noncoding ORFs can be defined on empirical grounds as the respective frequencies
of the 61 triplets found in all 4237 protein-coding genes and all 4571 standard noncoding
ORFs, see Table 1. Also note that, under our independent model of DNA sequence assembly,
the empirical frequency of a triplet coincides with the maximum likelihood estimate of the
class-specific selection probability for the corresponding character given the data [8,17].
Based on the frequencies reported in Table 1, we found that μP = 0.0709, σP = 0.3575 and
μQ = −0.0791, σQ = 0.4182.

Table 1. Observed frequencies of 61 triplets or codons for the two classes of DNA sequences of the
Bacillus subtilis genome: A (protein-coding genes) and B (standard noncoding ORFs). Triplets are
ordered lexicographically.

Triplets A B Triplets A B

AAA 0.0496 0.0391 CTT 0.0232 0.0207
AAC 0.0172 0.0158 GAA 0.0493 0.0256
AAG 0.0211 0.0221 GAC 0.0186 0.0121
AAT 0.0223 0.0233 GAG 0.0232 0.0137
ACA 0.0223 0.0185 GAT 0.0332 0.0206
ACC 0.0086 0.0105 GCA 0.0217 0.0168
ACG 0.0145 0.0124 GCC 0.0159 0.0149
ACT 0.0087 0.0102 GCG 0.0202 0.0139
AGA 0.0108 0.0146 GCT 0.0190 0.0178
AGC 0.0142 0.0185 GGA 0.0218 0.0142
AGG 0.0038 0.0113 GGC 0.0235 0.0142
AGT 0.0066 0.0092 GGG 0.0112 0.0091
ATA 0.0094 0.0197 GGT 0.0127 0.0096
ATC 0.0271 0.0228 GTA 0.0134 0.0112
ATG 0.0271 0.0413 GTC 0.0174 0.0131
ATT 0.0372 0.0263 GTG 0.0178 0.0118
CAA 0.0197 0.0179 GTT 0.0193 0.0163
CAC 0.0074 0.0094 TAC 0.0121 0.0104
CAG 0.0187 0.0171 TAT 0.0228 0.0185
CAT 0.0153 0.0172 TCA 0.0148 0.0219
CCA 0.0070 0.0111 TCC 0.0080 0.0149
CCC 0.0033 0.0096 TCG 0.0063 0.0119
CCG 0.0159 0.0161 TCT 0.0129 0.0174
CCT 0.0105 0.0133 TGC 0.0043 0.0143
CGA 0.0040 0.0096 TGG 0.0103 0.0113
CGC 0.0085 0.0111 TGT 0.0036 0.0130
CGG 0.0064 0.0126 TTA 0.0192 0.0177
CGT 0.0074 0.0097 TTC 0.0142 0.0248
CTA 0.0049 0.0065 TTG 0.0155 0.0211
CTC 0.0109 0.0130 TTT 0.0308 0.0382
CTG 0.0233 0.0193

In what follows, models A and B are used for describing DNA sequences representing
protein-coding genes and standard noncoding ORFs, respectively. To specify these models
completely, we need to determine their length distributions. Because the first triplet of any
ORF is a START codon, random sequences anchored by a given STOP triplet and assembled
as described above form a cluster of nested ORFs, each determined by the number, r, of
START codons preceding the STOP triplet, as illustrated in Figure 1. Empirically, we found
that the number r displays substantial variation, see Figure 2, showing the histogram for
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the values of r for all protein-coding genes beginning with the standard START codon ATG
found in the Bacillus subtilis genome. According to our model of DNA sequence assembly,
the length of protein-coding genes and standard noncoding ORFs with a fixed number
r ≥ 1 of START triplets ATG would follow respective negative binomial distributions
NB(r, p) and NB(r, q), where p = 0.0271 and q = 0.0413 are the empirical frequencies
of the START codon ATG for the two respective classes of ORFs, see Table 1. Therefore,
the length distribution for protein-coding genes or standard noncoding ORFs is a mixture of
such negative binomial distributions over all observed values of r, whose relative weights
can also be determined empirically (for protein-coding genes with the START codon ATG,
the absolute weights are given in Figure 2). Additionally, to encode functional proteins,
genes have to be sufficiently long. In fact, the shortest protein-coding gene in the Bacillus
subtilis genome has 20 codons. By comparison, the shortest standard noncoding ORF
identified in this genome is 25 triplets long.

To account for such complexity of the length distribution, we assumed it to be TNBD
NB(a, p)+ α for model A and NB(b, q)+ β for model B, where a + α = b + β = � = 20 triplets,
with adjustable parameters a, b, p, q, to be estimated from the data.

                        . . . 
 
 

                         . . .                          . . .                          . . .                                    . . . 

                                                                                                                      ORF 1 

                                                                     ORF 2 

                                                                              ORF m 

START m START 2     START 1                 STOP 

Figure 1. A nested cluster of ORFs anchored by a given STOP triplet. Empty boxes represent triplets
of nucleotides other than START codons or STOP triplets. Reproduced with permission from [10].

Figure 2. Histogram of the number of START codons ATG preceding a gene’s STOP triplet for
protein-coding Bacillus subtilis genes beginning with the START codon ATG.

5.3. Results

Parameters a, b, p, q of the two TNBDs were estimated by minimizing the total variation
distance, d, between the assumed TNBDs and the empirical length distributions for protein-
coding genes (model A) and standard noncoding ORFs (model B). The resulting optimal
values were a = 2, p = 0.0077 for model A and b = 1, q = 0.0467 for model B, while the
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respective minimal total variation distances were found to be dA = 0.3945 and dB = 0.4707.
Then, the translation parameters are α = �− a = 18 codons for protein-coding genes and
β = �− b = 19 triplets for standard noncoding ORFs. Thus, the best-fitting theoretical
length distribution for standard noncoding ORFs is a translated geometric distribution
G(q) + β. The relatively large magnitude of the minimum total variation distance is due to
the fact that many lengths of protein-coding genes and standard noncoding ORFs carrying
positive probabilities in the theoretical distributions are absent in the genome of Bacillus
subtilis; yet another reason is the presence in this genome of a large number of anomalously
long (in relative terms) sequences of both classes.

The profiles of the total variation distance as functions of parameters p and q for
the optimal values a = 2 and b = 1 are shown in Figure 3. Notice that (i) if p → 0 or
q → 0, then the corresponding theoretical length distributions “escape to infinity” so that
d → 2; (ii) if p → 1, then d → 2[1 − P(20)], where P(20) = 1/4237 is the frequency of the
minimum gene length of 20 codons; and (iii) by contrast, if q → 1, then d → 2 due to the
fact that the shortest length of standard noncoding ORFs is 25 triplets rather than 20 triplets.
The limiting behaviors (i)–(iii) are clearly seen in Figure 3. Finally, the estimated TNBDs
and empirical length distributions approximated by suitable histograms are displayed in
Figure 4A,B. We conclude from Figure 4 that TNBDs with the above-specified parameters
provide an excellent visual fit to the empirical length distributions for the two classes of
DNA sequences.

For the expected model-based lengths of protein-coding genes and standard noncoding
ORFs, measured in triplets, we have

μP =
a
p
+ α # 278 and μQ =

b
q
+ β # 40

while the corresponding standard deviations, also measured in triplets, are

σP =

√
a(1 − p)

p
# 183 and σQ =

√
b(1 − q)

q
# 21,

to be compared with their empirical counterparts N̄A # 290, N̄B # 54 and sA(N) # 266,
sB(N) # 91. A few comments about the length distributions for the two classes of DNA
sequences are in order:

(i) The genome of Bacillus subtilis contains a large number of very short standard non-
coding ORFs. For example, the number of such ORFs with the length of 25 triplets
(the shortest possible) is 273, while the number of those with the length ranging from
25 to 30 triplets is 1331 or 29%;

(ii) On average, protein-coding genes are much longer than standard noncoding ORFs.
In fact, the ratio of their observed average lengths is about 5.4 and that of their
model-based expected lengths is about 7.0;

(iii) The genome contains a significant number of very long protein-coding genes. The
seven longest among them have lengths 3583, 3587, 3603, 4262, 4538, 5043, and
5488 codons, while the eighth longest gene is just 2561 codons long. This explains why
the empirical standard deviation of gene length, sA(N) # 266 codons, is substantially
larger than its theoretical counterpart, σP # 183 codons. Without the seven longest
genes, one would have sA(N) # 208 codons;

(iv) Although the number of anomalously long standard noncoding ORFs is dispropor-
tionately smaller than the number of very long protein-coding genes, their effect on
the standard deviation of the length distribution is still considerable. For example,
the longest standard noncoding ORF has 4428 triplets, while the length of the second
longest ORF is 1190 triplets. Removing the longest ORF would reduce the standard
deviation of ORF length from sB(N) # 91 to 64 triplets.

We also fitted TNBDs to the empirical length distribution for 3283 protein-coding
genes beginning with the standard START codon ATG. This resulted in a = 2 (implying
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that α = 18) and p = 0.0078, while the minimum total variation distance was 0.4313. Thus,
the best-fitting TNBD is virtually indistinguishable from the same for the entire set of
4237 Bacillus subtilis protein-coding genes; however, surprisingly, the goodness of fit for
the entire collection of genes is even better than for the seemingly more homogeneous
subset of genes with the standard START codon ATG. That is why we used the entire set of
protein-coding genes in our analysis.

Once models A and B are completely specified, one can evaluate the log-likelihood
score X given by Formula (3) for each DNA sequence from either class. For the above-
specified models of sequence length, the first term in (3) for any given sequence of length
N = n is

log
P(n)
Q(n)

= log
p2

q
+ log(n − 19) + (n − 20) log

1 − p
1 − q

,

where p = 0.0077 and q = 0.0467. We then computed the class-specific normalized scores

YA =
X

X̄A
, YB =

X
X̄B

and ZA =
X − X̄A
sA(X)

, ZB =
X − X̄B
sB(X)

,

where X̄A # 59.50 and X̄B # −2.30 are sample averages of the log-likelihood score X
over all sequences in the two respective classes, while sA(X) # 61.50 and sB(X) # 20.59
are the corresponding sample standard deviations. Because the values of parameters p
and q are small and have roughly the same order of magnitude, it would seem reasonable
to compare empirical distributions of the samples YA, YB, ZA, ZB with the respective
limiting distributions identified in Theorem 1, see Figures 5A,B and 6A,B, where empirical
distributions are represented as histograms with appropriately chosen bins. We conclude
from Figures 5 and 6 that the plain and transformed Erlang distributions found in Theorem
1 reproduce essential features of empirical distributions of the samples YA, YB, ZA, ZB
such as range, shape, and mode fairly well.

Figure 3. Red curve: plot of the total variation distance, d, between theoretical length distribution
NB(2, p) + 18 for Bacillus subtilis protein-coding genes and its empirical counterpart as a function of
parameter p. Blue curve: plot of the distance d between theoretical length distribution G(q) + 19 for
Bacillus subtilis standard noncoding ORFs and its empirical counterpart as a function of parameter q.
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Figure 4. (A) Comparison of the empirical length distribution for all Bacillus subtilis protein-coding
genes with the best-fitting TNBD NB(2, p) + 18, p = 0.0077. (B) Comparison of the empirical length
distribution for Bacillus subtilis standard noncoding ORFs with the best-fitting translated geometric
distribution G(q) + 19, q = 0.0467.

Figure 5. Comparison of the class-specific empirical distribution of the normalized log-likelihood
score Y with its theoretical limiting counterpart identified in Theorem 1. (A) Bacillus subtilis protein-
coding genes (class A); (B) Bacillus subtilis standard noncoding ORFs (class B).
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Figure 6. Comparison of the class-specific empirical distribution of the normalized log-likelihood
score Z with its theoretical limiting counterpart identified in Theorem 1. (A) Bacillus subtilis protein-
coding genes (class A); (B) Bacillus subtilis standard noncoding ORFs (class B).

6. Discussion

In this article, we derived a novel limit theorem for two natural normalizations,
Y = X/EX and Z = (X −EX)/σ(X), of the log-likelihood score X, where the expectation
and standard deviation are taken relative to either model A or B and it is assumed that the
sequence length for these models follows respective TNBDs NB(a, p) + α and NB(b, q) + β.
The limit theorem applies to long sequences (p, q → 0) under the essential additional
condition that the expected sequence length for either class is not exponentially larger than
for the other class (more precisely, p log q → 0 and q log p → 0). The limiting distributions
of rv Y under respective models A and B turned out to be Erlang distributions E(a, a) and
E(b, b), while for rv Z, they came out as transformed Erlang distributions E(a,

√
a)−√

a
and

√
b − E(b,

√
b), see Theorem 1. It is noteworthy that the limiting distributions depend

on integer parameters a and b alone. Thus, the limiting behavior of the normalized log-
likelihood score for long sequences represents, under the assumptions of Theorem 1, a fairly
crude phenomenon.

Theorem 1 yields an important corollary: the asymptotic accuracy of the likelihood-
based classification of random sequences, see Theorem 2.

To test the utility of our limit theorem, we applied it to the classification of open
reading frames (ORFs), see Section 4, extracted from the genome of the bacterium Bacillus
subtilis strain 168, as protein-coding genes (class A) and standard noncoding ORFs (class
B). In this case, the alphabet consists of M = 61 triplets of DNA nucleotides other than
STOP triplets. Since the genome of Bacillus subtilis is well annotated, class membership
of all ORFs is known with certainty, which allowed us to empirically estimate character
selection probabilities and length distributions for both classes of DNA sequences, see
Table 1 and Figure 4. As was explained in Section 4, under the model of independent
DNA sequence assembly, the length distributions for both classes are mixtures of negative
binomial distributions, which we approximated, for each class of sequences, by a single
TNBD. The best-fitting distributions from this family provided a surprisingly good fit
to the empirical length distributions for both classes of DNA sequences, see Figure 4.
This serves as an indirect validation of our model of DNA sequence assembly. This also
corroborates earlier findings that the length of protein-coding genes in many organisms
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can be approximated by negative binomial distributions [6] or gamma distributions [18],
which serve as a continuous analog of negative binomial distributions.

The aforementioned (transformed) Erlang distributions with a = 2 and b = 1 and their
empirical counterparts (i.e., the distributions of the observed normalized log-likelihood
scores Y and Z for the two classes of DNA sequences) are compared in Figures 5 and 6. They
reveal that the theoretical limiting distributions provide a reasonable fit to the empirical
distributions and capture some of their salient features such as range, shape, and mode. This
is somewhat unexpected given that (a) the limiting distributions are one-parametric; (b) the
model of random independent DNA sequence assembly is quite simplistic; (c) frequencies
of the codons immediately following the START codon and immediately preceding the
STOP triplet in protein-coding genes are distinct from those for internal codons [6]; and
(d) our model disregards various additional features such as the presence in bacterial
genomes of short regulatory nucleotide sequences at characteristic distances from the
gene’s START codon including ribosome binding sites (or Shine–Dalgarno sequences) and
binding sites for transcription factors [5,6].

Our results can be applied to the classification of binary sequences (M = 2), DNA
sequences viewed at the level of individual nucleotides (M = 4), and proteins represented
as sequences of amino acids (M = 20). They may also potentially have applications in the
areas of natural language processing and artificial intelligence.

The principal limitation of this work is the use of an independent (or zero-order
Markov chain) model of sequence assembly. It was found long ago that DNA sequences are
characterized by the presence of substantial short-range [7] and long-range [8] correlations
between nucleotides and their triplets. As a result, efficient modern methods of computa-
tional gene finding employ higher-order, or even variable-order, Markov chain models and
Hidden Markov models at the level of individual nucleotides [4–6]. For example, a gene
finder called GeneMark [5] employs a 5th-order Markov chain model, while GLIMMER
gene finder [4] combines k-th order Markov chain models for 0 ≤ k ≤ 8. Although the
accuracy of gene finding generally increases with k (the order of the Markov chain), the use
of large values of k is prohibited by the large number, 4k+1, of Markov transition proba-
bilities that have to be estimated from a training set and the sparsity of (k + 1) − tuples
of nucleotides used for estimation purposes. Thus, to make our limit theorem a better
discriminator between protein-coding genes and noncoding ORFs in prokaryotic genomes,
it should be extended to higher-order Markov chain models and Hidden Markov models
of DNA sequence assembly, and to more general sequence length distributions including
translated mixtures of negative binomial distributions.

