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İbrahim Gür and Nicoleta Ungureanu

Apple Varieties Classification Using Deep Features and Machine Learning
Reprinted from: Agriculture 2024, 14, 252, https://doi.org/10.3390/agriculture14020252 . . . . . 85
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Preface

The Special Issue “Digital Innovations in Agriculture-Series II” delves into the rapidly evolving

landscape of digital technologies in agriculture, spotlighting the cutting-edge advancements that are

transforming traditional farming practices. This series showcases a wide array of topics including

precision agriculture, Internet of Things (IoT), artificial intelligence (AI), big data analytics, and

automated systems, all designed to enhance the efficiency, sustainability, and resilience of agricultural

operations.

The second series of this Special Issue emphasizes the role of these technologies in tackling

global challenges such as food security, climate change, and resource optimization. AI-driven

decision-support systems, for instance, enable farmers to make real-time, data-informed choices,

improving crop yields and minimizing environmental impact. IoT technologies facilitate seamless

monitoring of soil conditions, weather patterns, and crop health, thus enhancing resource

management and reducing waste. In addition, machine learning models and remote sensing

technologies allow for early disease detection, predictive analytics, and precision pest control,

significantly reducing reliance on chemical inputs.

This reprint brings together interdisciplinary research efforts that aim to bridge the gap

between digital innovation and practical farming solutions. It offers a platform for discussing both

theoretical advancements and real-world applications, making it a valuable resource for researchers,

agronomists, and industry professionals seeking to understand and implement next-generation

agricultural technologies. By addressing key areas such as automation, sensor technologies, and the

role of robotics in farming, the series highlights the potential for digital innovations to revolutionize

global agriculture and contribute to more sustainable food systems.

Gniewko Niedbała, Sebastian Kujawa, Magdalena Piekutowska, and Tomasz Wojciechowski

Guest Editors
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Today’s agriculture faces numerous challenges due to climate change, a growing
population and the need to increase food productivity. In response to these issues, digital
innovation is becoming an essential tool that can significantly improve the efficiency of the
agricultural sector. The digitization of agriculture, which includes technologies such as the
Internet of Things (IoT), machine learning, drones and advanced monitoring systems, offers
new opportunities that can help improve production processes, resource management and
environmental protection.

This SI titled “Digital Innovations in Agriculture-Series II” presents a collection of
studies that illustrate the diversity of applications of innovative technologies in agriculture.
The articles in this Special Issue explore such areas as the accurate monitoring of plant
and animal health, the optimization of production processes and the development of
intelligent management systems. Through the use of modern analytical and diagnostic
tools, these studies show how innovation can lead to a more informed and efficient use of
resources [1,2].

The opportunities created by these technologies not only increase production efficiency,
but also contribute to biodiversity conservation and ecosystem sustainability. In addition,
data analysis methods and artificial intelligence-based approaches enable better forecasting
and risk management, which is critical in the face of a changing climate and increasing
extreme events. This Special Issue represents an important step toward understanding the
impact of digital technologies on the future of agriculture and agri-food sustainability [3–5].

We hope that the research collected in it will inspire both researchers and industry
practitioners to further explore the potential of innovative solutions in agriculture and their
practical application in daily operations.

The perishable nature of commodities in the agri-food supply chain poses challenges
for producers and marketers. Using an ecological routing model for the distribution of
fresh agricultural products using an adaptive hybrid nutcracker optimization algorithm
(AH-NOA) allows for increased population diversity. Thanks to k-means clustering, the
algorithm effectively overcomes local optima, leading to significant reductions in costs
and CO2 emissions. Studies have indicated that AH-NOA significantly improves global
search efficiency, making this method promising. In addition, MushR’s gourmet mushroom
breeding automation system achieved 91.7% accuracy in identifying ready-to-harvest
mushrooms using Raspberry Pi-based harvesting mechanics. This approach shows how
technologies can revolutionize the harvesting process in food production [6,7].

Detecting oil palm pests using UAVs provides a modern solution for agriculture.
The use of drones along with a multispectral camera allows for the quick and accurate
analysis of infestation rates. Studies have shown a 100% F1 score in classifying healthy and
low levels of infestation, demonstrating the effectiveness of this method. Rapid response

Agriculture 2024, 14, 1630. https://doi.org/10.3390/agriculture14091630 https://www.mdpi.com/journal/agriculture1
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through the use of UAVs can save time and resources compared to traditional detection
methods. This type of technology is key in crop management, increasing the efficiency of
palm oil monitoring. The results show the importance of introducing innovative solutions
in agricultural production [8].

The models used to forecast potato yields in Poland showed significant potential by
analyzing an integrated data set from 36 fields. Three models were developed: non-satellite,
satellite and hybrid, and the best result emerged from the hybrid model, achieving a
MAPE of 5.85%. Advanced data analysis techniques, such as PCA and outlier detection,
helped improve forecasting performance, and the hybrid model combining data from all
sources yielded the best results. This approach to yield analysis can significantly improve
forecasting accuracy in agriculture. The results of this research suggest that machine
learning plays a key role in improving crop management. Ultimately, innovative yield
forecasting tools have the potential to optimize agricultural production [9].

A detection system for recognizing blueberry fruit maturity, based on the improved
YOLOv5 algorithm, achieved impressive results, such as an average recall of 92.0% and
an average precision of 91.5%. The use of the ShuffleNet module and Convolutional
Blocks of Attention (CBAM) contributed to better feature fusion, and the system’s speed
is 67.1 frames per second. The method, with its lower computational requirements, is
more suitable for use in edge devices. A comparison with other algorithms, such as SSD
and Faster R-CNN, showed better results with a lighter model weight. This method has
potential for applications in intelligent fruit detection systems in orchards, which can
support modern agriculture. These achievements show how technology can revolutionize
fruit picking [10].

Evaluating the differential revision responses of multiple wheat genotypes to water
stress reveals significant differences in tolerance and plant growth. Studies that used
polyethylene glycol at different concentrations applied machine learning techniques to
effectively predict key growth parameters. The best results in predicting water absorption
and germination rates were obtained using the elastic-net model. In addition, an analysis of
the performance of classification techniques showed that a Gaussian process classifier was
best for estimating root length. The results of this research are crucial for wheat genetics
and breeding in the face of a changing climate. The application of new analytical techniques
indicates the possibility of crop improvement under harsh conditions [11].

The use of computer vision technology to classify apple varieties has yielded excep-
tional results, achieving an accuracy as high as 97.48% using the DenseNet201 model. The
implementation of CNN architectures and transfer learning in fruit classification confirmed
the effectiveness of this method. Further analysis of the deep features extracted from the
model allowed the use of traditional classifiers such as SVM and MLP, which contributed to
an even higher accuracy of 99.77%. This study also considered the impact of dimensionality
reduction on classification performance. These achievements underscore the importance
of artificial intelligence in improving classification quality in an agricultural product. The
findings point to the need for further research in apple variety diversity, which could
enhance analytical capabilities [12].

Wheat Teacher is a wheat ear detector that uses semi-supervised methods and em-
ploys pseudo-tagging and consistency regularization. Experiments conducted on a set of
GWHD2021 showed that Wheat Teacher achieved a mAP0.5 score of 92.8%, using only 20%
of the labeled data. Such a result outperformed the results of two full-surveillance-based
detection models that were trained on 100% of the labeled data, with a difference of no more
than 1%. In addition, Wheat Teacher improved mAP0.5 by 2.1%, achieving 37.7% across
different proportions of labeled data usage. This research underscores Wheat Teacher’s
significant potential in effective wheat ear detection, which can contribute to better breed-
ing strategies. The system indicates the potential for applications of semi-supervised
technology in the context of increasing efficiency in wheat crop management [13].

The introduction of a mobile pig weight prediction system, based on Raspberry Pi
and 3D camera data analysis, made it possible to automate the weighing process. The
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system achieved an RMSE of about 10.702, confirming its high precision. The use of 3D
technology contributes to reducing labor costs in animal husbandry. With effective weight
measurement, this study illustrates the innovation of measurement methods in animal
production. The results of this research are applicable to increasing productivity in animal
husbandry. Such systems can significantly improve production efficiency in the animal
industry [14].

In addition, drone technologies in insecticide application in young rice orchards show
the importance of precision agriculture. The introduction of a prescription map allows
chemicals to be concentrated in areas with the highest loss, reducing their use at the same
time. Studies have shown that the use of drones increases the efficiency of crop protection,
leading to a lower percentage of rice damage compared to control areas. This approach
contributes to the development of modern crop protection methods. The results of this
research are a step toward more sustainable agricultural practices that can benefit the
environment. The use of drones in crop protection opens up new opportunities for more
efficient agricultural production [15].

Studies on radio signal propagation in sensor networks have shown that different
models do not respond adequately to signal attenuation in dense vegetation. Comparative
analyses with actual measurements in a tapioca field in Colombia have shown significant
differences in network design. Machine learning techniques, including random forests and
K-NN, significantly improved the prediction of signal attenuation. The final findings may
be useful in planning new wireless networks in agriculture. This study is a step toward
improving communication technologies in the agricultural sector. The development of such
technologies has a major impact on the efficiency of agricultural resource management [16].

The use of a neuromorphic computer to estimate the weight and length of fish in
smart aquaponic systems has demonstrated the ability to classify more than 84 million
samples in just one second. The SpikoPoniC system, based on this research, has a 3369-fold
acceleration compared to traditional computers. This enables the intelligent monitoring
of aquaponics, which is crucial for future commercial solutions. This study highlights
the importance of hardware optimization in aquaculture applications. Thus, it becomes
clear how modern technologies can revolutionize the monitoring of aquatic resources.
Innovative approaches to fish monitoring have great potential in aquaponics systems [17].

Faced with declining populations of Apis mellifera bees, which are crucial for pollina-
tion, the authors of [18] present an IoT system for beekeepers in developing countries. The
use of low-cost devices to monitor hive parameters, such as temperature and humidity,
allows the early detection of problems. The efficiency of the system is enhanced by process-
ing data using an advanced machine learning model. This study also takes into account
the analysis of energy consumption and network traffic. Ultimately, the proposed solution
improves the accuracy of mite detection. Conclusions address the role of technology in
pollinator protection and food security [18].

A system for monitoring the feed and water intake of sows provides information on
their health and performance in real time. The use of open technologies and an electronic
feeder consisting of a data processing program based on Spark and Flink brings significant
benefits. The system allows 20,000 sows to be monitored simultaneously, which improves
the management of their breeding. Studies have confirmed that with optimization, the
system achieves a TPS of 6399 pcs/s for 10,000 sows. The results indicate the technology’s
potential in intensive agriculture. Such solutions can significantly contribute to improving
efficiency in livestock production [19].

Today’s agriculture is facing challenges from a growing population and climate change,
requiring increased efficiency in food production. The digitization of agriculture, through
the use of technologies such as IoT, drones and machine learning, offers solutions to
increase the efficiency and sustainability of the agribusiness sector. The research included in
“Digital Innovations in Agriculture-Series II” demonstrates the wide range of applications
of innovative techniques that can lead to a more sustainable use of resources and better
crop and livestock management. Modern analytical and predictive technologies play a key
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role in protecting the environment and increasing production efficiency, which is crucial
in the context of a changing climate. The development of these technologies indicates
the significant impact of digitalization on the future of agriculture and the potential in
optimizing production processes.

Author Contributions: All authors (G.N., S.K., M.P. and T.W.) contributed equally to the development
of this Editorial. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: Acquiring real-time feeding information for monitoring lactating sows and their feeding
requirements is a challenging task. Real-time data represent an important input for numerous tasks,
such as disease monitoring, nutritional regulation, and feeding modeling. However, concurrently
monitoring large numbers of sows and processing the real-time information for modeling is chal-
lenging using existing platforms. In this paper, we describe the design and development of a system
that monitors and processes sows’ feed and water consumption in real time. The system was custom-
developed using open-source networking technologies. The system consists of three components: an
electronic sow feeder connected to a central controller via a CAN network, an MQTT service cluster,
and a data processing program. The MQTT service cluster uses Netty to develop a single service node,
and it uses Zookeeper and Redis to complete node registration, discovery, and scheduling. The data
processing program is based on Spark and Flink. We conducted comparative testing of three common
codecs (Java Serializer, Marshalling, and Protostuff) to further speed up data transmission. The
results of the experiment show that, with three service nodes, the system can concurrently monitor
up to 20,000 sows. Moreover, the system achieves optimal performance when monitoring 10,000 sows
at the same time, with a TPS of 6399 pcs/s and an RT of 643 ms.

Keywords: lactating sow; intelligent feeding; cluster system; IoT platform

1. Introduction

The Internet of Things (IoT) is applied in various industries, including smart man-
ufacturing [1], smart cities [2], smart healthcare [3], precision agriculture [4], and smart
livestock farming [5], through various applications involving machine-to-machine and
machine-to-human interactions [6]. Intelligent machines continuously send data to cloud
servers via the internet. The data are analyzed and presented as per the requirements of the
end-users [7]. The IoT has many applications in pig farming. Monitoring the parameters
related to lactating sows is one of the most vital aspects [8,9]. The feed intake and water
consumption of lactating sows are required in real time for precision feeding in pig farms.
These data are vital for improving feeding practices and enabling the timely prediction of
diseases [10,11].

Electronic sow feeders (ESFs) are commonly used to record the feed information of
lactating sows [12]. ESF systems are used during the lactation period to control the delivery
of feed to individual sows in a farrowing house. Depending on the system, ESFs may also
record data for individual feed intake and the timing of eating events, and the data can be
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rapidly transmitted back to cloud servers through the network [13]. With the help of ESFs
and information technology, modern precision feeding systems for lactating sows have
demonstrated their ability to meet individual requirements more efficiently [14]. Ma et al.
devised an intelligent feeding equipment and network service platform, which can provide
a convenient and intelligent feeding method as well as multiple areas of pig management.
The platform realizes the recording of the daily feeding amount of pigs from multiple
areas [15]. Chen et al. developed a precision feeding system consisting of intelligent
feeders, environmental monitoring devices, a wireless data transmission module, and a
remote monitoring terminal. The Alibaba Cloud server was connected using a long-range
radio (LoRa) module and a general packet radio service (GPRS) module to achieve the
long-distance transmission of feed and water intake data [16]. Although the above systems
have realized the collection and management of pig feeding information, there is little
mention of the number of devices connected to the systems and the implementation details
of data transmission.

With the intelligent development of pig farming devices, higher demands have been
placed on the stability and concurrency of pig farm IoT systems [17,18]. There are currently
some commercial IoT platforms, such as ThingSpeak cloud platform, Microsoft Azure, and
other platforms, that can support edge device access [19]. However, in terms of actual
use on pig farms, commercial IoT platforms face issues such as cumbersome configu-
ration, difficulty in flexible customization, and high costs [20]. With the application of
technologies such as clusters, distributed systems, and microservices in animal husbandry,
centralized servers are shifting towards distributed servers [21]. This shift provides new
solutions for the development of high-performance IoT systems. A previous study [22]
used microservices and cloud paradigms to implement a highly scalable livestock IoT plat-
form. The microservice architecture of a distributed IoT system discussed in detail in [23]
consists of a group of microservices that communicate with each other synchronously
or asynchronously. Another study [24] involved the design of a sensor network based
on a microkernel operating system. Based on the idea of modular design, the functional
modules and control modules were organically combined so as to realize the monitoring
and collection of farmland and livestock management information.

The aim of this study was to design an Internet of Things-based cluster system for
lactating sows utilizing electronic sow feeders, a message queue telemetry transport (MQTT)
service cluster, and data processing programs to collect and monitor the feed and water
intake of lactating sows in real time. The MQTT server developed based on Netty provides
connection services for ESFs. In order to improve the concurrency and stability of the
system, an MQTT server cluster suitable for real-time applications in pig farms was built
based on Zookeeper. A scheduling server was added to ensure the reasonable distribution
of MQTT service nodes. Moreover, this system also includes a data processing platform
that can monitor and record feed intake, water consumption, and ESF operating status.
Our main objectives were (1) to design and develop a stable ESF and central controller
for monitoring lactating sows, (2) to develop a high-concurrency MQTT server cluster to
collect real-time values of central controllers attached to the server node, (3) to develop a
data processing platform for recording and tallying the collected values at the pig farm,
and (4) to utilize a user-friendly interactive interface for displaying real-time information.
The present study included the design, implementation, and verification of the system.

The details of this study are presented in Section 4. Section 1 provides a brief descrip-
tion of related work reported in the literature and outlines the objectives for the present
study. Section 2 offers technical details regarding the development of the system, including
the description of the system architecture, a brief overview of the design of the ESF and
central controller, the MQTT server cluster, the data processing program, and the data
transmission security. The experimental results, accompanied by case study data, are
discussed in Section 3. Section 5 provides a summary, along with conclusions, and outlines
the future scope of the study.
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2. Materials and Methods

2.1. The Architecture of the System

The system’s architecture (Figure 1) includes three significant components: an elec-
tronic sow feeder (Figure 1a) connected to a central controller (Figure 1b) via a CAN
network, an MQTT service cluster, and a data processing program. An electronic sow
feeder was designed to monitor the feeding status of lactating sows. It was installed above
each stall in the experiment and connected to a touch rod (which initiated feed and wa-
ter discharge upon the sow’s touch), a feed discharge pipe, and a water discharge pipe
(Figure 1d) inside the feed trough. A central controller controls all electronic sow feeders
within a unit through the controller area network (CAN). This is because the network signal
is poor in the remote environment of the pig farm. The use of CAN lines can ensure the
stable connection of equipment. In addition, we developed a PDA to set parameters for the
electronic feeder through a QR code (Figure 1c). The electronic sow feeder records the daily
feed and water intake, and the central controller transmits the data to the MQTT service
cluster and data processing program running in the cloud through the MQTT protocol.

 

Figure 1. Architecture of the IoT-based intelligent feeding equipment and cloud components. (a) Elec-
tronic sow feeder, (b) central controller, (c) PDA, (d) feed discharge pipe and water discharge pipe.
(1) The central controller sends request to scheduling server, (2) permission information is verified for
the central controller, (3) an MQTT server node is selected, (4) the internet protocol (IP) and port of the
selected server node are returned, (5) the central controller establishes a connection with the service
node, (6) the service node transfers the received data to the data processing program, (7) composition
of data processing program, and (8) PC and phone.

2.2. ESF and Central Controller

Figure 1 shows the designed system architecture, which includes the ESF and central
controller. Detailed information of the components and instrumentation is provided in Table 1.

An entire circuit setup with its components is included inside the plastic container.
The feeder control method adopts STM32 (ST Microelectronics 32-bit Microcontroller)
embedded technology (Made by STMicroelectronics, Geneva, Switzerland). The core board
chip uses STM32F103VET6 with large-capacity storage. The CPU is an ARM Cortex-M3,
and the internal clock frequency of the main chip is increased to 72 MHz. The maximum
power dissipation is 434 MW, and the operating temperature range is −40 ◦C to 85 ◦C.
The main interfaces of the core circuit include CAN-bus communication, RS-232 serial
communication, WiFi communication, motor control output, flow meter A/D acquisition,
and alarm light display, as shown in Figure 2.
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Table 1. Brief information of components used.

Component Name Model Operating Voltage Output Component Role Manufacturers

Motor 10–50 mm 24 V Analog Maximum thrust: 250 N Louis, Changzhou, China
Water flow sensor YF-S201 5 V Digital Flow range: 1–25 L/min Dijiang, Cangzhou, China
Electromagnetic

valve
2W160-15 24 V Analog Temp: −5 ◦C–150 ◦C Xiangjun, Hangzhou, China

CAN USBCAN-E-mini 5 V Digital Baud rate: 5 kbps~1 Mbps Ligong, Guangzhou, China

 
Figure 2. Main interfaces of the core circuit.

The central controller is a 12-inch touchscreen all-in-one machine (Huaxiang Zhichuang
Technology Co., Ltd., Shenzhen, China). The system runs on Windows 10 (Intel(R),
Celeron(R) CPU J1900, 1.99 GHz, Intel Corp, Santa Clara, CA, USA), with a memory
(RAM) capacity of 4.00 GB. The central controller dynamically records and displays the ac-
tual feed intake and water consumption of sows, with the operating interface programmed
using the C++ language.

2.3. MQTT Service Cluster

The purpose of the MQTT cluster service is to complete the reception of data and the
issuance of operation instructions [25]. In this study, an MQTT server was designed based
on the Netty [26] network communication framework to receive and parse data.

2.3.1. MQTT Service Node Design

Netty is a framework for quickly developing high-performance and reliable network
servers that is easy to use [27]. The MQTT protocol is a very simple, lightweight information
transmission protocol designed for use with restricted equipment, low bandwidth, high
latency, or unreliable networks [28]. Many studies have shown that MQTT outperforms
other protocols [29–31].

This section describes the design of a single-node server based on Netty and MQTT
protocols. When the node starts, the ServerBootstrap component of Netty binds to a
network port to listen to and process connection requests from the central controller. After
a successful connection, the WorkerEventLoopGroup receives data sent by the central
controller and allocates processing threads from the thread pool to the corresponding
connection channels. The encoding and decoding of pig feeding data are achieved using
MqttDecoder and MqttEncoder. Finally, data parsing is performed through a self-written
MqttServerHandler. The feed and water intake data are sent to MySQL [32], while the
electronic feeder log data are sent to Kafka [33]. The process of the server handling Connect,
Subscribe, and Publish requests is depicted in Figure 3.
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Figure 3. The process of the server handling Connect, Subscribe, and Publish requests.

2.3.2. MQTT Service Cluster Construction

As the number of central controllers in pig farms increases, single-node servers quickly
reach performance bottlenecks, making it difficult to monitor a large number of sows in real
time. The cluster architecture can upgrade system scalability, stability, and performance at
a lower cost [34]. Ensuring the cluster can provide services to the central controller of the
pig farm normally during the cluster construction process, and the registration, scheduling,
and management of nodes, are very important. The cluster organizational structure is
shown in Figure 4.

Figure 4. The components and overall processes used in the cluster.

A. Registration of cluster nodes

The registration of MQTT service nodes in the cluster is completed using ZooKeeper
and Redis. After the successful initialization of MQTT service nodes, corresponding
ephemeral nodes are created in Zookeeper. The ephemeral nodes store information such as
the MQTT server name, IP (Internet Protocol), port, and the number of connected central
controllers. The system utilizes Zookeeper as the registration center, with the scheduling
server acting as the Zookeeper client. By employing the Zookeeper node listening mech-
anism, it detects the online and offline status of MQTT servers and synchronizes data to
Redis. The node registration process is shown in Figure 5.
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Figure 5. The registration process of the MQTT server in the cluster.

B. Connection and selection of cluster nodes

The central controller of the pig farm sends data based on the MQTT protocol, so the
central controller needs to use socket information (IP and port) to establish a connection
with the cluster. Each MQTT node in the cluster has its own socket information, making
the central controller unable to establish a connection with the cluster through a unified
entry point. Moreover, the service nodes of the cluster need to be scheduled reasonably.

To address the issues of node connection and node scheduling in the cluster, we
propose deploying a scheduling server in the MQTT service cluster. This provides a
unified connection interface for the central controller and realizes the reasonable scheduling
of service nodes. The scheduling server is implemented using the Netty framework,
essentially functioning as an HTTP (Hypertext Transfer Protocol) server. The central
controller accesses the HTTP interface provided by the scheduling server (Figure 1(1)). After
receiving the HTTP request, the system performs authorization validation (Figure 1(2)) and
then selects appropriate MQTT service nodes using a load-balancing algorithm (Figure 1(3)).
The scheduling server returns the IP and port of the selected node as interface response
values to the central controller (Figure 1(4)). After receiving the socket information, the
central controller establishes a connection with the target node (Figure 1(5)).

The node-scheduling server selects suitable service nodes for the central controller
of the pig farm by implementing load-balancing algorithms. The algorithmic selection
result is primarily determined by two factors: the load of service nodes, which refers to the
number of connected pig farm controllers, and the weight of server nodes, which represents
the performance configuration of the servers.

The load-balancing algorithm adopts the concept of a weighted connection count. It
selects nodes with higher weights and lower loads for the central controller each time.
Assuming there are n server nodes, the selection rules are as shown in Equation (1).

Sk = min
{

C(Si)/Csum

W(Si)

}
, (i = 0, 1, 2, . . . , n− 1) (1)

where i is the selected server node; C(Si) is the number of connections held by server node
i; W(Si) is the weight of server node i; W(Si) > 0; and Csum = ∑C(Si) is the total number of
connections held by server nodes in the cluster.

Because Csum is a constant, and division requires more CPU cycles than multiplication,
the optimization of the judgment condition can be represented as in Equation (2).

C(Sk)×W(Si) < C(Si)×W(Sk) (2)

When there are multiple nodes in the cluster, this rule is utilized to sort and identify
the node that currently has a lower load and higher weight.

2.3.3. Transmission Security Design

Devices may be subject to malicious connections from unrelated devices when ser-
vice nodes provide MQTT connections externally [35]. This can lead to increased server
load and affect normal operation. Because the MQTT CONNECT message permits the
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inclusion of a username and password, the system is designed with a dynamic password-
generation algorithm for authentication during the establishment of connections by the
central controller.

The core concept of dynamic password generation is illustrated in Figure 6 and can
be summarized as follows: (1) randomly generate a string S of length len; (2) extract
characters from indices m, m − m/2, and m + m/2, convert these three characters to
decimals, and calculate Num; (3) calculate result by combining Num with the system time
(Time); (4) convert the result to a hexadecimal and insert it at position S[m] in the original
string S to generate a new string S′.

Figure 6. The core concept of dynamic password generation.

The algorithm incorporates the current system time into the calculation, enabling
the addition of timeliness to the generated verification code. The summation of the split
characters will ignore the seconds when the time format is set to “yyyy-MM-dd-hh-mm”.
The system will yield the same result when verifying the verification code within one
minute. If the time format changes to “yyyy-MM-dd-hh”, then the expiration time changes
from one minute to one hour. Additionally, the efficiency of authentication is improved
by sending the dynamic password only once for authentication. However, the password
generation algorithm requires setting factory information for the central controller in the
system, including registration string length (len), index (m), and time format. The algorithm
is suitable for scenarios where device registration information can be prepared in advance.

2.3.4. Integration of ProtoStuff Encoder and Decoder

Netty can integrate third-party encoders to accelerate data transmission efficiency. We
compared mainstream serializers such as Java Serializer, Marshalling, and Protostuff. The
experimental results demonstrate that Protostuff exhibits the highest efficiency. Therefore,
we ultimately finalized the integration with Protostuff. Due to the absence of correspond-
ing encoders and decoders in Netty, users need to implement Protostuff encoders and
decoders by themselves. The Protostuff encoder and decoder need to inherit from the
MessageToByteEncoder class and the ByteToMessageDecoder class provided by Netty. It is
also necessary to override the encode() and decode() methods within the inherited classes.
Thus, the data flow sent and received by the MQTT server is directed to the Protostuff
encoder and decoder for processing.

2.4. Data Processing Program

The system was built on a big data framework to establish a data processing platform
for the statistical analysis of data. The platform was built upon HDFS (Hadoop Distributed
File System) [36] and Spark [37] to establish an offline data warehouse, which is utilized
for processing parsed sow production data. The data platform constructs hierarchical
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dimension tables, including fields such as pig farm ID, house number, stall number, entry
time, exit time, and farrowing date. The data platform utilizes dimensional tables to
perform statistical analyses on litter size, number of live births, feed intake, water intake,
and other data at different time intervals and pig farm granularities. The system utilizes
Kafka and Flink for the real-time collection and processing of controller log data. The
system conducts filtering and aggregation operations in Flink to calculate the number of
devices online, the quantity of alarms, alarm information, and operational dynamics for
intelligent devices in each pig farm. The architecture of the data processing platform is
illustrated in Figure 7.

 

Figure 7. The architecture of the data processing platform. (1) ODS stands for operation data source,
(2) DWD stands for data warehouse details, (3) DWM stands for data warehouse middle, (4) ADS
stands for application data service, and (5) OLAP stands for Online Analysis Processing.

2.5. System Testing Methods
2.5.1. Test Environment

The system described in this paper was deployed on three Alibaba Cloud servers. The
servers are of the shared computing type n4 (ecs.n4.small). The configuration information
parameters are as follows: Intel(R) Xeon(R) CPU E5-2682 v4 @ 2.50 GHz, 1 vCPU, 2 GB
RAM, and 100 GB HDD. The operating system was Alibaba Cloud Linux release 3, and
JDK version 1.8 was used. Additionally, two computers with 8-core CPUs were used as
load-testing machines. The detailed configuration information parameters are as follows:
Intel(R) Core(TM) i5-1035G1 processor, 16 GB RAM, 500 GB solid-state drive, and Windows
10 operating system.

2.5.2. Test Indicators

Transactions per second (TPS): TPS is a performance metric for system processing
capability, indicating the number of messages processed per second. A higher TPS indicates
better system performance.

System response time (RT): RT is the time it takes for the system to respond to user
input or requests. A shorter system response time indicates better system performance.

Error rate (ER): ER is the number of request errors as a percentage of the total number
of requests.
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2.5.3. Test Methods

A. Performance Testing of the Scheduling Server

The test involved performance testing of the scheduling server. The performance of
the scheduling server was tested and compared with mainstream Tomcat web applications.
The Tomcat web application was written in the Java programming language. We employed
JMeter to conduct separate tests on both the Tomcat web application and the scheduling
server [38]. The testing process was as follows: (1) Ten sets of HTTP requests were config-
ured in JMeter. (2) The request threads were configured to start and complete within 3 s for
each of the three cycles. (3) The comparison of the response time, throughput, and failure
rate of the two systems was based on the JMeter aggregated report.

B. Load-balancing algorithm correctness testing

The test utilized three server nodes: node1, node2, and node3. The weight ratio among
the three nodes was 6:3:1 with an initial connection count of 0. The testing machine sent
HTTP requests to the scheduling server to trigger the load-balancing algorithm. After
receiving responses, the testing machine recorded the node selection results to verify the
correctness of the algorithm. The test evaluated the correctness of the algorithm under
scenarios of node failure and reconnection after disconnection. The testing process was as
follows: (1) Firstly, all three server nodes were simultaneously started. Then, during the
test machine sending the request, we shut down the server node1. (2) Firstly, both server
node2 and node3 were simultaneously started. Then, during the test machine sending the
request, we opened server node1. (3) We recorded the node selection results.

C. Cluster Performance Testing

The average response time and the number of requests processed per unit time by the
cluster in handling MQTT requests were tested using JMeter software (version: 5.6.2). The
testing process was as follows: (1) We configured multiple sets of MQTT request counts and
completed initialization within 1 s. (2) Each MQTT request sent a 507 byte JSON string to
the server. (3) The cluster parsed the data and replied with a successful reception message.

D. Encoding and decoding efficiency testing

In order to test the impacts of different encoding and decoding methods on MQTT
server data transmission, we compared the performances of three encoding and decoding
methods: Java serialization, Marshalling, and Protostuff. The testing process was as follows:
(1) The testing machine was configured with 100 thread groups and sent data three times. It
sent 100, 500, and 1000 packets each time. The packet size was 1250 bytes and included the
current timestamp information T1. (2) The tested program appended the current timestamp
information T2 to the data packet after completing data parsing and sent the data packet
back to the load-testing machine. (3) The testing machine calculated the response time Trs
of the program based on the two timestamps (T1 and T2) in the packet.

Trs = T2 − T1 (3)

3. Results

3.1. Test Results
3.1.1. Scheduling Server Performance Test Results

The test results are shown in Figure 8a,b. The response time of the scheduling server
was within 250 ms under 22,000 requests. The overall response time of the scheduling server
was faster than that of the Tomcat web application. The TPS of the Tomcat Web application
peaked at 6301 pcs/s with 16,000 requests, accompanied by a response time of 153 ms.
The TPS of the scheduling server peaked at 7351 pcs/s with 18,000 requests, accompanied
by a response time of 145 ms. The scheduling server exhibited an increase of 1050 pcs/s
compared to the Tomcat application. The Tomcat web application and the scheduling
server experienced request failures at 20,000 and 22,000 request counts, respectively. The
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failure rates of both began to increase after the number of requests exceeded 20,000. Clearly,
the increase in resource utilization led to a higher failure rate.

Figure 8. Test result graph. (a) TPS results of scheduling server and Tomcat application, (b) RT and
ER results of scheduling server and Tomcat application, (c) the change in node connections when
node1 crashes, (d) the change in node connection count during the reconnection of node1, (e) TPS and
RT test results for cluster performance, and (f) TPS comparison results of three serialization methods.

3.1.2. Load-Balancing Algorithm Correctness Test Results

The test results are shown in Figure 8c,d. Figure 8c shows the change in node con-
nections when node1 crashes. When node1 was shut down after the 5000th request, the
connection counts of node2 and node3 gradually approached a ratio of 3:1. Figure 8d
illustrates the change in node connection count during the reconnection of node1. Node1
was prioritized for connection requests after it was started at the 1500th request. Finally,
the connection ratio of the three nodes tended towards 6:3:1.

The test results indicate that nodes with higher weights received more connections,
but they did not hold all connections. As the number of requests increased, the propor-
tion of connections among all nodes tended to approach the ratio of node weights. The
results demonstrate that the load-balancing algorithm was influenced by both weights and
connection counts, and it functioned properly even during node failures and reconnects.

3.1.3. Cluster Performance Test Results

The test results are shown in Figure 8e. When the number of requests reached 4000,
6000, and 8000, the TPS of the cluster gradually increased to 3699 pcs/s, 5917 pcs/s, and
6050 pcs/s respectively. When the number of requests reached 10,000, the TPS peaked at
6399 pcs/s, with a corresponding response time of 643 ms. After the number of requests
exceeded 10,000, the TPS gradually decreased as the system reached its bottleneck. When
there were 20,000 requests, the TPS was 3738 pcs/s, with a response time of 1308 ms. The
test results indicate that the system performed well with 10,000 connections. Overall, it was
capable of meeting the communication requirements of the central controller in pig farms.
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3.1.4. Encoding and Decoding Efficiency Test Results

The test results are shown in Figure 8f. Under the test with 10,000 data packets,
Protostuff showed a response time of 258 ms, while Marshalling and Java serialization
showed 348 ms and 376 ms. The test results indicate that Java serialization had the longest
response time, while Protostuff had the shortest response time. The advantages of Protostuff
are more obvious with many data.

3.2. PC and App Application Interface

The system supports real-time access from both mobile phones and computers. The
equipment status interface (Figure 9a) provides real-time displays on the deployment,
online, and abnormal status of electronic sow feeding in the pig farm, along with detailed
alarm information prompts. When the sow’s feed intake is less than 40% of the planned
feeding amount set by the electronic sow feeding, the system determines that the sow’s
feed intake is insufficient. Clicking on the number allows for querying the location of the
alarmed electronic sow feeding in the stall. Figure 9b provides a summary of information
for each farrowing house, including the number of sows, total feed intake for the day, and
total feed intake for the batch. The feeding status interface displays detailed information
for each sow in the stall (Figure 9c), including its ear tag number, farrowing information,
and feed intake level. The system also supports displaying historical feed intake data
for the sow since its entry into the stall in the form of a line graph. The feeding scheme
interface (Figure 9d) displays the feeding plan for sows throughout the entire farrowing
cycle, including key information such as daily feeding schedules and feed-to-water ratios.

Figure 9. The mobile interface. (a) The equipment status interface, (b) the farrowing house summary
information interface, (c) the feeding status interface, and (d) the feeding scheme interface.

As shown in Figure 10, the PC interface displays the online status and detailed informa-
tion of the MQTT server nodes in the cluster. This information includes TCP (Transmission
Control Protocol) connection count, weight information, and node IP addresses, as well
as the CPU, memory, and disk usage of the servers. Additionally, the system monitors
the resource usage of key components such as MySQL, Zookeeper, Redis, and Kafka.
When the system encounters abnormalities, it will notify administrators via email for
timely resolution.

The system displays statistical data after the completion of data platform processing
in the backend management interface (as shown in Figure 11). The interface presents data
such as feed and water intake per farrowing house, daily farrowing statistics, sow feeding
plans, and sow anomalies. Additionally, it allows for querying detailed meal information
for each sow throughout the day.
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Figure 10. The online status and detailed information of the MQTT server nodes in the cluster. Blue
means free, orange means used.

 

Figure 11. The backend management interface for displaying statistical data.

4. Discussion

4.1. Analysis of Feeding Behaviors in Pig Farms

This system is installed at the ZhongRenWang sow farm in Baise City, Guangxi
Province, China (longitude: 105.465639, latitude: 24.595144). We installed equipment
in five farrowing houses of the pig farm, with each farrowing house installing 1 central
controller and 59 electronic sow feeders. In this section we analyze the feeding data of
lactating sows collected from 1 June 2023 to 1 February 2024. The fields of the original data
are shown in Table 2.
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Table 2. Fields of original data.

Field Name Data Type Note

Pig_Farm_Id Number The only sign of the pig farm.

Center_Controller_Id Number The only sign of the central controller
in houses.

ESF_Id Number The only sign of the ESF in farrowing houses.
House_Id Number The only sign of the farrowing house.
Stall_Id Number The only sign of the stall in farrowing houses.

Current_Date String Current date, format is “yyyy-MM-dd”.
Has_Pig Boolean Has a sow entered the stall?

Enter_Data String Sow entry date, format is “yyyy-MM-dd”.
Enter_Day Number Number of days sows have been in stall.

Is_Farrowing Boolean Has the sow finished farrowing?
Farrowing_Date String Date of farrowing, format is “yyyy-MM-dd”.

Feed_Intake Float Feed intake of the sow throughout the day.
Water_Intake Float Water intake of the sow throughout the day.

We eliminated data with negative values for feed and water intake and discontinuous
entry dates. The time range of the production data of each lactating sow is from the time of
entry to the stall to the time of exit from the stall. After cleaning the data, the production
data of 1447 lactating sows were obtained. Moreover, descriptive analysis of the obtained
data was performed using SPSS.

4.1.1. Production Interval Days Frequency Statistics

We calculated the frequency of different production interval days by analyzing the
time intervals between sows in the same stall within each farrowing house (i.e., the time
from the end of one sow’s lactation to the beginning of the next sow’s lactation). The time
interval was calculated by subtracting the entry time of the next sow from the exit time of
the previous sow. Finally, after the calculation of all stalls was completed, the number of
occurrences of different time intervals was counted.

The frequency distribution of production interval days for each farrowing house is
shown in Figure 12a. SPSS statistical indicators are shown in Table 3. The highest frequency
days in each farrowing house are 8 d, 4 d, 5 d, 5 d, and 8 d. The average production interval
days are 10.79 d, 8.06 d, 6.95 d, 12.29 d, and 12.29 d. These data show that the production
interval days of the pig farm range from 6.95 d to 12.29 d, and the production rhythm of
the No. 2 farrowing house is faster than that of other houses.

Table 3. Statistical indicator data of production interval days, weaning days, and prepartum days.

House
Production Interval Days Weaning Days Prepartum Days

Mode Average SEM * Mode Average SEM Mode Average SEM

House 1 8 10.79 0.465 21 19.51 0.176 13 13.16 0.235
House 2 4 8.06 0.282 23 22.85 0.212 3 5.03 0.193
House 3 5 6.95 0.184 19 19.35 0.200 12 9.80 0.175
House 4 5 12.29 0.462 18 17.68 0.288 6 6.42 0.119
House 5 8 12.29 0.317 13/21 17.91 0.244 11 8.44 0.163

* SEM: Standard error of mean.

4.1.2. Distribution of Weaning Days Frequency Statistics

Figure 12b shows the frequency distribution of weaning days for lactating sows. It
represents the number of days post-farrowing when sows finish lactation. The number of
weaning days was obtained by subtracting the farrowing date from the exit stall date of the
lactating sow.
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Figure 12. Frequency distribution figure of days. (a) The frequency distribution of production interval
days for each farrowing house, (b) the frequency distribution of weaning days for lactating sows,
and (c) the frequency distribution of prepartum days for lactating sows.

SPSS statistical indicators are shown in Table 3. The most frequent weaning days
for each farrowing house are 21 d, 23 d, 19 d, 18 d, and 21 d. The data reflect the fact
that the sow farms will wean the lactating sows around 20 days. Weaning in intensive
pig production usually occurs between days 21 and 28 of age, which is beneficial for sow
recovery and piglet survival [39]. Another frequently occurring weaning day in the No. 5
farrowing house is Day 13. This indicates that early weaning occurred in the farrowing
house during a specific period.

4.1.3. Distribution of Prepartum Days Frequency Statistics

Figure 12c shows the frequency distribution of prepartum days for sows. It represents
the number of days before parturition during which lactating sows entered the farrowing
house. The number of prepartum days was obtained by subtracting the entry date from the
farrowing date of the lactating sow.

SPSS statistical indicators are shown in Table 3. The most frequent prepartum days
in each farrowing house are 13 d, 3 d, 12 d, 6 d, and 11 d. In intensive pig production,
sows will enter the farrowing house about 7 days before parturition [40]. The average
data indicate that the farm typically places lactating sows in the farrowing house around
5.03 d–13.16 d before farrowing, which is basically in line with the production rules of
intensive pig farms. It is noteworthy that 94 sows in the No. 2 farrowing house were placed
in the farrowing house only 3 days before farrowing. This may have increased the sows’
stress response. The cause of this situation may be related to the fast production pace of
this farrowing house.

4.1.4. Feed and Water Intake of Sows

Through the above analysis, it has been made evident that sows in this pig farm enter
the farrowing house 10 days before farrowing and are weaned 20 days after farrowing.
Therefore, the average feed intake and average water consumption levels of sows within
this time range were calculated for analysis. The results are shown in Figure 13. Sows
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showed a noticeable decrease in both feed intake and water consumption in the 3 days
before farrowing. Sows consumed only a small amount of water and hardly ate on the day
of farrowing. After farrowing, the feed intake and water consumption of sows started to
increase gradually day by day. The growth rate was fastest during the first 7 days, slowed
down between days 7 and 14, and stabilized after 14 days. In some farrowing houses, feed
intake and water consumption decreased between 18 and 20 days. After consulting with
the farrowing house manager, this was found to be related to the early weaning practice
employed by the farm.

Figure 13. Feed and water intake of sows. (a) The average feed intake for each farrowing house and
(b) the average water consumption for each farrowing house.

It is difficult to collect accurate feeding data for each production batch in traditional
pig farms. Digital devices and systems can effectively address this issue. The production
interval days can effectively reflect the production efficiency of the farrowing house [41].
The lactating sows at an average of 4.8 days after weaning have a lower anestrus rate [42].
By 1 week after weaning, 90–95% of the multiparous sows are expected to exhibit estrus [43].
Pig farm managers can utilize this system to track the duration between production cycles
in the farrowing house. Additionally, the production rhythm of the farrowing house should
be reasonably arranged based on the duration of the lactating sow’s estrus cycle.

Related research indicates that extending the weaning age from 19 to 28 days has
a positive effect on pig performance in the nursery, resulting in increased body weight
sold per pig weaned. This suggests that 25 days is the optimal age for weaning [41,44].
Furthermore, increasing the weaning age from 18.5 to 24.5 days positively affected pig
performance by increasing the average daily gain and feed intake [45]. Using digital
technology to count the number of prepartum and weaning days can help correct erroneous
production strategies on pig farms. Furthermore, tracking the feed and water intake of
lactating sows on different days will aid in establishing appropriate feeding plans for future
pig farms.

4.2. IoT of Pig Farm

We focused on constructing an Internet of Things (IoT) system specifically designed
for the feeding requirements of lactating sows. Table 4 shows the architectural layers of
the present and earlier systems, as well as data displays, data transmission, and cluster
technology, confirming that the proposed monitoring system is reasonable compared to
other similar systems.
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Table 4. Comparison of other similar systems with the present system.

Paper Application
Architecture

Layers
Cluster
System

Data
Display

Data
Transmission

[46] Livestock
monitoring 2 No PC TCP/IP

[16] Precision
feeding 3 No Mobile and

PC GPRS

[22] Livestock
monitoring 3 Yes PC HTTP

[15] Intelligent
feeding 2 No Mobile and

PC GPRS

[12] Electronic
sow feeders 1 No No No

[47] Environmental
monitoring 2 No No WIFI

[48] Environmental
monitoring 3 No PC GPRS

This proposal Sow
monitoring 4 Yes Mobile and

PC MQTT

As the level of technology in pig farms increases, an increasing number of intelligent
devices are being employed. Various intelligent devices are used in farrowing houses,
such as environmental monitoring equipment [47] and weighing devices [49]. Different
intelligent devices can complement each other’s functional deficiencies. However, the
data barriers between different devices result in poor interoperability among them. This
phenomenon is attributed to the adoption of different communication protocols and data
formats by intelligent devices produced by different manufacturers. It is important to
research universal data formats and communication protocols applicable to intelligent de-
vices in pig farming [50]. Due to the lack of standardization in communication protocols for
intelligent devices, the development of IoT platforms currently faces challenges, including
high complexity and poor adaptability. The IoT platform struggles to meet the connectivity
requirements of various types of intelligent devices.

With the further development of deep learning, intelligent cameras and recording
devices have begun to be used in pig farms. They play an important role in disease
monitoring [51], behavior monitoring [52], and video-based weight estimation [53]. The
collection and storage of unstructured data such as video and audio also face challenges.
The next focus of our research will be on meeting the connectivity requirements of diverse
intelligent devices and achieving the remote collection of unstructured data (with a focus
on audio and video) based on the developed system. In addition, pig farms have a high
demand for the digital management of personnel, pigs, vehicles, and materials. It will
be important to improve the management level of pig farms and prevent African swine
fever by building a comprehensive digital platform for the entire pig farm using digital
technology [54].

Establishing a cluster effectively addresses the issue of system concurrency in order
to cope with the increase in intelligent equipment in pig farms. The volume of data in
the Internet of Things (IoT) is also enormous. Effective data processing and analysis are
required to extract useful information and insights. However, this requires powerful
computing and data analysis capabilities [55]. The maturity of e-commerce platforms has a
certain reference value for the pig farm IoT. E-commerce platforms need to deal with large
amounts of product information, order data, and user information. Pig farm IoT systems
also need to manage large amounts of pig data, sensor data, and environmental data.
Efficient data storage and processing systems can be established drawing from the data
management experience of e-commerce platforms. By leveraging the data management
experience of e-commerce platforms, efficient data storage and processing systems can be
developed to effectively manage and analyze pig data. In the process of digitization in pig
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farming, drawing from the experiences of other industries can accelerate its development.
However, it is necessary to customize the design according to the characteristics and needs
of pig farming.

4.3. Limitations
4.3.1. Accurate Acquisition of Feed and Water Intake for Lactating Sows

The feed and water intake data described in this article refer to the amounts dispensed
by the sow electronic feeder. We assume that the sow consumes all the dispensed feed and
water. However, this assumption may not always hold true, highlighting a limitation that
needs to be addressed in future work. References [12,56,57] suggest that using load cells to
accurately measure pig feed intake is an effective solution.

4.3.2. Multi-Dimensional Data Collection and In-Depth Data Analysis

This article describes the remote monitoring of feed and water intake for lactating
sows. However, actual production requires the collection of additional data, such as feeding
times, body weight, litter size, weaning litter size, and weaning litter weight. Gathering
more comprehensive data and scientifically analyzing them in conjunction with feed and
water intake will help pig farm managers develop more effective feeding plans and advance
the intelligent feeding of lactating sows.

5. Conclusions

We developed a smart IoT feeding system for lactating sows. The system implements
an MQTT server based on the Netty framework to collect, transmit, parse, and store
information regarding feed intake, water consumption, and the operational status of
electronic sow feeders from the cloud. The system implements clustered job scheduling
based on an HTTP server and a custom load-balancing algorithm for node selection.
Additionally, we utilized the Spark and Flink computing frameworks to construct a big
data analytics platform. This study lays the foundation for further in-depth analysis of sow
feeding data. In actual operation on a pig farm, the system runs stably and can provide
real-time feedback on sow feeding conditions. It holds practical value for application in the
production and construction of pig farms.
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Abstract: In recent years, the global reduction in populations of the Apis mellifera species has gen-
erated a worrying deterioration in the production of essential foods for human consumption. This
phenomenon threatens food security, as it reduces the pollination of vital crops, negatively affecting
the health and stability of ecosystems. The three main factors generating the loss of the bee population
are industrial agriculture, climate changes, and infectious diseases, mainly those of parasitic origin,
such as the Varroa destructor mite. This article proposes an IoT system that uses accessible, efficient,
low-cost devices for beekeepers in developing countries to monitor hives based on temperature,
humidity, CO2, and TVOC. The proposed solution incorporates nine-feature aggregation as a data
preprocessing strategy to reduce redundancy and efficiently manage data storage on hardware with
limited capabilities, which, combined with a machine learning model, improves mite detection.
Finally, an evaluation of the energy consumption of the solution in each of its nodes, an analysis of the
data traffic injected into the network, an assessment of the energy consumption of each implemented
classification model, and, finally, a validation of the solution with experts is presented.

Keywords: machine learning; Varroa destructor; Apis mellifera; IoT; precision beekeeping; aggregation
functions; energy consumption

1. Introduction

The Apis mellifera species is crucial in pollinating various plant species, contributing
significantly to agricultural production and food security. According to data from the
Food and Agriculture Organization of the United Nations (FAO), approximately 75% of
the world’s crops depend heavily on pollination [1]. This activity carried out by bees
increases the production of fruits, vegetables, and seeds and improves the quality and
diversity of crops. This function is essential for the sustainability of agricultural systems
and biodiversity conservation. Furthermore, bees contribute significantly to climate change
mitigation, as they promote the regeneration and maintenance of plant ecosystems, helping
to absorb carbon dioxide and stabilize the global climate [2].

Western bee colony losses can vary significantly from year to year, but they are
becoming worse overall. Annual studies of honey bee colony loss show considerable
variation in temporal and spatial rates of colony loss, as well as contributing factors [3,4].
Some studies such as [5] report that the annual colony loss rate of Apis mellifera in Latin
America varied between 17% and 48%, depending on the country and the year. The
percentage of colony loss of meliponine bees varied between 33% and 46% annually. Varroa
destructor mites and the viruses that spread these parasites are now considered the most
significant contributors to these losses. However, queen problems, such as a lack of
natural food sources, the expansion of urban areas, and excessive use of pesticides, are
also factors [6]. This phenomenon threatens global food security by reducing pollination of
vital crops. At the same time, declining bee populations negatively impact the health and
stability of ecosystems, compromising their ability to provide critical ecosystem services.
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The Varroa destructor mite, along with the viruses it spreads, is an important catalyst
for this decline. This threat generates negative impacts at an individual and collective
level, compromising bees’ immunological and nutritional health. It causes physical injuries
and promotes the spread of fungi, bacteria, and viruses within the colonies it infests
since it acts as a vector of microorganisms [3]. The consequences of Varroa infestation
significantly impact beekeeping and food security since it has contributed to the decline of
bee populations worldwide.

For beekeepers, it is crucial to detect the presence of the mite early and accurately to
prevent its spread and protect the health and well-being of bees. Over the years, artisanal
techniques have been practiced, such as the Varroa test with isopropyl alcohol, considered
the most precise and effective, where bees are immersed in a mixture of water and alcohol
to count the mites present and establish a percentage of infestation [7]. However, this
method can have disadvantages, such as non-representative samples and instant death
of bees [8]. Another method is the sanitary floor, which involves replacing the traditional
floor of the hives with one that collects fallen mites. However, it has disadvantages, such as
damage to the apiaries, and the effectiveness of the test is variable [8]. Finally, the Varroa
test with powdered sugar involves shaking a colony sample in a jar with sugar and then
counting the mites released during the process, which causes stress and death of the bees
evaluated [8].

To address this problem, IoT-based monitoring systems and artificial intelligence
algorithms are integrated into beekeeping practices [9,10]. This is closely linked to the con-
cept of precision beekeeping, which emphasizes the use of technologies such as advanced
sensors, data analysis, and process automation for precise management of bee colonies [11].

This study proposes adopting an integrated solution based on the Internet of Things
(IoT) and supervised learning as a critical element in detecting the presence of the Var-
roa destructor mite in hives. To this end, the aggregation of functions and their derived
mechanisms are used as the primary strategy to develop a robust and efficient prototype
capable of accurately identifying the presence of the mite. This proposal aims not only to
guarantee and improve the quality of life of bees but also to support the work carried out by
beekeepers and to significantly reduce the restrictions associated with battery, transmission,
and data storage. The proposed hardware prototype uses low-cost and easy-to-achieve
components, ensuring they are accessible to beekeepers.

The present work involved the following sections. Section 2 presents a systematic
review of the available literature on emerging technologies used for hive monitoring and
detecting the Varroa destructor mite. Section 3 identifies the occurrence of Varroa infestation
based on discrete variables and captures functional and non-functional requirements;
Section 4 shows the prototype’s implementation and hardware and software development.
In Section 5, we analyze and discuss the results. Finally, in Section 6, we expose the
conclusions and future work.

2. Related Works

Following the adjusted methodology of Petersen [12] and Kitchenham [13], the existing
research trends related to the use of IoT against detecting Varroa infestation in Apis mellifera
species are presented.

• Research question: based on the problem of mass mortality of bees [3] and seeking
to know the technological proposals from the area of IoT and the aggregation of
functions, we pose the following research question:
What research exists within the IoT area that uses the aggregation of functions to
monitor or detect Varroa infestation in Apis mellifera hives?

• Search strategies: information is collected through scientific databases, such as Sco-
pus and Web of Science. Additionally, we use VOSviewer to analyze the resulting
keywords.

• Selection of studies: the search string and the inclusion and exclusion criteria are
defined to select the relevant articles (Table 1).
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Table 1. Study selection criteria.

Search string (“bee” OR “honey bee” OR “apis mellifera”) AND (“IoT” OR
“internet of things”) AND (“varroa” OR “varroa infestation”)

Inclusion criteria Data Aggregation, Multisensor Platform

Exclusion criteria Artificial Bee Colony Algorithm, Food Products

Through this process, we found 11 related works subjected to keyword analysis to
detect possible biases and areas of interest for research.

This article is formulated as a solution to the detection of Varroa infestation in species
of Apis mellifera. For this reason, it is essential to analyze the works dedicated to this
purpose. In Figure 1, two specific branches are distinguished. The first is dedicated
to Varroa infestation detection solutions based on image processing, machine learning,
edge, and cloud computing within the framework of precision beekeeping. The second
identifies factors that intervene in the detection process, such as climate change, honey
quality control, and hive monitoring. Finally, and as the central node, there is the IoT, an
emerging technology that allows both gaps to be bridged into a comprehensive solution for
the beekeeper.

Figure 1. Keyword mapping.

• Gaps: During the literature review, we found that there are currently no works related
to feature aggregation in precision beekeeping. Furthermore, most of the works focus
on emerging technologies such as deep learning [14], the cloud, and edge computing,
where it is highlighted that the mechanisms proposed by the authors [15–17] are
carried out in simulation environments. Although they can provide a general view
of a system’s performance, it is necessary to provide a broader view in a hardware
environment.

In [18–21], the authors give priority to the implementation of the proposed solution
in a natural environment, without regard for precision beekeeping systems, such as bat-
tery consumption and processing of large volumes of data. The works do not consider
approaches such as analyzing the collected data and processing as a strategy for detecting
complex events such as Varroa infestation.

Studies such as [17–21] demonstrate that it is possible to detect anomalies in the hive,
including the Varroa destructor mite, using sensors that monitor physical variables. However,
the proposed systems offer effectiveness levels greater than 75% and have proven to be
minimally invasive techniques for bees. The authors highlight some aspects that have yet
to be considered and are addressed in this research, such as incorporating commercial and
low-cost sensors for temperature, humidity, CO2, and TVOC. In addition, a data processing
strategy was implemented by aggregating functions and a classification model based on
supervised learning to detect the mite.

Some of the sensors used by different authors specifically for detecting Varroa in bee
hives are presented in Table 2.
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Table 2. Sensors used for different physics variables.

Variable Physics Sensors Used Reference

GS4161 [20,22]
CO2 TL6615 [21]

SGP30, BME680 [19]

TVOC
SGP30, BME680 [19]
TGS2600 [20]

MCP9700A, DS18B20 [20,23]
Temperature BME680 [19]

DHT22 [21,24]

DHT22 [21,24]

Humidity DHT11 [23]
BME680 [19]
808H5V5 [20]

3. Materials and Methods

This section focuses on describing the four phases carried out for the research. The first
focuses on characterizing the presence of the mite in terms of discrete variables; the second
refers to the data preprocessing technique used, and the third presents the classification
models based on supervised learning developed to provide a level of alertness—finally, the
fourth focuses on integrating the solution into the selected hardware.

3.1. Characterization of the Appearance of Varroa Infestation

Several studies have shown that the behavior of some internal variables of the hive,
such as temperature, humidity, and levels of gases such as CO2 and TVOC, are crucial
indicators of bee health and the risk of infections [21,23,25]. Both the Varroa destructor
mite and the Apis mellifera species react differently to changes in internal temperature. In
this context, the characterization considers the phoretic phase of Varroa, a stage in which
the mite is outside the brood cells, and represents a critical moment for evaluating and
controlling this threat [8].

Based on interviews with beekeepers in the region, as well as studies such as [25]
focused on characterizing the conditions of different variables inside a hive and the presence
of Varroa in Colombia, it was possible to identify that for variables such as temperature,
the normal ranges inside a hive are between 32 °C and 36 °C, considering a maximum and
minimum range between 20 °C and 37 °C, and with relative humidity between 50% and
75%. Meanwhile, for variables such as CO2 and TVOC, the characterization is performed
based on studies such as [19].

3.1.1. Temperature

Some research, such as [26], suggests that temperatures above 38 °C are critical for
both bees and Varroa, who are vulnerable and cannot carry out their activities usually. If
the temperature remains in that state for prolonged periods, it can cause death. Varroa’s
reproduction rate and phoretic phase’s activity phase decrease significantly in this case.
Therefore, the risk of contracting Varroa infestation is estimated to be low under these
conditions. Between 36 °C and 37.9 °C, bees enter a phase of thermal stress that causes
excessive energy consumption and makes them especially vulnerable. Varroa can use this
condition to reproduce even if it is not in the best conditions.

Between 33 °C and 35 °C, the ideal environment is established for the reproductive
cycle of bees. This temperature also benefits Varroa since the females of this mite can enter
the unprotected brood cells and reproduce. However, this temperature does not favor the
phoretic phase of Varroa [15].
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On the other hand, a temperature below 28 °C makes bees vulnerable due to their
inactivity, which reduces their ability to defend themselves against possible threats. In this
scenario, the phoretic phase of the Varroa develops to its maximum, allowing easy access to
the brood cells. These cells, which maintain a higher internal temperature, facilitate the
normal reproductive process of Varroa [27].

3.1.2. Humidity

Initially, research such as [20] suggests that a humidity level greater than 65% favors
the reproduction and spread of the Varroa destructor mite, increasing the risk of infection.
This extremely humid environment weakens the bees’ immune systems and makes them
more susceptible to infections, representing a high health risk. Secondly, a humidity level
between 40% and 60% is considered moderate, as it balances bees, allowing them to use
their natural defense mechanisms and reducing the risk of infection by Varroa destructor.
This risk level is classified as medium [19].

Finally, a low humidity level, less than 40%, is considered a dry environment that
can dehydrate bees and weaken their immune system, making them susceptible to certain
infections. However, Varroa mites do not adapt quickly to this environment, so the risk of
contracting Varroa infestation is low [20].

3.1.3. Concentration of Volatile Gases

Recent research [17,19,22] has found that the levels of different types of gases within a
hive can be indicators of health, such as CO2 and TVOC. These gases, produced by bees
and other biological processes, can regulate the hive’s internal environment and the bees’
well-being. Research has established that TVOC and CO2 levels vary considerably as the
level of infestation increases or decreases. For this analysis, it is essential to highlight
that gas levels depend on different factors, such as the number of bees in the hive, the
quality of the outside air, and the hive’s location. In this case, an average hive was used for
beekeeping activities, that is, 40,000 to 60,000 bees. The hive that has not been parasitized
with Varroa has a TVOC level ranging from 0 ppb to 300 ppb and CO2 from 0 ppm to
600 ppm. A low Varroa infestation level has a TVOC level of 300 ppb to 600 ppb and CO2
of 600 ppm to 1000 ppm. An average Varroa infestation level has a TVOC level of 600 ppb
to 1500 ppb and CO2 of 1000 ppm to 2000 ppm. A high Varroa infestation level has a TVOC
level more fabulous than 1000 ppb and CO2 greater than 2000 ppm. Finally, a hive receiving
chemical treatment against Varroa has a TVOC level of 1900 ppb to 3500 ppb and CO2 of
1000 ppm to 1600 ppm.

3.1.4. Identified Alerts

After analyzing the presence of the Varroa mite using various discrete variables, the
information collected is synthesized to establish an alert level, whether very high, high,
medium, or low, on the possible presence of the mite in the hive, as shown in the Table 3.

Subsequently, based on the previous description, the percentage of hive infestation is
established according to each alert level [7,17,19,22,26].

Table 3 establishes the alert level of Varroa infestation in a hive in terms of percentages.
This considers the result provide by [7] and the information delivered by expert beekeepers
in interest. The data provided by the sources are mainly based on Varroa tests using different
methods and hives of approximately 40,000 to 60,000 bees.
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Table 3. Alert-level classification based on discrete variables.

Variable Range Alert level % of Infestation

Temperature (°C) Less than 28

Very high Greater than 10%Humidity (%) Greater than 75
TVOC (ppb) Greater than 1500
CO2 (ppm) Greater than 2000

Temperature (°C) 28–30

High Between 5% and 10%Humidity (%) 65–75
TVOC (ppb) 600–1500
CO2 (ppm) 1000–2000

Temperature (°C) 30–33

Medium Between 2% and 5%Humidity (%) 50–65
TVOC (ppb) 300–600
CO2 (ppm) 600–1000

Temperature (°C) 34–37

Low Less than 2%Humidity (%) 40–50
TVOC (ppb) 0–300
CO2 (ppm) 400–600

3.1.5. Requirements Exploration and Capture

A workshop was conducted with 16 beekeepers from the Beekeeping and Agroindus-
trial Association of Piendamó and Tunía (ASAPIT) to identify the needs and establish the
solution’s requirements. The interviews accomplished in this workshop established that the
majority knew the Varroa destructor mite and recognized the importance of variables such
as temperature and humidity in its development. Although some do not apply preventive
treatments, most prioritize hygiene and periodic check-ups. Additionally, beekeepers show
interest in a remote system to monitor their hives, preferring weekly notifications (Figure 2).

Figure 2. Apiary visit frequency and notification frequency preference among beekeepers.

Subsequently, considering the needs of beekeepers and the information selected, the
functional and non-functional requirements of the system are established.

Functional requirements:

1. Capture environmental data such as temperature, humidity, CO2, and TVOC.
2. Monitor the hive for an extended period.
3. Detect the presence of Varroa infestation from data collected over a week.
4. Determine and classify the Varroa infestation rate in a hive into four levels (very high,

high, medium, or low).
5. Notify the beekeeper of said index and provide preventive information through

a message.

Non-functional requirements:

1. Manage the battery to make the solution work continuously for a long time.
2. Ensure the connection between devices to transmit data.
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3. Process data to avoid network saturation.
4. Manage data storage.
5. Adapt the system to different environments to function correctly in various environ-

mental and climatic conditions.

3.2. Function Aggregation

Adding functions in an IoT system refers to applying, combining, and consolidating
different functions or features in a system to improve efficiency, usefulness, and data
management. This section discusses feature aggregation as a preprocessing strategy for
captured data.

3.2.1. Centralized Feature Aggregation Mechanism

We base the proposed IoT solution on a centralized data aggregation mechanism,
the main actors of which are the sensor, aggregator, and base station nodes. The focus of
the solution is centralized data aggregation (CDA), and this focus marks the pause in its
operation. The network diagram is presented below (Figure 3), with the hardware selected.

Figure 3. Network topology based on the centralized data aggregation model.

Figure 4 shows the system connection diagram for the sensor and aggregator nodes.
In red, the connections related to the direct power supply of the source are observed; in
orange, the connections that correspond to a voltage input regulated at 5 V; in black, the
ground connection; in brown and violet, the data connection for the SGP30 carbon dioxide
and volatile organic compounds gas sensor (Sensirion AG, Stäfa, Switzerland); in cyan,
the data connection for the Temperature and humidity sensor DHT22 (Adafruit Industries,
New York, NY, USA); in gold, the data connection for the Voltage sensor fz0430 (Analog
Devices, Inc., Norwood, MA, USA). The aggregator node and the Base station node are
made up of the ESP32 development board (Espressif Systems, Shanghai, China) [28].

Figure 4. System connection diagram.
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Two sensor nodes, DHT22 [24], are installed inside the apiary, specifically in the hive’s
central frame. They provide temperature and humidity data and SGP30 [29] data at the
CO2 and TVOC levels. These nodes capture this information within the hive and transmit
it to the aggregator node.

The aggregator node (AN) performs battery management, supported by the FZ0430
sensor [30]. It also guarantees the system’s storage. It takes the data captured by the sensor
nodes, whose primary function is to apply the corresponding aggregation functions and
transmit the aggregated data to the base station node (BSN).

For its part, the BSN receives the aggregated data and, through a weighted multi-
criteria algorithm, normalizes the information that is subsequently sent to a classification
model based on supervised learning, which determines the alert level in the hive; this alert
is notified to the beekeeper via a text message in the Telegram application.

The need to use a BSN arises due to the nature of the centralized function aggregation
mechanism, designed to generate a scalable solution in case it is necessary to monitor more
than one hive, thus facilitating its management.

3.2.2. Battery Management

It is a crucial factor because all nodes in the network run on batteries and, there-
fore, have energy limitations. Battery life can directly impact system availability and
performance. To cover this requirement, we propose the following statements:

• Limit system functionalities: the system takes a certain number of samples (Table 4)
depending on the battery’s state before entering an energy-saving state.

Table 4. Battery management.

Battery Description Periodicity # of Samples

Greater than 30%

Capture temperature samples 2 h 12
Capture humidity samples 2 h 12

Capture CO2 samples 12 h 60
Capture TVOC samples 12 h 60

Less than 30%

Capture temperature samples 4 h 6
Capture humidity samples 4 h 6

Capture CO2 samples 12 h 30
Capture TVOC samples 12 h 30

• Hibernation: Using predefined functions of the EP32 board, such as the light_sleep
method, allows the sensor nodes to enter a hibernation or low-power state until it is
time to capture a sample.

• Internet connection: The interconnection between the base station node and the ag-
gregator node occurs only when data need to be sent; otherwise, the devices remain
disconnected from the Internet. The solution focuses on minimizing the power con-
sumption of the devices used, especially the internal Wi-Fi modules, reducing the
connection only when transmitting or receiving information due to high consumption,
according to the ESP32 board datasheet [28].

3.2.3. Transmission Management

It allows the network to reduce traffic overload and optimize battery and bandwidth
resources, improving efficiency and minimizing errors and information loss.

• Information reduction: The amount of data captured is reduced, applying average
(AVG) as an aggregation function. It consists of taking the data captured in one day
and calculating their arithmetic mean, thus reducing the number of samples to a single
significant sample per variable.

• Internet connection: The interconnection between the base station node and the
aggregator node occurs only when data need to be sent; otherwise, the devices remain
disconnected from the Internet.
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• Connection with the beekeeper via Telegram: Telegram is chosen as a communication
bridge with the beekeeper since it is a free and accessible application. Thanks to its
functionality against bot management, it allows data transmission from the hive to
the beekeeper.

3.2.4. Data Storage Management

It is an essential process for the system because it optimizes the ESP32 board flash
memory and processing resources. It is necessary to guarantee the availability, integrity,
and usefulness of the data. In addition to reducing the risk of loss of critical information,
it accelerates the identification of relevant data and facilitates adaptation to changing
environmental needs.

Figure 5 offers a visual representation of the system’s process of eliminating data
redundancy using aggregation functions. Below, we describe the operation in each of
the nodes.

Figure 5. Data storage management.

• Aggregator node: This node is configured to capture all the data from the sensor
nodes, where the data from the entire day are taken and processed at the end of the
day through the AVG aggregation functions and COUNT. The processing afterward
allows us to obtain the daily arithmetic mean of the four variables inside the hive for
subsequent sending to the BSN. Applying these functions allows for freeing up the
storage space of the node to prevent its saturation due to lack of memory and loss of
information due to possible failures.

• Base station node: This node receives and stores the data corresponding to the arith-
metic means of the four variables for each of the five monitoring days. It stores twenty
points of data in its memory later converted into four significant variables using
the COUNT and AVG functions. These data make up the input data vector for the
classification model.

3.2.5. Weighted Multi-Criteria Aggregation Algorithm

It consists of assigning a weight to each variable according to its relevance and calcu-
lating a score [31]. The sum of the individual scores of each variable will be the basis for
detecting the alert level of the hive [32]. This process is commonly used in various areas of
decision-making since it allows for establishing priority classes [33].

