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Featured Application: An extension of the DIVA model to include EEG is presented and ini-

tially validated using group-level statistics. The DIVA_EEG expands the number of scenarios in

which vocal and speech behaviors can be assessed and has potential applications for personalized

model-driven interventions.

Abstract: The neurocomputational model ‘Directions into Velocities of Articulators’ (DIVA) was
developed to account for various aspects of normal and disordered speech production and acquisition.
The neural substrates of DIVA were established through functional magnetic resonance imaging
(fMRI), providing physiological validation of the model. This study introduces DIVA_EEG an
extension of DIVA that utilizes electroencephalography (EEG) to leverage the high temporal resolution
and broad availability of EEG over fMRI. For the development of DIVA_EEG, EEG-like signals were
derived from original equations describing the activity of the different DIVA maps. Synthetic EEG
associated with the utterance of syllables was generated when both unperturbed and perturbed
auditory feedback (first formant perturbations) were simulated. The cortical activation maps derived
from synthetic EEG closely resembled those of the original DIVA model. To validate DIVA_EEG, the
EEG of individuals with typical voices (N = 30) was acquired during an altered auditory feedback
paradigm. The resulting empirical brain activity maps significantly overlapped with those predicted
by DIVA_EEG. In conjunction with other recent model extensions, DIVA_EEG lays the foundations
for constructing a complete neurocomputational framework to tackle vocal and speech disorders,
which can guide model-driven personalized interventions.

Keywords: auditory feedback; DIVA model; EEG; feedback perturbation; vocal compensation

1. Introduction

Effective oral communication is a basic and valued human daily activity [1,2]. A
key aspect of this function is the sensory-motor integration for the control of speech
production, which has been shown to be critical for speech acquisition [3] and that is
affected in speech and voice disorders including vocal hyperfunction [4,5], stuttering and
other disfluencies [6,7], as well as in neurodegenerative diseases (Parkinson’s disease) [8,9].

Appl. Sci. 2023, 13, 7512. https://doi.org/10.3390/app13137512 https://www.mdpi.com/journal/applsci1
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Studies on sensory-motor integration have traditionally used the altered auditory
feedback paradigm [3], i.e., vocal compensations elicited by perturbations in the intensity,
frequency, and temporality of the auditory feedback of one’s own voice.

Auditory perturbations have been studied via two approaches: (1) some trials are
perturbed randomly, generating a reflexive compensatory response on the part of the
participant, and (2) the perturbation is gradual, inducing the adaptation to the perturbation
response. Both methods consist of recording the participant’s voice through a microphone,
artificially altering speech formants or fundamental frequency, and playing back the al-
tered vocalization to the participant in near real time through headphones [10]. Only a
few studies (e.g., [11–19]) have been carried out regarding compensation in response to
formant perturbation.

Research on speech production and acquisition has proposed several models of speech
motor control [20]. For example, the Directions into Velocities of Articulators (DIVA) model
has been developed using control theory concepts and anatomo-physiological information
of brain networks. This model represents a unified neurocomputational framework that
accounts for different aspects of speech production, including compensatory behaviors due
to sensory feedback perturbations [21,22]. Following predictive coding [3], the DIVA model
uses sensory feedback information to track and correct transient deviations from the desired
vocalization. This is achieved by generating error signals that modify previously learned
speech-motor programs and reconfiguring the set of motor commands associated with the
activation of the articulatory and laryngeal musculature. Therefore, the DIVA model has
laid the foundation for a great deal of research regarding the role of auditory feedback on
speech production and acquisition in both normal-hearing and hearing-impaired popu-
lations [23–28]. Furthermore, it has become a valuable tool for assessing the etiology of
stuttering, apraxia, and other speech pathologies [3,29].

The theoretical bases of the DIVA model are supported by empirical work demon-
strating increased activity of the prefrontal, Rolandic and superior temporal cortices in
response to auditory feedback perturbations, which has been observed using different
functional modalities [30–35]. Nevertheless, the match between DIVA model predictions
and experimentally acquired brain activity has been exclusively tested using functional
magnetic resonance imaging (fMRI) [3,18,36]. It remains to be seen if a similar match is
observed when brain activity is assessed through the electroencephalogram (EEG). It may
be advantageous to the field of speech production to verify the DIVA model with EEG,
as this neuroimaging modality is a direct measure of the electrical activity of the brain
and allows for the representation of whole-brain oscillatory dynamics with high temporal
resolution [37,38]. Furthermore, EEG is a portable, low-cost technology with relatively
broad availability. Considering the large number of EEG studies assessing vocal and speech
behaviors in disturbed acoustic environments [39–41], an extension of the DIVA model to
EEG may contribute to disentangling key neural mechanisms of sensorimotor integration
for speech-motor control.

Therefore, this study aims to investigate whether the brain activations intrinsic to
DIVA match the brain activity maps estimated from EEG. To achieve this goal, the dynamics
of the different DIVA maps (i.e., sets of brain nodes that collectively represent a particular
type of information) [3] were obtained in three simulated conditions: (1) undisturbed
auditory feedback; (2) auditory feedback with up-shifted first formant (F1); and (3) auditory
feedback with down-shifted F1. The DIVA map activations corresponding to each condition
were the input of a generative EEG model, which allowed for the construction of EEG
scalp distributions. This extension of the DIVA model will be referred to as DIVA_EEG.
Using models for solving the inverse problem in EEG, the brain cortical generators of the
simulated EEG were estimated. These brain activation maps were used as a template in the
experimental phase of the study, in which the event-related potentials (ERPs) elicited by
each of the conditions were obtained. The cortical generators of the ERPs were estimated
using source localization methods, and empirical cortical activation maps were compared
with the EEG theoretical templates.
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1.1. DIVA Model

DIVA is a neurocomputational model used to simulate speech production and acquisi-
tion and it is initially designed for the English language. Each module of DIVA corresponds
to a brain region activated during speech programing and production (e.g., premotor
cortex, motor cortex, auditory and somatosensory cortex, cerebellum). The DIVA model is
constructed as an adaptive neural network that allows for the simulation of the movement
of the vocal articulators (lips, tongue, larynx, palate, and mandible) to generate speech. It
also contains both a feedforward and a feedback control mechanism [3]. Figure 1 shows
the structure of the model.

Figure 1. DIVA model scheme. vMC, ventral motor cortex; vPMC, ventral premotor cortex; vSC,
ventral somatosensory cortex; pAC, posterior auditory cortex.

In the model, the production of a phoneme or syllable starts with the activation of the
Speech Sound Map. Then, this information is sent to the Articulatory Velocity and Positions
Maps located in the motor cortex, which control the movement of the speech articulators
(vocal tract). The Auditory State Map and the Somatosensory State Map provide auditory
and sensory information about how phonemes or syllables are produced. When a mismatch
between the desired and actual speech production is detected, both the Auditory Error
map and the Somatosensory Error Map are activated and generate a signal to correct the
vocalization [3,18,36].

1.2. Electroencephalography (EEG)

EEG is a useful tool in clinical and research for assessing neurodevelopmental and
behavioral disorders, state of consciousness, as well as in neurofeedback applications,
brain–computer interfaces, among others [42–44]. The main advantage of EEG lies in
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its non-invasive approach for measuring the electrical activity collectively produced by
large groups of neurons in the brain during information processing, with resolution in the
order of milliseconds. Due to the macroscopic character of this activity and the variety
of possible neural configurations responsible for a particular EEG scalp topography, it
is impossible to univocally determine the EEG brain generators [45]. There are physical-
mathematical algorithms that attempt to find a reasonable solution to this issue, termed the
EEG inverse problem. These methods aim to estimate the brain areas responsible of the
electrical potential distributions measured on the scalp [46–48].

Considering that measurements (potentials on the scalp) are only possible on a finite set
of sensors and the geometric and electromagnetic characteristics of the conductive volume
(head) in a discrete set of points, this relationship can be written as Equation (1), [47,48]:

Φ = K · J (1)

in which K is the matrix that expresses the linear relationship between the electric potentials
on the scalp (Φ) and the average primary current density (J) at the intracerebral points.

2. Materials and Methods

The construction and the subsequent validation of DIVA_EEG consisted of two phases:
DIVA model Simulation and Experimental Phase, which are illustrated in Figure 2 and
described in the following subsections.

Figure 2. Block diagram illustrating the methodology proposed for the construction of DIVA_EEG.
Both the DIVA model Simulation and the Experimental Phase of the study are presented.

2.1. DIVA Model Simulation

In the present study, the main objective was to model the spatio-temporal dynamics of
DIVA to obtain a template of the cortical activation associated with the DIVA observed via
EEG. The outcome is the generation of EEG topographical maps that represent the activation
of the different DIVA maps in each experimental condition (undisturbed, up-disturbed and
down-disturbed auditory feedback).

2.1.1. Simulated Speech

We chose the phoneme /e/ (defined in the model) as this vowel can readily be
transformed in sounds to resemble the phoneme /æ/ (by increasing the F1 frequency) or
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the phoneme /I/ (by decreasing the F1 frequency). The perturbation size (F1 change in Hz)
was 350 Hz. Three simulations were carried out: undisturbed, down-shift, and up-shift,
under experiment type: ‘Reflexive responses’. The duration of the simulation was 550 ms,
and the disturbance was applied throughout the simulation.

2.1.2. Generation and Source Localization of Synthetic EEG

During simulation, the output of each DIVA node is associated with the computational
load (denoted L in [3]), a term that represents the instantaneous neural activity of the
node. These neural activities served as input for the EEG generative model. Therefore,
point sources for the DIVA-EGG generation were seeded in brain locations that match
the different nodes in the original DIVA model [3]. Table S1 shows the brain coordinates
for the centroids of the seeds Traces of the synthetic EEG are displayed in Figure S1. A
full-brain activity pattern was then constructed by treating the electrical activity of the seeds
as Gaussian activity sources (J_DIVA) that added-up together at each brain location. The
standard deviation of the normal distribution was 2. Voxels with amplitudes lower than
0.01 times the maximum amplitude were deemed inactive. The synthetic EEG (DIVA_EEG)
was obtained by multiplying the simulated brain activity (J_DIVA) and the lead field K.
The lead field K was computed by using a head model of three concentric, piece-wise
homogeneous, and isotropic spheres [49]. Voltages (DIVA_EEG) were obtained in 64-scalp
locations (a 64-electrode layout that followed the 10/20 international system for electrode
placement). The DIVA-EEG is expressed by the following equation:

DIVA_EEG = K · J_DIVA, (2)

where the matrix DIVA_EEG has one row for each EEG sensor and one column for each
time (size Nsen × Nt), K has the number of DIVA model components as columns and is of
size Nsen × Nc, and J_DIVA contains the time series of the different seeds of the model and
is of (size Nc × Nt).

Brain source localizations were estimated using the standardized Low-Resolution
Electromagnetic Tomography method (sLORETA, [50]; for a review, see [51]). sLORETA
is based on an appropriately standardized version of the minimum norm current density
estimation which overcomes problems intrinsic to the estimation of deep sources of EEG.

2.2. Experimental Phase
2.2.1. Participants

Thirty individuals with typical voices were enrolled in this study (mean age 24 ± 3.8 years).
This sample size is larger than the minimum sample necessary to conduct F-tests (repeated
measure ANOVA) sensitive to large effect sizes with a statistical power of 0.8. Furthermore,
the sample is sufficiently large to conduct two-tailed t-tests, able to sense large effect
sizes with a statistical power of 0.8. Participants were recruited if they (1) were right-
handed, (2) had no history of psychological, neurological, or speech-language disorders,
(3) did not have prior training in singing, and (4) had normal binaural hearing (hearing
threshold ≤ 20 dB HL at all octave frequencies between 250 and 8000 Hz). Before the
experimental session, participants signed a written consent form, which was approved by
the Research and Ethics Committee of the Faculty of Medicine, Universidad de Valparaíso,
Chile (assessment code 52015), in compliance with the national guidelines for research with
human subjects and the Declaration of Helsinki.

2.2.2. Experimental Setup

This work reports reflexive responses in controls tested in an altered auditory feedback
paradigm such as that utilized in [18].

Participants were seated in a comfortable chair inside a double-walled, sound-attenuating
booth meeting the ANSI S3.1-1999 standard. A microphone (B&K 4961) was positioned
approximately 10 cm from the participants’ mouth at a 45-degree offset in the axial direction.
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The acoustic signal was calibrated to physical units of dB SPL (dB re 20 μPa) using a Larson
Davis calibrator (model CAL200, Depew, NY, USA).

Speech was sampled at 48 kHz using a MOTU Microbook IIc sound card and the
CueMix FX software. Participants’ voices were played back to them over closed-back,
over-the-ear AKG K240 Studio Headphones, with a mean latency of ~18 ms. This latency is
lower than that at which feedback delays are perceived (50 ms) [52]. The speech level of
the participant determined the amplitude of the speech playback.

Participants were instructed to read a series of texts presented on a screen (white font
on a black background) positioned 70 cm away and adjusted in the vertical axes to the
eye level of the participants at a comfortable conversational pitch and loudness. The text
series comprised repetitions of the Spanish monosyllabic words: /mes/, /pep/, and /ten/.
Words were presented for 2.5 s, at a presentation rate of 0.25 Hz (one word every 4 s to
prevent the participants from developing a constant rhythm and the automatic character
of their production). A total of 648 stimuli were presented, distributed in 6 blocks of
108 trials. In each block, stimuli were distributed in a random order. Participants were
asked to sustain the vocalization of the vowel until the end of each word’s presentation.
No additional instructions were provided.

A 10-trial training session was conducted prior to the start of the experiment to ensure
that participants were familiar with the experimental setup, familiar with stimulus timing,
and comfortable with sustaining vocalizations.

2.2.3. Feedback Perturbation

To apply the auditory perturbations, we used Audapter [29,53], a publicly available
software for tracking and shifting the frequency of F1 in near real time. Both stimulus
presentation and data collection were controlled by a custom MATLAB (R2022b) script
(Mathworks, Natick, MA, USA) (Figure 3).

Figure 3. Schematic of the apparatus for applying formant perturbations. Participants produced
monosyllabic words containing the vowel /e/ while their auditory feedback was perturbed toward
the participant-specific vowel /a/ (e.g., participants produced /mes/ but heard a word that sounded
like /mas/).

Following previous studies [18], the frequency of F1 for the auditory feedback was
increased 30 percentage points relative to the produced speech signal on 1/6 of the trials
(up-shift conditions: 108 trials), decreased 30 percentage points on another 1/6 of the trials
(down-shift condition: 108 trial), and unaltered on the remaining 2/3 of the trials (432).
After the transformation, the pronunciation of the phoneme /e/ approached either the
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pronunciation of the phoneme /a/ in the words /mas/, /pap/, and /tan/ (up-shifted F1),
or the pronunciation of the phoneme /i/ in the words /mis/, /pip/, and /tin/ (down-
shifted F1) [54]. The perturbation values were different from that used in the DIVA model
because the vowel triangle of the vowels in Spanish differ from that of the triangle of
vowels in English)

2.2.4. Processing of Acoustic Signals

Vowel onset and offset were first automatically identified with a Linear Predictive
Coding model to find the frequency of F1 [55]. The compensation was evaluated in the time
window between 120 and 500 ms after the vowel onset. This time window corresponds with
the time at which the beginning of vocal compensations occurs [9,17,18,56,57]. Previous
studies have shown that corrective responses begin between 100 and 200 milliseconds
(usually 150 ms) after the onset of the perturbations and increase at least for the following
400 ms [11,15,19].

The compensatory response for each subject was calculated as follows: First, for each
stimulus word the average F1 trajectory is calculated for all undisturbed trials (baseline
trials). Second, the trajectory of F1 from each perturbed trial was normalized to the control
condition, by subtracting the baseline from the perturbed trials. Compensatory response
magnitude was calculated for each subject as the average F1 value within 120–500 ms after
vowel onset [17,57].

2.2.5. EEG Acquisition and Analysis

EEG was recorded using the ActiveTwo BioSemi system (BioSemi, Amsterdam, Nether-
lands) with ActiView acquisition software (BioSemi) with 64 scalp electrodes (10–20 elec-
trode placement). External electrodes were placed in periocular locations to record blinks
and eye movements. Analog filters were set at 0.03 and 100 Hz. During the analog/digital
conversion, signals were sampled at 4096 Hz, with 24 bits of resolution. The EEG signal was
pre-processed offline using standard procedures implemented in Brain Vision Analyzer
2.0® (Brain Products GmbH, Munich, Germany). Recordings were re-referenced to the
average of all channels and band-pass filtered between 0.1 and 40 Hz using a zero-phase
shift Butterworth filter of order 8. Data were downsampled to 512 Hz. Independent Com-
ponent Analysis (ICA) was used for correcting EEG artifacts induced by blinking and eye
movements (following [54]). Data were segmented from −200 to 500 ms around the onset
of vocalization. Semiautomatic criteria implemented in Brain Vision Analyzer were used
for rejecting noisy epochs. ERPs were obtained by averaging baseline-corrected epochs.
N1 and P2 peaks were identified using semiautomatic procedures. Electrodes in occipital,
parietal locations and in the midline were pooled (Iz, O1, O2, Oz, P10, P7, P8, P9, PO7,
PO8), and N1 and P2 amplitudes were computed as the average voltage in a two-point
window around the corresponding peak amplitude. The amplitude of the N1-P2 complex
was obtained and compared between conditions (unperturbed feedback, up-shifted pitch,
and down-shifted pitch) using a repeated measure ANOVA (p ≤ 0.05).

2.2.6. ERP Source Localization

Brain generators of the N1-P2 complex were estimated using the standardized Low-
Resolution Electromagnetic Tomography Analysis (sLORETA). For this, the 10–20 electrode
layout was registered onto the scalp MNI152 coordinates. A signal-to-noise ratio of 1
was chosen for the regularization method used to compute the EEG transformation matrix
(forward operator for the inverse solution problem). The standardized current density maps
were obtained using a head model of three concentric spheres in a predefined source space
of 6242 voxels (voxel size of 5 × 5 × 5 mm) of a reference brain (MNI 305, Brain Imaging
Centre, Montreal Neurologic Institute) [58,59]. A brain segmentation of 82 anatomic
compartments (cortical areas) was implemented using the automated anatomical labeling
(AAL90) atlas [60].
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The cortical activations (standardized current density) maps were estimated for each
scalp voltage distribution in the time windows between −5 ms relative to the peak N1
amplitude and +5 ms relative to the peak P2 amplitude. Cortical activations maps obtained
for the different scalp distributions were averaged. Brain cortical activity (voxel-wise
activity) of the different conditions were paired-wise compared (undisturbed feedback
vs. up-shifted formant, undisturbed feedback vs. down-shifted formant, and up-shifted
formant vs. down-shifted formant) using two tailed t-test (α = 0.05). Results were corrected
for multiple comparisons using non-parametric permutation tests (5000 randomizations)
as implemented in Loreta_Key [61,62].

2.2.7. Match between DIVA Related (Simulated) and ERP (Real) Cortical Activation Maps

Binarized representations of the cortical activation maps associated with feedback
perturbations (maps that resulted from the statistical analyses) were obtained for both the
model-driven synthetic EEG and the N1-P2 complex of the ERP (real EEG). The binarized
maps were overlapped. The match between the theoretical (predicted by the model) and
real (obtained from the experimental data) cortical maps was computed as a function
of the number of voxels belonging to a particular AAL region that were active during
the vocalization.

3. Results

3.1. DIVA Model Simulation

The activation of the cortical maps of the DIVA model during the vocalization of the
phoneme /e/ with undisturbed auditory feedback is illustrated in Figure 4. DIVA maps
provided by the model activated at different times with respect to the onset of the simulated
vocalization. The first maps were activated at t = 0 (onset of the vocalization) and were
the motivation, initiation, speech, somatosensory target (somato-t) and auditory target
(auditory-t) maps (Figure 4A). While the activity of the motivation map reduced to 0 directly
following the vocalization onset, the activity of the initiation map remained constant (value
of 1) throughout the vocalization. The articulator map (articulator) activated 10 ms after
the onset of the vocalization. This was followed by the activation of the somatosensory
state map (somato-s) (25 ms), the somatosensory error (somato-e) (30 ms), the feedback
map (35 ms), and the auditory state (auditory-s) (55 ms after the vocalization onset). As the
auditory feedback was not disturbed, the auditory error map was not activated.

Cortical activations feed into the EEG generative model, which resulted in EEG scalp
distributions that characterized the different phases (stages) of the cortical dynamics (Figure 4B).
Current density maps in the cerebral cortex were estimated from the EEG scalp distributions
using sLORETA (Figure 4B). The EEG sources estimated with the inverse solution method
closely resembled the brain distribution of DIVA maps (cortical seeds used for the EEG
generation). Auditory feedback perturbations (both down- and up shift in F1) were reflected
in the activity profile of the DIVA model (Figure 5A). While the activity changes of the
Auditory state map clearly followed the direction of the perturbations, Somatosensory
state maps changed minimally. Evident increases in the activity of the Feedback map were
obtained in the presence of auditory feedback perturbation. Noteworthy, the feedback
perturbation triggered the activation of both the Auditory error map and the Somatosensory
error map, which are typically suppressed in undisturbed conditions.

Due to the auditory feedback perturbation, differences were observed in both the
EEG scalp distributions and the activity of the EEG generators estimated with sLORETA
(Figure 5B). The shifts in F1 resulted in increased bilateral activation of frontal, temporal and
parietal cortical areas (Figure 5C, left and middle panels), including the orbital, opercular
and triangular parts of the inferior frontal gyrus, the middle and superior frontal gyri,
the Rolandic operculum, the Heschl gyrus, the temporal pole, as well as the middle and
superior temporal gyri (Table S2, Supplementary Materials). The downward and upward
shifts in F1, although equal in magnitude, resulted in different EEG source-space maps
(Figure 5C, right panel). This asymmetry was reflected as an increase in the cortical activity

8



Appl. Sci. 2023, 13, 7512

elicited by down-shifted feedback perturbations in comparison with that induced by up-
shifted perturbations. The differences in activity were mainly observed in frontal and
parietal brain areas (bilaterally), including the primary somatosensory and motor cortices
(Table S2, Supplementary Materials).

Figure 4. Simulations of the brain cortical activity associated with the different DIVA maps during
the vocalization of the phoneme /e/ with undisturbed feedback: (A) Time course of activity of DIVA
cortical maps. t: target, s: state, e: error (B) Topographic representations of cortical activity for time
t = 0, 10, 25, 250, 510, 550 ms relative to the onset of the vocalization. top panel: cortical seeds. middle
panel: simulated EEG. bottom panel: source space representation of the synthetic EEG.
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Figure 5. Simulations of the brain cortical activity associated with the different DIVA maps elicited
by auditory feedback perturbations (F1 shifts) during the vocalization of the phoneme /e/. (A) Time
course of activity of the DIVA cortical maps whose activity varied in response to feedback perturba-
tions. Activities in undisturbed, downshifted, and upshifted conditions are presented. The shaded
area represents the N1-P2 interval of the ERP. t: target, s: state, e: error (B) Scalp topography and
source space representation of the synthetic EEG estimated in the time interval that corresponds to the
generation of the N1-P2 complex. (C) Synthetic EEG (N1-P2 interval) contrasted across conditions.

3.2. Behavioral and Physiological Data

During the formant-shift experiment, F1 varied between conditions (F(29,2) = 23.052,
p < 0.001), as participants compensated for auditory feedback perturbations (Figure 6A,
right panel). The F1 deviations counteracted the perturbational formant-shifts, such that F1
compensations were in the opposite direction to the perturbations (Figure 6A, left panel).
The F1 of both types of compensations significantly differed from that of vocalizations
elicited during unperturbed feedback (Holm post hoc test, p < 0.0.5).
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Figure 6. Acoustic and electrophysiological parameters describing the monitoring of one’s own
vocalization. (A) Examples of vocal compensations elicited by F1 perturbations in the auditory
feedback. In the left panel, an oscillogram representative of the phoneme /mes/ is illustrated.
Likewise, the direction of the perturbation is indicated at the top of each chart. The mean F1 values
of vocalizations produced in unperturbed acoustic conditions and those of vocal compensations
to perturbed auditory feedback are presented in the right panel, along with the corresponding
sample distributions. (B) Event-related potential (ERP) elicited by actively monitoring the auditory
feedback of one’s own vocalizations. In the left panel, the grand average of the ERP elicited by
both unperturbed and F1-shifted auditory feedback are presented. The shaded area indicates the
N1-P2 complex. Scalp topography of the N1-P2 complex is illustrated in the middle panel. The
mean amplitude of the N1-P2 complex elicited by unperturbed and perturbed auditory feedback are
presented in the right panel, along with the corresponding sample distribution. (C) Current density
maps illustrating the brain generators of the N1-P2 complex in the different conditions (unperturbed
and perturbated auditory feedback). (D) Differences in the cortical activity obtained in response to
unperturbed and perturbated auditory feedbacks. The difference between the current density maps
elicited by F1 perturbations of equal magnitude and opposite directions is presented in the right panel.
(E) Cortical sources of the N1-P2 complex elicited in response to F1 perturbations in the auditory
feedback of one’s own vocalizations that are predicted by the DIVA model. They are illustrated both
areas and voxels for which the activity predicted by the model overlapped that estimated from the
real EEG. Statistically significant differences between groups are represented by *.
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F1 perturbation induced changes in the cortical activity associated with monitoring
the sensory feedback of one’s own voice, which was reflected in the N1-P2 amplitude of
the ERP obtained across conditions (F(29,2) = 29.047, p < 0.001) and the changes in ERP
scalp topography (Figure 6B). The N1-P2 amplitude elicited in response to both upward
and downward perturbations was higher than that obtained when auditory feedback was
unperturbed (Holm post hoc test, p < 0.001). The N1-P2 amplitude did not differ when F1
was upward and downward perturbed (Holm post hoc test, p = 0.36).

The cortical source of the ERP associated with monitoring of one’s own voices were
estimated in large portions of the frontal, temporal, and parietal lobes (Figure 6C). It is
worth noting that the activity of the N1-P2 generators significantly varied in response to
F1 perturbations (t-test, 5000 randomizations) (Figure 6D). Downshifted F1 perturbations
induced right lateralized activation of areas including the opercular, triangular and orbital
parts of the inferior frontal gyrus, the Heschl gyrus (primary auditory cortex), the temporal
pole, the middle and inferior temporal gyri, the Rolandic Operculum (including the primary
somatosensory and motor cortices), the lingual gyrus (Figure 6D, left panel) and several
sensory association cortical regions (Table S3, Supplementary Materials). Upshifted F1
perturbations resulted in a more diffuse cortical activation (Figure 6D, middle panel).
Nevertheless, the cortical activations elicited by downward and upward shifts in F1 were
not statistically significantly different (t-test, 5000 randomizations) (Figure 6D, right panel).
Results for uncorrected comparisons are presented in Table S5, Supplementary Materials.

3.3. Match between DIVA Simulations and Real EEG

As upshifted and downshifted F1 perturbations did not result in statistically different
cortical activations, current density maps elicited by both types of auditory feedback
perturbations were merged into a single representation. This was carried out separately
for activations derived from DIVA simulations (Figure 5C) and real EEG (Figure 6D),
respectively. Both representations of cortical activations were binarized and contrasted to
assess if cortical activity derived from DIVA simulations predicted the EEG source space of
the ERP elicited by auditory feedback perturbations.

A match between the predicted and real cortical activations was obtained. This was
reflected at the level of brain areas (Figure 6E left panel). Overlapping regions included
the opercular part of the right inferior frontal gyrus, the Rolandic operculum (bilaterally),
the temporal pole (bilaterally), the Heshl gyrus (bilaterally), the superior temporal gyrus
(bilaterally), the left middle temporal gyrus, the supramarginal gyrus (bilaterally), the
parietal superior gyrus (bilaterally), as well as limbic areas such as the hippocampus
(bilaterally) and the insula (bilaterally) (Table 1). Overlapping was also obtained at the
voxel level (Figure 6E, right panel) in frontal, temporal, parietal and limbic areas mentioned
above (Table S4, Supplementary Materials).

Table 1. Areas for which DIVA model predictions matches experimentally acquired EEG.

Brain Lobe AAL Region Hemisphere

Frontal
Precentral (bilateral)

Frontal_Inf_Oper (right)
Rolandic_Oper (bilateral)

Limbic

Insula (bilateral)
Cingulum_Mid (bilateral)
Cingulum_Post (right)
Hippocampus (left)

ParaHippocampal (bilateral)

Temporal

Heschl (bilateral)
Temporal_Sup (bilateral)

Temporal_Pole_Sup (bilateral)
Temporal_Mid (bilateral)

Temporal_Pole_Mid (left)
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Table 1. Cont.

Brain Lobe AAL Region Hemisphere

Parietal

Postcentral (bilateral)
Parietal_Sup (bilateral)
Parietal_Inf (right)

SupraMarginal (bilateral)
Paracentral (right)

Occipital Lingual (bilateral)
Fusiform (bilateral)

4. Discussion

In this study, an extension of the DIVA model to EEG, referred to as DIVA_EEG,
is presented. Neural activity of the DIVA maps associated with the vocal production
and the monitoring of one’s own voice were fed into generative models of EEG. The
scalp topographies of the EEG obtained in response to auditory feedback perturbations
were simulated (Figures 4 and 5). Brain sources of the synthetic EEG were estimated
and compared with those of the ERP (real EEG) obtained when conducting the altered
auditory feedback paradigm in healthy participants (Figure 6). At the region level, a
91.5% overlapping was obtained between the model-predicted cortical activity for the
control of speech production and that estimated from the experimentally acquired EEG.
The overlapping between the real and predicted representations of brain activity was of
57.6% at the voxel level. Noteworthy, all the seed regions used for the EEG generative
model were represented in the brain activity maps estimated from real EEG.

4.1. DIVA_EEG

Other modifications of the DIVA model preceded the development of DIVA_EEG.
For instance, DIVA has been extended to incorporate physiologically based laryngeal
motor control [63] or simplified for assessing the relative contribution of feedback and
feedforward control mechanisms to sensorimotor adaptation [64]. Furthermore, DIVA
has been translated to open-source codes, thereby facilitating their integration with freely
available machine learning tools [65]. The DIVA environment, which also comprises the
gradient order DIVA (GODIVA) for the analysis of speech sequencing [66], is now enriched
with a new neuroimaging modality (EEG).

Several aspects need to be considered when interpreting the synthetic EEG that re-
sulted from the activations of the different DIVA maps. First, DIVA_EEG comprise anatom-
ical priors since the locations of seeds for the EEG generation are the same as for the
nodes in the original DIVA model [3], which in turn were obtained from fMRI feedback
perturbations protocols [18,21]. Noteworthy, since brain activity reflected in the EEG is
mainly restricted to the cerebral cortex [18,36], DIVA_EEG does not include subcortical
regions, which are already considered in DIVA. Second, the brain activity of DIVA_EEG
seeds are simulated as Gaussian functions that extend 2mm from the centroid. Therefore,
seeds in the model can be considered as a point source for the EEG generation since the
seed size is lower than the voxel size of the head model used in this study for solving
the EEG inverse problem [50]. Third, the main outcome of the study is presenting the
first version of DIVA_EEG. The scalp topography and the cortical source of the synthetic
EEG obtained with DIVA_EEG (Figures 4 and 5) are highly dependent on the head model
and the theoretical considerations selected for constructing the generative EEG model and
solving the EEG inverse problem. Further refinement of the DIVA_EEG can result from
including individual head models [67,68], generating brain activity maps that combine the
EEG obtained from DIVA_EEG and the BOLD signal obtained with DIVA [3], and testing
the replicability of the results as a function of the EEG generative model [69] and the source
estimation method [70]. Noteworthy, future developments can use the computational load
of the nodes (the instantaneous neural activity) as input of mean field models (e.g., neural
mass models) to generate oscillatory EEG-like signals for assessing the EEG oscillatory
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dynamic [71], including cross-frequency coupling. This aspect is relevant since accurate
speech encoding has been associated with the coupling of theta oscillations that tracks slow
speech fluctuations and gamma-spiking activity related to phoneme-level responses [72].

4.2. Vocal Compensations

Unlike the DIVA simulations, where feedback perturbations are generated by mod-
ifying the F1 of a close vowel (the English vowel /e/), the behavioral compensations of
the participants were assessed by modifying an open vowel (the Spanish vowel /e/). Nev-
ertheless, in both simulated and real perturbations, upshifts in F1 transformed the target
vowel in an open vowel (/æ/ and /a/ for English and Spanish, respectively). Likewise,
downshifts in F1 transformed the target vowel in a close vowel (/I/ and /i/ for English and
Spanish, respectively). The vocal compensations elicited by these feedback perturbations,
which typically opposes to the F1 shift (Figure 6A), replicate previous studies in which
the compensatory behaviors of speakers of the target language have been assessed (e.g.,
Spanish [73], English [15,17,19,22] and Mandarin [74]).

Noteworthy, while compensatory behaviors typically opposed to F1 perturbations, com-
pensations in the same direction to the F1 shift occasionally occurred (Figure S2, Supplementary
Materials). This is in line with previous studies and supports the idea that, although
compensations are primarily a reflex, their magnitude is modulated by several factors
including attention [75], the predictability of the perturbation [1,76] and the vocal training
of the participants [39,77]. Furthermore, the F1 during the compensations (Figure 6A)
were closer to the F1 of the unperturbed auditory feedback than to that of the disturbed
feedback, a result that has been previously reported [78,79]. Considering the interaction
between different DIVA cortical maps, this has been explained by a counteracting effect of
the activation of the somatosensory feedback controller on the activation of the auditory
feedback controller [80].

4.3. ERP Elicited by Perturbations

The increased amplitude of the N1-P2 complex of the ERP elicited by auditory feed-
back perturbations (Figure 6B) can be considered the electrophysiological hallmark of the
sensorimotor integration processes underlying the speech production [40,81,82]. The N1
component has been associated with the activation of the primary and secondary auditory
cortices [83–85] and reflects the auditory processing of basic properties of acoustic stimuli.
In addition, it has been suggested that P2 represents the coordinated activity of neural
generators located in sensory, motor and frontal cortical regions, which might include audi-
tory and speech-related motor areas involved in sensorimotor integration [83,86,87]. The
changes in the ERP elicited by auditory feedback perturbations can be partially explained
by the predictive coding models, which posits that processing of sensory information
is facilitated when the sensory input is predictable [88–90]. This idea was initially pro-
posed to explain the decreased amplitudes of N1 during active speech as compared with
that obtained during the passive listening of own voices [34,83,91]. This attenuation was
supposed to reflect filtering processes in which redundant information in the sensory
feedback is cancelled by neural codes generated in motor-related cortical areas [92]. The
hypothesis of predictability has been subsequently refined using feedback perturbations
protocols [34,83,93]. Evidence shows that, the larger the differences between the expected
and the incoming auditory feedback, the greater the ERP amplitude [34,83,93]. This is likely
mediated by learning and reinforcing mechanisms in which predicted perturbations are
segregated from the auditory re-afference, such that the disparity between the ongoing
auditory feedback and the predicted feedback is reduced [1,77,83,85,94].

4.4. EEG Source Localization

Several methodological approaches have been used to assess the neural correlates
of vocal production and control. They include, for example, the analysis of local field
potentials with cortical electrodes [83] and the use of transcranial magnetic stimulation [85,95].
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While these procedures enable the role of anatomically restricted brain regions to be
investigated, the analysis of the whole brain activity is facilitated by methods to solve
the EEG inverse problem [96,97]. The latter approach was used in this study to estimate
the neural generators of the ERP elicited by self-produced speech (Figure 6C). Feedback
perturbations resulted in increased activity of frontal, temporal and regions that have
been traditionally associated with speech production and speech motor control (Table
S3, Supplementary Materials). This group of regions include the precentral gyrus, the
supplementary motor area, and the Rolandic operculum (frontal lobe), the insula (limbic
lobe), the Heschl gyrus as well the inferior and superior temporal gyri (temporal lobe), and
the postcentral gyrus (parietal lobe) [86].

Furthermore, differences in activity were also obtained in the occipital lobe and other
limbic areas. Although this result needs to be validated, evidence suggest that speech-
driven spectrotemporal receptive fields that are sensitive to pitch are located in the calcarine
area, an occipital cortical region that display strong functional connections with early
auditory areas [98]. Likewise, the medial and the posterior cingulate cortices have been
proposed as hubs of the syllable and speech production network, respectively [99]. These
networks also comprise the hippocampus, the amygdala and the insula (limbic areas), as
well as the cuneus, the lingual gyrus and the inferior, middle and superior occipital gyri
(occipital areas) [99].

4.5. Comparing Simulated and Experimentally Acquired Brain Cortical Map for Speech
Motor Control

The cortical activation maps in DIVA_EEG, instead of being represented as the set of
nodes obtained from DIVA, were constructed by implementing an EEG generative model
to simulate EEG scalp topographies, from which current density maps in the brain were
estimated. This allowed for a fair comparison between the model-based brain activity maps
and those estimated from experimentally acquired EEG. An appropriate match between
the predicted and the EEG-driven cortical maps was obtained, at the level of both cortical
regions and voxels (Figure 6E). Differences between these cortical representations may be
due to different factors, including the use of point sources for generating the synthetic
EEG. Therefore, tunning the size and shape of the brain areas used as seeds for the EEG
generation shall be considered for further developments of DIVA_EEG. Noteworthy, all the
cortical regions selected as seeds in DIVA_EEG were present in the cortical activation maps
estimated from real EEG (Table S5, Supplementary Materials). The fact that brain activation
maps estimated from both synthetic and experimentally acquired EEG extends beyond
the seed regions of DIVA_EEG primarily relies on the following aspects. First, the spatial
resolution and precision of the EEG source estimation methods in lower than that of the
fMRI. In the case of LORETA, the cortical activity is represented in a grid of 6239 voxels, each
of 5 × 5 × 5 mm [50], which is much larger than the typical 1 × 1 × 1 mm voxel size of the
fMRI data. Second, one of the assumptions made for solving the EEG inverse problem using
LORETA is that the electrical activity of neighboring voxels has maximal similarity [100],
which leads to smooth cortical activations. Third, different statistical approaches have
been used for estimating speech-related cortical activation maps from fMRI [3,18,86] and
EEG [95]. Finally, fMRI and EEG reflect the hemodynamic and electrical activity of the brain,
respectively. In other words, these neuroimaging modalities are different in nature and have
largely different dynamics. Therefore, complementary but different results are expected
when assessing brain activity from EEG and fMRI. A less restricted set of cortical regions
resulted from the EEG feedback perturbation paradigm (Table S4, Supplementary Materials)
when compared with its analogue fMRI paradigm [3,18,86]. This indicates that speech
production, rather than relying on a discrete and reduced set of brain areas, is controlled
by a broadly distributed network in which information is interchanged between primary
nodes (seeds in DIVA_EEG) and between them and occipital, frontal and limbic areas.
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5. Conclusions

The extension of DIVA to include a new neuroimaging modality (EEG) will expand the
use of this neurocomputational tool for assessing different aspects of speech motor control,
including sensorimotor integration and predictive coding. DIVA_EEG was validated using
group-level statistics of the behavior and the EEG acquired from volunteers with typical
voices. Further research is needed to ascertain if the configuration parameters of DIVA_EEG
can predict vocal compensatory behaviors and brain activation at individual level. Subject-
specific simulations can be fostered by incorporating vocal fold control models, as carried
out in LaDIVA [63], which provide a complete set of biomechanical parameters for vocal
function assessment. In fact, vocal fold models associated with LaDIVA have been success-
fully used for subject-specific modeling of vocal hyperfunction [101]. Likewise, further
extension of DIVA_EEG may consider neurophysiological muscle activation schemes for
controlling vocal fold models [102] for assessing reflective and adaptive vocal behaviors at
the laryngeal level. The latter may incorporate the parametrization of the sensory adap-
tation elicited by continuous and repetitive stimulation [103,104]. These developments
are the foundations for constructing a complete and comprehensive neurocomputational
framework to tackle vocal and speech disorder, which can guide model-driven personal-
ized interventions.
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AAL90 areas reflecting the cortical activity in feedback reflexive paradigms, Numbers of active voxels
in AAL90 areas reflecting the by cortical activity in auditory feedback reflexive paradigms, Table S4:
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Abstract: Migraine is a common, headache disorder characterized by recurrent episodes of headache
often associated with nausea, vomiting, photophobia, and phonophobia. Prior to puberty, boys and
girls are equally affected. Female preponderance emerges after puberty. Migraine pathophysiology is
not fully understood, and although the hormonal effect of estrogen is significant, it is not clear how
hormonal phases affect brain excitability and EEG patterns in women with migraine. The objective
of this research was to study the effect of migraine on the resting-state EEG activity of women
during the luteal phase. This work compares electroencephalographic (EEG) absolute power in
different frequency bands and scalp areas between young women who suffer from migraine and had
a migraine attack within 24 h prior to EEG recording (experimental) and ten age-matched young
healthy women (controls), all with normal menstrual cycles. For women with migraine, we found a
significant decrease/increase in alpha power in the occipitoparietal/frontocentral area, significant
decrease in beta power for all areas, significant decrease in delta power in the temporal area, and
significant decrease in theta power in the frontocentral and occipitoparietal area. We concluded that
women with migraine have a distinct electroencephalographic pattern during the luteal phase in
comparison with control women. A possible explanation might be an intermittent rhythmic activity
linked to pain.

Keywords: EEG; migraine; luteal phase; absolute power

1. Introduction

Migraine is a form of neurovascular headache [1], with a high incidence (>12%).
Predominantly women (3:1 compared with men) are affected and intensity is variable [2].
Migraine is a public health problem, and it is also one of the main causes of incapacity for
work because fifty percent of migraine patients interrupt their daily activities due to attacks
and most of them require rest at home in dark places [3].

Migraine symptoms negatively affect quality of life as well as academic and work
performance and limit the realization of daily activities [4]. In general, it is defined as an
episodic attack of intense, pulsating, and unilateral headache that may last from 4 to 72 h
ranging from once a week to once a year [5]. The age group with the highest prevalence of
migraine is between 25 and 55 years old [6], however, there are reports that indicate that the
number of episodes decreases as the age of the patients increases, or at least the prevalence
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of unilateral and pulsating pain [7]. With regard to triggers that induce migraine, it has
been reported that drinking alcohol, smoking, living with stress, neck pain, and hormonal
changes are the main stimuli that play a role [8].

Migraine’s etiology involves a neurovascular mechanism and is characterized by
cortical hypersensitivity [9]. However, for some authors, it is mainly a neuronal pathology
with secondary vascular effects [10].

Migraine has been associated with hormonal changes; several authors have reported
that there is an increase in the reproductive years, and menstruation specifically is consid-
ered one of the most common triggers for migraine, also affecting the level of pain, the
duration of symptoms, and the response to treatment [11–13].

The menstrual cycle is a series of natural changes in hormone production and the
structures of the uterus and ovaries of the female reproductive system that makes pregnancy
possible. The four phases of the menstrual cycle are menstruation, the follicular phase,
ovulation, and the luteal phase. Common menstrual problems include heavy or painful
periods and premenstrual syndrome. Migraines that occur during the menstrual period
tend to be more disabling than those that happen at different times of the month [14].

Moreover, hormonal contraceptive use during the reproductive years and hormone
replacement in menopause alter the levels of sex hormones, and these events and interven-
tions are associated with a change in the prevalence and intensity of headaches [14].

Regarding the mechanism for menstrual migraine, it was reported that an estrogen
level drop during the late luteal phase may be a marker of vulnerability to migraine
symptoms in women that experience migraine [15]. In line with this, others reported a drop
in estrogen levels prior to menstruation, which was explained by the effects of estrogens and
progestogens on central serotonergic and opioidergic neurons, modulating their neuronal
activity and the density of the 5-HT1 type receptor [16,17].

Although there are some techniques for studying the central mechanisms involved in
chronic pain like migraine, electroencephalography (EEG) stands out as a valuable, non-
invasive tool because it provides reliable and relevant information about brain functioning
during rest, sensory stimulation, and cognitive tasks. In addition, this technique is safe,
low-cost, and employs a straightforward methodology, thus making it an appropriate tool
for use in clinical practice.

EEG has been applied to assess brain function in several chronic pain syndromes. The
American Neurology Academy has suggested that EEG can be used in people with symp-
toms associated with headaches and migraine [18]. One of the first studies in which EEG
alterations were associated with headache dates back to 1959, when Golla and Winter [19],
described two main types of EEG frequency response during flickering light: (a) a peak in
the alpha band and a rapid decline with an increase in stimulus frequency above 14 f/s,
and (b) a flat-top showing a response maintained up to or above 20 f/s. These authors
concluded that the spatial distribution of the cerebral mechanisms involved in the flicker
response resulted from the disturbance in the cardio-vascular barostatic mechanisms.

Several years later, Wasler et al. [20], reported frontal intermittent rhythmic delta
activity (FIRDA) in EEG during and shortly after migraine episodes in migraine patients
with episodes of impairment of consciousness and neurological deficit, indicating dysfunc-
tion of the upper brainstem and occipital and medial temporal lobes. Schoenen et al. [21],
identified markedly reduced alpha activity in one occipital area on the side of the headache
in 19 of 22 patients with migraine. Sixteen of these patients had a concomitant reduction in
theta activity in the same location. In all patients except one, when they were re-examined
seven days after a migraine attack, the EEG asymmetries had disappeared. According to the
authors, unilateral EEG changes can thus be detected during migraine attacks and could be
associated with unilateral disturbances of cortical electrogenesis. Later, Nyrke et al. [22],
found an increase in higher alpha rhythm variability within 72 h following a migraine
attack. Bjork et al. [23], found increased relative theta activity and attenuated medium-
frequency photic responses in migraineurs without aura compared to controls. On the other
hand, O’Hare et al. [24] found the lower alpha band (8 to 10 Hz) power was increased in
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the migraine group compared with the control group, which may provide a mechanism for
increased multiplicative noise.

Silberstein [25], described that migraine was more present in women than in men,
suggesting that changes in estrogen levels at menarche, menstruation, pregnancy, and
menopause may trigger or change the prevalence of migraine. For example, the fall in the
levels of estrogen that occurs during menstruation triggers menstrual migraine, whereas
the sustained high estrogen levels during pregnancy frequently result in headache relief.
The same author argued that estrogen produces changes in prostaglandins, hypothalamic
opioids, and prolactin secretion, which may, in part, account for the genesis of headache.
For this reason, one might assume that EEG patterns could be influenced by the menstrual
cycle and the pain experienced. Becker et al. [26], reported mean alpha frequency cyclic
changes in EEG activity, i.e., slower alpha waves during the follicular phase and faster alpha
waves during luteal phase, as well as theta and beta small cyclic changes in women during
both spontaneous and oral contraceptive-controlled menstrual cycles. Solís-Ortiz et al. [27],
studied the effect of the menstrual cycle on EEG power during rest (eyes open and closed) in
healthy women with no oral contraceptive effects. They reported lower EEG absolute power
during the follicular phase; high power in delta, theta, and alpha 1 (7.5–9.5 Hz) during
the luteal phase; high alpha 2 (9.5–12.5 Hz), beta 1 (12.5–17.5 Hz), and beta 2 (17.5–30 Hz)
during the menstrual phase; and lower relative power in low alpha and higher in high
alpha during the luteal phase. In addition, there was higher interhemispheric correlation
between frontal regions during ovulation and between occipitals during the luteal phase,
with no significant asymmetries. Thus, the authors concluded with the observation of a
lower activation of frontal regions during the luteal phase and higher activation of central–
parietal regions during the menstrual phase. Furthermore, Baehr et al. [28], found EEG
frontal alpha asymmetry in a group of women suffering from premenstrual dysphoric
disorder in comparison to a control group during the luteal period. Haraguchi et al. [29],
reported lower alpha, theta, and gamma MEG power during the menstrual phase in
comparison with outside this phase in healthy women.

Platzer et al. [30], investigated the effect of the menstrual cycle on brain activation
and connectivity patterns by using fMRI in naturally cycling women performing cognitive
tasks (spatial navigation and verbal fluency). The authors found no significant difference in
task performance throughout the menstrual cycle, and changes in brain activation patterns
were similar during both tasks. They also reported a hippocampal activation during the
follicular phase and a boosting effect of progesterone in fronto-striatal activation during the
luteal phase. Moreover, right-hemispheric frontal activation was suggested to result from
inter-hemispheric decoupling and to be involved in the down-regulation of hippocampal
activation. Hidalgo and Pletzer [31], assessed brain activation during an N-back verbal
memory task in women with a regular menstrual cycle. They were able to corroborate
a hormone-mediated inter-hemispheric decoupling that enhanced frontal activity and
the disinhibition of the salience brain network and striatum during the luteal phase. The
authors interpreted these results in relation to a top-down differential regulation in higher
hormone level phases and a hyperactive bottom-up network during the luteal phase, which
could explain the vulnerability of this phase to menstrual cycle-associated disorders.

To the best of our knowledge, this is the first study that addresses the effect of migraine
on the resting-state EEG of women during the luteal phase. We focused on the luteal phase
as it is characterized by a change in estrogen levels, which may trigger migraine symptoms.
Based on the mentioned migraine studies that reported EEG power changes in different
frequency bands (delta, theta, alpha), we expected a difference in EEG power between the
with and without migraine conditions in women during the luteal phase.

2. Material and Methods

2.1. Subjects

Twenty female right-handed subjects participated in our study. There were ten women
with migraine: mean age 25.4 ± SD 1.9 years, mean years of condition 4.9 (±SD 2.6), mean
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schooling 14.5 ± SD 2.1 years. In the case of healthy women: mean age 26.7 ± SD 1.9, mean
schooling 15.5 ± SD 3.5.

We used the Oldfield questionnaire [32], to test the handedness.
A local Ethics Committee of Maestría en Diagnóstico y Rehabilitación Neuropsi-

cológica from the Faculty of Psychology of Benemérita Universidad Autónoma de Puebla
(DCECEN) approved the experimental protocol. All women participated in accordance
with the Declaration of Helsinki as it was established by the World Medical Association in
1964 [33]. Subjects participated with understanding and informed consent.

We collected data through a semi-structured interview (Table 1). The experimental
group described pain originating from all over the frontal and central areas.

Table 1. Questionnaire results.

Patient
Pain Place

L (Left), R (Right)
Symptoms

1 Frontal L Dizziness
2 Fronto-Parietal R Blurred vision
3 Frontal R None
4 Frontal L–R None
5 Frontal L Dizziness
6 Frontal L-R Dizziness
7 Frontal L-R None
8 Frontal L Dizziness
9 Frontal R Dizziness

10 Frontal L Dizziness, blurred vision

Nausea was the most frequent symptom associated with pain during a migraine attack.
Vomiting and dizziness were also present, as well as blurred vision.

For convenience, our study was cross-correlational with non-probability statistical
sampling. The migraine of participants was diagnosed by a neurologist, according to ’the
International Classification of Headache Disorders, 3rd edition [34]. Patients were recruited
through a request from the neurology service to complete the neurological assessment. We
also used semi-structured interviews to collect demographic data, as well as information
on how migraine episodes occur: triggering (beginning), episode duration, pain location,
frequency, and associated symptoms.

The control group was formed based on the voluntary participation of women awaiting
gynecological consultation (control group).

Inclusion Criteria for All Participants

Patients with migraine (experimental group) had the following signs: headache attacks
lasting 4–72 h, pulsating quality, moderate or severe pain intensity, aggravation by or
causing avoidance of routine physical activity (e.g., walking or climbing stairs), nausea,
vomiting, photophobia, or phonophobia. We selected patients with migraine who reported
a migraine attack in the last 24 h prior to the EEG session.

Volunteer women had no signs of migraine or headache.
All women with regular spontaneous menstrual cycles were screened in a standardized

interview.
All women in the luteal phase were selected with the use of a calendar to establish the

first day of menstrual bleeding, the average cycle length, and the length of the luteal phase.
Exclusion criteria:
Anxiety or depression;
Neuroleptic or drug use for chronic pain, depression, or epilepsy;
Alcohol or drug use;
Report of irregular menstrual cycles;
Pregnant or lactating during the last 12 months;
Taking oral contraceptives during the last four months.
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2.2. EEG Session

Subjects sat comfortably in an electrically shielded, dimly lit room. We recorded EEGs
in rest conditions with closed eyes for three minutes. Subjects did not report having anxiety
during the experimental session, but women with migraine (experimental group), reported
migraine attack in the last 24 h prior to the EEG session.

2.3. Recordings

We collected EEGs (bandpass DC-200 Hz, sampling rate 250 Hz, NicVue System,
Nicolet Biomedical Inc., Middleton, Wisconsin, USA) from 20 scalp positions (according
to 10–20 System) referenced to the ear lobes, with the ground electrode at the forehead.
We set the Notch filter at 60 Hz, and we kept electrode impedances under 5 kOhm. For
further analysis, we recorded electrooculograms (using the same bandpass and sampling
rate as for the EEG) to exclude trials contaminated by eye movements. We stored data and
analyzed them offline.

3. Data Analysis

3.1. EEG Spectral Power Analysis

We performed offline visual artifact rejection to exclude contaminated segments. After
that, we concatenated segments of 60 s (15,000 points) from each participant. We computed
spectral power (SP) for the considered frequency bands by using customized software
scripts programed in MATLAB (Mathworks, 2019), using the following formula:

SPC( f ) =
1
n ∑n

i=1 Ci( f )C∗
i ( f )

where Ci represents the Fourier-transformed channel c for a given segment number (i = 1, n)
and “*” indicates the complex conjugate.

We calculated the SP in the following frequencies: delta (0.5–3.5 Hz), theta (4–7.5 Hz),
alpha (8–12 Hz), and beta (13–30 Hz). The frequency resolution we selected was 0.1 Hz.

3.2. Statistical Analysis

We calculated the areas under the curve for each SP frequency band. To test for any
statistical difference in the SP, we normalized data values between 0 and 1. Because our
data were not normally distributed (Shapiro–Wilk normality test p < 0.05), we used a
nonparametric statistical analysis for two independent groups (U Mann–Whitney test)
for the absolute power comparisons in each band per topographic area. In each band,
we grouped the electrodes’ signals to the average by cortical areas. In the frontocentral
topographical area, we averaged the following electrodes: Fp1, Fp2, F7, F3, Fz, F4, F8, C3,
Cz, and C4. In the occipitoparietal area, we averaged the following electrodes: P3, Pz, P4,
O1, Oz, and O2. In the temporal area, we averaged the following electrodes: T3, T4, T5,
and T6.

The null hypothesis was that the dependent variables were the same across the fac-
tors. We report effects as significant (two-tailed) if p ≤ 0.05. The statistical analysis was
performed using the software SPSS 25.

4. Results

The task was performed for all subjects according to the instructions. None of the
participants reported fatigue during the experiment, but some showed anxiety and signs of
irritability, such as sweating, agitation, and claustrophobic sensation.

4.1. Topographical Analysis

We obtained the following results for the absolute power analysis in different cortical
areas and frequency bands.
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4.2. Alpha

We found a significantly higher normalized power in the experimental group for the
alpha band in the frontocentral area (U = 23, z = −2.04, r = 0.45, p < 0.05) in comparison
with the control group. In contrast, we found a significantly higher normalized power
in the occipitoparietal area in the control group (U = 6, z = −1.92, r = 0.43, p < 0.05) in
comparison with the experimental group (Figure 1).

Figure 1. Topographic comparisons in alpha band. The * means a statistically significant difference
(p < 0.05).

4.3. Beta

We found a significantly higher normalized power in the control group for the beta
band in the frontocentral area (U = 19, z = −2.34, r = 0.52, p < 0.05), occipitoparietal area
(U = 2, z = −2.56, r = 0.57, p < 0.05), and temporal area (U = 0, z = −2.31, r = 0.52, p < 0.05)
in comparison with the experimental group (Figure 2).

Figure 2. Topographic comparisons in beta band. The * means a statistically significant difference
(p < 0.05).
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4.4. Delta

We found a significantly higher normalized power in the control group for the delta
band in the temporal area (U = 0, z = −2.31, r = 0.52, p < 0.05) in comparison with the
experimental group (Figure 3).

Figure 3. Topographic comparisons in delta band. The * means a statistically significant difference
(p < 0.05).

4.5. Theta

We found a significantly higher normalized power in the control group for the theta
band in the frontocentral area (U = 24, z = −1.97, r = 0.44, p < 0.05) and occipitoparietal area
(U = 5, z = −2.10, r = 0.47, p < 0.05) in comparison with the experimental group (Figure 4).

Figure 4. Topographic comparisons in theta band. The * means a statistically significant difference
(p < 0.05).

4.6. Grand Average Band Analysis

For each band, we averaged the normalized absolute power for all electrodes (Figure 5).
We found a significantly higher amplitude in the theta (U = 5, Z= −0.32, p < 0.05, r = 0.07)
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and beta (U = 2, Z= −2.56, p < 0.05, r = 0.57) bands in the control group in comparison with
the experimental group.

Figure 5. Total averaged absolute power for delta, theta, alpha, and beta bands. The * means a
statistically significant difference (p < 0.05).

4.7. Independent Channel Analysis

We performed the same analysis for each electrode as for cortical areas. Because the
statistics to compare all electrodes with all the bands in the two groups would require a
multidimensional analysis, we do not present comparisons of these results. For this reason,
we simplified the analysis by areas. We only describe qualitatively what we see in the
corresponding averaged areas The mean absolute power figure, for individual electrodes
in the 10–20 system (both groups) is presented in the Supplementary Material because we
believe it might provide new data on the distribution of frequency bands in the scalp.

We found more specific differences in the frontal areas: the theta band was larger in
Fp1 and Fp2 in the control group than in the experimental group. In F7 and F8, beta was
larger in the control group than in the experimental group. Meanwhile, the alpha band in
the same areas was larger in the experimental group than in the control group. In F3 and
F4, beta was larger in the control group than in the experimental group (see Figure S1).

We also found that in the somatosensory-related leads C3 and C4, the beta band was
larger in the control group than the experimental group. We also found that the theta band
over C3 was larger in the control group than in the experimental group. In contrast, the
theta band over C4 was larger in the experimental group than in the control group (see
Figure S1).

5. Discussion

It has been reported that migraine is three times more frequent in women than in men
of reproductive age. This fact is associated with the changes of hormonal mechanisms that
occur in females throughout the menstrual cycle [35].

A specific phase of the menstrual cycle that is related to psychological, cognitive, and
physical changes is the luteal phase. The symptoms and signs of this period are distinct
and have been named pre-menstrual syndrome. During this period, a persistent headache
of the migraine type that decreases after three days of menstruation has been reported [36].

The present study showed that women with no migraine presented the following
relevant encephalographic characteristics during the luteal phase: alpha occurrence over
the parieto-occipital area, a predominance of beta rhythm over the whole scalp, theta
increase over the frontocentral and parietooccipital area, and an increase in delta for the
temporal areas.
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In the case of women with migraine, we observed an increase in alpha in the fron-
tocentral area and a reduction in alpha in occipitoparietal area. Few studies have been
carried out in patients with migraine, and the results have not been very consistent. How-
ever, the first studies reported an increase in alpha rhythm variability in the headache-
free phase [21,22,37–40].

In our study, we observed a reduction in beta in all the considered cortical areas except
the frontopolar leads. This result is in contrast with studies that reported an excess of beta
activity during attacks [41], in migraine patients. Walker [42], reported an excess of high-
frequency beta activity (21–30 Hz) in all four cortical areas in a group of migraine patients
in neurofeedback therapy in comparison with a group of patients using drug therapy.

We also found a focal decrease in the theta band in the left central–parietal leads (C3
and P3) and a local delta decrease in the left temporal and right occipital leads (T3 and
O2). Past research has also shown that individuals with chronic pain exhibit increased beta
and decreased alpha activity, with additional increased theta/delta [43]. Much evidence
suggests the involvement of delta oscillations during sustained pain as a reflex of autonomic
processes linked to efforts of homeostatic processes [44]. However, our study is more
specifically focused on a phase of the menstrual period that begins with pain and not the
pain itself.

Xie et al. [45], suggested that EEG activity in migraine patients is related to a predis-
position to painful or high-risk stimuli. In line with Xie et al. [45], we observed power
differences between the considered groups in the frontal channels (see Figure S1).

Some authors suggest that migraine is related to a lack of habituation to environmental
stimuli due to inadequate information processing [46]. Our study supports the suggestion
that the differences in EEG patterns in women with migraine could be involved in pain
related to migraine and the regulation of input processing. In other words, chronic pain
can change the responsiveness of brain regulatory systems and the emotional processing of
somatosensory information; this could be a reason why we found that in somatosensory
areas such as C3 and C4, the delta and beta band were larger in the control group than the
experimental group. This type of EEG pattern could be related to allostatic load, which also
includes the participation of the hypothalamic–pituitary–gonadal axis and the negative
feedback regulation of the endogenous opioid system during the release of luteinizing
hormone. The cyclic surges of gonadal hormones may directly alter neuronal, glial, and
astrocyte function throughout the brain [47].

The irregular EEG patterns found in our study could be used not only for diagnosis crite-
ria, but also for the improvement of pharmacological and psychological therapeutic targets.

Future work should consider EEG data as a part of the physiological changes related
to the menstrual cycle in relation to behavioral and emotional traits. As there is increasing
evidence that migraine symptoms could be ameliorated by a multimodal approach that
includes behavioral interventions like biofeedback, cognitive behavioral therapy, and relax-
ation, at first, women may consider the use of medication, which may be complemented by
an integrated approach that includes exercise, relaxation, and biofeedback. Future studies
should investigate the effect of such interventions as reflected in neurophysiological data.

It is also important to address the recognition of premonitory symptoms in migraine,
because most patients in the present work were able to correctly predict the onset of
migraine headaches. The pain prediction may represent an essential treatment paradigm,
where the risk of headache is treated prior to the experience of pain.

6. Conclusions

Finally, we state that more conclusive research is needed to understand the physiology
of migraine in greater detail. Similarly, research involving various levels of analysis is
needed in order to be more explanatory and less descriptive. It is important to consider
that the sample size may have been a limitation in our study. We suggest that the sample
size should be increased to have external validation. In addition, carrying out hemisphere
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correlation studies and coherence analysis will be essential to analyze the diffuse asymmetry
of EEG patterns in patients with migraine.

Even though the signs and symptoms of migraine guide the clinical course of diagnosis,
the electroencephalographic data can improve or increase the sensitivity of the diagnosis
according to the specific phases of the menstrual cycle. Therefore, the results derived from
EEG can function as biomarkers of the condition of the patient.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app13137443/s1, Figure S1: Distribution of the mean absolute power
for delta, theta, alpha, and beta bands for each location of scalp electrodes in the 10–20 system.
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Abstract: This study proposed an auditory stimulation protocol based on Shadowing Tasks to
improve the sound-evoked potential in an EEG and the efficiency of an auditory brain–computer
interface system. We use stories as auditory stimulation to enhance users’ motivation and presented
the sound stimuli via headphones to enable the user to concentrate better on the keywords in the
stories. The protocol presents target stimuli with an oddball P300 paradigm. To decline mental
workload, we shift the usual Shadowing Tasks paradigm: Instead of loudly repeating the auditory
target stimuli, we ask subjects to echo the target stimuli mentally as it occurs. Twenty-four healthy
participants, not one of whom underwent a BCI use or training phase before the experimental
procedure, ran twenty trials each. We analyzed the effect of the auditory stimulation based on the
Shadowing Tasks theory with the performance of the auditory BCI system. We also evaluated the
judgment effectiveness of the three ERPs components (N2P3, P300, and N200) from five chosen
electrodes. The best average accuracy of post-analysis was 78.96%. Using component N2P3 to
distinguish between target and non-target can improve the efficiency of the auditory BCI system and
give it good practicality. We intend to persist in this study and involve the protocol in an aBCI-based
home care system (HCS) for target patients to provide daily assistance.

Keywords: EEG; ERPs; BCI; Shadowing Tasks

1. Introduction

Many people with severe motor paralysis, such as spinal cord injury, locked-in syn-
drome (LIS), and amyotrophic lateral sclerosis (ALS), who have lost communication skills,
cannot express their thoughts freely. Yet, most functions of their brain and senses are without
dysfunction [1–5]. Over the past few decades, many supportive tools have been developed
(including brain–computer interface (BCI) systems) in dramatic proliferation [6–13]. In
addition, an auditory BCI (aBCI) is a helpful tool for people with severe motor paralysis at
the end stage or who cannot stare at the screen [14–16]. However, the speed and accuracy of
contemporary auditory BCIs are slower and lower than those of visual modality BCIs [17].

The user of a stimulus-driven BCI system has to choose to focus on one stimulus out
of the numerous stimuli presented at the same time, which evokes a specific event-related
potential (ERP) pattern [15,18,19], including components P300 (P3), and N200 (N2), as
shown in Figure 1. The oddball paradigm is usually used to elicit the components of
ERPs. BCI application extracts the feature values of the data from the monitored electroen-
cephalograph (EEG) simultaneously. Then, the features are classified and generated to a
resulting command immediately. The application of EEG is in a broad scope for clinical [20]
and non-clinical applications, such as transport, entertainment [21], and education [22].
For example, using EEG equipment in the applications of ML-based disease diagnosis or
mental workload prediction is familiar.
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Figure 1. ERP components after the onset of an audio stimulus, including the P300 (labeled P3) and
N200 (labeled N2). Generally, the Y-axis scales are often upside down in ERP research.

Sutton proposed that external stimuli would evoke a human brainwave fluctuation,
called event-related potentials (ERP), in 1965 [23]. Specific physical events or psychological
events trigger these time-dependent potentials of brainwave fluctuations [23,24]. A BCI
system based on ERP obtains potentials on the surface of the cortex [13,15,25]. The ERP-
based BCI system learns the basics of a user’s brain system via the ERPs obtained from
the user’s brain rhythm [24,26]. The potentials of the user’s brainwaves are amplified and
recorded by the EEG device [19,27,28]. The ERP-based BCI system accepts these signals
from EEG and filters these EEG data. Then, the BCI system uses signal accumulation and
averaging methods to extract the specific features of ERP components, then classify and
interpret them [16,24,29]. Finally, these signals are converted into instructions and output
to the devices to help the user perform [9,12,13,30,31].

A P300 (P3) peak usually appears around 300–400 ms after the stimulus presentation.
That is, P3 is a higher deflection peak of an ERP [16,19,28,29,32]. Additionally, an N200
(N2) trough often comes about 200 ms later than the onset of a target stimulus. So, N2
is a lower deflection trough of an ERP [9,16,31,33]. If the user focuses on detecting the
targets, the P300 and N200 waves facilely come about [18,34,35]. Usually, the P3 potentials
of the non-target stimuli are lower than that of the target stimulus. The situation is just the
opposite for N2 [31,36]. In addition, the ERP component latencies deepen the difficulty of
discriminating between the target and non-target stimuli [29].

A stimulus-driven aBCI system plays the sound stimuli through either headphones or
speakers. The users of a stimulus-driven aBCI must focus only on the sound they want
to hear (target) while ignoring the others (non-targets) [17]. For example, if the user pays
attention to the sound played in the left earphone and ignores the sound in the right
earphone, then the sound played from the left channel of the headphones is the target
sound stimulus at that moment. The difference in the responses that the EEG gains allows
the system to group the ERPs into target and non-target. The aBCI system then captures and
classifies these signals and interprets the discriminative features of the ERP components.

However, it is not a simple task for the user of an aBCI to pay attention to one of the
two or more different voices played simultaneously [31,37]. The noise ratio (SNR) of a
non-invasive BCI is lower than in the case of invasive technology [38]. Thus, ERP responses
of an auditory BCI system were less class-discriminative between attended and unattended
stimuli than those of a visual BCI (vBCI) [39,40].

Therefore, numerous studies have used diverse stimulation methods to increase the classi-
fication accuracy for better-quality interfacing applications. Most aBCI systems use the Auditory

34



Appl. Sci. 2023, 13, 856

Steady-State Response (ASSR) [38], N200 [9,26], or P300 [16,31,39] modalities to interpret sound
stimuli. Hybrid systems that combine two aBCI modalities or at least one aBCI system with
another scheme seek to improve the system’s performance [41–44]. Several studies based on
ASSR have explored the impact of natural and synthetic sound sources on aBCI [45] to reduce
users’ mental workload. Using more than two loudspeakers to present the spatial directionality
allows the users to accept more than two options simultaneously [43,46,47]. In addition to these
stimulations, the work of Marassi et al. contrasts two ways of using the aBCI: passively counting
the presented target sound stimuli or simply mentally repeating them when they occur [31].
Further, aBCI performance does not depend solely on the aBCI system. Several studies indicate
that the users’ mood, attention, and motivation could influence aBCI performance and P300
electrophysiology. Such factors may contribute to inter-individual differences [31,42,48].

However, conventional aBCI has not been practical because of its lack of high accuracy
and reliability. The users have to suffer a substantial workload due to these auditory ap-
proaches employing more complex interfaces for system efficiency [39,42]. Furthermore, the
structure of the human hearing system and the user’s attention may be critical factors [49].

A user who wants to do something via an aBCI system must be able to listen attentively
to the sound stimuli of the desired option. However, when sound enters one human ear, the
tone will be transmitted immediately to the other ear through the human hearing system.
With the time difference in binaural hearing, people can identify the position where the
sound came from and be alerted to the direction of danger [49]. Yet, this critical feature of
the hearing functions makes it difficult for the user to concentrate on listening to the target
sound entering one of the ears.

In addition, the degree of user concentration (selective and continuous attention) also
affects the accuracy of a BCI system [50,51]. In da Silva-Sauer et al. [51], the authors showed
that when the user’s attention declines, the accuracy of a BCI falls. When a person needs to
pay attention to a particular sound source, they activate the control of selective attention.
Thus, many studies of a stimulus-driven BCI system ask subjects to maintain a high degree
of concentration during the experiment [52]. Lakey et al. [28] found that using a short
mindfulness meditation induction (MMI) could maintain the user’s attention and improve
the performance of P300-based BCI systems.

Thus, two factors affect the performance of an aBCI system: whether the target sound
stimulus can attract the user’s attention and whether the user can easily distinguish the
target sound stimulus from non-target stimuli. Therefore, we propose a strategy to maintain
the user’s concentration during the sound stimuli playing to improve the accuracy of our
aBCI. We introduce a novel auditory paradigm to solve the problem caused by the human
hearing system and the user’s attention: using mental Shadowing Tasks to improve EEG’s
sound-evoked potential of the target stimuli to enhance the aBCI system’s efficiency.

At the beginning of our study on an aBCI system, the sound stimuli consisted of
periodic click sounds, such as beep, dang, and bleep. However, the effectiveness of such a
sound stimulus model was mediocre. The accuracy was equal to or below the chance level.
According to the work of Baykara et al., motivation influences P300 amplitude and the
performance of a BCI system [48]. If the sound stimuli are monotonous and repetitive, such
as beeps, they cannot trigger the users’ motivation [45]. Because the discriminative features
of the ERP components in our former aBCI system research were severely disorganized,
we had to use other sound sources.

Story sound is friendlier for the users than simple periodic click tones since it has a
friendlier alternating (musical) temporal structure. So, we hypothesize that the application
of the novel stimuli to the auditory BCI will result in a more comfortable interfacing
experience. Therefore, we created a prototype of the aBCI system using audio story
stimulation and the Shadowing Tasks mechanism [37,53] to carry out the subsequent
experiment.

Shadowing Tasks is an experimental technique performed via headphones. Partici-
pants are required to repeat the target stimuli aloud immediately after hearing a sentence,
word, or phrase. Usually, non-target stimuli appear in the background simultaneously [54].
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Cherry’s Shadowing Tasks present two distinct auditory messages to the participant’s right
and left ears and asks the participant to pay attention to the target sound heard in one of
the two ears and repeat the sound [37,54].

Shadowing Tasks require the user to have the ability to recognize the target sound
from two simultaneously heard messages. The ability to separate the target sound from the
noisy background sounds is affected by many variables, such as the speaker’s gender, the
direction the sound comes from, the pitch, and the speed of speech. Thus, in the Shadowing
Tasks, the subjects must engage in selective attention to enable them to focus on the target
sound stimuli.

This study adopted Cherry’s approach to delivering sound stimuli: stories with the
target stimulus. Different story sounds are played to the user’s left and right ears in
synchronization through headphones. The participant was required to pay attention to the
target sound from the left or right headphones [41]. To reduce the mental workload, we
asked the participants to mentally repeat the target stimuli, not repeat them aloud [31].

In this study, we incorporated mental Shadowing Tasks to maintain the user’s concen-
tration during the presentation of sound stimuli. We aim to confirm whether the mental
Shadowing Tasks can improve the EEG’s sound-evoked potential of the target stimuli
and enhance the aBCI system’s efficiency. In addition, we also evaluated the judgment
effectiveness of the three ERPs components (N2P3, P300, and N200) across five chosen
electrodes.

2. Materials and Methods

2.1. Participants

The participants were 24 healthy people aged 20–22, 7 females. All participants were
volunteers and had no head injuries, history of neurological defects, mental illness, or
drug treatments. All participants had normal hearing. No participants had used BCI or
received training ahead of the experimental procedure. Before participating in the experi-
ment, all subjects signed the Informed Consent Form approved by the Human Research
Ethics Committee at National Cheng Kung University. The experimental procedure ended
immediately if a participant withdrew during the test, and we dropped the data.

2.2. The aBCI System
2.2.1. The Prototype of the aBCI System Module

Figure 2 shows the experimental setup. There are signal acquisition, signal processing,
and application in the prototype.

Figure 2. The prototype of the aBCI system. The upper left presents the concept of signal acquisition,
the lower the module of signal processing, and the upper right the module of signal application for
subsequent development.
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The experiment used short stories compiled by the author as sound stimuli. There
is a keyword in each short story that appears seven times, and the user must pay close
attention and mentally repeat the keyword. The ERP-based aBCI module receives the
signal data of the participant’s brainwaves via non-invasive EEG equipment that includes
32 channels [15,25]. Thus, the aBCI module can discern the participant’s choice and then
export the command signal to the application.