On the mathematical side, our limit theorem would be more practical if augmented
with a tight estimate of the Zolotarev metric [9,14] or another suitable distance [19] be-
tween the empirical distribution of the normalized log-likelihood score and its theoretical
limiting counterpart.
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Abstract: This paper considers a generalization of the Rényi theorem to the case of a structural
distribution with a scale parameter. In terms of the zeta metric, some estimates of the convergence
rate in the generalized Rényi theorem are obtained when the structural mixed Poisson distribution
of the summation index is a scale mixture of the generalized gamma distribution. Estimates of the
convergence rate for the structural digamma distribution are given as a special case. The paper
extends the results previously obtained for the generalized gamma distribution.
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1. Introduction

Beta and gamma classes of distributions traditionally play an important role in model-
ing real processes with the use of probability theory techniques. The properties of infinite
divisibility and stability inherent to some types of generalized gamma and beta distri-
butions make it possible to use them as adequate asymptotic approximations in various
popular limit theorems.

In 1925, the Italian researcher L. Amoroso, who studied the problems of dynamic
equilibrium, considered the distribution [1], a special form of which is usually called the
generalized gamma distribution GG(ν, p, δ) with the density

gν,p,δ(x) =
|ν|xνp−1e−(x/δ)ν

δνpΓ(p)
, ν �= 0, p > 0, δ > 0, x > 0. (1)

This distribution, along with its special cases, has found wide application in the study of
many applied problems.

A natural generalization of distributions from the gamma class is the digamma distri-
bution proposed in [2,3].

Definition 1. A random variable ρδ ≡ ρr,ν,p,q,δ has a digamma distribution DiG(r, ν, p, q, δ) with
the characteristic index r ∈ R and the parameters of shape ν �= 0, concentration p, q > 0 and scale
δ > 0, if its Mellin transform is

Mρδ
(z) =

δzΓ(p + z/ν)Γ(q − rz/ν)

Γ(p)Γ(q)
, p +

Re(z)
ν

> 0, q − rRe(z)
ν

> 0. (2)
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In addition to the generalized gamma distribution (1), the special cases of digamma
distribution (2) also include [2,3] the generalized beta distribution of the second kind
(McDonald distribution) [4] used primarily in econometrics and regression analysis, as well
as the gamma-exponential distribution [5,6], proposed as a link between the gamma and
beta classes.

The possibility of representing the digamma distribution as a scale mixture of general-
ized gamma laws

ρδ
d
= δ

(
λ

μr

)1/ν

, (3)

where independent random variables λ and μ have gamma distributions GG(1, p, 1) and
GG(1, q, 1), respectively, makes it possible to use the digamma distribution in the analysis
of balance models [7,8], particulary for studying the asymptotic properties of the integral
balance index [9].

One of the first and most important limit theorems related to the gamma family is the
Rényi theorem [10] about the convergence of random sums with a geometric summation
index to the standard exponential distribution. The classical Rényi theorem has a number of
generalizations. In particular, it can be shown [9] that (2) can arise as a limiting distribution
in the case when a mixed Poisson index is used instead of a geometric one.

The main accompanying task in the study of the asymptotic behavior of random
sums is to estimate the rate of convergence to the limit law [11–15]. In particular, in
Refs. [16–18], the estimation of the convergence rate in the Rényi theorem and some of
its generalizations was carried out using the zeta metric, which was proposed in 1976 by
V.M. Zolotarev [19]. The introduction of the zeta metric was motivated by the following
considerations. Since in the presence of convergence there is always a question about its
rate, it is necessary to have some metric that can be used to evaluate the accuracy of the
approximation. When considering a weak convergence, it would also be desirable to have
some “natural” metric. However, the class of continuous bounded functions present in
the definition of weak convergence is too wide for presenting some convenient metric.
For this reason, Zolotarev proposed to narrow the consideration to the class of Lipschitz
differentiable bounded functions.

The paper proves a generalization of the Rényi theorem to the case of structural distri-
butions that have a scale parameter. The results extend the approaches of [16–18], proposed
for generalized gamma distributions, and are devoted to estimating the convergence rate
in the generalized Rényi theorem with structural mixed generalized gamma distributions.
In particular, some results for the structural digamma distribution are given.

2. Representations for Generalized Gamma and Negative Binomial Distributions

By Np,0, we denote a random variable with the geometric distribution supported on
non-negative integers:

P(Np,0 = n) = p(1 − p)n, n = 0, 1, . . . , p ∈ (0, 1).

Let Sp,0 be the corresponding geometric random sum

Sp,0 =

Np,0

∑
j=1

Xj.

Denote

Sn =
n

∑
i=1

Xi, S0 = 0.

By Gν,p,δ, we denote a random variable having a generalized gamma distribution
GG(ν, p, δ) with the density (1). In what follows, a special form of (1) will be of particular
interest, namely, the exponential distribution GG(1, 1, δ).
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Let N1(t) be the standard Poisson process. Let N1(t) and Gν,p,δ be independent for all
t. We say that the random variable Nν,p,δ ≡ N1(Gν,p,δ) has a generalized negative binomial

distribution GNB(ν, p, δ) [16]. Note that Nν,p,δt
d
=N1(Gν,p,δt).

In Ref. [16], the following statement was proved.

Lemma 1. If ν ∈ (0, 1) and p ∈ (0, 1], then the generalized negative binomial distribution is the
Yν,p,δ-mixed geometric distribution:

P(Nν,p,δ = k) =
∫ 1

0
y(1 − y)k dP(Yν,p,δ < y), k = 0, 1, . . . ,

where the random variable Yν,p,δ has the density

hν,p,δ(y) =
δ2

Γ(1 − p)Γ(p)
· 1
(1 − y)2

∫ ∞

1

fν,1(δ
νy(1 − y)−1x−1/ν) dx
(x − 1)px1+2/ν

, 0 < y < 1, (4)

where fν,1(x), 0 < ν < 1, is the density of a one-sided strictly stable law supported on the positive
half-line, with a characteristic function

φν,1(t) = exp
{
−|t|ν exp

{
−1

2
iπνsgnt

}}
.

In Ref. [17], the following statement for continuous analogues of generalized negative
binomial and geometric distributions is proved.

Lemma 2. If ν ∈ (0, 1) and p ∈ (0, 1], then the generalized gamma distribution is a mixed
exponential distribution:

gν,p,δ(z) =
∫ 1

0

y
1 − y

e−
y

1−y z · hν,p,δ(y) dy, z > 0,

where the density hν,p,δ(y) is defined in (4).

3. Generalization of the Rényi Theorem for Distributions with a Scale Parameter

This section presents a generalization of the classical Rényi theorem [10] for structural
distributions with a scale parameter [20]. The following theorem weakens the convergence
requirements compared to the generalized Rényi theorem proved in Ref. [9].

Definition 2. A random variable Λ has a distribution D(. . . , δ) with the scale parameter δ > 0, if

Λ̂ d
=Λ/δ has a distribution D(. . . , 1), independent of δ.

Note that all continuous distributions listed above have a scale parameter.
Let Λ ∼ D(. . . , δ) be a non-negative random variable with the scale parameter δ.

Consider the standard Poisson process N1(t) and a sequence of identically distributed
random variables X1, X2, . . . with a finite mathematical expectation EX1 = a �= 0. Assume
that N1(t), Λ, X1, X2, . . . are independent for any t ≥ 0.

Theorem 1. Let Λ̂ d
=Λ/δ. Then,

SN1(Λt)

aδt
=⇒ Λ̂, δt → ∞. (5)

Proof of Theorem 1. Note that

lim
δt→∞

E exp
{

is
(

N1(Λt)
δt

− Λ
δ

)}
= 1.

168



Mathematics 2023, 11, 4477

Hence,

N1(Λt)
δt

− Λ
δ

P−→ 0, δt → ∞.

Since the distribution of Λ̂ does not depend on δ, according to the Slutsky theorem [21], we
conclude that

N1(Λt)
δt

=⇒ Λ̂, δt → ∞.

The relation (5) follows from the transfer theorem for random sums, e.g., Theorem
2.2.1 from Ref. [22]. The theorem is proved.

Remark 1. Theorem 1 does not require that the parameters δ and t simultaneously tend to infinity.

4. Estimation of the Rate of Convergence in the Classical Rényi Theorem Using the
Zeta Metric

The Rényi theorem is a classical limit theorem. In the study of asymptotic approxima-
tions, the rate of convergence to the limit law is of particular interest. One of the approaches
to analyzing the convergence rate is based on the use of an ideal metric.

Consider the ζ-metric proposed by V.M. Zolotarev. To demonstrate the importance
of this metric, recall that the sequence of random variables Yn weakly converges to the
random variable Y if

Δn = E( f (Yn)− f (Y)) −→ 0

as n → ∞ for all f ∈ F , where F is the set of all bounded and continuous functions. How-
ever, it is inconvenient to use the values of Δn to construct the convergence rate boundaries,
since F is too large. V.M. Zolotarev proposed a definition of the so-called ideal ζ-metric,
which narrows the class F to a subclass of Lipschitz differentiable bounded functions.

Let us introduce a formal definition of this metric. Let s be a positive number. Then,
s = m + ε, where m is a non-negative integer and ε ∈ (0, 1]. Let Fs be the set of all m times
differentiable real-valued bounded functions f for which∣∣∣ f (m)(x)− f (m)(y)

∣∣∣ ≤ |x − y|ε.
The ζ-metric ζs(X, Y) ≡ ζs(FX , FY) [19] is defined as

ζs(X, Y) ≡ ζFs(X, Y) = sup
f∈Fs

|E( f (X)− f (Y))|;

see also Refs. [23,24].
Note that the ζ-metric has the following property [24]:

ζs(cX, cY) = csζs(X, Y), c > 0. (6)

According to the classical Rényi theorem, a geometric random sum, normalized by its
mathematical expectation, weakly converges to the standard exponential distribution:

pSp,0

a(1 − p)
=⇒ G1,1,1. (7)

In the Refs. [18,25], the following estimates of the convergence rate in (7) were obtained
in terms of ζ-metrics.

Lemma 3. Suppose that p ∈ (0, 1). Let X1, X2, . . . be a sequence of identically distributed random
variables independent of Np,0 with EX1 = a �= 0 and EX2

1 < ∞. Then,
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ζ1

⎛⎝ p ∑
Np,0
i=1 Xi

a(1 − p)
, G1,1,1

⎞⎠ ≤ p
1 − p

· EX2
1

a2 .

Lemma 4. Suppose that p ∈ (0, 1). Let X1, X2, . . . be a sequence of identically distributed random
variables independent of Np,0 with EX1 = a �= 0 and EX2

1 < ∞. Then, for 1 ≤ s ≤ 2

ζs

⎛⎝ p ∑
Np,0
i=1 Xi

a(1 − p)
, G1,1,1

⎞⎠ ≤ 1
s

[
p

1 − p
· EX2

1
a2

]s/2

,

in particular,

ζ2

⎛⎝ p ∑
Np,0
i=1 Xi

a(1 − p)
, G1,1,1

⎞⎠ ≤ p
2(1 − p)

· EX2
1

a2 .

5. Convergence Rate Estimates in the Generalized Rényi Theorem with a Structural
Generalized Gamma Distribution

The statements of this section are the generalization of the results proved in Refs. [16,18]
for the structural gamma distribution.

Lemma 5. Suppose that ν ∈ (0, 1] and p ∈ (0, 1). Let X1, X2, . . . be a sequence of identically
distributed random variables with EX1 = a �= 0 and N1(t), Gν,p,δ, X1, X2, . . . be independent for
all t ≥ 0. Then,

ζs

⎛⎝∑
N1(Gν,p,δt)

i=1 Xi

aδt
, Gν,p,1

⎞⎠ ≤ 1
(δt)s

∫ 1

0

(1 − y)s

ys ζs

(
ySy,0

(1 − y)a
, G1,1,1

)
· hν,p,δt(y) dy

where the density hν,p,δt(y) is defined in (4).

Proof of Lemma 5. According to the property (6) of ζ-metrics

ζs

⎛⎝∑
N1(Gν,p,δt)
i=1 Xi

aδt
, Gν,p,1

⎞⎠ =
1

(aδt)s ζs

⎛⎝N1(Gν,p,δt)

∑
i=1

Xi, aGν,p,δt

⎞⎠.

Using Lemma 1, we get

P

⎛⎝N1(Gν,p,δt)

∑
i=1

Xi < x

⎞⎠ =
∞

∑
n=0

∫ 1

0
y(1 − y)nh(y; ν, p, δt) dyP(Sn < x)

=
∫ 1

0

∞

∑
n=0

y(1 − y)nP(Sn < x)h(y; ν, p, δt) dy =
∫ 1

0
P
(
Sy,0 < x

)
h(y; ν, p, δt) dy.

Therefore, for any continuous bounded function f

E f

⎛⎝N1(Gν,p,δt)

∑
i=1

Xi

⎞⎠ =
∫ 1

0
E f
(
Sy,0
)
h(y; ν, p, δt) dy.

Similarly, using Lemma 2,

E f (aGν,p,δt) =
∫ ∞

0
f (az)gν,p,δt(z) dz =

∫ 1

0
E f
(

aG
1,1, 1−y

y

)
· hν,p,δt(y) dy.
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Hence,

ζs

⎛⎝N1(Gν,p,δt)

∑
i=1

Xi, aGν,p,δt

⎞⎠ = sup
f∈Fs

∣∣∣∣∣∣E f

⎛⎝N1(Gν,p,δt)

∑
i=1

Xi

⎞⎠− E f (aGν,p,δt)

∣∣∣∣∣∣
= sup

f∈Fs

∣∣∣∣∫ 1

0
E f
(
Sy,0
)
hν,p,δt(y) dy −

∫ 1

0
E f
(

aG
1,1, 1−y

y

)
· hν,p,δt(y) dy

∣∣∣∣
≤
∫ 1

0
ζs

(
Sy,0, aG

1,1, 1−y
y

)
· hν,p,δt(y) dy

Thus,

ζs

⎛⎝∑
N1(Gν,p,δt)
i=1 Xi

aδt
, Gν,p,1

⎞⎠ ≤ 1
(aδt)s

∫ 1

0
ζs

(
Sy,0, aG

1,1, 1−y
y

)
· hν,p,δt(y) dy

=
1

(δt)s

∫ 1

0

(1 − y)s

ys ζs

(
ySy,0

(1 − y)a
, G1,1,1

)
· hν,p,δt(y) dy.

The lemma is proved.

The following statement is a generalization of Lemmas 3 and 4 to the case of a structural
generalized gamma distribution.

Lemma 6. Suppose that ν ∈ (0, 1] and p ∈ (0, 1). Let X1, X2, . . . be a sequence of identically
distributed random variables with EX1 = a �= 0, EX2

1 < ∞ and N1(t), Gν,p,δ, X1, X2, . . . be
independent for all t ≥ 0. Then,

ζ1

⎛⎝∑
N1(Gν,p,δt)
i=1 Xi

aδt
, Gν,p,1

⎞⎠ ≤ EX2
1

a2δt
;

for 1 ≤ s ≤ 2

ζs

⎛⎝∑
N1(Gν,p,δt)
i=1 Xi

aδt
, Gν,p,1

⎞⎠ ≤ 1
(δt)s/2 · Γ(p + s/(2ν))

sΓ(p)Γ(1 + s/2)
·
[
EX2

1
a2

]s/2

,

in particular,

ζ2

⎛⎝∑
N1(Gν,p,δt)
i=1 Xi

aδt
, Gν,p,1

⎞⎠ ≤ 1
δt

· Γ(p + 1/ν)

Γ(p)
· EX2

1
2a2 .

Proof of Lemma 6. From Lemma 3 we get

ζ1

(
ySy,0

(1 − y)a
, G1,1,1

)
≤ y

1 − y
· EX2

1
a2 .

Hence,

ζ1

⎛⎝∑
N1(Gν,p,δt)
i=1 Xi

aδt
, Gν,p,1

⎞⎠ ≤ 1
δt

∫ 1

0

1 − y
y

ζ1

(
ySy,0

(1 − y)a
, G1,1,1

)
· hν,p,δt(y) dy ≤ EX2

1
a2δt

.

Let 1 ≤ s ≤ 2. Then, by Lemma 4
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ζs

⎛⎝∑
N1(Gν,p,δt)
i=1 Xi

aδt
, Gν,p,1

⎞⎠ ≤ 1
(δt)s

∫ 1

0

(1 − y)s

ys ζs

(
ySy,0

(1 − y)a
, G1,1,1

)
· hν,p,δt(y) dy

≤ 1
(δt)s

∫ 1

0

(1 − y)s

ys
1
s

[
y

1 − y
· EX2

1
a2

]s/2

· hν,p,δt(y) dy

=
1

(δt)s ·
1
s
·
[
EX2

1
a2

]s/2

E
(1 − Yν,p,δt)

s/2

Ys/2
ν,p,δt

.

Since by Lemma 2

Gν,p,δ
d
=

1 − Yν,p,δ

Yν,p,δ
· G1,1,1,

where Yν,p,δ and G1,1,1 can be considered independent, we obtain

E
(
Gν,p,δ

)s/2
= EGs/2

1,1,1E

(
1 − Yν,p,δt

Yν,p,δt

)s/2

.