For its implementation, initially, the priority level of each variable is defined, with one
being the most relevant and four being the least relevant (Equation (1)); temperature is
defined as the most pertinent factor (1), followed by humidity (2), CO2 (3), and TVOC (4).
Subsequently, the maximum and minimum values each variable can take are identified, and
the range is calculated, which refers to the difference between the maximum and minimum
values. The MAX and MIN aggregation functions are used (Equation (2)).

Wj =

1
rj

∑n
i=1

1
ri

(1)
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subtraction = xMAX − xMIN (2)

The priority of each variable was determined considering the results of the system-
atic review carried out in Section 2 and the capture of requirements applied to ASAPIT
beekeepers.

Once the initial data have been calculated, the score or normalized score is identified,
assigning a value between 0 and 1 to the value of the captured sample, considering the
causal relationship between each variable and the infestation due to Varroa infestation [34].
According to the classification of alert levels, Table 3, the score is calculated considering
that the temperature variable indicates a low Varroa infestation level since it takes higher
values (Equation (3)). Likewise, the humidity variables, CO2 and TVOC, indicate a low
level of infestation, which lowers the value taken from the sample (Equation (4)).

xn
ij =

MAXxij − xij

MAXxij −MINxij
(3)

xn
ij =

xij − MINxij

MAXxij −MINxij
(4)

The product between the score and the weight assigned to each variable determines the
normalized score for each sample. The basis for the alert level classification is determined
by taking the weighted sum of the individual contributions of the four variables. Table 5
and Figure 6 illustrate the algorithm’s application [35].

Using the weighted multi-criteria algorithm allows the collected data to be transformed
into normalized data within the range of zero to one. It is less complex for the classification
model to identify patterns and alert labels, significantly reducing the computational costs,
execution time, and energy consumption [34].

Figure 6. Flowchart of weighted multi-criteria algorithm.
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Table 5. Application of the weighted multi-criteria algorithm.

Variable Weight Sample Score Score × Weight

Temperature 0.48 22.5 0.8529411765 0.4094117647

Humidity 0.24 54.8 0.396 0.09504

CO2 0.16 600 0.0769230769 0.0123076923

TVOC 0.12 200 0.08 0.0096

3.3. Classification Models

Using classification models based on supervised learning to detect alerts regarding
the health status of hives offers a systematic and automated approach to performing tasks.
These models can learn complex patterns from a training dataset, allowing them to make
accurate predictions on new data. The ability to process complex data makes machine
learning (ML) algorithms a robust and adaptable option for classification in hive monitoring
systems, overcoming the limitations of traditional classification methods, such as heuristic
rules or expert-based systems.

We divided the models into “white-box” and “black-box” models, representing two
contrasting ML approaches (Figure 7). White-box models, such as decision trees, Random
Forest, and Gradient Boosting [36], are transparent about how they arrive at their decisions,
making them easily interpretable; they provide a clear view of how input features relate
to predictions, making the classification process easier to understand. On the other hand,
black-box models, such as neural networks, are opaque about their internal workings and
do not directly explain their decisions. However, they can capture complex pat-terns and
relationships in data that white box models may miss [37].

Figure 7. Comparison of classification models.

To date, we have not found a database with actual data that capture the presence of
Varroa in hives, considering the discrete variables mentioned above. Therefore, we built
a synthetic dataset with 10,000 instances [38] characterizing the hives’ discrete variables
following the CRISP-ML(Q) model. The dataset was generated using a Python script
designed specifically for this purpose. The script was executed with a series of configurable
parameters that allowed the ranges of each class to be adjusted (alert levels considered
in Table 3). A descriptive statistical approach was used to examine the class distribution,
considering specialized libraries such as Pandas and NumPy for data analysis [39]. As
discussed later in this paper, the percentage of the dataset used to train the classification al-
gorithms is an important characteristic, considering the processing and storage capabilities
of the hardware used to model deployment. Then, from the dataset built, the C4.5 Decision
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Tree models were implemented [40] and Random Forest [41], XGBoost (Extreme Gradient
Boosting) (v2.0.3) [36], and neural network [42] algorithms were trained. Figure 5 shows
the result of the analysis of the size variation of the training dataset. This analysis shows
that white-box models are efficient for the research context because 40% of the data were
used for training and 60% for validation. On the other hand, for the black-box model, 20%
of the data were assigned for training and 80% for validation.

The original data presented in the study are openly available in Varroa detection with

discrete variables on Kaggle at [https://goo.su/39cnh, accessed on 28 April 2024] or [38].

3.4. Hardware Configuration

This section focuses on developing and implementing the solution, considering the
essential pillars of IoT. We emphasize the materials and hardware configuration for inte-
grating the classification models.

With the established requirements, the IoT solution proposal is based on accessible, effi-
cient, low-cost devices for beekeepers in developing countries. The functional requirements
guided the construction of an IoT system to monitor bee hives, capturing variables such as
temperature, humidity, CO2, and TVOC for approximately three weeks, with weekly notifi-
cations on the status of Varroa infestation. A detailed analysis of non-functional hardware
and software requirements is needed to achieve these functionalities, including battery
consumption and data storage and processing management. Specific sensors, such as the
DHT22 for temperature and humidity, the SGP30 for gas concentration, and the FZ0430 for
monitoring battery consumption, were selected. The ESP32 board [28] was used for data
transmission. Given its compatibility and efficiency in energy consumption, we used the
Arduino IDE environment (v2.2.0).

3.5. Implementation

Considering the five-layer IoT architecture model for constructing the Internet of
Things solutions, the components are identified by layer and represented by a flow diagram
(Figure 8). The IoT architecture model provides five defined layers; the perception layer
is where the base hardware for the solution is located, such as the aggregator node and
the sensor nodes. The network layer transmits information between nodes through Wi-Fi
and system–beekeeper communication through the Telegram application. Transversally,
there is the battery, which, although part of the perception layer, is in parallel since this
component powers the layer to which it belongs and the network layer, mainly the base
station node.

The middleware layer is the heart of the solution. It contains the aggregation functions
responsible for manipulating and processing the data collected by the components of the
perception layer. Within this third layer is the detection mechanism against Varroa infes-
tation, which is the most critical aggregation function for the beekeeper. The application
and business layers go hand in hand and are superficial to middleware in that they take
the output from the third layer, which is generally an alert-level label, and are responsible
for transmitting and documenting it for the end customer. The application layer connects
through the network layer with the Telegram application, sending the beekeeper a message
to his cell phone with the respective alert level of the hive and the relevant recommenda-
tions to act against it (business layer). In this way, the beekeeper can act or make decisions
regarding his hive to ensure the health of his colony.

Once the topology, devices, and functional and non-functional requirements of the
system have been defined, the scripts for configuring the aggregator and Base Station nodes
are developed.

• Hardware configuration of the aggregator node: The aggregator node consists of the
configuration of the sensors (SGP30, DHT22) and the ESP32 microcontroller board,
as shown in Figure 3. In addition, the FZ0430 sensor has been integrated for sensor
management. Following the principles of structured programming, the necessary
libraries for the sensors, the Wi-Fi connection, and the transmission protocol (HTTP
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client/server) are included. In the main loop, the functionalities of the aggregator
node are configured, and the battery level is measured before each cycle. With these
data, the daily measurement cycle begins, and at the end, the aggregation functions
(COUNT and AVG) are applied to send the data to the base station node using HTTP
POST. In addition, different exceptions are included to manage possible errors.

• Hardware configuration of the base station node: This node comprises only the
ESP32 board, which communicates with the Telegram mobile application through
the bot function, as shown in Figure 3. The node includes libraries for connecting
to the Internet via Wi-Fi, running the classification model, communicating with the
aggregator node, and sending data to the user on Telegram. Wi-Fi network credentials
are initially set, and variables are created to store readings and monitoring status. The
“sendTelegramMessage” function is configured to send messages via the Telegram
API. This function uses the HttpClient class to request HTTP using the POST method.
In the setup of the code, the configuration for the Wi-Fi connection is established,
and the connection with the client (aggregator node) is expected; at the same time, the
parameters of the classification model are established. In the main loop, the received
data are processed, and it is verified that the variable readings are within safe ranges;
then, Telegram will send alerts. After five days of monitoring, the averages of the
accumulated readings are calculated, and the weighted multicriteria aggregation
algorithm is applied, accompanied by the classification model, to determine the alert
level. Finally, a detailed report with the alert level and recommendations for the
beekeeper are sent to Telegram.

Figure 8. Data flow diagram based on IoT architecture model.
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• Integration of classification models in hardware: First, the weighted multicriteria
algorithm is applied to integrate the classification model in the hardware (Figure 9),
and the generated dataset is processed using the Google Colaboratory development
environment. Later, TensorFlow Eloquent, a Python library recognized for simplifying
the creation of machine learning models in TensorFlow, was used, following the
CRISP-ML(Q) process. In addition, to adapt to microcontrollers, the micromlgen library
was used to translate the classification models from Python (v3.10.12) to C++. The
models were implemented in the Arduino IDE environment [43]. An .h file was
created for the white-box models and a hexadecimal file for the black-box model. In it,
the trained and previously translated model was transcribed using a C++ script. The
necessary namespaces were declared in the core sketch (.ino), and it was specified that
the trained model should be traversed once the input data vector was received. This
ensures continuous improvement, smooth implementation, and efficient execution of
the classification model in the hardware environment.

Figure 9. Process of integrating classification models with hardware.

3.6. Description and Approach to Testing

We proposed creating two test scenarios (Table 6) to develop and execute tests.

Table 6. Test scenarios for the aggregator node.

S1 Cycle with Function Aggregation 24 h cycle with the implementation of aggregation
functions and battery optimization.

S2 Cycle without Function Aggregation 24 h cycle excluding the use of aggregation and
battery optimization functions.

Scenario 1 includes all the functionalities implemented in Section 3.2, which refers
to the different aggregation and optimization functions for the transmission processes,
storage management, and battery management in the aggregator and base station nodes.
Finally, it determines an alert level. Scenario 2 excludes the aggregation and optimization
functions. Its operation is based on sending and receiving data from the aggregator node
to the base station node. The base station node finally runs the classification model and
sets the alert level.

Table 7 specifies the metrics used to evaluate the performance of each scenario in each
of the tests.
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Table 7. Description of evaluation metrics.

Test Evaluation Metrics Description

Evaluation of the
energy consumption
of the solution in
each of its nodes

Battery
consumption
in (mAh)

Battery consumption in each scenario
for the BSN and AN based on data
provided by datasheets and
hardware measurements.

Analysis of data
traffic injected into
the network

Total number of
packages sent

Simulation of packet traffic in a
period of 5 days between the AN
and BSN for each scenario.

Analysis of hardware
memory occupancy

Memory usage
percentage for
classification
model

Total percentage of flash memory used
by the ESP32 board using the Arduino
Millis function.

Evaluation of the
energy consumption
of each classification model

Run time in
seconds and
Battery
consumption in (mAh)

Run the selected classification model
and determine total execution time to
estimate the total board consumption
when performing this task.

4. Results

This section initially presents the scenarios proposed for the validation tests and
also includes results from the implementation of the developed IoT solution, including
an exhaustive validation focused on system optimization and the critical advantages of
function aggregation. We established five testing perspectives to evaluate the solution.

4.1. Evaluation of the Energy Consumption of the Solution in Each of Its Nodes

Battery performance tests are performed on each node, considering their specific
roles directly affecting battery consumption and duration. For this purpose, information
provided by manufacturers through datasheets and direct measurements performed on
hardware are used.

Aggregator Node: This test evaluates the performance of the node’s battery with an
external power supply or battery. The objective is to analyze the battery capacity concerning
operating time, measured in milliampere-hours (mAh). The power consumption of each
node component at specific times, both in active and idle mode, is examined. Two scenarios
are considered for comparison to understand the energy impact of function aggregation.

Next, total consumption is calculated, considering each component’s duration in
seconds (s) in each operating mode for 24 h.

From Table 8, for the active mode in both scenarios, the consumption of the sensor
is low since samples are taken for short periods. In Scenario 1, the Wi-Fi module wakes
up once a day for 10 seconds to send data, while in Scenario 2, all components, including
the Wi-Fi module, are constantly active, quickly depleting the power battery. To the idle
mode: although the active mode consumption of the components is higher, the aggregator
node remains in active mode for only 0.2% of the total time. It makes the total amount of
milliamp-hours (mAh) consumed in an idle mode much higher since this mode operates
9.8% of the time.

Table 8. Total consumption in mAh and total time in seconds of the aggregator node.

Scenario
Total

Active Time (s)
Total Idle
Time (s)

Consumption

Active (mA)

Consumption

Idle

Consumption

(mAh)

S1 143 86257 3.3455555 224.312553 9.485754618

S2 798 85602 59.566388 857.6682 38.218108

In Scenario 1, the consumption in idle mode for all sensors, with the low-power
light_sleep functionality, is practically zero, on the order of μA. The board’s internal volt-
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age regulator primarily results in battery consumption. In contrast, Scenario Two does
not implement low-power features during idle periods, resulting in significant battery
consumption and preventing long battery life. Now, an analysis of the performance and
duration of commercial batteries that can power the aggregator node is carried out, adapt-
ing to the necessary specifications according to the needs of beekeepers. Three battery
options are presented. A commercial 9V lithium battery with a capacity of 1200 mAh, with
an L7805 voltage regulator to constantly provide 5 volts to the system. As a second option,
four AA 1.5 V lithium batteries, with a combined capacity of 3600 mAh, also with an L7805
regulator. Finally, a 5 V power bank with a capacity of 4000 mAh [44].

Figure 10 shows the total operating duration in hours for each battery in each scenario.
Battery 1 has the shortest operating duration, powering the node for a single cycle because
its mAh capacity is low. In Scenario 1, it lasts approximately 5.25 days, while in Scenario 2,
it only reaches 31 h of operation. Battery 2 lasts 15 days in the first scenario and 3.91 days
in the second, which limits its ability to complete a monitoring cycle. Battery 3 showed
better results in terms of duration. In Scenario 1, the total operation duration was 17.5 days,
covering three monitoring cycles, while in Scenario 2, it spanned 4.33 days.

Figure 10. Total battery life in the aggregator node in the two scenarios and total battery life.

Base Station Node: The node comprises the CPU and the Wi-Fi module of the board,
which stores, processes, and sends data. Batteries or the mains can power it, regardless
of the hive’s location. Power consumption is calculated and compared in active and idle
modes according to the scenarios.

From Table 9, in active mode, it is observed that in Scenario 1, the board is activated
once a day to receive data and send a cycle initialization message via Telegram. In Scenario
2, it is activated several times while the Wi-Fi module is in receive mode to receive messages
from the base station node. In both cases, data reception is the leading power consumer.
Integrating the optimization function “Light_Sleep” in idle mode significantly reduces the
board’s power consumption with minimal drain on the internal voltage regulator. In
contrast, Scenario 2 lacks power-saving features during idle, resulting in constant power
consumption that affects battery life.

Table 9. Total consumption in mAh and total time in seconds of the base station node.

Scenario
Total

Active Time (s)
Total

Idle Time (s)
Consumption

Active

Consumption

Active

Consumption

(mAh)

S1 25 86,375 1.35 235.1354 9.7973

S2 1330 8570 44.125 852.114 35.504

4.2. Analysis of Data Traffic Injected into the Network

Data transmission performance tests are carried out to test the premise of reducing
traffic injected into the network through function aggregation. We used Wireshark as a tool
for network traffic analysis. It allows the transmitted data to be captured and examined in
real time, offering a detailed view of the information flow and the protocols used [45].
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Considering Table 6, two test scenarios are again analyzed. In this case, the simulation
of a five-day cycle is carried out.

Figure 11 presents the total packet traffic between the nodes during each scenario’s
data transmission and reception processes. In this test, the tool captured 150 packets over a
5-day cycle in Scenario 1, setting an average of approximately 30 packets daily. In contrast,
in Scenario 2, 2887 packets were captured, equivalent to 578 per day.

Figure 11. Network traffic to test scenario 1 and network traffic to test scenario 2.

4.3. Analysis of Hardware Memory Occupancy Concerning the Classification Model Used

This test comprehensively examines how implementing a high-accuracy classification
model intended for Varroa destructor mite detection impacts the flash memory occupancy of
the network BSN. It allows informed decisions regarding model selection and dataset size
for respective training.

Figure 12 shows that tree-based models increase their size and memory footprint
as the training dataset grows. In contrast, the neural network-based model maintains a
stable memory occupancy of approximately 75%, regardless of the training dataset size.
To guarantee the correct operation of the BSN CPU, up to 85% of the flash memory can be
used, leaving the remaining 15% for executing additional tasks [28].

Figure 12. Flash memory consumption in relation to the training dataset size for each model.

Figure 13 shows the relationship between flash memory occupancy and accuracy for
each implemented model. It is highlighted that the neural network is the model that exhibits
the best performance regarding the relationship between memory resource constraints and
accuracy. In contrast, tree-based models, such as XGBoost, show a high level of accuracy
but consume a considerable amount of flash memory resources, reaching their maximum
limit. This situation affects the performance of the BSN during the execution of daily tasks.
On the other hand, the C4.5 Tree and Random Forest models are discarded due to their low
accuracy in the classification task, even though they require a low amount of flash memory
for their implementation.
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Figure 13. Flash memory consumption about the accuracy of the implemented classification models.

4.4. Evaluation of the Energy Consumption of Each Implemented Classification Model

This section compares the energy consumption of the four classification models to
understand how their execution impacts energy consumption and determine the best
solution. For this purpose, a script is proposed using Arduino IDE, which allows each
model to execute a certain number of classifications continuously. It offers a vision regarding
the time necessary for the card to complete the classification process and thus estimate your
energy consumption.

From Table 10 and Figure 14, among the three white-box classification models, Tree C4.5
shows superior performance in terms of battery consumption and lower execution time; this
model, being a single tree, can perform classifications faster compared to Random Forest
and XGBoost models and employ multiple trees for the classification process. The difference
between these two models is that in Random Forest, the prediction is performed by averaging
or voting the predictions of each tree individually, which can be more efficient in terms of
runtime [46]. In contrast, in XGBoost, the prediction process involves summing the predictions
of multiple sequential trees and applying additional regularization processes [47].

Table 10. Classification time of the model’s dataset.

Model Average Runtime (ms) Total Time (h)

Tree C4.5 123.246 0.34235

Random Forest 129.825 0.360625

XGBoost 143.791 0.39941944

Neural Network 124.014 0.34449166

Figure 14. Total consumption in milliamp-hours for the classification of the dataset of each model.
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5. Discussion

By implementing function aggregation on the aggregator node, such as AVG and
COUNT for Scenario 1, the captured data are synthesized at the end of the day, temporarily
storing the data in flash memory and sending the data only once. In comparison, in
Scenario 2, where the data are sent immediately after their capture via Wi-Fi, higher energy
consumption is observed, the main differentiating factor in the consumption in active
mode in the aggregator node. Furthermore, implementing optimization features such as
light_sleep on the card reduces battery consumption significantly during idle periods for
the two nodes, in contrast to Scenario 2, where their absence makes a notable difference.

Based on the established battery management processes, the total battery lifetime is
determined by considering operating conditions when the battery charge is greater than
or less than 30%. Battery 1 operates for four days in high and one day in low battery
mode, completing only one cycle. Battery 2 lasts eleven days in high and four days in
low, equivalent to three complete cycles. On the other hand, battery 3 operates for twelve
days in high battery mode and five days in low battery mode, covering three full cycles.
During the remaining time, notifications about abnormal ranges or sensor problems and
recommendations are sent to beekeepers.

The traffic analysis results show that function aggregation effectively controls the amount
of data transmitted, reducing approximately 95% of the total data load. However, considerable
packet loss is observed in Scenario 2, which highlights the importance of implementing feature
aggregation to improve the reliability and efficiency of network communication. Regarding
the size of the training datasets of the models and their implementation, it was decided
to select a size of 0.4 for tree-based models, equivalent to 40% of the data for training and
60% for validation. The choice is since the XGBoost model exhibits the highest classification
accuracy (94%) and reaches the possible memory limit since it occupies 84% of the flash
memory, compared to the other two models (Random Forest and Tree C4.5), whose memory
occupations range from 69% to 73%. For the black-box model, a training data distribution of
20% was chosen, and the remaining 80% was reserved for validation. It resulted in a flash
memory occupancy of 74%, which resulted in an accuracy of 99%.

Maintaining an appropriate balance between model accuracy and memory occupancy
must be considered. The results emphasize the need to find an optimal point where the
model accuracy is high while minimizing the consumption of memory resources. This
balance ensures the system’s efficient operation in practical environments when facing
resource limitations such as those in the BSN.

When comparing the white-box models with the black box, it is observed that the
neural network offers fast and efficient battery consumption performance and is on par
with the Decision Tree. The results obtained from this comparison reveal the importance
of considering both predictive performance and resource consumption when selecting a
classification model for practical applications. While the C4.5 Decision Tree emerges as a
promising option in terms of efficiency in battery consumption and execution time, the
neural network also offers competitive and efficient performance.

Implementing a classification model on the ESP32 [28] microcontroller board repre-
sented a significant challenge in practice, mainly because some of the mechanisms used as
a basis from other research available in repositories or developer forums needed to meet
this research’s requirements satisfactorily. While some approaches differed in nature or
scope, others needed more flexibility to adapt to the project’s specific demand. Despite
this, the advantages of white-box and black-box models in terms of accuracy, scalability,
and interpretability are considered, such as heuristic models or models based on expert
knowledge. The research focused on exploring various alternatives designed to address
the limitations above and optimize model performance on the board.

After exhaustive research in multiple sources, it was determined that incorporating
libraries such as EloquentTinyML or tflm, developed by [48], surpasses other alternatives, as
they are designed for devices with limited resources. These libraries optimize the use of
memory and processing. Therefore, this study considers them and is valid as a complete
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solution that addresses all the identified limitations. Additionally, they offer a wide range
of functionality, integrating multiple machine learning models and enabling sophisticated
and versatile solutions in embedded systems.

6. Conclusions and Future Works

This research characterized the climatic conditions affecting the presence of Varroa
mites in bee hives, using discrete variables as critical indicators. Significant findings were
obtained through a detailed analysis of climatic data, mite infestation records, and expert
input. Potential limitations were noted, such as the lack of available information and
studies, and caution was made against natural climate variability that may affect data
interpretation. Although climatic patterns related to the Varroa mite were identified, it
was highlighted that correlation does not imply direct causation. In addition, the possible
influence of other factors not considered was mentioned, such as human activity and the
use of chemical treatments in hives.

Throughout this research, we encountered limitations when selecting and implementing
devices to monitor Varroa mites. To address these limitations, we added multiple additional
functions. This allowed for more efficient management of monitoring cycles in the hives,
adjusting them according to beekeepers’ needs. Additionally, we conducted a detailed
analysis of power consumption to design a solution that minimized battery usage without
compromising functionality and accuracy. The integration of these functions facilitated
effective management of data capture and transmission times, resulting in maximum battery
savings from the card and, simultaneously, a significant reduction in network traffic. Finally,
thanks to these efforts, we managed to reduce the battery consumption of the devices by up to
75% compared to implementation without these functions and reduce network traffic by 95%.

Integrating functions as part of our data preprocessing strategy significantly reduced
redundancy, reducing the amount of data from 720 to a vector of 4 highly representative
aggregated data points. This approach not only optimized storage on limited hardware
but also allowed for more efficient management thereof. By combining this hardware
with a supervised machine learning model, specifically a neural network, we developed
a comprehensive solution for Varroa mite detection. Of all the models tested, the neural
network was the most suitable choice, as it allowed us to strike a balance between high
accuracy (99%) and low hardware memory consumption (74%). This lays the groundwork
for future research in precision beekeeping and automated monitoring of bee health, seeking
to overcome the limitations of traditional detection methods, such as Varroa testing, which
are laborious and require high human intervention.

Considering the interest of beekeepers in implementing more sensors and devices in
the hives and developing additional functionalities based on the collected data, a future
approach to designing and creating a more complete and adaptable monitoring and control
system is suggested. This system could integrate additional sensors to capture relevant
data such as daily bee flow and hive weight and develop advanced algorithms to identify
complex patterns related to colony health.

As possible future research work, developing a more robust predictive model for
forecasting Varroa mite occurrence in beehives is suggested. It implies considering other
climatic constraints, parameters, and variabilities, such as local topography, seasonal
variability, and human activity related to beekeepers’ hive management.

In addition, long-term studies are proposed to validate the model’s effectiveness in
different regions and climatic conditions, improving the understanding of the relationship
between climate and mite infestation.
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Abstract: The destructive impact of invasive apple snail (Pomacea canaliculata) on young rice seedlings
has garnered global attention, particularly in warm regions where rice production occurs. The pre-
ventative application of insecticide, particularly in areas with young rice seedlings and water depths
exceeding 4 cm, has proven effective in mitigating this damage. In line with this recommendation,
our study investigates the efficacy of site-specific drone-based insecticide applications to mitigate
snail damage in rice paddies. These site-specific drone applications were strategically executed as
directed by a highly accurate prescription map indicating the required insecticide quantity at specific
locations. The prescription map was automatically generated through an advanced data processing
program that used the aerial images acquired by a Real-Time Kinematic (RTK)-Unmanned Aerial
Vehicle (UAV) as the input. Criteria were established to select the treatment locations; a value of below
4 cm from the top 95% percentile in the histogram of ground elevation data was used as a threshold
to identify areas with a high-density of snail damage. The results demonstrated reductions in both
the rates of rice damage and chemical usage following site-specific drone applications compared with
the control fields. The findings in this study contribute to the advancement of effective site-specific
pest control in precision agriculture.

Keywords: unmanned aerial vehicle; remote sensing; apple snail; Pomacea canaliculata; site-specific
application; drone-based application

1. Introduction

The invasive apple snail (Pomacea canaliculata), recognized as one of the world’s 100
most invasive alien species in the International Union for Conservation of Nature’s list [1].
It has extensively invaded agricultural and natural ecosystems in numerous moderate-
temperature regions across the globe [2]. P. canaliculata exhibits a high degree of adaptability,
thriving in both wetland and specific dryland habitats. Primarily, the snail feeds on a variety
of bright green and succulent aquatic or semiaquatic plants, including duckweed, young
rice (Oryza sativa L.) seedlings, lotus root, and other small plants that float on the surface of
water. When P. canaliculata snails infest rice paddy fields with young seedlings, they feed
voraciously on the rice plants, which results in significant crop losses if suitable alternative
food sources are unavailable. Their extensive invasion into rice paddy fields, through
irrigation canals and rivers, may not only devastate the crops but also out-compete native
local snails [3,4], potentially altering the normal function of natural ecosystems [5–7].

Flooded rice paddy fields offer a habitat for P. canaliculata snails, allowing them to
thrive and reproduce rapidly. The water depth in the flooded rice paddy field has a
crucial influence on the movement and feeding activities of P. canaliculata snails. Research
has shown that during the early growth stage of rice (specifically for young seedlings
between 21 and 40 days after emergence), if they are submerged in water deeper than 5 cm,
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the damage caused by P. canaliculata ranges from 46% to 100% [8]. Among the suggested
strategies for preventing damage to young seedlings of both direct-seeded and transplanted
rice, drainage or maintaining shallow water before the V5 growth stage [9,10], mechanical
control through tillage and puddling [11,12], chemical control, crop rotation, and biological
control [13] are considered effective.

Nonetheless, maintaining a shallow water level, for example, a level not exceeding
4 cm [14], is not straightforward because most paddy fields are not perfectly level. Water
depth varies across the paddy field due to differences in ground elevation; some areas are
higher and others are lower, and the elevation throughout the paddy field is generally
uneven. Given that areas near water inlets and outlets tend to be deeper, local chemical
treatments for these areas are often employed by farmers. However, this method often
focuses on addressing limited areas, leaving untreated areas further from the field’s access
points. Comprehensive chemical treatments for the entire paddy field are also feasible, but
are associated with high costs. Therefore, treating only the areas with deep water in the
paddy field is a sensible approach.

Water depth data in a paddy field can be obtained by installing sensors at fixed points
to measure the water level [15,16]. However, this method can only capture localized data
points; it is incapable of providing comprehensive water depth data for the entire field.
Obtaining accurate water depth distribution data becomes extremely challenging when
the paddy field is flooded with seedlings or there is debris on the flat-water surface. As
an alternative, measuring the ground height of the rice paddy when it is not flooded
and estimating the water depth during irrigation is a more practical approach. There are
currently many highly useful technologies that can be applied to measure bare ground
elevation (also known as assessing ground or soil surface elevation). The assessment of
ground surface elevation typically follows the criteria recommended for rice paddy fields,
indicating an elevation difference within ±5 cm or ±3.5 cm from the mean horizontal
plane [17] or an elevation standard deviation below 2 cm [18].

It is challenging to achieve ground surface elevation data with centimeter level preci-
sion; traditional methods involving measurements at multiple points, such as Total Stations,
theodolites, or Global Navigation Satellite System (GNSS) receivers, may result in missing
or incomplete data for unmeasured locations within the designated paddy field. The recent
advanced measurement methods that can be adapted to assess ground surface elevation in
paddy fields include Terrestrial Laser Scanning (TLS), Unmanned Aerial Vehicle (UAV)-
based Light Detection and Ranging (LiDAR), and UAV-based photogrammetry [19,20].
Although TLS technology has proven effective in various applications, such as topographic
mapping, architectural documentation, and cultural heritage preservation [21], it exhibits
limitations when applied to relatively broad and flat rice paddies, including uneven data
density arising from the lack of distinct topographical features, significant time and cost
requirements, and the challenge of establishing suitable measurement points during the
scanning process. UAV-based LiDAR is well-suited to assessing forest structure [22] or crop
height [23–25]. However, when mapping relatively flat terrain, UAV-based photogramme-
try is a more advanced choice owing to its cost-effectiveness, outstanding flexibility, and
high-resolution. By utilizing high-resolution aerial imagery with accurate Real-Time Kine-
matic (RTK)-GNSS geo-positioning, UAV-based photogrammetry can achieve measurement
accuracy within several centimeters by referencing Ground Control Points (GCPs) [26,27].

Owing to its ability to measure ground elevation differences to within a few cen-
timeters, UAV-based photogrammetry can be applied to our approaches for controlling
P. canaliculata snails in paddy fields. After the water depth has been estimated from the
measured ground elevation data, site-specific application or variable rate (VR) pesticide
application [28] can be implemented to save time and reduce costs. In precision agriculture,
site-specific application, VR pesticide application, and VR fertilizer application are common
practices that tailor input and usage to achieve desired outcomes based on timely diagnosis
information on crop growth and the surrounding environment [29]. VR applications are
typically performed with reference to the diagnostic information acquired from an on-board

49



Agriculture 2024, 14, 299

sensor or a prescription map calculated from vegetation indices (VIs) such as the Normal-
ized Difference Vegetation Index (NDVI) [30,31]. For example, based on UAV-derived
Green NDVI (GNDVI), Yi et al. [32] used variable rate spraying for cotton defoliation
applications. Another valuable indicator for representing ground elevation or crop height,
the Digital Surface Model (DSM), has been applied in site-specific applications for orchards
or terrains with significant height variations [33]. However, owing to limitations in the
accuracy of elevations determined using UAV-based methods, no research has explored the
use of DSM indicators to identify and select areas with subtle differences, such as of a few
centimeters, for targeted treatments in rice paddy fields.

Building upon insights gained from advanced UAV-based techniques, our study takes
a further step by proposing a comprehensive approach that leverages these techniques to
enhance the monitoring and prevention of P. canaliculata in rice paddy fields. We focus
on three key aspects: (1) developing a UAV-based method to assess the field levelness
and estimate water depth, enabling the accurate identification of areas prone to snail
infestation; (2) implementing site-specific pesticide application based on a prescription
map, allowing precise targeting of snail populations while minimizing pesticide usage;
and (3) employing UAV-derived imagery analysis to assess and quantify the extent of
damage caused by P. canaliculata in rice paddy fields. These contributions aim to enhance
the efficiency and effectiveness of pest management strategies and ultimately reduce the
economic and ecological impacts of P. canaliculata in rice production.

2. Materials and Methods

2.1. Study Site

The study site is situated in the northwest of Kyushu, southern Japan, specifically in the
Saga Plain. Over the past decade, the average annual temperature in this area is 17.4 degrees
Celsius, as derived from historical weather data collected by an automated meteorological
data acquisition system near the study site. Owing to the suitable climate and fertile soil,
agricultural practices in this area often involve a double-cropping system, with wheat or
barley cultivated in the winter and rice or soybeans in the summer. P. canaliculata thrives in
the summer paddy fields; in the winter, the climate is conducive to a proportion of snails
successfully overwintering in the paddy fields [34].

P. canaliculata (Figure 1a–d) becomes active following the transplantation of rice, typ-
ically in mid to late June in this double-cropping system period, causing damage to rice
seedlings for approximately two weeks. During the machinery-based transplanting process,
an insecticide known as Sukuminon, which contains 10.0% metaldehyde, is commonly
applied to prevent the damage caused by P. canaliculata. This insecticide provides effective
control for a period of approximately one week. However, following this period, the effi-
cacy of the insecticide weakens and gradually diminishes; then, combined with historically
abundant rainfall during this season, the snails swiftly invade rice paddies through agricul-
tural waterways, channels, and rivers. This rapid invasion leads to destructive damage in
rice fields where the protective effect of the insecticides is diminished, which particularly
impacts young seedlings (Figure 1e).

Our experimental fields were selected within the high-damage zones caused by P.
canaliculata snails at the study site, divided into three groups (G1, G2, and G3), with each
group containing two paired rice paddies, labeled as follows: F1 and F2, F3 and F4, F5, and F6
(Figure 2). The two paddies in the same group were situated in close geographical proximity;
the environmental conditions for rice growth and cultivation practices were identical.
Traditional P. canaliculata management practices, which involve plowing, puddling, and
transplanting with the simultaneous application of the insecticide Scuminon, were carried
out in all experimental paddies. The paired paddies in each group were designated as
controls: one underwent timely treatment by drone-based application; the other followed
traditional management practices in which the initial insecticide was only applied during
the transplanting process. Detailed information about the experimental fields is provided
in Table 1.
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Figure 1. P. canaliculata snails. (a) Snails inhabiting the paddy field (shell height mostly ranging from
0.3 to 3 cm). (b) Egg masses—strong reproductive ability, with annual egg production ranging from
2000 to 8000. (c) Snail damage to rice plants. (d) Shallow water management at approximately 1 cm
depth for paddy fields infested by the snails. (e) Significant seedling losses in a paddy field infested
with the snails.

Figure 2. Map of the experimental fields.

Table 1. Information on the experimental fields.

Group G1 G2 G3

Field F1 F2 F3 F4 F5 F6

Area (ha) 0.49 0.26 0.26 0.33 1.18 0.33
Latitude,
longitude

33.326974 N
130.398870 E

33.326546 N
130.396180 E

33.345911 N
130.399962 E

33.346190 N
130.400063 E

33.323753 N
130.376322 E

33.319522 N
130.374446 E

Transplanting
date 26 June 2023 26 June 2023 24 June 2023 24 June 2023 22 June 2023 23 June 2023

Timely
treatment

drone
application - drone

application - drone
application -
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2.2. UAVs and Agricultural Drones

To estimate the water depth in the experimental fields, we utilized an RTK-UAV,
specifically the Phantom 4 RTK (DJI, China). This UAV is equipped with an on-board
RGB camera capable of capturing high-resolution images at 4864 × 3648 pixels, ensuring a
spatial resolution of 2.7 cm Ground Sampling Distance (GSD) when photographs are taken
at an altitude of 100 m Above Ground Level (AGL). The UAV exhibits high positioning
accuracy, with a vertical precision of 1.5 cm and horizontal accuracy of 1 cm specified by
the manufacturer.

The UAV flight experiment, when the RTK system was in a fixed state, was conducted
on 7 June 2023, subsequent to the plowing process that occurred after the harvest of wheat
or barley and prior to the puddling. Flight parameters were configured using the DJI GS
Pro application, with a flight altitude of 100 m AGL, 75% overlap in both forward and side
directions, and a capture mode of 3-s intervals. The weather conditions were clear, with a
wind speed below 1 m/s.

The selection of the flight altitude of 100 m AGL is primarily due to its capability
to ensure accuracy within a few centimeters in both horizontal and vertical directions,
particularly in the flat terrain of lowland rice production areas. According to a review [35],
flying the UAV at a higher altitude can significantly improve vertical accuracy over flat
terrain, a finding that is similarly corroborated by our previous field experiments [36]. With
appropriate methods, it is even feasible to generate an orthomosaic without the need for
GCPs [36]. Furthermore, flying at this altitude facilitates efficient surveying, making it
suitable for practical large-scale paddy field measurements. Considering the typical row
spacing of 30 cm and seedling spacing of 20–25 cm in conventional rice cultivation, the
resulting GSD of 2.7 cm at this altitude is adequate for distinguishing individual rice plants,
especially for discerning rice canopy from the original images and RGB orthomosaic.

Another flight experiment, executed with the same UAV and settings, was planned
and performed on 23 August 2023, approximately 1 week before the rice heading stage.
During the flight, the weather conditions were mostly cloudy, with an approximate wind
speed of 1.5 m/s.

In our experimental fields dedicated to controlling P. canaliculata snails, we opted for
Sukumin Bait 3, a granular eradicator containing 3.0% iron (II) phosphate hydrate, with
no specific restrictions on application periods or frequency. The granule materials were
dispersed from the air using two models of agricultural drones: Nileworks Nile-JZ (Tokyo,
Japan) and DJI Agras T10 (Shenzhen, China). The Nile-JZ drone has a maximum takeoff
weight of 27 kg, featuring six propellers, an internal load capacity of 8 kg for granule
spreading, and achieves a spreading width of over 5 m. The Agras T10 drone, with a
maximum takeoff weight of 24.8 kg and four propellers, is equipped with an internal load
capacity of 10 kg for granule spreading and achieves a spreading range of 5 to 7 m.

The experimental conditions for aerial spreading are detailed in Table 2. During
fixed RTK states, both the Nile-JZ and Agras T10 drones executed automatic spreading
operations following predesigned flight routes, including automatic takeoff, spreading
along the predetermined paths, and automatic landing. The flight altitudes were set at
1.5 m for Nile-JZ and 2 m for Agras T10, which corresponded to the height of the paddy
field ridges and the height from the takeoff point, respectively. It should be noted that the
implementation date for the drone-based insecticide application on F5 preceded F1 and F3
by a week due to the earlier transplanting date in field F5.
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Table 2. The experimental conditions for air spreading.

Drone Model

Nile-JZ Agras T10

Target fields F1 and F3 F5
Application date 6 July 2023 29 June 2023

Weather Sunny Shower
Wind speed (m/s) 4.5 5

Wind direction SSE SSW
Temperature (◦) 31.7 28.6

2.3. The Research Methodology

Figure 3 illustrates a block diagram of our research methodology; the right-hand
column indicates the corresponding instruments and tools used. The research methodology
comprises:

• Data acquisition, specifically for aerial images using the RTK-UAV.
• Automated Data Processing (ADP), developed with the Python language and PIX4D

engine SDK 1.4 [37]. This includes procedures such as inputting aerial images, gener-
ating orthomosaics and the DSM, clipping the DSM of the field, calculating the areas
for spreading, and creating the prescription map. The DJI Terra software, not in the
procedures for ADP, was used for creating the prescription map for Agras T10.

• Drone flight plan, automatically generated by the Nile app and DJI Terra for their
corresponding drone models.

• Drone application, carried out by Nile-JZ or Agras T10.
• Assessment of the damage rate caused by P. canaliculata snails, determined from the

aerial images acquired by the RTK-UAV.

Figure 3. The research methodology, instruments, and tools.

53



Agriculture 2024, 14, 299

ADP was developed using Python 3.8 on a Windows 10 Pro, 64-bit operating system.
The development environment was a high-performance PC equipped with an Intel Xeon(R)
Silver 4208 (2.1 GHz, 8 cores), 48 Gb of RAM, and a graphics accelerator with 3328 CUDA
cores (NVIDIA RTX A2000, 12 Gb). In addition to PIX4Dengine SDK, the implementation
utilized open-source tools such as GDAL/OGR 3.3.2 [38]. PIX4Dengine SDK offered a
flexible interface for customizable configurations and processing controls, largely encom-
passing the capabilities found in PIX4D Mapper Pro, a Structure from Motion (SfM) [39]
software developed by the same provider.

After completing aerial imagery acquisition using RTK-UAV at the study site, we
obtained a set of images with precise geographical coordinates to serve as the input data
for ADP. To better differentiate ground elevation within the same rice paddy, we estab-
lished predefined geographical boundaries for each of our experimental fields, excluding
boundary ridge areas with significant variations in ground elevation that differed from the
base ground elevation of the rice paddy. Subsequently, we imported this dataset into ADP
for automated processing.

The prescription map, provided in vector data formats such as GeoJSON or ESRI
Shapefile by ADP, can be easily imported into Nile app to create optimized flight routes for
Nile-JZ. However, DJI Terra, lacking the ability to generate a prescription map based on
indices other than NDVI, requires manual referencing to the spreading area.

The assessment of the damage rate caused by P. canaliculata snails is based on the
selection of geographical pixels according to the R

G and B
G ratios [40], along with the excess

G index [41,42], where R, G, and B denote red, green, and blue digital values ranging from
0 to 255, respectively, in the RGB orthomosaic generated from the RTK-UAV-derived aerial
imagery. The assessment was conducted using the following formulas:

C =

{
1 if

(
B
G < θ1

)
and

(
R
G < θ2

)
and (2× G− R− B > θ3)

0 otherwise
(1)

r =
sum (C)

count (C)
(2)

where r represents the canopy cover rate of rice areas, and the threshold values θ1, θ2, and
θ3 were determined using the following procedure:

01: begin

02: Set the sample size n
03: Extract a set of points Pn from within rice canopy regions
04: Extract a set of points Qn from outside rice canopy regions

05:
Calculate the values of R

G , B
G and 2× G− R− B

for each point in Pn and Qn using a GIS program or tool
06: Assign the 97.5th percentile value of R

G within Pn to θ1
07: Assign the 97.5th percentile value of B

G within Pn to θ2
08: Assign the 2.5th percentile value of 2× G− R− B within Pn to θ3a
09: Filter a subset Q′ of points from Qn with the filter R

G < θ1 and B
G < θ2

10: Calculate the 2.5th percentile value θ3b for 2× G− R− B within Q′
11: Choose the value for θ3 as the maximum of θ3a and θ3b
12: end

In our study, with a sample size of 34, the values of θ1, θ2, and θ3 were determined as
0.82, 0.82, and 60, respectively. These values are subject to variation based on changes in
the sample size and sampling points, particularly at critical points between the rice canopy
and water surface. To mitigate noise associated with these critical points, values for θ3
were selected at the 97.5th and 2.5th percentiles. The geographical raster file of the rice
canopy was calculated using Equation (1) and validated through a comparison with the
RGB orthomosaic.
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The values of θ1, θ2, and θ3 significantly deviate from the suggested default values of
0.95, 0.95, and 20 in [43]. This variance may be attributed to specific conditions observed in
flooded rice paddies and the presence of floating residues. Damage to rice seedlings by
P. canaliculata snails results in the loss or partial damage of rice seedlings. In the current
mechanized rice cultivation system, replanting will not be conducted for the missing parts,
leaving these areas blank until harvest. These areas are easily distinguishable from the aerial
images at a flight altitude of 100 m AGL. Partially weak or damaged rice seedlings gradually
recover and can reach the maximum canopy area around the rice heading stage. During
this stage, aerial images are highly effective in distinguishing rice canopy, where non-rice
canopy areas consist of either water surfaces or distinctively colored floating residues.
Since we can clearly discern rice canopy from aerial images, we opted to substitute the
traditional field sampling method for calculating damage rates. Traditional field sampling
also faces challenges, such as determining sampling protocols and accurately aligning
predetermined sampling points with positions on the aerial RGB orthomosaic. Moreover,
due to discrepancies in evaluation criteria, actual field sampling surveys may not necessarily
yield accurate actual damage rates.

3. Results

3.1. Implementation of Site-Specific Drone Application

Figure 4a illustrates the visualized ground elevation map generated after completing
the procedures of generating orthomosaics and the DSM, along with clipping DSM of the
field F1. This map, which features color grading and 5 cm contours, provides an intuitive
representation of the distribution of height differences and offers valuable insights for
decision making in insecticide application.

ADP automatically analyzed the histogram of the elevation distribution data. Con-
sidering the possibility of increased water levels due to heavy rain, the 95% percentile
of these data was considered to be the water level at 0, and values below the threshold
(4 cm below the water level [14]) were identified as the points for insecticide application
(Figure 4b). Based on this threshold value, areas requiring insecticide application were
marked and transformed into a 1 m grid cell map, which is referred to as the prescription
map (Figure 4c). The prescription map with a 1 m grid cell is advantageous for creating
a flight route with high covering accuracy, particularly concerning the designated area,
for agricultural drones. The flight routes for agricultural drones, with maximum effective
working width, often require adjustments in flight direction based on on-site factors such as
traffic, obstacles, and wind direction. However, the flight direction of the on-site generated
grid cell, for example, 5 m × 5 m, is likely not aligned with the 1 m grid cell direction,
leading to errors in the designated spray quantity due to the intersection of grid cells of
two different sizes. This error tends to decrease as the grid cell size becomes smaller.

Moreover, the prescription map with a 1 m grid cell broadens the applicability of the
data. It can be utilized not only with the Nile-JZ used in this experiment but also with other
agricultural drones. Additionally, it is compatible with various agricultural machinery,
including boom sprayers, fertilizer applicators, and agricultural helicopters, that adhere to
the ISO 11783-10 data interface. This compatibility arises from the fact that the 1 m grid cell
has vertical and horizontal directions designated as north and east, aligning with the same
orientation as the grid cell defined in ISO 11783-10.

Utilizing the prescription map, Nile-JZ autonomously performed the insecticide ap-
plication, along with optimized flight paths parallel to the long side of the field, aiming to
minimize untreated areas, aligning with the designated areas in the 1 m grid cell on the
prescription map. The actual spreading paths (Figure 4d) were plotted from the aircraft log
data. It is evident that the aircraft’s spreading covered the vast majority of the designated
spreading areas. Because the aircraft has a spreading width limitation of 5 m, some of the
scattered and small areas indicated for spreading were not treated.
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Figure 4. Site-specific drone application based on the prescription map for F1. (a) Visualized ground
elevation map with color grading and 5 cm contours. (b) Histogram of ground elevation data with
a red-line threshold and a green-line 95% percentile. (c) Prescription map with 1 m grid cell for
application quantity. (d) Flight paths indicated by red lines for drone application using Nile-JZ.

The same procedures were applied to F3. In Figure 5a, the region with higher ground
elevation (presented in deep red in the upper-left part) remained unsubmerged during
the on-site inspection on the fourth day after transplantation (28 June 2023), whereas the
water depth exceeded 15 cm in the lower-right corner. The spreading paths of Nile-JZ
(Figure 5c) confirmed that no spreading operations were performed in the areas remaining
unsubmerged areas, aligning with expectations.

Owing to various factors, including weather conditions, the optimal spreading im-
plementation time window, and the scheduling of the experimental agenda, a different
spreading method was applied for F5. Agricultural land identification and spreading area
settings were manually specified on DJI Terra. Then, the Agras T10 executed continuous
and uniform spreading in this area with 40 kg/ha settings (Figure 6b). The red lines of the
spreading paths in Figure 6b were manually drawn based on a screenshot from the DJI
Agras App, as flight log data were not accessible.
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Figure 5. Site-specific drone application based on the prescription map for F3. (a) Visualized ground
elevation map with color grading and 5 cm contours. (b) Prescription map with 1 m grid c for
application quantity. (c) Flight paths indicated by red lines for drone application using Nile-JZ.

Figure 6. Site-specific drone application based on the prescription map for F5. (a) Visualized ground
elevation map with color grading and 5 cm contours. (b) Flight paths indicated by red lines for drone
application using Agras T10.
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3.2. Effectiveness Analysis of Site-Specific Drone Application

The effectiveness of site-specific drone-based insecticide application was assessed
approximately 1 week before the rice heading stage. This timeframe was strategically
chosen as it provided the optimal evaluation window. At this point, rice plants that had
suffered destructive damage were unlikely to recover, and the well-developed branches
and leaves would effectively cover normal row and plant spacing. The evaluation process
first involved aerial photography and the generation of an RGB orthomosaic. Subsequently,
the canopy cover rate was calculated using Equation (1). These results are visualized in
Figure 7. In this figure, green represents the canopy cover of rice and white represents
areas other than rice, such as water surfaces. It is evident that the canopy cover area on
the left side, corresponding to F1 with drone application, is significantly more than the
canopy cover area on the right side, corresponding to F2 without drone application. This
observation implies that the damage rate in F1, which was subject to drone application, is
noticeably lower than in the untreated F2.

Figure 7. Rice green canopy for estimating damage rates. (a) Field F1 with drone application; (b) Field
F2 without drone application.

A comparison of the damage rates in the three control experimental fields is presented
in Figure 8a. When comparing damage rates in fields with prescription map-derived
drone application (F1, F3) to those without drone application (F2, F4), the respective rates
were 4.0%, 10.8% versus 33.2%, 23.6%. The field area-weighted arithmetic means for the
two fields with prescription map-derived drone application and those without were 6.4%
and 27.8%, respectively, indicating a difference of 21.4%. For field F5 with non-prescription
map-derived drone application and F6 without drone application, the respective damage
rates were 4.6% and 12.7%, with a difference of 8.1%.

By simultaneously reducing the damage rates, the quantity of insecticide applied
through drone application is significantly lower compared with the total field application
quantity by traditional uniform application (Figure 8b). For example, in F1, F3, and F5, if
traditional uniform application was employed at a rate of 40 kg/ha, the required quantity
of chemicals would be 19.6 kg, 10.5 kg, and 47.3 kg, respectively. However, the quantities
required for prescription map-derived drone application were 14.0 kg and 7.7 kg for F1 and
F3, equivalent to reductions of 28.4%, 26.5%, respectively. Similarly, the quantities required
for non-prescription map-derived drone application were 19.2 kg, equivalent to reductions
of 59.4%.
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Figure 8. Rates of damage reduction and chemical savings. (a) Comparison of estimated damage
rates at each field group between drone application and no application; (b) Chemical saving rates
between total field application quantity by traditional uniform application and drone application.

If we neglect the method of implementing a prescription map in drone application, the
field area-weighted arithmetic means for the three fields with drone application and those
without application were 5.3% and 22.5%, respectively, which is a difference of 17.2%. This
reduction in damage rate is expected to translate into an increase in final yield. Specifically,
the yield in rice fields with drone application is anticipated to be 17.2% higher than in fields
without application.

4. Discussion

This study utilized UAV-based sensing technologies to identify areas that were highly
vulnerable to damage by P. canaliculata snails. Subsequently, autonomous agricultural
drones were deployed to perform precise and efficient site-specific applications in these
identified regions. In comparison with the traditional control approaches, this method not
only mitigated damage rates but also reduced chemical usage. The accuracy in identifying
areas at high risk of damage is pivotal for the success of the prescription map for drone-
based applications. The precision of UAV-based DSM, portraying the ground elevation
surface of rice paddies, is thus indispensable for the generation of prescription maps. In
this study, we obtained highly precise DSM using the methods outlined in [29], which
encompassed (1) conducting UAV flights at an altitude of 100 m AGL or higher during
stable weather conditions and (2) achieving high-quality camera calibration during the
orthomosaic generation process. If the quality in the orthomosaic generation report was
suboptimal, calibration with GCPs is recommended.

It is essential to note that the time window available for drone sensing in double-
cropping systems is not large. For transplanting rice, it is performed following the plowing
process after the harvest of winter crops (such as wheat or barley) and before puddling.
In the case of direct-seeded rice, it is advisable to conduct the operation before or around
the germination period, preferably before the V3 growth stage to mitigate noise caused by
water surfaces or young rice plants. Equally important is the correct weather conditions
during UAV sensing; non-rainy days with ground wind speeds below 5 m/s are favored.

The generation of the prescription map is automated by ADP due to the utilization of
PIX4Dengine SDK during orthomosaic and DSM creation. In addition to its capabilities for
automatic processing, PIX4Dengine SDK can be extended to accommodate applications,
including P. canaliculata control. Alternatively, standalone SfM software can also be used,
but after obtaining the orthomosaic and DSM, manual tasks are required, such as clipping
the DSM of the field, calculating thresholds for spreading areas, and conversion into a 1 m
grid cell map.

As mentioned in [44], there is still a paucity of research on agriculture drone-based
site-specific or variable rate applications, which is primarily attributable to the limited
availability of drone models capable of such precise application. Furthermore, prescription
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maps, while frequently grounded on NDVI indices or yield maps, might instead encompass
more useful indices, such as other VIs or DSM. The selection of agricultural drones that
support prescription maps created with DSM, such as Nile-JZ, or prescription maps in a
universal format, is a prerequisite for the successful implementation of the technology in
our study.

In the study, we did not conduct an actual yield survey because, in areas where rice
is completely missing with no rice plants, the yield is naturally zero. In areas where rice
is not missing, the number of rice plants does not necessarily equate to the damage rate,
as yield can be influenced by individual differences in rice plants. Instead, we calculated
potential yield losses based on the damage rate. Furthermore, we did not assess the final
profits derived from our research methodology. Profit calculations would need to consider
various other influencing factors, such as material and equipment costs, software expenses,
development costs, and labor costs, which were beyond the scope of our study. Opting
only for simple profit data based on increased yield and cost savings in pesticides may be
feasible but lacks representativeness and persuasiveness, especially in the absence of exact
yield data.

Currently, we are in the process of developing another study that comprehensively
evaluates the practical operational benefits of using our research methodology, taking into
account a wide range of factors. Additionally, our ongoing future works include: (1) at-
tempting to expand the time window available for UAV-based sensing in double-cropping
systems to alleviate the compression of intensive operations during rice transplantation;
and (3) developing a public data interface for prescription maps in agricultural drones and
applying it to other pest control or variable rate application scenarios.

5. Conclusions

Our study has established that site-specific drone-based insecticide application is a
viable and efficient strategy for mitigating damage to rice paddies by P. canaliculata. The
high precision of the prescription map, derived from RTK-UAV-based aerial imagery, pro-
vides accurate site-specific application guidance to facilitate efficient treatment precisely
where needed. The automated data processing involved in generating the prescription map
streamlines the postprocessing of raw aerial images, improving processing efficiency and
reducing technological barriers for general farmers. The implementation of site-specific ap-
plications by two autonomous agricultural drones was able to achieve noticeable reductions
in damage rates and chemical usage, showing the potential to increase yield and improve
the sustainability of agricultural practices. These findings, which contribute to the advance-
ment of precision agriculture, underscore the importance of considering topographical
variations, including subtle changes at the centimeter level, in pest control strategies.
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Abstract: Wheat breeding heavily relies on the observation of various traits during the wheat growth
process. Among all traits, wheat head density stands out as a particularly crucial characteristic.
Despite the realization of high-throughput phenotypic data collection for wheat, the development
of efficient and robust models for extracting traits from raw data remains a significant challenge.
Numerous fully supervised target detection algorithms have been employed to address the wheat
head detection problem. However, constrained by the exorbitant cost of dataset creation, especially
the manual annotation cost, fully supervised target detection algorithms struggle to unleash their
full potential. Semi-supervised training methods can leverage unlabeled data to enhance model
performance, addressing the issue of insufficient labeled data. This paper introduces a one-stage
anchor-based semi-supervised wheat head detector, named “Wheat Teacher”, which combines two
semi-supervised methods, pseudo-labeling, and consistency regularization. Furthermore, two novel
dynamic threshold components, Pseudo-label Dynamic Allocator and Loss Dynamic Threshold, are
designed specifically for wheat head detection scenarios to allocate pseudo-labels and filter losses.
We conducted detailed experiments on the largest wheat head public dataset, GWHD2021. Compared
with various types of detectors, Wheat Teacher achieved a mAP0.5 of 92.8% with only 20% labeled
data. This result surpassed the test outcomes of two fully supervised object detection models trained
with 100% labeled data, and the difference with the other two fully supervised models trained with
100% labeled data was within 1%. Moreover, Wheat Teacher exhibits improvements of 2.1%, 3.6%,
5.1%, 37.7%, and 25.8% in mAP0.5 under different labeled data usage ratios of 20%, 10%, 5%, 2%, and
1%, respectively, validating the effectiveness of our semi-supervised approach. These experiments
demonstrate the significant potential of Wheat Teacher in wheat head detection.

Keywords: digital agriculture; deep learning; semi-supervised object detection; wheat head detection

1. Introduction

Wheat has consistently been one of the primary crops for human sustenance. Sci-
entists in wheat breeding have persistently strived to develop new wheat varieties with
higher yields. Traditional breeding methods still heavily rely on manual observation, and
innovative gains in genetic improvement may arise from genomic selection, novel high-
throughput phenotyping technologies, or a combination of both [1–4]. These techniques
are crucial for selecting important wheat traits related to yield potential, disease resistance,
or adaptation to abiotic stress. Despite the realization of high-throughput phenotypic data
collection, the development of efficient and robust models for extracting traits from raw
data remains a significant challenge. Among all traits, wheat head density (the number
of wheat heads per unit ground area) is a major yield component and is still manually
evaluated in breeding trials. This manual evaluation is labor-intensive and introduces
measurement errors of approximately 10% [5–7]. Therefore, there is a need to develop
image-based methods to enhance the throughput and accuracy of wheat head counting
in field conditions. This advancement will assist breeders in balancing the components
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of yield (plant number, head density, grains per head, grain weight) during breeding
selections [8].

In recent years, with the advancement of computer vision and deep learning theories,
methods based on deep neural network technology have made significant progress in
addressing general object detection problems. Consequently, numerous researchers have
endeavored to apply general object detection algorithms to the field of agricultural object
detection. Xu et al. [9] employed the K-means clustering algorithm to automatically seg-
ment wheat head images and extract wheat head contour features, thereby significantly
enhancing the efficiency and accuracy of wheat head counting. Wang et al. [10] utilized a
multilevel neural network (SSRNET) for wheat head image segmentation, achieving rapid
estimation of wheat head quantities under field conditions. Khaki et al. [11] drew inspi-
ration from crowd counting research and constructed a fast and lightweight anchor-free
wheat head counting network. Amirhossein et al. [12] applied automatic object enhance-
ment technology to deep learning models and employed a hybrid AutoOLA-DL model
to improve wheat head counting performance. Wang et al. [13] developed a lightweight
apple detection model based on YOLOv5s, adopting a pruning and fine-tuning approach
to maintain accuracy while ensuring overall model lightweightness for deployment on
portable IoT devices. Sozzi et al. [14] extensively studied the performance differences of
various YOLO networks in identifying white grape applications. He et al. [15] researched
and simplified the YOLOv4 network structure, employing the K-means algorithm to reclus-
ter anchors, effectively addressing wheat head detection issues in natural scenes based
on unmanned aerial vehicle platforms. Gong et al. [16] optimized the Spatial Pyramid
Pooling (SPP) structure within the YOLOv4 network architecture to enhance feature learn-
ing capabilities, enlarging the convolutional network’s receptive field, thereby improving
recognition accuracy and speed. Zhao et al. [17] improved wheat head feature extrac-
tion by adding micro-scale detection layers and setting prior anchor boxes, optimizing
the YOLOv5 network structure, significantly enhancing the detection accuracy of wheat
head images captured by drones. Meng et al. [18] constructed an improved YOLOv7
model by incorporating attention modules, greatly enhancing wheat head detection effec-
tiveness, and exploring the influence of attention module quantity and placement on the
model. The primary research direction of the aforementioned studies can be summarized
as augmenting various specially designed modules onto existing general object detectors
according to the characteristics of the target objects to be detected, thereby achieving better
detection performance.

However, existing wheat head detectors exhibit poor generalization in practical ap-
plications. This is attributed to several distinctive features commonly observed in wheat
head detection scenarios: Different wheat varieties exhibit significant variations in wheat
head color, size, and traits at various growth stages. Wheat fields are typically densely
planted, leading to substantial mutual occlusion between wheat heads in images. Factors
such as equipment, lighting, environmental conditions, and wind during image acquisition
contribute to significant differences between wheat heads. Wheat is widely cultivated
globally, and diverse wheat field environments present considerable variations based on
climate, soil, altitude, etc. These characteristics result in substantial differences between
wheat field scenes. Consequently, wheat head detectors trained on datasets specifically
constructed for particular studies exhibit suboptimal performance when confronted with
entirely new wheat field scenes beyond the scope of their training datasets [7].

To address the generalization issues of models, a larger dataset proves effective. In
response to this challenge, the GWHD dataset was introduced by [8], and subsequently,
the expanded GWHD2021 dataset was released [19]. The dataset encompasses 6515 wheat
head images collected from 11 different countries and regions worldwide, making it the
largest and most diverse publicly available wheat head dataset to date. However, compared
to the commonly used MS-COCO dataset [20] in general object detection research, which
comprises over 120,000 annotated images, the annotated images in GWHD2021 constitute
only 5% of MS-COCO’s annotated images. This discrepancy arises from the challenging
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nature of creating wheat datasets due to the characteristics mentioned earlier in wheat head
detection scenarios. Even with extensive training, annotators find the annotation process
challenging and time-consuming [21]. This creates a paradox where despite the abundance
of wheat head image data, the high cost in terms of both money and time required for
annotation hinders their utilization. This underscores a major drawback of fully supervised
object detection—overreliance on annotated datasets. In contrast, SSOD (semi-supervised
object detection) proves effective in addressing the issue of insufficient annotated data.

SSL (Semi-Supervised Learning) is a learning paradigm that involves constructing
models using both labeled and unlabeled data. These methods enhance learning perfor-
mance by incorporating additional unlabeled instances, in contrast to supervised learning
algorithms that rely solely on labeled data. SSL algorithms provide a means to extract
latent patterns from unlabeled examples, reducing the dependency on a large number of
labels [22]. DSSL (Deep Semi-Supervised Learning) is a specific research domain within
SSL, exploring how to effectively leverage both labeled and unlabeled data through deep
neural networks. Numerous DSSL methods have been proposed, categorizable into five
main types based on distinctive features in semi-supervised loss functions and model
designs. Generative methods: employing generative models to simulate the distribution
of data and subsequently leveraging the generated data for learning purposes; a paradig-
matic approach in this context is the utilization of Generative Adversarial Network (GAN).
Consistency regularization methods: these methods encourage models to produce similar
outputs for different views or perturbations of input data, thereby improving robustness to
unlabeled samples. Graph-based methods: using graph structures to represent similarity
relationships between samples, these methods leverage techniques like label propagation
or semi-supervised graph convolutional networks for semi-supervised learning. Pseudo-
labeling methods: these methods generate pseudo-labels for unlabeled samples by using the
model’s predictions, treating them as real labels for training. Hybrid methods: combining
elements of the above four methods in a hybrid manner [23].

SSOD represents a research domain within DSSL, aiming to explore the application of
semi-supervised methods to address object detection challenges. Traditionally, in the field
of computer vision, semi-supervised methods have predominantly been employed for im-
age classification tasks rather than object detection. The investigation into semi-supervised
methods for object detection heavily relies on the foundational works of Sohn et al. [24]
and Unbiased Teacher [25]. Sohn et al. [24] were pioneers in introducing pseudo-labeling
methods to SSOD, establishing a paradigm where teacher and student models are concur-
rently trained. The teacher model utilizes pseudo-labels generated from unlabeled data
to guide the training of the student model. Building upon this, Unbiased Teacher [25]
introduced consistency regularization methods to SSOD. The unlabeled data fed into the
teacher model undergoes mild data augmentation, while the unlabeled data for the stu-
dent model undergoes strong data augmentation. Notably, the parameters of the teacher
model are no longer frozen but are copied from the student model through the Exponen-
tial Moving Average (EMA) approach, a technique initially proposed by Tarvainen and
Valpola [26] for solving classification problems. Subsequently, most SSOD methods adhere
to the paradigms established by the aforementioned works, employing hybrid methods
that combine pseudo-labeling and consistency regularization. Simultaneously training
both teacher and student models, these methods use the teacher model’s predictions on
unlabeled data with confidence exceeding a threshold as pseudo-labels to guide the training
of the student model. Our research aligns with these established paradigms.

Subsequent to these developments, the primary research focus within SSOD has been
on optimizing the utilization of pseudo-labels and effectively distinguishing between reli-
able and unreliable pseudo-labels. Influential works in this direction include the following.
Soft Teacher [27], which contends that pseudo-labels with confidence below a threshold
contain valuable information and should not be discarded outright. Instead, they advocate
for incorporating these pseudo-labels into the loss calculation after weighting. Humble
Teacher [28], employing an abundance of region proposals and soft pseudo-labels as train-
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ing targets for the student model. Dense Teacher [29], a pioneering work implementing
SSOD on a one-stage anchor-free detector, departing from the traditional two-stage anchor-
based detectors used in prior SSOD research. Unbiased TeacherV2 [30], proposing a per-
spective shift in treating pseudo-label boxes not as a whole but as individual edges, placing
trust only in edges with confidence surpassing a threshold. LabelMatch [31], advocating for
varied confidence thresholds for pseudo-labels of different object categories rather than a
uniform threshold. Efficient Teacher [32], introducing the first one-stage anchor-based semi-
supervised object detector. Consistent Teacher [33], introducing three modules—Adaptive
Anchor Assignment (ASA), 3D Feature Alignment Module (FAM-3D), and Gaussian Mix-
ture Model (GMM)—to address the issue of pseudo-label oscillation during student model
training. Our research draws inspiration from these aforementioned studies.

Several researchers have endeavored to employ SSOD methods to address challenges
in agriculture, particularly in the realm of weed identification, a prevalent issue across
various agricultural scenarios. The definition of “weed” varies depending on the cultivated
crops, adding significant complexity to the annotation process. Kerdegari et al. [34]
introduced a weed identification model using generative methods; opting not to rely
on pseudo-labeling or consistency regularization methods, they trained a Generative
Adversarial Network (GAN) on labeled data and utilized the generated weed images as
part of their dataset. Jiang et al. [35] proposed a weed identification model based on graph-
based methods, employing a Graph Convolutional Network (GCN) built on CNN features
to construct a graph using extracted weed CNN features and their Euclidean distances.
Shorewala et al. [36] presented a generalized semi-supervised weed identification model
effective in both carrot and sugar beet datasets, requiring no fine-tuning. Menezes et al. [37]
introduced a soybean field weed crop recognition system based on superpixels, detecting
weeds in soybean fields as well as other crops beyond soybeans. Liu et al. [38] proposed
a semi-supervised wheat field weed detector incorporating attention mechanisms to aid
precise herbicide application. Benchallal et al. [39] introduced a weed identification system
using only consistency regularization methods without employing any pseudo-labeling
methods. Beyond weed identification, researchers have applied SSOD to crop recognition
problems. Khaki et al. proposed DeepCorn [40], estimating corn kernel density in images of
corn ears and predicting the number of kernels based on the estimated density map. Casado
et al. [41] extended object detection to semi-supervised semantic segmentation, aiming
to segment mature grapes in vineyards. Xu et al. [42], utilizing YOLOv5X, constructed a
semi-supervised semantic segmentation model for Maize Seedling Leaf counting. Johanson
et al. [43] introduced S3AD, a semi-supervised detection system based on contextual
attention and selective tiling, addressing small apple detection. Across these studies,
semi-supervised methods have demonstrated immense potential, effectively leveraging
unlabeled data to enhance detector performance and successfully addressing the issue of
insufficient annotations.

Fourati et al. [44] and Chen et al. (https://github.com/ksnxr/GWC_solution ac-
cessed on 14 October 2023) attempted to address the wheat head detection problem using
semi-supervised methods. However, both approaches adopted ensemble learning, which
combines predictions from multiple networks to harness the potential of multiple models.
Nevertheless, this comes at the cost of significantly increased training time. In contrast to
fully supervised methods, semi-supervised training itself incurs substantial time overhead
due to handling unlabeled data and simultaneous training of both teacher and student
models. If ensemble learning methods are additionally employed, the training time cost
becomes intolerable. Therefore, we propose a novel wheat head detector, Wheat Teacher,
which achieves convergence of metrics in less than a day when trained on the GWHD2021
dataset using a single RTX4090. Wheat Teacher employs the one-stage anchor-based de-
tector, YOLOv5, as its backbone. Most semi-supervised object detection methods are
implemented using either one-stage anchor-free detectors like FCOS [45] or two-stage
anchor-based detectors like Faster R-CNN. However, one-stage anchor-based detectors
offer advantages such as high recall, numerical stability, and fast training speed, making
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them particularly suitable for applications with densely populated targets like wheat head
detection. In the context of wheat head detection, Wheat Teacher incorporates our proposed
innovative Pseudo-label Dynamic Allocator and Loss Dynamic Threshold. These compo-
nents are specifically designed to enhance wheat head detection performance. Specifically,
the main contributions of this study are as follows:

1. Proposal of Wheat Teacher, a novel one-stage anchor-based semi-supervised wheat
head detector employing YOLOv5 as its backbone. Achieving metrics comparable to
various fully supervised object detectors utilizing 100% labeled data, Wheat Teacher
demonstrates remarkable performance with only 20% labeled data.