2.2.2. The Stimulation Trials Using Audio Story

Based on the Shadowing Tasks, the study needed sound stimuli in the form of a story.
We designed twelve audio stories to be the sound stimuli to help participants test the
aBCI module using Shadowing Tasks. The twelve audio stories, six recorded by male
pronunciation and six by female, were all recorded in mono sound channel. These stories
consisted of approximately 117–138 Chinese characters, with playtimes of 45–60 s. Figure 3
shows two of the twelve audio stories (original text written in Chinese).

Figure 3. Two of the twelve audio stories (original text written in Chinese). Each story file includes a
keyword (words rendered in boldface) that appears seven times in the story.

Each audio story includes one keyword (words rendered in boldface in Figure 3).
The keyword appears seven times in the story, following the principles of the oddball
paradigm [35,43], and the inter-stimulus interval (ISI) between the two keywords was 5–8 s.
Thus, the user can easily focus on the target stimuli (the keyword appears seven times)
in the story he wants to hear by mentally repeating the keyword, not all the words. The
unequal ISI avoids anticipatory psychology from the user. The onset times of the keywords
in the different stories are all different, to prevent mutual interference.

2.2.3. ERP Trial Features

In the study, the auditory BCI prototype first searched out sound-evoked potentials of
the P3 peak and the N2 trough out of the ERPs gained from EEG after every trial. Thus, the
system can obtain an N2P3 potential: the P300 potential minus the N200 potential. We used
the values of N2P3, P300, and N200 to interpret the discriminative features and identify the
best system accuracy in the post-analysis.

Our aBCI system provides two options for the user in every trial: one audio story via
the left earphone (L) and the other via the right earphone (R). If the participant focuses
on the audio story in the right earphone, then the figure of the ERP components in this
trial resembles Figure 4. In Figure 4, the green circles mark the locations of the P3 peaks in
the ERP feature, while the red marks indicate the N2 troughs. The P300 potential minus
the N200 potential in the same curve is the N2P3 potential. The results using any one
component of ERPs, N2P3, P300, and N200, to distinguish which audio story the participant
listened to all indicate that the participant focused on the option from the right channel in
this trial. Thus, the red curve (R_2) in Figure 4 is what the participant chose in this trial.
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Figure 4. Average waveforms at Cz of the second stage of the 4th test run from participant N04: The
red circles mark the locations of N200 (marks 1 and 2), while the green circles mark the locations of
P300 (marks 3 and 4).

2.3. Experimental Program
2.3.1. Experimental Equipment

The EEG equipment produced by Braintronics B.V. Company for obtaining the user’s
brainwave data contains CONTROL-1132, a control unit, and ISO-1032CE, a 32-channel
amplifier. In addition, the prototype used a PCI-1713 card to shift the data from analog to
digital. The signals of brainwave acquisition used MATLAB’s ERPLAB. Additionally, we
used Borland C++ Builder to develop the aBCI module.

2.3.2. Data Collection

We made the impedance remain below 10 kΩ in the EEG equipment and set the
sampling rate at 500 Hz. According to Peschke et al. [55], the connection between hearing
and language processing is found in the Broca area (Cz and Fz) in the human brain by
fMRI during the non-word Shadowing Tasks. The work of De Vos et al. [56] gained distinct
P300 data from electrode Pz. Further, T3 and T4 of the 10/20 location system lie in the chief
auditory cortex [49]. Thus, in this study, the EEG device obtains the user’s brainwaves via
electrodes T3, T4, Pz, Cz, and Fz on their scalp [16], as shown in Figure 5. Electrode FP2 is
grounded, and the reference potential gains from electrodes A1 and A2. Every electrode is
Ag/AgCl wet electrode, and the electrode locations refer to the International 10–20 Location
System [57–59].

The ISO-1032CE in EEG equipment amplifies the brainwave signal and records the
EEG potentials. The control unit, CONTROL-1132, uses a 0.3–15 Hz band-pass filter to filter
the signal. Then, the converter card, PCI-1713, shifts the data from analog to digital, and
finally, the aBCI system receives all the EEG signals to find the stimulus focused by the user.

For noise processing, there are two parts. The first is to filter the blink noise. So, there
is electrode Fp2 around the eye. If the EMG signal is detected, the system will discard
the signal. The second is the AC signal of the power supply. EEG hardware equipment
has filtering and voltage stabilization functions to filter. For heartbeat noise, we remove
it with relative potential between the sampling electrodes and the reference electrodes
(electrodes A1 and A2 around the ears). Therefore, the system can remove most of the
noise. Finally, based on the principle of event-related potentials: the potentials obtained by
multiple stimulations and then averaged, the system can deal with the remaining small
part of the noise and gain a stable and reliable electroencephalogram.
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Figure 5. The positions of the electrodes based on the International 10–20 Location System. The green
circles, A1 and A2, represent the reference electrodes. The ground electrode is the blue circle, FP2.

2.3.3. Data Processing

1. Stimuli presentation: The system synchronously plays two different audio stories via
the left and the right headphones as the stimuli of the aBCI experiment.

2. ERPs acquisition: One keyword appears seven times in each audio story file. The sys-
tem ignores first time the keyword appears and then obtains the subject’s brainwaves
the remaining six onset times of the keyword. Therefore, six ERP segments were
retrieved one by one inside −100 to 800 ms based on each onset time of six keywords.
Then, the aBCI system uses signal accumulation and averaging methods to treat the
six ERP segments for every option to gain the ERP features.

3. ERP features interpretation: After the processing of ERPs acquisition, our aBCI system
thus finds out P3 and N2 potential and calculates the N2P3 potential. Then, the system
would determine which audio story was focused on by the user during the trial after
it estimated the component potential for each option with each other.

2.4. Experimental Procedure

We use Figure 2 to explain the experimental prototype of the aBCI. The participant
sits comfortably ahead of the aBCI system before the experimental procedure. The first
preparation step before the test was to explain the test scheme, audio stories, and how to
mentally repeat the keyword in the target story to the participant. Then, the experimenter
attached electrodes to the participant’s scalp, helped the user to put on the headphones, and
checked the headphone volume. After completing all the preparations, the experimental
procedure of 20 trials (10 test runs, there are 2 trials in each test) began immediately, up to
30mins. That is, each test run includes two trial stages. Each participant must perform the
test run ten times. They must make one choice on each trial (two selections on a test run).
Figure 6 shows the flowchart of the test procedure.
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Figure 6. The flowchart of the test procedure. The audio stories in blue squares were played in
Chinese by the system during the operation.

Before each trial, the experimenter specified one audio story as the target stimulus.
There is an additional instruction: a mindfulness induction, played before each trial stage
to help the participant focus on the target sound stimuli. During each trial, the participant
must pay attention to the target story and mentally repeat the keyword in the story. The
system then obtained the ERPs of both options from EEG equipment. Next, our aBCI
system determined the sound-evoked potentials of every ERP component for both options.
The choice having the highest potential should be the one the participant was paying
attention to during the operation. Then, the system outputted the results of each trial with
R or L. If the user focuses on the audio story played through the right earphone, the code is
R; otherwise, the code is L. The system will judge it as correct when the output result comes
together with the target specified by the experimenter. For example, the experimenter asks
the participant to listen to the audio story of the right channel (R), and if the output is R, it
is correct. Therefore, after each test run (two trial stages), the user can choose which one he
prefers from four options (LL, LR, RL, RR).
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2.5. System Evaluation
2.5.1. Information Transfer Rate

We evaluated our proposed system by computing the classification accuracy and the
information transfer rate (ITR). ITR is quite valuable for estimating an aBCI system. We
refer to the work of Wolpaw et al. to do the bit-rate/min calculation [31,60], as follows:

ITR (bit − rate/min) = M{log2 N + P log2 P + (1 − P) log2 [
(1 − P)
(N − 1)

]} (1)

where M indicates the number of choices made in a minute, N is the number of options,
and P is the classification accuracy.

2.5.2. Neural Network

To determine the best identification for each participant, we used artificial intelligent
technology neural network (NN) [61], a multi-layer neural network (Figure 7), to learn and
analyze the output data of the five electrodes. The output of the BCI system is the input data
of the neural network. Each electrode has two pieces of data: the sound-evoked potential
obtained from stimulation on the left and right ears via the headphones. Therefore, the
system will generate ten data from the five electrodes after every trial. Additionally, the
expected output of the multi-layer neural network is to L (=0) or R (=1).

Figure 7. The structure of neural network to learn the data from the five electrodes.

There are 11 neurons (N101 to N111) in Hidden Layer 1 and two (N201 and N202)
in Hidden Layer 2. We used the Keras API with parameters set as activation = ‘sigmoid’,
model.compile: loss = ‘categorical_crossentropy’, optimizer = ‘adam’, metrics = [‘accuracy’].

We use a 5-fold cross-validation method to train and validate the performance of the
aBCI system. The NN model divides the data from 20 trials of each participant into five data
sets. In each iteration of the cross-validation, four data sets out of five are used as training
data, while the remaining data set is the testing data. Additionally, the NN model uses
the gradient descent method to update the weights, the cross entropy function (Equation
(3)) is used as the loss function (Equation (4)), and the learning rate is set as 0.001. After
10,000 iterations of training, the neural network achieved a high classification accuracy for
training data. Then, the testing data is used to evaluate the accuracy of the model. Finally,
the averaged accuracy among the five testing data sets obtained.
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The activation function of each neuron is defined as sigmoid function:

fw(x) =
1

1 + e(−wT x+b)
(2)

where w is the weight vector, x is the input vector, and b is the bias.
The cross entropy function is:

H(p, q) = −∑
x

p(x) log q(x) (3)

where p(x) is the target distribution and q(x) is the predicted matching distribution.
So, the loss function is:

L(w) = − 1
n

n

∑
i=1

[yi log fw(xi) + (1 − yi) log(1 − fw(xi)] (4)

where n is the number of training data, and when yi (desired output) ≈ fw(xi) (NN output),
L(w) has a minimum value.

3. Results

Twenty-four healthy people were involved in the study and completed all experi-
mental processes. Component N2P3 was used to analyze the EEG output online. The
experimental results were analyzed as follows.

3.1. Discriminating the Sound-Evoked Potential in EEG

The system outputs the potential data (such as Table 1), the figures of the ERPs’ features
(such as Figure 4), and the results using N2P3 to distinguish the EEG data online. Figure 4
illustrates how to discriminate the characteristics of EEG data with a ERPs figure. Table 1
explains the scheme for determining the value of components N2P3, P300, and N200 via
sound-evoked potentials. In Figure 4, the red curve presents the ERP evoked for the sound
from the right ear, and the green-dot curve shows the ERP induced for the sound from the
left ear.

Table 1. ERP values (μV) of options obtained from the Cz, 2nd stage, the 4st test run of N04.

Options N2P3 P300 N200
Target Result

Specified On Line Off Line

R 4.4627 * 1.0947 * −3.3680 * � � N2P3, P300, N200
L 1.0026 −0.1217 −1.1242

*: the potential accepted between two options.

Figure 4 and Table 1 show that the P300 value (1.0947 μV at 376 msec) of the red curve
(R option) is higher potential than that of the green-dot curve (L option), and the N200
value (−3.3680 μV at 258 msec) of the red curve (R option) is lower potential than that of
the green-dot curve (L option). In Table 1, the R option (red curve) exhibits a higher N2P3
value (4.4627 μV). Therefore, the red curve is the dominant option. We thus know that the
subject was focusing on the sound from the right channel of the headphones. Hence, the
user’s choice is R, which is also the target specified by the experimenter. That is, the user
made the right choice during this trial.

3.2. Accuracy Analyses of Experimental Results

We used audio story stimulation and mental Shadowing Tasks to accomplish the
experiment. The following accuracy analyses of the data obtained from electrodes show
the experimental results using Shadowing Tasks.
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3.2.1. Accuracy Analyses for All Output Data

The system used five electrodes (T3, T4, Pz, Cz, and Fz) to gain the potential data
of the participants’ brainwaves (ERPs). The system also outputs the classification results
from the EEG data of five electrodes based on each component of the ERPs (Tables 2–4).
Additionally, Figure 8 shows the potential difference between target and non-target.

Table 2. The average accuracies by component N200 of the experimental trial using mental Shadowing
Tasks.

Unit: %

Subjects T3 T4 Fz Cz Pz Average

N01 50.00 50.00 70.00 * 60.00 45.00 55.00
N02 60.00 65.00 75.00 80.00 * 70.00 70.00
N03 55.00 45.00 50.00 60.00 * 50.00 52.00
N04 55.00 65.00 85.00 * 75.00 60.00 68.00
N05 40.00 65.00 * 60.00 60.00 35.00 52.00
N06 55.00 40.00 60.00 55.00 65.00 * 55.00
N07 60.00 65.00 * 60.00 60.00 50.00 59.00
N08 60.00 65.00 * 60.00 50.00 55.00 58.00
N09 55.00 * 50.00 55.00 * 55.00 * 55.00 * 54.00
N10 40.00 45.00 70.00 * 70.00 * 65.00 58.00
N11 50.00 * 40.00 50.00 * 50.00 * 50.00 * 48.00
N12 50.00 35.00 65.00 * 45.00 50.00 49.00
N13 70.00 70.00 70.00 75.00 * 45.00 66.00
N14 45.00 80.00 * 50.00 60.00 65.00 60.00
N15 45.00 70.00 * 65.00 65.00 50.00 59.00
N16 50.00 65.00 * 45.00 40.00 40.00 48.00
N17 45.00 80.00 * 70.00 70.00 70.00 67.00
N18 50.00 65.00 70.00 75.00 * 65.00 65.00
N19 70.00 * 60.00 70.00 * 70.00 * 65.00 67.00
N20 45.00 55.00 75.00 * 60.00 45.00 56.00
N21 55.00 55.00 70.00 * 65.00 60.00 61.00
N22 75.00 * 55.00 60.00 55.00 45.00 58.00
N23 60.00 65.00 * 55.00 55.00 50.00 57.00
N24 75.00 * 50.00 75.00 * 50.00 60.00 62.00

Average 54.79 58.33 63.96 * 60.83 54.58 58.50
*: the best accuracy around the electrodes.

Table 3. The average accuracies by component P300 of the experimental trial using mental Shadowing
Tasks.

Unit: %

Subjects T3 T4 Fz Cz Pz Average

N01 75.00 * 75.00 * 60.00 75.00 * 75.00 * 72.00
N02 40.00 60.00 * 35.00 30.00 35.00 40.00
N03 65.00 65.00 50.00 60.00 70.00 * 62.00
N04 70.00 * 55.00 45.00 50.00 55.00 55.00
N05 70.00 * 45.00 45.00 50.00 55.00 53.00
N06 60.00 40.00 50.00 60.00 65.00 * 55.00
N07 55.00 55.00 60.00 55.00 65.00 * 58.00
N08 50.00 60.00 80.00 65.00 85.00 * 68.00
N09 65.00 * 60.00 50.00 65.00 * 55.00 59.00
N10 60.00 55.00 65.00 * 55.00 65.00 * 60.00
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Table 3. Cont.

Unit: %

Subjects T3 T4 Fz Cz Pz Average

N11 65.00 55.00 80.00 * 60.00 60.00 64.00
N12 55.00 65.00 * 60.00 60.00 60.00 60.00
N13 55.00 * 55.00 * 55.00 * 55.00 * 40.00 52.00
N14 75.00 50.00 55.00 80.00 * 75.00 67.00
N15 70.00 60.00 75.00 80.00 85.00 * 74.00
N16 70.00 60.00 55.00 65.00 75.00* 65.00
N17 65.00 * 60.00 60.00 60.00 55.00 60.00
N18 65.00 45.00 70.00 * 60.00 70.00 * 62.00
N19 65.00 75.00 * 55.00 60.00 65.00 64.00
N20 75.00 65.00 75.00 85.00 * 85.00 * 77.00
N21 70.00 * 70.00 * 60.00 45.00 55.00 60.00
N22 55.00 70.00 * 55.00 60.00 55.00 59.00
N23 70.00 * 60.00 55.00 70.00 * 55.00 62.00
N24 35.00 75.00 * 55.00 50.00 45.00 52.00

Average 62.50 59.79 58.54 60.63 62.71 * 60.83
*: the best accuracy around the electrodes.

Table 4. The average accuracies by component N2P3 of the experimental trial using mental Shadow-
ing Tasks.

Unit: %

Subjects T3 T4 Fz Cz Pz Average

N01 80.00 65.00 75.00 85.00 * 65.00 74.00
N02 80.00 * 75.00 60.00 65.00 65.00 69.00
N03 75.00 * 55.00 70.00 55.00 70.00 65.00
N04 75.00 75.00 80.00 90.00 * 85.00 81.00
N05 75.00 * 60.00 65.00 70.00 50.00 64.00
N06 55.00 50.00 65.00 75.00 80.00 * 65.00
N07 65.00 60.00 60.00 65.00 75.00 * 65.00
N08 65.00 70.00 75.00 80.00 * 75.00 73.00
N09 70.00 * 60.00 65.00 70.00 * 70.00 * 67.00
N10 70.00 85.00 * 75.00 80.00 80.00 78.00
N11 65.00 45.00 70.00 * 60.00 65.00 61.00
N12 65.00 60.00 80.00 * 65.00 60.00 66.00
N13 60.00 60.00 60.00 45.00 70.00 * 59.00
N14 65.00 90.00 * 70.00 75.00 90.00 * 78.00
N15 55.00 70.00 75.00 65.00 85.00 * 70.00
N16 80.00 * 60.00 55.00 60.00 80.00 * 67.00
N17 65.00 65.00 75.00 85.00 * 75.00 73.00
N18 55.00 65.00 75.00 85.00 90.00 * 74.00
N19 65.00 90.00 * 70.00 80.00 80.00 77.00
N20 70.00 85.00 * 80.00 80.00 70.00 77.00
N21 70.00 75.00 65.00 80.00 * 55.00 69.00
N22 85.00 * 65.00 75.00 65.00 60.00 70.00
N23 80.00 * 70.00 55.00 65.00 70.00 68.00
N24 35.00 45.00 55.00 60.00 * 50.00 49.00

Average 67.71 66.67 68.75 71.04 71.46 * 69.13
*: the best accuracy around the electrodes.

44



Appl. Sci. 2023, 13, 856

 

Figure 8. The potential differences between the target and non-target using components N200, P300,
and N2P3 of ERPs to classify data from the five electrodes.

Component N2P3 was used to analyze the output of the EEG online. The experimental
results in Tables 2–4 demonstrate the correctness of the system’s experimental setup: the
N2P3 features enabled the best discrimination. Table 5 displays the paired samples t-test
results between the target and non-target options regarding accuracy and potential. These
results indicate that component N2P3 can discriminate the features of ERPs well. Thus,
component N2P3 is the optimal ERP for interpretation.

Table 5. Paired samples t-test results of all trials between the target and non-target options regarding
accuracy and potential.

α = 0.01, N = 480

Components Electrode Case
Accuracy (%) Potential (μV)

T-Value p-Value T-Value p-Value

N200

T3
target

vs.
non-target

2.335 0.028 −0.1772 0.859
T4 3.366 0.002 * −1.237 0.217
Fz 6.915 0.000 *** −3.971 0.000 ***
Cz 5.159 0.000 *** −2.249 0.025
Pz 2.298 0.031 * −0.576 0.565

P300

T3
target

vs.
non-target

5.873 0.000 *** 2.521 0.012
T4 5.113 0.000 *** 1.021 0.308
Fz 3.743 0.001 * 0.028 0.977
Cz 4.335 0.000 *** 2.011 0.045 *
Pz 4.663 0.000 *** 2.792 0.005 *

N2P3

T3
target

vs.
non-target

7.935 0.000 *** 4.288 0.000 ***
T4 6.496 0.000 *** 3.046 0.002 *
Fz 11.327 0.000 *** 4.224 0.000 ***
Cz 9.182 0.000 *** 4.522 0.000 ***
Pz 9.245 0.000 *** 4.160 0.000 ***

* p < 0.05; *** p < 0.001.
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In addition, from the N2P3 results for online output (Table 4), the best-performing
electrode Pz and the worst-performing electrode T3 were subjected to paired samples t-test.
The mean between Pz and T3 did not reach a significant level (Table 6). So, we inferred that
all five points are suitable for sampling electrode points.

Table 6. Paired samples t-test results of average accuracies for every trial between the best and worst
electrodes.

α = 0.01, N = 480

Component Case T-Value p-Value

N2P3 T4 vs. Pz −1.809 0.084

3.2.2. Accuracy Analyses via Neural Network

The experimental results in Tables 2–4 show that the average accuracy (correct rate) is
not consistent across the five electrodes of each participant, and there are high individual
differences among the users. Therefore, we use a NN technology for classification and
identification to identify the best prediction function for each participant and perform
the validation with a 5-fold cross-validation method (Table 7). The accuracy rendered
in boldface is the best among the three components of the ERPs for each participant,
respectively.

Table 7. Average accuracies based on the NN analysis.

Unit: %

Subjects N200 P300 N2P3

N01 70.00 95.00 * 90.00
N02 85.00 * 55.00 85.00 *
N03 60.00 75.00 80.00 *
N04 70.00 60.00 85.00 *
N05 65.00 65.00 70.00 *
N06 65.00 60.00 85.00 *
N07 70.00 * 70.00 * 70.00 *
N08 60.00 80.00 * 80.00 *
N09 60.00 65.00 80.00 *
N10 80.00 70.00 85.00 *
N11 50.00 80.00 * 65.00
N12 55.00 70.00 75.00 *
N13 75.00 * 65.00 75.00 *
N14 70.00 75.00 80.00 *
N15 70.00 90.00 * 75.00
N16 45.00 70.00 75.00 *
N17 80.00 55.00 85.00 *
N18 75.00 80.00 90.00 *
N19 70.00 65.00 85.00 *
N20 65.00 80.00 85.00 *
N21 65.00 85.00 * 85.00 *
N22 60.00 65.00 80.00 *
N23 70.00 * 65.00 70.00 *
N24 65.00 * 50.00 60.00

Average 66.67 70.42 78.96 *
*: the best accuracy around the components.

The average accuracy across all the participants via the NN analysis using the data
from component N2P3 was 78.96%, which is better than the accuracies of the other two
components.
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3.2.3. Analysis of the Average Accuracies of the ERP Components

Table 7 shows the average accuracies of the three ERP components using NN analysis.
The average accuracy of using the N2P3 component to discriminate the data from the same
electrodes is better than that obtained using the P300 or N200 components. Each electrode
gained the same results, as shown in Table 8. As expected, after the computer calculates the
results, the average accuracy using the NN analysis is better than that of each electrode
as well.

Table 8. Comparison of the average accuracy of three ERP components (N2P3, P300, and N200).

Dependent Variable: Average Accuracies Unit: %

Components T3 T4 Fz Cz Pz NN Technology

N200 54.79 58.33 63.96 60.83 54.58 66.67
P300 62.50 59.79 58.54 60.63 62.71 70.42
N2P3 67.71 66.67 68.75 71.04 71.46 78.96

We also verify whether the difference among average accuracies of three components
calculated by the NN technology (Table 7) reaches significance, as shown in Table 9.

Table 9. Multiple comparison of the average accuracies calculated by the NN technology.

Dependent Variable: Average Accuracies from the Analysis of NN Technology

Electrode(I) Electrode(J) Mean Discrepancy(I-J) p-Value

N2P3
N200 12.29167 *** 0.000 ***

P300 8.54167 * 0.011 *

P300 N200 3.75000 0.400
* p < 0.05; *** p < 0.001.

3.2.4. Effect of Gender Voice Differences on Accuracy

In the experimental process, the system simultaneously sent a pair of audio stories
through the left and right sides of the headphones for participants to listen to during
each trial. There are twelve audio stories, six recorded in a male voice and six in a female
voice. The auditory stimuli may or may not be the same-gender voice combination. A
different-gender voice combination (DG) sends one male voice and one female voice
simultaneously. The same-gender voice combination (SG) presents two male (or female)
voices simultaneously. Next, we compared whether the auditory stimuli of different-gender
voices or same-gender voices affected the accuracy, as shown in Table 10.

Table 10. The average accuracies using different-gender (DG) and same-gender (SG) voices.

Unit: %

Subjects
N200 P300 N2P3

DG SG DG SG DG SG

N01 46.00 64.00 82.00 62.00 88.00 60.00
N02 68.00 72.00 48.00 32.00 72.00 66.00
N03 44.00 60.00 60.00 64.00 60.00 70.00
N04 62.00 74.00 60.00 50.00 82.00 80.00
N05 46.00 58.00 52.00 54.00 60.00 68.00
N06 62.00 48.00 44.00 66.00 64.00 66.00
N07 64.00 54.00 56.00 60.00 60.00 70.00
N08 60.00 56.00 68.00 68.00 70.00 76.00
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Table 10. Cont.

Unit: %

Subjects
N200 P300 N2P3

DG SG DG SG DG SG

N09 62.00 46.00 64.00 54.00 72.00 62.00
N10 56.00 60.00 66.00 54.00 86.00 70.00
N11 66.00 30.00 56.00 72.00 64.00 58.00
N12 34.00 64.00 60.00 60.00 52.00 80.00
N13 66.00 66.00 62.00 42.00 64.00 54.00
N14 52.00 68.00 84.00 50.00 78.00 78.00
N15 60.00 58.00 78.00 70.00 78.00 62.00
N16 44.00 52.00 64.00 66.00 60.00 74.00
N17 62.00 72.00 68.00 52.00 72.00 74.00
N18 58.00 72.00 66.00 58.00 70.00 78.00
N19 70.00 64.00 62.00 66.00 80.00 74.00
N20 48.00 64.00 82.00 72.00 78.00 76.00
N21 58.00 64.00 54.00 66.00 64.00 74.00
N22 48.00 68.00 66.00 52.00 62.00 78.00
N23 66.00 48.00 68.00 56.00 76.00 60.00
N24 62.00 62.00 60.00 44.00 56.00 42.00

Average 56.83 60.17 63.75 57.92 69.50 68.75

t-test p = 0.2827 p = 0.0353 * p = 0.7764
* p < 0.05.

After the paired samples t-test, there are no significant difference between the accu-
racies of different-gender voice combinations and same-gender voice combinations using
components N200 and N2P3 except for P300 (p = 0.0353 * < 0.05). Additionally, the paired
samples t-test results of the correct chosen R and the correct chosen L for all trials show no
significant difference between the accuracies (Table 11).

Table 11. Paired samples t-test results of average accuracies for every trial between correct selected R
and correct selected L.

α = 0.01, N = 480

Case T-Value p-Value

N200 correct selected R vs.
correct selected L 1.066 0.292

P300 correct selected R vs.
correct selected L −0.639 0.525

N2P3 correct selected R vs.
correct selected L −0.289 0.774

This result implies that accuracy is not affected by the gender voice combination played
in each headphone if the system uses component N2P3 to distinguish EEG output data.

3.2.5. Effect of the Different Gender of Subjects on Accuracy

Twenty-four healthy people, seven females, were involved in the study and completed
all experimental processes. Next, we compared whether the different gender of subjects
affected the accuracy, as shown in Table 12.

After the independent samples t-test, there are no significant difference between the
accuracies of different gender of subjects using components P300 and N2P3 to distinguish
except for using component N200 (electrodes Fz, Cz, and Pz). This result implies that
accuracy is not affected by the gender of users if the system uses component N2P3 to
distinguish EEG output data.
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Table 12. Independent samples t-test results of all trials between girls and boys.

α = 0.01, N = 340 for Boys and 140 for Girls

Components Electrode Case T-Value p-Value

N200

T3 boys vs. girls −1.193 0.246
T4 boys vs. girls −0.327 0.746
Fz boys vs. girls −4.405 0.000 ***
Cz boys vs. girls −2.348 0.028 *
Pz boys vs. girls −2.116 0.045 *

NN boys vs. girls −1.398 0.176

P300

T3 boys vs. girls 0.564 0.590
T4 boys vs. girls −1.284 0.212
Fz boys vs. girls 0.586 0.564
Cz boys vs. girls 1.328 0.226
Pz boys vs. girls 0.973 0.341

NN boys vs. girls 0.709 0.486

N2P3

T3 boys vs. girls 0.983 0.336
T4 boys vs. girls −1.600 0.124
Fz boys vs. girls −0.203 0.841
Cz boys vs. girls −1.788 0.088
Pz boys vs. girls 0.201 0.842

NN boys vs. girls −1.303 0.206
* p < 0.05; *** p < 0.001.

3.3. Bit-Rate Analysis

Table 13 shows the bit rate of the trials from these five electrodes and the NN technol-
ogy. The average bit rate of the study is lower than that of other studies [13].

Table 13. Comparison of the bit-rate of three ERP components (N2P3, P300, and N200).

Dependent Variable: Average Bit-Rate

Components T3 T4 Fz Cz Pz NN Technology

N200 0.0114 0.0345 0.0977 0.0585 0.0104 0.1401
P300 0.0781 0.0477 0.0363 0.0563 0.0808 0.2123
N2P3 0.1585 0.1401 0.1782 0.2260 0.2353 0.4418

4. Discussion

Almost all researchers in this field have tried to promote the efficiency of their aBCI
systems through various methods [17,41,45,47,48]. So, improving the efficiency of our
aBCI is a primary task in the study as well. The accuracy of an aBCI system is deeply
affected by three primary factors. First, is the stimulus appropriate? Second, are the
positions of electrodes to obtain the brainwave data appropriate? Finally, should the system
select which ERP components (N2P3, P300, and N200) to interpret the data of the user’s
brainwaves online to achieve the best system efficiency?

Related research has sprung up like mushrooms after rain to solve the above problems.
We reviewed several studies similar to this one to discuss their strengths and weaknesses,
as shown in Table 14. The further discussion showed in the text description after the table.

Because of human hearing function, two factors affect the performance of the BCI
system: whether the target sound stimulus attracts the user’s attention and whether the
user can easily distinguish the target sound stimulus from the non-target stimuli. The work
of Domingos et al. also showed that performing an attention task in an intermittent noisy
or silent room had different results. It could be that humans are unaware of all the noise
surrounding them every second, but if we deprive them of it, it can be worse [21].
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Table 14. A comparison of the advantages and drawbacks of the proposed method with other studies.

References
Stimulation

Modality
Electrodes Subjects Advantages Drawbacks

[46]
P300

Spatial real,
virtual sounds

Cpz, Poz, P3, P4,
P5, P6, Cz, Pz in
10/10

9 HS

Both stimuli types generate
different event-related
potential response patterns
allowing for their separate
classification.

1. Too few people
participated in the
experiment.

2. This analysis was
more complicated,
based on 8 electrodes.

[48]
P300

Spatial vs.
non-spatial

F3, Fz, F4, T7, C3,
Cz, C4, T8, Cp3,
Cp4, P3, Pz, P4,
PO7, PO8, Oz

16 HS

Training improves
performance in an auditory
BCI paradigm. Motivation
influences performance and
P300 amplitude.

1. This analysis was
more complicated
based on 16 electrodes.

2. Average accuracy
< 80%

[17] P300
Spatial auditory

32 channels in the
extended 10–20
system

9HS

ErrP-based error correction
can be used to make a
substantial improvement in
the performance of aBCIs.

1. Too few people
participated in the
experiment.

2. This analysis was
more complicated,
based on 32 electrodes.

[41]
ASSR+P300
Earphone
auditory

Fz, Cz, Pz, P3, P4,
Oz, T3 and T4 10 HS

The average accuracy of the
hybrid system is better than
that of P300 or ASSR alone.

1. Too few people
participated in the
experiment.

2. This analysis was
more complicated,
based on a hybrid
system.

[45]
ASSR

Earphone
auditory

Cz, Oz, T7, and T8 6 HS
The average classification
accuracies online were
excellent, more than 80%.

1. Too few people
participated in the
experiment.

2. This analysis was
more complicated,
based on the ASSR
method.

[31]
P300

Headphone
auditory

Fz, Cz, Pz, Oz, P3,
P4, PO7, PO8 10 HS

Mental repetition can be a
simpler alternative to the
mental count to reduce the
mental workload.

1. Too few people
participated in the
experiment.

2. This analysis was
offline.

[16] Speakers 19 channels 12HS

Multi-loudspeaker patterns
through vowel and numeral
sound stimulation provided
an accuracy greater than
85% of the average accuracy.

1. Too few people
participated in the
experiment.

2. This analysis was
more complicated,
based on 19 electrodes.

The
proposed
method

P300
Headphone

auditory
T3, T4, Fz, Cz, Pz 24HS

The method of mental
shadowing tasks helps the
user focus on the option he
wants with ease to reduce
the mental workload.

Average accuracy = 78.69%,
and it will be better if the
accuracy rate can be higher.

We decided to use audio stories as sound stimulation to improve user motivation
and use headphones to deliver the audio stories to enable the user to concentrate on
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and repeat the keywords in the stories. In our previous work [14], we invited seven
participants familiar with a BCI system to test our aBCI system. We found the discriminative
features in ERPs from the aBCI system are traceable, as shown in Figure 4. The features of
P300 and N200 using audio story stimulation and the Shadowing Tasks mechanism were
more distinct than those using other methods. These results encouraged us to perform a
subsequent study of the aBCI system.

In addition, to a decline in mental workload, we shift the usual Shadowing Tasks
paradigm [14]: instead of loudly repeating the auditory target stimuli, we ask subjects to
echo the target stimuli mentally as it occurs [31]. We call this approach, different from those
of previous studies, the mental Shadowing Tasks mechanism.

This study used twelve audio stories, six recorded by male and six by female voices.
The number of audio stories is greater than that of our previous work [14]. According to
the post-analysis, we found that the gender of the story voice did not affect the participants’
attention or the average accuracies using N2P3 to distinguish the EEG data, as shown in
Table 10.

Most aBCI studies use more than eight electrodes to collect data [17,31,38,41,47,48,62].
To reduce user discomfort, we used only three electrodes, Pz, Cz, and Fz, to sample the
user’s brainwaves via EEG equipment in our previous work [14]. In this study, referenc-
ing [16,17,49] and passing through multiple experiments, we selected five electrodes to
collect the data: T3, T4, Pz, Cz, and Fz. From Tables 5 and 6, we inferred that all five points
are suitable for sampling electrode points.

In the study, we invited 24 participants who had never used a BCI system to test our
aBCI system. Tables 2–4 show the average accuracies of EEG data from each electrode
for each participant. While the average accuracies are better than chance, the average
accuracies are not consistent across the five electrodes of each participant, and there are high
individual differences among the participants as well. Therefore, we used a neural network
for classification and identification to identify the best prediction function for each user to
improve the user’s accuracy when using the system. Table 7 shows the average accuracies
via the NN analysis. NN analysis does raise all accuracies. The average accuracies for
most participants using the data from component N2P3 were the highest among the three
components via the NN analysis. The average accuracy across all participants was 78.96%
((921 + 974)/2400, shown in Table 15).

Table 15. The frequency distribution of sound stimuli in the right and left ear using the NN technology
to classify the data gained from component N2P3.

N2P3
Specified Condition

Total
R L

Classification
result

R 921 226 1147

L 279 974 1253

Total 1200 1200

The output of the designed experiment comes from one of two options, R or L. It is
different from the example of a medical test for diagnosing a condition that is positive
or not. So, we set the right/left ear stimulus as the target and the left/right ear as the
non-target, set different thresholds for the values of ERPs, and then obtained a sequence of
confusion matrices and the ROC curve (Figure 9). Based on the ROC curve, we find the
best cut-off score (accuracy) = 78.32%, slightly lower than that obtained by ANN (=78.96%).
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Figure 9. The ROC curve by setting the right ear stimulus as the target and the left ear stimulus as
the non-target.

Further, the best result of confusion matrices is the precision = 80.02%, sensitivity =
76.75%, specificity = 79.89%, and recall = 76.62% [63].

In addition to auditory stimulation and sampling electrodes, another factor affecting
the performance of a BCI is the interpretation of the ERPs. This study analyzed the data
of each electrode using three ERP components (N2P3, P300, and N200). Which ERP
component should the aBCI system use to interpret the data of the user’s brainwaves
online? Table 8 shows the average accuracies across all participants for each electrode
(including the average accuracies obtained by the NN analysis). This analysis showed
that the average accuracy using component N2P3 to discriminate is the best. Table 8 also
indicates that no matter which electrode is used, as long as the system uses component
N2P3 to discriminate the data, we obtain better results. This result is consistent with the
results of our vBCI experimental [13]. According to Table 9, the average accuracies of using
the three components to discriminate the data from the same electrodes is significantly
different. The accuracy using component N2P3 remains the best.

Searching for suitable ERP features and algorithms to raise the information transfer
rate (ITR) attracts the most activity in BCI research [64]. Based on Höhne et al., the stimuli
should exist long enough to evoke the sound-evoked potential. However, if the system
uses much longer stimulation, the inter-command intervals will be extended, resulting in
lower information–transfer–rates (ITR) [38]. Unacceptably low ITR in this study, as shown
in Table 13, is one of the items that the subsequent systems need to improve. Increasing
ITR will thus be a target of future research. Perhaps the number of keywords should be
reduced from 7 to 5 or 4, or the stories shortened.

Finally, in this study, we noticed that the occurrence of the ERPs components varies
from person to person, as shown in Figures 4 and 8. Ref. [65] implemented a thorough test
for the audio-visual, visual, and auditory spatial speller paradigms. One of the results is the
latencies of auditory-based P300 peaks were longer than those of visual-based P300 peaks,
from 250ms to 600ms. Those latencies both occur in target and non-target stimulation. The
sampling time of the P300 and N200 components in our aBCI system is different from that
of the ERPs diagram of our vBCI system [13], similar to the works of Chang et al. [65] and
Marassi et al. [31]. The sampling time of brainwaves for some users is delayed and varies
from person to person (Figure 10). That is also an issue for our follow-up research.
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Figure 10. The delay situation of the components P300 and N200 in ERPs: The latencies of auditory
P300 (marks 3 and 4) and N200 (marks 1 and 2) responses are longer than the theoretical latencies.
The average waveforms at T3 is the first stage output of the 5th test run from participant N01.

5. Conclusions

The shadowing tasks of cognitive science can effectively improve users’ concentration.
This study applied this principle to help the user focus more on the target stimuli during
using the auditory BCI, which improved the recognition accuracy of this system. So, the
shadowing tasks approach is a primary innovation of this study.

The shadowing tasks proposed by Cherry elicited increased bilateral activation pre-
dominantly in the superior temporal sulci [55]. Additionally, mental repetition can be a
simpler alternative to the mental count to reduce the cognitive workload [31]. Therefore,
we proposed using mental shadowing tasks to increase the sound-evoked potential of EEG.
Further, motivation influences performance and P300 amplitude [48], so we use audio
stories to cause and enhance the motive of users.

Patients, such as those at the terminal stage of ALS, cannot use the visual-based BCI
system due to the functional loss of muscle activities such as eye movement [15]. Our aBCI
system wants to address this situation. Hence, this study focuses on the aBCI paradigm
based on the Shadowing Tasks. We hope to develop an auditory BCI home care system.

The study adopts an event-related potential paradigm that combines motion-onset
and oddball presentation. This ERP pattern uses components P300 and N200 [9] and the
component N2P3 that we identified [13,14].

We compare the average accuracy of each electrode to confirm the performance of the
data from each electrode. We also contrasted the interpretation capabilities of components
N2P3, P3, and N2. Our results show that the accuracy improves. The efficiency is better
than the efficiency obtained using the sound stimuli consisting of periodic click sounds.
The average accuracy of each subject exceeded the theoretical chance levels (Table 7).
When we interpret the data gained from component N2P3 via the NN technology, the
average accuracy reaches 78.96%. Farther, the average accuracies for five users out of eight
exceeded 80%. The preliminary results for audio story stimulation with mental Shadowing
Tasks are a step forward compared with current state-of-the-art aBCI applications. This
result encourages us to conduct future research into aBCI systems with Shadowing Task
paradigms for possible inclusion in practical online applications.

Finally, the lower ITR needs to be improved. Therefore, research on more efficient stim-
uli types for BCI based on the mental Shadowing Tasks is necessary. Future studies should
include the stories of the mental Shadowing Tasks, the sampling time of the component
P300 and N200 optimization for handicapped or bedridden subjects, and the algorithms
to increase information transfer rates. We intend to persist in this study and involve the
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protocol in an aBCI-based home care system (HCS) for target patients to provide daily
assistance without gaze control with their environment.
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Abstract: Freezing of gait (FOG) severely incapacitates the mobility of patients with advanced
Parkinson’s disease (PD). An accurate prediction of the onset of FOG could improve the quality
of life for PD patients. However, it is imperative to distinguish the possibility of the onset of FOG
from that of voluntary stopping. Our previous work demonstrated the neurological differences
between the transition to FOG and voluntary stopping using electroencephalogram (EEG) signals. We
employed a timed up-and-go (TUG) task to elicit FOG in PD patients. Some of these TUG tasks had
an additional voluntary stopping component, where participants stopped walking based on verbal
instruction to “stop”. The performance of the convolutional neural network (CNN) in identifying the
transition to FOG from normal walking and the transition to voluntary stopping was explored. To the
best of our knowledge, this work is the first study to propose a deep learning method to distinguish
the transition to FOG from the transition to voluntary stop in PD patients. The models, trained on
the EEG data from 17 PD patients who manifested FOG episodes, considering a short two-second
transition window for FOG occurrence or voluntary stopping, achieved close to 75% classification
accuracy in distinguishing transition to FOG from the transition to voluntary stopping or normal
walking. Our results represent an important step toward advanced EEG-based cueing systems for
smart FOG intervention, excluding the potential confounding of voluntary stopping.

Keywords: freezing of gait; Parkinson’s disease; voluntary stopping; convolutional neural network;
EEGNet; Shallow ConvNet; Deep ConvNet

1. Introduction

Freezing of gait (FOG) is a gait impairment resulting from neurodegeneration in
advanced Parkinson’s disease (PD) patients. Nieuwboer and Giladi [1] defined FOG as
the “inability to deal with concurrent cognitive, limbic and motor inputs, causing an
interruption of locomotion”. This episodic gait difficulty causes the patients to suddenly
experience the feeling that their feet are “stuck to the ground” [2] while walking or initiating
gait. This increases the risk of falling, negatively affecting the patient’s quality of life.

FOG can be triggered by simple activities such as gait initiation, walking through
a doorway, encountering obstacles in the pathway, or even performing a dual-task while
walking [3,4]. Therefore, accurate and timely detection of FOG can significantly enhance
the quality of life for PD patients. An automatic prediction of FOG can provide neurologists
with relevant indicators about the condition and its evolution [5]. Furthermore, freezing
episodes can be mitigated or prevented with external intervention, such as visual or
auditory cues, activated by predicting the onset of FOG.
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FOG detection is still a widely researched topic, with attempts made by several combi-
nations of devices and algorithms. The first automatic detection of FOG was proposed by
Moore et al. [6] using frequency-based features from accelerometer signals. This work was
extended to improve the detection accuracy and developed as a FOG monitoring system
with smartphones and wearable accelerometers [7]. Accelerometers [8,9], gyroscopes [8]
and inertial data [10,11] have been employed for automatic FOG detection [9].

Several researchers attempted the early detection of FOG as it benefits intervention
strategies. Handojoseno et al. [12] detected the onset of FOG based on EEG wavelet energy
and entropy features. The onset of FOG was also detected by a sensor placed on the lower
limb of the patient [13]. Electrocardiogram and skin conductance were used to predict the
onset of FOG [14].

An efficient FOG detection system should not only be able to predict the onset of
FOG, but it should also be able to distinguish involuntary stopping from the transition to
voluntary stopping. The potential of brain dynamics in discerning the onset of freezing in
PD patients has already been established [12]. However, earlier researchers relied on a 5 s
window to discern the transition to freezing from normal walking [15,16].

Recently, we discovered that EEG signatures for transition to FOG are distinct from
the intention to stop [17]. We observed an increase in the delta, theta, and beta power at the
central region during the transition to freezing compared to normal walking. The transition
to voluntary stopping was observed to show increased EEG power at the frontal, central,
parietal, and occipital regions compared to the transition to FOG. Accurate detection of the
transition to FOG from potential confounding transitions to voluntary stopping and normal
walking is still challenging because of the complexity of designing handcrafted features.

In order to determine the differences in brain activity during the transition to freezing
and the transition to stopping, we employed the classical timed up-and-go (TUG) task [18]
in our experiment. The TUG protocol involves the participants starting from a sitting
position to standing before walking towards an identified point and then turning back there
to return to the starting position. This sequence of steps followed in the TUG protocol elicits
freezing episodes, particularly when performed in that order [19]. In order to incorporate
the transition to stopping in our experiment, we included TUG trials with voluntary stop
conditions. In the TUG trials with voluntary stop, the participants were verbally instructed
to “stop”. We contrasted the brain dynamics of the patients while walking normally,
transitioning to freezing, transitioning to voluntary stopping, and during freezing episodes
and voluntarily stopping. Discerning the brain dynamics during the transition to freezing
from normal walking or the transition to voluntary stopping could pave the way towards
improved therapeutics that accurately predict the possibility of freezing while excluding
potentially confounding voluntary stopping instances.

Our aim is to perform automatic feature learning and distinguish between normal gait,
transition to FOG, and transition to voluntary stopping. Deep learning (DL) methods are
feature learning methods that are not constrained by the engineering ability of handcrafted
features or the complexity of the data representation. ConvNets are a type of feed-forward
deep neural network, which typically combines convolutional layers with traditional dense
layers to reduce the number of weights composing the model. The proposed system
eliminates the need to extract features and feature selection manually. We evaluated three
classical convolutional neural network (CNN) models: EEGNet [20], Shallow ConvNet [21],
and Deep ConvNet [21] to detect FOG.

2. Materials and Methods

2.1. Subjects

Seventeen patients from the Parkinson’s Disease Research Clinic at the Brain and
Mind Centre, University of Sydney, participated in this study. The University of Sydney
Ethics Committee provided ethics approval for this experiment (HREC approval number:
2014/255). All participants for the study were chosen based on the score for the third item
on the self-reported FOG questionnaire and assessment of a clinical specialist. The mean
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age of the participants was 64 ± 7.25 years, and none had any depression or dementia, as
assessed by neurologist Simon J. G. Lewis using the DSM-IV criteria. Furthermore, the
participants had a Mini-Mental State Examination (MMSE) score ≥ 24 and fulfilled the UK
Parkinson’s Disease Society Brain Bank (UKPDSBB) criteria [15,17]. Furthermore, these
participants had a varying severity and frequency of freezing and, when in their practically
defined off period, having withdrawn PD medications overnight, had an MDS Unified
Parkinson’s Disease Rating Scale III stage of 40.10 ± 12.21 and a Hoehn and Yahr stage of
2.34 ± 0.73.

2.2. Experimental Design

The patients were in their off state, having had no medications for at least 12 h when
they participated in this study. They performed the TUG task, starting with the participants
seated. The participants were instructed to stand up and walk towards a target location in
a large corridor. The target location was marked on the floor using a box with dimensions
of 0.6 m × 0.6 m, positioned 6 m away from the starting position to allow for multiple FOG
episodes. The participants were instructed to turn within the marked box. In the TUG
tasks, the participants were asked to perform either a 180° or a 540° turn. Turning within
a box elicits freezing episodes in PD patients. The researcher initially demonstrated the
task and the direction to turn within the box, and the participants followed the researcher’s
example. The experiment was video recorded and reviewed by two clinical researchers to
identify freezing episodes.

As described in [17], we considered two variants of the TUG task: the classical TUG
task and the TUG task with a voluntary stopping element. As shown in Figure 1A, the
classical TUG task was employed as it elicits freezing in PD patients [19]. We considered
two seconds immediately preceding the freezing episode as the transition to freezing. The
period of two seconds before this transition period was regarded as normal walking.

In the TUG tasks with the voluntary stopping element (Figure 1B), the researcher
guided the participant in the voluntary stopping by providing verbal instructions such
as “stop” and “walk”. In these TUG trials, the target box was located 10 m away from the
starting position. The box was located 10 m from the starting position in these TUG tasks so
as to prevent participants from anticipating exactly when they might receive the instruction
to stop walking. Furthermore, verbal instructions to stop walking were generally provided
to the participants while they were walking back to the chair after turning inside the box.
The participants were required to stop as soon as they heard the researcher say “stop”, and
they resumed walking when the researcher said “walk”, usually in 5–10 s. We defined
two seconds when the researcher said “stop” and the participants were preparing to stop
walking as the transition to voluntary stop. We also considered two seconds before the
“stop” instruction as normal walking. The participants were randomly asked to perform
a standard TUG task or TUG task with voluntary stopping to avoid any habituation effects.

Even though we strived to have an equal number of normal walking, transition to FOG,
and voluntary stopping, this was not accomplished. The well-being of the patients was
given the top priority, and we stopped the experiment for any PD patients who expressed
difficulty in continuing with the experiment. Hence, we could not collect an equal number
of trials for normal walking, transitions to FOG, or voluntary stopping. Table 1 shows the
number of normal walking trials, the number of transitions to FOG, and the transitions to
voluntary stopping for each participant.
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Figure 1. Experimental paradigm of (A) standard TUG task. (B) TUG task with verbal instructions to
“stop” and “walk” to facilitate voluntary stopping. TF denotes the transition to FOG, and TS denotes
the transition to voluntary stopping.

Table 1. Participant-based count of normal walking, transition to FOG, and transition to volun-
tary stopping.

Subject No.
No. of Normal

Walking Epochs
No. of Transition to

FOG Epochs

No. of Transition
Voluntary Stopping

Epochs

1 11 8 3
2 12 8 4
3 1 1 0
4 33 33 0
5 5 2 3
6 8 5 3
7 7 1 6
8 15 11 4
9 8 8 0
10 23 23 0
11 5 0 5
12 30 24 6
13 3 0 3
14 15 15 0
15 33 26 7
16 7 1 6
17 17 12 5

2.3. Equipment

The EEG data were collected from the participants using a 32-channel BioSemi Active-
Two system (Biosemi Systems, Amsterdam, The Netherlands). The placement of the
electrodes was per the International 10–20 system. The patient’s skin was prepared by
washing with 70% isopropyl alcohol, and data were recorded at a 500 Hz sampling rate.
The clinical researchers used ELAN tagging software [22] to tag the precise time of each
freezing episode, and the events’ information was later imported to EEG manually.
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2.4. EEG Processing

The EEGLAB toolbox [23] was used for processing EEG data, as shown in Figure 2.
The raw EEG was band-pass filtered between 1 and 30-Hz to eliminate low- and high-
frequency noises. The line noise was removed with the pop_cleanline function in EEGLAB.
Further, channels with at least three seconds of flatlines were corrected with clean_flatlines
functions, and all channels were cleaned with clean_channels. There were 3 ± 0.5 channels
removed on average, and these channels were interpolated. Afterwards, normal walking,
transition to FOG, and transition to voluntary stopping trials were extracted to provide
input to the deep learning models.

Figure 2. EEG preprocessing and feature extraction for DL models.

In this study, a total of 178 trials of transition to FOG episodes, 55 transitions to
voluntary stopping, and 233 trials of normal walking were extracted from the continuous
EEG data of 17 subjects. These transitions to FOG were extracted from both standard TUG
and TUG tasks for voluntary stopping based on the occurrence of FOG episodes, and each
trial was 2 seconds in length. These data were reformatted to a matrix with the shape
number of trials × time points × number of channels format (466 × 1000 × 30) before
providing it to the DL models.

We also performed two-class classifications with the transitions to FOG and the tran-
sition to voluntary stopping. This matrix was with the shape number of trials × time
points × number of channels format (233 × 1000 × 30) before providing to the DL models.

We performed a grid search to select the optimal hyperparameters for the three CNN
models: EEGNet, Shallow ConvNet, and Deep ConvNet. The data were shuffled and
randomly divided into three separate sets, the training (60%), validation (20%), and testing
sets (20%). The performances of these models were obtained by 5-fold cross-validation.
We also performed leave-one-subject-out cross-validation to evaluate the performance of
these models.

3. Results and Discussion

Classification Performance

For two-class classification, all models achieved acceptable performances with high
sensitivity and specificity, as shown in Table 2. Leave-one-subject-out (LOSO) classification
results for the transition to FOG vs. transition to voluntary stopping are shown in Table 3.
The undesirable coh-kappa values might be due to the unbalanced classes. Further, all
models achieve acceptable performance for three-class classification with high sensitivity
and specificity, as shown in Table 4. LOSO classification results for the three-class problem
are shown in Table 5.

Our models were trained with a relatively small dataset with an unbalanced number
of trials in the three classes, which might have adversely affected the performance of these
data-hungry models. Deep ConvNet performed better than EEGNet or Shallow ConvNet
because of its greater depth, while EEGNet and Shallow ConvNet might have been more
susceptible to noise from the raw EEG data, as they are compact and shallower, degrading
the features and resulting in poorer performance.

In earlier works, the period of four seconds prior to freezing was considered as the
transition to freezing [15]; however, we considered a shorter window for the transition to
freezing [17]. This shorter transition period might have more clinical practicality as brain
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dynamics dynamically change within a short period. Therefore, by employing a sliding
window of two seconds, our results demonstrate that we might be able to identify the
transition to freezing from normal walking or the transition to voluntary or intentional
stopping. Further, we considered the raw EEG data with minimal data processing to
allow for real-time prediction of the onset of FOG. However, employing sophisticated
advancements in EEG analysis methods might further improve classification accuracies.

We employed CNN models to detect the transition to FOG or the onset of FOG from the
potential confounding intention to stop and normal walking conditions. The distinct brain
dynamics during the transitions to FOG and voluntary stopping episodes were exploited
in a system design. These classification models are valuable in developing compensatory
systems that preserve and advance alternate neural pathways to assist gait in PD patients.
Therefore, with an accurate and reliable prediction of freezing, cueing strategies to redirect
attention or prompt movement can help alleviate gait impairment in PD patients [24].

Further, the advances in wearable technology have made it possible to deliver a com-
fortable cueing system for PD patients [25,26]. However, despite the development of
several FOG prediction models [14–16], accurately and reliably detecting the onset of freez-
ing remains an open challenge. It is also crucial to avoid the confounding transitions to
voluntarily stopping or normal walking to ensure a robust prediction of freezing onset.

Our findings demonstrated the potential of EEG data in distinguishing FOG onset
from normal gait or initiation of voluntary stopping. Our results will pave the way toward
therapeutic prediction and mitigation of freezing in PD patients. Further, these results aid
and promote investigations of intentional stopping during gait, as a reliable prediction of
intention could be valuable for motor rehabilitation.

Table 2. Five-fold classification performance for transition to FOG vs. transition to voluntary stopping.

Model Accuracy F1-Score Coh-Kappa Sensitivity Specificity

EEGNet 88.09 ± 4.25% 80.09 ± 4.62% 68.30 ± 2.50% 94.42 ± 4.65% 96.21 ± 3.52%
Shallow

ConvNet 89.9 ± 2.31% 89.21 ± 3.94% 70.11 ± 3.91% 96.49 ± 2.97% 94.36 ± 3.60%

Deep
ConvNet 92.28 ± 2.70% 93.02 ± 2.03% 72.94 ± 2.27% 96.89 ± 2.04% 96.91 ± 2.09%

Table 3. LOSO classification performance for transition to FOG vs. transition to voluntary stopping.

Model Accuracy F1-Score Coh-Kappa Sensitivity Specificity

EEGNet 87.28 ± 5.89% 87.61 ± 5.53% 69.19 ± 4.37% 84.89 ± 5.72% 84.16 ± 4.71%
Shallow

ConvNet 87.92 ± 4.3% 82.16 ± 3.02% 71.14 ± 4.84% 86.23 ± 3.71% 85.55 ± 4.62%

Deep
ConvNet 87.83 ± 5.35% 84.81 ± 5.86% 70.6 ± 5% 86.37 ± 3.31% 84.72 ± 2.49%

Table 4. Five-fold classification performance for transition to FOG vs. transition to voluntary stopping
vs. normal walking.

Model Accuracy F1-Score Coh-Kappa Sensitivity Specificity

EEGNet 71.92 ± 5.64% 69.49 ± 5.38% 52.57 ± 4.63% 87.8 ± 5.90% 84.02 ± 4.06%
Shallow

ConvNet 73.68 ± 3.87% 73.53 ± 3.76% 57.14 ± 4.53% 89.28 ± 4.59% 86.2 ± 3.37%

Deep
ConvNet 75.43 ± 1.48% 72.52 ± 1.44% 58.11 ± 1.64% 92.85 ± 1.70% 75.86 ± 1.75%
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Table 5. LOSO Classification performance for transition to FOG vs. transition to voluntary stopping
vs. normal walking.

Model Accuracy F1-Score Coh-Kappa Sensitivity Specificity

EEGNet 70.85 ± 3.25% 70.79 ± 3.86% 52.54 ± 5.89% 83.83 ± 5.65% 82.80 ± 4.13%
Shallow

ConvNet 73.45 ± 3.69% 72.84 ± 3.61% 54.43 ± 4.92% 88.91 ± 5.08% 86.34 ± 5.62%

Deep
ConvNet 74.65 ± 4.19% 71.54 ± 4.7% 57.52 ± 3.42% 91.18 ± 5.04% 74.46 ± 4.79%

4. Conclusions

In this study, we investigated the application of CNN to an end-to-end classification
of transitions to FOG, voluntary stopping, and normal walking. The model automatically
learns the discriminative features for classifying normal walking, transitions to FOG, and
voluntary stop. Furthermore, the convolutional neural network approach removed the need
for feature extraction and selection. This research is the first of its kind, and the reported
classification model could pave the way to detecting the onset of FOG precisely and
effectively. As the transitions to FOG can be accurately distinguished from the transition
to voluntary stopping with just a two-second window, this could enable appropriate
interventions (e.g., cueing) to help the patient avoid freezing. Further, a larger dataset
can improve the performance of the models, and future studies should investigate the
real-time FOG detection performance. This work will expedite the development of future
therapeutic interventions that can reliably predict freezing episodes in PD patients. Future
interventions for FOG must diligently eliminate all false positives from the confounding
voluntary stopping.
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Abstract: Background: The negative effects of high-grade carotid stenosis on the brain are widely
known. However, there are still insufficient data on the brain state in patients with small carotid
stenosis and after isolated or combined coronary and carotid surgery. This EEG-based study aimed to
analyze the effect of carotid stenosis severity on associated brain activity changes and the neurophys-
iological test results in patients undergoing coronary artery bypass grafting (CABG) with or without
carotid endarterectomy (CEA). Methods: One hundred and forty cardiac surgery patients underwent
a clinical and neuropsychological examination and a multichannel EEG before surgery and 7–10 days
after surgery. Results: The patients with CA stenoses of less than 50% demonstrated higher values
of theta2- and alpha-rhythm power compared to the patients without CA stenoses both before and
after CABG. In addition, the patients who underwent right-sided CABG+CEA had generalized EEG
“slowdown” compared with isolated CABG and left-sided CABG+CEA patients. Conclusions: The
on-pump cardiac surgery accompanied by specific re-arrangements of frequency–spatial patterns of
electrical brain activity are dependent on the degree of carotid stenoses. The information obtained
can be used to optimize the process of preoperative and postoperative management, as well as the
search for neuroprotection and safe surgical strategies for this category of patients.

Keywords: carotid stenosis; brain electrical activity; EEG; postoperative cognitive dysfunction;
coronary artery bypass grafting; carotid endarterectomy

1. Introduction

According to the World Health Organization, cardiovascular diseases (CVD), mainly
associated with atherosclerosis, are the leading causes of death worldwide, including in
Russia [1]. The Siberian region shows less favorable CVD epidemiology. Various climatic
and ecological conditions of the region contribute to the high prevalence of this pathol-
ogy [2]. Atherosclerosis often affects multiple vascular basins simultaneously. Significant
atherosclerotic lesions of several vascular basins determine the severity of the disease,
making it difficult to choose the optimal treatment strategy and calling into question the
positivity of the prognosis, in particular, coronary artery disease.

The global population of elderly people has been increasing every year, and the ageing
of the population has posed new and complex challenges for health professionals not only
to increase life expectancy but also to maintain its quality. A high standard of quality of life
cannot be reached without preserving a person’s intellectual functions. It is known that
with age, cognitive functions diminish, and cognitive impairment (CI) develops in the form
of memory loss, attention and executive impairment, etc. [3–5].

Cognitive disorders associated with cerebral and coronary atherosclerosis (vascular
CI) are widespread among older persons and are more severe than age-related cognitive
changes [6–8]. Previous studies have revealed significant interactions between cognitive
disorders developing in the elderly and senile age, atherosclerotic changes in cerebral
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vessels, and accompanying disorders of cerebral blood flow [9,10]. There is evidence that
age-related structural and functional changes in arteries, arterioles and capillaries lead to
dysregulation of cerebral blood flow and ischemia, leading to disruption of the blood–brain
barrier. Additionally, metabolic disorders are developed with reduced delivery of energy
substrates to neurons and excretion of by-products of the protein breakdown, increasing
neuroinflammation and paracrine regulation dysfunction [11,12]. It is suggested that the
atherosclerotic remodeling of the brain vessels can lead to an accelerated progression of
brain dysfunction [11]. In this case, carotid artery (CA) stenosis is one of the factors affecting
self-regulation of brain perfusion [13]. It has been found that patients with vascular CI
often show a decrease in blood flow velocity in the cerebral cortex, especially in the frontal
and parietal regions [14,15]. These brain regions are known to be the watersheds of the
blood supply, at the boundaries between the vascular pools [16–18]. These zones are
more disadvantaged than any other brain region in the case of systolic and/or diastolic
dysfunction of the left ventricle, valvular pathology and atrial fibrillation accompanying
cardiovascular pathology, as well as during cardiac surgery [11,19].

There is a wide variety of epidemiological and clinical data on vascular CI, but only a
few studies have examined changes in the neurophysiological parameters of cardiac surgery
patients [20,21]. At the same time, early manifestations of vascular and postoperative CI
are subclinical and are detected only using an extended neurophysiological examination. In
this regard, careful attention should be paid to the identification of objective and sensitive
criteria for early diagnosis of CI in cardiac surgery patients. It is generally accepted that the
electroencephalogram (EEG) rhythms reflect the activity of the neural network to be placed
under recording electrode [22,23]. As a consequence, the changes in EEG rhythms may be
early indicators of structural and functional abnormalities in neural networks associated
with vascular and postoperative CI.

Previous studies have shown that the frequency–spatial pattern of brain electrical activity
in patients with vascular CI has specific features [8,24,25]. The association between poststroke
alpha slowing and CI, which may be mediated by attentional dysfunction, was revealed [24].
Al-Qazzaz et al. [25] studied the discriminatory characteristics of patients with vascular
CI and healthy individuals using non-linear EEG analysis methods. It was found that the
degree of EEG irregularity and complexity was significantly lower in patients with vascular
CI compared to control subjects. We previously showed that a theta activity increase in
the frontal and occipital sites, as well as high theta/alpha ratios, may be considered as the
earliest EEG markers of vascular cognitive disorders [8]. Moretti et al. proposed several
promising EEG markers that could be important in the differential diagnosis of vascular
and neurodegenerative CI. The alpha3/alpha2 and theta/gamma indices showed prognostic
significance for the progression of the neurodegenerative type of CI [26–28]. The changes in
the electrical activity of neurons in the post-stroke period proved to be promising in the search
for prognostic markers of clinical recovery in patients with ischemic brain damage. A study
by Zappasodi et al. found that a bilateral increase in low-frequency activity and a decrease in
hemispheric asymmetry in the acute phase of a unilateral stroke in the middle cerebral artery
basin predicts a worse functional outcome in the future [29].

However, there is still insufficient information on the modification of the brain electri-
cal activity in cardiac surgery patients. Cardiac surgery has been shown to be associated
with local or diffuse brain damage [21,30–32]. It is assumed that chronic cerebral ischemia
in patients with cardiovascular diseases, as well as episodes of acute ischemia that occur
during on-pump cardiac surgery, can contribute to specific changes in the brain’s electrical
activity. Our previous studies have shown that EEG patterns associated with coronary
artery bypass grafting (CABG) have specific features, depending on the presence of pre-
operative CI or cognitive decline in the early postoperative period [21,33]. We found that
the presence of early POCD was accompanied by negative postoperative dynamics of
EEG parameters with the increase in low-frequency activity. Skhirtladze-Dworschak et al.
found that the occurrence of nonconvulsive status epilepticus after open cardiac surgery is
associated with mitigating secondary brain injury [34].
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Thus, recent studies have shown that the patterns of brain activity are associated with
perioperative brain damage in cardiac surgery patients. However, the role of the severity
of carotid stenosis in the development of the postoperative changes in brain activity and
cognitive functions is uncertain. It has previously been shown that hemodynamically
significant stenoses of CA (70–99%) can be a risk factor for brain damage during cardiac
surgery [31,35]. However, little is known about the effects of small stenoses of CA (<50%)
on the state of the brain in cardiac surgery patients. There have been several research
studies into the negative effects of asymptomatic stenosis of CA on the state of the brain
after cardiac surgery [33,35]. This has resulted in the perception that CA stenoses of less
than 50% are hemodynamically insignificant. Therefore, this has led to insufficient attention
being paid to preoperative management and intraoperative brain protection in patients
with CA stenoses of less than 50%.

There are some data in the literature about the serious neurological complications
(stroke, postoperative delirium, etc.) that occur in the group of patients with hemody-
namically significant stenoses [36,37]. Research studies about the brain activity changes
associated with postoperative cognitive decline in patients with stenoses of the coronary
and carotid arteries are rare, especially after simultaneous cardiac surgery. It is important
to note that the intraoperative episodes of brain ischemia during combined coronary and
carotid revascularization does not necessarily lead to brain damage such as stroke. Mean-
while, less pronounced, diffuse ischemic brain damage may have a significantly higher
frequency. Further, this may lead to a decline in cognitive functions and complicate the
postoperative management of patients undergoing combined cardiac surgery.

In this paper, we will analyze the effect of carotid stenosis severity on associated EEG
changes and the results of neurophysiological examination, including the frequency and
structure of CI, in patients undergoing cardiac surgery (isolated CABG and combined
CABG and carotid endarterectomy (CEA)) in the early postoperative period.

2. Materials and Methods

2.1. Subjects

This study was a prospective, observational cohort investigation. From a cohort of
patients who underwent on-pump coronary surgery in the clinic of the Research Institute
for Complex Issues of Cardiovascular Diseases, a sample of 140 subjects was selected. All
of the patients met the study criteria and signed an informed consent form. The isolated
CABG group consisted of 86 patients, 29 of whom had unilateral CA stenoses of less
than 50%. The CABG+CEA group were divided into two groups: the group of left-sided
CEA+CABG (n = 30) and the group of right-sided CEA+CABG (n = 24) (see Figure 1).

Figure 1. Overview of the study design.
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The inclusion criteria were as follows: Aged between 45 and 74 years and elective isolated
on-pump CABG or combined CABG and CEA. Only right-handed subjects were included in the
study to avoid any influence on cognitive status and EEG data regarding the factor of laterality.

The exclusion criteria were the presence of pathological changes in the central nervous
system, as indicated by the results of multi-layered spiral computed tomography; depressive
symptoms, as identified by the Beck Depression Inventory (BDI-II) (sum scores ≥ 8); dementia,
as indicated by the Mini-Mental State Examination (MMSE) (sum scores ≤ 24) and Frontal
Assessment Battery (FAB) (sum scores ≤ 11); life-threatening arrhythmias; functional class IV
heart failure, according to the New York Heart Association (FC NYHA IV) guidelines; chronic
obstructive pulmonary disease; malignant pathology; diseases of the central nervous system;
brain injury. Patients receiving anxiolytic therapy were also excluded from the study.

All patients underwent standardized physical, neurological, and instrumental exami-
nations. The examiners were blind to the cognitive status of the patients. The severity of the
coronary lesions was assessed using the findings of coronary angiography (Innova 3100; GE
Medical Systems, Carrollton, TX, USA). Carotid artery ultrasound and echocardiography
with estimation of the left ventricular ejection fraction (LVEF) were performed with the
Vivid 7 ultrasound machine (GE Medical Systems).

The patients received baseline and symptomatic therapy before and after surgery,
consistent with the general principles of treatment for the patients with CAD, chronic heart
failure, and hypertension (National Recommendations, 2020) (see Table 1).

Table 1. The clinical and anamnestic characteristics of the patients before cardiac surgery (n = 140).

Variable Value

Age, years, Me (Q25; Q75) 59 (56; 64)

Mini-mental state, scores,
Me (Q25; Q75) 27 (26; 28)
Frontal assessment battery, scores, Me (Q25; Q75) 16 (15; 17)
BDI-II, scores, Me (Q25; Q75) 3 (2; 4)

Educational attainment, years, n (%)
8–10 101 (72)
≥15 39 (28)

Functional class of angina, n (%)
I-II 94 (67)
III 46 (33)

Functional class NYHA, n (%)
I-II 109 (78)
III 31 (22)
History of myocardial infarction, n (%) 104 (74)
Fraction of left ventricle ejection, %, Me (Q25; Q75) 58 (54; 62)
Type 2 of diabetes mellitus, n (%) 48 (34)

Carotid arteries stenoses, n (%)
One-sided ≤50% 29 (21)
One-sided 70–99% 7 (5)
Two-sided ≥50% 47 (34)

History of stroke, n (%) 15 (11)
Cardiopulmonary bypass time, min, Me (Q25; Q75) 90 (83; 97)
Aorta cross-clamping time, min, Me (Q25; Q75) 68 (56; 50)

Medication, n (%)
ACEi 124 (89%)
Statin 94 (67%)
Beta-blockers 137 (98%)
Antiplatelet drugs 135 (96%)
CCB 59 (42%)
Nitrates 23 (16%)

ACEi, angiotensin-converting enzyme inhibitor; CCB, calcium channel blockers; NYHA, heart failure by the New
York Heart Association.

All surgical interventions in patients of the isolated CABG and CABG+CEA groups
with the use of cardiopulmonary bypass, normothermia and 25–30% hemodilution were
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carried out. In almost all cases, a blood pharmaco-cold cardioplegia was used. The standard
anesthesia and infusion scheme was performed for all types of procedures. All stages of
the surgery were accompanied by invasive hemodynamic control and real-time monitoring
of cerebral cortex oxygenation (rSO2) (INVOS 3100; Somanetics, Troy, MI, USA). For
simultaneous intervention (CABG+CEA), the initial stage of surgery was endarterectomy
with arterial plasty and a xenopericardial patch.

2.2. Neurophysiological Assessment

The patients were assessed at baseline (1–3 days before surgery) and 7–10 days
after surgery.

The cognitive screening and the extended neuropsychological test battery to evaluate
three functional cognitive domains (psychomotor and executive function, attention and
short-term memory) were conducted. Parallel test versions were used in repeated measure-
ments in order to minimize learning effects. The neuropsychological test battery has been
previously described [33,38]. Postoperative cognitive decline after CABG was determined
by a 20% decrease in the cognitive score compared to baseline in 20% of the tests [31].

EEGs were recorded via a 62-channel Quik-cap (NeuroScan, El Paso, TX, USA). The
scalp locations of the electrodes were based on the modified 10/10 System, and a nose
bridge electrode was used as a reference. Bipolar eye movement electrodes were applied to
the canthus and cheek bone to monitor eye movement artifacts. The EEGs were recorded
using an NEUVO-64 system (NeuroScan, El Paso, TX, USA) in the eyes-closed and eyes-
open conditions, in a dimly lit, soundproof, electrically shielded room, and recording
lengths were about 10 min. The amplifier bandwidths were 1.0 to 50.0 Hz, and EEGs were
digitized at 1000 Hz. The data were analyzed off-line using the Neuroscan 4.5 software
program (Compumedics, TX, USA). We performed visual inspections for eye movements,
electromyographic interferences, and other artifacts. Artifact-free EEG fragments were
divided into 2 s epochs and underwent Fourier transformations. For each subject, the EEG
power values were averaged within the theta1 (4–6 Hz), theta2 (6–8 Hz), alpha1 (8–10 Hz),
and alpha2 (10–13 Hz) ranges [39]. The EEG power values of each channel for every subject
in each band were obtained. The next step was the clustering of data recorded in 56 leads
into 5 electrode zones symmetrically in the left and right hemispheres: frontal, central,
parietal, occipital and temporal. The midline sites (Fpz, Fz, etc.) were excluded. The
clustering of nearby electrodes was conducted to increase statistical significance.

2.3. Statistical Analysis

All data were analyzed using STATISTICA 10.0 (StatSoft, Tulsa, OK, USA). The nor-
mality of the distribution of clinical and demographic parameters was tested using the
Kolmogorov–Smirnov test. Most of the clinical parameters as well as cognitive indicators
were not normally distributed and were analyzed using the Wilcoxon and Mann–Whitney
tests. EEG data were normalized using the logarithm transformation and further analysis of
the EEG data was carried out using a repeated-measures ANOVA. Levene’s test was used
to assess the equality of variances for EEG variables. The Greenhouse–Geisser correction of
statistical significance was used in ANOVA. Post hoc pairwise comparisons for groups of
patients were performed using Newman–Keuls multiple comparison tests.

3. Results

3.1. The Effect of Small Stenoses CA (≤50%) on the Postoperative Neurophysiological Changes in
On-Pump CABG Patients
3.1.1. Neurophysiological Data

This analysis included 86 patients who had undergone isolated CABG. According to
the results of the preoperative examination, they were divided into two groups: those with
CA stenoses of less than 50% (n = 29) and those without stenoses (n = 57).
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The postoperative period was standard in all the patients, without adverse cardio-
vascular events (intraoperative and postoperative heart attacks, strokes, life-threatening
arrhythmias, bleeding, etc.).

POCD occurred in 22 (76.0%) patients with CA stenoses and in 32 (61%) patients
without stenoses after isolated CABG (OR = 1.99, 95% CI = 0.77–5.18, Z = 1,42, p = 0,15).
Thus, the incidence of POCD had a tendency of an increasing number of cases in the CA
stenoses group.

The POCD structure consisted of a decrease in the psychomotor and executive function,
as well as short-term memory in both groups. At the same time, the patients with CA
stenoses made more errors in the tests of executive functions (p ≤ 0.05), and patients
without stenoses had more missed signals in the same tests. In the domain of short-term
memory, between-group differences were obtained in the 10-nonsense-syllable memorizing
test (p = 0.04).

