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There is an increasing interest in developing intelligent sensor nodes which enable
intelligent processing for Internet of Things (IoT) surveillance, remote sensing, and smart
city applications. The data are processed on board by embedded signal processing and
machine learning-based analysis algorithms. Such machine learning-driven sensors can
transmit key information instead of raw sensing data, lowering the data volume traveling
throughout the network.

Due to the explosion of image and video data in IoT systems, specifically designed
image and video codecs have been preferred in recent years. With a focus on reducing
the data burden and improving the reconstructed image quality, image/video coding and
processing techniques performing in low-cost implementations, saving power consumption,
and increasing the battery lifetime will cope with the design requirements of sensor nodes.
Moreover, intelligent sensors change the traditional intuition-driven sensors in support
of machine learning algorithms, delivering high-resolution images and videos for the
5G revolution.

In line with the mission of Sensors, the organizers of this Special Issue endeavor to
apply the most recent advancements in image/video coding and processing techniques
to the development of intelligent sensor nodes. (1) High compression ratio and high re-
construction quality algorithms are presented in this Special Issue. Kiho Choi proposed
block partitioning information-based CNN post-filtering for an EVC baseline profile (Con-
tribution 1). Sovann Chen et al. applied a learning-based rate control approach for High
Efficiency Video Coding (HEVC) (Contribution 8). (2) Several low-cost video coding hard-
ware designs are introduced. Chen Fu et al. implemented a highly pipelined and highly
parallel VLSI architecture of a CABAC encoder for UHDTV applications (Contribution
7). This design can be used for multiple video coding standards such as H.264/AVC,
H.265/HEVC, and H.266/VVC. Ionut Schiopu et al. developed a low-complexity lossless
coding of asynchronous event sequences for low-power chip integration (Contribution 9).
(3) To improve the quality of the compressed video, several techniques are presented in
this Special Issue. Zheng Wang et al. introduced standard-dynamic-range to high-dynamic-
range television artifact removal techniques by applying a multi-frame Content-Aware
Mapping Network (Contribution 2). Zheng Wang proposed an edge-oriented compressed
video super resolution that provides users with high-quality and cost-effective HR videos
by integrating sensors and codecs (Contribution 4). Wenhao Wan et al. designed a super-
resolution video algorithm by adapting single-image super-resolution models (Contribu-
tion 6). (4) Several vision-based tasks are presented. Qinyu Wang et al. introduced a
transformer-based multiple-object tracking algorithm by applying an anchor-based-query
and template matching (Contribution 3). Jun Gong proposed an inpainting algorithm with

Sensors 2024, 24, 4819. https://doi.org/10.3390/s24154819 https://www.mdpi.com/journal/sensors1
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a separable mask update convolution network (Contribution 5). Dashan Zhang et al. de-
veloped a vision-based structural modal identification using hybrid motion magnification
(Contribution 10).

In summary, the papers featured in this collection present a variety of innovative ap-
proaches and solutions to the challenges in image/video coding and processing techniques
for intelligent sensor nodes. The articles introduce algorithms, hardware designs, and deep
learning-based strategies to address the development issues of intelligent image sensors.
We extend our gratitude to the authors for their contributions and hope that this collection
will inspire further advancements in the field of intelligent image/video sensors.

Conflicts of Interest: The authors declare no conflict of interest.
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Article

Vision-Based Structural Modal Identification Using Hybrid
Motion Magnification

Dashan Zhang 1,2, Andong Zhu 1,2, Wenhui Hou 1,2, Lu Liu 1,2 and Yuwei Wang 1,2,*
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Abstract: As a promising alternative to conventional contact sensors, vision-based technologies for a
structural dynamic response measurement and health monitoring have attracted much attention from
the research community. Among these technologies, Eulerian video magnification has a unique capa-
bility of analyzing modal responses and visualizing modal shapes. To reduce the noise interference
and improve the quality and stability of the modal shape visualization, this study proposes a hybrid
motion magnification framework that combines linear and phase-based motion processing. Based on
the assumption that temporal variations can represent spatial motions, the linear motion processing
extracts and manipulates the temporal intensity variations related to modal responses through matrix
decomposition and underdetermined blind source separation (BSS) techniques. Meanwhile, the
theory of Fourier transform profilometry (FTP) is utilized to reduce spatial high-frequency noise. As
all spatial motions in a video are linearly controllable, the subsequent phase-based motion processing
highlights the motions and visualizes the modal shapes with a higher quality. The proposed method
is validated by two laboratory experiments and a field test on a large-scale truss bridge. The quantita-
tive evaluation results with high-speed cameras demonstrate that the hybrid method performs better
than the single-step phase-based motion magnification method in visualizing sound-induced subtle
motions. In the field test, the vibration characteristics of the truss bridge when a train is driving
across the bridge are studied with a commercial camera over 400 m away from the bridge. Moreover,
four full-field modal shapes of the bridge are successfully observed.

Keywords: operational modal analysis; vision-based measurement; hybrid motion magnification;
modal shapes visualization; temporal and spatial denoising

1. Introduction

Structural experimental modal parameters, including modal frequencies, damping
ratios, and modal shapes, provide insight into dynamic behaviors and are critical for appli-
cations such as structural health monitoring (SHM) and nondestructive testing (NDT) [1].
Usually, these properties are recovered by analyzing the vibrations of limited discrete points
on the object through reliable contact sensors. However, the physically attached sensors
may cause a mass-loading effect on lightweight targets, and they are difficult to affix to
complex large-scale structures [2–4]. As an alternative, the vision-based method is one
of the most popular non-contact measurement methods for the structural modal analysis
in recent years [5–7]. Compared with common contact sensors, camera-based devices are
more flexible and provide a higher spatial-resolution sensing capacity, which makes them
convenient for remote installation and preferable for full-field measurements [8–10].

With advances in image processing techniques (e.g., image registration and optical
flow), vision-based measurements can obtain intuitionistic image sequences of structural
vibrations and are applied to experimental modal tests for various types of structures.
In most cases [11,12], these methods extract the field deformation or local displacement

Sensors 2022, 22, 9287. https://doi.org/10.3390/s22239287 https://www.mdpi.com/journal/sensors3
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from variations in speckle and high-contrast natural or artificial makers on the surface of
the structure, which limits their applications to featureless and large-scale measurements.
Meanwhile, although subpixel precision can be achieved, for extremely subtle motions,
it is still difficult for algorithms to balance the efficiency and resolution, especially when
full-field measurements are required.

As a computation technique for visualizing subtle colors and variations in videos,
Eulerian video magnification [13–15] shows a strong vitality and is used in actual output-
only modal analyses [16–18]. Unlike the motion extraction approaches based on an inter-
frame correlation or gradient, the Eulerian approach considers that the structural in-plain
small motion is closely related to the intensity or phase variations in the timeline. A
quantitative analysis of these temporal variations reveals vital characteristics (e.g., the
elasticity and modal frequency). Moreover, by manipulating the spatial motion, structural
modal shapes can be directly observed in motion-magnified videos [19–24].

Although magnifying the temporal intensity or phase variations can achieve motion
magnification, these two frameworks have different characteristics. Normally, linear pro-
cessing is more sensitive to subtle motions and less robust to the noise from imaging sensors
and illumination. Meanwhile, phase-based motion processing performs better in noise
control and can support a larger amplification factor, so it is more suitable for visualizing
and understanding modal shapes. However, both spatial and temporal noises severely
affect the quality of the outputs of phase-based motion processing, especially in a subtle
and long-distance motion observation [18–20,24,25]. In practice, it is difficult to uniformly
reduce the temporal phase noise without any prior information of the measured structures.
In addition, the existence of multi-scale decomposition also increases the complexity of the
noise processing in both space and timeline [14,18,23].

To reduce noises and improve the quality of the modal shape visualization, it is de-
sirable to propose a hybrid motion magnification framework that combines linear and
phase-based motion processing. Based on the assumption that temporal variations can
approximate spatial motions, previous studies [26] have shown that the singular value
decomposition (SVD) can extract the structural vibration from the temporal intensity varia-
tions, and the spatial motions in videos can be manipulated linearly with a higher efficiency.
Considering that the extracted temporal variations relevant to vibrations are mixed signals,
the sparse component analysis (SCA) technique is used in signal separation [27,28]. Mean-
while, as noises mainly exist in the high-spatial-frequency part [13–15], Fourier transform
profilometry (FTP) is utilized to improve the weights that represent the severity of the
spatial motion [29,30]. In the hybrid framework, linear motion processing simplifies the
processes of vibration extraction and noise reduction and provides high-quality, control-
lable inputs for visualizing modal shapes in phase-based motion processing. The proposed
framework was applied to two laboratory experiments and a field test on a large-scale truss
bridge to evaluate its performance in a modal analysis.

The main contributions of this paper are summarized as follows: (1) A linear motion
processing approach is proposed to extract and manipulate the structural vibrations in
videos. Meanwhile, a set of methods is developed to reduce the temporal and spatial
noises. (2) The high-quality visualization of structural modal shapes is realized in the
hybrid motion magnification framework. (3) The performance of the proposed framework
is investigated through sound-induced modal tests in the laboratory. The effectiveness of
this proposed framework is verified in a long-distance field test to analyze the vibration
characteristics of a large-scale truss bridge.

The rest of this paper is organized as follows. Section 2 introduces the proposed
hybrid motion magnification framework, including the details of the temporal and spatial
noise reduction. The experimental data with a lightweight beam from the MIT CSAIL [19]
are analyzed to better understand the implementation scheme. Section 3 validates the
proposed method through a set of experiments and discusses its advantages and limitations.
Section 4 concludes this paper.
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2. Materials and Methods

2.1. Structural Vibration and Intensity Variations

Modal analysis models a solid object as a system of point masses connected by springs
and dampers. Without loss of generality, the differential equation of a multi-DOF vibration
system is expressed as

M p̈ + C ṗ + Kp = 0, (1)

where M is the mass matrix; C and K are matrices describing the viscous damping values
and spring stiffness between points, respectively; p, ṗ, and p̈ are vectors indicating the
displacement, velocity, and acceleration of the points, respectively. Under the assumption
of Rayleigh damping, matrix C is ideal and is assumed to be a linear combination of M and
K. After the generalized eigenvalue problem is solved, the system can be decoupled into
single-degree freedom systems, and the vibration motion of modal masses can be expressed
as a linear combination of the modal responses:

p(t) = Φq(t) =
n

∑
i=1

φiqi(t), (2)

where n is the mode number; Φ is the modal matrix that defines modal coordinates q(t); φi
and qi are, respectively, the i-th mode shape and modal coordinate.

With the assistance of imaging, structural vibration can be measured by video records
containing frames with temporally translated image intensities. From the Eulerian per-
spective, temporal filtering can approximate spatial translation [13–15,19]. To investigate
the relationship between intensity variations and vibration, the simple case of 1D signal
translation is considered in this paper. Let I(x, t) be the image intensity at position x and
time t. The observed intensity variations can be expressed by a displacement function
δ(x, t), and δ(x, 0) = 0. All valuable intensity variations δ̃(x, t) should be highly correlated
with the modal responses:

δ̃(x, t) :=
n

∑
i=1

wi(x)qi(t), (3)

where wi(x) is the weight corresponding to the i-th mode shape (related to modal coordi-
nates). Thus, the displacement function δ(x, t) is expressed as the combination of δ̃(x, t)
and noise:

δ(x, t) =
n

∑
i=1

wi(x)qi(t) + N(x, t), (4)

where N(x, t) is the noise mainly caused by the environment and imaging.

2.2. Linear Motion Processing

From Equation (4), to achieve linear motion magnification at a particular resonant
frequency, δ̃(x, t) needs to be estimated and decoupled, and the noise N(x, t) needs to be
reduced at every pixel coordinate:

Ĩi(x, t) = I(x, t) + αi(wi(x)qi(t) + ni(x, t)), (5)

where αi is the amplification factor for the i-th mode, and ni(x, t) is the residual noise
(ni(x, t) � N(x, t)).

Based on the assumption that useful intensity variations and noises are linearly inde-
pendent, δ̃(x, t) and N(x, t) can be separated by using SVD efficiently [26]. For each pixel
coordinate, the difference between I(x, t) and I(x, 0) is calculated and then used to reshape
matrix D that represents the temporal intensity variations in the video. Through SVD, this
matrix is decomposed, and k significant singular values are reserved:

Dc×l →
SVD

Uc×k · Sk×k · V∗
l×k =

k

∑
r=1

ursrv∗
r , (6)

5
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where c is the total number of pixel coordinates; l is the length of the video; sr is reserved
singular value; ur and vr are, respectively, orthogonal left-singular and right-singular
vectors; symbol ∗ means matrix transposition. The reserved srv∗

r (r = 1, 2, ..., k) are consid-
ered as the output observations representing an instantaneous linear mixture of signals
qi(t)(i = 1, 2, ..., n): ⎡

⎢⎢⎢⎣
s1v∗1
s2v∗2

...
skv∗k

⎤
⎥⎥⎥⎦ = A

⎡
⎢⎢⎢⎣

q1(t)
q2(t)

...
qn(t)

⎤
⎥⎥⎥⎦, (7)

where A is referred to as the mixing matrix. The reserved four temporal intensity variations,
their frequency spectra, and the corresponding weights are illustrated in Figure 1. It
can be seen that the reserved intensity variations are coupled signals of multiple modal
responses [19].