2. Proposal of an innovative Pseudo-label Dynamic Allocator for dynamically allocating
pseudo-labels.

3. Proposal of an innovative Loss Dynamic Threshold for adaptively filtering out irrele-
vant losses.

The remaining sections of this paper are organized as follows: Section 2 provides an
introduction to the model and network architecture, offering detailed explanations of our
semi-supervised training methodology. In Section 3, experimental details and results will
be presented, comparing them with the results obtained through fully supervised methods.
Subsequently, in Section 4, we discuss the methods employed in this study and propose
future research directions. Finally, in Section 5, we conclude this paper.

2. Methods

2.1. Wheat Teacher

Wheat Teacher is a one-stage anchor-based semi-supervised wheat head detector
that employs hybrid methods in the semi-supervised approach. The network architecture
adopts a teacher-student paradigm, utilizing YOLOv5 as the backbone. Additionally, novel
components, namely the Pseudo-label Dynamic Allocator and Loss Dynamic Threshold,
are introduced specifically for wheat head detection scenarios to allocate pseudo-labels and
filter losses.

The hybrid methods employed by Wheat Teacher combine pseudo-labeling methods
and consistency regularization methods. These methods are based on two assumptions.
The first assumption posits that using different data augmentations on the same image
should yield consistent predictions from the same model. The second assumption suggests
that if the predictions on the same image differ after weak and strong data augmentations,
the predictions on the weakly augmented image should be considered more accurate, as it
is easier to predict.

Building upon these assumptions, Wheat Teacher employs a teacher–student paradigm,
consisting of two models: the teacher model and the student model. The basic training
process involves weakly augmenting unlabeled data images and inputting them into the
teacher model for predictions. The same images are then strongly augmented and input
into the student model for predictions. The teacher model’s predictions with confidence
exceeding a threshold are treated as the ground truth for the unlabeled data images. These
predictions are compared with the student model’s predictions, guiding the calculation of
the student model’s loss. The predictions from the teacher model serve as pseudo-labels.

The training process of Wheat Teacher comprises several steps. Firstly, in the burn-in
stage, the backbone model is pre-trained using labeled data. After pre-training, the model
is duplicated into the teacher and student models. In the semi-supervised stage, unlabeled
data undergo weak data augmentation (e.g., horizontal and vertical flips, cropping and
resizing, rotations, mosaic) and are input into the teacher model to generate predictions.
Pseudo-labels from the teacher model, exceeding a confidence threshold, are considered
the ground truth for unlabeled data. After generating and filtering pseudo-labels, the
unlabeled data previously input into the teacher model undergo strong data augmentation
(e.g., mixup, random erasing). These augmented unlabeled data, along with pseudo-labels
(treated as annotations for unlabeled data), are concatenated with weakly augmented la-
beled data and input into the student model. The student model simultaneously calculates
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losses for both unlabeled and labeled data, updating its parameters through backpropa-
gation. After each iteration, the parameters of the teacher model are updated using an
Exponential Moving Average (EMA) of the student model’s parameters. This process
repeats in subsequent iterations. Figure 1 illustrates the specific pipeline of Wheat Teacher.

Figure 1. The pipeline of Wheat Teacher.

2.2. Pseudo-Label Dynamic Allocator (PDA)

The quality of predictions generated by the teacher model for unlabeled data is incon-
sistent, with most predictions being unsuitable as pseudo-labels for guiding the student
model. Hence, there is a need for pseudo-label filtering. A common practice involves
setting a pseudo-label threshold, categorizing pseudo-labels into reliable and unreliable
binary distinctions. Early semi-supervised methods would outright discard unreliable
pseudo-labels. However, contemporary semi-supervised approaches posit that even unreli-
able pseudo-labels may contain valuable information and should not be discarded outright;
instead, they can be processed and utilized. For instance, allowing the loss computed from
unreliable pseudo-labels to undergo weighted processing before backpropagation [27].
While setting a pseudo-label threshold allows for a quick and simple filtering of pseudo-
labels, the overall scores of pseudo-labels tend to increase gradually throughout the entire
semi-supervised training process. This phenomenon makes it challenging for the model
to converge. We contend that the model’s outputs consistently comprise both relatively
correct and relatively incorrect predictions. Therefore, the threshold should dynamically
adjust based on the overall distribution of pseudo-labels in each iteration. Additionally,
we posit that a binary categorization of pseudo-labels is inappropriate. While unreliable
pseudo-labels may contain useful information, there exists substantial variability among
unreliable pseudo-labels. Some unreliable pseudo-labels contain minimal useful infor-
mation, and attempting to leverage them may inevitably introduce noise, resulting in an
unfavorable trade-off. Therefore, a more refined differentiation of unreliable pseudo-labels
is warranted.

Therefore, we introduce the innovative Pseudo-label Dynamic Allocator, a module
capable of autonomously adjusting thresholds based on the confidence distribution of
pseudo-labels and categorizing them. The Pseudo-label Dynamic Allocator incorporates
two dynamic thresholds: the high-confidence threshold and the low-confidence threshold.
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The low-confidence threshold is set to 0.1 times the sum of confidences for all pseudo-
labels generated in one iteration. Pseudo-labels with confidence below this threshold are
considered unreliable and are directly discarded without participating in loss computation.
After removing low-confidence pseudo-labels, the average confidence of all remaining
pseudo-labels becomes the high-confidence threshold. Pseudo-labels with confidence above
this threshold are considered reliable and directly contribute to loss computation. Pseudo-
labels with confidence between the low- and high-confidence thresholds are considered
uncertain. If an object’s confidence in an uncertain pseudo-label exceeds 0.8, this pseudo-
label participates in IoU loss computation. The specific process of the Pseudo-label Dynamic
Allocator is outlined using pseudocode in Algorithm 1.

Algorithm 1 Pseudo-label Dynamic Allocator

1: for I = I1, . . . , IN do � In each iteration, I means one iteration.
2: α = Lobj = Lreg = 0
3: Pr = ∅
4: for P = P1, . . . , PN do � P means pseudo-label.
5: α = α + Pcon f � Pcon f means confidence of pseudo-label.
6: end for
7: τl = α ∗ 0.1 � Calculate the low confidence threshold τl .
8: for P = P1, . . . , PN do
9: if Pcon f � τl then

10: Pr ∪ {P} � Pr means reliable pseudo-labels.
11: end if
12: end for
13: τh = 1

N ∑N
n=1 Pr n

con f � Calculate the high confidence threshold τh.
14: for Pr = Pr

1, . . . , Pr
N do

15: if Pr
Con f � τh then

16: Lobj = Lobj + CE(Pr) � Lobj means object loss.
17: Lreg = Lreg + CIoU(Pr) � Lreg means regression loss.
18: else if Pr

objcon f � 0.8 then � Pr
objcon f means object confidence.

19: Lreg = Lreg + CIoU(Pr)
20: end if
21: end for
22: return Lobj, Lreg
23: end for

With the introduction of the Pseudo-label Dynamic Allocator, the loss formulation for
Wheat Teacher is as follows:

L = Ls + λLu (1)

In the formulation, where L represents the total loss, Ls is the loss computed from
labeled data, Lu is the loss computed from unlabeled data, and λ is a weighted coefficient
used to balance the losses between full-supervision and semi-supervision, we set it to 3. It
is important to note that, since Wheat Teacher only detects the “wheat head” object, class
loss is not computed.

The definition of Ls is as follows:

Ls =
N

∑
n=1

(CIoU(Xreg
n , Yreg

n ) + CE(Xobj
n , Yobj

n )) (2)

CIoU represents the Complete Intersection over Union loss function, CE represents
the cross-entropy loss function, Xn represents the output of the student model, and Yn
represents the ground truth.
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The definition of Lu is as follows:

Lu = Lreg
u + Lobj

u (3)

Lreg
u =

N

∑
n=1

(I{pn�τh or (pn�τl and ˆobjn>0.8)}CIoU(Xreg
n , Ŷreg

n )) (4)

Lobj
u =

N

∑
n=1

(I{pn�τh}CE(Xobj
n , Ŷobj

n )) (5)

Ŷn represents the pseudo-label, pn represents the overall confidence of this pseudo-
label, ˆobjn represents the object confidence of this pseudo-label, τl represents the low-
confidence threshold, τh represents the high-confidence threshold, I{·} represents an indica-
tor function. If condition {·} is satisfied, the output is 1; otherwise, it is 0.

2.3. Loss Dynamic Threshold (LDT)

Even after filtering pseudo-labels through the Pseudo-label Dynamic Allocator, the
remaining pseudo-labels are not entirely accurate because they are based on predictions
from the teacher model, which is not flawless. Through experiments, we observed that
in images treated as unlabeled data, for the same wheat head, the differences between
the predictions of the student model, pseudo-labels, and ground truth are often minimal.
However, the gap between the predictions of the student model and pseudo-labels can
sometimes be larger than the gap between the predictions of the student model and the
ground truth. We attribute this phenomenon to the fact that Wheat Teacher employs
YOLOv5 as its backbone, which is a one-stage anchor-based detector. This type of detector
outputs a large number of prediction boxes, necessitating post-processing to filter out
predictions. YOLOv5 uses Non-Maximum Suppression (NMS) as its post-processing
method, removing all candidate boxes except the optimal one. In the typical scenario of
YOLOv5 forward inference, NMS has been empirically proven to be a highly effective
post-processing technique. However, in the context of semi-supervised training, there is
uncertainty regarding whether the bounding box selected by NMS as the optimal candidate,
when compared to less optimal candidates, exhibits a minimal difference with the true
ground truth.

The subtle variations in loss due to the uncertainty of pseudo-labels do not signifi-
cantly benefit the performance of the student model. In fact, they may even mislead the
student model, leading to unnecessary oscillations during the training process. Therefore,
we innovatively propose the Loss Dynamic Threshold. In each iteration, it is crucial to
determine which losses induced by pseudo-labels are necessary and which are unneces-
sary, in order to reduce unnecessary oscillations in the model training. We advocate for
dynamically adjusting the Loss Dynamic Threshold based on the total loss value generated
by pseudo-labels in each iteration. Subsequently, losses below this threshold should be
discarded. However, if the model calculates the loss but does not immediately backprop-
agate and clear gradients after each loss computation, attempting to backpropagate all
losses at once, the GPU must store the complete computation graph for each loss to ensure
correct backpropagation. This results in a multiplicative increase in model memory usage.
While setting the batch size for each iteration to 1 effectively addresses this issue, it leads to
significant memory wastage, severely slowing down the model training speed.Therefore,
to ensure training efficiency, we set the Loss Dynamic Threshold for each iteration to the
peak value of the lowest 10% of losses generated by pseudo-labels in the previous iteration.
Losses below the Loss Dynamic Threshold are considered unnecessary and are set to 0,
while losses exceeding the threshold undergo normal backpropagation. The specific process
of Loss Dynamic Threshold is outlined in Algorithm 2 using pseudocode.
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Algorithm 2 Loss Dynamic Threshold

1: for I = I1, . . . , IN do � In each iteration, I means one iteration.
2: for l = l1, . . . , lN do
3: if l � τ then � τ means dynamic loss threshold.
4: BackPropagation(l) � Backpropagate through the loss l.
5: L ∪ {l} � L is used to record all losses.
6: else
7: L ∪ {l}
8: end if
9: end for

10: Sort(L) � Sort L in ascending order.
11: τ = L[�0.1× length(L)�] � Update τ.
12: L = ∅
13: end for

2.4. Backbone

The mainstream algorithms for general object detection can be broadly categorized
into two types: two-stage detectors and one-stage detectors. Two-stage detectors, relying
on region proposals, extract features through multi-stage networks, achieving higher
accuracy at the cost of slower detection speed. Representative algorithms in this category
include the R-FCN and R-CNN series (comprising R-CNN [46], Fast-RCNN [47], Faster-
RCNN [48], Mask-RCNN [49]). On the other hand, one-stage detectors, based on region
regression, directly extract features using a single-stage network, resulting in extremely
fast detection. Notable algorithms in this category encompass SSD [50] and the YOLO
series (encompassing YOLO [51], YOLO9000 [52], YOLOv3 [53], YOLOv4 [54], YOLOv5
(https://github.com/ultralytics/yolov5 accessed on 10 September 2023), YOLOX [55],
YOLOv6 [56], YOLOv7 [57], etc.).

Given the application scenario of this research, Wheat Teacher opted for YOLOv5 as the
backbone. YOLOv5 (You Only Look Once version 5) is a one-stage anchor-based detector,
primarily comprising four components: input, backbone, neck, and head. The input
component is responsible for image preprocessing, including adaptive anchor computation,
various data augmentations, image data scaling, and other operations. YOLOv5’s backbone
is CSPDarknet53, which includes three main modules: CBS module, CSP module, and SPPF
module. The core CBS module consists of three parts: two-dimensional convolution (Conv),
batch normalization (BN), and Sigmoid-weighted Linear Unit activation function (SILU).
The backbone extracts feature information from the image and combines it to form feature
maps of different granularities. The neck section combines feature maps and extracts
features through Upsample and Concatenate operations to enhance the robustness of the
detection network. The head section outputs the target detection result, and the number of
branches at the output varies depending on the detection scenario. Figure 2 illustrates the
specific network structure of YOLOv5.

72



Agriculture 2024, 14, 327

Figure 2. The network structure of YOLOv5.

3. Experimental Results

3.1. Dataset

In the specific domain of wheat head detection, research on existing technologies
indicates limitations in proposed solutions, primarily addressing images from controlled
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environments rather than those directly captured in the field [58]. Another limitation is that
models in both the training and testing phases focus on the same type of wheat, leading to
overfitting to that specific wheat type [7]. To overcome these limitations, this study decided
to utilize the GWHD2021 dataset.

The Global Wheat Head Detection Dataset 2021 (GWHD2021 [19]) (http://www.
global-wheat.com/ accessed on 6 October 2023) is a large-scale wheat head object detection
dataset based on optical images. It is currently the largest publicly available Wheat Head
dataset. The Global Wheat Head Detection Competition was initiated by the Global Wheat
Dataset consortium in 2020, providing the public dataset Global Wheat Head Detection
Dataset 2020 (GWHD2020) for the competition. In 2021, the Global Wheat Dataset consor-
tium launched the Global Wheat Challenge 2021 and expanded the GWHD2020 dataset in
terms of wheat head diversity, label reliability, and data size, releasing GWHD2021.

GWHD2021 comprises 6515 RGB wheat head images collected from 11 different
countries and regions worldwide, including Europe, North America, Asia, and Australia.
Each image has a resolution of 1024 × 1024 pixels, and the labels include a total of over
270,000 wheat heads. The row spacing in the wheat fields varies from 12.5 cm to 30.5 cm.
In addition to variations in row spacing, each field has different planting densities. Fur-
thermore, the soil characteristics in the growth areas vary from mountainous regions to
traditional irrigated farmlands, leading to differences in color and lighting conditions.
These images were captured using various cameras at different distances from wheat heads
(ranging from 1.8 m to 3 m). All these factors ensure the diversity of wheat heads in the
GWHD2021 dataset. Some sample images from GWHD2021 are shown in Figure 3.

Figure 3. Some example images in the GWHD2021.
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The semi-supervised training method requires a significant amount of images as
unlabeled data. To ensure a fair comparison with other methods, this study did not
introduce additional images beyond the GWHD2021 dataset for extra training. Instead, a
total of 6000 images were randomly selected from the GWHD2021 dataset, which originally
comprises 6515 images, to form a new training set. The remaining 515 images were used as
a new validation set for reporting performance.

3.2. Evaluation Metric

To ensure the fairness and comparability of experimental results, widely used evalua-
tion metrics in existing object detection methods were employed to assess the detection
performance of the proposed model. These metrics include accuracy, recall, F1 score, and
mean average precision (mAP). Specifically, accuracy measures the precision of the algo-
rithm, while recall gauges the completeness of the image recognition results. The F1 score
serves as a comprehensive evaluation metric for the model’s detection accuracy, being the
harmonic mean of precision and recall.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 =
2 · Precision · Recall
Precision + Recall

(8)

In the above formulas, true positives (TP) represent the number of correctly classified
wheat heads, where both the detection result and ground truth are wheat heads. False
negatives (FN) indicate the number of incorrectly classified wheat heads, where the de-
tection result is the background, and the ground truth is a wheat head. False positives
(FP) denote the number of incorrectly classified backgrounds, where the detection result
is a wheat head, and the ground truth is the background. True negatives (TN) signify the
number of correctly classified backgrounds, where both the detection result and ground
truth are backgrounds.

APn =
∫ 1

0
P(R)dR (9)

mAP =
1
N

N

∑
n=1

APi (10)

mAP (Mean Average Precision) is a crucial evaluation metric for measuring the per-
formance of object detectors. It is defined as the area under the precision–recall curve,
averaged across all classes, providing a measure of the overall performance of the model.
mAP@0.5 assesses the model’s performance on partially overlapping objects at an IoU
(Intersection over Union) threshold of 0.5. mAP@0.5:0.95 further considers IoU thresholds
ranging from 0.5 to 0.95, comprehensively evaluating the model’s performance across
various degrees of target overlap. As wheat head is the sole detection target in this study,
the mAP value is equivalent to the AP value in this context.

3.3. Hyperparameter Settings

Wheat Teacher employs YOLOv5L 7.0 version as its backbone, with an input image
size set to 1024 and a batch size of 6. The learning rate remains fixed at 0.01 throughout the
training process. The rate for the exponential moving average (EMA) is set to 0.999. The
training is conducted for a total of 350 epochs, comprising a Burn-in stage of 100 epochs
during full-supervision training and a subsequent Semi-supervised stage of 150 epochs.
In this study, for fair performance comparison, no transfer learning is applied, and no
pre-trained weights are utilized. All models are initialized randomly.
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3.4. Experimental Results Using Different Proportions of Labeled Data

In the experiment, we randomly partition the train set images into labeled and unla-
beled data at different ratios (1% and 99%, 2% and 98%, 5% and 95%, 10% and 90%, 20% and
80%). The labels of unlabeled data are not used in the experiment. In a single experiment,
Wheat Teacher first enters the burn-in stage, conducting fully supervised training using
labeled data, and reports performance on the validation set after training. Subsequently,
Wheat Teacher enters the semi-supervised stage, conducting training using both labeled
and unlabeled data, and reports performance again on the validation set after training. The
experimental results are shown in Table 1.

Table 1. Experimental results of labeled data with different proportions.

Labeled Data Unlabeled Data mAP@0.5 mAP@0.5:0.95 Precision Recall F1-Score

1% − 14.5 5.1 22.1 24.0 23.0
1% 99% 40.3 17.6 57.0 38.2 45.7
2% − 33.1 18.3 43.1 41.8 42.4
2% 98% 70.8 36.6 72.1 64.5 68.1
5% − 78.6 38.9 81.3 70.9 75.7
5% 95% 83.7 45.5 84.3 78.9 81.5
10% − 87.2 46.2 87.6 79.4 83.2
10% 90% 90.8 51.2 90.9 83.3 86.9
20% − 90.7 49.3 90.9 84.3 87.4
20% 80% 92.8 53.1 92.5 86.9 89.6

The experimental results indicate that by employing semi-supervised training with
unlabeled data, Wheat Teacher achieved a significant improvement in metrics compared
to the fully supervised training stage at any data ratio. Specifically, when using only 1%
labeled data, Wheat Teacher achieved a 25.8% improvement in mAP0.5, a 12.5% improve-
ment in mAP0.5:0.95, a 34.9% improvement in Precision, a 14.2% improvement in Recall,
and a 22.7% improvement in F1-Score. When using only 2% labeled data, Wheat Teacher
achieved a 37.7% improvement in mAP0.5, a 18.3% improvement in mAP0.5:0.95, a 29%
improvement in Precision, a 22.7% improvement in Recall, and an 25.7% improvement
in F1-Score. With only 5% labeled data, Wheat Teacher obtained a 5.1% improvement in
mAP0.5, a 6.6% improvement in mAP0.5:0.95, a 3% improvement in Precision, a 8% im-
provement in Recall, and a 5.8% improvement in F1-Score. Using 10% labeled data, Wheat
Teacher achieved a 3.6% improvement in mAP0.5, a 5% improvement in mAP0.5:0.95, a
3.3% improvement in Precision, a 3.9% improvement in Recall, and a 3.7% improvement
in F1-Score. With only 20% labeled data, Wheat Teacher obtained a 2.1% improvement in
mAP0.5, a 3.8% improvement in mAP0.5:0.95, a 1.6% improvement in Precision, a 2.6%
improvement in Recall, and a 2.2% improvement in F1-Score.

Figures 4–6 depict the variations of Loss, mAP@0.5, and mAP@0.5:0.95 throughout
the experimental training process, respectively. It can be observed that after concluding
the fully supervised training phase, at the commencement of the semi-supervised training
phase, the model’s accuracy undergoes significant oscillations. However, during the
subsequent training, the accuracy rapidly rebounds, eventually surpassing the results of
fully supervised training. The oscillations observed after entering the semi-supervised
training phase are one of the characteristics of semi-supervised training methods. However,
in the general object detection domain, the amplitude of these oscillations is generally
limited and should not be as extensive as depicted in the above figures. We attribute this
phenomenon to the specific application scenario of this research, characterized by a single,
highly dense object class. Eliminating such oscillations will be a future research direction.
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Figure 4. Graphs depicting loss curves.

Figure 5. Graphs depicting mAP0.5 curves.

Figure 6. Graphs depicting mAP0.5:0.95 curves.
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Figures 7 and 8 displays the precision–recall (PR) curve and the F1-Score curve after
the completion of training. From the results above, it is evident that as the proportion of
labeled data used in the fully supervised training phase increases, there is a noticeable
improvement in the model’s accuracy. This indicates that the model has not overfit, and the
semi-supervised approach indeed has the potential to further enhance the model’s accuracy.
Semi-supervised methods show great promise in the field of wheat head detection.

Figure 7. Graphs depicting F1 curves.

Figure 8. Graphs depicting PR curves.

3.5. Experimental Results Compared with Other Fully Supervised Object Detectors

The semi-supervised training method requires a substantial amount of images as
unlabeled data. When compared with other fully supervised methods, we randomly
divided the train set into labeled data and unlabeled data at a ratio of 20% to 80%. The
labels of unlabeled data are not utilized by Wheat Teacher during the experiments. The
experimental results are presented in Table 2.

We compared the predictions of Wheat Teacher with four fully supervised object
detection models: Faster-RCNN, YOLOv5, YOLOX, and YOLOv7. The results show that
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with only 20% of the training set labels, Wheat Teacher achieved highly competitive results.
Wheat Teacher’s metrics surpassed YOLOX, significantly outperformed Faster-RCNN, and
the differences with YOLOv5 and YOLOv7 were within 1%, demonstrating the potential of
semi-supervised methods in addressing wheat head detection. Figure 9 provides examples
of prediction differences between Wheat Teacher, YOLOv5, and YOLOv7.

Table 2. Experimental results compared with other fully supervised object detectors on GWHD2021.

Type Method mAP@0.5 Precision Recall F1-Score

Two-stage Anchor-based Faster-RCNN 79.5 77.5 83.1 80.2
One-stage Anchor-based YOLOv7 93.6 92.5 87.4 89.8
One-stage Anchor-free YOLOX 90.6 91.7 85.2 88.3
Backbone YOLOv5 93.1 92.2 87.1 89.5
Ours Wheat Teacher 92.9 92.4 86.8 89.5

Figure 9. Differences in predictions under four different situations. The red box represents the wheat
head. GT represents the number of wheat heads ground truth, and Pred represents the number of
wheat heads predicted by the model.
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3.6. Experimental Results Compared with Other Semi-Supervised Object Detectors

We conducted comparative experiments between Wheat Teacher and two existing
semi-supervised object detection methods, Unbiased Teacher [25] and Efficient Teacher [32],
at GWHD2021. The dataset was randomly sampled to consist of 20% labeled data and
80% unlabeled data, with all models utilizing the same random sampling scheme. The
experimental results are presented in Table 3.

Table 3. Experimental results compared with other semi-supervised object detectors on GWHD2021.

Method mAP@0.5 Precision Recall F1-Score Training Time

Unbiased Teacher [25] 90.8 90.5 83.9 87.1 29 h
Efficient Teacher [32] 91.1 91.1 85.9 88.4 20 h
Wheat Teacher 92.9 92.4 86.8 89.5 22 h

From the experimental results, it can be observed that our method outperforms both
Unbiased Teacher and Efficient Teacher across all metrics, except for a slightly longer
training time compared to Efficient Teacher. This improvement may be attributed to the
additional processing of the student network’s predictions in our method, such as filtering
losses, compared to Efficient Teacher.

3.7. Ablation Experiment

To validate the impact of our proposed Pseudo-label Dynamic Allocator and Loss
Dynamic Threshold, we conducted a series of ablation experiments. We first removed the
Loss Dynamic Threshold from Wheat Teacher and replaced the Pseudo-label Dynamic
Allocator with a static threshold (set to 0.7), then reported the performance. Next, we
replaced the static threshold with the Pseudo-label Dynamic Allocator and reported the
performance. Finally, we introduced the Loss Dynamic Threshold into the network and
reported the performance. All ablation experiments were conducted using 10% labeled
data and 90% unlabeled data for training, and performance was evaluated on the validation
set. The experimental results are presented in Table 4.

Table 4. Ablation experiment results.

Pseudo-Label Threshold Loss Threshold mAP@0.5

Static-Threshold (0.7) × 88.3
PDA × 89.9
PDA LDT 90.8

The results indicate that by introducing the Pseudo-label Dynamic Allocator, Wheat
Teacher’s mAP0.5 improved by 1.6%. Additionally, with the introduction of the Loss
Dynamic Threshold, Wheat Teacher’s mAP0.5 further increased by 0.9%, confirming the
effectiveness of both the Pseudo-label Dynamic Allocator and the Loss Dynamic Threshold.

4. Discussion

Wheat Teacher is implemented based on a one-stage anchor-based detector, whereas
most semi-supervised object detection methods are implemented on one-stage anchor-free
detectors and two-stage anchor-based detectors. The reason for not using one-stage anchor-
based detectors in many semi-supervised object detection methods lies in the fact that,
compared to anchor-free detectors with no anchor design and two-stage detectors with
multi-level filtering, one-stage anchor-based detectors tend to output more densely packed
prediction boxes. This leads to a severe imbalance between positive and negative samples
during semi-supervised training, and the issue of imbalance becomes more pronounced in
detection scenarios with denser targets, such as wheat fields. To address this imbalance, we
propose the Pseudo-label Dynamic Allocator and Loss Dynamic Threshold.
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Before the one-stage anchor-based detector outputs the final predictions, it undergoes
non-maximum suppression (NMS) to remove most irrelevant anchors. In essence, NMS
can be considered as a filtering process on pseudo-labels based on a threshold, where only
bounding boxes passing through the filter are deemed trustworthy pseudo-labels. Similar
to NMS, which compares bounding boxes with each other, we believe that, instead of
using a fixed static threshold set by hyperparameters, a more effective threshold should be
determined by comparing the differences between bounding boxes. We propose the Pseudo-
label Dynamic Allocator, which filters pseudo-labels based on the relationship between
the confidence of pseudo-labels and the sum of pseudo-label confidences. Specifically, we
set 0.1 times the sum of pseudo-label confidences as the low-confidence threshold and the
mean of pseudo-label confidences as the high-confidence threshold.

Even after filtering, the remaining pseudo-labels inevitably contain errors. In dense
target prediction scenarios, the model generates numerous bounding boxes. These bound-
ing boxes, influenced by each other during non-maximum suppression, might replace more
accurate bounding boxes due to subtle differences in confidence. While such differences
might be inconsequential in other application scenarios, in semi-supervised training, these
subtle differences can accumulate and mislead the student model throughout the training
process. The objective of semi-supervised training is to enable the student model to learn
correct features from unlabeled data. If the learned features are very small or even incorrect,
we should abandon learning these features during training. Therefore, we propose the
Loss Dynamic Threshold, which considers the peak in the lowest 10% of losses for each
iteration as the threshold. This threshold is then used to filter out losses lower than the
threshold in the next iteration. The effectiveness of Wheat Teacher in wheat head detection
is adequately demonstrated in the experiments, and the roles of Pseudo-label Dynamic
Allocator and Loss Dynamic Threshold are extensively validated in the ablation studies.

During the experimental process, we observed limitations when applying semi-
supervised training methods to wheat head detection. If the labeled data is insufficient, it
results in the initial model trained in the fully supervised training phase being suboptimal.
Consequently, even when transitioning to semi-supervised training, the model’s perfor-
mance ceiling remains low. However, when an ample amount of labeled data is used in
the fully supervised training phase, semi-supervised training methods demonstrate their
potential. In comparison to other fully supervised object detection models that converge
rapidly, semi-supervised training methods can leverage a large quantity of unlabeled data
to continuously enhance their detection performance, exhibiting a higher performance
ceiling than the backbone alone. Addressing the challenge of training a superior initial
model with fewer labeled data points is expected to be a crucial avenue for future research.

5. Conclusions

This article delves into the significance and challenges of wheat head object detection.
It introduces semi-supervised object detection methods and their applications in agriculture,
subsequently proposing a one-stage anchor-based semi-supervised wheat head detector
named “Wheat Teacher.” Wheat Teacher amalgamates two semi-supervised methods,
pseudo-labeling and consistency regularization, and integrates two novel dynamic thresh-
old components, namely the Pseudo-label Dynamic Allocator and Loss Dynamic Threshold.
We conducted detailed experiments on the largest public wheat head dataset, GWHD2021.
Compared with various types of detectors, Wheat Teacher achieved an mAP0.5 of 92.8%
with only 20% labeled data. This result surpassed the test outcomes of two fully supervised
object detection models trained with 100% labeled data, and the difference with the other
two fully supervised models trained with 100% labeled data was within 1%. Furthermore,
Wheat Teacher shows improvements of 2.1%, 3.6%, 5.1%, 37.7%, and 25.8% in mAP0.5
across different labeled data usage ratios of 20%, 10%, 5%, 2%, and 1%, respectively. These
experiments validate the effectiveness of our semi-supervised approach, highlighting the
significant potential of Wheat Teacher in wheat head detection.
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Abstract: Having the advantages of speed, suitability and high accuracy, computer vision has been
effectively utilized as a non-destructive approach to automatically recognize and classify fruits
and vegetables, to meet the increased demand for food quality-sensing devices. Primarily, this
study focused on classifying apple varieties using machine learning techniques. Firstly, to discern
how different convolutional neural network (CNN) architectures handle different apple varieties,
transfer learning approaches, using popular seven CNN architectures (VGG16, VGG19, InceptionV3,
MobileNet, Xception, ResNet150V2 and DenseNet201), were adopted, taking advantage of the pre-
trained models, and it was found that DenseNet201 had the highest (97.48%) classification accuracy.
Secondly, using the DenseNet201, deep features were extracted and traditional Machine Learning
(ML) models: support vector machine (SVM), multi-layer perceptron (MLP), random forest classifier
(RFC) and K-nearest neighbor (KNN) were trained. It was observed that the classification accuracies
were significantly improved and the best classification performance of 98.28% was obtained using
SVM algorithms. Finally, the effect of dimensionality reduction in classification performance, deep
features, principal component analysis (PCA) and ML models was investigated. MLP achieved an
accuracy of 99.77%, outperforming SVM (99.08%), RFC (99.54%) and KNN (91.63%). Based on the
performance measurement values obtained, our study achieved success in classifying apple varieties.
Further investigation is needed to broaden the scope and usability of this technique, for an increased
number of varieties, by increasing the size of the training data and the number of apple varieties.

Keywords: transfer learning; deep features; principal component analysis; machine learning; apple

1. Introduction

Apples are among the most consumed and produced temperate fruit crops in the
world; in 2022, over 95 million tons of apples were produced [1]. Due to their taste and
nutritional value, there is an ever-increasing demand for apples that requires continuous
production and supply. In this context, the implementation of innovative solutions in the
systems of agricultural production and marketing is much required [2].

Identifying and sorting apples has several limitations because of its subjective nature,
and it is a relatively complex problem due to the impressive number of apple varieties [3].
Human perception can be influenced when assessing the texture, color pattern, smell and
other characteristics of apples. Likewise, manual inspections are highly dependent on the
experience, training and duration of work of the personnel, as well as the environmental
and psychological conditions, which can cause inconsistencies and variations in the results
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or processing time [4,5]. However, automated recognition and classification systems can
play a vital role in reducing labor costs and enhancing the economic efficiency of fruit, right
from their harvest to the market [6]. Having the advantages of speed, suitability and high
accuracy, computer vision has been effectively utilized as a non-destructive approach to
automatically recognize and classify fruits and vegetables to meet the increased demand
for food quality-sensing devices.

In the field of computer vision, image classification is a widely studied topic. In
traditional machine learning, extracting features before training models on these features
is required. Thus, the quality of the extracted features has a significant impact on a
given classifier [7]. Deep learning has gained much popularity in image recognition and
classification tasks of fruits and vegetables, as computing power and algorithms to process
big data are emerging [8]. Because the convolutional neural network (CNN) model serves
to automatically extract and classify features [9], it has been effectively utilized as a non-
destructive approach to automatically classify fruits and vegetables to meet the increased
demand for food quality-sensing devices [10], avoiding the need to manually or separately
extract image features or representations [9].

In studies [11–15], convolutional neural networks (CNNs), which are deep learning-
based, have shown excellent outcomes in a wide range of food and agricultural tasks,
namely grading and sorting, varieties classification and disease detection. In grading
bio-colored apples, a study [16] employed CNN, using multispectral images, to ensure the
quality grading of apples. Likewise, CNN was also used to differentiate mature apples
from immature ones in apple trees [17]. In fruit sorting, CNN models were applied to detect
defective apples [18], while a similar work identified bruised apples in the investigation of
automated sorting, by fusing deep features [19]. A great performance of the suppression
mask R-CNN was reported in the classification of Gala and Blondee apple varieties [20].

Integrating CNNs and a convolution autoencoder, the authors of study [21] classified
26 different fruits, out of which nine classes were apples. In a similar classification problem,
a CNN model was trained utilizing 30 types of leaf images from various growth periods [22].
Recently, the successful application of transfer learning to identify and classify 13 apple
varieties using publicly available image datasets was reported [23].

The application of transfer learning, using models pre-trained on images from the
internet, in diverse tasks such as the classification of crops and fruits, has been increasingly
applicable and effective. As a result, applying a pre-trained network to learn new patterns
with new data is beneficial. Furthermore, it is helpful when there are relatively small data
to train a model. Thus, employing a pre-trained model is a typical solution [24]. This study
firstly aims to test the performance of transfer learning in apple varieties and to investigate
the impact of principal components (PC) of deep features coupled with traditional machine
learning models. To the best of our knowledge, the integration of PC, deep features and
machine learning has not been tested in apple varieties classification. Accordingly, this
study aims to assess how these diverse components can jointly interact to enhance the
accuracy and efficacy of apple variety classification.

The objectives of this study are: (I) to apply the transfer learning approach to develop
an apple varieties classifier using pre-trained popular CNN architectures; (ii) to train
and evaluate machine learning (ML) models using deep features obtained using best-
performing models from the transfer learning approach; and (iii) to assess the effect of
principal component analysis (PCA) on the performance of ML models trained using deep
features.

2. Materials and Methods

2.1. Image Data

Ten apple varieties obtained from the Ministry of Agriculture and Fruit Research
Institute of the Republic of Turkey were used in this study (Figure 1). The images were
captured with a 20-megapixel resolution camera from a uniform distance and light set-up.
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A total of 5808 images were captured from three views. Of these images, 70% were used in
training, 15% in testing and 15% in validation, respectively.
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Figure 1. Activations of the first layer of all models.

2.2. Transfer Learning

Generally, the training of CNNs is performed using large amount of data. Their
deeper and interconnected layers are the reason for their good performance. Nonetheless,
CNNs are often trained on a small dataset, which can simply result in the overfitting of
the networks, leading to poor and unconvincing performances [23]. Likewise, training
deep CNNs contributes to significant weaknesses, namely high processing costs and slow-
running processes [25]. Thus, to solve the aforementioned difficulties, transfer learning is
widely adopted. Transfer learning is a deep learning approach that utilizes the information
acquired from a well-established model to reinstate with a new problem [26]. Because it
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transfers the relevant knowledge from the learned model to the new task, transfer learning
reduces the training time [27].

Thus, in this study, a transfer learning approach was adopted; seven popular architec-
tures (VGG16, VGG19, InceptionV3, MobileNet, Xception, ResNet150V2 and DenseNet201)
were trained using the Keras library in Google Colab, keeping the weights of the convolu-
tional base and modifying only the final output layer, according to the number of classes in
our study. This method utilizes the knowledge gained by these architectures from previ-
ously learned tasks, enhancing the model’s performance on the target task. The description
of each CNN architecture is as follows: VGG16 comprises thirteen convolutional layers and
five Maxpooling layers; and VGG19 has sixteen convolutional layers and five Maxpooling
layers. The VGG networks are typically designed successively [28]. From the Inception
family, the InceptionV3 and Xception networks were adopted, which are characterized
by multiple parallel convolutional operations, known as inception modules [29], with
48 convolutional layers and 71 layers, respectively. MobileNet is known for its depthwise
separable convolution, having 53 layers [30]. From networks characterized by residual
connections, ResNet150V2, with 150 layers [31], and DenseNet201, with dense connectivity
between layers [32], with 201 layers, were used. In all the above models, the convolutional
base was adopted excluding the top layer. According to our task, one hidden layer of
256 neurons with ReLu activation and a final layer of 10 represents the number of the apple
classes or the final model prediction.

To discern how different architectures handle different apple varieties, the activations
of the first layer of each model used have been provided in Figure 1. The activations
represent the availability of specific features in the input data that serve as building blocks
for successive layers to detect more complex features. Every model was trained for the same
training, validation and test proportions. During the training, the hyperparameters were
fixed to 100 batch size, 100 patience and 200 epochs. Early stopping and model checkpoint
callbacks were also adopted to stop the training and save the weights of the best model,
while monitoring the validation loss for a given training argument. This strategy facilitates
the training, as it stops the training before all specified epochs are undertaken when the
validation loss stops to decrease for a considerable amount of time.

2.3. Deep Features

Deep features are a set of high-level representations of input data, such as images
or text, that are extracted from a deep neural network (DNN) such as MobileNet and
DenseNet that is pre-trained on a large dataset. DNN is typically a multi-layered neural
network that learns to identify patterns and features in the input data by successively
transforming it through multiple layers of non-linear functions. The final output of the
DNN, which is often a classification decision, is produced by a classifier that is trained
on the deep features extracted from the input data. Deep features are more robust and
informative than traditional hand-crafted features, as they capture more complex and
nuanced relationships between the input data and the output labels [33].

Deep features are useful in a variety of machine learning tasks, such as image classi-
fication, object detection and natural language processing. In this study, after the trans-
fer learning strategy was implemented, we took the best-performing model, which was
DenseNet201, extracted 1920 deep features and used them to train traditional machine
learning models (Figure 2).
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Figure 2. Diagram representation of the proposed approach.

2.4. Machine Learning Models

To train ML models, the 1920 deep features extracted using the best-performing CNN
architecture, DenseNet201, were used. Four ML models, namely support vector machine
(SVM), random forest classifier (RFC), multi-layer perceptron (MLP) and K-nearest neighbor
(KNN) were trained with 10-fold stratified cross-validation (Skfold), as shown in Figure 3.

Figure 3. Tenfold stratified cross validation.

As depicted in Figure 3, the utilization of Skfold becomes vital when dealing with
imbalanced data distributions among classes. In conditions where the frequency of different
classes varies significantly, only K-fold cross-validation may result in unequal representa-
tions of classes across folds. Skfold, however, addresses this case by ensuring that each fold
maintains a proportional representation of the various classes available in the dataset. This
approach is mainly helpful in machine learning task where maintaining the balance of class
distribution is decisive for model training. By stratifying the folds based on class labels,
Skfold improves the robustness of the model evaluation, avoiding biased performance
metrics that could appear from uneven class representation in traditional cross-validation.
This approach promotes a more reliable assessment of the model’s generalization capa-
bilities across diverse class distributions, ultimately contributing to a more accurate and
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unbiased evaluation of the model’s performance. To fine-tune the models, a grid search
was implemented and final models were trained using the best parameters.

2.5. Principal Component Analysis

To investigate the effect of dimensionality reduction in classification performance, all
ML models were also trained with deep features after implementing principal component
analysis (PCA). PCA is a method that takes multi-dimensional data and gives it components
by using the dependencies between the variables representing it in a more manageable and
lower-dimensional form, without losing too much information. The fundamental idea of
PCA is to minimize the dimensionality of a data set that is composed of a large number
of interrelated variables, while retaining the variation present in the data to a feasible
extent [34].

PCA is a linear transformation of data that minimizes the redundancy measured
through covariance and maximizes the information that is measured through variance.
PCA diminishes the number of given variables by reducing the last principal components
that do not significantly contribute to the observed variability [35].

In the analysis, new elements, known as principal components and ranked by their
Eigen values, are created. Principal components (PC) are new variables with two properties:
firstly, each PC is a linear combination of the original variables; and secondly, PCs are
uncorrelated to each other and the redundant information is removed [36].

As a multivariate unsupervised statistical procedure, PCA is widely used as a data
exploratory tool in conditions that require feature selection such as data compression,
image analysis, visualization, pattern recognition, regression and time series prediction. In
our case, using the Python PCA library, we performed a PCA for the 1920 deep features.
After examining the eigenvalues which told us the amount of variance explained by a
single component, 262 features with eigenvalues greater than one were selected to train
SVM, RFC, MLP and KNN models.

2.6. Performance Evaluation

To evaluate the performance of all models’ accuracy, precision, recall, specificity, F1-
score, Cohen’s kappa, Matthews correlation coefficient, area under the receiver operating
characteristic curve (AUC-ROC) the trade-off between true positive rate and false positive
rate, area under the precision–recall curve (AUC-PR) and the trade-off between precision
and recall for different classification thresholds, performance metrics were used in this
study. The equations of all metrics are provided below, where TP: true positive, TN: true
negative, FP: false positive, FN: false negative, Po: relative observed agreement among
raters and Pe: relative observed agreement among raters.

1. Accuracy (Acc) is the ratio of the number of correctly classified samples to the total
number of samples:

Acc =
TP + TN

TP + TN + FP + FN
(1)

2. Precision (Pre) is the proportion of true positives out of total predicted positives, also
known as positive predicted value:

Pre =
TP

TP + FP
(2)

3. Recall (Rec) is the proportion of positive samples classified as true. Recall is referred
to as a true positive rate:

Recall =
TP

TP + FN
(3)
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4. Specificity (Spec) is the proportion of negative samples classified as true. Known as a
true negative rate:

Spec =
TN

TN + FP
(4)

5. F1-Score (FS) is the harmonic mean of recall and precision:

FS = 2· Pre·Recall
Pre + Recall

(5)

6. Cohen’s kappa (K) is a measure of inter-rater agreement that considers the agreement
that would be expected by chance:

K =
Po− Pe
1− Pe

(6)

7. Matthews correlation coefficient (MCC) is the correlation between the predicted and
actual classifications:

MCC =
[(TP·TN)− (FP·FN)]√

[(TP + FP)(TP + FN)(TN + FP)(TN + FN)]
(7)

3. Results

In this study, three methods were proposed: (i) the adoption of transfer learning using
the popular CNN model; (ii) extracting deep features and training traditional ML models
making use of the best performing CNN model, which was the DenseNet201; (iii) apply-
ing PCA to the deep features and training ML models using the PCs with eigenvalues
greater than one. The performance metrics of each proposed method are presented in
Tables 1–3, respectively.

Table 1. Performance of popular CNN models using Transfer Learning.

Performance Metrics

CNN
Model

Acc Pre Rec Spec FS
AUC
-ROC

AUC
-PR

K MCC

VGG16 91.87 92.449 91.87 99.09 91.85 99.72 97.97 90.95 91.02

VGG19 94.16 94.55 94.16 99.35 94.18 99.76 98.38 93.49 93.54

InceptionV3 92.44 92.74 92.51 99.16 92.45 99.77 98.13 91.59 91.63

MobileNet 96.45 96.61 96.45 99.61 96.44 99.96 99.67 96.05 96.07

DenseNet201 97.48 97.54 97.48 99.72 97.48 99.98 99.86 97.19 97.20

Xception 93.47 93.97 93.47 99.27 93.39 99.79 98.69 92.73 92.80

ResNet152V2 94.84 95.26 94.84 99.42 94.76 99.89 99.17 94.26 94.32

As depicted in Table 1, in the results of performance metrics of the seven pre-trained
CNN models, DenseNet201 outperformed all other models with an accuracy of 97.48%
when classifying 10 apple varieties.

Similarly, the performance of the machine learning models, namely SVM, RFC, MLP
and KNN, which were trained and tested using 1920 features obtained from DenseNet201
CNN (presented in Table 2), showed that SVM obtained an accuracy of 98.28%, outperform-
ing all other models. However, as PCA was applied and features were reduced to 262, MLP
outperformed all models with a classification accuracy of 99.77% (presented in Table 3).
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Table 2. Performance metrics of ML models.

Model
Performance Metrics

Acc Pre Rec Spec FS AUC-ROC AUC-PR K MCC

SVM 98.28 98.32 98.10 97.67 98.18 99.88 98.71 98.08 98.09

RFC 91.86 91.65 91.69 90.14 91.62 99.56 96.60 90.94 90.95

MLP 98.05 97.99 97.95 96.47 97.96 99.96 99.70 97.83 97.83

KNN 89.33 91.59 88.93 98.46 89.04 98.59 95.04 88.13 88.17

Table 3. Performance metrics of ML models trained with PCA.

Model
Performance Metrics

Acc Pre Rec Spec FS AUC-ROC AUC-PR K MCC

SVM 99.08 99.06 99.05 97.70 99.05 99.93 99.43 98.97 98.98

RFC 99.54 99.57 99.55 100 99.99 99.99 99.94 99.49 99.49

MLP 99.77 99.78 99.75 100 99.99 99.99 99.99 99.74 99.75

KNN 91.63 92.35 91.26 98.70 99.70 99.70 97.09 90.68 90.73

The confusion matrices containing the classification results of the test data of each
model trained using 262 PCs are depicted in the figures below.

Applying the SVM model, a few misclassifications were observed in Fuji, Golden
Reinders, Kasel37 and Mondial Gala apple varieties, as shown in Figure 4. The model
scored an excellent classification performance of 99.08%.

 
Figure 4. SVM confusion matrix.

Figure 5 presents the confusion matrix according to the MLP model. Out of the four
ML models, MLP has the highest performance of 99.77%; out of 782 instances of given test
data, only four misclassifications were observed.
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Figure 5. MLP confusion matrix.

With the highest confusion between Kasel37 and Red Braeburn, the RFC model
performed with an overall classification accuracy of 99.54%, where eight misclassifications
were observed (Figure 6).

 

Figure 6. RFC confusion matrix.
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Among the four models, KNN appeared to have the lowest performance, with 90
misclassifications, which is very significant compared to the other three models. A total of
15 misclassifications were also observed between Fuji and Red Braeburn apple varieties,
followed by seven misclassifications between Red Braeburn and Kasel37 varieties; or, out
of the total misclassifications, 22 or 24% were wrongly classified as Red Braeburn, which
shows that a close observation in the features of Red Braeburn variety is needed (Figure 7).

Figure 7. KNN confusion matrix.

4. Discussion

A deep learning-based convolutional neural network for apple classification was
presented in a previous study [37]. The model used a network with four layers to classify
unforeseen apple images, and the CNN model was trained and tested using images of
13 apple varieties. At the test phase, the model achieved an accuracy of 90%. In another
study, by proposing an integrated CNN and certainty factor, a model with a dataset con-
taining images of six apple varieties was trained, and the image classification performance
scored an excellent result of 99.78% [38]. When classifying a group of 26 different fruits,
which included nine apple classes, the authors of study [21] also obtained an accuracy of
95.67%, employing CNN and the autoencoder. In study [39], a shallow CNN was employed
to classify six apple varieties; the authors collected and labeled apple images to train a
model along with data augmentation. As the training and model parameter optimization
were performed using the Caffee framework, at the test stage, the model accuracy per-
formance was 92%. A CNN-based deep learning model was developed in study [22] to
classify thirty apple varieties under complex natural environments, which contributed to
the currently available means of apple variety classification; the model’s accuracy was
93.14% using the test set.

Applying the ability of the CNN model to extract features, a method to identify
14 apple varieties was proposed by the authors of study [40]. Compared to transfer learning
techniques, such as ResNet50, VGG16, MobileNet and EfficientNetB0, their approach
attained an improved test accuracy of 99.59%.
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Recently, in the successful application of transfer learning to identifying and classifying
13 apple varieties using publicly available image datasets with accuracies of 96–100%, the
use of different models was reported [23]. The summary of recently related works, including
our proposed model, has been provided in Table 4.

Table 4. Performance comparison of the proposed methods with related works.

Task Model and Accuracy References

Classification of 13 apple varieties CNN, 90% [37]

Classification of 6 apple varieties CNN and certainty factor, 99.78% [38]

Classification of 26 fruits CNN and autoencoder, 95.67% [21]

Classification of 6 apple varieties Shallow CNN, 92% [39]

Classification of 30 apple varieties CNN, 93.14% [22]

Classification of 14 apple varieties Lightweight CNN, 99.59% [40]

Classification of 14 apple varieties CNN, 96.1–100% [23]

Classification of 10 apple varieties Transfer learning, 97.48% Proposed Method 1

Classification of 10 apple varieties Deep features and ML, 98.28% Proposed Method 2

Classification of 10 apple varieties Deep features, PCA and ML, 99.77% Proposed Method 3

In this study, compared to relevant and related works, it can be concluded that the
results of our proposed models are in agreement with the classification accuracy indicating
the relevance of all the techniques, and especially the third method, which is the integration
of deep features, PCA and ML, which performed as excellently as state-of-the-art models
and even outperformed some of them, likely because of the use of PCA.

Additionally, in the research of apple varieties’ classifications, to the best of our
knowledge, the integration of deep features and PCA has not yet been adopted; therefore,
the approach of coupling deep features, PCA and machine learning models in the area of
apple varieties classification is an innovative approach that this study has investigated and
demonstrated. Furthermore, the adoption of Skfold validation is a new addition to the
literature that this investigation has undertaken.

According to the performance metrics (Table 1), DenseNet201 has the highest classi-
fication accuracy (97.48%) among popular CNN models applied in the transfer learning
approach, indicating its potential to be applied in apple varieties classification. The investi-
gation into the integration of deep features and traditional ML models shows the benefits
and advantages of coupling deep features and ML features to have improved classification
accuracy; SVM scored 98.28%, but ultimately, the incorporation of PCA increased the
model’s performance up to 99.77%, as achieved by MLP model. Additionally, observing
other performance metrics, MLP has the highest values—a precision of 99.78%, a recall of
99.75% and an F1 score is 99.76%. Besides, its discrimination power was observed in the
results of AUC-ROC and AUC-PR, which were 99.99% and 99.99%, respectively. Moreover,
Cohen’s Kappa and MCC metrics, which examine the agreement between predicted and
actual classes, are 99.75% and 99.74%, outperforming all the ML models, as shown in
Table 3.

Thus, based on our proposed technique, integrating deep features, PCA and the ML
models MLP and SVM can classify ten apple varieties with excellent performance.

5. Conclusions

In solving agricultural problems such as fruit varieties’ classification and grading, the
application of machine learning has a significant role. As indicated in our work, and also in
other recent and related works, transfer learning is commonly used in classifying different
fruit types, and specifically apple varieties. Our work trained and tested seven popular
CNN architectures from different families, which all of them performed well, with above
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90% classification accuracy. To further and discover a new dimension in apple varieties’
classification, our investigation focused on the application of deep features coupled with
PCA and traditional ML algorithms, for which the Skfold stratified cross-validation was
adopted during the training.

All four models, namely SVM, RFC, MLP and KNN, were tested with separate test data
and achieved classification accuracies of 99.08%, 99.54%, 99.77% and 91.63%, respectively.
The study confirmed the increase in performance by coupling deep features and PCA for
the given image dataset. This study was undertaken on ten apple varieties; however, to
prove the efficiency of the proposed technique, increasing the size of the training data
and increasing the number of apple varieties should be further studied and examined.
Besides, to develop robust and versatile models, we suggest the use of random images,
containing scattered apple images taken in real-time, such as on conveyors and other
production environments. In future investigations, images captured in various acquisition
setups and light conditions that represent actual and complicated environments should be
considered. One of the challenges in apple varieties is the occurrence of variability within
classes, which contributes to confusion and misclassification. Although it is difficult to
provide conclusive reasons based on experiments, the misclassifications indicated in the
results might be due to variability within classes. Hence, future research endeavors should
explore and identify algorithms capable of handling such complexities. Prioritizing the
discovery and implementation of algorithms that are robust to variations within classes will
enhance the model’s ability to accurately discriminate between intricate and closely related
instances, contributing to an improved classification performance in challenging scenarios.
On top of the varieties, the difference or similarities of agricultural products such as fruits
is highly impacted by the stage of ripening. Two different varieties might be highly similar
and highly different at various stages of their ripening, which significantly contribute to
the challenges in the development of sorting, grading or classification models. Therefore,
during data collection, such things need to be addressed and considered. Moreover, apart
from classification models, the use of object detection algorithms, including prominent
ones like YOLO (You Only Look Once), needs to be researched, to further strengthen and
enhance the practical and real-time application of models. Object detection goes beyond
classifying entire images, allowing for the precise identification and localization of multiple
objects within an image.
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H.; Kujawa, S.; Piekutowska, M.;

Wojciechowski, T.; Niedbała, G.

Insights into Drought Tolerance of

Tetraploid Wheat Genotypes in the

Germination Stage Using Machine

Learning Algorithms. Agriculture

2024, 14, 206. https://doi.org/

10.3390/agriculture14020206

Academic Editors: Valya Vassileva

and Hyeon Tae Kim

Received: 4 December 2023

Revised: 16 January 2024

Accepted: 20 January 2024

Published: 27 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Insights into Drought Tolerance of Tetraploid Wheat Genotypes
in the Germination Stage Using Machine Learning Algorithms
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Abstract: Throughout germination, which represents the initial and crucial phase of the wheat
life cycle, the plant is notably susceptible to the adverse effects of drought. The identification and
selection of genotypes exhibiting heightened drought tolerance stand as pivotal strategies aimed at
mitigating these effects. For the stated objective, this study sought to evaluate the responses of distinct
wheat genotypes to diverse levels of drought stress encountered during the germination stage. The
induction of drought stress was achieved using polyethylene glycol at varying concentrations, and
the assessment was conducted through the application of multivariate analysis and machine learning
algorithms. Statistical significance (p < 0.01) was observed in the differences among genotypes, stress
levels, and their interaction. The ranking of genotypes based on tolerance indicators was evident
through a principal component analysis and biplot graphs utilizing germination traits and stress
tolerance indices. The drought responses of wheat genotypes were modeled using germination data.
Predictions were then generated using four distinct machine learning techniques. An evaluation
based on R-square, mean square error, and mean absolute deviation metrics indicated the superior
performance of the elastic-net model in estimating germination speed, germination power, and water
absorption capacity. Additionally, in assessing the criterion metrics, it was determined that the
Gaussian processes classifier exhibited a better performance in estimating root length, while the
extreme gradient boosting model demonstrated superior performance in estimating shoot length,
fresh weight, and dry weight. The study’s findings underscore that drought tolerance, susceptibility
levels, and parameter estimation for durum wheat and similar plants can be reliably and efficiently
determined through the applied methods and analyses, offering a fast and cost-effective approach.

Keywords: tetraploid wheat; drought stress; germination; stress tolerance; modeling

1. Introduction

Wheat holds the distinction of being the primary staple food [1]. Tetraploid wheat is a
species that displays heightened vulnerability to abiotic pressures, particularly showing
susceptibility to drought [2]. This species exhibits a discerning preference for specific
climatic and soil conditions to attain optimal yield and quality and is more responsive to
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environmental challenges compared to bread wheat [3]. In 2021, durum wheat production
in Türkiye decreased by around 21% compared to the previous year [4].

The anticipated climate change and global warming are expected to exacerbate the
magnitude of stressors [5]. Plants commonly face a combination of biotic and abiotic
stressors within their native environment [6]. However, among all the stressors influenced
by climate change, drought emerges as the primary factor hindering plant productivity [7].
Climate change may have varying impacts on crop performance depending on the timing
and duration of drought events, as well as whether drought stress occurs alone or in
combination with heat stress. In the Mediterranean region, low rainfall and irregularities
in the rainfall regime can cause significant yield losses for crops grown under rainfed
conditions, such as durum wheat [8]. Drought stress during germination can have severe
consequences for the success of the plant’s life cycle, as an inadequate water supply at
this stage can hinder the robust growth of roots and shoots, resulting in significant crop
losses [9,10].

The global population is undergoing a significant and rapid growth trajectory, with
projections estimating that it will reach approximately 9.74 billion individuals by the year
2050 [11]. Simultaneously, there will be an escalating demand for sustenance. To meet
the nutritional requirements, it is crucial to cultivate new cultivars that demonstrate high
productivity and resilience to both biotic and abiotic challenges [12]. To facilitate the
development of novel drought-tolerant cultivars, it is essential to ascertain the tolerance
status of existing genotypes [13].

According to Rai et al. [14], obtaining accurate and dependable outcomes may be
achieved by performing selection during the first development phase in controlled lab-
oratory settings. In laboratory settings, NaCl, polyethylene glycol (PEG), sorbitol, and
mannitol are often used to induce drought stress in plants [15]. This manipulation serves to
augment the dry conditions within the plant’s growth environment, hence impeding water
uptake by the plant [16]. High molecular weight polyethylene glycols (PEGs) are often
used as stress agents in various studies [17]. This is mostly attributed to their water-soluble
nature, lack of toxicity, and inability to be absorbed by plant roots [18].

The examination of yield components, the assessment of yield stability, and the en-
hancement of stress tolerance represent conventional methodologies in plant breeding [19].
It is paramount to establish a clear and comprehensive understanding of the correlation
between improved agricultural features and their reciprocal impacts [20]. In controlled
breeding research, the effects of input elements (genotype and treatment factors) on ob-
served plant characteristics (outputs) have been extensively investigated [21,22]. Traditional
statistical approaches have been predominantly utilized for the examination and interpre-
tation of outcome variables [23,24]. Analysis of variance, principal component analysis
(PCA), and linear regression models are commonly employed techniques to determine the
associations between independent input factors and dependent output variables [25].

Machine learning (ML) algorithms are increasingly being employed in various aspects
of plant science and agriculture. In addition to these effective approaches, it is noteworthy
that ML algorithms, as a subfield of artificial intelligence, possess the capacity to make
precise predictions and enhance the efficacy of various intricate biological systems. Fre-
quently employed for acquiring knowledge and constructing models optimized for specific
tasks, ML algorithms undergo a learning process from data. Their objective is to provide
predictions for a designated target variable using knowledge acquired from the data’s prop-
erties [20,26,27]. Presently, the determination of drought tolerance, susceptibility levels,
and the estimation of observed parameters in plants can be reliably accomplished using
ML systems in the fastest, most cost-effective, and practical manner through the applied
methods and analyses.

The objective of this study was to investigate common tetraploid wheat genotypes
in Türkiye to determine their drought tolerance at the initial growth stage using a mul-
tivariate analysis and stress tolerance indices. Furthermore, the study aimed to employ
ML algorithms to predict the parameters observed during the early development phase
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of tetraploid wheat under drought conditions and to present a range of available ML
models. Consequently, this research sought to unveil the drought tolerance of varieties and
characterize genotypes suitable as parental plants for future breeding-focused studies.

2. Materials and Methods

2.1. Plant Materials

This research was conducted at Ankara University, Faculty of Agriculture, Department
of Field Crops. The study utilized eleven varieties extensively employed in durum wheat
cultivation in Türkiye, along with one hulled tetraploid wheat genotype, emmer (Triticum
dicoccum), sourced from the Kars province of Türkiye (Table 1). The selected genotypes in
our study have been registered in arid and semi-arid regions of Türkiye.

Table 1. Tetraploid wheat genotypes used in the research.

Genotype Type Registration Year Growth Habit Breeding Company

Altın-40/98 Cultivar 1998 Alternative Field Crops Central Research Institute,
Ankara, Türkiye

Artuklu Cultivar 2008 Spring GAP International Agricultural Research
and Training Center, Diyarbakir, Türkiye

Çakmak-79 Cultivar 1979 Alternative Field Crops Central Research Institute,
Ankara, Türkiye

Çeşit-1252 Cultivar 1999 Alternative Field Crops Central Research Institute,
Ankara, Türkiye

Eminbey Cultivar 2009 Winter Field Crops Central Research Institute,
Ankara, Türkiye

Kızıltan-91 Cultivar 1991 Alternative Field Crops Central Research Institute,
Ankara, Türkiye

Kunduru-1149 Cultivar 1967 Winter Field Crops Central Research Institute,
Ankara, Türkiye

Meram-2002 Cultivar 2002 Alternative Bahri Dagdas International Agricultural
Research Institute, Konya, Türkiye

Mirzabey-2000 Cultivar 2000 Alternative Field Crops Central Research Institute,
Ankara, Türkiye

Sarıçanak 98 Cultivar 1998 Spring GAP International Agricultural Research
and Training Center, Diyarbakir, Türkiye

Selçuklu-97 Cultivar 1997 Alternative Bahri Dagdas International Agricultural
Research Institute, Konya, Türkiye

T. dicoccum (Emmer) Landrace - Alternative Collected from Kars Province, Türkiye

2.2. Treatment Conditions and Plant Growth

The seeds underwent sterilization in 5% commercial bleach (NaClO) for a duration
of twenty minutes, followed by thorough washing with distilled water. Germination
was carried out in dark conditions at a temperature of 25 ± 1 ◦C. Drought stress was
induced using high molecular weight polyethylene glycol (PEG 6000) following the protocol
outlined by Michel and Kaufmann [28]. The levels of drought intensity (−0.50,−1.48,−2.95,
and −4.91 bar) were determined based on the work of previous researchers who deemed
them appropriate [29]. Data collection was conducted in accordance with the measurements
and counts established on the fourth and eighth days, following the guidelines provided
by the International Seed Testing Association (ISTA) [30].

Germination was considered complete when the radicles reached a length of 2 mm.
Subsequently, on the fourth day, the number of germinated seeds was recorded, and
the germination rate (GS) was calculated. On the eighth day, the germination strength
(GP) was determined by counting the germinated seeds. Additionally, the root length
(RL) was measured as the longest root formed by the seed, the shoot length (SL) was
measured as the endpoint of the plumule emerging from the coleoptile, and the fresh
weight (FW) was determined by weighing all embryonic roots, the coleoptile, and the
plumule immediately [31,32]. To calculate the dry weight (DW) of the plants, fresh samples
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underwent a drying process at 105 ◦C for two hours, and the subsequent mass was recorded.
The water absorption capacity (WAC) was determined by calculating the difference between
the FW and DW, and the percentage rate was subsequently computed.

Fischer and Maurer [33] proposed the stress susceptibility index (SSI) as a means of
measuring trait stability, considering changes in both potential and actual traits in variable
environments. Clarke et al. [34] evaluated the drought tolerance of wheat genotypes using
the SSI and found different annual variations in the SSI for different genotypes, allowing a
ranking of their patterns. An SSI > 1 in spring wheat cultivars indicates an above-average
susceptibility to drought stress, according to Guttieri et al. [35]. A smaller value of SSI is
preferred as larger values indicate a greater sensitivity to stress. Fernandez [36] proposed
the Stress Tolerance Index (STI) as a tool for identifying genotypes that exhibit high grain
yield under contrasting conditions. The STI is designed to identify genotypes with favorable
characteristics for the examined traits under both stressful and normal conditions.

Ypi = The value of observed feature of each genotype under normal conditions (control)
Ysi = The value of the feature of each genotype under stressful conditions
Yp = The mean of the features of the genotypes examined under normal conditions (control)
Ys = The mean of the features of the genotypes examined under stressful conditions

- Stress tolerance index: STI = Ypi × Ysi
Yp2

- Stress intensity: SI = 1− Ys
Yp

- Stress susceptibility index: (SSI) =
1−( Ysi

Ypi )

SI

2.3. Experiment Design and Statistical Analysis

A completely randomized design was employed with four replications per genotype
and per stress level. A unit of replication were a Petri dish containing 50 seeds. Statistical
analyses of the acquired data were conducted using JMP 13.2.0 with SAS software ver-
sion 9.4. The impacts of genotype and stress level on germination responses were assessed
through analysis of variance and Duncan tests. PCA was carried out using standardized
average values for each germination parameter and the STI value for genotypes, providing
insight into their tolerance or susceptibility to drought stress. The dissimilarity between
genotypes was calculated using Ward’s method of clustering. Correlations between the
examined traits of tetraploid wheat genotypes under control and drought stress treatments
were computed using JMP 13.2.0 [37].

2.4. Machine Learning Analysis and Model Assessment

The primary aim of this study was to determine the relationships between input
variables (genotype and drought stress) and the output variable (observed germination
parameters) to develop a predictive model. Four ML techniques were employed, namely
support vector machines (SVM) [38], extreme gradient boosting (XGBoost) [39], elastic-
net (ELANET) [40], and the Gaussian processes classifier (GPC) [41]. The evaluation of
algorithm performance utilized three key metrics: root mean square error (MSE), R-squared
(R2), and mean absolute deviation (MAD). The coefficient of determination, denoted as
R2, gauges the extent to which the model (Equation (1)) replicates the observed data.
MSE measures the proximity between the predicted and actual values, as expressed by
Equation (2). Additionally, the root MAD characterizes the overall distribution of prediction
errors, as outlined in Equation (3) [20,26,27]. The dataset was randomly divided into two
sets using the caret package in the R software (version 4.3.2): the training set (70%) and
the testing set (30%). The Grid Search Cross-Validation (GCV) method was employed to
identify the optimal hyperparameters for each ML model, as indicated by Equation (4) [42].

R2 = 1−
(

∑n
i=1

(
yi − yip

)2

∑n
i=1(yi − y)2

)
(1)
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MSE =

√
1
n

n

∑
i=1

(
yi − yip

)2 (2)

MAD =
1
n

n

∑
i=1

∣∣yi − yip
∣∣ (3)

GCV(λ) =
∑n

i=1
(
yi − yip

)2

[
1− M(λ)

n

]2 (4)

where n is the training/testing sample size in the dataset, yi is the measured real value, yip is
the predicted value, and y is the measured values mean. M(λ) is the penalty function for the
complexity of the model covering λ terms. The R program was used for the computation
of ML algorithms and performance metrics [26,27].

3. Results

According to the variance analysis of the data, it was determined that the differences
among genotypes and stress levels were significant at p < 0.01 for all examined parameters.
Additionally, the Genotype × Stress interaction was found to have a significant effect at
p < 0.01 on all parameters, except for germination power (Table 2). Figure 1 displays the
mean, minimum, and maximum values resulting from the interaction between genotype
and stress.

Table 2. Variance analysis of tetraploid wheat genotypes’ germination performances under different
drought stress levels.

Variation Source df
Mean Square

GS GP RL SL FW DW WAC

Genotype (G) 11 184.833 ** 97.391 ** 17.668 ** 10.879 ** 0.290 ** 0.047 ** 242.055 **
Stress level (S) 4 2981.008 ** 642.359 ** 628.871 ** 522.911 ** 5.938 ** 0.057 ** 9299.92 **

G × S 44 35.308 ** 16.267 ns 2.936 ** 6.641 ** 0.053 ** 0.005 ** 72.837 **

GS: germination speed; GP: germination power; RL: root length; SL: shoot length; FW: fresh weight; DW: dry
weight; WAC: water absorption capacity. ** 0.01 significant at the probability level; ns: non-significant.