Thus,

ζs

⎛⎝∑
N1(Gν,p,δt)
i=1 Xi

aδt
, Gν,p,1

⎞⎠ ≤ 1
(δt)s ·

1
s
·
[
EX2

1
a2

]s/2
E
(
Gν,p,δ

)s/2

EGs/2
1,1,1

=
1

(δt)s/2 · Γ(p + s/(2ν))

sΓ(p)Γ(1 + s/2)
·
[
EX2

1
a2

]s/2

.

The lemma is proved.

6. Convergence Rate Estimates in a Generalized Rényi Theorem with a Structural
Mixed Generalized Gamma Distribution

This section provides an estimate of the convergence rate in the generalized Rényi
theorem with a structural distribution that is a scale mixture of the generalized gamma
distribution.

Let Q be a non-negative random variable.

Theorem 2. Suppose that ν ∈ (0, 1] and p ∈ (0, 1). Let X1, X2, . . . be a sequence of identically
distributed random variables with EX1 = a �= 0 and Q, N1(t), Gν,p,δ, X1, X2, . . . be independent
for all t ≥ 0. Assume that there is an estimate

ζs

⎛⎝∑
N1(Gν,p,δt)
i=1 Xi

aδt
, Gν,p,1

⎞⎠ ≤ Δs(δt).

Then,

ζs

⎛⎝∑
N1(Q·Gν,p,δt)
i=1 Xi

aδt
, Q · Gν,p,1

⎞⎠ ≤
∫ ∞

0
ysΔs(yδt) dFQ(y).
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Proof of Theorem 2. Averaging over the distribution of Q, we obtain

ζs

⎛⎝∑
N1(Q·Gν,p,δt)
i=1 Xi

aδt
, Q · Gν,p,1

⎞⎠ =
∫ ∞

0
ζs

⎛⎝∑
N1(Gν,p,δyt)
i=1 Xi

aδt
, yGν,p,1

⎞⎠ dFQ(y)

≤
∫ ∞

0
ysΔs(yδt) dFQ(y).

The theorem is proved.

Lemma 6 and Theorem 2 imply the validity of the following statements.

Corollary 1. Suppose that ν ∈ (0, 1] and p ∈ (0, 1). Let X1, X2, . . . be a sequence of identically
distributed random variables with EX1 = a �= 0, EX2

1 < ∞, and Q, N1(t), Gν,p,δ, X1, X2, . . . be
independent for all t ≥ 0. Then,

ζ1

⎛⎝∑
N1(Gν,p,δt)
i=1 Xi

aδt
, Gν,p,1

⎞⎠ ≤ EX2
1

a2δt
,

and hence,

ζ1

⎛⎝∑
N1(Q·Gν,p,δt)
i=1 Xi

aδt
, Q · Gν,p,1

⎞⎠ ≤ EX2
1

a2δt
.

Corollary 2. Suppose that ν ∈ (0, 1] and p ∈ (0, 1). Let X1, X2, . . . be a sequence of identically
distributed random variables with EX1 = a �= 0, EX2

1 < ∞, and Q, N1(t), Gν,p,δ, X1, X2, . . . be
independent for all t ≥ 0. Then by Lemma 4 and Theorem 3 for 1 ≤ s ≤ 2

ζs

⎛⎝∑
N1(Gν,p,δt)
i=1 Xi

aδt
, Gν,p,1

⎞⎠ ≤ 1
(δt)s/2 · Γ(p + s/(2ν))

sΓ(p)Γ(1 + s/2)
·
[
EX2

1
a2

]s/2

,

and hence,

ζs

⎛⎝∑
N1(Q·Gν,p,δt)
i=1 Xi

aδt
, Q · Gν,p,1

⎞⎠ ≤ EQs/2

(δt)s/2 · Γ(p + s/(2ν))

sΓ(p)Γ(1 + s/2)
·
[
EX2

1
a2

]s/2

.

In particular,

ζ2

⎛⎝∑
N1(Q·Gν,p,δt)
i=1 Xi

aδt
, Q · Gν,p,1

⎞⎠ ≤ EQ
δt

· Γ(p + 1/ν)

Γ(p)
· EX2

1
2a2 .

As a special case of a scale mixture of the generalized gamma distribution, consider
the digamma distribution: ρδ ∼ DiG(r, ν, p, q, δ).

Since the representation (3) in the form of a scale mixture of generalized gamma
distributions is valid for the digamma distribution, the following statements hold.

Corollary 3. Suppose that ν ∈ (0, 1], p ∈ (0, 1) or −ν/r ∈ (0, 1], q ∈ (0, 1). Let X1, X2, . . .
be a sequence of identically distributed random variables with EX1 = a �= 0, EX2

1 < ∞, and
N1(t), ρδ, X1, X2, . . . be independent for all t ≥ 0. Then,

ζ1

(
∑

N1(ρδt)
i=1 Xi

aδt
, ρ1

)
≤ EX2

1
a2δt

.
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Corollary 4. Suppose that ν ∈ (0, 1], p ∈ (0, 1) or −ν/r ∈ (0, 1], q ∈ (0, 1). Let X1, X2, . . .
be a sequence of identically distributed random variables with EX1 = a �= 0, EX2

1 < ∞, and
N1(t), ρδ, X1, X2, . . . be independent for all t ≥ 0. Then, for 1 ≤ s ≤ 2

ζs

(
∑

N1(ρδt)
i=1 Xi

aδt
, ρ1

)
≤ 1

(δt)s/2 · Γ(q − rs/(2ν))

Γ(q)
· Γ(p + s/(2ν))

sΓ(p)Γ(1 + s/2)
·
[
EX2

1
a2

]s/2

.

In particular,

ζ2

(
∑

N1(ρδt)
i=1 Xi

aδt
, ρ1

)
≤ 1

δt
· Γ(q − r/ν)

Γ(q)
· Γ(p + 1/ν)

Γ(p)
· EX2

1
2a2 =

Eρ1

δt
· EX2

1
2a2 .

7. Conclusions

In this paper, a generalization of the Rényi theorem is obtained for a class of structural
distributions with a scale parameter, which includes a generalized gamma distribution and
a generalized beta distribution of the second kind. For the case when the distribution of the
summation index is a scale mixture of the generalized gamma distribution, the estimates of
the convergence rate in the generalized Rényi theorem are obtained, expressed in terms
of zeta metrics. In particular, such estimates are obtained for the structural digamma
distribution that arises in the study of Bayesian balance models. The paper extends the
results previously obtained only for the generalized gamma distribution.
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Abstract: Consider a sequence (Xn)n≥1 of i.i.d. 2 × 2 stochastic matrices with each Xn distributed as
μ. This μ is described as follows. Let (Cn, Dn)T denote the first column of Xn and for a given real
r with 0 < r < 1, let r−1Cn and r−1Dn each be Bernoulli distributions with parameters p1 and p2,
respectively, and 0 < p1, p2 < 1 . Clearly, the weak limit of the sequence μn, namely λ, is known to
exist, whose support is contained in the set of all 2 × 2 rank one stochastic matrices. In a previous
paper, we considered 0 < r ≤ 1

2 and obtained λ explicitly. We showed that λ is supported countably
on many points, each with positive λ-mass. Of course, the case 0 < r ≤ 1

2 is tractable, but the case
r > 1

2 is very challenging. Considering the extreme nontriviality of this case, we stick to a very special

such r, namely, r =
√

5−1
2 (the reciprocal of the golden ratio), briefly mention the challenges in this

nontrivial case, and completely identify λ for a very special situation.

Keywords: random walk; stochastic matrices; limiting measure; golden ratio

MSC: 60B15

1. Introduction

As the title of the paper suggests, the reader can understand that this paper deals
with a situation where one considers products of independent and identically distributed
random 2 × 2 stochastic matrices and their limiting behavior. In other words, here we
are considering a probability measure μ on a collection of 2 × 2 stochastic matrices and
studying the limiting behavior of the convolution sequence μn. To a reader new to this area,
the author would like to refer the reader to the book by Hognas and Mukherjea [1]. This
book starts from the very basic concepts, such as the definition of a semigroup, topological
semigroups, semigroups of matrices, etc., in chapter 1 and then moves forward to more
complex concepts, such as probability measures of semigroups, convolution products of
probabilities and convergence, random walks on semigroups, random walks on semigroups
of nonnegative matrices (and in particular stochastic matrices), etc. The current author
collaborated on a few papers in this area [2–6].

For complete understanding of this article, we will go over a few details about con-
vergence of convolution products of probability measures on semigroups of matrices. If B
denotes the collection of Borel subsets of a set S, then P(S) can be the set of all regular
probability measures μ on B. Then, denoting the collection of continuous functions on S as
C(S), for μ, ν ∈ P(S), and f ∈ C(S), one defines the following iterated integral:

I( f ) =
∫ ∫

f (xy)μ(dx)ν(dy)

By the Riesz representation theorem, there exists a unique regular probability measure
λ such that for any function f ∈ C(S) with compact support, we have

Mathematics 2023, 11, 4993. https://doi.org/10.3390/math11244993 https://www.mdpi.com/journal/mathematics176
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I( f ) =
∫

f dλ

Then, λ is called the convolution of the probability measures μ and ν. There is a
proposition in [1] that shows that for μ, ν ∈ P(S), and B ∈ B,

μ ∗ ν(B) =
∫

μ(Bx−1)ν(dx) =
∫

ν(x−1B)μ(dx)

Having defined the convolution product of regular probability measures on semi-
groups, one can consider a sequence of regular probability measures μ1, μ2, μ3, . . ., construct
a sequence of convolution products of these regular probability measures μ1, μ1 � μ2, μ1 �
μ2 � μ3, . . ., and talk about conditions when such convolution sequences will converge.
Then, one can specialize to the independent identically distributed situation where for
each i, we have, μi = μ for i = 1, 2, 3, . . .. Then, the convolution sequence looks like μn

for n = 1, 2, 3, . . .. In all these situations, [1] assumes that S is a locally compact, second
countable Hausdorff topological semigroup.

Then, if someone further specializes to the situation when S is a semigroup of non-
negative matrices or say, stochatic matrices of a fixed order d, then one considers the usual
matrix topology. There have been quite a few papers that study the conditions when the
convolution sequence μn converges. Mukherjea [7] first gave conditions when such a se-
quence converges for i.i.d. 2× 2 stochastic matrices. Then, subsequently such conditions for
higher order stochastic matrices were obtained [5,6]. But none of these papers performed
detailed study on the nature of the corresponding limiting measures. But motivated by a
paper by Chamayou and Letac [8], we have investigated the nature of the limiting measure
λ for a very special μ on 2 × 2 i.i.d. stochastic matrices.

Before proceeding further, let us denote the probability measure on stochastic matrices
of a fixed order d by μ and its support by S(μ). So, S(μ) is a subcollection of stochastic
matrices of a fixed order d. Thus, for any convolution product μn, we will denote its support
by S(μn) and the support of the limiting measure λ (if it exists) by S(λ).

If we denote the closure of an arbirary set E by E, then

S(μn) = {A1 A2 · · · An | for each i, Ai ∈ S(μ), 1 ≤ i ≤ n}
where n is a positive integer and

S = ∪∞
n=1S(μn)

Also, denote P to be the set of d × d strictly positive stochastic matrices in S .
Chamayou and Letac [8] proved that if (Xn)n≥1 is a sequence of d × d i.i.d. stochastic

matrices such that P(mini,j(X1)ij = 0) < 1, then Y = limn→∞ XnXn−1 · · · X1 exists almost
surely and P(Y has rank 1) = 1; furthermore, if for any Borel B of d × d stochastic matrices
(with usual Rd2

-topology), we denote μ(B) = P(X1 ∈ B) and λ(B) = P(Y ∈ B), and then
λ is the unique solution of the convolution equation λ � μ = λ.

Then, in [2], we noted that this wonderful result of Chamayou and Letac also holds un-
der the (slightly weaker) condition that μm(P) > 0 for some positive integer m (as opposed
to just 1, instead of m, taken in [8]) where μm is the distribution of the product Xm · · · X1
and P is the set of d × d strictly positive stochastic matrices. The reason is as follows:
the Chamayou and Letac result shows that under the weaker condition, the subsequence
Ynm = XnmXnm−1 · · · X1 converges almost surely to some d × d rank one stochastic matrix,
Y0, and consequently, any subsequence Xnk Xnk−1 · · · X1 with nk > skm (for some sk) will
also converge almost surely to a d × d stochastc matrix VY0(= Y0, as Y0 has rank one),
where V is a limit point of the product subsequence Xnk Xnk−1 · · · Xskm+1. This establishes
our observation.

Next we mention below some situations when S(λ) consists of all rank one matrices:
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Situation 1: If (Xi)i≥1, as before, is i.i.d. d × d stochastic matrices such that for some
positive integer m ≥ 1,

μm(P) > 0 (1)

then the sequence μn, where μ(B) = P(X1 ∈ B) for Borel sets B of d × d stochastic matrices,
converges weakly to a probability measure λ and S(λ) consists of all rank one stochastic
matrices in S such that λ(P) > 0.

Situation 2: When λ is the weak limit of (μn)n≥1 and S contains a rank one matrix,
then the support of λ, S(λ) consists of all rank one stochastic matrices in S . This is an
algebraic fact for the support of an idempotent probability measure (note that λ = λ � λ;
see [1]).

In the same paper, Chamayou and Letac (see also [9]) tried to identify λ in the case
when the rows of X1 above are independent, and for 1 ≤ i ≤ d, the i-th row of X1 has
Dirichlet distribution with positive parameters αi1, αi2, . . . , αid, and they were successful in
the case when ∑d

j=1 αij = ∑d
j=1 αji, 1 ≤ i ≤ d. Indeed, there are only very few (other than

those given in [8–10]) examples in the literature even for 2 × 2 stochastic matrices when the
limit distribution λ has been identified completely in the above context. Our paper [2] is
an example.

In [2], we considered 2× 2 i.i.d. stochastic matrices (Xn)n≥1 with Xn =

(
Cn 1 − Cn
Dn 1 − Dn

)
,

each Xn is distributed as μ and r−1Cn and r−1Dn are each Bernoulli distributions (with possibly
different parameters p1 and p2, 0 < p1, p2 < 1) for a real r satisfying 0 < r ≤ 1. Our goal was
to identify λ, the distribution of limn→∞XnXn−1 · · · X1. Clearly, there are exactly four matrices
in the support of μ, each with positive mass. It is well known that that μn converges weakly
to a limiting measure λ and the support of λ consists of rank one matrices. In particular, if r

equals 1, the support of λ has exactly two matrices, namely,
(

0 1
0 1

)
and
(

1 0
1 0

)
. In [2],

a complete solution is given to the problem for 0 < r ≤ 1
2 and also for r = 1.

The situation 1
2 < r < 1 is much more challenging. Before explaining where the

challenge lies, let us make the following convention:

From now on, we will often denote the matrix
(

x 1 − x
x 1 − x

)
by simply x when there is

no fear of confusion. Thus, for the limiting measure λ, λ(x) will mean λ

(
x 1 − x
x 1 − x

)
and

if we write that the support of λ, S(λ) is contained in [0, 1], then this means the following:

S(λ) ⊂
{(

x 1 − x
x 1 − x

)
: 0 ≤ x ≤ 1

}
Now, we are going to explain why the case 1

2 < r < 1 is more challenging. Al-
though we find it quite easy to observe that λ(0) and λ(r) have the same expressions as in
the previous case, it is indeed hard to exhibit a point in (0, r) with positive λ-mass.

However, there is a special situation when things are more tractable, namely, r =
√

5−1
2

(the reciprocal of the golden ratio). We denote this special r as rg. Notice that rg satisfies
the equation r2

g + rg − 1 = 0. Using this equation extensively, we completely solve for λ in
this particular situation. It can be seen that although this is just one case, the proof is highly
nontrivial. According to the author, the reason why rg works for us is because of the fact
that λ(1 − rg) could be found out easily and so this technique of proof worked.

It may be mentioned here that there have been numerous studies in the literature
involving the golden ratio. One very recent study invloving golden ratio is in the context
of machine learning [11].

As in the case of 0 < r ≤ 1
2 , here also λ is discrete with masses at countably many

points. Our main theorem appears in Section 4.
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One gets a feeling that for any other r satisfying 1
2 < r < 1, finding the value of

λ(1 − r) itself will be a challenge, making it quite nontrivial. Thus, for a general 1
2 < r < 1,

a different technique of proof might be needed to obtain a complete solution.
In the next section (Section 2), we describe our set up, state the results proved in [2]

for 0 < r ≤ 1
2 , and briefly discuss the more challenging situation 1

2 < r < 1. In Section 3,

we focus on r = rg =
√

5−1
2 (reciprocal of the golden ratio) and prove two important

propostions. We prove our main theorem and a series of lemmas leading to it in Section 4.
We have some concluding remarks and comments in Section 5.