Figure 1. Reserved temporal intensity variations and corresponding weights in beam test (a–d).

Taking Equation (7) as an operational modal analysis (OMA) problem, the mixing
matrix can be estimated by using the blind source separation (BSS) technique. The well-
posedness of Equation (7) is determined by the magnitude of k (the number of reserved
singular values) and n (the activated maximum mode order). In this paper, the equation
is considered an underdetermined BSS problem, and mixing matrix A is estimated via
SCA [27,28]. By decoupling the reserved intensity variations, the corresponding weights
are updated as follows:

ũi =
k

∑
r=1

ursrv∗
r × qi(t)

∗. (8)

Thus, according to Equation (5), the output of linear motion processing can be ex-
pressed as

Ĩi(x, t) = I(x, t) + αi(ũi(x)qi(t)) ≈ I(x, 0) +
n

∑
i=1

wi(x)qi(t) + N(x, t) + αi(ũi(x)qi(t)). (9)

6
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To further reduce the noises and remove the existing vibrations in the input video, this
process can be performed on the first frame of the video sequence, i.e.,

Ĩi(x, t) = I(x, 0) + αi(ũi(x)qi(t)). (10)

Figure 2a shows the scatter diagram of the first three temporal intensity variations
(srv∗

r (r = 1, 2, 3)). The modal assurance criterion (MAC) in Figure 2b is used to determine
the errors of the estimated mode shape vectors. The observed directions in Figure 2a
represent the estimated four mode shape vectors, and the theoretical mode shape vectors
are calculated by using the FEM software. The time-domain modal responses are recovered
by using the l1-optimization algorithm [27]. The decoupled temporal intensity variations,
their frequency spectra, and the updated weights are illustrated in Figure 3. It is considered
that these decoupled temporal intensity variations are highly correlated with the first four
modal responses [19].

Figure 2. (a) Scatter diagram of the first three measuring signals and (b) the modal assurance criterion
(MAC).

Figure 3. Decoupled temporal intensity variations and corresponding weights in beam test. (a) First
mode; (b) second mode; (c) third mode; and (d) fourth mode.

7
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2.3. Weight Enhancement of the FTP

According to Equation (8), the spatial weights ũi are calculated by using the decoupled
intensity variations. As the linear motion processing above does not consider the spatial
consistency, the updated weights ũi are not spatially smooth and continuous. As noises
mainly exist in high spatial-frequency temporal variations, the FTP is utilized to improve
the quality of spatial weights [29,30].

Taking ũ1 as an example, Figure 4 shows the enhancement process. Let the spatial
weights ũ1 (Figure 4a) deform the reference grating image, the deformed grating image
is shown in Figure 4b, and the spatial-frequency spectra of the deformed grating image
are shown in Figure 4c. Assuming that the noise is mainly related to the high-frequency
component in the spatial-frequency spectra, the spectra are filtered to let only the funda-
mental component through (red circle), and then reversed Fourier transform is applied
to the fundamental component. According to the theory of FTP, the core variable that
varies directly with the spatial weights is the phase distribution. The formula to obtain the
improved spatial weights is given as

ûi =
l0Δηi

Δηi − 2π f0d
, (11)

where Δηi is the unwrapped phase difference; f0 is the fundamental frequency of the
observed grating image; l0 and d are preset values in the crossed-optical-axes geometry of
FTP. The improved spatial weights û1 are shown in Figure 4d.

Figure 4. The spatial weight enhancement process of ũ1. (a) The spatial weight ũ1; (b) the reference
and deformed grating images; (c) the spatial-frequency spectra of the deformed grating image; (d) the
improved spatial weight û1.

The results and analyses of the improved spatial weights in the beam test are presented
in Figures 5 and 6. Subfigures (1) and (2) in Figures 5 and 6 compare the original and the
improved spatial weights. It can be seen that the spatial weights improved by FTP are much
smoother than the originals and have better performance on spatial consistency. Subfigures
(3) and (4) in Figures 5 and 6 compare the sampling results of the original and the improved
weights in different spatial directions (the red and yellow lines in subfigure (1)). The results
indicate that the noises in improved spatial weights are significantly reduced.

8
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According to Equation (10), linear motion magnification can be achieved by using
the decoupled temporal intensity variations and improved spatial weights. Figure 7
illustrates the linear motion magnification results in the beam test of MIT CSAIL [19]. The
effectiveness of linear motion processing is validated with the spatiotemporal pixel slices
cut from the motion-magnified videos. The mean intensity values inside the green circle in
the background are calculated to study the residual noise. The analysis results indicate that
these motion-magnified videos obtained by using the improved spatial weights achieve
better performance on noise control.

Figure 5. (a,b), the FTP results and analyses of the first two modes in the beam test. (1) Original
spatial weights; (2) improved spatial weights; (3) and (4), sampling results of the original and the
improved weights in x and y directions.

9
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Figure 6. (a,b), the FTP results and analyses of the third and fourth modes in the beam test. (1) Origi-
nal spatial weights; (2) improved spatial weights; (3) and (4), sampling results of the original and the
improved weights in x and y directions.

10
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Figure 7. Linear motion processing results and noise reduction analysis in the beam test.

2.4. Phase-Based Motion Processing

The reason for further phase-based motion processing is that this framework can
support large amplification factors and show better noise performance than the linear
approximation. From Equation (10), the structural vibrations in the video can be initially
produced through linear motion processing. Based on phase-based motion processing, the
produced image profile can be decomposed into a sum of complex sinusoids by using the
Fourier series:

Ĩi(x, t) =
∞

∑
ω=−∞

Bωejω(x+αi ûi(x)qi(t)). (12)

Let δ̃i(x, t) = ûi(x)qi(t) denote the initial motion. The band corresponding to a single
frequency ω is the complex sinusoid:

Sω(x, t) = Bωejω(x+αi δ̃i(x,t)). (13)

Because the initial motions in the video are controlled according to specific mode
shapes, in phase-based motion processing, only the temporal DC component [14] of the
phase ω

(
x + αi δ̃i(x, t)

)
needs to be removed. Then, the phase αi δ̃i(x, t) is multiplied with

another amplification factor βi to obtain the motion magnified sub-band:

S̃ω(x, t) = Sω(x, t)ejαi βiωδ̃i(x,t) = Bωejω(x+(1+βi)αi δ̃i(x,t)). (14)

The motion-magnified sequence can be eventually reconstructed by summing all the
sub-bands. The total magnification factor in Equation (14) is (1 + βi)αi.

The motion magnification results of the original phase-based method and our im-
proved framework are compared, and the result is shown in Figure 8 (8 orientations,
half-octave bandwidth pyramids). The filter bands of the original phase-based approach
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are set to ±2 Hz near the experimental modal frequencies of the test beam. Table 1 presents
the magnification factors and compares the image quality results of the reconstructed
videos. The results of the average blind/referenceless image spatial quality evaluator
(BRISQUE) [31] indicate that these videos reconstructed by the improved framework have
better image quality. The average BRISQUE score of the input video image is 41.98. Because
the initial motion is 0 (Equation (10)), the overall amplification factors of our improved
framework are larger than those used in the original.

(a)

(b)

(c)

(d)

Figure 8. The comparison between the original phase-based method and our improved method.
(a) The first mode; (b) the second mode; (c) the third mode; and (d) the fourth mode. More results are
shown in the Supplementary videos.

Table 1. The amplification factors and image quality in the beam test.

Mode Factor Factor Factor BRISQUE BRISQUE
order (Original) (αi) (βi) (Original) (Improved)

1st 350 10 40 50.94 45.48
2nd 600 30 25 46.78 44.13
3rd 1000 100 15 50.20 44.30
4th 12,000 1000 20 56.00 43.69

3. Results

3.1. Vibration Analysis of a Lightweight Beam

In the first case, the modal parameters of a lightweight beam from a video are analyzed
in a controlled laboratory experiment. The experiment setup is illustrated in Figure 9. The
lightweight beam made of alloy steel was clamped with a table vice. During the experiment,
audio with a frequency band ranging from 10 to 500 Hz was played by the loudspeaker
about 0.1 m away from the surface of the beam at 80 decibels. When air fluctuations
reach the beam, subtle forced vibrations will appear on the surface. Meanwhile, subtle
vibrations motivated by the excitation audio were recorded by the high-speed camera
system (Revealer 5KF10M, Agile Device Inc., Hefei, China) at 500 fps with a resolution
of 580 × 180 pixels. The dimension and the material parameters of the beam are listed in
Table 2. According to the Euler–Bernoulli beam theory, the theoretical resonant frequencies
of a cantilever beam are estimated as follows:

fn =
3.52γ

2πl2

√
ER
ρA

, (γ = 1, 6.27, 17.55, 34.39...), (15)

where fn, E, and R denote the resonant frequency of the n-th mode, Young’s Modulus,
and the moment of inertia of the beam, respectively; ρ, A, and l denote the density, the
cross-sectional area, and the length of the beam, respectively.
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Figure 9. Experiment setup of the laboratory lightweight beam test.

Table 2. Parameters of the lightweight beam.

Dimensions (mm) Young’s Modulus Density

290 × 12.6 × 0.65 2.06 × 1011 N· m−2 7.85 × 103 kg· m−3

After the SVD decomposition, two temporal intensity variations were reserved. Their
waveforms, frequency spectra, and the corresponding weights are shown in Figure 10. By
decoupling the two reserved intensity variations through an SCA, four obvious peaks,
including 6.37, 40.16, 113.10, and 221.60 Hz, were detected from the power spectra of the
decoupled signals. According to Equation (15), these four temporal intensity variations are
connected with the subtle spatial motions of the first four modal shapes. The comparison
between the theoretical and experimental resonant frequencies is illustrated in Table 3. The
decoupled intensity variations, their frequency spectra, and the updated weights (enhanced
by FTP) are shown in Figure 11.

Figure 10. (a,b), reserved temporal intensity variations, their frequency spectra, and the correspond-
ing weights in the lightweight beam test.
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Figure 11. (a–d) Decoupled temporal intensity variations, their frequency spectra, and the corre-
sponding weights (enhanced by FTP) in the lightweight beam test.

Table 3. Comparison between the theoretical and experimental resonant frequencies in the lightweight
beam test.

Mode order Theoretical (Hz) Experimental (Hz) Error Rate (%)

1st 6.41 6.37 0.62
2nd 40.17 40.16 0.02
3rd 112.43 113.10 0.59
4th 220.31 221.60 0.08

After the decoupled temporal intensity variations and the corresponding spatial
weights were obtained, the motions in the video frames can be produced linearly and
then magnified through the phase-based processing. The complex steerable pyramids
(eight orientations, half-octave bandwidth pyramids) were used to decompose the video
frames, and the local phases in different spatial scales and orientations over time were
obtained. The filter bands for the original phase-based magnification were set to ±2 Hz
near the experimental modal frequencies. Figure 12 compares the final motion-magnified
videos obtained by the original and our improved framework. The four colored lines in
Figure 12a indicate the locations of the spatiotemporal pixel slices. Figure 12b–e) show
the spatiotemporal slices of the first to the fourth modal shapes, respectively. It can be
seen that the beam in the video reconstructed by our framework (solid line boxes) vibrates
properly following a specific vibration mode, and the existing motions in the input video
are removed. Table 4 presents the magnification factors and compares the image quality of
the processed videos. The average BRISQUE score of the input video image is 39.34. The
motion-magnified videos of the improved framework achieve a better image quality.
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Figure 12. (a) Video frame and location of spatiotemporal slices and (b–e) spatiotemporal slices
comparisons between the original and our improved framework in the lightweight beam test. More
results are shown in the Supplementary videos.

Table 4. The amplification factors and image quality in the case of the lightweight beam.

Mode Factor Factor Factor BRISQUE BRISQUE
Order (Original) (αi) (βi) (Original) (Improved)

1st 10 0.15 100 50.84 40.45
2nd 15 0.2 200 52.10 41.58
3rd 60 2 50 48.04 41.75
4th 100 5 30 49.24 40.78

3.2. Vibration Analysis of the Nanfeihe Truss Bridge

The modal parameters of bridges reflect their vibration characteristics and are sig-
nificant for bridge design and a structural state assessment. For large-scale bridges, it
is difficult to excite the heavy structure with traditional vibration excitation devices and
obtain structural vibration modes. In the second experiment, the vibration of the Nanfeihe
railway truss bridge is observed under the wind–train–bridge coupling condition with
a commercial camera, and the four modal shapes of the bridge are visualized with our
improved motion magnification framework.