3.1. Germination Speed and Germination Power

The results suggest that the impact of drought stress on germination rate is more
significant than its effect on GP. Specifically, compared to the control group, the germination
rate of genotypes under −1.48 bar drought stress was significantly reduced. Notably,
Artuklu exhibited the highest GS, particularly at−4.91 bar, representing the highest level of
drought stress. At this maximum stress level, T. dicoccum displayed the lowest GS (66.6%)
(Supplementary Table S1). Considering stress-tolerance indices, the varieties demonstrating
the highest tolerance in terms of GS were Eminbey, Kızıltan-91, and Mirzabey 2000 at
−0.50 bar drought stress, Altın-40/98 at −1.48 bar drought stress, and Artuklu at −2.95
and −4.91 bar drought stress (Supplementary Table S2). Conversely, based on the SSI,
Kunduru-1149, Eminbey, Selçuk-97, and Meram-2002 were significantly affected by drought
stress, resulting in a notable reduction in GS. The highest stress-susceptibility indices were
observed in Kunduru-1149 at −0.50 bar stress, Eminbey and Selçuklu-97 at −1.48 bar
stress, and Meram-2002 at −2.95 bar and −4.91 bar stress levels. Moreover, drought stress
had a comparatively lower impact on the germination rate of tetraploid wheat genotypes.
It was observed that the GP of these varieties was not affected by the -0.50 bar level,
representing the lowest drought stress level, and remained comparable to the control
group (Supplementary Table S1). Across the different levels of drought stress, Altın-40/98
displayed the highest average GP, while T. dicoccum exhibited the lowest. According to
the STI, Altın-40/98 achieved the highest tolerance values at all stress levels. Conversely,
based on the SSI, the varieties whose germination power was most affected by drought
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stress were identified as Artuklu, Kunduru-1149, and Selçuklu-97 at −0.50 bar, Selçuklu-
97 at −1.48 bar, Eminbey at −2.95 bar, and Eminbey and Kunduru-1149 at −4.91 bar
(Supplementary Table S2). When the genotypes were analyzed in terms of GS and GP,
it became evident that there were significant decreases, especially at the fourth and fifth
stress levels.

Figure 1. The meaning of parameters examined according to genotype and stress levels. GS: germination
speed; GP: germination power; RL: root length; SL: shoot length; FW: fresh weight; DW: dry weight;
WAC: water absorption capacity; RMSE: root mean square error; R2: coefficient of determination.

Even though −0.50 bar represented the lowest drought stress level, it caused a sig-
nificant reduction in the root length of all genotypes compared to the control group. The
decreases in root length persisted with increasing stress levels. Notably, Kızıltan-91 and
Sarıçanak 98 exhibited the highest mean root length at different drought stresses. Specifi-
cally, Kızıltan-91, at −0.50 bar, −1.48 bar, and −4.91 bar stress levels, and T. dicoccum at the
−2.95 bar stress level showed the most robust root formation (Supplementary Table S2).
The most tolerant genotypes in terms of root development, according to the STI, were
Kızıltan-91 at−0.50 bar and−1.49 bar stresses, Eminbey at−2.95 bar stress, and Kızıltan-91
at −4.91 bar stress. On the other hand, based on the SSI, the genotypes where drought
stress significantly affected root development were Çeşit-125 at the −0.50 bar, −1.48 bar,
and −2.95 bar drought levels, and Altın-40/98 and Çakmak-79 at −4.91 bar stress (Supple-
mentary Table S2).

Moreover, drought stress had a more pronounced impact on shoot development
compared to root development in tetraploid wheat genotypes. When examining the
average shoot length of the genotypes, there was an approximately 61% decrease compared
to the control group at −0.50 bar, the lowest drought level in the study. The sharp declines
in shot length continued with increasing stress levels. Shoots did not occur in some
genotypes at drought stresses of −2.95 bar (Çeşit-1252, Meram-2002, and Selçuklu-97) and
−4.91 bar (Çakmak-79, Çeşit-1252, Eminbey, Kızıltan-91, Meram-2002, and Selçuklu-97).
Eminbey formed the highest shoot length in terms of the general shoot length average of
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genotypes but could not produce shoots at high-stress levels. However, according to the
results under stress pressure, the genotype that produced the most shoots was Sarıçanak 98.
When stress tolerance values were considered based on shoot-forming abilities, Eminbey
at −0.50 bar stress, Kızıltan-91 at −1.49 bar stress, Altın-40/98 at −2.95 bar stress, and
Altın-40/98 and Sarıçanak 98 varieties at −4.91 bar stress had the highest index values.
However, according to the SSI, at −0.50 bar drought, Çeşit-1252; at −1.49 bar, Meram-2002;
at−2.95 bar, Çeşit-1252, Meram-2002, and Selçuklu-97; at−4.91 bar, Çakmak-79, Çeşit-1252,
Eminbey, Kızıltan-91, Kunduru-1149, Meram-2002, and Selçuklu-97 were identified as the
most susceptible varieties in terms of shoot elongation (Supplementary Table S2).

3.2. Fresh Dry Weight and Water Absorption Capacity

The FW of tetraploid wheat genotypes were not as significantly affected as root and
shoot formation under the pressure of drought. The highest mean FW was observed in the
control group, with gradual decreases occurring with increasing stress levels. Specifically,
the highest average FW was observed in Eminbey, while the lowest was in Selçuklu-97.
FW was measured to be the highest in the control group and at −0.50 bar for Eminbey, at
−1.49 bar for Altın 40/98, and at −2.95 and −4.91 bar for Mirzabey-2000 (Supplementary
Table S1). According to the STI, the genotype most tolerant regarding FW was Eminbey at
−0.50 bar, −2.95 bar, and −4.91 bar stresses, and Altın-40/98 at −1.48 bar stress. On the
other hand, based on the SSI in terms of FW, the most vulnerable genotypes were Çeşit-1252
at the −0.50 bar drought level, Meram 2002 at the −1.48 bar, −2.95 bar, and −4.91 bar
drought levels (Supplementary Table S2). The DW average was highest in Eminbey and
lowest in T. diccoccum. Eminbey consistently had the highest DW values in both the control
group and under all stress conditions (Supplementary Table S1). According to the STI,
Eminbey displayed the highest tolerance values at all stresses regarding DW. However,
based on the SSI, it showed the highest susceptibility in terms of DW, with Çakmak-79
being the most susceptible at the −0.50 bar, −2.95 bar, and −4.91 bar drought levels, and
Kunduru-1149 being the most susceptible at the −1.49 bar and 2.95 bar drought levels
(Supplementary Table S2).

Furthermore, the water absorption abilities of the tetraploid wheat genotypes exhibited
a significant decrease with the increasing pressure of drought because of drought stress.
There was a 53% decrease in water absorption averages of the genotypes between stress-
free conditions and the highest stress level. The WAC averages at all stress levels were
highest for Mirzabey 2000 and lowest for Selçuklu 97. According to the STI, the most
tolerant genotypes regarding WAC were Artuklu at −0.50 bar, Altın-40/98 at −1.48 bar,
and Mirzabey 2000 at −2.95 bar and −4.91 bar stress. The STI for WAC was highest for
Artuklu at −0.50 bar stress, Altın-40/98 at −1.48 bar stress, and Mirzabey 2000 at −2.95 bar
and −4.91 bar stresses. Conversely, based on the SSI, the most sensitive varieties in terms
of water absorption were Çeşit-1252 at the −0.50 bar and −2.95 bar drought levels, Meram
2002 at the −1.48 bar drought level, and Eminbey at the −4.91 bar drought level.

3.3. Multivariate Analysis

The STI and SSI demonstrated inversely proportional values. Therefore, the STI was
used in the first PCA. The PCA revealed a high level of variation among the tetraploid wheat
genotypes. The distribution of tetraploid wheat genotypes concerning the first two principal
components under different drought levels, based on morphological characteristics and STI
values, was tabulated in a biplot (Figure 2). The variation examined with PCA indicated that
the first two principal components contributed 75.20% of the total variance among the seven
variable germination traits under normal conditions. Furthermore, the first two principal
components contributed to 77.75%, 68.47%, 67.20%, and 63.37% of the total variance among
the seven germination traits and seven STI values for the −0.50 bar, −1.48 bar, −2.95 bar,
and −4.91 bar drought stress levels, respectively. Taking into consideration the means of
the fourteen values examined, it was determined that the first two principal components
constituted 69.63% of the total variation (Supplementary Table S3).

105



Agriculture 2024, 14, 206

Figure 2. Classification of tetraploid wheat genotypes for different drought stress levels along
with the first and second principal components on biplots ((a) control, (b) −0.50 bar, (c) −1.48 bar,
(d) −2.95 bar, (e) −4.91 bar, and (f) mean of all). GS: germination speed; GP: germination power; RL:
root length; SL: shoot length; FW: fresh weight; DW: dry weight; WAC: water absorption capacity;
STI: stress tolerance index.
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The first two principal components were graphically plotted to illustrate the similari-
ties among genotypes at different drought stress levels (Figure 2). The biplot graphs were
designed by computing each feature individually to separate the stress levels, demonstrat-
ing the variability of genotypes for the seven morphological traits and seven STI values in
the study. The graphical representation on the biplot indicates a wide genetic variability
among the genotypes based on their distribution model under different drought stresses
(Figure 2). Considering the positive and high values of these two principal components
on the biplot, genotypes located near the investigated traits are likely to be highly efficient
under both stressed and unstressed conditions. Notably, in the biplot graphs, Selçuklu-97
and Meram-2002 are seen to be in the negative direction of the first two principal com-
ponents. This suggests that these genotypes are more susceptible to drought stress than
others. Throughout all the biplot graphs, T. dicoccum was observed to be located at a
distance from the other genotypes, indicating a potential difference in its genetic structure.
In the biplot charts, it is evident that Artuklu, Eminbey, Kızıltan-91, and Sarıçanak-98 were
distributed near tolerance indicators. This suggests that these genotypes may possess a
higher stress tolerance compared to others. The biplot analysis provides valuable insights
into the genetic variability and stress response of the tetraploid wheat genotypes under
different drought conditions.

In the second biplot analysis (Figure 2), conducted to reveal the relationships among
genotypes and all parameters examined, a total of 11 principal component axes were
obtained, with five principal component axes having an eigenvalue greater than 1.0. The
eigenvalues of these five principal component axes, which collectively account for 91.85%
of the total variation, range between 1.06 and 7.45. Upon examining the angles between
the axes, a high angle among the SSI(WAC), SSI(GS), and SSI(SL) axes and the STI(WAC),
WAC axes suggests a highly negative correlation among these parameters. Conversely,
the slight angle between the GP axis and the axes of STI(GS), STI(GP), and GS in the same
region reveals a highly positive relationship among these parameters. Considering the
axis regions and lengths of all parameters, as well as their angles with each other and
the positions of genotypes, T. dicoccum is located alone and in a region opposite to the
axes. Considering this analysis, T. dicoccum appears to have the lowest values regarding
the examined properties compared to the other genotypes. The biplot analysis provides a
comprehensive view of the relationships among the genotypes and various parameters,
aiding in the interpretation of the dataset and highlighting the characteristics that contribute
most to the observed variability.

Additionally, according to Figure 3, T. dicoccum is positioned in the highest class in
parameters close to the Eminbey axis tip, clustered in the same region with the Kızıltan 91
and Altın 40/98 varieties. Upon examining the WAC and STI (WAC) axes, Mirzabey-2000
and Sarıçanak 98 emerge as the leading genotypes (Figure 3, Supplementary Table S2).

To analyze the interactions between genotypes throughout the germination period and
to decide which genotypes are appropriate for future breeding programs, a cluster analysis
was conducted using the evaluated characteristics of the genotypes that were subjected to
drought stress. Understanding the diversity in parents is crucial for the improvement of
breeding programs aimed at developing new, tolerant varieties. According to the cluster
analysis, the genotypes with the least genetic diversity distance between them concerning
GP and stress indexes were identified as Çeşit-1252 and Kunduru-1149. On the other hand,
the genotypes with the furthest genetic diversity distance between them were Artuklu and
T. dicoccum (Figure 4). The findings suggest that T. dicoccum exhibits distinctive genetic
characteristics compared to the other genotypes, particularly in terms of germination
performance under drought stress. This differentiation is further emphasized by both
the principal component analysis and cluster analysis. These insights can inform future
breeding strategies for developing improved, drought-tolerant wheat varieties.
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Figure 3. Principal component analysis (biplot) and output values of genotypes as well as examined
parameters. GS: germination speed; GP: germination power; RL: root length; SL: shoot length; FW:
fresh weight; DW: dry weight; WAC: water absorption capacity; STI: stress tolerance index.

 
Figure 4. Phylogenetic tree of tetraploid wheat genotypes according to germination performance and
tolerance indices under different drought stresses.

The correlation analysis revealed statistically significant relationships among all pa-
rameters. According to the analysis, the highest positive correlation among the quantitative
traits was identified between FW and RL (0.917). Conversely, the highest negative cor-
relation was observed between WAC and DW (−0.549). Notably, there was a consistent
negative correlation between DW and all the other parameters (Figure 5).
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Figure 5. Heat map showing the correlation between germination parameters in tetraploid wheat
genotypes under various levels of drought stress. * Significant at the 0.05 probability level; ** sig-
nificant at the 0.01 probability level; ns: non-significant. GS: germination speed; GP: germination
power; RL: root length; SL: shoot length; FW: fresh weight; DW: dry weight; WAC: water absorption
capacity; r: Pearson’s correlation.

3.4. Machine Learning (ML) Analysis

The responses of Triticum durum wheat to drought stress were modeled with respect to
various variables, including GS, GP, RL, SL, FW, DW, and WAC. Predictions were generated
using four different ML techniques: SVM, XGBoost, Elastic Net (ELNET), and GPC. The
modeling approach employed a total of twelve wheat genotypes (Table 1) and involved
five levels of drought stress (0, −0.50, −1.48, −2.95, and −4.91 bar) applied to the geno-
types. Separate models were developed for each of the seven variables studied as output
parameters. The study’s findings are presented comprehensively in Table 3, providing
an overview of the outcomes generated by the ML models utilized in the investigation.
Evaluation metrics, such as MSE and MAD, were employed to assess the overall perfor-
mance of the algorithms. A reduction in the values of these metrics indicates that the
model predictions are becoming closer to the actual observed values. Additionally, the
study evaluated the extent to which the R2 model could elucidate the variability observed
between the independent factors and the dependent variable under investigation. The
performances of the SVM, XGBoost, ELNET, and GPC models were assessed using a GCV
approach. Among the various evaluation metrics, the XGBoost model exhibited the lowest
MSE and MAD values, indicating a superior predictive accuracy for the training data.
The MSE values for the variables GS, GP, RL, SL, FW, DW, and WAC were found to be
3.280, 2.291, 0.355, 0.263, 0.058, 0.012, 0.008, and 1.259, respectively. Additionally, the
MAD values for the same variables were determined to be 2.591, 1.426, 0.245, 0.157, 0.039,
and 0.795, respectively. Furthermore, this model demonstrated the highest R2 coefficient
while making predictions for the variables (GS, GP, RL, SL, FW, DW, and WAC) using
the training dataset (0.890, 0.789, 0.992, 0.995, 0.980, 0.974, and 0.993, respectively). For
the training dataset, the XGBoost model emerged as the top-performing model compared
to the other models (Table 3). Each trained ML model underwent evaluation by making
predictions based on the test dataset (Table 3). This helps estimate how well the model is
likely to perform on new, unseen data. Based on the evaluation of the R2, MSE, and MAD
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metrics, the ELNET model demonstrated a superior performance in predicting GS, GP, and
WAC. Furthermore, while evaluating the criteria metrics, it was concluded that the GPC
model had a better performance in predicting RL, but the XGBoost model had a better
performance in estimating SL, FW, and DW. Figure 6 displays the linear regression graph
depicting the projected values of the models that provide the most accurate prediction
model for the variables under examination, alongside the observed actual values.

Table 3. Algorithms’ goodness-of-fit criteria for prediction of variables.

Observed
Variable

ML
Criterion

SVM XGBoost ELNET GPC

Train Test Train Test Train Test Train Test

GS 1
R2 0.801 0.600 0.890 0.730 0.796 0.762 0.871 0.715

MSE 4.406 6.320 3.280 5.190 4.455 4.873 3.540 5.339
MAD 3.389 4.831 2.591 3.861 3.608 3.755 2.990 4.266

GP
R2 0.655 0.310 0.789 0.352 0.621 0.514 0.758 0.349

MSE 2.934 5.894 2.291 5.713 3.074 4.946 2.455 5.725
MAD 1.794 4.264 1.426 3.915 2.267 3.581 1.730 4.092

RL
R2 0.866 0.736 0.992 0.980 0.944 0.949 0.987 0.981

MSE 1.454 2.072 0.355 0.571 0.936 0.915 0.449 0.552
MAD 0.802 1.217 0.245 0.409 0.706 0.705 0.329 0.407

SL
R2 0.779 0.673 0.995 0.962 0.887 0.852 0.990 0.942

MSE 1.723 2.244 0.263 0.761 1.234 1.512 0.368 0.944
MAD 0.758 1.147 0.157 0.457 0.794 0.912 0.230 0.501

FW
R2 0.903 0.759 0.980 0.962 0.915 0.892 0.974 0.945

MSE 0.128 0.193 0.058 0.077 0.120 0.129 0.066 0.092
MAD 0.080 0.125 0.039 0.056 0.093 0.106 0.047 0.070

DW
R2 0.901 0.807 0.974 0.944 0.733 0.793 0.935 0.886

MSE 0.023 0.033 0.012 0.018 0.038 0.034 0.019 0.025
MAD 0.015 0.022 0.008 0.014 0.029 0.028 0.014 0.020

WAC
R2 0.924 0.830 0.993 0.891 0.949 0.902 0.989 0.880

MSE 4.309 6.750 1.259 5.419 3.505 5.140 1.657 5.684
MAD 2.903 4.738 0.795 3.914 2.844 2.492 1.238 3.235

1 GS: germination speed; GP: germination power; RL: root length; SL: shoot length; FW: fresh weight; DW: dry weight;
WAC: water absorption capacity; MSE: root mean squared error; MAD: mean absolute deviation; SVM: support
vector machines; XGBoost: extreme gradient boosting; ELNET: elastic-net; GPC: Gaussian processes classifier.

Figure 6. Cont.
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Figure 6. Based on the test set forecast, linear regression of the best models’ expected values and
their real values. GS: germination speed; GP: germination power; RL: root length; SL: shoot length;
FW: fresh weight; DW: dry weight; WAC: water absorption capacity; SVM: support vector machines;
XGBoost: extreme gradient boosting; ELNET: elastic-net; GPC: Gaussian processes classifier.

4. Discussion

The successful cultivation of tetraploid wheat, with its high yields, hinges upon its
ability to withstand drought stress during early development. A pivotal aspect in achieving
resilient strains is the identification of drought tolerance levels in existing varieties, a crucial
step in effective breeding programs. This emphasis on drought tolerance is underscored by
prior research conducted by Sayar et al. [43] and Aslan et al. [44], where the assessment
of wheat responses to drought stress during germination, using PEG like our current
study, aligns with the present research focus. Both studies emphasized the significance
of determining tolerance levels, particularly during germination, as an essential measure
in addressing challenges posed by drought. Notably, Badr et al. [45] stressed the impor-
tance of studying stress-responsive traits in genotype germination performance as a swift
and effective screening method for identifying drought-resistant genotypes. The current
research aimed to expand upon these insights by delving into the drought tolerance of di-
verse tetraploid wheat genotypes during the initial growth stage, employing a multivariate
analysis and ML algorithms.
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The research findings highlight a noticeable impairment in the germination perfor-
mance of tetraploid wheat genotypes with increasing drought stress. This aligns with the
observations of Aslan et al. [44] and Benlioglu and Ozgen [2], who similarly reported a
negative impact of drought on the germination of tetraploid wheat. Root length emerges as
a critical factor influencing wheat tolerance to drought during the early growth stages [44].
A longer root allows the plant to penetrate deeper into the soil, accessing more water re-
sources. Varieties that excel in root formation during germination in arid conditions tend to
exhibit better shoot development in subsequent growth stages. Therefore, both RL and SL
are important features in evaluating drought tolerance [46]. In this study, Artuklu, Eminbey,
Kızıltan-91, Sarıçanak-98, and T. dicoccum stood out in terms of root development under
high drought stress. The results indicate that drought stress significantly affected shoot
development compared to root growth, consistent with previous studies [47]. Sarıçanak 98
and Mirzabey 2000 outperformed other genotypes, demonstrating superior shoot formation
and development, particularly under conditions of high drought stress. The increasing
drought pressure in the external environment hampers seed absorption of sufficient water
for germination [48]. Thus, drought stress hinders the use of stored nutrients in the seed
for shoot and root development [49]. In this study, an increase in dry weight during the
germination phases of tetraploid wheat varieties was observed to coincide with escalat-
ing stress levels. This phenomenon may be attributed to limited water access due to the
heightened drought stress, which prevents the optimal utilization of storage nutrients [50].
Consequently, the impact of drought stress on FW was more pronounced than on DW,
which is consistent with the findings of Sayar et al. [43]. In contrast to studies conducted on
barley [50] and wheat [46], our results suggest a tendency for DW to increase with elevated
stress levels.

Many studies conducted at different ploidy levels have consistently indicated that
drought stress significantly reduces grain yield, yield components, harvest index, plant
height, leaf area, and DW [51]. The utilization of STI and SSI provides a clear differenti-
ation among tetraploid wheat genotypes based on their germination performance under
varying drought stress levels [52]. However, it is important to note that STI and SSI may
not always yield parallel results, especially when there is no statistically significant dif-
ference between genotypes and treatments. This discrepancy was evident in our study,
particularly in the GP parameter, where the difference between genotypes and treatments
was statistically insignificant. Similarly, in the DW parameter, which exhibits an inverse
relationship with stress levels, these indexes may be deemed inappropriate for assessing
tolerance. This discrepancy in results could be attributed to the sensitivity of these in-
dices to statistical variations and their effectiveness in capturing differences under specific
conditions. Researchers should be cautious and consider alternative indices or additional
statistical analyses when dealing with parameters that may not align well with STI and SSI,
especially in cases where there is no statistically significant difference between genotypes
and treatments.

Selection based on a combination of indices can be a valuable strategy for developing
drought tolerance in tetraploid wheat. Utilizing methods like PCA is crucial for charac-
terizing genotypes under stress conditions. A narrow vector angle of axes in the same
region indicates significant positive relationships among these elements [53]. Moreover,
for the efficient use of PCA and accurate interpretation of results, it is recommended that
the first two or three principal components explain at least 25% of the total variation [25].
The biplot graphs generated in our study revealed that Artuklu, Eminbey, Kızıltan-91, and
Sarıçanak-98 were positioned near the tolerance indicators, indicating a higher drought
stress tolerance compared to the other genotypes. Conversely, Selçuklu-97, Meram-2002,
and T. dicoccum were located further away from tolerance indicators, suggesting a lower
drought tolerance. This observation aligns with the findings of [54], who noted that domes-
tication, selection, and breeding of wheat have positively influenced the improvement of
above-ground biomass, ultimately increasing wheat yield. Similarly, our study indicated
that T. dicoccum exhibited a low drought tolerance during the germination period. The
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germination performance of tetraploid wheat varieties under different drought stress levels
unveiled a wide variation among genotypes, emphasizing the importance of a multifaceted
approach for selecting genotypes with robust drought tolerance.

Methods based on ML offer the advantage of creating nonlinear correlations between
yield factors and independent samples [20,26]. ML has demonstrated significant advance-
ments compared to traditional regression models that rely on linear associations [27,32,55].
This technique allows for a comprehensive examination of multitemporal field sample data,
facilitating the optimization of plant growing conditions and crop output [56–58]. The
utilization of historical sampling and prediction models is crucial for enhancing future crop
management strategies, providing valuable insights into the impact of previous farming
practices and abiotic variables on observed target metrics [5]. Moreover, the selection of
algorithms used in the estimation process holds significant importance. Various measures,
such as MSE, MAD, and R2, are employed to determine the most optimal and superior
performing algorithms [27]. Based on the results obtained from this research, it can be
concluded that the ELNET model demonstrated a higher level of effectiveness in forecast-
ing GS, GP, and WAC. The analysis also revealed that the GPC model exhibited superior
predictive performance in relation to RL, while the XGBoost model demonstrated a better
predictive performance for SL, FW, and DW. The models that exhibited the highest predic-
tive accuracy in relation to the observed variables had a range of values between 0.7324 and
0.9932, as indicated by the linear regression R2 metric (Figure 6). The SL parameter estimate
yielded the highest accuracy in the R2 value measurement. The use of these algorithms
in forthcoming breeding investigations has the potential to enhance the decision-making
process in tetraploid wheats under drought situations using data-driven methodologies.
Furthermore, this study provides a fast and cost-effective method to determine the tolerance
of genotypes to drought stress.

5. Conclusions

The responses and tolerance levels of tetraploid wheat genotypes to drought stress
during the early period were assessed based on germination performance, STI, SSI, and a
multivariate analysis. All PEG treatments led to reduced germination rates and delayed
seedling growth. Severe drought stress levels of−2.95 bar and−4.91 bar in the early period
inhibited further growth in some genotypes, indicating the sensitivity of these genotypes
to these stress levels. The STI and SSI effectively conveyed the tolerance and susceptibility
levels of the genotypes. The PCA provided valuable insights into tolerance levels and
relationships among different parameters by analyzing the distribution of genotypes in
the direction of tolerance indicators. The cluster analysis confirmed the results of the PCA,
demonstrating a divergence across genotypes with respect to the characteristics under
investigation. Moreover, the study suggests that employing a combined ML technique,
potentially incorporating additional ML methods, could provide a reliable approach to
establish the relationship between tetraploid wheats subjected to drought stress and their
observed parameters during the early phases of growth. This integrated approach may
offer a time-saving and cost-effective means of determining drought tolerance and suscep-
tibility levels in tetraploid wheat. Overall, the methods and analyses applied in this study
present a comprehensive and efficient approach for assessing drought stress in tetraploid
wheat genotypes.
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20. Demirel, F.; Eren, B.; Yilmaz, A.; Türkoğlu, A.; Haliloğlu, K.; Niedbała, G.; Bujak, H.; Jamshidi, B.; Pour-Aboughadareh, A.;
Bocianowski, J. Prediction of grain yield in wheat by CHAID and MARS algorithms analyses. Agronomy 2023, 13, 1438. [CrossRef]

21. Niazian, M.; Niedbała, G. Machine learning for plant breeding and biotechnology. Agriculture 2020, 10, 436. [CrossRef]

114



Agriculture 2024, 14, 206

22. Wahab, A.; Abdi, G.; Saleem, M.H.; Ali, B.; Ullah, S.; Shah, W.; Mumtaz, S.; Yasin, G.; Muresan, C.C.; Marc, R.A. Plants’
physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review.
Plants 2022, 11, 1620. [CrossRef]

23. Kırnak, H.; Uzun, S.; Irik, H.A.; Özaktan, H.; Arslan, M. Water–yield relations of drip-irrigated peas under semi-arid climate
condition. Int. J. Agric. Nat. Sci. 2021, 14, 85–95.

24. Sivakumar, J.; Prashanth, J.E.P.; Rajesh, N.; Reddy, S.M.; Pinjari, O.B. Principal component analysis approach for comprehensive
screening of salt stress-tolerant tomato germplasm at the seedling stage. J. Biosci. 2020, 45, 141. [CrossRef]

25. Özaktan, H. Technological characteristics of chickpea (Cicer arietinum L.) cultivars grown under natural conditions. Turkish J. Field
Crops 2021, 26, 235–243. [CrossRef]
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44. Aslan, D.; Aktaş, H.; Ordu, B.; Zencirci, N. Evaluation of bread and einkorn wheat under in vitro drought stress. J. Anim. Plant
Sci. 2017, 27, 1974–1983.

45. Badr, A.; El-Shazly, H.H.; Tarawneh, R.A.; Börner, A. Screening for drought tolerance in maize (Zea mays L.) germplasm using
germination and seedling traits under simulated drought conditions. Plants 2020, 9, 565. [CrossRef] [PubMed]

46. Datta, J.; Mondal, T.; Banerjee, A.; Mondal, N. Assessment of drought tolerance of selected wheat cultivars under laboratory
condition. J. Agric. Technol. 2011, 7, 383–393.

47. Benlioglu, B.; Ozkan, U. The influence of salinity and drought stress on some oat cultivars (Avena sativa L.) by determining some
stress indexes and growth performances at the germination stage. Fresenius Environ. Bull. 2021, 31, 771–778.

48. Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response mechanism of plants to drought stress. Horticulturae 2021, 7, 50.
[CrossRef]

49. Khaeim, H.; Kende, Z.; Jolánkai, M.; Kovács, G.P.; Gyuricza, C.; Tarnawa, Á. Impact of temperature and water on seed germination
and seedling growth of maize (Zea mays L.). Agronomy 2022, 12, 397. [CrossRef]

115



Agriculture 2024, 14, 206
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Abstract: In order to achieve accurate, fast, and robust recognition of blueberry fruit maturity
stages for edge devices such as orchard inspection robots, this research proposes a lightweight
detection method based on an improved YOLOv5 algorithm. In the improved YOLOv5 algorithm,
the ShuffleNet module is used to achieve lightweight deep-convolutional neural networks. The
Convolutional Block Attention Module (CBAM) is also used to enhance the feature fusion capability of
lightweight deep-convolutional neural networks. The effectiveness of this method is evaluated using
the blueberry fruit dataset. The experimental results demonstrate that this method can effectively
detect blueberry fruits and recognize their maturity stages in orchard environments. The average
recall (R) of the detection is 92.0%. The mean average precision (mAP) of the detection at a threshold
of 0.5 is 91.5%. The average speed of the detection is 67.1 frames per second (fps). Compared to
other detection algorithms, such as YOLOv5, SSD, and Faster R-CNN, this method has a smaller
model size, smaller network parameters, lower memory usage, lower computation usage, and faster
detection speed while maintaining high detection performance. It is more suitable for migration
and deployment on edge devices. This research can serve as a reference for the development of fruit
detection systems for intelligent orchard devices.

Keywords: blueberry fruit; deep learning; machine vision; object detection; YOLOv5

1. Introduction

Blueberry fruits are rich in many nutrients, particularly vitamin C, vitamin K, and
manganese. In addition, they are rich in fiber, anthocyanins, antioxidants, and other
bioactive compounds. These ingredients provide blueberry fruits with a variety of health
benefits, including the ability to enhance immune function and improve cardiovascular
health. Figure 1 shows blueberry plants and their fruits. As people pay increasing attention
to their health, the demand for blueberry fruits is also rising. Consequently, the commercial
cultivation areas for blueberry fruits are expanding [1].

Blueberry fruit harvesting directly impacts the yield and income generated from blue-
berry cultivation. Blueberry fruits have a short ripening period, which typically occurs
during the rainy season. The contradiction between the high demand for labor and the
shortage of labor in the traditional blueberry production modes has become increasingly
evident. The labor cost of blueberry harvesting has reached 30–50% of the total production
cost [2]. To some extent, it has hindered the development of the blueberry industry [3]
and agricultural production. Developing precision agriculture and smart agriculture tech-
nology is an important step in addressing the labor-intensive nature of the blueberry
industry [4–6]. Accurately, quickly, and robustly detecting blueberry fruits and providing
information on their maturity stages are essential requirements for efficient and timely
harvesting. Currently, researchers have conducted extensive studies on fruit detection
and recognition using deep learning (DL) technology [7–9]. Based on the YOLOv2 algo-
rithm, Xiong J. et al. [10] detected green mangoes on the surface of tree crowns. They
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achieved a precision of 96.1% and a recall of 89.0%. Based on the YOLOv3 algorithm,
Zhang W. et al. [11] counted the number of citrus fruits in video sequences. They resolved
the issue of double-counting fruit in overlapping situations. Based on the YOLOv4 al-
gorithm, Gao F. et al. [12] detected and counted apples by tracking their stems. They
achieved a mean average precision of 99.35% for fruits and trunks. Miao et al. [13] inte-
grated classical image processing techniques with the YOLOv5 algorithm. The detection
and recognition performance of the YOLOv5 algorithm has been significantly improved. In
addition, Yu Y. et al. [14] detected strawberries using the Mask R-CNN algorithm, while
Jia W. et al. [15] detected apples.

 

Figure 1. Blueberry plants and their fruits in an orchard.

In order to achieve accurate, fast, and robust recognition of blueberry fruit maturity
stages for orchard inspection robots while also enhancing the deployment capability of
the blueberry fruit detection algorithm on edge devices such as agricultural unmanned
aerial vehicles (UAVs) and agricultural unmanned ground vehicles (UGVs), this research
proposes a lightweight detection method based on an improved YOLOv5 algorithm. It
uses 680 images of blueberry fruits, including 9935 target blueberry fruits, to evaluate the
effectiveness of the improved YOLOv5 algorithm and compares its performance with other
advanced fruit detection algorithms, such as YOLOv5, SSD, and Faster R-CNN.

Section 2 introduces the production of the blueberry fruit dataset, the YOLOv5 al-
gorithm, and the improved YOLOv5 algorithm. Section 3 demonstrates the detection
performance of the improved YOLOv5 algorithm. To investigate the impact of each module
changed in the improved YOLOv5 algorithm, Section 3 also conducted a comprehensive
ablation study. Section 4 concludes the paper.

2. Materials and Methods

2.1. Dataset Production
2.1.1. Data Acquisition

The blueberry fruit dataset, which serves as the signal source guiding deep convolu-
tional neural networks for blueberry fruit detection, plays a significant role in determining
the overall performance of algorithms. The blueberry fruit images in the dataset came from
two sources. Some were collected from the published dataset in Reference [5]. The others
were collected from an orchard by the camera of an iPhone 11 set to fully automatic mode.
The orchard is located in the Jizhou District, Tianjin, China.

Considering the planting spacing of blueberry plants in the orchard, the photographers
positioned themselves at a distance of 0.4–0.9 m from the blueberry plants. The distance
between the camera and the blueberry plants is 0.2–0.5 m, and the camera is approximately
1.2 m above the ground. The three shooting distances of near, medium, and far correspond
to 0.2–0.3 m, 0.3–0.4 m, and 0.4–0.5 m, respectively, from the camera to the blueberry plants.
Examples of blueberry fruit images at the three shooting distances are shown in Figure 2.
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(a) near distance (b) medium distance (c) far distance 

Figure 2. Examples of blueberry fruit images at the three shooting distances.

The working environment of edge devices in orchards is also affected by external
conditions, such as the presence of branches and leaves. As shown in Figure 3, the blueberry
fruit images in the dataset can be classified into various types. These types include mild
clustering, severe clustering, mild occlusion, severe occlusion, backlighting, and blurred
background. In addition, the blueberry fruit images in the dataset include different time
periods (such as morning and afternoon) and various weather conditions (such as sunny
and cloudy).

  
(a) mild clustering (b) severe clustering 

  
(c)  (d)  

  
(e)  (f)  

Figure 3. Examples of blueberry fruit images in different conditions.

2.1.2. Data Preprocessing

The ripeness of blueberry fruits is mainly judged based on their color. According to
the sensory evaluation method and the expertise of blueberry cultivation experts, blueberry
fruits typically go through three stages of ripening: fully ripe, semi-ripe, and immature.
The color of immature blueberry fruits is similar to that of the branches and leaves of
blueberry plants, while the color of fully ripe blueberry fruits is similar to that of the soil.
LabelImg is a graphical image annotation tool. It was created by Tzutalin at National
Taiwan University with the help of dozens of contributors. In this research, LabelImg is
used to label the original blueberry fruit images according to the labeling format of the
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Pascal VOC dataset and generate .xml-type labeling files. Fully ripe blueberry fruits are
labeled as “blueberry”, semi-ripe blueberry fruits are labeled as “blueberry-halfripe”, and
immature blueberry fruits are labeled as “blueberry-unripe”. When labeling, the bounding
box used is the smallest rectangle that completely encloses the entire blueberry fruit. This
is done to minimize the inclusion of unnecessary pixels from the background.

Training deep convolutional neural networks requires a large amount of data [16]. Too
little data can result in underfitting or overfitting of deep convolutional neural networks.
Therefore, data augmentation needs to be performed on the original blueberry fruit images.
As shown in Figure 4, this research employs various methods, including mirroring, rotation,
scaling, adding noise, and adjusting brightness, to enhance the diversity of the blueberry
fruit images that we have collected. The annotation files corresponding to each image are
transformed simultaneously. The augmented blueberry fruit dataset contains 680 images
and can improve the robustness of deep convolutional neural networks in detecting the
ripeness of blueberry fruits in orchards.

  
(a) original (b) mirroring 

  
(c)  (d)  

  
(e)  (f)  

Figure 4. Data augmentation.

The blueberry fruit dataset is randomly divided into a training set and a validation
set [17]. The data distribution is shown in Table 1. The training set contains 544 images of
blueberry fruits, including 7895 target blueberry fruits. Among these, there are 4310 fully
mature blueberry fruits, 655 semi-ripe blueberry fruits, and 2930 immature blueberry fruits.
The validation set contains 136 images of blueberry fruits, including 2040 target blueberry
fruits. Among these images, there are 1169 fully mature blueberry fruits, 172 semi-ripe
blueberry fruits, and 699 immature blueberry fruits.
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Table 1. Data distribution.

Datasets Number of Blueberry Fruit Images
Number of Target Blueberry Fruits

Total Types Number

blueberry fruit dataset 680 9935
mature 5479

semi-ripe 827
immature 3629

training set 544 7895
mature 4310

semi-ripe 655
immature 2930

validation set 136 2040
mature 1169

semi-ripe 172
immature 699

2.2. The YOLOv5 Algorithm

The YOLOv5 algorithm is one of the algorithms in the YOLO series [18]. It is an
improvement based on the YOLOv4 algorithm. The YOLOv5 algorithm consists of 10 de-
tectors: YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x, and others. The main
differences among them lie in the number of convolutional layers and optimal application
scenarios. As the number of convolutional layers increases, the model size gradually
increases, while the detection performance improves and the detection speed decreases.
This research focuses on the YOLOv5s 7.0 model as the subject. As shown in Figure 5,
the overall network structure of the YOLOv5s 7.0 model can be divided into four parts:
the input layers, the backbone feature extraction networks, the neck enhancement feature
extraction networks, and the output layers.

 

Figure 5. Structure of the YOLOv5 algorithm.

The input layers of the YOLOv5 model include Mosaic data enhancement, adaptive
image scaling, and adaptive anchor box calculation [19]. The Mosaic data enhancement
operation splices input images using random scaling, random cropping, and random
arrangement [20]. It enhances the effectiveness of detecting and recognizing small targets.
The adaptive image scaling operation adds minimal black borders to the original images
while calculating the scaling ratio, scaled size, and padding value for the black borders. In
training deep convolutional neural networks, the optimal anchor box is calculated using
the adaptive anchor box calculation operation. Compared to the method of presetting the
anchor box length and width, this calculation operation minimizes the difference between
the anchor box and the ground truth box. Additionally, through reverse updating, the
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parameters of deep convolutional neural networks are optimized, resulting in improved
performance for target detection and recognition.

In the backbone feature extraction networks of the YOLOv5 model, the CBS module is
responsible for extracting features from images and organizing feature maps. It involves
enhancing dimensionality, reducing dimensionality, downsampling, and normalization
for feature maps. As shown in Figure 5g, a CBS module consists of a Conv2d function, a
BatchNorm2d function, and a SiLU activation function [21,22]. The padding of the Conv2d
function in the CBS module is automatically calculated. The stride of the Conv2d function
in the CBS module is set to 2, and the kernel size is set to 3. Therefore, during the process
of downsampling the feature map to extract the target features, the CBS module reduces
the width and height of the feature map by half each time. The BatchNorm2d function
is a layer for batch normalization, which normalizes the input data in each batch. The
expressions for the SiLU activation function and its derivative are as follows:

SiLU(x) = f (x) = x · sigmoid(x) = x/(1 + e−x) (1)

SiLU′(x) = f ′(x) = x · f (x) · (1− f (x)) + f (x) (2)

where x represents the variable, SiLU(x) represents the SiLU activation function, and
SiLU′(x) represents the derivative of the SiLU activation function. The graph of the SiLU
activation function and its derivative is shown in Figure 6. The SiLU activation function
has the characteristics of being unbounded, smooth, and non-monotonic. It increases
the nonlinearity of the input data. To be specific, the SiLU activation function remains
continuously differentiable as x approaches 0, which helps to avoid the vanishing gradient
problem of deep convolutional neural networks. The SiLU activation function has a weak
negative response at x < 0, which promotes the generalization ability of deep convolutional
neural networks.

Figure 6. Graph of the SiLU activation function and its derivative.

As convolution operations progress, the deep convolutional neural networks extract
increasingly complex feature information. In the shallow layers of the deep convolutional
neural networks, the networks extract relatively simple feature information, such as color,
shape, and texture. These features are visible in graphics, so they are referred to as graphical
features. Next, the deeper convolutional neural networks fuse these graphical features
and expand their dimensions to create new features. The new features are referred to as
semantic features. Graphical features are simplistic and lack semantic depth, while semantic
features provide more comprehensive information but may overlook basic visual elements.

In the neck enhancement feature extraction networks of the YOLOv5 model, the
structure of the Feature Pyramid Network (FPN) and Path Aggregation Network (PANet) is
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utilized to combine shallow graphical features with deep semantic features [23], as depicted
in Figure 7. Specifically, the FPN fuses low-level features by upsampling them to the top-
level features and makes predictions on each fused feature layer. This approach combines
the advantages of low-level and high-level features, effectively improving the performance
of detecting and recognizing small targets. However, while the FPN effectively transmits
semantic features from top to bottom, it does not transmit positional information. Therefore,
the PANet is introduced. The PANet includes a bottom-up path augmentation structure
based on the FPN. This structure utilizes shallow features in deep convolutional neural
networks. The top feature maps can benefit from the abundant positional information
provided by the lower layers. This improves the performance of detecting medium- and
large-sized targets. The structure of the FPN and PANet effectively enhances the detection
and recognition capabilities of deep convolutional neural networks for fruits of various
types and sizes.

 
Figure 7. Structures of the FPN and PANet. (P2, P3, P4, and P5 indicate the feature layers generated
by the FPN. N2, N3, N4, and N5 represent the feature layers generated by the PANet.)

The loss functions of the output layers of the YOLOv5 model consist of three compo-
nents. The Generalized Intersection over Union (GIoU) loss function is used to calculate the
loss for boundary regression [24]. The YOLOv5 model performs weighted Non-Maximum
Suppression (NMS) on GIOU_Loss to achieve the efficient selection of the optimal bound-
ing box. The Binary Cross Entropy with Logits (BCEWithLogits) loss function is used to
calculate the loss for confidence prediction, while the Binary Cross Entropy loss (BCELoss)
function is used to calculate the loss for class prediction.

2.3. The Improved YOLOv5 Algorithm
2.3.1. The ShuffleNet Module

In recent years, there have been some proposals for lightweight structures of deep
convolutional neural networks, such as MobileNet and ShuffleNet. The ShuffleNetV1 is a
lightweight deep-convolutional neural network proposed by MEGVII [25]. The modules
of the ShuffleNetV1 are shown in Figure 8. In order to achieve a good balance between
detection accuracy and speed, the ShuffleNetV1 utilizes the group convolution (GConv)
operation and the channel shuffle operation.

Standard convolution is a method of densely connecting channels. This means that
the feature information from each channel in the feature map of each layer is outputted to
each channel of the feature map in the next layer through a convolution operation. The
process is shown in Figure 9a. The parameters P for standard convolution are as follows:

P = D× D× M× Z (3)
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where D represents the size of the convolution kernel, and M represents the number of
input feature channels. Z represents the number of output feature channels, which is also
equal to the number of convolution kernels.

Figure 8. Modules of the ShuffleNetV1.

(a) standard convolution 

(b) group convolution 

Figure 9. Standard convolution and group convolution.
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Group convolution is a method used to connect sparse convolutions. In this method,
the input feature channel number is divided into G groups. Each group has M/G feature
channels for the convolution kernel. After the convolution operation, each group produces
a feature map with an output feature channel number of N. The process is illustrated in
Figure 9b. The parameters PGC for group convolution are as follows:

PGC = D× D×M/G× Z (4)

Comparing Equations (3) and (4), the parameters and calculations for standard con-
volution are G of the parameters and calculations for group convolution. The group
convolution operation, however, has limitations in terms of its ability to exchange infor-
mation among groups. As shown in Figure 10, the channel shuffle operation reorganizes
the feature information of various groups in the output layers to improve communication
throughout the feature information of each group. This method enhances the learning
capacity of feature information across groups and reduces the computational load of deep
convolutional neural networks.

Figure 10. Channel shuffle schematic.

Ma et al. [26] designed the ShuffleNetV2 based on the ShuffleNetV1. As shown in
Figure 11, the ShuffleNetV2 primarily consists of the basic unit and the downsampling unit.
As shown in Figure 11a, the input feature channels in the basic unit of the ShuffleNetV2 are
divided into two branches through the channel split operation. Each branch has an equal
number of feature channels. The left branch performs identity mapping [27]. The right
branch undergoes two 1 × 1 ordinary convolutions and one 3 × 3 depthwise convolution
(DWConv) while maintaining an equal number of input and output channels. The left and
right branches are merged through the channel concatenation operation, and the channel
shuffle operation is performed to ensure the integration of feature information from both
branches. The downsampling unit of the ShuffleNetV2, shown in Figure 11b, directly inputs
the feature map into two branches. Each branch performs the 1 × 1 ordinary convolution
and 3 × 3 DWConv with a stride of 2. After merging the two branches using the channel
concatenation operation, the number of output channels is doubled. The merged feature
map undergoes the channel shuffle operation. Unlike the basic unit, the downsampling
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unit directly increases the number of feature channels in the deep convolutional neural
networks and expands their width without using the channel split operation. This approach
avoids increasing the computational burden of the deep convolutional neural networks
while further enhancing their feature extraction capabilities.

Figure 11. Modules of the ShuffleNetV2.

Under the same complexity, the ShuffleNetV2 outperforms the ShuffleNetV1, Mo-
bileNetV1, MobileNetV2, and other lightweight deep convolutional neural networks. The
improved YOLOv5 algorithm was built upon the ShuffleNetV2, utilizing the SFB1_X and
SFB2_X architectures. In the improved YOLOv5 algorithm, the backbone networks of the
ShuffleNetV2 have replaced the 1024 convolution operation and the 5 × 5 pooling opera-
tion with the global average pooling operation. This change aims to improve the speed
of detection and recognition by reducing the memory usage of the deep convolutional
neural networks.

2.3.2. The CABM Module

Attention mechanisms originated from the study of human vision [28]. In computer
vision (CV), attention mechanisms are used to process visual information. Traditional
methods, such as the local feature extraction approach and the sliding window approach,
can be considered as types of attention mechanisms. In DL, attention mechanisms are
typically implemented as separate attention modules. Attention modules allow deep neural
networks to assign different weights to different parts of the inputs, enabling them to focus
on relevant units and suppress irrelevant units during the process of feature extraction.
The Convolutional Block Attention Module (CBAM) [29], the Efficient Channel Attention
Module (ECA) [30], and the Squeeze and Excitation Network (SENet) [31] are common
attention mechanisms. The structure of the CBAM module is shown in Figure 12.
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Figure 12. Structure of the CBAM module.

Compared to traditional attention mechanisms that solely focus on channels or spatial
dimensions, the CBAM module consists of two parts: the Channel Attention Module (CAM),
which focuses on channel information, and the Spatial Attention Module (SAM), which
focuses on location information. The CBAM module combines channel information and
spatial information to enable the deep convolutional neural networks to focus on important
features and suppress interference from less significant ones. From our perspective, this
will help address the issue of color similarity between immature blueberry fruits and
their backgrounds, as well as occlusions caused by adjacent blueberry fruits and leaves.
Therefore, this research used the CBAM module to enhance the performance of blueberry
fruit detection and recognition. The overall attention process of the CBAM module used in
this research is described by Equations (5) and (6):

F′ = Mc(F)⊗ F (5)

F′′ = Ms(F′)⊗ F′ (6)

where F represents the original input feature map, F′ represents the adjusted feature map
using the CAM, F′′ represents the final feature map using the SAM, Mc represents the
weight matrix after channel compression, Ms represents the weight matrix after spatial
compression, and ⊗ represents the element-wise multiplication of matrices.

2.3.3. The Improved YOLOv5 Algorithm

The overall network structure of the improved YOLOv5 algorithm is shown in
Figure 13. It mainly consists of four parts: the input layers, the backbone feature extraction
networks, the neck enhancement feature extraction networks, and the output layers. The
input layers of the improved YOLOv5 algorithm accept blueberry fruit images with the
size of 608 × 608 pixels. These images are then passed through the ShuffleNet modules in
the backbone feature extraction networks of the improved YOLOv5 algorithm for blueberry
fruit feature extraction. Subsequently, the blueberry fruit feature maps are sent to the neck
enhanced feature extraction networks of the improved YOLOv5 algorithm for blueberry
fruit feature fusion. Finally, the output layers of the improved YOLOv5 algorithm produce
three prediction anchor boxes of different scales.

Compared to the YOLOv5 model:

(1) First, because the SPPF module needs to perform pooling operations at multiple scales
and splice the results, it takes up more memory space. This limits the application of
network models to resource-constrained devices. In order to achieve lightweight deep
convolutional neural networks, the improved YOLOv5 algorithm removes the SPPF
module from the backbone feature extraction networks of the YOLOv5 algorithm.

(2) Second, the CSP Bottleneck module utilizes the multi-channel separated convolution
operation. Frequently using the CSP Bottleneck module can consume a significant
amount of cache space and decrease the execution speed of deep convolutional neural
networks. The ShuffleNet modules with Shuffle channels are used to replace the
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CSPDarknet-53 modules in the backbone feature extraction networks of the YOLOv5
algorithm for blueberry fruit feature extraction.

(3) Finally, the CBAM modules are integrated into the neck enhancement feature extrac-
tion networks of the YOLOv5 algorithm to enhance the feature fusion capability of
deep convolutional neural networks. This enables the efficient extraction of important
features and the suppression of irrelevant ones.

 

Figure 13. Structure of the improved YOLOv5 algorithm.

3. Results and Discussion

3.1. Experimental Platforms

The hardware platform used for the experiments is as follows: the CPU was a 13th
Gen Intel® Core™ i5-13600K with 14 cores and 20 threads. It has a base frequency of 3.50
GHz and a maximum boost frequency of 5.10 GHz. The GPU was an NVIDIA GeForce RTX
3080 with 12 GB of memory and 8960 CUDA cores, which enable the accelerated training of
deep convolutional neural networks. The memory consisted of two Hynix DDR5 5600 MHz
16 GB DIMMs (Dual In-Line Memory Modules). The hard disk was a Samsung SSD980
PRO with a capacity of 1 TB. The motherboard was an MSI PRO Z790-A WIFI DDR5.

The software configuration for the experiments is as follows: the operating system
is Windows 11. The programming language is Python 3.8. The integrated development
environment is PyCharm 2020.3.5. The DL framework is PyTorch 1.11.0. The parallel
computer framework is CUDA 11.4.0, and the DL acceleration library is cuDNN 8.2.2.

In addition, this research sets the batch size to 32. The process of going through all
the data in the blueberry fruit dataset once is referred to as one epoch, and the improved
YOLOv5 algorithm runs for 1600 epochs. The values of the conf-thres parameter and
iou-thres parameter are both set to 0.5.

3.2. Evaluation Metrics

To compare the performance of different fruit detection and recognition methods, the
evaluation metrics of Precision (P), Recall (R), Average Precision (AP), and mean Average
Precision (mAP) are used. The calculation formulas are shown in Equations (7)–(10). P
represents the probability that the positive sample is accurately identified as the positive
example by the classifier. R represents the classifier’s ability to correctly identify all positive
samples. The area enclosed by the P-R curve is represented by AP. The P-R curve is formed
with the R as the independent variable and the P as the dependent variable. mAP is the
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average AP value across multiple categories [32]. It measures the classifier’s ability to
effectively detect and recognize all classes.

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

AP =
∫ 1

0
P(R)dR (9)

mAP =
1
N
·

n

∑
i=1

(APi) (10)

where TP represents the number of correctly detected blueberry fruits, FP represents the
number of erroneously detected blueberry fruits, FN represents the number of missed
blueberry fruits, and N represents the number of categories for object detection.

In addition, the complexity, computational efficiency, and real-time performance of
the improved YOLOv5 algorithm are evaluated by considering factors such as model size,
network parameters, FLOPs, and detection speed.

3.3. Experimental Results

Experiments were conducted to test the detection effect of blueberry fruit ripeness. The
P curve, R curve, P-R curve, and F1 curve of the improved YOLOv5 algorithm are shown
in Figure 14. For the category of fully mature blueberry fruits with abundant samples, the
mAP@0.5 are the highest, and there are few false detections and missed detections. The
category with the second-highest mAP@0.5 is the immature blueberry fruit category, while
the semi-ripe blueberry fruit category has the lowest mAP@0.5.
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(a) P curve (b) R curve 

 
(c) P-R curve (d) F1 curve 

Figure 14. Experiment results of the improved YOLOv5 algorithm.

The examples of the detection effects of the improved YOLOv5 algorithm are shown
in Figure 15. As shown in Figure 15a, the improved YOLOv5 algorithm demonstrates
excellent detection results for blueberry fruits in close-range and medium-range images. It
effectually detects blueberry fruits and recognizes their ripeness. As shown in Figure 15b,
for blueberry fruits that are located at a greater distance, there is a higher likelihood of both
false detection and missed detection. As shown in Figure 15c,d, the improved YOLOv5
algorithm can also effectually detect blueberry fruits, even in situations involving mild
clustering, mild occlusion, backlighting, and blurred background. However, as shown in
Figure 15b, the improved YOLOv5 algorithm may face challenges in effectually detecting
blueberry fruits in scenarios with severe clustering and severe occlusion. This is because
these instances do not provide enough distinctive feature information for classification.
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(a) (b) 

  
(c) (d) 

Figure 15. Examples of the detection effects of the improved YOLOv5 algorithm.

Generally speaking, the improved YOLOv5 algorithm achieves a P of 96.3%, a R of
92%, and a mAP of 91.5% at a threshold of 0.5. The average detection speed of the improved
YOLOv5 algorithm is 67.1 fps with a batch size of 1 on the NVIDIA GeForce RTX 3080.
The improved YOLOv5 algorithm has a 5.65 MB model size, 2.85 M network parameters,
and 5.6 G FLOPs. It is suitable for migration and deployment on edge devices such as
agricultural UAVs and agricultural UGVs.

3.4. Performance Comparison

This research also trains the YOLOv5, SSD, and Faster R-CNN algorithms using the
blueberry fruit dataset. Their performance is then compared to the improved YOLOv5
algorithm. The performance of various blueberry fruit detection algorithms is presented
in Table 2.
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Table 2. Performance comparison of the various blueberry fruit detection algorithms.

Metrics/Models YOLOv5 YOLOv5-Ours SSD-vgg Faster R-CNN-vgg

P (%)

mature 98.7 97.8 96.0 93.1
semi-ripe 95.5 96.3 92.7 87.1
immature 97.0 94.9 96.2 85.6

mean value 97.1 96.3 95.0 88.6

R (%)

mature 93.5 92.9 96.0 95.8
semi-ripe 91.3 90.1 89.0 90.1
immature 93.4 93.0 93.9 93.0

mean value 92.7 92.0 93.0 93.0

mAP@0.5 (%)

mature 95.1 93.7 95.9 95.6
semi-ripe 91.0 88.8 88.0 89.1
immature 93.5 91.9 92.5 91.0

mean value 93.2 91.5 92.1 91.9

Model size (MB) 13.6 5.65 91.6 521.0
Parameter (M) 7.02 2.85 23.6 136.7

FLOPs (G) 15.8 5.6 246.6 376.5
Speed (fps) 66.2 67.1 44.4 17.0

As shown in Table 2, when compared to the YOLOv5 algorithm, the improved YOLOv5
algorithm exhibits a 0.8% decrease in precision, a 0.7% decrease in recall, and a 1.7%
decrease in mAP@0.5. However, the model size, network parameter, and FLOPs of the
improved YOLOv5 algorithm decrease by 7.95 MB, 4.17 M, and 10.2 G, respectively. The
average detection speed of the improved YOLOv5 algorithm increases 0.9 fps.

Compared to the SSD-vgg, the improved YOLOv5 algorithm exhibits a 1.0% decrease
in recall and a 0.6% decrease in mAP@0.5. However, the model size, network parameter,
and FLOPs of the improved YOLOv5 algorithm decrease by 85.95 MB, 20.75 M, and 241.0 G,
respectively. The precision and average detection speed of the improved YOLOv5 algorithm
increase by 1.3% and 22.7 fps, respectively.

Compared to the Faster R-CNN-vgg, the improved YOLOv5 algorithm exhibits a 1.0%
decrease in recall and a 0.4% decrease in mAP@0.5. However, the model size, network
parameter, and FLOPs of the improved YOLOv5 algorithm decrease by 515.35 MB, 133.85 M,
and 370.9 G, respectively. The precision and average detection speed of the improved
YOLOv5 algorithm increase by 7.7% and 50.1 fps, respectively.

Generally speaking, when compared to the YOLOv5, SSD, and Faster R-CNN, the
improved YOLOv5 algorithm has a smaller model size, smaller network parameters, lower
memory usage, lower computation usage, and faster detection speed while maintain-
ing high detection performance. It is more suitable for migration and deployment on
edge devices.

For the purpose of testing the impact of each module changed in the improved
YOLOv5 algorithm, this research conducted a comprehensive ablation study. The YOLOv5-
ShuffleNet algorithm only replaced the CSPDarknet-53 module in the backbone feature
extraction networks of the YOLOv5 algorithm with the ShuffleNetv2 module. The YOLOv5-
CBAM algorithm only integrated the CBAM module into the neck enhancement feature
extraction networks of the YOLOv5 algorithm. Table 3 presents the performance compari-
son among the YOLOv5, YOLOv5-ShuffleNet, YOLOv5-CBAM, and YOLOv5-ShuffleNet-
CBAM algorithms.
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Table 3. Results of the ablation study.

Metrics/Models YOLOv5 YOLOv5-ShuffleNet YOLOv5-CBAM YOLOv5-ShuffleNet-CBAM

P (%)

mature 98.7 97.8 98.8 97.8
semi-ripe 95.5 94.5 97.5 96.3
immature 97.0 95.9 97.1 94.9

mean value 97.1 96.1 97.8 96.3

R (%)

mature 93.5 90.8 96.1 92.9
semi-ripe 91.3 89.5 90.6 90.1
immature 93.4 88.3 95.1 93.0

mean value 92.7 89.5 93.9 92.0

mAP@0.5 (%)

mature 95.1 91.6 96.5 93.7
semi-ripe 91.0 88.8 94.0 88.8
immature 93.5 87.2 90.4 91.9

mean value 93.2 89.2 93.6 91.5

Model size (MB) 13.6 2.8 13.6 5.65
Parameter (M) 7.02 2.84 7.02 2.85

FLOPs (G) 15.8 5.5 15.8 5.6
Speed (fps) 66.2 77.0 57.1 67.1

As shown in Table 3, when compared to the YOLOv5 algorithm, the YOLOv5-Shuffle
algorithm exhibits a reduction in model size, network parameters, and FLOPs by 10.8 MB,
4.18 M, and 10.3 G, respectively. The detection speed increases by 11.2 fps. When com-
pared to the YOLOv5-CBAM algorithm, the YOLOv5-Shuffle-CBAM algorithm exhibits a
reduction in model size, network parameters, and FLOPs by 7.95 MB, 4.17 M, and 10.2 G,
respectively. The detection speed increases by 10 fps. The experimental results demon-
strate that the ShuffleNet module can effectively achieve lightweight deep convolutional
neural networks.

When compared to the Yolov5 algorithm, the YOLOv5-CBAM algorithm exhibits an
increase of 0.7% in precision, a 1.2% increase in recall, and a 0.4% increase in mAP@0.5.
When compared to the YOLOv5-ShuffleNet algorithm, the YOLOv5-ShuffleNet-CBAM
algorithm demonstrates an improvement of 0.2% in precision, a 2.5% improvement in recall,
and a 2.3% improvement in mAP@0.5. The experimental results demonstrate that the CBAM
module can effectively enhance the feature extraction capability of deep convolutional
neural networks.

4. Conclusions

Because most fruits mature in batches during their growth process, assessing fruit
maturity is an important step in intelligent orchard management. Effective detection
and statistics of fruit maturity are beneficial for planning fruit harvests and estimating
fruit yields.

(1) This research proposes a lightweight detection method based on an improved YOLOv5
algorithm. First, in order to achieve lightweight deep convolutional neural networks,
the improved YOLOv5 algorithm removes the SPPF module from the backbone
feature extraction networks of the YOLOv5 algorithm. The ShuffleNet modules with
Shuffle channels are used to replace the CSPDarknet-53 modules in the backbone
feature extraction networks of the YOLOv5 algorithm for blueberry fruit feature
extraction. Second, the CBAM modules are integrated into the neck enhancement
feature extraction networks of the YOLOv5 algorithm to enhance the feature fusion
capability of lightweight deep convolutional neural networks.

(2) The experimental results demonstrate that the improved YOLOv5 algorithm can
effectively utilize RGB images to detect blueberry fruits and recognize their ripeness.
The improved YOLOv5 algorithm achieves a P of 96.3%, an R of 92%, and a mAP of
91.5% at a threshold of 0.5. The average detection speed of the improved YOLOv5
algorithm is 67.1 fps with a batch size of 1 on the NVIDIA GeForce RTX 3080. The
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improved YOLOv5 algorithm has a 5.65 MB model size, 2.85 M network parameters,
and 5.6 G FLOPs. Compared to other detection algorithms such as YOLOv5, SSD, and
Faster R-CNN, this method has a smaller model size, smaller network parameters,
lower memory usage, lower computation usage, and faster detection speed while
maintaining high detection performance.

Future research will explore more efficient and lightweight feature extraction modules
for deep convolutional neural networks. This will enable the network model to better
extract the intricate and variable characteristics of blueberry fruits.
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Abstract: This research delves into the application of machine learning methods for predicting the
yield of potato varieties used for French fries in Poland. By integrating a comprehensive dataset
comprising agronomical, climatic, soil, and satellite-based vegetation data from 36 commercial potato
fields over five growing seasons (2018–2022), we developed three distinct models: non-satellite,
satellite, and hybrid. The non-satellite model, relying on 85 features, excludes vegetation indices,
whereas the satellite model includes these indices within its 128 features. The hybrid model, combin-
ing all available features, encompasses a total of 165 features, presenting the most-comprehensive
approach. Our findings revealed that the hybrid model, particularly when enhanced with SVM
outlier detection, exhibited superior performance with the lowest Mean Absolute Percentage Error
(MAPE) of 5.85%, underscoring the effectiveness of integrating diverse data sources into agricultural
yield prediction. In contrast, the non-satellite and satellite models displayed higher MAPE values,
indicating less accuracy compared to the hybrid model. Advanced data-processing techniques such
as PCA and outlier detection methods (LOF and One-Class SVM) played a pivotal role in model
performance, optimising feature selection and dataset refinement. The study concluded that machine
learning methods, particularly when leveraging a multifaceted approach involving a wide array of
data sources and advanced processing techniques, can significantly enhance the accuracy of agricul-
tural yield predictions. These insights pave the way for more-efficient and -informed agricultural
practices, emphasising the potential of machine learning in revolutionising yield prediction and
crop management.

Keywords: machine learning; yield prediction; potato

1. Introduction

The potato (Solanum tuberosum L.) is one of the basic species of cultivated plants in
the world. According to FAOSTAT data, the world potato production in 2021 reached
359 million t, and the pioneers in the cultivation of this species were China, India, and
Ukraine [1]. In 2021, the highest tuber yield per hectare was recorded in the United
States, approximately 51 t, New Zealand, 50.7 t, and Kuwait, 48.7 t. In Europe in 2021,
the countries with the highest yield of potato tubers were: France, the Netherlands, Belgium,
and Germany. In these countries, the discussed species yields were in the range of 40 to
45 t/ha [2].
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In recent years, a change in culinary preferences of consumers towards potatoes has
been observed, translating directly to trends in the cultivation of this plant. Currently,
the dynamic growth of the market of “convenience” food, as well as fried products can
be noted in developing and developed countries around the world [3]. The intensive
development of potato processing contributed to the increase in the demand for fast food.
Current trends in agricultural development strongly support precision agriculture. The idea
behind this is centred on the keywords: observation, measurement, and constant response
to inter- and intra-field crop variability [4]. In the case of industrial potato production,
precision agriculture—constant monitoring of crop condition—is needed because of the
desired good quality of the final raw material while maintaining a high level of commercial
yield. Despite the many tools developed to monitor and analyse potato growth and yield
over the last 20–30 years, with a peak in sensor development in the last 10 years, many fry
potato farms are looking for superior solutions. Widely tested and refined predictive tools
for estimating yield and quality prior to final harvest use advanced artificial intelligence
methods, among others. It is believed that crop growth monitoring and yield mapping
will become mainstream farm research and development in the coming years. Many input
parameters specific to specialised crops have become more readily available. For example,
remote sensing data on crop emergence date and aboveground biomass are being used to
better set model parameters [5,6]. Hybrid forms of sensor systems and crop growth models
will provide better information on crop growth during the season. This, combined with
weighing systems and cameras on harvesters, will provide site-specific information on the
yield and quality of harvested potatoes [7,8].

Research on the use of plant models in predicting potato yield at the field scale has
been conducted for over half a century, but their intensity has increased since the beginning
of the second decade of the 21st Century [9]. In these studies, it can be observed that
classical plant growth models primarily utilise ground-based data, including commonly
used factors such as nitrogen fertilisation levels, air temperature values, sunlight exposure,
and precipitation levels. This applies to a wide range of models such as SUBSTOR Potato,
CROPSYST-SIMPOTATO, and Potato Calculator [10–14]. It is noted that the limitations for
the practical application of such models at the field production scale are data availability,
the cost of data acquisition, and data quality issues. From another point of view, another
source of input data for predictive models is satellite imagery [14]. With the development of
satellite Earth observation systems, improved RS data availability for practical applications,
and the increased quality of these data in terms of spatial and temporal resolution, satellite
data have been increasingly incorporated into potato predictive models [15,16]. When it
comes to potato yield forecasting at field scale, there are few publications describing the
combined use of ground-based data (soil, agronomy, weather) and satellite data (vegetation
indices) as the input parameters for models [12,17–21]. In the practical application of
predictive models in agricultural decision support systems, the flexibility of data source
selection for modelling becomes an important functional requirement, considering the
aforementioned data availability and quality issues. Often, farmers do not have complete
sets of ground-based or satellite data. Therefore, there is a need to evaluate and compare
ground-based, satellite, and hybrid models that combine data from both types of sources.

Knowledge of yield determinants is important in the development of crop-management-
improvement models [1] for both prediction and classification. In the correct construction
of production models, it is useful to demonstrate good knowledge of the research object
and to have knowledge of yield determinants and potential disturbances, changing the
final modelling effect in an independent way [22,23]. The traits explaining varietal yield
or supporting potato yield potential in forecasting models in the literature are classified
according to the following categories [15,23,24]:

• Weather traits;
• Agricultural traits;
• Traits conditioned by genotype and phytophenological traits;
• Soil environment;
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• Spectral data, including vegetation indices;
• Indicators related to plant productivity.

Data on weather conditions during the growing season can be treated as a disturbance
over which both producers and predictive model developers have no direct influence.
The most-advantageous solution from the point of view of preparing climatic model data
is the selection of years in which the weather conditions represent the optimal case for
the place of cultivation and observation. The dominant meteorological features in the
prediction models are: total precipitation, average, minimum, and maximum daily air
temperatures, insolation, relative air humidity, evapotranspiration, etc. [23,25–27].

Agrotechnical features are nothing more than variants of potato cultivation, i.e., the
sum of mineral and organic fertilisation, the soil cultivation system, irrigation, plant pro-
tection, forecrops, etc. [23,28]. In the case of potato cultivation intended for processing, in-
cluding French fry varieties, agrotechnical requirements and recommendations are usually
prepared by companies purchasing the raw material. Such action guarantees an acceptable
level of tuber yield and an even quality of the yield taken from different suppliers.

Features associated mainly with genotype and phytophenological features (meaning
successive stages of development achieved by plants while growing in the field) are im-
portant for obtaining a satisfactory raw material in terms of quality [29]. Favourable soil
conditions are very crucial in potato cultivation. It is known that cultivated plants are
“more sensitive” to the abundance of available nutrients in the soil than to the ongoing fer-
tilisation [30,31]. It is also important to maintain the recommended pH and looseness of the
soil. Potato cultivation in the desired conditions reduces the occurrence of soil diseases [32],
as well as prevents bruises [33]. Features related to potato productivity are usually various
indicators, the interpretation of which allows for ongoing analysis of growth, yield, and
photosynthetic activity.

In yield-forecasting models, the following are most-often used: Photosynthetically
Active Radiation (PAR) and Leaf Area Index (LAI) [34,35]. Measuring these indicators is
relatively easy, and the final data are not difficult to interpret. Information obtained using
remote sensing and GIS methods is becoming increasingly important in the management
of potato cultivation and, thus, in the creation of reliable predictive models. Vegetation
indices calculated using these methods are a kind of quantitative measure that is correlated
with the amount of biomass or the condition of the vegetation. They are usually formulated
as a combination of two or three spectral channels (with red and near-infrared being the
most-common). Their values are added, divided, or multiplied in order to obtain one value
(index), which tells about the amount and condition of the vegetation [24,36]. A wide appli-
cation in tuber yield-forecasting models has been confirmed for the Normalised Difference
Vegetation Index (NDVI) [37], Normalised Difference Red Edge index (NDRE) [38], Potato
Productivity Index (PPI) [16], SAVI, RDVI, and EVI.