3.1.2. EEG Data

For the next stage of the analysis, a repeated-measures ANOVA with a between-
subjects factor of GROUP (two levels: with CA stenoses of less than 50%/without stenoses),
and within-subjects factors of EXAMINATION TIME (two levels: before/after surgery),
AREA (five levels: frontal, central, parietal, occipital and temporal), and LATERALITY
(two levels: left/right hemisphere) was conducted. The significant factors and interactions
associated with the GROUP factor are found in the theta2, alpha1 and alpha2 EEG ranges.

The statistically significant interactions of the factors GROUP × EXAMINATION TIME
(F1.84 = 4.95, p = 0.03) and GROUP × EXAMINATION TIME × AREA × LATERALITY
(F4.336 = 3.54, p = 0.02) were found in the theta2 range of EEG resting state with eyes closed.
The patients with CA stenoses had higher values of the theta2-rhythm power at 7–10 days
after CABG in comparison to the patients without stenoses (Figure 2). In addition, the CA
stenoses group had higher values of rhythm power in the left hemisphere in the frontal
and centroparietal cortical regions and in the right hemisphere in all sites, except for the
occipital regions.

Figure 2. Differences in the theta2-rhythm power of EEG resting state with eyes closed in patients
who underwent on-pump CABG, depending on the presence of CA stenoses less than 50%: dark
columns—the patients with CA stenoses, light columns—the patients without CA stenoses, error
bars denote SE, *—p < 0.05 Newman–Keuls multiple comparison test.

The significance of the GROUP factor was obtained in the theta2, alpha1 and alpha2
frequency ranges of EEG resting state with eyes open (F1,84 = 4.68, p = 0.034; F1,84 = 3.88,
p = 0.05 and F1,84 = 4.96, p = 0.029, respectively). The patients with CA stenoses had higher
power values of these rhythms compared to patients without stenoses before and after
cardiac surgery.
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Additionally, the analysis of EEG resting state with open eyes revealed a statistically
significant interaction of the factors GROUP × EXAMINATION TIME × AREA × LATER-
ALITY (F4,336 = 2.77, p = 0.04) in the alpha2 frequency range. Before surgery, the power of
rhythm was higher in the right frontal (p = 0.04) and central (p = 0.025) areas in patients
with CA stenoses compared to patients without stenoses. There were no between-group
differences in the left hemisphere. After CABG, the patients with CA stenoses had higher
power values in the frontal (p = 0.03 and p = 0.036, respectively), central (p = 0.007 and
p = 0.01, respectively) and parietal (p = 0.02 and p = 0.019, respectively) regions of the left
and right hemispheres (Figure 3).

Figure 3. Lateral differences in the alpha2-rhythm power changes of EEG resting state with eyes
open in patients after on-pump CABG, depending on the presence of CA stenoses less than 50%:
(a) before cardiac surgery; (b) after surgery; solid lines—the patients without stenoses, dashed
lines—the patients with CA stenoses, error bars denote SE, *—p < 0.05 Newman–Keuls multiple
comparison test.

Thus, the presence of CA stenoses of less than 50% in patients who underwent on-
pump CABG was associated with more pronounced signs of EEG of brain dysfunction.
Both before and after CABG, the patients with CA stenoses demonstrated higher values of
theta2- and alpha-rhythm power compared to the patients without CA stenoses.

3.2. The Postoperative Neurophysiological Status Changes in the Patients after Combined On-Pump
CABG and CEA
3.2.1. Neurophysiological Data

This analysis included 111 patients who have undergone combined coronary and
carotid artery revascularization or isolated CABG. According to the results of the preopera-
tive examination, they were divided into three groups: the group of left-sided CEA+CABG
(n = 30), the group of right-sided CEA+CABG (n = 24), and the group of isolated CABG
(n = 57). The patients with combined coronary and carotid surgery had significant CA
stenoses as assessed by digital angiography (NASCET criteria).

No adverse cardiovascular events (myocardial infarction, stroke, death, and repeated
unplanned revascularization) were observed in the patients in the early postoperative
period for simultaneous CABG+CEA or isolated CABG. In this cohort, POCD occurred
in 34 (63.0%) patients with CABG+CEA, and in 32 (61%) patients with isolated CABG
(OR = 1.33, 95% CI = 0.62–2.84, p = 0.59). Significant between-group differences were
detected for the psychomotor and executive function indicators. At 7–10 days after surgery,
the psychomotor speed in two neurodynamic tests was higher in the CABG group than
in the group with CABG+CEA (p = 0.0002 and p = 0.005, respectively). In addition, the
CABG patients had better indicators of executive control in the same tests at 7–10 days after
surgery compared to the patients with CABG+CEA (p = 0.0004 and p = 0.02, respectively).
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3.2.2. EEG Data

A repeated-measures ANOVA with a between-subjects factor of GROUP (three levels:
CABG+left-sided CEA/CABG+right-sided CEA/isolated CABG) and within-subjects fac-
tors of EXAMINATION TIME (two levels: before/after surgery), AREA (five levels: frontal,
central, parietal, occipital and temporal), and LATERALITY (two levels: left/right hemi-
sphere) was conducted. The significant factors and interactions associated with the GROUP
factor are found in EEG resting state with eyes closed in the theta1 frequency range.

There was a significant factor in EXAMINATION TIME—F1.108 = 46.6, p ≤ 0.0001. It
was found that the theta1 power increased after surgery at 7–10 days of the postoperative
period as compared with the preoperative level both in the CABG patients and in the two
CABG+CEA groups. This effect was more pronounced in CABG+right-sided CEA patients
(p = 0.0001); they differed also from the isolated CABG group at 7–10 days after surgery
(p = 0.026) (Figure 4).

Figure 4. The postoperative theta1 rhythm power changes in the patients undergoing isolated CABG
and simultaneous intervention (CABG+CEA): grey columns—the CABG patients, dark columns—the
CABG+CEA patients; error bars denote SE, *—p < 0.05 Newman–Keuls multiple comparison test for
the postoperative indicators in comparison to preoperative levels, —p < 0.05 Newman–Keuls multiple
comparison test for the postoperative indicators in CABG+CEA group as compared to CABG group.

The interaction of factors GROUP × LATERALITY (F2,108 = 3.22, p = 0.04) was also
significant. The left-sided CEA+CABG patients demonstrated the fewest lateral differences
of theta1 power. The isolated CABG and CABG+right-sided CEA patients had higher theta1
power values in the left hemisphere as compared to the right one. This effect was more
pronounced in CABG+right-sided CEA patients (p = 0.0004 and p = 0.00008, respectively)
(Figure 4).

Another significant interaction of factors GROUP × EXAMINATION TIME × AREA
× LATERALITY (F8,432 = 2.15, p = 0.048) was revealed. The theta1 power differences
between the patients who underwent isolated CABG and right-sided CEA+CABG were
found. Before surgery, the right-sided CEA+CABG patients had higher theta1 power
values than isolated CABG patients only in the frontal cortical regions in both hemispheres
(p = 0.001 and p = 0.047, respectively). After surgery, the between-group differences were
more pronounced in the left hemisphere. The right-sided CEA+CABG patients had higher
theta1 power values than isolated CABG patients in all cortical regions, except occipital. In
the right hemisphere, the between-group differences were only in the frontal, central and
temporal regions, as seen in Figure 5.
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Figure 5. The topography of the postoperative theta1 rhythm power changes in the patients under-
going isolated CABG and simultaneous intervention (CABG+CEA): (a) left hemisphere; (b) right
hemisphere; error bars denote SE, *—p < 0.05 Newman–Keuls multiple comparison test for between-
group differences.

4. Discussion

As found in our study, the frequency of POCD was higher in patients with less than
50% CA stenoses in comparison to the patients without them (76% vs. 61%). However, the
frequency was comparable in combined coronary and carotid surgery and isolated CABG
(63% vs. 61%). The POCD structure both in the patients with CA stenosis of less than
50% and in patients with hemodynamically significant CA stenoses (70–99%) consisted of
executive function decline, which was determined as the non-successful performance of
neurodynamic tasks in these patients. Previously, it has been shown that for the correct
assessment of the signal sequence in neurodynamic tests, a high level of indicative activity
is required. This causes increased brain energy consumption [40]. It can be assumed that
highly organized cognitive activity is disrupted by the deterioration of cerebral blood flow
in patients with CA stenoses.

We also demonstrated that the patients with CA stenosis of less than 50% had more
pronounced signs of brain dysfunction as compared with patients without stenoses. These
changes were diffuse and expressed as higher power values of resting state EEG in the
frequency band from 6 to 13 Hz. Earlier, it has been shown that an increase in the slow
rhythm power is associated with a decrease in the level of cortical activation and may be a
reflection of chronic cerebral ischemia [41,42]. It should be noted that these pathological
EEG signs were observed in patients with CA stenosis of less than 50% already in the
preoperative period and persisting after surgery. One of the possible causes of neurological
complications in patients with hemodynamically insignificant CA stenoses may be the
instability of small atherosclerotic plaques with the development of vasoconstrictor and
procoagulant effects [43]. There is an assumption that the atherosclerosis in patients
with multiple vascular lesions may proceed more aggressively [44]. We may propose
that such patients probably develop a more pronounced systemic inflammatory response
associated with cardiopulmonary bypass. Earlier experiments showed that the combined
effect of ischemia and hypoxia induces an increase in the production of pro-inflammatory
cytokines (TNF-α, IL-1β and IL-6) in the brain, which contributes to damage and increased
permeability of the blood–brain barrier, and as a consequence, the development of brain
edema [45,46]. In addition, cerebral blood flow autoregulation may be disrupted more
often in patients with CA stenoses, leading to the decrease in the brain’s resistance to acute
ischemia and hypoperfusion associated with cardiopulmonary bypass [36,47]. The state of
the circle of Willis and the density of leptomeningeal collaterals also contribute to brain
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hemodynamic parameters [48,49]. On the other hand, the interaction between macro- and
microcirculation requires attention in regard to postoperative neurophysiological changes
in the patients after cardiac surgery. Earlier, it has been found that carotid atherosclerosis,
white matter hyperintensities and lacunar infarction are associated with and commonly
contribute to the deterioration of neurological function [50,51].

Additionally, one conclusion we reached was that patients with CA stenoses of less
than 50% are vulnerable to the effects of the factors that accompany cardiac surgery using
cardiopulmonary bypass compared with patients without CA lesions. The presence of even
hemodynamically insignificant stenoses in cardiac surgery patients makes it possible to
include them in the group at increased risk of brain damage in the perioperative period.
This category of patients should be considered as requiring more careful preoperative
management, the use of methods of perioperative protection of the brain, the choice
of safe strategies for myocardial revascularization and the involvement of methods of
cognitive rehabilitation.

A next finding of our study was that the patients who underwent right-sided CABG+CEA
are characterized by the most pronounced theta power changes and generalized “slow-
down” of the EEG compared with patients who underwent isolated CABG and left-sided
CABG+CEA.

It has been recently reported that severe carotid stenosis can disturb the hemodynamic
balance, illustrated by blood flow laterality [52]. As shown by the results in our work, a
contralateral stenosis of the CA was observed in 86% of cases in patients who underwent
CABG+right-sided CEA. Our study showed that the right hemisphere was more vulnerable
intraoperatively. In the study by M. Hedberg and K.G. Engström [53], it was shown that a
stroke occurs more often in the right than in the left hemisphere in the early postoperative
period of cardiac surgery.

Therefore, the results of the study lead us to conclude that on-pump cardiac surgery
is a traumatic brain event, regardless of the type of intervention. Bilateral CA lesion
increases the severity of cortical dysfunction in the postoperative period, which requires
the use of complex brain protection methods. At the same time, it is worth noting that
combined CABG and CEA surgery in comparison with isolated CABG does not lead to
more significant brain damage. This fact is an additional argument that makes the strategy
of one-stage revascularization of the brain and heart justified.

A set of characteristics of the resting EEG, including a postoperative theta power
increase and generalized “slowdown”, was obtained in our study. This is a universal
brain response to damage, indicating an imbalance between cortical and subcortical struc-
tures and a decrease in the functional activity of the cerebral cortex [8,22,23,41,42]. The
topography of postoperative EEG activity disturbances included the frontal, temporal and
parieto-occipital regions. It is assumed that patients with cardiovascular diseases are most
susceptible to ischemic changes in the frontal regions of the brain, which plays a key role in
the executive function, action planning and working memory [3–5,40]. At the same time,
neurodegenerative brain damage, first of all, is detected in the hippocampus and adjacent
areas of the brain (cingulate and temporo-parietal cortex) [23,27,28]. Recent studies of cogni-
tive disorders in a cohort of cardiovascular disease patients have shown that it is difficult to
differentiate neurodegenerative and ischemic patterns of brain damage; to a greater extent,
researchers are inclined to a mixed etiology of cognitive deficits associated with both the
progression of atherosclerotic changes in brain vessels and age-related neurodegenerative
changes [7,8,54].

5. Conclusions

The high frequency of cognitive decline in the postoperative period in patients who
underwent cardiac surgery with the use of cardiopulmonary bypass and the ambiguity of
the mechanisms underlying the development of brain damage encourage further study of
this phenomenon in a cohort of patients with cardiovascular diseases. Our results show
that an integrated approach using modern methods of neuropsychological testing and
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computerized EEG allows for timely diagnosis of postoperative cognitive disorders and
can be useful in determining the effectiveness and safety of cardiac surgery. We showed
that cardiac surgical interventions with cardiopulmonary bypass are associated with a high
risk of episodes of brain ischemia. This may be accompanied by specific rearrangements of
frequency–spatial patterns of electrical brain activity, dependent on the degree of damage
to coronary and carotid arteries. The information obtained can be used to optimize the
process of preoperative management and the search for anesthesiologic brain protection
and safe surgical techniques and strategies for myocardial revascularization, as well as
postoperative rehabilitation of this category of patients.
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22. Başar, E.; Gölbaşı, B.T.; Tülay, E.; Aydın, S.; Başar-Eroğlu, C. Best method for analysis of brain oscillations in healthy subjects and
neuropsychiatric diseases. Int. J. Psychophysiol. 2016, 103, 22–42. [CrossRef]
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Abstract: Postoperative delirium after spinal surgery in elderly patients has been a recent concern.
However, there has not been a study of delirium after spinal surgery based on electroencephalography
(EEG) signals from a compact wearable device. We aimed to analyze differences in EEG signals from
a wearable device in patients with and without delirium after spinal surgery. Thirty-seven patients
who underwent cervical or lumbar decompression and instrumented fusion for degenerative spinal
disease were included. EEG waves were collected from a compact wearable device, and percentage
changes from baseline to within 1 week and 3 months after surgery were compared between patients
with and without delirium. In patients with delirium, the anxiety- and stress-related EEG waves—
including the H-beta (19.3%; p = 0.003) and gamma (18.8%; p = 0.006) waves—and the tension index
(7.8%; p = 0.011) increased, and the relaxation-related theta waves (−23.2%; p = 0.016) decreased
within 1 week after surgery compared to the non-delirium group. These results will contribute
to understanding of the EEG patterns of postoperative delirium and can be applied for the early
detection and prompt treatment of postoperative delirium after spinal surgery.

Keywords: postoperative delirium; spinal surgery; electroencephalography; wearable device

1. Introduction

Delirium is a clinical syndrome with core symptoms of inattention and acute cog-
nitive dysfunction that often fluctuate [1]. The incidence of postoperative delirium after
spinal surgery is reported to be 4.5–24.3% [2–5] and has been found to be associated with
prolonged hospital stays and increased costs of care, postoperative functional deteriora-
tion, and increased mortality [6,7]. Up to USD 82.4 billion is spent annually on medical
costs associated with delirium in the United States alone [8]. Well-known risk factors
include older age, duration of surgery, and blood loss during surgery [9]. As global life
expectancy is continuously increasing [10], and considering the characteristics of spinal
surgery [11–13]—including a long surgical duration and increased risk of blood loss—the
individual, societal, and financial burdens of postoperative delirium after spinal surgery
are expected to increase [14].

Early diagnosis and treatment of delirium can reduce length of stay, in-hospital mor-
bidity, and healthcare costs [6]. A diagnosis of delirium is primarily made by trained
psychiatrists based on the Diagnostic and Statistical Manual of Mental Disorders, 5th
Edition (DSM-5). For other medical personnel to detect and evaluate delirium easily, an
assessment tool called the Confusion Assessment Method (CAM) has been developed [15],
and for the case of intensive care unit (ICU) patients, the Confusion Assessment Method
for the ICU (CAM-ICU) has been developed and validated. Although several biomarkers
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have been studied for an objective diagnostic test for delirium, further research is required
to apply them in clinical practice [16,17].

Electroencephalography (EEG) has attracted attention as an objective diagnostic tool
for delirium [18]. EEG waves are known to correspond to certain mental functions and
states. Delta waves are associated with deep sleep stages [19]. Theta waves reflect relaxation,
drowsiness, and meditation. Alpha waves reflect relaxation and reduced anxiety [20].
Sensorimotor rhythm (SMR) waves reflect active, busy, or anxious thinking. M-beta waves
indicate anxiety and performance [21]. H-beta waves are associated with significant stress,
anxiety, and arousal [22]. Gamma waves reflect stress and conscious perception [23,24].
However, the inconvenience of testing methods using EEG recording devices remains a
limitation. To the best of our knowledge, there has not been a study of delirium after spinal
surgery based on EEG signals from a compact wearable device. In this study, we aimed to
analyze EEG signals from such a device in patients with and without delirium both before
and after spinal surgery.

2. Materials and Methods

Ethical approval for this study was obtained from the Institutional Review Board
(IRB) of the corresponding author’s hospital (Yonsei University IRB and Ethics Committee:
4-2018-0709). All methods were performed in accordance with the Declaration of Helsinki
and Yonsei University’s institutional guidelines. Informed consent was obtained from all
subjects and/or their legal guardians.

From April 2019 to April 2020, 37 patients at least 60 years of age who underwent cervi-
cal or lumbar spinal surgery were prospectively enrolled. The enrolled patients were limited
to elective surgery for degenerative cervical or lumbar spine disease, excluding trauma
or tumor cases. The main diagnoses included cervical spondylotic radiculomyelopathy
(6 patients), adjacent segment disease (4 patients), degenerative spondylolisthesis (7 pa-
tients), lumbar spinal stenosis (16 patients), and degenerative scoliosis (4 patients). All
included patients underwent spinal decompression and instrumented spinal fusion, and
all procedures were performed by a single surgeon (B.H.L.).

The patients were divided into two groups: with and without delirium (the delirium
and non-delirium groups, respectively). The patients who presented with delirious be-
havior and were diagnosed with delirium by a psychiatrist within 1 week after surgery
were classified as the delirium group. The detection of delirium symptoms was carried out
by ward nurses, residents, and caregivers jointly observing the patient 24 h per day. The
Confusion Assessment Method (CAM), which is the most common assessment tool, was
used, and the following four factors were assessed: (1) acute onset, (2) inattention, (3) dis-
organized thinking, and (4) altered levels of consciousness. The evaluation of delirium
was performed every 1–2 h while checking the patient’s condition. After the detection of
delirium symptoms, the patient’s delirium status was accurately diagnosed and treated
through emergency consultation with a psychiatrist or psychiatric residents in the hospital.
All patients in the delirium group had fluctuating symptoms during the hospitalization
period and recovered their normal mental status by the time of discharge. For all patients
in the two groups, immediate postoperative pain was controlled with intravenous patient-
controlled analgesia (PCA) containing 1 mg of fentanyl for 2–3 days. Oral analgesics, such
as non-steroidal anti-inflammatory drugs (NSAIDs), pregabalin, and gabapentin, were
administered at the recommended dose or less, regardless of the groups. The doses of
pregabalin and gabapentin were increased to 75 mg BID and 100 mg TID, respectively, as
needed. The average length of stay ranged from 7 to 10 days depending on the general
condition and recovery of delirium.

2.1. Evaluation of EEG Signals from a Wearable Device

A wearable device for acquiring EEG signals (model: Amp GS5001; SOSO H&C [25],
Kyungpook University, Daegu, Korea) was used for this study. This device was used in
three previous published studies on surgeons’ and nurses’ mental stress [26–28]. The device
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consists of a headband, a main board, two dry electrodes as EEG sensors, and a reference
electrode. Two electrodes were positioned at the prefrontal 1 and 2 (Fp1 and Fp2) sites
according to the International 10–20 EEG system [29]. The reference electrode was placed
on the right earlobe (Figure 1).

Figure 1. (A) Profile of the wearable device. (B) The device shown on the patient’s head.

The cortical activity of the frontal lobe was measured with the patient in a resting state
with eyes open and closed for 3 min each. To reject artifacts caused by eyeball movement, a
neurologist specializing in EEG performed a visual inspection. EEG data were reanalyzed
using MATLAB R2012b (MathWorks, Inc., Natick, MA, USA) software, and a bandpass
filter of 1–50 Hz was applied to the fast Fourier transform. Data analysis using the software
was performed by SOSO H&C after anonymization, and the company was blinded to
the study. The frequency power was calculated as the square of the amplitudes for delta
(0.5–3.5 Hz), theta (4–7 Hz), alpha (8–12 Hz), SMR (12–15 Hz), mid-range beta (M-beta,
15–20 Hz), high-range beta (H-beta, 20–30 Hz), and gamma waves (30–50 Hz) [30]. Relative
frequency power was calculated as the ratio of the corresponding frequency powers to
the whole frequency (Figure 2). In addition, we calculated the tension index using the
following formula from SOSO H&C based on references for tension [27,31]:

Tension = {[Log(H-Beta/Alpha) + 1.0843]/2.058993} × 99 + 1 (1)

Figure 2. (A) Raw and (B) reanalyzed EEG signals, according to the frequency bands displayed in the
MATLAB software. (C) EEG waveforms, according to the frequency bands. EEG: electroencephalog-
raphy.

All patients were assessed three times: preoperatively (baseline), within 1 week
postoperatively, and 3 months postoperatively. All data measurements were performed in
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the same manner. The patients waited 1 min while wearing the device in a resting state,
and the EEG data were collected with the eyes open and closed for 3 min each. The patients
were seated, in a distraction-free environment, and a research nurse who was familiar
with the measurement methods measured the EEG data using the device. For the baseline
and 3 months after surgery, the measurements were performed in an empty outpatient
clinic room, while the measurement within 1 week after surgery was performed in a ward
room. Baseline EEG data were obtained one day before surgery for admitted patients.
Data were then gathered 1–7 days after surgery when the patients were diagnosed with
delirium by psychiatrists. The average presentation time of delirium symptoms was 2 days
after surgery. Through consultation with psychiatrists and prompt communication with
ward nurses, research nurses, and residents, EEG signals in patients with delirium were
measured immediately after the presentation of delirium symptoms with the consent of the
patients’ guardians. If the measurement was impossible because the patient was excessively
hyperactive and unable to cooperate, the measurement was performed after waiting until
the agitation subsided. After discharge, data were gathered at the three-month outpatient
follow-up visit. Percentage changes in data from baseline to within 1 week after surgery
and from baseline to 3 months after surgery were compared between the delirium and
non-delirium groups.

2.2. Statistical Analyses

The study population characteristics are presented as means ± standard deviations
for continuous variables and frequencies (percentages) for categorical variables. For com-
parisons between the delirium and non-delirium groups, the independent two sample
t-test was used for continuous variables, while Fisher’s exact test was used for categorical
variables. We applied a linear mixed model (LMM) to assess the interaction according to
the time and group of EEG signals measured over three times. Statistical analyses were
performed using SAS (version 9.4; SAS Institute, Cary, NC, USA) and R version 4.1.3
(http://www.r-project.org (accessed on 23 September 2022). The statistical significance of
the interaction p-value was set to p < 0.15, and other than that the significance threshold
was p < 0.05.

3. Results

All enrolled patients were sent to the general ward after surgery; no serious postopera-
tive complications except for delirium were observed. Postoperative delirium developed in
6 of 37 patients (16.2%): 4 females (67%) and 2 males (33%). The mean age of these patients
was 72.7 ± 3.0 years. Affected patients presented symptoms of hyperactive delirium,
including rambling, restlessness, hallucinations, and aggressiveness. The demographics
and surgical characteristics of the delirium and non-delirium groups are shown in Table 1.
The Mental component Summary (MCS) of the 36-Item Short-Form Health Survey (SF-36)
was marginally lower in the delirium group than in the non-delirium group (p = 0.061).
There were no significant differences in age, gender, American Society of Anesthesiologists
class, history of dementia, physical component summary of the SF-36, surgical site, surgical
duration, volume of intraoperative blood loss, or total units of transfused packed red
blood cells.

According to the results of the LMM, the interactions between group and time were
significant in the theta waves (p = 0.083), H-beta waves (p = 0.014), gamma waves (p = 0.023),
and tension index (p = 0.105), while the other variables were not significant. The results of
performing a group post hoc analysis of these variables are shown in Table 2. In patients
with delirium, H-beta and gamma waves and the tension index increased, while theta
waves decreased, within 1 week after surgery. Patients in the delirium group showed
significantly more changes in H-beta (19.3%; p = 0.003), gamma (18.8%; p = 0.006), and theta
waves (−23.2%; p = 0.016), as well as the tension index (7.8%; p = 0.011), within 1 week after
surgery from baseline compared to patients in the non-delirium group. In the graph of
H-beta, gamma, and theta waves and tension index, patterns of peaks and troughs 1 week
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after surgery followed by recovery to baseline levels by 3 months after surgery were noted
in the delirium group, whereas a somewhat flat pattern was noted in the non-delirium
group (Figure 3).

Table 1. Demographics and surgical characteristics of the enrolled patients.

Delirium (n = 6) Non-Delirium (n = 31) p-Value

Age (years) 72.7 ± 3.0 (71–78) 70.1 ± 6.4 (60–84) 0.353

Gender
0.680Female 4 (67) 17 (55)

Male 2 (33) 14 (45)

ASA class

>0.999
I 0 1 (3)
II 3 (50) 13 (42)
III 3 (50) 17 (55)

History of dementia 1 (17) 1 (3) 0.302

SF-36
PCS 27 ± 12 33 ± 14 0.313
MCS 40 ± 19 53 ± 16 0.061

Surgical site
>0.999Cervical 1 (17) 6 (19)

Thoracolumbar 5 (83) 25 (81)

Surgical duration (min) 198 ± 52 201 ± 56 0.934

Intraoperative blood loss (mL) 317 ± 177 465 ± 258 0.178

Total units of transfused
packed RBCs 0.3 ± 0.7 1.0 ± 1.6 0.308

Values are reported as the mean ± standard deviation (range) or number (%). ASA: American Society of
Anesthesiologists class; SF-36: 36-Item Short-Form Health Survey; PCS: Physical Component Summary; MCS:
Mental Component Summary; RBCs: red blood cells.

Table 2. Percentage changes in EEG signals from baseline to within 1 week and to 3 months after
surgery in the delirium and non-delirium groups.

Percentage Change from Baseline
to within 1 Week after Surgery (%)

Percentage Change from Baseline
to 3 Months after Surgery (%)

Delirium Non-Delirium p-Value Delirium Non-Delirium p-Value

Delta waves −26.2 ± 33.0 31.5 ± 71.7 0.082 −20.2 ± 52.6 30.7 ± 78.0 0.169

Theta waves −23.2 ± 18.0 5.9 ± 25.0 0.016 −14.0 ± 30.5 5.5 ± 26.1 0.144

Alpha waves −6.2 ± 10.9 0.4 ± 9.4 0.126 1.6 ± 13.1 2.1 ± 15.9 0.932

SMR waves 15.5 ± 19.6 0.1 ± 10.8 0.155 19.5 ± 24.1 −0.9 ± 14.9 0.134

M-beta waves 19.1 ± 21.4 −1.3 ± 12.3 0.097 20.4 ± 24.7 −0.1 ± 15.7 0.017

H-beta waves 19.3 ± 14.6 −1.6 ± 13.5 0.003 14.7 ± 22.8 −0.6 ± 15.5 0.064

Gamma waves 18.8 ± 20.0 −2.4 ± 14.3 0.006 12.8 ± 24.1 −1.7 ± 16.4 0.099

Tension index 7.8 ± 7.2 −0.8 ± 6.9 0.011 3.3 ± 10.8 −0.9 ± 8.8 0.334

Values are reported as the mean ± standard deviation. SMR: sensorimotor rhythm.
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Figure 3. Mean percentage changes in (A) H-beta waves, (B) gamma waves, (C) tension index, and
(D) theta waves within 1 week and 3 months after surgery compared to baseline in patients with and
without delirium. The error bars shown are standard errors of the mean.

4. Discussion

Postoperative delirium after spinal surgery in elderly patients has been a recent
concern, and several attempts to achieve effective and objective diagnoses of delirium
have been reported. However, to the best of our knowledge, there has not been a study
of delirium after spinal surgery based on EEG signals from a compact wearable device.
Using EEG signals from such a device, we found greater changes in H-beta, gamma, and
theta waves and tension index within 1 week after surgery from baseline in the delirium
group compared to the non-delirium group. Based on these results, EEG analysis using a
wearable device appears to be an effective diagnostic tool and may be applicable during
the early diagnosis of delirium after spinal surgery.

While postoperative delirium has been an increasing concern for spinal surgeons
recently, it remains an elusive concept and difficult to diagnose [32]. A diagnosis of
delirium is based on the patient’s clinical history, behavioral observations, and cognitive
assessments [1]. It is not easy for spinal surgeons and nurses to recognize delirium, and
even psychiatrists may overlook or misdiagnose this disorder. Although there are clinical
assessment tools for delirium, novel diagnostic methods—such as biomarkers and wearable
accelerometer devices—are being actively studied [16,33–35].

The association between EEG changes and delirium has been studied, but there are few
published reports. EEG has been mainly used to differentiate delirium from non-convulsive
status epilepticus or other psychiatric conditions [36,37]. Bispectral index monitoring and
adjustments of the depth of anesthesia appear to correlate with reduced postoperative
delirium [38,39]. Since Koponen et al. first reported reduced alpha waves and increased
theta and delta waves in patients with delirium [40], other studies have followed. In a
study of 28 patients with delirium who underwent cardiothoracic surgery, an increase in
delta waves from the frontal and parietal lobes was the only difference between patients
with and without delirium [18]. Urdanibia-Centelles et al. reported high mean global
field power—mainly driven by delta wave activity—in septic patients with delirium and
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proposed continuous EEG monitoring for its diagnosis [41]. However, Oh et al. pointed
out that the routine use of EEG monitoring for delirium screening is time-consuming and
inefficient [17].

In the present study, we found differences in specific EEG waves between patients
with and without delirium after spinal surgery. H-beta and gamma waves, which are
known to be related to stress [24], increased in patients with delirium. Moreover, the
tension index—which consists of alpha and H-beta waves—increased, whereas theta waves
decreased, in patients with delirium. These results are somewhat different from those of
published studies. Most studies of delirium were performed in ICUs [18,41,42]; however,
our patients did not require ventilators or ICU care. We believe that patients in the ICU
are more likely to show subdued and hypoactive features than those in the general ward,
possibly due to the severity of their illness [43]. Therefore, slow waves such as delta and
theta waves are more likely to be predominant in ICU patients. On the other hand, restless
and agitated states, which are commonly seen in hyperactive delirium, correlate well with
features of H-beta and gamma waves [44,45]. Confused, anxious, and irritable behaviors
are commonly seen in patients with delirium in the general ward and are a concern for
most spinal surgeons and nurses. We believe that our results accurately reflect these aspects
of patients with delirium.

In the analysis of demographic and surgical risk factors, we found marginally signifi-
cant differences only in the MCS of the SF-36 between the two groups. Considering the
preliminary nature and small sample size of this study, we believe that this is a potentially
important finding. The MCS reflects emotional problems, vitality, mental health, and social
functioning. MCS scores can vary from 0 to 100, with higher MCS scores indicating better
mental health [46]. Patients with delirium in our study had lower MCS scores, which could
be related to the mental vulnerability identified in the changing EEG wave patterns.

This study has a number of major strengths. By measuring EEG signals immediately
after the onset of delirium, not only the medical staff but also the patients’ guardians were
able to accurately recognize the patients’ condition. Second, this study highlights a novel
EEG wave pattern in patients with delirium after spinal surgery. The major features of
anxiety and stress in patients with delirium were identified, which will likely lead to a
deeper understanding of the mental health of patients undergoing spinal surgery. Third,
to the best of our knowledge, this was the first study to investigate delirium after spinal
surgery using a compact wearable device. Numerous applications of this device can be
used in the future, such as monitoring the mental status of patients who undergo spinal
surgery, including those in the hospital or even after discharge to home, which would never
be possible with traditional EEG monitoring. In addition, further analyses of mental health
according to the type of spinal disease and surgery needed could be performed more easily.

Our study has several limitations. Due to the preliminary nature of this study and the
low incidence rate of postoperative delirium, the number of enrolled patients with and
without delirium was relatively small. Further large-scale studies are needed to confirm
our results. Furthermore, we did not evaluate the effects of baseline cognitive function,
medication use, and severity of illness on the outcome measures. Because EEG changes
can be affected by many other factors, further analyses of additional factors should be
conducted. Finally, the correlation between EEG and the type and duration of delirium
was not analyzed in this study and needs to be investigated in the future.

5. Conclusions

In the delirium group, H-beta and gamma waves and the tension index increased,
while theta waves decreased, compared to the non-delirium group 1 week after surgery.
Our data show that EEG signals from a wearable device have the potential to be used
to screen patients for delirium, which may lead to earlier diagnoses and treatments for
delirium after spinal surgery. Future large-scale studies are needed to investigate the effects
of factors related to delirium, such as baseline cognitive function, medication use, and
severity of illness.
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Abstract: Understanding brain reactions to facial expressions can help in explaining emotion-
processing and memory mechanisms. The purpose of this research is to examine the dynamics
of electrical brain activity caused by visual emotional stimuli. The focus is on detecting changes in
cognitive mechanisms produced by negative, positive, and neutral expressions on human faces. Three
methods were used to study brain reactions: power spectral density, detrending moving average
(DMA), and coherence analysis. Using electroencephalogram (EEG) recordings from 48 subjects
while presenting facial image stimuli from the International Affective Picture System, the topographic
representation of the evoked responses was acquired and evaluated to disclose the specific EEG-based
activity patterns in the cortex. The theta and beta systems are two key cognitive systems of the brain
that are activated differently on the basis of gender. The obtained results also demonstrate that the
DMA method can provide information about the cortical networks’ functioning stability, so it can be
coupled with more prevalent methods of EEG analysis.

Keywords: EEG; emotions; facial perception; power spectral density; coherence; detrended moving
average; DMA

1. Introduction

The recognition and evaluation of human facial expressions are among the most
evolutionary essential processes. Apart from that, this particular type of visual stimuli
is characterized by a broad spectrum of attributes, rendering them a complex system of
features for human perceptual processing. Recent studies emphasized that our ability to
detect and process human faces arises from the interplay between inherited predisposition
and acquired experience-based skills [1], both modulating our perception. Interestingly
enough, three-month-old children do not show differential neural responses to fearful
and neutral faces, regardless of gaze direction, which reflects the gradual development of
discrimination abilities in the field of facial perception [2]. Consequently, the function of
the human brain during facial processing is currently seen as a dynamic Bayesian-based
system that percepts and processes sensory inputs and integrates them with previously
formed templates.

Brain studies in humans have also shown that facial processing is modulated by the
affective salience of faces, especially those with expressions of fear; however, other social
cues are involved as well. Even though traditional models suggest facial expression and
identity are processed in distinctive areas, the current findings highlight that emotion
processing can have a strong influence on facial recognition and memory mechanisms [3].
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When it comes to EEG data evaluation, several techniques of analysis are traditionally
used to reveal distinctive aspects of neural oscillation. Among them, the power spectral
density (PSD) algorithm highlights an increase or decrease in the power of the particular
oscillation range that accompanies evoked response to a broad range of stimulus types, re-
flecting cortical activation processes [4,5]. Withal coherence allows for bringing up dynamic
interactions between functional brain areas on the basis of distant signal synchronization
processes while executing a specific task [6].

However, putting together the complete picture of induced neurodynamics requires
not only oscillatory power and emergence synchronicity evaluation, but also the assessment
of the temporal stability of the effective neural associations. That is why the study of
the potential applications of nonlinear EEG analysis methods taking into account the
nonstationarity of EEG time series is relevant and can also provide clues for investigating
subtle mechanisms on the basis of the long-range fractal scaling properties of the signal.

Various scaling methods exist to quantify the fractal scaling properties of biomedical
time series; the most commonly used method so far is detrended fluctuation analysis
(DFA) [7]. Nevertheless, recent developments in scaling analysis techniques suggest that the
DFA methodology possesses some crucial drawbacks that lead to the inaccurate estimation
of the scaling properties of a signal [8]. A novel method of scaling analysis, detrended
moving average (DMA) [9] analysis, was introduced, and its theoretical foundation was
developed [10–12]. DMA has huge potential for identifying the long- and short-term
correlations of the time series, and does not have all the drawbacks of DFA.

The DFA and DMA methods were both used in various applications in regard to EEG
analysis, such as emotional specification from musical stimuli [13], the quantifying depth
of anaesthesia [14,15], analyzing human sleep [16], and assessing human emotions [17].
However, in most of the cases, the nonlinear properties of EEG signals are described in a
standalone manner or used as one of the features in training the machine-learning algorithms.
So far, there has been no research jointly describing the relation between conventional
measures in neurophysiology with the fractal scaling features of the EEG time series.

In this work, we aimed to combine the widely used methods of EEG data evaluation
such as PSD and coherence with a detrending moving average algorithm fitted to highlight
long-range spatiotemporal correlations within EEG data in order to display different
neurophysiological aspects of visual perception. Thus, comparing the results provided by
widely used methods of EEG data analysis with the results provided by the DMA algorithm,
a mathematical apparatus that is new in the field of electrophysiological research was
carried out. The data used for the analysis consisted of EEG-based short-term variations
of neural oscillations corresponding to the perception of neutral facial expressions, which
were primed by the faces of either positive or negative emotional valence.

2. Materials and Methods

2.1. Subjects and Data Collection

The study included data collected from 48 volunteers who were the students of
Taras Shevchenko National University of Kyiv (29 females) aged 18–24 (Mean age = 21,
SD = 1.76). The experimental design was approved by the Institutional Ethics Committee of
the Educational and Scientific Center Institute of Biology and Medicine, Taras Shevchenko
National University of Kyiv. Each of the participants received and filled out a written
informed consent in accordance with the Declaration of Helsinki (Helsinki, Finland, June
1964), the Convention for the protection of Human Rights and Dignity of the Human Being
with regard to the Application of Biology and Medicine: Convention on Human Rights and
Biomedicine (Oviedo, 4 April 1997), and the Declaration of the Principles on Tolerance (28th
session of the General Conference of UNESCO, Paris, 16 November 1995). The list of major
exclusion criteria consisted of addictive behaviors, mentions of mental or neurological
cases in the patient’s clinical history, the use of psychiatric medications, untreated vision
impairments, and color blindness.
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Both the image demonstration and EEG recordings were performed using the Neuro-
com electroencephalographic complex in conformity with a purposely designed template.
The data acquisition was performed using 19 active recording channels applied to the scalp
according to the international “10–20%” system.

2.2. Experiment Design

The stimulation material was organized into four 3 min long image sequences (2 emo-
tional and 2 neutral), and each separate stimulus was demonstrated for 5 s. With the view
to perform emotional priming, the image series were displayed as follows: each emotional
array preceded a neutral one; the series with positive facial expressions was shown first to
avoid emotional trace overlap. The experimental paradigm implied the following:

1. EEG recording while the subjects rest with closed and open eyes;
2. EEG recording during emotional stimuli perception (positive and negative facial

expressions);
3. EEG recording during neutral stimuli perception, modulated by positive images (n1)

and negative images (n2).

Stimuli were taken from the International Affective Pictures System (IAPS) [18] accord-
ing to the average values of their emotional valence. Thus, the parameters of the stimuli
were as follows:

1. neutral faces (M = 4.22, SD = 1.64 to M = 5.84, SD = 1.62);
2. positive faces (M = 6.94, SD = 1.42 to M = 8.03, SD = 1.13);
3. negative faces (M = 1.82, SD = 1.64 to M = 3.91, SD = 1.62).

The EEG data were subdivided into a range of sub-bands, allowing for evaluating the
induced responses generated by the human cortex. Therefore, the decisive list of the EEG
spectral ranges included the following constituents:

1. 3.5–5.8 Hz (θ1);
2. 5.9–7.4 Hz (θ2);
3. 7.5–9.4 Hz (α1);
4. 9.5–10.7 Hz (α2);
5. 10.8–13.5 Hz (α3);
6. 13.6–25 Hz (β1);
7. 25.1–40 Hz (β2).

All the analytical techniques mentioned in this study were individually applied to
each EEG sub-band.

2.3. Estimation of Power Spectral Density

Power spectral density (PSD) analysis is a widely used frequency-based method of
EEG power distribution study [19]. In this work, PSD was calculated from EEG data during
the processing of various visual stimuli. First, fast Fourier transform was computed and
then squared to obtain the PSD estimate. The mean normalized PSD for every EEG channel
in the frequency ranges mentioned above was determined by adding power values in a
specific frequency range selected for further analysis. Lastly, the value of total powers in
every range was divided by the total spectral power of the corresponding EEG channel.

2.4. Detrended Moving Average Analysis

The detrending moving average (DMA) method is used to estimate the scaling expo-
nent of long-range correlated series [10], including EEG during cognitive workload [20].
The DMA algorithm is widely applied to evaluate the long- and short-term correlations of
random time series, both one- and high-dimensional, in time and spatial domains [21].

DMA analysis consists of the following steps: First, the time series of each EEG channel
are filtered using a 4-th order Butterworth band-pass filter with a pass band corresponding
to the required frequency range described in the experiment design. The values of the

91



Appl. Sci. 2022, 12, 7849

cutoff frequencies were chosen directly from specified EEG bands: θ1 [3.5, 5.8], θ2 [5.9, 7.4],
α1 [7.5, 9.4], α2 [9.5, 10.7], α3 [10.8, 13.5], β1 [13.6, 25], β2 [25.1, 40] Hz. As the second step,
the Hilbert transform was applied to each filtered signal to obtain the analytic signal, and
then the envelope was estimated as the absolute value of the analytic signal [22].

Afterwards, we integrated the transformed signal as follows:

y[i] =
i

∑
j=1

x[j], (1)

In the next step, we calculated the fluctuation function F(s) of the integrated series:

F(s) =

√√√√ 1
N

N

∑
i=1

(
y[i]− ỹ(m,s)

SG [i]
)2

, (2)

where ỹ(m,s)
SG represents the m-th order Savitzky–Golay smoothing filter [23] for {y[i]}, and

s is window length of the Savitzky–Golay filter. In our approach, we used the fourth
Savitzky–Golay filter that corresponded to the centered DMA [24].

A linear relationship on a double-logarithmic plot of F(s) against scales s indicates the
power-law scaling range. In this scaling range, fluctuations can be characterized by a scaling
exponent α. Scaling exponent α was derived from the slope of the linear part of the relation
between log(F(s)) against scales log(s), where the linear part was empirically chosen to fit
the aim of the research for all the subjects with different types of stimulus. As a result, the
values of scaling exponents were obtained for all channels in the defined frequency bands.
Depending on its value, the meaning of the scaling exponent is interpreted as follows:

1. α < 0.5—long-range anticorrelated signal;
2. α = 0.5—uncorrelated signal;
3. α > 0.5—long-range correlated signal;

2.5. Coherence Analysis

Coherence analysis is generally recognized as a standard metric for EEG data analysis.
The coherence of EEG activity in different brain regions is used to measure the synchronicity
of oscillations in two distinctive areas of the neocortex (namely, functional connectivity)
for different functional states and processes [25], and emotions [26]. In the present study,
coherence is used to indicate statistically significant similarity of neural source activity in a
particular frequency range in two distinct cortical regions.

In this work, the coherence was calculated according to the following pipeline. The
pairs of different EEG channels were chosen for every frequency sub-band, and the co-
herence was calculated [27] using the entire recordings. The validity of the coherence
coefficient between pairs of electrodes was addressed by conducting surrogate data anal-
ysis [28]. The phase randomization technique was applied to obtain the surrogate of the
EEG signal. For one of the EEG signals, the Fourier Transform was acquired, and then
the random number from range −π . . . +π was added to the phase of each harmonic
component. Afterwards, the inverse Fourier transform was performed, and the coherence
was calculated between one initial EEG signal and the surrogate EEG. Each pair of elec-
trodes underwent 100 iterations of the procedure. The t-test (p < 0.05) was performed to
define coherence coefficients, which differed significantly from the surrogate data. If the
coefficient was significantly different, it was chosen for further analysis; otherwise, it was
neglected. As a result, we obtained the valid EEG coherence values between the electrode
pairs for every frequency range and pair of experiments.

2.6. Statistical Tests

The Wilcoxon and Mann–Whitney tests were used to perform statistical tests of sig-
nificance for the PSD, DMA, and coherence parameters of EEG. These tests were selected
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to identify the channels, and frequency ranges were the median values of the analyzed
parameters were different for the two experimental sets of EEG data (n1, n2). Through
the Wilcoxon signed-rank test, two generalized n1/n2 trials without gender splitting were
tested. The Mann–Whitney rank test was used to test female/male groups for the same set
of trials.

Likewise, statistical tests were undertaken for DMA scaling exponents. If the median
value of the scaling exponent for the n1 EEG signal was statistically distinct from that of
the n2 one in a given channel, the significance was obtained for that channel. As all of the
frequency bands chosen for this study were generated from the same EEG recording, it may
be concluded that all of the frequency bands were evaluated together. Thus, the p-value
correction was performed to eliminate the multiple-comparisons problem. To address this
issue, p-values were corrected using the Holm–Sidak correction [29].

The schematic head figures with EEG channels were used to visualize the obtained
results. On these figures, “>0” was assigned to the associated EEG channel if the difference
between medians of the PSD and scaling exponents was larger than 0, “<0” was assigned if
the difference was less than 0, and “0” was assigned if there were no significant differences
between medians. All values associated with a particular color on the heat map facilitated
result perception.

For coherence analysis, the same type of statistical analysis was applied. The visualiza-
tion of the coherence statistical test was performed in the following manner: if the difference
between medians was larger than zero, the red line connected two electrodes labels of
the EEG channel; if the difference was less than zero, a blue line was assigned; and if the
differences were not significant, no visual changes were applied to the head figure. The
Wilcoxon test was used in situations where experiments were compared without gender
division, but the Mann–Whitney test was used when gender division was present.

3. Results

To visualize the results, topographical head heat maps were used. The color bar
represents the main features of signals obtained by normalization between the minimal
and maximal values.

Therefore, the topographical plots represent the statistically significant differences in
PSD values that are induced by distinctive types of visual stimulation. These data were
also reflected within the head maps.

First, the analysis of power spectral density values reflected the neurodynamics related
to the visual stimulus perception and processing when subjects were presented with
emotional stimuli (Figure 1).

Figure 1. Topographic distribution of PSD values during the perception of positive and negative
faces.

A comparison of the EEG data recorded during the demonstration of the first and
second series of neutral images revealed the development of a well-defined focus of
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activation in the left anterior parietal cortical area within the θ2 sub-band when the subjects
were processing neutral faces preceded by negative images (Figure 2).

Figure 2. Topographic distribution (A) and regions of statistically significant differences (B) in
PSD values during perception of neutral faces, which were preceded by positive (n1) and negative
(n2) faces.

At the same time, the comparative analysis between male and female subject groups
highlighted some of the gender-specific differences in information processing that were
primarily visible within the β EEG band. Thus, enhanced activation processes were located
within the prefrontal and frontal cortical areas in the β2 sub-band. Apart from that, men also
tended to have generally increased activation distributed among the majority of cortical
regions in the β1 sub-band.

The analysis of coherence alterations in the paradigm of our study showed the expected
generalized multiple connections within low and medium values (0.3–0.7) (Figure 3). The
maximal number of connections was observed in the θ1, θ2, α1, and β2 EEG sub-bands
in the case of positive stimulus perception. Exposure to visual stimuli with negative
emotional coloring was accompanied by a less pronounced generalization of distant EEG
synchronization (a smaller number of functional connections in the neocortex), with the
maximum represented in the θ1, θ2, and α1 EEG bands. (Figure 3). Lastly, no dominant foci
of connections were revealed in either positive or negative emotional stimuli.

Regarding the high values of coherence coefficients (0.7 < K < 1), it can be concluded
that, during exposureto both emotional series, there was a central-right-sided association
observed in the frontal, central, and parietal–posterior temporal zones within all EEG bands
(Figure 3) In addition, there was a distant bilateral connection formed in the temporal and
occipital regions within the θ1, θ2, and α1 sub-bands.
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Moreover, coherence topography appeared to be similar in the two emotional series.
However, positive facial perception induced an additional left-hemispheric posterior–frontal–
temporal association (F7–T3–T5) in the θ1, θ2, and α1 sub-bands alongside a symmetrical
network of connections in the right hemisphere (F8–T4–T6) in the θ-band. The perception
of negative stimuli was accompanied by the chain of distant connections described above,
complemented by frontotemporal relations in the right hemisphere within the α1 sub-band,
and posterior temporal connections in the α2 and α3 bands of oscillations. Lastly, the left
hemisphere’s rear frontal and temporal cortical areas were interconnected within α2 EEG
sub-bands (Figure 3).

Figure 3. Topographical maps of coherent connections of different strength (red—0.3 < K < 0.5,
blue—0.5 < K < 0.7, black—0.7 < K < 1.0) within EEG sub-bands during emotional facial perception:
reaction to positive faces (A), reaction to negative faces (B).

Likewise, the topography of distant coherent connections distribution (0 < K < 1)
during both neutral emotion-primed series perception appeared to be generally similar to
the one observed in the case of emotional stimulus processing. Moreover, the composition
of connections was almost identical for the groups of low-, middle-, and high-coherence
levels (Figure 4).

Nonetheless, several differences were observed for the group with high coherence
levels (0.7 < K < 1). The perception of neutral faces modulated by negative stimuli,
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compared to the series of positive-primed ones, was characterized by the absence of the
left hemispheric connection within frontocentral (F3–C3) cortical areas in the θ1 sub-band
and the right hemispheric temporocentral (C4–T4) relation in θ2 (Figure 4). In addition,
there was an interaction between the left posterior-temporal and parietal regions (T5–
P3) observed in the α3 EEG sub-band during the perception of neutral stimuli preceded
by negative ones (Figure 4). Otherwise, no significant differences were revealed in the
topography of distant EEG-synchronization distribution.

Figure 4. Topographical maps of coherent connections of different strength (red—0.3 < K < 0.5,
blue—0.5 < K < 0.7, black—0.7 < K < 1.0) within EEG sub-bands during emotional facial perception:
reaction to the first set of neutral faces after positive faces (A); reaction to the second set of neutral
faces after negative faces (B).

Furthermore, the analysis of the topographical distribution of distant connections in
our study from the gender perspective showed a general decrease in connection strength
(K < 0.7) throughout the consequent stages of the experiment. Moreover, in almost all
cases, changes in coherence levels were mainly located in the orbitofrontal cortex and
precentral areas cortical areas (F3; Fz; C3; Cz; C4) within the right hemisphere in almost all
EEG ranges (Figure 5). At the same time, a differential effect of the presented facial valence
on the topography and the number of distant connections were observed. For instance, the
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second series of neutral faces processing was characterized by fewer coherent connections
than the first neutral series was. On the other hand, the demonstration of emotional faces
was associated with increased functional connections, especially when the subjects were
presented with positive stimuli. In addition, enhanced coherence levels were observed
in the female group within the β2 sub-band during all types of experimental stimulation.
For instance, positive stimuli elicited the emergence of symmetrical connections between
the left central (C3) and posterior frontal areas (F7; F8) (K < 0.5), while the presentation
of negative faces resulted in left hemispheric temporal association (T3–T5) (K > 0.7). In
the case of neutral stimulus processing, connections within the left frontal area Fp1–Fz
(in n1 series) and Fp1–F3 (in n2 series) were observed (K < 0.7). Lastly, the values of the
coherence coefficient were generally higher (0.5 < K < 0.7) for bands of low-frequency
EEG oscillations (θ1, θ2; α1), and lower (K < 0.5) for high-frequency oscillations (α3; β1, β2)
(Figure 5).

Figure 5. Topographical distribution of statistically significant coherent connection differences. (A) n1
(f)/ n1(m). (B) n2(f)/n2(m). (C) neg (f)/ neg (m). (D) pos (f)/ pos (m). Red line—the difference
between medians is larger than zero; blue line—the difference is less than zero; no line—there is no
significant differences.

At the average DMA analysis level, no statistically significant differences were ob-
tained for the trials with emotional stimuli (Figure 6).

Interestingly, the DMA algorithm results marked the tendencies mentioned above
on the intergroup level from a slightly different perspective. In this case, the male group
showed an occipitoparietal activation region within the β1 EEG sub-band while processing
neutral images preceded by both positive and negative emotional stimuli. This fact once
again stands for the general activation of the cognitive beta network. At the same time,
the female group was characterized by an extensive network of connections among the
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temporal, central, and frontal regions in the α3 sub-band when neutral faces were presented
after the negative ones.

Figure 6. Topographical distribution of DMA scaling exponent values.

At the general level, DMA analysis displayed areas of statically significant connec-
tions in the left temporal and frontal cortex when subjects were exposed to neutral facial
expressions after the positive series (Figure 7).

Figure 7. Topographical distribution (A) and regions of statistically significant differences (B) in
DMA scaling exponent values.
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4. Discussion

Regarding the PSD results, the involvement of left parietal cortical regions might repre-
sent the effect of negative emotional priming on association and verbalization-related neuro-
dynamics, while a positive background enhances memorization [30]. The prefrontofrontal
locus of activation in β1 might highlight the increase in emotional regulation, internal at-
tention, and verbalization in the male group [31]. In comparison, the generalized enhanced
activation within the β1 sub-band in the male group can be seen as evidence of expanded
spatial-attention-related processes in the visual domain.

In general, obtained results correspond to current accumulated data. They indicate a
greater reactivity of the high-frequency part of the EEG spectral parameters, especially in
response to the negative modality of demonstrated faces. Apart from that, emphasis was
placed on the high significance of the theta EEG oscillations in the anterior cortical areas
alongside high-frequency bands in the temporal, parietal and occipital regions (presum-
ably including the fusiform gyrus), which play a crucial role in the mechanisms of facial
perception and processing [32–34].

Unlike the PSD algorithm, the use of coherence analysis, being indicative of the
oscillatory processes synchronicity in different cortical areas, allowed for identifying even
subtler information exchange in the brain under the conditions of our examination. Thus,
it was possible to show the functional correlation of the topographically distinct cortical
regions during the perception of emotional faces. However, in contrast to the available
data in the literature [33], we observed coherence alterations in almost all EEG bands,
generally over all cortical regions, especially in the middle range of coherence coefficient
values, which seems entirely consistent, taking into account modern concepts regarding
the complex nature of mechanisms underlying the perception of human faces, especially
with a different emotional modality. The introduction of a separate analytical technique
for the functional connectivity assessment at high coherence levels (K > 0.7) allowed for
identifying an area with a changing rate of excitability depending on emotional modality.
We observed the formation of a correlation hub in the prefrontal region (including the
temporal and parietal areas, which are seen as the projections of the amygdala and cingular
cortex). This finding highlights the role of this cerebral region in terms of sensory signal
processing, cognitive behavioral strategy setting, decision making, and, more importantly,
the actualization of attention processes. It turned out that increased reactivity to negative
facial expressions also radiates its effect on the perception of neutral faces in the case of
emotional priming.

The introduction of the gender parameter into the analysis also allowed for showing
the locus of distant coherence changes at the group level. It was revealed that gender
differences appear to be manifested in all experimental sessions. In this instance, the main
hub of interest included coherent coupling between the prefrontal and anterior parietal
regions in the left hemisphere, and these functional associations were less prominent in
the female group. In addition, the general decrease in coherent connections during the
perception of positive images is much more topographically expressed, indicating a more
activating component of negative perception. The observation that image perception is
accompanied by changes in functional association mainly in the left hemisphere may be
due to the fact cortical areas of this hemisphere are involved in the categorical (semantic)
analysis of information, which is a necessary stage of perception.

Notably, the only EEG range where coherence coefficient levels were significantly
high in the female group was the β2 sub-band. Within this oscillatory range, we detected
a functional association between the anterior temporal and posterior frontal regions of
both hemispheres, and the vertex, which might indicate the activation of working memory
mechanisms during perceptual task execution [35].

The tendencies brought up by the DMA-based analysis corresponded to the PSD
results. The activation region within the temporofrontal area in the left hemisphere might
reflect the remaining positive experience trail alongside the intensification of inner attention
mechanisms [36] and working memory activation traces against the background of positive
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emotional experience. The occipitoparietal area of coherent coupling in the male group
might support the general activation of the cognitive beta network (neocortical mecha-
nisms). At the same time, the pronounced pattern of coherent associations in the female
group within the α3 sub-band might represent not only the specific activation of working
memory mechanisms, but also the lack of the downstream control and suppressive function
of attention upon emotions and mental imagery and semantic activations [37,38]. Lastly,
generally enhanced levels of the DMA coefficient were observed in the central parietal
cortical area and supposedly the fusiform gyrus, which are known for their role in facial
perception and recognition [32,33].

Lastly, in the framework of this work, we proceeded from notions of the physiological
and functional heterogeneity of the brain’s rhythmic activity. In the context of this paradigm,
all EEG bands can be divided into sub-bands, which allows for studying the mechanisms of
cognitive functioning more subtly. For instance, strong evidence exists that the θ EEG band
has a heterogeneous physical and functional structure. However, at present, most authors
analyze the range as a whole (4–7.5 Hz), focusing separately on changes in its individual
sub-bands depending on the current functional state of the brain [39,40].

At the same time, there are several studies in which the θ band of oscillations is
primordially divided into two sub-bands associated with the activation of the emotion- and
memory-related mechanisms, respectively [41–43].

In the context of this work, we expected to highlight the prognostic significance of
dividing the θ range into two sub-bands under the conditions of using various types of
EEG analysis. Our results show the legitimacy of separating the theta range into at least
two subranges (Figures 2–7) that indicate different cognitive response mechanisms.

The same opinion ambiguity is seen when it comes to α band analysis. We built our
study on the research evidence, which suggests functional variety in the α EEG band.
Therefore, α1—(8–9 Hz) is considered to play an inherent role as a correlate of memory
processes; α2—(10–11 Hz) is connected to the attention phenomenon; and α3—(12–13 Hz)
is associated with the processes of inner speech and logical thinking [44–47].

The study of brain dynamics, taking into account frequency sub-bands, can provide
nontrivial information about neural networks functioning during mental and cognitive
activation, especially when using modern nonlinear analytical algorithms.

5. Conclusions

The current study emphasized different aspects of facial perception and processing
neurodynamics using methods of particular traits of EEG signals: power spectral distri-
bution, coherence, and long-range DMA-derived connections. The main gender-specific
difference consisted in the activation of the two major systems of cognitive function, namely,
emotional limbic-associated (theta system) and cognitive cortical-associated (beta system).
We can conclude that the DMA algorithm is suitable for oscillatory stability evaluation,
which is particularly important considering the topographical overlap established by all
three analytical algorithms. Thus, it can be combined with more common methods of EEG
data analysis, such as PSD and coherence, to form a more complete picture of cortical func-
tioning.
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Abstract: In the last decade there has been significant growth in the interest and application of using
EEG (electroencephalography) outside of laboratory as well as in medical and clinical settings, for
more ecological and mobile applications. However, for now such applications have mainly included
military, educational, cognitive enhancement, and consumer-based games. Given the monetary
and ecological advantages, consumer-grade EEG devices such as the Emotiv EPOC have emerged,
however consumer-grade devices make certain compromises of data quality in order to become
affordable and easy to use. The goal of this study was to investigate the reliability and accuracy
of EPOC as compared to a research-grade device, Brainvision. To this end, we collected data from
participants using both devices during three distinct cognitive tasks designed to elicit changes in
arousal, valence, and cognitive load: namely, Affective Norms for English Words, International
Affective Picture System, and the n-Back task. Our design and analytical strategies followed an
ideographic person-level approach (electrode-wise analysis of vincentized repeated measures). We
aimed to assess how well the Emotiv could differentiate between mental states using an Event-Related
Band Power approach and EEG features such as amplitude and power, as compared to Brainvision.
The Emotiv device was able to differentiate mental states during these tasks to some degree, however
it was generally poorer than Brainvision, with smaller effect sizes. The Emotiv may be used with
reasonable reliability and accuracy in ecological settings and in some clinical contexts (for example,
for training professionals), however Brainvision or other, equivalent research-grade devices are still
recommended for laboratory or medical based applications.

Keywords: Emotiv EPOC; brainvision; brain-computer interface BCI; reliability; accuracy; arousal;
valence; mental load; consumer-grade EEG; research-grade EEG

1. Introduction

1.1. Emotiv EPOC Wireless EEG Device in Context: Current Research and Applications

Since its inception, the field of electroencephalography (EEG) and its potential uses
have developed considerably. In laboratory research settings, EEG has been used exten-
sively for cognitive neuroscience research, and in medical settings, it is considered the most
robust method of diagnosing seizures and epilepsy [1,2]. In the last decade, however, there
has been significant growth in the interest and application of using EEG outside of the
laboratory and medical settings [3]. EEG has become the most widely used neuroimaging
technique for brain-computer interfaces (BCI). Some of these extended uses of EEG include
military operations such as controlling weapons or drones [4–8], educational classroom
applications such as monitoring student’s attention/other mental states or helping them
engage with material [9–13], cognitive enhancement such as increasing cognitive load or
focus [12,14,15], and consumer based games such as computer games or physical toys
controlled via brain waves [2,15–19].
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One challenge in developing outside lab EEG applications, however, is that traditional
research- and medical-grade EEG devices are costly (~US$50,000+), typically stationary,
fully wired, and time consuming to properly set up, in that electrode application may
typically take 30–60 min depending on the type and number of wet (gel-based) sensors [3].
For example, one research-grade EEG device is the Brainvision EEG headset. Its most
typical configuration includes 32 channels and must be connected by wires to an amplifier,
a computer, and a monitor, for data input and analysis. Its electrodes require the use of
electro-conductive gel prior to the experiment, which allows it to minimize impedance and
be more sensitive to the electrical activity produced by the brain. While these factors are a
strength of Brainvision in regard to the accuracy and reliability of data collection, they can
also be interpreted as limitations in other capacities. For instance, all of these factors make
using traditional EEG challenging in more ecological settings (i.e., educational and training
health settings). In response to these challenges, over the last decade or so, wearable,
portable, cost-efficient EEG headsets have been developed [3]. To date, the most recent and
exhaustive review of consumer grade EEG devices impressively covering applications in
cognition, brain computer interfaces, education research, and game development has been
published by Sawangjai et al. [20]. Their review dealt primarily with the validity associated
with the wireless EEG devices, that is, with the issues related to whether what was measured
by wireless consumer-grade devices reflected the same constructs (for example the same
EEG or/and ERP components or signatures) or the same entities/features intended to
be identified and measured as the ones traditionally obtained with research-grade EEG
devices. However, Sawangjai et al. did not explicitly differentiate issues of validity from
those of reliability, therefore, their assessment did not adequately address related issues of
personalization, these are the central objective and contribution of our work.

A commercial consumer-gradedevice that emerged in response to the limiting factors
associated with stationary research-grade systems was the Emotiv EPOC. The EPOC head-
set is much more affordable; as of fall 2021, the newer 14-channel version of the Emotiv
EPOC (now called the Emotiv EPOC X) can be purchased for less than US $1000. These
headsets boast much quicker and easier installation and removal times of 3–5 min, in
addition to being wireless. This device also has low weight and a battery life of up to
12 hours. Such devices have the advantage of being more user and consumer-friendly mak-
ing them well-suited for situations where ergonomics and patient or participant movement
is involved; as well as situations where scalability is of interest (e.g., having 30 students in
a classroom all wearing an Emotiv, which would be highly impractical using a research
device like Brainvision). Crucially, what set EPOC apart from the other available com-
mercial devices is that at the time of its release it had one of the largest set of wireless
electrodes, making it comparable to the electrode set sizes used in a significant part of
literature representing research with traditional laboratory wired EEG equipment.

Although there are some clear advantages to using a device like the Emotiv head-
sets in consumer/ecological and in some clinical settings, it does not come without its
own challenges. Consumer grade EEG devices typically compromise data resolution for
shorter setup time, affordability, and portability [21–26]. Since portable headsets have less
electrodes and channels than standard research-grade EEGs, scalp coverage and spatial
resolution decrease [27]. The use of dry electrodes can also pose a problem as impedance
can hinder the detection of electrical activity and lead to lower data values. This can be
mitigated by using saline solution, but its effect is minimal compared to electro-conductive
gel [24]. Overall, concerns around portable EEGs are centred on the accuracy and reliability
of their data as compared to standard, research-grade EEGs.

There is an important growing body of scientific literature investigating the Emotiv
under different conditions utilizing various EEG signatures such as the P300 [24] which has
demonstrated its poor reliability/accuracy compared to research-grade devices. However,
other studies have demonstrated that EPOC can accurately detect P300 and N200 [26,27].
That said, the study from Barham et al. (2017) utilized a modified Emotiv with electrodes
that had been upgraded to research-grade quality [26] which may have played a significant
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role in the success of the Emotiv application. Another study from Badcock et al. (2015) [28]
further demonstrated that the morphology of EEG signals such as the P1, N1, P2, N2,
and P3 were highly correlated between the Emotiv and research-grade Neuroscan system;
however there were some differences in the amplitude of the signal. Needless to say, there
remains a disparity in the literature which requires more research to be done to elucidate
the truth about the Emotiv. There are so many factors that may influence the success of an
Emotiv application: Notably, the study by Duvinage et al. (2012) [24] which reported poor
quality of the Emotiv for detecting P300 utilized a visual odd-ball paradigm, whereas the
studies that were more successful [26–28] utilized auditory odd-ball paradigms. Therefore,
the modality of the task used to elicit the EEG signal may play an important role. However,
a more recent study from Fouad (2021) [29] was able to successfully capture and utilize
subject’s P300 signal with reasonable accuracy for a brain-computer interface speller (a
visual paradigm) when combined with machine learning such as support vector machines.

A critical emerging issue related to wireless portable EEG devices such as EPOC is
the application to personalized healthcare [30]. Personalization implies that the quality
of repeated measurements of desired EEG features have an acceptable to optimal level
of precision or reliability (i.e., measurement or instrumental precision) at the level of an
individual (i.e., the so-called “N-of-1”) (see [31]). Although a dominant mainstream view
is that some aspects of the classification and processing of the signal are deemed to be
handled by the integration with machine learning on the basis of massive iterative training
applied to large within subject repeated measures, the latter types of approaches are no
substitutes for the quality of EEG signal acquisition from the individual subject, that is,
they do not directly address the possible problems associated with weak measurement at
the individual level. Therefore, the issues partly require approaches and techniques that
address small-N or N-of-1 experimental designs, and neither can be only solved with the
current mainstream data mining science based on large samples nor with parametrization
referenced to a population distribution (see [31]).

The issues in EEG personalization largely overlap with the current debate in the
multidisciplinary field of measurement which contrasts the idiographic person-oriented
approach [32,33] versus the nomothetic population distribution referenced approach (for
extensive overview and review and discussion within the context of psychological and
brain sciences see [34]). Personalized predictions can only be made based on prior data
from the individual for whom a prediction is to be made (idiographic data) and not with
aggregated data from other individuals (nomothetic data) [35]. This is an implication from
the classic ergodicity theorems [36], from which it follows that intra-individual (within
subjects) variation (IAV) is equivalent to inter-individual (between subjects) variation
(IEV), that is, they are ergodic, only if IAV is homogeneous in time, that is, if there are no
fluctuations, trends or other types of time-dependent changes in the IAV time series). If the
structure of IAV is heterogeneous, then it can no longer be examined by switching to the IEV
perspective—as in most of the approaches relying on population distributions—because
the two types of variations are incommensurable. In terms of relevance for neurocognitive
processes pertinent to EEG, the non-ergodic implications also apply to functional brain
connectivity [37,38] and the underlying dynamics of neural networks (e.g., see [39]).

Thus, employing small-N designs that focus on the individual participant as the
replication unit and the control of him/herself is a sound alternative or/and supplementary tool
to assess the precision of personalization EEG devices for the measurement of individual
mental states. Indeed, there are alternative approaches that derive and conform to the
tradition of behavioral [40] and psychophysical [31,41] experimental designs. One is
the numerical method known as Vincentization or Vincentized average [40], in which
data from small samples (N = 3–5) are binned so that the derived distribution reflects
approximately the same shape as each individual, and a second approach is the item-wise
(or by-item) analysis approach [42] in which the dependent variable is aggregated across
subjects for a particular item (i.e., stimulus or channel) and consequently the item becomes
the unit or case which the statistics is applied to, usually requiring a completely nested
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within-subjects design. These two methods are complementary and when used together
(i.e., item-wise analysis of vincentized data) they offer the opportunity to integrate intra-
individual and inter-individual/group variability by empirically constraining or restricting
the range of heterogeneity of the combined variance, so that variability can be assumed to be
reasonably ergodic.

In summary, there seems to be some disparity in the literature regarding the reliability,
reproducibility, and accuracy of the Emotiv EPOC headset. Moreover, the literature is
specifically lacking in studies investigating other characteristics of the EEG signal such as
power and amplitude. The literature is also lacking in studies investigating the precision
of EEG features related to a wider variety of mental states such as arousal, valence, and
mental load. Most important, so far there have been only a handful of studies (reviewed
above) which compared measurements collected from the same subjects, serving as controls
of themselves, and done on both consumer-grade EPOC Emotiv and research-grade devices.

To start filling some of the gaps in the literature we here report a preliminary empirical
study assessing the precision of the Emotiv EPOC consumer device, with a particular eye
to implications for EEG personalization. That is, the empirical question we address here
is one of reliability or precision: can EEG signal measured with EPOC from an individual A,
while he/she is in a defined psychological state X, consistently replicate the EEG signal from the same
individual A in the same psychological state X when measured with a stationary traditional device
such as Brainvision assumed as the “gold standard”. This is independent from the validity
question, that is, whether the EEG signal measured with both types of EEG devices from A
can be validly classified as a correlate of the same state X in the general population.

1.2. The Present Study

The present study aimed at investigating the accuracy and reliability of consumer-
grade portable and wireless EEG as compared to standard, wired research-grade EEG,
using the Emotiv EPOC 14-channel headset and the Brainvision 32-channel headset. While,
as already mentioned, there are many empirical studies and exhaustive reviews which have
focused on addressing the validity of wireless consumer-grade EEG devices including Emo-
tiv EPOC, few have directly addressed the issue of reliability of measurement, independent
of the content-validity of the measurement; among the latter small literature, even fewer
have compared EEG features in data collected from the same subjects using both types of
devices, that is, using a repeated measures (i.e., within-subject sample-matching) design.

Accordingly, to advance current research in the field, the present study contributed
a novel approach for the direct assessment of the reliability and accuracy of wireless
consumer-grade EEG devices, using as paradigmatic example case Emotiv EPOC. Specifi-
cally, we investigated the features of EEG power and amplitude measurements for specific
frequency bands of matched electrodes (the 14 channels these headsets share are AF3 (FP1),
F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4 (FP2)) between the Emotiv device
and the Brainvision device during different mental states in the same participants. In the
next sections, we describe the EEG features and the level of psychological states considered.

1.2.1. EEG Features: Event-Related Band Power and Amplitude

Typically, a clear separation is made between the analysis of the EEG in the frequency
domain (Spectral analysis; measurements: power, coherence, phase, etc.) and the analysis
of the EEG in the time domain, whose most common form is the Event-Related Potentials
(ERPs), obtained by averaging activity associated with events of the same nature (reported
measurements: amplitude, latency, topography).

However, most recently, hybrid approaches have also been devised in which time
and frequency domain EEG features are examined as covariates (for example see [43–46]),
particularly, to investigate spectral changes associated with stimulus or task time-course,
as opposed to resting brain activity. In line with these approaches, in the present study we
focused on two EEG event-locked or task-related features: Event-related band frequency
amplitude and power. As described by Klimesch [47], the event-related amplitude is the
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‘magnitude’ of an oscillation, reflecting the distance between the maximal positive- and
negative-going points (phase) of an oscillatory cycle. The related feature of power is the
under-the-curve integral of the event-related amplitude response (to a stimulus and/or
task) within the entire frequency band during a test period.

1.2.2. Definition of Low vs. High Mental States

Three distinct psychological tasks were used which involve emotional and cognitive
processes and have been designed and validated to elicit varying levels of arousal, valence,
and mental load: Affective Norms for English Words (ANEW), International Affective
Picture System (IAPS), and the n-Back task. These tasks were selected because they demon-
strated reasonable validity in distinguishing a relative difference in low as opposed to
high psychological states as defined by the subjective self-ratings of the participants and as
reflected by the state-dependent changes in EEG correlated with those low vs high levels.

ANEW is a set of 1034 English-language words associated with emotional values [48].
This dataset was made to complement the IAPS database described below [49,50] to assess
attentional and emotional processing in the auditory and verbal/linguistic domains. The
words are assessed by self-ratings based on arousal, which goes from calm to excited, and
valence, which ranges from unpleasant to pleasant. For example, “war” would evoke high
arousal and low valence since it is stressful and displeasing, while “rollercoaster” would
evoke high arousal and high valence due to its mostly pleasant and exciting nature [49].
Low level as opposed to high level of word arousal and valence has been previously
demonstrated to alter cortical activity in ways measurable by EEG [51].