The Nanfeihe railway truss bridge is a super-spanned railway bridge about 8 km away
from Hefei South Railway Station. The bridge is a low-supported steel bridge composed
of a continuous truss and flexible arch with a main span of 229.5 m. The rise of the arch
is 45 m, and the overall length of the bridge is 461 m. The weight of the bridge is over
13,000 tons. As shown in Figure 13, a commercial camera (Canon 70D) was installed about
410 m away from the center of the bridge by the Nanfei river. Figure 13a illustrates the
satellite view of the camera measurement location relative to the bridge. The camera and
the bridge in the same view are shown in Figure 13b. During the filming, a high-speed train
was driving across the bridge. The camera recorded the whole process at 25 fps with the
resolution of 1920 × 1080 pixels. A 645 × 1775 pixel region of interest (ROI) was selected
from the screenshot to reduce the interference of the background (Figure 13c).
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Figure 13. (a) The distance between camera and center of the bridge (image ©Baidu), (b) camera
system, and (c) selected ROI.

For the data analysis, it is necessary to discuss and specify the vibration situation of
the truss bridge. Before the high-speed train arrives, the vibration of the bridge is mainly
caused by the environmental wind load. When the train arrives on the bridge, deflection
appears on the structure, and the bridge will be affected by the excitation of both the wind
and the train. For simplicity, this paper assumes that the two vibration processes (forced
by the wind and the wind and train) are steady, compelled vibration processes and then
discusses the influence of the transient vibration.

Figure 14 shows the two reserved temporal intensity variations after the SVD decom-
position of the pixel difference matrix from the video file. As shown in the first column
in Figure 15, four independent components (red curves) are decoupled from the reserved
variations through an SCA. When the train arrives on the bridge, large variations that reflect
the bridge deflections appear on the curves. The train arrival time and train leaving time are
marked by arrows in Figure 15a and are found at corresponding positions in Figure 15b–d.
To investigate the influence of deflections, this paper detrends these intensity variations
(blue curves) and then separates the signals according to the difference in the excitation
source before a frequency analysis. The second and the third columns in Figure 15 show the
power spectra of the detrended intensity variations before and after the train arrives. The
vibration frequency under the load of the wind is 0.78 Hz, and the main frequency under
the excitation of the train is 4.19 and 8.39 Hz (a multiple frequency of 4.19 Hz) [32–34]. The
updated spatial weights are illustrated in the last column of Figure 15. From the angle
perpendicular to the image plane, these spatial weights exhibit the four different vibration
modes of the bridge. It is worth mentioning the FTP was not utilized here because the
frequency distribution of the spatial weights was too complex to be separated by the FTP.
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Figure 14. (a,b), reserved temporal intensity variations, their frequency spectra, and the correspond-
ing weights in the bridge test.

Train arrival Train leaving

Wind forced 
vibration Wind &Train 

forced vibration

0.78 Hz

0.78 Hz

0.78 Hz

0.78 Hz

0.78 Hz

0.78 Hz

0.78 Hz

0.78 Hz

4.19 Hz

4.19 Hz
8.39 Hz

8.39 Hz

4.19 Hz

4.19 Hz 8.39 Hz

Wind (Mode 1) Wind & Train  (Mode 1)

Wind & Train (Mode 3)

Wind & Train (Mode 4)

(a)

(b)

(c)

(d)

Wind (Mode 2)

Wind (Mode 3)

Wind (Mode 4)

Wind & Train (Mode 2)

Figure 15. (a–d) Decoupled temporal intensity variations, power spectra under different excitations
and weights in the bridge test. The first column represents the original and detrended reserved
variations. The second and third columns show the power spectra before and train arrival time. The
last column shows the decoupled weights in the bridge test.

After the linear and phase-based motion processing, four videos that reflect the differ-
ent modal shapes were reconstructed. The amplification factors in the linear and phase-
based motion processing are illustrated in Table 5, and the screenshots of the four motion-
magnified videos are shown in Figure 16. The magnification factors are restricted to avoid
too many artifacts or blurs, and the motion of the different modal shapes can be better
perceived from the video files. Because the motion corresponding to a specific mode cannot
be separated simply by temporal filtering, the results of the original phase-based method
are not presented here for predictable modal aliasing.
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Table 5. Amplification factors in the Nanfeihe truss bridge case.

Mode Number 1 2 3 4

Linear (αi) 10 15 25 30

Phase-based (βi) 400 400 800 800

(b)

(c)

(a)

(d)

Figure 16. (a–d) Motion magnification results in the truss bridge test (8 orientations, quarter-octave
bandwidth pyramids). More results are shown in the Supplementary videos.

When the train was driving across the bridge, a large deflection appeared on the
bridge and then was attenuated by structural damping. For a simple single-DOF system,
the transient vibration process is expressed as the combination of the damped vibration
and the equal-amplitude vibration [35,36]. Due to the variation in the load, the attenuation
of the deflection is in an unsteady state. Therefore, the differential of the decoupled
temporal intensity variations is removed from the original data to investigate the influence
of the damped vibration on the system. Figure 17 shows the results of the detected fourth
variations (in Figure 15d). Several low-frequency peaks at 0.19, 0.34, 0.44, 0.58, and 0.73 Hz
are found in the power spectrum. These peaks may be the resonant frequencies of the
test bridge.

Figure 17. Damped vibration analysis result of the Nanfeihe truss bridge (the fourth variations).

4. Discussion

According to the theory of Eulerian video magnification, the spatial motion of a
structure can be linearly approximated as temporal pixel variations. In hybrid motion
processing, linear motion processing provides an effective approach to separate valuable
temporal pixel variations and their corresponding spatial weights through an SVD and
SCA. The FTP is utilized to improve the spatial weight matrices to achieve a better spatial
consistency and noise reduction effect. Although the presented framework performs
better on the vibration analysis than Eulerian linear processing, these two approaches
have common limitations of a relatively low amplification factor and noise amplification.
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Therefore, the output of linear motion processing is usually taken as the controllable input
of the following phase-based motion processing. In practical applications, to minimize
the residual noise, the motions generated in the pixel domain would be better to be just
recognized enough by temporal phase variations, indicating that the factor αi should not be
too large. As spatial motion is generated into video, all temporal phase variations are usable,
so temporal filtering can be omitted in phase-based motion processing. It is worth noting
that for certain spatial motions, the phase amplification factor is still restricted by the spatial
wavelength and the number of filters per octave for each orientation [14,15]. Therefore, the
overall amplification factor in phase-based motion processing is not extended. As high-
frequency components in images cannot be pushed as far as low-frequency components,
breaking the restriction of the phase amplification factor will lead to artifacts or blurs. In
the truss bridge test, blurs and artifacts are allowed to achieve a better perception of the
modal shape.

Considering the fact that noises mainly exist in the high spatial-frequency part of the
spatial weight, the FTP reserves a globally low spatial frequency of the spatial weights
rather than directly reducing the amplification of these high spatial-frequency temporal
variations [13,15]. In the current linear motion processing, the noise reduction process is
simple and efficient in these controlled laboratory experiments without involving multi-
scale decomposition. However, in the practical long-distance bridge test, the image quality
is severely reduced due to the changing lighting and background conditions (e.g., clouds
and the appearance of the high-speed train) [25]. This makes the FTP inefficient. The
problem may be alleviated by setting masks for all video frames, but the whole process is
too laborious, especially for high-speed videos. Moreover, in the field test, it is critical to
remove the existing apparent motions in the video (Equation (10)) to ensure the stability
of the modal shape visualization [20,25]. Based on the above analysis, we will attempt
to address these issues in our future work and explore the practicability of the proposed
framework for complex engineering structures.

5. Conclusions

In this paper, a hybrid motion processing framework that combines linear and phase-
based motion processing is proposed, and its performance is evaluated through structural
modal tests. By extracting, denoising, and manipulating the temporal intensity varia-
tions that are closely related to modal responses, the linear motion processing provides
controllable, high-quality input for the subsequent phase-based motion processing, thus
greatly improving the presentation of modal shapes. The proposed method is verified
by two laboratory experiments on lightweight beams and a field test on a truss bridge.
The experimental results indicate that the proposed motion processing framework can
alleviate noise interference and obtain good results in subtle and long-distance motion
observation. It should be pointed out that in the measurement of complex structures with
a single camera, the motions in the image plane are considered as the projection of 3D
vibration. Accurately representing global 3D motions of complex, large-scale engineering
structures is challenging and significant. In addition to the issues listed in Discussions, we
will further study the visualization of modal shapes in 3D space by extending the concept
of motion amplification to 3D dynamic measurement techniques, such as multi-camera and
structured light systems.
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.3390/s22239287/s1, Supplementary videos for Figure 8, Figure 12 and Figure 16.

Author Contributions: Conceptualization, methodology, software, writing—review and editing,
D.Z.; investigation, experiments, data curation, writing—review and editing, A.Z.; data curation,
experiments, W.H. and L.L.; supervision, Y.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China under Grant
Nos. 51805006 and 51905005.

19



Sensors 2022, 22, 9287

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: The authors would like to thank the editors and anonymous reviewers for their
valuable comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fang, Z.; Yu, J.; Meng, X. Modal Parameters Identification of Bridge Structures from GNSS Data Using the Improved Empirical
Wavelet Transform. Remote Sens. 2021, 13, 3375. [CrossRef]

2. Cakar, O.; Sanliturk, K.Y. Elimination of transducer mass loading effects from frequency response functions. Mech. Syst. Signal
Proc. 2005, 19, 87–104. [CrossRef]

3. Zuo, D.; Hua, J.; Van Landuyt, D. A model of pedestrian-induced bridge vibration based on full-scale measurement. Eng. Struct.
2012, 45, 117–126. [CrossRef]
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Abstract: The event sensor provides high temporal resolution and generates large amounts of
raw event data. Efficient low-complexity coding solutions are required for integration into low-
power event-processing chips with limited memory. In this paper, a novel lossless compression
method is proposed for encoding the event data represented as asynchronous event sequences. The
proposed method employs only low-complexity coding techniques so that it is suitable for hardware
implementation into low-power event-processing chips. A first, novel, contribution consists of a
low-complexity coding scheme which uses a decision tree to reduce the representation range of the
residual error. The decision tree is formed by using a triplet threshold parameter which divides the
input data range into several coding ranges arranged at concentric distances from an initial prediction,
so that the residual error of the true value information is represented by using a reduced number of
bits. Another novel contribution consists of an improved representation, which divides the input
sequence into same-timestamp subsequences, wherein each subsequence collects the same timestamp
events in ascending order of the largest dimension of the event spatial information. The proposed
same-timestamp representation replaces the event timestamp information with the same-timestamp
subsequence length and encodes it together with the event spatial and polarity information into a
different bitstream. Another novel contribution is the random access to any time window by using
additional header information. The experimental evaluation on a highly variable event density
dataset demonstrates that the proposed low-complexity lossless coding method provides an average
improvement of 5.49%, 11.45%, and 35.57% compared with the state-of-the-art performance-oriented
lossless data compression codecs Bzip2, LZMA, and ZLIB, respectively. To our knowledge, the paper
proposes the first low-complexity lossless compression method for encoding asynchronous event
sequences that are suitable for hardware implementation into low-power chips.

Keywords: low-power electronics; low-complexity codec; lossless compressio; event camera

1. Introduction

The recent research breakthroughs in the neuromorphic engineering domain have
made possible the development of a new type of sensor, called the event camera, which
is bioinspired by the human brain, as each pixel operates individually and mimics the
behaviour of a separate nerve cell. In contrast to the conventional camera, in which all
pixels are designed to capture the intensity of the incoming light at the same time, the event
camera sensor reports only the changes of the incoming light intensity above a threshold,
at any timestamp, and at any pixel position by triggering a sequence of asynchronous
events (sometimes called spikes); otherwise it remains silent. Because each pixel detects
and reports independently only the change in brightness, the event camera sensor proposes
a new paradigm shift for capturing visual data.