In recent years, a departure from the use of classic models for predicting the yield of
potato tubers, such as SUBSTOR, POTATO, Lintul-POTATO, etc., can be observed. Classical
regression models also do not fully fulfil their role, because the forecast errors generated
by such models are very high and, therefore, unacceptable in agriculture [23]. The trend
of scientific development in yield modelling runs in two directions. One of them is the
improvement by researchers of classic potato models—adapting them to specific climatic or
cultivation conditions [10]. The second approach involves modern and reliable modelling
techniques—Artificial Neural Networks (ANNs) [23,39], decision trees [37], and deep
learning [15,40]. It is worth emphasising that the most-important feature of neural models
is their ability to generalise the knowledge they acquire during a specific network learning
process. Designing the proper structure of a neural network and determining its parameters
requires the use of advanced optimisation algorithms. Solving a specific problem always
involves the choice of the type of network. Forecasting issues are usually implemented
using MLP models [23,24,41–45]. Neural modelling plays a significant role when solving
practical problems requiring a quick response is expected [46]. In addition, analysis carried
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out using nonlinear models, which include neural models, are characterised by a smaller
forecast error compared to classical methods [47].

Predicting crop yields is an important task for agriculture, and predictive models can
be useful in this process. However, there are some limitations and potential sources of error
that are worth considering. Here are some of them [48–52]:

• Dependence on historical data.
• Disregarding nonlinear factors.
• Variability of environmental conditions.
• Errors in measurements and other inputs.
• No consideration of changes in agricultural practices.
• Complexity of the interaction between factors.

It is important to understand these limitations and potential sources of error in crop
yield prediction. Models can be useful tools, but they should be used carefully, take into
account a variety of factors, and evolve with advances in knowledge and data availability.

The aim of this article was to create three models predicting the yield of French fry
potatoes grown in Poland using machine learning methods. The research focused on
several important scientific aspects, including a thorough analysis of empirical data, which
allowed the creation of predictive data aggregates. By subjecting the partial classification
results to detailed interpretations, it was possible to reject data introducing distortions and
noise in the prediction. Finally, based on the MAPE values, the most-accurate model for
predicting tuber yield was indicated.

2. Materials and Methods

2.1. Dataset Description

The data used in this work came from 114 commercial potato fields located in northern
Poland. Fields with potato cultivation varied in area from 6.5 to 156 ha. The cultivated
potato varieties were Innovator, Ludmilla, Ivory Russet and Zorba. The data covered
five growing seasons in the years 2018–2022, containing several types of information,
i.e., agronomical data, climatic data, satellite-based vegetation, satellite data, and soil data.
Source data were obtained from databases of different natures: public databases as open
data, private databases of farmers, and ERP databases of agricultural producers. The field
locations are presented in Figure 1. The structure of the potato dataset is shown in Table 1.

The data were divided into two sets, referred to as ground-based data (agronomic
and weather data) and satellite-based data. These two sets constituted the sets for the
non-integrated terrestrial and non-integrated satellite predictive models, respectively. Both
sets were the basis for the creation of the hybrid models.

2.1.1. Data Augmentation

The data augmentation process plays a crucial role in enhancing the performance of
machine learning models, especially when dealing with limited datasets. In the context of
predicting potato yield, data augmentation involves creating synthetic but realistic data
points based on the existing dataset. The augmentation procedure can be broken down into
several key steps and has been described below.

Augmentation loop: For each record in the dataset, the algorithm performs the follow-
ing steps multiple times (5 times), as determined by the number of copies specified:

1. A random change percentage (between 0.01 and 0.05) is chosen within a predefined
range, which determines the degree of modification for the augmentation.

2. Noise is generated based on the random change percentage and is applied to both
the features and the target variable. This noise addition simulates realistic variability
within the data.

3. The new synthetic record, created by applying noise, is then denormalized to bring it
back to the original data scale.

4. The synthetic record is appended to the augmented dataset along with its correspond-
ing textual data.
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Figure 1. Field locations for the data-collection process: map of Poland, with marked general field
placement areas (Top), and a close-up map for the area of Słupsk (A) and Poznań (B).

Table 1. Number of fields for the presented experiments, containing different potato varieties during
consecutive years.

Variety 2018 2019 2020 2021 2022 Total

Innovator 60 65 40 55 20 240
Ludmilla 20 30 30 20 15 115
Ivory Russet 5 10 0 0 0 15
Zorba 5 20 15 10 0 50

Total 90 115 95 85 35 420

2.1.2. BBCH-Scale

Part of the data was allocated to the growth stages of the crops cultivated. A uni-
versally available BBCH-scale was used in that aspect. The abbreviation BBCH derives
from the names of the original participating stakeholders: “Biologische Bundesanstalt,
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Bundessortenamt und Chemische Industrie”. The BBCH-scale is used to identify the phe-
nological development stages of plants. It was developed for a range of crop species, where
similar growth stages of each plant are given the same code. The phenological development
stages of plants are used in a number of scientific disciplines (crop physiology, phytopathol-
ogy, entomology, and plant breeding) and in the agriculture industry (risk assessment of
pesticides, timing of pesticide application, fertilisation, and agricultural insurance).

The BBCH-scale uses a decimal code system, which is divided into principal and sec-
ondary growth stages and is based on the cereal code system (the Zadoks scale) developed
by Jan Zadoks. The phenological development stages obtained from the producer were in
following ranges [53,54]:

(1) BBCH 0–10 (from planting to the beginning of emergence);
(2) BBCH 11–50 (from the beginning of emergence to the beginning of tuber setting);
(3) BBCH > 50 (from the beginning of tuber setting to harvest).

Based on the imported data, the BBCH phase limits in the ranges: (1), (2), and (3) were
assigned and later used to calculate the aggregated data.

2.1.3. Agronomic Data

The agronomic data were obtained from the Plantator System [55] by Seth Software,
as well as from the Plantator System operating during production in regard to: crop register,
harvest registration, and registration of hourly work results. The acquired data have
different formats, so in some cases, it was necessary to obtain a preprocessed dataset,
e.g., from soil test results (pdf) or the locations of crops (jpg). The agronomic data also
came from private grower databases. Information on the use of irrigation treatment in the
irrigated/non-irrigated structure was also an explanatory feature.

2.1.4. Climate Data

Information on the weather data was gathered from agrometeorological stations
situated near the cultivated areas. In cases where there were no local stations, relevant data
were acquired from public databases, specifically from weather stations managed by the
Institute of Meteorology and Water Management-National Research Institute (IMGW).

2.1.5. Soil Data

Depending on the season, the data regarding soil nutrient content came from different
soil testing laboratories. Similarly, the data regarding liquid and solid mineral fertilisa-
tion were obtained, resulting in the variability of the analysed components and different
units of measurement. All laboratories were nationally accredited for the soil parameters
analysed. The soil parameters considered were: the pH and the phosphorus, potassium,
and magnesium content. These are the range of parameters most often contracted for soil
analyses by agricultural producers in Poland.

2.1.6. Satellite Data

The crop vegetation data were obtained through satellite remote sensing. The primary
image database utilised in this study was the European Copernicus Sentinel 2 mission’s
image database. The Google Earth Engine (GE) platform served as the direct data collection
(“COPERNICUS S2 SR”). A Python script was developed by the authors to acquire, filter,
and process images and calculate the Vegetation Indices (VIs). The script was executed on
a local server, which communicated with the GEE service.

The secondary image database utilised in this study was the PlanetScope images
(Planet Labs), geometrically and atmospherically corrected. The images, clipped to the
analysed ROI, were downloaded via Planet’s dedicated Data API.

In the initial step, the images for each of the potato fields were filtered based on
cloud cover (threshold ranging from 7% to 13% depending on the year) using the QA60
band, for Sentinel and from the “cloud_percent” metadata for PlanetScope. The threshold
depended on the availability of images for a given ROI. If there were not at least 3 images for
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the ROI in the time period analysed, the threshold was automatically increased. The images
and corresponding reflectance values were analysed for the period between April 1 and
the end of September for each year under study. The VIs were then calculated for the
acquisition date using the obtained reflectance values.

The following vegetation indices were applied in this study: Enhanced Vegetation
Index (EVI), Normalised Difference Vegetation Index (NDVI), Renormalised Difference
Vegetation Index (RDVI), and Soil-Adjusted Vegetation Index (SAVI) [56]. These VIs are
widely used in the literature for predicting potato yield and were calculated according to
the Index DataBase. Finally, a total of 16 vegetation features were calculated for the 4 VIs,
including the minimum, mean, maximum, and standard deviation groups.

2.1.7. Selyaninov Hydrothermal Coefficient

The investigation of climate variation is a subject of keen interest among scientists in
various fields, such as hydrology, meteorology, agriculture, and forestry. All of them aim
to determine the most-accurate climatic conditions that will prevail in a specific region in
the future. Despite having greater computing power, the analysis of increasingly complex
models reveals that numerous environmental factors still need to be considered, rendering
the issue unresolved.

Central Europe’s different climate change scenarios suggest that an increase in tempera-
ture will be accompanied by a slight rise in annual precipitation, which will be redistributed
throughout the year. Winter precipitation is projected to increase while summer rainfall
to decrease. Given the limited retention capacity and a concomitant increase in evapora-
tion, the amount of water available to plants will be reduced during the growing season,
and there may be a depletion of reserves from the winter season. Moreover, the growing
variance of precipitation and temperatures should not be overlooked as it indicates that
unfavourable extreme situations for plant production are likely to occur more frequently.

One aspect that requires close monitoring is the evaluation of water availability in a par-
ticular area, particularly in extreme cases such as floods and droughts. Different indicators
are used to measure the severity of water scarcity, one of which is the Selyaninov Hy-
drothermal Coefficient (HTC). This coefficient assesses drought based on the formula [57]:

HTC = 10 ∑ niPi ∑ niti (1)

where:
n—the length of the period considered in days;
Pi—the rainfall on the i-th day (mm);
ti—the average daily temperature on the i-th day (°C).

Based on the above properties, three aggregated parameters for three vegetation stages
(BBCH-based) were generated to be used as additional prediction features. The rainfall and
temperature values used to calculate the HTC were taken from the IMGW net and our own
agrometeorological stations, as described in Section 2.1.4.

2.1.8. GDD Features

When plants are not subjected to extreme conditions such as abnormal drought or
disease, they usually grow incrementally, and the prevailing temperature heavily influences
their growth rate. The Growing Degree Days (GDDs) [58] parameter considers various
aspects of local weather, enabling farmers to anticipate and even regulate the pace at which
their plants mature, particularly in greenhouse settings.

Provided the plants are not affected by other environmental factors such as soil
moisture, their developmental rate from emergence to maturity hinges on the daily air tem-
perature. Specific developmental phases of plants and insects depend on the accumulation
of specific quantities of heat, allowing the prediction of when these events should occur
during a growing season, regardless of temperature differences across years. The GDDs are
defined as the number of degrees above the base temperature, which varies depending on
the crop species. The base temperature is the temperature at which plant growth is zero.
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To calculate the GDDs, each day’s maximum and minimum temperatures are added
and divided by two, and the base temperature is then subtracted. The GDDs are accumu-
lated by adding each day’s GDD contribution as the season progresses. GDDs can be used
for various purposes, including:

• Assessing a region’s suitability for cultivating specific crops;
• Estimating the growth stages of crops, weeds, or insects;
• Predicting the maturity and cutting dates of forage crops;
• Determining the optimal timing of fertiliser or pesticide application;
• Estimating heat stress on crops;
• Planning the spacing of planting dates to produce separate harvest dates.

These parameters can be calculated as shown in Equation (2):

GDD = ∑
i=1

niTavg (2)

where:
GDD—the Growing Degree Day (°C);
n—the length of the period considered in days;
Tavg—the average daily air temperature ≥ 0 (°C).

Similar to the HTC, aggregated parameters for the three vegetation stages (BBCH-
based) were generated based on this parameter.

2.1.9. Total Numerical features

After the initial analysis, a set of features was derived for the presented experiments.
Apart from the basic crop data (season, variety, acreage, location of cultivation, age of
cultivation, yield), we used the BBCH-scale (see Section 2.1.2).

A total of 250 potential explanatory features were derived for the target. The target
variable is defined as the total yield of the harvested crop (harvest) (potato). All numerical
data (both explanatory and dependent features) were aggregated to full years (2018, 2019,
2020, 2021, and 2022). The target variable was measured in tons (t). A summary of all
the numerical feature groups used in the prediction of potato yield before data pruning is
presented in Table 2.

Table 2. Summary of all the numerical feature groups used in the prediction of potato yield before
data pruning.

Group of Features No. of Features

Aggregated weather features 7
Weather features 92

Soil features 17
Agrotechnical treatment features 6

Vegetation indexes GE 64
Vegetation indexes PL 64

Total 250

2.1.10. Data Pruning: Addressing Missing Values

In this study, a common challenge of dealing with missing values in the dataset was
encountered. Any data analysis, irrespective of the statistical methods applied, is only as
robust as the quality and completeness of the data being analysed. In this case, the dataset
initially comprised 250 features collected for predicting potato yield.

The initial step was to identify the extent of missing data in the dataset. This process
of quantification was carried out by calculating the percentage of missing values in each
variable. It is crucial to note that the quantity of missing values can considerably influence
the performance and accuracy of AI models.
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In order to maintain the integrity of our study, we established a cutoff threshold of
50%. Any variable with more than 50% missing values was deemed unreliable for our
analysis due to the massive information gap. The rationale behind this decision was that
imputing more than 50% of the data of a variable can introduce a substantial amount of
bias and distortion in the prediction model. It also raises concerns about the reliability and
validity of the subsequent findings, as more than half of the information would be synthetic
or based on estimates. This decision was rooted in a balance between retaining valuable
data and ensuring the reliability and robustness of our models. The rationale for choosing
this specific threshold was multi-faceted:

• Data integrity: When more than half of the data for a variable are missing, the integrity
and representativeness of that variable become questionable. With over 50% missing
data, any form of imputation would largely be based on speculation, rather than
trends or patterns inherent in the data.

• Statistical significance: Variables with significant missing data can potentially skew
the results and lead to unreliable conclusions. By setting the threshold at 50%, we
aimed to maintain variables that had a statistically significant amount of data, thereby
ensuring that our models were built on solid and representative foundations.

• Balance between data retention and quality: The 50% threshold strikes a balance
between retaining as much data as possible and ensuring the quality of the dataset.
This threshold allowed us to keep a substantial portion of the dataset while avoiding
the pitfalls of basing our analysis on largely imputed or speculative data.

• Benchmarking against standard practices: This threshold is in line with common
practices in data science and statistical analysis, where a 50% cutoff is often used as a
standard for determining the viability of a variable in a dataset.

By implementing this threshold, we aimed to enhance the robustness and reliability of
our predictive models. This approach allowed us to use a dataset that was both compre-
hensive and credible, leading to more-accurate and -trustworthy outcomes in our study.

After a rigorous examination, it was confirmed that 85 out of 250 features had missing
data exceeding the 50% threshold. Therefore, to ensure the reliability of the succeeding
analysis, as well as to maintain the robustness of the model, it was decided to exclude those
features from the dataset.

Thus, the pruned dataset contained only 86 features, ready for further analysis and
AI model training. This data-reduction method helped to maintain the data quality while
ensuring that the future predictive model would not suffer from the adverse impacts of
missing values and imputation bias.

Moving forward, these 165 features will be used to develop our artificial-intelligence-
based prediction models. The retained features were carefully selected from the dataset
after excluding those with excessive missing data. The list of the remaining 165 features
includes the following:

Taking this strategic approach to data management was meant to ensure the most-
accurate and -meaningful results from the AI models in the prediction of potato yield.
The final list of numerical feature used in potato yield prediction is presented in Table 3,
with a summary of the number of final numerical feature groups provided in Table 4.
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Table 3. List of the number of numerical feature groups used in the prediction of potato yield after
data pruning.

Variable Type List of Variables

Agrotechnical treatment features (4 items) Liquid fertilisation, spraying, planting,
broadcast fertilisation

Weather features (23 items)

Average temperature (°C), rainfall (mm), air
temperature1 (°C), air temperature2 (°C), air
temperature3 (°C), solar panel (mV),
precipitation (mm), wind speed AVG (m/s),
wind speed Min (m/s), wind speed Max (m/s),
battery (mV), leaf wetness time (min), HC
serial number, HC air temperature AVG (°C),
HC air temperature Max (°C), HC air
temperature Max (°C), HC relative humidity
AVG (%), HC relative humidity AVG (%), HC
relative humidity AVG (%), Dev point
temperature AVG (°C), Dev point temperature
Max (°C), vapour pressure deficit AVG (mBar),
vapour pressure deficit Min (mBar)

Aggregated weather features (6 items) HTC 0–10, HTC 11–50, HTC > 50, GDD 0–10,
GDD > 50, GDD 11–50

Soil features (4 items) Soil pH H2O, phosphorus (mg/100 g),
potassium (mg/100 g), magnesium (mg/100 g)

Vegetation indices GE (calculated based on
Sentinel via Google Earth) (64 items)

EVI_GE_0_10_Max, EVI_GE_11_50_Max,
EVI_GE_50_Max, EVI_GE_daily_Max,
NDVI_GE_0_10_Max, NDVI_GE_11_50_Max,
NDVI_GE_50_Max, NDVI_GE_daily_Max,
RDVI_GE_0_10_Max, RDVI_GE_11_50_Max,
RDVI_GE_50_Max, RDVI_GE_daily_Max,
SAVI_GE_0_10_Max, SAVI_GE_11_50_Max,
SAVI_GE_50_Max, SAVI_GE_daily_Max,
and so on, for mean, Min, StdDev variants

Vegetation indices PL (calculated based on
PlanetScope via Planet Labs) (64 items)

EVI_PL_0_10_Max, EVI_PL_11_50_Max,
EVI_PL_50_Max, EVI_PL_daily_Max,
NDVI_PL_0_10_Max, NDVI_PL_11_50_Max,
NDVI_PL_50_Max, NDVI_PL_daily_Max,
RDVI_PL_0_10_Max, RDVI_PL_11_50_Max,
RDVI_PL_50_Max, RDVI_PL_daily_Max,
SAVI_PL_0_10_Max, SAVI_PL_11_50_Max,
SAVI_PL_50_Max, SAVI_PL_daily_Max,
and so on, for mean, Min, StdDev variants

Table 4. Summary of the number of final numerical feature groups used in prediction of potato yield
after data pruning.

Group of Features No. of Features

Aggregated weather features 4
Weather features 23

Soil features 4
Agrotechnical treatment features 6

Vegetation indexes GE 64
Vegetation indexes PL 64

Total 165
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2.2. Data Imputation

Data imputation, or the process of filling in missing data points in datasets, is a critical
aspect of predictive modelling [59], particularly in the field of agricultural yield predictions.
The robustness and accuracy of Artificial Intelligence (AI) models depend highly on the
quality and completeness of the underlying datasets. In the case of predicting potato yield,
incomplete datasets can lead to inaccurate models and predictions, thus impeding the
optimisation of crop production.

In the context of AI, missing data could induce significant bias, reduce the statistical
power, and ultimately distort the representation of the real-world scenario that the AI
model is attempting to capture. This issue is particularly pertinent in agricultural datasets,
where factors such as weather conditions, soil properties, and crop health measures can
be highly variable and sometimes difficult to measure consistently. Without adequate
data in these areas, AI models may not accurately reflect the complex interactions and
dependencies among these factors, leading to erroneous predictions of potato yield.

Methods of Data Imputation

Data imputation is a critical step in the preprocessing phase of predictive modelling,
especially when dealing with incomplete datasets. In the context of this research, we
implemented a hybrid approach that combines regression and mean/median imputation
strategies. This method intends to balance the bias introduced by mean/median imputation
with the variance captured through regression techniques.

The proposed hybrid procedure, outlined in Algorithm 1, iteratively applies polyno-
mial interpolation to create multiple imputations of the missing data, followed by median
aggregation to ensure robustness. This method is particularly suitable for datasets with
nonlinear relationships among the variables, such as the one used for predicting potato
yield in this study. By applying a polynomial approach, we aimed to capture the intri-
cate patterns inherent in the data, thereby enhancing the accuracy of our imputations.
The decision to use this technique was based on preliminary analysis indicating significant
nonlinear interactions among the predictive features.

Algorithm 1 Hybrid imputation procedure.

1: procedure HYBRIDIMPUTATION(DataFrame, ColumnName)
2: ProcessedColumn ← DeepCopy(DataFrame[ColumnName])
3: ProcessedColumn ← AddIndexColumn(ProcessedColumn)
4: ImputationTargets ← [ColumnName]
5: ThresholdValidValues ← 86
6: IterationCount ← 0
7: while CountNonMissing(ProcessedColumn[ImputationTargets]) <

ThresholdValidValues do
8: TempColumn ← InterpolateColumn(ProcessedColumn, IterationCount)
9: ProcessedColumn ← MergeColumns(ProcessedColumn, TempColumn)

10: IterationCount ← Increment(IterationCount)
11: end while
12: DataFrame[ColumnName]← ComputeMedian(ProcessedColumn[ImputationTargets])
13: return DataFrame
14: end procedure

2.3. Data Normalisation

Data normalisation is an essential preprocessing step while dealing with machine
learning or artificial intelligence algorithms. It is performed to bring all features into the
range of 0 to 1, maintaining the distribution and relationships of the original raw data.
This normalisation process helps to scale down the values of different scale attributes to
a standard scale, which, in turn, enhances the performance of the model by allowing it
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to converge faster during training. Additionally, it mitigates the risk of the model being
influenced disproportionately by different features.

The particular method of normalisation used in this study was the Min–Max normali-
sation. This method re-scales features to a fixed range, typically 0 to 1, or alternatively −1
to 1 if there are negative values. This transformation preserves the original distribution of
the data while ensuring that the impact of outliers is minimised.

The Min–Max normalisation is defined by the following formula [60,61]:

Xnorm =
X− Xmin

Xmax − Xmin
(3)

where:

- Xnorm is the normalised value;
- X is the original value;
- Xmin is the minimum value in the feature column;
- Xmax is the maximum value in the feature column.

Each data value in the dataset is replaced by its corresponding normalised value, lead-
ing to a new dataset where all feature columns are within the same range. By implementing
the Min–Max normalisation method, it is ensured that the model is less biased and, hence,
more accurate in predicting potato yield based on the given features.

2.4. Prototyping the 3 AI Models: Non-Satellite, Satellite, and Hybrid

The accurate prediction of agricultural yields such as potato can greatly benefit both
the farmers and the supply chain stakeholders. Utilising Artificial Intelligence (AI) methods
for these predictions can potentially provide robust and reliable estimations. In this research,
we investigated the effectiveness of different AI regression algorithms in constructing the
predictive models. The objective was to gain insights into the strengths and limitations of
various methods and subsequently guide future applications of AI in agriculture.

Three different models were considered in this study, namely non-satellite, satellite,
and hybrid models. These models differed in their variable selections, which influenced
their representation of real-world conditions.

The non-satellite model uses 37 features, which do not include vegetation indices.
In contrast, the satellite model uses 128 features consisting exclusively the vegetation in-
dices. These two models served as a basis for comparison to evaluate the contribution of
vegetation indices in improving prediction accuracy. The hybrid model takes a compre-
hensive approach by including all 86 features available, thus merging the characteristics of
both non-satellite and satellite models.

In constructing these models, a range of regression algorithms was applied, including
Linear Regression [62], Ridge [63], Lasso [64], Elastic Net [65], the XGBoost Regressor [66],
the Random Forest Regressor [67], the MLPRegressor [68] with different hidden layer sizes,
the SGDRegressor [69], and Support Vector Regression (SVR) [70] with different parameters.
These algorithms were chosen due to their diverse underlying principles, which provides a
broad perspective on the prediction problem.

In the following sections, we detail the construction of these models and discuss the
potential implications of our findings. The models were constructed using the Python
programming language with the aid of powerful libraries such as scikit-learn and XGBoost.

2.5. Data Partitioning: Training, Validation, and Testing

An essential aspect of building robust and generalizable AI models is data partitioning.
This process involves dividing the available dataset into distinct subsets: the training,
validation, and test sets.

The training set is utilised to train the model, which essentially involves the adjustment
of the model’s parameters based on the input–output pairs in the data. The validation set is
used during model training to provide an unbiased evaluation of the model’s performance.
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It allows for the tuning of hyperparameters and helps in model selection. Importantly,
the validation set serves as a checkpoint to prevent overfitting, which occurs when the
model learns the training data too well and performs poorly on unseen data. Finally,
the test set is a separate data subset that is only used once the model has been trained and
validated. It offers an objective evaluation of the final model’s performance, representing
how well the model is likely to perform on unseen, real-world data.

In this study, due to the forecasting nature of the task for upcoming years, we split the
data based on the years:

• df_train—data from the years 2018 and 2019;
• df_val—data from the year 2020;
• df_test—data from the year 2021.

The model was trained using “df_train”, while its performance was monitored on
“df_val”. Lastly, “df_test” was set aside for the final evaluation of the model, providing a
benchmark of its performance on unseen data that did not participate in training. As such,
our main focus was on the results obtained on “df_test”.

2.6. Feature Selection

In this study, feature selection was executed using multiple methods including step-
wise regression (stepwisefit), the Pearson correlation, the Chi-squared (χ2) test, and Prin-
cipal Component Analysis (PCA) [71–74]. These techniques were designed to select the
most-relevant features for the task of predicting future years, thus potentially improving
model accuracy, computational efficiency, and model interpretability.

2.6.1. Stepwise Regression

The stepwise regression [75] method was applied first for feature selection. Stepwise
regression is an iterative process of adding and removing predictor features based on their
statistical significance in a regression model. The technique starts from an initial model and
takes steps to modify it by adding or removing predictors. The statistical significance of a
predictor is typically measured by the p-value of the F-statistic when testing the models
with and without the predictor.

In general, the stepwise regression process can be described as follows:

1. Fit the initial model.
2. If any predictors not in the model have p-values less than the entry tolerance (e.g.,

0.05), add the one with the smallest p-value and repeat this step. If not, proceed to the
next step.

3. If any predictors in the model have p-values greater than the exit tolerance (e.g., 0.10),
remove the one with the largest p-value, and go back to the previous step. If not, stop.

It should be noted that the stepwise regression method is heuristic and does not
guarantee that the final model is globally optimal, meaning that it has the best possible fit
to the data. A different initial model or a different sequence of steps could lead to a better
fit. In this sense, stepwise models are locally optimal, but not necessarily globally.

In this study, the stepwise regression function, “stepwisefit”, was tested using a range
of penter and premove values. Specifically, 90 different pairs of penter and premove
were used, from (0.01, 0.06) to (0.9, 0.95). The goal of this testing was to explore how
different thresholds for adding and removing features would impact the feature sets that
the stepwise regression selected. However, only unique feature sets were extracted, which
means that there may not necessarily be 90 distinct feature sets as a result of this procedure.
The exact thresholds tested in this study are listed in Table 5.

It should be noted that different penter and premove values can have significant
impacts on the stepwise regression outcomes. Lower penter values mean that the bar
for adding a feature to the model is set higher, as it needs to have a higher level of
statistical significance to be included. Similarly, higher premove values mean that the
bar for removing a feature from the model is set lower, as it can be excluded even if its
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significance is still relatively high. Therefore, different combinations of the penter and
premove values can lead to diverse sets of selected features, providing a broad exploration
of possible models.

Table 5. penter and premove values for stepwise regression.

No. Penter Premove

1 0.01 0.06
2 0.02 0.07
3 0.03 0.08
4 0.04 0.09

. . . . . . . . .
87 0.87 0.92
88 0.88 0.93
89 0.89 0.94
90 0.9 0.95

2.6.2. Pearson Correlation

In addition to stepwise regression, the Pearson correlation method was also used for
feature selection [71,76]. It measures the linear relationship between two features, ranging
from −1 to 1, where 1 means a perfect positive linear relationship, −1 means a perfect
negative linear relationship, and 0 means no linear relationship.

In this study, if the absolute value of the Pearson correlation between two features
exceeded 0.95, one of the two correlated features was removed from the set of predictive
features. This was performed to mitigate the issue of multicollinearity, which can affect the
performance and interpretability of the model.

2.6.3. Chi-Squared Test

The Chi-squared test was also applied as a feature-selection method [71]. This statisti-
cal test measures the independence between categorical features. In the context of feature
selection, the Chi-squared test can be used to select those features that are most likely to be
independent of each other and dependent on the target variable.

In this study, if the p-value of the Chi-squared test was greater than 0.05, the corre-
sponding feature was added to the set of predictive features. Otherwise, the feature was
blocked and not included in the set of predictive features.

2.6.4. Principal Component Analysis

Lastly, Principal Component Analysis (PCA) was utilised as a feature-selection and
dimensionality-reduction method. PCA transforms the original features into a new set of
features, which are linear combinations of the original ones [72,77]. These new features (or
principal components) are uncorrelated with each other.

In this study, PCA was performed for different numbers of principal components (3, 4,
5, 6, 7, 8, 9, 10). The goal was to assess whether generating artificial features through PCA
would enhance the performance of the model. This was performed both for the full set of
features and the features selected by stepwise regression.

The advantage of PCA lies in its ability to transform a high-dimensional dataset into
a lower-dimensional one while retaining most of the important information. However,
the interpretability of the model can be compromised because the new features (principal
components) are artificial and are not directly interpretable in terms of the original features.

3. Outlier Detection

Outlier detection is an important step in data preprocessing. Outliers are unusual
data points that deviate significantly from the rest of the data. While some outliers may be
errors and, hence, require correction, others may carry important information about the
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data. In the presented study, two methods for outlier detection were used: Local Outlier
Factor (LOF) and One-Class SVM [78].

Both methods have their own strengths and are appropriate for different types of
datasets. In general, the LOF is good at detecting outliers that are in low-density regions,
while One-Class SVM is effective at identifying outliers that are far away from the majority
of the data.

3.1. Local Outlier Factor

The LOF method measures the local density deviation of a given data point with
respect to its neighbours [79]. It considers as outliers the samples that have a substantially
lower density than their neighbours. The number of neighbours considered (parameter
“n_neighbours”) is typically set to be 20% of the total number of samples. The outline of the
methods is presented in Algorithm 2.

Algorithm 2 Pseudocode for local outlier factor.

1: procedure LOF(X, n_neighbours)
2: for x ∈ X do
3: Calculate the distance to the n_neighbours nearest neighbours of x
4: Compute the reachability distance of x
5: Compute the local reachability density of x
6: end for
7: for x ∈ X do
8: Compute the LOF of x as the average ratio of the local reachability densities of

the neighbours of x to the local reachability density of x
9: end for

10: Return the LOF of each sample
11: end procedure

3.2. One-Class SVM

One-Class SVM [77] is a method associated with the SVM family, but it is suited for
the problem of outlier detection. The class of interest is modelled with a tight sphere in the
feature space characterising the normal behaviour, and those instances that fall outside this
sphere are considered outliers. The parameters used in the experiments are kernel = “rbf”,
gamma = “0.1”, and nu = 0.5. Algorithm 3 presents the general overview of this procedure.

Algorithm 3 Pseudocode for One-Class SVM.

1: procedure ONECLASSSVM(X, nu, kernel, gamma)
2: Initialise One-Class SVM with parameters nu, kernel, and gamma
3: Fit SVM to the data X
4: Predict the labels (1 for inliers, −1 for outliers) for X
5: Return the predicted labels
6: end procedure

4. Results and Discussion

In the presented experiments, a total of three models were prepared: the non-satellite,
satellite, and hybrid one, where the first two take into account only subsets of feature, either
excluding or including vegetation data, while the final model incorporates all potential
features. Table 6 outlines the dataset organisation for different models, while Table 7 shows
the parameter configurations used in each case.
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Table 6. Dataset organisation for all prepared models.

Model (Number) Training Set
(Samples/Features)

Validation Set
(Samples/Features)

Test Set
(Samples/Features)

NSM Without Outlier
Detection (1) 205/37 95/37 120/37

NSM With Outlier
Detection Using Local

Outlier Factor (2)
200/37 95/37 120/37

NSM With Outlier
Detection Using

One-Class SVM (3)
103/37 95/37 120/37

SM Without Outlier
Detection (4) 205/128 95/128 120/128

SM With Outlier
Detection Using Local

Outlier Factor (5)
201/128 95/128 120/128

SM With Outlier
Detection Using

One-Class SVM (6)
104/128 95/128 120/128

HM Without Outlier
Detection (7) 205/165 95/165 120/165

HM With Outlier
Detection Using Local

Outlier Factor (8)
200/165 95/165 120/165

HM With Outlier
Detection Using

One-Class SVM (9)
120/165 95/165 101/165

Table 7. Setup of parameters used for the prepared models. Model numbers refer directly to the
method organisation presented in Table 6.

Model
Number

Is_Stepwise
Fit_Used

Penter
|Premove

Is_Pearson
_Used

Is_Chi2
_Used

Is_PCA
n_PCA_

Components

(1) True 0.8|0.85 False False True 5

(2) False N/A|N/A False False True 5

(3) True 0.3|0.35 False False True 5

(4) True 0.5|0.44 False False False 0

(5) True 0.4|0.45 False False False 0

(6) True 0.4|0.45 False False False 0

(7) True 0.6|0.65 True False False 0

(8) True 0.2|0.25 False False False 0

(9) True 0.1|0.15 False False True 5

4.1. Non-Satellite Model

The Non-Satellite Model (NSM) leverages 37 features excluding the vegetation indices
data. The list of features is outlined in Table 8.
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Table 8. Summary of the number of numerical feature groups used in non-satellite model.

Group of Features No.

Aggregated weather features 4
Weather features 23

Soil features 4
Agrotechnical treatment features 6

Total 37

The modelling for the non-satellite data considered three different scenarios: (a) with-
out outlier detection, (b) with outlier detection using the Local Outlier Factor method,
and (c) with outlier detection using the One-Class SVM method.

In the case of modelling without outlier detection, the Mean Absolute Percentage Error
(MAPE) was found to be 17.31% using SVR. It is important to note that 32 (5 PCs) features
were identified as significant in this scenario.

In the case of modelling with outlier detection using the Local Outlier Factor, the Mean
Absolute Percentage Error (MAPE) was found to be 16.99% using SVR. It is important to
note that only five (PCs) features were identified as significant in this scenario.

In the third scenario, when the One-Class SVM method was incorporated, the Mean
Absolute Percentage Error (MAPE) was found to be 18.47% using XGB. In addition, 18 fea-
tures were identified as significant for the model built using the modified datasets.

4.2. Satellite Model

The Satellite Model (SM) takes into account the vegetation indices, containing a total of
128 features. The model creation for the satellite data considered the same three scenarios
as for the non-satellite model.

In the case of modelling without outlier detection, the Mean Absolute Percentage Error
(MAPE) equalled 14.87% using Ridge, and 92 features were identified as significant for the
model built using the modified datasets.

In the case of modelling with outlier detection using the Local Outlier Factor, the Mean
Absolute Percentage Error (MAPE) equalled 15.43% using Ridge, and 83 features were
identified as significant for the model built using the modified datasets.

In the final scenario with the One-Class SVM method, the Mean Absolute Percentage
Error (MAPE) equalled 16.38% using Ridge, and 102 features were identified as significant
for the model built using the modified datasets.

4.3. Hybrid Model

The Hybrid Model (HM) takes into account all 165 features. This includes both
vegetation indices and the features used in the non-satellite model. The modelling process
for the whole set of data (hybrid model) considered the same three scenarios, including
the approach without outlier detection, as well as two additional ones, using the LOF and
One-Class SVM for this problem.

In the case of modelling without outlier detection, the Mean Absolute Percentage
Error (MAPE) was found to be 6.10% using XGB. It is important to note that 79 features
were identified as significant in this scenario.

Before applying the Local Outlier Factor method for outlier detection, the dimensions
of the training, validation, and test datasets were as presented in Table 6. After applying
the Local Outlier Factor method, the Mean Absolute Percentage Error (MAPE) was found
to be 6.94% using Random Forest. It is important to note that 80 features were identified as
significant in this scenario.

In the final scenario, with the initial dataset dimensions as with the LOF method,
One-Class SVM was applied. In that case, the training dataset was reduced, indicating that
the method identified and removed 11 records as outliers. In this case, the Mean Absolute
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Percentage Error (MAPE) was found to be 5.85% using XGB. In addition, 57 features were
identified as significant for the model built using the modified datasets.

4.4. Models Comparison

Although it is believed in agricultural practice that the potato is one of the plants with
low production requirements, potato varieties for frying purposes need cultivation manage-
ment at a very high level [80]. Choosing a good variety is a key element in determining the
plant’s behaviour under field conditions. The information related to the traits responsible
for the quality of the product—ready to eat—is “written” in the genotype: high nutritional
value and good sensory properties. Most quality traits of tubers are strongly influenced by
a number of factors acting on the potato during the growing season [81]. It is known that
yield plays a key role in the cultivation of potatoes for frying purposes, as it generates farm
profitability [82].

Yield, or the product extracted from the crop, can be considered in various aspects.
Potential (theoretical) yield is achieved when the main abiotic factors: CO2 concentration,
solar radiation, and air temperature, are used by the plants with the greatest efficiency [81].
To estimate the potential yield, additional aspects must be taken into account. It should
be assumed that a particular variety is grown in an environment that is optimal for it,
with sufficient water and nutrients, as well as effective control of all biotic stresses. Potential
yield is important for crops and environments where irrigation, the amount and distribution
of rainfall, or a combination of irrigation and rainfall ensure that water deficits do not reduce
yields [83]. Determining the level of potential yield is difficult, but feasible. Simulation
modelling, the results of detailed agronomic experiments, yield tests, and knowledge of
the maximum yields achieved by farmers are used to achieve this goal [84,85].

Actual yield is the real harvest achieved by most producers under actual production
conditions. Real yield is determined relatively easily, but accurate analytical results can only
be obtained by ongoing monitoring of yield potential during the growing season. The inte-
gration of several methods then comes to the rescue: remote sensing, geospatial analysis,
and modelling combined with method validation through field experiments [81,84].

Maintaining high yield potential in the era of climate change is a very difficult task.
The relationship between potential, achievable, and real potato yield is well explained by,
i.e., yield gap analysis [86]. The yield gap shows the relationship between quantitative
differences in potential, attainable, and actual yield at a specific spatial and temporal
scale [85]. This analysis makes it possible to reliably identify unused food production
capacity [81,87].

The above considerations show that yield prediction, regardless of the purpose of
the forecast, is necessary and important [88]. Most valuable, from the point of view of
agricultural practice, are models that allow the prediction of pre-harvest yields, in the
current agronomic season [23,41,71]. In the case of potato production for French fries,
the prediction of the actual yield of tubers before harvest provides the producer with
a range of valuable information. They can be the basis for considering the amount of
potential profit, the degree of fulfilment of the contract agreement, and the security of
storage space [23,37]. The prediction of potential tuber yield, made before harvest, is
also crucial for breeders of new varieties and seed companies [23,89]. The results of the
analyses will indicate the “fit” of the tested genotypes to local growing conditions while
maintaining a high level of controllable factors. The yield gap forecast provides valuable
knowledge to institutions that track national and global food resources. It allows estimating
food shortages, especially in poor countries with malnourished populations. Currently,
it is believed that actual potato yields only reach 2/3 of their potential. Breeders of new
varieties are far less likely to fill the gaps with improved, high-yielding genotypes than they
could [33,81]. Effective planning and management of potato production now require the
use of effective forecasting tools [90]. Tuber-yield-forecasting products must be carefully
prepared and well thought out. The greatest difficulties in working with forecasting models
are the selection of an appropriate prediction method and the selection of independent
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variables that realistically affect tuber yield. It is important that all of the variables tested are
readily available to the average user of such models and describe the relationships between
phenomena in potato cultivation in a way that is understandable to the producer [16,23,24].

An important measure of prediction quality is the MAPE. The MAPE is defined as
the average variance between the significant values in the dataset and the projected values
in the same dataset [91]. The interpretation of the magnitude of this error is as follows: a
MAPE of less than 10% indicates a very good model fit; when the MAPE is in the range of
10–20%, the degree of model fitness is good. A forecasting model that achieves a MAPE
error of more than 30% should be rejected due to the poor mapping of predicted values to
the actual ones [45,92]. In agricultural research, an acceptable upper limit for the MAPE’s
magnitude is around 15% [23,41,42].

Current trends in potato yield forecasting are mainly directed toward the use of various
spectral indices and GIS data as independent variables for model construction [16,37,38].
Al Gaadi et al. [93] assessed crop condition and predicted potato tuber yield in Saudi
Arabia. Two vegetation indices, NDVI and SAVI, were generated from Landsat-8 and
Sentinel 2 satellite images acquired from different stages of potato growth. Yield samples
were collected 2–3 days before harvest and correlated with the final yield. Based on this,
yield-prediction models and yield maps were developed. The results showed that the
difference between predicted yield values and actual yield values (prediction error) ranged
from 7.9 to 13.5% for Landsat-8 images and from 3.8 to 10.2% for Sentinel-2 images. Since
the prediction errors in the above cases did not exceed 15%, the models created by the
authors can be used in practical applications. Li et al. [94] attempted to improve potato
yield predictions using Unmanned Aerial Vehicle (UAV) remote sensing by incorporating
variety information into machine learning methods. The research was conducted in the
state of Minnesota—the northern part of the United States. Although the authors failed
to generate accurate predictive models, very interesting research conclusions were drawn.
Firstly, it was discovered that UAV-based spectral data from early in the growing season
at the tuber initiation stage (late June) were more correlated with the commercial yield
of potatoes than spectral data from later in the growing season at the tuber maturation
stage. Secondly, it was established that combining high-spatial-resolution UAV images
and variety information using machine learning algorithms can significantly improve
potato yield prediction, when compared with methods excluding the variety information.
The work on yield prediction in potato cultivation is difficult, but research shows that
the most-accurate models can be achieved with the compilation of multiple variables:
agrotechnical, soil, spectral, and meteorological.

In this study, three distinct models were used—non-satellite, satellite, and hybrid. Each
of these models was evaluated in three different scenarios: (a) without outlier detection,
(b) with outlier detection using the Local Outlier Factor method, and (c) with outlier
detection using the One-Class SVM method. The comparative summary of the non-satellite,
satellite, and hybrid models is presented in Table 9.

The comparative analysis of the non-satellite, satellite, and hybrid models in potato
yield prediction revealed distinct trends in model performance across various scenarios.
The hybrid models consistently showed superior predictive accuracy, evidenced by their
significantly lower Mean Absolute Percentage Error (MAPE) values in all scenarios. This
enhanced performance is likely attributed to the comprehensive integration of both satellite
and non-satellite data features, suggesting the critical role of a diverse feature set in
predictive modelling.

In scenarios where Principal Component Analysis (PCA) was applied, particularly
in the non-satellite and hybrid models with Support Vector Machine (SVM) for outlier
detection, there was a notable reduction in the number of features used. This indicates that
PCA is effective at refining feature sets, thereby potentially improving model performance.
Specifically, the hybrid model with SVM outlier detection not only achieved the lowest
MAPE, but also demonstrated the impactful role of PCA in optimising the feature set for
enhanced predictive accuracy.
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Table 9. Comparative summary of non-satellite, satellite, and hybrid models.

Type Model
Outlier

Detection
No. of

Features MAPE
PCA
Used

PCA
No. of Features

Non-satellite SVR N/A 32 17.31% True 5

Non-satellite SVR LOF 37 16.99% True 5

Non-satellite XGB SVM 18 8.47% True 5

Satellite Ridge N/A 92 14.87% False 0

Satellite Ridge LOF 83 15.43% False 0

Satellite Ridge SVM 102 16.38% False 0

Hybrid XGB N/A 79 6.10% False 0

Hybrid Random Forest LOF 80 6.94% False 0

Hybrid XGB SVM 57 5.85% True 5

Conversely, the non-satellite models, which lacked satellite-derived vegetation indices,
exhibited higher MAPE values. This observation underscores the importance of vegetation
indices in yield prediction, highlighting their contribution to model accuracy.

The satellite models presented an interesting trend, where an increase in the number
of features, as seen in the SVM scenario, did not correspond to a decrease in the MAPE.
This contrasts with the hybrid models, where a more judicious feature selection yielded
better results. This suggests that increasing the number of features does not inherently
enhance model performance; rather, the relevance and effective integration of these features
are crucial.

The influence of outlier detection methods, namely the Local Outlier Factor (LOF) and
SVM, varied across the models. While the hybrid models benefited significantly from SVM
outlier detection, the impact on the non-satellite and satellite models was less pronounced.
This difference in impact reiterates the necessity of context-specific approaches in outlier
management for predictive modelling.

In summary, the hybrid models, especially with SVM for outlier detection, emerged as
the most-effective strategy, achieving the lowest MAPE (5.85%) and, thereby, indicating
the highest prediction accuracy among the evaluated models. This analysis reinforces
the need for the careful selection and integration of features, coupled with appropriate
data preprocessing techniques, to enhance the performance of machine learning models in
agricultural yield prediction.

5. Conclusions

The comprehensive study on predicting potato yield using machine learning methods,
specifically in the context of Polish potato varieties used for French fry production, yielded
significant insights. The research highlighted the effectiveness of integrating diverse
datasets, including both satellite and non-satellite data, in enhancing the accuracy of yield
predictions. The hybrid model, which combined these datasets, demonstrated superior
performance over models that utilised either non-satellite or satellite data alone. This
superiority was evident in its lower Mean Absolute Percentage Error (MAPE) (5.85%),
suggesting a higher prediction accuracy. The results clearly indicated that a multifaceted
approach, utilising a broad spectrum of data sources, significantly improved the model’s
ability to predict yield accurately.

Advanced data processing techniques, such as feature selection and outlier detection,
were found to play a pivotal role in the performance of the predictive models. The applica-
tion of Principal Component Analysis (PCA) and outlier detection methods, including the
Local Outlier Factor (LOF) and One-Class SVM, contributed to improvements in model
accuracy. This underscores the importance of sophisticated data processing in machine
learning applications for agricultural yield prediction.
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The comparative analysis of the non-satellite, satellite, and hybrid models, as presented
in the table “Comparative summary of non-satellite, satellite, and hybrid models”, provided
critical insights. The analysis revealed that the hybrid model, especially when coupled with
SVM for outlier detection, emerged as the most-effective in predicting potato yield. This
model achieved the lowest MAPE, indicating its high accuracy and reliability. In contrast,
the non-satellite and satellite models, while beneficial in certain scenarios, did not match
the comprehensive accuracy of the hybrid model. The findings from this comparative
analysis reinforce the conclusion that a combined approach, utilising an extensive array
of features and data sources, is essential for developing robust and accurate agricultural-
yield-prediction models.

In conclusion, this study illustrated the potential of machine learning methods in
revolutionising agricultural yield predictions. The integration of varied data sources, cou-
pled with advanced data-processing techniques, offers a pathway towards more-efficient,
-informed, and -sustainable agricultural practices. As the field of agricultural technol-
ogy continues to evolve, these findings provide a foundation for further research and
development in yield prediction and crop management.
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72. Kurek, J.; Świderski, B.; Osowski, S.; Kruk, M.; Barhoumi, W. Deep learning versus classical neural approach to mammogram
recognition. Bull. Pol. Acad. Sci. Tech. Sci. 2018, 66, 831–840. [CrossRef]

73. Swiderski, B.; Kurek, J.; Osowski, S. Multistage classification by using logistic regression and neural networks for assessment of
financial condition of company. Decis. Support Syst. 2012, 52, 539–547. [CrossRef]

74. Osowski, S.; Les, T. Deep learning ensemble for melanoma recognition. In Proceedings of the 2020 International Joint Conference
on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7.

75. Gil, F.; Osowski, S.; Slowinska, M. Melanoma recognition using deep learning and ensemble of classifiers. In Proceedings of the
2022 23rd International Conference on Computational Problems of Electrical Engineering (CPEE), Zuberec, Slovak Republic,
11–14 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–4.

76. Kruk, M.; Kurek, J.; Osowski, S.; Koktysz, R.; Swiderski, B.; Markiewicz, T. Ensemble of classifiers and wavelet transformation for
improved recognition of Fuhrman grading in clear-cell renal carcinoma. Biocybern. Biomed. Eng. 2017, 37, 357–364. [CrossRef]

77. Siwek, K.; Osowski, S.; Kurek, J. Ensemble Neural Network Approach to the Load Forecasting in the Power System. In
Proceedings of the International IEEE Conference on ISTET’05, Lviv, Ukraine, 4–7 July 2005; pp. 380–383.

78. Kurek, J.; Osowski, S. Support Vector Machine for diagnosis of the bars of cage inductance motor. In Proceedings of the 2008 15th
IEEE International Conference on Electronics, Circuits and Systems, Saint Julian’s, Malta, 31 August–3 September 2008; IEEE:
Piscataway, NJ, USA, 2008; pp. 1022–1025.

79. Cheng, Z.; Zou, C.; Dong, J. Outlier Detection Using Isolation Forest and Local Outlier Factor. In Proceedings of the Conference on
Research in Adaptive and Convergent Systems, RACS’19, Chongqing, China, 24–27 September 2019; Association for Computing
Machinery: New York, NY, USA, 2019; pp. 161–168. [CrossRef]

80. Sawicka, B.; Pszczółkowski, P.; Kiełtyka-Dadasiewicz, A.; Barbaś, P.; Ćwintal, M.; Krochmal-Marczak, B. The Effect of Effective
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Abstract: Generally, measuring the weight of livestock is difficult; it is time consuming, inconvenient,
and stressful for both livestock farms and livestock to be measured. Therefore, these problems must
be resolved to boost convenience and reduce economic costs. In this study, we develop a portable
prediction system that can automatically predict the weights of pigs, which are commonly used for
consumption among livestock, using Raspberry Pi. The proposed system consists of three parts: pig
image data capture, pig weight prediction, and the visualization of the predicted results. First, the pig
image data are captured using a three-dimensional depth camera. Second, the pig weight is predicted
by segmenting the livestock from the input image using the Raspberry Pi module and extracting
features from the segmented image. Third, a 10.1-inch monitor is used to visually show the predicted
results. To evaluate the performance of the constructed prediction device, the device is learned using
the 3D sensor dataset collected from specific breeding farms, and the efficiency of the system is
evaluated using separate verification data. The evaluation results show that the proposed device
achieves approximately 10.702 for RMSE, 8.348 for MAPE, and 0.146 for MASE predictive power.

Keywords: livestock measurement device; computer vision techniques; RGB-D sensor data; pig
segmentation; body and shape feature extraction; prediction of pig weight

1. Introduction

Livestock rearing is an industry that significantly incurs costs compared to other
industries due to the need for optimal barn management and ample feed grain provision.
Furthermore, the demand for processed products derived from livestock is increasing as
a result of population growth, improved income levels, and urbanization. Consequently,
the global scale of livestock farming, including cattle, pigs, and poultry, is expanding to
meet such demand. However, this extensive livestock rearing gives rise to various animal
management issues such as diseases and environmental concerns. Additionally, the current
practices of raising and managing animals rely heavily on traditional methods based on
farmers’ experiences and practices, which require substantial labor and time. Therefore,
in order to address these challenges, there is a growing need for various advanced digital
technologies based on artificial intelligence, which have been receiving significant attention
in modernized livestock farms, to efficiently support livestock rearing.

Additionally, the real-time detection of livestock health status and abnormal behavior
can contribute to enhancing job satisfaction among livestock farmers while simultaneously
minimizing livestock production costs and effectively managing economic losses caused
by diseases and mortality. Hence, there is a pressing need for livestock producers to invest
in the development of cutting-edge technologies for real-time livestock monitoring, the
implementation of advanced sensor systems, and the creation of streamlined processing
systems to ensure the production of top-quality livestock products with reduced processing
time. However, in most livestock farms, monitoring the condition, measuring the weight,
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and observing the behavior or feeding behavior of livestock is usually performed by
farmers raising livestock, either visually or manually. Such passive livestock management
is laborious, expensive, and imposes stress on the livestock. Therefore, the applicability
of computer vision technology and deep-learning algorithms in livestock operations is
emerging as an important issue [1,2].

Here, we briefly review previous studies published on problems associated with
breeding livestock. First, we consider several review papers that introduce comprehensive
information on raising livestock. Femandes et al. [1] presented significant advancements
and challenging research areas in computer vision systems that can be applied to ani-
mal breeding and commercialization. These technologies are expected to be utilized as
high-value industrial applications in livestock farming. In their study, Oliveira et al. [2]
conducted a comprehensive examination of recent breakthroughs in computer vision sys-
tems and their utilization of deep-learning algorithms in the field of animal science. They
specifically highlighted various deep-learning algorithms employed for tasks such as image
classification, object detection, object segmentation, and feature extraction. Notable algo-
rithms discussed in their review included Mask R-CNN, Faster R-CNN, YOLO (v3 and v4),
DeepLab v3, and U-Net, all of which have found applications in animal science research.
Similarly, Wurtz et al. [3] presented a systematic overview of the advancements made in
automated high-throughput image detection of farm animal behavioral traits, considering
both welfare and production implications. They observed that several studies tended to
start from scratch rather than build upon existing research despite there being significant
overlap in the methods used for analyzing animal behavior. Nasirahmadi et al. [4] proposed
a monitoring system based on images captured from 3D depth cameras to automatically
identify and manage various behaviors of livestock, such as feeding, drinking, locomotion,
aggression, and reproduction in cattle and pigs. They evaluated the performance of their
developed system using metrics such as accuracy, error rate, specificity, and sensitivity.
The system proposed by them is expected to contribute significantly to easily detecting
abnormal behaviors of livestock in large-scale livestock farming operations.

Livestock such as cattle, pigs, and chickens are commonly raised animals in barns. In this
study, we reviewed previous research on the prediction of livestock weight. Wang et al. [5]
discussed the preexisting studies that focused on predicting the weight of livestock using
techniques such as feature extraction, feature selection, and regression learning models,
especially image analysis-based weight prediction methods. Kollis et al. [6] designed and
implemented a program based on image analysis to estimate the weight of pigs, along with
hardware. Li et al. [7] reviewed various methods for pig weight detection, comparing the
structures and pros and cons of the proposed approaches. Kashiha et al. [8] developed
an image-processing method that estimates pig weights by calculating the position and
area within an ellipse using an ellipse-fitting algorithm. Shi et al. [9] proposed a system
for analyzing the correlation between body length (BL), withers height (WH), and weight
of 10 pig breeds aged between 14 and 25 weeks in indoor farming conditions (R2 range
of 0.91–0.98). Doeschi-Wilson et al. [10] compared the growth curves of two pig breeds
between 11 and 20 weeks of age and suggested that size measurements are a consistent
indicator of pig growth compared to body weight. Jun et al. [11] proposed a non-contact
method for estimating pig weight using 2D images that are not influenced by pig posture
or the capture environment. Suwannakhun and Daungmala [12] proposed a system that
combines neural networks with various functions such as color and texture analysis, center
calculation, measurements of major and minor axis lengths, eccentricity determination,
and area calculation for non-contact pig weight estimation. Fernandes et al. [13] also
developed a system that includes body measurements, shape descriptors, and weight
prediction. Yoshida and Kawasue [14] introduced a weight estimation system that utilizes
a camera to screen pigs. By utilizing three-dimensional visual information captured in
a single image, they estimated the body weight of pigs. The researchers confirmed the
robustness and practicality of the proposed system in measuring moving animals within
challenging environments like pig farms. Kaewtapee et al. [15] proposed a method for
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pig weight estimation employing image processing and artificial neural networks. They
utilized images of 88 crossbred pigs (Large White, Landrace, Duroc Jersey) to individually
measure heart circumference, body length, and weight. Regression analysis and artificial
neural networks were employed to develop a pig weight equation, and the performance
of the developed model was evaluated using mean absolute deviation (MAD) and mean
absolute percentage error (MAPE) as estimation error metrics. Cang et al. [16] suggested
an approach based on deep neural networks for estimating the live weights of pigs in
sow stalls. They devised a neural network that takes top-view depth images of the pig’s
back as input and produces weight estimates as output. The proposed network, based
on a Faster-RCNN architecture with an added regressive branch, integrates pig detection,
location, and weight estimation into an end-to-end network, facilitating simultaneous
pig recognition and weight estimation. Yu et al. [17] studied how to build a computer
vision system with weight prediction over time by collecting RGB-D video to capture
top-view RGB (red, green, blue) and depth images of unrestrained growing pigs. They
video recorded eight growers at six frames per second for 38 days for approximately three
minutes/day. They manually weighed them using electronic scales to collect training
materials and developed the system using the image-processing pipes in Python based
on OpenCV. He et al. [18] conducted a study to assess the predictive value of feeding
behavior data in estimating the body weight of finishing-stage pigs. They collected data
from 655 pigs belonging to three different breeds (Duroc, Landrace, and Large White)
aged between 75 and 166 days. To forecast the body weight of pigs aged 159–166 days,
the researchers employed LASSO regression along with two machine learning algorithms,
namely random forest and long short-term memory network [19,20]. They explored four
scenarios: the individual-informed predictive scenario, the individual- and group-informed
predictive scenario, the breed-specific individual- and group-informed predictive scenario,
and the group-informed predictive scenario. For each scenario, they developed four models:
Model_Age included only the age variable, Model_FB included only feeding behavior
variables, Model_Age_FB and Model_Age_FB_FI incorporated feeding behavior and feed
intake measures based on Model_Age as predictors. And deep-learning methods, such as
those used in automatic detection systems for livestock breeding, as seen in CowXNet [21]
and YOLACT++ [22], are employed.

Among various strategies for effective livestock management, the real-time prediction
of livestock weight plays a significant role in determining feed allocation, breeding timing,
and market readiness. Additionally, measuring livestock weight can serve as an indirect
indicator of their health and growth status. Furthermore, drastic changes in weight can
indicate the presence of diseases, the provision of a healthy environment, and the optimal
timing for parturition. Therefore, continuous monitoring of weight fluctuations in livestock
facilitates the implementation of appropriate measures in terms of feed distribution and ad-
dressing abnormal behavior, ultimately leading to the production of high-quality livestock.

Consequently, livestock farmers are faced with the challenge of accurately measuring
livestock weight on a regular basis, which proves to be a difficult and labor-intensive
task for both farmers and livestock. Moreover, this process can induce excessive stress on
the livestock, potentially resulting in weight loss. To address these issues and enable the
continuous tracking of livestock weight while reducing stress and workload for farmers,
the development of automated prediction systems using image processing and artificial
intelligence technologies is required.

In this study, we propose a method for implementing a measurement prediction
system that can automatically measure the weight of livestock in real time in livestock farms
raising pigs. The proposed system acquires livestock images by mounting a depth camera
capable of capturing RGB-D images, segmenting livestock from the input image using the
Raspberry Pi module, extracting features from the segmented image, and predicting the
weight of pigs. It is configured with an appropriate small-size monitor that can display
images. Furthermore, the proposed prediction system is manufactured using cost-efficient
parts to enable livestock farmers to purchase it with ease.
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The remainder of this paper is organized as follows. Section 2 introduces the process of
collecting livestock image data and describes the overall structure of the proposed system.
Section 3 presents an experiment to evaluate the performance of the proposed system.
Finally, Section 4 concludes this paper.

2. Weight Prediction System for Pigs Using Raspberry Pi

In this section, we describe the collection and construction method of pig image data
of the automatic weight prediction device. First, the process of collecting RGB-D images
from livestock farms of pigs is described. Second, we describe the overall structure of
a device that can automatically predict pig weight using the collected data. Third, the
hardware and software used to build the prediction device will be described in detail.

2.1. Pig-Image Collection

The prediction system proposed in this study can be used to predict the weight of
pigs with the most realistic applicability among various types of livestock. Therefore, pig
images required to implement the system were collected for a certain period of time from
actual farms. We selected 15 pigs from a pig-breeding farm, repeatedly photographed them
three times with the developed portable device, and measured the actual weight of each
pig using a scale. The breed of pigs consists of three crossbred varieties, and they are raised
in enclosed facilities isolated from the external environment. During the summer season,
cooling systems are employed to maintain temperatures between 20 and 25 degrees Celsius,
and continuous lighting is provided 24 h a day. Figure 1 shows a developed portable device
that captures pig weights on site and RGB color and depth images.

(a) Portable device (b) Pig RGB image (c) Pig depth image

Figure 1. Developed portable device and color and depth images for pigs in a field.

2.2. Automatic Prediction System
2.2.1. Overall Structure of the Prediction System

Figure 2 shows the overall structure of the proposed prediction system. The proposed
system consists of livestock image capture and input, livestock segmentation, appropriate
feature extraction, and weight prediction. First, livestock images are acquired using an
RGB-D cameraSecond in the division of the livestock area from the collected image; the
object is divided by applying the image-processing technology to each of the RGB color and
depth images. Third, as features suitable for weight prediction, shape features representing
the appearance of livestock and biometric features representing physical properties are
extracted. Finally, we implement a predictive model that can accurately predict the weight
of livestock based on the extracted features using various machine learning techniques.

Figure 2. Overview of prediction system for pig weight.
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2.2.2. Overall Structure of Implemented Hardware System

Figure 3 shows the overall structure of the hardware implementation of the prediction
system. Figure 3a shows the modules for each part of the hardware system. First, an RGB-D
depth camera was used to collect pig images. Second, a Raspberry Pi 4-embedded module
was used to implement the prediction system. Third, a 10.1-inch touchscreen was used to
visually express the prediction results. Figure 3b shows the product design of a portable
imaging device packaged by combining each module from various angles.

Figure 3. Overall structure of implemented hardware system: (a) internal structure of the system and
(b) external structure of the system.

The detailed hardware module and software specifications used in the proposed
portable measurement device are as follows.

- Depth Camera: Intel Real Sense D455;
- Raspberry Pi 4 Model B;
- Memory: 8 GB;
- CPU: 1.5 GHz Quad Core 64-bit Cortex-A72 (ARM v8);
- Giga-bit Ethernet;
- USB 3.0 × 2, USB 2.0 × 2;
- Dual 4 K Display (Micro-HDMI × 2);
- Power: 1.5 V × 4 EA Battery pack;
- Displayer: TFT 10” LCD;
- Wireless: dual-band 802.11ac\n wireless (2.4 GHz or 5 GHz);
- Bluetooth 5.0;
- Python 3.7;
- OpenCV 4.5 on Raspberry Pi 4.

2.2.3. Weight Prediction with GUI

Based on the hardware system, the weight prediction algorithm is implemented in
the form of a GUI program for easy operation by users. GUI was developed based on
QT, a cross-platform development widget toolkit that runs on various operating systems.
The process of developing a platform that can predict the weight of a pig consists of the
following four steps: detecting the pig region from the input image, segmenting the pig,
extracting appropriate features from the segmented pig region, and obtaining the weight-
prediction algorithm. Figure 4 shows the step-by-step process of constructing a platform
for estimating pig weight.
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Figure 4. Platform for prediction of pig weight with GUI.

Here, we take a detailed look at the step-by-step processing of the proposed pig-
weight prediction system. The first step is to detect the bounding box representing the
pig region using a deep-learning algorithm from the input RGB color image. We used a
single-shot multibox detector (SSD) [23] combined with the Inception V2 feature-extraction
algorithm from RGB images to extract the bounding box. In the Single Shot Multibox
Detector (SSD), the initial step involves partitioning the input images into smaller kernels
across various feature maps to predict anchor boxes for each kernel. Through a single feed-
forward Convolutional Neural Network (CNN), the SSD generates a sequence of bounding
boxes and scores indicating the presence of objects within each box. Subsequently, the
classification scores for each region are calculated based on the scores obtained in the
preceding stage. Using the collected pig images, the SSD MobileNet was fine-tuned using
Tensorflow object detection API to learn a deep-learning model for livestock detection [24].
Figure 5 shows an example image of the bounding box for the pig region provided by the
SSD detector algorithm.

Figure 5. Bounding box for pig area provided by SSD detector algorithm.

The second step is to accurately segment the pig region by applying the information
of the depth image to the pig image in the bounding box. We obtain the median value
from the given depth information in the bounding box and select two thresholds: the lower
and upper limits. Here, to detect the pig’s area as an RGB-D rectangular region, we set
the distance from the camera to the ground as the upper limit and the distance from the
camera to the pig as the lower limit in the depth image. If the depth of each pixel in the
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image falls within the specified lower and upper thresholds, as indicated via Equation (1),
a value of 255 is assigned; otherwise, a value of zero is assigned.

f(x, y) =
{

255 i f Ta ≤ d(x, y) ≤ Tb
0 otherwise

(1)

The image segmentation process based on depth images is illustrated in Figure 6. Pigs,
especially young pigs, are curious; therefore, it is extremely difficult for them to remain
in a position suitable for estimating their weight. Therefore, a method for adjusting the
acquired pig image to an appropriate posture is required. We calculated the pig’s center
and rotation direction by fitting an ellipse to the segmented region to determine the pig’s
posture. Subsequently, the pig’s posture was adjusted to be orthogonal to the camera using
the fitted angle of the ellipse.

(a) Detection of pig (b) Depth image of pig (c) Segmentation result of pig

Figure 6. Segmentation process of pig from depth image.

In the third step, various feature vectors are extracted from the segmented 3D pig
image, which is necessary for weight prediction. These feature vectors are divided into two
types: pig body features and size and shape features. First, a pig’s body features are given
by the length, which is given as a straight line from the shoulder to the hip, and the girth,
which is the circumference of the pig’s waist. Figure 7 shows the process of calculating the
length of the pig in the bounding box obtained from the single-shot detector and inferring
the weight.

Figure 7. Process of calculating the length and girth of pig.

We obtain the size and shape features from the point cloud in the segmented pig
image with additional information to infer a more accurate pig weight. Using the Intel
RealSense SDK provided by the camera manufacturer, the image coordinates are mapped
to real-world coordinates, resulting in the generation of a point cloud. Figure 8 illustrates
the depth pig image and the corresponding point cloud coordinates for the pixels within
the designated box.
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(a) (b)

Figure 8. Point cloud data within a bounding box area. (a) Segmented pig image, (b) Three-
dimensional coordinates for pixels in box region.

We transform depth images into 3D point clouds by assigning each pixel its corre-
sponding 3D coordinate vector, which represents the size and shape of a pig. To capture
the size cue, we calculate the Euclidean distance between each point and a reference point.
The reference point is determined using evenly spaced basis vectors derived from the
segmented image, with approximately 50 basis vectors in total. Let pi, where i ranges from
1 to N, denote the ith point cloud, and p represent the reference point. The distance attribute
of point pi with respect to the reference point p is given by dpi = ‖ pi − p ‖2. We construct
an N × N distance matrix Dpi . Next, we compute the top ten eigenvalues (λ1, · · · , λ10) and
eigenvectors (E1, · · · , E10) from the distance matrix D in descending order of magnitude.
The calculated eigenvalues are then normalized and utilized as the size descriptor for
the pig.

FSize =

(
λ1

∑10
i=1 λi

, · · · ,
λ10

∑10
i=1 λi

)
(2)

To calculate the shape features of the pig, we calculate the kernel distance for any
two points pi and qj as follows and use them to create a kernel distance matrix K of size
(N×N).

kd
(

pi, pj
)
= exp

(
−γk ‖ pi − qj ‖2

)
, (γk > 0) (3)

By computing the kernel matrix K for the point cloud P and evaluating its top 10
eigenvalues, we conduct principal component analysis on the distance matrix K in the
following manner.

Kvl = δlvl (4)

The eigenvectors are represented by vl , and the corresponding eigenvalues are denoted
by δl . After normalization, the calculated eigenvalues are used to define the kernel shape
feature of the pig.

FShape =

(
δ1

∑10
i=1 δi

, · · · ,
δ10

∑10
i=1 δi

)
(5)

To capture gradient information in depth maps, we convert depth images into grayscale
images. We apply the histogram of oriented gradient (HOG) feature extraction method
to the depth image. In particular, we resize the segmented top-view image of the pig to
(128 × 64) and divide it into (4 × 8) blocks of size (16 × 16) pixels. Each block is further
divided into smaller cells of size (8 × 8) pixels. We calculate histograms of edge gradients
with nine orientations from each local cell using Sobel filters. This results in a total of
1152 = 32× (4× 9) HOG features, which form a HOG feature vector. However, combining
HOG features from all grid locations leads to a large number of features, so dimensionality
reduction is necessary. Principal component analysis (PCA) is a commonly used technique
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for this purpose. Given a set of M-dimensional feature {xi, i = 1, · · · , N}, we compute the
covariance matrix Σ as follows:

Σ =
1
N ∑N

i=1(xi − x)(xi − x)T (6)

We performed PCA on the covariance matrix to obtain the top 10 eigenvalues [γ1, · · · γ10]
and corresponding eigenvectors [u1, · · · , uL].