The IAPS is a repository of 956 photos chosen to be standardized visual stimuli in
experiments of emotion and attention. Just like the ANEW system, the photos are chosen
based on their ability to cause emotions and are primarily classified using valence and
arousal [52]. Photos can also be rated based on dominance, but the latter variable was not
considered in this study. Similarly to the ANEW, this task can create noticeable differences
in EEG in relation to changes from low as compared to high levels of arousal and valence,
as previous experiments have been able to detect such differences in brain activity during
image processing, depending on pleasantness and unpleasantness [53].

The n-Back task was initially designed to include up to three items [54], and then
upgraded to six items [55]. In this task, the participant is exposed to a stream of stimuli and
must indicate whether the current stimuli matches the one n trials before [56]. For example,
in a 1-back task, participants must indicate whether or not each letter matches the one right
before; in a 3-back task, participants must indicate whether or not each letter matches the
one 3 letters before; etc. The change in attention from low as opposed to high cognitive or
mental load required for this task can be detected by EEG [57].

1.2.3. Hypothesis and Predictions

Our default working hypothesis was that the wireless consumer-grade device we considered
(Emotiv EPOC) should perform as accurately as the selected gold standard stationary device
(Brainvision). Consequently, we predicted that the low as compared to the high levels
in mental psychological states—as defined by psychological self-report in the ANEW
(arousal), IAPS (valence) and n-Back (cognitive load)—should show similar within-person
and homogeneous-group (i.e., vincentized) patterns of relative differences/changes between
the corresponding EEG features (amplitude and power) associated with each respective
level (i.e., low vs. high mental state). These patterns of changes should occur across all
homologous pairs of compared electrodes in both types of devices. Thus, to the extent in
which this default prediction would be supported for all, or some of, those psychological
states, it would provide an assessment of the degree of reliability of the wireless consumer-
grade device.
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2. Materials and Methods

2.1. Sample and Data Re-Analysis Approach

The data utilized in this study was derived from a previous study by the same au-
thors [20] which investigated global averages of EEG power across the scalp comparing
EEG signal pooled across all electrodes (14 for EPOC vs. 32 for Brainvision). The database
used repeated long recording session samples from “professional observers” in the span
of 48 hours. Participants were three healthy university graduate students (mean age
24.66 years old). They all gave verbal consent to participate and waived the requirement of
signed consent. The study was part of a grant funded pilot project which was retrospec-
tively assessed and approved by Carleton University Institutional Research Ethics Board
(section Human Subjects) under the regulation set by the Canadian Tri-Council [58].

All participants were right-handed males with corrected-to-normal or normal vision,
and none reported any history of neurological impairment or were currently using psy-
choactive medications. The average number of hours of sleep on the previous night was
7.5 h. Testing was conducted from 10 a.m. to 4 p.m. with a one-hour break in between
on two separate days. The pre-experimental short adult version of the mood and feelings
questionnaire [5] was administered by an independent research assistant unaware of the
hypotheses and goals of the study to screen for mood differences or emotional changes
before the experimental sessions between days. No remarkable differences were reported as
all participants scored similarly (overall score range: 3–5) in the two days and consistently
well below the recommended clinical cut-off (possible maximum = 26; clinical cut-off ≥ 11).

Prior to the experiment, all participants gained familiarity with the actual stimuli and
conditions of the tasks during several study sessions, since they were involved in selecting
the stimuli and the conditions, they designed the computer programs for the tasks, and
they test piloted the delivery and the performance of the task computer programs and the
instrumentation. Since all these activities involved extensive exposure and practice over
time, it can be assumed the materials of the tasks were overlearned and practice effects,
particularly due to the order in which the devices were used, were washed away. This
compensated for lack of counterbalancing due to small sample.

The present study utilized a different analytical strategy going beyond global EEG
patterns, to focus specifically on the accuracy and reliability of different EEG signals at elec-
trode sites matched between the two devices; these present analyses and results are novel
unpublished findings. Thus, the unit of analysis, or “subjects” were the 14 EEG electrodes.
This type of within-subject approach is usually traditionally known as by-item or item-wise
analysis [42,59] or, in keeping with EEG terminology, an electrode-wise analysis.

The item-wise approach corresponds to a random effects model on the items, and a
fixed-effects model on subjects. Therefore, the effects from statistical tests can be generalized
to new items and task from the same subjects but cannot be used to make a reliable
prediction for new subjects that would be generalized to the population [60]. The mean-
wise group approach is ordinarily used to obtain the highest possible effect. In contrast, the
item-wise approach centers around the pursuit of replicable effects based on weak but stable
interindividual correlation coefficients, that is, on relatively homogeneous intraindividual
variance. The weak correlation for an item is generally due to excessive interindividual
noise. To reduce such noise heterogeneity, in our study the participants’ data were first
vincentized, that is, they were partitioned according to time-series bins with same data
density per interval of time by averaging the participants’ quantile functions, as previously
done by D’Angiulli et al. (2020) [61]. Successively, bin-by-bin means were estimated for
each electrode (i.e., across participants). This procedure insured the definition of group
quantiles from which a reliable distribution function could be constructed for the data from
each electrode even with N = 3 (see [62]). In essence and more simply, the outcome of
the vincentization procedure is obtaining an average distribution that reflects closely the
distribution of each individual subject, and as mentioned this optimizes ergodicity in the
data. It is of critical importance to point out here that the statistical tests of accuracy were
applied to the repeated measures linked with the set of electrodes, hence, the size of the
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study coincides with the size of the repeated measurements (N = 14) not the actual sample
size (number of participants).

In sum, we used an approach through which, by combining electrode-wise and
vincentization techniques, we obtained a completely nested within-subject design which
tends to homogenize (i.e., limit heterogeneity of) the combined inter- and intraindividual
variance. The latter set up therefore permits to draw inferences more confidently at the
idiographic or individual person prediction level, which ultimately is the purpose of the
main applications of consumer-grade devices such as EPOC.

2.2. Electrophysiological Measures

The portable consumer grade device used in this study was the 14-electrode Emotiv
EPOC. The research grade device used in this study was the 32-electrode Brainvision
system. EPOC was utilized first followed by Brainvision.

For the Brainvision actiCHamp,EEG activity was first amplified and then sampled at
1 kHz. An online bandpass filter from 1 to 100 Hz was applied. During offline processing,
the Brainvision data was downsampled using EEGLAB [63] to 128 Hz to make it compatible
with the EPOC sampling rate.

For the EPOC, EEG signals were initially preprocessed as specified by the manufacturer
were high-pass filtered with a 0.16 Hz cut-off, pre-amplified and low-pass filtered at an
83 Hz cut-off. The data were then digitized at 2048 Hz. The digitized signal was further
filtered using a 5th-order sinc notch filter, and down-sampled to 128 Hz following standard
practices used within the community of users (for example, see [64]).

For both systems, the average offline EEG signal was subtracted from each electrode for
each time point (offline re-referencing to a common mean reference). The offline averaging
was done in a way that allowed separate averages for the Event-Related Band Potentials

(ERBPs) in each experimental condition (such as the different tasks described below in
Sections 2.3 and 2.4) and stimulus type for electrodes with epochs ranging from −200 ms
pre-stimulus to 1000ms post-stimulus. The trials where excessive peak-to-peak deflection
occurred at non-ocular electrode placements were considered contaminated and excluded
from the averages. Following artefact correction and removal, less than 15% of trials
were rejected.

To extract the EEG features, we applied the Fast Fourier Transform (FFT) algorithm to
transform time recordings into frequency recordings in order to compute the continuous
input EEG data for each condition. We tabulated and computed the total spectral content
of the electrical activity of each electrode, using a −1024 to 1024 ms time window. We
computed FFTs for each participant on a grand average for each condition (high arousal,
low arousal, high valence, low valence) on both the ANEW and IAPS tasks, and low and
high load for the two versions of the n-Back task. FFT computation was performed through
the BESA spectral analysis pipeline (http://wiki.besa.de/index.php?title=BESA_Research_
Spectral_Analysis, accessed on 20 May 2022). The FFT was applied to the marked regions
of the blocked data windows to examine the frequency content of the signal. FFTs were
normalized and the frequency power and amplitude bands from 1–50 Hz were exported
for further analysis (FFT was viewed as amplitude and power in frequency bands, and
the tabulated results were saved in ASCII data files). The power Band frequencies were
defined as follows: Delta (1.0 Hz–4.0 Hz), Theta (4.0 Hz–8.0 Hz), Alpha (8.0 Hz–14.0 Hz),
Beta (14.0 Hz–30.0 Hz), Gamma (30.0 Hz–50.0 Hz).

2.3. IAPS and ANEW Procedures

The order in which the three observers carried out the tasks were respectively:
(1) ANEW, IAPS, n-Back; (2) n-Back, IAPS, ANEW; (3) IAPS, n-Back, ANEW.

Participants were informed by pre-set computer cues of the expectations for each task,
such as whether pictures, words, or letters would be presented and which items required a
response. Participants were one meter away from the computer screen where the stimuli
were presented. The researcher stood two meters behind the participant and offered verbal
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instructions. Participants were primed with instructions to experience emotional connection
with every presented image or word. Participants viewed every presented image/word for
five seconds during a period of 10 min. After each block, participants were allowed a break
for as long as required, which generally lasted five minutes (this was consistent between
the testing completed with EPOC and the testing completed with Brainvision). During
these breaks we checked electrode contact and stability of measurement. The stability of
EEG signal from Brainvision was checked and maintained by monitoring the impedance of
active electrodes and ensuring that it was kept below 5kOhms; this was also facilitated by
the use of electrogel. The stability of EEG signal from EPOC was maintained by removing
the device after each task and reapplying saline solution. Head positions were re-measured
to maintain consistency between electrode placements each time the device was replaced
on the head.

In total, 50 images/words were randomly presented to participants, with a break after
the 25th and 50th image/word. After participants confirmed readiness, the experimenter
launched the stimulus presentation program. Stimulus presentation began with a cen-
tral cross fix for 200 ms to help participants focus their gaze and reduce eye movements.
After this, image/word presentation occurred for 4500 ms, followed by a 1300 ms delay
before the presentation of the cross fix. Images were based on scores of the standardized
IAPS/ANEW scale; they were designated as extremely high or low arousal in a block, and
extremely high or low valence in another block. Blocks were sets of 50 image/word presen-
tations. Participants were told to stay still while viewing images/words. Images filled a
48.3 cm (19”) monitor with a 1024 × 768 pixel resolution, while letters had a font size of
48 points and were shown in the center of the monitor.

2.4. n-Back Procedures

Participants performed a memory task that consisted of remembering a letter based on
its position in a sequence of continuously presented letters. A cross-fix would also appear
at the center of the screen before each letter’s presentation. The variations of this task were
the 1-back and the 3-back. In the 1-back, participants were told to press a key if the letter
displayed matched the one presented right before. The rationale is identical for the 3-back,
where participants must indicate whether or not each letter matches the one shown three
letters before. Each letter of size 48 was shown for 500 ms in the center of the monitor. EEG
was recorded for all answers, valid and invalid alike. Every participant finished six blocks
of the two task variations and performed three of each, alternating between variations and
starting with the 1-back. Each block had 26 trials for a total of 78 trials for each variation.
Subjects performed three blocks of 13 trials for the 1-back condition, and three blocks of
13 trials for the 3-back condition. A total of 117 ERBP averages for the 1-back condition and
117 ERBP averages for the 3-back condition were obtained. No trials were omitted for the
n-Back task.

2.5. Data Analysis

The estimated marginal means were charted for the absolute value of frequency
band power and its amplitude, which were expressed in microvolts (μV), for each head-
set’s electrodes. The estimated marginal means were plotted across participants though
the analysis was performed according to the electrode-wise schema (one-to-one paired
matching between homologous electrodes). In order to compare headset accuracy and
reliability when using the same channels, the Emotiv EPOC’s 14 electrodes were matched to
Brainvision’s 14 correspondingly-located electrodes. Thus, the 14 electrodes used in Emotiv
were AF3, AF4, F3, F4, F7, F8, FC5, FC6, T7, T8, P8, P7, O1 and O2, while the 14 ones used
in Brainvision were FP1, FP2, F3, F4, F7, F8, FC5, FC6, T7, T8, P8, P7, O1, O2 and Oz (see
Figure 1). (Note that the EPOC system doesn’t have electrodes placed along the midline
of the head, and it uses the CMS and DRL electrodes as dual reference points, instead of
a single ground electrode as in the Brainvision system. Pooled reference electrodes are
shown in green in Figure 1)
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Figure 1. Left Panel: Brainvision (32-electrode) EEG system with ground at Cz. Right Panel: Emotiv
EPOC (14-electrode) system with CMS at P3 and DRL at P4.

The estimated marginal means of both amplitude and power were reported in figures
to demonstrate visually the detection of arousal, valence and workload, in addition to
each EEG’s ability to discriminate between high and low psychologically defined states
in these three conditions (all these figures are included as Supplementary Materials). For
conciseness, we summarize all main findings in the table below (see Table 1A,B).

Table 1. A. Grand averaged event-related power amplitudes and nonparametric contrasts for low vs.
high mental states in ANEW, IAPS and n-Back Tasks measured by a consumer-grade (EPOC) and
a research grade (Brainvision) EEG system. (Statistics were performed on electrode-wise repeated
measurements, N = 14). B. Grand averaged cumulated power and nonparametric contrasts for low
vs. high mental states in ANEW, IAPS and n-Back Tasks measured by a consumer-grade (EPOC) and
a research grade (Brainvision) EEG system. (Statistics were performed on electrode-wise repeated
measurements, N = 14).

(A)

EPOC Brainvision

Band
Mental State

z p μ2 Mental State
z p μ2

Low High Low High

(ANEW, Arousal)
Delta 2.02 2.16 −1.10 0.271 0.09 10.74 9.34 3.18 0.001 0.72
Theta 1.48 1.57 −1.57 0.116 0.18 8.57 7.044 3.30 <0.001 0.78
Alpha 2.22 2.30 −1.45 0.148 0.15 13.23 11.344 3.30 <0.001 0.78
Beta 2.20 2.11 1.51 0.132 0.16 16.53 18.784 −2.23 0.026 0.36

Gamma 0.89 0.97 −2.04 0.041 0.30 14.94 18.99 −3.23 0.001 0.75

(ANEW, Valence)
Delta 1.45 1.77 −2.07 0.039 0.31 6.65 8.19 −3.30 <0.001 0.78
Theta 2.10 1.72 1.30 0.195 0.12 5.62 5.93 −3.30 <0.001 0.78
Alpha 2.13 1.98 0.88 0.379 0.06 10.28 10.51 −1.38 0.167 0.14
Beta 2.50 2.18 2.10 0.036 0.32 12.50 13.55 −3.30 <0.001 0.78

Gamma 0.52 0.70 −3.04 0.002 0.66 11.27 12.21 −3.17 0.002 0.72
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Table 1. Cont.

(A)

EPOC Brainvision

Band
Mental State

z p μ2 Mental State
z p μ2

Low High Low High

(IAPS, Arousal)
Delta 1.96 2.76 −3.30 <0.001 0.78 7.97 7.24 3.17 0.002 0.72
Theta 1.42 1.78 −3.11 0.002 0.69 5.80 6.00 −3.18 0.001 0.72
Alpha 2.21 2.48 −2.93 0.003 0.61 8.79 9.03 −1.48 0.140 0.16
Beta 1.73 1.93 −3.30 <0.001 0.78 14.57 15.39 −3.30 <0.001 0.78

Gamma 0.42 0.63 −3.31 <0.001 0.78 14.53 15.22 −3.24 0.001 0.75

(IAPS, Valence)
Delta 1.75 2.80 −3.30 <0.001 0.78 7.66 6.99 3.30 <0.001 0.78
Theta 1.35 2.05 −3.23 0.001 0.75 5.98 5.84 2.00 0.046 0.29
Alpha 2.04 2.78 −3.30 <0.001 0.78 10.04 10.28 −1.92 0.055 * 0.26
Beta 1.80 2.30 −3.30 <0.001 0.78 15.07 15.02 0.67 0.506 0.03

Gamma 0.39 0.69 −3.31 <0.001 0.78 14.57 14.15 3.30 <0.001 0.78

(n-Back 1,3,5)
Delta 2.70 2.39 2.45 0.014 0.43 2.89 2.72 1.23 0.221 0.11
Theta 1.95 2.05 −1.54 0.124 0.17 3.07 2.95 1.29 0.198 0.12
Alpha 2.75 2.69 0.47 0.638 0.02 3.08 3.07 0.44 0.660 0.01
Beta 2.77 2.75 0.03 0.975 0.00 3.92 4.23 −3.30 <0.001 0.78

Gamma 0.95 0.93 0.59 0.556 0.02 4.25 4.49 −2.86 0.004 0.58

(n-Back 2,4,6)
Delta 4.58 2.35 3.30 <0.001 0.78 2.28 2.30 −0.19 0.851 0.00
Theta 2.90 1.98 3.30 <0.001 0.78 2.78 3.11 −2.79 0.005 0.56
Alpha 4.08 2.55 3.30 <0.001 0.78 2.65 2.94 −3.20 0.001 0.73
Beta 3.81 2.72 3.30 <0.001 0.78 4.66 4.64 −2.31 0.021 0.38

Gamma 1.27 0.89 3.30 <0.001 0.78 4.62 4.56 −0.25 0.802 0.00

Note. Estimated marginal means of EEG power amplitude for mental states are reported in μV. For standard errors please refer to
Figures S1–S6 in Supplementary Materials. Z statistics calculated from Wilcoxon non parametric test for small samples. Rows in bold
identify comparisons yielding statistically similar results for both devices. “*” indicates marginal significance.

(B)

EPOC Brainvision

Band
Mental State

z p μ2 Mental State
z p μ2

Low High Low High

(ANEW, Arousal)
Delta 2.25 1.88 1.85 0.064 0.24 31.11 27.85 2.10 0.035 0.32
Theta 0.58 0.60 −0.46 0.649 0.02 13.38 9.59 3.30 <0.001 0.78
Alpha 1.22 1.04 1.92 0.055 * 0.06 29.82 21.29 3.30 <0.001 0.78
Beta 0.40 0.36 1.69 0.090 0.20 12.63 16.65 −2.17 0.030 0.34

Gamma 0.11 0.11 −0.24 0.812 0.00 9.94 15.09 −3.11 0.002 0.69
(ANEW, Valence)

Delta 0.89 1.02 −0.69 0.488 0.03 12.09 20.83 −3.30 <0.001 0.78
Theta 1.17 0.64 1.92 0.055 * 0.26 6.40 6.40 0.21 0.834 0.00
Alpha 0.97 0.60 2.48 0.013 0.44 19.65 18.98 1.41 0.158 0.14
Beta 0.49 032 2.35 0.019 0.39 7.21 8.45 −3.30 <0.001 0.78

Gamma 0.02 0.03 1.00 0.317 0.07 5.25 6.40 −3.30 <0.001 0.78
(IAPS, Arousal)

Delta 1.97 2.81 −1.98 0.048 0.28 16.14 13.08 3.30 <0.001 0.78
Theta 0.54 0.70 −2.42 0.015 0.42 5.90 6.36 −2.13 0.033 0.32
Alpha 1.27 1.16 0.25 0.807 0.00 11.34 14.77 −2.73 0.006 0.53
Beta 0.21 0.22 −0.92 0.357 0.06 9.57 11.26 −3.30 <0.001 0.78

Gamma <0.01 <0.01 1.00 0.317 0.07 8.44 9.57 −3.17 0.002 0.72
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Table 1. Cont.

(B)

EPOC Brainvision

Band
Mental State

z p μ2 Mental State
z p μ2

Low High Low High

(IAPS, Valence)
Delta 1.60 2.69 −3.02 0.003 0.65 14.10 12.14 2.79 0.005 0.56
Theta 0.47 0.98 −3.05 0.002 0.67 6.29 6.24 0.47 0.638 0.02
Alpha 0.96 1.40 −3.11 0.002 0.69 16.98 17.95 −1.57 <0.001 0.12
Beta 0.24 0.33 −3.22 0.001 0.74 10.59 10.68 −0.18 0.861 0.00

Gamma 0.01 0.01 0.00 1.000 0.00 9.08 8.50 3.30 <0.001 0.78
(n-Back 1,3,5)

Delta 3.68 2.70 2.35 0.019 0.39 4.63 3.72 1.41 0.158 0.14
Theta 0.99 1.10 −1.82 0.069 0.24 2.50 2.42 0.47 0.638 0.02
Alpha 1.67 1.65 0.03 0.975 0.00 2.12 1.97 1.16 0.245 0.10
Beta 0.67 0.69 −0.25 0.807 0.00 1.17 1.34 3.18 0.001 0.72

Gamma 0.14 0.15 −1.70 0.090 0.21 1.09 1.24 −2.67 0.008 0.51
(n-Back 2,4,6)

Delta 10.48 2.64 3.30 <0.001 0.78 2.53 2.39 0.66 0.510 0.03
Theta 2.45 1.05 3.30 <0.001 0.78 2.37 2.79 −2.61 0.009 0.49
Alpha 4.79 1.50 3.30 <0.001 0.78 1.42 1.69 −2.73 0.006 0.53
Beta 1.16 0.61 3.30 <0.001 0.78 1.71 1.72 −0.16 0.875 0.00

Gamma 0.17 0.11 3.19 0.001 0.73 1.47 1.38 1.95 0.052 0.27

Note. Estimated marginal means of EEG power for mental states are reported in μV. For standard errors please refer to Figures S1–S6 in
Supplementary Materials. Z statistics calculated from Wilcoxon non parametric test for small samples. Rows in bold identify
comparisons yielding statistically similar results for both devices. “*” indicates marginal significance.

Two-tailed paired Wilcoxon Signed Rank Tests were used to evaluate data to determine
if there was a significant difference between the measures of each wave type at high and
low states. To balance for Type I error likelihood, given the low statistical power (since
the item analysis was limited to n = 14, the number of electrode-associated repeated
measurements), we adopted a correction of the p-value with a generalization (family-
wise average rate of false discovery rate) of the Hochberg-Benjamini procedure [65] with
alpha 0.09, which gives a significance threshold of p = 0.054. Eta squared (μ2) was computed
as a measure of the effect size of the difference between high and low states. Finally, the
value of EPOC electrode measurements was represented proportionally to the value of
electrode measurements obtained by Brainvision, as a measure of EEG signal measurement
efficiency. For example, if for gamma waves EPOC detected a signal amplitude of 1.5 μV
while Brainvision detected a signal amplitude of 15 μV, Emotiv would be represented as
sensing 10% of what Brainvision did.

Lastly, two confirmatory additional “control” analyses were performed (their results
are not reported here but are available upon request). Firstly, we repeated the same analyses
done on the vincentized averages for the data relative to each of the three professional
observers. The patterns of results were very similar, supporting the rationale that the
vincentized group data reflect valid inferences at N-of-1 personalization level. Secondly, we
compared the non-parametric statistics reported here to the parametric version of the same
analyses based on paired t-tests comparisons; the results were virtually identical using
either parametric or nonparametric procedures.

3. Results

Considering both EEG features of amplitude and power, there were only very few
instances in which EPOC and Brainvision converged in yielding a significant difference in
the same direction, from low to high mental state, in the three tasks (7 out of 30 comparisons
for amplitude, on a binomial test p = 0.0003; 5 out of 30 comparisons for power, on a binomial
test p = 0.0052). The convergent comparisons are shown in bold in Table 1A,B.
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Sensitivity to detect individual significant changes between low and high mental state
level in any frequency band and any direction were comparable in both systems for most
tasks and states except ANEW where EPOC performed sensibly worse, picking up changes
only for Gamma as opposed to all electrodes as in Brainvision, and yielding about half of
the effect size on average. Additionally, the performance of EPOC and Brainvision showed
equally few effects for the 1,2,3 version of the n-Back task.

In terms of absolute measurement of EEG signal, EPOC demonstrated a variable
performance as compared to Brainvision depending on the task. EPOC’s efficiencies for the
tasks were computed as the ratio of EPOC’s measurements over Brainvision measurements;
they are represented graphically in Figure 2. When compared to Brainvision measurements
in ANEW (see Figure 2A), EPOC’s efficiency in measuring amplitude changes was modest
for arousal, generally hovering around 40-20% and below 10% for Gamma, and low for
valence 30–20% and below 5% for Gamma. In the IAPS (see Figure 2A), EPOC’s efficiency
in measuring power was even lower for both arousal and valence across all frequencies
ranging between 20 and 10%, with Gamma being below 2% or undetected as compared to
Braivision measurements. However, EPOC’s efficiency was much higher in the n-Back task
(See Figure 2B) whereby it was variedly distributed across bands going from low/modest
(i.e., Gamma) to medium (i.e., Theta, Beta), on par with or even exceeding (i.e., Alpha
and Beta) Brainvision. Notably, in the 2,4,6 n-Back high load state EPOC outperformed
Brainvison in all frequency bands except Gamma.

Finally, when the patterns of changes are considered across the frequency spectrum,
as summarized in Table 2, it can be observed that there is minimal overlap between the
results obtained with EPOC and those with Brainvision across tasks.

Table 2. Summary of patterns of EEG amplitude and power changes measured with EPOC
and Brainvision.

Task EEG Feature Mental State System Significant Changes from Low to High State

ANEW Amplitude Arousal Epoc Increase for Gamma

BV Decrease for Delta, Theta, and Alpha
Increase for Beta and Gamma

Valence Epoc Decrease for Beta
Increase for Delta and Gamma

BV Increase for all frequency bands

IAPS Amp Arousal Epoc Increase for all frequency bands

BV Decrease for Delta
Increase for Theta, Beta and Gamma

Valence Epoc Increase for all frequency bands

BV Decrease for Delta, Theta, and Gamma
Increase for Alpha *

n-Back Amp 1-3-5 Epoc Decrease for Delta

BV Increase for Beta and Gamma

2-4-6 Epoc Decrease for all frequency bands

BV Increase for Theta, Alpha, and Beta

ANEW Power Arousal Epoc Decrease for Alpha *

BV Decrease for Delta, Theta, and Alpha
Increase for Beta and Gamma

Valence Epoc Decrease for Theta *, Alpha, and Beta

BV Increase for Delta, Beta, and Gamma
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Table 2. Cont.

Task EEG Feature Mental State System Significant Changes from Low to High State

IAPS Power Arousal Epoc Increase for Delta and Theta

BV Decrease for Delta
Increase for Theta, Alpha, Beta, and Gamma

Valence Epoc Increase for Delta, Theta, Alpha, and Beta

BV Decrease for Delta and Gamma
Increase for Alpha

n-Back Power 1-3-5 Epoc Decrease for Delta

BV Decrease for Beta
Increase for Gamma

2-4-6 Epoc Decrease for all frequency bands

BV Decrease for Gamma
Increase for Theta and Alpha

Note. “*” indicates marginally significant effects.

Figure 2. (A) Efficiency ratio of EPOC signal strength compared to Brainvision in ANEW and IAPS
tasks. (B) Efficiency ratio of EPOC signal strength compared to Brainvision in the n-Back tasks.
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4. Discussion

The results of our study overall seem to suggest that EPOC is capable of differentiating
between high vs low arousal/valence states using the amplitude of different frequency
bands, but that the overall signal detected from EPOC was only a fraction of the signal
detected by Brainvision. Despite the poorer signal detection, EPOC was still able to
differentiate between the mental states via amplitude in most instances, although it had
relatively small effect sizes compared to those of Brainvision. For amplitude, it also appears
that EPOC most prominently detected differences in low frequency bands such as Delta
and Theta. Brainvision on the other hand commonly detected differences of amplitude
across all frequency bands.

As above, the same can generally be said about the EPOC for differentiating mental
states using EEG power, with a few exceptions. The ability of EPOC to detect Gamma
power whatsoever was regularly quite low. Its mean amplitude was 8.7% of the amplitude
measured by Brainvision. Even though EPOC was able to identify significant differences
between high and low mental states in Gamma waves, the corresponding amplitude
values never rose above 1.5 μV, even though Brainvision’s measures went up to 13 μV.
Since Gamma waves have the lowest amplitude of EEG frequency bands, the difficulty in
registering their activity might be caused by the limited sensitivity and limited amount
of electrodes on the EPOC headset. Additional factors could also include lower electrode
accuracy and higher impedance. EPOC does not use conductive paste but saline solution,
which can leave the electrodes more prone to corrosion and dry out more quickly than
electrogel or paste.

Unexpectedly, in the instance of the n-Back task 2-4-6 EPOC actually appeared to
outperform Brainvision’s capability of differentiating high vs low mental load across
frequency bands. In this same way, the power detected via EPOC was greater than the
power detected by Brainvision. However, Brainvision still performed well in differentiating
mental load during the n-Back task with reasonable effect sizes.

Given that the focus of the present study was accuracy and reliability, the tasks we used
were selected because they demonstrated validity in distinguishing a relative difference in
low and high psychological states as defined by subjective self-ratings of the participants
and as reflected by concurrent state-dependent changes in EEG. Our study however has
some implications and interesting insights also for research on comparative validity of
consumer-grade vs. research-grade EEG devices.

The most EEG recent research focusing on content validity and attempting to relate
a particular ERBP feature or signature to a particular mental state has been generally
inconclusive, since the findings are contradictory. In particular, the literature on emotional
arousal and valence using IAPS yielded as many studies which find a pattern of reduced
Alpha power and increased Theta [66] as those which either find null effects, or even
show the opposite pattern, i.e., increased Alpha and decreased Delta and/or Theta [67]
as well as increased Beta and Gamma [68–70]. One possible plausible conclusion that
has been repeatedly proposed is that the specific pattern of results related to EEG power
spectral distribution may be therefore dependent on design, stimuli, task, context, and
individual differences [71]. The findings also vary according to the electrodes considered,
whereby, for example, opposite patterns can be observed in frontal/anterior as compared to
parietal/posterior sites. An exhaustive review is outside the scope and space of this paper,
but it is reasonable to reach similar conclusions by considering recent meta-analyses on
the n-Back task and mental workload in general [69]. The major issue in the context of the
present study is overlearning and practice effects in that the professional observers serving
as participants in our study underwent a lot of pre-experimental repeated exposure with
materials, tasks and both devices. The literature on the effect of the extensive exposure or
practice variable on EEG correlates of emotional processing is scant (for example see [72])
but there is evidence for the n-Back task that Alpha and Theta increase with cognitive
load [73–75]. Our findings show that both EPOC and Brainvision did not find Alpha
desynchronization followed by a concurrent increase of slow frequency oscillations (Delta
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or Theta), as reported by some abovementioned literature. In our study, Alpha showed
occasional increases or null findings while increases in Delta were rather ubiquitous and
inconsistent. The most frequent and consistent changes were increases in Theta, Beta and
Gamma going from low to high mental states, which is, as we have cursorily mentioned, in
keeping with the literature on practiced mental or emotional processing load. This is both
interesting as an extension of research on training of cognitive load and working memory
capacity as well as, we believe, a relatively new contribution for the area on emotional
processing since there are very few event-related EEG studies on repeated exposure to
pleasant or unpleasant stimuli.

In our experiment the sample size was very low, and it was impossible to achieve
reliable results that generalize to population distributions. However, because we used
an ideographic approach (i.e., electrode-wise analysis of vincentized data) which we can
defend to be generalized at the level of person prediction, the actual sample size was
relatively unimportant for the explicitly stated scope (tests of reliability) addressed in
this paper; this last point holds especially because we took several convergent repeated
measurements (N = 14), which were the actual basis for our test of accuracy.

Nonetheless, a possible caveat is that, given our very small sample, it was obviously
impossible to properly counterbalance learning effects associated with the device used,
namely, EPOC was used first and then Brainvision was used on all subjects, potentially, this
order might have induced a learning effect favoring Brainvision. Yet, the rate of significant
differences between high and low mental states picked up by EPOC and Brainvision did not
show any differential order trend, that is, there were no obvious and consistent differences
between sensitivity in detecting significant effects between mental states for the first device
used or for the second one, and no advantage of one device over the other can be clearly
observed or inferred.

Another related possible caveat might be learning effects of the individual, regardless
of the device used. However, as we have pointed out all three participants were graduate
student professional observers which were abundantly familiar with stimuli, tasks, and
devices. Furthermore, all participants carried out the tasks in a different order. Most likely,
these two aspects were sufficient to wash out learning effects due to the task sequence
during the experiment.

Our findings would suggest that future applications, such as brain-computer inter-
faces, requiring a more ecological setup should be able to confidently use EPOC for tasks
intending to elicit change in valence/arousal/mental load such as ANEW, IAPS, or n-
Back. However, in a laboratory or medical setting the researcher or clinician would still
benefit from the quality performance found using Brainvision. Future research should
consider ways of optimizing the signal quality of the EPOC so as to obtain larger effect
sizes when investigating differences of amplitude/power in response to different mental
states. For instance, it would be feasible to leverage machine learning models to enhance
the accuracy and classification capabilities of the signals obtained via the EPOC [29]. This
would be a promising, although more complex, avenue for increasing the efficacy of the
Emotiv device. Modifying the hardware of the EPOC may also be feasible and effective,
as Barham et al. (2017) demonstrated that upgrading the EPOC with research-grade elec-
trodes was successful, although the EPOC still had significantly more rejected trials than
the research-grade device (Neuroscan) used in their study [26].

5. Conclusions

In summary, the consumer-grade wearable EPOC device appears to be able to differ-
entiate between mental states of valence, arousal, and mental load to some degree, but is
overall still not as reliable or accurate as the research-grade Brainvision device. However,
EPOC appears to be particularly good at differentiating mental load during an n-Back task
via frequency band amplitude/power. Overall, this is in line with previous literature [21],
but here we have extended these observations to tasks related to valence, arousal, and
mental load.
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In principle, EEG measured during high vs low arousal, valence, and mental load,
should elicit different EEG signatures (e.g., synchronization/desynchronization and corre-
sponding increases/decreases in amplitude/power), as the mental states require differing
levels of emotional or cognitive resources [76–82]. This would be expected from a research-
grade EEG device like Brainvision. However, due to the limited amount of evidence for
this type of outcome using consumer-grade wearable EEG devices like the EPOC [83,84],
further research regarding content validity is still required to confirm this expectation by
empirical tests performed using a procedure similar to ours (i.e., by comparing homolo-
gous repeated measurements using both devices within the same individuals) and not, as
currently done in many review papers (e.g., [20]), by simply assuming that finding a EEG
feature or signature with the wireless consumer grade device (e.g., P300) in one sample has
the same meaning as reports about the same signature or feature in different samples, even
if utilizing comparable experimental paradigms.

Finally, our main objective was to demonstrate an initial methodological benchmark
for precision, rather than conducting a comprehensive assessment of all existing consumer-
grade EEG devices. However, because the two types of EEG devices compared in the
present study are among the most “popular” and widely used for research purposes in
labs across the world (especially the Emotiv EPOC, see [85]), the present comparison does
contribute a heuristic inductive assessment regarding the precision of, presumably, one of
the “best” current EEG consumer instrumentation available as compared to an established
(i.e., standard) wired stationary counterpart.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/app12136430/s1.

Author Contributions: Conceptualization, A.D.; methodology, A.D., D.M.B. and G.L.-D.; validation,
A.D., D.M.B. and G.L.-D.; formal analysis, G.L.-D., D.M.B. and A.D.; investigation, A.D., D.M.B. and
G.L.-D.; resources, A.D.; data curation, G.L.-D., A.D. and D.M.B.; writing—original draft preparation,
D.M.B., G.L.-D. and A.D.; writing—review and editing, D.M.B., G.L.-D. and A.D.; supervision,
A.D.; project administration, A.D. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Defense R&D Canada, by Thales Research and Technology
Canada, and by a research partnership grant from the Department of National Defense of Canada
and the Natural Sciences and Engineering Research Council of Canada. Open access publication
(APC) was funded by a Carleton University Research Impact Endeavour (CURIE) award to A.D.

Institutional Review Board Statement: Ethical review and approval were waived for this study
because this was a secondary analysis of completely anonymized archival data.

Informed Consent Statement: Informed verbal consent was obtained from all subjects involved in
the original data collection pre-archived studies.

Data Availability Statement: Data may be made available upon request to the authors provided it
is for uses in accordance with international ethical, intellectual property and copyright regulations.
Public archival of this data is not possible due to privacy restrictions imposed by the funding agencies.

Acknowledgments: The authors would like to acknowledge Jeremy Grant for his role in assisting
with the initial data collection and first analysis of this data which was previously published. We
thank three anonymous reviewers (especially Reviewer 1) for the numerous insightful comments,
criticisms, and suggestions which have helped to greatly improve the paper.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1. Smith, S.J.M. EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 2005,
76, ii2–ii7. [CrossRef] [PubMed]

118



Appl. Sci. 2022, 12, 6430

2. Vasiljevic, G.A.M.; De Miranda, L.C. Brain–Computer Interface Games Based on Consumer-Grade EEG Devices: A Systematic
Literature Review. Int. J. Hum. Comput. Interact. 2019, 36, 105–142. [CrossRef]

3. TajDini, M.; Sokolov, V.; Kuzminykh, I.; Shiaeles, S.; Ghita, B. Wireless Sensors for Brain Activity—A Survey. Electronics 2020,
9, 2092. [CrossRef]

4. Barngrover, C.; Althoff, A.; DeGuzman, P.; Kastner, R. A Brain–Computer Interface (BCI) for the Detection of Mine-Like Objects
in Sidescan Sonar Imagery. IEEE J. Ocean. Eng. 2015, 41, 123–138. [CrossRef]

5. Ganga, R.C.; Vijayakumar, P.; Badrinath, P.; Singh, A.R.; Singh, M. Drone control using EEG signal. J. Adv. Res. Dyn. Control Syst.
2019, 11, 2107–2113.

6. Munyon, C.N. Neuroethics of Non-primary Brain Computer Interface: Focus on Potential Military Applications. Front. Neurosci.
2018, 12, 696. [CrossRef] [PubMed]

7. Binnendijk, A.; Marler, T.; Bartels, E.M. Brain-Computer Interfaces: U.S. Military Applications and Implications, An Initial Assessment;
RAND Corporation: Santa Monica, CA, USA, 2020. [CrossRef]

8. Czech, A. Brain-Computer Interface Use to Control Military Weapons and Tools. In Control, Computer Engineering and Neuroscience;
Springer: Berlin/Heidelberg, Germany, 2021; pp. 196–204. [CrossRef]

9. Hernandez-Cuevas, B.; Egbert, W.; Denham, A.; Mehul, A.; Crawford, C.S. Changing Minds: Exploring Brain-Computer Interface
Experiences with High School Students. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems,
Honolulu, HI, USA, 25–30 April 2020. [CrossRef]

10. Gnedykh, D. Trends and Prospects of Using Brain-Computer Interfaces in Education. Sib. Psikhologicheskiy Zhurnal 2021, 108–129.
[CrossRef] [PubMed]

11. Papanastasiou, G.; Drigas, A.; Skianis, C.; Lytras, M. Brain computer interface based applications for training and rehabilitation
of students with neurodevelopmental disorders. A literature review. Heliyon 2020, 6. [CrossRef]

12. Rohani, D.A.; Puthusserypady, S. BCI inside a virtual reality classroom: A potential training tool for attention. EPJ Nonlinear
Biomed. Phys. 2015, 3, 12. [CrossRef]

13. Liu, N.-H.; Chiang, C.-Y.; Chu, H.-C. Recognizing the Degree of Human Attention Using EEG Signals from Mobile Sensors.
Sensors 2013, 13, 10273–10286. [CrossRef]

14. Thomas, K.P.; Vinod, A.P.; Guan, C. Enhancement of attention and cognitive skills using EEG based neurofeedback game.
In Proceedings of the 2013 6th International IEEE/EMBS Conference, San Diego, CA, USA, 6–8 November 2013; pp. 21–24.
[CrossRef]

15. Vinod, A.P.; Thomas, K.P. Neurofeedback Games Using EEG-Based Brain–Computer Interface Technology; The Institution of Engineering
and Technology: London, UK, 2018; pp. 301–329. [CrossRef]

16. Sekhavat, Y.A. Battle of minds: A new interaction approach in BCI games through competitive reinforcement. Multimedia Tools
Appl. 2019, 79, 3449–3464. [CrossRef]

17. Paszkiel, S. Using BCI and VR Technology in Neurogaming. In Signal Processing and Machine Learning for Brain-Machine Interfaces;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 93–99. [CrossRef]

18. Marshall, D.; Coyle, D.; Wilson, S.; Callaghan, M. Games, Gameplay, and BCI: The State of the Art. IEEE Trans. Comput. Intell. AI
Games 2013, 5, 82–99. [CrossRef]

19. Bos, D.P.; Obbink, M.; Nijholt, A.; Hakvoort, G.; Christian, M. Towards multiplayer BCI games. In Proceedings of the Workshop
on Multiuser and Social Biosignal Adaptive Games and Playful Applications, BioS-Play, 2010; Available online: http://www.
physiologicalcomputing.net/workshops/biosplay2010/BioSPlay_Gurkok%20et%20al%20(Multiplayer%20BCI).pdf (accessed on
20 May 2022).

20. Sawangjai, P.; Hompoonsup, S.; Leelaarporn, P.; Kongwudhikunakorn, S.; Wilaiprasitporn, T. Consumer Grade EEG Measuring
Sensors as Research Tools: A Review. IEEE Sens. J. 2019, 20, 3996–4024. [CrossRef]

21. Buchanan, D.M.; Grant, J.; D'Angiulli, A. Commercial wireless versus standard stationary EEG systems for personalized emotional
brain-computer interfaces: A preliminary reliability check. Neurosci. Res. Notes 2019, 2, 7–15. [CrossRef]

22. Maskeliunas, R.; Damasevicius, R.; Martisius, I.; Vasiljevas, M. Consumer grade EEG devices: Are they usable for control tasks?
PeerJ 2016, 4, e1746. [CrossRef]

23. Nijboer, F.; Van De Laar, B.; Gerritsen, S.; Nijholt, A.; Poel, M. Usability of Three Electroencephalogram Headsets for Brain–
Computer Interfaces: A Within Subject Comparison. Interact. Comput. 2015, 27, 500–511. [CrossRef]

24. Duvinage, M.; Castermans, T.; Petieau, M.; Hoellinger, T.; Cheron, G.; Dutoit, T. Performance of the Emotiv Epoc headset for
P300-based applications. Biomed. Eng. Online 2013, 12, 56. [CrossRef]

25. Duvinage, M.; Castermans, T.; Dutoit, T.; Petieau, M.; Hoellinger, T.; De Saedeleer, C.; Seetharaman, K.; Cheron, G. A P300-based
Quantitative Comparison between the Emotiv Epoc Headset and a Medical EEG Device. In BioMedical Engineering OnLine;
Springer Nature: Berlin, Germany, 2012. [CrossRef]

26. Barham, M.P.; Clark, G.M.; Hayden, M.J.; Enticott, P.; Conduit, R.; Lum, J. Acquiring research-grade ERPs on a shoestring budget:
A comparison of a modified Emotiv and commercial SynAmps EEG system. Psychophysiology 2017, 54, 1393–1404. [CrossRef]

27. Liu, X.; Chao, F.; Jiang, M.; Zhou, C.; Ren, W.; Shi, M. Towards Low-Cost P300-Based BCI Using Emotiv Epoc Headset. In
Proceedings of the UK Workshop on Computational Intelligence, Cardiff, UK, 6–8 September 2017; Volume 650, pp. 239–244.
[CrossRef]

119



Appl. Sci. 2022, 12, 6430

28. Badcock, N.A.; Preece, K.A.; de Wit, B.; Glenn, K.; Fieder, N.; Thie, J.; McArthur, G. Validation of the Emotiv EPOC EEG system
for research quality auditory event-related potentials in children. PeerJ 2015, 3, e907. [CrossRef]

29. Fouad, I.A. A robust and reliable online P300-based BCI system using Emotiv EPOC + headset. J. Med Eng. Technol. 2021,
45, 94–114. [CrossRef]

30. Balanou, E.; van Gils, M.; Vanhala, T. State-of-the-Art of Wearable EEG for Personalized Health Applications. Stud. Health Technol.
Inform. 2013, 189, 119–124. [CrossRef] [PubMed]

31. Smith, P.L.; Little, D.R. Small is beautiful: In defense of the small-N design. Psychon. Bull. Rev. 2018, 25, 2083–2101. [CrossRef]
[PubMed]

32. Molenaar, P.C.M. A Manifesto on Psychology as Idiographic Science: Bringing the Person Back Into Scientific Psychology, This
Time Forever. Meas. Interdiscip. Res. Perspect. 2004, 2, 201–218. [CrossRef]

33. Bos, F.M.; Snippe, E.; de Vos, S.; Hartmann, J.A.; Simons, C.J.; van der Krieke, L.; de Jonge, P.B.; Wichers, M. Can we jump
from cross-sectional to dynamic interpretationsof networks? Implications for the network perspective in psychiatry. Psychother.
Psychosom. 2017, 86, 175–177. [CrossRef] [PubMed]

34. Molenaar, P.C. On the implications of the classical ergodic theorems: Analysis of developmental processes has to focus on
intra-individual variation. Dev. Psychobiol. 2007, 50, 60–69. [CrossRef]

35. Shah, R.V.; Grennan, G.; Zafar-Khan, M.; Alim, F.; Dey, S.; Ramanathan, D.; Mishra, J. Personalized machine learning of depressed
mood using wearables. Transl. Psychiatry 2021, 11, 1–18. [CrossRef]

36. Birkhoff, G.D. What is the ergodic theorem? Am. Math. Mon. 1942, 49, 222–226. [CrossRef]
37. Nelson, C.A.; de Haan, M.; Thomas, K.M. Neuroscience of Cognitivedevelopment: The Role of Experience and the Developing Brain;

Wiley: New York, NY, USA, 2006.
38. Sporns, O. Networks of the Brain; MIT Press: Cambridge, MA, USA, 2010.
39. Medaglia, J.D.; Ramanathan, D.M.; Venkatesan, U.M.; Hillary, F.G. The challenge of non-ergodicity in network neuroscience.

Netw. Comput. Neural Syst. 2011, 22, 148–153. [CrossRef]
40. Vincent, S.B. The function of the viborissae in the behavior of the white rat. Anim. Behav. Monogr. 1912, 1, 84.
41. Atkinson, R.C.; Bower, G.H.; Crothers, E.J. Introduction to Mathematical Learning Theory; Wiley: Hoboken, NJ, USA, 1965.
42. Bedny, M.; Aguirre, G.; Thompson-Schill, S.L. Item analysis in functional magnetic resonance imaging. NeuroImage 2007,

35, 1093–1102. [CrossRef]
43. Makeig, S.; Debener, S.; Onton, J.; Delorme, A. Mining event-related brain dynamics. Trends Cogn. Sci. 2004, 8, 204–210. [CrossRef]

[PubMed]
44. Pfurtscheller, G. and Aranibar, A. Event-related cortical desychronization detected by power measurement of scalp EEG.

Electroencephalograph. Clin. Neurophysiol. 1977, 42, 817–826. [CrossRef]
45. Byczynski, G.; Schibli, K.; Goldfield, G.; Leisman, G.; D’Angiulli, A. EEG Power Band Asymmetries in Children with and without

Classical Ensemble Music Training. Symmetry 2022, 14, 538. [CrossRef]
46. D’Angiulli, A.; Kenney, D.; Pham, D.A.T.; Lefebvre, E.; Bellavance, J.; Buchanan, D.M. Neurofunctional Symmetries and

Asymmetries during Voluntary out-of- and within-Body Vivid Imagery Concurrent with Orienting Attention and Visuospatial
Detection. Symmetry 2021, 13, 1549. [CrossRef]

47. Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 2012, 16, 606–617.
[CrossRef]

48. Stevenson, R.A.; Mikels, J.A.; James, T.W. Characterization of the Affective Norms for English Words by discrete emotional
categories. Behav. Res. Methods 2007, 39, 1020–1024. [CrossRef]

49. Bradley, M.; Lang, P.J. Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings (Technical Report C-1);
Gainesv Cent Res Psychophysiology, University of Florida: Gainesville, FL, USA, 1999.

50. Bradley, M.M.; Lang, P.J. Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings (Technical Report C-2);
University of Florida: Gainesville, FL, USA, 2010.

51. Imbir, K.K. Affective Norms for 4900 Polish Words Reload (ANPW_R): Assessments for Valence, Arousal, Dominance, Origin,
Significance, Concreteness, Imageability and, Age of Acquisition. Front. Psychol. 2016, 7, 1081. [CrossRef]

52. Lang, P.J.; Bradley, M.M.; Cuthbert, B.N. International Affective Picture System (IAPS): Affective Ratings of Pictures and Instruction
Manual; Technical Report A-8; University of Florida: Gainesville, FL, USA, 2008.

53. Hajcak, G.; Dennis, T.A. Brain potentials during affective picture processing in children. Biol. Psychol. 2009, 80, 333–338. [CrossRef]
54. Kirchner, W.K. Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 1958, 55, 352–358.

[CrossRef]
55. Mackworth, J.F. Paced memorizing in a continuous task. J. Exp. Psychol. 1959, 58, 206–211. [CrossRef]
56. Gajewski, P.D.; Hanisch, E.; Falkenstein, M.; Thönes, S.; Wascher, E. What Does the n-Back Task Measure as We Get Older?

Relations Between Working-Memory Measures and Other Cognitive Functions Across the Lifespan. Front. Psychol. 2018, 9, 2208.
[CrossRef] [PubMed]

57. Scharinger, C.; Soutschek, A.; Schubert, T.; Gerjets, P. Comparison of the Working Memory Load in N-Back and Working Memory
Span Tasks by Means of EEG Frequency Band Power and P300 Amplitude. Front. Hum. Neurosci. 2017, 11, 6. [CrossRef]

120



Appl. Sci. 2022, 12, 6430

58. Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council of Canada, and Social Sciences and
Humanities Research Council, Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans, December 2018.
Available online: https://ethics.gc.ca/eng/documents/tcps2-2018-en-interactive-final.pdf (accessed on 1 June 2022).

59. D'Angiulli, A.; Griffiths, G.; Marmolejo-Ramos, F. Neural correlates of visualizations of concrete and abstract words in preschool
children: A developmental embodied approach. Front. Psychol. 2015, 6, 856. [CrossRef] [PubMed]

60. Zhou, X.; Li, M.; Zhou, H.; Li, L.; Cui, J. Item-Wise Interindividual Brain-Behavior Correlation in Task Neuroimaging Analysis.
Front. Neurosci. 2018, 12, 817. [CrossRef]

61. D'Angiulli, A.; Pham, D.A.T.; Leisman, G.; Goldfield, G. Evaluating Preschool Visual Attentional Selective-Set: Preliminary ERP
Modeling and Simulation of Target Enhancement Homology. Brain Sci. 2020, 10, 124. [CrossRef]

62. Genest, C. Vincentization Revisited. Ann. Stat. 1992, 20, 1137–1142. [CrossRef]
63. Delorme, A.; Makeig, S. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent

Component Analysis. J. Neurosci. Methods 2004, 134, 9–21. [CrossRef]
64. Badcock, N.A.; Mousikou, P.; Mahajan, Y.; De Lissa, P.; Thie, J.; McArthur, G. Validation of the Emotiv EPOC® EEG gaming

systemfor measuring research quality auditory ERPs. PeerJ 2013, 1, e38. [CrossRef]
65. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R.

Stat. Soc. Ser. B 1995, 57, 289–300. [CrossRef]
66. Schubring, D.; Schupp, H.T. Emotion and brain oscillations: High arousal is associated with decreases in alpha-and lower

beta-band power. Cerebral Cortex 2021, 31, 1597–1608. [CrossRef]
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Abstract: Stroke is a medical condition that affects the brain and represents a leading cause of death
and disability. Associated with drug therapy, rehabilitative treatment is essential for promoting
recovery. In the present work, we report an EEG-based study concerning a left ischemic stroke
patient affected by conduction aphasia. Specifically, the objective is to compare the brain functional
connectivity before and after an intensive rehabilitative treatment. The analysis was performed
by means of local and global efficiency measures related to the execution of three tasks: naming,
repetition and reading. As expected, the results showed that the treatment led to a balancing of the
values of both parameters between the two hemispheres since the rehabilitation contributed to the
creation of new neural patterns to compensate for the disrupted ones. Moreover, we observed that
for both name and repetition tasks, shortly after the stroke, the global and local connectivity are
lower in the affected lobe (left hemisphere) than in the unaffected one (right hemisphere). Conversely,
for the reading task, global and local connectivity are higher in the impaired lobe. This apparently
contrasting trend can be due to the effects of stroke, which affect not only the site of structural
damage but also brain regions belonging to a functional network. Moreover, changes in network
connectivity can be task-dependent. This work can be considered a first step for future EEG-based
studies to establish the most suitable connectivity measures for supporting the treatment of stroke
and monitoring the recovery process.

Keywords: stroke; conduction aphasia; high-density EEG; brain functional connectivity; rehabilitation

1. Introduction

Stroke is a leading cause of death and disability. Each year, 14 million people suffer
their first stroke worldwide, and 80 million people living in the world have experienced
it [1]. Stroke is defined by the World Health Organization as a neurological deficit of
cerebrovascular cause that persists beyond 24 h or is interrupted by death within 24 h. The
24-h limit differentiates stroke from transient ischemic attack (TIA), which is a temporary
cerebral dysfunction related to stroke symptoms characterized by a swift resolution. Stroke
can be classified into two main categories: ischemic, caused by a blockage of the blood flow
to the brain, and hemorrhagic, due to the rupture of a blood vessel [2]. Both types lead to
the dysfunction of the brain areas affected by the stroke. Signs and symptoms of stroke
may include numbness, confusion, difficulty in speaking or understanding speech, and
loss of balance or coordination. In most cases, the symptoms affect only one side of the
body. The effects of stroke can be very different because they depend on the type, severity
and location of the lesions. An early detection associated with proper medical treatment
is essential for reducing stroke outcomes. Finally, post-stroke rehabilitation represents a
very important process for recovering lost function and relearning the skills of everyday
life. Even if complete recovery is unusual, rehabilitation can help the patient to regain
independence and reintegrate into community life [3].

Conduction aphasia is an acquired language disorder first hypothesized by Carl
Wernicke [4]. Conduction aphasia is characterized by intact comprehension and fluent
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(but paraphasic) speech production, whereas speech repetition is impaired. Therefore,
aphasic people produce paraphasic errors and show word-finding difficulty [5]. Conduction
aphasia is considered as a disconnection syndrome since it is due to an interruption of
communication between anterior and posterior language areas [6]. Lesions usually involve
the left cerebral hemisphere, as reported in [7]. Several studies proved that the mechanisms
of neuroplasticity lead to recovery from aphasia [8,9]. Moreover, neurophysiological studies
revealed that the intra- and inter-hemispheric rearrangement of the linguistic network
occurs following a stroke, which involves linguistic areas [10,11]. Finally, the findings of
neural reorganization in patients with conduction aphasia have proven the importance of
rehabilitative treatment [12–15].

Graph theory can be conveniently exploited for studying the behavior of brain net-
works. Brain regions are considered nodes, whereas the edges connecting nodes represent
the brain’s functional or structural connectivity between the regions [16]. In particular, the
brain’s functional connectivity concerns the functionally integrated relationship between
distant brain regions and is expressed in terms of statistical dependencies in the time
domain (correlation) and in the frequency domain (coherence) among neurophysiological
measurements. Recently, it has been proven that healthy brain networks have a “small-
world” architecture, characterized by clustered local connectivity (functional segregation)
and short path lengths (functional integration) between nodes [17,18]. Global and local
efficiency of a network are two parameters that quantify the performance of a network in
information exchange [19] and are related to path lengths and the clustering coefficient, re-
spectively. The higher global and local efficiency, the more efficient the network. Efficiency
measures are also more robust in the case of disconnected graphs.

In the present paper, we propose a case study about a patient who suffered from
conduction aphasia due to a left ischemic stroke. The purpose is to compare the brain
functional connectivity before and after an intensive rehabilitative treatment. The analysis
was performed by means of local and global efficiency measures related to the execution of
three tasks. As expected, the results showed that the treatment led to a balancing of the
values of both parameters between the two hemispheres.

2. Background

The field of EEG-based studies about functional connectivity measures in stroke
patients has not yet been deeply explored. Caliandro et al. studied network reorganization
after an acute stroke [20]. From a comparison with healthy subjects, the authors found a
bilaterally decreased small-worldness in the delta band and bilaterally increased small-
worldness in the alpha2 band, regardless of the side of the ischemic lesion. In the theta band,
small-worldness decreases bilaterally only in patients with left hemispheric stroke. The
study of seven stroke patients reported in [21] showed that when the lesion is not bilateral,
the impaired hemisphere has a higher small-worldness than the healthy hemisphere; when
the lesion is bilateral, there is no significant difference between small-worldness of the
right and left hemisphere. In [22], the authors studied a group of patients with unilateral
stroke and found that the motor imagery of the affected hand showed a significantly lower
small-worldness and local efficiency as compared to the unaffected hand. Philips et al.
carried out a longitudinal analysis of a group of stroke patients undergoing an intensive
rehabilitative treatment. Conversely, the study revealed that a reduction in both global and
local efficiency in the 12.5–25 Hz band is associated with motor recovery [23].

3. Materials and Methods

3.1. Case Description

This study is concerned with the case of a 50-year-old right-handed female who
suffered from conduction aphasia after a left ischemic stroke involving white matter of
the fronto-parietal lobe and left temporo-occipital areas. She had surgery to replace the
aortic valve with a mechanical prosthesis one week before the stroke. She arrived at the
rehabilitative unit of IRCCS Centro Neurolesi Bonino-Pulejo (Messina) one month after
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the stroke. Neurological, neuropsychological and logopedic assessments were carried
out. The patient was attentive, cooperative, and time- and space-oriented. Neurologi-
cal examination showed a right facio-brachio-crural hemiparesis. The patient followed a
drug therapy of oral anticoagulants and antihypertensive. The rehabilitative treatment
combined different types of training. In particular: physiotherapeutic training, including
balance and gait exercises, Bobath and task-oriented exercises, robotic rehabilitation; neu-
ropsychological training, which provided psychological support to improve the patient’s
emotional-behavioral control, strategies to improve patient motivation during rehabilita-
tion, problem-solving strategies; logopedic training, which consisted of sentence repetition
therapy, stimulation-facilitation therapy, and group communication treatment. The rehabil-
itation was carried out every day for a session of 60 min for each type of treatment. The
tasks performed during training were different from those used for the assessment before
and after the treatment.

EEG data were acquired by means of the 256-channel HydroCel Geodesic Sensor Net,
belonging to the Electrical Geodesics (EGI) EEG system (Figure 1). The electrode impedance
was kept <50 kΩ, on the basis of EGI guidelines. The reference electrode was Cz, placed
in the middle of the scalp. The sampling rate was 250 Hz. The EEG data were band-pass
filtered between 1 and 40 Hz by means of EGI’s Net Station EEG software and cleaned from
artifacts by visual inspection. The signals from sensors placed on the face and the neck were
affected by muscle artifacts, so only 173 electrodes from the starting 256 were considered.
In addition, the LORETA-KEY software used for our study required only cephalic (no face,
no neck) electrodes to be considered. Finally, the EEG recordings were average referenced
and segmented into artifact-free non-overlapping epochs of 1 s. HD-EEG were acquired
at baseline (T0) and after a rehabilitative treatment of two months (T1). HD-EEG were
recorded while the patient was performing specific language tasks displayed on a computer
screen in order to set the time and use a standard method without the influence of external
stimuli. The task paradigm was created by means of E-prime 3.0, a leading software
for designing, collecting and analyzing data for behavioral research. E-Prime provides
a complete environment for building experiments with text, images, sound, and videos
through an easy-to-use graphical interface. E-prime provides a millisecond accuracy for
subject responses and sound onset times. The EEG recordings were carried out during
time blocks consisting of three task periods with alternating rest periods. Specifically,
the experimental setup included the following tasks: naming, repetition, and reading.
During the naming task, the subject had to mention 24 images, each displayed on the
computer screen for 3 s. The images were divided into two groups of 12, alternating with
10 s of rest. The total duration of the naming task is 72 s. The repetition task consisted of
repeating 16 words of 5 s, played by speakers. The words were divided into two groups
of 8, alternating with 10 s of rest. The total duration of the repetition task was 80 s. The
reading task consisted of reading 16 words of 3 s, displayed on the computer screen. The
words were divided into two groups of 8, alternating with 10 s of rest. The total duration of
the naming task was 48 s. Each task at T0 and the corresponding one at T1 have the same
duration. The timing of each above-mentioned event was properly set by the operator
during the building of the task blocks with E-prime. Finally, E-prime sent markers to the
EGI Net Station based on the onset and end time of each group of stimuli.

The whole procedure was conducted conforming to the related guidelines and regu-
lations. As it is a case study, approval by the local Ethics Committee is not required. The
patient signed an informed consent form.

124



Appl. Sci. 2022, 12, 5991

Figure 1. A 2D map of the 256 channel 256-channel HydroCel Geodesic Sensor Net. The considered
electrodes are highlighted in green. The electrodes in red were discarded.

3.2. Brain Network Analysis

The functional connectivity of the brain was estimated by the Lagged Linear Connec-
tivity (LLC) parameter, which was computed by the Connectivity Toolbox implemented
in the LORETA-KEY software (v20210701). LLC provides a measurement of the statistical
dependence among active brain sources for each pair of regions of interest (ROIs) for a
specified frequency band [24]. In this case, we computed LLC for all 84 possible ROIs
defined by the LORETA-KEY software. The ROIs correspond to distinct Brodmann areas,
42 for each hemisphere (Figure 2). Each ROI consists of a single voxel, the one that is the
closest to the center of mass of the ROI. The single centroid voxel is an excellent representa-
tive of the ROI. The analysis was performed for the frequency range 1–40 Hz. The EEG
signals of naming, repetition and reading tasks were divided into 72, 80 and 48 epochs of
1 s, respectively. LLC was calculated for windows of 2 epochs, so we obtained 36, 40 and
24 connection matrices for the naming, repetition and reading tasks, respectively.

Figure 2. Red points denote the 84 ROIs considered.

125



Appl. Sci. 2022, 12, 5991

Starting from the computation of LLC, the properties of the brain networks were
computed by two parameters: global efficiency and local efficiency. The average or global
efficiency of a graph G is defined as:

Eglob(G) =
1

N(N − 1) ∑
i �=j∈G

1
dij

(1)

where N is the number of nodes, and dij is the shortest path length between nodes i and j.
The local efficiency is given by the following expression:

Eloc(G) =
1
N ∑

i∈G
E(Gi) (2)

The above-mentioned parameters provide a measure of the efficiency in the infor-
mation exchanges of a network [19]. For both parameters, higher values mean greater
network efficiency.

Data processing was performed in MATLAB environment (R2021b). Global and local
efficiency were computed by means of the Brain Connectivity Toolbox, a MATLAB toolbox
for structural and functional brain connectivity analysis (https://sites.google.com/site/
bctnet/, accessed on 18 April 2022).

4. Results

For each task, global and local efficiency were estimated for each hemisphere at time
T0 and T1. Figures 3–5 show the boxplots of the global efficiency and local efficiency values.
A statistical analysis was performed to assess if the differences between the injured (left)
and the non-injured (right) hemisphere at T0 and T1 were significant. For this aim, we
chose to perform a nonparametric test since the Shapiro–Wilk test [25] revealed that the
global and local efficiency values are in some cases normally distributed and in others not
normally distributed. In particular, the Wilcoxon rank-sum test [26] was carried out under
the null hypothesis that for each task, the medians of the global and local efficiency values
between the left and right hemisphere at time T0 do not differ from the corresponding
ones at time T1. The significance level was set at 5% so that the difference between T0
and T1 is statistically significant when the p-value is less than 0.05. Table 1 shows the
p-values derived from the statistical analysis for each task. At T0, for both naming and
repetition task, global and local efficiency in the left (impaired) hemisphere are lower than
those of the right (unimpaired) hemisphere. For the reading task, conversely, global and
local efficiency of the left hemisphere are higher than those of the right hemisphere. All
the differences are statistically significant, except for local efficiency related to the naming
task. After the rehabilitative treatment, at T1, the global and local efficiency values between
the two hemispheres become balanced, and there is no longer a statistically significant
difference. This trend reflects the expected behavior, as the rehabilitation contributed to
the creation of new neural patterns to compensate for the disrupted ones. The results also
suggest that local and global networks of the brain are altered in stroke patients but not
always in the same direction. This trend can be due to the effects of stroke, which affect not
only the site of structural damage but also distant brain regions that belong to a functional
network. The patient also underwent the Aachener Aphasie Test (AAT), a standardized
test that provides an assessment of language functioning after brain injury and determines
the presence of aphasia [27]. The scores of the AAT at time T0 and T1 show an improvement
of the aphasic deficits of the patient (Figure 6). In particular, the batteries of the naming,
repetition and written language tests revealed a gain of 17, 9 and 11 points, respectively,
after the rehabilitative treatment. Note that the “written language” battery includes the
tests related to the reading ability assessment. The AAT results support our findings of the
functional connectivity analysis.
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Figure 3. Naming task: boxplot of global efficiency for each hemisphere at time (a) T0 and (b) T1;
boxplot of local efficiency for each hemisphere at time (c) T0 and (d) T1. On each box, the bottom and
the top edges denote the 25th and 75th percentiles, respectively; the line inside the box indicates the
median; the “whiskers” extend below and above the box up to the minimum and maximum data
values, respectively. The ‘+’ marker symbol outside the whiskers represents the outliers.
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Figure 4. Cont.
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Figure 4. Repetition task: boxplot of global efficiency for each hemisphere at time (a) T0 and (b) T1;
boxplot of local efficiency for each hemisphere at time (c) T0 and (d) T1. On each box, the bottom and
the top edges denote the 25th and 75th percentiles, respectively; the line inside the box indicates the
median; the “whiskers” extend below and above the box up to the minimum and maximum data
values, respectively. The ‘+’ marker symbol outside the whiskers represents the outliers.
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Figure 5. Reading task: boxplot of global efficiency for each hemisphere at time (a) T0 and (b) T1;
boxplot of local efficiency for each hemisphere at time (c) T0 and (d) T1. On each box, the bottom and
the top edges denote the 25th and 75th percentiles, respectively; the line inside the box indicates the
median; the “whiskers” extend below and above the box up to the minimum and maximum data
values, respectively. The ‘+’ marker symbol outside the whiskers represents the outliers.
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Figure 6. AAT test score at T0 and T1.

Table 1. Results of the Wilcoxon rank-sum test.

Network
Parameters

Naming Task
p-Value

Repetition Task
p-Value

Reading Task
p-Value

T0 T1 T0 T1 T0 T1

Global Efficiency 0.0456 * 0.6728 0.0136 * 0.5098 0.0193 * 0.3922

Local Efficiency 0.0597 0.5341 0.0023 * 0.1992 0.0033 * 0.1340
* denotes statistically significant differences (p < 0.05).

5. Discussion and Conclusions

Stroke is a medical condition that affects the brain and prevents it from functioning
properly. Combined with drug therapy, rehabilitative treatment is a precious tool for pro-
moting recovery. The effectiveness of the treatment depends on several factors, such as
the therapy type, duration, intensity and beginning treatment early [28]. The treatment
can include neuromotor rehabilitation, speech therapy, and cognitive and respiratory reha-
bilitation. It has been shown that the combination of robotic, psychomotor and cognitive
therapy produces positive effects in the rehabilitative process [29]. Moreover, a new effec-
tive physiotherapy method for improving movement in post-stroke patients is represented
by virtual reality therapy, which allows the subject to interact with an environment within
a simulated reality [30]. Therefore, a multidisciplinary approach, based on the cooperation
and collaboration between several health professionals, is considered to be a key point for
a successful rehabilitative treatment.

In this study, we analyzed the functional connectivity of a left ischemic stroke patient,
who suffered from conduction aphasia, before and after a period of intensive rehabilita-
tion. In a human brain, most of the time, the left hemisphere is dominant for language
processing [31]. This has been proven by studies that detected a higher activity during lan-
guage processing in the left hemisphere and a greater probability of linguistic impairment
deriving from injuries to the left hemisphere [32–34]. As for aphasia, the role of the right
hemisphere is still unclear and debated. Nevertheless, there is some evidence that the right
hemisphere plays a facilitatory role in the recovery after the rehabilitative treatment in the
subacute stage (up to six months after a stroke) [35].

In our study, among the network parameters that are commonly used to describe
the brain networks, we chose the global and local connectivity. We expected that after
the treatment, a balance of functional connectivity between the impaired and healthy
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hemisphere occurred. Actually, this trend was observed during the execution of all the
three considered tasks. It is noteworthy to point out that for name and repetition tasks,
shortly after the stroke, the global and local connectivity are lower in the affected lobe (left
hemisphere) than in the unaffected one (right hemisphere). Conversely, for the reading
task, global and local connectivity are higher in the left lobe. This apparently contrasting
behavior can be explained as a consequence of the alteration of the brain functional network,
which can also concern regions belonging to the unaffected lobe. Moreover, changes in
network connectivity can be task-dependent, as reported in previous studies [36,37].

In conclusion, functional connectivity in stroke patients has not yet been sufficiently
explored and needs to be further investigated. Our work can be considered a starting
point for future in-depth research. However, despite the potential of our research, some
limitations in this work need to be addressed. First, this is a case report that considers only
one subject, so a longitudinal study involving a cohort of patients would further validate
our conclusions. Then, a future study based on more than three tasks would provide a
more comprehensive assessment. Our analysis was performed considering the total band
of the EEG signal. It would be interesting to perform an analysis for each EEG frequency
sub-band (delta, theta, alpha, beta, and gamma). Moreover, other connectivity measures
could be tested to find out the most suitable features for the intended purpose. In this way,
the potentiality of EEG would be fully exploited for supporting the treatment of stroke and
monitoring the recovery process.
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Abstract: Epilepsy is one of the most common brain diseases that affects more than 1% of the
world’s population. It is characterized by recurrent seizures, which come in different types and
are treated differently. Electroencephalography (EEG) is commonly used in medical services to
diagnose seizures and their types. The accurate identification of seizures helps to provide optimal
treatment and accurate information to the patient. However, the manual diagnostic procedures of
epileptic seizures are laborious and require professional skills. This paper presents a novel automatic
technique that involves the extraction of specific features from epileptic seizures’ EEG signals using
dual-tree complex wavelet transform (DTCWT) and classifying them into one of the seven types of
seizures, including absence, complex-partial, focal non-specific, generalized non-specific, simple-
partial, tonic-clonic, and tonic seizures. We evaluated the proposed technique on the TUH EEG
Seizure Corpus (TUSZ) ver.1.5.2 dataset and compared the performance with the existing state-of-
the-art techniques using the overall F1-score due to class imbalance of seizure types. Our proposed
technique achieved the best results of a weighted F1-score of 99.1% and 74.7% for seizure-wise and
patient-wise classification, respectively, thereby setting new benchmark results for this dataset.

Keywords: diagnostics; dual-tree complex wavelet transform (DTCWT); electroencephalography
(EEG); epilepsy; LightGBM; seizure type classification

1. Introduction

1.1. Background

Epilepsy is the most widespread brain disease among children and adults after
stroke [1]. It is defined as “a sudden and recurrent brain malfunction and is a disease that
reflects an excessive and hypersynchronous activity of the neurons within the brain” [2].
Over 60 million of the world’s population are diagnosed with epilepsy, whose defining
feature is recurrent seizures. Such seizure attacks impair the brain’s normal functions,
leading the patient to be vulnerable and unsafe.

Seizures are medically classified into two main categories—focal seizures or general-
ized seizures—depending on the extent to which regions of the brain are affected. Focal
seizures are seizures that originate and affect a circumscribed region of the brain. Focal
seizures are further classified into simple or complex, based on the patient’s level of aware-
ness. Generalized seizures, on the other hand, involve most areas of the brain. Based on
motor and non-motor symptoms, generalized seizure classifications can be absence, tonic,
atonic, clonic, tonic-clonic, or myoclonic seizures [3,4]. Classification of seizure is very
essential for accurate diagnosis and treatment.

Identifying the type of seizure, although sometimes difficult, can be done by clinical
observation and referencing medical history and demographic information, and is sup-
ported by general brain imaging techniques such as EEG, magnetoencephalography (MEG),
and fMRI [5,6]. EEG is the most practical and cost-effective tool to diagnose epilepsy
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currently [7]. Video-EEG monitoring is often required to support the decision for seizure
classification [8].

For treatment, seizures can be controlled in most cases (up to 70%) of patients by
consuming medication to achieve a steady-state concentration in the blood. Surgical
intervention is another option for certain conditions. For up to 20% of epileptic patients,
there is no medical treatment that exists to control seizures [2]. The accurate identification
of the type of seizures influences medication choice and provides information to patients,
families, researchers, and clinicians caring for patients with epilepsy [4,9].

It is a challenging task to classify the type of seizure accurately. Several factors make
the classification difficult. Firstly, some types of seizures share the same clinical and EEG
symptoms. For instance, it has been shown that even for a highly experienced neurologist,
sometimes it is hard to distinguish between focal and generalized seizures [10]. Secondly,
in some cases, it is required to perform long-term monitoring (i.e., video-EEG monitoring),
which may last for days [7]. Therefore, manual analysis of these long recordings requires a
substantial amount of effort and time from neurologists.

In addition, signal interpretation is known to have a low inter-rater agreement, which
fully depends on the level of expertise of the expert. Moreover, inter-subject variability
significantly adds to the difficulties associated with the diagnosis of an epileptic seizure,
leading to a variety of manifestations of the same type of seizures across different patients,
and sometimes for the same individual over time. Finally, signal artifacts also hinder the
correct interpretation of EEG. With these challenges, in a field that already has a shortage
of healthcare experts, computer-aided diagnostic (CAD) methods have great potential to
support decision making in the diagnosis of such a critical disease.

1.2. Review of Related Work

A considerable amount of research has been published on automated seizure detection
and prediction. However, the automatic classification of seizure types has received little
attention due to two main reasons: firstly, the difficulties inherent in the classification
problem for seizure types, and secondly, a lack of clinical data [11].