The event camera provides a series of important technological advantages, such as
a high temporal resolution as the asynchronous events can be triggered at a minimum
timestamp distance of only 1μs (10−6 s), i.e., the event sensor can achieve a frame rate
of up to 1 million (M) frames per second (fps). This is made possible thanks to the
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remarkable novel event camera feature of capturing all dynamic information without
unnecessary static information (e.g., background), which is an extremely useful feature
for capturing high-speed motion scenes for which the conventional camera usually fails to
provide a good performance. Two types of sensors are currently available on the market:
(i) the dynamic vision sensor (DVS) [1], which captures only the event modality; and
(ii) the dynamic and active-pixel vision sensor (DAVIS) [2], which is comprised of a DVS
sensor and an active pixel sensor (APS), i.e., it captures a sequence of conventional camera
frames and their corresponding event data. The event camera sensors are now widely
used in the computer vision domain, wherein the RGB and event-based solutions already
provide an improved performance compared with state-of-the-art RGB-based solutions
for applications such as deblurring [3], feature detection and tracking [4,5], optic flow
estimation [6], 3D estimation [7], superresolution [8], interpolation [9], visual odometry [10],
and many others. For more details regarding event-based applications in computer vision,
please see the comprehensive literature review presented in [11]. To achieve high frame
rates, the captured asynchronous event sequences reach high bit-rate levels when stored
using the raw event representation of 8 bytes (B) per event provided by the event camera.
Therefore, for better preprocessing of event data on low-power event-processing chips,
novel low-complexity and efficient event coding solutions are required to be able to store
without any information loss the acquired raw event data. In this paper, a novel low-
complexity lossless compression method is proposed for efficient-memory representation
of the asynchronous event sequences by employing a novel low-complexity coding scheme
so that the proposed codec is suitable for hardware implementation into low-cost event
signal processing (ESP) chips.

The event data compression domain is understudied whereas the sensor’s popularity
continues to grow thanks to improved technical specifications offered by the latest class of
event sensors. The problem was tackled in only a few articles that propose to either encode
the raw asynchronous event sequences generated by the sensor with or without any infor-
mation loss [12–14], or to first preprocess the event data from a sequence of synchronous
event frames (EFs) that are finally encoded by employing a video coding standard [15,16].
The EF sequences are formed by using an event-accumulation process that consists of
splitting the asynchronous event sequence into spatiotemporal neighbourhoods of time
intervals, processing the events triggered in a single time interval, and then generating a
single event for each pixel position in the EF. These performance-oriented coding solutions
are too complex for hardware implementation in the ESP chip designed with limited mem-
ory, and may be integrated only in a system on a chip (SoC) wherein enough computation
power and memory is available.

In our prior work [17,18], we proposed employing an event-accumulation process
which first splits each asynchronous event sequence into spatiotemporal neighbourhoods
by using different time-window values, and then generates the EF sequence by using a
sum-accumulation process, whereby the events triggered in a time window are represented
by a single event that is set as the sign of the event polarity sum and stored at the cor-
responding pixel position. In [17], we proposed a performance-oriented, context-based
lossless image codec for encoding the sequence of event camera frames, in which the event
spatial information and the event polarity are encoded separately by using the event map
image (EMI) and the concatenated polarity vector (CPV). One can note that the lossless
compression codec proposed in [17] is suitable for hardware implementation in SoC chips.
In [18], we proposed a low-complexity lossless coding framework for encoding event
camera frames by adapting the run-length encoding scheme and Elias coding [19] for EF
coding. One can note that the low-complexity lossless compression codec proposed in [18]
is suitable for hardware implementation in ESP chips. The goal of this work is to propose
a novel low complexity-oriented lossless compression codec for encoding asynchronous
event sequences, suitable for hardware implementation in ESP chips.

In summary, the novel contributions of this work are summarized as follows.
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(1) A novel low-complexity lossless compression method for encoding raw event data
represented as asynchronous event sequences, which is suitable for hardware imple-
mentation into ESP chips.

(2) A novel low-complexity coding scheme for encoding residual errors by dividing the
input range into several coding ranges arranged at concentric distances from an initial
prediction.

(3) A novel event sequence representation that removes the event timestamp information
by dividing the input sequence into ordered same-timestamp event subsequences that
can be encoded in separated bit streams.

(4) A lossless event data codec that provides random access (RA) to any time window by
using additional header information.

The remainder of this paper is organized as follows. Section 2 presents an overview of
state-of-the-art methods. Section 3 describes the proposed low-complexity lossless coding
framework. Section 4 presents the experimental evaluation of the proposed codecs. Section 5
draws the conclusions of this work.

2. State-of-the-Art Methods

To achieve an efficient representation of the large amount of event data, a first ap-
proach was proposed to losslessly (without any information loss) encode the asynchronous
event representation. In [12], a lossless compression method is proposed by removing the
redundancy of the spatial and temporal information by using three strategies: adaptive
macrocube partitioning structure, the address-prior mode, and the time-prior mode. The
method was extended in [13] by introducing an event sequence octree-based cube partition
and a flexible intercube prediction method based on motion estimation and motion com-
pensation. However, the coding performance of these methods (based on the spike coding
strategy) remains limited.

In another approach, the asynchronous event representation is compressed by em-
ploying traditional lossless data compression methods. In [14], the authors present a
coding performance comparison study of different traditionally based lossless data com-
pression strategies when employed to encode raw event data. The study shows that
traditional dictionary-based methods for data compression provide the best performance.
The dictionary-based approach consists of searching for matches of data between the data
to be compressed and a set of strings stored as a dictionary, in which the goal is to find
the best match between the information maintained in the dictionary and the data to be
compressed. One of the most well-known algorithms for lossless data compression is
the Lempel-Ziv 77 (LZ77) algorithm [20], which was created by Lempel and Ziv in 1977.
LZ77 iterates sequentially through the input string and stores any new match into a search
buffer. The Zeta Library (ZLIB) [21], an LZ77 variant called deflation, proposed a strategy
whereby the input data is divided into a sequence of blocks. The Lempel–Ziv–Markov
chain algorithm (LZMA) [22] is an advanced dictionary-based codec developed by Igor
Pavlov for lossless data compression, which was first used in the 7-Zip open source code.
The Bzip2 algorithm is based on the well-known Burrows–Wheeler transform [23] for block
sorting, which operates by applying a reversible transformation to a block of input data.

In a more recent approach [24], the authors propose to treat the asynchronous event
sequence as a point cloud representation and to employ a lossless compression method
based on a point cloud compression strategy. One can note that the coding performance of
such a method depends on the performance of the geometry-based point cloud compression
(G-PCC) algorithm used in the algorithm design.

Many of the upper-level applications prefer to consume the event data as an “intensity-
like” image rather than asynchronous events sequence, wherein several event-accumulation
processes are proposed [25–30] to form the EF sequence. Hence, in another approach,
several methods are proposed to losslessly encode the generated EF sequence. The study
in [14] was extended in [15] by proposing a time aggregation-based lossless video encoding
method based on the strategy of accumulating events over a time interval by creating
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two event frames that count the number positive and negative polarity events, which
are concatenated and encoded by the high-efficiency video coding (HEVC) standard [31].
Similarly, the coding performance depends on the performance of the video coding standard
employed to encode the concatenated frames.

To further improve event data representation, another approach was proposed to
encode the asynchronous event sequences by relaxing the lossless compression constraint
problem and accepting information loss. In [32], the authors propose a macrocuboids
partition of the raw event data, and they employ a novel spike coding framework, inspired
by video coding, to encode spike segments. In [16], the authors propose a lossy coding
method based on a quad-tree segmentation map derived from the adjacent intensity images.
One can note that the information loss introduced by such methods might affect the
performance of the upper-level applications.

3. Proposed Low-Complexity Lossless Coding Framework

Let us consider an event camera having a W × H pixel resolution. Any change of the
incoming light intensity triggers an asynchronous event, ei = (xi, yi, pi, ti), which stores
(based on the sensors representation) the following information in 8 B of memory:

• spatial information (xi, yi), ∀xi ∈ [1, H], yi ∈ [1, W], i.e., the pixel positions where the
event was triggered;

• polarity information pi ∈ {−1, 1},where the symbol “−1” signals a decrease and
symbol “1” signals an increase in the light intensity; and

• timestamp ti, the time when the event was triggered.

Hence, an asynchronous event sequence, denoted as ST = {ei}i=1,2,...,Ne , collects Ne events
triggered over a time period of T μs. The goal of this paper is to encode ST by employing a
novel, low-complexity lossless compression algorithm.

Figure 1 depicts the proposed low-complexity lossless coding framework scheme
for encoding asynchronous event sequences. A novel sequence representation groups
the same-timestamp events in subsequences and reorders them. Each same-timestamp
subsequence is encoded in turn by the proposed method, called low-complexity lossless
compression of asynchronous event sequences (LLC-ARES). LLC-ARES is built based on a
novel coding scheme, called the triple threshold-based range partition (TTP).

Same-Timestamp 
Event Grouping 
and Reordering

Proposed
Method

Compressed File

Collect 
Bitstreams

Encode Length

Compressed File with RA
Random Access (RA)

Figure 1. The proposed low-complexity lossless coding framework. The input asynchronous event
sequence, ST , is first represented by using the proposed event representation as a set of same-
timestamp subsequences, Sk, having same-timestamp tk, and then encoded losslessly by employing
the proposed method. The output bitstream of each same-timestamp subsequence can be stored in
memory as a compressed file. Moreover, it can also be collected as a package bitstream for all the
timestamps found in a time period ΔRA and then stored in memory together with bitstream-length
information stored as a header as a compressed file with RA, so that the proposed codec can provide
RA to any time window of size ΔRA.

Section 3.1 presents the proposed sequence representation. Section 3.2 presents the
proposed low-complexity coding scheme. Section 3.3 presents the proposed method.
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3.1. Proposed Sequence Representation

An input asynchronous event sequence, ST , is arranged as a set of same-timestamp
subsequences, ST = {Sk}k=0,1,...,T −1, where each same-timestamp subsequence
Sk = {ek

i }i=1,2,...,Nk
e
= {(xk

i , yk
i , pk

i )}i=1,2,...,Nk
e

collects all Nk
e events in ST triggered at

the same timestamp tk. One can note that at the decoder side the timestamp information
is recovered based on the subsequence length information, {Nk

e }k=0,1,...,T −1, i.e., tk = k
is set to all Nk

e events. Each Sk is ordered in the ascending order of the largest spatial
information dimension, e.g., yk

i < yk
i+1. However, if yk

i = yk
i+1, then Sk is further ordered in

the ascending order of the remaining dimension, i.e., xk
i < xk

i+1.
Figure 2 depicts the proposed sequence representation and highlights the difference

between the sensor’s event-by-event (EE) order, depicted on the left side, and the same-
timestamp (ST) order, depicted on the right side. Note that the EE order proposes to
write to file, in turn, each event ei. Although the proposed ST order proposes to write
to file the number of events of each same-timestamp subsequence, Nk

e having the same-
timestamp tk, and, if Nk

e > 0, it is followed by the spatial and the event information of all
same-timestamp events, i.e., {xi}i=1:Nk

e
, {yi}i=1:Nk

e
, {pi}i=1:Nk

e
. Section 4 shows that the state-

of-the-art dictionary-based data compression methods provide an improved performance
when the proposed ST order is employed to represent the input data compared with the
EE order.

Event-by-event (EE) order

3

Same-Timestamp (ST) order

Write-to-file order

Group &
Reorder

<

If 

Figure 2. The proposed representation based the proposed same-timestamp (ST) order (on the right)
in comparison with the sensor’s event-by-event (EE) order (on the left). The red arrow shows the
write-to-file order used to generate the input data files feed to the traditional methods.

3.2. Proposed Triple Threshold-Based Range Partition (TTP)

For hardware implementation of the proposed event data codec into low-power
event-processing chips, a novel low-complexity coding scheme is proposed. The binary
representation range of the residual error is partitioned into smaller intervals selected by
using a short-depth decision tree designed based on a triple threshold, Δ = (δ1, δ2, δ3).
Hence, the input range is partitioned into several smaller coding ranges arranged at
concentric distances from the initial prediction.

Let us consider the case of encoding x ∈ [1, H], i.e., a finite range, by using the
prediction x̂ by writing the binary representation of the residual error ε = x − x̂ on exactly
nε bits. Because on the decoder side nε is unknown, the triple threshold Δ is used to create a
decision tree having the role of partitioning the input range [1, H] into five types of coding
ranges (see Figure 3a), where either the binary representation of ε is represented by using
a different number of bits or the binary representation of x is written by using a different
number of bits.
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Figure 3. The proposed low-complexity coding scheme, triple threshold-based range partition (TTP).
(a) TTP range partition. (b) TTP decision tree. (c) TTPy range partition. (d) TTPy decision tree.
(e) TTPe range partition. (f) TTPe decision tree. (g) TTPL range partition. (h) TTPL range partition.
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Let us denote Δ = δ1 + δ2 + δ3, x1 = x̂ − Δ, x2 = x̂ + Δ, nδj = �log2 δj	, ∀j = 1, 2, 3,
n1 = �log2 x1	, and n2 = �log2 (H − x2 − 1)	. The 1st range, R1, is defined by using δ1
as (x̂ − δ1, x̂ + δ1) to represent any residual error |ε| < δ1 on nδ1 bits plus an additional
bit for sign(ε). The 2nd range, R2, is defined by using δ2 to represent any residual error
|ε| − δ1 < δ2 on nδ2 bits plus a sign bit, i.e., x ∈ (x̂ − δ1 − δ2, x̂ − δ1] for ε < 0 and
x ∈ [x̂ + δ1, x̂ + δ1 + δ2) for ε ≥ 0. Similarly, the 3rd range, R3, is defined by using δ3 to
represent any residual error |ε| − δ1 − δ2 < δ3 on nδ3 bits plus a sign bit. The 4th (R4) and
5th (R5) ranges are defined for |ε| ≥ Δ and used to represent x − 1 on n1 bits and H − x on
n2 bits, respectively.