Σul = γlul , l = 1, · · · , 10. (7)

After normalizing the calculated eigenvalues, we employed the gradient features of
the pig as

FGradient =

(
γ1

∑10
i=1 γi

, · · · ,
γ10

∑10
i=1 γi

)
(8)

Figure 9 shows three kernel shape descriptors derived from arbitrarily selected pig
images. By incorporating a prior distribution on the regression coefficient vector β using
the Bayesian ridge regression model, we can leverage the posterior distribution of β for
optimal estimation. In particular, we assume an independent normal distribution for each
β j, with a mean of zero and a variance of τ2, denoted, β ∼ N (

0, τ2I
)
, where τ is a constant.

This formulation allows us to calculate the posterior distribution of β.

p(β|y, X) ∝ p(β)·p(y|X, β) ∝ exp
[
−1

2
βT 1

τ2 Iβ

]
·exp

[
−1

2
(y− Xβ)T 1

σ2 (y− Xβ)

]
(9)

Figure 9. Three kernel shape descriptors derived from pig image.

From this expression, we can compute the mode of the posterior distribution, which is
also known as the maximum a posteriori (MAP) estimate. It is given as follows.

β̂ = argmax
β

exp
[
− 1

2σ2 (y− Xβ)T(y− Xβ)− 1
2τ2 ‖ β ‖2

2

]
= argmin

β

(
1

σ2 (y− Xβ)T(y− Xβ) + 1
τ2 ‖ β ‖2

2

)
= argmin

β

(
(y− Xβ)T(y− Xβ) + σ2

τ2 ‖ β ‖2
2

) (10)
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The Bayesian ridge regression estimate can be obtained by setting λ = σ2/τ2. In
this way, Bayesian ridge regression can be seen as an extension of the Bayesian inference
approach in general linear regression. Lastly, we utilized the estimated regression coeffi-
cients from the Bayesian ridge regression method to predict the weight of the pig using the
following regression model.

ŷ = Xβ̂

3. Experimental Results

To evaluate the performance of the portable measuring device, the predictive power
was examined using the collected pig images. Figure 10 shows a two-dimensional scatter-
plot between the actual and predicted values. From the given scatterplot, it was confirmed
that the proposed portable measuring device predicts the weight of pigs well.

Figure 10. Scatterplot between actual and predicted values.

We calculated the correlation coefficient and the coefficient of determination between
the predicted value and actual measurement to evaluate the extent to which the developed
measuring device can predict the actual weight as presented in Table 1.

Table 1. Correlation and determination coefficient between the predicted and the actual measurements.

Prediction Index Correlation Coefficient Determination Coefficient

Value 0.9390 0.879

We calculated the root mean square error (RMSE), mean absolute predictive error
(MAPE), and mean absolute scaled error (MASE) to determine the error between the
predicted value and the actual observed weight using the proposed measuring device.
Table 2 shows the measured values with respect to the three errors.

Table 2. RMSE, MAPE, and MASE between the predicted and actual measurements.

Prediction Index RMSE MAPE MASE

Value 10.702 8.348 0.146

Finally, we evaluated how accurately the proposed prediction device can predict the
actual weight of pigs from the various measures derived.

4. Conclusions

In this study, we proposed a portable device that can automatically predict the
weight of pigs using Raspberry Pi with image-processing techniques and machine learning
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methods. The proposed portable device is composed of two parts (hardware and soft-
ware). The hardware part consists of a depth camera, microcontroller, and display device.
The software part consists of algorithms for image segmentation, feature extraction, and
weight prediction.

An experiment was conducted using RGB-D images of several pigs collected from
specific farms to evaluate the performance of the proposed prediction system. From the
experimental results, it was confirmed that the proposed system effectively predicted
the actual weight of the pigs. Additionally, it was confirmed via various error measures
that the prediction device did not significantly cause a difference between the predicted
and measured values. Therefore, we believe that the proposed system will be useful for
determining the release time of pigs in actual farms.

Still, there are limitations to the proposed system, the high activity levels of pigs make
it more challenging to measure their weight accurately while they are feeding, and it is not
easy to capture specific individuals separately when they move in groups. Additionally,
environmental variables within the barn, such as changes in lighting, pose challenges in
obtaining clean images. Since pigs are active, they have various poses. When measuring
the weight, various movements of pigs cause deviations in measuring in the system. For a
future study, we will upgrade the system that can measure robust pig weighting even in a
natural daily breeding environment.
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Abstract: Modeling radio signal propagation remains one of the most critical tasks in the planning of
wireless communication systems, including wireless sensor networks (WSN). Despite the existence of
a considerable number of propagation models, the studies aimed at characterizing the attenuation
in the wireless channel are still numerous and relevant. These studies are used in the design and
planning of wireless networks deployed in various environments, including those with abundant
vegetation. This paper analyzes the performance of three vegetation propagation models, ITU-R,
FITU-R, and COST-235, and compares them with path loss measurements conducted in a cassava field
in Sincelejo, Colombia. Additionally, we applied four machine learning techniques: linear regression
(LR), k-nearest neighbors (K-NN), support vector machine (SVM), and random forest (RF), aiming to
enhance prediction accuracy levels. The results show that vegetation models based on traditional
approaches are not able to adequately characterize attenuation, while models obtained by machine
learning using RF, K-NN, and SVM can predict path loss in cassava with RMSE and MAE values
below 5 dB.

Keywords: agriculture; cassava crops; machine learning; radio wave propagation models; wireless
sensor networks

1. Introduction

Agriculture is an activity of great relevance in several countries, and in many of them,
it is considered a priority within their national security policies because of its importance
in sustaining the population [1]. Like other industrial sectors, agriculture has undergone a
significant evolution in the last two decades, transitioning from a model based on variable
monitoring to one of greater autonomy and automation in cultivation. This evolution
can encompass the entire production chain, from planting to the final marketing stage [2].
In this regard, precision agriculture (PA) is one of the most significant concepts in the
modern agricultural industry, owing to the adoption of management strategies that enable
the collection, processing, and analysis of data. All of this is aimed at enhancing the
sustainability of production in the cultivation fields [3]. To achieve this, it makes use of
different electronic tools and information and communication technologies (ICT), including
machine learning (ML) and wireless sensor networks (WSN), which have been increasingly
used in the agricultural sector in recent years [4,5].

The implementation of WSNs in agriculture allows farmers to remotely monitor
large areas of the plantation, providing information that improves decision-making and
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optimizes the economic performance of the activity [6]. However, the efficient transmission
of the data obtained depends to a large extent on the correct deployment of the motes in the
field [7], also allowing infrastructure costs not to increase because of a higher-than-required
node usage or, on the contrary, inefficient coverage in the field because of a lower number
of motes than needed [8]. Hence, it is necessary to efficiently model the radio signal losses
caused by the path and the environment in which the WSN infrastructure is deployed [9].
Based on the above, WSN planning demands the utilization of suitable propagation models
that optimize the deployment of sensor nodes in the field. Each scenario with vegetation
presence (e.g., crop fields) possesses unique propagation characteristics that impact radio
signal attenuation. In addition to frequency and distance, which are generally considered
the main attenuating factors of wireless signals, other factors stand out, such as plant height
and the presence of leaves [10].

Various radio wave propagation models have been developed for use in crop en-
vironments or where vegetation is present. Examples include those based on the MED
(exponential decay model), among which stand out the ITU-R (recommended by the
International Telecommunication Union), the FITU-R (ITU-R adjusted), and COST-235
(Cooperation in Science and Technology 235). Despite their recognition and widespread
use, their implementation can produce results with high levels of error [5,11].

1.1. Background

Cassava (Manihot esculenta) is nowadays considered a very relevant product to ensure
food sustainability. It is grown in more than 100 countries and is reputed to be an excellent
and inexpensive source of nutrition [12]. Additionally, it serves as input in the industrial
production of starch, alcohol, and fermented beverages [13]. Regarding the implementation
of ICTs and electronic tools, there are not many specific developments for this type of
cultivation. In [14], they implemented an agronomic variable monitoring system using
WSN in a municipality located in the northern region of Colombia, while other studies
focused on leaf disease detection through deep learning [15] or deep neural networks [16];
however, only in [17] do they utilize sensors and the Internet of Things (IoT) as part of a
comprehensive solution aimed at PA.

Regarding radio wave propagation, the systematic literature review does not show
any evidence of comparative studies or the development of propagation models in cassava
plantations. However, these investigations have been conducted in a wide variety of crops;
such is the case with corn [6], rice [18], sugarcane [19], banana [20], oil palm [21], citrus [22],
and various greenhouse products like cucumber [23] and tomato [8].

In relation to the techniques used in the development of propagation models, there is
a growing trend in the use of ML, which is one of the most representative and powerful
subfields of artificial intelligence. ML can identify patterns and detect correlations between
variables in a large dataset [24]. Some examples applied in research related to character-
izing behavior using these types of techniques in vegetation-present environments have
considered settings with a predominance of grasslands [19], forests [25], or greenhouse
tomato crops [26].

1.2. Motivation and Objectives

This paper presents the results of a radio channel measurement campaign in a cassava
crop on a farm near the city of Sincelejo, Sucre, Colombia. Based on the data collected,
traditional vegetation models were compared to assess their effectiveness in cassava plan-
tations. As mentioned in the previous section, there are no prior records of similar studies
in this type of cultivation. Only [14] obtained received signal strength indicator (RSSI)
values but did not characterize the attenuation caused by the plants. Given the above
and considering the significance of cassava cultivation, it is necessary to understand the
radio signal propagation behavior in these plantations, which will facilitate the future
implementation of AP-oriented technologies. The main contributions of this research are as
follows:
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• We have analyzed the effectiveness of widely recognized vegetation propagation
models based on measurements in a real scenario, leaving aside the simulations
chosen by some studies;

• We present the results of the modeling of radio wave propagation in cassava crops
obtained by ML from data collected in a cassava crop.

The rest of the paper is organized as follows: Section 2 presents the methodology
and materials used in obtaining and analyzing the data; Section 3 shows the comparative
analysis between different models and the results of the ML propagation modeling; finally,
Section 4 contains the discussion.

2. Materials and Methods

This section first presents the vegetation loss models considered in the comparative
analysis to determine their effectiveness in predicting attenuation in cassava crops. Below,
we describe the testing environment, as well as the tools used in both the measurement
and evaluation of the results. Finally, we present an overview of the ML techniques used in
propagation modeling.

2.1. Vegetation Propagation Models

There are a large number of models of radio wave propagation. They can be obtained
empirically, stochastically, or deterministically. When transceiver equipment is in scenarios
with significant vegetation or foliage presence (e.g., forests, crops, or gardens), it is impor-
tant to consider their effect on attenuation. Additionally, there are significant differences
in the arrangement of signal-obstructing elements in various environments, as well as
their physical and geometrical characteristics, preventing the use of a generalized method
for predicting losses [27]. However, there are recognized and widely used models for
estimating attenuation caused by vegetation.

The COST-235 model is derived from the MED and is one of the most widely used
models to characterize the signal attenuation caused by bushes in radio propagation. One
of its main features is to consider the presence or absence of leaves on plants. The equation
for this model is given in Equation (1) [28]:

PLCOST−235(dB) =

{
15.6× f−0.009 × d0.26 on the leaves

26.6× f 0.2 × d0.5 out o f the leaves
(1)

where f is the operating frequency given in MHz, and d is the distance between the
transmitting antenna (Tx) and the receiving antenna (Rx) in meters. A relevant condition of
this model is that it can be used for distances of up to 200 m [29]. Like the COST-235 model,
the ITU-R model is derived from the MED and is widely used to model radio channel
losses in vegetated environments. It is suggested to use this when antennas are located near
bushes and a significant part of the signal propagates through the foliage [30]. Equation (2)
expresses the losses of this model [31].

PLITU−R(dB) = 0.2× f 0.3 × d0.6 (2)

where f is the frequency in MHz, and d is the distance in meters. In this model, the distance
between Tx and Rx should not exceed 400 m [31]. A modification of the ITU-R model is the
ITUF-R model, derived from measurements in the 11.2 GHz to 20 GHz range. It takes into
account the presence of leaves in the bush [32]. Equation (3) shows this [33]:

PLFITU−R(dB) =

{
0.39× f 0.39 × d0.25 on the leaves

0.37× f 0.18 × d0.59 out o f the leaves
(3)

where f is expressed in MHz and d in meters. Like ITU-R, the adjusted model considers a
maximum distance of 400 m between Tx and Rx. Another model widely used in this type
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of study is free space path loss (FSPL). This is not a vegetative model, and it assumes ideal
propagation. Equation (4) allows the calculation of free space losses [34].

FSPL(dB) = 32.44 + 20 logd + 20log f (4)

where distance is expressed in kilometers and frequency in Megahertz.

2.2. Measuring Equipment and Methodology

To analyze the propagation characteristics of the wireless channel, RSSI data were
collected in a bitter cassava crop, which is mainly used as a raw material for starch pro-
duction. The measurements were taken on a farm in the rural area of Sincelejo, capital of
the department of Sucre, one of the largest producers in Colombia. The measurements
were conducted on sunny days during the second planting period (August to March) at
coordinates 9◦2′′53′′ N latitude and 75◦25′′33′′ W longitude (see Figure 1).

 
Figure 1. Geographical location of the measurement site.

The cassava bushes were planted in a commonly used arrangement for this type of
crop, with 120 cm between rows and 93 cm between plants. Figure 2 depicts the positioning
of bushes in the selected cultivation. The measurement campaign was carried out using
Digi Xbee XK3-Z8S-WZM transceiver modules operating on the IEEE 802.15.4 standard,
capable of functioning as both Tx and Rx in the 2400 MHz band. The antennas at both
ends are omnidirectional, which are commonly used in WSN deployments in agricultural
environments [8]. The system parameters are presented in Table 1.

Table 1. System parameters.

Parameter Value

Frequency 2400 MHz
Antenna gain 2.1 dBi

Transmission power 8 dBm
Receiver sensitivity −103 dBm

Antenna type Omnidirectional
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Figure 2. Arrangement of cassava plants in the crop.

Data were collected and stored during three stages of bush growth. In each round,
the Tx and Rx antennas were adjusted to heights of 80 cm, 130 cm, and 180 cm, with
no obstructions other than the crop itself. The transmitting antenna was positioned at a
fixed point, and the receiver was moved in 5 m increments, with equal antenna heights
at each step. At each measurement point, 20 RSSI values were obtained and averaged,
and additionally, tests were conducted with the transmission of 100 packets at intervals
of 1000 ms. Because the spaces between rows of plants are commonly used as pathways
by the individuals responsible for the plantation, the nodes were positioned along the
rows of bushes. The receiver was moved until it reached the maximum distance between
the rows of the crop, which in this case was 50 m, or until packet losses were recorded.
The information obtained was stored on a computer connected to the transmitter module
via USB. Figure 3a,b show a diagram of the applied set-up and the arrangement of the
equipment in the culture.

(a) (b) 

Figure 3. (a) Schematic of the measurement system in place and (b) arrangement of the cassava plants
in the crop.
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Since the geographical area where the measurements were taken has limited mobile
phone coverage by the operators providing service in the region, it was decided not to
upload the data to any cloud platform. Instead, the data were backed up and isolated on
an external memory stick, thus ensuring data protection.

2.3. Machine Learning Techniques

In machine learning, there are mainly two learning methods: supervised and unsuper-
vised. The former requires initial data to detect patterns, while the latter learns the variable
space without the use of labeled data [35]. In this research, we calculate the radio signal
loss between a transmitter and a receiver in a cassava crop using a supervised approach
with techniques that determine the attenuation from a set of measurements with varying
values of distance, plant height, and antenna height.

One of the simplest and most widely used methods in supervised learning is linear
regression (LR), where the prediction is made from the weighted sum of the input features
and a constant called the intercept, as shown in Equation (5).

y = β0 + β1x1 + β2x2 + . . . + βnxn, (5)

where y is the variable to predict, βi are the model parameters, xi is the i-th value of the
features, and n is the number of features. The goal when training an LR model in ML is to
find a value beta that minimizes the error [36]. Another advantage of LR is that models
using this technique are less likely to overfit the data. However, as a drawback, it exhibits
high sensitivity to outliers.

Support vector machine (SVM) is another regression technique widely used in ML
but more advanced than LR. In SVM, the goal is to fit a hyperplane in a high-dimensional
space that maximizes the distance to the nearest training data points of any class [37].
The hyperplane in the feature space can be described as the linear function shown in
Equation (6) [38].

f (x) = wTx + b, (6)

where w corresponds to the vector determining the direction of the hyperplane, x is the input
feature vector, and b is the bias term. The prediction function is presented in Equation (7).

f (x) =
N

∑
i=1

(ai − a∗i )K(xi, x) + b, (7)

where ai and a*
i are the Lagrange multipliers, K represents the kernel used in the mapping,

and i represents the sample number. Unlike other regression techniques, SVM is less
sensitive to outliers in the data [39] but is dependent on the kernel used and data scal-
ing [38]. Due to its advantages and effectiveness, SVM is a supervised learning technique
successfully used in predicting path loss in various scenarios [40].

K-nearest neighbors (K-NN) is a technique that can be used in both regression and
classification problems. It makes predictions on test vectors based on the learning obtained
from training vectors [41]. K-NN uses distance functions as metrics to calculate the mean
of the numerical target of the k-nearest neighbors. Equations (8)–(10) show the distance
functions used in K-NN [42].

Euclidean : D =

√√√√ k

∑
i=1

(xi − yi)
2, (8)

Manhattan : D = ∑|xi − yi|, (9)
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Minkowski : D =

⎛
⎝
√√√√ k

∑
i=1

(|xi − yi|)q

⎞
⎠

1
q

, q ≥ 1, (10)

where x is the measured value, and y is the predicted value. Although K-NN is a method
that can yield good results when fitting the data, the computational effort increases as the
size of the data used grows [42].

The fourth technique considered in this research is random forest (RF). It is a non-
parametric approach used in regression and classification tasks and was developed as
an improvement over decision trees [43]. Instead of using a single tree, random forest
(RF) creates a ‘forest’ of random trees, each trained on a random sample of the data and a
random selection of features. The predictions from all the trees are used to generate a final
prediction [40,44]. Each new prediction at a point x with RF is obtained by taking the mean

value of the predictions of each tree,
^
f 1 . . . f̂NTree , as shown in Equation (11) [45].

f̂RF(x) =
1

NTree

NTree

∑
K=1

f̂K(x), (11)

These techniques, along with others in the field of ML, can be considered valid
alternatives when modeling radio wave propagation in different scenarios. However, since
no validation method allows the best one to be selected in advance, it is common practice
to try different algorithms to see which one performs better for a given problem [41].
Therefore, due to the amount of data and variables used in the training process, as well
as the ease of implementation, interpretation, and computational efficiency, the following
algorithms have been chosen for this research: LR, SVM, K-NN, and RF.

3. Results

3.1. Comparison of Models

We evaluated the effectiveness of the vegetative models presented in Section 2.1 by
comparing them with results obtained from the measurement campaign. Since it is prefer-
able to monitor the crop from the beginning of the planting process, measurements were
taken at three different stages of average plant growth (50 cm, 150 cm, and 190 cm). The
obtained RSSI values indicate that the radio signal range was greater when the antennas
were configured at heights of 180 cm for plant sizes of 50 cm and 150 cm, as they exhibited
line-of-sight (LoS) conditions. However, during the stage of maximum bush growth and
with the same configuration of experimental conditions applied in the first two measure-
ment stages, the best coverage was achieved with antennas placed 80 cm above ground
level. The path loss was calculated from the RSSI measurements at each measurement
point using Equation (12).

PL(dB) = PTx + GTx + GRx − PRx, (12)

where PTx is the transmission power, GTx and GRx are the gains of the transmitter and
receiver antennas, respectively, and PRx is the received power at the receiver determined
from the RSSI. Since the vegetative models only consider the loss caused by foliage and not
the total loss along the link, the analysis was complemented with the free space path loss
(FSPL) model to calculate the total attenuation along the path [46,47]. Figure 4a–c depict
the behavior of the measured losses concerning the measurement distance in each of the
three stages of cultivation where measurements were taken, along with the estimations
obtained using the vegetative models.
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(a) 

 
(b) 

 
(c) 

Figure 4. Path loss as a function of distance with bush heights of (a) 50 cm, (b) 150 cm, and (c) 190 cm.
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Additionally, the root mean square error (RMSE) was calculated, which is one of the
most used tools for evaluating the effectiveness of radio wave propagation models. This is
presented in Equation (13).

RMSE =

√√√√ 1
N
×

N

∑
i=1

(xi − x̂i)
2, (13)

where xi and x̂i are the measured and predicted values, respectively, and N corresponds to
the number of samples. In this case, the higher the RMSE value, the lower the ability of the
models to accurately predict actual crop losses.

Figure 4a–c, along with the obtained RMSE, indicate that in all measurement stages
and for each antenna height configuration, the FSPL+FITU-R combination underestimated
the measurements, reaching minimum RMSE values of 19.99 and maximum values of
29.86. For FSPL+ITU-R, it underestimated the losses in stages 1 and 3, but the RMSE
decreased to values of 8.72 and 19.05, respectively. Meanwhile, in stage 2, it overestimated
the measurements when the antennas were placed at 80 cm and 130 cm above the ground
and underestimated them at 190 cm, giving an RMSE of 15.21. Finally, FSPL+COST-235
exhibited the best performance in stages 1 and 3, achieving the lowest error values in
estimating the losses. It showed a trend of losses with values higher than the measurements
and RMSE of 6.81 and 6.39, respectively. However, in stage 2, the estimation error increased,
reaching a value of 17.4. These results show that the propagation and the range of the
modules are affected by the modifications of the different experimental conditions that
have been proposed. Furthermore, the vegetative models considered in this study do
not estimate cassava crop losses with error levels considered acceptable. Therefore, it is
necessary to adjust or develop a model for this specific environment.

3.2. New Model

In this study, we calculated the loss of radio signals between a transmitter and a
receiver in a cassava crop using a supervised approach with algorithms that determine
attenuation based on a series of measurements at different distances, plant heights, and
antenna heights. The correlation matrix with the contribution of each attribute considered
in the study is shown in Figure 5. It is observed that losses in cassava crops are highly
affected by clearing losses (considering frequency and distance), followed by cassava bush
height and antenna height.

Figure 5. Correlation matrix.

In the proposed methodology, we selected 70% of the dataset for training and 30%
for testing, applying this procedure with the evaluated techniques LR, K-NN, SVM, and
RF. In the case of K-NN, the used kernel was optimal with k-neighbors equal to 16, while
in SVM, the implemented kernel is a radial basis function, with data scaling. Regarding
RF, we adjusted the number of trees to 20. Taking into account the evaluation metrics
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used in similar studies [38,48–50], in this work, we have considered the RMSE presented in
Section 3, as well as the mean absolute error (MAE) and the coefficient of determination
(referred to as R2), calculated using Equations (14) and (15), respectively.

MAE =
1
n

n

∑
i=1

xi − x̂i, (14)

R2 =
∑n

i=1(xi − x)2

∑n
i=1(x̂i − x)2 , (15)

where xi, x, and x̂i are the measured values, mean of the values, and predicted values,
respectively. Additionally, n represents the number of samples. In the case of RMSE and
MAE, the models exhibit a better fit of the data as they tend toward zero, while in the case
of R2, it indicates that it is capable of accurately representing the data as it tends toward 1.

The performance of the models obtained from the use of LR, K-NN, SVM, and RF with
the training and testing dataset is presented in Table 2. The results of the metrics indicate
that the models obtained from RF, K-NN, and SVM predict path losses in the studied crop
with low levels of error, significantly outperforming the vegetative models UIT-R, FITU-R,
and COST-235. However, when using LR as an algorithm in ML, the error values increase
considerably, making it the technique with the poorest performance.

Table 2. Performance comparison of ML models.

Model RMSE MAE R2

LR 8.81 7.29 0.4650
K-NN 2.62 1.76 0.9575
SVM 2.66 1.85 0.9507
RF 2.51 1.78 0.9604

Further analysis of the results reveals that RF offers the best performance (RMSE = 2.51,
MAE = 1.78, and R2 = 0.9604). The evaluation metrics demonstrate that K-NN can perform
regression based on the training data, with minimal variation compared to the results
obtained with RF. As for the SVM using the radial basis function, it is evident that it is
also capable of accurate path loss predictions in the study scenario, keeping the RMSE and
MAE values below 5 dB and an R2 slightly above 95%. In addition, Figure 6a–d show the
scatter plots of the values, showing the difference between the expected prediction and the
results obtained with the models. Black lines represent ideal predictions for each model,
while red dots represent predicted path loss values. In the case of LR, the predictor exhibits
a negative bias when the path loss values exceed 94 dB and a positive bias around 85 dB.
Regarding K-NN, SVM, and RF, it demonstrates a bias very close to zero but becomes
positive for path loss values around 88 dB.

Although the evaluation metrics indicate that RF gives better results than SVM, they
are not significantly different. However, since SVM has proven to be a superior method
compared to other supervised learning techniques [47], it could be considered a prefer-
able alternative in the modeling of WSN systems in crops, as it is less computationally
demanding than RF. Regarding LR, it is a simple method that generally yields good results.
Nevertheless, in this study, it turned out to be the least performing one with RMSE or MAE
values too high, and given the goodness of fit below 70%, its application in modeling path
losses in the studied crop is not considered useful.
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(a) 

 
(b) 

(c) 

(d) 

Figure 6. Scatter plots: (a) linear regression, (b) K-NN, (c) SVM, and (d) RF.
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4. Discussion

In this paper, we compare three vegetative propagation models (ITU-R, FITU-R, and
COST-235) with path loss data from a cassava crop. For this purpose, we carried out
measurements at three stages of crop growth and under different conditions of distance
and height of the transmitting and receiving antennas. The results demonstrate that none
of the considered vegetative models could estimate the losses with an acceptable level of
error. On the contrary, the RMSE values were above 10 dB in most of the experimental
conditions.

Furthermore, in this study, we departed from the traditional approach of modeling
losses from a physics perspective. On the contrary, we have embraced a more contem-
porary orientation based on machine learning (ML) by employing LR, K-NN SVM, and
RF techniques within a training–testing method. From this approach, loss prediction is
substantially improved. The use of RF, K-NN, and SVM allowed for a reduction in errors,
achieving RMSE values below 3 dB and MAE values below 2 dB. Furthermore, the R2 results
obtained demonstrate that ML models can characterize losses with a high level of accuracy.
However, it is important to note that not all ML techniques applied were successful, as LR
did not yield satisfactory evaluation metrics (RMSE = 8.81, MAE = 7.29, and R2 = 0.4650).
Despite the favorable outcomes, it is crucial to consider additional factors when selecting
an ML technique to predict path losses in cassava crops—for instance, the volume of data,
computational requirements, and the performance of predictions across the entire range of
experimental choices.

5. Conclusions

Though the results achieved through ML usage are satisfactory, it is important to
emphasize the study’s limitations, particularly the omission of additional factors that
significantly influence radio signal attenuation. For instance, our experimentation was
conducted in the 2400 MHz band and was not extended to other frequencies. Another
factor to consider is that changes in environmental conditions (such as bushes of different
varieties or changes in the arrangement of plants in the crop) can significantly affect the
results, which is inherent in empirical propagation models.

Despite its advantages, ML does not define the variables that should be used in
model generation; these are left to the researchers’ discretion. Furthermore, there is no
standardized methodology that outlines the conditions for data collection and model
development. Therefore, a profound understanding of propagation matters, and the
conditions under which measurements should be conducted remains essential, ensuring
the proper correlation between the study’s aspects and the acquired data.

To extend the results, it is recommended that future work extends the dataset. An
alternative is to expand measurements throughout the entire process of bush growth. In
addition, experiments should be carried out in other ISM frequency bands commonly
used for WSN deployment (e.g., the 900 MHz band). It would be equally relevant to
consider variables related to the shrub, such as stem thickness and leaf dimensions, as
well as climatic factors, such as rainfall and humidity. The study could also be extended
by analyzing data from other crops considered important for food sustainability, such as
maize, rice, potatoes, or fruits. Future studies could also involve mixed crop or foliage
scenarios in rural environments, such as gardens or parks.

For future work, they might consider using other ML techniques, such as lasso regres-
sion or neural networks, so that their results help to improve the analysis. Other regression
techniques, such as quadratic or cubic regression, could also be further evaluated to see if
they improve levels of fit and decrease error metrics. Furthermore, it is feasible to extend
the study to other crops of importance for food sustainability, such as rice or potatoes.
Furthermore, future research should address strengthening the security of the data collected
during the measurement process to preserve their integrity and reduce vulnerability to
potential cyberattacks.
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Abstract: Due to its rapid reproduction rate and brief life cycle, the most well-known oil palm
pest, Metisa plana (Lepidoptera: Psychidae), also known as the bagworm, can spread to epidemic
proportions. The outbreak can significantly reduce oil palm yield by resulting in 40% crop losses
and 10% to 13% leaf defoliation. A manual census was conducted to count the number of pests and
determine the category of infestation; however, when covering a large area, it typically takes more
time and labour. Therefore, this study used unmanned aerial vehicles (UAVs) as a quick way to detect
the severity levels of infestation in oil palm plantations, including healthy (zero), low, mild, and
severe infestation using DJI Inspire 2 with Micasense Altum-PT multispectral camera at an altitude of
70 m above ground. Three combinations were created from the most significant vegetation indices:
NDVI and NDRE, NDVI and GNDVI, and NDRE and GNDVI. According to the results, the best
combination in classifying healthy and low levels was found to be NDVI and GNDVI, with 100%
F1 score. In addition, the combination of NDVI and NDRE was found to be the best combination in
classifying mild and severe level. The most important vegetation index that could detect every level
of infestation was NDVI. Furthermore, Weighted KNN become the best model that constantly gave
the best performance in classifying all the infestation levels (F1 score > 99.70%) in all combinations.
The suggested technique is crucial for the early phase of severity-level detection and saves time on
the preparation and operation of the control measure.

Keywords: multispectral image; bagworm; infestation; vegetation index; unmanned aerial vehicle;
machine learning

1. Introduction

Bagworms (Lepidoptera: Psychidae) are tiny insect pest larvae that are prevalent
worldwide in arborvitae as well as other fruit and flower crops like apple, maple, elm,
poplar, oak, birch, black locust, cypress, juniper, willow, and juniper. In Malaysia, bagworm,
especially Metisa plana, is the most serious insect pest which is capable of reaching epidemic
proportions in oil palm plantations by presenting higher numbers than usual [1]. Bagworms
are “naturally created” to easily become pests due to their high reproductive rate and short
life cycle, which are gifts of natural advantages, along with their unique dispersal mode,
case construction, and silk thread as survival mechanisms [2]. Bagworm outbreaks are
frequent in oil palm plantations and can result in up to 40% crop losses and 10% to 13%
leaf defoliation, both of which have a significant negative economic impact on oil palm
yield [1,3]. According to Chung [4], small holes from feeding are the first signs of bagworm

Agriculture 2023, 13, 1886. https://doi.org/10.3390/agriculture13101886 https://www.mdpi.com/journal/agriculture188



Agriculture 2023, 13, 1886

damage on fronds. The outbreaks are noticeable because the bagworms start eating as
soon as they hatch, scraping the top surface of the leaf until it dries out and leaving
holes. The palms with severe bagworm infestations suffer increased amounts of foliage
damage until all the fronds are lost, typically in the upper part of the palm fronds, which
appear brown in colour. Brownish-coloured frond damage results from severe bagworm
infestation. Furthermore, the severely damaged leaves caused the lower and central crown
to appear greyish brown [5]. When pest populations reached their maximum growth
potential, they frequently reached levels that significantly reduced leaf cover over large
areas and had a propensity to recur [6]. Single-species outbreaks were frequently reported,
while mixed species outbreaks could affect both young and old palms, though the area
of the outbreak is typically larger on older palms [7]. According to Aziz et al. [8], precise
estimation of the infestation based on the oil palm foliar damage is difficult to identify.
Thus, the estimation of the damage severity rating was used which corresponds to the
bagworm infestation. The severity rating was divided into four levels, which started with
zero infestation, followed by light damage, medium damage, and serious damage. All the
severity ratings are summarized in Table 1.

Table 1. Classification of damage due to bagworm infestation [8].

Infestation Classification Description

0 NIL • There is no obvious bagworm harm.

1 Light • A leaflet with very few bagworm larvae and pupae.
• Leaflets start to have small holes and necrosis.

2 Medium • Most leaflets contain pupae and larvae of bagworms.
• Leaflets with several holes and light necrosis.

3 Serious
• Numerous bagworm larvae and pupae on the leaflet.
• Lots of necrosis and numerous holes on the leaflets and

drying out and turning brown.

A census must be conducted to effectively control bagworm in an oil palm plantation.
It is carried out to count the number of insect pests directly, which involves a superficial
inspection for signs of pest incidence [5]. It is conducted by cutting down one frond to
count the number of larvae on both sides of the frond. According to the Standard Operating
Procedure (SOP) of bagworm control by the Malaysian Palm Oil Board (2016) [9], a census
is conducted on 1% of the infested area, subject to the entire infested area, where one palm
of every ten is sampled. Critical early defoliation can be considered present when there are
ten larvae on each frond [10]. When it comes to covering a large area, this method typically
requires more time and labour. Therefore, a quick and trustworthy method utilising remote
sensing would be helpful in determining the degree of bagworm-infested area for prompt
decisions regarding outbreak control measures.

Technology advancements that replace manual sampling techniques have benefited
the agriculture sector, particularly in terms of increasing crop production. Unmanned
aerial vehicles (UAV), also known as drones, are an increasingly important component of
remote sensing tools in the context of precision farming. UAVs have limitless potential in
agriculture, and they have the power to revolutionise the industry along with smart farming
and new data management techniques [11]. Usually, UAV platforms equipped with a wide
range of sensor types, such as visual RGB (Red, green, blue) cameras, multispectral cameras,
hyperspectral cameras, and thermal cameras that can capture images with flexible revisit
scheduling at low altitudes with ultra-spatial and temporal resolutions have allowed for
the observation of small individual plants and the extraction of information at a fine scale
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that can aid farmers in making decisions, improve agricultural production, and maximise
resource utilisation [12–14].

Moreover, UAV images and machine learning (ML) techniques have developed new
ways to examine datasets recently, particularly in precision agriculture. These models
can be powerful and useful tools for the prediction of various crop parameters using data
obtained from UAV images. Vegetation Indices (VI) are algebraic combinations of different
spectral bands that are used to highlight the vigour and other characteristics of vegetation
(i.e., canopy biomass, absorbed radiation, chlorophyll content, etc.) [15]. Many VIs can
be obtained from RGB cameras or multispectral cameras that consist of five channels
(i.e., red, green, blue, near infrared, and red edge), such as the normalized difference
vegetation index (NDVI), the green normalised difference vegetation index (GNDVI),
the normalized difference red edge (NDRE), the simple ratio (SR), and the chlorophyll
index (CI). These VIs were usually used to provide significant information in analysing
vegetation traits such as plant diseases, pests, and stress detection. For instance, Klouček
et al. [16] calculated selected vegetation indices (i.e., greenness index (GI), simple ratio
(SR), green ratio vegetation index (GRVI), normalized difference vegetation index (NDVI),
and green normalized difference vegetation index (GNDVI)) and evaluated them based
on visual differences in the spectral curves of bark-beetle-infested tree and healthy trees.
Minařík et al. [17] extracted elevation features (crown area, height percentiles) and three
vegetation indices (i.e., NDVI, NDRE, and Enhanced Normalized Difference Vegetation
Index (ENDVI)) to detect a bark beetle disturbance in a mixed urban forest. According to
Tsouros et al. [18], the most popular techniques for analysing UAV imagery for precision
agriculture include vegetation indices and machine learning. These techniques were used to
detect pests and diseases in a variety of crops, including coffee [19], wheat [20], citrus [21],
cotton [22] and forests [16,23], as summarized in Table 2. Despite the number of various
remote sensing approaches that were used to monitor pests and diseases in oil palm
plantations [24,25], their application at the UAV platform together with vegetation indices
and machine learning techniques is still limited [26,27]. Based on Table 2, it also can be
concluded that the same vegetation indices can be used to detect different types of pests
and diseases in different types of crops. Therefore, it also has the potential to be used for
detecting bagworm infestation areas in oil palm plantations.

Table 2. Summary of the application of UAV-based imagery with machine learning technique.

Crop
Type

Purpose of
Study

Sensor Type Vegetation Indices
Machine
Learning

Classification
Performance

References

Coffee Coffee leaf rust
disease

Multispectral
camera

Normalized difference
vegetation index
(NDVI)
Green Normalized
Difference Vegetation
Index (GNDVI)
Normalized Difference
Red Edge (NDRE)
Modified normalized
vegetation red edge
(MNDRE)
Modified Green Simple
Ratio (MGSR)

Logistic model
tree (LMT)

F1 score: 91.50%
(early stage)
F1 score: 87.50%
(late stage)

[19]

Wheat Yellow rust
disease

Multispectral
camera

Ratio vegetation index
(RVI)
Normalized difference
vegetation index
(NDVI)
Optimized soil
adjusted vegetation
index (OSAVI)

Random forest
(RF)

Precision:
89.20%
Recall: 89.40%
Accuracy:
89.3%
(45 days after
inoculation)

[20]
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Table 2. Cont.

Crop
Type

Purpose of
Study

Sensor Type Vegetation Indices
Machine
Learning

Classification
Performance

References

Forest

Bark beetle
infestation

RGB camera
NIR
customized
sensor

Greenness Index (GI),
Simple Ratio (SR),
Green Ratio Vegetation
Index (GRVI),
Normalized Difference
Vegetation Index
(NDVI),
Green Normalized
Difference Vegetation
Index (GNDVI)

Maximum
likelihood
classifier (MLC)

Overall
accuracy:
78–96% (across
the time
periods)

[16]

Pine wilt
disease

Hyperspectral
camera (HI)
and LiDAR

Normalized Difference
Vegetation Index
(NDVI),
Simple Ratio (SR),
Chlorophyll Index (CI),

Random forest
(RF)

Overall
accuracy (HI +
LiDAR): 73.96%
(Early-stage
PWD)

[23]

Citrus Greening
disease

Multispectral
camera

Normalized difference
vegetation index
(NDVI)
Simple ratio (SR)
Chlorophyll index (CI)
Green Normalized
Difference Vegetation
Index (GNDVI)
Normalized Difference
Red Edge (NDRE)

Support vector
machine (SVM)

Overall
accuracy:
81.50%

[21]

Cotton Cotton rot
disease

Multispectral
camera

Green, red and NIR
band (CIR)

Unsupervised:
k-means
Supervised:
support vector
machine (SVM),
minimum
distance,
maximum
likelihood,
Mahalanobis
distance

Overall
accuracy: 88.5% [22]

Oil palm

Bud rot (BR)
and red ring
disease (RRD)

Multispectral
camera

Normalized difference
vegetation index
(NDVI), Green
Normalized Difference
Vegetation Index
(GNDVI), Green
vegetation index (GVI)
Visible atmospherically
resistant index (VARI)

Lowest
Significant
Difference (LSD)

Statistically
significant
differences
between
healthy and
diseased palms,
(generating the
baseline of
early responses
of BR and RRD)

[26]

Bagworm
infestation

Multispectral
camera

Three band
combinations;
Green_Red_RedEdge
Green_Red_NIR
Red_RedEdge_NIR
Green_RedEdge_NIR

-
(Visual analysis)

Green_Red_RedEdge
is the best to
visually
differentiate
healthy and
infested oil
palm

[27]

Ganoderma
disease

Multispectral
camera

Three band
combinations;
Green_Red_RedEdge
Green_Red_NIR
Red_RedEdge_NIR
Green_RedEdge_NIR

Object-based-
image-analysis
method (OBIA)

>80% [27]

Previously, several bagworm studies were conducted in ground-based and aerial-
based detection. Ground-based detection normally was carried out to detect the presence
of bagworm, as performed by Ahmad et al. [28], who identified both live and dead bag-
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worms Metisa plana using a motion tracking technique on oil palm fronds. Nevertheless,
this method was only applied to live and dead bagworms without knowing the specific
instar stage. Since classifying bagworm instar stages is essential for early prevention,
Mohd Johari et al. [29] used machine learning to identify bagworm instar stages based
on spectral properties and upgraded to automatic detection using the transfer learning
approach [30]. However, these studies did not address the infestation. Previously, the
detection of foliar damaged was carried out by Aziz et al. [8], who discovered that the
most sensitive wavelengths (i.e., 570 nm, 680 nm, 734 nm, 787 nm, 996 nm, and 1047 nm)
to detect bagworm-infested foliar damage using ground-based spectrometer. However,
these studies were not appropriate to be applied in a large plantation area, as they require
high labour costs and are time consuming; thus, an aerial-based approach was proposed to
recognise the issue. Anuar et al. [27] applied a multispectral camera mounted on an UAV
to detect the bagworm-infested area and compare it with healthy area and concluded that
a multispectral false-colour composite has the capability to differentiate between healthy
and bagworm-infested oil palm. Nonetheless, this study only focuses on two areas (i.e.,
healthy, and infested) and does not distinguish between different infested areas, such as
low-infestation areas, mildly infested areas, and severely infested areas.

Based on the literature listed above, the study that assessed the potential of UAV
images in detecting different severity levels of bagworm infestation in oil palm plantation
was limited, and more needed to be discovered. Therefore, this study uses UAV-acquired
images and machine learning techniques to locate the bagworm Metisa plana infestation area.
This study focuses exclusively on the ability of machine learning to categorise the severity
level of infestation as healthy, low infestation, mild infestation, and severe infestation using
vegetation indices extracted from UAV images.

2. Materials and Methods

2.1. Overview

Figure 1 shows a flowchart of this study. It began with the data collection, including
study site selection for each category of bagworm infestation, i.e., healthy, low, mild,
and severe infestation, and also the ground assessment of the level of infestation. Image
acquisition was conducted using an UAV, and all the captured images were then processed
for mosaicking and exported in TIFF format. Six selected vegetation indices were derived
and extracted from the imagery. Statistical analysis was carried out to identify the significant
differences between the indices. The three most significant indices were selected for the
classification model. Then, the performance of the model was evaluated based on the value
of accuracy and F1 score. Due to the imbalanced dataset, undersampling and oversampling
methods were used to achieve the balance distribution of the dataset for the further analysis.
A classification model was developed using the combination of significant vegetation
indices. The model was then tested with the original dataset, and the performance of the
model was evaluated. The most insensitive model with the highest F1 score was selected
as the best model in this study.

Figure 1. Flowchart of the study.

2.2. Data Collection

This study was conducted in three different plantation areas, which covers four
categories of infestation, as described in Table 3. These study areas are presented in Figure 2
using a Google Earth imagery (2020) and labelled in the red frames. A healthy plantation
area that showed no sign of infestation was located at Serdang, Selangor, covering about
6 hectares at coordinate location (2◦59′13′′ N, 101◦43′34′′ E) (Figure 2a). Low and mild
infestations were located at Pagoh, Johor (Figure 2b,c), covering 7.0 and 2.0 hectares,
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respectively. Meanwhile, a severe infestation area was located at Ayer Kuning, Perak, with
coordinate location (4◦11′56′′ N, 101◦07′38′′ E), covering 10 hectares (Figure 2d).

Table 3. Information about selected oil palm plantations.

Infestation Location Area (ha) Coordinates Number of Trees

Healthy Serdang, Selangor 6.0 2◦59′13′′ N
101◦43′34′′ E 750

Low
Pagoh, Johor

7.0 2◦10′39′′ N
102◦47′01′′ E 800

Mild 2.0 2◦10′48′′ N
102◦47′11′′ E 300

Severe Ayer Kuning, Perak 10.0 4◦11′56′′ N
101◦07′38′′ E 1000

(a) (b)

(c) (d)

Figure 2. The study sites, (a) Serdang, Selangor, (b) Pagoh, Johor, (c) Pagoh, Johor, and (d) Ayer
Kuning, Perak.

The incidence of oil palm trees was determined to assess the bagworm infestation in
the oil palm plantation using a quantitative assessment, which was carried out based on
bagworm-infestation symptoms. The assessment was carried out based on the number of
infested fronds over the total number of fronds of each oil palm tree, as suggested by Thaer
et al. [31], using the following formula in Equation (1).

incidence rate =
number o f in f ested f rond

number o f total f rond
(1)
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Usually, each palm consists of 30–40 frond leaves. The infected fronds were identified
based on the condition of the frond and the number of bagworms detected per frond. The
incidence rate was ranked according to infestation and severity of the bagworm infestation,
subject to the severity scale mentioned previously. In addition, a manual census was
also carried out to identify the bagworm instar stage and to sum up the existence of the
bagworms in each frond. The process involved cutting the frond randomly and observing
the bagworms. The incidence rate and the number of bagworms per frond are summarized
in Table 4.

Table 4. Incidence rate and details of bagworm infestation.

Classification
Percentage of
Incident Rate

Details of Incident Rate
Number of Bagworms

per Frond

NIL (Healthy) 0% No infested frond detected No bagworm detected

Low 1–33% Light necrosis was detected 10 and below

Mild 34–67% Moderate necrosis and hole
detected 11–50

Severe 68–100% Serious necrosis and hole
detected 50 and above

2.3. UAV Image Acquisition and Processing

The images were taken with fixed exposure settings between 10:00 and 11:00 am local
time on a clear and non-cloudy day using a DJI Inspire 2 UAV (DJI Sky City, Shenzen,
China) with a rotary wing, known as a quadcopter, equipped with a Micasense Altum-PT
multispectral camera (Seattle, Washington, DC, USA) (Figure 3).

Figure 3. DJI Inspire 2 with Altum-PT Multispectral camera.

The Micasense series, which has five bands and can record data in the RGB, near-
infrared, and red-edge regions (400–900 nm), was the pioneer of multispectral cameras [32].
It can be used in a wide range of UAV types because of its lightweight design (577 g) and
small size (11 cm × 8 cm × 6.9 cm). It has five sensors with resolution of 3.2 megapixels
(2064 × 1544 pixels) in the five spectral regions of blue (475–500 nm), green (550–565 nm),
red (665–675 nm), red edge (715–725 nm), and NIR (825–860 nm). The sensor acquires all
five bands at a ground sample distance (GSD) of 120 m at a speed of up to 2 captures per
second with a 50◦ horizontal field of view (HFOV) and a 38◦ vertical field of view (VFOV).
It also captures ultra-high-resolution panchromatic images and has a thermal sensor at the
resolution of 12.4 megapixels (4112 × 3008 pixels) and 0.1 megapixels (320 × 256 pixels),
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respectively, for data output. A downwelling light sensor (DLS), mounted upward on the
UAV, measures incident light and enables radiometric calibration of these 5 multispectral
bands during image capture.

Meanwhile, the DJI Inspire 2 is a powerful, high-tech drone that weighs approximately
3.44 kg and is capable of transmitting video in both 1080p and 720p at a maximum distance
of 7 km. It travels at an impressive 94 km/h, which is quite fast. The UAV measures 42.7 cm
in length, 31.7 cm in height, and 42.5 cm in width. There are 150 to 390 RAW images for
each flight mission. The GPS coordinates on each photo help with 3D reconstruction.

In this study, the flight altitude was set at 70 metres above ground. Orthomosaics with
a 5.28 cm spatial resolution were taken at a speed of up to two captures per second and with
80% longitudinal and 75% lateral overlap. The Pix4Dmapper software version 4.13.1 (1)
(Pix4D SA, Lausanne, Switzerland) was used to execute the flight missions autonomously.
All the images taken were stored in an SD card.

Image mosaicking was performed in Agisoft Metashape Professional software (Agisoft
LLC., St. Petersburg, Russia), which generates a multispectral orthomosaic which includes
each band imagery (Blue, Green, Red, Red-edge, NIR and thermal). Agisoft was the
most widely used software due to its advantages of excluding low-quality images and
its standardised workflow [33]. The process of mosaicking was started by importing all
the images into the software. The primary channel was set to panchromatic for a higher-
resolution panchromatic band during alignment. The MicaSense Calibrated Reflectance
Panel, which was captured prior to the flight, was then used to radiometrically calibrate
all the images. The primary goal is to adjust the various radiometric resolutions between
the UAV camera and the sensing periods. Then, the images were aligned, and a dense
point cloud model of the objects was built from the numerous collected images while
also fine-tuning the camera positions of each image. After the orthomosaic imagery was
generated, all the imagery of each infestation level was then exported for further analysis.

All the images of four infestation levels were loaded in the QGIS, an open-source GIS
software version 3.28.2 for data extraction. Reflectance values generated by the multispec-
tral bands corresponding to blue (475–500 nm), green (550–565 nm), red (665–675 nm), red
edge (715–725 nm), and NIR (825–860 nm) were used to calculate the vegetation indices.
Six vegetation indices were derived, namely, the normalized difference vegetation index
(NDVI), the green normalized difference vegetation index (GNDVI), the normalized differ-
ence red edge (NDRE), the simple ratio (SR), the green Chlorophyll Index (GCI), and the
red edge Chlorophyll Index (RECI) (Table 5).

Table 5. List of vegetation indices (VIs) with formulas.

No. Vegetation Index Formula Reference

1 NDVI NIR−Red
NIR+Red [34]

2 GNDVI NIR−Green
NIR+Green [35]

3 NDRE NIR−Rededge
NIR+Rededge

[36]

4 SR NIR
Red [37]

5 GCI NIR
Green − 1

[38]
6 RECI NIR

Rededge − 1

Five points were randomly selected from each canopy of palm tree, as illustrated in
Figure 4. These sampling techniques were implemented for each sample of a tree in each
category of infestation. Vegetation indices of these points were then averaged to represent
the vegetation indices of each tree.
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Figure 4. Illustration of vegetation index extraction.

2.4. Classification Model

A significant level of vegetation indices was identified using Analysis of Variance
statistical analysis (ANOVA) in SPSS software (IBM SPSS Statistics 25, IBM, New York, NY,
USA) based on a value of p < 0.05. Seventy percent of the total for each infestation level,
totalling 11,970 datasets, served as the ANOVA’s input parameters and was later used for
model development, while the other 30% (5130) was used for testing. Only three significant
vegetation indices with a standard error lower than 0.002 were selected as datasets to
develop classification models using the classification learner apps available in the machine
learning toolbox from MATLAB (2021b, The Mathworks Inc., Natick, MA, USA).

A K-fold cross-validation function in MATLAB was used to conduct a cross-validation
process to assess the performance of the model. It was one of the most popular methods
for classifier model selection and error estimation [39]. It divides each sample into a
predetermined number of groups (N), of which N-1 groups are used to fit a model while the
remaining sample is used for validation. Each group served as the validation group during
the ‘N’ times this fitting and validation process was carried out. The model performances
were described using the averaged values of the evaluating metrics. In this study, the N
is set to 5, as it was randomly partitioned into 5 sub datasets of equivalent size. Figure 5
illustrates the 5-fold cross validation process.

Figure 5. The illustration of 5-fold cross validation.

Figure 6 provides a summary of the 5 machine learning classifiers used in this study
from the default setting by the classification learner apps in MATLAB, including Decision
Tree (DT), Discriminant Analysis (DA), Naïve Bayes (NB), Support Vector Machine (SVM),
and K-nearest Neighbour (KNN). The classification models were developed separately
using three different combinations of vegetation indices: (a) NDVI and NDRE, (b) NDVI and
GNDVI, and (c) NDRE and GNDVI. The best classification model was determined based
on the highest F1 score mean value. The use of only 2 combinations of vegetation indices
serves to create a straightforward and more cost-effective tool for future hardware design.
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Figure 6. Type of classifier and kernel used.

2.5. Performance Evaluation

The classification for each infestation category was displayed using the multiclass
confusion matrix, which shows the accuracy for each class while exposing specific misclas-
sifications. From the confusion matrix, true positive (TP), false positive (FP), true negative
(TN) and false negative (FN) can be calculated to assess the performance of the model
such as accuracy, precision, recall, specificity, and F1 score. Accuracy is the proportion of
correctly classified dataset over all datasets. The proportion of correctly predicted positive
observations among all predicted positive observations is known as precision (Equation (2)).
The proportion of correctly predicted positive observations to all the actual observations in
a class is known as recall (Equation (3)). The F1 score (Equation (4)) is the harmonic mean
of the precision and recall, which provides a measurement for the number of errors made
by the algorithm, with 0 being the worst possible value and 1 being the best possible value.
A high F1 score denotes both a high precision and recall. By comparing all the performance
metrics, the F1 score seems more reliable when it comes to unbalanced data. A macro
average was used to determine the results, which involved calculating each performance
separately and averaging them. Additionally, the percentage difference (Equation (5)) of
the F1 score between training (i) and testing (j) was then calculated to identify the pattern
of the model either overfitting or underfitting.

Precision, P =
TP

(TP + FP)
(2)

Recall, R =
TP

(TP + FN)
(3)

F1− score = 2× (P× R)
(P + R)

(4)

Percentage di f f erence =
|i− j|

i
× 100 (5)

3. Results

3.1. Imagery Acquisition

Figure 7 displays the canopy image in red, green, and blue (RGB) colour format, for all
infestation levels. As shown in Figure 7a, the canopy was completely covered with green
frond leaves, indicating that the canopy is unharmed. Figure 7b shows a canopy with low
infestation that is beginning to change, particularly at the bottom of the canopy where the
frond leaves have begun to dry out. Then, the foliar damage is increasing and starting to
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strip most of the fronds at the bottom canopy area of Figure 7c, indicating mild infestation.
Meanwhile, the severely infested canopy in Figure 7d is completely stripped, with no frond
leaves remaining at the bottom of the canopy.

(a) (b)

(c) (d)

Figure 7. Condition of canopy image: (a) Healthy, (b) Low infestation, (c) Mild infestation, (d) Severe
infestation.

3.2. Vegetation Indices Analysis

All these vegetation indices were then subjected to a statistical analysis to determine
the variance across the means of infestation level. Results of mean (±standard error)
comparison of the vegetation indices for each infestation category using a Tukey’s HSD
are tabulated in Table 6. Values that are not connected by the same letter are significantly
different. According to Table 6, all the vegetation indices show consistent results where all
infestation categories differ significantly. Figure 8 provides an illustration of the histogram
mean comparison of each vegetation index according to the degree of infestation. As the
infestation grows, it is evident that all values decrease.

Table 6. Tukey’s HSD mean comparison for all vegetation indices based on infestation categories.

Infestation NDVI NDRE GNDVI SR GCI RECI

Healthy
(n = 750) 0.9469 ± 0.00034 a 0.6853 ± 0.00130 a 0.8874 ± 0.00069 a 38.7001 ± 0.23590 a 16.6700 ± 0.10268 a 4.4696 ± 0.02413 a

Low
(n = 800) 0.8892 ± 0.00082 b 0.4908 ± 0.00147 b 0.7717 ± 0.00095 b 19.1967 ± 0.16968 b 7.1558 ± 0.04566 b 1.9789 ± 0.01162 b

Mild
(n = 300) 0.7816 ± 0.00042 c 0.3319 ± 0.00109 c 0.6380 ± 0.00090 c 8.2434 ± 0.01708 c 3.6012 ± 0.01341 c 1.0106 ± 0.00513 c

Severe
(n = 1000) 0.5958 ± 0.00180 d 0.1524 ± 0.00088 d 0.5213 ± 0.00149 d 4.1870 ± 0.02339 d 2.2669 ± 0.01316 d 0.3643 ± 0.00245 d

Data represents the mean (± standard error). Different letters within the same column indicate statistical difference
by the Tukey’s HSD test at p < 0.05.
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Figure 8. Average infestation level based on each vegetation index. (a) NDVI, (b) GNDVI, (c) NDRE,
(d) SR, (e) GCI, and (f) RECI. Different letters within the bar chart indicate statistical difference by the
Tukey’s HSD test at p < 0.05.
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To provide a more cost-effective solution, only three significant vegetation indices
with standard errors lower than 0.002 were selected, namely NDVI, NDRE, and GNDVI for
model development. The combination of each selected index was then created: NDVI and
NDRE, NDVI and GNDVI, and NDRE and GNDVI. As a result, these three combinations
were included for model development.

3.3. Classification Model Analysis

The performance of the model was evaluated based on the F1 score value. The per-
centage difference between training and testing was calculated to identify the underlier of
the model performance. It was determined based on the model with the smallest difference
between training and testing. The tabulated results are shown in Table 7. According to
Table 7, the F1 scores of all the models during training and testing were mostly high, at
more than 90%. The percentage difference, meanwhile, was lower and below 1%, indicating
that there was no overfitting in any of the models.

Table 7. The performance of all classifiers in all combinations, F1 score.

Classifier Kernel

NDVI and NDRE NDVI and GNDVI NDRE and GNDVI

Train Test Difference
(%)

Train Test Difference
(%)

Train Test Difference
(%)

Tree

Fine 99.65 99.89 0.24 99.32 100.00 * 0.69 99.07 99.35 0.29

Medium 99.65 99.89 0.24 99.32 100.00 * 0.69 99.07 99.35 0.29

Coarse 99.70 99.78 0.09 99.22 100.00 * 0.78 99.20 99.35 0.15

Discriminant
Linear 98.56 98.34 0.23 99.18 100.00 * 0.82 98.90 97.56 1.36

Quadratic 99.61 99.14 0.47 99.50 99.08 0.43 99.52 98.62 0.90

Naïve Bayes
Gaussian 99.64 99.25 0.40 99.18 98.76 0.43 99.09 99.14 0.05

Kernel 99.78 99.46 0.32 99.60 99.16 0.44 99.19 99.08 0.10

SVM

Linear 99.78 99.78 0.00 99.46 99.78 0.33 99.39 100.00 * 0.61

Quadratic 99.83 100.00 * 0.17 99.47 99.78 0.31 99.39 99.78 0.40

Cubic 99.78 99.78 0.00 99.50 100.00 * 0.50 99.39 99.35 0.04

Fine Gaussian 99.69 100.00 * 0.31 99.51 99.82 0.31 99.39 99.46 0.07

Medium Gaussian 99.78 99.68 0.10 99.55 99.78 0.24 99.34 100.00 * 0.66

Coarse Gaussian 99.78 99.46 0.32 99.41 100.00 * 0.59 99.30 99.15 0.15

KNN

Fine 99.78 99.89 0.11 99.56 99.89 0.33 99.19 99.28 0.09

Medium 99.73 99.68 0.06 99.60 100.00 * 0.41 99.26 100.00 * 0.74

Coarse 99.65 99.25 0.41 99.55 100.00 * 0.45 99.26 99.33 0.06

Cosine 98.22 97.34 0.89 97.89 98.40 0.53 76.64 77.03 0.51

Cubic 99.73 99.57 0.16 99.60 100.00 * 0.41 99.34 100.00 * 0.66

Weighted 99.73 99.89 0.16 99.61 99.89 0.29 99.39 100.00 * 0.61

* indicates the highest F1 score during testing achieved by the models in each combination.

In the combination of NDVI and NDRE, Quadratic SVM and Fine Gaussian SVM, both
achieved a 100% F1 score during testing, indicating that the models successfully classify
the infestation level correctly. It was then followed by a 99.98% F1 score, achieved by Fine
tree, Medium tree, Fine KNN and Weighted KNN. According to their confusion matrix,
the slight difference was due to ‘healthy’ being misclassified as ‘low’ with an error rate of
0.44%. The same issue was faced by another 10 models that gained an F1 score between
99.14% and 99.79% (i.e., Coarse tree, Quadratic discriminant, Gaussian Naïve Bayes, Linear
SVM, Cubic SVM, Medium Gaussian SVM, Coarse Gaussian SVM, Medium KNN, Coarse
KNN, and Cubic KNN) with error rates ranging between 0.89% and 4.00%. The Cosine
KNN model achieved the lowest F1 score, at 97.34%, due to misclassification of the model
in distinguishing between healthy and low, as well as mild being detected as severe, with
error rates of 4% and 10%, respectively. Additionally, the Linear discriminant model also
had a low F1 score (98.34%) because it misclassified low as healthy (2.22%) and misclassified
low as mild with an error rate of 2.5%. The Kernel Naïve Bayes model obtained a 99.46% F1
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score. However, it has two issues: misclassifying healthy as low and low as healthy, with
error rates of 1.78% and 0.42%, respectively.

In the combination of NDVI and GNDVI, nine models, including Fine tree, Medium
tree, Coarse tree, Linear discriminant, Cubic SVM, Coarse Gaussian SVM, Medium KNN,
Coarse KNN, and Cubic KNN, achieved 100% F1 scores, indicating perfect classifications
with zero error rates. There were two models that had an F1 score less than 99%, i.e.,
Gaussian Naïve Bayes (98.76%) and Cosine KNN (98.41%). Both models deal with the same
issue, which is misclassification of healthy as low (error rate < 3%), as well as mild being
misclassified as severe (error rate < 6%). Cosine KNN also deals with another issue, which
is misclassification of low as healthy, with an error rate of 0.83%. The same problems with
error rates between 0.42% and 0.83% were addressed by six additional models, namely
Kernel Naïve Bayes, Linear SVM, Quadratic SVM, Medium Gaussian SVM, Fine KNN,
and Weighted KNN, which all achieved F1 score ranges of 99.16% to 99.89%. Furthermore,
Kernel Naïve Bayes also misclassified mild as severe with an error rate of 4.44%. Quadratic
discriminant and Fine Gaussian SVM achieved F1 score ranges of 99.08% and 99.82%,
respectively; however, they misclassified mild as severe with an error rate of 5.56% and
1.11%, respectively.

In the combination of NDRE and GNDVI, five models successfully achieved a 100% F1
score during testing, namely, Linear SVM, Medium Gaussian SVM, Medium KNN, Cubic
KNN and Weighted KNN. On the other hand, three models achieved an F1 score lower
than 99%, i.e., Quadratic discriminant (98.62%), Linear discriminant (97.56%) and Cosine
KNN (77.03%). The performance of Cosine KNN in this combination was the worst because
it was obviously unable to differentiate between all infestation levels, with an average error
rate of 25.19%. Meanwhile, the Quadratic discriminant and Linear discriminant models
had trouble, classifying healthy as low (error rate 3.11%) and low as mild (error rate 2.92%).
The Quadratic discriminant model also misclassified severe as mild with an error rate
of 0.67%. The other models with F1 scores between 99.00% and 99.79% essentially have
the standard issue of being unable to distinguish between healthy and low, such as Fine
tree, Medium tree, Coarse tree, Gaussian Naïve Bayes, Quadratic SVM, Cubic SVM, Fine
Gaussian SVM, Coarse Gaussian SVM, Fine KNN, and Coarse KNN, with an average error
rate of 1.64%. However, some of these models also had another issue. For example, Fine
and Medium trees had error rates of 0.42% due to incorrectly classifying low as healthy.
The Kernel Naïve Bayes, Coarse Gaussian SVM, and Fine KNN incorrectly misclassified
severe as mild with an average error rate of 0.44%. Misclassification of low, which was
predicted as mild, was also faced by Kernel Naïve Bayes, Coarse Gaussian, Gaussian Naïve
Bayes and Coarse KNN, with an average error rate of 1.36%.

Overall, the performance of each model varied depending on the combination. The
combination of NDVI and GNDVI was found to be the most successful in terms of perfect
classification, with a 100% F1 score and zero error rate, due to nine models that accurately
classified every level of infestation. It was then followed by a combination of NDRE
and GNDVI with five models, and two models from NDVI and NDRE combinations.
Nonetheless, all the models performed well, with an F1 score of more than 97.00% in every
combination, except for Cosine KNN in the combination of NDRE and GNDVI, which
performed the worst and gained an F1 score of 77.03%.

3.4. Effect of Combination of Vegetation Indices

Figure 9 shows the performance of each model in classifying the infestation level based
on the combination of vegetation indices. In general, all the models performed well across
all combinations. Out of 19 models, 14 models had a great performance, with an F1 score
of more than 98% in classifying all infestation levels for all VI combinations, especially in
classifying mild and severe levels, where all the models performed perfectly and achieved
100% F1 scores, i.e., Fine tree, Medium tree, Coarse tree, Linear SVM, Quadratic SVM,
Cubic SVM, Fine Gaussian SVM, Medium Gaussian SVM, Coarse Gaussian SVM, Fine
KNN, Medium KNN, Coarse KNN, Cubic KNN and Weighted KNN. The best models out
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of these models were the Weighted KNN and Cubic KNN models, which worked well in
all combinations and accurately classified infestation levels. The main distinction between
Cubic KNN and Weighted KNN was that, when NDVI and GNDVI were combined, Cubic
KNN achieved a 100% F1 score in classifying healthy and low, whereas Weighted KNN
achieved 99.78% and 99.79%, respectively. Nevertheless, Weighted KNN outperformed
Cubic KNN, which achieved 99.70% in classifying low and healthy in the combination of
NDVI and NDRE.

Out of all the models, Cosine KNN performed the least well, especially when combined
with NDRE and GNDVI, which performed the least well at classifying all infestation levels.
For instance, it gained a 32% F1 score in classifying mild, followed by 87% (severe), and
94% (healthy and low). Nevertheless, it did well in classifying a mild level in the other
combinations, with an F1 score of more than 94%. Additionally, the Cosine KNN performed
well when NDVI and GNDVI were combined, where all infestation levels were accurately
identified and an F1 score range of 97% to 99% was obtained.

The performance of the remaining four models, which included the Linear discrimi-
nant, Quadratic discriminant, Gaussian Naïve Bayes, and Kernel Naïve Bayes, were varied,
with F1 scores ranging from 95% to 100%. Generally, they successfully classified severe
level in all combinations and received a perfect F1 score. In addition, they also performed
well in classifying healthy and low, especially in the combination of NDVI and GNDVI, and
obtained F1 scores between 96% and 100%. However, they had difficulty in categorising
mild levels (F1 scores ranged between 95% and 97%), except for the NDRE and NDVI
combination, where they successfully achieved a 100% F1 score.
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Figure 9. The performance of each model in distinguishing each infestation level based on combina-
tions of vegetation indices. (a) healthy, (b) low, (c) mild, and (d) severe.

In general, the best combination for the model to perform well in classifying the
healthy and low levels of infestation and achieving a 100% F1 score was the combination of
NDVI and GNDVI. For instance, 11 out of 19 models achieved a 100% F1 score in healthy
level (Figure 9a), followed by the combination of NDRE and GNDVI, where only six models
gained a 100% F1 score. A similar outcome was present at the low level, where most of the
models obtained a 100% F1 score (11 models) when NDVI and GNDVI were combined,
followed by the combination of NDRE and GNDVI (four models). For the combination of
NDVI and GNDVI, it appears to be impossible for the models to classify at the healthy and
low levels and achieve a 100% F1 score; instead, it is the most effective for classifying at the
mild and severe levels, where 17 and 18 models out of 19 models perfectly performed well
at the mild and severe levels, respectively.

The findings of this study were logical, as foliar damage in a severe condition was
evidently present and gave off a brown appearance. The same is true of the mild level,
where all the foliar damage began to become apparent. The crucial factor was therefore
the healthy and low conditions, where the foliar damage was not readily apparent and
recognised. As a result, all the models in this study successfully classified healthy and low
infestation levels, particularly when NDVI and GNDVI were combined.

4. Discussion

In this study, UAV-based multispectral images were used in detecting different severity
levels of bagworm infestation in oil palm plantations. This study employs UAV-acquired
images and machine learning techniques to locate the bagworm Metisa plana infestation
area. It focuses exclusively on the ability of the machine learning to categorise the severity
level of infestation as healthy, low infestation, mild infestation, and severe infestation
using vegetation indices extracted from UAV images. Out of five vegetation indices, three
were selected and formed three combinations: NDVI and NDRE, NDVI and GNDVI, and
NDRE and GNDVI. A total of 19 models were used to determine the effectiveness of the
combination dataset to classify each infestation level.
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Weighted KNN was chosen out of all the models used due to its highly consistent
performance and the great classification of all infestation levels (F1 score greater than
99.70%). It was then followed by Cubic KNN, which had an F1 score of over 99.10%.
Meanwhile, the Cosine KNN model was chosen as having the least effective performance
among the others with an F1 score range between 32% and 94%. It was clearly demonstrated
that the same classifier, using a different kernel, produced the best and worst performance.
KNN typically works by using the distance function to determine how far new data entry
is from values provided in datasets with different classes based on its closeness in the
given range (k) of neighbours. In this study, the k-neighbour was constant and set at 10,
indicating medium distinctions between classes. Meanwhile, the distance function was
based on the kernel type of the KNN. For instance, Weighted KNN uses the distance-
weighing concept, where the weighing is calculated using Euclidean distances. Cosine
KNN and Cubic KNN use cosine distance and cubic distances, respectively. This study
clearly demonstrated that the weighted kernel provided an excellent result due to the
addition of weights to the Euclidean distance, which enhances classification performance.
The same verdict was obtained by Mohd Johari et al. [29], in differentiating the four larval
instar stages with an accuracy of 91% to 95%. In addition, Rathore et al. [40] also found
that KNN, using weighted kernel, achieved a high accuracy of 90% compared to other
kernels in distinguishing between various type of insects and between adult and larvae
insect sounds.