Since the start of this century, considerable research outcomes have focused on the
automation of epileptic seizure diagnoses [8,9]. Generally, the procedure of automatic
seizure analysis involves two phases: feature extraction and classification [12,13]. Various
methods have been proposed for feature extraction over time, including time-domain [14],
frequency-domain [13,15], and time-frequency domain [16].

Time-frequency methods became popular due to inclusion of both time and frequency
features. Among time-frequency methods, wavelet transform (WT)-based feature extrac-
tion is the most promising method to extract robust features from EEG signals [17]. The
strategies in wavelet-based feature extraction from EEGs use continuous wavelet trans-
form (CWT) [18], discrete wavelet transform (DWT) [19], wavelet packet decomposition
(WPD) [19,20], tunable Q-factor wavelet transform (TQWT) [21,22], and dual-tree wavelet
transform (DTCWT) [23].

Regarding the availability of clinical data, it has been observed that in recent years,
hospitals and universities have made appreciative efforts to encourage research on the
automatic diagnosis of epileptic seizures by generating large volumes of openly available
clinical EEG data. One of the most extensive publicly obtainable EEG datasets, the Temple
University Hospital EEG Corpus (TUH EEG), is comprised of 14,000 subjects and has
more than 25,000 clinical recordings [24]. The Corpus has various subsets, each focusing
on different scopes of research interests. The TUH EEG Seizure Corpus (TUSZ) [25],
one of the subsets, was created to motivate research on developing high-performance
epileptic seizure detection algorithms using advances in machine learning algorithms [25].
This dataset contains manually annotated seizure events based on archival neurologist
reports and careful examinations of the signals by students and neurologists from Temple
University [25]. The seizure events in the TUSZ are labeled with eight different types
of seizures: focal non-specific seizure (FNSZ), generalized non-specific seizure (GNSZ),
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simple partial seizure (SPSZ), complex partial seizure (CPSZ), absence seizure (ABSZ), tonic
seizure (TNSZ), tonic-clonic seizure (TCSZ), and myoclonic seizure (MYSZ). The details of
these labels are presented in Table 1. The corpus team continuously updates the corpus,
and Table 2 presents the distribution of data for the last two versions of TUSZ.

Table 1. Seizure type descriptions for TUH EEG Seizure Corpus (TUSZ).

Seizure Type Seizure Description

FNSZ Focal seizures which cannot be specified with its type.
SPSZ Partial seizures during consciousness which is specified by clinical signs only.
CPSZ Partial Seizures during unconsciousness which is specified by clinical signs only.
GNSZ Generalized seizures which cannot be further specified with its type.

ABSZ Absence discharges observed on EEG where patient loses consciousness for few
seconds (also known as petit mal).

TNSZ Stiffening of body during seizure (EEG effects disappear).
TCSZ At first stiffening and then jerking of body (also known as grand mal).
MYSZ Myoclonous jerks of limbs.

Table 2. Data distribution for different types of seizures in two versions of TUSZ.

Seizure Type
No. of Seizure Events Duration (s) No. of Patients

ver.1.4.0 ver.1.5.2 ver.1.4.0 ver.1.5.2 ver.1.4.0 ver.1.5.2

FNSZ 992 1836 73,466 121,139 109 150
GNSZ 415 583 34,348 59,717 44 81
CPSZ 342 367 33,088 36,321 34 41
ABSZ 99 99 852 852 13 12
TNSZ 67 62 1271 1204 2 3
TCSZ 50 48 5630 5548 11 12
SPSZ 44 52 1534 2146 2 3
MYSZ 3 3 1312 1312 2 2

To the best of our knowledge, we found only eight published research studies which
used TUSZ for the problem of seizure type classification; the summary is presented in
Table 3. Regarding the seven (7) types of seizure classification, Roy et al. [9] applied
extreme gradient boosting (XGBoost) and KNN to classify the EEG signals into seven
classes of seizures. The study reported F1-scores of 85.1% and 90.1% for XGBoost and
K-nearest neighbor (KNN), respectively. Similarly, Aristizabal et al. [26] developed a deep
learning model known as neural memory networks (NMN) to classify seven types of
seizures. The study reported a 94.50% F1-score. In another study related to the seven-
class problem, Asif et al. [11] applied a deep learning framework, called SeizureNet with
ensemble learning and multiple DenseNets that achieved a 95% F1-score.

Raghu et al. [27] extracted EEG image features using a pretrained Google Inception 3
and classified them using support vector machine (SVM), achieving an accuracy of 88.3% to
classify seven types of seizure classes and a normal class. Similarly, in [28], a convolutional
neural network (CNN) model, AlexNet, is applied to classify EEG images based on the
technique of short-time Fourier transform (STFT) to classify seven types of seizure and
non-seizure class. The study yielded an accuracy of 84.06%. Liu et al. [8] applied a hybrid
bi-linear model consisting of CNN and long short-term memory (LSTM) to classify eight
types of seizures. The study reported a 97.4% F1-score.

For the four-class classification of seizures, Wijayanto et al. [29] applied empirical mode
decomposition (EMD) to EEGs for feature extraction and quadratic SVM for classification.
The study reported an accuracy of 95%. In another study, Ramadhani et al. [30] applied
EMD, Mel frequency cepstral coefficients (MFCC), and independent component analysis
(ICA) to EEG data for feature extraction and SVM for classification of four classes of seizures
and achieved 91.4% accuracy. For three classes of seizure classification, Saric et al. [31]
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developed a field programmable gate array (FPGA)-based framework for the classification
of generalized and focal epileptic seizures using a feed-forward multi-layer neural network
and achieved an accuracy of 95.14%.

In spite of the good performance reported in the aforementioned studies, it is expected
that the reported techniques cannot be used in real world situations as the studies either did
not report the performance when tested on data from new patients or reported lower per-
formance. Out of the eight studies presented in Table 3, only two studies [9,11] considered
the generalization of their proposed techniques. Both studies mentioned a considerable
decrease in the performance of their system, where the performance decreased by 45%.
This shows that there is still a large gap for advancement for better generalization capability
for the classification systems.

It is interesting to observe from Table 3 that the authors of these studies chose a
different number of seizure classes, ranging from a three-class problem to an eight-class
problem for seizure type classification. The reason behind the choice of the number of
classes is not discussed in most of these studies. The authors of [9,11,26–28] excluded
the seizure type MYSZ from their experiments because the signals of this type were only
recorded from two patients (see Table 2). However, in [8], the authors chose to utilize
all seizure types in the dataset regardless of the number of patients. Table 3 presents the
investigated seizure types for each study.

It can be observed from Table 1 that in TUSZ, there are six specific types of seizures
and two non-specific general types. From a pathological point of view, these types are not
completely disjoint but form a hierarchical sub-grouping [4,26]. It has been stated in [7]
that when there is inadequate evidence to label the type of seizure confidently, the corpus
team tends to label an event as either focal non-specific or generalized non-specific based
on the seizure’s focality and locality [25]. Both of these types are not medically distinct
from one another, whereas SPNS and CPSZ are more specific types of FNSZ, and ABSZ,
TNSZ, TNSZ, and MYSZ are more specific types of GNSZ [4,26]. Thus, considering the
label FNSZ as a unique type of seizure against the specific focal types CPSZ and SPSZ
might cause the classifier not to perform well, and similarly for the classification of GNSZ.

Therefore, in this study, we are considering two different classification problems. In the
first problem, each label is considered in the dataset as a unique seizure type, and results are
compared with the existing state-of-the-art results. On the other hand, the second problem
is the introduction of a new challenge, which is more important pathologically, that deals
with the specific seizure type classification to investigate the effect of the non-specific labels
in TUSZ (five-class classification).

In order to solve the above mentioned problems, we propose a novel technique that
focuses on wavelet-based machine learning methods for automatic seizure type classifi-
cation in multi-channel EEG recordings. We only utilized EEG data and decomposed the
EEG signals into different levels of components using DTCWT to extract specific features
from these decomposed components. We used shift-invariant DTCWT for feature extrac-
tion from a biomedical signal and its classification, which is done for the first time in the
literature for seizure type classification. Moreover, we tested our proposed technique on
the largest available seizure EEG database, containing various types of epileptic seizures.
In order to ensure the effectiveness and generalization of our technique, we thoroughly
tested our proposed technique across subjects in addition to normal testing. The experi-
mental results show that our proposed novel technique performs well for both problems of
seizure-type classification.

The rest of this paper is organized as follows: Table 2 discusses information about the
data utilized in this research and the details of our proposed technique. Table 3 presents the
evaluation methodology and the analyses of the obtained results. A thorough discussion is
provided in Table 4. Table 5 concludes the article with a future research plan.
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Table 3. Summary of existing state-of-the-art techniques for seizure classification.

Method
No. of Seizure
Classes

Classes Considered Features
Performance
(%)

Transfer learning
Inceptionv3 [27] 8 * GNSZ, FNSZ, SPSZ, CPSZ, ABSZ,

TNSZ, TCSZ, NORM SFFT 88.3 Accuracy

AlexNet [28] 8 * GNSZ, FNSZ, SPSZ, CPSZ, ABSZ,
TNSZ, TCSZ, NORM SFFT 84.06 Accuracy

CNN+LSTM+MLP [8] 8 GNSZ, FNSZ, SPSZ, CPSZ, ABSZ,
TNSZ, TCSZ, MYSZ SFFT 97.40 F1-score

SeizureNet Ensemble
CNNs [11] 7 GNSZ, FNSZ, SPSZ, CPSZ, ABSZ,

TNSZ, TCSZ FFT 95 F1-score

Plastic NMN [26] 7 GNSZ, FNSZ, SPSZ, CPSZ, ABSZ,
TNSZ, TCSZ FFT 94.5 F1-score

K-NN [9] 7 GNSZ, FNSZ, SPSZ, CPSZ, ABSZ,
TNSZ, TCSZ FFT 90.1 F1

XGBoost [9] 7 GNSZ, FNSZ, SPSZ, CPSZ, ABSZ,
TNSZ, TCSZ FFT 85.1 F1-score

SVM [30] 4 * GNSZ, FNSZ, TCSZ, NORM MFCC+HD+ICA 91.4 Accuracy
FPGA-based ANN [31] 3 * GNSZ, FNSZ, NORM CWT 95.14 Accuracy
SVM [29] 4 GNSZ, FNSZ, SPSZ, TNSZ EMD 95 Accuracy

* Including non-seizure EEG class. +Normal EEGs.

Table 4. EEG channel names included in our study.

# Channels # Channels

1 FP1-F7 2 F7-T3
3 T3-T5 4 T5-O1
5 FP2-F8 6 F8-T4
7 T4-T6 8 T6-O2
9 T3-C3 10 C3-CZ
11 CZ-C4 12 C4-T4
13 FP1-F3 14 F3-C3
15 C3-P3 16 P3-O1
17 FP2-F4 18 F4-C4
19 C4-P4 20 P4-O2

Table 5. Hyperparameters for LightGBM classifier.

Hyperparameter Value

boosting type gbdt
Learning_rate 0.2
n_estimators 1500

colsample_bytree 0.13151
importance_type split

num_leaves 31
subsample 0.8

2. Materials and Methods

2.1. Data

Our study is based on TUSZ ver. 1.5.2 dataset [25], which is the largest publicly
available dataset released in 2020. This dataset includes 3050 seizure events, consisting of
various seizure morphologies and recorded from over 300 different patients. The TUSZ was
collected from archival hospital data at Temple University Hospital (TUH), where clinical
EEG data was retrieved and stored in .EDF format [25]. The signals were recorded based
on the international 10-20 EEG system. Table 2 presents the details of the distribution of
TUSZ. The EEG signals in TUSZ are annotated based on electrographic, electro-clinical, and
clinical manifestations. More details about the dataset can be found in [25], and the dataset
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is available online at the corpus website (https://isip.piconepress.com/projects/tuh_eeg/,
accessed on 1 May 2021). The seizure type MYSZ is excluded from our study due to its
scarcity in the dataset, as it is recorded from only two patients in the recently released
version (see Table 2). As mentioned earlier, this decision is in accordance with previous
research studies in the same field [9,11,26–28].

2.2. Proposed Technique

Our proposed technique involves multiple steps which include preprocessing of the
data, extracting the important features, and then classifying them. The architecture of our
proposed technique is presented in Figure 1, and all the steps are explained below.

Figure 1. Overall architecture of the proposed technique.

2.2.1. Preprocessing

All the data in TUSZ do not have the same montage and sampling rate, as those
recordings were collected from real hospital data (see Section 2.1). As a result, we performed
some initial procedures to generalize the input data prior to feature extraction. Firstly,
the EEG segments which are exclusively responsible for seizures were extracted from the
dataset. This was achieved using the annotation file provided with the dataset, including
the start and the stop time of each seizure event. After extracting the seizure events, we
used the transverse central parietal (TCP) montage to accentuate spike activity [9]. Montage
is a differential view of the data, which consists of differencing the signals collected from
two electrodes (e.g., Fp1-F7, F7-T3) [32]. In fact, neurologists are very particular about the
type of montage used when interpreting an EEG because it helps in noise reduction [32,33].
Different experiments on montage selection have been done in [32,34], and TCP was
found to be the most efficient montage that helps different machine learning algorithms to
detect seizures. Secondly, we re-sampled all recordings at 250 Hz, as the EEG recordings
in the TUSZ have various sampling rates ranging from 250 Hz to 512 Hz [8]. Finally,
we cropped each extracted signal into equally non-overlapped segments such that each
segment is of the length of two seconds. This choice was influenced by [9], where the
authors investigated different window lengths, and they reported that the two second
window length of the signal is the most optimal choice to achieve the best classification
results. In summary, we took the following preprocessing steps in sequence to generalize
the input data for processing:

1. Used the transverse central parietal (TCP) montage to accentuate spike activity. Table 4
presents the EEG channels considered in our study.

2. Re-sampled all recordings at 250 Hz.
3. Cropped the signal into equally non-overlapped segments such that each segment is

of 2 seconds, resulting in 500 data points.

After the initial preprocessing steps, the input data were generalized and ready to be
processed for transformation.
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2.2.2. Feature Extraction

Wavelet transform (WT) methods have been employed successfully to solve various
non-stationary signal problems [17,35,36], including EEG [20]. WT is a spectral estimation
method that provides another representation of the signal at different scale components.
Wavelet Transform (DWT) is one of the WT’s most popular techniques that decomposes a
given signal x[k] into a mutually orthogonal set of wavelets through convolution with filter
banks. For j levels of decomposition, a signal x[k] is passed through two bandpass filters:
high Hp[.] and low Lp[.] starting from level j = 1. The output of each level is two down
sampled components, approximation Aj[i] and detail Dj[i], which are represented as

Dj[i] = ∑
k

x[k] · Hp[2 · i − k] (1)

Aj[i] = ∑
k

x[k] · Lp[2 · i − k] (2)

The approximation component Aj[i] can be further decomposed into another level of
Aj+1 and Dj+1 as shown in Figure 2 until the maximum or required level of j is reached.

Figure 2. The structure of three-scale level discrete wavelet transform (DWT).

DWT has many successful applications; however, it has some drawbacks, such as
insufficient information in high-frequency components, shift-variance, low directionality,
and absence of phase shift. Over time, different enhancements have been introduced
to cover the shortcomings of DWT. Dual-tree complex wavelet transform (DTCWT) is
an extension of DWT which was proposed by Kingsbury [37] and developed later by
Selesnick et al. [38]. It uses extra double low-pass filters and an additional two high-pass
filters to produce four components at each level which include real and imaginary parts.
DTCWT can be imagined as two parallel DWTs, as shown in Figure 3. This transformation
is approximately shift-invariant and directionally selective in two and higher dimensions,
which are very important in applications such as pattern recognition and signal analysis.
Therefore, DTCWT has less shift variance and more directionality as compared to DWT.
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Figure 3. The structure of three-scale level of DTCWT, giving real and imaginary parts of complex
coefficients from tree A and tree B. In this study, the EEG signals were decomposed into four levels
of decompositions.

In our proposed technique, we decomposed the EEG signals into four levels using
DTCWT using the Python library DTCWT [39] (https://github.com/rjw57/dtcwt/tree/
0.12.0, accessed on 10 May 2021). The level of decomposition was set manually based on
trial and error after experimenting with different levels of decomposition based on the
performance evaluation and computational efficiency. The decomposition process produces
real and imaginary parts of complex wavelet coefficients, and we selected the magnitude of
the complex coefficients. After the decomposition, we computed a set of statistical features
from each of the coefficients. Although these coefficients may be directly fed into the
machine learning algorithm, it has been observed that these decomposed signals are very
sensitive to noise [40]. Therefore, we computed a set of statistical features from each of the
coefficients as suggested in [1,19]. Those sets of features were successfully applied in EEG
research to discriminate between the signals, such as in abnormality detection [20]. The
computed features and their corresponding mathematical representations are presented
below. For mathematical representations, M is the length of the signal in each sub-band,
which is taken as 500 in this study, while Y{y1, y2, . . . yM} and Z{z1, z2, . . . zM} are two
adjacent sub-bands [19,20,41].

1. Mean absolute values (MAV) of the coefficients in each sub-band, μ.

μ =
1
M

M

∑
j=1

∣∣yj
∣∣ (3)

2. Average power (AVP) of the coefficients in each sub-band, λ.

λ =

√√√√ 1
M

M

∑
j=1

y2
j (4)

139



Appl. Sci. 2022, 12, 5702

3. Standard deviation (SD) of the coefficients in each sub-band, σ.

σ =

√√√√ 1
M

M

∑
j=1

(
yj − μ

)2 (5)

4. Ratio of the absolute mean values (RMAV) of adjacent sub-bands, χ.

χ =
∑M

j=1
∣∣yj

∣∣
∑M

j=1
∣∣zj

∣∣ (6)

5. Skewness (skew) of the coefficients in each sub-band, φ.

φ =

√√√√ 1
M

M

∑
j=1

(
yj − μ

)3

σ3 (7)

6. Kurtosis (Kurt) of the coefficients in each sub-band, φk.

φk =

√√√√ 1
M

M

∑
j=1

(
yj − μ

)4

σ4 (8)

The features across all the statistical coefficients corresponding to this interval signal
are stacked together, which forms a 6 × 5 (statistical feature × DTCWT coefficients) feature
matrix. We have 20 channels in TCP montage as mentioned in Table 4. Therefore, our
resulting feature matrix is of size 20 × 6 × 5 (number of channels × statistical features ×
DTCWT coefficients), which is flattened to 1 × 600 vector for classification.

2.2.3. Feature Analysis

We analyzed the involved features to understand the importance of the features ex-
tracted by DTCWT. We used two feature analysis methods: filtering using ANOVA (analysis
of variance) and LightGBM feature importance scores. In both techniques, selecting the
top important features, such as 5, 10, or 20 top features, always led to a decrease in classifi-
cation results regardless of the choice of the number of selected features. Figures 4 and 5
present the results of features obtained by DTCWT using ANOVA and LightGBM feature
importance, respectively. We analyzed the extracted features channel-wise and presented
the average of all those channels’ features. It can be observed from the presented results
that all extracted features by DTCWT in our technique play important roles in improving
the performance of classification. Therefore, we used all the features, as we believe all
features contribute to improving the classification results.

2.2.4. Classification

As mentioned in Table 1, we defined our problem in two classification problems:
(1) classification of seven seizure types, including both specific and non-specific seizure
types in TUSZ (see Table 1), and (2) classification of five seizure types, including only
specific seizure types (see Table 1).

For both problems, we used Light Gradient Boosting Machine (LightGBM ver. 3.2.1)
for classification. LightGBM is a gradient boosting decision tree framework which utilizes
a tree-based learning algorithm. It is a proven to be an optimal choice to handle a large
amount of data, as it is memory efficient, trains faster, and provides high accuracy [42]. The
key characteristic of LightGBM is that it uses Gradient-based One-side Sampling (GOSS)
in order to find the best split value. In addition, the exclusive feature bundling (EFB)
technique is used in LightGBM to reduce the feature space complexity, and the tree growth
in LightGBM is leaf-wise growth that leads to faster training [42].
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Figure 4. The obtained F-values of the features, using one-way ANOVA test.

Figure 5. Importance scores for each feature obtained using LightGBM classifier.

In a recent study of EEG binary classification for abnormality detection [20], different
classifiers were tested, and LightGBM was found to be one of the most effective classifiers in
terms of results and training speed [42]. Therefore, we selected LightGBM for classification.
Hyperopt [43] was used to discover the best hyperparameters for our LightGBM. The
optimized hyperparameters are presented in Table 5.

3. Results

In this paper, we used TUSZ EEG Corpus ver.1.5.2 to test our proposed technique for
seizure type classification. Firstly, we applied some preprocessing methods to remove noise
and to accentuate spike activity. Afterwards, the DTCWT feature extraction method was
applied, and finally, the LightGBM machine learning method was used for classification.

3.1. Experimental Settings

A desktop computer with 16 GB main memory (RAM), a 255 GB solid-state disk (SDD),
a 3.6 GHz microprocessor (CPU), and the Windows 10 operating system was used for the
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experiments. The technique was developed in Python 3.7. using the DTCWT Python
package library ver. 0.12.0.

3.2. Performance Evaluation

It can be observed from Table 2 that the TUSZ multi-class dataset suffers from the
problem of class imbalance and the class distribution varies significantly. FNSZ, GNSZ,
and CPSZ classes have a higher number of instances in the data as compared to the
remaining classes. With this uneven class distribution, the accuracy alone cannot represent
the performance of the proposed technique. Therefore, the average weighted F1-score is
used to evaluate the performance of our proposed technique. Indeed, we report the average
weighted sensitivity, specificity, and Cohen’s Kappa scores.

As mentioned earlier, we applied our technique to two different classification prob-
lems: seven-class and five-class classification. Moreover, we also tested our technique
for both seizure-wise and patient-wise cross-validation classification. In seizure-wise
cross-validation, we used a stratified five-fold cross-validation to robustly evaluate and
validate the performance of the proposed technique, which is inspired by a state-of-the-art
technique [8]. The dataset is split into five folds, where in each fold, the proportional
distribution of classes in the entire dataset is randomly allocated to five folds. The class
distribution after this split is approximately equal in each fold. During classification, the
model is estimated on four folds and tested on the remaining fifth fold (test set); this process
is repeated until all folds have been used as a test set. For patient-wise cross-validation,
we adopted the validation technique of Asif et al. [11], in which they applied three-fold
cross-validation across patients. In this scenario, the data presented in Table 2 are split
into three folds, as the selected classes of seizures include data from a minimum of three
patients. Therefore, this ensures that data used for testing are always from distinct patients
whose data have never been used in the training phase.

3.3. Experimental Results

In this section, we compare the obtained results for both evaluation scenarios. We
present our proposed technique’s performance for the seven-class problem followed by the
five-class problem for each seizure-wise and patient-wise validation.

3.3.1. Seizure-Level Cross-Validation

For both classification problems, we performed a five-fold cross-validation. For a
seven-class problem, our proposed technique achieved a weighted average F1-score of
96.04%. Figure 6 presents the classification performance in terms of F1-score for each
class in the dataset for all five folds, while Figure 7 presents the confusion matrix for our
proposed technique’s performance on the seven-class classification problem.

For the five-class problem, when only the specific types of seizures are included (see
Table 2), our method achieved a weighted average F1-score of 99.1%. This means that the
non-specific seizures in the dataset have a big impact on the performance of the machine
learning algorithm, as the results improved by more than 2%; we discuss this in more detail
in later sections. Figures 8 and 9 present the classification performance in terms of F1-score
for each class in the dataset for all five folds and the confusion matrix for the five-class
classification problem, respectively.

Moreover, the performance results of the proposed technique in terms of F1-score,
sensitivity, specificity, and Cohen’s Kappa for each fold and for both classification problems
are presented in Table 6.

3.3.2. Patient-Wise Cross-Validation

For patient-wise cross-validation, three-fold cross-validation was performed. We first
evaluated our method for a seven-class problem, and our proposed technique achieved
the weighted average F1-score of 56.22%. Similarly, for five-class classification problem,
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the performance of our proposed technique significantly improved, and the proposed
technique achieved a 75.97% weighted average F1-score.
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Figure 6. Performance of proposed technique on 7-class classification problem for each class having
5-fold cross-validation.

Figure 7. Confusion matrix for 7-class classification problem having 5-fold cross-validation: 1st to
5th fold (Left to right, top to bottom).
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Figure 8. Performance of proposed technique on 5-class classification problem for each class having
5-fold cross-validation.
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Table 6. Weighted average specificity, sensitivity, Cohen’s Kappa, and F1 score of the proposed
method for 7-class and 5-class problems, having five folds each.

Specificity (%) Sensitivity (%) Cohen’s Kappa (%) F1 Score (%)

7-
cl

as
s

pr
ob

le
m Fold 1 96.7 96.3 93.9 96.3

Fold 2 96.4 95.9 93.3 95.9
Fold 3 96.3 95.9 93.3 95.9
Fold 4 96.4 96.1 93.6 96.1
Fold 5 96.5 96.0 93.5 96.0

Average 96.5 96.0 93.5 96.0

5-
cl

as
s

pr
ob

le
m Fold 1 97.2 99.1 97.5 99.1

Fold 2 96.8 99.1 97.5 99.1
Fold 3 97.4 99.2 97.8 99.2
Fold 4 96.6 98.9 97.0 98.9
Fold 5 96.8 99.1 97.4 99.1

Average 97.0 99.1 97.4 99.1

Figure 9. Confusion matrix for 5-class classification problem having 5-fold cross-validation: 1st to
5th fold (left to right, top to bottom).

4. Discussion

Table 3 presents state-of-the-art techniques applied to the problem of seizure-type
classification. It is difficult to compare the performance of our proposed technique with the
existing studies in the literature, as each of the studies chose a different number of seizure
classes. Therefore, we selected all the state-of-the-art studies considering more than three
classes and compared our technique’s performance with them, as presented in Table 7.

It can be observed from Table 7 that our proposed technique’s performance for spe-
cific seizure type classification is the best among all the techniques at both seizure-level
classification as well as patient-level classification, achieving F1-scores of 99.1% and 74.7%,
respectively. For the seven-class problem, ref. [11] reported an F1-score of 96.0% using an
ensemble architecture of three DenseNets. Similarly, F1-scores of 94.5% and 90.1% were
reported in [9,26], respectively. Our proposed technique outperformed all existing studies
considering the same seven classes of seizures.
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Table 7. Patient-wise cross-validation and seizure-wise cross-validation results for studies found in
the literature.

Method No. of Seizure Types Seizure_Wise CV (%) Patient_Wise CV (%)

SVM [29] 4 95.00 Acc —
SVM [30] 4 * 95.14 Acc —
SeizureNet [11] 7 95.00 F1 62 F1

KNN [9] 7 90.1 F1 40.1 F1

XGBoost [9] 7 85.1 F1 54.2 F1

SGD [9] 7 80.7 F1 46.9 F1

CNN [9] 7 71.8 F1 52.5 F1

NMN [26] 7 94.5 F1 —
Inceptionv3 [27] 8 * 88.3 Acc —
AlexNet [28] 8 * 84.06 Acc —
CNN+LSTM [8] 8 97.40 F1 —
This Work 5 99.1 F1 74.7 F1

This Work 7 96.04 F1 56.22 F1

* Including non-seizure EEG class.

For an eight-class problem, refs. [27,28] proposed CNN-based solutions and reported
an accuracy of 84.06% and 88.3%, respectively. Similarly, Liu et al. [8] reported a high
F1-score of 97.4% obtained by a symmetric bi-linear deep learning model consisting of
two feature extractor models, CNN and LSTM. The study demonstrates a limitation in
testing. The 1-second segments considered in the dataset have a 50% overlap, which always
has the potential of data leaking, as mentioned by [8]. Most of the work mentioned in
Table 7 is based on fast Fourier transform (FFT) [9,11,26], which has a high resolution
in the frequency-domain but zero resolution in the time-domain, which is very essential
for EEG signal processing [44]. The other approaches [8,27,28] were based on short-time
Fourier transform (STFT), which is the known solution to overcome the limitation of FFT.
STFT analyzes the frequency of the signals at a particular short time period to avoid
losing temporal information. However, STFT cannot catch sharp signal events because of
the use of a fixed window length and fixed basis function [44]. On the other hand, our
proposed technique overcomes these shortcomings by providing a smooth representation
of EEG signals. It enables generating detailed features that have strong correlations with
the latent structure of seizure types in EEG signals. Additionally, our proposed method
also demonstrated very high classification results compared to other classical machine
learning techniques [9,29–31]. Moreover, all of the research studies mentioned in Table 7
utilized an older version of the TUSZ, which is ver.1.4.0, whereas the number of seizure
events in the current version is much larger as compared to the previous version, as shown
in Table 2. With a more challenging new version of TUSZ ver.1.5.2, which contains 1000
additional seizure events, our proposed method achieves better results for the seven-class
classification problem as compared to existing techniques.

Most of the research studies in the literature chose to evaluate their methods only
at the seizure level. Out of the eight studies presented in Table 3, only [9,11] considered
the generalization of their models over different patients, or, in other words, the model is
trained and evaluated on data from different patients. This ensures that the performance of
the model is general and can be adopted for different patients. The performance of both
studies [9,11] sharply decreases when evaluated using the patient-wise cross-validation
technique, as shown in Table 7. Comparatively, our proposed method showed a competitive
result for the seven-class problem, and it demonstrated more stable performance when
evaluated across different patients for the five-class problem. Our proposed technique
achieved F1-scores of 56.22% and 74.7% for the classification of the seven-class and five-class
problems, respectively.

Regarding [23], DTCWT was employed to extract features from EEGs to classify
epileptic vs. non-epileptic patients; however, in this study, we are using the DTCWT with
a different set of features for a more complex problem, which is the identification of the
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seizure types, including specific and non-specific focal and generalized seizures. Moreover,
we evaluated this technique seizure-wise and patient-wise on the most extensive available
EEG dataset, TUSZ ver.1.5.2 [25], containing data from more than 300 patients. In [23], the
data used for evaluation were obtained from only 21 subjects. This study has explored
the generalization of our technique to be evaluated across different patients for better
generalization capability.

In addition to the evaluation, we speculated that when only considering the EEG
signals, it is not appropriate to treat the main seizure categories as unique seizure types
against any of their sub-types. Since both SPSZ and CPSZ are sub-categories of focal
seizures, it is unreasonable to train the machine learning algorithm to differentiate between
them. According to the dataset, the reason for labeling an event as a focal non-specific
seizure is the lack of information to make a decision [25]. After excluding the non-specific
seizure labels, the experimental results demonstrated the stability of the classifier across
different patients, as shown in Table 7. The performance of our proposed technique for
specific seizure type classification showed nearly perfect results when evaluated at the
seizure level, and it has the ability to generalize itself better on signals recorded from new
patients, as compared to [9,11]. Therefore, considering the non-specific seizure labels in
TUSZ as unique types of seizures, when only utilizing EEG data, does not reveal meaningful
results. Instead, one must include clinical features that neurologists look for when making
a diagnosis (i.e., video EEG monitoring). By doing so, the machine learning algorithm
knows the reason for labeling an event as non-specific, as there is not enough information
to make a decision. This is beyond the scope of this paper, as we focused solely on utilizing
the EEG data. By knowing that the other specific seizure types in the corpus medically
must be either focal or generalized at some point, we excluded the non-specific labels from
our experiment, and, in turn, the results demonstrated high and stable performance.

During patient-wise cross-validation, we noticed that the majority of the seizure events
of type SPSZ were classified as CPSZ. Again, and from medical perspectives, we can relate
this misclassification to the fact that the difference between focal CPSZ and focal SPSZ
can mainly be determined by clinical characteristics, as described in [4,25]. Therefore,
considering the neurologist report in this situation might help in distinguishing between
the two types. Moreover, as most epileptic conditions are age-determined [2], we suggest
that one could also include age, gender, and medical history as extra input features to the
machine learning model to obtain more accurate results, which is beyond our scope in
this paper.

5. Conclusions

Epilepsy is one of the most common neurological diseases that affects people of all ages.
It is characterized by sudden and recurrent seizure attacks that appear in different forms and
are treated in different ways. Correct assessment of epileptic seizures is vital in overcoming
the complications of the disease, and it provides accurate information to the affected
person. This paper presents a novel technique utilizing DTCWT and machine learning
for automatic seizure type classification in EEGs. The proposed method demonstrates a
significant improvement in classification, achieving 96.04% and 99.1% for seven-class and
five-class classification problems, respectively. We evaluated our proposed technique across
different subjects, which is a very challenging task due to the limited amount of training
data that are generalized to unseen test patients’ EEG data. The achieved results show that
our proposed technique performs significantly better as compared to the existing methods
in the literature and is more general. The findings in this study enhance the applicability of
artificial intelligence applications in assisting neurologists’ decisions. In future research, we
plan to investigate the use of different methods for feature extraction that can finely detect
the differences between the seizures in an EEG.
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Abstract: Electroencephalography (EEG) signal analysis is a fast, inexpensive, and accessible tech-
nique to detect the early stages of dementia, such as Mild Cognitive Impairment (MCI) and Alzheimer’s
disease (AD). In the last years, EEG signal analysis has become an important topic of research to
extract suitable biomarkers to determine the subject’s cognitive impairment. In this work, we propose
a novel simple and efficient method able to extract features with a finite response filter (FIR) in
the double time domain in order to discriminate among patients affected by AD, MCI, and healthy
controls (HC). Notably, we compute the power intensity for each high- and low-frequency band, using
their absolute differences to distinguish among the three classes of subjects by means of different
supervised machine learning methods. We use EEG recordings from a cohort of 105 subjects (48 AD,
37 MCI, and 20 HC) referred for dementia to the IRCCS Centro Neurolesi “Bonino-Pulejo” of Messina,
Italy. The findings show that this method reaches 97%, 95%, and 83% accuracy when considering
binary classifications (HC vs. AD, HC vs. MCI, and MCI vs. AD) and an accuracy of 75% when
dealing with the three classes (HC vs. AD vs. MCI). These results improve upon those obtained in
previous studies and demonstrate the validity of our approach. Finally, the efficiency of the proposed
method might allow its future development on embedded devices for low-cost real-time diagnosis.

Keywords: Alzheimer’s disease; EEG signals; power spectrum; FIR filtering; supervised
machine learning

1. Introduction

Alzheimer’s diseases (AD) belong to the class of dementia, a neurodegenerative
disease characterized by a range of impairments in brain functions, especially memory and
learning, as well as executive and motor functions, complex attention, social cognition, and
language [1]. The estimated proportion of the general population with dementia is around
50 million of people worldwide, and 60% of those cases correspond to AD [2]. It begins
with a symptomatic stage of cognitive decline, called Mild Cognitive Impairment (MCI),
characterized by an impairment in cognition that is not severe enough to compromise social
and/or occupational functioning [3]. As the progression of this disease lasts for decades,
from the appearance of the first sign to the onset of severe clinical symptoms, the clinician’s
first challenge is to identify the first significant cognitive changes [4]. Indeed, the diagnosis
of dementia is usually made when the patient is at least partially dependent on his/her
family members [5]. However, a timely diagnosis can facilitate care and support patients
and their families in managing this very disabling disease [6].

Conventional techniques to detect AD are costly and distressing. However, electroen-
cephalography (EEG) is a fast, inexpensive, and noninvasive technique to gather brain data,
but its interpretation requires a visual inspection, which is often time-consuming and varies
with the expertise experience. Moreover, when the EEG recording is long, then its manual
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review requires a lot of time with the risk of errors because of the presence of artifacts in
the signal. Thus, automated methods based on EEG signal analysis in combination with
supervised machine learning have become an important topic of research to assist clinicians
in the challenging task of early AD detection [7].

The technique for the sampling of EEG signal consists of placing electrodes on the
scalp according to a certain configuration, and the most commonly used is the international
10–20 system [8]. The electrodes record the postsynaptic biopotentials of all the neurons
with the same spatial orientation in order to map the electrical activity of the cerebral
cortex. The biopotentials, which are sampled in bipolar mode by different electrode pairs
or in monopolar mode with a reference electrode, constitute the raw signals. Subsequently,
preprocessing procedures clean the raw signals from artefacts and apply band-pass filtering
to reject out-of-band noise. Basically, all preprocessing steps convert the raw signals into
EEG signals [9]. The composition of the EEG signal is complex, but it can be divided
into five frequency bands: delta (1–4 Hz, δ), theta (4–8 Hz, θ), alpha (8–13 Hz, α), beta
(13–30 Hz, β), and gamma (30–40 Hz, γ) [10].

Features are extracted from EEG data through a procedure denominated feature extrac-
tion. Features should be independent and discriminative to facilitate the classification of the
subjects. Usually, features such as complexity, coherence, or spectral power are extracted
from the time and frequency domains [7]. Fourier transform (FT) is the main technique
used to extract frequency domain features for AD detection. Nonetheless, EEG signals are
nonstationary and nonlinear in nature. The wavelet transform (WT), which decomposes a
signal into the combination of functions (wavelets) of finite length and different frequencies,
represents a suitable alternative to address this issue [11]. On the contrary, the frequency
domain represents the principal source of the EEG features for AD detection. Indeed,
different changes in the frequency patterns of the brain waves have been found in MCI
and AD patients compared to healthy aged subjects [12]. All feature extraction methods
extrapolate EEG signal features from different domains (e.g., frequency and time) [13].
Then, statistical or machine learning analyses [14] can use these features to develop and
validate models based on linear or nonlinear systems [15] to distinguish AD from MCI or
normal aging. In particular, supervised machine learning (SML) permits the development
of robust classification models for recognizing AD [16], frontotemporal dementia [17], and
other pathologies [18]. Complex and heterogeneous symptoms complicate the diagnosis,
because more often than not, biomarkers are intrinsically hidden in the EEG signal.

Rhythms are often used to analyze the EEG in a particular sub-band through filtering,
due to the different activities between the frequency bands [19,20]. In fact, previous studies
have shown that the relative power in fast rhythms (α and β) decreases, while, in slow
rhythms (δ and θ), it increases [21,22]. This effect shifts the peak power towards lower
frequencies, which is why it is also called “shift-to-the-left” (STTL) [23]. The method
presented in this paper exploits the power intensity of EEG signals, filtered in the time
domain by using both high-pass and a low-pass filters in order to analyze the STTL
phenomenon. Our idea is to classify the absolute difference in power between fast and
slow rhythms for each individual, using it as a biomarker. For this purpose, we also use
the power spectrum density (PSD) calculated with the help of the spectrogram and SML to
choose the best filter cutoffs and improve the classification performance.

2. Materials and Methods

We used an EEG dataset composed of 109 EEG recordings (49 AD, 37 MCI, and 23 HC)
collected in resting condition and with closed eyes at the IRCCS Centro Neurolesi “Bonino-
Pulejo” in Messina (Italy). A diagnosis of AD or MCI was formulated following the guidelines
of the Diagnostic and Statistical Manual of Mental Disorders (fifth edition, DSM-5).

2.1. Data Acquisition and Preprocessing

Multi-channel EEG signals were recorded by using 19 electrodes placed according to
the 10–20 system [8] in monopolar connection with the earlobe electrode as a reference.
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Raw electrical brain activity (μV) recordings last about 300 s. For more details on data
collection, the reader can refer to the previous study [24].

In the preprocessing step, the sampling rate is normalized to 256 Hz, and EEG are
filtered at a 1-Hz low cutoff (high-pass) and at a 30-Hz high cutoff (low-pass). After filtering,
artifacts are detected by visual inspection and rejected. One hundred and fifty seconds of
cleaned EEG are considered for each subject, extracted from the central part of the EEG
signal in order to maintain the maximum signal information to train classifiers on the same
length signals but without losing too many instances. Thus, four subjects were excluded
(i.e., 1 AD and 3 HC) due to an excessive number of artifacts, and the dataset dropped to
105 EEG recordings.

2.2. Feature Extraction

The feature extraction procedure includes two main steps: (i) data exploration in the
time–frequency domains by means of PSD computed in the spectrogram and
(ii) construction of the double digital filter and its application.

2.2.1. Data Exploration in the Time–Frequency Domains

For each subject, we generated a unique signal by concatenating the 19 biopotentials
signals (i.e., one for each electrode). This concatenated signal provides a complete view of
the whole subject’s signal and allows to know the electrodes more involved in the STTL
phenomenon. Therefore, the 3 classes (AD, MCI, and HC) contain as many concatenated
signals as there are subjects in each of them. Then, the average of each class is calculated,
resulting in 3 average signals. Therefore, we apply the MATLAB pspectrum function (it
is included in the Signal Processing Toolbox introduced in version R2017b), setting the
spectrogram mode and providing input in the sampling frequency (fs) and the signal in the
time domain. The power spectrum density of the signal is computed, also performing the
Short-Time Fourier Transform (STFT) of the signal and evaluates its power [25,26]. This
step allows to find the best cutoff frequencies (fcut) that can separate the classes. For the
sake of clarity, recall that the spectrogram is a function used to plot the STFT of the signal,
determining both the sinusoidal frequency and phase contained in different time frames
and composing the entire signal.

2.2.2. Double Digital Filter Construction

The second step includes the construction of two Finite Impulse Response (FIR) digital
filters, i.e., a second-order Butterworth filter for high-pass (FIR-H) and low-pass (FIR-L)
frequencies by using the cutoff frequencies (fcut) previously identified [27]. Thus, each EEG
signals provided by an electrode is double-filtered, and two signals are generated in the
time domain, called EEG(L) and EEG(H), where the first value is the EEG filtered with
FIR-L, while the second value is the EEG filtered with FIR-H. Subsequently, we compute
the power (see Appendix A) of these two signals, P(L)

xx and P(H)
xx , with the aim to calculate

the square of their absolute difference:

P2
(L−H) =

∥∥∥P(L)
xx − P(H)

xx

∥∥∥2
(1)

This value is the extracted feature corresponding to our biomarker. Figure 1 shows a
schematic representation of the double digital filter construction.

In this way, we are able to represent each initial EEG signal as an array of values
sampled in a single feature, P2

(L−H), reducing the input size. This procedure is iterated for
all subjects, as shown in Table 1. To ensure that the cutoff frequencies identified in the first
stage of the procedure are really the best for class separation, we vary fcut from 1 Hz to
18 Hz with a step size of 1 Hz, in order to achieve the best class separation.
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Figure 1. Schematic representation of the double filtering method. The initial input is the subsequence
of the main EEG signal, which is divided and filtered according to the two main branches. The final
result is the square of the power absolute difference. The block “Power” is explained in Appendix A.

Table 1. Schema of the feature extraction procedure: features extracted from an EEG recording are
shown in the last column.

N-Subjects EEG Signals Label Extracted Features

1 EEG1, EEG2, . . . , EEG19 AD P2
(L−H)1

, P2
(L−H)2

, . . . , P2
(L−H)19

2 EEG1, EEG2, . . . , EEG19 MCI P2
(L−H)1

, P2
(L−H)2

, . . . , P2
(L−H)19

. . . . . . .. . . . . . . ..
109 EEG1, EEG2, . . . , EEG19 HC P2

(L−H)1
, P2

(L−H)2
, . . . , P2

(L−H)19

The column Label shows the initial labeling used in supervised machine learning.

2.3. Classification

The signal classification is performed by an SML analysis through three classification
methods: decision trees (DT), support vector machines (SVM), and k-nearest neighbor
(KNN) [28]. The algorithms are implemented in Python (version 3.7.21) by means of the
scikit-learn toolkit [29]. Python is an open-source programming language, and its choice
stems from the availability of many external libraries, frameworks, and tools from a huge
community distributed all over the world.

In this study, we define five classification problems: (i) AD vs. HC, (ii) AD vs. MCI,
(iii) MCI vs. HC, (iv) AD + MCI vs. HC, and (v) AD vs. MCI vs. HC. The first four problems
were addressed in our previous study [24], whereas the last one defines the three class
classification problem [30]. Then, for each problem, we perform 10 runs where the extracted
features are randomly sampled. Finally, we adopt the following procedure:

1. Dataset splitting in training 70% and data tests 30%, except for the (v) case where the
data has been divided into 80% training and 20% data tests;

2. Dataset size reduction with the Linear Discriminant Analysis (LDA) [31];
3. Application of the three aforementioned supervised machine learning methods;
4. Tuning of the hyperparameters of the machine learning algorithms combined with

k-fold cross validation [32];
5. Data validation and performance evaluation through the confusion matrices.
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Regarding point 1, data splitting can affect the performance of evaluators, so making
appropriate decisions during this step is very challenging, as highlighted in [33]. Here,
the authors summarize the challenges of data splitting into three main points: (i) Data
imbalance, (ii) Data loss, and (iii) Concept drift. Taking these points into consideration,
we divide the initial datasets into 70–30 and 80–20. The first choice shows very high
levels of accuracy in the first four cases of the classification; on the contrary, 80–20 has
an accuracy increase of 5% in the three-class classification problem. In order to reduce
the less meaningful features, we applied the LDA to the extracted features. The LDA,
cited at point 2, is a well-known data mining algorithm [34] and is suitable in those cases
where classes are unbalanced or nonlinearly separable, such as the EEG signal. LDA
automatically defines a separation hyperplane between the points that belongs to a class by
generating two subclasses from the main one. Consequently, the Fisher criterion [35], also
called Fisher’s linear discriminant, maximizes the ratio of the between-class variance to
the within-class variance in any particular dataset, ensuring the maximum separation. In
this way, it is possible to discard those values of the extracted features that do not affect the
variance of the main class, decreasing the sample dimensions.

With the purpose of improving the performance of the classification algorithms, we
automatically introduce additional parameters, namely hyperparameters, provided by an
external constructor. However, a wrong choice of the hyperparameters can lead to incorrect
results and to obtaining a poor performance model [36,37]. In this work, we chose the grid
search algorithm (GScv) [38], implemented through the python function GridSearchCV.
GScv is the simplest algorithm for hyperparameter optimization [39]. However, it is time-
consuming, since it considers all combinations to find the best point (Figure 2a), and each
grid point needs cross-validation in the training phase.

 
 

(a) (b) 

Figure 2. (a) Example of a grid search domain, where the hyperparameters are distributed into a matrix.
(b) A schematic representation of 5-fold cross-validation. In (b), the data train (the blue boxes) is split in
“k” subsegments, and one (the orange box) of them is used as the validation in each iteration.

In addition, the cross-validation procedure resamples the data randomly for the better
evaluation of machine learning models. To improve the model validation, the procedure of
cross-validation is iterated k times. Consequently, the data training is segmented into k
subgroups [40]. For this reason, the procedure is often called k-fold cross-validation. Here,
we split the training datasets into k = 10-fold without reinsertion, where 9-folds are used to
train the model and 1-fold for the performance evaluation [41], as represented in Figure 2b.
The estimator evaluation (e.g., accuracy) is the average of each estimator computed over
the kth iteration.
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3. Results

In this section, we report the results obtained after any steps of our method, e.g., from
the feature extraction to the classification process, providing the accuracy measures of the
classification algorithms.

First, we show in Figure 3 the allocation of the power spectrum for each patient.
Looking closely at Figure 3, we can enhance that the PSD in AD and MCI is restricted in low
frequencies (<7 Hz), while, in HC, the power is spread up to about 14 Hz. Thus, we expect
that the next part of the feature extraction procedure also identifies that these frequencies
are the best cutoffs for a good separation between classes.

(a) 

(b) 

(c) 

Figure 3. Computed pspectrum from 19 biopotentials (EEG signals) in a frequency range of 0–20 Hz
for AD (a), MCI (b), and HC (c). The dashed red line separates each individual signal from the 19
biopotentials that make up the preprocessed EEG signal.

As viewable in Figure 4a, the statistical test carried out on the characteristics shows a
good separation between classes in these fcut values. Indeed, we found an excellent class
separation between HC and AD-MCI for the value of fcut equal to 7 Hz, as can be seen in
Figure 4b, and an excellent separation between AD and MCI with fcut = 16 Hz (Figure 4c).
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These interesting results suggest applying the first filtering at 7 Hz to exclude controls and
the subsequent filtering at 16 Hz for a better classification between MDI and AD.

(a) 

 
(b) (c) 

Figure 4. (a) The mean value of the feature extraction, the black double arrows, show the maximum
distance between HC and AD + MCI for fcut = 7 Hz and between AD and MCI for fcut = 16 Hz. The
statistical results are shown in (b) for 7 Hz and (c) for 16 Hz. In both of the last two graphs, the main
box represents the data distribution, while the red line represents the median value, and the whisker
stretches from the box show the range of the data, except for the outlays that are represented, such as
the floating point (+).

The classification of the samples achieves a high level of accuracy, especially in dis-
tinguishing AD vs. HC and MDI vs. HC cases. In fact, the three classification procedures
achieve an accuracy value of more than 87% and up to 97%, as shown in Figure 5a,b.
Moreover, when we consider AD + MCI vs. HC, the accuracy reaches a value between 84%
and 89% (Figure 5c). The effectiveness of the proposed method consists of tunneling fcut,
as shown in Figure 5d for the AD vs. MCI case. Here, the accuracy of the classification
methods improves from 49–60% to 80–83% when fcut is increased from 7 Hz to 16 Hz.
Finally, Figure 5e shows the comparison between the three different cases and reinforces
the hypothesis of the effectiveness of the proposed method for feature extraction. In the
latter case, the accuracy value is between 73% and 86%.
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(a) (b) 

(c) (d) 

(e) 

Figure 5. Each subfigure displays the comparison between the three classification methods: decision
tree (DT), support vector machine (SVM), K-nearest neighbors (KNN) in the different problems:
(a) AD vs. HC, (b) AD vs. MCI, (c) MCI vs. HC, (d) AD + MCI vs. HC, and (e) AD vs. MCI vs. HC.
Furthermore, all the subfigures show the accuracy results achieved in percentages at fcut = 7 Hz in the
blue column and fcut = 16 Hz in the red column.

In Table 2, we present the computation times of the classification procedure. The costs
of feature extraction are low, and the computation time is about 0.1 s for a single subject.
On the contrary, in the classification process, the computation time is higher because of the
search for the best hyperparameters improving the accuracy. In the binary classification
problems, the total execution time is, on average, 39.5 s, of which the DT takes about 21 s,
the SVM takes about 15 s, and the K-NN takes about 3 s, except in the last case, when the
execution time increases by two seconds. K-NN is the algorithm with the lowest runtime,
while DT is the slowest. This is because KNN stores the training data in an n-dimensional
space defining the pattern’s spaces, and for each unknown sample, it assigns the pattern’s
space with a minor distance function [42] while DT extracts a classification model composed
of features and value assignments requiring a longer runtime, although DT provides a
better interpretation of the classification solution.
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Table 2. Average execution time of the classification algorithm, including tuning of the hyperparameters.

Case fcut (Hz)
Time (s)

DT/SVM/K-NN
Tot. Time (s)

AD vs. HC
7 21.8/14.0/3.0 38.8
16 20.9/14.0/3.0 38.0

AD vs. MCI
7 22.3/14.8/3.0 40.1
16 21.1/15.0/3.0 39.1

MCI vs. HC
7 20.7/13.3/3.0 37.0
16 21.1/13.6/3.0 37.7

AD + MCI vs. HC
7 20.6/16.4/3.0 40.0
16 21.1/18.5/3.0 42.6

AD vs. MCI vs. HC
7 25.0/22.6/4.0 51.6
16 25.9/24.1/4.8 54.8

The Time column shows the execution time of each classifier, where DT = decision tree, SVM = support vector
machine, and K-NN = K-nearest neighbors. The last column shows the sum of the execution times.

4. Discussion

In this paper, we proposed a new method for the feature extraction in AD recognition
from EEG signals. Our findings confirm that AD affects the power spectrum of the patient,
according to previous studies [43,44]. The proposed method is carried out in the time
domain, exploiting the knowledge a priori of the EEG signals, i.e., power spectrum, spectral
entropy, and phase synchronization. We used three different classification algorithms to
validate our method, obtaining promising results. Indeed, the accuracy ranged between
73% and 97%, overcoming previous studies [24,45]. In particular, in [45], the best accuracy
rate was 94%, obtained by using discrete wavelet transform to extract features, whereas,
in [24], we used a DT classifier (i.e., the C4.5 algorithm), reaching the following levels
of accuracy: 83%, 92%, 79%, and 73% in HC vs. AD, HC vs. MCI, MCI vs. AD, and
HC vs. MCI + AD classification problems, respectively. Furthermore, in the last two
cases, we increased the level of accuracy, with values higher than 80% combining in the
information gain filter. Here, K-NN was the best classification algorithm as concerning the
accuracy (almost always greater than 80%), as shown in Figure 5, with a runtime of about
3 s (Table 2). On the contrary, the accuracy of DT was the lowest, and its running times
the highest because of the computation complexity in the construction of the solution in a
human interpretable format.

The recent literature has reported several techniques using EEG signals for the early di-
agnosis of AD, differing in how features are extracted. Some of these, such as event-related
potentials, signal a complexity analysis and relative power, involving a time domain signal
analysis. Other techniques, instead, work in the Fourier domain, such as the coherence
metric that evaluates the synchrony between two signals. In addition, there are techniques
exploiting the analysis in the frequency domain, such as the continuous or discrete wavelet
transform [7]. Cejnek et al. [46] employed a linear neural unit with gradient descent adapta-
tion as the filter to predict AD, achieving a specificity of 85% and a sensitivity between 85%
and 94%, depending on the classifier. In Reference [47], the authors developed an algorithm
that consists of three cascade methods for analysis: discrete WT, PSD, and coherence. They
tested this method on 35 subjects by means of the bagged trees classifier trained with
five-fold cross-validation, obtaining a 96.5% accuracy.

There are only a limited number of works that have exploited time–frequency or
bispectrum-based features, such as discriminating coefficients. The multimodal machine
learning approach of Ieracitano et al. [48], where EEG signals are projected into the time–
frequency domains by means of the continuous WT to extract a set of features from EEG
sub-bands, while the nonlinear the phase-coupling information of EEG signals is also used
to generate a second set of features from the bispectrum representation. This method
provides high levels of accuracy with different classifiers in all considered problems: AD
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vs. HC, Ad vs. MCI, MCI vs. HC, and AD vs. MCI vs. HC and on a large cohort of subjects
(i.e., 189 subjects: 63 AD, 63 MCI, and 63 HC). Similar to our method for the early detection
of AD, the Lacosogram tool [21] performs a statistical analysis to measure distances between
EEG sub-bands, obtaining an accuracy of 98.06% for HC vs. MCI, 95.99% for HC vs. AD,
and 93.85% for MCI vs. AD. Kulkarni and Bairagi in [49] decomposed EEG by using the
WT to decompose the EEG signal into its five sub-bands. The means and variances of the
wavelet coefficients were evaluated and used as input to a SVM classifier, achieving an
accuracy value of 88% in AD vs. HC classification.

Although, in our previous work [24], the experimental results showed that wavelet
coefficients evaluated by applying the discrete wavelet transform achieved the highest
accuracy rates (i.e., 83.3% for AD vs. HC, 91.7% for MCI vs. HC, and 79.1% for AD vs.
MCI), the three-class classification did not achieve good results when we used only Fourier
or Wavelet transform. On the contrary, here, the results of the three-class classification
problem (AD vs. MCI vs. HC) were also reported, showing an average accuracy of 78%
for the three classifiers and longer running times. This further proved the validity of this
feature extraction method, which plays a key role in the analysis. Indeed, the method
separates the high frequencies and the low frequencies of the EEG signal, and then, it
computes their powers. The comparison of these powers shows an imbalance of energies
in the frequency range, demonstrating the phenomenon of the STTL described in [15].

Our findings showed that a correct choice of fcut increases the accuracy of discrimi-
nation between AD, MCI, and HC subjects. In addition, the proposed method for feature
extraction is simple and fast in running time, and therefore, it is easily replicable in dif-
ferent development environments. This is undoubtedly its greatest strength, making its
implementation and understanding very easy. The model, tested on a larger sample, could
lead to the identification of biomarkers capable of determining features that discriminate
electrical signals between different AD cohorts at specific electrodes.

As a future work, we plan to improve the classification method to the point of remov-
ing all the HC subjects, applying double filtering with fcut = 7 Hz from the main sample,
and distinguish AD from MCI by applying double filtering with fcut = 16 Hz. However,
given the heterogeneity of the disease, a larger cohort is necessary to confirm the results of
this study. We also plan to test the method in different EEG recording protocols, maybe
while the subject performs a cognitive task, in order to provide insights on how AD affects
certain cognitive areas.

Since AD is expected to affect a large part of the worldwide population in the following
years, EEG represents a suitable technique to assist clinicians in an early diagnosis. From
this perspective, the method could be implemented on embedded devices and used in real
time during EEG signal acquisition due to its low computational resource requirements.
Considering the simplicity and robustness of the double filtering, we could promote it as an
inexpensive and portable software suite by programming the current embedded electronic
microprocessor, such as a Dev Board [50].
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Appendix A

In this section, we explain how we calculate the power of the EEG signal after splitting
the signal into the high- and low-frequency components. This operation describes the
function of the block “Power” in Figure 1. The power of a generical signal s(t) in a time
interval or period T is calculated as [51]:

Pxx =
1
T
∗
∫ t0+T

t0

‖s(t)‖2 dt (A1)

In our work, we considered t0 = 0, and the EEG is a sampled signal, i.e., a discrete-time
signal, so that (A1) can be rewritten as:

Pxx =
1
N

∗
N

∑
n=0

EEG(n)2 (A2)

where n is the index of the nth sample that compose the EEG, and N is the total number of
samples. As well-known, the ratio between N and the sampling rate returns T, and this
indicates the linear dependence between N and T.
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Abstract: Alzheimer’s disease (AD) is a brain disorder that is mainly characterized by a progressive
degeneration of neurons in the brain and decline of cognitive abilities. This study compared an
FFT-based spectral analysis against a functional connectivity analysis for the diagnosis of AD. Both
quantitative methods were applied on an EEG dataset including 20 diagnosed AD patients and
20 age-matched healthy controls (HC). The obtained results showed an advantage of the functional
connectivity analysis when compared to the spectral analysis; while the latter could not find any
significant differences between the AD and HC groups, the functional connectivity analysis showed
statistically higher synchronization levels in the AD group in the lower frequency bands (delta and
theta), suggesting a ‘phase-locked’ state in AD-affected brains. Further comparison of functional
connectivity between the homotopic regions confirmed that the traits of AD were localized to
the centro-parietal and centro-temporal areas in the theta frequency band (4–8 Hz). This study
applies a neural metric for Alzheimer’s detection from a data science perspective rather than from a
neuroscience one and shows that the combination of bipolar derivations with phase synchronization
yields similar results to comparable studies employing alternative analysis methods.

Keywords: Alzheimer’s disease (AD); EEG; fast Fourier transformation (FFT); functional connectivity;
phase synchronization

1. Introduction

Alzheimer’s disease (AD) is a brain disorder that is mainly characterized by a progres-
sive degeneration of neurons in the brain. As the disease progresses, a cortical disconnection
occurs, causing a deficit in memory and a decline in other cognitive capabilities [1]. AD-
related effects on the patient’s brain can be identified with various tools, one option being
the electroencephalogram (EEG), which measures the electrical activity of the brain. EEG is
a fast and non-invasive method that provides a high temporal resolution. However, it lacks
in spatial resolution, meaning that it is not the most precise method for the diagnosis of a
brain disorder.

Quantitative EEG (qEEG) analysis takes EEG recordings, commonly interpreted by
clinicians using visualization tools, one step further, giving the possibility of digitally
processing and presenting the signal characteristics in spectral and spatial domains [2]. In
a spectral analysis, a given signal is broken down and examined in the frequency domain.
This type of analysis is useful when finding differences between patients who are diagnosed
with a disorder and healthy individuals, by examining the relevant frequency bands to
identify a noticeable change in the activity within a particular frequency band [3]. A very
common yet powerful tool used in spectral analysis is the fast Fourier transformation
(FFT) [4]. This algorithm can be used to find band-specific differences by calculating the
power of each band separately.

When conducting a spectral analysis, the power spectral density (PSD) is often used
to determine differences in brain activity between frequency bands. Previous studies have
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shown that when compared to healthy controls (HC), AD patients show an increase of PSD
in the theta band and a decrease in the alpha band [3,5,6]. In AD diagnosis specifically, a
spectral analysis can show discrepancies between AD and other types of dementia, such as
vascular dementia (VaD) [1].

However, while these studies suggest that EEG spectral analysis may differentiate AD
patients from HC [7], several other studies that have examined the process of AD have
concluded that this brain disorder is involved with changes in the distributed networks
related to memory [8] and that the changes observed in the frequency bands may not
sufficiently reflect this. In addition, it is known that the FFT is not the most adequate tool
for non-stationary signals such as the EEG [9,10]. Moreover, as mentioned above, patients
suffering from AD experience a cortical disconnection. It is therefore important to examine
various regions of interest (ROIs) that are affected by the disease. Hence, more reliable
signal processing methods are required to capture the complexity of this disorder and
investigate the processes that underlie the occurring symptoms [11,12]. An alternative to
a spectral analysis is the connectivity analysis; a method which allows one to study the
communications between different regions of the brain [12].

Functional connectivity analysis measures the degree of synchronization between two
EEG signals; a higher connectivity indicates more effective communication between the
examined brain regions [13]. There are several ways of conducting a functional connec-
tivity analysis. For instance, Coherence analysis has been used exhaustively in detecting
differences between AD patients and HC. Recent studies indicated a decrease in the coher-
ence levels between ROIs for AD [3,14]. Although coherence has brought some novelty
in studies involving AD patients, it is worth mentioning that it solely accounts for linear
correlations, thus not considering nonlinear interactions.

Nonlinear correlations, on the other hand, can give crucial information in a functional
connectivity analysis. A widely used method for this is the phase synchronization (PS)

analysis. PS looks at the oscillatory activity in two brain regions in terms of their phases [15].
The oscillations are therefore said to be synchronized if their phases are similar. PS excels
over coherence analysis in terms of being able to account for nonlinearity [16]. Moreover,
a study has shown that differences have been found in terms of the synchronization
between within-band connections and between-band connections (e.g., within the delta
band; between the delta and theta bands) [17]. This study in particular also discovered
that AD patients showed much a lower strength of synchronization for between-frequency
band analysis when compared to HC.

PS has several indices of measurement, with the phase-lag index (PLI) and phase-

locking value (PLV) being the most-used measures [18]. The PLI takes a time-series of
phase differences and computes the asymmetry corresponding to the distribution of these
phase differences [19]. In a recent PS study using the PLI as the index of choice, results
showed that in AD patients, the lower alpha band presented a decrease in functional
connectivity situated in the posterior region [20]. On the other hand, PLV looks at the
consistency in phase difference. The PLV value ranges from zero, indicating random phase
differences, to one, indicating a fixed phase difference [21]. For example, a study performing
cross-frequency coupling (CFC), using PLV on AD patients, reached the conclusion that
oscillations in the alpha band, and more specifically around the dominant peak, are phase-
locked with the gamma band power [22]. Results were observable in the posterior region
of the brain, suggesting that AD elicits a region-specific change in functional connectivity.

It is noteworthy that functional connectivity entails its own drawbacks too. In a
comprehensive review of different methods for functional connectivity analysis and their
caveats, Bastos and Schoffelen indicated that many of the connectivity measures are prone
to volume conduction and hence can yield false positive results [16]. This is particularly the
case for methods using unipolar derivations with a common reference. However, as it will
be further explained in this paper, this study employed bipolar EEG montages, thus greatly
diminishing the issue. The same review study [16] highlighted another disadvantage
of functional connectivity, namely the signal-to-noise ratio (SNR) problem; an excessive
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amount of noise in the signal of interest during the EEG signal retrieval may cause false
connectivity results.

In sum, the current state-of-the-art calls for a comparison between computational
methods that are used for diagnosis of Alzheimer’s disease. The reviewed literature fo-
cusing on spectral analysis and functional connectivity demonstrates a scarcity of studies
employing both methods in diagnosis of AD. It should be mentioned that although spectral
analysis and functional connectivity analysis have different applications from a physiologi-
cal perspective, applying both methods on a single dataset can be useful in determining the
more accurate method in the diagnosis of AD based on brain activity. This is the gap that
this study aimed to address. So far, several studies have reported the outcomes of either of
the two methods [23,24]. However, conducting a connectivity analysis and comparing it
with a spectral analysis using the same dataset presents two advantages; (1) it shows which
method can yield the most accurate and complete information in AD diagnosis [3], and
(2) it can identify the affected ROIs instead of solely looking at whether the patient suffers
from AD, which is believed to help predicting AD in its early stages of development [12].

The proposed study serves as a comparison between two methods in qEEG, namely
the spectral and functional connectivity analyses. Having highlighted the advantages
of PS over other connectivity measures, this study aimed to investigate the performance
of PS in differentiating AD patients from HCs as compared to conventional FFT. This is
done with the goal of identifying the most efficient method in implementation of machine-
assisted diagnosis tools in the future clinical assessment of AD. The two types of analysis
were conducted on a set of EEG recordings obtained from patients suffering from AD
and from their respective healthy controls (HC), in an attempt to address the following
research question:

RQ1. How does a functional connectivity analysis perform against a spectral analysis in finding
differences between patients diagnosed with Alzheimer’s disease (AD) and healthy controls (HC)?

Moreover, this study attempted to answer a secondary research question:

RQ2. Can a functional connectivity analysis localize the differences identified in the brain activity
of AD subjects when compared to that of the HCs?

To answer this question, a series of statistical tests were performed using the results
provided by the connectivity analysis.

2. Materials and Methods

2.1. Dataset and Preprocessing

The EEG dataset was provided by the University of Sheffield, from an open study
and under a relevant NDA. All subjects were informed about the experiment and signed
an informed consent form. The dataset consists of 12 s, eyes-open recordings of 20 AD-
diagnosed patients and 20 age-matched HC, younger than 70 years of age (Table 1).

Table 1. General information of the AD and HC groups including sample size, age mean with
standard deviation, and gender ratio per group.

AD HC

Size N = 20 N = 20
Age 60 (SD = 4.40) 61 (SD = 6.67)

Gender (F/M) 8/12 12/8

The participants’ EEGs were recorded using the International 10–20 system [25]. To
reduce volume conduction effects from a common reference [26], 23 bipolar derivations
were used in this study. Figure 1 gives an overview of the electrodes and bipolar channels.
More specifically, the following bipolar channels were used: F8-F4, F7-F3, F4-C4, F3-C3,
F4-FZ, FZ-CZ, F3- FZ, T4-C4, T3-C3, C4-CZ, C3-CZ, CZ-PZ, C4-P4, C3-P3, T4-T6, T3-T5,
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P4-PZ, P3-PZ, T6-O2, T5-O1, P4-O2, P3-O1, and O2-O1. These bipolar channels are the
most commonly used in clinical practice [27]. During the recording, the participants were
instructed to reduce their movements and not to think of anything in particular (i.e., resting
state EEG).

Figure 1. EEG signals were collected from 23 bipolar channels based on the 10–20 international system.

The raw EEG signals were preprocessed in EEGLAB (v.2021.0), MATLAB. First, the
signals were downsampled to 500 Hz. Next, a band-pass filter was applied between 0.1 and
100 Hz using EEGLAB functions. This was done following the requirements used for the
phase synchronization (see Section 2.3. ‘Functional Connectivity Analysis’) to avoid phase
distortion. Additionally, a notch filter was used to attenuate signals in the 48–52 Hz range.

2.2. Spectral Analysis

The power spectral density (PSD) of the entire signal for each of the bipolar montages
was calculated using EEGLAB’s spectopo() function. This function makes use of the FFT
algorithm to extract and plot the PSD. The signal was subsequently divided into five
frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and
gamma (36–44 Hz) and the mean power in each band was computed. These ranges were
selected according to [28] and were also used in the connectivity analysis. A Shapiro–Wilk
test was applied to the data to check for normality and subsequently, a Mann–Whitney
U-test was used to compare band power medians between the AD and HC groups.

2.3. Functional Connectivity Analysis

Functional connectivity analysis was carried out using the PLV index [28]. First, a
continuous wavelet transform was applied (i.e., the complex Morlet wavelet), with this
wavelet being used as a kernel to compute the PLV, which is defined by Equation (1):

PLV(t) =
1
N

∣∣∣∣∣
N

∑
n=1

eiθ(t, n)

∣∣∣∣∣ (1)

where n is an index for the trial number and θ indicates the phase difference. The phase-
locking value yielded by PLV ranges from 0 to 1, with 1 indicating that two signals have an
identical relative phase across N trials. Conversely, values that approach 0 indicate little to
no phase synchrony between the signals. For every subject, the PLV was calculated for all
possible 253 bipolar channel combinations in five frequency bands as defined above. Next,
inspired by [29], ‘Global Connectivity’ and ‘Homotopic Pair Connectivity’ were computed
using the extracted PLV values and were compared between the groups.
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2.3.1. Global Connectivity

Global connectivity was computed by averaging all 253 PLV values that were obtained
per frequency band. This led to a total of five PLVmean values per subject (i.e., one PLVmean
per frequency band). Following the Shapiro–Wilk test, a Mann–Whitney U-test was used
to compare the mean PLVs between the AD and HC groups. The aim of this evaluation
was to determine whether band-specific differences could be found in the global functional
connectivity of the AD subjects against the HCs.

2.3.2. Homotopic Pair Connectivity

Homotopic Pair Connectivity was computed by focusing on certain pairs of bipolar
derivations that were homotopic in the left and right brain hemispheres (mirror areas of
the brain hemispheres). Based on previous classifications [30,31], four pairs that have been,
in part, shown to be most affected by Alzheimer’s disease were selected. These pairs are
depicted in Figure 2. Pair A consisted of the homotopic pair located in the centro-parietal
region of the brain (C3-P3 and C4-P4). Pair B corresponded to the pair in the fronto-central
area (F3-C3 and F4-C4), Pair C consisted of electrodes located in the parieto-occipital region
(P3-O1 and P4-O2), and Pair D consisted of electrodes placed in the centro-temporal area
(C3-T3 and C4-T4). For each pair, the PLV was computed in the five frequency bands and a
Mann Whitney U–test was carried out to compare the band-specific PLVs between the two
AD and HC groups.

Figure 2. Homotopic pair connectivity was examined in four mirror regions in the left and right
hemispheres including (A) centro-parietal (C3-P3 and C4-P4), (B) fronto-central area (F3-C3 and F4-
C4), (C) parieto-occipital (P3-O1 and P4-O2) and (D) centro-temporal (C3-T3 and C4-T4) connections.

2.3.3. Localization of AD Using Homotopic Pair Connectivity

To answer the secondary RQ, the four homotopic pairs were compared against each
other to ascertain as to which areas displayed a significant connectivity difference between
the two groups. To do this, the PLV values obtained from both subject groups in each of
the above-mentioned homotopic pairs were compared using linear mixed effects (LME)
regression models. LME was fitted in RStudio (v.2021.09.10) using the lme4() package [32]
and was chosen for this analysis because the repeated measure from the homotopic pairs
was correlated, violating the assumptions of other tests, such as ANOVA.
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The analysis included two steps; first, the LME model was fitted with PLVs as the
response variable and pair and group as predictors. Participants were included as a random
factor in the model. The interaction term was included to prevent the overly enthusiastic
outcome that there is a difference in connectivity between HC and AD for all pairs. Next,
following verification of the main effects, post-hoc comparisons were conducted between
pairs to examine which brain regions showed significant differences between the two
groups. These steps were only applied to the frequency bands that showed a statistically
significant difference between the AD and HC groups in at least one of the homotopic pairs
in the ‘Homotopic Pair Connectivity’ analysis.

3. Results

3.1. Spectral Analysis

The Shapiro–Wilk test applied to the band power data rejected the null hypothesis of
normal populations distributions (p < 0.05). Therefore, the non-parametric Mann–Whitney
U-test was used to compare the groups in each frequency band. The test did not find
any significantly different delta power for the AD subjects (Mdn = 4.23) than the healthy
controls (Mdn = 4.07), U = 174, p = 0.45. Similar results were observed for the theta
(Mdn = 2.42 vs. Mdn = 4.30, U = 146, p = 0.15), alpha (Mdn = 1.88 vs. Mdn = 2.29, U = 162,
p = 0.31), beta (Mdn = 1.67 vs. Mdn = 1.76, U = 152, p = 0.2), and gamma bands (Mdn = 0.67
vs. Mdn = 0.90, U = 158, p = 0.26). Therefore, it can be concluded that the spectral analysis
yielded no significant differences between the AD subjects versus HC in any of the five
frequency bands.

3.2. Functional Connectivity Analysis
3.2.1. Global Connectivity

Figure 3 illustrates the distribution of PLVmean from all subjects in the AD and HC
groups in all five frequency bands. The result of the Mann–Whitney U-test indicated that
the average PLVs from all channel combinations were significantly higher in the theta band
for the AD participants (Mdn = 0.31) when compared to the HCs (Mdn = 0.26), U = 326,
p = 0.0004. This was not the case for the delta (Mdn = 0.30 vs. Mdn = 0.28, U = 258,
p = 0.12), alpha (Mdn = 0.26 vs. Mdn = 0.24, U = 264, p = 0.09), beta (Mdn = 0.18 vs. Mdn = 0.18,
U = 226, p = 0.50), and gamma bands (Mdn = 0.18 vs. Mdn = 0.18, U = 181, p = 0.62).

Figure 3. The average PLVs obtained from all connectivity pairs for the five frequency bands (global
connectivity). Plots marked with * indicate a statistically significant difference (p < 0.05) between AD
patients and HCs.
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3.2.2. Homotopic Pair Connectivity

Figure 4 illustrates the PLV values obtained from the homotopic pair in the centro-
parietal area (Pair A) of the AD and HC groups in the five frequency bands. The Mann–
Whitney U-test displayed a significantly higher PLV in the theta band for AD participants
(Mdn = 0.64) as compared to HCs (Mdn = 0.52), U = 292, p = 0.01. No significant results
were found for the other four frequency bands.

Figure 4. The PLVs obtained from the homotopic pair in the centro-parietal region (Pair A). Plots
marked with * indicate a statistically significant difference (p < 0.05) between AD patients and HCs.