Figure 3b depicts the decision tree defined by checking the following four constraints:

(c1) b0 is set by checking |ε| < Δ. If true then b0 = 0; otherwise, b0 = 1.
(c2) If b0 = 0, then b1 is set by checking |ε| < δ1. If true, then b1 = 0 and R1 is employed to

represent ε on nε = nδ1 + 1 bits; otherwise b1 = 1.
(c3) If b1 = 1, then b2 is set by checking |ε| < δ1 + δ2. If true then b2 = 0 and R2 is

employed to represent ε on nε = nδ2 + 1 bits. Otherwise, b1 = 1 and R3 is used to
represent ε on nε = nδ3 + 1 bits.

(c4) If b0 = 1, then b1 is set by checking x ≤ x1. If true, then b1 = 0 and R4 is employed
to represent x − 1 on n1 bits. Otherwise, b1 = 1 and R5 is used to represent H − x on
n2 bits.

Note that the range [1, x1] contains x1 possible values. To fully utilize the entire set of code
words (i.e., including 00 · · · 0 having n1 bits length), x − 1 is represented on n1 bits.

Algorithm 1 presents the pseudocode of the basic implementation of the TTP encoding
algorithm. It is employed to represent a general value x by using the prediction x̂, the
support range [1, H], and the triple threshold parameter, Δ, as output bitstream B, which
contains the decision tree bits, followed by the binary representation of the required
additional information for the corresponding coding range. Algorithm 2 presents the
pseudocode of the basic implementation of the corresponding TTP decoding algorithm.

Algorithm 1: Encode a general x by using TTP

Data: True value x, prediction x̂, range [1, H], and triple threshold Δ;
Result: Output bitstream B;

1 B(0) ← 0; B(1) ← 0; ε = x − x̂; Δ = δ1 + δ2 + δ3;
2 if |ε| < Δ then

3 if |ε| < δ1 then // R1 Range
4 B(2 : �log2 δ1	+ 2) ← [sign(ε); Write |ε| on �log2 δ1	 bits];
5 else

6 if |ε| < δ1 + δ2 then // R2 Range
7 B(1 : �log2 δ2	+ 3) ← [1; 0; sign(ε); Write |ε| − δ1 on �log2 δ2	 bits];
8 else // R3 Range
9 B(1 : �log2 δ3	+ 3) ← [1; 1; sign(ε); Write |ε| − δ1 − δ2 on �log2 δ3	 b];

10 else

11 if x ≤ x̂ − Δ, then // R4 Range
12 B(2 : �log2 (x̂ − Δ)	+ 1) ← [Write x − 1 on �log2 (x̂ − Δ)	 bits];
13 else // R5 Range
14 B(1 : �log2 (H − x̂ − Δ − 1)	+ 1) ← [1; H − x on �log2 (H − x̂ − Δ − 1)	];
15 Return B;
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Algorithm 2: Decode a general x by using TTP

Data: Bitstream B; prediction x̂, range [1, H], and triple threshold Δ;
Result: True value x;

1 if B(0) = 0 then

2 if B(1) = 0 then // R1 Range
3 signε ← B(2); εabs ← Dec2bin(B(3 : �log2 δ1	+ 2);
4 else

5 if B(2) = 0 then // R2 Range
6 signε ← B(3); εabs ← δ1 + Dec2bin(B(4 : �log2 δ2	+ 3);
7 else // R3 Range
8 signε ← B(3); εabs ← δ1 + δ2 + Dec2bin(B(4 : �log2 δ3	+ 3);
9 x ← signε · εabs;

10 else

11 if B(1) = 0 then // R4 Range
12 x ← 1 + Dec2bin(B(2 : �log2 (x̂ − Δ)	+ 2);
13 else // R5 Range
14 x ← H − Dec2bin(B(2 : �log2 (H − x̂ − Δ − 1)	+ 2);
15 Return x;

Section 3.2.1 presents the deterministic cases that may occur. Section 3.2.2 analyses
the different algorithmic variations proposed to encode the data structures in the proposed
event representation that have different properties.

3.2.1. Deterministic Cases

In some special cases, some part of the information can be directly determined from
the current coding context. For example, if x1 or x2 is outside the finite range (see Figure 4a),
then R4 or R5 does not exist and the context tree is built without checking condition (c4), i.e.,
in such case one bit is saved. More exactly, steps 11–14 in Algorithms 1 and 2 are replaced
with either step 12 (encode/decode using R4) or step 14 (encode/decode using R5).

1 H
R5R4

1 H
R5R4

(a)

1

bits bitsbits

(b)

Figure 4. Deterministic cases: (a) if x1 < 1 or x2 > H, then condition (c4) is not checked when
building the context tree and one bit is saved. (b) If x ∈ (x1 − 2n1−1, 2n1−1], then x is represented by
using one bit less than in the case when x ∈ [1, x1 − 2n1−1] or x ∈ (2n1−1, x1].

Moreover, because x1 and x′2 = H − x2 + 1 are not power-2 numbers, the most
significant bit of x, bn1−1, is 0, thanks to the constraint 1 ≤ x ≤ x1 and 1 ≤ x ≤ x′2,
respectively. Figure 4b shows that if x ∈ (x1 − 2n1−1, 2n1−1] and bn1−1 would be set as
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1, then x > x1 and the constraint would be violated. Hence, bn1−1 is always set 0 if
x ∈ (x1 − 2n1−1, 2n1−1], (or similarly when x ∈ (x′2 − 2n′

2−1, 2n′
2−1]).

3.2.2. Algorithm Variations

The basic implementation of the TTP algorithm was modified for encoding differ-
ent types of data. Let us denote εxk

i
= xk

i − x̂k
i and εyk

i
= yk

i − ŷk
i . Then the sequence

{xk
i }i=1,2,...,Nk

e
is encoded by using version TTPx, where εyk

i
is used to detect another deter-

ministic case: if εyk
i
= 0, then x̂k

i = xk
i−1 and the sign bit is saved (see Figure 2 (ST order)).

The sequence {yk
i }i=2,3,...,Nk

e
having εyk

i
≥ 0 (thanks to ST order) is encoded by using version

TTPy, which is designed to encode a general value x found in range [x̂, H]. Figure 3c,d
show the TTPy range partitioning and decision tree, respectively.

Some data types have a very large or infinite support range. The sequence of number
of events of each timestamp, {Nk

e }k=0,1,...,T −1, is encoded by using version TTPe. Note
that Nk

e ∈ [0, HW]; however, there is a very low probability of having a large majority of
pixels triggered with the same timestamp. Therefore, because Ne is usually very small,
TTPe is designed to use the doublet threshold Δe = (δ1, δ2), as experiments show that a
triplet threshold does not improve the coding performance. Figure 3e shows the TTPe
range partitioning, where the values 0, 1, . . . , δ2 − 2 are encoded by R2 as the last value,
δ2 − 1 (having the binary representation as nδ2 bits of 1, i.e., 11 . . . 1︸ ︷︷ ︸

nδ2

), signals the use of R6 to

encode |ε| − Δ − 2 by using a simple coding technique, the Elias gamma coding (EGC) [19].
Figure 3f shows the decision tree, where Nk

e = 0 (i.e., Sk = ∅) is encoded by the first bit of
the decision tree.

Finally, TTPL is designed to encode the length of the package bitstream B�, denoted
as L� (see Section 3.3.3). TTPL defines seven partition intervals by using two triple thresh-
olds: ΔS = (δS

1 , δS
2 , δS

3 ) is used for encoding small errors using R1S, R2S, and R3S, and
ΔL = (δL

1 , δL
2 , δL

3 ) is used for encoding large errors using R1L, R2L, and R3L. Similar to
TTPe, R6 is signalled in R3L by using the last value δL

3 − 1 and |ε| − ΔS − ΔL − 2 is encoded
by employing EGC [19].

3.3. Proposed Method

The proposed method, LLC-ARES, employs the proposed representation to gener-
ate the set of same-timestamp subsequences, {Sk}k=0,1,...,T −1 (see Section 3.1). Subse-
quence Sk is encoded as bitstream Btk by using Algorithm 3, which employs the proposed
coding scheme, TTP (see Section 3.2). The compressed file collects these bitstreams as
B = [Bt0 Bt1 · · · BtT −1 ].
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Algorithm 3: Encode the subsequence of ordered events

Data: Sk = {(xk
i , yk

i , pk
i )}i=1:Nk

e
of same timestamp tk, {Nj

e}j=k−3:k−1, H, W;
Result: Output bitstream Btk ;

1 N̂k
e ← Predict Nk

e using {Nj
e}j=k−3:k−1;

2 Btk ← Encode Nk
e using TTPe(N̂k

e , Δe);
3 if Nk

e > 0 then

4 Btk ← Encode yk
1 using TTPx(ŷk

r , εyk
1
> 0, [1, W], Δe1);

5 Btk ← Encode xk
1 using TTPx(x̂k

r , εyk
1
> 0, [1, H], Δe1);

6 Btk ← Encode pk
1 as 0 for pk

1 = −1 and 1 for pk
1 = 1;

7 for i = 2, 3, . . . , Nk
e do

8 Btk ← Encode yk
i using TTPy(yk

i−1, [ŷk
i , W], Δk

W);
9 x̂k

i ← Predict xk
i using {xk

j }j=1,2,...,i−1;

10 Btk ← Encode xk
i using TTPx(x̂k

i , εyk
i
, [1, H], Δk

H);

11 Btk ← Encode pk
i as 0 for pk

i = −1 and 1 for pk
i = 1;

12 end

13 Δk+1
H ← Update Δk

H using εk = yk
Nk

e
− yk

1;

14 Δk+1
W ← Update Δk

W using εk = yk
Nk

e
− yk

1;

15 end

16 Return Btk ;

Algorithm 3 encodes the following data structures:

(i) Encode Nk
e by employing TTPe using N̂k

e , computed by (1), and Δe;
(ii) Encode ek

1 as follows:

(ii.1) yk
1 by employing TTPx using ŷk

r computed by (2), range [1, W], and Δe1;
(ii.2) xk

1 by employing TTPx using x̂k
r computed by (2), range [1, H], and Δe1; and

(ii.3) pk
1 using binarization;

(iii) The remaining events are encoded as follows:

(iii.1) yk
i by employing TTPy using ŷk

i = yk
i−1, range [ŷk

i , W], and Δk
W ;

(iii.2) xk
i by employing TTPx using x̂k

i computed by (3), εyk
i
, range [1, H], and Δk

H ; and

(iii.3) pk
i using binarization.

(iv) Update the triple thresholds Δk
H and Δk

W .

The decoding algorithm can be simply deducted by replacing the TTP encoding algorithm
in Algorithm 3 with the corresponding decoding algorithm.

Section 3.3.1 describes the prediction of each type of data used in the proposed event
representation. Section 3.3.2 provides information about the setting of the triple thresholds
used in the proposed method. Section 3.3.3 describes the variation of LLC-ARES algorithm
to provide RA to any time window ΔRA. Finally, Section 3.3.4 presents a coding example.

3.3.1. Prediction

To be able to employ each one of the four algorithm variations, TTPx, TTPy, TTPe, and
TTPL, four types of predictions, N̂k

e , (x̂k
r , ŷk

r ), x̂k
i , L̂�, are computed by using the following

set of equations:

N̂k
e =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τe if k = 0,
N1

e if k = 1,
N1

e +N1
e

2 if k = 2,
Nk−3

e +Nk−2
e +2Nk−1

e
4 if k ≥ 3.

, (1)

31



Sensors 2022, 22, 10014

(x̂k
r , ŷk

r ) =

{
(H

2 , W
2 ) if k = 0,

(xκ
1, yκ

1 + τy) if k > κ > 0, Nκ
e > 0.