2. Preliminaries

In our case, we are considering the case of a probability measure μ on 2 × 2 stochastic
matrices. S(μ) denotes its support, which is a subcollection of 2 × 2 stochastic matrices.
S(μn) denotes the support of μn where μn is the convolution sequence. As pointed out
in [7], μn converges if and only if S(μ) is not a singleton:

S(μ) �=
{(

0 1
1 0

)}
And in case there is a strictly positive matrix in S(μ), then the support S(λ) of the

limiting measure λ consists of rank one matrices. Our special case satisfies that condition:

We consider 2 × 2 i.i.d. stochastic matrices (Xn)n≥1 with Xn =

(
Cn 1 − Cn
Dn 1 − Dn

)
,

such that each Xn is distributed as μ. Also, assume that for a given r with 0 < r ≤ 1, both
r−1Cn and r−1Dn are Bernoulli distributions with parameters p1 and p2 respectively .

Then, the support of μ has exactly four matrices as S(μ) is given by:

S(μ) =
{(

0 1
0 1

)
,
(

0 1
r 1 − r

)
,
(

r 1 − r
0 1

)
,
(

r 1 − r
r 1 − r

)}
Let the μ-masses at these points be denoted by p00, p01, p10, p11 respectively so that

p00 + p01 = 1 − p1, p00 + p10 = 1 − p2, p10 + p11 = p1 and p01 + p11 = p2.
Let λ be the distribution of limn→∞ XnXn−1 · · · X1.
In case r equals 1, one can easily observe that λ is a Bernoulli distribution with

parameters entirely dependent on the probability mass function of μ, namely,

λ(0) =
p00 + p01

1 − p10 + p01

This follows by solving for λ(0) and λ(1) in the convolution equation λ � μ = λ.
For 0 < r < 1, the support of μn, S(μn) and consequently S is contained in the set{(

x 1 − x
y 1 − y

)
: 0 ≤ x ≤ r, 0 ≤ y ≤ r

}
This can be proved using induction on n. One assumes up to some positive integer l

and proves for l + 1 by noticing that when one multiplies a matrix in S(μl) by a matrix in
S(μ), the entiries in the product matrix satisfies the condition that each entry in the first
column is between 0 and r because each entry in the first column of the matrices from S(μl)
and S(μ) is so.

Also, since the relation λ � μ = λ holds, the support of λ, namely, S(λ) consists
of all rank one matrices in S . As a result, S(λ) ⊂ {x : 0 ≤ x ≤ r}, where x stands for(

x 1 − x
x 1 − x

)
. Moreover, exploiting the identity λ � μ = λ, we have

λ(0) =
p00

1 − p10
, λ(r) = p11 + λ(0)p01 =

p11(1 − p10) + p00 p01

1 − p10
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and for other points x with 0 < x < r with positive λ-masses, we have

λ(x) = λ(r−1x)p10 + λ(1 − r−1x)p01 (2)

Next, we state the results proved in [2] for 0 < r ≤ 1
2 :

2.1. Case: 0 < r ≤ 1
2

First of all, we introduce some notations. For each i ≥ 1, define

Ai =

{
k

∑
j=1

(−1)j−1rij : 1 ≤ i1 < i2 < i3 < · · · < ik = i, k ≤ i

}
, A = ∪∞

i=1 Ai

We have two propositions for taking care of the cases 0 < r < 1
2 and r = 1

2 :

Proposition 1. For 0 < r < 1
2 , we have the following:

(i) For every positive integer i ≥ 1, |Ai| = 2i−1 and each point in Ai has positive λ-mass. These
are the only points of degree i in the support of λ with positive λ-mass.

(ii) Each such point has λ-measure equal to λ(r)pi−1−k
10 pk

01. For every i > 1,
λ(Ai) = λ(r)[p10 + p01]

i−1.
(i) λ(0) + ∑∞

i=1 λ(Ai) = λ(0) + λ(r) ·
[
∑∞

i=1(p10 + p01)
i−1
]
= 1 .

Proposition 2. For r = 1
2 , we have the following:

(i) The only points that have positive λ-masses are the dyadic rationals in [0, 1
2 ]. Thus, for every

i, there are exactly 2i−2 dyadic rationals of the form k
2i with k ≤ 2i−1 and k odd with positive

λ-mass. Ai consists of exactly these points. Also, |Ai| = 2i−2.
(ii) A typical point in Ai has λ-measure equal to λ

(
1
2

)
(p10 + p01)pi−1−k

10 pk−1
01 for some positive

integer k. For every i > 1, λ(Ai) = λ
(

1
2

)
[p10 + p01]

i−1.

(iii) The sum of the λ-masses of all dyadic rationals in
[
0, 1

2

]
along with the λ-mass at zero equals

1. Equivalently, λ(0) + ∑∞
i=1 λ(Ai) = λ(0) + λ

(
1
2

)
·
[
∑∞

i=1(p10 + p01)
i−1
]
= 1

The case 1
2 < r < 1 turns out to be quite nontrivial. We briefly introduce that

case below:

2.2. Case: 1
2 < r < 1

The case 1
2 < r < 1 is distinctly different from the case r < 1

2 because now we have
1 − r < r. Since for each r, λ has masses at 0 and r, it is not absolutely continuous for any r.
Now, suppose we continue with the same notation of A introduced in the case 0 < r ≤ 1

2 .
Thus, A = ∪∞

i=1 Ai where, for every positive integer i,

Ai =

{
k

∑
j=1

(−1)j−1rij : 1 ≤ i1 < i2 < i3 < · · · < ik = i, k ≤ i

}

It then easily follows that each of these points in A also has positive mass even in the
case 1

2 < r < 1. However, it is indeed a challenge to calculate λ-masses at these points.
Also, since 1 − r ∈ (0, r), it is natural to have points of the form 1 + ∑k

j=1(−1)jrij ,
1 ≤ i1 < i2 < i3 < · · · < ik = i, k ≤ i for any positive integer i in the interval (0, r) (to see
this, notice that ri1 > ∑k

j=2(−1)jrij ). Accordingly, define A∗ = ∪∞
i=1 A∗

i , where

A∗
i =

{
1 +

k

∑
j=1

(−1)jrij : 1 ≤ i1 < i2 < i3 < · · · < ik = i, k ≤ i

}

180



Mathematics 2023, 11, 4993

Recall that, for 0 < r ≤ 1
2 , each point in A has positive λ-mass and each point in A∗ is

outside (0, r) and has zero λ-mass.
For 1

2 < r < 1, of course, each polynomial in A is in (0, r). But, although some
polynomials in A∗ are numerically less than r, it is not easy to see which of these points
have positive λ-masses. Clearly, some polynomials in A∗

i are outside (0, r) and have zero
λ-measure if i is large enough. For example, for a fixed r, it is possible to get a positive
integer m > 1 such that 1 − rm ≥ r > 1 − rm−1. Next, consider i1 = l with l ≥ m for a
polynomial 1 + ∑k

1(−1)jrij in A∗
i with 1 ≤ i1 < i2 < i3 < · · · < ik = i, k ≤ i . Then, this

polynomial is greater than or equal to 1 − rm + ∑k
2(−1)jrij , which is obviously greater than

r and has λ-measure zero. But, it is a possibility that some points in A∗ could have positive
λ-masses too.

Recall the very special r, r = rg, the reciprocal of the golden ratio. We know rg satisfies
the equation r2

g + rg − 1 = 0 and 1 − rg actually equals r2
g, whose λ-measure can be found

out easily. The next two sections deal with this special case.

3. r = rg : Main Results

In this section and also in the next section, we deal with r = rg =
√

5−1
2 unless stated

otherwise. This is a very special case of 1
2 < r < 1. Note that rg is the reciprocal of the

golden ratio and is the positive solution of the equation r2 + r − 1 = 0. To avoid dealing
with too many radical signs and complicating matters, we will continue to use rg in these
two sections for this particluar choice of r.

Remark 1. A polynomial 1 + ∑k
1(−1)jr

ij
g in A∗

i with 1 ≤ i1 < i2 < i3 < · · · < ik = i, k ≤ i
and i1 ≥ 2 has zero λ-measure.

This is because, 1 − r2
g = rg implies that such a polynomial is greater than rg in

magnitude. However, for i1 = 1, such a polynomial may have positive λ-measure as well.
In order to notice this, first observe that, λ(1 − rg) > 0. This is because, using (2),

we have
λ(1 − rg) = λ(r2

g) = λ(rg)p10 + λ(1 − rg)p01

implying that λ(1 − rg) =
p10

1−p01
λ(rg) where λ(rg) is already known.

Next, consider a nontrivial example, say, the polynomial 1 − rg + r2
g − r3

g. Using (2)
repeatedly and Remark 2, we find that its λ- measure equals

λ(r2
g)p2

10 p01 + λ(1 − r2
g)p10 p2

01 = λ(1 − rg)p2
10 p01 + λ(rg)p10 p2

01

implying that the polynomial under consideration has non-zero λ-measure. Since we know
λ(rg) and λ(1 − rg), it is possible to find out λ(1 − rg + r2

g − r3
g) explicitly.

But, this is only a particular example. Can we make a general observation? Yes. Look
at the following result.

Proposition 3. Any polynomial in A∗ either has λ-measure 0 or can be written as a polynomial
in A.

Proof. To fix ideas, we assume that our polynomial in A∗ is 1 + ∑k
j=1(−1)jr

ij
g with 1 ≤ i1 <

i2 < i3 < · · · < ik = i and k ≤ i. Because of Remark 3.0, we can assume that i1 = 1 . Then,
we consider the following cases:

Case 1: ij = j for j = 2, 3, . . . , k.
Then, the given polynomial equals 1 − rg + r2

g − · · ·+ (−1)krk
g

Subcase 1: k is even, say, k = 2m. Then, the above polynomial equals 1 − rg + r2
g −

· · ·+ r2m
g . Notice that rj

g − rj+1
g = rj+1

g − rj+3
g for j = 0, 1, 2, . . .. Thus, the given polynomial
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equals rg − r3
g + r3

g − r5
g + · · ·+ r2m−1

g − r2m+1
g + r2m

g which equals rg − r2m+1
g + r2m

g > rg.
So, it has λ-measure 0.

Subcase 2: k is odd, k = 2m + 1. Then, the above polynomial equals 1 − rg + r2
g − · · ·+

r2m
g − r2m+1

g . Once again recall that rj
g − rj+1

g = rj+1
g − rj+3

g for j = 0, 1, 2, . . .. So, the given
polynoimal equals rg − r3

g + r3
g − r5

g + · · ·+ r2m−1
g − r2m+1

g + r2m+1
g − r2m+3

g = rg − r2m+3
g .

And it is a polynomial in A.
Case 2: There exists an l such that il > l and ij = j for j < l. Then, the given polynomial

equals 1 − rg + r2
g − · · ·+ (−1)l−1rl−1

g + ∑k
j=l(−1)jr

ij
g .

Subcase 1: l is even, say, l = 2m. Then, the polynomial equals 1 − rg + r2
g − · · · −

r2m−1
g + ∑k

j=2m(−1)jr
ij
g . Again, we use rj

g − rj+1
g = rj+1

g − rj+3
g for j = 0, 1, 2, . . . so that

the given polynomial equals rg − r3
g + r3

g − r5
g + · · ·+ r2m−1

g − r2m+1
g + ∑k

j=2m(−1)jr
ij
g . If

i2m = 2m+ 1, then this polynomial equals rg − r3
g + r3

g − r5
g + · · ·+ r2m−1

g − r2m+1
g + r2m+1

g +

∑k
j=2m+1(−1)jr

ij
g , which equals rg + ∑k

j=2m+1(−1)jr
ij
g . This is, of course, a polynomial in

A . On the other hand, if i2m > 2m + 1, then the above polynomial equals rg − r2m+1
g +

∑k
j=2m(−1)jr

ij
g . Once again, it is a polynomial in A.

Subcase 2: l is odd, say, l = 2m + 1. Then, the given polynomial equals 1 − rg +

r2
g − · · · − r2m−1

g + r2m
g + ∑k

j=2m+1(−1)jr
ij
g . Applying once again rj

g − rj+1
g = rj+1

g − rj+3
g

for j = 0, 1, 2, . . ., this polynomial equals rg − r3
g + r3

g − r5
g + · · ·+ r2m−1

g − r2m+1
g + r2m

g +

∑k
j=2m+1(−1)jr

ij
g . This simplifies to rg − r2m+1

g + r2m
g + ∑k

j=2m+1(−1)jr
ij
g = rg + r2m+2

g +

∑k
j=2m+1(−1)jr

ij
g . If i2m+1 = 2m + 2, then the above equals rg + ∑k

j=2m+2(−1)jr
ij
g > rg. So,

it has λ-measure zero. If i2m+1 > 2m + 2, then the given polynomial equals rg + r2m+2
g +

∑k
j=2m+1(−1)jr

ij
g which is same as rg + r2m+2

g − ri2m+1
g + ∑k

j=2m+2(−1)jr
ij
g > rg. So, it has

λ-measure equal to zero.

Remark 2. Because of the above proposition, it is good enough to consider only polynomials in A.
We will rather consider the same polynomials as in the case 0 < r < 1

2 and will try to work out their
λ-measures.

We have seen in Section 2 that the number of elements in An equals 2n−1. But, because of the
relationship 1 − rg = r2

g in the current situation, there will be redundancy and all polynomials are
not distinct. So, we will see that we need to consider at most 2n−2 elements from An for each n ≥ 3:

Proposition 4. There are at most 2n−2 distinct elements in An for each n ≥ 3.

Proof. Once again, the identity 1 − rg = r2
g has a big role to play. For n = 1, 2, 3 or 4, it

is trivial to observe. For general n, first notice that rn
g = rn−2

g − rn−1
g , and so rn

g can be
considered to be in An−1. More generally, define

Qn =
{

rn
g

}
∪
{

k

∑
j=1

(−1)j−1r
ij
g : 1 ≤ i1 < · · · < ik−1 < ik; ik−1 < n, ik = n; k < n; n − ik−1 ≥ 2

}
and

Rn =

{
k

∑
j=1

(−1)j−1r
ij
g : 1 ≤ i1 < · · · < ik−1 < ik; ik−1 = n − 1, ik = n, k ≤ n

}

Let Q = ∪∞
n=3Qn and R = ∪∞

n=3Rn. Then, observe that each polynomial in Q is
numerically equal to a polynomial in R of less degree.

We see this as follows:
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Consider an n > 2. Take a polynomial in Qn. If it is rn
g , we have already provided the

argument, that is, rn
g = rn−2

g − rn−1
g ∈ Rn−1. Otherwise, consider a typical element from Qn,

say, ri1
g − ri2

g + · · ·+ (−1)k−1rik−1
g + (−1)krn

g with 1 ≤ i1 < i2 < · · · < n and for some k < n.

If n − ik−1 = 2 , then rik−1
g − rn

g = rn−2
g − rn

g = rn−1
g = rn−3

g − rn−2
g . As a result, the given

polynomial equals ri1
g − ri2

g + · · ·++(−1)k−1rn−3
g +(−1)krn−2

g . So, it is a polynomial in R of

less degree (n − 2). On the other hand, if n − ik−1 > 2, then rik−1
g − rn

g = rik−1
g − rn−2

g + rn−1
g .

So, the given polynomial equals ri1
g − ri2

g + · · ·+ (−1)k−1rik−1
g + (−1)krn−2

g + (−1)k+1rn−1
g .

Once again, this is a polynomial in R of less degree (n − 1).
It is clear that for each n, An = Qn ∪ Rn and hence A = Q ∪ R. So, because of this

observation, the only polynomials in A that can be considered for λ-mass calculation are
the ones in R. Also, it follows that for n ≥ 3, Rn has at most 2n−2 distinct polynomi-
als. Consequently, An also has at the most 2n−2 distinct elements and the proposition
follows.

Remark 3. Thus, for each n, we have fewer polynomials of degree n compared to the situation
0 < r < 1

2 .

Now, it is time we prove our main theorem. We prove it in the next section.