Figure 5 illustrates the PLV values obtained from the homotopic pair in the fronto-
central region (Pair B) of the AD and HC groups in the five frequency bands. The Mann–
Whitney U-test displayed a significantly higher PLV for AD participants in both the delta
(AD Mdn = 0.57, HC Mdn = 0.45, U = 275, p = 0.04) and theta bands (AD Mdn = 0.65,
HC Mdn = 0.50, U = 282, p = 0.03). No significant results were found for the other three
frequency bands.

Figure 5. The PLVs obtained from the homotopic pair in the fronto-central region (Pair B). Plots
marked with * indicate a statistically significant difference (p < 0.05) between AD patients and HCs.
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Figure 6 illustrates the PLV values obtained from homotopic pairs in the parieto-
occipital region (Pair C) of the AD and HC groups in the five frequency bands. The
Mann–Whitney U-test indicated a significantly higher PLV for the AD group (Mdn = 0.64)
as compared to the HCs (Mdn = 0.49), solely in the delta band (U = 293, p = 0.01). The test
resulted in an insignificant outcome for the other four frequency bands.

Figure 6. The PLVs obtained from the homotopic pair in the parieto-occipital region (Pair C). Plots
marked with * indicate a statistically significant difference (p < 0.05) between AD patients and HCs.

Lastly, Figure 7 shows the PLV values obtained from homotopic pairs in the centro-
temporal region (Pair D) of the AD and HC groups in the five frequency bands. The
Mann–Whitney U-test indicated a significantly higher PLV solely in the theta band of AD
participants (Mdn = 0.48) as compared to the HCs (Mdn = 0.40, U = 280, p = 0.03). The
results of group comparisons in the other four frequency bands remained insignificant.

Figure 7. The PLVs obtained from the homotopic pair in the centro-temporal region (Pair D). Plots
marked with * indicate a statistically significant difference (p < 0.05) between AD patients and HCs.

Summing up, the comparison of PLV in the selected homotopic pairs resulted in
observing the main differences in the low frequency bands of delta and theta.
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3.2.3. Localization of AD Using Homotopic Pair Connectivity

To compare the connectivity across homotopic pairs and to identify the most relevant
brain region affected by AD, LME regression models were applied to the homotopic PLVs
in the theta and delta frequency bands. The model confirming main effects for both pair
and group was selected, and a post-hoc analysis using the Tukey’s adjusted pairwise
comparisons of least-squares means were conducted. Table 2 summarizes the outcome of
the post-hoc comparisons.

Table 2. Summary of the results of the post-hoc analysis of the LME regression.

Homotopic Pair Delta Band (1–4 Hz) Theta Band (4–8 Hz)

A
√

B

C

D
√

In the theta band, the pairwise difference between AD patients and HCs reached
significance for Pair A (LSM difference = 0.115, SE = 0.0517, p = 0.028) and Pair D (LSM
difference = 0.101, SE = 0.0517, p = 0.038). While not statistically significant, trends were
observed for Pair B (LSM difference = 0.097, SE = 0.0517, p = 0.064), whereas the difference
between the AD and the HC group did not reach significance for Pair C. No significance
was observed in the delta band.

4. Discussion

The current study explored differences in the brain activity of patients afflicted with
Alzheimer’s disease compared to a healthy control cohort, using the quantitative analyses
of EEG signals. In particular, two types of analyses were conducted and compared. First,
a conventional spectral analysis was conducted to find spectral band power differences
between AD subjects and healthy controls. The second approach employed a functional
connectivity analysis using phase synchronization across five frequency bands to compare
the intra-brain connectivity (global or local) between healthy brains and the ones affected
by AD-induced dementia. The results indicated that the spectral analysis did not yield
any significant differences between the AD and HC groups, suggesting that it is not an
ideal method for the diagnosis of AD based on the EEG. On the other hand, the functional
connectivity analysis using the PLV measure showed significant differences between the
groups, both in terms of global connectivity and homotopic connectivity. The further
analysis of homotopic pairs revealed significantly higher theta-band connectivity localized
in the centro-parietal and centro-temporal regions.

The dataset used in this study consisted of bipolar derivations, instead of unipolar
channel values that are more commonly used in the qEEG analysis [22,29]. The use of
bipolar derivations is seen as a more advantageous method when compared to unipolar or
average referencing methods [33], as it can mitigate the issues associated with common
active referencing such as volume conduction [34]. Volume conduction, which refers
to the leakage of electrical potentials to the neighboring electrodes, can complicate the
interpretation of connectivity metrics. Therefore, the use of bipolar derivations in the
computation of functional connectivity is highly recommended, as was demonstrated in a
recent study in the field of AD detection [30].

The spectral analysis, although being a powerful tool for analyzing specific types
of signals, could not confirm any differences between the Alzheimer’s patients recruited
in this study and their age-matched healthy controls. This is inconsistent with previous
reports in which the development of AD was associated with an increase of delta and theta
activity as well as a decrease in alpha and beta activity [5,6,17]. An explanation for the lack
of evidence in the current study could be that the AD subjects included in the sample were
only moderately affected by this disorder. In addition, the use of bipolar derivations could
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have affected the results observed, since past studies made use of unipolar derivations to
obtain the spectral powers of the specific EEG channels [3,5]. Another reason could be due
to the number of participants in the selected dataset; had it been higher, different results
might have emerged. For example, the study by Fraga et al., [5] made use of 75 participants,
split into three categories (i.e., 27 with mild AD, 22 with moderate AD, and 27 HCs). While
this leaves room for future research to confirm the most suitable computational approach
for the detection of severe cases, this study proposes functional connectivity as being a
promising tool in detection of early signs of AD from EEG signals [35].

The two connectivity analyses that were subsequently carried out, namely ‘Global
Connectivity’ and ‘Homotopic Pair Connectivity’, displayed increased communication
between brain networks in the AD subject group when compared to the HCs. These findings
were first identified in the global connectivity analysis and subsequently confirmed in the
homotopic pair connectivity analysis. The global connectivity analysis gave an overview of
the AD process in the brain. Although it resulted in identifying higher connectivity that
was distributed in the brains of the AD group, it could not localize the effect. Indeed, the
effect of Alzheimer’s disease tends to be more prominent in some areas of the brain than
others [30,31], hence justifying a motive to pursue a further analysis with the homotopic
pair connectivity. Similar to the band division performed to retrieve the PSD in a spectral
analysis, in functional connectivity studies involving AD subjects, electrode pairs can be
singled out and evaluated separately, instead of combining them all together [36]. The
analysis of homotopic pairs revealed a significant difference of connectivity in the delta
band of the pairs in the fronto-central and the parieto-occipital regions, whereas these
effects were diminished in the global connectivity analysis, which only found a significant
difference between the groups in the theta band.

The result indicating a higher functional connectivity of the AD brains conflicts with
the study of Hata et al. [12], who reported a lower lagged phase synchronization in the
delta and theta bands of AD patients. Indeed, a decreased connectivity between brain
regions can be expected, as AD is known to cause neuronal loss and the damage of neural
pathways [1,8,22]. However, other studies suggest that the impact of such damage is only
reflected in fast signals, as healthy participants have a higher brain connectivity in alpha
and beta bands [19,20] but not in the lower frequency bands. On the other hand, it has
been shown in the past that patients suffering from neuropsychiatric disorders such as
schizophrenia and epilepsy display an increased functional activity between brain networks
as a sign of anomaly in information communication [37,38]. In the study of Cai et al. [17],
similar patterns were reported for AD patients, where the connectivity within the same
frequency band (intra-band connectivity) was stronger in AD brains than in the healthy
brain, whereas the connectivity between the frequency bands (inter-band connectivity)
was significantly weaker. Observing higher synchronization values in the lower frequency
bands for AD subjects can therefore be interpreted as a sign of brain dysfunction [17,20].
More specifically, this study demonstrated that the brains affected by Alzheimer’s disease
seemed to be in a ‘phase-lock’ state, causing a high connectivity in the low frequency bands;
this is an observation that is well in line with the existing literature [6,17,19,30,36].

The localization of AD analysis reached the conclusion that there was a significant
difference in the connectivity between the AD and HC groups in the theta band for two out
of four homotopic pairs. The answer to the secondary research question (RQ2) is therefore
positive; it is possible to localize to some extent the differences between a healthy brain
and one suffering from AD-induced dementia. The findings of this study therefore provide
further evidence for damaged neural connections and, consequently, abnormal network
dynamics in AD-affected brains, particularly in the centro-parietal and centro-temporal
regions. While older studies such as [39] suggested that the effects of AD are not situated
in one specific area of the brain, the regions identified by this study are in line with the
report of more recent studies such as Deng et al. [40] which observed a significant decrease
in signal complexity of the AD group in the occipito-parietal and temporal regions of the
brain using ‘multivariate multi-scale weighted permutation entropy’ (MMSWPE) [40]. It is
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important to note that the findings of this study do not suggest that other brain regions
should be excluded in future comparisons between the AD and HC groups. In fact, several
studies have indicated that patients suffering from AD tend to have a disruption in brain
connectivity in various areas of the brain, as well as in various stages of the disease [41].
The results of the proposed study, although solely being able to identify AD in the areas
mentioned above, do not reject the hypothesis that AD can affect connectivity in other
regions of the brain and hence this provides opportunity for future studies to confirm.

Clearly, this study is not without limitations. A first limitation arises from the duration
of the epochs that were available in the dataset (12 s per subject). Longer epochs would have
provided more EEG samples for phase synchronization analysis, as well as an opportunity
to evaluate the dynamic changes of connectivity over time, as had been previously done
in Zhao et al. [30]. Another limitation involved the number of participants, as previously
mentioned. The dataset used in this research consisted of 20 AD participants and 20 age-
matched HCs. Given the individual differences inherent to the progress of AD, a larger
dataset would have been optimal to yield more reliable results. Moreover, this study made
use of the phase-locking value as an index for phase synchronization, as the data was
recorded in a bipolar manner, and therefore the analysis was considered to be robust to
the common source effects [27,30]. Future research could use other indices of functional
connectivity, such as coherence and phase-lag index (PLI), to investigate their efficacy in
detecting AD impacts on the brain activity.

Finally, it shall be noted that this study applies a neural metric for Alzheimer’s Disease
detection from a data science perspective rather than a neuroscience one. This implies
that the methodology employed in this study strived to find an accurate tool for the
detection of AD from EEG brain activity, rather than attempting to explain the cognitive
and neural mechanisms that underlie the observed differences between AD patients and
healthy controls. In this case, the findings of this research are well in line with the existing
literature regarding AD detection and brain connectivity and show that the combination
of bipolar derivations with phase synchronization can yield comparable results to studies
that used other connectivity methods. This qEEG analysis could therefore be considered as
secondary tool, to be used alongside the visual EEG analysis that is employed by clinicians.
Furthermore, as solely post-mortem studies can identify AD with perfect accuracy [6], the
authors are aware that the proposed methods in this study may not yield the most accurate
results in the prediction of AD from EEG. However, the data science perspective proposed
in this study leaves room for more advanced techniques, such as machine learning (ML),
which has been growing in the field of AD detection over the past years. Promising results
have been observed in regular support vector machine (SVM) models [42], as well as in
new, innovative ML methods [43], leaving fertile ground for future research in this domain.

5. Conclusions

This research served to find a promising tool for the diagnosis of early signs of
Alzheimer’s Disease (AD), through the interpretation of brain activity. This was done
by comparing two quantitative EEG methods, namely spectral analysis and functional
connectivity analysis, in two groups of AD patients and age-matched healthy controls.
The results indicated that the old-school spectral analysis failed to yield any statistically
significant results that could help differentiate a brain that is affected by AD from a healthy
one, whereas the functional connectivity analysis using phase synchronization found a
significantly stronger global ‘phase-locked’ state in the theta activity of AD-affected brains.
Moreover, by extracting the functional connectivity metrics in four homotopic pairs of
electrodes, it was possible to localize significant differences concerning the theta band in
the centro-parietal and centro-temporal areas of the brain. To conclude, the findings of this
research show that functional connectivity analysis using phase synchronization offers a
promising quantitative method for future research in the area of AD detection. This method
in combination with the standard cognitive tests that are commonly employed in dementia

172



Appl. Sci. 2022, 12, 5162

screening can put forward a more accurate diagnosis for patients who suffer from early
symptoms of AD.
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Abstract: An acute stressor can cause sleep disruptions. Electroencephalography (EEG) is one of the
major tools to measure sleep. In rats, sleep stages are classified as rapid-eye movement (REM) sleep
and non-rapid-eye movement (NREM) sleep, by different characteristics of EEGs. Sleep alterations
after exposure to an acute stress are regularly determined by the power spectra of brain waves and
the changes of vigilance stages, and they all depend on EEG analysis. Herein, we hypothesized that
the Shannon entropy can be employed as an indicator to detect stress-induced sleep alterations, since
we noticed that an acute stressor, the footshock stimulation, causes certain uniformity changes of the
spectrograms during NREM and REM sleep in rats. The present study applied the Shannon entropy
on three features of brain waves, including the amplitude, frequency, and oscillation phases, to
measure the uniformities in the footshock-induced alterations of sleep EEGs. Our result suggests that
the footshock stimuli resulted in a smoother and uniform amplitude as well as varied frequencies of
EEG waveforms during REM sleep. In contrast, the EEGs during NREM sleep exhibited a smoother,
but less uniform, amplitude after the footshock stimuli. The result depicts the change property of
brain waves after exposure to an acute stressor and, also, demonstrates that the Shannon entropy
could be used to detect EEG alteration in sleep disorders.

Keywords: acute stress disorder; electroencephalogram (EEG); footshock; information theory; sleep

1. Introduction

Electroencephalography (EEG) corresponds to several vigilance states of the brain.
These states, such as wakefulness and sleep, are demonstrated by distinct brain waves [1,2].
Nevertheless, stress influences brain rhythms in both sleep and wakefulness in humans and
rodents [3–6]. For instance, theta waves are predominant during an anxious condition in
rodents [7–11]. Moreover, the literature, also, demonstrates that theta waves are dominant
during learning and navigation in rodents [1,10,12]. In comparison to wakefulness, the
function of electrical activities during sleep is much less known. There are two distinct
states of sleep, rapid eye movement (REM) sleep and non-rapid-eye movement (NREM)
sleep, and each sleep state has a unique EEG pattern. The delta powers of EEGs during
NREM sleep are positively correlated with the level of sleep depth, implying the sleep
quality. Stages 3 and 4 of NREM sleep generate large slow waves within the delta frequency
band (0.5–4 Hz). Theta waves can be observed during REM sleep in rodents [1,2,10,13].

Diagnostic criteria for acute stress disorder (ASD) or post-traumatic stress disorder
(PTSD) include hyperarousal conditions, such as insomnia or hypervigilance [14]. Stress is
frequently associated with sleep disturbance (approximate 78%) in insomnia patients [15].
The studies for measuring stress-related sleep problem mainly count on the parameters
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of polysomnography, e.g., the duration and transitions between different states [5] and
the powers of different frequency spectra [4,16,17]. EEG is a composition of distinct brain
waves, which contain certain basic features, including amplitude, frequency, and oscillation
phases. Some researchers link these features to potential physiological meanings. These
features might be correlated and associated with physiological functions. For example, the
amplitudes extracted from frequencies between 0.5 and 4 Hz are greater during NREM
sleep, during which the amplitudes are positively correlated with sleep intensity [18,19].
The coupling of oscillation phases and frequencies in the hippocampus are elevated when
rodents learn a new behavioral task [20,21]. These EEG features can also, solely, correlate
with a physiological meaning. For example, instantaneous running speed is positively
correlated with the frequencies of theta [11,22] and gamma waves in rats [23,24]. Therefore,
the aim of the present study is investigating the features of EEGs during sleep after exposure
to an acute stressor and revealing the stressor’s potential effects on EEG features.

Measuring the spectrum of a period of EEGs, or counting densities of a unique wave-
form, is a regular method to study the alterations of EEGs [4,5,16,17]. However, EEG
has a unique property: EEG amplitude decreases as the frequency increases. The inverse
relationship between amplitude and frequency is due to the slower oscillation of EEGs,
which involves larger numbers of neurons and generates stronger brain waves [1]. In other
words, the distributions between the amplitude and frequency of EEG are non-linear [1].
Moreover, the features of EEGs, e.g., amplitude, frequency, and phase, are, also, non-linear
or circular. For instance, the amplitude of EEGs as a function of time can be regard as a
sine wave but not a straight line. Therefore, it is important to develop a method to describe
these non-linear changes of EEGs, when animals come across a certain stimulation. In the
present study, we focus on stress-induced EEG alterations. The Shannon entropy (infor-
mation theory) can measure the uncertainty, by calculating the probability of a variable
appearing [25]. It has the potential to detect non-linear changes of EEGs, since the Shannon
entropy is related to probabilities and distributions but is not affected by the distribution of
data. If the uncertainty level is high, which means the probability of appearance is even, the
entropy would be high. This theory has been modified into several mathematical models in
the fields of neuroscience, such as consciousness investigation and reconstruction of input
signals (e.g., sensory input) to form action potentials of neurons [1]. Since the Shannon en-
tropy depends on the distributions of occurrent rates for certain measuring variables, it can
detect not only linear, but also non-linear, or even circular, changes. The aim of this study is
to detect the changes of amplitude, frequency, and phase of EEGs. We prospected to apply
the information theory to detecting the alterations of EEG features. Although rodent study
has demonstrated that stress increases theta powers during a vigilance state [8], there are
still few studies investigating the post-effect of stress on the features of EEGs. In the present
study, we calculated the entropies of the amplitudes, frequencies, and oscillation phases
of sleep EEGs and compared these entropies between naïve and footshock-stimulated
rats. The probabilities of the appearance of amplitude, frequency, and oscillation phases,
between the control and footshock-stimulated rats, are quantified by Shannon entropy. The
analysis methods and results may provide a distinct way for detecting EEG alterations after
exposure to a stressor.

2. Materials and Methods

2.1. Animals

This study included 34 male Sprague-Dawley rats (250–300 g; BioLASCO Co., Ltd.,
Taipei, Taiwan). These rats were housed individually in their home cages, with a consistent
temperature of 23 ± 1 ◦C. The circadian rhythm was controlled in a 12:12 h light:dark cycle
(with 40 watts × 4 tubes illumination). For minimizing interference of the circadian rhythm,
all the experimental procedures and daily care were manipulated 30 min prior to the light
period. Food and water were available ad libitum. All procedures performed in this study
were approved by the National Taiwan University Animal Care and Use Committee.
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2.2. Surgery

The subjects were anesthetized with 50 mg/kg ZoletilTM (Tiletamine:Zolazepam = 1:1;
Virbac, Carros, France) and surgically implanted with two EEG screw electrodes (Plastics
One, Roanoke, VA, USA). The EEG screw electrodes were implanted on the skull, and the
tips of screws were placed on the surface of the cortex for recording. The coordinates for
EEG electrode implantation are as follows: one electrode is on ML: 2.5 mm and AP: 2.0 mm
relative to bregma, and the other one is on ML: −3.0 mm and AP: −11.5 mm relative to
bregma. Insulated leads from EEG electrodes were routed to a Teflon pedestal (Plastics
One), and, then, cemented to the skull with dental acrylic (Tempron, GC Co., Tokyo, Japan).
After surgery, penicillin G (5000 IU; Sigma-Aldrich, St. Louis, MO, USA) was administrated
systemically, and the incision was treated topically with polymyxin B sulphate-bacitracin
zinc. Ibuprofen was dissolved in drinking water (140 mg/250 mL) for rats to relieve pain.
Animals were allowed to recover for seven days before proceeding with the experiments.
The antibiotic and analgesic were also dissolved in the drinking water for seven days
during the recovery. In order to reduce the influence of sleep by the tether, the tether was
plugged into the pedestal four days before the experiment and was only unplugged when
performing footshocks.

2.3. Apparatus

Foot electrical stimuli were given by a custom-made footshock stimulation box
(40 cm × 22 cm × 29 cm). The box randomly generated electrical stimuli 12 times within
10 min. The intensity of each stimulus current was 0.5 mA, and the stimulation duration was
50 ms. No extra cues or escapable places were provided in the footshock stimulation box.

Signals from the EEG electrodes were amplified at a factor of 5000 and analogue filtered
between 0.1 and 40 Hz (frequency response: ±3 dB; filter frequency roll off: 12 dB/octave)
by an amplifier (model V75-01; Colbourn Instruments, Lehigh Valley, PA, USA). Gross
body movements were detected by infrared-based motion detectors (Biobserve GmbH,
Bonn, Germany), and the movement activity was converted to a voltage output that was
digitized and integrated into 1-s bins. The EEGs and gross body movements were subjected
to analogue-to-digital conversion, with 16-bit precision at a sampling rate of 128 Hz (NI
PCI-6033E; National Instruments, Austin, TX, USA).

2.4. Experimental Procedure

After recovery, the animals were randomly divided into the control (n = 18) and
footshock (n = 16) groups. Rats in the footshock group received footshocks 12 times within
10 min, as described in Section 2.3. Upon completion of the footshock stimulation, each
rat was moved back to its recording cage, and the tether was plugged into the pedestal
again. We executed the footshock protocol during the last 10 min of the dark period; thus,
the sleep EEGs were acquired from the subsequent resting (light) period. The rats in the
control group stayed in their recording cages, while their sleep EEGs were recorded during
the light period. The digitized EEG waveforms and integrated values of body movement
were stored as binary files, pending for subsequent analyses.

2.5. Data Analysis
2.5.1. Analysis of the Vigilance States

The distinct vigilance states were categorized by visually scoring 12 s epochs of EEGs
using custom software (ICELUS, M. R. Opp) written in LabView (National Instruments,
Austin, TX, USA). The sleep–wake state was classified as either NREM sleep, REM sleep,
or wakefulness, based on previously defined criteria (Chang and Opp, 1998). NREM sleep
is characterized by a large amplitude of EEG slow waves, high-power-density values in
the delta frequency band, and lack of gross body movements. During REM sleep, the
amplitude of EEG is reduced, the predominant EEG power density occurs within the theta
frequency, and there are phasic body twitches. During wakefulness, the rats are, generally,
active, with protracted body movements. The amplitude of the wakefulness EEG is similar
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to that observed during REM sleep, but mixed with frequencies that were high than the
theta band.

2.5.2. EEG Parameter Investigation

The program for analyzing EEGs in the aspects of spectrograms for the amplitude,
frequency, and oscillation phases was designed by using custom-written scripts in MATLAB
R2016b (MathWorks, Natick, MA, USA) or combining with open-sourced codes. To match
up the epochs of EEG analyses and vigilance states, the raw EEGs were also cut into
non-overlapping 12 s epochs and, then, the spectrum and the entropies of the amplitude,
frequency and phase were calculated. The analyzed data were subsequently classified
into NREM sleep, REM sleep, or wakefulness, based on the criteria of the vigilance states
(Section 2.5.1). A 12 s resolution is not appropriate for representing 12 h sleep–wake states,
given that certain vigilance states, normally, do not occur during certain times (e.g., REM
sleep at the very first 12 s epoch). Therefore, we collected 75 epochs of 12 s bins and
averaged them to generate the time resolution of 15 min. The analyzed data were excluded,
if no certain vigilance state was found. The methods for measuring the spectrum, Shannon
entropy, instantaneous amplitude, instantaneous frequency, and instantaneous phase were
specified as follows.

Spectrum

The spectrogram was computed using the multitaper method from the open-source
MATLAB toolbox Chronux (version 2.10) [26]. The time–bandwidth product parameter
was set at 3, and the number of tapers was set at 5. The power for each frequency was subse-
quently z-scored, to minimize the difference of absolute power between different subjects.

Instantaneous Amplitude, Frequency, and Phase

Before analyzing the entropies of amplitude, frequency, and phase, the instantaneous
amplitude, frequency, and phase of every sampling point were calculated first. To be
specific, the raw EEGs were converted by Hilbert transformation. This transformation
gave complex numbers for every sampling point. The instantaneous amplitudes were
obtained by calculating the absolute values of the complex numbers [27]. Similarly, the
instantaneous phases were obtained by calculating the angles of the complex numbers. For
the instantaneous frequencies, the raw EEG data were filtered between 0.5 to 30 Hz from
a Hamming window and, then, converted by Hilbert transformation. Subsequently, the
differences in the phases between sampling points were then computed, by measuring the
angles of complex numbers. By determining the differences of the phases within the delta
time (in our setup, the sampling rate was 128 Hz), the instantaneous frequencies can be
acquired [11]. For instance, a difference of pi/128 gives an instance frequency of 2 Hz.

Shannon Entropy

The Shannon entropy was used to compare the differences of EEG waveforms after
being exposed to the footshock. The Shannon entropy equation is as follows [25].

H(X) =−
n

∑
i=1

P(xi) log2P(xi)

The entropy H(X) is the summation of P(xi)*log2P(xi), and the P(xi) is the probability
of occurrence of event x under i circumstance. In our study, we applied the equation to
measuring the entropies of amplitude, frequency, and phase. We, firstly, sorted the variables
(i.e., amplitude, frequency, or phase) into n levels (nAmplitude = 15, nFrequency = 25,
nPhase = 12). For amplitude entropy, the z-scored amplitudes between −0.4 and 1.4 were
sorted into 15 levels, as we noticed most amplitudes were within this range. For frequency
entropy, frequencies between 0.5 and 30 Hz (the range of predominant frequencies for sleep
and wakefulness) were sorted into 25 levels. For phase entropy, the phases between 0 and
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2*pi were sorted into 12 levels. The numbers or levels were related to data distribution and
the number of data points, so we used the Freedman–Diaconis rule to determine them [28].

nlevels =
max(x)− min(x)

2Qxn
−1
3

Qx is the 25th and the 75th percentiles of the data X, n is the total number of data
points, and max(x) and min(x) are the maximum and minimum values of the data X. We,
then, calculated the occurrence rate of each level during each 12 s epoch and obtained
the values of PAmplitude(xi), PFrequency(xi), and PPhase(xi), and, finally, calculated the
entropies of the amplitude, frequency, and phase using the Shannon entropy equation.

2.6. Statistics

A statistically significant difference was indicated by one-way ANOVA, with an alpha
level of p < 0.05, using the software SPSS (Version: 10.0.7, IBM, New York, NY, USA).

3. Results

3.1. Alterations of Sleep Duration and Spectrogram after Footshock

The aim of the present study is to investigate sleep EEGs, after exposure to an
acute stressor. Electrical footshock stimulation is a common protocol, for creating an
animal model to mimic stress-related diseases and the subsequent sleep alterations in
humans [3]. Therefore, the sleep EEGs obtained from the control (n = 18) and footshock
(n = 16) groups were analyzed and compared. In the footshock group, the rats received
12 footshock stimuli within 10 min before the light period. EEGs were acquired for 12 h,
after the rats returned to their home cages. We determined whether the footshock pro-
tocol altered the sleep patterns of the subjects. By calculating the duration of the vig-
ilance states (Figure 1), we found that the inescapable and random footshock stimuli
only decreased the duration of NREM sleep for the first two hours of the light period
(Figure 1A), but the mean duration during the light period did not demonstrate a signifi-
cant difference between the footshock and control groups (Figure 1B, control vs. footshock:
7.19 ± 0.11 vs. 6.85 ± 0.14 (min), F(1,1393) = 3.48, p = 0.065). However, the durations of
REM sleep (Figure 1C,D) and wakefulness (Figure 1E,F) were significantly altered; the
mean duration during the light period was reduced in REM sleep (Figure 1D, control
vs. footshock: 3.03 ± 0.08 vs. 2.54 ± 0.09 (min), F(1,1393) = 16.60, p < 0.01) and was en-
hanced in wakefulness (Figure 1F, control vs. footshock: 4.74 ± 0.15 vs. 5.58 ± 0.19 (min),
F(1,1393) = 12.33, p < 0.01). The results indicated that the present footshock protocol af-
fected the subsequent sleep behavior in the rats. We then analyzed the spectrum of EEG
between different sleep–wake states.

Figure 2A,B represented the EEG spectrograms of NREM sleep for the control and
footshock group, respectively. Figure 2A,B revealed, approximately, 5 h of strong delta EEG
powers at the beginning of light period, which gradually decreased. This phenomenon
demonstrated that both the control and footshock groups entered deeper sleep stages
because the delta power of EEGs during NREM sleep reflects the depth of sleep [18,19].
We, further, determined the statistical differences between Figure 2A,B. The footshock
significantly decreased the power of slow waves (1–3 Hz) during the first 2 h (the black-
dashed-line area of Figure 2C). Although the averaged power of frequencies from 1 to 6 Hz
during the first 5 h of light period were stronger in the footshock group, they still did
not reach statistical significance (the red-dashed-line area of Figure 2C). Interestingly, the
significances were mainly in frequencies between 6 and 12 Hz (the green-dashed-line area
of Figure 2C), which are, predominantly, theta frequencies during paradoxical sleep in
rats [13]. Theta rhythms mainly occur during REM sleep; thus, we, next, determined the
spectrogram during REM sleep (Figure 2D,E). Similar to the spectrogram of NREM sleep,
the footshock significantly enhanced the power of the theta band near the second hour of
light period (the black-dashed-line area of Figure 2F). We were, also, interested in the EEG
features during their wakefulness, since Figure 1E showed the increases of wakefulness,
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especially during the first 2 h. The spectrograms (Figure 2G,H) and panel of significance
test (Figure 2I) depicted an enhancement of high frequencies (25–30 Hz) during the first
2 h after the footshock stimuli (the black-dashed-line area of Figure 2I). From the result of
the spectrogram analysis, we postulated that the distinct EEG profiles would be clearer if
we measured entropies of the EEG features because we noticed the consistent alterations
of EEGs between the control and footshock groups. For instance, the control group had a
wider theta band than those in the footshock group (Figure 2D vs. Figure 2E, the arrow
area demonstrated the power intensity). Since entropy is only related to the probabilities
and distributions of the data, it can detect both linear and non-linear changes. Moreover,
entropy is insensitive to the effect of the power law (i.e., higher frequency shows lower
power), so it may reveal some underlying changes of EEGs.

Figure 1. Comparison of the duration between distinct vigilance stages. (A) NREM sleep duration.
The solid line and light gray shadow represent the values of means ± SEMs, for every 15 min
during the light period in the control group. The dashed line and dark gray shadow are the values
acquired from the footshock group. (B) Mean duration of 15 min bins across the total 12 h light
period. The white bar is the value of mean ± SEM obtained from the control grou,p and the gray bar
represents data acquired from the footshock group. (C,D) Represented the data from REM sleep. (E,F)
Demonstrated the result of wakefulness. ** Indicates the difference reaches statistical significance of
p < 0.01.
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Figure 2. Alterations of spectrogram and statistical significance testing after the footshock stimuli.
(A) Mean spectrogram of NREM sleep obtained from the control group. (B) Mean spectrogram of
NREM sleep acquired from the footshock group. (C) Statistical significance testing for the difference
between (A,B). The black-dashed-line area marks 1–3 Hz, the red-dashed-line area marks 1–6 Hz,
the green-dashed-line area marks 6–12 Hz. (D) Mean spectrogram of REM sleep obtained from the
control group. (E) Mean spectrogram of REM sleep observed from the footshock group. The arrows
in (D,E) represent a wider predominant frequency band in the control than that obtained from the
footshock. (F) Statistical significance testing for the difference between (D,E). The black-dashed-
line area marks 4–12 Hz. (G) Mean spectrogram of wakefulness acquired from the control group.
(H) Mean spectrogram of wakefulness recorded from the footshock group. (I) Statistical significance
testing for the difference between (G,H). The black-dashed-line area marks 25–30 Hz. The p-value
applied was p = 0.05; p < 0.05 was marked by the white color.

3.2. Amplitude Entropy

We, firstly, investigated the amplitude entropies between the control and the footshock
groups (Figure 3). Figure 3A illustrates that a uniform amplitude of the wave results
in a low entropy. The distributions of amplitude entropy in NREM sleep (Figure 3B)
demonstrated that the footshock group (dashed line) had a higher entropy than the control
group (solid line). We further analyzed the 15 min mean amplitude entropy and showed an
increase in amplitude entropy after the footshock stimuli (Figure 3C, control vs. footshock:
2.491 ± 0.011 vs. 2.544 ± 0.010, F(1,1394) = 137.60, p < 0.01). In contrast, the footshock
stimuli significantly decreased the amplitude entropy during REM sleep (Figure 3D,E,
control vs. footshock: 2.63 ± 0.003 vs. 2.529 ± 0.003, F(1,1226) = 47.46, p < 0.01). The
amplitude entropy demonstrated no significant change between the control and footshock
groups during wakefulness (Figure 3F,G). This result suggests that the footshock stimuli
potentiated the variation of EEGs during NREM sleep but attenuated the variation of EEGs
in REM sleep.
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Figure 3. Comparison of the amplitude entropy after the footshock stimuli. (A) Uniform amplitudes
of EEGs result in a low entropy, whereas the variety of amplitudes causes uncertainty of occurrence
rate and results in a high entropy. (B) Distribution of amplitude entropy for NREM sleep. The
solid line and light gray shadow are the values of means ± SEMs for every 15 min during the light
period, obtained from the control group. The dashed line and dark gray shadow are results acquired
from the footshock group. (C) Statistical significant test for the amplitude entropy. The white bar
represents the value of mean ± SEM for 15 min bins across the total 12 h light period, obtained
from the control group, and the gray bar depicts the amplitude entropy acquired from the footshock
group. (D,E) Represented the data of REM sleep. (F,G) Demonstrated the results for the wakefulness.
** Indicates the difference reaches statistical significance of p < 0.01.

3.3. Frequency Entropy

We, further, calculated the frequency entropy of EEGs during sleep–wake states
(Figure 4). The entropy elevated when the EEG contained various instantaneous frequen-
cies (Figure 4A–G). During NREM sleep (Figure 4B,C), we noticed a rising frequency
entropy as a function of time, no matter whether in the control or footshock groups. This
finding suggests that the composition of frequencies in NREM sleep gradually became
more complex as the resting time (light period) moved toward the active time (dark pe-
riod). Regarding REM sleep (Figure 4D,E) and wakefulness (Figure 4F,G), the frequency
entropies significantly increased after the footshock stimuli (Figure 4E, REM sleep: control
vs. footshock: 3.623 ± 0.003 vs. 3.665 ± 0.003, F(1,1199) = 109.71, p < 0.01; Figure 4G,
wakefulness: control vs. footshock: 3.667 ± 0.002 vs. 3.688 ± 0.002, F(1,1513) = 66.91,
p < 0.01). These results implied that the footshock stimuli increased the complexity of
instantaneous frequencies during REM sleep and wakefulness.
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Figure 4. Comparison of the frequency entropy after the footshock stimuli. (A) Uniform frequencies
of EEGs result in a low entropy, whereas the variety of frequencies causes an uncertainty of the
occurrence rate and results in a high entropy. (B) Distribution of frequency entropy for NREM
sleep. The solid line and light gray shadow represent the values of means ± SEMs for every 15 min
during the light period, obtained from the control group. The dashed line and dark gray shadow
are the results acquired from the footshock group. (C) Statistical significant test for the frequency
entropy. The white bar is the value of mean ± SEM for 15 min bins across the total 12 h light period,
obtained from the control group, and the gray bar represents the frequency entropy acquired from
the footshock group. (D,E) Represented the data for REM sleep. (F,G) Demonstrated the results for
wakefulness. ** Indicates the difference reaches statistical significance of p < 0.01.

3.4. Phase Entropy

The phase entropies between the control and footshock groups were compared in
Figure 5. The phase entropy reflects the shape of EEG waveforms; that is, smooth sine-wave-
like oscillations result in an even phase distribution and a higher phase entropy (Figure 5A).
By analyzing the phase entropy, we noticed that the footshock enhanced the phase entropies
during NREM sleep (Figure 5B,C), REM sleep (Figure 5D,E) and wakefulness (Figure 5F,G).
The 15-min mean phase entropies were significantly higher after the footshock stimuli
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(Figure 5C, NREM sleep: control vs. footshock: 3.5791 ± 0.0001 vs. 3.5801 ± 0.00003,
F(1,1394) = 86.21, p < 0.01; Figure 5E, REM sleep: control vs. footshock: 3.5793 ± 0.0001 vs.
3.5807 ± 0.00004, F(1,1226) = 169.02, p < 0.01; Figure 5G, wakefulness: control vs. footshock:
3.5795 ± 0.0001 vs. 3.5805 ± 0.00003, F(1,1473) = 77.72, p < 0.01). These results suggest
that the waveforms became smoother after receiving the footshock stimuli when compared
with those obtained from the control group. In summary, the footshock stimuli profoundly
affected the duration, EEG amplitude, frequency and oscillation phase during the distinct
vigilance states.

Figure 5. Comparison of the phase entropy after the footshock stimuli. (A) Abrupt and edge
waveforms result in a low entropy whereas smooth sine-wave-like waveforms cause uncertainty of
occurrence rate and results in a high entropy. (B) Distribution of phase entropy obtained from NREM
sleep. Solid line and light gray shadow are the values of means ± SEMs for every 15 min of light
period obtained from the control group. Dashed line and dark gray shadow are results acquired from
the footshock group. (C) Statistical significant test for the phase entropy. White bar is the value of
mean ± SEM for 15-min bins across the total of 12-h light period obtained from the control group and
gray bar represents the phase entropy acquired from the footshock group. (D,E) represented the data
of REM sleep. (F,G) demonstrated the results for wakefulness. ** Indicates the difference reaches
statistical significance of p < 0.01.

4. Discussion

4.1. Footshock Reduces REM Sleep Duration

The present study demonstrated that an acute stressor not only altered the duration of
sleep stages, but also affected the EEG features during the subsequent sleep–wake states.
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We showed that the random and inescapable footshock stimuli reduced NREM sleep in
the first hour and it changed the quantity of distinct vigilance states during a quarter hour;
that is, REM sleep was decreased and wakefulness was increased. Further investigating
the values, we found that the increased wakefulness mostly contributed to the changes in
the composition of sleep–wake states. The wakefulness duration increased 0.84 min and
REM sleep duration decreased approximately 0.5 min in a unit of 15 min. This finding
is similar to other report which used the footshock to create a rodent model of stress-
induced sleep disorder [29]. We postulated that our protocol employing the footshock
stimuli partially simulates the stress-induced sleep problems in humans, such as acute
stress disorder (ASD) or post-traumatic stress disorder (PTSD). Hyper-arousal is one of
the main symptoms of ASD and PTSD [14]. Although most of the clinical studies report
a reduction in NREM sleep in patients with PTSD, the alterations in REM sleep are still
inconclusive [30]. A meta-analysis report states that the percentage of REM sleep decreases
in PTSD patients with age below 30-year-old and affects less in patients older than 30 [30].
Even though the inescapable footshock is not specific as the PTSD model in rodents [3], our
data suggest the hypothesis of decreased REM sleep in PTSD patients.

4.2. The EEG Spectrum after Footshock

Spectrum is a common way for analyzing the power as a function of frequency.
The spectrum between the control and footshock group did not show extensive changes.
If we focus on the x-axis (time), the spectrum demonstrates the alterations mostly oc-
curred during the first 2 h of the light period; the power of delta band (0.5–4 Hz) was
attenuated in NREM sleep, theta power (4–12 Hz) during REM sleep was increased, and
gamma power (25–30 Hz) in wakefulness was also increased. If we focus on the y-axis
(frequency) of each stage, the footshock enhanced theta power in NREM sleep, although
delta power is the predominant frequency during NREM sleep. Since the type-1 (6–12 Hz)
and type-2 (4–9 Hz) [10,31] theta bands contain an overlap frequency (6–9 Hz) in rats, we
can hardly differentiate which type(s) of theta band(s) was (were) mainly affected without
pharmacological approaches. However, we noticed the enhanced theta was very likely the
type-1 since it contained 9 to 12 Hz frequencies as we demonstrated in Figure 2C. Regarding
to REM sleep, Figure 2F demonstrated the increases of type-1 and type-2 theta rhythms, and
they mainly occurred during the first 2 h of sleep. Studies depicts that type-1 theta rhythm
was correlated to movement and exploration [32] and type-2 theta oscillation was observed
during a predator presence [10,31]. Regarding to the wakefulness, slow gamma (25–30 Hz)
power was increased after footshock. Slow gamma is known to be generated when rats
are retrieving memories [33]. Taken the presence of theta and gamma oscillations together,
we proposed that the aversive memories from footshock cause sleep disturbances during
the subsequent light period. This phenomenon may link to the occurrence of nightmare in
ASD and PTSD patients [14]. However, this hypothesis needs to be further investigated in
the future.

4.3. Amplitude Entropy

Using Fourier transform to measure the EEG features is a standard method for analyz-
ing polysomnography findings during sleep. Fourier transform is temporally dependent. In
Figure 2 we observed a linear correlation with the time variable by using Fourier transform.
For instance, the EEG power of NREM sleep gradually attenuated as the function of time.
We further noticed some nonlinear correlations. For example, the power for frequencies of
each temporal bin (15 min) is not linear and the width of theta frequency during REM sleep
was narrower in the footshock group than that in the control group. Therefore, using the
Shannon entropy can compromise this limitation. We thoroughly measured the entropies
of instantaneous amplitudes, frequencies, and phases to depict the EEG profiles after the
footshock stimuli. The footshock stimuli increased the amplitude entropy of NREM sleep,
but decreased the amplitude entropy of REM sleep, which suggests that the footshock
affected the uniformity of amplitude. During NREM sleep, the amplitudes of EEGs were
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changed more frequently after the footshock because their amplitude entropy increased.
These results can be interpreted by two possible explanations. One possibility is the poor
sleep quality affected by the footshock stimuli, given that the amplitude of EEGs during
NREM sleep corresponds to sleep quality. The various amplitudes may reflect that the
rats entered various NREM sleep stages after the footshock stimuli, although it is difficult
to further differentiate the sleep stages of NREM sleep in rodents compared to humans.
The other possible explanation is that there may be certain sleep compensation for the
first hour of sleep deficit after the footshock. This sleep compensation might result in
greater amplitudes, indicating the sleep quality, rather than the regular baseline and the
greater amplitudes, contributed to the lower uniformity of the amplitude. In contrast, the
footshock stimuli caused a low entropy of amplitudes during REM sleep, which may result
from the weak power spectrum and the smaller amplitudes of REM EEGs, as indicated in
Figure 2D,E. We believe the spectrogram of REM sleep in Figure 2D,E reflects this finding;
that is, the power of theta waves between 6 to 8 Hz decreased after the footshock stimuli,
although it did not reach significant meaning. Some human [34] and rodent studies [4],
also, report that PTSD patients or susceptible animals have a reduction in theta powers
during REM sleep. Weak amplitudes contributed to lower amplitude entropies because the
difference of amplitudes at different levels is low and would be sorted into the same level,
which would, subsequently, exhibit a low entropy.

4.4. Frequency Entropy

Although the classification of brain oscillations was defined by certain ranges of
frequency, the dominant frequencies were not always the same in the animals’ behaviors.
For instance, the frequencies of the theta band are positively correlated with the running
speed of rats [11,22–24]. This finding implies that the behavior not only affects the power of
brain waves, but also affects the frequencies when a brain is processing the information. It,
also, means that frequencies can be a measurable variable. EEGs are mixed with more than
one frequency band and are dominated by one frequency band for a particular behavior
or event. For instance, gamma oscillations could nest in the theta waves [35], and theta
waves are predominant during REM sleep in rodents [1,2]. High entropy of instantaneous
frequency reflects the oscillations of various frequency bands. We still do not know the
physiological relevance of high entropy frequency, but we hypothesized that a complex
composition of frequencies corresponds to an un-resting and busy brain. Evidence in
Figure 4 supports our hypothesis. The first, the tendency of entropy matched spectral
power of NREM sleep, represents the depth of sleep [18,19]. We found that the deeper
the sleep, the lower the frequency entropy, especially during the first few hours of the
light period. In humans, the deeper stage of sleep, called slow wave sleep, shows a
uniform and synchronized slow frequency [2,18,19]. The second, the frequency entropies,
were highest in wakefulness and lowest in NREM sleep, which suggested that frequency
entropy is positively correlated with the level of vigilance states. Therefore, based on the
aforementioned hypothesis, we demonstrated that the footshock stimuli reduced REM
sleep intensity because the frequency entropy of REM sleep was higher after the footshock.
Moreover, the brain activities during wakefulness were also increased after the footshock
because higher frequency entropy was observed. We postulated that the footshock-induced
changes in frequency entropy mimic the symptom of hyperarousal in ASD or PTSD patients.

4.5. Phase Entropy

We, next, analyzed the phase features of EEGs. An evenly distributed phase generates
a sine-wave-like waveform and results in a high-phase entropy. Our data demonstrated
that the footshock increased phase entropy in NREM sleep, REM sleep, and wakefulness,
which suggests a smoother and uniform EEG waveform after the footshock stimuli. The
physiological meaning of low/high phase entropy is still unclear. Sleep spindles (found
in both rodents and humans) and sawtooth waves (mainly found in humans) are abrupt
and edge EEG waveforms during sleep [4,36], which may cause lower phase entropy.
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Therefore, we hypothesized that an acute stressor may disrupt spindles or sawtooth waves.
In rodents, sleep spindles occur during the transition from NREM sleep to REM sleep [4].
Researchers propose that the sleep spindle facilitates memory consolidations and eliminates
unnecessary memory [37]. A rodent PTSD model demonstrates that the decrease in sleep
spindles occurs when rats are exposed to a single prolonged stress [4]. On the other hand,
the sawtooth waves are observed during REM sleep in normal humans, and the density of
the sawtooth waves increases after the first sleep cycle [36]. The function of sawtooth waves
is also unclear. We hypothesized that a normal waveform of sleep EEGs should contain
sharp and edge waves, and the footshock stimuli may decrease this kind of waveform,
reflecting the ability of forgetting aversive memory. However, this hypothesis needs to be
further confirmed in the future.

5. Conclusions

The alterations of EEGs after exposure to the footshock stimuli can be determined
by the Shannon entropy. The entropies suggest that the footshock resulted in a smoother,
lower amplitude variation, and more frequent variation of EEG waveforms in REM sleep.
The EEGs during NREM sleep were smoother, and the amplitude variation was higher,
after the footshock stimuli. The Shannon entropy (information theory) could be applied to
detect the alterations of sleep EEGs in stress-related disorders such as ASD and PTSD.
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Abstract: Monitoring patients at risk of epileptic seizure is critical for optimal treatment and ensuing
the reduction of seizure risk and complications. In general, seizure detection is done manually
in hospitals and involves time-consuming visual inspection and interpretation by experts of elec-
troencephalography (EEG) recordings. The purpose of this study is to investigate the pertinence of
band-limited spectral power and signal complexity in order to discriminate between seizure and
seizure-free EEG brain activity. The signal complexity and spectral power are evaluated in five
frequency intervals, namely, the delta, theta, alpha, beta, and gamma bands, to be used as EEG signal
feature representation. Classification of seizure and seizure-free data was performed by prevalent
potent classifiers. Substantial comparative performance evaluation experiments were performed
on a large EEG data record of 341 patients in the Temple University Hospital EEG seizure database.
Based on statistically validated criteria, results show the efficiency of band-limited spectral power
and signal complexity when using random forest and gradient-boosting decision tree classifiers (95%
of the area under the curve (AUC) and 91% for both F-measure and accuracy). These results support
the use of these automatic classification schemes to assist the practicing neurologist interpret EEG
records more accurately and without tedious visual inspection.

Keywords: epileptic seizure; entropy; spectral power; random forest; gradient-boosting decision tree;
support vector machine; k-nearest neighbors

1. Introduction

Epilepsy is a neurological disorder characterized by recurrent epileptic seizures. It
affects as many as 50 million people of all ages worldwide. Uncontrolled seizures can
lead to a disruption of the nervous system and physical risks such as injury and even
death. It is generally accepted that better seizure control is essential for better brain
health in the long term. Brain activity can be recorded by one of several means, such as
electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic
resonance imaging (fMRI). Of these, EEG is the most prevalent because it is simple to effect,
low cost, and has high temporal resolution. Its interpretation is commonly used in the
study of various brain disorders such as epilepsy, autism, and attention deficit hyperactivity.
It is also the most common method in seizure detection and prediction [1–18].

Visual inspection and interpretation of EEG signals are tedious and complex tasks
done by experts, which justify research and development of computer-processing methods
of EEG that use EEG data representation and machine-learning technics.

Investigations of EEG patterns of seizure have shown that, in general, seizure events
have been observed within a wide range of EEG bandwidths. Likewise, their amplitude
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and frequency in the delta (1–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta (13–30 Hz),
and gamma (30–70 Hz) bands are significantly different than normal [17,18]. In line
with this observation, several studies have used EEG spectral power density (PSD) for
seizure detection [3,7,8,19]. PSD is commonly used to evaluate the power of each observed
frequency in different neurological brain states. According to previous research, PSDs
during seizure events differ significantly from the PSD during rest or sleep states [20],
and EEG PSD features have been shown to be able to distinguish between seizure and
seizure-free events in the frequency domain [3,7,8,19]. Using the absolute and relative
band power of the PSD in 13 frequency sub-bands [21], the authors achieved a 91.36%
AUC in a patient-specific study. In another study [22], they found that relative spectral
power features led to improved seizure prediction and an average fault rate per hour
of 0.1. In a recent study, a comparison of power spectrum analysis and time-frequency
analysis was performed. The results revealed that power spectrum features are likely
to be seizure markers, and there was a significant difference between the distribution
of the power spectrum in seizure segments versus segments in which there were no
seizures [23]. Time and frequency domain signal complexity measures have also been
used to describe EEG data and serve for the classification of normal and seizure EEG data
patterns [2,5,7,11–13,17–19,24]. Other EEG data descriptions and properties have been used
as well—for instance, permutation entropy, which decreases significantly in the transition
from a seizure-free phase to a seizure phase [16]; Shannon and logarithmic energy entropy,
which decrease during epileptic seizures [4]; spectral entropy, which increases for seizure
segments [14]; and wavelet entropy [5,9]. Although some studies have considered single
complexity features in their proposed approaches [5,16], others have combined several
such measures [12,14].

The clinical utility of automated classification methods that involve neuroimaging
techniques have become increasingly important in many areas of health care due to their
ability to identify atypical neural activity, such as seizure episodes, without visual inspec-
tion. Accordingly, research has addressed the design of end-to-end machine learning (ML)
systems to detect seizure segments and determine seizure type. ML offers the opportunity
to automatically distinguish between patterns in seizure and seizure-free segments. Au-
tomatic methods that use ML classification have been investigated for their potential for
classification in several healthcare domains, including epilepsy detection, seizure detection,
seizure localization, and seizure type identification [25].

There have been several studies of low false alarm detection of epileptic seizure
episodes in EEG recordings by ML [4,8,9,14,18]. Along this vein, various classifiers have
been used, such as the k-nearest neighbors algorithm (k-NN) [14], support vector machines
(SVM) [15,26,27], neural networks (NN) [1,28], and decision trees (DT) [7]. In [27], for
neonatal seizure detection, the authors used 55 features with SVM and reported an overall
performance of 89% with only one false seizure detection per hour. The system was trained
and tested using EEG data collected from 17 newborns with seizures. The study [29]
focused on EEG feature selection by relevance and redundancy analysis and used a back
propagation neural network to evaluate the effectiveness of feature selection. Results
showed an average seizure detection rate of 91% with a false detection rate of 1.17 per hour.
Using the Children’s Hospital Boston-Massachusetts Institute of Technology (CHB-MIT)
dataset, the study [30] reported an accuracy of 96% with a false-positive rate of 0.08 per hour.
Using the same database, which consists of only 23 subjects, a recent study [31] showed an
overall accuracy of 91.8% by deploying linear discriminant analysis as a classifier validated
on only five subjects. With the European Epilepsy Database, results achieved include an
average sensitivity of 91.72% by neural network classification [32], 90.8% by SVM (false-
positive rate of 0.094 per hour) [33], and 93.8% by a feed-forward back propagation artificial
neural network [34]. These results all relate to patient-specific experimentation and have
not been confirmed on across-patient data.

Although there are many studies that focus on seizure detection based on EEG, most of
them have some limitations, mainly including experimentation on data from few patients
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and using of invasive intracranial EEG records. Furthermore, previous research has used a
patient-specific problem formulation and experimental test in which the model is trained
and tested on a single patient. Despite attempts to create algorithms to obtain values as
accurate as possible, no single one has yet gained widespread acceptance in clinical practice,
and the results of studies are far from substituting manual interpretation of the EEG [35,36].
Indeed, despite the numerous commercially available seizure detection devices, there are
several issues that must be taken into consideration before such devices can be used in
everyday clinical practice. According to a study published in 2021 [37], a comparative
study was conducted between 23 devices on the market for seizure detection/alerting. This
study showed that these devices rely largely on movement detectors, autonomic change
detectors, heart rates, or eye tracking to detect seizures. According to the study’s authors,
almost no commercially available seizure detection methods use EEG except for Epihunter,
a wearable headband device that is connected to a smartphone and is specifically designed
for automatic absence seizure detection, which is a specific type of seizure. Thus, the
authors concluded that commercially available seizure detection devices do not have the
capability of detecting multiple seizure types. Another recent study [38] compared the
sensitivity of three well-known commercial seizure detection softwares (Besa, Encevis,
and Persyst) to determine whether they correctly detected seizures over long-term video-
electroencephalography monitoring (VEM). Based on results from 81 unseen patients, the
researchers found a sensitivity of 67.6% for Besa, 77.8% for Encevis, and 81.6% for Persyst
on a patient-by-patient basis. They suggested that the false alarm rate needs to be improved.
Furthermore, in another study published in 2020 [39], the authors concluded that most
commercially available methods focus on using non-electroencephalography EEG signals,
which is perceived as a major limitation given the inability of these devices to detect all
seizures types. Therefore, it is crucial to develop an automated system for the detection of
epileptic seizures based on EEG signals. To develop such an automated system, significant
further research and experimentation are necessary so as to develop seizure detection
methods that are clinically relevant, high-performing, and statistically validated. Therefore,
testing the clinical relevance of state-of-the-art findings through the analysis of a large
number of EEG data collated from an accurate representation of clinical situations and
collected from multiple sites will be necessary.

The purpose of this study is to investigate a new data representation model that
simultaneously exploits signal oscillatory power in frequency bands and signal complexity
as EEG. This representation serves prevailing potent ML algorithms for seizure vs. seizure-
free classification. We will rigorously evaluate the proposed EEG data representation
features on the publicly available large dataset of Temple University Hospital (TUSZ)
collected in clinical settings [40].

The main contribution of this paper can be summarized as follows: (1) An analytical
framework for seizure and seizure-free EEG classification is proposed and validated on
a new large EEG seizure corpus. (2) The feature significance level is investigated by a
univariate data analysis. (3) The performance of complexity measures and oscillatory power
is analyzed individually and then combined, as EEG signal representation features, to
classify normal and seizure data. (4) The results of four supervised methods are compared:
RF, GBDT, SVM, and k-NN. (5) The impact of adding a feature selection step on the
performance of classifiers is investigated. (6) The contribution of each channel to the
performance of classifiers is examined.

2. Materials and Methods

2.1. Dataset

EEG data were drawn from the TUH EEG seizure database (TUSZ), which is a part
of Temple University Hospital EEG corpus, the largest open-source EEG corpus. The
latter comprises more than 16,986 sessions of EEG recordings collected from 10,874 unique
subjects [40,41]. The version of the database used in this work was v1.5.1, released in March
2020. In this study, the dataset consists of EEG signals collected from 341 patients, providing
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a substantial amount of data for seizure detection investigation. The EEG segments were
labelled by a team of neuroscience and bioengineering students who underwent several
months of intensive training to gain annotation skills. They have worked closely with a
team of neurologists at Temple Hospital to understand their workflow and their clinical
needs while labeling EEG segments. There have been numerous revisions of the corpus
during the annotation process (two or three annotators per file system), each time applying
more refinement and criteria to enhance the clarity and accuracy of the data. Annotations
are created by viewing files with open-source software known as an EDF viewer or by
using a customized annotation tool developed by the team, which provides time and
frequency domain visualizations. The annotation was made available publicly, except for
an evaluation corpus not released to the public, to be allocated for research competition
purposes. The dataset used contains 886 sessions that were broken down into 7634 files,
of which 1780 are seizure activities of different lengths, in seconds, for a total of 40.40 h.
The data were collected in real-time clinical environments, including an intensive care unit,
an epilepsy monitoring unit, emergency rooms, cardiac intensive care, and surgical and
respiratory intensive care units [41]. Most of the EEG recordings have at least 19 electrodes
corresponding to the international standard 10/20 system and range from one second to
one hour in duration. The sampling rate varied between 250 Hz and 500 Hz. We resampled
all data at 256 Hz. In this study, we discarded seizure events that lasted less than our sliding
window of 20 s. Eight types of seizures were present in the TUSZ database: focal non-
specific seizure, generalized non-specific seizure, complex partial seizure, simple partial
seizure, tonic–clonic seizure, absence seizure, tonic seizure, and myoclonic seizure. Since
our goal was not to detect the type of seizure but to determine the presence or absence of
seizures, we combined all these types under one label, “seizure.”

The dataset description is summarized in Table 1, and Figure 1 shows an example of
seizure and seizure-free EEG epochs. Detailed information about the database annotation
can be found in the following reference [42].

Table 1. Overview of the subset of the TUSZ EEG corpus used in this study for seizure detection.

Number

Total patients (female) 341 (188 F)

Patients with seizure (female) 133 (72 F)

Sessions 886

Files 7634

Seizure files 1780

Seizure-free files 5854

Total duration in hours 655.36

 

Figure 1. (A) An example of raw EEG including seizure epochs. (B) An example of normal EEG—
seizure-free epochs.
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2.2. Methodology

An overview of this study’s generalized ML-processing strategy is shown in Figure 2.
It gives the main steps for data pre-processing, feature extraction, and, finally, classification,
which includes training and evaluation. The TUSZ EEG input data consist of pruned EEG
recordings, and all uninteresting portions of the data (muscle artifacts, noise, electrode
movements, and eye blinks) were purged from the cortical EEG signals. The steps involved
in our proposed approach for the classification of epileptic EEG seizures are as follows:

Figure 2. A block diagram of this study’s automatic seizure detection method. A total of 19 pruned
EEG channels from the TUSZ corpus are resampled, filtered, re-referenced, and segmented. Features
are subsequently extracted and used as input for modelling and testing four classifiers separately (RF,
GB, k-NN, and SVM).

2.2.1. Pre-Processing

In the staging phase, a 60 Hz infinite impulse response notch filter was applied to
attenuate the power line, followed by a bandpass filter with lower and higher cut-off
frequencies of 0.5 Hz and 75 Hz, respectively. This was followed by resampling to 256 Hz
and re-referencing to the average of all electrodes. From the remaining EEG signal, 20 s
fixed-length epochs were segmented.

2.2.2. Feature Extraction

Nine signal complexity measures were derived from the pre-processed EEG: multi-
permutation entropy (4 levels), sample entropy, wavelet entropies, logarithmic entropy,
Shannon entropy, and spectral entropy. The permutation entropy is a complexity measure
with a low computational cost for time series based on comparing neighboring values using
the distribution of order patterns [16]. The sample entropy quantifies the regularity in the
EEG signal regardless of its length [14]. The discrete wavelet transform is used to compute
the wavelet entropies [5], whereas the wavelet packet decomposition is used to compute log
energy entropy and Shannon entropy to measure the degree of uncertainty in the signal and
to evaluate the dynamical order of the signal [4]. The spectral entropy is calculated using the
normalized power spectral distribution of the EEG signal [14]. For the frequency domain
analysis, we performed the Welch method, which takes an average of the periodograms
obtained using fast Fourier transform (FFT). We calculated the absolute power density and
relative power density within each of the five frequency sub-bands—delta (1–4 Hz), theta
(4–8 Hz), alpha (8–14 Hz), beta (13–30 Hz), and gamma (30–70 Hz)—to increase the feature
vector size to 19 per channel. The absolute power of a band can be calculated as the sum of
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all of its power values in that frequency range, whereas the relative power (RP) index for
each band was determined based on the absolute power in each frequency band, expressed
as a percentage of the absolute power (AP) totaled across all frequency bands. Both absolute
and relative PSD analysis are essential for achieving accurate brain analysis. Feature values
were averaged using a scalar method before serving as input to the classifier. To investigate
whether a subset of the extracted features had a greater significance compared to the entire
set, we subdivided the features based on their category: frequency domain and information
theory (see Table 2). A univariate feature selection method based on the one-way ANOVA
test was also applied for comparison to investigate the effect of reducing the vector size.
We evaluated the statistical difference of each feature between the two classes: seizure and
seizure-free. In order to identify highly significant features, we sorted features based on
their p-values, which correspond to the probability of the results being observed if the
null hypothesis H0 is true. In this work, the null hypothesis H0 implies that there is no
difference between the means of two groups (seizure and seizure-free records). In general,
the lower the p-value, the higher the reliability of results. In medical applications, 0.05, 0.01,
or 0.001 are often the recommended threshold values. The features’ level of significance
was implemented using Python (3.8.0), specifically the Sklearn library.

Table 2. Subset of features in correspondence to their category.

Type Features Category

Complexity measures

Sample entropy
Logarithmic entropy

Wavelet entropy Information theory
Spectral entropy
Shannon entropy

Permutation entropy

Oscillatory power Absolute power relative power
(delta, theta, alpha, beta, gamma) Frequency domain

2.2.3. Training and Evaluation

Comparative supervised classification was carried out with four classifiers: random
forest (RF), gradient-boosting decision tree (GBDT), support vector machine (SVM), and
k-nearest neighbors (k-NN). The four classifiers were chosen based on findings from
previous studies, which showed that they had superior classification compared to oth-
ers [15,26,27,43,44] The random forest algorithm, an ensemble learning method, involves
multiple un-pruned decision tree classifiers. Every tree is an individual classifier, built at
the training stage using randomly selected attributes from the original data and at each
node to determine the best split. Classification is determined based on majority voting [45].
The gradient-boosting decision tree classifier runs an iterative algorithm to build multi-
ple trees sequentially, where each tree learns and updates its model from the errors of
all preceding ones [46]. The support vector machine, an extensively adopted supervised
learning classifier, has been widely and successfully used in EEG binary classification
problems and specifically in the medical field (automatic seizure detection, mental task clas-
sification, epileptic EEG classification, emotion recognition, etc.). The k-nearest neighbors
algorithm assigns an unlabeled sample to the most frequently occurring class among the
k-nearest labeled training samples. The Euclidean distance is used as the distance metric
for k-NN [47].

These proposed ML techniques are based on the most widely used algorithms in
previous studies and in various classification problems, as these algorithms have better
predictive power and are designed to perform better than linear algorithms, especially for
complex non-linearly separable EEG data. Additionally, these techniques have the great
advantage of having fewer parameters and hyper-parameters, which makes optimization
easier. The model was developed with a view toward being sufficiently transferable to
enable the integration in the connected objects for real-time detection.
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To avoid overfitting, for each experiment, the dataset was partitioned randomly into
training and testing portions, using 10-fold cross-validation repeated 100 times so that one-
fold served for testing and the remaining k-1 folds were used for training. The parameter
settings of the classifiers in all experiments were as follows: for RF, the number of trees was
100, for GBDT it was 100 as well, for SVM the kernel type was linear, and for k-NN the
number of nearest neighbors was 5.

To handle imbalanced data, which may occur due to uneven data representation of
classes in the training dataset, with a ratio of seizure to seizure-free of approximately 1:4,
we corrected the weights of minority and majority classes according to the distribution of
the classes in the entire training set. Furthermore, the weights were inversely proportional
to the frequency of classes in the dataset. In a final step, the accuracy and the area under the
curve (AUC), an effective metric that combines sensitivity and specificity for classification
performance evaluation, were computed for each subset of features and also for the entire
set. An F-measure representing the harmonic mean of precision and recall was used as well
to study performance. For clarity, results are given per 20 s window size input vector and
with respect to the three set of features: complexity, power, and a combination of the two.
We compared the results with and without the feature selection step.

3. Results

3.1. Univariate Data Analysis

Each feature was subjected to a univariate data analysis to identify its level of signifi-
cance with the studied classes, i.e., normal or seizure class, and to investigate its discrimi-
nation capability in characterizing seizure records. Tables 3 and 4 show the normalized
values of the extracted measures (mean ± standard deviation) for seizure and seizure-free
segments. Significant p-values (obtained using the ANOVA test) indicate a high discrimina-
tion capability in characterizing seizure segments. The values displayed in Tables 3 and 4
correspond to the highest p-value per feature. It is evident from Table 3 that seizure-free
records had lower complexity values compared to epileptic seizure records. Results in
Table 4 show that the relative power in the alpha band had the lowest p-value. The results
also show that oscillatory power change features had higher levels of importance than
complexity measures (Tables 3 and 4), which indicates that oscillatory power change in all
channels can contribute to better classification. In addition, Shannon entropy and relative
power in the alpha band had lower p-values, which indicates that they had higher levels of
importance than other features of this category.

Table 3. Range of values of the complexity measures for the two classes of seizure and seizure-free.
The lowest p-value of 4.130 × 10−98 for multi-permutation entropy at level 2 indicates the great
discrimination capability of this feature in characterizing seizure records.

Features
Seizure-Free
(Mean ± Std)

Seizure
(Mean ± Std)

p-Value

Shannon entropy 0.242 ± 0.125 0.1556 ± 0.095 6.159 × 10−15

Sample entropy 0.279 ± 0.132 0.199 ± 0.118 1.760 × 10−96

Spectral entropy 0.288 ± 0.143 0.203 ± 0.123 2.193 × 10−95

Log energy entropy 0.320 ± 0.152 0.217 ± 0.139 7.184 × 10−11

Wavelet entropy 0.262 ± 0.125 0.181 ± 0.112 6.657 × 10−11

Multi-permutation 1 0.267 ± 0.122 0.196 ± 0.117 1.212 × 10−80

Multi-permutation 2 0.296 ± 0.145 0.207 ± 0.129 4.130 × 10−98

Multi-permutation 3 0.275 ± 0.130 0.194 ± 0.125 3.050 × 10−90

Multi-permutation 4 0.291 ± 0.141 0.196 ± 0.123 3.467 × 10−12
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Table 4. Range of values of the spectral power measures for the two classes of seizure and seizure-free.
The lowest p-value of 7.173 × 10−145 for the relative power at the alpha band indicates the great
discrimination capability of this feature in characterizing seizure records.

Features Band
Seizure-Free

(Mean ± Std in mV)
Seizure

(Mean ± Std in mV)
p-Value

Absolute Delta 0.89 ± 0.02 0.87 ± 0.03 5.694 × 10−124

power Theta 0.89 ± 0.02 0.87 ± 0.03 1.156 × 10−129

Alpha 0.89 ± 0.02 0.87 ± 0.03 7.125 × 10−133

Beta 0.90 ± 0.02 0.87 ± 0.04 9.067 × 10−133

Gamma 0.90 ± 0.02 0.87 ± 0.04 3.423 × 10−133

Relative Delta 0.88 ± 0.02 0.86 ± 0.03 8.007 × 10−132

power Theta 0.88 ± 0.02 0.53 ± 0.04 9.594 × 10−128

Alpha 0.25 ± 0.16 0.15 ± 0.11 7.173 × 10−145

Beta 0.26 ± 0.15 0.16 ± 0.11 1.367 × 10−129

Gamma 0.27 ± 0.14 0.19 ± 0.11 1.344 × 10−93

3.2. Performance of Group of Features Extracted from All Channels without Feature Selection

We evaluated classification performance corresponding to the three sets of features:
complexity measures (9 features per channel), oscillatory power (10 features per channel),
and a combination of the two (19 features per channel). Table 5 displays the performance of
the three sets of features. Classification of seizure versus seizure-free reached an accuracy
and F-measure of 90.68% and 91.05%, respectively, using the complexity measures, and
90.95% and 91.33%, respectively, using relative and absolute power in the alpha, beta,
gamma, theta, and delta bands. A high AUC value of 95%, an F-measure of 91.41%, and
an accuracy of 91.07% were obtained using the RF classifier when the entire set of features
was given as classification input. RF and GBDT outperformed SVM and k-NN in all
experiments. There was only a slight difference in performance between RF and GBDT.

Table 5. Classification performance for the complexity measures, oscillatory power, and a combination
of the two without the univariate feature selection.

Classifiers RF GBDT SVM K-NN

Features AUC% F% ACC% AUC% F% ACC% AUC% F% ACC% AUC% F% ACC%

Complexity
measures 95 ± 01 91.05 90.68 93 ± 01 89.86 89.48 79 ± 03 71.44 73.57 85 ± 02 88.92 87.90

Oscillatory
power 95 ± 01 91.33 90.95 94 ± 01 90.68 90.40 88 ± 02 79.29 80.65 89 ± 02 89.67 88.73

Complexity
and power 95 ± 01 91.41 91.07 94 ± 01 90.95 90.67 86 ± 02 77.24 78.72 88 ± 02 90.09 89.16

3.3. Performance of Group of Features Extracted from All Channels with Feature Selection

For this study, we executed three sets of experiments to investigate the effect of
the recommended thresholds. Consistent with previous findings [48,49], we found that
reducing the features by the criteria that their p-values be less than 0.001 led to improved
performance. All features with a p-value higher than 0.001 were discarded from the feature
vector as non-descriptive. Classification performance was evaluated using AUC, F-measure,
and accuracy. Table 6 displays the performance of the three sets of features. RF was able to
achieve an accuracy of 90.30% and an F-measure of 90.76%, with a decrease of 1%, compared
to the experiments done without the feature selection step. There was no significant change
in the performance of the three classifiers RF, GBDT, and k-NN between the experiments
done with and without univariate feature selection. SVM accuracy increased from 78.72%
to 81.92%.
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Table 6. Classification performance for the complexity measures, oscillatory power, and a combination
of the two with the univariate feature selection.

Classifiers RF GBDT SVM K-NN

Features AUC% F% ACC% AUC% F% ACC% AUC% F% ACC% AUC% F% ACC%

Complexity
measures 87 ± 02 88.65 86.00 83 ± 03 87.13 84.52 81 ± 03 73.09 75.07 84 ± 02 88.80 87.47

Oscillatory
power 94 ± 01 90.07 89.60 93 ± 01 89.56 89.21 91 ± 01 81.73 82.96 88 ± 02 89.50 88.43

Complexity
and power 94 ± 01 90.76 90.30 94 ± 01 89.76 89.43 90 ± 01 80.63 81.92 88 ± 02 90.04 89.07

3.4. Performance of Classifiers with Features Extracted from One Channel at a Time

Table 7 displays the results of RF- and GBDT-based classification using the combined
complexity and power features for the 19 EEG channels. A total of 19 features was con-
sidered per run. The best AUC, F-measure, and accuracy of 94%, 89.96%, and 89.51%
respectively, were obtained with the RF classifier in the Pz channel.

Table 7. Classification performance per channel using complexity measures and oscillatory power.

RF GBDT

Channel AUC% F% ACC% AUC% F% ACC%

FP1 91 ± 01 87.27 86.41 88 ± 01 85.63 84.85

FP2 94 ± 01 89.78 89.38 92 ± 01 88.09 87.70

F3 79 ± 03 88.15 83.86 73 ± 03 87.50 82.78

F4 80 ± 02 87.82 83.39 73 ± 02 87.44 81.89

F7 90 ± 02 88.47 87.02 88 ± 02 87.07 85.55

F8 78 ± 03 87.86 81.70 73 ± 03 86.90 81.00

Fz 80 ± 02 88.05 83.78 73 ± 02 87.76 81.25

C3 92 ± 01 88.66 88.08 90 ± 01 87.15 86.76

C4 88 ± 01 86.43 85.55 87 ± 01 85.05 84.82

Cz 88 ± 01 85.96 85.11 87 ± 01 85.10 84.61

T3 92 ± 01 89.00 88.36 89 ± 01 86.34 85.66

T4 86 ± 02 86.64 84.14 85 ± 02 84.77 83.28

T5 91 ± 01 87.60 86.94 89 ± 01 86.25 85.71

T6 92 ± 01 88.20 87.52 89 ± 01 86.06 85.41

P3 90 ± 01 87.75 86.91 87 ± 01 85.43 84.69

P4 90 ± 01 88.22 87.00 87 ± 01 86.66 85.00

Pz 94 ± 01 89.96 89.51 92 ± 01 88.16 87.72

O1 80 ± 02 88.19 84.33 73 ± 02 87.83 81.63

O2 85 ± 02 88.13 85.25 80 ± 03 86.32 83.27

3.5. ROC Analysis of RF and GBDT Classifiers

The performance of this study’s proposed approach was measured using the receiver
operating curve (ROC) analysis and AUC metric. A higher AUC designates better perfor-
mance. Figure 3 displays a comparison between ROC curves when the entire set of features
is used. The AUC for each fold is shown in the caption of each figure, and the mean of the
AUC was computed. Figure 3 illustrates the ranking performance of 100 iterations of 10-
fold cross-validation. The ROC curve summarizes the results and shows that performance
was good for all folds, giving an average AUC equal to 95% for RF and 94% for GBDT. The
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RF classifier yielded better performance for each of the 10 folds compared to GBDT. It is
remarkable for both classifiers that the fluctuations of the AUC were smaller among the
different folds, indicating the stability of the feature set.

Figure 3. Comparison between ROC curves showing the best results achieved when the entire set
of features is used. (a) The left ROC curve corresponds to the RF classifier, and (b) the right curve
corresponds to the GBDT classifier. Each curve denotes one-fold of the 10-fold cross-validation, and
the area under the curve (AUC) is displayed for each fold in the figure legend. The mean AUC is
computed for the 10-fold.

3.6. Comparison of ROC Curves and Accuracies of Classifiers

A comparison between the ROC curves of the four classifiers is displayed in Figure 4.
All four classifiers achieved a good AUC. RF produced the highest AUC of 96% and
differed slightly from GDBT at 95%. RF outperformed k-NN and SVM in all experiments.
The 10-fold cross-validation was performed and the mean and standard deviation of the
cross-validation scores over 100 iterations were computed for each classifier. A comparison
between accuracies achieved by the classifiers is shown in Figure 5. It is remarkable that
the performance of RF classification was superior in both ROC and accuracy. An average
accuracy of 90.90% was reached using RF, followed by 89.87%, 89.16%, and 78.72% with
GBDT, k-NN, and SVM, respectively.