, (2)

x̂k
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xk
i−1 if i = 1 or εyk

i
= 0,

xk
i−1+xk

i−2
2 if i = 2,

med({xi−j}j=1:w1) if i > 2 and |εyk
i
| < τx,

med({xi−j}j=1:w2) if i > 2 and |εyk
i
| ≥ τx.

, (3)

L̂� =

{
27+�log2ΔRA	 if � = 1,
L�−1 otherwise.

. (4)

In (2), the prediction for the spatial information of the first event, e0
1, in the same-

timestamp subsequence Sk, is set as the sensor’s centre (H
2 , W

2 ), whereas the rest of the
values depend on the first event eκ

1 of the previously nonempty same-timestamp subse-
quence Sκ . In (3), if εyk

i
is small, x̂k

i is set as the median of a small prediction window of
size w1; otherwise it is of a larger prediction window of size w2. In our work, we set the
parameters as follows: τe = 10, τx = 23 + 24, τy = 3, w1 = 5, w2 = 15.

3.3.2. Threshold Setting

In this paper, the triple threshold parameters, Δe, Δe1, ΔS, Δk+1
H , Δk+1

W , and ΔL are se-
lected as power-2 numbers, and are set as follows:

Δe = (22, 22), (5)

Δe1 = (23, 24, 25), (6)

Δk+1
H =

⎧⎪⎨
⎪⎩

Δe1 if k = 0
(25, 25, 26) if k > 0 & εk < 8
(24, 24, 25) otherwise

, (7)

Δk+1
W =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(22, 23, 24) if k = 0
(21, 21, 22) if k > 0 & εk < 4
(21, 22, 23) if k > 0 & εk < 8
(22, 22, 23) if k > 0 & εk < 16
(22, 23, 24) otherwise

, (8)

ΔS = (28, 210, 212), (9)

ΔL = (25+�log2ΔRA	, 27+�log2ΔRA	, 29+�log2ΔRA	). (10)

3.3.3. Random Access Functionality

LLC-ARES-RA is an LLC-ARES version which provides RA to any time window
of size ΔRA. Hence, ST is now divided into P = � T

ΔRA
	 packages of ΔRA time-length,

denoted ST = {S�}�=1,2,...,P . The proposed LLC-ARES is employed to encode each pack-
age S� as the bitstream set {Btk}k=0,1,··· ,ΔRA−1, which is collected as the package � bit-
stream, B� = [Bt0 Bt1 · · · BtΔRA ], having L� bit length. The TTPL version is employed
to encode L� using the prediction L̂�, computed using (4), and the two triple threshold
ΔS and ΔL, and to generate the header bitstream, BH

� , as depicted in Figure 1. Hence,
the bitstreams of the set {L�}�=1,2,...,P are collected by the header bitstream, denoted as
BH = [BH

1 BH
2 · · · BH

P ], whereas all package bitstreams are collected by the sequence bit-
stream, denoted as BS = [B1 B2 · · · BP ]. Finally, the compressed file with RA collects the
BH and BS bitstreams in this order.
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3.3.4. A Coding Example

Figure 5 presents in detail the workflow of encoding by using the proposed LLC-ARES
method an asynchronous event sequence of 2μs time-length, containing 23 triggered events.
The input sequence received from the event sensor is initially represented by using the
EE order. The proposed sequence representation is employed by first grouping and then
rearranging the asynchronous event sequence by using the ST order. Because the input
sequence contains two timestamps, the ST order consist of the same-timestamp subsequence
S0 of 10 events and the same-timestamp subsequence S1 or 13 events. LLC-ARES encodes
each data structure by using different TTP variations as described in Algorithm 3.

EE order ST order

Group &
Reorder

x       y       p     t

45   301     1     0
62   302     1     0

177   303     1     0
62   304     1     0
90   308     1     0

181   308     1     0
71   307     0     0

140   307     1     0
63   307     0     0

416   307     0     0
88   305     1     1

165   306     1     1
149   306     0     1

63   306     0     1
61   310     1     1
38   310     0     1
66   310     0     1
88   310     0     1

156   310     0     1
90   309     1     1
64   309     0     1
74   312     1     1

248   312     0     1

10
45   301     1
62   302     1

177   303     1
62   304     1
63   307     0
71   307     0

140   307     1
416   307     0

90   308     1
181   308     1

13
88   305     1 
63   306     0 

149   306     0 
165   306     1 

64   309     0 
90   309     1 
38   310     0 
61   310     1 
66   310     0 
88   310     0 

156   310     0 
74   312     1 

248   312     0 

Encode using LLC-ARES:
as [1 0 0 0 0]
as [0 1 1 1 0 1 1 0 0]
as [1 0 0 0 1 1 0 1 0 0]
as [1]
as [0 0 1 0]
as [0 1 0 1 0 0 0 0 0]
as [1]
as [0 0 1 0]
as [1 1 1 1 1 0 0 1 1 1]
as [1]
as [0 0 1 0]
as [0 0 0 0 0 0 0]
as [1]

7 as [0 0 1 1]
as [0 0 1 0 0 0 0]
as [0]

7 as [0 0 0 0]
as [0 0 0 0 0 1]
as [0]

7 as [0 0 0 0]
as [0 1 1 1 0 1 0 1]
as [1]

7 as [0 0 0 0]
as [1 1 0 0 0 0 0 1 1 1]
as [0]

8 as [0 0 1 0]
as [0 1 0 1 1 0 0 0 0]
as [1]

8 as [0 0 0 0]
as [1 1 1 1 0 1 0 0 1 1 1]

as [1]
as [1 0 1 1 1]

- …
as [0]

11000001
01001101
00101100
01001001
01000001
11111010
00111100
00000001
00110010
00000001
10000000
11000000
00110101
00001100
10001110
00110100
10000100
10010111
11101111
00010000
01100001
01001001
00001110
10110110
00000000
10101100
01100100
00000011
00111010
01000101
00000011
00110111
00101000
10000000
00000101
00010011
00000010
00100100
00100010
00000110 Bitstream

193    77    44   73    65
250    60      1    50     1
128  192    53   12  142
52  132  151  239   16
97    73    14  182     0

172   100     3    58   69
3     55    40 128     5

19       2    36   34     6

Output bytes 
written to file

Figure 5. The encoding workflow using the proposed LLC-ARES method as an asynchronous event
sequence of 2μs time-length, containing 23 events. The input sequence, represented by using the EE
order, is first grouped and rearranged by using the proposed ST order. LLC-ARES encodes each data
structure by using different TTP variations as an output bitstream of 316 bits stored by using 40 bytes,
i.e., 40 numbers having an 8-bit representation.

4. Experimental Evaluation

4.1. Experimental Setup

In our work, the experimental evaluation is carried out on large-scale outdoor stereo
event camera datasets [33], called DSEC. They contain 82 asynchronous event sequences
captured for network training (training data) by using the Prophesee Gen3.1 event sensor
placed on top of a moving car, having a W × H = 640 × 480 pixel resolution. All results
reported in this paper use the DSEC asynchronous event sequences sorted in the ascending
order of their event acquisition density. By driving at different speeds and in different
outdoor scenarios, the DSEC sequences provide a highly variable density of events (see
Figure 5a, in which one can see that the event density variates between 5 and 30 Mevps).
Figure 6b depicts the cumulated number of events over the first 10 s of the DSEC sequences
having the lowest, medium, and highest acquired event density shown in Figure 6a. To limit
the runtime of state-of-the-art codecs, for each event sequence, only the first T = 108 μs
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(100 s) of captured event data are encoded in this work. The DSEC dataset is made publicly
available online [34].
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Figure 6. (a) The DSEC sequence time length (s) and event density (Mevps), where the asynchronous
event sequences are sorted in ascending order of the sequence acquisition density and the sequence
time length was constrained to contain only the first T = 108 μs (100 s) of the captured event data.
(b) The cumulated number of events (Mev) over the first 10 s of the DSEC sequences having the
lowest (SeqID: 01), medium (SeqID: 41), and highest (SeqID: 82) acquired event density.

The proposed method, LLC-ARES, is implemented in the C programming language.
The LLC-ARES-RA version is tested by using a time window of ΔRA of 102 μs, 103 μs, and
104 μs, where for each event sequence only the first T = 107 μs of captured event data are
encoded. The raw data size is computed by using the sensor specifications of 8 B per event.

The compression results are compared by using the following metrics:

(c1) Compression ratio (CR), defined as the ratio between the raw data size and the
compressed file size;

(c2) Relative compression (RC), defined as the ratio between the compressed file size of a
target codec and the compressed file size of LLC-ARES; and

(c3) Bit rate (BR), defined as the ratio between the compressed file size in bits and the
number of events in the asynchronous event sequence, measured in bits per event
(bpev), e.g., raw data has 64 bpev.

The runtime results are compared by using the following metrics:

(t1) Event density (ρE), defined as the ratio between the number of events in the asyn-
chronous event sequence and the encoding/acquisition time, measured in millions of
events per second (Mevps);

(t2) Time ratio (TR), defined as the ratio between the data acquisition time and the codec
encoding time; and

(t3) Runtime, defined as the ratio between the encoding/decoding time (μs) and the
number of events.
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The LLC-ARES performance is compared with the following state-of-the-art traditional
data compression codecs:

(a) ZLIB [21] (version 1.2.3 available online [35]);
(b) LZMA [22]; and
(c) Bzip2 (version 1.0.5 available online [36]).

One can note that the comparison with [12] was not possible, as the codec is not publicly
available and the dataset is made available only for academic research purposes.

4.2. Compression Results

Figure 7 shows the CR results and Figure 8 shows the BR results over DSEC [34]. One
can note that, for state-of-the-art methods, the proposed ST order provides an improved
performance of up to 96% compared with the sensor’s EE order. LLC-ARES (designed
for low-power chip integration) provides an improved performance compared with all
state-of-the-art codecs (designed for SoC integration) over the sequences having a small
and medium event density, and a close performance over the sequences having a high
event density as more complex coding techniques are employed by the traditional lossless
data compression methods.
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Figure 7. The compression ratio (CR) results over the DSEC dataset [34], where the asynchronous
event sequences are sorted in ascending order of the sequence acquisition density.

Table 1 shows the average CR and BR results over DSEC [34].One can note that,
compared with the state-of-the-art performance-oriented lossless data compression codecs,
Bzip2, LZMA, and ZLIB, the proposed LLC-ARES codec provides the following:

(i) an average CR improvement of 5.49%, 11.45%, and 35.57%, respectively;
(ii) an average BR improvement of 7.37%, 13.40%, and 37.12%, respectively; and
(iii) an average bitsavings of 1.09 bpev, 1.99 bpev, and 5.50 bpev, respectively.
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Figure 8. The bitrate (BR) results over DSEC [34], where the asynchronous event sequences are sorted
in ascending order of the sequence acquisition density.

Table 1. Average performance over DSEC by using the EE and ST order.

Method ZLIB [35] LZMA [22] bzip2 [36] Proposed
LLC-ARES

CR EE order 2.21 3.51 2.11 –
ST order 3.22 3.92 4.14 4.3

EBR (bpev) EE order 29.65 18.91 30.50 –
ST order 20.32 16.80 15.91 14.8

ρE (Mevps) ST order 1.392 0.275 2.453 5.736

TR ST order 0.133 0.027 0.246 0.531

4.3. Runtime Results

Figure 9 shows the event density results and Figure 10 shows the TR results over
DSEC. One can note that compared with runtime performance of state-of-the-art codecs,
LLC-ARES provides a performance much closer to real time for all sequences, and an
outstanding performance for the sequences having a high event density. More exactly,
LLC-ARES provides a much faster coding speed than the state of the art for the case of
high event acquisition density. Whereas the asynchronous event sequences have a very low
event acquisition density, LLC-ARES provides an encoding speed as close as approximately
90% of the real-time performance (see Figure 10). Moreover, the software implementation
was not optimized, as it can be further improved by a software developer expert to provide
an improved runtime performance when deployed on an ESP chip.
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Figure 9. The encoded event density results over the DSEC dataset [34], where the asynchronous
event sequences are sorted in ascending order of the sequence acquisition density.
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Figure 10. The time ratio (TR) results over the DSEC dataset [34], where the asynchronous event
sequences are sorted in ascending order of the sequence acquisition density.

Table 1 shows the average event density and TR results over DSEC. One can note that,
compared with the state-of-the-art lossless data compression codecs, Bzip2, LZMA, and
ZLIB, the proposed LLC-ARES codec provides the following:

(i) an average event density improvement of 234×, 412×, and 2086×, respectively; and
(ii) an average TR improvement of 216×, 401×, and 1969×, respectively.