4. r = rg : Proof of the Main Theorem

Here is our main theorem:

Theorem 1. Consider r = rg =
√

5−1
2 . Then

λ(0) + λ(rg) + λ(r2
g) + λ(rg − r2

g) + λ(R) = 1

where R = ∪∞
n=3Rn with

Rn =

{
k

∑
j=1

(−1)j−1r
ij
g : 1 ≤ i1 < i2 < · · · < ik−2 < ik−1 < ik; ik−1 = n − 1, ik = n, k ≤ n

}

First, notice that, using (2), it follows that λ(r2
g) = p10

1−p01
λ(rg) and λ(rg − r2

g) =(
p2

10
1−p01

+ p01

)
λ(rg). Thus, in order to prove the theorem, it is enough to prove:

λ(R) =
p10 + p01

1 − p10 − p01
λ(rg − r2

g) (3)

because then,

λ(rg − r2
g) + λ(R) =

(
1 +

p10 + p01

1 − p10 − p01

)
λ(rg − r2

g)

As a result,

λ(0) + λ(rg) + λ(r2
g) + λ(rg − r2

g) + λ(R) = λ(0) +
1

1 − p10 − p01
λ(rg)

But, recall from Section 3:

λ(0) =
p00

1 − p10
, λ

(
rg
)
= p11 + λ(0)p01 =

p11(1 − p10) + p00 p01

1 − p10
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This implies that

λ(0) +
1

1 − p10 − p01
λ(rg) = 1

This is the reason that it is good enough to prove (3). For this, we proceed as follows.
First of all, notice that R3 = {r2

g − r3
g, rg − r2

g + r3
g}, R4 = {r3

g − r4
g, r2

g − r3
g + r4

g, rg −
r3

g + r4
g, rg − r2

g + r3
g − r4

g} etc. and in general

Rn = {rn−1
g − rn

g , rn−2
g − rn−1

g + rn
g , . . . , rg − rn−1

g + rn
g , . . . , rg − r2

g + · · ·+ rn−1
g − rn

g}

Next, we introduce some notations for any 0 < r < 1.
Define g : R → R and f j : R → R for every positive integer j as follows: g(p) = rp and

f j(p) = rj − p. Thus, R3 = { f2
(
r3), f1 f2

(
r3)}, R4 = { f3

(
r4), f2 f3

(
r4), f1 f3

(
r4), f1 f2 f3

(
r4)}

etc., and in general,

Rn = { fn−1(rn), fn−2 fn−1(rn), . . . , f1 fn−1(rn), . . . , f1 f2 · · · fn−1(rn)}

We further define operators Fj for j ≥ 2 on R as follows: F2 = { f2, f1 f2}, F3 =
{ f3, f2 f3, f1 f3, f1 f2 f3} etc., and in general,

Fn−1 = { fn−1, fn−2 fn−1, . . . , f1 fn−1, . . . , f1 f2 · · · fn−1}

Thus, Rj = Fj−1
(
rj) for j = 3, 4, . . . and

Fj−1(p) = { f j−1(p), f j−2 f j−1(p), . . . , f1 f j−1(p), . . . , f1 f2 · · · f j−1(p)}

In general, one would anticipate |F2(p)| = 2, |F3(p)| = 4, . . . , |Fj−1(p)| = 2j−2. But,
for r = rg, equality is replaced by ≤ for some ps.

Now, in order to prove (3), we will use a series of Lemmas 1–5. Lemma 1 identifies that
connsecutive Ris have nonempty overlaps for i ≥ 3, Lemma 2 evaluates the cardinality of
the consecutive overlaps, Lemma 3 evaluates the cardinality of the consecutive differences,
Lemma 4 calculates the λ- measures of these differences, and, finally, Lemma 5 puts them
together to evaluate the λ-measure of R thereby proving (3). Thus, once Lemmas 1–5 are
proved, (3) is proved and the proof of the theorem is complete.

Lemma 1. Consecutive Ris (Ri and Ri+1) have nonempty intersections for i ≥ 3. In fact, R4 ∩
R3 = ∅ but Rj+1 ∩ Rj �= ∅ for j > 3

Proof. It is trivial to observe that R4 ∩ R3 = φ. Now, notice that r2
g − r4

g + r5
g, rg − r2

g + r4
g −

r5
g ∈ R5 ∩ R4 because r2

g − r4
g + r5

g = rg − r2
g + r5

g = rg − r2
g + r3

g − r4
g ∈ R4 and automatically,

rg − r2
g + r4

g − r5
g = rg − (rg − r2

g + r3
g − r4

g) = r2
g − r3

g + r4
g ∈ R4. Thus, R5 ∩ R4 = F2(r4

g − r5
g)

and |R5 ∩R4| = 2. In general, Rj+1 ∩Rj ⊇ Fj−2(r
j
g − rj+1

g )∪ Fj−4(r
j
g − rj+1

g ) for j ≥ 6. In fact,
we can show that for positive integers k ≥ 3

R2k−1 ∩ R2k−2 = F2k−4(r2k−2
g − r2k−1

g ) ∪ F2k−6(r2k−2
g − r2k−1

g ) ∪ · · · ∪ F2(r2k−2
g − r2k−1

g )

R2k ∩ R2k−1 = F2k−3(r2k−1
g − r2k

g ) ∪ F2k−5(r2k−1
g − r2k

g ) ∪ · · · ∪ F3(r2k−1
g − r2k

g )

So, Lemma 1 is proved.

Lemma 2. For i ≥ 4, |Ri ∩ Ri+1|s are evaluated upper bounds for |Ri+1 − Ri| are determined
as follows:

For k ≥ 3, we have,

|R2k−1 ∩ R2k−2| = 2
3
(22k−4 − 1), |R2k ∩ R2k−1| = 4

3
(22k−4 − 1)
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so that

|R2k−1 − R2k−2| ≤ 22k−2 + 2
3

, |R2k − R2k−1| ≤ 22k−1 + 4
3

Proof. From Lemma 1, it follows that |R5 ∩ R4| = 2 implying |R5 − R4| ≤ 23 − 2 = 6,
|R6 ∩ R5| = 4 implying |R6 − R5| ≤ 24 − 4 = 12.

In general, notice that for k ≥ 4,

|F2k−2l(r2k−2l+2
g − r2k−2l+3

g )| = 22k−2l−1

and
|F2k−2l+1(r2k−2l+3

g − r2k−2l+4
g )| = 22k−2l

for 2 ≤ l ≤ k − 1. Also,

|R2k−1 ∩ R2k−2| = 22k−5 + 22k−7 + · · ·+ 2 =
2
3

(
22k−4 − 1

)
implying that |R2k−1 − R2k−2| ≤ 22k−3 − 2

3

(
22k−4 − 1

)
= 22k−2+2

3 and

|R2k ∩ R2k−1| = 22k−4 + 22k−6 + · · ·+ 22 =
4
3

(
22k−4 − 1

)
implying that |R2k − R2k−1| ≤ 22k−2 − 4

3

(
22k−4 − 1

)
= 22k−1+4

3 .
Thus, Lemma 2 is proved.

Lemma 3. For i ≥ 4, |Ri+1 − Ri|s are evaluated exactly by getting rid of the redundancies:
More explicitly, for j ≥ 6, not all elements in Rj are distinct. In fact, for k ≥ 3, R2k has

22k−4 − 2 and R2k+1 has 22k−3 − 2 pairs of elements which are numerically equal so that

|R2k − R2k−1| = 5 · 22k−4 + 10
3

, |R2k+1 − R2k| = 5 · 22k−3 + 8
3

Proof. From now on, we refer to duplicates as those pairs of polynomials or elements
in R which have different algebraic expressions, but becaue of our choice of r, they are
numerically equal. In order to exactly evaluate |Ri+1 − Ri| for i ≥ 4, we need to identify
such pairs.

Thus, R6 − R5 has two pairs of duplicates, namely, r2
g − r5

g + r6
g & rg − r2

g + r4
g − r5

g + r6
g;

rg − r2
g + r5

g − r6
g and r2

g − r4
g + r5

g − r6
g because

rg − r2
g + r4

g − r5
g + r6

g = r2
g − r4

g + r4
g − r5

g + r6
g = r2

g − r5
g + r6

g

rg − r2
g + r5

g − r6
g = r2

g − r4
g + r5

g − r6
g

In general, R2k − R2k−1 has 2 + 4 + · · · + 22k−5 pairs of duplicates implying that
|R2k − R2k−1| = 22k−1+4

3 − (22k−4 − 2) = 5·22k−4+10
3 . Here, each pair in the union are

disjoint sets.
Also, R2k+1 − R2k has 2 + 4 + · · ·+ 22k−5 pairs of duplicates implying that |R2k+1 −

R2k| = 22k+2
3 − (22k−3 − 2) = 5·22k−3+8

3 . Again, each pair in the union are disjoint sets.
Thus, Lemma 3 is proved.

Lemma 4. λ-measures of Ri+1 − Ri for i ≥ 3 are calculated as:
First of all, λ(R3) = λ(rg − r2

g)(p10 + p01) and for k ≥ 2,

λ(R2k − R2k−1) = λ(R2k−1 − R2k−2)(p10 + p01) + λ(rg − r2
g)p2k−3

10 p01(p10 + p01)

which equals
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λ(R2k − R2k−1) = λ
(

rg − r2
g

)
(p10 + p01)

2k−2

[
1 +

k−2

∑
l=0

p2l+1
10 p01 (p10 + p01)

−2l−1 −
k−3

∑
l=1

p2l+1
10 p01 (p10 + p01)

−2l−2

]
(4)

where for k = 2, the last sum in the above equation is absent. Also, we have,

λ(R2k+1 − R2k) = λ(R2k − R2k−1)(p10 + p01)− λ
(

rg − r2
g

)
p2k−3

10 p01(p10 + p01)

which equals

λ(R2k+1 − R2k) = λ
(

rg − r2
g

)
(p10 + p01)

2k−1

[
1 +

k−2

∑
l=0

p2l+1
10 p01

[
(p10 + p01)

−2l−1 − (p10 + p01)
−2l−2

]]
(5)

where for k = 2, R2k − R2k−1 = R4 − R3 = R4 and R2k−1 − R2k−2 = R3 − R2 = R3.

Proof. Recall that R3 = F2(r3
g) = {r2

g − r3
g, rg − r2

g + r3
g}. Then, using (2) and Proposition 3,

we have
λ(R3) = λ(r2

g − r3
g) + λ(rg − r2

g + r3
g) = λ(rg − r2

g)(p10 + p01)

Next, we have R4 = F3

(
r4

g

)
= {r3

g − r4
g, r2

g − r3
g + r4

g, rg − r3
g + r4

g, rg − r2
g + r3

g − r4
g}.

We find λ-measures of these points by making use of (2) and Remark 2. Thus, we notice that

λ(1 − rg + r2
g − r3

g) = λ(rg − r3
g + r4

g) = λ(rg − r2
g)p10 p01

Putting all these together, λ(R4 − R3) equals

λ(rg − r2
g)(p10 + p01)

2 + λ(1 − rg + r2
g − r3

g)(p10 + p01) = λ(rg − r2
g)(p10 + p01)

2 + λ(rg − r2
g) p10 p01(p10 + p01)

In other words,

λ(R4 − R3) = λ(R3)(p10 + p01) + λ(rg − r2
g) p10 p01(p10 + p01) (6)

It is to be noted that R4 ∩ R3 = ∅, and so R4 − R3 = R4 which implies λ(R4 − R3) =
λ(R4).

Before proceeding further, we notice that Fj

(
rj+1

g

)
= g
(

Fj−1(r
j
g)
)
∪ f1 ◦ g

(
Fj−1(r

j
g)
)

for j ≥ 4 and Rj+1 − Rj equals g
(

Rj − Rj−1
) ∪ f1 ◦ g

(
Rj − Rj−1

)
for j ≥ 5.

However, at the next stage, we have already noticed that R5 ∩ R4 �= ∅, and so
R5 − R4 �= R5. In fact,

R5 = F4

(
r5

g

)
and

R5 − R4 = F4

(
r5

g

)
− F2

(
r4

g − r5
g

)
Now, notice that

F4

(
r5

g

)
= g(R4 − R3) ∪ f1 ◦ g(R4 − R3)

So,
R5 − R4 = g(R4 − R3) ∪ f1 ◦ g(R4 − R3)− F2

(
r4

g − r5
g

)
This is the same as[

g(R4 − R3)− g
(

rg − r3
g + r4

g

)]
∪
[

f1 ◦ g(R4 − R3)− f1 ◦ g
(

rg − r3
g + r4

g

)]
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Since g(R4 − R3)− g
(

rg − r3
g + r4

g

)
and f1 ◦ g(R4 − R3)− f1 ◦ g

(
rg − r3

g + r4
g

)
do not

have overlaps, we deduce that

λ(R5 − R4) = λ(R4 − R3)(p10 + p01)− λ
(

rg − r2
g

)
p10 p01(p10 + p01) (7)

which equals

λ(R5 − R4) = λ
(

rg − r2
g

)
(p10 + p01)

3 + λ(rg − r2
g) p10 p01(p10 + p01)

2 − λ(rg − r2
g) p10 p01(p10 + p01) (8)

Thus, from Equations (6) and (8), we observe that Lemma 4 is proved for k = 2.
For general k, one can use induction on k and carefully sort out the issues with the duplicates
to complete the proof of the lemma.

Lemma 5. Finally, we calculate λ-measure of R:

λ(R) =
∞

∑
j=3

λ
(

Rj − Rj−1
)
=

∞

∑
j=1

λ
(

rg − r2
g

)
(p10 + p01)

j = λ
(

rg − r2
g

)
· p10 + p01

1 − p10 − p01

where we put R2 = ∅.

Proof. Using (4) and (5) for k ≥ 2, Lemma 5 follows trivially and the proof of the theorem
is complete.

5. Concluding Remarks

In the present context, it is interesting to recall an older problem, first introduced in [7].
It is as follows: consider the very simple situation of a μ that is supported on exactly two

2 × 2 stochastic matrices, namely,
(

a1 1 − a1
b1 1 − b1

)
and

(
a2 1 − a2
b2 1 − b2

)
with ai > bi for

i = 1, 2. Let the μ-masses at these two points be p and 1 − p, respectively, where 0 < p < 1.
Let λ be the weak limit of the convolution sequence μn. What is the nature of λ? If we
denote a1 − b1 = s and a2 − b2 = t, then, in [12], some partial solution to this problem was
mentioned. In the special case scenario when s = t and p = 1

2 , it was observed in [13] that
it is precisely the case of Bernoulli convolutions. In fact, the following proposition is stated
in [13]:

Proposition 5. Let μ be a probability measure giving equal mass to the matrices
(

a1 1 − a1
b1 1 − b1

)
and
(

a2 1 − a2
b2 1 − b2

)
with ai > bi for i = 1, 2. Let, say, a1 − b1 = a2 − b2 = t. Then, the limiting

measure λ of the convolution sequence μn is absolutely continuous (where the limt λ is identified
as a probability on [0, 1]) iff the law of ∑∞

n=0 tnεn is absolutely continuous where εn’s are i.i.d. +1
and −1 with equal probabilities.

Although the century old problem of Bernoulli convolutions was finally solved in [14],
there had been a lot of previous studies at various times in different directions in spite of
it being apparently a simple problem with μ concentrated on two points only. Thus, it is
quite possible that under our current set up of μ being concentrated on four matrices with
1
2 < r < 1, the problem may be at least as challenging as the Bernoulli convolution problem.

We bring in the context of Bernoulli convolutions here to make readers aware that
for a nontrivial 1

2 < r < 1, one needs to explore a number of ideas to proceed towards a
complete solution for our problem.
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1. Introduction and the Main Results

Let X1, X2, . . . be independent random variables (r.v.s) taking values in a separable
Banach space (B, ‖ · ‖) with respective distributions P1, P2, . . . . In the i.i.d. case, we will
denote by P the common distribution.

Pois(μ) denotes the compound Poisson distribution with Lévy measure μ:

Pois(μ) := e−μ(B) ∞

∑
k=0

μ∗k

k!
, (1)

where μ∗k is the k-fold convolution of a finite measure μ with itself; μ∗0 is the Dirac
measure with the atom at zero. Sn := Σi≤nXi, where S0 = 0 by definition. The compound
Poisson distribution with Lévy measure μ ≡ μn := ∑i≤n Pi is called the accompanying
infinitely divisible law for L(Sn) (see [1]); here and everywhere in the future, the symbol
L(ξ) denotes the distribution of a random variable (r.v.) ξ. We denote by τμn a r.v. having
this distribution.