Figure 4. A comparison between ROC curves of the four classifiers: RF, GBDT, KNN and SVM. The
AUC of each classifier is displayed.
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Figure 5. Box plots corresponding to the accuracy of the classification of the two classes of seizure and
seizure-free. The orange line in the boxes marks the median. The final accuracy score is determined
by averaging the 10 ROC curves and calculating the AUC of the mean ROC.

4. Discussion

This study addressed the problem of seizure vs. seizure-free EEG record classification.
The classifier design and validation used data from 341 subjects in the TUSZ database, a
larger amount of data than previously used.

Several studies have highlighted the advantage of complexity measures as EEG signal
description in seizure detection [2,4,5,9–11,13,15,19,20], and others showed the importance,
as well, of signal power in different frequency bands [3,7,8,19]. We inquired into the
performance of these features with the larger TUSZ database to gain some understanding
of the effect of the experimentation database size on seizure detection potency. We followed
this with the study of a new method that exploits both types of features. We investigated
different feature-grouping options, followed by machine-learning classification of selected
features to identify seizure segments.

Two feature subsets of prevailing features, as well as their combination, were investi-
gated to evaluate their seizure detection potency. In contrast to earlier studies that focused
on patient-specific seizure detection, this study addressed patient-independent detection,
using data from 341 subjects. Signal complexity and power both yielded good classification,
with signal power providing slightly better results. When used jointly, signal complexity
and power gave superior performance: 95% AUC with RF classification, 94% with GBDT,
86% with SVM, and 88% with k-NN. RF outperformed other classifiers systematically in all
experiments. This may be explained by the fact that decisions made by the RF classifier
correspond to unpruned and diverse trees that lead to high resolution in feature space.
Random operations in the training and voting procedures of RF also contribute to better
classification by addressing the issue of overfitting [50].

This study showed the classification significance of the features at the channel level.
Unlike most others, which limited features to one channel (e.g., BONN dataset) or six
channels (e.g., Freiburg dataset), the TUSZ database used in validating the method in this
study has more than 19 channels corresponding to the 10–20 standard system. This allowed
us to investigate the performance of the method using only one channel at each run. Results
showed that a maximum distinction between seizure and seizure-free records was obtained
from the Pz channel, with a corresponding AUC of 94%. In addition, the method results
show that the parietal and frontal-parietal regions were effective in extracting features
that can discriminate seizure from seizure-free records, wherein the performance for each
channel obtained was above 90%. Additionally, this study addressed the effect of adding
a feature selection step prior to classification. The analysis removed the less informative
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features using the p-value test: If the p-value was greater than 0.001, the feature extracted
from a specified channel was discarded from the group considered. Only a slight decrease
in performance occurred for RF and GBDT with feature selection, keeping in mind that the
method is computationally more efficient when running on a smaller set of features.

The results are consistent with findings in a previous study [51] that compared random
forest variable selection methods for classification. Indeed, the latter concluded that there
was practically no difference in prediction error rates between all methods. However, it
was obvious that SVM was more sensitive to the number of features, with a decrease in
accuracy rate as the number of features increased.

It may be important to note that the good performance of all classifiers is an indirect
indication that the feature set is stable in addition to being representative of EEG data for
the problem of seizure detection. An analysis of the significance level of a set of entropy
properties determined that seizure records have invariably lower signal complexity than
seizure-free records. This finding agrees with previous studies that concluded that the EEG
signal during seizure is less complex than when seizure free, and therefore, a reduction
in signal information content and complexity can be inferred [11,12,14,15]. Additionally,
an analysis of the significance level of relative and absolute signal power in frequency
bands, typically, delta (1–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta (13–30 Hz), and
gamma (30–70 Hz), indicated that these power features can contribute to higher classifi-
cation, explaining in part their successful use in [3,7,8,19]. A higher level of importance
for oscillatory power-based feature vectors in comparison to complexity measures was
apparent and could justify their outperformance in classification.

It is noteworthy to mention that one of the limitations of this study is related to the
medical frequency sub-bands that were not considered in this work. This is the case of
beta frequency Beta-1, 13–15 Hz; Beta-2, 15–18 Hz; Beta-3, 18–25 Hz; and Hi-Beta, 25–30 Hz.
Recent reports [52,53] indicate that additional frequency band analysis is beneficial for
epilepsy detection and shows the impact of the frequency sub-bands to the epileptic
EEG classification accuracy, and the obtained results revealed several frequency sub-band
combinations that achieved high classification accuracy, including the medical frequency
sub-bands.

5. Conclusions

This study investigated the use of various ML methods for seizure vs. seizure-free
EEG record classification. The classification performance of three sets of extracted features—
complexity, oscillatory power, and a combination of the two—was evaluated. Our results
showed that abnormalities in a seizure EEG record could be distinguished from a seizure-
free EEG record by using its complexity measures and oscillatory power, collected as one
feature vector fitted to a random forest classifier. This study’s proposed approach could
provide a prominent contribution to the development of a fully automated seizure detection
system. In a future work, we will expand our study to include pre-ictal and ictal. As there
are eight types of seizures present in the TUSZ database, we plan to classify seizures by
type, incorporating gender as a predictor, since there are certain differences associated with
epilepsy patterns between genders. In addition, we will include a cross-database evaluation
to validate the effectiveness of our proposed method and to confirm its generalization
ability in seizure classification.
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Featured Application: The presented theoretical–conceptual framework has neurobiological/

etiological relevance and focuses on dimensionally conceptualized physiological characteristics,

mental functions, and neuropsychopathology and, as such, may provide the better clinical diag-

nostic and prognostic utility of qEEGs.

Abstract: Many practicing clinicians are time-poor and are unaware of the accumulated neuroscience
developments. Additionally, given the conservative nature of their field, key insights and findings
trickle through into the mainstream clinical zeitgeist rather slowly. Over many decades, clinical,
systemic, and cognitive neuroscience have produced a large and diverse body of evidence for the
potential utility of brain activity (measured by electroencephalogram—EEG) for neurology and psy-
chiatry. Unfortunately, these data are enormous and essential information often gets buried, leaving
many researchers stuck with outdated paradigms. Additionally, the lack of a conceptual and unifying
theoretical framework, which can bind diverse facts and relate them in a meaningful way, makes the
whole situation even more complex. To contribute to the systematization of essential data (from the
authors’ point of view), we present an overview of important findings in the fields of electrophysiol-
ogy and clinical, systemic, and cognitive neuroscience and provide a general theoretical–conceptual
framework that is important for any application of EEG signal analysis in neuropsychopathology.
In this context, we intentionally omit detailed descriptions of EEG characteristics associated with
neuropsychopathology as irrelevant to this theoretical–conceptual review.

Keywords: quantitative electroencephalogram (qEEG); neurometrics; neurology; psychiatry; disease;
health; phenotype; brain; mind

1. Introduction

“The history of EEG studies of mental activity shows that a weak theoretical basis
at certain stages can result not only in methodological crises but can also affect empirical
data collection and interpretation. An adequate theory can lend strong support to the
methodology with “brain-oriented” structuring of psychological tasks and such a theory
improves the neurophysiological informative value of the EEG parameters referring to the
psychological characteristics of mental processes etc” ([1], p. 384). “It is time to begin the
daunting task of relating clinical manifestations of mental disorders to neuroscientific brain
dynamics in a comprehensive unifying manner” ([2], p. 942).

In the course of everyday life conditions and within the context of health and disease,
people can be evaluated across three different dimensions: behavioral (performance), brain
functioning (neuroimaging), and introspection (subjective aspects—psychology). Changes
in these different dimensions do not always parallel one another; however, the common
denominator for all of them is brain functioning, which affects and reflects the other two
dimensions—behavior/performance and psychology/subjectivity [1]. Indeed, the physio-
logic functioning of the brain underlies emotions, cognition, and behavior; hence, in this
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context, an objective assessment of brain dysfunction is especially critical for neurology
and psychiatry [1,3].

Currently, brain dysfunction is assessed according to manuals such as the Diagnostic
Statistical Manual in the USA (DSM) or the International Classification of Disorders in
Europe (ICD). However, none of the DSM-/ICD-defined syndromes correlate with any
neurobiological phenotypic marker or gene that could have etiological relevance or predict
the efficacy of medications [2]. It seems that to arrive at a biological basis for disease
categories, brain disorders should be classified in association with impairment of brain
systems and diagnosed according to deviations from normality in the corresponding brain
activity [3].

Several factors need to be considered when choosing an appropriate measure of brain
activity. First, we need a natural and non-invasive ‘window’ into the living brain. This
window should give us an ‘online’ view that directly captures the dynamics of brain activity,
which reflects multiple interacting operational modules hierarchically organized to allow
for complex information processing that (a) characterizes the neurophysiological type
(combination of traits; trait refers to the constitutional characteristics that are temporally
stable over longer periods of an individual’s life-span; an individual with a certain trait
characteristic responds similarly over many situations over the period of several months or
years; here, trait corresponds to a temporally stable neuro-psycho-physiological system)
and multidimensional structure of the functional state of the brain, (b) has high heritability
and is, thus, individually specific, (c) reflects individual neurodevelopment (‘historicism’)
and age-related changes, (d) is associated with higher mental and cognitive functions and
subjective experience, and (e) reflects or guides neuro- and psychopathology.

Second, from a biophysical perspective, “disease may be regarded not only as a
functional or molecular–structural abnormality, as in the classic view, but also (and not by
way of contrast) as a disturbance of an entire network of electromagnetic communications.
This network is based on long-range interactions between elements [ . . . ] which oscillate
at frequencies which are coherent and specific and thus capable of resonance. This would
be a disturbance of internal oscillators and their communications” ([4], pp. 107–108; see
also [5]).

Considering these two aspects, it seems that electroencephalogram (EEG) is the best
candidate for measuring brain activity compared to other methods of brain signal acquisi-
tion, such as the magnetoencephalogram (MEG), functional magnetic resonance imaging
(fMRI), and positron emission tomography (PET).

2. Why the Electroencephalogram (EEG)?

MEG, fMRI, and PET are expensive, non-portable, partially invasive, and are usually
associated with high stress due to noise, space confinement, and the need to be motionless.
Additionally, fMRI and PET scans provide indirect measures of brain activity, with poor
temporal resolution. Further, many types of mental activities, brain disorders, and malfunc-
tions of the brain cannot be registered using fMRI since its effect on the level of oxygenated
blood is low [5]. In contrast to these neuroimaging techniques, EEG is, at the same time,
the cheapest, fastest, and most portable technique that measures neuronal activity directly
and non-invasively. EEG does not elicit feelings of claustrophobia, does not require overt
cooperative behavior from the person, has a temporal resolution adequate to mental and
cognitive processes, and may distinguish between different temporal scales of information
processing inherent to mental and cognitive processes.

EEG is a summation of electric voltage fields produced by dendritic and postsynaptic
currents of many cortical neurons firing in non-random partial synchrony [6–8]. The
aggregate of these electric voltage fields can be detected by electrodes on the scalp. The
brainstem and thalamus serve as subcortical generators to synchronize populations of
neocortical neurons in both normal and abnormal conditions, thus influencing the EEG. It
seems that the activity of subcortical structures can be ‘visible’ in the EEG either indirectly
through their effects on cortical activity or—in contrast to popular belief—more directly via
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deep sources. See explanations given in [9] (p. 7): “While local field potentials indeed fall
off rapidly within the brain, far less attenuation is observed when recording across skull
and scalp. The reason is that the lower conductivity of the skull (compared to the brain and
scalp) attenuates superficial sources more strongly than deep ones, thus acting like a spatial
low-pass filter. This property causes strong blurring and attenuation of the focal superficial
fields but has less of an effect on the more diffuse (“low spatial frequency”) fields from
deeper sources [ . . . ] Recent evidence suggests that a considerably larger range of brain
structures, layers, and cell types than previously thought can contribute to spontaneous
EEG phenomena”.

A quantitative electroencephalogram (qEEG) is a mathematically and algorithmically
processed digitally recorded EEG that extracts information invisible to ‘naked’ eye inspec-
tions of the signal. For the rest of the paper, we will mostly refer to qEEGs as the majority
of studies are performed using qEEGs.

After decades of studies, it is becoming clear that the qEEG is closely related to brain
dynamics, with millisecond temporal resolution, functional properties, and global states of
brain functioning, information processing, and cognitive activity [10–17]. The interaction of
large populations of neurons gives rise to rhythmic electrical events in the brain, which can
be observed at several temporal scales—qEEG oscillations. They are the basis of many dif-
ferent behavioral patterns and sensory mechanisms (for a review, see [18]). Indeed, a large
body of evidence [19–27] has demonstrated that qEEG oscillations constitute a mechanism
by which the brain can actively regulate changes in a state in selected neuronal networks to
cause qualitative transitions between modes of information processing [20]. Thus, different
qEEG oscillatory patterns are indicative of different information-processing states.

The qEEG has a number of important features that make it especially useful in clinical
practice. In the following sections, we present a brief review of these features.

2.1. qEEG Historicism

An adult human qEEG is characterized by ‘historicism’—the information about pri-
mate phylogeny, pre- and post-natal maturation (individual development), and early life
events (utero characteristics and early life stress).

Indeed, phylogenetically (phylogenesis—the evolutionary development and diversi-
fication of a species or group of organisms), the proportion of power of qEEG oscilla-
tions changes as a function of primate phylogeny [5,22,28]. Likewise, ontogenetically
(ontogenesis—physical and psychological development of an individual organism from
inception to maturity), qEEGs undergo significant transformation as a function of pre-natal
(in utero) development (maternal stress exposure, anxiety, and depression during preg-
nancy are considered in utero adverse experiences and have been associated with future
health problems [29–32]; this is so because intrauterine life events have a much greater
impact on epigenetic profiles than stressful exposures during adult life due to heightened
brain plasticity that is adversely affected by exposure to environmental insults [33]) [34] as
well as a function of post-natal maturation (maturation refers to the timely appearance or
unfolding of brain structures, events, and processes that are the result of the interaction
between genes and the environment; brain maturation can be delayed, equal, or accelerated
when compared to chronological age) [35–38]. It seems that ontogenetic differences mir-
ror those of phylogenetic differences in the cause of brain development, where there is a
gradual increase in qEEG complexity and change in the qEEG oscillations’ composition
and proportions [17,39–41]. Why is this relevant? The qEEG has been found to have a
high prognostic value for identifying the functional level of ‘brain maturity’ [42,43]. The
knowledge of typical qEEG oscillatory patterns for a given phylogenesis/ontogenesis stage
gives one the ability to assess the level of qEEG maturation or regression, which often
accompanies the development of neuropsychopathology [44]. For example, a person with
an immature qEEG is more easily swayed by external influences and has a lower threshold
for aggressive and/or antisocial behaviors [45].
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Additionally, early life stress (ELS) has been associated with abnormalities in the
qEEG of adults and is also paralleled by a range of adverse outcomes in adults, such as
personality dimensions, increased vulnerability to substance abuse, depression, anxiety,
psychosis, and post-traumatic stress disorder (PTSD) [46–48]. Indeed, ELS such as protein
energy malnutrition in the first year of life, extreme social and cognitive deprivation as a
result of institutional care, physical or emotional neglect, and low socioeconomic status are
all associated with abnormal qEEG characteristics on one hand and with developmental
lag or deviation, persistent specific cognitive and behavioral deficits in adulthood, and ac-
celerated cognitive decline [49–54] on another hand. Further, childhood traumas (including
childhood sexual abuse) are also associated with adult qEEG deviations in parallel with
cognitive dysfunction [55,56]. It seems that changes in catecholamine levels following a
traumatic event can impede brain regional development, which, in turn, can compromise
later cognitive functioning and emotional regulation and leave a person susceptible to
stress later on in life.

Additionally, traumatic brain injury may also be reflected in qEEG deviations that
correspond to complaints of cognitive symptoms that can persist anywhere from 11 [57],
22 [58], or even 27 [59] years post-injury, characterizing persistent post-concussive syndrome.

This brief overview suggests that the qEEG contains information that is a historical
consequence of individual development, ELS, and significant life events. However, in order
to adequately assess qEEG variability associated with pathology, within-subject stability
over EEG recordings within an EEG session, test–retest reliability over time, and intra-subject
specificity (i.e., the extent to which a qEEG pattern is uniquely associated with a given
person) and specificity for different conditions need to be established.

2.2. qEEG Stability, Reliability, and Specificity

Studies have reportedly demonstrated that the majority of qEEG characteristics have
high (up to 90%) within-subject stability (internal consistency measured by Cronbach’s
alpha) within an EEG recording session, high (up to 90%) reproducibility (test–retest relia-
bility) over a period of hours, weeks, months and years, and high (up to 99%) intra-subject
specificity, meaning that qEEG can accurately identify subjects from a large group [60–78].

These results suggest that qEEG characteristics possess trait-like qualities (stability
over time). In this context, intrinsic properties of brain activity measured by resting qEEG
constitute a neural counterpart of personality traits (Section 4.2) and can be regarded as the
statistical neuro-signature of a person. Such high stability, reliability, and specificity of qEEG
characteristics suggest that genetic factors have a strong influence on qEEG variation.

2.3. qEEG Heritability

A large body of studies have suggested that qEEG characteristics and their variability
are largely determined by genetics and, thus, are highly heritable (up to 90%) [79–93].
Additionally, it was demonstrated that the correlations for qEEG characteristics between
family groups (each consisting of a biologically related father, mother, and two children)
were greater than those obtained from the non-family groups (each consisting of biologically
unrelated subjects) [94] (see also [89]).

Smit et al. [92] proposed several common genetic sources for EEG: (a) skull and
scalp thickness may affect the conductive properties of the tissues surrounding the cortex,
(b) genetic influence on cerebral rhythm generators such as the central ‘pacemaker’ in
the septum for hippocampal activity or the thalamocortical and corticocortical generators
of cortical rhythmicity, (c) genes directly involved in the bioelectric basis of the EEG
signal itself: for example, genes influencing the number of pyramidal cells, the number of
dendritic connections, or their orientation with respect to the scalp may directly influence
the mass dendritic tree depolarization of pyramidal cells in the cortex that underlies the
EEG. Begleiter and Porjesz [95] added another factor: regulatory genes that control the
neurochemical processes of the brain and, therefore, influence neural function.
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Besides high qEEG heritability, genetic loci underlying the functional organization
of human neuroelectric activity and their associated conditions/behavior have also been
identified. Below is a short overview of qEEG oscillations, the related genes, and the
associated pathological conditions:

(a) qEEG beta oscillations (beta rhythm is electromagnetic oscillations in the frequency
range of brain activity above 13 Hz)

Winterer et al. [96] reported that three exonic variants of the gene encoding the human
gamma-amino butyric acid (GABA)B receptor on chromosome 6 modify the cortical syn-
chronization measured as scalp-recorded qEEG coherence. Another genetic study indicated
the importance of GABAA receptor genes in the modulation of qEEG beta oscillations in
the human brain: Porjesz et al. [97] found a significant genetic linkage between the beta
frequency of the human qEEG and a cluster of GABAA receptor genes on chromosome 4p.
Additionally, this same GABAA receptor gene was found to be associated with a DSM-IV
diagnosis of alcohol dependence [98].

(b) qEEG alpha oscillations (alpha rhythm is electromagnetic oscillations in the frequency
range of 8–13 Hz, arising from the synchronous and coherent electrical activity of
neurons in the human brain)

Low voltage qEEG alpha oscillations have also been reported to be linked to (a) the
GABAergic system, as an association has been found between the exon 7 variant of the
GABAB receptor gene and alpha voltage [99], (b) a serotonin receptor gene (HTR3B),
associated with alcoholism and antisocial behavior [100], and (c) a corticotrophin-releasing
binding hormone (CRH-BP) [101,102], associated with depression, anxiety, and alcoholism.
Low voltage alpha in females has also been reported to be associated with a genetic variant
that leads to low activity of the enzyme that metabolizes dopamine and norepinephrine,
catechol-o-methyltransferase (COMT) [103]. Additionally, low voltage alpha has been
associated with a subtype of alcohol dependence with anxiety disorders [104,105] and with
the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism in depression [106].
High voltage qEEG alpha oscillations are heritable in a simple autosomal dominance
manner [79]. The alpha peak frequency (APF) has been associated with the COMT gene,
with the Val/Val genotype being marked by a 1.4 Hz slower APF compared to the Met/Met
group [107].

(c) qEEG theta oscillations (theta rhythm is electromagnetic oscillations in the frequency
range of brain activity between 4 and 7.5 Hz)

There is evidence [108] that single nucleotide polymorphisms located in brain-expressed
long intergenic non-coding RNAs (lincRNAs) on chromosome 18q23 are associated with
posterior interhemispheric theta EEG coherence. These same variants are also associated
with alcohol use behavior and posterior corpus callosum volume. Further, the Val158Met
polymorphism of the COMT gene is associated with low-frequency oscillation abnormali-
ties in schizophrenia patients [109].

This short overview suggests that there are common genetic links between qEEG
oscillation characteristics and specific health conditions. It seems that genetically influenced
features of the intrinsic oscillatory activity are related to the structures and functions of
the corresponding neural generators and that different features of qEEGs may predict
individual differences in brain function and structures.

2.4. qEEG and Structural Integrity of the Brain

Indeed, numerous studies have demonstrated that qEEGs reflect the brain’s structural
characteristics (or ‘hardware’), such as the number of connections between neurons, white
matter density, axonal diameter, degree of myelination and white matter integrity, as
well as the integrity of corticocortical and thalamocortical circuits, hippocampal volume,
the number of active synapses in thalamic nuclei, and the number of potential neural
pathways [7,8,110–126]. For example, reduced EEG amplitude is believed to be partially due
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to a reduced number of synaptic generators and/or reduced integrity of the protein/lipid
membranes of neurons [127,128].

2.5. qEEG and Functional Integrity of the Brain

Decades of studies have demonstrated that brain functional characteristics (or
‘software’), such as memory performance, attention and processing speed, emotional reg-
ulation, individual capacity for information processing, cognitive preparedness, and
others, including functional states of the brain, are readily reflected in qEEGs at all
ages in both healthy individuals and individuals with neurological or psychiatric con-
ditions [14,21,22,24,115,129–147] (for a review, see [18]). This is so because qEEG oscillatory
activity is generated by synchronous neural populations that mirror the firing rate of their
constituent neurons [148]: for example, during arousal, task execution, and/or a behavioral
act, the underlying neuronal populations will increase spiking with respect to baseline.
These increased firing rates will engage non-linear feedback loops, effectively changing
the system’s response function and the specifics of its emergent oscillations. In contrast,
during rest and states of quietness, the spiking activity decreases, which is also reflected by
a decrease in oscillatory activity [148]. Further, qEEG oscillations are able to temporally co-
ordinate and control neuronal firing and are proposed to be a basic principle of information
processing in the human brain [149,150].

Considering that different qEEG oscillations reflect functionally different components
of information processing acting on various temporal scales [140,141], it is possible to map
qEEG oscillations onto specific mental and/or behavioral states [151]. qEEG oscillations
from the same frequency band may express different functions depending on the conditions
they are involved in [152]. This seems biologically plausible: qEEG oscillatory functional
diversity creates a rich repertoire of brain activity that can meet the complex computational
and communicational demands of the brain during healthy and pathological conditions.

In this context, qEEG measures can provide independent evidence of variations in
alertness, attentiveness, memory, emotional regulation, or mental effort. Incorporating
them into tests of cognitive function might lead to more sensitive and less ambiguous
clinical assessment tools [153,154].

Since information-processing modes depend on the functional integrity of the brain,
which, in turn, depends on the orchestrated oscillatory activity of neuronal pools (re-
flected in the characteristic qEEG rhythms); functional coupling between qEEG oscillations,
cognitive functions, and vegetative processes is important.

2.6. qEEG and Vegetative Status/Autonomic Nervous Systems (ANS)

Several studies have demonstrated the association between qEEGs and ANS [155–158].
It seems that the brainstem mediates a functional coupling between the ANS and the central
nervous system (CNS) assessed by qEEG [159–161]. A theoretical concept of the integration
between the ANS and CNS was presented by Jennings and Coles [162]. The coordination
and communication in and between the autonomic vegetative systems and the brain
occur with tuned frequencies in the range of qEEG oscillations, suggesting the existence
of resonant links in the brain with all organs of the body (for a review and discussion,
see [5]; see also [163]). Basar [5] suggested that such mutual resonances form a coordinated
dynamic system that maintains survival functions such as blood pressure, respiratory
rhythms, cardiac pacemakers, and body temperature (see also [155,156,159–162]).

Since the dynamics of the physiologic variables (autonomic system) and the dynam-
ics of brain activity depend on each other, it is reasonable to hypothesize that reduced
variability in the activity of the neural networks should cause a concurrent decrease in
the variability of autonomic physiologic functions. Indeed, it was demonstrated that a
widespread brain injury that causes a derangement in neural networks leads to a reduced
complexity of qEEG (measured by entropy, the dynamic repertoire of the probable qEEG
states, and operational architectonics) [164–166] and reduced heart rate variability [167] in
unresponsive patients compared to healthy subjects.
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It seems that decreased qEEG variability is coupled with a decrease in the variability
of other physiologic variables (autonomic system), which results in reduced physiological
adaptability. In turn, reduced physiological adaptability can contribute to stress and weak-
ened immunity, which may further impact the qEEG pattern, creating a downward spiral.

2.7. qEEG, Stress, and Immunity

There is a strong link between qEEG oscillatory patterns and stress regulatory systems:
the hypothalamic–pituitary–adrenocortical (HPA) axis and the sympathetic–adrenomedullary
axis [168]. For example, qEEGs recorded from stressed students before an exam revealed
a correlation between greater right hemisphere (RH) activation and higher cortisol lev-
els [169]. This is supported by the following facts: (a) the administration of cortisol to
healthy participants has been shown to increase RH frontal activation [170], and (b) greater
right-sided activation (measured by resting qEEG) is associated with higher levels of basal
cortisol compared to their left-activated counterparts [171]. Cortisol also seems to reduce
neural interactions between different areas of the brain. Indeed, an inverse relationship
between basal cortisol levels and neural interaction between the frontal and parietal cortex
has been demonstrated using qEEG connectivity analysis [172].

Considering the link between qEEG oscillatory patterns and stress regulatory systems,
it is not surprising that the association between several factors of the immune system and
qEEG activity has also been reported [173–177] (for a recent meta-analysis, see [178]). For
example, higher levels of right-prefrontal qEEG activation (a) reliably predicted poorer
immune response [176] and (b) are characterized by lower levels of natural killer cell
activity [179]. These data support the hypothesis that individuals characterized by a more
negative affective style have a weaker immune response and, therefore, may be at greater
risk for illness than those with a more positive affective style. Additionally, RH activation
is associated with hyprecortisolemia, which contributes to the deterioration of immune
system functioning and puts depressed patients at a greater risk of developing other
illnesses, accounting for depression’s high comorbidity with other diseases [180].

2.8. qEEG and Cerebral Haemodynamics and Metabolism

Studies have suggested that different qEEG characteristics are related to cerebral
hemodynamics and metabolism [181–190]. Cerebral cortex metabolism disturbance is
associated with and may be responsible for cortical neural synchronization anomalies
that may manifest as abnormal qEEG oscillations [191]. Additionally, changes in the
characteristics of qEEG oscillations (amplitude, power, frequency) are proportional to
cerebrovascular damage (CVD) [119]. The qEEG has been shown to be a reliable marker
of the decline in neuronal integrity associated with a decline in blood flow [192–198].
Additionally, studies show a sensitivity greater than 80%, false-positive rates below 5–10%,
and correlations of 70% between qEEG and blood flow in ischemic and non-ischemic
regions, thus suggesting that the qEEG can reliably detect focal features that can be quite
abnormal even if the computer tomography (CT) or MRI scans are still normal (dysfunction
without infarction) [199]. Similarly, in patients with subarachnoid hemorrhage, only qEEG
could differentiate patients with and without cerebral infarction and not doppler/color-
coded duplex sonography [200]. Further, recent meta-analyses have shown that qEEG has
prognostic potential in predicting patient independence and stroke severity beyond that
afforded by standard clinical assessments [201] (see also [202,203]). Indeed, qEEG changes
precede that of multimodal monitoring or confirmation of infarction on CT [204].

Cerebral hemodynamics and metabolism are regulated by a complex interaction
between different homeostatic mechanisms where neurotransmitters play a significant role.

2.9. qEEG and Neurotransmitters

Several studies have suggested a relation between different qEEG oscillations and
neuromodulator balance [5,205]. This is because peculiarities of qEEG features result from
the interaction of numerous resonance loops within the cortex and between the cortex
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and subcortical structures, and these interactions are significantly influenced by neuro-
transmitter concentrations in the brain [206]. Indeed, the levels of activity of different
neurotransmitter systems (acetylcholinergic (ACh-ergic), noradrenalinergic (NA-ergic),
dopaminergic (DA-ergic), serotonergic (ST-ergic), and GABA-ergic), as well as the patterns
of their interaction, are important drivers of qEEG oscillations. For example, the activation
of the NA-ergic system is associated with the desynchronization of qEEGs during behav-
ioral excitation [207] and an increase in high-frequency qEEG oscillations [208]. It is also
believed that the increased activity of the DA-ergic cerebral systems results in shifts of
the frequencies of qEEG oscillations toward higher ranges and facilitates the reaction of
desynchronization [209]. Additionally, posterior vs. anterior distribution of qEEG theta
oscillations is informative on DA levels [210]. Low ST levels result in a higher power of
low-frequency qEEG components [206]; conversely, high ST levels result in the decreased
power of low-frequency qEEG components and the higher power of high-frequency qEEG
components [211]. Higher relative levels of ACh promote qEEG alpha oscillations, whereas
an increased tone of inhibitory monoamine receptors is associated with qEEG delta oscilla-
tions (delta rhythm is electromagnetic oscillations in the frequency range of brain activity
between 1.5 and 3.5 Hz) [205]. It seems that for each qEEG oscillatory pattern, there is a
correlated neurotransmitter mix [212].

Deficiencies or excesses of any of the neurotransmitters will produce a marked de-
parture from homeostatically regulated normative qEEG oscillatory patterns and may
contribute to neuro–psycho pathophysiology [199,205]. Indeed, a large body of data sug-
gests that it is possible to unravel distinctive abnormal qEEG oscillatory profiles in terms of
specific neurochemical imbalances in particular brain regions [213].

2.10. qEEG and Neuropsychopathology

The literature indicates that there is a greater proportion of abnormal EEGs in individ-
uals with psychopathology: (a) up to 68% of qEEGs in psychiatric patients display evidence
of pathophysiology, and these results have additional utility beyond simply ruling out ‘or-
ganic brain lesions’ [214,215]; (b) up to 73% of nonepileptic adults have qEEG epileptiform
discharges (EDs) [216] that are attributable to underlying brain abnormalities (traumatic,
vascular, tumor, metabolic), medications, and psychiatric disorders (see, for example, [217]);
(c) the mean prevalence of interictal qEEG abnormalities in psychogenic nonepileptic
seizures is estimated to be 26% [218–226]; (d) up to 30% of panic attack patients have
demonstrable qEEG abnormalities, especially in atypical presentations of panic attacks, and
the incidence of abnormal qEEG findings in mood disorders reaches 40% [227]; (e) up to
78% of antisocial and criminal populations have underlying qEEG abnormalities [228] that
are more prevalent in subjects with violent crimes, repeated violence, and motiveless crimes;
(f) up to 76% of children with reading disabilities but without severe disorders of behavior
have EEG abnormalities [229], and (g) 69% of youngsters with behavior disorders with a
predominance of aggressiveness have EEG deviations [230]. Additionally, there is evidence
that abnormal EEGs are associated with the following clinical conditions: negative histories
(13%), severe head injury or neuropsychiatric disorder (46%), psychopathic personality
(88%), and family history of seizures (62%) [231].

Basic mechanisms of cerebral rhythmic activities in norm and pathology are described
in detail in Steriade et al. [212]. This emphasizes that the presence of qEEG abnormal-
ities should be inferred as ‘electrographic markers’ of underlying brain dysfunction and is
suggestive of the potential usefulness of qEEGs in clinical practice.

Indeed, more recent research shows that certain neuropsychopathologies, such as at-
tention deficit hyperactivity disorder (ADHD), specific learning disabilities, schizophrenia,
obsessive–compulsive disorder (OCD), borderline personality disorder (BPD), depression,
suicidal ideation, anxiety disorders, traumatic brain injury (TBI), mild cognitive impairment
(MCI), Alzheimer’s disease (AD), and other disorders are associated with specific qEEG
patterns and that these spontaneous electric potentials provide reliable markers of brain
function and dysfunction [56,152,232–246] (for reviews, see [199,213,247]).
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Given that patients with different disorders display abnormal and distinct qEEG-
profiles, it is not surprising that they can be differentially classified utilizing qEEG-
variables [248]. For example, qEEG utility in discrimination/differentiation between affec-
tive disorders and schizophrenia [249], between Alzheimer and non-Alzheimer demen-
tias [199,250], between sub-types of dementia [251], between depression and dementia [199],
between schizophrenia and unipolar and bipolar depression [199], and between panic dis-
order and depression [199] have been demonstrated. For sensitivity and specificity values
of qEEG-based detection/discrimination of patients with specific disorders, see Table 1.

Table 1. qEEG-based detection/discrimination of patients with specific dysfunction/disorder.

Dysfunction/Disorder Sensitivity Specificity References

Cerebrovascular disease >80% [199]
ADHD/ADD vs. normal children 90% 94% [237]

ADD vs. DLD 97% 84.2% [252]
LD vs. normal children 72% 80% [253]

Depression 72–93% 75–88% [254]
Panic disorder 71% 84% [255]

Dementia 91.9% 92.2% [256]
AD 71–81% [257,258]

Declining to MCI 95% 94.1% [259]
Converting to AD 96.3% 94.1% [259]

Alcohol and drug abuse predicting relapse 61% 85% [260]
mTBI vs. sTBI 95.5% 97.4% [238,261]

ADHD/ADD = attention deficit disorders with or without hyperactivity; DLD = developmental learning disorders;
LD = learning disorders; AD = Alzheimer’s disease; MCI = minimal cognitive impairment; m(s) TBI = mild(severe)
traumatic brain injury.

It is argued that the levels of specificity found in qEEG studies are often higher than
those found in routinely used clinical tests, such as mammograms, cervical screenings, and
brain scans such as CT or single photon emission computed tomography (SPECT) [199,262,263].

Even within the same disorder, qEEGs may be beneficial in identifying the cause of
the abnormal behavior. For example, Kropotov distinguishes five reasons for the neuro-
physiology of ADHD, stating that “[ . . . ] mentioned dysfunctions are associated with
specific patterns in spontaneous and evoked electrical potentials, recorded from the head
by multiple surface electrodes” ([264] (p. 74; see also [3,265]).

Additionally, qEEGs can play a unique role when it comes to dealing with ambiguous
or edge cases in clinical practice. It may help to identify/differentiate:

• Electrical changes that precede the clinical onset of a seizure by tens of seconds to
minutes—the early detection of a seizure. It has been shown that patients go through
a preictal transition for approximately 0.5 to 1 h before a seizure occurs [266]. On
average, the prediction rate is ~81% and has an average warning time of 63 min [267];

• Whether a given seizure is epileptic or nonepileptic in origin: For example, there are
groups of disorders that produce symptoms similar to an epileptic seizure: (a) cardiac
arrhythmias causing syncope, episodes caused by cerebrovascular disease, movement
disorders, and unusual manifestations of sleep disorders; (b) events of psychiatric
origin (often referred to as psychogenic nonepileptic seizures (PNES)) [268];

• Subclinical seizures: Some seizures recorded during prolonged EEG monitoring may be
asymptomatic or ‘subclinical’;

• Whether the cognitive impairments and behavioral problems in question are due to
emotional, psychological, or social factors or because of brain dysfunctions or sensory
deficits with quantitatively demonstrable abnormalities in brain electrical activity;

• Whether the hyperactive sensation-seeking behavior (typical for ADHD and mania)
is due to hypervigilance or vigilance autostabilization behavior, which is a compensatory
behavioral pattern to counter regulate a hypovigilance state, and whether withdrawal
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behavior (typical for depression) is due to hypovigilance or the result of a compensatory
behavioral pattern that counter-regulates hypervigilance [269,270];

• Between a degenerative disorder such as AD and pseudodementia due to psychiatric
illness [271];

• Between normal and abnormal maturational patterns, such as brain maturation lag (char-
acterized by a pattern of qEEG that is typical for younger age) and brain maturational
deviation (characterized by a pattern of qEEG that is not normal at any age) [253];

• Between presence or absence of consciousness in minimally and unresponsive
patients [166,272–275].

In this context, different spatial–temporal qEEG patterns may reflect different un-
derlying mechanisms/functions/symptoms; this hints at the existence of several clinical
sub-types within a given diagnostic group that are not recognized by the current diagnostic
systems [276].

Distinct aspects of pathophysiologic mechanisms may be elucidated depending on
which qEEG oscillations or their combinations are altered in the qEEG oscillatory pattern of
any given neuropsychopathology. It seems that neuropsychopathology manifests through
the considerable reorganization of the composition of qEEG oscillations and their ratios
over a broad frequency range of 0.5–30 Hz, which constitutes the dynamic repertoires of
qEEG states. These qEEG oscillations are ‘mixed’ or superimposed in proportions that
depend on the specific neuromediators and neural circuit disturbance and also depend
on the presence of various symptoms and affects. Spatial analysis has revealed that
different cortical areas are characterized by varying numbers of qEEG oscillations, with a
statistically significant difference in their relative presence and communication within the
qEEG oscillatory pattern [152,244].

One aspect that often goes unnoticed by clinicians but is nearly always affected by
neuropsychopathology is the experiential Selfhood.

2.11. qEEG and Experiential Selfhood

Indeed, in various neuropsychopathological conditions, self-consciousness alterations
dominate the patient’s phenomenological experiences and have either a long-term or
permanent presence [277–279]. Even though experiential Selfhood (also referred to as self-
consciousness or self-awareness) is a multi-layered concept that is often conceptualized in
different ways by various disciplines [280], the currently emerging consensus is that self-
referential processing constitutes the core of Selfhood [281,282]. Empirical evidence from
neuroscience [281,283–286] indicates that such self-referential processing is instantiated by
a specific self-referential network (SRN) within the brain, sometimes also referred to as the
default mode network (DMN) [283–287]. Further, it has been documented that specific
qEEG oscillations have a significant positive correlation with the SRN [288–292].

Recently, a three-dimensional neurophysiological model of the complex experiential
Selfhood (which is based on the qEEG analysis) was proposed [286,293,294] (for a detailed
description, see [295]). This triad model of Selfhood considers the neurophysiological
evidence that three major spatially separate yet functionally interacting brain subnets con-
stitute the SRN and account for the phenomenological distinctions between three major
aspects of Selfhood, namely, (i) first-person agency (conceptualized as the ‘witnessing ob-
server’ or simply the ‘Self ’), (ii) embodiment (conceptualized as ‘representational–emotional
agency’ or simply ‘Me’), and (iii) reflection/narration (conceptualized as ‘reflective agency’
or simply ‘I’ ), all of which commensurate with one another [296] and, together, form
a unified sense of Selfhood [286] (see also [297]). Each aspect of the triad can be en-
hanced or weakened depending on the current physiologic and mental state [286,298],
voluntary training [293,294], and neuropsychopathology [299–301]. Since aspects of Self-
hood rarely fall under the purview of clinical practice, we present below a few exam-
ples of the potential application of qEEGs in the assessment of experiential Selfhood for
different neuropsychopathologies.
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For example, in its ‘pure’ unmedicated form, major depressive disorder is associated
with functional enhancement (measured by qEEG) of all three aspects (‘Self’, ‘Me’, and
‘I’) [300], thus reflecting the well-documented excessive self-focus, increased rumination,
and increased embodiment in patients with depression [302–307]. One could speculate
that “these three components of complex Selfhood (indexed by (qEEG)) synergize with one
another in a maladaptive loop and, over time, become habitual, leading to a vicious circle
that maintains a disordered affective state that clinically manifests as depression” [300]
(p. 34). It has been further proposed that the ‘Self’ plays a chief role here as it organizes,
represents, and appraises the salience of interoceptive/emotional/bodily information
presented by ‘Me’ and the narrative and semantic-conceptual information presented by
‘I’ [300].

PTSD is characterized by rather different Self–Me–I dynamics [301]. Increased activity
(measured by qEEG) of the ‘Self’ aspect was found to be significantly associated with
the increased vigilance of PTSD sufferers to their surroundings, with a concurrent shift
of their first-person perspective from the current moment in time to the moment of the
traumatic event (criterion E, according to DSM-5 [308]). We have speculated [301] that
such constant hypervigilance coupled with profound emotional arousal leads to sensory
overload and further exacerbates alienation of the Self in such patients [309]. Indeed, the
increased activity (measured by qEEG) of ‘Me’ was found to be significantly linked to
enhanced emotional, sensory, and bodily states in PTSD sufferers (criterion D, according
to DSM-5), such as fear, stress, frozenness, shivering, shaking, trembling, palpitations,
and sweating [310–312]. These feelings and memories are usually reported as intrusive
and unwanted (criterion B, according to DSM-5). Additionally, it was observed that the
activity (measured by qEEG) of ‘I’ decreased and that this decrease was associated with a
distinct lack of linguistic/contextual information and narrative to accompany the traumatic
event (criterion C, according to DSM-5), which is a well-documented phenomenon in PTSD
patients [312,313].

A six-year longitudinal analysis of a single patient’s recovery of self-consciousness
(from a minimally conscious state until full self-consciousness) after a severe traumatic
brain injury has revealed that the recovery of first-person agency (or ‘Self’), representational–
emotional agency (or ‘Me’), and reflective agency (or ‘I’) was paralleled by restoration
of functional integrity (measured by qEEG) in the three subnets of the SRN [299]. Of
note, the recovery dynamic in the Self–Me–I aspects (and corresponding qEEG metrics)
was not linear but followed a unique trajectory for every aspect (some recovered more
quickly, while others lagged) and was tightly paralleled by (and significantly correlated
with) findings from clinical exams and tests [299,314].

Further, converging evidence for a breakdown of qEEG integrity within the SRN in
non- and minimally communicative patients with severe brain injuries was found, and this
breakdown was proportional to the degree of expression of clinical self-consciousness [287].
More specifically, it was demonstrated that the strength of qEEG integrity within the
SRN was smallest or even absent in patients in a vegetative state (VS), intermediate in
patients in a minimally conscious state (MCS), and highest in healthy, fully self-conscious
subjects. Curiously the strongest decrease in strength of qEEG integrity as a function of
loss of self-consciousness was found in the ‘Self’ aspect compared to the ‘Me’ and ‘I’ SRN
modules. The central role of ‘Self’ was also found for the prediction of self-consciousness
recovery: those VS patients who later recovered stable minimal or full self-consciousness
in the course of the disease (up to six years post-injury) showed stronger ‘Self’ functional
integrity (measured by qEEG) in the early stage (three months post-injury) compared to
those patients who continued to stay in the persistent VS [315].

This brings us to another reason for the clinical and ethical importance of qEEG
utility in the assessment of the neurophysiological and neurophenomenological status of
unresponsive patients.
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2.12. qEEG and Disorders of Consciousness

A vegetative state (VS), recently re-termed as ‘unresponsive wakefulness syndrome’
(UWS) [316], and MCS belong to the so-called disorders of consciousness or DoCs [317].
While, by convention, VS/UWS patients are unresponsive to their external and internal
environments and are thus unconscious [318], patients in MCS show some level of overt
awareness and fluctuating ability to follow commands non-reflexively [319] (see also [320]).

The factual simplicity of the qEEG assessment, its portability and adaptability for
longitudinal protocols, and its relatively low cost have opened up a wide area of qEEG
investigations in the recent decade—these assessments aim to study the pathophysiology
of DoCs as well as look for prognostication markers for the recovery of consciousness
in DoC patients [321,322]. Already, the simple description of standard EEGs (guided by
accurate qualitative scales) has shown a robust correlation of such patterns with both
the level of consciousness impairment (VS/UWS or MCS) and the degree of short-term
consciousness recovery [323]. These studies reveal that the overall electrical activity of the
brain is differentially impaired in patients that fall under different DoCs and that it may be
related to the degree of recovery, as follows from the group-analyses [321].

The implementation of more complex numerical computations of the EEG signal—
qEEG analyses—has contributed in a much more nuanced way to the evaluation of DoC
patients [322], leading to a better understanding of the neural constituents of consciousness’
impairment [166]. For example, studies on qEEG oscillations have demonstrated that
patients in VS/UWS have a considerably reduced repertoire of local qEEG oscillations
compared to those in MCS or a fully conscious state [272]. Additionally, unawareness in
patients with VS/UWS was associated with an altered composition of qEEG oscillations
and their proportions compared with a full consciousness state [272,275]. These results
confirmed previous observations that loss of consciousness is associated with altered
oscillatory contents of the qEEG [324–326].

In agreement with these findings, it has been proposed that the degree of reduction
in the dynamic correlates of neuronal networks’ complexity measured by the qEEG may
be useful for distinguishing patients with different levels of consciousness impairment
(VS/UWS vs. MCS) or even as a prognostic measure [165,275,321,326–328]. Indeed, evalu-
ation of qEEG spatial–temporal patterns (which reflect functionally connected neuronal
assemblies and their dynamics over time) [166,327,329,330] in DoC patients demonstrated
that neuronal assemblies become considerably smaller, with shortened life-spans, and they
became highly unstable and functionally disconnected (desynchronized) in patients in
VS/UWS [166]. In contrast, fluctuating (minimal) awareness in patients who are in MCS is
paralleled by partial restoration of qEEG functional integrity, whose parameters approach
those of the levels found in healthy, fully conscious participants [166]. These studies lead
to the conclusion that consciousness is likely to vanish in the presence of many very small,
extremely short-lived, and highly unstable neuronal assemblies that perform their opera-
tions completely independently of one another (functional disconnection) and, thus, are
not capable of supporting any coherent content to be experienced subjectively. Importantly,
it has been documented that the observed impairment in the brain’s functional integrity in
DoC patients is independent of brain damage etiology and, thus, reflects functional (and
potentially reversible) damage, as opposed to irreversible structural neuronal loss [273]. As
a whole, these findings are in keeping with a recent study [331], where it was shown that,
in contrast to MCS, the VS/UWS brain is characterized by small, disconnected networks
that do not contribute to higher integrative processes [332].

Another factor that may complicate diagnosis and affect both healthy and diseased
individuals is aging.

2.13. qEEG and Aging

Since age-related processes affect both the structural and functional integrity of the
brain, it is reasonable to suggest that qEEGs possess age-dependent changes that are both
pathology-independent (healthy aging) and pathology-dependent (pathological aging).
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Indeed, many studies have demonstrated that the aging process is reflected in qEEG
changes [63,68,144,333–345] and is associated with age-related conditions such as cognitive
decline, Alzheimer’s disease, mild cognitive impairment, vascular dementia or other
dementias, multiple sclerosis, and cerebral tumors [112,116,117,119,124,185,187,346–348].

Aging, as is well known, eventually results in death; and death is no longer understood
to be an all-or-nothing state but rather a process, the aspects of which may be captured
by qEEG.

2.14. qEEG and Death

Death is often a tragic and somewhat baffling finale of a person’s life. Since the person
is unresponsive near or during death, we know little (if anything) about it, especially from
the neurophenomenological point of view (neurophenomenology is scientific research
aimed at combining neuroscience with phenomenology in order to study the human ex-
perience [349]). However, recent studies suggest that qEEG may shed some light on this
mysterious phenomenon. The data suggest that the mammalian brain has the potential for
high levels of internal information processing (consistent with conscious processing) during
clinical death [350,351], suggesting that patients near death may generate a replay of memo-
ries [352]. This is supported by electrophysiological studies that have demonstrated (a) that
the post-mortem human brain may retain latent capacities to respond with potential life-like
properties [353], (b) that auditory systems (measured by event-related potentials) respond
similarly to those of healthy controls just hours before death [354], and (c) the resting-state
default mode—task-positive network anticorrelations were present among unresponsive
hospice patients [355], thus suggesting that unresponsive patients may possess functional
architecture in the brain that can support internally oriented thought (mind-wandering) at
the end of life. Moreover, analysis of qEEG-unresponsive patients just hours before death
demonstrated that they might be able to listen to music, despite being unable to overtly
indicate their awareness [356].

Furthermore, studies have shown that the prevalence of qEEGs with electrocerebral
activity despite a clinical diagnosis of brain death (BD) was 3.5% [357] to 19.6% [358], thus
posing a challenge for the diagnostic criteria of BD and stressing the importance of qEEG
utility for the confirmation of BD. Further, the association between qEEG patterns and
eventual death has been demonstrated [165,328,359], thus suggesting that the qEEG may
have potential prognostic value for evaluating near-term patients’ survival or death.

2.15. Causality of qEEG Oscillatory Patterns in Neuropsychopathology

The above brief review of qEEG features and properties and their association with
neuropsychopathology suggests the existence of circular causality, where, on the one hand,
different pathological processes affect the qEEG pattern and, on the other hand, changes in
the qEEG pattern affect pathological processes. This supposition is supported by converg-
ing empirical evidence: (a) central nervous system (CNS)-active drugs that affect known
neuromediators change different features of the qEEG oscillatory pattern in a consistent and
predictable manner, with a parallel reduction in symptoms [360–363]; (b) specific features
of the qEEG oscillatory pattern have better predictive power for medication response com-
pared to a syndrome-based diagnosis [364–371]; for example, the overall predictive accuracy
in differentiating treatment responders from non-responders is 84%, with a sensitivity of
77% and a specificity of 92% [372]; (c) different features of the qEEG oscillatory pattern
predict future (i) decline within the next 7 years in normal elderly people with subjective
cognitive complains (no objective evidence of cognitive deficit) [259], (ii) clinical outcomes
in patients in the vegetative state 6 years after brain injury [315,327], and (iii) developments
of delinquent (antisocial) behavior [373]; (d) normalization of the distorted structure of
the qEEG oscillatory pattern by an exogenous magnetic field stimulation changes the sub-
jective experience of neuropsychopathology, accompanied by a clinical decrease (>50%
reduction) of symptom severity [374] (see also [375,376]); (e) normalization of atypical
qEEG oscillatory patterns through operant conditioning with neurofeedback results in
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symptom reduction in neuropsychopathologies such as epilepsy [377,378], depression and
anxiety [379], schizophrenia [380], addiction [381], ADHD [382,383], sleep disorders [384],
autism [385], chronic pain [386], learning difficulties [387], and dyslexia [388]; last but not
least, (f) cognitive enhancement in the elderly by qEEG neurofeedback [389,390].

A substantial corpus of evidence supports the proposition that the successful treatment
of psychiatric patients results in the normalization of the previously demonstrated qEEG
abnormalities [213].

Such circular causality is possible because the qEEG oscillatory pattern is not just a
correlate of information processing, communication, integrated phenomenal experience,
and the associated neuropsychopathology but is, indeed, a constitute (substrate) of these
very things [330,391].

From the above review, it is clear that the qEEG is a natural and non-invasive ‘window’
into the living brain and mind since only the qEEG permits direct observation of the
ongoing dynamics and coordinated processes organized in the patterns of brain activity
that reflect the overall architecture of information processing, behavior, and subjective
experience during both healthy and pathological conditions [392].

To make sense of the ‘view’ from this ‘window’, many different methods have been
suggested. However, when processing the qEEG signal, it is essential to remember that
it is a neurophysiological phenomenon that has its own peculiarities, regularities, and
complex rules of organization which are functionally relevant [13,393–396] (for reviews,
see [18,329,397–399]). Only when one knows these characteristics is it possible to make
proper use of the qEEG as a tool and to give a more neurophysiologically adequate in-
terpretation of the data. In connection to this, a much deeper understanding of the brain
dynamics reflected in the qEEG is essential for progress in psychophysiological, cognitive,
and clinical sciences.

3. qEEG Functional Structure and Signal Processing

With advances in qEEG signal processing methods, a wide range of statistical and
mathematical techniques and analyses has been implemented to analyze complex oscilla-
tory activity in spatial and multi-temporal dimensions. All of these have revealed new insights
into the functional neural networks during normal functioning and neuropsychopathology.

Since there are many excellent reviews dedicated to qEEG signal processing meth-
ods [6], in this section, we will overview only the most important aspects of the functional
structure of the qEEG signal that should be considered during processing. “Understanding
the [q]EEG “grammar”, its internal structural organization would place a “Rozetta stone” in
researchers’ hands, allowing them to more adequately describe the information processes
of the brain in terms of [q]EEG phenomenology” ([400], p. 111), which is functionally
relevant for healthy and pathological conditions.

Studies focused on the structural organization of qEEG signals have demonstrated
that the qEEG is an extremely non-stationary, highly composite, and very complex sig-
nal [18,329,397–399]. This qEEG multivariability, in contrast to the popular view, is not
noise but a reflection of the underlying integral neurodynamics, thus being functionally
significant, information-rich [395,396,401], and individually specific [73]. The qEEG multi-
variability is characterized by a piecewise stationary structure where stationary processes
with different probability characteristics are ‘glued’ to one another [329,398,399,401–403].
It is proposed that each piecewise stationary qEEG segment reflects the oscillatory state of
the underlying transient neuronal assembly [13,404–410] that signifies a functional cortical
state [330,411–413], which can be local (part of the cortex), global (all cortex), micro (ranging
from milliseconds to seconds), or macro (ranging from minutes to hours). Here, the qEEG
oscillatory state is a steady, transient, and self-organized operational unit [414] that has
been proposed to present the basic building blocks of cortical activity accompanied by
mentation, thinking, and information processing [415]. Activity within each state is stable
(or quasi-stable) and is likely to represent a fingerprint of a functionally distinct neuronal
network mode. Each qEEG oscillatory state (either local or global) is characterized by

218



Appl. Sci. 2022, 12, 9560

multiple qEEG oscillations, where different oscillations are mixed in different proportions
depending on the level of vigilance, perceptual, cognitive and mental operations, health, or
pathology (for more details, see [152]).

Analysis of the non-stationary behavior of the main qEEG signal characteristics (am-
plitude, frequency, and phase) has demonstrated that all three change abruptly with the
progression of time: qEEG amplitude, frequency, and phase persist for some time around
a stable average and then abruptly ‘jump’ to a new stable average, which, after some
time, is replaced by yet another average level (for qEEG amplitude, see: [329,398,399]; for
qEEG frequency, see: [395,396,416]; for qEEG phase, see: [417]). These ‘jumps’ in qEEG
characteristics (or rapid transitional periods (RTPs), as we have named them [397,399]) mark
the boundaries of segments of relatively stable brain functioning. The abrupt transition
from one quasi-stationary qEEG segment to another, in this sense, reflects a ‘switching’
between brain states (micro, macro, or both) in specific neuronal networks or the whole
cortex by the transient formation and disassembling of interconnecting cortical neuronal
assemblies (neuronal assembly is defined as a set of neurons that cooperate (synchronize their
activity) to perform a specific computation (operation) required for a specific function or
task [418–421]) [394,398,413,422]. During such a transition, there is an abrupt change in the
entropy, information, and dimensionality of the neuronal assembly (for details, see [391]). A
multitude of different microstates may exist within any one particular macrostate. Consec-
utive macrostates, in their turn, comprise a new sequence on yet another timescale. Such
functional qEEG structures comprise a nested hierarchical multivariability that reflects the
poly-operational structure of brain activity [329,401,403].

The co-existence of the high multivariability of qEEG characteristics, along with the
transient stabilization of these characteristics in time (metastability), has been demonstrated
(the parameters of temporary stabilization of oscillatory states differ from ‘random’ EEGs,
thus providing evidence for the non-occasional character of stabilization of the main
parameters of neuronal activity [395]) [395]. Perhaps the high multivariability of qEEG
characteristics is a reflection of the range of the brain states’ repertoire and their possible
variations. On the other hand, the temporal stabilization of qEEG characteristics reflects
the maintenance of some persistent pattern in neurodynamics within a particular time
interval on both micro and macro levels. This suggests that the overall brain dynamics is a
balancing act between multivariability and metastability [14,401].

Considering that all activities (influences) from multiple primary sources are not just
mixed, summed, or averaged in a given cortex area but are integrated within the current
state (activity) of this area, the local qEEG is considered to represent a functional source,
which is defined as the part or parts of the brain that contribute to the activity recorded at a
single sensor [423,424]. A functional source is an operational concept that does not have
to coincide with a well-defined anatomical part of the brain and is neutral with respect
to the problems of localization of primary source and volume conduction [423,424]) In
this context, the local EEGs can be described by (a) the size of the oscillatory state repertoires
(the number of the qEEG quasi-stationary segments types—the neurodynamics diversity);
(b) the life-span (illustrating the functional life-span of a neuronal assembly or the duration
of operation produced by this assembly; because a transient neuronal assembly functions
during a particular time interval, this period is reflected in the qEEG as a stabilized interval
of quasi-stationary activity [425]) of oscillatory states of each type (duration of the qEEG
quasi-stationary segments of each type or period of the temporal stabilization, which
shows the time during which the brain ‘maintains’ the underlying neurodynamics); (c) the
probability of occurrence of a particular type of oscillatory state (the number of the most probable
types of qEEG quasi-stationary segments, which indicates the most ‘preferred oscillations’
of the brain); (d) the number of functionally active oscillatory states (the types of qEEG quasi-
stationary segments that change along the changes in the condition, task, or function);
(e) the relative incidence of change in the type of oscillatory states (gives an estimation of the rate
of relative alteration in the type of qEEG quasi-stationary segment); (f) the sequence of types
of oscillatory states (consistent groupings or bundling of the types of qEEG quasi-stationary
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segments, representing more integral blocks of qEEG structural organization); (g) the size
of the neuronal ensemble (indeed, the more neurons recruited into an assembly through
local synchronization of their activity, the higher the resulting amplitude of oscillations
in the corresponding qEEG channel [13]) that generates the oscillatory state, measured
by the average amplitude within qEEG quasi-stationary segments; (h) stability of local
neuronal synchronization within a neuronal assembly, estimated by the coefficient of amplitude
variability within qEEG quasi-stationary segments; (i) neuronal assembly growth (recruitment
of new neurons) or disassembly (functional elimination of neurons), measured by the average
amplitude relation among adjacent qEEG quasi-stationary segments); and (j) the speed of
neuronal assembling or disassembling, estimated by the average steepness among adjacent
qEEG quasi-stationary segments, measured in areas near RTP [329,395,399,401,426].

This is the first level of multivariability and metastability [427] (Figure 1), where:
Multivariability is characterized by ‘switching’ from one local neurodynamic to another,

with new oscillatory patterns being continually created, destroyed, and, subsequently,
recreated. Therefore, there is an increase in:

• The size of oscillatory states repertoire;
• The number of functionally active oscillatory states;
• The relative incidence of change in oscillatory state types;
• Neuronal assembly disassembling;
• The speed of neuronal assemblies disassembling;

and a decrease in:

• The life-span of oscillatory states;
• The size of the neuronal ensemble;
• The probability of occurrence of a particular type of oscillatory state;
• The stability of local neuronal synchronization within a neuronal assembly;
• The sequence of oscillatory state types.

Metastability is characterized by the temporal stabilization of oscillatory states in
sequential combinations. Therefore, there is a decrease in:

• The size of the repertoire of oscillatory states;
• The number of functionally active oscillatory states;
• The relative incidence of change in the type of oscillatory states;

and an increase in:

• The life-span of oscillatory states;
• The size of the neuronal ensemble;
• The probability of occurrence of a particular type of oscillatory state;
• Neuronal assembly growth;
• The speed of neuronal assemblies growing;
• The sequence of oscillatory state types.

Different cortex regions have different dominant qEEG oscillations [150,428] that act as
resonant communication networks through large populations of neurons [140,429]. Usually,
cortical oscillators communicate only with oscillators that have specific resonance frequen-
cies [430]. They do not communicate with oscillators that have nonresonant frequencies,
even though there may be synaptic connections between them. In such a way, various
assemblies of oscillators can process information without any cross-interference. By chang-
ing the frequency content of bursts and subthreshold oscillations, the brain determines
communication at any particular moment [431]. These oscillatory systems may provide a
general communication framework that is parallel to and faster than the morphology of
sensory networks [140].

It seems that RTPs (see above) also contribute to this communication framework.
Studies on the spatial–temporal distribution of RTPs in qEEG amplitude [329,397,399,403],
qEEG phase [427,432,433], and qEEG frequency [416] have demonstrated that (a) RTPs
observed in different local qEEG signals systematically coincide in time and that (b) this
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RTP temporal synchronicity is not random—it occurs at significantly higher or lower levels
than is expected by chance alone. This non-random RTP synchrony reflects periods of
mutual temporal stabilization of quasi-stationary segments in the multichannel qEEG. At
the neurophysiological level, this implies that various neuronal assemblies located in differ-
ent cortical regions synchronize (temporally coordinate) their operations on a particular
timescale [403,427]. Such synchronization is the brain’s true functional connectivity (as it is
defined by Friston et al. [434,435]) and reflects the synchronization of operations; therefore,
it is operational synchrony [397]. Since operational synchrony has been demonstrated for
qEEG amplitude, phase, and frequency, it is reasonable to suggest that operational syn-
chrony is a universal phenomenon for different characteristics of the electromagnetic brain
field in which complex brain functioning is reflected.

 

MULTIVARIABILITY

METASTABILITY

F I R S T    L E V E L

increase in  

- the size of the repertoire of oscillatory 
states 
- the number of functionally active 
oscillatory states 
- the relative incidence of change in the 
type of oscillatory states 
- neuronal assembly disassembling 
- speed of neuronal assemblies 
disassembling  

decrease in 

- the life-span of oscillatory states
- the size of the neuronal ensemble
- the probability of occurrence of a 
particular type of  oscillatory states
- stability of local neuronal synchronization 
within a neuronal assembly 
- the sequence of types of oscillatory state

decrease in 

- the size of the repertoire of oscillatory 
states 
- the number of functionally active 
oscillatory states
- the relative incidence of change in the 
type of oscillatory states

increase in 

- the life-span of oscillatory states
- the size of the neuronal ensemble
- the probability of occurrence of a particular 
type of oscillatory states
- neuronal assembly growth
- speed of neuronal assemblies growing 
- the sequence of types of oscillatory states

Figure 1. The first level of multivariability and metastability measured by qEEG.

It has been demonstrated that the pattern of the functional stabilization of cortical inter-
area relations can be expressed as a mosaic of dynamic constellations of different operations
executed by remote brain regions—‘operational modules’ (OMs) [397,399,401,403,436]. The
lifetime of such spatial OMs is determined by the duration of the period of joint stabilization
of the main dynamic parameters of the activity of neuronal assemblies that are involved
in these modules. At the level of the qEEG, this process is reflected in the stabilization
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of the quasi-stationary qEEG segments in corresponding EEG channels that comprises
a metastable state [329,399,401,437]. Here, metastability relates to the phenomenon of a
constant interplay/competition between the complementary tendencies of cooperative
integration and autonomous fragmentation in the activity of multiple distributed nested
neuronal assemblies that defines brain activity dynamics [438] (see also [14,401]). During
this metastability, the restriction in the brain’s degrees of freedom is what permits the
neuronal systems to have the possibility for the interactive information exchange of the
essential variables, which are important for reaching a ‘consensual decision’ that is appro-
priate for the functional requirements engendered by each successive stage of behavioral
performance. It seems that brain areas are able to mutually influence each other in order to
reach a common functional state, stabilizing the main parameters of their activities. It is
likely that optimal informational processing is possible only under a proper level of the
functional stabilization of intercortex relations [244,329].

In this context, each OM is a metastable spatial–temporal pattern of brain activity
because the neuronal assemblies that constitute it have different operations/functions and
do their own inherent tasks (thus expressing autonomous tendency) while, at the same time,
being temporally entangled with each other (and thus expressing coordinated activity)
in order to execute a common complex operation or complex cognitive act of a higher
hierarchy [401,403,439]. Here, it is important to stress that discrete parts of the cortical
networks may gain another functional meaning when they are recruited by other OM
and, therefore, take part in the realization of another functional act [397]. This confirms
the dominant principle of the nervous constellation centers suggested by Ukhtomsky, who
discussed the variable functional role of different brain cortical areas depending on their
participation in various working constellations [440].

In this context, much like the local oscillatory states described earlier, the multichannel
EEGs can be described by (a) the size of the OMs’ repertoire (the number of the types (OM type
is characterized by the number and topographic locations of the cortex areas that mutually
stabilize (temporally synchronize) the main parameters of the neuronal networks involved
(temporal synchronization of RTPs)) of spatial configurations of qEEG quasi-stationary
segments (temporal synchronization of RTPs)—coordinated neurodynamic diversity);
(b) the life-span of OMs of every type (duration of spatial configurations of the qEEG
quasi-stationary segments of every type—period of RTPs’ temporal stabilization—shows
the time window during which the brain ‘maintains’ underlying coordinated neurody-
namics); (c) the probability of occurrence of a particular type of OM (the number of the most
probable types of spatial configurations of qEEG quasi-stationary segments—synchronized
RTPs); (d) the number of functionally active OMs (the types of spatial configurations of the
qEEG quasi-stationary segments that change along with the changes in condition, task, or
function); (e) the relative incidence of change in the type of OMs (presents an estimation of the
rate of relative alteration in the type of spatial configuration of the qEEG quasi-stationary
segments); and (f) the sequence of types of OMs (consistent grouping or bundling of the
types of spatial configurations of the qEEG quasi-stationary segments, reflecting the more
integral blocks of qEEG structural coordinated organization) [329,401,403,439].

This is the second level of multivariability and metastability (Figure 2) where:
Multivariability is characterized by ‘switching’ from one coordinated neurodynamic to

another, with new OMs being continually created, destroyed, and, subsequently, recreated.
Therefore, there is

an increase in:

• The size of the OMs’ repertoire;
• The number of functionally active OMs;
• The relative incidence of change in the type of OM;

and a decrease in:

• The life-span of OMs;
• The probability of occurrence of a particular type of OM;
• The stability of the sequence of types of OMs.
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Metastability is characterized by the temporary stabilization of RTPs (formation of
OMs) in sequential combinations. Therefore, there is

a decrease in:

• The size of the OMs’ repertoire;
• The number of functionally active OMs;
• The relative incidence of change in the type of OM;

and an increase in:

• The life-span of OMs;
• The probability of occurrence of a particular type of OM;
• The sequence of types of OMs.

 

MULTIVARIABILITY

METASTABILITY

S E C O N D    L E V E L

increase in  

- the size of the repertoire of OMs
- the number of functionally active OMs 
- the relative incidence of change in the 
type of OMs 

decrease in  

- the life-span of OMs 
- the probability of occurrence of a 
particular type of OMs, 
- stability of the sequence of types of OMs

decrease in  

- the size of the repertoire of OMs 
- the number of functionally active OMs 
- the relative incidence of change in the 
type of OMs 

increase in  

- the life-span of OMs 
- the probability of occurrence of a 
particular type of OMs 
- the sequence of types of OMs

Figure 2. The second level of multivariability and metastability measured by qEEG.

In this context, the participation of cortex areas in the organization of a common
functional act is reflected not so much by the presence of a shared qEEG rhythm in different
EEG channels (distant neuronal ensembles) but by the systematic synchronization of the
moments of switching (RTPs) between qEEG oscillatory modes in the different cortex areas.
The fact that operational synchrony is sensitive to the morpho-functional organization
of the cortex rather than the volume conduction and/or reference electrode differs from
surrogate data (random combination of RTPs) and is functionally sensitive to different
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cognitive tasks as well as healthy and pathological conditions; this suggests that operational
synchrony reflects the remote temporal coordination of brain operations performed by local
neuronal assembles (for relevant details, see [244,329,398,399,403]).

It has been suggested that disturbed synchrony in distributed qEEG oscillations may
reflect dysfunction within resting-state networks in neuropsychopathology. It seems that a
loss of optimal metastable balance between independence and the integrative processes
in large-scale cortical activity, which may be due to a dysfunction in large-scale cortical
integrative processes and a poverty of regional physiological variation [441], is associated
with the ‘cognitive disintegration’ [442], ‘cognitive dysmetria’ [443], and ‘thalamocortical
dysrhythmia’ [444] that are typical for a number of neuropsychopathologies [244,276,445].
This view is consistent with the modern concept of brain and mind disorders, where the
disease is considered to be a process, with a change in the balance of autonomy (low
functional connectivity) and connectedness (high functional connectivity) of different brain
systems that sustains health [244,276,438]. Indeed, on one hand, deficits in the ability of
cortical areas to coordinate could produce a lack of mutual constraint, leading to excessive
expression of local processing unrestrained by large-scale context. On the other hand, an
excess of coordination could stifle independent area expression and cause a stereotyped
processing rigidity. Thus, the alteration in brain functional connectivity might serve as a
contributing factor to the disorganization syndrome [446].

From this overview, it is clear that any qEEG signal processing method should take
into account the functional structure of the signal in order to be able to extract neurophysio-
logically relevant information.

In order to provide accurate and practical methods for separating individuals with
cognitive impairments or behavioral disturbances into those with and without quantita-
tively demonstrable abnormalities in brain electrical activity (qEEG) and, thus, altered
neurophysiology, statistical evaluation of qEEG characteristics relative to population norma-
tive values is needed. Such possibility was demonstrated by the introduction of so-called
‘neurometrics’ [153]. Machine learning algorithms and artificial intelligence techniques are
used for this purpose as well. However, the limitation of these methods is their inherent
non-explainability: no insight can be obtained from the inferred output. Without the ex-
plainability of the learned inference mechanism, not much insight can be gained in terms
of the underlying brain activity patterns and mechanisms, which are important to better
understand neuropsychopathology. Within this neurometrics, a given qEEG characteristic
of the individual is transformed from its original units (voltage, time, latency, coherence,
and symmetry) to a common metric reflecting the relative probability of that value within a
healthy population normative reference. This allows researchers to compare or combine
measures that have not initially been dimensionally comparable. From this, ‘abnormality’ is
derived and defined as statistically improbable values exceeding those expected by chance
alone. Thus, a clustering of qEEG deviations provides evidence of underlying functional
neurophysiology abnormality that can be associated with the patient’s clinical condition
or neurological/psychiatric problems. This neurometric analysis of qEEG characteristics
was successfully applied to a variety of neuropsychopathologies, with high replicability,
specificity, and sensitivity to a wide variety of cognitive, developmental, neurologic, and
psychiatric disorders [69,248,413,447–449].

Although much has been learned through systemic, cognitive, and clinical neuro-
science about the underlying neural mechanisms and functional correlates of qEEG oscil-
latory activity, surprisingly little conceptual integration of this knowledge is present in
clinical applications of qEEG. Even though the qEEG (a) reflects developmental maturation
and aging, anatomical and functional integrities of the brain, including cognitive processes
and the functional status of the brain as well as diverse neuropsychopathologies; (b) has
high predictive capacity, sensitivity, and specificity for identifying responders and non-
responders; and (c) provides qualitative predictions for a patient’s state after treatment
courses (see Sections 2.1–2.14), all of this knowledge should be put in a wider conceptual
context of the health–disease continuum in order to refine the diagnostic capability of
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qEEGs. In the following section, we will attempt to integrate conceptually recent neuropsy-
chophysiological and electrophysiological findings within a common theoretical framework
in order to reduce the divide between state-of-the-art research and current clinical practice.

4. Common/Unifying Theoretical–Conceptual Framework

A general framework needs to be developed in order to allow researchers and clinicians
to organize systematically and understand the enormous diversity of observations related
to qEEG characteristics in neuropsychopathology. As a first step, a general concept of
dynamic qEEG oscillatory patterns has been proposed [450]. Within this concept, a dynamic
qEEG oscillatory pattern is considered as a spatial–temporally organized superimposition
of ongoing multiple qEEG oscillations in many frequency bands [26], where different
oscillations are mixed in varying proportions based on the vigilance level; perceptual,
cognitive, and mental operations; behavior; and the extent of pathologic processes. It seems
that different qEEG descriptors can be combined within the dynamic qEEG oscillatory
pattern, which is characterized by (a) frequency content, including the composition of delta
(0.5–3 Hz), theta (3–7 Hz), alpha (7–13 Hz), beta (13–30 Hz), and gamma (>30 Hz) qEEG
oscillations, along with their proportions, dominant frequencies, amplitudes and powers,
and (b) spatial heterogeneity (expressed in spatially structured extracellular electrical fields),
including spatial complexity (amount of brain connectivity), interhemispheric symmetry,
and hubs (cortex areas with the highest neuropsychopathology effect or highest functional
connectivity). This concept was successfully applied to major depressive disorder [450].

The concept of dynamic qEEG oscillatory patterns is useful since it enables researchers
to combine all known and newfound qEEG characteristics within one entity. Studies
(see above) have suggested that dynamic qEEG oscillatory patterns reflect the structural
and functional integrity of the brain, including an information-processing mode that is
dynamically regulated by interactions within a homeostatic system that is mediated by
many different neurotransmitters on one side and functional activity and various perceptual
and cognitive operations associated with a mental or behavioral condition in health and
pathology on the other.

The categorization of different types of dynamic qEEG oscillatory patterns resulted in
the second concept—the qEEG phenotype.