Figures 11 and 12 show the encoding and decoding runtime over DSEC, respectively.
Note that LLC-ARES is a symmetric codec, wherein the encoder and decoder have similar
complexity and runtime, whereas the traditional state-of-the-art lossless data compression
methods are asymmetric codecs, as the encoder is much more complex than the decoder.
Table 2 presents the average results over DSEC by using the EE order and the proposed ST
order. Note that the LLC-ARES performance is approximately 10μs/ev for both encoding
and decoding, while the traditional state-of-the-art lossless data compression methods
achieve an encoding time between 135% and 515% higher than LLC-ARES and a decoding
time between 92% lower and 58% higher than LLC-ARES.

The implementation of LLC-ARES was not optimized, as the implemented method
must be redesigned for integration into low-power chips. These experimental results
show that a proof-of-concept implementation of the algorithm on a CPU machine provides
an improved performance compared with the state-of-the-art methods when tested on
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the same experimental setup. Please note that only LLC-ARES employs simple coding
techniques so that it is suitable for hardware implementation into low-power ESP chips.
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Figure 11. Encoding runtime results over the DSEC dataset [34], where the asynchronous event
sequences are sorted in ascending order of the sequence acquisition density.
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Figure 12. Decoding runtime results over the DSEC dataset [34], where the asynchronous event
sequences are sorted in ascending order of the sequence acquisition density.

Table 2. Average runtime results over DSEC using EE and ST order.

Method ZLIB [35] LZMA [22] bzip2 [36] Proposed
LLC-ARES

Encoding Runtime EE order 67.20 μs/ev 210.39 μs/ev 40.91 μs/ev –
ST order 44.70 μs/ev 227.27 μs/ev 25.75 μs/ev 10.92 μs/ev

Decoding Runtime EE order 0.78 μs/ev 7.46 μs/ev 16.09 μs/ev –
ST order 1.14 μs/ev 5.71 μs/ev 10.58 μs/ev 10.21 μs/ev

4.4. RA Results

Figure 13 shows the RC results over DSEC. One can note that the RC results are
quite similar, as the size of the header bitstream is neglectable compared with the time-
window sequence bitstream. When providing RA to the smallest tested time window of
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ΔRA = 100μs, compared with LLC-ARES, the coding performance of the proposed LLC-
ARES-RA method decreases with less than 0.19% when the encoded header information is
stored in memory and less than 0.35% when the decoded header information is stored in
memory, denoted here as memory usage (MU) results.
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Figure 13. The relative compression (RC) results for RA results over the DSEC dataset [34], wherein
the asynchronous event sequences are sorted in ascending order of the sequence acquisition density.

5. Conclusions

In this paper, we proposed a novel lossless compression method for encoding the
event data acquired by the new event sensor and represented as an asynchronous event
sequence. The proposed LLC-ARES method is built based on a novel low-complexity
coding technique so that it is suitable for hardware implementation into low-power ESP
chips. The proposed low-complexity coding scheme, TTP, creates short-depth decision
trees to reduce either the binary representation of the residual error computed based on
a simple prediction, or the binary representation of the true value. The proposed event
representation employs the novel ST order, whereby same-timestamp events are first
grouped into same-timestamp subsequences, and then reordered to improve the coding
performance. The proposed LLC-ARES-RA method provides RA to any time window by
employing a header structure to store the length of the bitstream packages.

The experimental results demonstrate that the proposed LLC-ARES codec provides
an improved coding performance and a closer to real-time runtime performance com-
pared with state-of-the-art lossless data compression codecs. More exactly, compared with
Bzip2 [36], LZMA [22], and ZLIB [35], respectively, the proposed method provides:

(1) an average CR improvement of 5.49%, 11.45%, and 35.57%;
(2) an average BR improvement of 7.37%, 13.40%, and 37.12%;
(3) an average bitsavings of 1.09 bpev, 1.99 bpev, and 5.50 bpev;
(4) an average event density improvement of 234×, 412×, and 2086×; and
(5) an average TR improvement of 216×, 401×, and 1969×.

To our knowledge, the paper proposes the first low-complexity lossless compression
method for encoding asynchronous event sequences that is suitable for hardware im-
plementation into low-power chips.
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Abbreviations

The following abbreviations are used in this manuscript:

DVS Dynamic Vision Sensor
APS Active Pixel Sensor
DAVIS Dynamic and Active-pixel VIsion Sensor
EF Event Frame
RA Random Access
TALVEN Time Aggregation-based Lossless Video Encoding for Neuromorphic sensor
ESP Event Signal Processing
SoC System-on-a-chip
EMI Event Map Image
CPV Concatenated Polarity Vector
HEVC High Efficiency Video Coding
SNN Spike Neural Network
EGC Elias-Gamma-Coding
LLC-ARES Low-Complexity Lossless AsynchRonous Event Sequences
LLC-ARES-RA LLC-ARES with RA
ZLIB Zeta Library
LZMA Lempel–Ziv–Markov chain Algorithm
G-PCC Geometry-based Point Cloud Compression
CR Compression Ratio
BR Bitrate
TR Time Ratio
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Abstract: High efficiency video coding (HEVC) has dramatically enhanced coding efficiency com-
pared to the previous video coding standard, H.264/AVC. However, the existing rate control updates
its parameters according to a fixed initialization, which can cause errors in the prediction of bit
allocation to each coding tree unit (CTU) in frames. This paper proposes a learning-based mapping
method between rate control parameters and video contents to achieve an accurate target bit rate and
good video quality. The proposed framework contains two main structural codings, including spatial
and temporal coding. We initiate an effective learning-based particle swarm optimization for spatial
and temporal coding to determine the optimal parameters at the CTU level. For temporal coding at
the picture level, we introduce semantic residual information into the parameter updating process to
regulate the bit correctly on the actual picture. Experimental results indicate that the proposed algo-
rithm is effective for HEVC and outperforms the state-of-the-art rate control in the HEVC reference
software (HM-16.10) by 0.19 dB on average and up to 0.41 dB for low-delay P coding structure.

Keywords: HEVC; learning-based rate control; PSO

1. Introduction

Multimedia technology has been upgraded from one generation to another to fulfill
daily needs such as television, telephones, computers, robots, etc. Numerous multimedia
applications have been utilized, including digital versatile disc (DVD), digital television
(TV) broadcasting, video telephony, video teleconferencing, video games, and other forms
of video-on-demand. According to [1], the resolution of television broadcasting has been
upgraded from standard-definition television (SDTV) to 8K ultra high definition (UHD),
which requires a very high bit rate to transmit or store. Furthermore, the video demand
on internet traffic is increasing, based on a statistical report in the “Cisco Annual Internet
Report (2018–2023)”, a Cisco White Paper in 2018 in [2]. Thus, it strongly needs an effective
video coding technique to reduce the network traffic load with good visual quality and a
lower bit rate.

In general, video properties have four redundancy criteria: spatial redundancy, tempo-
ral redundancy, perceptual redundancy, and statistical redundancy, which can be eliminated
by the video coding standard [3]. High efficiency video coding (HEVC) [4], an advanced
video coding standard released in 2013 by ITU-T and ISO/IEC, can effectively remove the
digital video redundancies and achieve a bit rate saving of about fifty percent at the same
visual quality by comparing with the previous standard (H.264/AVC [3,5,6]). HEVC is built
following the structure of the successful block-based hybrid video coding approach [7], the
same as the H.264/AVC video coding standard. In addition, several advanced techniques
are applied in HEVC to get efficient compressions, such as flexible partitioning using quad-
tree structure, prediction modes [8], sample adaptive offset (SAO) [9], and the cutting-edge
interpolation technique [10].
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Moreover, HEVC needs to have a functional encoder control, known as rate control, to
determine the optimum codec parameters to accomplish minimal rate–distortion (R–D)
score [11]. Many codec parameters include modes selection, quad-tree structure, motion es-
timation, and quantization parameter (QP). In common, the rate control algorithms [11,12]
are used to define the bit allocation and QP by fixing the other parameters to accomplish
the target bit with consistent visual quality. Specifically, rate control needs to manipulate
the number of bits from a constant bit rate (CBR) into each coding level, including the
group of picture (GOP) level, picture level, and basic units known as macroblocks (MBs)
in H.264/AVC. The QP is then regulated to achieve the pre-allocated bits for each coding
level, where the larger number of QP leads to a smaller number of allocated bits and vice
versa. Encoder controls typically implement a uniform bit allocation in a GOP structure
and initialize the fixed encoding parameters for any video contents to preserve a short-
term constant output bit rate in the CBR channel. As a result, this implementation faces
an infeasible problem of accurately adjusting encoding parameters for each GOP frame.
Accordingly, if the target bit is less than the output bits, the encoded bits will rack up in
the encoder buffer, causing a buffer overflow. The target bit is greater than the output
bits, which implies the buffer underflow. Hence, controlling the relationship between bit
rate and QP is essential for maintaining picture quality throughout the video sequence, as
buffer overflows and underflows have an undesired effect on video quality fluctuations.
Q-domain rate control is a direct estimation that attempts to model a correlation function
between bit rate and quantization; the bit allocation can be computed from the QP to
allocate for residual information but not for non-residual information. This model can work
well when the coding parameters are not very flexible. Another rate control algorithm
called ρ-domain rate control is developed [12,13] by introducing a linear function that
outputs the coding bit rate from the percentage of zeros among the quantized transform
coefficient. The model is effective only if the size of the transform is fixed. Both Q-domain
and ρ-domain rate controls are designed to assume a high correlation between bit rate
and quantization. This assumption is not valid for the current video codec because the
codec becomes progressively variable [4]. Thus, a robust rate control [11], named R–λ rate
control, has been released to achieve the best balance between bit rate and distortion. This
rate control attempts to improve the coding efficiency and rate control accuracy by using
the Lagrangian method, λ, for rate–distortion optimization (RDO).

Although the aim of R–λ rate control is for HEVC to enhance the coding efficiency
compared with the conventional methods, two difficulties still need to be solved in HEVC
reference software [14], including inaccurate bit allocation and inaccurate λ estimation. For
the bit allocation part, the bit consumption of each CU of the first picture is computed by
applying one to all initial encoder parameters at the basic unit level. In other words, all
CUs are encoded using the same rate control parameters as the picture level. In such a
case, the rate control will cause a bit consumption imbalance in the CU due to the spatial
characteristic of each CU and result in the error bits’ distribution affecting the overall
quality control. In addition, the inaccurate bit consumption at each coding level affects
the λ adjustment to accomplish the frame bit budget because λ and the bit allocation are
highly correlated. Specifically, according to the previous encoding results and the statistical
characteristics of the input source data, the encoder parameters are empirically inaccurate,
resulting from performance degradation at scene changes.

Based on these considerations, we propose a learning-based mapping method between
R–λ parameters and video content to achieve accurate target bit rates and preserve good
video quality. We use a feedback re-encoding method for the intra-picture and inter-picture
to distribute R–λ parameters adaptively related to picture pattern changes. Additionally,
the convolutional neural network (CNN) model [15] is used to capture the powerful spa-
tial representation of the local coding tree units (CTUs). This CNN model is trained on
the ImageNet dataset [16]. By incorporating the CNN model with the R–λ rate control
algorithm, we can accurately obtain the expected number of bits per CTU. Our problem
is a constrained optimization problem, where, by obtaining the optimal encoder control
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parameters to minimize the distortion subject to a constraint, the actual bit rate consump-
tion is less than the target bit rate. To solve the constrained optimization problem, there
are two optimization methods, namely the gradient-based method [17,18] and the non-
gradient-based method (known as the evolutionary algorithm) [19–24]. The gradient-based
method is effective only when the constraints and objective or penalty function can be
derived. Since our model aims to map the high-dimensional feature space of the CTU to
the R–λ parameter with the goal of R–D optimization, which cannot directly derive the
gradient information from the penalty function, the evolutionary algorithm (EA) is chosen
to optimize the parameters of our model. There are several EAs such as evolution strategies
(ES) [19], simulated annealing (SA) [20], genetic algorithm (GA) [21], and particle swarm
optimization (PSO) [22]. Due to the simplicity and convergence speed characteristics of all
EAs [24], PSO is the most powerful one and has been successfully implemented to solve
various constrained optimization problems [25–28]. Comprehensively, PSO takes the value
of the objective function and uses primitive mathematical operators to solve the social
behavior of model parameters. Therefore, PSO is implemented in our model to find the
best solution for mapping the characteristics of CTU and rate control parameters. Further-
more, we feed the semantic residue information to adjust the current parameters of rate
control updating cross-picture. The main contributions of this paper can be summarized in
three aspects:

(i) We propose a learning-based neural network to define the mapping between video
contents and rate control parameters to assign CTU budgets correctly;

(ii) We introduce a particle swarm optimization algorithm to finalize the optimal pa-
rameters at the basic unit level to maintain the bit budget and obtain good visual
video quality;

(iii) We enhance the rate control parameter updating by considering the semantic residue
information of the actual inter-picture into rate control.