For every natural m ≤ n, let {Xm,i; i ≥ 1} be independent copies of the random
variable Xm. We assume that all the sequences {Xi}, {X1,i}, {X2,i}, . . . are independent.
Additionally, let π(t), π1(t), . . . , πn(t), t ≥ 0 be independent Poisson random processes
with unit intensity which do not depend on the sequences of r.vs above. From (1), it
follows that

Pois(P) = L
(

Sπ(1)

)
. (2)

The characteristic functional of a B-valued r.v. ζ is defined as follows:

ϕζ(l) := Eeil(ζ), l ∈ B∗,

where l(·) is a bounded linear functional on B, i.e., it is an element of the conjugate space B∗.
So, one obtains

ϕτP(l) := Eeil(τP) = exp
{

ϕX1(l)− 1)
}

.
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Next, the characteristic functional of the accompanying infinitely devisable law is
calculated by the formula

ϕτμn (l) := Eeil(τμn ) = exp

{
n

∑
i=1

(
ϕX1,i (l)− 1

)}
. (3)

In other words,

L(τμn) = L
(

n

∑
m=1

Sm,πm(1)

)
, (4)

where the sums Sm,πm(1) :=
πm(1)

∑
i=1

Xm,i, m = 1, . . . , n (with
0
∑

i=1
= 0) are independent, and

L
(

Sm,πm(1)

)
= Pois(Pm) by virtue of (1). In the i.i.d. case, from (3), we obtain that

Formula (4) can be rewritten as follows:

Pois(μn) ≡ Pois(nP) = L
(

Sπ(n)

)
. (5)

The main goal of this paper is to obtain upper and lower moment inequalities for
some measurable functions of Sn or of the collection S1, . . . , Sn via the analogous moments
of the accompanying compound Poisson laws as well as to obtain upper bounds for the
probability tail of these functionals. Results of this kind are related to Kolmogorov’s
problem of approximating sums of independent r.vs by various infinitely divisible laws,
in particular, by the accompanying ones, as well as with an improvement of the classical
probability inequalities for these sums.

In what follows, we consider functions of one or several (say, n) B-valued arguments.
In the latter case, we consider functions of the n-variate argument z̄ := (z1, . . . , zn) from
the new Banach space Bn := B × · · · × B with the norm ‖z̄‖∗ :=

(‖z1‖2 + . . . + ‖zn‖2)1/2.
So, for arbitrary Borel functions f (z), G(z̄) and F(z̄), with z ∈ B and z̄ ∈ Bn, introduce the
following notation under appropriate moment conditions:

φ(n) := E f (Sn), (6)

ΦF(k̄n) := EF(S1,k1 , . . . , Sn,kn), (7)

gn := EG(S1, . . . , Sn), (8)

where k̄n := (k1, . . . , kn), with kj ∈ Z+ (Z+ is the set of all nonnegative integers). It is clear
that the function φ(n) is a particular example of the function gn. In turn, the latter function
is a particular case of ΦF(k̄n) if k1 = . . . = kn = 1.

We say that a function ψ : Z+ → R is convex (concave) if the difference
Δψ(n) := ψ(n + 1)− ψ(n) is a nondecreasing (nonincreasing, respectively) function in n.

The following two theorems, in particular, contain some results from [2] together with
some new results.

Theorem 1. The following assertions are valid:
1. For all z ∈ B and naturals m, let the functions φm,z(n) := E f (Sm,n + z) be convex. Then,

E f (Sn) ≤ E f (τμn) (9)

provided that the expectation on the right-hand side of this inequality exists.
In the i.i.d. case, inequality (9) holds if only the function φ(n) is convex.
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2. Let the function ΦF(k̄n) be convex with respect to each coordinate kj ∈ Z+. Then, for every
vector k̄ ∈ Zn

+,

ΦF(k̄n) ≤ EF(τ(1)
k1P1

, . . . , τ
(n)
knPn

) (10)

if the expectation on the right-hand side of (10) exists, where {τ
(j)
kjPj

, j = 1, . . . , n} are independent

r.v-s with respective distributions {Pois(kjPj), j = 1, . . . , n}.

Remark 1. If the functions ΦF(k̄n) and φm,z(n) in Theorem 1 are concave, then, inequalities (9)
and (10) are changed to the opposite. It follows from the well-known connection between convex and
concave functions: concave = −convex.

For a r.v. ζ with values in B, supp ζ denotes the minimal closed subset of B such that
ζ ∈ supp ζ with probability 1. We need the notion of convexity in the direction determined
by a subset of B. We say that a measurable function f is convex in direction

⋃
i≥1 suppXi if

for all x ∈ ⋃i≥1 supp Si and all z, h ∈ ⋃i≥1 suppXi, this function satisfies the inequality

f (x + h)− f (x) ≤ f (x + h + z)− f (x + z). (11)

Notice that, in the one-dimensional case, convexity in direction R+ (nonnegative sum-
mands) or Z+ (integer-valued nonnegative summands) is the classical convexity. But in the
multivariate case, the convexity of f does not imply the relation (11). As a counterexample,
we consider the three-dimensional case and the convex function f (x1, x2, x3) = maxi≤3 |xi|.
Put x = (1, 0, 0), h = (0, 2, 0) and z=(0,0,3). It is clear that inequality (11) for these parame-
ters is false. However, this function satisfies the relation (11) in the direction determined by
any one-dimensional subspace of R3.

Proposition 1. In the i.i.d. case, let a measurable function f satisfy (11). Then, under the moment
conditions above, inequality (9) holds.

Example 1. If Xi ≥ 0 a.s., and f is an arbitrary convex function on [0, ∞), then, inequalities (9)
and (11) are valid.

We now consider some particular cases of the scheme described in Proposition 1.
Let F∗

n (t) be the empirical distribution function based on a sample ω1, . . . , ωn from the
[0, 1]-uniform distribution. Then, the normalized empirical process νn(t) := nF∗

n (t) can

be represented as the nth partial sum
n
∑

i=1
Xi of the indicator-type i.i.d. random processes

Xi := I{s: s≤t}(ωi) taking values in a Banach space, say, L2[0, 1]. It is well known that the
accompanying compound Poisson r.v. Sπ(n) for this sum is a Poisson random process
with intensity n, which coincides in distribution with the Poisson random process π(nt),
t ∈ [0, 1]. Notice that the finite-dimensional distributions of the random process νn(·) are
multinomial. In particular, for each t ∈ (0, 1), the distribution L(νn(t)) is binomial with
parameters (n, t).

As consequences of Proposition 1, we obtain the following two assertions.

Corollary 1. Let f : Z+ → R be a convex function. Then, for any t ∈ [0, 1],

E f (νn(t)) ≤ E f (π(nt)), (12)

whenever the right-hand side in (12) is well-defined.
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Corollary 2. Let G and f be nondecreasing convex functions on R. Then,

EG

⎛⎝ 1∫
0

f (νn(t))λ(dt)

⎞⎠ ≤ EG

⎛⎝ 1∫
0

f (π(nt))λ(dt)

⎞⎠
if the right-hand side of this inequality is well defined, where λ(·) is an arbitrary finite measure
on [0, 1].

One can slightly weaken the convexity property in Corollary 1 by studying power
moments of the r.vs under consideration.

Proposition 2. For every t ∈ [0, 1] and any naturals n and m, the following inequalities hold:

E(νn(t) + x)2m−1 ≤ E(π(nt) + x)2m−1, ∀x ≥ −n, (13)

and
|E(νn(t) + x)2m−1| ≤ E(π(nt) + x)2m−1, ∀x ≥ −nt. (14)

Remark 2. It is worth noting that, from Corollary 2, one can easily obtain similar inequalities for
all even moments and x ∈ R. Additionally, for all x ≥ 0, inequalities (13) and (14) coincide and also
follow from (12). So, the only nontrivial cases in (13) and (14) are x ∈ [−n, 0) and x ∈ [−nt, 0),
respectively. We note that, for x < −nt, the right-hand sides in (13) and (14) may be negative (say,
for m = 1).

A direct consequence of Proposition 2 is as follows.

Corollary 3. Let f (x) be an entire function on [0, ∞).
1. Assume that there is a point x0 ≥ 0 such that, for all k ≥ 2, the values of k-th derivatives

f (k)(x0) at the point x0 are nonnegative. Then, for every t ∈ [0, 1] and all n ≥ x0,

E f (νn(t)) ≤ E f (π(nt)) (15)

provided that the expectation on the right-hand side of (15) is well defined.
2. Assume that there is a point x∗ ≥ 0 such that

f ∗(x) := ∑
k≥0

| f (k)(x∗)|
k!

(x − x∗)k

is an entire function on [0, ∞) as well. Then, for every (0, 1] and all n ≥ x∗/t,

E f (νn(t)) ≤ E f ∗(π(nt)) (16)

provided that the expectation on the right-hand side of (16) is well defined.

Example 2. Let f (x) := x3 − 3rx2, x ≥ 0, where r > 0. Put x0 = r. Then, the conditions in
item 1 of Corollary 3 are fulfilled, and inequality (15) is valid for all n ≥ r. But the function f (x) is
convex only for x ≥ r; otherwise, it is concave.

Theorem 2. Suppose that at least one of the following two conditions is fulfilled:
1. The function f is continuously differentiable in the Fréchet sense (i.e., f ′(x)[h] is continuous

in x for each fixed h), and for each x ∈ ⋃i≥1 supp Si and all z, h ∈ ⋃i≥1 supp Xi,

f ′(x + th)[h] ≤ f ′(x + z + th)[h] ∀t ∈ [0, 1]; (17)
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2. EXk = 0 for all k, f is twice continuously differentiable in the Fréchet sense, and f ′′(x)[h, h]
is convex in x for each fixed h ∈ ⋃i≥1 supp Xi.

Then, the function φ(n) is convex, i.e., inequality (9) is valid.

Corollary 4. If Xi ≥ 0 a.s. and f : R+ → R is a convex function, then, inequality (11) is valid.
If Xi are random vectors in Rk, k ≥ 2, or in the Hilbert space l2, with nonnegative coordinates,
then, the function f (x) := ‖x‖2+α, where ‖ · ‖ is the corresponding Euclidean norm and α ≥ 0,
satisfies inequalities (11) and (17). For the zero-mean Hilbert-space-valued r.vs Xi, the function
f (x) := ‖x‖β, where β = 2, 4 or β ≥ 6, satisfies condition 2 of Theorem 2. Therefore, in these
cases, inequality (9) holds under the restriction E| f (τμn)| < ∞.

Remark 3. There exist functions f (x) which do not satisfy the conditions of Theorem 2 but the
corresponding function φ(n) is convex. For example, in the i.i.d. one-dimensional case, let us
consider the function f (x) := x5 and the centered summands {Xi}. It is clear that the conditions of
Theorem 2 are not fulfilled. In this case, we have

φ(n) = E(
n

∑
i=1

Xi)
5 = nEX5

1 + 10n(n − 1)EX3
1EX2

1,

i.e., it is a quadratic function with respect to the variable n. Thus, if EX3
1 ≥ 0, then, the function

φ(n) is convex; otherwise, it is concave. In other words, in this case, we obtain upper and lower
Poissonization inequalities in dependence on the sign of the moment EX3

1 .

The exactness of inequality (9) is characterized by the following two assertions.

Corollary 5. For independent one-dimensional centered r.v.s {Xi}, consider the function f (x) := x3.
Since, for any fixed z ∈ R, the second derivative of the function Fz(x) = (z + x)3 is convex and
concave simultaneously, then, by item 2 of Theorem 2,

ES3
n = Eτ3

μn . (18)

Given a finite measure μ on B satisfying the condition μ({0}) = 0, we denote by φμ(n)
the function φ(n) in (6) defined in the i.i.d. case for the summand distribution μ(·)/μ(B).

Theorem 3 ([2]). In the i.i.d. case, let the function φμ(k) be convex. Then,

sup
n, P

E f (Sn) = E f (τμ) (19)

whenever the expectation on the right-hand side of (5) is well defined, where L(τμ) = Pois(μ),
and the supremum is taken over all n and P such that nP(A \ {0}) = μ(A) for all Borel subsets
A ⊆ B.

Remark 4. Taking inequality (9) into account, we can easily reformulate Theorem 2 for the non-i.i.d.
case. The idea of employing compound Poisson distributions for constructing upper bounds for the
moments of the sums was first proposed by Prokhorov ([3,4]). In particular, relations (9) and (19)
were obtained in [4] for the functions f (x) := x2m (m is an arbitrary natural) and f (x) := ch(tx),
t ∈ R, in the case of one-dimensional symmetric {Xi}. Moreover, in the case of zero-mean one-
dimensional summands, these relations for the functions f (x) := exp(hx), h ≥ 0, can be easily
deduced from [3] (see also [5]).

A more general result in this direction was obtained by Utev [6]. Under condition 2
of Theorem 2, he proved extremal equality (19) for nonnegative functions f (x) having an
exponential majorant, using a technique by Kemperman [7]. In our opinion, the proof of
item 2 of Theorem 2 (see Section 3) is much simpler than that in [6] and needs no additional
restrictions on f (x) and the sample space.
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Relations like (9) and (19) can also be applied for obtaining sharp moments and the
tail probability inequalities for sums of independent r.vs (for details, see [5–12]).

We now consider the centered empirical point process ν̄n(t) := νn(t)− nt, t ∈ [0, 1],
that one can interpret as a sum of n i.i.d. centered r.vs Xi := I{s: s≤t}(ωi)− t taking values,
say, in the Hilbert space L2([0, 1], λ), where λ(·) is an arbitrary finite measure on [0, 1].
The accompanying compound Poisson random process can be represented in the form
πo

n(t) := π(nt) − tπ(n), t ∈ [0, 1], which may be called as a “Poissonian bridge” with
intensity n on the unit interval. By Corollary 5, we then obtain

E

⎛⎝ 1∫
0

(ν̄n(t))2λ(dt)

⎞⎠γ

≤ E

⎛⎝ 1∫
0

(πo
n(t))

2λ(dt)

⎞⎠γ

, (20)

where γ = 1, 2 or γ ≥ 3. If λ(·) is the Dirac measure with atom at a point t, then, a
univariate analog of inequality (20) is as follows:

E|ν̄n(t)|γ ≤ E|πo
n(t)|γ, (21)

with an arbitrary γ ≥ 3 or γ = 2 and any t ∈ [0, 1]. But compared to (20), we have here
less restrictive conditions on γ due to item 2 of Theorem 2. It is clear that we can replace
the power functions in (21) with any function f having a convex second derivative under
appropriate moment conditions:

E f (ν̄n(t)) ≤ E f (πo
n(t)). (22)

It is interesting to compare inequalities (21) and (22) with (12) and (13) taking Remark 2
into account and setting x = −nt in (13). Put π̄(t) := π(t)− t.

Proposition 3. For every t ∈ [0, 1] and any even convex function f on R, the following two-sided
inequality is valid:

max{E f (tπ̄(n(1 − t)), E f ((1 − t)π̄(nt))}

≤ E f (πo
n(t)) ≤ max{E f (π̄(n(1 − t)), E f (π̄(nt))} (23)

if only the Poissonian moments exist. Moreover, if t ∈ [1/2, 1], then,

E f (πo
n(t)) ≤ E f (π̄(nt)). (24)

Proposition 4. For any x ≥ 0, t ∈ [0, 1] and every natural number m,

E(πo
n(t) + x)m ≤ E(π̄(nt) + x)m. (25)

Thus, inequalities (21)–(25) improve the estimates (12)–(15).
We supplemented Corollary 2 and Theorem 2 with an example of an infinitely dimensio-

nal function space B. Let B = C[0, 1], with ||x|| := sup0≤t≤1 |x(t)|. Consider an integral-
type functional of the form

f (x) :=
∫ 1

0
g(x(t))λ(dt), x ∈ C[0, 1],

where g(z) is a smooth function on R. In this case, the first two Fréchet derivatives of f are
defined as follows:

f (1)(x)[h] :=
∫ 1

0
g′(x(t))h(t)λ(dt),

f (2)(x)[h1, h2] :=
∫ 1

0
g′′(x(t))h1(t)h2(t)λ(dt), h, h1, h2 ∈ C[0, 1].
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For example, if the continuous random processes Xi = Xi(t), t ∈ [0, 1], are nonnegative
and the function g is convex (or the first derivative g′(x) is nondecreasing in the positive
direction), then, item 1 of Theorem 2 will be fulfilled. On the other hand, if Xi(t) are
centered random processes on [0, 1] and the second derivative g′′(z) is convex on R, then,
item 2 of Theorem 2 will also be satisfied.

We can easily reformulate condition (11) and Theorem 2 for the functions F(z̄) in (7) if
for any j = 1, . . . , n and fixed zi ∈ B, we put

Fz̄,j(x) := F(z1, . . . zj−1, x, zj+1, . . . , zn) (26)

and, under the conditions of Theorem 2, replace the function f (x) with Fz̄,j(x) for z̄ from
an appropriate subset.

Corollary 6. For every fixed j = 1, . . . , n, let the functions Fz̄,j(x) satisfy (11) for all
x, h ∈ ⋃i≥1 supp Sj,i and zk ∈ ⋃i≥1 supp Sk,i, k �= j. Then, under the moment conditions
above, inequality (10) holds.