4.1. qEEG Phenotype and Neuropsychophysiological Type

qEEG phenotypes are the clusters of commonly occurring qEEG characteristics within
qEEG oscillatory patterns found in the general population that are believed to be the net
result of genetics, pre- and post-natal individual development, and significant life events
such as brain traumas or neuro-diseases (see above). In contrast to the classical view,
which sees qEEG phenotypes as classes of qEEG abnormalities, where, usually, one qEEG
characteristic defines a qEEG phenotype and each phenotype is static [451], we believe
that qEEG phenotypes characterize all variabilities of the population, covering the whole
spectrum, from health to pathology, and, further, that such phenotypes are dynamic. In this
view, some of the qEEG phenotypes are characteristic of healthy conditions, while others
are typical for different degrees of deviation from the healthy state up to the situation
where the qEEG phenotype is pathological. Additionally, every phenotype is defined by
the combination of qEEG features (qEEG oscillatory pattern—a coherent functional whole)
and is dynamic, meaning that every qEEG phenotype may exhibit changes, to some extent,
within its own qEEG oscillatory pattern due to dysfunction or development of pathol-
ogy (Figure 3). This is so because the type of qEEG oscillatory pattern is a phenotypic
expression (qEEG phenotype) of (a) cellular and biochemical (dys)function; (b) matura-
tional processes (or delaying factors), partially genetically and epigenetically determined;
(c) neurotransmitter (im)balance; (d) regulatory systems (and their disturbances); (e) early
subclinical organic brain damage; or (f) morpho-functional disturbances that may be present
in neuropsychiatric disorders.
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Figure 3. Schematic illustration of qEEG phenotypes’ diversity and relative dynamism. Horizontal
arrow indicates that every qEEG phenotype may exhibit changes, to some extent, within its own
qEEG oscillatory pattern due to pathology, brain development dynamics, or trauma.

Such conceptualization underwent theoretical development and empirical verification
in the work of Zhirmunskaya and colleagues [452–456] and was successfully applied to
several clinical neuropsychopathologies as well as various modes of pharmacological
influence [156,457–462].

In this context, a given qEEG phenotype reflects a neuropsychophysiological type (neu-
rodynamic constitution) of the individual. Indeed, numerous studies have demonstrated
that qEEG characteristics can encompass functionally different psychophysiological de-
terminants [1,463]. On one hand, a qEEG phenotype reflects the inherent brain functional
organization and dynamic structure of brain activity, which are intra-individually stable
traits, as evidenced by test–retest reliability (Section 2.2) and genetic studies (Section 2.3).
On the other hand, since intrinsic brain activity supports and conditions individual cog-
nitive and information processing, self-regulatory functions, decision-making, behavior,
and consciousness, a qEEG phenotype reflects the neurophysiological predispositions of
the underlying cognition and personality, temperament, and character factors thus re-
flecting the individual’s psychological and behavioral traits. Indeed, it was found that
individual differences in qEEG variability relate strongly to stable indicators of subject iden-
tity [464]. Hence, both an individual’s neurophysiological and psychological differences
can be neuropsychophysiologically interpreted under the same unified notion of the qEEG
phenotype [1,465–470].

This brings us to the idea that a qEEG phenotype is not just a concept but a real
phenomenon. This is supported by the observations that qEEG phenotypes reliably predict
the effectiveness of drug interventions, while nosological or behavioral groupings do
not [451]: for example, effective treatment of ADHD [366,471], refractory depression [472],
and major depressive disorder [369] was achieved when it was based on prospectively
identified qEEG phenotypes related to different sub-types within the diagnostic group, thus
suggesting that nosological heterogeneity is well-reflected in the multiplicity of spatial–
temporal parameters of qEEG oscillatory patterns. Additionally, qEEG phenotypes are
a better indicator of pathology vulnerability when compared to classical evaluation: for
example, it was demonstrated that qEEG has a better indication of alcoholism susceptibility
than the customary dichotomous affection status [473,474].

In summary, a constellation of different qEEG characteristics that are united within
the qEEG oscillatory pattern and expressed as the qEEG phenotype should be considered
more appropriate for diagnostic and medication/therapy-response purposes. It seems
that every qEEG phenotype represents a set of quantitative neuropsychophysiological,
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cognitive, and behavioral traits that determine an individual’s liability or vulnerability
to develop or manifest a particular neurodysfunction or disease [3,475,476]. Thus, qEEG
phenotypes may aid in revealing disease-specific causal pathways and may aid people in
finding a work/lifestyle balance that is more in keeping with their natural predispositions.

4.2. qEEG Phenotype and Neurophysiological, Cognitive, and Behavioral Traits

Studies on intra- and interindividual differences have revealed that qEEG oscilla-
tory patterns reflect individually specific peculiarities of homeostatic and adaptive regu-
lation [468,477–480]. Additionally, it has been demonstrated that the qEEG phenotype
reflects the specificity of intracortical and cortico-subcortical interrelations and is, to
a significant extent, a neurodynamic substrate of the psychological properties of the
personality [481–485]. Together, these suggest that neurophysiological, cognitive, and
behavioral traits are reflected in the characteristics of the qEEG phenotype. Indeed, stud-
ies have demonstrated the association between personality traits and qEEG characteris-
tics [486–501]. Moreover, normal EEG patterns have been correlated with a well-integrated
personality (general personality fitness) [502] (for a review, see [503]).

Personality traits have been proposed to constitute vulnerability factors for psy-
chopathology, including mental diseases and affective disorders [504–511], thus suggesting
that personality traits and psychopathology are not distinct entities [512]. They both
(a) reflect increased vulnerability for and (b) underly any given psychopathology.

Thus, it seems that, on one hand, the qEEG phenotypes are related to personality types
(see above and also [513]) and psychopathology. On the other hand, personality features are
related to psychopathology too. This similarity of qEEG relations between psychopathology
and personality traits suggests that they are mediated by the same neurophysiological
mechanisms and behavioral patterns. Therefore, it is reasonable to suggest that behaviors
intrinsic to personality traits are the same as those that are exaggerated in psychopathological
conditions [514].

There are many different individual traits with varying degrees of significance for
neurophysiologic regulation, information and emotions processing, and behavior. For the
purpose of this article, we will focus on those traits which are (a) expressed along the entire
continuum of functioning, from health to pathology; (b) transdiagnostic; and (c) reflected
in the characteristics of qEEG phenotypes, thus being fundamental and primary functions
that condition (modify, modulate, or mediate) other dimensions.

The Research Domain Criteria (RDoC) project, launched by the National Institute of
Mental Health in 2009 [515], is the first comprehensive attempt to identify fundamental
neurobehavioral dimensions that cut across current heterogeneous disorder categories.
According to the RDoC, there are five major domains of functioning:

• Negative valence domain;
• Positive valence systems;
• Cognitive systems;
• Systems for social processes;
• Arousal/regulatory systems.

Since some qEEG characteristics can be related to several domains, constructs, or
subconstructs of the RDoC matrix and phenomenally different clinical characteristics are,
at a more fundamental level, implementations of one and the same process, we suggest the
following fundamental and primary domains of functioning that are (a) expressed along
the entire continuum of functioning, from health to pathology; (b) transdiagnostic; and
(c) reflected in the characteristics of qEEG phenotypes:

• Tonic level of vigilance (corresponds to arousal/regulatory systems in RDoC);
• Speed of information processing (corresponds to cognitive systems in RDoC);
• Directedness of the attention (internal vs. external focus) (corresponds to cognitive

systems in RDoC);
• Emotional–motivational tendency (corresponds to positive and negative valence sys-

tems in RDoC);
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• Sociability (sensory stimulation and excitement tolerability) (corresponds to systems
for social processes in RDoC);

• Anxiety tendency (anxious arousal vs. anxious apprehension) (corresponds to negative
valence and arousal/regulatory systems in RDoC);

• Stress regulation (resistance and recovery);
• Overall brain resources (resilience).

The fact that individual differences in dispositional moods, stress resilience, behavioral
orientation to physical or social objects, temporal processing (primordial sense of flow
between events), and brain resources are shaped/present in very early childhood, long
before cultural standards and knowledge are internalized by an individual [516–518],
supports a fundamental and primary nature of these domains of functioning.

One can see that the majority of the suggested domains can be mapped onto the RDoC
matrix. In the following sections, we will give a brief overview of these domains.

4.2.1. Tonic Vigilance

Vigilance (or arousal) here refers to the individual’s predominant level of supply
energy available to the brain’s regulatory systems. It is responsible for generating the
activation of neural systems appropriate for various contexts and providing appropriate
homeostatic regulation of systems such as energy balance and sleep.

There are more or less stable individual differences in the baseline vigilance: some
individuals are constantly in a highly activated state (hypervigilance), while others have
a chronically low level of activity (hypovigilance) [519], thus reflecting an individual’s
predominant vigilance state—tonic vigilance. The underlying cause is believed to be different
levels of activity in the loop connecting the brainstem reticular formation with the cortex.
As such, tonic vigilance reflects the predominant baseline cortical and mental arousal that
sets the overall level of activity of the entire brain and, as a consequence, the body. In this
way, tonic vigilance, as the brain’s trait energetic capacity, sets the stage for cognitive and
behavioral performance.

It seems that tonic vigilance is one of the most important traits of an individual since
it determines the optimal range of activating factors (a sympathovagal balance) on the
cerebral cortex that is necessary for the formation of an active, energetic state [520]. Outside
this optimal range, work capacity drops and the subjective sense of well-being decreases,
while psychopathology vulnerability increases [521]. Indeed, studies have demonstrated
that hypervigilance is a common feature of various anxiety and affective disorders (depres-
sion), including PTSD [522–525], hyperaroused fatigue (overloading) with reduced sleep
propensity, inhibition of drive, and eventual exhaustion [526–528]. Conversely, hypovig-
ilance is associated with hypoaroused fatigue with increased sleepiness, a lack of drive,
sickness behavior [526,529–531], burnout [532], impulsivity [533], ADHD [241,534,535], and
AD [135]. This is supported by the Arousal Regulation Model of Affective Disorders [269],
where hypostable and hyperstable levels of arousal contribute to manic or ADHD and
depressive-like behavior, respectively [270,536]. Importantly, tonic vigilance has been
suggested to causally contribute to mental illness [269]. Additionally, the relationship
between tonic vigilance, personality traits [501,513,537], and psychopathology have been
proposed [538,539] (see also Section 4.1).

Besides (a) being expressed along a health–pathology continuum and (b) being
transdiagnostic, tonic vigilance is reflected in the characteristics of the qEEG pheno-
type [157,523,540–547]. Additionally, vigilance-relevant qEEG characteristics are ~80%
heritable [548].

To summarize, tonic vigilance affects cognition, emotions, and behavior and is im-
plicated in the etiology of psychiatric disorders and reflected in the characteristics of
qEEG phenotypes.
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4.2.2. Speed of Information Processing

Even though this domain is dependent on tonic vigilance, it has added significance in
relation to normal functioning and neuropsychopathology.

The speed of information processing through periodic cycles of sampling and sensory
integration determines the pace of perceptual performance and behavior [148,549,550].
In other words, the speed of information processing determines the resolution at which
information is sampled and/or processed by cortical neurons, and, therefore, it limits the
capacity for storage, transfer, and retrieval of information in the brain [551–553]. In such
a way, the speed of information processing regulates the overall amount of information
that reaches the cortex and is related to reaction time, speed, and capacity of cognitive
and motor task performance, cognitive preparedness, temporal integration of information
across the senses, as well as reasoning ability.

The speed of information processing is an individually stable trait (varies within an
individually specific range) and is predictive of the individual’s reaction and decision times,
attention, and working memory performance across the age span [21,69,78,144,553–561].

The speed of information processing is expressed along the health–pathology con-
tinuum, where slowed information flow is observed in sorrow and fear emotions, phys-
iologic and pathologic aging, mild cognitive impairment and AD, vascular dementia,
psychosis and schizophrenia, ADHD, chronic fatigue, burnout syndrome, and melancholic
depression [117,119,124,530,532,544,562–567], whereas an increased speed of information
processing is typical for anger, anxious arousal and panic disorder, hyperaroused fatigue
(overloading), anxious depression, and PTSD [523,562]. Additionally, temporality (inner
and outer time speed perception) is recognized as an important factor in psychopathol-
ogy [568–570], where an imbalance between inner and outer time speed perception was
demonstrated. For the transdiagnostic character of the speed of information processing,
see [518].

Importantly, qEEG characteristics are causally related to the speed of information
processing [21,144,148,549,550,559,561] and the temporal integration of information across
the senses [552,553,571,572]. Additionally, qEEG characteristics associated with the speed
of information processing have a heritability of 81% [89].

To summarize, the speed of information processing is controlled by the characteristics
of qEEG phenotypes that are thought to function as a timing or gating mechanism in
operation processing [573]: shorter-duration qEEG oscillations provide more gating signals
per unit of time and, thus, result in faster information-processing rates and shorter RTs,
whereas longer-duration qEEG oscillations provide fewer gating signals and lead to slower
processing rates and longer RTs [574]. This is in line with ‘physiological lability’ (introduced
by Wedensky [575]), defined as the capacity of the system to perform a certain amount
of complete work cycles per unit of time [576]. Additionally, alterations in the speed of
information processing are characteristic of various neuropsychopathologies.

4.2.3. Directedness of the Attention (Internal vs. External Focus)

Attention is one of the basic human cognitive abilities that allow the discrimination of
relevant parts of information and the ignoring of others; it usually refers to a more focused
activation of the cerebral cortex that enhances information processing [577]. Attention
depends on the vigilance level and, therefore, can be predicted through it; however, direct-
edness of attention is independent of vigilance and, thus, should be considered separately.

It seems that directedness of attention can be conceptualized as internal attention
(self-focus) and external attention (environment-focus). Some healthy individuals are generally
well tuned into both internal and external events, which helps them to flexibly reallocate
attention ‘in’ and ‘out’ in order to adapt their behavior to the needs of the current situation.
However, others have the propensity to be self-focused or environment-focused. Exagger-
ated unbalanced attentional focus is typically associated with neuropsychopathology and
is known as attentional bias. Attentional biases are characterized by an inability to flexibly
reallocate attention to relevant internal or external stimuli, for example, an increase in the
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orienting of attention towards threat-related stimuli and attentional avoidance/difficulty
disengaging attention from irrelevant but negatively valanced stimuli [578].

When enhanced focus on the external environment prevails (e.g., family, friends, social
and work duties, including the distracting effects of environment), the individual is more
alert, anxious, or irritable due to the inability to inhibit irrelevant/inappropriate external
information. Therefore, there is a predominance of perceptually guided contents over self-
and somatically-guided contents; this is usually associated with anxiety, irritability, stress,
and mania [579–582].

When an individual has excessive self-focus, it elevates volitional control (including
both execution monitoring and internal focus) but also interferes with automatic actions,
which stems from an inability to inhibit irrelevant/inappropriate internal information [583].
Excessive self-focus occurs at the expense of external environmentally oriented contents
and their respective social and psychomotor functions. This shift may be manifested in
symptoms such as ruminations, various somatic and vegetative symptoms, social with-
drawal, lack of motivation, and psychomotor retardation, usually observed in depression
and fatigue [300,581,582,584,585]. Moreover, because excessive resources are allocated to
processing internal mental contents, other outward-oriented aspects such as attention,
working memory, and episodic memory are compromised as well, which can lead to
various neuropsychological deficits.

Notice that in both scenarios (excess or deficit of internal attention), perceptually
guided contents (environment) are not properly integrated with the somatic- and self-
generated contents (self), which results in their disbalance. This disbalance of internal
and external contents seems to be abnormally tilted towards either the internal or external
content, which, importantly, also goes along with different degrees in the expression of
self [300,305].

Converging evidence suggests that directedness of attention is reflected in the charac-
teristics of qEEG phenotypes [21,485,579,586–593].

4.2.4. Emotional–Motivational Tendency

Emotional–motivational tendency reflects the predisposition of an individual to en-
gage in certain types of emotional (positive vs. negative) and motivational (approach
vs. withdrawal) responses [594]. Hence, the emotional–motivational tendency may be
viewed as a ‘diathesis’ (trait) that predisposes an individual toward a particular affective
and motivational style and establishes risk factors for developing certain psychopatholo-
gies [595–600].

Indeed, excessive negative and withdrawal tendencies can result in behavioral inhibi-
tion expressed as fatigue, lack of energy, apathy, and slow psychomotor functioning, with a
stronger hormonal response to stress (higher cortisol level), where more situations/stimuli
are perceived as stressors [169,171,599,601,602]. Likewise, it is accompanied by reduced
baseline cellular immune function, negativity bias (alongside reduced reward sensitivity),
and sadness, fear, or depression [596,599,603–605]. The tendency toward negativity and
withdrawal is associated with a personal pessimism bias—the person believes that negative
events are more likely and positive events are less likely to happen to him/her than they are
to other people. The tendency toward negativity and withdrawal has also been observed in
psychiatrically healthy offspring of individuals with depression [606].

Conversely, excessive positive and approach tendencies can result in the individual
having excessive behavioral activation, expressed as increased muscle tension, agitation,
and somatic symptoms of arousal, with smaller hormonal responses to stress (fewer situ-
ations/stimuli are perceived as stressors), positive emotions, mania, jealousy, anxiety, or
anger [599,602,607–610]. The tendency toward positivity and approaching tasks/challenges
is associated with a personal optimism bias—the person believes that positive events are
more likely and unpleasant events are less likely to happen to him/her than they are to
other people [611,612].
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Similar to other domains of functioning, converging evidence has demonstrated
that emotional–motivational tendency is reflected causally in the characteristics of qEEG
phenotypes with high reliability and internal consistency [76,170,613–622] and is associated
with a genetic risk for depression [623].

4.2.5. Sociability (Sensory Stimulation and Excitement Tolerability)

Sociability is a trait related to sensation/experience seeking, disinhibition propensity,
and boredom susceptibility. It reveals a tendency to interact well with others and the degree
to which a person can tolerate/enjoy sensory stimulation from people and situations.

Sociability is a complex facet of introversion–extraversion [499,624], which is related to
behavioral inhibition and activation systems (BIS/BAS) [499,625,626] and is associated with
cortical arousal via the ascending reticular activating system (ARAS) [627]. In this context,
introverts are believed to have a lower threshold for arousal; therefore, they are assumed to
be chronically ‘over-aroused’ and, thus, tend to seek a state of lower arousal. Conversely,
extraverts are believed to have a higher threshold for arousal, as they are assumed to be
chronically ‘under-aroused’ and tend to seek a state of higher arousal [537,628].

Both under- and over-sociability are associated with a raft of psychopathologies [629,630].
Thus, lack of sociability can result in the individual preferring low sensory stimulation due
to heightened baseline cortical arousal, having a lower threshold for arousal, and, therefore,
high behavioral inhibition, increased emotional tension, and depression. Such a person is
excited by low-intensity signals and inhibited by high-intensity signals.

In contrast, excess sociability can result in the individual preferring strong sensory
stimulation and a propensity for sensations/excitement/novelty-seeking due to base-
line cortical under-arousal, having a higher threshold for arousal and, therefore, low
behavioral inhibition [631]. Such a person is excited by high-intensity input signals
and inhibited by low-intensity ones. In the extreme, over-sociability is associated with
psychopathology [632–634], including mania, narcissism, psychopathy, substance abuse,
excessive venturesomeness (excitement-seeking), and various forms of externalizing (risk-
taking, grandiosity, exhibitionism, manipulativeness) [635], suggesting that excessive socia-
bility potentially represents a vulnerability factor for other conditions.

Converging evidence suggests that sociability is also reflected in the characteristics of
qEEG phenotypes [494–496,499,501,636–642].

4.2.6. Anxiety Tendency (Anxious Arousal vs. Anxious Apprehension)

Anxiety is one of the best-known and oldest evolutionary systems evolved in humans.
It results from a set of information-gathering reactions that allow the individual to face
uncertainty and danger and survive. Despite being adaptive, since it helps us avoid
dangerous situations and to achieve our goals, anxiety also causes significant suffering and,
in its extreme forms, can be debilitating.

Biologically, there are two subcomponents of anxiety: somatic and cognitive [643]. So-
matic anxiety (or anxious arousal) is a physiological component of anxiety, characterized by
autonomic arousal and somatic tension (high blood pressure, pounding heart, sweating,
dryness of mouth, difficulty breathing) [643–645]. Cognitive anxiety (or anxious apprehen-
sion) refers to the mental component of anxiety and consists of expectations about and
anticipations of a difficult task or threat, success or self-evaluation, worrying, negative
self-talk, and disrupted attentional processes [643,645,646]. It is important to stress that
each of the two components of anxiety is associated with different psychopathologies.

A person with an anxious arousal tendency is usually alert during the distraction-free
resting-state period and experiences rest periods as more aversive and anxiety-inducing.
Extreme anxious arousal is typical for neurosis, panic or phobic disorders, and PTSD [647,648].

A person with an anxious apprehension tendency usually has (a) higher expectation
for the perceptual events, which reflects higher nonselective readiness for perception and
action, even in the absence of any goal-directed task and (b) excessive worry for the future
and verbal rumination about those expectations. Highly expressed anxious apprehension
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is typical for generalized anxiety disorder, obsessive–compulsive disorder, and separation
anxiety disorder [647,648].

Again, converging evidence suggests that both components of anxiety are reflected in
the characteristics of qEEG phenotypes [497,649–653].

4.2.7. Stress Regulation (Resistance and Recovery)

Considering the link between qEEG oscillatory patterns and stress regulatory sys-
tems such as the hypothalamic–pituitary–adrenocortical (HPA) axis and the sympathetic–
adrenomedullary axis [168] (see Section 2.7), as well as the association between early life
adversity and the subsequent stress regulatory profile in the adult [654,655], it is reasonable
to consider stress regulation as a trait.

Stress regulation determines the ability of an individual to withstand, adapt to, and
recover from stress [656]. The brain plays a central role here since it perceives and de-
termines what is threatening and executes behavioral and physiological responses to the
stressor [657]. When stress regulation is altered (due to chronic stress or individual vul-
nerability), there is (a) a decreased capacity to resist, adapt, and recover from stress and
(b) a tendency to perceive the stressor as a threat (ether to one’s physical safety or to one’s
ego/social sense of self). For example, early life adversity may lead to persistent changes in
the neural network balance that increase sensitivity to emotional stimuli [658] and is often
associated with blunted HPA-axis reactivity.

Stress dysregulation is associated with a transition from adaptive to maladaptive stress
responsivity and stress-related disorders [654,655] and neuropsychopathologies such as
inattention, depression, anxiety, and insomnia.

It seems that stress regulation is also reflected in the characteristics of qEEG pheno-
types [177,659–663].

4.2.8. Overall Brain Resources (Resilience)

The overall brain resources reflect the brain’s morpho-functional integrity, capacity
for self-reorganization, self-regulation, and adaptation, and information processing effi-
ciency. The brain resources domain relates to the general capacity of the brain to withstand
neuropathological changes before overt behavioral, functional, or cognitive impairment
manifests. This domain unites brain and cognitive reserves [664–666]. Brain reserve refers
to quantitative aspects of the brain (structure or ‘hardware’), including but not limited
to the number and size of neurons, the number of connections between neurons, fiber
density, axonal diameter, the degree of myelination, the integrity of corticocortical and
thalamocortical circuits, hippocampal volume, the number of active synapses in the thala-
mic nuclei, and the number of potential neural pathways [664,667–669]. Cognitive reserve
refers to the ‘neuropsychological competence’ aspects of the brain, that is, how well the
underlying ‘hardware’ is used (functions or ‘software’). It reflects a process where the brain
actively attempts to cope with brain challenges or damage by using pre-existing neural
networks and/or by recruiting additional or alternative brain regions to support the task
network. Cognitive reserve also includes the processes of network efficiency and neural
compensation [664,666,669,670].

In this view, the dualism of brain and cognitive reserves is considered within a single
framework—brain resources—where the term ‘resource’ refers to the joint structural and
functional characteristics of brain networks that offer cognitive protection in disease.

A person with high overall brain resources has increased compensatory and neu-
roprotective mechanisms that give the person increased capacity for effective cognitive
functioning in spite of neuropathophysiological challenges or aging. A person with high
brain resources has a younger brain phenotype and is more likely to remain within normal
limits for a longer period of time despite the possible parallel progression of underlying
disease [671]. Therefore, a person with high brain resources and a high disease burden
may remain asymptomatic due to compensatory and resistant adaptations of the functional
brain network [667,672,673] (Figure 4).
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Figure 4. Diagrammatic representation of the interrelation between brain resources, age, and amount
of brain dysfunctions or neuropathology. Red arrow = brain dysfunctions or neuropathology. Indi-
viduals with high brain resources are able to compensate for dysfunctions or structural damage for
a longer period of time, and thus, symptoms do not manifest at low/moderate degrees of neural
dysfunction/damage. However, after reaching a critical threshold at which the compensatory mech-
anisms are exhausted, clinical impairment progresses quickly. In contrast, slight brain damage or
dysfunction is sufficient to produce clinical symptoms in individuals with low brain resources due to
a weaker deployment of functional compensatory mechanisms. Consequently, they exhibit clinical
symptoms at an earlier age and stage of the disease; however, these clinical symptoms progress
slowly as pathologic neural changes slowly accrue. The period of time that elapses between the onset
of clinical symptoms and the advanced stages of cognitive impairment is shorter in individuals with
high brain resources compared to individuals with low brain resources because individuals with high
brain resources remain asymptomatic during the early stages, before compensatory mechanisms are
exhausted, but individuals with low brain resources already show clinical symptoms during those
stages (description is modified from [674]).

A person with low overall brain resources has decreased compensatory and neuro-
protective mechanisms that decrease the capacity for effective cognitive functioning even
without neuropathophysiological challenges. A person with fewer brain resources has an
older brain phenotype, so he or she may express symptoms after a trivial brain dysfunction
due to redundant neural pathways and an inflexible or intolerant functional network.
Likewise, the brain has a lower threshold for the expression of functional impairments
following the onset of brain pathology [667,672,673] (Figure 4).

Since the qEEG oscillatory pattern reflects structural and functional integrity of
the brain (see Sections 2.4 and 2.5) and causally relates to neuropsychopathology (see
Section 2.15), it is not surprising that overall brain resources are reflected in the characteris-
tics of the qEEG phenotype [8,112,113,116,119,121,122,136,143,144,185,187,671,675–678].

From this brief overview of the fundamental and primary domains of functioning, it
is clear that each (a) exhibits trait properties; (b) is expressed along the entire continuum
of functioning, from health to pathology; (c) is transdiagnostic; and (d) is reflected in the
characteristics of qEEG phenotypes.

It has been proposed that trait characteristics and qEEG phenotypes should only be
evaluated during a resting state [453,519].

4.3. Why the Resting State?

Studies of the closed-eyes resting condition provide an important opportunity to examine
baseline qEEG patterns unbiased by any task. The resting-state condition avoids the
confounding effects of visual scenes, instructions, and task execution (i.e., expectation
matching, strategies employed, motivation or lack of it, fatigue, and anxiety associated with
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task performance). Additionally, the resting state seems more self-relevant than standard
cognitive tasks, which typically drive subjects to direct their attention away from their
personal concerns [50]. The resting-state condition permits the assessment of the ‘pure’
self-relevant baseline brain and mind activity [51]. This activity reflects the individual type
of spontaneous processing of an internal mental context (top-down processing) [52], such
as random episodic memory [53] and related imagery [54], conceptual processing [55],
stimulus-independent thought [56], self-reflection, internal narrative, and autobiographical
self [57–59]. The frequently expressed concern that unconstrained brain activity varies
unpredictably does not apply to the passive resting-state condition of the human brain.
Studies have shown that “it is rather intrinsically constrained by the default functionality of the
resting-state condition [60]” (references in this citation can be found in [450], p. 1051) and
that this constrained default functionality comprises the individual neurophysiological type.

Indeed, numerous studies have demonstrated that the resting-state qEEG represents
the default functional infrastructure of the brain that is involved in information processing
related to inherent and relatively stable capacities of the individual, such as emotional
regulation, cognition, and behavior as well as individually specific neurocognitive mech-
anisms underlying adaptation to motivationally and intellectually challenging tasks or
conditions and the systemic self-regulation of brain functions [1,11,679–681]. Additionally,
relations between personality traits and resting-state activity have been found for each of
the Big-5 personality traits (for a review, see [682]). The resting qEEG has a non-random
complex spatial–temporal structure (see Section 3), is highly predictable (Section 2.2), and
is regulated by a complex neuroanatomical and neurochemical homeostatic system (see
Section 2.9). This system is genetically based (Section 2.3) but also demonstrates some
flexibility, e.g., epigenetic changes as a result of lifestyle changes (Section 2.1). The resting-
state qEEG may thus serve as an intrinsic functional ‘fingerprint’ that captures trait-like
features of brain organization that are relevant for neurocognitive functioning in healthy
and pathological conditions. This intrinsic functional ‘fingerprint’ reflects an individual’s
neurophysiological type, which can be captured by the qEEG phenotype [1,392,421].

The importance of the resting-state qEEG is supported by evidence that functional
brain organization, as measured in the resting condition, is predictive of task execution,
performance, and behavioral reactions during the actual activity or task [329,683–686].
Additionally, most of the energy used by the brain goes into supporting resting and
ongoing neuronal activity [687–689]. A task-related increase in neuronal metabolism is
usually small when compared with this large resting energy consumption [689]. These
facts also support the importance of the resting-state neuronal activity that consumes most
of the brain’s energy.

In this context, the resting-state qEEG manifests baseline trait mechanics of self-
organization that regulate multiple brain systems, thus adapting the brain and body to
an ever-changing environment [690,691]. Thus, the resting-state qEEG reflects intrinsic
baseline/default activity that instantiates the maintenance of information for interpreting,
responding to, and even predicting environmental demands. Here, the resting-state consti-
tutes a reference baseline, relative to which all cognitive and physiological states in healthy
and pathological conditions can be considered [288,289,680].

Thus, following Fox and Raichle [692], it can be suggested that the pattern of the
resting-state qEEG (qEEG phenotype) serves as a functional localizer (‘content’), providing a
priori information about the way in which the brain will respond across a wide variety of
tasks during healthy and pathological conditions (‘context’). Indeed, in all of the neuropsy-
chopathologic conditions we studied, none of the participants could reach a proper resting
state that is typical for a healthy brain [152,244]. The corollary is that such a system is less
able to cope with the demands of a constantly changing environment.

Based on this logic, we consider abnormality in a closed-eyes resting qEEG to be a core
feature of any neuropsychodysfunction or -pathology [152,244]. In this context, alteration
in the closed-eyes resting qEEG oscillatory pattern (qEEG phenotype) may constitute a
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tonic component of qEEG microstructural organization that can serve as the field of action
for abnormalities governed by multiple causes [450].

4.4. qEEG Phenotype, Personality Traits, and Norm-Pathology Continuum

The above review (Section 4.2) demonstrates that variability in personality traits and
their associated characteristics of qEEG phenotypes are expressed in both healthy and
pathological conditions. This suggests that personality traits and neuropsychopathology
are not distinct entities, but rather, they manifest along a unified continuum of functioning,
where mental diseases can be considered to fall along multiple continuous trait dimen-
sions, with traits (and corresponding characteristics of qEEG phenotype) ranging from
normal to extreme (pathological). Here, neuropsychopathology is considered in terms of
dysfunctions of various kinds and degrees. In other words, neuropsychopathology is the
over-expression or under-expression of personality traits and the associated characteristics
of qEEG phenotypes that are otherwise moderately expressed in healthy conditions.

Such a view assumes a dimensional approach to neuropsychopathology, which con-
siders the full range of variation, from normal to abnormal functioning, where both ex-
tremes of a dimension may be considered ‘abnormal’ [515]. For example, when anxiety
increases beyond an optimal level, (a) one’s perceptual field narrows and attention to
task-relevant cues fails [693], (b) the ability to store and retrieve task-relevant information
deteriorates [694,695], and (c) distracting and task-irrelevant thoughts increase [696]. In its
extreme form, it is associated with anxiety disorders. On the opposite end of the dimension,
a complete lack of anxiety may be associated with aggressive or psychopathic behavior.
Consider another example from [697] (p. 116): “[ . . . ], persons that fall in the high-end of
sociability dimension, have positive emotional and high approach-motivation tendencies
are also high in the novelty-seeking trait and low in the harm-avoidance trait (Davies,
2012; Eysenck, 1990). Such people are likely to find extravagance, novelty, and excitement
motivating but will be relatively insensitive to the feelings of others, punishment for breach-
ing rules, or the possibility of failure (Cavanagh, 2005)” (references in this citation can be
found in [697]). In the extreme, it may be associated with mania, narcissism, psychopathy,
substance abuse, excessive venturesomeness (excitement-seeking), risk-taking, grandiosity,
exhibitionism, and manipulativeness [635]. On the opposite end of the dimension, lack of
sociability may be associated with emotional tension or depression.

Considering a dimensional approach to neuropsychopathology, the following func-
tional continuum, through normality (health) and mental disorders (psychopathology), can
be proposed (Figure 5).
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Figure 5. The norm-pathology continuum.
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Here, the focus is on the expression of the characteristics of qEEG phenotypes (neural
mechanism) over a continuous range. A corresponding mental characteristic that is linked
to a particular qEEG phenotype (or its features) would also show a range of expression.
Importantly, ‘functionality’ is the degree to which the individual is able to function, given
various degrees of expression of the mental and associated qEEG phenotype’s character-
istics [519,582]. Hence, the degree of functionality associated with the expression of the
mental characteristic corresponds to the degree of the expression of a given characteristic(s)
of the qEEG phenotype. The expression of the characteristics of qEEG phenotypes in the
middle range (green, Figure 5) is expected to correspond to optimal neurophysiological
and mental functioning. Indeed, it has been shown that optimal characteristics of the
qEEG phenotype are associated with optimal cognition, good personality structure, and
overall well-being [506,582,612,677,698,699]. Similarly, it has been shown that (a) moderate
values of self-esteem are optimal for psychological functioning, where both high and low
values lead to dysfunction [700], (b) moderate anxiety is associated with the best perfor-
mance [701,702], and (c) moderate vigilance/arousal is likewise associated with optimal
performance [703–705]. For more examples, see [582].

Expression of qEEG phenotype characteristics outside the optimal range is expected
to be associated with changes in the functionality of mental characteristics that are ‘normal’
but fall in a sub-optimal zone—ordinary functioning (in blue, Figure 5), representing a
state of increased risk for mental dysfunction. The inefficient functioning range (orange area,
Figure 5) on either end of the spectrum of the ‘normal’ range can be seen as a transition zone
towards probable psychopathology. It can be defined as a range where personal features
and behaviors cause difficulties but are nonetheless adaptable enough to avoid being
classified as disordered [706]. Further extremes in the expression of the qEEG phenotype
characteristics (purple area, Figure 5) are associated with states that are dysfunctional and
may occur in a pathological condition as it leads to impairments in behavior. Extremes are
always maladaptive, with no exception. Indeed, studies on healthy people showed that
extreme neural values, even in otherwise normal individuals, impair their functionality
and that the amelioration of extreme readings leads to improved functioning, whereas the
middle values favor optimal functioning [582].

From an information-processing point of view, neurocognitive capacities follow a
normal distribution in the human population, varying from being extremely efficient to
extremely inefficient, depending on the underlying genetic makeup, trait predispositions,
learning history, life events and style, and state variables. Since neurocognitive processes
form and shape individual behaviors, sub-optimal neurocognitive capacity can translate
into behavioral symptoms. The frequency and intensity of these symptoms will be continu-
ously distributed in the general population—with most below (or above) the threshold for
clinical significance. Here, normal function becomes impaired when symptoms escalate,
making it difficult to maintain normal relationships and occupational productivity.

In the proposed continuum, the optimal range has special importance and, thus, de-
mands more explanation. The optimal range of the qEEG phenotype characteristics repre-
sents certain ‘idealized’ characteristics displayed by the majority of healthy subjects within
the same age group without current or past neurologic or mental health complaints or
other illnesses or traumas that might be associated with brain dysfunction and without
a family history of neurologic and psychiatric diseases [455,707,708]. It is assumed that
the optimal range of the qEEG phenotype characteristics is a zone in which an individ-
ual has a higher probability of achieving an optimal performance compared to a qEEG
phenotype with characteristics that fall outside the optimal zone (see above). Optimal
functioning ensures the efficient recruitment of resources, the adequate mobilization of
energy, and the utilization of skills in proportion to the task at hand. In this context,
optimal functioning includes:

• Successful performance;
• Maximum efficiency;
• Minimal cost;
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• Temporal adequacy.

Here, optimality is understood in terms of a trade-off that balances the accuracy or
benefit (result) of performance against an appropriate cost (the time, energy, memory,
and computational resources). It is consistent with (a) an evolutionary trade-off approach,
according to which a biological system (here, the brain) maximizes a specific fitness function
that results in an optimal phenotype [709] that reflects trade-offs among traits to optimize
fitness and (b) the principle of optimality in biology (formulated by Liberman et al. [710]) that
relates to the establishment of spatiotemporal patterns that are maximally predictable and
can hold the living state for a prolonged time [711]. In this context, optimal functioning can
be considered a complex trait-like construct—an optimal phenotype.

Since there are neurophysiological limits as to how high or low qEEG characteristics are
able to go, only the optimal range offers enough ‘operating room’ to increase or decrease
a given qEEG characteristic (deviation to both sides away from the optimal range) when
faced with a task and in dependence on the internal or external environment; thus, the
optimal (mid) range is by definition maximally adaptive.

In between optimality and dysfunction, there lies a whole raft of conditions associated
with varying kinds and degrees of functionality. Therefore, health and diseases can be
conceptualized non-categorically as the heterogeneity of phenotypes that exist along a
continuum between optimality and dysfunction. In this context, health can be defined as the
optimal, flexible, and successful interaction of an organism with a complex and changing
environment. Thus, brain health can be defined as the development and preservation
of optimal brain integrity and neural network functioning for a given age [712] and not
merely the absence of disease. Disease can be defined as the rigid persistence of context-
insensitive operational set-points. Here, healthiness is not a difference in kind from the
clinical population but merely a matter of dimensional divergence distance.

Deviation of qEEG characteristics from the optimal range does not necessarily reflect
gross abnormality or a pathologic process. Deviation means that the brain functions less
efficiently, thus spending more energy and resources to achieve a needed function, opera-
tion, or task (Figure 5) [153,449,707] or having increasing difficulties in finding resources
available for compensation in order to preserve core cognitive functions [713]. The latter
places more stress on available resources. Inefficiency in handling the normal challenges
of daily life, as well as the adverse physiological consequences, can be genetically or de-
velopmentally programmed or mediated by lifestyle choices. Additionally, depending
on the degree, deviations may limit the range of the cognitive, emotional, and behavioral
repertoire accessible to the individual.

If the compensatory mechanisms of the brain are intact, then a small deviation is un-
likely to be pathologically significant and lies within the bounds of normal individual
variability (despite being sub-optimal). Indeed, the brain may have many built-in alternative
solutions, which are revealed and manifested via neurological cases of resilience. Consider,
for example, the mechanisms of dynamic rerouting of information streams in the brain
that are necessary to maintain functional integrity in the face of structural network failure.
However, the pathogenic significance of qEEG deviations from the optimal range increases
when compensatory mechanisms of the brain are decreased or exhausted. This is usually
associated with strong and very strong deviations from the optimal range (Figure 5). In-
deed, since neuro-cognitive processes form and shape individual behaviors, sub-optimal
neurocognitive capacity can translate into behavioral symptoms and particular dysfunc-
tions or abnormalities that may already be associated with neurological, developmental,
and psychiatric disorders when the clinical significance threshold is crossed [455,707,714].

An important consideration regarding dimensionality is that (a) the relationship
between increasing disruptions in functional mechanisms reflected in the characteristics
of qEEG phenotypes and the severity of symptoms may be non-linear, with set-points
that mark a transition to more severe pathology [515], and (b) a particular characteristic
of the qEEG phenotype may have a different meaning and reflect a different underlying
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pathogenetic process as a function of the overall context within which it emerges (‘contextual
functionality’) [715].

Since there is abundant scientific evidence (see above) that normative qEEG val-
ues are the result of brain electrical rhythm autoregulation by a complex homeostatic
system [248,449] that displays a characteristic metastability around certain homeostatic
levels, then deviations in characteristics of qEEG phenotypes may reflect a departure from
homeostatic regulation that is a new stable state of altered brain activity [716] and can be
a pathological ‘set point’ if this deviation is chronic and outside the normal range. This
adaptation is referred to as ‘allostasis’ and is defined as ‘homeostasis through change’ [716,717],
where normal mechanisms for homeostatic regulation have spun out of the physiological
range, which can lead to a chronic condition of heightened vulnerability to pathology. The
price the brain pays to adapt to adverse psychosocial or physical situations (environments),
which is related to how inefficient the response is and how many challenges the brain
experiences for a sustained period of time, is defined as the allostatic load [718,719]. Allo-
static load is mediated by factors such as genes and early development, as well as learned
behaviors, reflecting lifestyle choices of diet, exercise, drug use, and so on [716], all of which
are reflected in the qEEG phenotype (see above), which is a long lasting ‘brain signature’.

Considering (a) the dimensional approach to neuropsychopathology (see above),
(b) the functional continuum of normality–pathology (see above), and (c) the fact that the
same symptoms (though with different expressions) are present in the majority of psychi-
atric disorders [720] due to the transdiagnostic nature of primary domains of functioning
(traits) and their associated qEEG phenotypes’ characteristics (see above), neuropsychopathol-
ogy can be conceptualized as the degree of deviations across every domain (assessed by qEEG
phenotypes’ characteristics) and their disposition (stabilized relative to each other’s positions
on the normality–pathology continuum), where the domain with the largest deviation (or
combination of several deviant domains) may represent the leading pathogenic marker or
risk factor that manifests as either in the permanent mental constitution or a heightened
vulnerability to mental disorder. This is in line with animal models of neuropsychiatric
disorders, where domain interplay was demonstrated [721].

In this context, developing a new diagnostic model should involve building a brain-
based conceptualization of psychiatric illnesses [722], where neuropsychopathology is quanti-
fied through qEEG phenotypes that are defined by the degree of deviation from the normative
(age- and sex-matched) data and the disposition of qEEG characteristics and the associated
transdiagnostic primary domains of functioning (traits) that are placed in the functional
continuum of normality–pathology. Here, the deviation from the normative values provides
a probabilistic measure of the likelihood that the individual’s electrical activity reflects
abnormal brain functioning. Thus, concepts of ‘normal’ or ‘abnormal’ can be redefined based
on the probability of qEEG characteristics associated with transdiagnostic primary domains
of functioning relative to normative data, where ‘abnormality’ is defined statistically as
improbable values exceeding those expected randomly [153]. It is assumed that the more
statistically unusual the observation, the more likely it is that the underlying brain system is
clinically abnormal. This provides a quantitative and objective criterion for the severity of
brain dysfunction in an individual. From this viewpoint, the distinction between ‘normality’
and ‘abnormality’ depends upon the threshold value established in any particular set of
transdiagnostic primary domains of functioning [153] along the normality–pathology con-
tinuum. The proposed framework of brain profiling diagnosis provides valuable insights
into the etiology of psychiatric diseases and allows researchers to understand how usually
adaptive processes may become part of vicious circles that result in pathology; it also has
important implications for identifying at-risk individuals, initiating early prevention, and
tailoring treatments, thereby providing more cost-effective and efficient diagnostic tools.

5. Summary and Concluding Remarks

There is mounting evidence that the problems experienced by the current paradigm of
psychiatric diagnoses are due to a lack of brain-related etiological knowledge about neu-
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ropsychopathology [2,276,722–729]. An important step towards solving these problems is
through formulating a theoretical–conceptual framework that relates clinical manifestations
of mental disorders to individual history, lifestyles, and brain dynamics in a comprehensive
unifying manner.

Here, such a framework is proposed, and it is based on knowledge accumulated
over many decades (including recent developments) from systemic, cognitive, and clinical
neuroscience, where mathematically and statistically derived analyses (neurometrics) of
qEEGs provide quantitative information about brain activity that is related to anatomical
and functional integrity, developmental maturation, and the mediation of sensory, percep-
tual, and cognitive processes as well as clinical manifestations of mental disorders. The
resulting patterns of qEEG characteristics—qEEG phenotypes—are placed on the functional
continuum of health and pathology of primary domains of functioning (traits), which have
a dimensional nature and are transdiagnostic. In this context, the typicality or atypicality
of each qEEG phenotype is quantified by the disposition of qEEG characteristics on the
distribution of phenotypic parameters along the health–pathology continuum, where more
atypical phenotypes have more extreme positions. This theoretical–conceptual framework
has neurobiological/etiological relevance and uses dimensionally parameterized physio-
logical characteristics, mental functions, and neuropsychopathology; we believe it provides
better clinical diagnostic and prognostic utility of qEEGs.

However, more work is needed to arrive at (a) the optimal number and types of pri-
mary domains of functioning (traits), (b) the optimal repertoire of qEEG phenotypes, (c) the
‘library’ of qEEG characteristics within the qEEG phenotypes associated with the primary
domains of functioning, and (d) adequate thresholds in the values of qEEG characteristics
(age- and sex-stratified) that signal the transition from one functioning condition to another
along the health–pathology continuum.
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Abstract: Depression is a frequent mental affective disorder. Cognitive vulnerability models propose
two major cognitive risk factors that favor the onset and severity of depressive symptoms. These
include a pronounced self-focus, as well as a negative emotional processing bias. According to two-
process models of cognitive vulnerability, these two risk factors are not independent from each other,
but affect information processing already at an early perceptual processing level. Simultaneously,
a processing advantage for self-related positive information including better memory for positive
than negative information has been associated with mental health and well-being. This perspective
paper introduces a research framework that discusses how EEG-ERP methodology can serve as a
standardized tool for the decoding of negative and positive processing biases and their potential
use as risk markers of cognitive vulnerability for depression, on the one hand, and as protective
indicators of well-being, on the other hand. Previous results from EEG-ERP studies investigating
the time-course of self-referential emotional processing are introduced, summarized, and discussed
with respect to the specificity of depression-related processing and the importance of EEG-ERP-based
experimental testing for well-being and the prevention and treatment of depressive disorders.

Keywords: cognitive vulnerability; depression; self-referential processing; emotion processing;
language; event-related brain potentials

1. Introduction

Affective disorders such as depression are among the most common mental disorders
in Western industrialized societies, and are on the rise worldwide. According to the
WHO (World Health Organization), already more than 300 million people worldwide
currently suffer from a depressive disorder [1]. The lifetime prevalence is 16–20% for both
sexes [1]. The onset of major depressive disorder is early in life, starting during adolescence,
and affecting emerging adults, if untreated, during their whole lifespan [2]. Due to its
high prevalence, as well as due to its multifactorial negative consequences for mental and
physical health, the prevention of depressive symptoms is of outstanding clinical and health
economic importance [1]. Indeed, depressive disorder affects the whole person—the body,
the brain, and the mind—and related affective, motivational, and cognitive processing [3].

Regarding emotional processing, depressed individuals are found to sustain atten-
tion to negative stimuli, have difficulties in the inhibition of negative information, and,
compared to non-depressed individuals, recall negative information better than positive
information, e.g., [4,5]. These processing biases, described in the literature as negativity
bias, have been repeatedly reported in studies investigating acute or remitted depressed
individuals. Moreover, the negativity bias has been confirmed in vulnerable individuals,
i.e., individuals at risk of depression e.g., see [4–9]. According to cognitive vulnerability
models, two major cognitive risk factors can be identified that promote the occurrence and
severity of depressive symptoms and the development of depressive symptoms prior to a
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clinical diagnosis of major depressive disorder [10]. These cognitive risk factors include
an increased self-focus and a negative emotional processing bias [10,11]. Thus, accord-
ing to cognitive vulnerability models, for the diagnostic decision of whether processing
preferences for negative stimuli are specific risk markers of depressive symptoms, it is
essential to determine whether these processing biases occur in reference to one’s own self.
Theoretically, a pronounced self-reference or self-focus, negative self-schemas, and negative
attitudes towards the self are among the core characteristics of a depressive personality
structure, and they are important causal disease factors characterizing depressed thinking
in cognitive theories of depression [12,13]. Accordingly, cognitive vulnerability models of
depression (for an overview, see [10]) assume that the aforementioned cognitive biases exist
prior to the onset of depressive disorders. Moreover, it is assumed that both self-referential
and emotional processing are linked in depressive disorders—specifically, it is assumed
that a focus on the self, including a negative view of the self, biases information processing
towards negative information [10].

In line with two-process models of information processing, cognitive vulnerability
models distinguish between a fast, predominantly associative, implicit, stimulus-driven
(bottom-up) processing mode and a temporally slower, reflective, and cognitively elabo-
rate and controlled (top-down) processing mode. Both the associative and the controlled
processing modes can occur during stimulus processing in a serial sequence. Any type
of stimulus appraisal occurring spontaneously can be assumed to be related to the fast
and associative processing level. Reflective and cognitively controlled stimulus process-
ing, including more elaborate processing of the information, can be assumed to follow
associative processing and to occur, in particular, when a task demands it, the context
requires information to be elaborated and appraised in-depth, or when responses triggered
by emotional stimuli have to be actively and cognitively regulated (an overview is given
in [10]). As illustrated in Figure 1, according to cognitive vulnerability models, in this infor-
mation processing cascade, self-reference acts as a processing filter that can bias emotion
processing already at early stages of associative information processing. Moreover, it can
trigger more elaborate and reflective self-related negative information processing at later
stages of cognitive controlled information processing. When viewed from the perspective
of information processing, according to these models, depressive vulnerability results from
the interaction between self-related and emotional processing occurring at early processing
stages, and the processing biases resulting from this interaction are considered the main
characteristics, or risk markers, of depressive vulnerability. Therefore, individuals in whom
an interaction between self-related and negative emotional processing and, consequently, a
self-negativity bias can be observed should be particularly vulnerable to the experience
of depressive symptoms compared to individuals not displaying self-referential negative
processing. Following cognitive vulnerability models, this self-negativity bias should be
best empirically observed during experimental task conditions that (a) favor self-referential
associative stimulus processing (e.g., spontaneous processing or passive viewing), (b) re-
quire cognitively reflective or cognitive-controlled processing of self-related emotional
content, and (c) use stimulus material that varies in emotional content and self-reference.
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Figure 1. Information processing according to cognitive vulnerability models of depression. For
further details, please see text and e.g., [10].

2. Decoding Processing Preferences by Means of EEG Methodology

Methodologically, non-invasive electroencephalography (EEG) and the analysis of
event-related brain potentials (ERPs) from the electroencephalogram (EEG) are ideally
suited neurophysiological techniques to unravel the processing biases of cognitive vul-
nerability and determine how these biases unfold over the time course of information
processing. EEG methodology allows precise insights into the time course of stimulus- and
information processing and their task- and mood-related changes. The latency, as well as
the amplitude modulation of early and late ERPs in response to the averaged stimulus
response recorded in different task contexts allow differentiated conclusions about the
different stimulus and information processing stages from stimulus perception to more
in-depth processing [14]. In contrast to behavioral methods, EEG methodology allows
the investigation of stimulus processing and its time course even in designs in which no
behavioral responses are required and no tasks are given other than to, e.g., read, watch, or
listen to the stimulus presentation. EEG methods therefore might be ideally suited to study
bottom-up processing without the confounding influence of task-related factors, while at
the same time allowing for comparisons between spontaneous (no task) and task-related
stimulus processing. Moreover, in event-related stimulus designs, a number of event-
related brain potentials can be elicited that, depending on the stimulus and processing
specificities, have been shown to be reliable markers of, e.g., perceptual, cognitive, semantic,
sensorimotor, or affective processing [14].

Regarding emotional processing, as exemplified in Figure 2, the processing of emo-
tional and neutral stimuli can elicit the modulation of early and late event-related brain
potentials (ERPs). For example, in an EEG-ERP experiment with emotional and neutral
stimuli, the amplitude amplification of early event-related potentials such as the EPN (early
posterior negativity) has often been observed, irrespective of the type of stimuli presented,
whether it is words or pictures of emotionally evocative scenes [15–17]. Due to its almost
obligatory elicitation across many study designs (passive viewing tasks, fast stimulus
presentations, or selective attentive stimulus processing), the EPN has been suggested
to be a prominent neural marker of early stimulus-driven processing of high-arousing
stimulus content of motivational salience [15–17]. Therefore, in the EEG, a larger EPN
amplitude modulation during the processing of stimuli of negative content, compared to
stimuli of positive or neutral content, would argue for a rapid, spontaneous, and bottom-up
driven allocation of visual attention to negative stimulus information that, according to the
two-process models mentioned above, occurs at fast—and probably still associative—levels
of information processing.
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Figure 2. Temporal processing in the EEG as exemplified by the modulation of event-related brain
potentials (ERPs).

In addition, the amplitude modulation of temporally later ERP components such
as the N400 ERP component, typically elicited by lexical stimuli (but also found to be
elicited by non-lexical stimuli such as faces), can indicate semantic processing due to
facilitated lexical access [18], facilitated activation of long-term memory representation [19],
or contextual integration of the stimuli [20]. Contextual integration can be established
either experimentally by a sentence context [20], a specific task context, or an internal
context such as the current mood and affective state of the participant [21–23]. Therefore,
N400 modulation by negative or positive stimuli compared to neutral stimuli occurring
approximately 400 ms after stimulus presentation during spontaneous stimulus processing
tasks could suggest mood-dependent processing of negative or positive content [22], with
mood acting as a context for stimulus integration and mood-incongruent stimuli being
processed differently from mood-congruent stimuli under mood induction (e.g., [21]). Last,
but not least, the enhanced amplitude modulations of late ERP components such as the
LPP (late positive potential) have been assumed to be associated with deeper processing of
the content of negative or positive stimuli (e.g., [22–24]). LPP modulation may therefore
indicate a sustained attentional focus for certain information of relevance for the person.
Moreover, its modulation has been shown to indicate cognitively controlled emotion
processing in a number of emotion regulation studies that used implicit and explicit
strategies of stimulus reappraisal or emotion suppression (e.g., [24,25]).

3. Research Gaps

Despite of the prominence of cognitive vulnerability models and the popularity of non-
invasive EEG methodology, so far, the literature lacks studies that systematically investigate
the time course of emotional processing and its interaction with self-referential processing
in line with cognitive vulnerability models in controlled experimental laboratory settings
in cognitively vulnerable individuals at risk of depression, with healthy, cognitively non-
vulnerable individuals as controls. Investigating the hypothesis of cognitively vulnerable
models by means of EEG-ERP methods requires appropriate experimental paradigms that
allow to experimentally manipulate the self-reference and the emotionality/the emotional
significance of the stimuli independently from, as well as in combination with, each
other to induce and trigger self-referential as well as emotional processing at the stage
of associative stimulus processing in a bottom-up fashion without any influence from
higher-order, task-induced self-referential or emotional processing. This seems crucial to
test the early interactions between self-reference and emotion processing postulated by
cognitive vulnerability models to occur during implicit associative processing conditions
compared to cognitively controlled reflective processing conditions (see Figure 1).

So far, experimental paradigms that investigated the interaction between emotion
and self-referential processing in healthy controls and depressive subjects have almost
exclusively induced self-referential processing explicitly via task instructions. In particular,
paradigms such as the Self-Referent Encoding Task (SRET [26]) have been used, e.g., [26–29].
In this paradigm, participants are exposed to positive and negative personality traits and
asked to judge which of the trait words describe them best. Afterwards, the participants are
often asked to recall the words presented. The results of several studies suggest that words
that have been judged to describe the self and are thus considered to be congruent with
the person’s own self-views are also better remembered e.g., [30], with healthy subjects
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differing from depressive subjects in their performance [26–29]. Studies recording EEG-
ERP parameters during the SRET in healthy individuals and in individuals suffering from
current or remittent depressive disorder [31–33] have found differential processing of posi-
tive and negative trait words as a function of group (healthy participants vs. participants
with current or remitted depression) during later stages of stimulus processing [31–34].
Temporally earlier processing differences in the time window of early ERPs as a function
of group (healthy participants vs. participants with current or remitted depression) have
been reported only occasionally in the SRET [33]. Given that in the SRET, self-reference
is induced via task instructions, there is a search for tasks and paradigms that allow the
independent experimental manipulation of the dimensions of self-reference and emotion
based on stimuli instead of task to assess not only the reflective aspects of self-referential
processing, but also the associative and stimulus-driven effects of self-referential processing
on emotion processing, independent from, as well as in comparison with, task-induced
affordances and cognitive demands.

Experimental paradigms that allow both, the independent experimental manipulation
and the joint assessment of the effects of the self-referentiality and the emotionality elicited
by a stimulus are paradigms such as the so-called ‘HisMine’ paradigm [for an overview see
below or the Supplementary Materials]. In its non-affective form, the HisMine paradigm
consists of singular and plural first-person pronouns (1PP: I, my), second-person pronouns
(2PP: you, yours), and third-person pronouns (3PP: he/she, hers, his), addressing the self
as the subject or object of self-experience, e.g., [35–37]. In its affective form (e.g., [38,39]),
self- and/or other-referential possessive pronouns (“my”/“his/her”) are combined with
nouns that vary in emotionality (positive, negative, and neutral) and are matched on the
two emotional dimensions of valence and arousal. In addition, the stimuli are matched on
several linguistic dimensions such as word length, or word frequency, or concreteness. The
nouns chosen can describe positive and negative emotions (e.g., fear, anger, or happiness),
emotion-inducing objects or events (e.g., gun, failure, money, or love), or neutral states
or objects rated by normative study samples as neither positive nor negative in valence
and low in emotional arousal (e.g., furniture, books, etc.). The nouns can be paired with
1PP, 2PP, or 3PP possessive pronouns to make reference to the reader’s own emotions
or to the emotions of a third person. In addition, nouns paired with articles instead of
pronouns can serve as controls, and the effects triggered by self- and other-referential
pronouns on emotion processing triggered by the nouns can be compared to a control
condition of non-referential emotional and neutral content. Thus, in summary and in
contrast to the SRET paradigm, the stimuli used in the HisMine paradigm can capture a
broad range of concepts and emotional feeling states. This may—with respect to cognitive
vulnerability models—allow a comprehensive insight into depression-related emotional
processing biases. Instructions in the HisMine paradigm can vary from passive viewing
and reading to spontaneous emotional evaluation (to trigger associative processing) to
active attentive and cognitively controlled processing of the stimuli (to trigger elaborate
processing). In combination with EEG methodology, this allows a reliable investigation of
the time course and the neural sources of implicit stimulus-driven and task-related explicit
self-referential emotional processing. Moreover, when pronouns are paired with non-verbal
stimuli (e.g., faces [25]), the specificity of self-referential processing can be explored across
and between emotion modalities (verbal and non-verbal). While the HisMine paradigm
is conceptualized to investigate the behavioral, subjective, and neuronal correlates of
self-referential emotional processing at the word–phrase level, similar approaches for the
study of self-referential and emotional processing at the sentence level have been recently
suggested (e.g., [40–42]).

The approaches using pronoun–noun phrases or sentences in combination with EEG
methodology might be interesting for the investigation of cognitive vulnerability. At
the same time, these paradigms might have the capacity to provide insight into what
characterizes “normal” and healthy information processing in terms of emotion and self-
referential processing. Akin to a negativity bias, a processing advantage for self-related
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positive information including better memory for positive than negative information has
often been observed, especially in association with the above-mentioned SRET self-reference
task [30]. The brain regions correlated with self-referential processing in the SRET are well
known from several imaging studies (e.g., [43,44]). Nevertheless, the understanding of the
time course of these biases as assessed by EEG methodology in combination with self-report
methods of mental health and subjective well-being is still scarce. Assessing ERP correlates
during pronoun–noun processing (e.g., HisMine paradigm) or at the sentence level might
provide solutions to this: At the phrase or the sentence level, the temporal dynamics of
processing preferences for self-referential negative and self-referential positive stimuli can
be investigated in the same paradigm and, therefore, unravel the risk markers of cognitive
vulnerability for depression and the predictive markers of well-being. In the following
sections, the results from previous studies investigating the correlates and, specifically, the
time course of self-referential emotional processing within the HisMine paradigm will be
briefly reviewed, summarized, and discussed with respect to their importance for future
studies investigating EEG-ERP-based experimental testing for the prevention, intervention,
and treatment of depressive disorders and the promotion of well-being.

4. Exploring the Time Course of Stimulus-Driven, Self-Referential, and Emotional
Processing by Means of EEG-ERPs

4.1. EEG Indicators of Healthy Self-Referential Emotional Processing

Using the methodological benefits of electroencephalography (EEG), a number of
studies have already explored when, i.e., at which processing stages during reading, self-
referential vs. other-referential pronouns are differentiated from each other [35–37], as
well as at which processing stages self-referential and other referential pronoun–noun
pairs referring to the reader’s own emotions or to the emotions of a third person are
distinguished from each other and from article–noun pairs having no personal reference or
having a neutral meaning [38,39]. In addition, using functional magnetic imaging it was
also explored whether brain regions belonging to the emotion, self, and reading networks
are involved in these discriminatory processes [45]. In the studies with self-referential and
other referential pronoun–noun pairs, the nouns (positive, negative, and neutral) were
paired with possessive pronouns (my or his) or articles (the) (e.g., my fear vs. his fear vs.
the fear, etc.). The possessive pronouns and articles were either shown together with the
nouns without any temporal delay between pronouns and nouns (SOA = 0 ms) [39] or
were presented, for example, as primes with a stimulus onset asynchrony (SOA) of 600 ms
preceding the presentation of the nouns to investigate and control for expectancy effects
induced by the presentation of the pronouns [38]. In neither of these studies was there
an explicit self-referential processing task given to the readers; rather, the task in these
studies was to silently read the presented words. This was followed by a spontaneous free
recall task and a subjective evaluation task (rating task) in which the participants rated
the words in terms of valence and emotion intensity (arousal). During reading and in the
EEG, early and late event-related potentials (ERPs) were analyzed as cortical indicators
of the time course of information processing, and ERP source estimations were used to
explore the brain structures involved in the modulation of these ERPs [39]. In addition,
changes in the activity of certain brain regions during reading were explored by functional
magnetic resonance imaging using whole brain analysis [45]. In the EEG-ERP studies
using the affective HisMine paradigm, an interaction of the two factors on which the word
pairs could vary, namely, the “emotionality” of a word pair (carried by the nouns) and
the “reference” (elicited by the pronouns vs. articles) occurred in the time window of the
late positive potential (LPP). The LPP modulation was elicited approximately 500 ms after
the stimulus onset and was most pronounced over the centro-parietal electrodes during
passive reading of the words. Comparing the processing of self-referential pronoun–noun
pairs against the processing of other referential pronoun–noun pairs or article–noun pairs
without personal reference revealed a stronger cortical processing of self-referential positive
words (self-positivity bias) in the time window of the LPP [38]. The source estimates of the
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LPP modulation patterns revealed significant activation in the brain structures involved in
autobiographical memory functions and in self-referential processing, which are part of
the so-called self-referential processing network, i.e., the cortical midline structures (CMS)
or the default mode network [46,47]. The stronger cortical processing of self-referential
positive words coincided with a better recall performance in the subsequent memory
test in which the participants recalled emotional words spontaneously and significantly
better than neutral words, especially when they were self-referential and possessed a
positive meaning [39]. In addition, analysis of the ratings obtained after the EEG session
showed that participants rated emotional words higher in valence and arousal when during
reading, the nouns were related to the own person (self-referential) than when the nouns
were related to others (other referential), and rated self-referential positive nouns higher in
arousal compared to when positive nouns had no person reference (article–noun pairs) [39].
This more in-depth processing of positive concepts, specifically when perceived as self-
referential in healthy participants, accords well with the results from the more explicit
self-referential processing tasks in the SRET studies (see Section 3 in this manuscript).
This self-positivity has received proof from a number of behavioral studies in which
healthy participants in the HisMine paradigm were asked to affectively judge the words
as positive, negative, or neutral based on their gut feelings e.g., [48–50], for an overview
see the Supplementary Materials. Across these behavioral valence–judgment studies,
healthy participants had significantly more valence–congruent judgments for positive
words than for negative or neutral words, specifically when these were linguistically made
self-referential by the pronoun pairings. The results fit with theoretical assumptions of
a self-positivity bias among healthy subjects. This self-positivity bias might stem from
positive self-views and overall positive self-concepts [51,52], that in healthy subjects, even if
sometimes too positive and optimistic, characterizes positive self-attribution in the service
of well-being and mood-regulation. The experimentally observed self-positivity bias in the
EEG studies thus suggests a spontaneously deeper encoding of self-referential emotional
pronoun–noun stimuli during reading (LPP), as well as better memory-related recall and
a faster valence-congruent appraisal, of these stimuli that is in line with these theoretical
assumptions of positive self-attribution in the service of well-being.

The observations of differential processing of positive vs. negative self vs. other vs. no
person-referential pronoun–noun stimuli as indicators of healthy and normal processing
receive further support from recent EEG-ERP and fMRI studies from other laboratories
investigating the interaction between self-referential and emotional information processing
via sentences. In these studies, pronouns and emotional words are embedded in a sentence
context e.g., [40–42].

When evaluated across studies, the findings from the EEG studies thus far support the
notion that in healthy subjects, the impact of self-referential processing on the processing of
emotional information first occurs at stages of information processing at which perceptual
information is processed, lexical information is accessed, and information is elaborated
in relation to subjective experiences stored in memory. Indeed, as graphically illustrated
in Figure 3, in healthy participants, a cascade of processing steps seems to precede and
occur in parallel prior to the self-positivity bias. Temporally earlier interaction effects of
self-referential stimuli on the processing of emotional stimuli may, in healthy subjects, be
restricted to a few occasions, including highly accessible information or top-down attentive
processing. In support of a cascade of processing steps preceding the self-positivity bias,
the results from an fMRI study [45] suggest that in healthy subjects, significant activity
changes in at least three brain region of interests in trials in which the positive content
of nouns and self-reference of first-person possessive pronouns are combined, including
activity changes in the MPFC regions involved in self-referential processing, the left and
right (anterior) insular cortex as a region of the salience network [53] and a relay or hub at
the interface of cognition, emotion, and the body (interoception), and the amygdala as a
significant emotion and relevance detector [54].
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Figure 3. Cascade of processing steps preceding and underlying the self-positivity bias during
reading of self-referential and other-referential pronoun-noun and non-referential article-noun pairs
according to the results from [39].

4.2. EEG Indicators of Cognitive Vulnerable Self-Referential Emotional Processing

In summary, the EEG results in healthy subjects summarized in Section 4.1. provide
indirect support for the assumptions that in tasks with no explicit self-referential instruction,
temporally earlier interactions between self-referential and emotion processing at early
stages of stimulus-driven associative processing could indeed be electrophysiological
markers specific to individuals experiencing depressive symptoms or individuals prone
to or at risk of or already suffering from depressive disorders. The first evidence for a
self-negativity bias in the processing of pronouns and nouns as a marker of depressive
symptoms was found in the EEG-ERP studies in which pronouns were used as primes
for the nouns and processing of self-referential pronoun–noun pairs was compared with
the processing of article noun pairs [38]. The participants’ depressive symptoms were
assessed via self-report standardized assessment tools, allowing assumptions about the
presence of depressive symptoms and their severity of actual depressive symptoms (the
BDI inventory [55]). The results showed that a deeper cortical processing (LPP) of self-
referential negative rather than positive emotional words (self-negativity bias) is positively
correlated with the degree of self-reported depressive symptoms. In addition, and in line
with cognitive vulnerability models, this self-negativity bias started at temporally earlier
processing stages—the processing of self-referential, prime- x emotional target pairs elicited
a pronounced N400 potential whose amplitudes, akin to the modulation of the LPP, showed
depression-congruent modulation yielding smaller N400 amplitudes for self-referential
negative emotional words.

Further, though yet preliminary, evidence for even earlier temporal influences, as
theoretically predicted by cognitive vulnerability models, is provided by studies investi-
gating the EEG-ERP modulation patterns elicited during the affective HisMine paradigm
in depressed and medicated individuals (with a current diagnosis of major depressive
disorder) and healthy controls [56]. The HisMine paradigm was presented in multiple
runs comprising passive reading/viewing conditions and conditions with instructions to
pay attention to or ignore the self-referential word pairs. The first preliminary analysis of
the EEG data provided in [56] suggests that depressed subjects, in contrast to the healthy
control subjects, show a processing bias for negative self-referential words in the EEG which
is already present during the silent reading in early time windows that started during the
N100 modulation, and especially while modulating the amplitudes of the EPN Supple-
mentary Materials [56]. In the study design, self-reference was induced by second-person
possessive pronouns instead of first-person possessive pronouns. These results comple-
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ment the findings from SRET studies in depressed and non-depressed participant samples,
showing that besides significant group differences in the time window of elaborate process-
ing (LPP), there are early ERP processing differences between groups. As a marker of risk
of depression, more recently, early processing biases towards self-referential negative infor-
mation have been shown to continue into the remission of the disorder, being still observed
in remitted depressed participants [57]. The hypothesis of an early self-negativity bias
in the processing of self-referential emotional content as EEG-ERP markers of depressed
vulnerability is currently further evaluated and extended in a research project comprising a
series of EEG-ERP studies [58]. In the studies, EEG-ERP modulation patterns are assessed
in samples of healthy subjects, who, prior to study participation, were preselected into
groups of depression-prone individuals vs. individuals not prone to depression, according
to clinical screening and assessment tools [58].

4.3. Studying Self-Referential Emotional Processing Biases as Markers of Cognitive Vulnerability
and Well-Being by Means of Language-Dependent EEG Paradigms: Potential Limitations
and Advantages

The investigation of emotional and self-referential processing by means of linguistic
stimuli and language paradigms might be considered a limitation or a restriction. The
reservation might stem from classical theoretical definitions of emotions that define emo-
tions from an evolutionary, biological perspective and that consider emotion processing
as being largely independent from language processing; specifically, emotion perception
is suggested to be primarily driven by non-linguistic physical features of stimuli that the
brain, due to its biological significance, is attuned to respond to with heightened attention
and the preparation of bodily preparation for fight or flight and approach or consumption
(for an overview, [59,60]). While there is no doubt that emotional stimuli, be it words,
pictures, or faces, can elicit similar early ERP modulation in a number of task contexts
(for an overview, see [61,62]), there is also no doubt that modality- and stimulus-specific
processing effects between verbal and non-verbal emotional stimuli might, nevertheless,
exist. Regarding depression and its cognitive vulnerability, a particular interest in the use
of language paradigms to study emotion and the self might stem from three theoretical
grounds: first, to examine the theoretically assumed “errors” in cognition and self-reflection
in the schemata of depressed vs. non-depressed individuals; second, to determine, in line
with modern theoretical accounts of embodiment and embodied cognition, how cognitive
biases are influenced by sensory and motor information among cognitively vulnerable
individuals at risk of depression vs. among individuals already suffering from depressive
disorders vs. healthy controls; and third, given that depression, being an affective disorder
that includes mood changes, to investigate psychophysiological, neurophysiological, and
neurobiological changes to determine how cognitive and bodily processes might interact
while participants are construing meaning from language stimuli that might trigger feelings
and subjective experience relating to one’s own person.

Methodologically, an important limitation of the EEG-ERP technique with regard to its
application as a diagnostic tool is its reliability and power at the individual level. However,
unless the focus is on the group level, results from the EEG-ERP analysis could be used
as an additional testing option, in addition to self-report diagnostic questionnaires, to
distinguish between individuals at risk and those without risk of mental health conditions,
specifically when EEG-ERP analysis is combined with an experimental and theoretically
driven task or paradigm, such as those proposed in this perspective paper. Regarding
clinical disorders, previous studies have already provided promising results for such an
approach. Using EEG-ERP analysis, amongst others, in combination with more advanced
preprocessing and analysis tools, or in combination with a mixed methodological analysis
based on time- and frequency measures, has shown to obtain good results in, for example,
attention-deficit/hyperactivity disorder (ADHD) or the prediction of Alzheimer’s disease
(e.g., [63,64]) or major depressive disorder, e.g., [65]. Regarding depressive disorders, EEG
analyses based on time–frequency analysis and/or independent-component-based event-
related synchronisation/desynchronisation analysis, as reviewed and suggested in [66],
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would be interesting methodological approaches to be combined in future studies with
paradigms investigating alterations in self-referential emotional processing in individuals
with and without the risk of depressive disorders.

5. Questions for the Future

Depressive disorder is not one disease: all disease and disorder-related changes
in mood, as well as in self-reference and affective processing can, as outlined in this
manuscript, theoretically manifest as biases in the processing of self-referential positive and
negative information well prior to onset of the disorder. EEG and, specifically, EEG-ERP
methodology are currently pursued as means that, if combined with an experimental
paradigm, could help unravel the mechanisms of processing preferences and their clin-
ical relevance as traits or state markers of the risk of mental health conditions such as
depression. Although preliminary evidence has already been accumulated, future studies
should principally replicate and extend the current evidence with a focus on the following
guiding questions:

(1) At which stages of stimulus processing does an interaction between self-referential
and emotional processing occur? Can the preliminary findings, illustrated in this
manuscript, be replicated in larger cohorts of both, cognitively vulnerable and already
depressed individuals vs. healthy controls?

(2) To what degree can processing preferences for self-related negative and positive
stimuli, respectively, be influenced by self-related attentive and cognitively controlled
processing, and which of these influences are specific for depression and its risk?

(3) Is self-negativity bias the only marker of cognitive vulnerability, or is a self-negativity
bias accompanied by a reduced self-positivity bias as well (see Figure 4)?

Figure 4. Extended cognitive vulnerability model (EEG cortical processing).

(4) Do the observed electrophysiological ERP correlates of the processing preferences
for self-related negative or positive stimuli prove to be temporally stable markers of
subjective well-being and cognitive vulnerability?

(5) Do the results vary across languages, and do they also apply to a bilingual/
multilingual context?

Importantly, question 5 is receiving increasing attention in a global society in which
bilingual and multilingual psychotherapy is becoming more and more prevalent. Recent
research, including EEG-ERP studies, has observed a weaker emotional reactivity to nega-
tive language content in the second language than in the first, with results being further
modulated by mood, proficiency, and language use, e.g., [67,68]. Future projects and
studies that focus on questions (1)–(5), respectively, will fill an important gap between the
understanding of processing preferences, their electrophysiological dynamics, and their
psychological and clinical significance as depressive vulnerability indicators and markers of
subjective well-being. Based on this evidence, experimental tests could then be developed
with which depression-associated processing biases as well as indicators of well-being
could be detected by means of EEG-ERP measurements and used for depression monitor-

275



Appl. Sci. 2022, 12, 7740

ing and improvement in well-being in the context of health prevention, intervention, and
therapy.
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