Furthermore, the best combination of vegetation indices was determined to be NDVI
and GNDVI, as most models could successfully classify the level of infestation and achieved
a 100% F1 score, especially in healthy and low levels. The same outcome was obtained by
Mangewa et al. [41], where the NDVI and GNDVI were determined to be the most effective
vegetation indices for detecting and monitoring ecological changes in wildlife habitat
condition classes (i.e., very good, good, poor and very poor). Generally, NDVI is most
useful when used to assess vegetation density over large areas and to assess crop health;
meanwhile, GNDVI is based on the greenness level, which is determined by the radiance of
the leaf surface and is a significant indicator in distinguishing between healthy and infested
leaves. Moreover, the combination of NDVI and NDRE was found to be the most suitable
combination for the models in classifying mild and severe levels and achieved an F1 score
of 100%. A comparable finding was presented by Boiarskii and Hasegawa [42], who used
NDVI and NDRE to identify the poorly growing vegetation area and demonstrated that
NDRE was sensitive to chlorophyll content, indicating nitrogen limitation in the leaves.
Hence, it can be inferred that the results obtained from this research, which showcased
the effectiveness of utilising the combination of NDVI and NDRE, as well as NDVI and
GNDVI, in achieving optimal classification performance for identifying low and severe
infestation, as well as healthy and low infestation, respectively, are deemed satisfactory.

In terms of spectral bands, NIR makes up all the vegetation indices used in this study.
Following that, the NIR band was tested against other bands such as red, green, and
red edge using the same arithmetic operation (subtraction, division, and addition). The
combination of NIR and red band formed NDVI; NIR and green band formed GNDVI;
and NIR and red edge formed NDRE. The combination of NDVI and NDRE obtained the
best results in classifying between mild and severe infestation, as well as a combination of
NDVI and GNDVI obtained the best results in classifying healthy and low. In this study,
NDVI was recognised as a crucial vegetation index because it aids in classifying all levels
of infestation. The red band was regarded as a crucial band in addition to NIR because it
also affects the performance of all classifications. Thus, the performance of all classification
models is clearly boosted by the combination of NIR and red bands.

Nevertheless, a severe condition seems easy to identify, as the foliar damage is obvious.
As mentioned by Corley and Tinker [5], the lower and central crown appeared greyish
brown as a result of the severely damaged leaves. This is consistent with the findings of
this study, which showed that most of the models were correctly classified as severe levels
and had 100% F1 scores in all combinations. In this case, healthy and low infestation levels
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play a crucial role, as it is difficult to detect the starting point of the infestation. As a result,
this suggested method has an excellent chance of identifying healthy and low infestation
levels even when the foliar damage is unseen, and there are no colour changes of the frond.
Therefore, decision-making models may be able to tell farmers when to start pest control
measures to stop the spread of the pest, especially for early infection predictions.

5. Conclusions

In this study, Metisa plana infestation levels were classified using UAV images and a
machine learning approach. To enhance the classification performance of each model in
classifying the level of infestation, three types of combinations among chosen vegetation
indices were developed, namely NDVI and NDRE, NDVI and GNDVI, and NDRE and
GNDVI. According to the results, the best combination for classifying healthy and low
levels was found to be NDVI and GNDVI, empowering the model to classify all infestation
levels with a 100% F1 score. In addition, the combination of NDVI and NDRE was found
to be the best combination fort classifying mild and severe levels. The most important
vegetation index that could detect every level of infestation was NDVI. The classification
of the infestation level is made clearer and more accurate by combining it with other
vegetation indices. In addition, Weighted KNN became the best model, which constantly
gave the best performance in classifying all the infestation levels (F1 score > 99.70%) in all
combinations.

Early detection of a bagworm infestation is crucial for effective management and
early control measures. Therefore, this suggested method is essential for the early phase of
severity level detection, considering that the infestation level can be automatically identified,
allowing the planning and management of the control measure to be planned more quickly.
Furthermore, the outcomes of this study demonstrated the enormous potential of UAV
synergy for the detection of pest infestations using machine learning. Transfer learning
methodology could be used in future studies to provide more automatic classification.
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Abstract: Aquaponics is an emerging area of agricultural sciences that combines aquaculture and
hydroponics in a symbiotic way to enhance crop production. A stable smart aquaponic system
requires estimating the fish size in real time. Though deep learning has shown promise in the context
of smart aquaponics, most smart systems are extremely slow and costly and cannot be deployed on
a large scale. Therefore, we design and present a novel neuromorphic computer that uses spiking
neural networks (SNNs) for estimating not only the length but also the weight of the fish. To train
the SNN, we present a novel hybrid scheme in which some of the neural layers are trained using
direct SNN backpropagation, while others are trained using standard backpropagation. By doing
this, a blend of high hardware efficiency and accuracy can be achieved. The proposed computer
SpikoPoniC can classify more than 84 million fish samples in a second, achieving a speedup of at least
3369× over traditional general-purpose computers. The SpikoPoniC consumes less than 1100 slice
registers on Virtex 6 and is much cheaper than most SNN-based hardware systems. To the best
of our knowledge, this is the first SNN-based neuromorphic system that performs smart real-time
aquaponic monitoring.

Keywords: artificial intelligence; deep learning; digital agriculture; Internet of Things (IoT);
neuromorphic chips; on-chip learning; precision agriculture; smart aquaponics; smart farming;
spiking neural networks

1. Introduction

The world is witnessing a rapid increase in population and a decrease in the amount
of available food. The food sources are depleting faster than ever before. This is why it is
crucial to develop advanced agricultural techniques. Aquaponics is a recently developed
agricultural technique that combines aquaculture and hydroponics in a symbiotic way
to increase the overall food production and quality. In an aquaponic system, fish excrete
their waste, which is transformed into nutrients by nitrifying bacteria, which in turn are
readily absorbed by plants. This symbiotic relationship is shown in Figures 1 and 2. Smart
aquaponic systems (SASs) first take input from sensors that collect data about the environ-
ment and then use that information for making critical decisions such as controlling the
level of oxygen and nutrients in the ecosystem. The parameters may include temperature,
pH level, and oxygen level. In Figure 2, the symbol N represents the number of input
features, and p is a symbol for the pth hidden neuron.
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Figure 1. A real-world aquaponic system [1].

Figure 2. A typical smart aquaponic system using deep learning for feedback.
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Aquaponics is safer for environment than the traditional farming techniques because
it limits the use of harmful chemicals [2]. The use of aquaponics can greatly resolve the
water scarcity crisis as the water consumed by aquaponic systems is only 2–10% of what
is used by the traditional agricultural systems. Aquaponics also plays a good role in
promoting promote soil-less culture [2,3]. Despite all these advantages, only 31% of the
aquaponic solutions have been found to be commercially viable due to poor management
and inexperienced handlers [2]. This is where the role of deep learning (DL) comes into play.
Deep learning is a proven tool to monitor and control nutrients in an aquaponic system.
DL can help in the early prediction of fish size and water quality, which can in turn help in
the automatic adjustment and upgradation of system parameters. For example, if a fish is
smaller than the expected size, it can be provided with more food and healthy nutrition.
In this context, various deep learning models have been proposed to predict water quality
parameters, fish classification, fish size estimation, feeding decisions, etc. [2,4–7].

Since large-scale aquaponic systems have to deal with a huge number of parameters
and require extensive monitoring, it is quite hard for humans to do all the manual work.
The problem becomes more severe when there is a shortage of experienced manpower.
In order to resolve these issues, automation techniques and artificial-intelligence-based
systems can be extremely helpful. Such techniques and systems reduce the need for huge
manpower and allow for better management at a commercial scale. Smart Systems (SSs), in
the context of aquaponic systems, refer to small but intelligent electronic devices capable of
performing a huge number of complex operations such as sensing, monitoring, and control
in a minimal amount of time [2].

Although the literature is filled with works describing the development of smart DL
systems for aquaponics, no intelligent DL system is based on dedicated hardware (HW).
Here, the term dedicated hardware refers to field programmable gate arrays (FPGAs) and
application-specific integrated circuits (ASICs). All the systems are implemented using
microcontrollers (uCs) and/or general-purpose computers (GPCs) that are inherently slow.
This is because uCs and GPCs follow a sequential model of execution. As a result, a high
degree of parallelization in such systems is almost impossible. Even if there is a certain
degree of parallelization in any such system, it can never match the level of parallelization
offered by dedicated HW systems. Due to their slow speed, the use of uCs and GPCs
in large-scale commercial aquaponic systems—where millions of parameters have to be
handled in real time—can become quite problematic. There is another problem associated
with the use of GPCs: they have a large area and require expensive software tools for
proper operation. This certainly increases their cost and footprint and limits their usage in
practical systems. FPGAs and ASICs, on the other hand, have smaller footprints, offer a
higher speed, and have lower power requirements. This has been demonstrated even in
this article: the use of the FPGA-based DL system is about 3369 times faster than traditional
general-purpose computers. Figure 3 shows the relationship between various computing
platforms in terms of efficiency and flexibility. As can be seen in Figure 3, ASICs and FPGAs
are quite difficult to develop but have higher efficiency, i.e., lower power consumption,
higher speed, and smaller area. Dedicated HW systems have a huge number of parallel
computational elements, which makes them suitable for high speed applications. This is
the basic advantage of using neuromorphic systems/accelerators (NMSs/NMAs). NMAs
are accelerators that use dedicated hardware devices (FPGAs/ASICs) to implement neural
networks. By doing so, a lot of improvement in system speed, energy consumption, and area
can be obtained [8,9]. Section 1.2 discusses various modern neuromorphic accelerators.
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Figure 3. Flexibility–efficiency relationship between various computing platforms.

There are some other shortcomings as well in the currently available works. One
such shortcoming is that all these works (aquaponic systems) use artificial neural networks
(ANNs) that are quite expensive and compute-intensive, especially when implemented
on dedicated hardware devices such as ASICs. Though ANNs have exhibited excellent
performance in the context of both classification and regression, they consume a lot of
system energy and are extremely complex [10]. Spiking neural networks (SNNs), on the
other hand, are more efficient than ANNs when it comes to hardware efficiency [8] since
SNNs are event driven and consume lesser energy than ANNs. The primary difference
between an ANN and an SNN is that the former uses continuous analog values, while the
latter uses spikes for neuronal communication. These spikes are emitted by a neuron only
when an important event takes place, otherwise nothing is emitted and the subsequent
units remain silent [8]. This behavior is similar to the biological neurons [11,12]. In fact,
the asynchronous behavior of biological neurons is the reason why the brain consumes
only a few watts of energy despite having a very small area [11]. Therefore, SNNs are
more bioplausible than ANNs [12,13]. In fact, since SNNs use simple spikes, they might
have a very small hardware footprint, as in [9,14]. Moreover, SNNs can achieve almost
the same level of accuracy as ANNs, as can be seen in [14–16]. This is why it is the
need of the hour to develop SNN-based aquaponic systems. Another big problem in
most modern studies is the lack of available data. Most datasets have a few hundred
samples for system evaluation, which is insufficient to obtain reliable results. For example,
the work in [3] uses only 211 samples for performance evaluation. SNN training is also a
very serious issue since spikes are non-differentiable and backpropagation is not easy to
apply [15,17]. Moreover, ANN-SNN conversion requires a lot of costly operations such as
weight-threshold balancing [18].

Keeping all these issues in mind, we propose a novel, high-speed and small-footprint
smart aquaponic system based on a spiking neural network for fish size estimation. The sys-
tem can monitor and predict the size of fishes in real time. The system can classify a given
input sample into one of the eight classes defined with respect to weight or length. The sys-
tem can estimate both the expected length and weight of fishes based on input data.
The throughput of the system is 84.23 million samples per second, i.e., the system can
classify 84.23 million samples in a second. Moreover, the proposed SNN system consumes
45% fewer hardware resources than its ANN counterpart for the same level of accuracy.
In fact, the proposed system is 2×–3× cheaper than most contemporary systems.

Main Contributions

This paper presents a novel, hardware-efficient, SNN-based neuromorphic engine for
fish size estimation, which finds application in aquaponic monitoring. The system has been
modeled in Verilog language at the register-transfer level (RTL). The main contributions of
this work are mentioned below. A summary of these contributions is given in Figure 4.
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1. To provide a complete methodology to develop an aquaponic monitoring system that
uses spiking neural networks to predict fish size. The system is capable of predicting
both the length and weight of a fish, unlike other systems that can predict either
length or weight, not both. In the proposed system, this is done using two switching
buffers: one for predicting the weight, and the other one for predicting length.

2. A proposal of a novel hybrid training scheme that uses both ANN and SNN layers
to achieve a blend of high accuracy and hardware efficiency. The system uses direct
training for SNNs and standard backpropagation for ANN layers. The proposed
implementation is much more hardware-efficient not only than a typical, fully ANN
implementation but other SNN implementations too, without any loss of accuracy.
The system can estimate the range of length with more than 98.03% accuracy, and the
range of weight with 99.67% accuracy.

3. The system does not use any complex weight-threshold balancing mechanism, unlike
various SNN training schemes [18,19], since it uses direct SNN backpropagation.

4. An SNN-based neuromorphic system implemented on a field programmable gate
array (FPGA) for real-time aquaponic monitoring. It is an edge computer capa-
ble of predicting fish size (length and weight) on the basis of input parameters.
The proposed edge computer can predict 8 different fish size categories based on
the given data. The system can operate in the ‘fully parallel’ mode and can estimate
84.23 million samples in a second. The throughput is about 3369 times higher than a
typical CPU-based software system, making it suitable for large-scale commercial use.
While other systems use only a few hundred samples for testing purposes, the pro-
posed system has been trained/tested on 175,000 samples, which proves that the
obtained results are more reliable than others’.

5. The proposal of a hardware-efficient surrogate gradient that is as efficient as sigmoid
but has higher flexibility. The mean-squared error between the sigmoidal derivative
and the proposed derivative is 0.013%. The learning technique is suitable for develop-
ing on-chip learning (OCL) systems since the proposed surrogate gradient requires
far fewer hardware resources than most gradients proposed in the literature while
being extremely accurate.

Figure 4. Proposed system: features and components.

The rest of this paper is organized as follows. The coming parts of this section present a
review of various modern smart aquaponic systems and neuromorphic accelerators. It also
presents the problem definition. Section 2 presents the training methodology for fish size
estimation. Section 2 also presents the operation and details of SpikoPoniC, the proposed
neuromorphic computer. The results are presented in Section 3. Finally, Section 4 concludes
the work.
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Related Work and Problem Definition

Smart aquaponic systems (SASs) are generally built using GPCs and microcontrollers
(MCs) [2]. We could not find any SAS built using FPGAs/ASICs in the literature. This is
where the problem lies. Modern SASs are quite complex, and MCs or GPCs are not fast
enough to operate at the required speed [20,21]. Moreover, MCs and GPCs consume a lot of
power and can be extremely expensive when manufactured in bulk quantities. Therefore,
we chose to implement the proposed design on an FPGA. The same design can be imple-
mented on an ASIC as well, and higher hardware efficiency can be achieved. Furthermore,
we focus not only on the algorithm but also on the hardware design. This approach has
been proven to be extremely effective at developing high-performance systems [9,22] since
hardware efficiency is directly related to algorithmic efficiency.

Since the proposed scheme SpikoPoniC deals with both algorithm and architecture,
we divide this section into two major parts. The first part presents a comprehensive review
of modern smart aquaponic systems, and the second part deals with the neuromorphic
accelerators. Based on the literature review, we conclude that SNNs have not yet been used
for building SASs. In fact, none of the NM accelerators have been designed specifically
for aquaponics.

1.1. Smart Aquaponics: Algorithms and Monitoring Systems

In the context of smart aquaponics, deep learning finds its applications, among others,
in the following areas: fish size estimation, water quality prediction, plant disease diagnosis,
and intelligent feeding decisions. The estimation of fish length and weight is important in
order to properly manage aquaponic systems and to model stock trends. The dynamics
of fish length distribution represent a key input for understanding the fish population
dynamics and taking informed management decisions on exploited stocks. Nevertheless,
in most fisheries the length of landed fish is still made by hand. As a result, length
estimation is precise at a fish level, but due to the inherent high costs of manual sampling,
the sample size tends to be small.

In [4], the authors present a scheme for fish length estimation using convolutional
neural networks (CNNs). Their scheme is 93% accurate. A comparison between various
popular CNN topologies for estimating the mass of Pintado Real fingerlings is given in [23].
The estimation of fish length using videos can also be very useful for developing a stable
SAS. In this context, the authors in [5] present a method for underwater fish detection using
videos. The system uses a ResNet-50 CNN and is 95.47% accurate. To operate a stable
SAS, the early diagnosis of fish diseases can also be very helpful. In case a fish is found to
be unhealthy, it can be removed from the pond; otherwise, the whole ecosystem can get
disturbed. The researchers in [6] propose a scheme that can differentiate red spots on a fish
from the white ones with 94.44% accuracy. Deep learning can be used to predict and control
various nutrients and chemicals (moving in and out of the system) as well. For example,
the authors in [24] present a scheme that can predict the concentration of oxygen in SASs.
If a system contains less than the optimal level of oxygen, it can be supplied with more
oxygen. Neural networks can be used to monitor other SAS parameters also, such as pH
level, ammonia level, and temperature. They can also be used to make appropriate feeding
decisions for plants and/or fishes [7].

Let us now discuss spiking neural networks. SNNs are the next-generation NNs whose
potential has been demonstrated for a variety of applications, such as low-power image
classification [8]. However, there are some major problems facing SNNs, especially in the
context of SAS design.

• Firstly, no SAS-specific SNN system is available in the literature. All the smart
aquaponic systems presented in the literature use artificial neural networks for param-
eter prediction and other tasks.

• Secondly, most SNN systems presented in the literature yield very low accuracy, even
for digit classification tasks. Only a few SNN schemes achieve high accuracy. This is
because spikes are non-differentiable in nature and direct backpropagation is quite
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tricky to apply [15]. The non-differentiable nature of spikes is shown in Figure 5.
Therefore, most researchers typically use an unsupervised algorithm spike-timing-
dependent plasticity (STDP) for SNN training.

• Many backpropagation-based SNN training schemes [16,18,19] use complex mecha-
nisms such as weight-threshold balancing.

• SNNs, unlike ANNs, require multiple time steps to process an input. This is why
SNNs, sometimes, can consume a lot of time and hardware energy.

Figure 5. Spiking activation function and its non-differentiable derivative.

For example, the SNN scheme in [25] achieves 95% accuracy on MNIST dataset, even
with more than five million synapses and hundreds of time steps. This is why it is crucial
to develop SNN learning schemes that can yield high accuracy with a minimal network
size. For instance, the work in [17] uses SNN backpropagation to achieve 98.7% accuracy
with only 268,800 synapses and 8 time steps. The work in [17] is one of the rare works that
do not require a long time to train SNNs. The other example is the work in [9] that requires
only 10 time steps and a little over 150k synapses to reach 97.5% on MNIST. Most works,
especially the ones based on STDP, require hundreds of time steps and millions of synapses
to achieve reasonable accuracy, even on MNIST. The work in [26] is a good example of this.
The scheme requires 700 time steps to achieve 92.63% accuracy, which is extremely low.
Even backpropagation can be difficult to apply on SNNs. A good example is [27], where a
38-layer network with a complex batch form of normalization is applied to train the SNN.
Though the network achieves good accuracy—equal to 92.8%—on CIFAR-10, the scheme is
extremely complex to apply. Other such examples can be seen in [28–30].

The system in [31] achieves only 97.20% accuracy on MNIST in 1200 epochs, where
each epoch contains tens of time steps. The scheme in [32] requires multiple time steps and
100 s of iterations to achieve 98.6% accuracy. To do this, multiple convolutional layers are
followed by spiking layers equipped with backpropagation and STDP to achieve better
accuracy. Though the scheme achieves good accuracy, the overall system is extremely
complex and unsuitable for hardware implementations. Moreover, the scheme has not
been tested on any aquaponics data.

1.2. Neuromorphic Accelerators (NMAs)

As mentioned earlier, though a lot of NMAs have been presented in the literature,
none of them have been specifically designed for aquaponics. Moreover, the available
NMAs or the schemes they use have been designed keeping only the inference in mind.
Only a few hardware systems can train SNNs [9]. Moreover, systems capable of online
learning are quite complex and do not yield high accuracy.

The authors in [33], for example, present a hardware neural system that can detect
epileptic seizures with 95.14% accuracy. They implement fully parallel sigmoidal neurons
using look-up tables on an FPGA. A generic hardware NN system that has been tested on
a digit classification dataset is presented in [22]. The system in [34] has been tested on a
cancer detection dataset. The system can predict the type of cancer with 98.23% accuracy.

Again, there is no system that can perform inference in a single time step. Almost all
systems require tens of time steps for inference. Systems that require fewer than 10 time
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steps are quite rare. The system presented in [17] is one such example; the system achieves
converges in eight time steps. The basic problem with [17] is that it has been designed
specifically for MNIST dataset and has not been applied to aquaponics. The system in [35]
uses 100 s of time steps to achieve 89% accuracy on a binary pattern recognition dataset
having six samples. Since the dataset is extremely small, the efficiency of the scheme
cannot be trusted. Moreover, the efficiency of the scheme has not been evaluated on any
aquaponics data.

The system in [36] uses linear STDP to simplify the proposed hardware structure.
Multiple subnetworks are used instead of a grand network to achieve better accuracy.
The system in [37] presents a low-power SNN system capable of online learning. The sys-
tem is better than many contemporary systems but achieves only 85% accuracy on MNIST.
Though the systems in [36,37] are better than many other systems in terms of hardware effi-
ciency and accuracy, their efficiency has not been demonstrated for aquaponics. The work
in [38] presents a system that is capable of training SNNs by itself. The system uses the Tem-
potron learning rule for SNN training. However, the Tempotron algorithm is not suitable
for multiclass classification and may not be suitable for aquaponics where multiple output
classes are present. The system in [39] is another example of the online SNN learning
system. It uses the Tempotron learning rule for 3-class classification and uses look-up
tables for post-synaptic potential (PSP) kernel computations. It uses the system for pixel
classification that takes around 100 time steps.

Other examples of systems requiring tens of time steps can be seen in [40–43]. Based
on all these examples, we may safely conclude that no dedicated hardware system deals
with smart aquaponics. Moreover, almost all systems require tens of time steps to achieve
decent accuracy and are quite costly.

Problem Definition

Fish size estimation is an important part of smart aquaponics. Such systems are
generally deployed using general-purpose computers that use artificial neural networks.
Since GPCs are extremely slow and ANNs are quite costly, most SASs are expensive and
slow. Though spiking neural networks are more hardware-efficient than ANNs, their
training process is quite complex, tricky, and time consuming. Moreover, most online
learning engines based on SNNs yield low accuracy.

Therefore, the first goal is to develop a hardware-efficient SNN learning scheme for
smart aquaponics. The second goal is to design a hardware engine that can support the
SNN-based ‘intelligent’ part of the SAS. The proposed system can estimate the fish weight
category with 99.67% accuracy and the length category with 98.03% accuracy. The hardware
engine is much cheaper than most contemporary designs. This intelligent module can
automate the nutrient control process, which will in turn help in maintaining a stable SAS.

2. Materials and Methods

We develop and synthesize a neural network for estimating fish length and weight.
The fish size estimation results can then be sent to a controller that makes feeding decisions.
The proposed network structure is shown in Figure 6. The network has 4 layers: one
input layer, two hidden layers, and an output layer. The input layer has been normalized
according to the procedure described in [34]. In Figure 6, the symbol N represents the
number of input features, and H is a symbol for the Hth hidden neuron.

Forward NN Pass

The complete network has four layers: one for inputs, one for outputs, and two hidden
layers for spiking computations. In this article, the ith synaptic weight and input are denoted
by Wi and Xi, respectively. The subscript j is for the jth postsynaptic neuron. The letter
Cth represents the threshold controller, and the letter V represents the postsynaptic voltage.
The postsynaptic voltage at a neuron j for the time step t is represented in Equation (1) by
Vj. In Equation (1), Cj

th acts as a bias for ANN layers and as a dynamic threshold controller
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(DTC) for spiking layers. This dynamic threshold controller is learnable. The λ is the leak
factor. The purpose of this leak is to allow a steady decay of the membrane potential with
respect to time. This leak can enhance the level of accuracy if the noise in a system has
high frequency components [44]. However, since the focus of this work is to perform all
computations in a single time step, this leak term is ignored. This neuronal model is similar
to the one in [17].

vj[t] = ∑
i
(Wi · Xi) + Cj

th + λv[t− 1] (1)

Figure 6. Structure of the proposed NN.

The inputs are normalized, as mentioned earlier. Unlike most other works on SNN
such as [14,15,17], we do not convert input data into spikes. This is because the conversion
to spikes is never lossless, and this can result in a severe degradation of accuracy [19].
Therefore, full-resolution inputs are applied to the network and then multiplied with
corresponding synaptic efficacies, according to Equation (2). The learnable C1 term is added
as a neuronal offset for better learning. The final postsynaptic voltage is then compared
against a threshold. If the given voltage is greater than this threshold, a spike is produced
at the neuronal output; otherwise, nothing happens. This is described mathematically in
Equation (3).

v1 = ∑
i
(Wi · Xi) + C1

th (2)

A1 =

⎧⎨
⎩

1 v1 ≥ Vth

0 v1 < 0
(3)

The Layer 1 activation vector is then passed as input to the Hidden Layer 2 in order to
obtain the postsynaptic voltage V2, as represented in Equation (4).

v2 = ∑
i
(Wi · A1i) + C2

th (4)

The Hidden Layer 1 spiking operation is repeated for the Hidden Layer 2 (HL2) as
well. The spikes coming from the HL2 are applied to the output layer. However, the output
layer is slightly different from the hidden layers. At the output layer, we do not perform any
thresholding and use full-resolution outputs for prediction/classification. Again, the pur-
pose is to preserve data integrity in order to produce accurate results. The thresholding
operation can greatly reduce the network performance. As shown in the coming sections
in detail, the full-resolution outputs do not reduce hardware efficiency at all. In fact, it
can be slightly more hardware-efficient than the case where the spiking operation has to
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be performed in hardware since the spiking operation requires an additional comparator.
At the output layer, the activated values are the same as the incoming voltage values.
Therefore, the neuronal voltages are compared directly. The neuron with the maximum
voltage corresponds to the predicted class, as shown in Equation (5).

A3 = ∑
i
(Wi · A2i) + C3

th (5)

Backward NN Pass

As mentioned in the previous sections, the gradient of the spiking function is the diract
delta function that cannot be backpropagated. In order to resolve this issue, scientists have
come up with the so-called surrogate gradients that are used as a replacement of the true
gradient [15,17]. Some of the famous surrogate gradients are the sigmoidal gradient, the
rectangular function, the polynomial function, and the Gaussian function. Among all these
functions, the rectangular function is the most hardware-efficient. However, this sometimes
results in poor accuracy, as shown in Section 3. The sigmoid gradient is quite smooth; it is
given in Equation (6).

d(Aj) =
1

1 + e−vj
·
(

1− 1
1 + e−vj

)
(6)

Though the sigmoid derivative works pretty well as a surrogate gradient, it is difficult
to implement in hardware since it is quite complex, as shown in Table 1. Therefore,
various researchers have come up with functions that yield the same performance as the
original sigmoid function while being hardware-efficient. One of the best examples that we
could find in the literature is ‘Zhang–Sigmoid’ (ZS), given in [45]. The derivative of the
Zhang–Sigmoid in [45] has a mean-squared error (MSD) of only 0.013% with the original
sigmoidal derivative. The ZS derivative is compared with the original derivative in visual
form in Figure 7. The mathematical expression is given in Equation (7).

d(Aj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4 + vj

16
−4 ≤ vj < 0

4− vj

16
0 ≤ vj < 4

0 otherwise

(7)

Figure 7. A comparison between original Sigmoid derivative and ZS derivative.
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Proposed Surrogate Gradient

Though the original Zhang derivative/gradient apparently seems nearly perfect,
a basic problem surrounding it is the lack of flexibility. The original ZS derivative cannot
move and can work only when the spiking threshold voltage (Vth) is equal to zero, i.e., when
Vth = 0. Therefore, we proposed a modification of the original derivative so that it can
work with any threshold. The proposed, generalized form of ZS derivative is given in
Equation (8). By manipulating the coefficients a and Vth, it is possible to train an SNN
for any threshold value. This flexibility can yield great results since the zero threshold
may not work for all datasets. The choice of threshold and other such parameters can
greatly affect accuracy. The value of a can be adjusted in a way that it can be implemented
without using any multiplier. The impact of the changing threshold on the shape of the
proposed derivative is visually represented in Figure 8. Moreover, a comparison between
the proposed surrogate gradient and other modern gradients (using the number of operations
as a metric) is given in Table 1. In Table 1, μ represents the Gaussian mean, σ represents the
standard deviation, and fxd is a short form for ‘fixed’.

d(Aj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(4 + vj −Vth)

16
−4
a + Vth ≤ vj < Vth

a(4− vj −Vth)

16
Vth ≤ vj <

4
a + Vth

0 otherwise

(8)

Figure 8. Impact of changing threshold on the shape of the proposed surrogate gradient.

Table 1. Hardware efficiency comparison between various SG implementations.

Parameters #Adds. #Mults. #Div. #Exp. #Cmp. Flexibility Sig-MSE

Rectangular 0 0 0 0 1 None High (cond.)

Sigmoid’ 2 1 1 1 0 None 0

Gaussian μ = 0, σ = 1 0 2 0 1 0 None N.A.

LogSQNL’ [46] 2 0 0 0 1 None 0.41%

Zhang Sigmoid’ a = 1, Vth = f xd 2 0 0 0 1 None 0.013%

Proposed General 3 0 0 0 1 Absolute ≤0.013%
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Experimental and Mathematical Proofs

As discussed and proven in this segment, the proposed Spikoponic derivative (given
in Equation (8)) is valid for SNN backpropagation.

• Experimental Proof: The proposed Spikoponic derivative is used for backpropagation
to train a network that classifies fish on the basis of their weight and length. Extensive
experiments have been carried out using the proposed Spikoponic derivative. The de-
tails of the dataset are given in Section 3.1; the parameter values are given in Table 2.
The results are given in Section 3.2. As shown in results, the proposed derivative
works perfectly and can train an SNN for fish size estimation.

• Mathematical Proof: In order to perform backpropagation, the activation function
must have a finite derivative [9,15,47]. The proposed spikoponic derivative, given in
Equation (8), is finite. The derivative holds valid values since it is not always equal to
zero or infinity.
Moreover, if the parameter a (in the Spikoponic derivative function) is equal to ∞,
the derivative converges to the dirac delta function, shown in Figure 5. This behavior
clearly shows that the Spikoponic derivative is a valid function for the backward pass
if step function is used in the forward pass. The mathematical expression for this
behavior is given in Equation (9).

d(Aj) =

{
∞ vj = Vth
0 otherwise

(9)

The weights and DTCs are updated according to gradient descent rules, where network
layers are iteratively updated based on an error function. Though all these processes
are integrated into modern Python packages and we do not have to code everything
in detail, we give a brief overview just to enhance readers’ understanding. The two
basic parameter update rules are given in (10) and (11).

W(l)+ ← Wl − η
∂L

∂Wl (10)

C(l)+

th ← Cl
th − η

∂L
∂Cl

th
(11)

In the above equations, Wl represents ‘weight vector’ and Cl
th represents the DTC

vector at layer l. Here, η represents the learning rate, the parameter that determines
the speed at which the network updates weights in a training iteration. The term ∂L

∂Wl

describes the changes in loss function with respect to weights at layer l. Both these
terms are calculated using the chain rule, as in [9,15,17].
Since there are multiple layers in the proposed network, it would be unnecessary to
derive mathematical expressions for all the layers. Therefore, we derive expressions
only for one layer as a reference, just to give an idea of how the system works.
Expressions for other layers can be derived using the same principle.
We mathematically establish the dependence of loss functions (L) on Layer 2 synaptic
strengths in Equation (12), and on Layer 2 DTC (C2

th) in Equation (13). To make the
analysis understandable, the mean squared error (MSE) function has been used for
reference. In the following equations, A3 is the obtained output value at Layer 3, and y
is the label voltage. The Spikoponic derivative function is already given in Equation (8).
In order to keep mathematics simple, we do not incorporate terms associated with the
optimization methhods such as ADAM [48] in the presented mathematical expressions.
Equations (12) and (13) do not incorporate the temporal dependence of the network

220



Agriculture 2023, 13, 2057

parameters and have been derived for one time step, which is one of the main goals of
this work. To ignore temporal dependence, we make λ equal to zero.

∂L
∂W2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A1W3(A3 − y)(a(4 + v2 −Vth))

16
−4
a + Vth ≤ v2 < Vth

A1W3(A3 − y)(a(4− v2 −Vth))

16
Vth ≤ v2 < 4

a + Vth

0 otherwise

(12)

∂L
∂C2

th
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

C2
thW3(A3 − y)(a(4 + v2 −Vth))

16
−4
a + Vth ≤ v2 < Vth

C2
thW3(A3 − y)(a(4− v2 −Vth))

16
Vth ≤ v2 < 4

a + Vth

0 otherwise

(13)

Table 2. Hyper-parameter values and test conditions.

Parameter Value

#TimeSteps 1
Learning Rate (η) Default (0.001)
Batch Size Default (32)
Optimizer Adam
Loss Function Cross Entropy
Leak (λ) 0
Output Coding One Hot
Test Samples 20%
#Epochs 47

Proposed SpikoPoniC Hardware Engine

The proposed hardware system takes input from eight different sensors (systems),
responsible for computing the following parameters: pH, temperature, date of creation,
turbidity, dissolved oxygen, ammonia, nitrate, and population size. The system is fully
parallel and can predict eight levels of fish weight and length (based on the input data) in
a single clock cycle. The system consists of an input layer, two event-driven SNN layers,
and an output layer containing a predictor. There are six different memory buffers, two for
each layer. The top level diagram of the complete system is shown in Figure 9. The details
of each of the components are mentioned in the coming subsections.

2.1. Switching Buffers

Since the system can estimate both length and weight categories, there are two types
of memory buffers available for every network layer: one for storing synaptic efficacies
corresponding to fish weight and the other one for storing efficacies corresponding to
length. Which memory buffers are to be activated depends on the user. If length is to
predicted, the length memory buffers (LMBs) are enabled, weight memory buffers (WMBs)
are disabled, and vice versa. Upon selection, all the synaptic efficacies are fetched in parallel
to obtain high throughput.
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Figure 9. SpikoPoniC: top-level view.

2.2. Event-Driven Spiking Computers (EDCs)—Hidden Layer 1

As mentioned earlier, the first layer receives normalized inputs from sensors. These
inputs are multiplied by the corresponding synaptic efficacies (SEs) in order to obtain voltage.
The multiplications can be carried out using DSP48 elements on the FPGA. The voltage is
obtained using a pipelined adder tree; the purpose of pipelining is to increase throughput.
The first layer synaptic operations are, therefore, typical multiply accumulate (MAC)
operations.

If the voltage is greater than a pre-defined threshold, a 1-bit spike is emitted; otherwise,
nothing is passed. This is done using a comparator (CMP). Finally, these 1-bit values are
stored in a pipeline register in order to increase throughput. Since spikes are quite small in
size (1 bit), the pipeline register has a very small footprint. The spikes are then sent to the
subsequent layer EDCs. The structure of a Layer 1 EDC is shown in Figure 10.

2.3. EDCs—Hidden Layer 2

The spikes coming from the HL1 are provided as input to the HL2. The HL2 actuators
are also event-driven in nature, i.e., they are activated only when there is a valid spike
coming from the previous layer. If there is no spike, no processing takes place by the
processing elements and zero voltage is passed on to the subsequent unit. If there is a
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spike, the respective synaptic efficacy gets added up to other valid synaptic efficacies by a
pipelined adder tree.

Figure 10. Internal Structure of an HL1 EDC.

The structure of the HL2 EDCs is shown in Figure 11. Like HL1, both the length and
weight buffers are present. Once all the valid synaptic efficacies have been added up by the
voltage computer (adder tree), a comparison operation is performed on the final voltage.
If the voltage is greater than a predefined threshold, a spike is produced; otherwise, nothing
happens. These spikes are then stored in the HL2 spike register that acts like a pipeline
register. The outputs emanating from the spike register are then applied as input to the
output layer.

Figure 11. Internal structure of the HL2 EDCs.
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2.4. Output-Layer EDCs

The structure of output-layer NACs is shown in Figure 12. Since softmax is a costly
function and is used only when cross entropy loss is to be visualized, we use logits to
perform prediction at the output [22]. The maximum voltage neuron corresponds to the
predicted class. No spikes are used at the output for two reasons: the use of spikes results
in a degradation of accuracy; an extra comparator is required. Therefore, the predictor
directly compares logits and selects the one with the maximum value.

Figure 12. Internal structure of the output-layer EDCs.

3. Results and Discussion

This section presents the algorithmic and hardware efficiency of SpikoPoniC. The Spiko-
PoniC is compared with both software- and hardware-based works under the prede-
fined test conditions. The FPGA-based SpikoPoniC is first compared with the CPU based
aquaponic neural system in terms of speed for the same level of accuracy and then with
other FPGA-based works in terms of cost and throughput.

3.1. Benchmarks and Test Conditions

The hardware inference system SikoPoniC—implemented on Virtex 6 (xc6vlx75t-
ff784)—uses 7-bit synaptic efficacies and dynamic threshold controllers. The training has
been performed on a GPC for the following NN topology: eight inputs; two hidden layers,
each having 16 neurons; and eight output neurons. Python has been used for algorithmic
evaluations, and Verilog has been used for hardware modeling. Since the platform is Virtex
6, the maximum temperature at which the device can operate is 85 degrees celsius [49]. Each
64 bit-wide block RAM can generate, store, and utilize eight additional Hamming-code
bits and perform single-bit error correction and double-bit error detection (ECC) during
the read process. As a special option, the bitstream can be AES-encrypted to prevent
unauthorized copying of the design [49].

The dataset used is available from [50]. Since the directory contains a lot of files, only
one file, which contains 175,000 samples, is sufficient for reliable performance evaluation.
About 150k samples are used for training, and 25k are used for testing. There are 32 samples
in a batch. The learning rate is 0.001, by default. The scheme uses the ADAM optimizer [48].
Backpropagation is performed using the cross entropy loss function. The system converges
in about 47 epochs. Table 2 presents the test conditions and hyper-parameter values used
for evaluating SpikoPoniC. For hyper-parameter tuning, we use grid search [51].
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3.2. Algorithmic Efficiency Evaluation and Comparisons

The amount of CPU time that a training epoch consumes in the proposed scheme is
shown in Figure 13. The average time per epoch is around 5 s. Once the network has been
trained, the CPU uses approximately 1 s to infer all (≈25,000) the test samples.

Figure 13. Per-epoch CPU processing time.

The proposed system can estimate the range of fish weight with 99.67% accuracy
and the range of fish length with 98.03% accuracy. The average fish size estimation accuracy,
therefore, is 98.85% accurate. The accuracy as a function of the number of epochs is shown
in Figure 16; this figure is shown in the later part of this subsection along with all the
necessary details. A comparison of SpikoPoniC with various modern DL-based aquaponic
monitoring schemes in terms of accuracy is given in Table 3.

For fish weight estimation, the maximum precision and recall values are 94.80% and
99.88%, respectively. For fish length estimation, the maximum precision and recall values
are 88.39% and 99.30%, respectively. On average, an F1 score of 93.701% can easily be
obtained when it comes to fish size (which includes both length and weight) estimation. It
is not possible to compare our results with other works in terms of precision, recall, or F1
score. This is because many research works on aquaponics do not use these metrics and rely
on accuracy for performance evaluation.

Table 3. Accuracy comparisons—smart aquaponic systems.

Accuracy Application

[6] 94.44% Fish disease detection
[23] 67.08% Fingerling weight estimation
[7] 95% Feeding intensity estimation
[52] 96.50% Plant detection
[53] 97.80% Fish length estimation
[54] 92.60% Plant detection
[54] 98.70% Plant detection
[55] 87% Fish size estimation

Prop. 99.67% Fish weight estimation
Prop. 98.03% Fish length estimation

A visual comparison in the form of bar graphs between various algorithms for fish
weight and length estimation is given in Figure 14. The following algorithms are compared
in Figure 14. All the algorithms are applied for just one time step.
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• Direct SNN Training (DST) [15,17].
All the layers use spikes in the forward pass and surrogate gradient (sigmoidal gradi-
ent [15]) in the backward pass. The network achieves very low accuracy since there is
only one time step for which we have to train the network.

• ReLU-SNN Conversion (ReLU-SNN) [19].
The network is trained using ReLU function, and the trained network is then converted
into an SNN. No weight-threshold normalization is applied since the purpose is to
devise an algorithm that is hardware-efficient if on-chip learning is required. Normal-
ization processes can never be efficient for on-chip learning [9]. For better accuracy,
the inputs are not converted into spikes since this results in a loss of accuracy [19].

• Rectangular Straight-Through Estimator (Rect-STE) [17].
The network uses spikes in the forward pass, and the rectangular-shaped surrogate
gradient in the backward pass, as in [17]. For achieving high accuracy, full-resolution
inputs are used and no conversion to spikes takes place.

• Proposed Algorithm (Normalized Inputs, Spiking Outputs).
The proposed algorithm, as mentioned in Section 2, is applied with full-resolution
inputs but spiking outputs.

• Proposed Algorithm (Normalized Inputs, Full-Resolution Outputs).
The proposed algorithm, as described in Section 2, is applied with full-resolution
inputs and outputs (logits).

Figure 14. Accuracy comparison between various algorithms.

The results are presented in Figure 14. All schemes other than the proposed one yield
poor results. Let us discuss the underlying causes. The DST, ReLU-SNN, and Rect-STE are
strongly dependent on a large time period since they all use spikes at both the input and
the output layers. Though the use of spikes at the input layer is quite hardware-efficient,
it results in a degradation of accuracy due to the loss incurred in the conversion process.
As a result, good accuracy cannot be obtained in a single time step. The ReLU-SNN
scheme depends strongly on weight-threshold balancing too [18]. For the proposed scheme,
the use of spikes at the output layer results in a lower accuracy than the case where logits
(voltage as such) are used at the output layer. The simple reason is that the conversion of
voltage into 1-bit spikes even at the output layer reduces the dynamic range and precision,
resulting in visible loss of accuracy. Moreover, as explained in the coming sections, the use
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of raw voltage instead of converted spikes at the output layer does not decrease hardware
efficiency at all.

As mentioned earlier, the use of spikes at both the input and output layers for a single
time step does not produce good results. This is evident even from Figure 15a, which shows
the evolution of training accuracy with the number of training epochs: the fluctuation is
very high and there is no such thing as convergence. Similarly, the use of rectangular, flat
surrogate gradient results in a very poor accuracy. In fact, no convergence is achieved since
the gradient is completely flat and can result in gradient vanishing/explosion. The rectan-
gular gradient does not change its shape and fails to fit for complex data. The sigmoidal
gradient, on the other hand, does change its shape around the threshold and results in
better learning.g

(a) (b)
Figure 15. Accuracy results for some hardware-efficient schemes. (a) Fully spiking network. (b) Direct
SNN training using the rectangular surrogate gradient.

The use of full-resolution inputs and outputs, instead of spikes, preserves the data
content and produces excellent results. The results obtained using the proposed algorithm
for fish length and weight estimation are shown in Figure 16c and Figure 16d, respectively.
As shown in the figures, the network learning is quite smooth. However, if spikes are used
even at the output layer, the accuracy degrades and network accuracy keeps fluctuating.
This is shown in Figure 16a,b.

(a) (b) (c) (d)

Figure 16. Accuracy as a function of epochs, obtained for various conditions and scenarios. (a) Nor-
malized inputs (NIP), spiking outputs (SOUT) for fish length estimation. (b) NIP, SOUT for fish weight
estimation (c) Proposed scheme for length estimation. (d) Proposed scheme for weight estimation.

3.3. Hardware Efficiency Evaluation and Comparisons

SpikoPoniC is fully parallel and can process a single sample in a single clock cycle.
The maximum attainable clock frequency is 84.23 MHz to 117.33 MHz, depending on the
type of implementation and hardware synthesizer settings, as will be discussed later. Spiko-
PoniC can process more than 84 million samples in a second. A comparison between the
FPGA and CPU implementations is given in Figure 17, which shows that the FPGA system
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is at least 3369 times faster than the CPU implementation. In Figure 17, the throughput is
given in terms of millions of samples per second (MSPS). This shows the potential of neuror-
mophic systems and provides a great incentive to SAS developers. For the SpikoPoniC,
the results have been obtained with and without using DSP48 elements. At the given
frequencies, the DSP implementation consumes about 1.975 watts, of which the leakage
power is around 1.577 watts; the non-DSP implementation consumes about 2.302 watts,
of which the leakage power is around 1.582 watts.

Figure 17. Hardware efficiency comparison between the CPU and the FPGA implementation.

A comparison between the fully ANN implementation and the proposed SNN (hybrid)
implementation for the same test topology (30-5-5-2) under the same test conditions is
shown in Figure 18. As shown in Figure 18, the proposed implementation is far better
than the ANN implementation in terms of latency (speed) and cost (amount of FPGA re-
sources occupied). Compared with the proposed technique, the fully ANN implementation
consumes approximately 27% more registers, 45% look-up tables, and 28% more time.
The disparity will grow as the network becomes deeper and larger. The purpose of this
figure is to give a glimpse into the disparity between the proposed implementation and the
fully ANN implementation. The network accuracy, however, remains (more or less) the
same. For example, in the finalized network, discussed in Table 4, the proposed scheme
incurs less than 1% loss, compared to the actual ANN scheme using rectified linear units
(ReLUs) at all the layers in the context of fish length estimation. For fish weight estimation,
there is no difference at all between the proposed scheme and the ANN-based scheme.
There is a reason why we chose 30-5-5-2 topology for ANN-SNN hardware efficiency com-
parison: the available hardware platform is a low-end model of Virtex 6 (xc6vlx75t-ff784)
which has approximately 93,000 slice registers and about 46,000 look-up tables only. A large,
fully parallel ANN design cannot fit on such a small platform, given the limited amount
of resources. The ANN implementation for a large topology, say 8-16-16-8, is unable to fit
on the given platform, though an SNN implementation for the same topology is possible.
This simply proves that the SNN implementation is more efficient on hardware than the
ANN one.
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Figure 18. Speed and cost disparity between the traditional ANN and the proposed SNN implemen-
tation.

Figure 19 shows the number of adders and multipliers required by the proposed
implementation. The cost and throughput comparisons are given in Table 4.

Figure 19. Advanced hardware description language (HDL) synthesis.

For the SpikoPoniC, the results have been obtained with and without using DSP48
elements. In both the cases, SpikoPoniC shows superior performance. Though the systems
presented in Table 4 are quite hardware-efficient, they suffer from one or both of the
following problems: the systems are not made specifically for aquaponics, or the systems
are quite costly because they are based on ANNs. For example, the system in [33] has been
developed for diagnosing epilepsy. Moreover, the system uses parallel sigmoidal neurons,
which are quite costly to be used on hardware. The system predicts epilepsy with 95.14%
accuracy. The hardware system [34] uses hardware-aware sigmoidal and swish neurons to
predict cancer with high accuracy. The system in [56] implements a network with radial
basis functions just to demonstrate the efficiency of slope-based Gaussian approximation;
no dataset is used to evaluate performance. The system in [22] uses ReLU at all the network
layers to to improve classification accuracy. However, it uses extremely small weights and
biases, which might not be enough for obtaining a reasonable accuracy on aquaponics
data. Furthermore, the system does not use any aquaponics data for system evaluation.
Therefore, how it will perform on aquaponics data remains dubious.

Though the inference engine in [9] achieves a very high throughput and is cost effective,
it uses spikes at all the layers. Therefore, it cannot be used for the SAS under consideration,
as mentioned earlier. The data under consideration requires full resolution inputs and
outputs; otherwise, it produces a very low accuracy. The work in [35] uses a small (toy)
dataset with 25 binary input pixels and one neuron for binary (X and O) classification;
two samples are used for training. The authors do not mention the system throughput
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explicitly. However, it is safe to assume that the maximum TP is far less than 1.9× 106

samples per second. This is because the maximum operating frequency of the system
is around 189 MHz, and the time period requires one to compute a sample is 100 ms.
Moreover, the discretization step is 0.001. There is another metric used to compare these
works: processing time per second (PTPS), represented in microseconds (μs). PTPS is the
amount of time required to infer/process a given input sample. The smaller the PTPS value,
the faster the system.

Table 4. Hardware cost and throughput comparisons.

System Application Topology Accur. Regs. LuTs DSPs Platform TP PTPS
(×106) (μs)

[33] Epilepsy Det. 5-12-3 95.14% 114 12,960 116 Cyclone IV 50 0.02
[34] Cancer Det. 30-5-2 98.23% 983 2654 234 Virtex 6 63.5 0.0157
[22] Digit Class. 64-20-10 94.28% 4677 30,654 0 Virtex 6 93.2 0.0107
[35] Bin. Class. 25-5-1 89% 1023 11,339 - Virtex 6 <<1.89 >0.53
[57] None 5-5-2 - 1898 3124 154 Virtex 5 - -
[56] None - - 790 1195 14 Spartan 3 10 0.1

Prop.DSP Aquaponics 8-16-16-8 98.85% 1091 3749 128 Virtex 6 84.23 0.012
Prop.NO−DSP Aquaponics 8-16-16-8 98.85% 4259 18,283 0 Virtex 6 117.33 0.008

4. Conclusions

This article presents a novel training methodology to train and implement a spiking
neural neural network on a neuromorphic system for smart aquaponics. The article also
presents a novel surrogate gradient for SNN training that promises both flexibility and
hardware efficiency.

The purpose of developing this system is the low-cost, real-time estimation of fish size,
which in turn will help devise efficient smart aquaponic systems and make appropriate
feeding decisions. The hardware inference engine is capable of classifying more than
84 million samples in a second. The system is trained using 150,000 samples and can
predict fish length with 98.03% accuracy and fish weight with 99.67% accuracy. The design
occupies only 1100 slice registers and 3749 look-up tables. The engine is about 3369 times
faster than a typical GPC and is far less costly than the implementation that uses an ANN for
the same job. The ANN implementation is 45% costlier than the proposed implementation
with less than 1% degradation in accuracy. The system consumes about XYZ milliwatts at
the maximum possible frequency, i.e., 84.23 MHz. All these results have been obtained on
a low-end Virtex 6 FPGA. The maximum temperature at which the device can operate is
85 degrees celsius.

Therefore, it may safely be concluded that the proposed scheme is suitable for DL-
based smart aquaponics. The scheme gives a roadmap on how to use SNNs for Aquaponics
4.0 industrial applications. In future, the same technique can be modified to be extended to
spiking convolutional neural networks for better classification. Another possible improve-
ment is to use a higher number of input features to obtain better results. A larger number
of sensors can be used to collect data for application at the input side.
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SNN Spiking neural network
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Abstract: Gourmet mushrooms are foraged from the wild or grown indoors in controlled environ-
ments. Indoor mushroom farms with controlled growth environments allow for all-year-round
growing. However, it remains a labor-intensive process. We propose MushR as a modular and
scalable gourmet mushroom growing and harvesting system that goes beyond the state of the art,
which merely monitors and controls the growing environment, by introducing an image recognition
system that determines when and which mushrooms are ready to be harvested in conjunction with a
proof of concept of an automated mushroom harvesting mechanism for harvesting the mushrooms
without human interaction. The image recognition setup monitors the growing status of the mush-
rooms and guides the harvesting process. We present a Mask R-CNN model for the detection of
oyster mushroom maturity with a 91.7% training accuracy and a semiautomated harvesting system,
integrating a Raspberry Pi for control, an electrical switch, an air compressor, and a pneumatic
cylinder with a cutting knife to facilitate timely mushroom harvesting. The modularity and scal-
ability of the system allow for industry-level usage and can be scaled according to the required
mushroom-growing systems within the facility. The AI model, its underlying dataset, a digital twin
for mushroom production, the setup of our growth and control chambers, and additional information
are all made available under an open-source license.

Keywords: gourmet mushroom; digital twin; AI; Mask R-CNN; IoT; automation; sustainability

1. Introduction

Gourmet mushrooms such as shiitake, oyster, and enoki are harvested in the wild or
grown indoors in controlled environments. Harvesting mushrooms outside is a seasonal
activity and thus is limited to a few months per year. Moreover, it is a labor-intensive
process, and the changing outdoor conditions result in volatile harvests. Furthermore, cli-
mate change further limits outdoor mushroom growing and harvesting opportunities [1,2].
Indoor mushroom farms with controlled growth environments allow for an all-year-round
growing and harvesting of mushrooms in sensor-controlled grow rooms and grow tents.
Additionally, some approaches towards automated production of button mushrooms exist,
e.g., [3].

However, those do not apply to gourmet mushrooms, and thus, it remains a labor-
intensive process that requires skilled workers [4]. Moreover, gourmet mushroom produc-
tion often relies on one-time-use plastic bags to hold the substrate. The plastic bag is cut
open to start the mushroom fruiting process, which renders the plastic bag useless once the
mushrooms have been harvested, thereby creating large amounts of plastic waste. Some
production facilities have moved to reusable plastic containers or jars. Whether those are
more sustainable remains an open question [5,6].

MushR aims to fill this gap by introducing a modular and scalable gourmet mushroom
growing and harvesting system that extends the state of the art—which only monitors
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and controls the growing environment—by introducing an image recognition system
that detects when and which mushrooms are ready to be harvested in combination with
a proof of concept of an automated mushroom harvesting mechanism for harvesting
the mushrooms without human interaction. The image recognition setup monitors the
growing status of the mushrooms and guides the robot arm during the harvesting process.
The modularity and scalability of the system allow for industry-level usage and can be
scaled according to the required mushroom-growing systems within the facility. As a
result, MushR drastically reduces the necessity of manual labor for gourmet mushroom
growing/harvesting and allows for further industrial-scale automation and increased
yields and quality of mushrooms.

Specifically, this work addresses the following research questions:

RQ How to automate/digitize/enable sustainable indoor cultivation and harvesting of
gourmet mushrooms?

RQ1 How to create a digital twin for the gourmet mushroom production process?
RQ2 How to monitor gourmet mushroom growth and detect which mushrooms are

ready for harvest?
RQ3 How to automate harvesting of gourmet mushrooms?

Note that the production of oyster mushrooms (Pleurotus ostreatus) serves as a running
case of this research as oyster mushrooms are among the most common gourmet mush-
rooms. Results obtained from the running case can be abstracted to other types of gourmet
mushrooms due to their string similarities of the production processes and parameters.

The paper is structured as follows: Section 2 presents supplementary literature, related
works, and sustainability in mushroom production. In contrast, Section 3 describes an
approach towards a digital twin for (gourmet) mushroom production. Section 4 details an
AI model used to monitor the growth stages of gourmet mushrooms and the underlying
dataset used to train the model that we created as part of this research. Section 5 outlines
automated harvesting mechanisms for gourmet mushrooms. The results of our evaluation
are presented in Section 6. Finally, in Section 7, we give our conclusions and outline possible
directions for future research.

2. Supplementary Literature and Related Work

This section provides background information and supplementary literature and
introduces related works. Section 2.1 briefly outlines the general process of gourmet
mushroom production, while Section 2.2 focuses on related works. Finally, Section 2.3
details a more sustainable approach based on reusable mushroom pods.

2.1. Gourmet Mushroom Production

Indoor mushroom farms allow for an all-year-round growing and harvesting of mush-
rooms in sensor-controlled grow rooms and grow tents. The mushrooms are grown on
substrate blocks, e.g., straw or wood chips, in one-time-use plastic bags. After a prepared
substrate block is inoculated with a sample of mycelium (mycelium is a rootlike structure of
a fungus consisting of a mass of branching, threadlike hyphae), it is kept in a dark, sterile en-
vironment for an incubation period. During incubation, the mycelium completely colonizes
the substrate block, after which the plastic bags are cut open and placed in an environment
with high humidity to initiate the fruiting of the mushrooms. They are typically harvested
in cycles—so-called flushes—with idling periods in between flushes for the mushrooms (or,
more precisely, the mushroom mycelium) to recover before triggering the next flush and
starting the fruiting of mushrooms again. The substrate is depleted after about three flushes.
While fruiting, the mushroom body grows fast and needs to be constantly monitored to
be harvested at the right time. Additionally, the growing environment must be in perfect
conditions, e.g., humidity, temperature, and air quality.

Figure 1 depicts oyster mushrooms in four different growth stages that we considered
for the subsequent training of our AI model: First, in stage I, the fruiting process begins,
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and the mushrooms start pinning. Next, in stage II, the mushroom body grows. Third,
the mushroom matures and is ready to be harvested. In stage IV, the mushroom has passed
the optimal harvesting time window and is now considered overdue.

(a) (b)

(c) (d)

Figure 1. Progressing growth stages of Pleurotus ostreatus; (a) Stage I; (b) Stage II; (c) Stage III; (d)
Stage IV.

Learning when and how to harvest mushrooms properly requires training and practice.
Especially since harvesting is about more than just selecting the largest mushrooms. On the
one hand, they tend to grow in dense clusters, and if they are not adequately thinned out
(by hand), the mushrooms might damage each other. Moreover, it prevents the healthy,
sustainable growth of the mushroom block, resulting in a decreased yield. Damaged or
deformed mushrooms have to be sold at a discount. On the other hand, a particular cluster
density is required; otherwise, the yield drops as well. Therefore, even though indoor
mushroom growing facilities allow for an all-year-round harvest and optimized yield via
controlled growing environments, it remains a labor-intensive process that requires skilled
workers [4].

2.2. Related Work

Some level of automation can be achieved for button mushrooms (also known as
chestnut mushrooms). Button mushrooms are grown on large soil beds instead of sub-
strate blocks and are subsequently harvested by hand. Ref. [3] presented a robot arm-
controlled suction cup for harvesting button mushrooms with a maturity recognition
accuracy of 70.93 percent. Moreover, approaches towards sorting button mushrooms have
been explored [7]. In contrast to button mushrooms, most gourmet mushrooms, such as
the king oyster or the oyster mushroom, do not have a suction-cup-compatible surface.
Furthermore, they are more sensitive than button mushrooms and thus require special care
in their growing environment and during harvesting. Thus far, they are grown and har-
vested manually with little process automation; i.e., only the indoor growing environment
is controlled and managed using a sensor–actuator setup for variables, such as temperature,
humidity, and air quality [8,9]. Some rudimentary (semi-)automated harvesting mecha-
nisms for mushrooms exist, e.g., [10–12], but they do not recognize the mushroom growth
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status and optimal harvest time. They do not consider mushroom damage caused by the
harvesting process.

Other works focus solely on detecting the growth stage of oyster and button mush-
rooms using different versions of the YOLO (You Only Look Once) object detection algo-
rithm that have been proposed in the past, e.g., [13–15]. However, neither the model nor
the underlying datasets have been published. Moreover, the combination of growth stage
detection and automated harvesting was neglected.

Finally, some works consider reusable jars/bottles for mushroom production,
e.g., [5,6], and some industry entities started using reusable plastic buckets instead of
one-time-use-only mushroom bags [16,17]. However, an analysis of the environmental
benefit of using reusable mushroom pods is missing.

2.3. Reusable Mushroom Pods

Aiming to reduce, if not eliminate, the plastic waste created using one-time-use
plastic (polypropylene) bags as substrate containers, we experimented with an alternative
approach: reusable plastic buckets.

In our experimental setup, we use plastic (polypropylene) buckets, which, weighing
at 90 g, can contain up to 3 L of substrate. As shown in Figure 2, we drill 3.5 cm holes on
five sides of the bucket, which function as fruiting and ventilation holes. These holes are
sealed with a microporous tape during the incubation phase, which is removed for fruiting.
Unlike one-time-use plastic bags, the plastic buckets, which we call mushroom pods, are
never permanently damaged during the lifetime of the substrate contained therein.

We compute the environmental benefit of using reusable mushroom pods (in terms of
materials) over one-time-use plastic bags by running life-cycle impact assessment calcula-
tions using OpenLCA [18]. To this end, we define the reference flow and functional unit for
both container types in terms of “amount of polypropylene (g)” and “colonizable volume
of the container in litres (L)”. We further quantify the relationship between the defined
reference flow and the functional unit for both container types. Through experimentation,
we estimate the colonizable volume of a 5 L one-time-use plastic bag weighing 30 g to be 3
L (on average). This decrease is because the bags do not have a built-in method to seal the
contained substrate. A substantial amount of the bag is used for this purpose, accomplished
by folding the opening over itself several times. Unlike the bags, our mushroom pods are
equipped with a sealable lid. As a consequence, the estimated colonizable volume of our
3 L mushroom pods is still 3 L.

Using these calculations, we create a reference process for both these container types
in OpenLCA. We source the life-cycle inventory (LCI) data pertaining to the manufacturing
processes of polypropylene bags and buckets from the Agribalyse dataset [19]. The follow-
ing are the life-cycle impact assessment (LCIA) results computed using the BEES+ impact
assessment method:

22cm

12cm

11.5cm

3.5cm

Figure 2. Graphical representation of the MushR mushroom pods.
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From Table 1, we can infer the benefit of our reusable mushroom substrate pods
over the non-reusable substrate bags with respect to the impact categories. Using “global
warming” as an example, a 5 L (3 L usable) one-time-use bag has an impact of 102.46 g
CO2 eq, compared with a 3 L reusable pod with 217.20 g CO2 eq. From this, we can infer
that one reusable pod will have less impact in this category than three non-reusable bags.
This means that simply reusing our mushroom pods three times will result in them having
a lower impact in this category than the non-reusable counterparts. Similar comparisons
can be made with other impact categories. The complete LCIA calculations and results
are given in Appendix A. The above figures indicate that the reusable mushroom pods
will have a lower environmental impact over time. These figures, however, are highly
dependent on the specific materials used for producing the containers. These figures also
might not scale linearly with the container size for mass-producing mushrooms.

Table 1. LCIA results comparison of 3 L colonizable volume of one-time-use bags and reusable pods.

Impact Category Reference Unit One-Time-Use Bag MushR Reusable Pods

Acidification H+ mmole eq 11.21 40.15
Ecotoxicity g 2,4-D eq 2.07 0.72

Eutrophication g N eq 0.43 0.34
Global warming g CO2 eq 102.46 217.20

Habitat alteration T&E count 1.88 × 1016 −7.03 × 1017

HH cancer g C6H6 eq 0.15 0.48
HH criteria air pollutants microDALYs 0.004 0.015

HH noncancer g C7H7 eq 423.69 1124.07
Indoor air quality g TVOC eq 0 0

Natural resource depletion MJ surplus 0.26 0.92
Ozone depletion g CFC-11 eq 2.64 × 107 1.49 × 106

Smog g NOx eq 0.14 0.47
Water intake liters 0.95 2.3

3. Digital Twins for Gourmet Mushrooms

In the food industry, digital twins can provide better food quality, predictive mainte-
nance, energy-use minimization, and higher transparency of the production processes [20].

The digital twin implementation developed for this project models the state of the
key assets throughout various stages of the mushroom production process. Since the state
of these assets is tightly linked with the state(s) of other inter-related assets, we chose to
model this information using a graph database, Neo4j [21]. The various assets are modeled
as nodes, and their temporal and nontemporal relationships are modeled using relations.

Figure 3 shows a class diagram of the graph database schema created for the database.
Figure 3a shows a class hierarchy of the various node classes stored in the database. It
further shows the possibility of relations that can be created between two node classes,
including the directionality. These relations themselves have a class hierarchy, shown in
Figure 3b.

Neo4j is incapable of enforcing rigid class hierarchy or data types of their attributes
of nodes or relations. For this reason, we implement the class hierarchy using the Neo-
model Object Graph Mapper (OGM) for Neo4j, which is then exposed using a REST-API,
the MushR DigitalTwin API. All interactions with the data, including the creation of new
assets, are handled through this API. Since the API itself does not store any of the digital
twin data, the scalability of Neo4j’s various enterprise solutions can be leveraged to handle
increasing amounts of data without compromising the API’s performance.

The defined schema allows the retrieval of the state of the network at any previous
instance in time. For example, the graph stores the state of a substrate container and
contains information on where it is located, which can be either a storage location or a
grow chamber. The relation between an instance of a substrate with its substrate container
implicitly gives its location history. Substrates are inoculated using samples of an existing
mycelium spawn or newly procured mushroom strains.
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(a)

(b)
Figure 3. Digital twin database class diagram; (a) Node Classes; (b) Relation Classes.

The provenance of a specific mushroom harvest can be traced using the digital twin
by recursively traversing the relations. Figure 4 shows a graph visualization of provenance
based on data recorded over 8 months in 2022. The data are restricted to 300 nodes and
relations pertaining to inoculation, fruiting, and harvests. The digital twin database also
stores location-related information so that the location of any of the assets can be accessed
at any instance of time.

More information about the MushR digital twin implementation can be found in our
GitHub repository (Appendix A).
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Figure 4. Digital twin graph visualization showing provenance of mushrooms (brown) harvested
from flushes (green) fruiting from substrate (blue) inoculated from spawn (orange) or strain (red).

4. Detection and Monitoring of Gourmet Mushroom Growth Stages

Subsequent Section 4.1 provides details on our open-source dataset, followed by
Section 4.2, which focuses on training our AI model and its predictions for gourmet
mushroom growth stages.

4.1. Dataset

The dataset created for this project focuses on capturing images of the mushroom-
growing environment from three different perspectives within each of our two growth
tents for mushroom production. Instead of providing images of every individual bucket
and mushroom, we capture the overall scene and its variations. The images from each
perspective are captured simultaneously and automatically hourly. This approach allows
for monitoring the development and maturity of the oyster mushrooms over time. We
captured and accumulated 34,400 images using six Raspberry Pi HQ Cameras [22] equipped
with wide-angle lenses (120° vertical field of view) over a period of 10 months to create a
comprehensive dataset.

In the dataset preparation phase, we clean data to ensure that the focus of our project,
which is detecting the maturity of oyster mushrooms, is maintained. As part of this process,
we remove images that are foggy and have a significant amount of noisy areas or are
contaminated. The selected dataset only included images where the mushrooms were
clearly visible, allowing for training the model specifically for maturity detection. However,
it is important to note that we have preserved the original raw dataset, including the foggy
and black images on Kaggle (Appendix A). This is performed to provide a comprehensive
dataset for other developers working on related projects or requiring access to diverse
images. Researchers and enthusiasts in the field of agriculture automation can access
and utilize the dataset for further analysis and experimentation. Since the images are not
only from buckets and mushrooms, they enable the development of new algorithms and
approaches for mushroom maturity detection and other related works. In addition to the
raw images, we provide annotations for a subset of the dataset. Annotations were carefully
created to mark the regions of mushrooms within the images. The annotation approach
involves manual labeling of mushroom maturity regions based on visual cues, such as
the mushrooms’ color, shape, and size. The annotation provides a valuable resource for
training and validating the Mask R-CNN model.
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4.2. Training and Prediction

The machine learning model employed for the maturity detection of oyster mush-
rooms in this project is Mask R-CNN (region-based convolutional neural network) [23].
The model belongs to the family of instance segmentation models, which detect objects
within an image and delineate their precise boundaries through pixel-level segmenta-
tion. This model is well suited for our task as it enables the accurate identification and
localization of mature mushrooms within the captured images. The Mask R-CNN model
architecture combines two key components, a region proposal network (RPN) [24] and a
fully convolutional network (FCN) [25]. RPN generates a set of potential object proposals,
while FCN performs pixelwise segmentation and classification for each proposed region.
This two-stage approach allows the model to achieve robust performance by leveraging
local and global contextual information effectively. To train this model, we annotated a
subset of the custom dataset using CVAT [26]. We annotated individual mushroom fruit-
ing bodies into three classes (based on three of the four stages outlined in Section 2.1):
“not-ready”, “ready”, and “overdue”, indicating whether the mushroom can be harvested.
The annotated subset of images serves as the ground truth for training and evaluating
the model.

To train the model, we rely on the Detectron2 [27] library, a popular computer vision
framework, for instance, segmentation that provides a comprehensive set of tools and
predefined architectures for object detection and instance segmentation tasks. In our
research, the Detectron2 library is the foundation for training and fine-tuning the Mask
R-CNN model on our custom dataset. It optimizes the model’s performance specifically
for oyster mushroom maturity detection. The Mask R-CNN model, integrated with the
Detectron2 library, proves to be a robust and effective solution for the maturity detection of
oyster mushrooms. See Table 2.

Table 2. MushR dataset overview, number of annotated instances per class.