In (7), put
F(z̄) := G(z1, z1 + z2, . . . , z1 + . . . + zn). (27)

Corollary 7. Let the functions Fz̄,j(x), defined in (26) by the function F(z̄) in (27), satisfy the
conditions of Theorem 2. Then,

gn ≤ EG(τ
(1)
P1

, τ
(1)
P1

+ τ
(2)
P2

, . . . ,
n

∑
i=1

τ
(i)
Pi
), (28)

where the independent r.v-s {τ
(i)
Pi
} are defined in Theorem 1.

The above results deal with some type of convexity. However, one can obtain mo-
ment inequalities close to those mentioned above without any convexity conditions. The
following result is valid for the r.vs {Xi} such that 0 < Pr(Xi = 0) < 1 for all i.

Theorem 4. In the i.i.d. case, for every nonnegative measurable function f , the following inequality
holds:

E f (Sn) ≤ 1
1 − p

E f (τμ), (29)

where p := Pr(X1 �= 0).

Corollary 8. For any measurable nonnegative function F(z̄) in (7),

ΦF(1̄) ≤ AnEF(τ(1)
P1

, . . . , τ
(n)
Pn

), (30)

with An := exp{∑n
i=1 pi}, where pi := Pr(Xi �= 0). In particular, in the non-i.i.d. case, the factor

(1 − p)−1 in (29) may be replaced with An.
For an arbitrary vector k̄n �= 1̄,

ΦF(k̄n) ≤ A∗
nEF(τ(1)

k1P1
, . . . , τ

(n)
knPn

), (31)

where A∗
n := ∏n

i=1(1 − pi)
−1 < exp

{
∑n

i=1 pi(1 − pi)
−1}.

In Theorem 4 and Corollary 8, we do not require the existence of the expectations
considering their values on the extended real line. It is clear that, in the non-i.i.d. case,
inequalities (29) and (30) provide a sufficiently good upper bound under the so-called
Poissonian setting when the summand distributions have large atoms at zero, i.e., the
probabilities pi are such that the constant An is not too large.
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Notice that some particular cases of inequality (29) are contained in [1,13].

Remark 5. In the case n = 1, there exists a slightly better upper bound than that in (29). In
this case, the factor (1 − p)−1 on the right-hand side of (29) can be replaced with ep. However, in
the special case when Sn = ∑i≤n ν

(i)
1 (pi), where {ν

(i)
1 (pi)} are independent Bernoulli r.vs with

respective parameters {pi}, there exists a better upper bound than that in (29). In this case, we can
replace the factor An with (1 − p̃)−2, where p̃ = max{pi; i ≤ n} (see [14,15]).

Corollary 9. Let g be a nonnegative function satisfying the condition Eg(π(λ)) < ∞ for some λ.
Then, for every n and p satisfying the condition np ≤ λ, the following inequality holds:

Eg(νn(p)) ≤ eλ−np

1 − p
Eg(π(λ)). (32)

Moreover,
lim

n→∞, np→λ−0
Eg(νn(p)) = Eg(π(λ)). (33)

Remark 6. It is worth noting that, under the minimal moment condition above, we cannot replace
the one-sided double limit in (33) with the classical double limit, and the condition np ≤ λ in (32)
cannot be omitted. Moreover, there exists a nonnegative function g(k) (see Section 3) such that
Eg(π(λ)) < ∞ and

lim sup
n→∞, np→λ+0

Eg(νn(p)) = ∞. (34)

2. Applications to Empirical Point Processes

In this section, we formulate some consequences of the above theorems as well as
some new similar results for empirical point processes indexed by subsets of a measurable
space. These processes generalize the scheme of univariate empirical point processes νn(t)
from the previous section. These results are a basis for the so-called Poissonization method
for generalizing empirical point processes. Sometimes, it is more convenient to replace an
empirical point process under study with the corresponding accompanying Poisson point
process having a simpler structure for analysis (for example, independent “increments”).
Some versions of this sufficiently popular and very effective method can be found in
many papers. In particular, some probability inequalities connecting the distributions of
empirical processes (in various settings) and those of the corresponding Poisson processes
are contained in [13,16–18], etc.

Let x1, x2, . . . be i.i.d. r.vs taking values in an arbitrary measurable space (X,A) and
having a common distribution P. The empirical point process is introduced as

Vn(A) :=
n

∑
i=1

IA(xi), A ∈ Ac,

and the accompanying Poisson point process

Πn(A) :=
π(n)

∑
i=1

IA(xi), A ∈ Ac,

where Ac ≡ {Ai} is a countable family of measurable sets, and a standard Poisson random
process π(·) is independent of the collection {xi}.

We will consider these processes as r.vs taking values in the separable Banach space
Bq(Ac) of all functions Y(·) on Ac such that ∑i≥1 |Y(Ai)|q2−i < ∞ for some q ≥ 1, endowed
with the norm

‖Y‖q =

(
∑
i≥1

|Y(Ai)|q
2i

)1/q

.
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In the case q = ∞, we deal with the supnorm ‖Y‖∞ := supi |Y(Ai)|. It is clear that
the Banach space Bq(Ac) is isomorphic to the Banach space Lq[N, λ], where N is the set of
natural numbers, and λ is a discrete probability measure on N with λ({k}) = 2−k. So, the
point process Πn(·) is the accompanying compound Poisson process for the point process
Vn(·) in the Banach space Bq(Ac).

As a direct consequence of Proposition 1, the following assertion is valid.

Corollary 10. Let Φ(·) be a measurable functional on B1(Ac), which is convex in the positive
direction with respect to the standard pointwise partial order in function spaces. Then, under
appropriate moment conditions, the following inequality holds:

EΦ(Vn) ≤ EΦ(Πn). (35)

As examples, one can consider functionals of the form

ΦG, f (Y) := G

(
∑
i≥1

fi(Y(Ai))

)
,

where G and { fi} are nondecreasing convex functions on R provided that ∑
i≥1

| fi(x)| < ∞

for all x ∈ R. For such functionals, it is easy to verify the conditions of Corollary 10 (see the
proof of Corollary 2).

By analogy with the univariate case, the centered empirical point process
Vo

n (A) := Vn(A)− nP(A) and the corresponding accompanying compound Poisson point
process Πo

n(A) := Πn(A)− nP(A)Πn(X) are introduced. For such processes, the second
assertion of Theorem 2 can be reformulated as follows:

Corollary 11. Let Φ(x) be a measurable functional on B1(Ac) having a convex second Fréchet
derivative. Then,

EΦ(Vo
n ) ≤ EΦ(Πo

n), (36)

whenever the expectation on the right-hand side of this inequality exists.

As examples of such functionals, one can cite ΦG, f (Y).
We now introduce the so-called restricted empirical point processes. Let A0 ∈ A and

p := P(x1 ∈ A0) ∈ (0, 1). Consider the restrictions of the point processes Vn(A) and Πn(A)
on the set A0 := {A ∈ Ac : A ⊆ A0}, which is denoted by V∗

n (A) and Π∗
n(A), respectively.

We call these processes A0-restricted point processes. In this case, V∗
n (A) ≡ Sn = ∑n

i=1 Xi,
where Xi := {IA(xi); A ∈ A0}, i = 1, . . . , n, are i.i.d. stochastic processes indexed by the
elements from the family A0, with p := P(X1 �= 0) ∈ (0, 1). We may consider {Xi} as i.i.d.
r.vs taking values in the Banach space B∞(Ac). As a direct consequence of Theorem 4, we
then obtain

Corollary 12. The following inequalities are valid:

L(V∗
n ) ≤

1
1 − p

L(Π∗
n), (37)

EF(V∗
n ) ≤

1
1 − p

EF(Π∗
n),

where F(·) ≥ 0 and the expectations take their values on the extended real line.

We now introduce a class of additive statistics of the empirical point processes. Let
Δ1, Δ2, . . . be a finite or countable measurable partition of the sample space. We assume
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that pi := P(Δi) > 0 for all i and p1 ≥ p2 ≥ p3 ≥ . . .. Denote νin := Vn(Δi). We study a
class of additive functionals of the form

Φ f (Vn) := ∑
i≥1

fin(νin), (38)

where { fin} is an array of functions on Z+, with ∑
i≥1

| fin(0)| < ∞.

Example 3. We now give a few examples of additive statistics.

(1) Given a finite partition {Δi; i = 1, . . . , m}, put fin(x) := (x−npi)
2

npi
, i = 1, . . . , m. Then,

we deal with a χ2-statistic of the form

Φχ2(Vn) =
m

∑
i=1

(νin − npi)
2

npi
.

(2) The log-likelihood function can be represented as the following linear functional:

Φl(Vn) :=
N

∑
i=1

νin log pi.

(3) Fix a countable partition {Δi; i ≥ 1}. Let fin(x) ≡ f (x) := IA(x). (For countable
partitions, we assume that 0 /∈ A). Then, the functional

ΦI(Vn) = ∑
i≥1

IA(νin) (39)

is the number of cells Δi, each of them contains a number of the sample points Xi from the range
defined by a subset A of naturals. It is the so-called infinite multinomial scheme of placing particles
(balls) in cells (boxes) (for example, see [19–24]).

For additive functionals (38), one can also obtain Poissonization inequalities using the
above mentioned inequalities for restricted empirical point processes. The next theorem is
related to estimating the distribution tails of additive functionals (38) via the probability
tails of the same functionals of the accompanying Poisson point process Πn(·). The main
property of the functionals Φ f (Πn) is that they have a structure of sums of independent r.vs.

Theorem 5. Let fin̄(·) ≥ 0 for all i. Then, for any x > 0,

P(Φ f (Vn) ≥ x) ≤ 2C∗P(Φ f (Πn) ≥ x/2), (40)

where C∗ := min
k≥1

max
{(

∑i≤k pi
)−1, (∑i>k pi)

−1
}

. If, additionally,

sup
x

∑
i≤m

fin̄(x) ≤ Cm,n

for some natural number m, then,

P(Φ f (Vn) ≥ x) ≤
(

∑
i≤m

pi

)−1

P(Φ f (Πn) ≥ x − Cm,n). (41)

Remark 7. It is worth noting that, in (41), the constant Cm,n may be interpreted as a level of trunca-
tion for the r.v. ∑i≤m fin̄(νin). In this case, we should add the probability P

(
∑i≤m fin̄(νin) > Cm,n

)
to the right-hand side of inequality (41).

Integrating both sides of inequality (40) in x on the positive half-line, we obtain
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Corollary 13. Under the conditions of Theorem 5, let F be a nondecreasing function defined on
R+, continuous at zero and F(0) = 0. If EF(2Φ f (Πn̄)) < ∞, then,

EF(Φ f (Vn)) ≤ 2C∗EF(2Φ f (Πn)). (42)

As an example, consider the functional ΦIB(Vn) defined in (39). Then, as a consequence
of (41) and Chernoff’s upper bound (see [25]) for the probability tail of a sum of independent
nonidentically distributed Bernoulli r.vs (the transition from finite sums to series in this
case is obvious), we obtain the following result.

Corollary 14 ([24]). Put Mn(B) := EΦIB(Πn̄) = ∑i≥1 P(πin ∈ B). Then, the following
inequality holds for any ε > (Mn(B))−1:

P

(∣∣∣∣ΦIB(Vn)

Mn(B)
− 1
∣∣∣∣ > ε

)
≤ 2p−1

1 e−
δ2 Mn(B)

2+δ , (43)

where δ := ε − 1
Mn(B) .

Remark 8. We note that one can replace the Poissonian mean Mn(B) in (43) with the mean
EΦIB(Vn̄), which differs from Mn(B) by no more than 1 due to Barbour–Hall’s estimate of the Pois-
son approximation to a binomial distribution (see [24,26]). Further, if the condition Mn(B) → ∞ is
met as n → ∞, then, from (43), we obtain not only the law of large numbers (already formulated in
Corollary 2) but at a certain growth rate of the sequence Mn(B), the strong law of large numbers
(SLLN). In particular, if pi = Ci−1−b, then, Mn(B) ∼ C(B)n

1
1+b for any subset of natural num-

bers B (see [24]). If in the case m = 1, we consider the infinite intervals B ≡ Bk := {i : i > k} for
any k ∈ Z+, then, the SLLN is valid only under the condition pi > 0 for all i. This follows from
estimate (43), monotonicity of the functions IBk (x) and simple arguments in proving SLLN in [27]
(see also [21]). Moreover, inequality (43) allows us to estimate the rate of convergence in SLLN. If
Mn(B) → ∞, this rate of convergence has the order O(M−1/2

n (B) log1/2 n).

3. Proofs

In this section, we prove some key assertions formulated in the previous two sections.

Proof of Proposition 1. In the i.i.d. case, the convexity of φ(k) directly follows from (11):

φ(k + 1)− φ(k) ≤ E( f (Sk+1 + Xk+2)− f (Sk + Xk+2)) = φ(k + 2)− φ(k + 1).

Proof of Corollary 2. Denote

Fx,h,z :=
1∫

0

f (x(t) + h(t) + z(t))λ(dt),

where x(t), h(t) and z(t) are nonnegative measurable bounded functions. Due to the
convexity and monotonicity of f , one has

Fx,0,0 ≤ Fx,0,z, Fx,h,0 − Fx,0,0 ≤ Fx,h,z − Fx,0,z.

From these inequalities and convexity of G, we immediately obtain

G(Fx,h,0)− G(Fx,0,0) ≤ G(Fx,h,z)− G(Fx,0,z).

So, condition (11) is fulfilled.
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Proof of Proposition 2. First, we consider the case n = 1. In other words, we deal here
with the Bernoulli r.v. ν1(t) with parameter t.

Lemma 1. For every natural m, the following inequalities hold:

E(ν1(t) + x)2m−1 ≤ E(π(t) + x)2m−1, ∀x ≥ −1, (44)

and

|E(ν1(t) + x)2m−1| ≤ E(π(t) + x)2m−1, ∀x ≥ −t. (45)

Proof. In order to prove (44), we first study the case x = −1.. We have

E(ν1(t)− 1)2m−1 = t − 1,

E(π(t)− 1)2m−1 = −e−t +
∞

∑
k=2

(k − 1)2m−1

k!
tke−t

> −e−t +
1
2

∞

∑
k=2

(k − 1)2m−3

(k − 2)!
tke−t = −e−t +

t2

2
E(1 + π(t))2m−3

> t − 1 − t2

2
+

t2

2
E(1 + π(t))2m−3 > t − 1, (46)

where m ≥ 2 (in the case m = 1, the assertion is trivial). We have proved inequalities of
the form (44) for even moments and all x ∈ R (see Corollary 1). Therefore, inequality (44)
remains true after derivation of both its sides with respect to x. So, inequality (44) follows
from this fact and (46).

Taking inequality (44) into account, we conclude that, to prove (45), it suffices to
deduce only the inequality

E(t − ν1(t))2m−1 ≤ E(π(t)− t)2m−1. (47)

Denote gm(t) := E(π(t)− t)m. We need the following recurrent relation for gm(t) (for
details, see [16,28]):

gm(t) = t
m−2

∑
k=0

Ck
m−1gk(t), (48)

where m ≥ 2, g0(t) ≡ 1 and g1(t) ≡ 0. From (48), we conclude that, for all naturals m, the
functions gm(t) are nonnegative and nondecreasing on [0, 1].

First, we assume that t ≤ 1/2. Then, we have

E(t − ν1(t))2m−1 = t(1 − t)(t2m−2 − (1 − t)2m−2) ≤ 0,

and (47) holds because of the nonnegativity of the functions gm(t).
In the case t > 1/2, we consider another Bernoulli r.v. ν̃1(t̃) := 1 − ν1(t), with

t̃ := 1 − t. By (44), we then obtain

E(t − ν1(t))2m−1 = E(ν̃1(t̃)− t̃)2m−1 ≤ g2m−1(t̃) ≤ g2m−1(t)

due to the monotonicity of the functions gm(t). The lemma is proven.

Since νn(t) coincides in distribution with the sum of independent copies of the r.vs
νn−1(t) and ν1(t), the further proof of the theorem can be continued by induction on n
(using (22) and the binomial formula). The proposition is proven.
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Proof of Corollary 3. Due to Fubini’s theorem and the Taylor expansion of the function f
at the point x0, the existence of the moment E f (π(nt)) implies the equality

E f (π(nt)) = ∑
k≥0

f (k)(x0)

k!
E(π(nt)− x0)

k.

So, for all n ≥ x0, one can apply inequality (13) for every summand with k ≥ 2 of the
series on the right-hand side of the above identity that yields inequality (15). Here, we have
taken into account the fact that

E(π(nt)− x0) = E(νn(t)− x0),

i.e., the first two summands in the series representations of the expectations E f (π(nt)) and
E f (νn(t)) coincide.

Inequality (16) is proved similarly, using the estimate (14).

Remark 9. Inequality (53) is a part of a more general result in [15]. It is worth noting that this
upper bound is an estimate for the so-called Radon–Nikodym derivative of a binomial distribu-
tion with respect to the accompanying Poisson law. This problem was studied by a number of
authors ([14,29,30], and others). In particular, under some additional restriction on n and p, a
slightly stronger estimate is contained in [29]. However, in general, the upper bound (53) cannot
be essentially improved. Under some restrictions on n and p, a lower bound for the left-hand side
of (53) has the form (1 − cp)−1, where c < 1 is an absolute positive constant. For example, for
n = 1, an unimprovable upper bound in (53) equals ep < (1 − p)−1. It is easy to check that
ep > (1 − p/2)−1 for all p ≤ 1/2.

Proof of Corollary 8. Taking Remark 9 into account, we have a refinement of estimate (53)
in the case n = 1, and as a consequence, we obtain

Eg(ν1(p)) ≤ epg(π(p))

for any nonnegative function g. The further arguments of proving estimate (30) are quite
similar to those in the proof of Theorem 1 below.

Estimate (31) is a direct consequence of estimate (53) and the arguments above.

Proof of Corollary 9. Inequality (32) follows from Lemma 2 and the simple estimate

sup
j

P(π(np) = j)
P(π(λ) = j)

= sup
j

(np
λ

)j
eλ−np ≤ eλ−np

if np ≤ λ only. Otherwise, there are no uniform upper bounds for the Radon–Nikodym
derivative under consideration.

Relation (33) follows from the classical Poisson limit theorem and inequality (32), which
provides fulfillment of the uniform integrability condition. The corollary is proven.

To prove relation (34), we consider the function g(k) := (1 ∨ (k − 2)!)λ−k. It is clear
that Eg(π(λ)) < ∞. Otherwise, we have

Eg(νn(p)) >
1

kn(kn − 1) ∏
j≤kn−1

(1 − j/n)
(np

λ

)kn(
1 − np

n

)n−kn
,

where n ≥ 4 and kn := [
√

n]. Further, it easy to see that, as n → ∞ and np → λ,

∏
j≤kn−1

(1 − j/n) = exp

{
− ∑

j≤kn−1
j/n + O(k3

n/n2)

}
∼ exp{−k2

n/2n} ∼ e−1/2
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and (
1 − np

n

)n−kn ∼ e−λ.

We now suppose that np/λ = 1 + n−α for some α < 1/2. Then,(np
λ

)kn ∼ eknn−α → ∞,

which must be proved. �

Proof of Theorem 1. In the i.i.d. case, inequality (9) is a simple consequence of relation (5)
and the classical Jensen inequality:

E f (τμn) = Eφ(π(n)) ≥ φ(n) = E f (Sn).

In order to prove inequality (9) in the non-i.i.d. case, taking formula (4) into account,
we put

τμn :=
n

∑
m=1

Sm,πm(1). (49)

The further reasoning is quite analogous to the above. Put z1 := ∑n
m=2 Sm,πm(1). Using

the above arguments, we have

E f (τμn) = EEz1 φ1,z1(π(1)) ≥ EEz1 φ1,z1(1) = E f (X1 + z1),

where the symbol Ez1 denotes the conditional expectation given z1. Now, we put
z2 := X1 + ∑n

m=3 Sm,πm . Then, repeating the same calculation, we obtain the estimate

E f (X1 + z1) = EEz2 φ2,z2(π2) ≥ EEz2 φ2,z2(1) = E f (X1 + X2 +
n

∑
m=3

Sm,πm).

Continuing calculations in this way, we obtain inequality (9). Theorem 1 is proven.

Proof of Theorem 2. The first assertion is trivial because, under condition 1, from Taylor’s
formula, we have

f (x + h)− f (x) =
∫ 1

0
f ′(x + th)[h]dt ≤

∫ 1

0
f ′(x + z + th)[h]dt

= f (x + z + h)− f (x + z)

for every x ∈ G and z, h ∈ ⋃i≤n suppXi,, that is, inequality (11) is fulfilled.
To prove the second assertion, we only need to prove this in the i.i.d. case because,

using the arguments in proving Theorem 1 above, we can reduce the problem to the i.i.d.
case. It remains to observe that, under condition 2 and given z, the function f (x + z) has
a convex second derivative with respect to x. So, we prove the assertion in the i.i.d. case.
Taking into account continuity in x of the function f ′′(x)[h, h] for any fixed h and using
Taylor’s formula, we have

f (Sk+1)− f (Sk) = f ′(Sk)[Xk+1] +
∫ 1

0
(1 − t) f ′′(Sk + tXk+1)[Xk+1, Xk+1]dt. (50)

First, we average both sides of (50) with respect to the distribution of Xk+1 and use the fact
that, for any centered (in Bochner sense) r.v. X and an arbitrary linear continuous functional
l(·), the equality El(X) = 0 holds. Averaging both sides of this identity with respect to the
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other distributions, we then obtain the equality (with a probability interpretation of the
remainder in (50))

φ(k + 1)− φ(k) =
1
2

E f ′′(Sk + ζXk+1)[Xk+1, Xk+1] = E f ′′(Sk + ζXk+2)[Xk+2, Xk+2] (51)

due to the i.i.d. condition of {Xk}, where ζ is a r.v. with the density 2(1 − t) on the unit
interval, which is defined on the main probability space and independent of the sequence
{Xk} (we may assume here that this space is reached enough). It is worth noting that,
because of the integrability of the left-hand side of (50), the expectation on the right-hand
side of (51) is well defined due to Fubini’s theorem. In the i.i.d. case, by Jensen’s inequality
(for the conditional expectation Eζ,Xk+2

), we finally obtain from (51) the inequality we need:

φ(k + 1)− φ(k) =
1
2

EEζ,Xk+2
f ′′(Sk + ζXk+2)[Xk+2, Xk+2]

≤ 1
2

E f ′′(Sk+1 + ζXk+2)[Xk+2, Xk+2] = φ(k + 2)− φ(k + 1).

The theorem is proven.

Proof of Theorem 4. First, we prove two important lemmas which play a key role in
proving the theorem. For the initial r.vs which are nondegenerate at zero, let {X0

i } be
independent r.vs with respective distributions

L(X0
i ) := L(Xi|Xi �= 0),

with p := Pr(X1 �= 0) ∈ (0, 1). Denote S0
m := ∑i≤m X0

i .

Lemma 2 ([2,31]). In the i.i.d. case, under the above notation, the following relations hold:

L(Sn) = L(S0
νn(p)), Pois(nL(X1)) = L(S0

π(np)), (52)

where L(νn(p)) is the binomial distribution with parameters n and p; the pair (νn(p), π(np))
does not depend on the sequence {X0

i }.

The equalities in (52), which are very convenient in studying the accuracy of the
Poisson approximation of the sums, are contained in various forms in many papers (see,
for example, Refs. [29–35], and others). Actually, these relations also represent versions of
the total probability formula and are easily proven.

Taking into account the representations in (52), we can reduce the problem to the
simplest one-dimensional case when we estimate moments of a binomial distribution
using, for example, convexity arguments as above. However, in this case, we can obtain
sufficiently exact inequalities for the moments of arbitrary functions without convexity
using the following lemma from [15] (see also [2]). For the convenience of the reader, we
reproduce the proof of this assertion.

Lemma 3. For each p ∈ (0, 1),

sup
n,j

L(νn(p))(j)
L(π(np))(j)

≤ 1
1 − p

. (53)
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Proof. For every nonnegative integer j ≤ n, we have

P(νn(p) = j)
P(π(np) = j)

=
n(n − 1) · · · (n − j + 1)

nj(1 − p)j (1 − p)nenp

= exp

{
n(p + log(1 − p))− j log(1 − p) +

j−1

∑
i=0

log
(

1 − i
n

)}

≤ exp
{
− log(1 − p) + n(p + log(1 − p))− (j − 1) log(1 − p)

+n
∫ (j−1)/n

0
log(1 − x)dx

}
≤ exp

{
− log(1 − p)− nHp

(
j − 1

n

)}
,

where Hp(x) = −p + x + (1 − x) log((1 − x)/(1 − p)). The following properties of Hp
are obvious:

Hp(1) = 1 − p, Hp(p) = 0,
d

dx
Hp(p) = 0,

d2

dx2 Hp(x) = 1/(1 − x),

which implies Hp(x) ≥ 0 for all x ≤ 1 due to the convexity of H(x), i.e., inequality (13) is
proven.

Finally, as a consequence of Lemmas 1 and 2, we obtain the following moment inequal-
ity for any nonnegative function g(·):

Eg(νn(p)) ≤ 1
1 − p

g(π(np)),

and apply this inequality for the conditional expectation E{X0
i } f (S0

νn(p)), given the sequence

{X0
i }. Theorem 4 is proven.

Remark 10. Inequality (53) is a part of a more general result in [15]. It is worth noting that
this upper bound is an estimate for the so-called Radon–Nikodym derivative of a binomial distri-
bution with respect to the accompanying Poisson law. This problem was studied by a number of
authors ([14,29,30] and others). In particular, under some additional restriction on n and p, a
slightly stronger estimate is contained in [29]. However, in general, the upper bound (53) cannot
be essentially improved. Under some restrictions on n and p, a lower bound for the left-hand side
of (53) has the form (1 − cp)−1, where c < 1 is an absolute positive constant. For example, for
n = 1, an unimprovable upper bound in (53) equals ep < (1 − p)−1. It is easy to confirm that
ep > (1 − p/2)−1 for all p ≤ 1/2.

Proof of Corollary 8. Taking Remark 9 into account, we have a refinement of estimate (53)
in the case n = 1, and as a consequence, we obtain

Eg(ν1(p)) ≤ epg(π(p))

for any nonnegative function g. The further arguments of proving estimate (30) are quite
similar to those in the proof of Theorem 1, applying formulas (52) for n = 1 and the
above inequality for the corresponding conditional expectations. Estimate (31) is a direct
consequence of estimate (53) and the arguments above.

Proof of Corollary 9. Inequality (32) follows from Lemma 2 and the simple estimate

sup
j

P(π(np) = j)
P(π(λ) = j)

= sup
j

(np
λ

)j
eλ−np ≤ eλ−np
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if np ≤ λ only. Otherwise, there are no uniform upper bounds for the Radon–Nikodym
derivative under consideration.

Relation (33) follows from the classical Poisson limit theorem and inequality (32), which
provides fulfillment of the uniform integrability condition. The corollary is proven.

To prove relation (34), we consider the function g(k) := (1 ∨ (k − 2)!)λ−k. It is clear
that Eg(π(λ)) < ∞. Otherwise, we have

Eg(νn(p)) >
1

kn(kn − 1) ∏
j≤kn−1

(1 − j/n)
(np

λ

)kn(
1 − np

n

)n−kn
,

where n ≥ 4 and kn := [
√

n]. Further, it is easy to see that, as n → ∞ and np → λ,

∏
j≤kn−1

(1 − j/n) = exp

{
− ∑

j≤kn−1
j/n + O(k3

n/n2)

}
∼ exp{−k2

n/2n} ∼ e−1/2

and (
1 − np

n

)n−kn ∼ e−λ.

We now suppose that np/λ = 1 + n−α for some α < 1/2. Then,(np
λ

)kn ∼ eknn−α → ∞,

which was to be proved. �

Proof of Theorem 5. For any natural k, we denote

Φ(k)
f (Vn) := ∑

i≤k
fin(νin).

It is clear that

P
(

Φ f (Vn) ≥ x
)
≤ P
(

Φ(k)
f (Vn) ≥ x

2

)
+ P
(

Φ f (Vn)− Φ(k)
f (Vn) ≥ x

2

)
. (54)

In the notation of Theorem 1, let V∗
n be the restriction of the point process Vn to the set

A0 :=
⋃

i≤k
Δi with a hit probability p := ∑

i≤k
pi. Under the sign of the first probability of

the right-hand side of inequality (54), we replace the point process Vn with V∗
n and use

inequality (37) for the distributions of the restrictions of the corresponding point processes
under consideration.

The difference
Φ f (Vn)− Φ(k)

f (Vn) = ∑
i>k

fin(νin)

is an additive functional of the restriction of Vn to the set A0 :=
⋃

i>k
Δi with hitting prob-

ability p := ∑
i>k

pi. For this functional, we also use estimate (37). As a result, taking into

account the nonnegativity of all fin(·), from (54) and Theorem 1, we easily obtain

P
(

Φ f (Vn) ≥ x
)
≤
(

∑
i>k

pi

)−1

P
(

Φ(k)
f (Πn) ≥ x

2

)

+

(
∑
i≤k

pi

)−1

P
(

Φ f (Πn)− Φ(k)
f (Πn) ≥ x

2

)
≤ 2C∗P

(
Φ f (Πn) ≥ x

2

)
.
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Inequality (41) is proved similarly:

P
(

Φ f (Vn) ≥ x
)
≤ P

(
∑

i>m
fin(νin) ≥ x − Cm,n

)
≤
(

∑
i≤m

pi

)−1

P
(

Φ f (Πn) ≥ x − Cm,n

)
.

The theorem is proven.

Proof of Proposition 3. First, taking into account the fact that the increments of Poissonian
processes are independent, we note that the r.v. πo

n(t) = π(nt) − tπ(n) coincides in
distribution with the r.v.

Y := (1 − t)π̄(nt)− tπ̄1(n(1 − t)). (55)

Since the r.vs π̄(nt) and π̄1(n(1− t)) are independent and centered, the lower bound in (23)
immediately follows from Jensen’s inequality. The upper bound follows from the convexity
and evenness of the function f .

Since the centered random process π̄(t) has independent increments, the expectation
E f (π̄(t)) is a nondecreasing function in t in virtue of Jensen’s inequality. So, for t ∈ [1/2, 1],
the right-hand side of (23) coincides with E f (π̄(nt)).

Proof of Proposition 4. It is clear that it suffices to consider the case x = 0. Moreover,
taking inequality (24) into account, we prove estimate (25) for every t ∈ [0, 1/2] only. The
characteristic function of Y has the form

ϕY(s) := exp{g(s)},

where g(s) := ntei(1−t)s + n(1 − t)e−its − n. So, the mth moment of Y is calculated by the
formula EYm = i−m ϕ(m)(0). We need the multiple differentiation formula of products:

(uv)(n) =
n

∑
k=0

Ck
nu(k)v(n−k),

with ψ(0) = ψ. We then obtain

ϕ
(m)
Y (0) = (g′(s)ϕY(s))

(m−1)
s=0 =

m−1

∑
k=0

Ck
m−1g(k+1)(0)ϕ

(m−1−k)
Y (0). (56)

A similar representation is valid for the characteristic function of π̄(nt):

ϕ
(m)
π̄(nt)(0) =

m−1

∑
k=0

Ck
m−1 f (k+1)(0)ϕ

(m−1−k)
π̄(nt) (0), (57)

where f (s) := nt(eis − 1)− isnt and ϕπ̄(nt)(s) := e f (s).
We now compare the coefficients in the sums in (56) and (57). One has

g(k)(0) = iknt(1 − t)[(1 − t)k−1 + (−1)ktk−1],

f ′(0) = 0, f (k)(0) = iknt, ∀k ≥ 2.

Moreover, for each t ∈ [0, 1/2] and all naturals k,

0 ≤ (1 − t)[(1 − t)k−1 + (−1)ktk−1] ≤ 1.

In other words, for all naturals k,

0 ≤ i−kg(k)(0) ≤ i−k f (k)(0). (58)
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Since

i−m ϕ
(m)
Y (0) =

m−1

∑
k=0

Ck
m−1i−k−1g(k+1)(0)ik+1−m ϕ

(m−1−k)
Y (0) (59)

then, all the values i−k ϕ
(k)
Y (0) are nonnegative. Therefore, the inequalities

i−m ϕ
(m)
Y (0) ≤ i−m ϕ

(m)
π̄(nt)(0)

are easily proved by induction on m using the relations (56)–(59).
Thus, the proposition is proven.

4. Conclusions

In the present paper, some inequalities were obtained for the distributions of sums of
independent B-space-valued r.vs in terms of the accompanying infinitely divisible laws. As
consequences of these results, similar inequalities were obtained for the distributions of
empirical and accompanying Poisson point processes.

It is worth noting that the above arguments for additive statistics are also transferred to
more general additive functionals of the U-statistic structure of empirical group frequencies:

Uf ,n(Vn) := ∑
1≤i1<...<im

fn,i1,...,im(νn,i1 , . . . , νn,im),

where { fn,i1,...,im(·)} is an array of finite functions defined on Zm
+ and satisfying only the

restriction
∑

1≤i1<...<im

| fn,i1,...,im(0, . . . , 0)| < ∞ ∀n,

with νn,i := Vn(Δi) and finite or countable measurable partition {Δi} of B. In this case, the
problem is reduced to studying the distribution of the Poissonian version Uf ,n(Πn) where
one can use a martingale approach for estimating its moments and probability tail.
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