Dataset Not-Ready Ready Overdue Total

Train 723 1344 692 2759
Test 251 198 92 541

For the training of the model, we initialize the model with weights pretrained from the
COCO dataset [28]. We then train the model on our custom training dataset. We adopted the
default Detectron2 hyperparameters (https://github.com/facebookresearch/detectron2
/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml (ac-
cessed on 30 June 2023)) and used a base learning rate (post-warm-up) of 0.00015, with a
batch size of 2 for 40,000 iterations. The model trained on an Nvidia GTX 4090 using 2.7
GB of memory at 10 iterations per second, and achieved a final training accuracy of 91.72%,
as shown in Figure 5.
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Figure 5. Mask R-CNN training curve.
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Although the trained Mask R-CNN model segments and classifies individual mush-
rooms, in mushroom production, entire flushes are always harvested together rather than
individual mushrooms. Therefore, an additional step is required to cluster the predicted
masks and obtain a final prediction for the entire flush. This clustering process helps to
consolidate the individual mushroom predictions into a cohesive prediction for the entire
harvest, ensuring efficient and accurate harvesting in mushroom production.

We use the DBSCAN algorithm to cluster the predicted masks, computing the center
of the masks to be used as proxy. We use ε = 2.5× 2× r, where r is the average (approxi-
mate) radius of all the mask instance predictions in the input image. This value defines
the neighborhood of a mask center point, and any masks that do not center within this
neighborhood are not considered part of the same flush. Figure 6 shows example results
of our maturity prediction workflow performed on a single image. In addition to this
clustering, we compute each cluster’s total area of the instance classes, Not-Ready, Ready,
and Overdue. This computation improves the accuracy of the final maturity state prediction
for the cluster over using a simple instance count.

(a) Raw image
(b) Ground

truth annotations

(c) Mask-RCNN inference (d) Final clustering results

Figure 6. Example of oyster mushroom maturity prediction on a single image showing (a) raw image
used for training; (b) annotated ground truth instances; (c) Mask R-CNN inference results on trained
model, with each instance labeled with the predicted class; Not-Ready(1)/Ready(2)/Overdue(3)
and class probability (%); and (d) final harvesting decision by clustering predicted instance masks,
including class probability (%).
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More information, such as the complete training configuration, train and test datasets
used, and code used for clustering and visualization can be found in our GitHub repository
(Appendix A).

5. Harvesting Gourmet Mushrooms

As outlined in Sections 2.1 and 2.2, it is infeasible to use suction cups to harvest
gourmet mushrooms. In pursuit of the goal of a prototype harvesting system for gourmet,
we followed two possible approaches: pneumatic and motorized harvesting, detailed in
Sections 5.1 and 5.2, respectively.

5.1. Pneumatic Harvesting

Figure 7 shows the components used to prototype the pneumatic harvesting system.
This system actuates a blade (B), which is mounted perpendicularly on a bidirectional pis-
ton rod cylinder (C). Figure 8 shows how the cylinder is set up to harvest oyster mushrooms
growing from our developed mushroom pods. The pneumatic tubes T1 and T2 control the
motion of the pneumatic cylinder. Depending on whether T1 or T2 is pressurized, the piston
rod moves outwards or inwards from the cylinder, respectively. When both T1 and T2
are pressurized or depressurized, the piston is immobilized or free to move, respectively.
For the purpose of harvesting, T1 and T2 must be pressurized and depressurized alterna-
tively. This is accomplished by the 5/3-way solenoid valve (SV). Internally, two solenoids
control the valves pressurizing T1 and T2. These solenoids are activated by 12-volt DC
magnetic coils, MG1 and MG2. These coils are digitally controlled by 5-volt relay switches
connected to a Raspberry Pi 4B [29], programmatically controlling the entire setup. More
information about our experimental setup can be found in Appendix A.

Figure 7. Pneumatic harvesting system components.
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Figure 8. Pneumatic harvesting system setup to harvest mushrooms from a MushR mushroom pod.

5.2. Motorized Harvesting

Figure 9 shows the major components of the developed motorized harvesting system,
which consists of a stainless steel cylinder (H) with fruiting holes suspended from the
ceiling of a stool constructed using item profiles. The cylinder contains a plastic bag filled
with a substrate for oyster mushroom growth. These holes on the cylinder align with the
perforation in the plastic bag, allowing the mushrooms to emerge and grow. A 3D-printed
lid (L), matching the diameter of the cylinder, seals the bottom to prevent substrate spillage
in case of damage to the bag. A stepper motor (S) is installed underneath the suspended
cylinder to drive a 3D-printed plate, which vertically holds the blade (B). The plate is
specifically designed to accommodate the motor, ensuring stability during rotation.

Figure 9. Motorized harvesting system.
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The stepper motor initiates rotation, causing the blade to cut the mushrooms protrud-
ing through the holes in the cylinder. We program the motor to rotate in either direction to
ensure successful harvesting. Adjustments, such as sharpening the knife and modifying
the motor’s speed, can be made to optimize the system’s performance.

6. Evaluation

The developed digital twin implementation models the state of the key assets through-
out various stages of the gourmet mushroom production process. While it does not provide
process optimization for the gourmet mushroom production process, it is modeled to be
capable of storing the temporal state of any of the essential assets, such as substrate, spawn
and harvests involved in the production process, as detailed in Section 3.

Tables 3 and 4 evaluate the Mask R-CNN model described in Section 4. We evaluated
the trained model in terms of average precision (AP) on our test set using the COCO
evaluation metric (https://cocodataset.org/#detection-eval (accessed on 30 June 2023)).
Table 5 provides a brief description of the evaluation metrics used.

Table 3. Mask R-CNN model evaluation using the COCO evaluation metric [30].

Criteria AP APIOU=0.50 APIOU=0.75 APsmall APmedium APlarge

Bounding Box 61.876 71.016 67.920 20.792 69.788 87.207
Segmentation 49.332 70.639 60.812 9.010 54.799 80.218

Table 4. Mask R-CNN model evaluation (per class).

Task Class AP

Not-Ready 34.386
Bounding Box Ready 74.683

Overdue 76.558

Not-Ready 26.502
Segmentation Ready 61.083

Overdue 60.410

As represented in Table 4, the AP of the bounding boxes predicted by the Mask R-CNN
model is generally larger than those of segmentation. The “Not-Ready” class of instances
also has lower AP than the other classes. A similar trend can be seen in Table 3 with AP
across scales: APsmall is significantly lower than APmedium and APlarge. Since mushroom
fruiting bodies that are “Not-Ready” are usually smaller in size, the resolution of the
training images seems to play a role in the decrease in AP. The model has its largest AP
under the evaluation criterion APlarge.

Table 5. Description of COCO metrics (adapted from [30]).

Metric Description

AP AP at IoU = 0.50:0.05:0.95
APIOU = 0.50 AP at IoU = 0.50 (PASCAL VOC metric)
APIOU = 0.75 AP at IoU = 0.75 (strict metric)

APsmall AP for small objects: pixel area < 322

APmedium AP for medium objects: 322 < pixel area < 962

APlarge AP for large objects: area > 962

Sections 5.1 and 5.2 describe our prototype pneumatic and motorized harvesting sys-
tems, respectively. While they are capable of harvesting full flushes of mushrooms, the time
required to harvest a single flush increases heavily on the water content and thickness
of the flushes at the base of the fruiting holes. From our limited testing, the pneumatic
harvesting mechanism setup, as shown in Figure 8, failed to produce any significant results
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below 2.1 bar of pressure. At 7.5 bar, we could reliably harvest flushes, albeit requiring up
to 5 s of continuous application to successfully harvest the thickest fruiting flushes. On the
other hand, since the fruiting holes in the motorized harvesting system are significantly
smaller, fruiting flushes can be harvested nearly instantaneously, given that the blade used
is sufficiently sharp. The downside of using a smaller fruiting hole, however, is a decrease
in the fruiting speed and yield quantity of the flushes.

Unlike the motorized harvesting mechanism, which uses a dedicated harvesting
mechanism for each substrate container, the pneumatic harvesting system is an independent
modular component. In an industrial-grade setup, since our mushroom pods have flat
surfaces, they can be moved from their growth chambers when the mushrooms are ready
to harvest (as detected by our Mask R-CNN-based maturity detection method) to the
harvesting system via conveyor belts (or other industrial mobility solutions). The number
of mushroom pods being used in production can hence increase faster than the number of
harvesting systems, the rate of the increase being dependent on the desired throughput of
the production environment, thereby allowing the system to be very scalable.

Discussion and Limitations

Our three main contributions, the digital twin, the Mask R-CNN-based maturity
detection, and the automated harvesting mechanisms, are novel in their application towards
gourmet mushroom production. They do, however, have several limitations that require
further research to amend.

The digital twin implementation described in Section 3 did not use any process
modeling to monitor or simulate the various production processes involved in gourmet
mushroom production.

While our Mask R-CNN model’s performance is promising, there are certain lim-
itations to consider. Factors such as lighting conditions, oyster mushroom variations,
and occlusions may affect the model’s accuracy. As mentioned in Section 4, we accumu-
lated 34,400 images of oyster mushrooms. However, due to the immensely time-consuming
endeavor of annotating the mushrooms with masks, we could only annotate a small portion
of those images. This subsequently limits the potential of our Mask R-CNN model to learn
to segment these mushrooms.

Lastly, our developed methods have yet to be tested in an industrial gourmet mush-
room production environment, and the results presented in this paper have the possibility
of being only applicable to our experimental setup for oyster mushroom production.

7. Conclusions and Future Work

This work makes four contributions: First, we present a digital twin for gourmet
mushroom production, which is capable of storing the temporal state of any of the impor-
tant assets, such as substrate, spawn and harvests involved in the mushroom production
process. We also provide a visual user interface to interact with the graph-based structure
of the digital twin representation. Second, we introduce an image recognition system that
determines when and which mushrooms are ready to be harvested in conjunction with
a proof-of-concept of an automated mushroom harvesting mechanism for harvesting the
mushrooms without human interaction. The image recognition setup monitors the growing
status of the mushrooms and guides the harvesting process. Third, we present a Mask
R-CNN model for the detection of oyster mushroom maturity, which has an evaluated
average precision of up to 80.2 (APlarge), as well as a semiautomated harvesting system that
can be scaled, integrating a Raspberry Pi for control, an electrical switch, an air compressor,
and a pneumatic cylinder with a cutting knife to facilitate timely mushroom harvesting
as a third contribution. Fourth, we perform an analysis of the environmental benefit of
using reusable mushroom pods in favor of one-time-use-only plastic bags. In our use case,
reusing the mushroom pods three times yields a more eco-friendly output than previous
approaches relying on plastic bags.
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Finally, the AI model, its underlying dataset, a digital twin for mushroom production,
the setup of our growth and control chambers, and additional information are all made
available under an open-source license.

Future improvements could involve collecting a more extensive and more diverse
dataset to enhance the model’s robustness further, e.g., different types of gourmet mush-
rooms but also different settings. Additionally, fine-tuning the model with additional
training iterations or exploring alternative architectures may yield even better results. Be-
sides the automated harvesting mechanism, subsequent research, i.e., future work, may
optimize the growth environment parameters to maximize mushroom growth and harvest
based on collected sensor data and the digital twin/shadow data of previously harvested
mushroom pods.

While this work focused on monitoring and detecting gourmet mushroom growth
stages and subsequent harvesting activities, future work may also focus on other issues of
the mushroom production process. Recognizing contaminated substrate or mushrooms
further reduces human intervention. Our open-source dataset includes images exhibiting
contamination, where mushrooms, buckets, tents, or even the camera may be contami-
nated. By keeping the complete dataset, we aim to support future research and enable the
development of new projects beyond the scope of this specific maturity detection project.

Moreover, the monitoring system could also be coupled with the control unit of the
growth environment to manipulate growth-related parameters (e.g., temperature) so that
mushrooms are ready to be harvested on predetermined days.

Beyond the production of gourmet mushrooms, the solutions, e.g., growth/harvest
monitoring and detection and the robot-based harvesting developed in MushR, may be gen-
eralized to other indoor farming activities in controlled environments beyond mushrooms
and, in special cases, even for outdoor farming activities.
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Appendix A

1. MushR GitHub Repository: https://github.com/ETCE-LAB/MushR (accessed on 30
June 2023)

2. AI model and dataset to detect the growth stages of gourmet mushrooms (specifically
oyster mushrooms): https://github.com/ETCE-LAB/mushr-mask-r-cnn/ (accessed
on 30 June 2023)

3. Raw underlying dataset for the AI model: https://www.kaggle.com/datasets/etcelab/
mushr-project-raw-image-dataset-oyster-mushrooms (accessed on 30 June 2023)
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4. Github repository of the digital twin for gourmet mushroom production: https:
//github.com/ETCE-LAB/mushr-digitaltwin-api (accessed on 30 June 2023)

5. Github repository for the growth chamber setup and control environment: https:
//github.com/ETCE-LAB/MushR/blob/main/growchamber-setup (accessed on 30
June 2023)

6. LCA results (one-time-use plastic bags & MushR reusable mushroom pods): https:
//github.com/ETCE-LAB/MushR/blob/main/lca-calculations (accessed on 30 June
2023)
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Abstract: In the operational, strategic and tactical decision-making problems of the agri-food supply
chain, the perishable nature of the commodities can represent a particular complexity problem. It is,
therefore, appropriate to consider decision support tools that take into account the characteristics
of the products, the needs and the requirements of producers, sellers and consumers. This paper
presents a green vehicle routing model for fresh agricultural product distribution and designs an
adaptive hybrid nutcracker optimization algorithm (AH-NOA) based on k-means clustering to solve
the problem. In the process, the AH-NOA uses the CW algorithm to increase population diversity and
adds genetic operators and local search operators to enhance the global search ability for nutcracker
optimization. Finally, the experimental data show that the proposed approaches effectively avoid
local optima, promote population diversity and reduce total costs and carbon emission costs.

Keywords: dynamic demand; adaptive nutcracker optimizer algorithm; green vehicle routing problem;
fresh agricultural products

1. Introduction

In recent years, China has issued many relevant documents on accelerating the high-
quality development of cold chain logistics and transportation. It has led to the great
development of the fresh agricultural products supply chain. More people are choosing to
buy fresh agricultural products through e-commerce. On the one hand, fresh agricultural
products are perishable, with a short shelf life, high losses and require temperature control.
On the other hand, during the cold chain logistics delivery process, fuel consumption and
carbon emissions are much higher than in normal logistics. The harm to the environment
is higher. Therefore, the study of the fresh dynamic vehicle routing problem will be
significant in reducing the commodity value loss, achieving green logistics and sustainable
economic development.

This paper investigates the green capacitated vehicle routing problem with dynamic
demand (GCVRPDD), which encompasses four topical problems in current vehicle routing
research: the vehicle routing problem in cold chain logistics distribution (VRPCLD), the
green vehicle routing problem (GVRP), the dynamic vehicle routing problem (DVRP) and
the capacitated vehicle routing problem (CVRP). For VRPCLD, Hsu et al. [1] studied the
optimal food delivery cycle under multi-vehicle delivery and multi-temperature deliv-
ery. Gharehyakheh et al. [2] combined the path optimization problem with temperature,
commodity shelf life and energy consumption prediction models. Wu [3] studied the
time-dependent split delivery green vehicle routing problem with multiple time windows
(TDSDGVRPMTW). Zhang [4] started with a minimized delivery cost function to obtain
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a more satisfying cold chain delivery. From the above, it can be found that the multi-
temperature distribution of fresh agricultural products provides a methodological entry
point for research on cold chain distribution.

For the GVRP, Zhou et al. [5] provided a review of models and solution algorithms for
green vehicle paths. Zhang et al. [6] compared the effect of considering carbon emissions on
path optimization in solving DVRP. Elgharably et al. [7] proposed a stochastic GVRP under
the condition that economic, environmental and social aspects are considered simultane-
ously. Bruglieri et al. [8], based on new energy vehicles, studied the vehicle routing problem
in the existence of gas stations. Zhou et al. [9], Li and Zhang [10] and Cai et al. [11] took the
optimization of speed into account when studying the carbon emission pollution problem.
Yin et al. [12] took the carbon emission allowance and trading policy as the research object
and built an upper-layer carbon trading benefit model from the government’s perspective
and a lower-layer model from the company’s perspective to describe the vehicle routing
problem based on the Stackelberg game framework. The above research literature provides
the theoretical basis for the calculation of carbon emission costs in this paper.

For the DVRP, Yang et al. [13] proposed a dynamic optimization strategy based on
linear programming theory to cope with customer demand changes. Zhang et al. [14]
analyzed the dynamic events and transformed the dynamic problem into a static problem.
Guo et al. [15] studied the dynamic carpooling problem based on the school buses dynami-
cally carrying students and solved it based on the decomposition of the shared network
concepts. Pan et al. [16] proposed a deep reinforcement learning framework to meet the
uncertain customer service demands and the training path planning process dynamics.
From the above, the majority of research on the green cold chain vehicle path problem has
focused on the static vehicle path problem, without considering the customers’ dynamic
demands in fresh agricultural products distribution.

For the CVRP, Kucuk et al. [17] presented constraint programming-based solution
approaches for the three-dimensional loading CVRP. Aydinalp Birecik et al. [18] presented
an interactive fuzzy approach for solving green CVRP with imprecise travel time for each
vehicle and supplier demand. Wang et al. [19] proposed a novel genetic programming
approach to simplify the routing policies. Souza et al. [20] proposed a hybrid algorithm
based on a discrete adaptation of the differential evolution meta-heuristic, which is designed
for continuous problems, combined with local search procedures to solve the CVRP. The
above literature provides many excellent algorithms for solving the CVRP.

Vehicle routing problems are difficult to solve using exact mathematical analytical
methods. While heuristic algorithms have good results in solving vehicle routing opti-
mization problems, such as ant colony algorithms [21–23], genetic algorithms [24–26], and
particle swarm algorithms [27,28]. Genetic algorithms have disadvantages such as large
computational effort and slow convergence, and heuristic algorithms have the disadvan-
tage of large influencing parameters. The nutcracker optimizer algorithm (NOA) [29] has
the advantages of high accuracy, fast calculation speed and few parameters. However,
there are disadvantages such as easily falling into local optimum and slow convergence
speed. To cope with these disadvantages, this paper investigates the impact of carbon
emissions on dynamic vehicle path optimization based on temperature control. Based on
temperature and geographical location, customers are clustered. To establish a distribu-
tion optimization model to minimize the total cost, which contains the vehicle dispatch
cost, vehicle transportation cost, value loss, temperature control cost and carbon emission
cost, this paper designs an adaptive hybrid nutcracker optimization algorithm (AH-
NOA) based on k-means clustering to plan pathways and provides a theoretical basis for
logistics companies.

The innovations and contributions of this paper are described as follows:

• An adaptive hybrid nutcracker optimization algorithm combining genetic algorithm
and local search operation is designed, which considers both the search breadth and
depth. The population is disturbed by the crossover and mutation operation of the
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genetic algorithm, and the excellent nutcrackers in the population are deeply searched
by the local search operation.

• The GCVRPDD model has been applied rarely in the research of fresh commodity dis-
tribution. To make the model better simulate the actual conditions of fresh commodity
distribution, this study will consider and evaluate dynamic demand, carbon emissions
and temperature control on the basis of GCVRPDD.

• In order to improve the quality and diversity of the initial population, two different
methods were used to generate the initial population in this paper. The two methods
are, respectively, the CW saving algorithm and the Random method.

The remainder of this paper is organized as follows: Section 2 briefly introduces the
problem and constructs the GCVRPDD model. Section 3 presents a new solution algorithm.
In Section 4, the results of the experiments are analyzed. Finally, the conclusion is given in
Section 5.

2. Problem Description and Model Construction

2.1. Problem Description

The GCVRPDD proposed in this paper can be described as follows: the cold chain
distribution vehicles depart from the distribution center visit customer nodes in the order
of the distribution scheme, update the distribution route periodically when the customer’s
demand is dynamically adjusted and finally return to the distribution center. Suppose
{0} ∪Vc denotes the set of nodes and Vc denotes the set of customer points before starting
distribution. At this time, the customer coordinates and the goods demand qw

im is known.
K = {1, 2, 3, · · · , k} is the set of vehicles and the models are the same. The operating hours
of the distribution center are

[
Ts, Tf

]
. The vehicle does not stay at the customer’s location

during the delivery. The road conditions are stable and fluctuations in vehicle speeds can
be ignored. The dispatch center can hold all the information and regulate the vehicles in
real time. At the same time, the delivery time does not exceed Tk in order to ensure the
goods are in good condition.

2.2. Vehicle Fuel Consumption Model

Demir et al. [30], Suzuki [31] and Hickman [32] have studied the influence of vehicle
fuel consumption and carbon emissions. It is pointed out that the distance traveled plays a
major role in fuel consumption and carbon emissions. In addition, factors such as vehicle
speed, load and characteristics also have a significant impact. At the same time, various
fuel consumption and carbon emission measurement models are proposed. In this paper,
the MEET model proposed by Hickman is used to complete the calculation. The MEET
model includes a carbon emission rate estimation function, a load correction factor and a
road slope correction factor. This is applicable to heavy goods vehicles in the weight range
of 3.5–32 t. The carbon emission estimation function is:

ε(v) = ω0 + ω1v + ω2v2 + ω3v3 +
ω4

v
+

ω5

v2 +
ω6

v3 (1)

where ε(v) denotes the carbon emission rate when the vehicle is unloaded and driving
on a road with a slope of zero. v denotes the vehicle speed. ω0, ω1, ω2, ω3, ω4, ω5 and
ω6 denotes a predefined parameter, which takes different values for trucks with different
loads. The load correction factor (LC) is as follows:

LC = x0 + x1γ + x2γ2 + x3γ3 + x4v + x5v2 + x6v3 +
x7

v
(2)

where γ denotes the ratio between the actual load of the vehicle and its capacity. χ0, χ1, χ2,
χ3, χ4, χ5, χ6 and χ7 are predefined parameters. The value varies with trucks. The vehicle
carbon emission rate is c = ε(v)LC/1000.

During the whole distribution process, the carbon emissions produced by the unit
of fuel consumption usually have a fixed value. If the carbon emission caused by 1 L
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of gasoline is 2.3 kg, the fuel consumption generated by 1 kg of carbon emission is
�
o = 1/2.3 = 0.4348 L/kg. The vehicle fuel consumption rate is f = ôc. Therefore, the
fuel consumption of vehicle k traveling from node i to j is Fk

ijw = f dij.

2.3. Fresh Agricultural Products Quality Attenuation Model

During transportation, the quality of fresh agricultural products gradually declines.
The decline rate is strongly related to the transportation environment, time and transport
process stability [33,34].

In this paper, the method discussed in [35] is used to calculate the value loss (vlwk
im )

based on the time length and temperature (T(K)).

vlwk
im = qw

im

[
1− e∧∂w

mtk
i0w

]
pm (3)

where qw
im denotes the demand of customer i for the fresh products (m) at a temperature of

w. ∂w
m denotes the freshness factor of a unit fresh product (m) for delivery at a temperature

of w. pm is the price of the fresh commodity m. tk
i0w denotes the delivery time that the

vehicle takes to get from the distribution center to the customer (i).

2.4. Temperature Cost Model

During transport, different fresh agricultural products have different temperature
requirements and the delivery vehicle needs to set the appropriate temperature to suit
the attributes carried. When the performance index COP is used to calculate the energy
value change [36], there is COP = TL/(TH − TL). Where TH is the absolute outside
ambient temperature and TL is the absolute target temperature after temperature control.
The physical quantity corresponding to the absolute temperature is the thermodynamic
temperature, denoted as T(K), with the symbol K. T(K) is related to the Celsius temperature
(t) by the equation T(K) = 273 + t(◦C). For example, when TH is 25 ◦C (298 K) and
TL is 6 ◦C (279 K). COP = 14.68 means that at an ambient temperature of 25 ◦C, the
vehicle temperature is maintained at 6 and needs the temperature control device to absorb
14.68 units of heat. Assuming a temperature control cost of 1 at this point, the temperature
control cost factor (θmw) of 5 ◦C is 14.68 · 13.9−1 ≈ 1.06. Similarly, the temperature control
cost factor (θmw) for the other temperature conditions can be obtained, as shown in Table 1.

Table 1. θmw under different temperatures.

Temperature COP θmw Temperature COP θmw

6 ◦C 14.68 1 −3 ◦C 9.64 1.52
5 ◦C 13.9 1.06 −4 ◦C 9.28 1.58
4 ◦C 13.19 1.11 −5 ◦C 8.93 1.64
3 ◦C 12.55 1.17 −8 ◦C 8.03 1.83
2 ◦C 11.96 1.23 −9 ◦C 7.76 1.89
1 ◦C 11.42 1.29 −10 ◦C 7.51 1.95
0 ◦C 10.92 1.34 −11 ◦C 7.28 2.02
−1 ◦C 10.46 1.40 −12 ◦C 7.05 2.08
−2 ◦C 10.04 1.46 −13 ◦C 6.84 2.15

2.5. Green Capacitated Vehicle Routing Problem with Dynamic Demand Model

In this paper, a combination of the initial distribution path and dynamic adjustment
strategy is used to solve GCVRPDD. The concept is shown in Figure 1.
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Initial order Info Vehicle Info

Distribution path

Order information after the 
order started

Adjusting distribution path

Dynamic events 
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Vehicle execution

Output costs
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Dynamic adjustment

Stage

N

Y

Road Info

Generate initial 
solution

Business hours?
Y

N

Figure 1. Initial planning + dynamic adjustment strategy.

2.5.1. Initial Stage

(1) Symbol Description

Based on the needs of building the model, this paper uses the corresponding symbols
which are listed in Table 2.

Table 2. Symbol definition in the GCRPDD optimization.

Parameter Definition Parameter Definition

C1 The vehicle dispatch cost stk
0

Time of vehicle departure
from distribution center

C2 The transportation cost per distance Tk
The maximum vehicle time in

transit

C3 The fuel price W A set of temperature control
ranges

C4 The unit price of carbon emissions F1
The delivery vehicle dispatch

cost
Cap The rated load capacity of the vehicle F2 The transport cost
TSi The customer service time F3 The temperature control cost
dij The distance between i and j F4 The temperature control cost

tk
ijw

The travel time of vehicle k from i to j
at temperature w F5 The carbon emission cost

xwk
ij

0–1 decision variable,1 if vehicle k
travels from i to j at temperature w and

0 otherwise
uk

mw = C3 fkwθmw

The temperature-controlled
cost of fresh commodity m at

temperature w

Qk
ijw

The load capacity of vehicle k from
customer i to j at w fkw

The fuel consumption of a
hundred kilometers of vehicle

k at temperature w

a The carbon emissions per hour of
temperature-controlled equipment θmw

The temperature-controlled
cost factor unit of fresh

commodity at w

Va
q The new set of customer Tak

s
The vehicle’s departure time

at the distribution center

Va
c

The original set of orders not served
constitutes VD A set of virtual distribution

center

zk
0–1 decision variable, the newly

dispatched vehicle Qk The remaining goods of the
vehicle k

Ka The set of vehicles currently
performing the delivery task Kac

The set of new vehicles to be
dispatched (Kac

is the
complement of Ka)

Ta
qi

The change moment in customer
demand stk

d

The time when the vehicle
leaves the distribution center
or virtual distribution center.

Tend The order deadline

254



Agriculture 2023, 13, 1430

(2) Initial Stage Vehicle Path Model

Objective function:

Z = min{F1 + F2 + F3 + F4 + F5} (4)

F1 = C1 ∑
j∈Vc

∑
k∈K

xwk
0j (5)

F2 = C2 ∑
w∈W

∑
j∈{0}∪Vc

∑
i∈{0}∪Vc

∑
k∈K

Fk
ijwxwk

ij (6)

F3 = ∑
k∈K

∑
m∈M

∑
w∈W

∑
j∈{0}∪Vc

∑
i∈{0}∪Vc

tk
ijwuk

mwQk
ijw (7)

To simplify the calculation, it is assumed that no temperature control cost is generated
in return.

F4 = ∑
i∈Vc

∑
m∈M

∑
w∈W

∑
k∈K

vlwk
im (8)

F5 = C4 ∑
w∈W

∑
j∈{0}∪Vc

∑
i∈{0}∪Vc

∑
k∈K

(
Fk

ijwxwk
ij /

�
o + atk

ijw
xwk

ij

)
(9)

s.t.
∑

i∈{0}∪Vc

∑
j∈Vc

∑
w∈W

xwk
ij qw

jm ≤ Cap, ∀k ∈ K (10)

∑
j∈{0}∪Vc

∑
k∈K

∑
w∈W

xwk
ij = 1, ∀i ∈ Vc (11)

∑
i∈{0}∪Vc

∑
k∈K

∑
w∈W

xwk
ij = 1, ∀j ∈ Vc (12)

∑
i∈{0}∪Vc

∑
w∈W

xwk
ij = ∑

i∈{0}∪Vc

∑
w∈W

xwk
ji , ∀j ∈ Vc, ∀k ∈ K (13)

∑
j∈Vc

∑
w∈W

xwk
0j = ∑

i∈Vc

∑
w∈W

xwk
0i ≤ 1, ∀k ∈ K (14)

Ts + ∑
i∈{0}∪Vc

∑
j∈{0}∪Vc

∑
w∈W

tk
ijwxwk

ij + ∑
i∈{0}∪Vc

∑
j∈Vc

∑
w∈W

qw
jmTSjxwk

ij ≤ Tf , ∀k ∈ K (15)

∑
i∈{0}∪Vc

∑
j∈Vc

∑
w∈W

dijxwk
ij ≤ vTk, ∀k ∈ K (16)

∑
i∈S

∑
j∈S

∑
w∈W

xwk
ij ≤ |S| − 1, S ⊆ Vc, S �= ∅, ∀k ∈ K (17)

∑
i,j∈Vc

∑
k∈K

∑
w∈W

xwk
ij ≤ |K|, ∀k ∈ K (18)

xwk
ij ∈ {0, 1}, ∀i, j ∈ {0} ∪Vc, ∀k ∈ K, w ∈ W (19)

Equation (10) indicates that the sum of the orders does not exceed the vehicle load
limit. Equations (11) and (12) indicate that the customer point is served by a vehicle
once and only once. Equation (13) indicates that the vehicle must leave after completing
the order. Equation (14) represents each vehicle serving only one route, and the vehicle
departs from the distribution center and returns after completing the order. Equation (15)
represents the vehicle returns to the distribution center at a time no later than the operating
deadline. Equation (16) represents the delivery time constraint. Equation (17) represents the
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elimination of the sub-circuit constraint. Equation (18) represents the number of vehicles
performing distribution tasks that do not exceed the maximum number in the distribution
center. Equation (19) is the decision variable.

2.5.2. Dynamics Adjustment Stage

(1) Dynamic Adjustment Strategy

The dynamic character of GCVRPDD is mainly reflected in customer order updates,
where the demand changes in real time during the distribution. In the dynamic adjustment
stage, this paper divides the operation time into several homogeneous time slices and
adopts a periodic optimization strategy for optimization. Dynamic events that occur in
the current time slice are not processed immediately but are globally optimized in the
next time slice together with customers who have not received service in the path. With
demand dynamically updated, the VRPs within each time slice are static, and the optimiza-
tion solutions S are continuously passed between time slices. As a result, GCVRPDD is
converted into a number of correlated static vehicle routing problems (SVRP), as shown
in Figure 2. To simplify the calculation, it is set that the customer being delivered cannot
change the demand.

1

Vca1

2

Vca2

3

Vca3

nt

Vcant

S1 S2 S3 Snt

Vqa1 Vqa2 Vqa3 Vqant

Vc

Figure 2. GCVRPDD rolling time domain dynamic optimization.

The number of time slices is set to nt, and each time slice is
(

Tf − Ts

)
/nt [37]. The

dynamic demand in the current time slice is not processed immediately and will be passed
to the next time slice for optimization. With a larger nt, the dynamic demand response is
faster. However, a larger nt does not necessarily result in a better pathway and also leads
to system redundancy in computational space [38].

(2) Dynamic Adjustment Model

In this paper, according to the dynamic event occurrence time, the vehicle location is
determined and set as a virtual distribution point. The objective is to minimize the cost and
value loss to complete subsequent distribution tasks after a dynamic event has occurred.
During the optimization process, the position of vehicle k and the goods surplus (Qk) in
the dynamic adjustment phase can be determined from the previous phase. According
to parameters, such as vehicle speed and load, the cost and value loss of subsequent
distribution tasks are solved. Suppose the vehicle’s (k) initial distribution path is 0-1-2-3-4-0.
In dynamic adjustment, if the vehicle is at customer point 2, the reconfiguration takes
customer point 2 as the virtual distribution center. At this point, the goods remaining of
vehicle k is Qk = Cap− qw

1m
− qw

2m
. If the vehicle is between customer points 2 and 3, the

reconfiguration takes the vehicle’s current location as the virtual point and does not change
the delivery task to customer point 3. The goods remaining are Qk = Cap− qw

1m
− qw

2m
− qw

3m
.

If the optimized subsequent distribution path is 3-5-6-0, the distribution path for vehicle k
is 0-1-2-3-5-6-0, based on the previous path. The model is as follows:

Z = min{F1 + F2 + F3 + F4 + F5} (20)

F1 = C1 ∑
j∈Va

c

∑
k∈Kac

(
xwk

0j − zk
)

(21)
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F2 = C2 ∑
w∈W

∑
j∈{0}∪Vc

∑
i∈{0}∪Vc

∑
k∈K

Fk
ijwxwk

ij (22)

F3 = ∑
k∈K

∑
m∈M

∑
w∈W

∑
j∈{0}∪Va

c ∪VD
∑

i∈{0}∪Va
c ∪VD

tk
ijwuk

mwQk
ijw (23)

F4 = ∑
i∈{0}∪Va

c ∪VD
∑

m∈M
∑

w∈W
∑
k∈K

vlwk
im (24)

F5 = C4 ∑
w∈W

∑
j∈{0}∪Vc

∑
i∈{0}∪Vc

∑
k∈K

(
Fk

ijwxwk
ij /

�
o + atk

ijw
xwk

ij

)
(25)

s.t.
∑

i∈VD∪Va
c

∑
j∈Va

c

∑
w∈W

xwk
ij qw

jm
≤ Qk, ∀k ∈ Ka (26)

∑
i∈{0}∪Va

c

∑
j∈Va

c

∑
w∈W

xwk
ij qw

jm
≤ Cap, ∀k ∈ Kac

(27)

|Ka|+ ∑
j∈Va

c

∑
k∈Kac

∑
w∈Q

xwk
0j ≤ |K| (28)

∑
j∈{0}∪Va

c

∑
k∈K

∑
w∈W

xwk
ij = 1, ∀i ∈ Va

c (29)

∑
i∈{0}∪Va

c

∑
k∈K

∑
w∈W

xk
ij = 1, ∀j ∈ Va

c (30)

∑
i∈{0}∪Va

c ∪VD
∑

w∈W
xwk

ij = ∑
i∈{0}∪Va

c

∑
w∈W

xwk
ji , ∀j ∈ Va

c , ∀k ∈ K (31)

∑
j∈Va

c

∑
w∈W

xwk
0j = ∑

i∈Va
c

∑
w∈W

xwk
i0 ≤ 1, ∀k ∈ Kac

(32)

∑
k∈Ka

∑
j∈Va

c

∑
w∈W

xwk
ij = 1, ∀i ∈ VD (33)

∑
k∈Ka

∑
i∈{0}∪Va

c

∑
w∈W

xwk
ij = 0, ∀i ∈ VD (34)

∑
k∈K

∑
i∈VD∪Va

c

∑
w∈W

xwk
i0 = ∑

k∈Kac
∑

i∈Va
c

∑
w∈W

xwk
0j + |Ka| (35)

Ta
qi
≤ Tend, ∀i ∈ Va

q (36)

Tak
s + ∑

i∈{0}∪Va
c ∪VD

∑
j∈{0}∪Va

c

∑
w∈W

tk
ijw

xwk
ij + ∑

i∈{0}∪Va
c ∪VD

∑
j∈Va

c

∑
w∈W

qw
jm

TSjxwk
ij ≤ Tf , ∀k ∈ K (37)

∑
i∈S

∑
j∈S

∑
w∈W

xwk
ij ≤ |S| − 1, |S| = ∑

j∈Va
c

∑
w∈W

xwk
ij , ∀k ∈ K (38)

∑
i∈{0}∪Vc

∑
j∈Vc

∑
w∈W

dijxwk
ij ≤ vTk, ∀k ∈ K (39)

xwk
ij ∈ {0, 1}, ∀i, j ∈ Va

c , ∀k ∈ K, w ∈ W (40)

zk ∈ {0, 1}, ∀k ∈ Kac
(41)
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Equations (26) and (27) represent the vehicle load constraint. Equation (28) is the
number of delivery vehicles constraint. Equations (29) and (30) denote that the customer
has and will only be served once. Equation (31) means that the vehicle leaves the customer’s
point after service. Equation (32) indicates that each vehicle serves only one path and that
the vehicle departs from the distribution center and returns to the distribution center after
completing the order. Equations (33) and (34) mean that only one vehicle leaves the virtual
distribution point and does not return. Equation (35) indicates that all vehicles performing
a distribution task return to the distribution center after completing all tasks. Equation (36)
indicates that the time to process order changes does not exceed the order deadline of
the distribution center. Equation (37) represents the vehicle returns to the distribution
center at a time no later than the operating deadline. Equation (38) eliminates the sub-loop
constraint. Equation (39) is the delivery time constraint. Equations (40) and (41) are the
decision variable attributes.

3. Problem Solution and Algorithm Design

3.1. Problem Solution

Step 1: Determine the initial distribution path of the vehicles. The vehicles all depart
from the distribution center. According to the pre-departure order information, using the
AH-NOA based on k-means clustering to determine the initial plan.

Step 2: Determine whether a dynamic event occurs according to the rolling time
domain. If it does, skip to Step 3, otherwise, end.

Step 3: According to the event occurrence time, the vehicle driving path before the
dynamic event occurs is derived.

Step 4: Dynamic events occur and relevant order information is updated.
Step 5: Problem transformation. Set up a virtual distribution center based on the

location information of vehicles in transit. Integrate undelivered orders and new orders
into a new order requirement. Transforming the single-center DVRP into a new multi-
center SVRP.

Step 6: Determine the vehicle path after the dynamic event occurs. Based on the new
problem obtained in Step 5, the AH-NOA is used to solve it. Use the vehicle path obtained
in Step 3 to replace the path between the distribution center and the virtual distribution
center. Skip to Step 2.

3.2. The AH-NOA Design Based on K-Means Clustering Algorithm
3.2.1. K-Means Clustering Algorithm

The k-means clustering analysis of customers can reduce the decay of commodity
quality and increase customer satisfaction. Because of the integrated consideration of the
commodity’s temperature and customer location, it can make the solution more realistic.

Suppose the location coordinates of the customer (i) and demand temperature interval
of fresh agricultural products are (xi, yi),(lpi, upi), respectively. The clustering distance
between customers i and j is dc

ij
=

∣∣xi − xj
∣∣+ ∣∣yi − yj

∣∣+ tr
∣∣lpi − lpj

∣∣+ tr
∣∣upi − upj

∣∣ [39].
tr denotes the conversion factor between distance and temperature. The specific steps are
as follows:

(1) Import customer location, commodity temperature and tr.
(2) The products are divided into several temperature intervals according to their tem-

perature characteristics while taking into account the customer’s freshness demands.
(3) The initial number of clustering units is determined as qc based on the k-means clus-

tering algorithm, and the qc initial clustering centers are selected in each temperature
control interval.

(4) Under different temperature intervals, calculate the distance from the customer point
to the cluster center and assign the clustered customers to the closest clustered unit.

(5) Add the number of clustering units as qc = qc + 1 and generate new clustering units
and centers.

(6) Repeat (4) and (5) until the cluster centers no longer change.
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3.2.2. Nutcracker Optimizer Algorithm

The nutcracker optimizer algorithm is a swarm intelligence optimization algorithm
proposed in 2023. In the summer and autumn, nutcrackers search for food at random
and choose to transport the better food to a storage area away from the foraging area. In
winter and spring, nutcrackers go to storage areas to find food, which may not necessarily
be their food but may also become the food of others. NOA simulates the foraging and
food storage behavior based on the nutcracker’s ability to find food by relying on spatial
memory mechanisms and achieves the goal of finding the best food.

Heuristic algorithms have good results for solving vehicle routing problems. However,
it has a lack of robustness, and the results are easily influenced by a larger number of pa-
rameters. NOA has the advantages of high accuracy, fast computation and a small number
of parameters. Moreover, due to the characteristics of the problem studied in this paper, a
fast computational algorithm is more beneficial to solve the problem. However, there are
also disadvantages such as the tendency to fall into local optima and slow convergence.
The flow of this algorithm is shown in Figure 3.

Start

Population initialization

Satisfaction of termination 
conditions

Randomly generated numbers σ and 
σ1 in the interval [0,1]

σ<σ1

Search for cache behaviour

Randomly generated number Φ 
in the interval [0,1]

Φ>Pa2

Updating the spatial memory of a cache

Recovery of caches

Randomly generated number φ 
in the interval [0,1]

φ>Pa1 Foraging

Iter=iter+1

Food storage 

Return to optimal position

N

Y

N
Y

Y

N

N

Y

Figure 3. NOA flow chart.

3.2.3. Adaptive Hybrid Nutcracker Algorithm

To address the disadvantages of the NOA, an adaptive hybrid NOA is proposed. To
ensure the diversity of the population, the CW algorithm was used to initialize some of
the solutions. To keep the overall quality of the population, better nutcrackers are selected
to generate new nutcrackers through the genetic operators and local search operators. A
nutcracker winter food search probability and a local optimization avoidance probability
are introduced into the decline function so that it can be adaptively adjusted with iterations.
In this way, the algorithm’s convergence speed can be increased. It is possible to avoid
falling into a local optimum to a certain extent. The AH-NOA flow chart is shown in
Figure 4.
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Start

Population initialization

Calculate the fitness value

Foraging, Storing food, Searching for hiding places
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Satisfaction of termination conditions

Output

End

CW Algorithm

Random search algorithm

Y

N

Figure 4. AH-NOA flow chart.

The specific steps of the AH-NOA are as follows:

(1) Initialize the population. To increase the diversity of solutions, the initial population
is generated in two ways: CW algorithm and random search.

(2) Adaptability function. The total cost is used as the fitness function of the algorithm
(3) Parameter iteration. Pa1 controls the search direction in the storage phase. Pa2

determines the swapping probability between the cache search and recovery phases.
δ avoids getting stuck in a local optimum. The Pa1, Pa2 and δ are improved to
adaptively change with the algorithm running using the following equations:

Pa1 = (iter_max− iter)/iter _max (42)

Pa2 = 1/(1− 1.5(log2(1/iter))) (43)

δ = iter_max−iter+1
√

exp(−iter4/iter_max3)0.05 (44)

(4) Movement strategy. Each nutcracker performed foraging, storing food, searching
for caches and obtaining food behaviors according to Equations (45)–(51), respec-

tively, based on its current food search status.
→
X

iter+1

k denotes the position of the
k nutcracker in the iter generation. Uj and Lj denote the upper and lower bounds
of the nutcracker’s position at the point j. γ is a random number generated from a
levy flight. Xiter

Mj denotes the average position of all nutcrackers at point j in the iter
generation. A,B and C are three nutcrackers randomly selected from the population
to facilitate the search for high-quality food sources. τ1, τ2, r and r1 are real numbers
randomly generated in the interval [0, 1]. μ is randomly generated in the interval [0, 1]
based on a normal distribution.

→
X

iter+1

k =

⎧⎪⎪⎨
⎪⎪⎩

Xiter
kj τ1 < τ2

Xiter
Mj + γ

(
Xiter

Aj − Xiter
Bj

)
+ μ

(
r2Uj − Lj

)
τ1 ≥ τ2, iter < iter_max/2

Xiter
Cj + μ

(
Xiter

Aj − Xiter
Bj

)
+ μ(r1 < δ)

(
r2Uj − Lj

)
otherwise

(45)
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→
X

iter+1

k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

→
X

iter

k + μ

(→
X

iter

best −
→
X

iter

k

)
|λ|+ r1

(→
X

iter

A −→
X

iter

B

)
τ1 < τ2

→
X

iter

best + μ

(→
X

iter

A −→
X

iter

B

)
→
X

iter

bestl

τ1 < τ3
otherwise

(46)

→
RP

iter

k,1 =

⎧⎪⎪⎨
⎪⎪⎩
→
X

iter

k + α cos(θ)
(→

X
iter

A −→
X

iter

B

)
+ αRP θ = π/2

→
X

iter

k + α cos(θ)
(→

X
iter

A −→
X

iter

B

)
otherwise

(47)

→
RP

iter

k,2 =

⎧⎪⎪⎨
⎪⎪⎩
→
X

iter

k +

(
α cos(θ)

((→
U −→

L
)

τ3 +
→
L
)
+ αRP

)→
U2 θ = π/2

→
X

iter

k + α cos(θ)
((→

U −→
L
)

τ3 +
→
L
)→

U2 otherwise
(48)

λ is a random number generated from a levy flight. Xiter
best is the position of the current

optimal nutcracker. τ3 is a randomly generated real number in the interval [0, 1]. l is the

diversity factor of the solution linearly decreasing from 1 to 0.
( →

RP
iter

k,1 ,
→

RP
iter

k,2

)
denotes

the location of the k nutcracker storing food in generation iter.
→
U = (U1, U2, . . . , Uj) and

→
L = (L1, L2, . . . , Lj) denote the range of regions where the nutcracker stores food. RP is a
random location. α avoids the algorithm falling into a local optimum and adjusts according
to Equation (49):

α =

{
(1− iter/iter _max)2iter/iter_max r1 > r2

( iter/iter _max)2/iter otherwise
(49)

→
X

iter+1

k

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

→
X

iter

k τ7 < τ8, τ3 < τ4orτ5 < τ6
→
X

iter

k + r1

(→
X

iter

best −
→
X

iter

k

)
+ r2

( →
RP

iter

k,1 −
→
X

iter

C

)
τ7 < τ8, τ3 ≥ τ4

→
X

iter

k + r1

(→
X

iter

best −
→
X

iter

k

)
+ r2

( →
RP

iter

k,2 −
→
X

iter

C

)
τ7 < τ8, τ5 ≥ τ6

(50)

→
X

iter+1

k = f−1
(

min
(

f
(→

X
iter

k

)
, f
( →

RP
iter

k,1

)
, f
( →

RP
iter

k,2

)))
(51)

r2, τ4, τ5, τ6, τ7 and τ8 are a randomly generated real number in the interval [0, 1].
Suppose a vehicle departs from distribution center 0 and needs to make a delivery

to customer points 1 and 2. Xiter
1 is the position of the current nutcracker 1 and Xiter

2 is
the position of the current nutcracker 2. If Xiter

1 ≤ Xiter
2 , xwk

12 = 1, xwk
21 = 0 and the order

of vehicle visits is 0 -1-2-0. Otherwise, xwk
12 = 0, xwk

21 = 1 and the order of vehicle visits is
0-2-1-0.

(5) Crossover, mutation and local search behavior. Incorporating the crossover and
mutation operators from the genetic algorithm into the NOA can effectively overcome
the NOA’s lack of global search capability. The key to enhancing the global search
ability is to enhance the diversity of the population, which both genetic operators
can achieve. Therefore, the genetic operator is embedded in the NOA to expand the
solution space and improve the global search capability.

1© Crossover operations
Multiple crossovers can avoid individuals from converging prematurely, but too

many crossovers will destroy some better solutions. In this paper, according to the roulette
strategy, two crosses, OA and OB, are selected. After the two individuals have been crossed,
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the recurring points are deleted, resulting in two new nutcrackers. The process is shown in
Figure 5.

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 4 6 3 5 7 8 9

3 4 5 6 1 2 8 7 95 6 8 971 2 3 43 4 5 6

5 6 8 971 2 3 41 2 4 6

Befor Crossover:

Individual A:

Individual B:

After crossover:

Individual A:

Individual B:

After delete:

Individual A:

Individual B:

OA OB

Figure 5. Crossover operation.

2©Mutation operation
Select two random positions and directly exchange them to complete the mutation

operation, as shown in Figure 6.

1 2 3 4 5 6 7 8 9

1 2 3 8 5 6 7 4 9

Individual:

Individual:

Figure 6. Mutation operation.

3© Local search operations
Remove some similar location points based on similarity by using the destruction

operator. Under load capacity and time constraints, removed points are inserted back into
the total cost. The similarity is calculated as Rij = 1/

(
Sij + dij/dij_max

)
, where Sij = 1

means that i and j are not on the same path and Sij = 0 means that i and j are on the same
path, dij_max = max

{
j ∈ Vc, i �= j

∣∣dij
}

.

(6) Algorithm termination. The algorithm is terminated when the maximum number of
iterations has been reached.

3.2.4. Time Complexity Analysis of AH-NOA

In the base NOA, if the number of populations is n, then when simulating the foraging
and storage behavior, the time magnitude is n. In the cache-search and recovery strategy,
generating the RP matrix needs at most n times and the time magnitude is n. Each
nutcracker has to search for the best food at most iter _max times. The time magnitude
is iter _max. In summary, the time complexity of the NOA is O( (n + n) · iter _max). AH-
NOA adds crossover, mutation and local search behavior to the NOA, which has a time
dimension of n. The time complexity of the AH-NOA is O((n + n) · iter_max + n).

3.2.5. Algorithm Effectiveness Verification

To verify the effectiveness of the algorithm improvements, a comparison experiment
between the basic NOA and AH-NOA was made. Customer location coordinates and
service demands were obtained by improving the Solomon dataset [40]. At the same
time, the temperature intervals and prices for fresh agricultural products are added,
and 12 examples were selected for analysis and comparison. The main parameters are
set as follows: popsize = 50, iter_max = 200, pc = 0.8, pm = 0.1, tr = 1.2. Due to
the high information level of the order, the communication time between the delivery
personnel and the customer is greatly reduced. To simplify the calculation, assume
TSi = 0. The characteristics of the example data set are shown in Table 3. Each set
was calculated 20 times and the best values were chosen, as shown in Table 4. Where
TD denotes total cost, VL denotes loss of value, VN denotes the number of vehicles
and CEC denotes the carbon emissions cost. Gap_c = (TDNOA − TDAH−NOA)/TDNOA,
Gap_g = (CECNOA − CECAH−NOA)/CECNOA.
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Table 3. Dataset characteristics.

Case No. Customer Numbers Temperature Control Interval Price

1–3 40 (−5 ◦C)–(0 ◦C) 10
(1 ◦C)–(6 ◦C) 7

4–6 60 (−5 ◦C)–(0 ◦C) 10
(−13 ◦C)–(−8 ◦C) 15

7–9 80 (−5 ◦C)–(0 ◦C) 10
(1 ◦C)–(6 ◦C) 7

(−13 ◦C)–(−8 ◦C) 15
10–12 100 (−5 ◦C)–(0 ◦C) 10

(1 ◦C)–(6 ◦C) 7
(−13 ◦C)–(−8 ◦C) 15

Table 4. Comparison of algorithm solution results.

No. Name
AH-NOA NOA

Gap_c Gap_g
TD VL CEC VN TD VL CEC VN

1 C101 964 183 203 5 1716 205 235 5 43.82% 13.62%
2 R101 1383 192 341 5 1713 185 428 6 19.26% 20.33%
3 RC101 1812 245 403 7 2540 272 571 9 28.66% 29.42%
4 C102 1746 379 371 6 2150 364 495 8 18.79% 25.05%
5 R102 2226 317 547 8 2896 270 732 10 23.14% 25.27%
6 RC102 3308 422 724 10 3983 357 905 14 16.95% 20.00%
7 C103 2900 398 403 7 3705 407 561 9 21.73% 28.16%
8 R103 3340 299 486 7 4178 325 634 8 20.06% 23.34%
9 RC103 4222 391 632 9 5637 346 893 13 25.10% 29.23%

10 C104 3756 511 545 9 5986 559 972 13 37.25% 43.93%
11 R104 4175 420 705 10 4522 391 860 12 7.67% 18.02%
12 RC104 4943 446 638 9 6374 394 921 13 22.45% 30.73%

Ave 2898 350 500 8 3783 340 684 10 24% 25.59%
t-test −6.035 −6.81 −6.325

p-value 0.000059 0.000019 0.000038

Table 4 shows that the AH-NOA outperforms the NOA in terms of TD, CEC and
VN. In the pathway optimization model with the lowest total cost, the AH-NOA obtained
better results than the NOA. Total costs were optimized by a maximum of 43.82% and an
average of 24%. The carbon emissions costs were optimized by a maximum of 43.93% and
an average of 25.59%. The t-test and p-value analysis showed that the difference between
the calculated TD, CEC and VN for the AH-NOA solution and the NOA was significant.
Therefore, the AH-NOA is an effective improvement to the NOA.

4. Example Analysis

4.1. Example Design

Before delivery begins, the distribution center receives orders from 60 customers,
which are located in different parts of the city. Each customer has different demands and
temperature intervals. The distribution center information is shown in Table 5. The specific
customer demands are shown in Table 6. Customer location, demand and commodity
temperature attributes are randomly generated using the rand() function according to
objective reality. Cap = 200 kg, nt = 32. The hire cost is C1 = 60 CNY. The average vehicle
speed is 50 km/h. Assume a unit fuel emission factor of 2.63 kg/L. Referring to the average
carbon emission trading price on the Beijing, Shanghai and Guangdong exchanges on
19 April 2019, set the unit carbon emission price to 0.1 CNY/kg.
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Table 5. Distribution center information.

X/km Y/km Ts Tf

0 0 8:00 16:00

Table 6. Customer information.

No. X/km Y/km Demand/kg
Temperature

Control Interval
No. X/km Y/km Demand/kg

Temperature Control
Interval

1 −27 −25 8 (−5 ◦C)–(0 ◦C) 31 8 15 23 (−5 ◦C)–(0 ◦C)
2 31 3 11 (1 ◦C)–(6 ◦C) 32 −18 −10 11 (1 ◦C)–(6 ◦C)
3 −4 −29 25 (1 ◦C)–(6 ◦C) 33 29 −24 3 (−5 ◦C)–(0 ◦C)
4 30 −18 12 (−13 ◦C)–(−8 ◦C) 34 25 20 16 (−13 ◦C)–(−8 ◦C)
5 26 −1 2 (−13 ◦C)–(−8 ◦C) 35 21 14 8 (−13 ◦C)–(−8 ◦C)
6 −39 −26 21 (−13 ◦C)–(−8 ◦C) 36 −4 −11 11 (−13 ◦C)–(−8 ◦C)
7 −23 −23 10 (−5 ◦C)–(0 ◦C) 37 34 −12 24 (1 ◦C)–(6 ◦C)
8 −22 2 11 (−13 ◦C)–(−8 ◦C) 38 1 −11 19 (1 ◦C)–(6 ◦C)
9 3 −33 4 (−13 ◦C)–(−8 ◦C) 39 13 8 17 (1 ◦C)–(6 ◦C)

10 9 33 23 (−5 ◦C)–(0 ◦C) 40 20 −27 13 (−5 ◦C)–(0 ◦C)
11 6 12 25 (−5 ◦C)–(0 ◦C) 41 31 −39 18 (1 ◦C)–(6 ◦C)
12 7 1 15 (−13 ◦C)–(−8 ◦C) 42 −20 10 8 (−13 ◦C)–(−8 ◦C)
13 31 0 2 (1 ◦C)–(6 ◦C) 43 −5 −36 3 (−13 ◦C)–(−8 ◦C)
14 −9 −29 16 (−13 ◦C)–(−8 ◦C) 44 −39 17 8 (−13 ◦C)–(−8 ◦C)
15 −27 1 2 (−13 ◦C)–(−8 ◦C) 45 −32 3 17 (1 ◦C)–(6 ◦C)
16 4 14 17 (−5 ◦C)–(0 ◦C) 46 30 −4 25 (1 ◦C)–(6 ◦C)
17 −9 22 19 (−5 ◦C)–(0 ◦C) 47 23 28 6 (1 ◦C)–(6 ◦C)
18 −1 −26 22 (−5 ◦C)–(0 ◦C) 48 −22 5 24 (−13 ◦C)–(−8 ◦C)
19 34 20 18 (1 ◦C)–(6 ◦C) 49 21 −22 4 (−13 ◦C)–(−8 ◦C)
20 11 −15 24 (1 ◦C)–(6 ◦C) 50 18 28 25 (1 ◦C)–(6 ◦C)
21 −32 −32 12 (−13 ◦C)–(−8 ◦C) 51 9 16 13 (−5 ◦C)–(0 ◦C)
22 2 34 5 (−13 ◦C)–(−8 ◦C) 52 −5 −30 15 (1 ◦C)–(6 ◦C)
23 10 9 18 (1 ◦C)–(6 ◦C) 53 −9 −1 19 (−13 ◦C)–(−8 ◦C)
24 −24 −32 22 (−13 ◦C)–(−8 ◦C) 54 −29 30 7 (1 ◦C)–(6 ◦C)
25 −30 −18 12 (−5 ◦C)–(0 ◦C) 55 −38 −22 7 (−5 ◦C)–(0 ◦C)
26 9 −9 12 (−13 ◦C)–(−8 ◦C) 56 −16 −37 13 (−13 ◦C)–(−8 ◦C)
27 −18 28 11 (−13 ◦C)–(−8 ◦C) 57 6 −24 9 (1 ◦C)–(6 ◦C)
28 −33 21 6 (1 ◦C)–(6 ◦C) 58 17 1 7 (−13 ◦C)–(−8 ◦C)
29 16 −37 22 (−13 ◦C)–(−8 ◦C) 59 −37 40 11 (1 ◦C)–(6 ◦C)
30 −40 6 18 (−5 ◦C)–(0 ◦C) 60 −14 38 19 (1 ◦C)–(6 ◦C)

4.2. Example Solution and Results Analysis
4.2.1. Temperature Sensitivity Analysis

Fresh commodities have different sensitivity coefficients at different temperatures,
which leads to differences in the value loss. Using the example R108, the temperature
control cost and value loss under the temperature range (1 ◦C)–(6 ◦C), (−5 ◦C)–(0 ◦C) and
(−13 ◦C)–(−8 ◦C) were calculated. The results are shown in Figure 7.

Figure 7 shows that the temperature control cost and value loss both change with
temperature, but they are both paradoxical. When the temperature is at the left end of
the interval, the value loss is the smallest and the temperature control cost is the largest.
Conversely, when the temperature is the right endpoint of the interval, the commodity
is at a higher temperature. The loss is the largest and the temperature control cost is
the smallest. This indicates that under a constant external temperature, the value loss
gradually increases and the temperature control cost gradually decreases with increasing
temperature. The value loss and temperature control costs were different in the increase or
decrease during the temperature change. Based on the Pareto optimal principle [41], the
optimal temperature in the temperature control intervals (1 ◦C)–(6 ◦C), (−5 ◦C)–(0 ◦C) and
(−13 ◦C)–(8 ◦C) are 3 ◦C, −3 ◦C and −11 ◦C, respectively. When the temperature is at its
optimum, adjusting the temperature up or down does not result in an optimum.
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Figure 7. Fresh commodity value loss and temperature control paradox diagram.

4.2.2. Carbon Emissions Impact on GCVRPDD

To research the impact of carbon emission cost on the dynamic vehicle routing problem,
this paper uses the AH-NOA to solve the dynamic vehicle routing problem, considering
carbon emissions and not considering carbon emissions, respectively. The algorithm
parameters used are the same. The relevant parameters are C2 = 5.2 CNY/km and
fkw = 0.12 L/km. The algorithm was programmed using Matlab R2016a and implemented
running on Windows 10, 8 G and 2.80 GHz.

(1) Results and Analysis of the Initial Scheme

(a) Results of Initial Scheme

The AH-NOA was used to solve the vehicle path problem with and without consider-
ing carbon emissions. The initial distribution path is shown in Figure 8. Figure 8a shows
that eight vehicles were dispatched. Figure 8b shows that nine vehicles were dispatched.
There are some differences in the vehicle paths for the two distribution schemes, which
are mainly due to whether or not carbon costs are taken into account. The specific routes
for the two distribution schemes are shown in Tables 6 and 7, respectively. The stars in
Figure 8 represent distribution centers and the dots represent customer points.

Figure 8. Vehicle routing.
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Table 7. Initial route considering the carbon emission costs.

Vehicle Serial No. Pathway Temperature Control Interval

1 0−>45−>28−>59−>60−>54−>0 (1 ◦C)–(6 ◦C)
2 0−>3−>52−>32−>57−>41−>37−>0
3 0−>23−>50−>47−>39−>19−>2−>13−>46−>20−>38−>0
4 0−>33−>40−>18−>7−>1−>55−>25−>0 (−5 ◦C)–(0 ◦C)
5 0−>11−>16−>31−>51−>10−>17−>30−>0
6 0−>49−>14−>56−>24−>21−>6−>15−>8−>48−>53−>0 (−13 ◦C)–(−8 ◦C)
7 0−>43−>9−>29−>4−>5−>34−>12−>58−>0
8 0−>26−>36−>42−>44−>27−>22−>35−>0

(b) Results Comparison

Comparing Tables 7 and 8, it can be seen that there are significant differences in the
paths of the two schemes. There is a significant difference in the order of delivery customers.
The carbon emission cost, value loss and total cost have obvious changes, as shown in
Table 9. As can be seen from Table 9, the distribution scheme, considering the carbon
emission cost, is CNY 119 more in value loss than without considering. However, the
carbon emission cost decreased by 9.9%, while the transportation cost and total cost also
decreased by 9.7% and 10.1%, respectively. This is largely attributable that the distribution
scheme, considering carbon emission costs, needs to provide priority delivery to customers
with larger loads. Although this causes an increase in value loss, it achieves a lower
carbon emission cost and total cost during the shelf life of the commodity. Therefore,
distribution schemes considering the carbon emission costs must reduce carbon emissions
while minimizing the total cost.

Table 8. Initial route without considering the carbon emission costs.

Vehicle Serial No. Pathway Temperature Control Interval

1 0−>38−>20−>3−>52−>46−>23−>0 (1 ◦C)–(6 ◦C)
2 0−>2−>13−>37−>41−>57−>0
3 0−>39−>19−>47−>50−>60−>0
4 0−>32−>45−>28−>59−>54−>0
5 0−>7−>1−>25−>55−>30−>0 (−5 ◦C)–(0 ◦C)
6 0−>11−>16−>31−>51−>10−>17−>0
7 0−>33−>40−>18−>0
8 0−>8−>15−>6−>21−>24−>56−>14−>12−>0 (−13 ◦C)–(−8 ◦C)
9 0−>36−>43−>29−>9−>49−>4−>0

Table 9. Cost comparison of two distribution schemes.

Distribution Scheme VN CEC VL TrC TC

Considering the carbon emission costs 8 599 318 370 2535
Without considering the carbon emission costs 9 665 237 410 2821

(2) Adjustment and Comparison Analysis of Pathway under Real-time Information
During the vehicle operation, the dispatch center receives information on all dynamic

events, as shown in Table 10. To simplify the calculation, it is assumed that dynamic events
only occur within a certain interval.

Dynamic events occur at [8:45, 9:00]. According to the dynamic adjustment strategy,
the current dynamic event is adjusted in the next time slice based on the rolling time
domain division. Thus, the dynamic event handling time slice is at [9:15, 9:30]. Based on
the updated demand information, the AH-NOA is used to solve the GCVRPDD separately.
The distribution route scheme is shown in Figure 9. As can be seen in Figure 9, vehicles
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complete their tasks according to the new route arrangement. The specific routes are shown
in Table 11.

Table 10. Dynamic event information.

No. Customer No. X/km Y/km Dynamic Time Dynamic Event
Temperature Control

Interval

1 61 27 −2 8:46 New customer point
demand 19 kg (1 ◦C)–(6 ◦C)

2 62 −22 −15 8:49 New customer point
demand 18 kg (−13 ◦C)–(−8 ◦C)

3 63 −22 −14 8:50 New customer point
demand 10 kg (−13 ◦C)–(−8 ◦C)

4 50 18 28 8:52 Demand reduced by 10 kg (1 ◦C)–(6 ◦C)
5 28 −33 21 8:58 Demand increased by 5 kg (1 ◦C)–(6 ◦C)

Figure 9. Distribution paths after dynamic events.

Table 11. Specific distribution routes after change under the two distribution schemes.

Distribution
Scheme

Vehicle Serial No. Pathway
Temperature Control

Interval

Considering the
carbon emission

costs

1 0−>28−>60−>59−>54−>0 (1 ◦C)–(6 ◦C)
2 0−>3−>52−>32−>57−>20−>38−>0

3 0−>23−>50−>47−>39−>41−>37−>61−>46−>13
−>2−>19−>0

6 0−>49−>14−>21−>6−>63−>24−>56−>0 (−13 ◦C)–(−8 ◦C)
7 0−>43−>9−>29−>4−>0
8 0−>26−>36−>42−>44−>15−>8−>48−>62−>0
9 0−>35−>34−>22−>58−>12−>53−>27−>0
10 0−>5−>0

Without considering
the carbon emission

costs

1 0−>38−>20−>3−>52−>46−>61−>0 (1 ◦C)–(6 ◦C)
2 0−>2−>13−>37−>41−>57−>0
3 0−>39−>19−>47−>0
4 0−>32−>45−>28−>50−>23−>0
13 0−>60−>54−>59−>0
8 0−>8−>15−>6−>63−>21−>0 (−13 ◦C)–(−8 ◦C)
9 0−>36−>43−>29−>44−>0
10 0−>34−>35−>26−>49−>4−>0
11 0−>22−>27−>48−>42−>53−>12−>0
12 0−>5−>58−>62−>24−>56−>14−>9−>0
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Comparing Figure 9a,b, it can be seen that the two distribution schemes are completely
different. There are also significant differences in the costs of each distribution. This is
shown in Table 12. It can be seen from Table 12 that the distribution scheme considering
carbon emissions increased in value loss by CNY 105 and decreased the transportation cost
and total cost by 6.4% and CNY 36, respectively. Although there is a significant value loss,
this loss is still within the goods freshness and the distribution scheme considering carbon
emissions is 6.3% lower in carbon emissions, which is good for the positive corporate social
image and corporate future development. The examples used are universally applicable
because they are randomly generated based on actual situations. The above comparison
can demonstrate that considering carbon emissions in the dynamic vehicle path can reduce
carbon emissions and total cost. The AH-NOA can effectively solve the GCVRPDD. By
comparing the initial route and adjusted costs of the two schemes, it was found that the
distribution scheme considering carbon emissions had a greater change in the number of
vehicles, carbon emission costs, transport costs and total costs. This is shown in Table 13.

Table 12. Cost comparison of two distribution schemes after dynamic events.

Distribution Scheme VN CEC VL TrC TC

Considering the carbon emission costs 10 667 320 412 2823
Without considering the carbon emission costs 13 712 215 440 2859

Table 13. The extent of cost changes before and after distribution program adjustments.

Distribution Scheme
Increased Number

of Vehicles
Increased CEC Increased TrC Increased TC

Considering the carbon emission costs 2 68 42 288
Without considering the carbon emission costs 1 47 30 38

5. Conclusions

This paper researches GCVRPDD based on the AH-NOA. Firstly, through the analysis
of the problem, using virtual customer points to transform dynamic vehicle paths into
SVRP based on the rolling time domain, and construct a two-stage GCVRPDD model with
the goals of minimizing vehicle dispatch costs, transport costs, temperature control costs,
value loss and carbon emissions costs. Secondly, the AH-NOA is designed according to
the model characteristics and improvements are made to reduce its disadvantages. The
CW algorithm is added to initialize partial solutions to ensure population diversity. Better
nutcrackers are selected to ensure the overall quality of the population by generating
new nutcrackers. The decay function is introduced to improve the convergence speed
of the algorithm and to avoid falling into a local optimum. The algorithm is compared
with the original NOA to verify the effectiveness and reasonableness of the algorithm
improvements. According to the algorithm and the model, it found the optimal temperature
in three different temperature control intervals. Finally, the GCVRPDD is solved based
on two different distribution schemes. The results show that the distribution scheme
considering carbon emission costs, while higher in value loss, is lower in carbon emissions
and total costs and has a significantly fewer number of vehicles. Considering the carbon
emission cost in DVRP can lead to a significant increase in carbon emissions, transport
costs and total costs compared to SVRP. This is because the quality of fresh agricultural
products declines as the vehicle time in transit increases. To reduce the value loss of fresh
agricultural products, companies need to generate more carbon emissions to meet customer
demand, resulting in increased carbon emissions costs, transportation costs and total costs.
However, with the emergence of diversity in consumer demand, it is more realistic to
consider carbon emissions in dynamic delivery. At the same time, the AH-NOA adds a
new solution method to dynamic vehicle path optimization.
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Future research will focus on the effects of distribution vehicle temperature dynamics,
customer time windows, customer satisfaction and other factors to make the problem
more realistic.
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