The rest of the paper is organized as follows. In the next section, we briefly summarize
related work. Then, the learning-based parameters of R–λ are described. After that, the
experimental results are given. Finally, concluding remarks are provided.

2. Related Works

In this section, we briefly review the existing rate control models: R–Q model, ρ-
domain-based Rate-GOP, R–λ models, and deep learning based rate control.

2.1. R–Q Model

The R–Q model [29] has extended to HEVC encoder control, known as a pixel-wise
unified R–Q model (URQ); the quadratic R–Q model is defined as in (1),

R = aQ−1 + bQ−2 (1)

where R presents as the target bit rate, Q is the quantization parameter, and a and b are
the parameters related to the video characteristic. The bit allocation of the URQ model
is proposed similarly to the rate control model in H.264/AVC, where the target bit is
computed based on the mean absolute difference (MAD) corresponding to the quantization
step. As a result, compared with the earlier HEVC video coding standard (HM6.0) [14], the
visual quality of the URQ model is slightly improved. However, some issues have been
discussed regarding Q-domain rate control [30,31], such that QP is an integer data type
that may not be adjusted accurately to achieve a bit budget.

2.2. ρ-Domain-Based Rate-GOP

The enhanced R–Q model known as ρ-domain-based Rate-GOP is proposed in [32] by
presenting a new relationship one-to-one quantized transform coefficient with target bit
rate. It is formulated as in (2):

Ri = θi(1 − ρi) (2)
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where θi and ρi denote a parameter related to the video pattern and the percentage of zero
transform coefficients of frame i, respectively. Additionally, the mapping between non-zero
transform coefficients and QP is determined following the quadratic function to properly
allocate the bit to non-zero transform units. Consequently, the ρ-domain-based Rate-GOP
can significantly achieve better video quality than the Q-domain rate control. Although
this indirect relationship between R and Q technique is advantageous, it is still difficult to
adapt its estimation to the variable block size transform in HEVC.

2.3. R–λ Model

To overcome the limitations of the R–Q model mentioned above, a new type of encoder
control with the hierarchical bit allocation for every picture in a GOP is proposed in [11],
called R–λ rate control. First, the author proposed a hyperbolic function as a model to
express the characteristics of the R–D relationship, as in (3):

D(R) = C · R−K (3)

where C and K are parameters related to video content. Then, to minimize (3), λ is
determined as the slope of the model in (4).

λ = −∂D
∂R

= C · K · R−K−1 (4)

⇔ λ = α · Rβ ≡ γ · Dτ . (5)

Therefore, λ can indicate the trade-off between bit rate and distortion. If λ is large, the
lower bit rate will cause higher distortion. On the other hand, small λ results in a higher
bit rate with lower distortion. In addition, a hierarchical bit allocation method [33] is used
to allocate different picture weights corresponding to each picture position in the GOP to
improve coding efficiency. Furthermore, the QP can be computed by giving λ for each
coding level as in (6).

QP = 4.2005 · ln(λ) + 13.7122. (6)

The rate control can obtain stable buffer occupation and codec improvements through the
hierarchical bit allocation method and the novel relationship between λ and R. As a result,
R–λ rate control is generally used in the advanced video coding standard. However, the
R–λ model mainly considers the bit rate by ignoring the characteristics of the video content.
Furthermore, the model initializes its parameters by sharing the same fixed constant from
the frame to all CTU levels. These aspects can cause video quality degradation.

A distortion-based Lagrange multiplier is proposed in [34] to enhance the compressed
video quality in HEVC. The authors used the equivalent of distortion D and λ instead of
R–λ. Two main objective functions control the λ adjustment: mean square error (MSE) and
absolute error. MSE is calculated from the original and reconstructed video content, while
the absolute error is computed by subtracting between the actual and target bit budget.
This technique is designed for the non-hierarchical structure of rate control. It can enhance
the video quality by an average of 0.23 dB in the low-delay P configuration compared with
non-hierarchical R–λ rate control. The R–λ model with a hierarchical structure achieves a
higher video quality of 0.26 dB than the R–λ model without a hierarchical structure [11].
This ability of the hierarchical structure in R–λ makes it a common approach as the default
HEVC general test condition in [35]. A video quality enhancement of the compressed video
worked on R–λ with a hierarchical structure is proposed in [36]. The authors introduced
a simple rate control parameter-sharing in a GOP structure (PS-GOP), achieving a higher
video quality of 0.07 dB on average and up to 0.17 dB compared to the default HEVC
reference software (HM-16.10) [14].

An inter-block dependency-based CTU-level rate control for HEVC is established
in [37], known as the RCA model. This proposed RCA is inspired by the temporal-
dependent RDO, which is formulated as the fusion between inter-block dependency and
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R–D characteristics. This proposed model has achieved a considerable PNSR enhancement.
However, the spatial coding units have not been taken into consideration, which would
result in parameter propagation errors at the early stage.

2.4. Deep Learning-Based Rate Control

A deep reinforcement learning-based rate control for the dynamic video sequences
is designed in [38] to capture the experience gained from the various factors, including
brightness, variance, and gradient of each coding unit during the coding process. The
proposed model is structured following the Markov decision process in a continuous
discrete space to obtain better PSNR and lower-quality fluctuation. Nevertheless, the
reinforcement approach has limitations, including a high number of interactions required
to learn an optimal policy and difficulty generalizing to new, unseen environments.

Under a random access configuration, a deep convolution features-driven rate control
for the HEVC encoders is proposed [39]. The method involves utilizing a pre-trained VGG-
16 model to extract perceptual features, which addresses the problem of the rate control
estimation. However, the model has not generalized the visual characteristic mapping to
the rate control parameter.

Hence, we propose effective R–λ parameters associated with the video content to
improve the compressed video quality and maintain the bit budgets at the encoder side.
The following section presents the proposed framework in detail.

3. Learning-Based Rate Control

This section introduces a learning-based rate control algorithm, which creates a re-
gression map for the R–λ parameter. The proposed framework is designed, as shown in
Figure 1. The green boxes represent the modification rate control model using the feature
translation technique and the convolution feature map. First, the input video is fed into
the convolution feature map to extract the high dimensional feature space, which contains
essential features representing the CTU in the scene. Then, the proposed model learns to
translate the input feature space to rate control parameters to get the optimal trade between
the target bit rate and distortion rate. Additionally, the dashed lines from the inter- and
intra-prediction are indicated to send the convolution feature representation of the video
coding with the coding mode, whether intra- or inter-prediction to the Encoder Control
block. Figure 2 shows the convolution feature map module and the regression map repre-
sentations module, which are constructed to generate the R–λ parameters. The regression
map is designed as learning-based particle swarm optimization (LB-PSO). Furthermore,
the parameter updating for inter-coding is performed by considering residue information.
The details of each part are presented in the following subsections.
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Figure 1. Learning-Based Rate Control Diagram for High Efficiency Video Coding.

Figure 2. Overview of proposed learning-based particle swarm optimization.
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3.1. Convolutional Feature Map

The convolutional feature map (fully convolutional networks—FCNs) is introduced at
the first stage to obtain the meaningful spatial representation of CTU pictures for the input
of our LB-PSO model. In general, the early layers of convolutions in the deep convolutional
networks demonstrate the input image’s local or low-level feature information. In contrast,
the deeper layers of convolutions indicate the high-level feature information that provides
more global information about the image [40]. Additionally, the last fully connected (FC)
layer of deep nets is designed to define the high-level feature information into object classes.
Since FCNs do not include the FC layer, a relationship between the input image and the
final feature output layer is preserved and expressed as data compression, which encodes
the raw-pixel representation of the input image to high-level information. This information
provides the global feature G representing the input image characteristic. G is fed into
our LB-PSO model to generate the R–λ parameters. A pre-trained residual networks
(ResNets) [15] model without the FC layer is used to extract the powerful convolutional
feature. However, the original input size of ResNets is incompatible with the maximum
size of CTUs. The adaptive average pooling (AAP) is then applied to the last convolution
layers to ensure the compatibility of input and output dimensions. Figure 2 demonstrates
the overall layout of our convolutional feature map architecture.

Suppose a tth frame contains a total K CTUs, then Gt = {g0, g1, . . . , gK}t. Precisely, G
is a parameter representing the high-dimensional features required as input to the proposed
LB-PSO model. To obtain G for re-feedback coding of each coding structure in HEVC,
i.e., intra- or inter-pictures, we define G as in (7):

gt
k =

⎧⎨
⎩St

k, if intra-picture.∣∣∣St
k − St−NGOP

k

∣∣∣
(t mod c)

, otherwise.
(7)

where k ∈ K, and c (c > 0) is a constant to determine the frame index for re-feedback
coding on (t mod c). NGOP is the total number of pictures in a GOP. St

k and St−NGOP
k

represent the convolutional feature information (spatial representation) of kth CTU ob-
tained from the original frame forg at t position and reconstruction frame frec at t − NGOP
position, respectively.

Specifically, if the encoding mode is intra coding, the spatial representation will directly
input to the LB-PSO model. Otherwise, we compute the semantic residue information
by applying the absolute difference between the current spatial representation St

k of the
original CTU and the previous spatial representation St−NGOP

k of the reconstructed CTU
before feeding it to the LB-PSO model to accurately generate rate control parameters on the
changes between consecutive CTUs. In addition, the reconstructed frame at t − NGOP is
chosen in the proposed method because a group of pictures in a video allows for exploits
of the temporal redundancy in the video. The proposed model can be adapted following
the NGOP.

3.2. Learning-Based Particle Swarm Optimization Network
3.2.1. LB-PSO Estimator

Our LB-PSO is proposed to define the optimal mapping φ from the spatial–temporal
representation of CTU gk to rate control parameters yk, yk = {α, β}k. We introduce a
feedforward network with one hidden layer to determine yk. This feedforward network
can be computed as in (8):

yk = φ(hk; Wφ, bφ) = WT
φ hk + bφ (8)

where Wφ provides the weights of a mapping function φ, bφ is a bias, and hk represents the
output of the hidden layer. Precisely, hk is designed by applying a rectified linear activation
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function to the output of a linear transformation composed of the weights Wh and bias bh
parameters to trigger a non-linear transformation. Thus, hk can be derived as in (9):

hk = max{0, WT
h gk + bh} (9)

From (8) and (9), our complete mapping model can be reformulated as in (10):

yk = WT
φ max{0, WT

h gk + bh}+ bφ (10)

The model parameters M = {Wφ, Wh, bφ, bh} are optimized by utilizing swarm intelligence
to exchange information between particles about R–D cost function, J. On the other hand,
the model parameters regulate its trajectory concerning its best previous position and the
best previous position reached by any member of its neighborhood. To target the swarm
intelligence rule, the cost function J is determined by two objective functions, including a
reconstruction error (MSE) of visual quality and smooth L1 error of bit allocation. The cost
function J can be defined as in (11):

J =
1
N

N−1

∑
j=0

( forgj − frecj)
2 + ηsmoothL1(RT − RA) (11)

smoothL1(U) =

⎧⎪⎨
⎪⎩

U2

2
, if |U| < 1

|U| − 1
2

, otherwise
(12)

where N is the total number of pixels in a picture and η is a penalty coefficient. RT and RA
are the target and actual bit on the picture level, respectively.

According to the cost function design, the model parameters are updated after all
CTUs are fully encoded. This cost function is aimed at the model learning to achieve the
trade-off between distortion and bit allocation. The next section introduces the complete
process of the parameters update.

3.2.2. Parameter Updating

In this subsection, we present the parameter update of the encoder controller corre-
sponding to the intra/inter coding mode. In addition, the inter coding mode is classified
into two sets of coding frames: a core frame and a common one. A core frame is encoded
by activating the re-feedback coding to adjust the bit budget at the CTU coding level. In
contrast, the common frame is coded by applying the default Lagrangian multiplier to de-
termine the bit budget at the CTU coding level. For both intra coding and core frame of inter
coding, the bit budget at the CTU coding level is computed using Equations (4) and (10).
Additionally, the model parameters M in Equation (10) individually parameterize its value
according to its movement in a search space.

Let P be the total size of the population, Vi be the velocity (position change) of i-th
particle, Bi be the best previous model parameters of i-th particle, and Bg be the best model
parameter in the swarm. Then the swarm is manipulated on each iteration n according to
the following two equations:

Vn+1
i = aVn

i + c1rn
i1(Bn

i − Mn
i ) + c2rn

i2(Bn
g − Mn

i ), (13)

Mn+1
i = Mn

i + Vn+1
i , (14)

where i = 1, 2, . . . , P, and a is the inertia weight of velocity V, which is used to control
the trade-off between the swarm’s global and local exploration capabilities. c1 and c2 are
two positive acceleration constants, named the PSO’s cognitive and social parameters,
respectively. ri1 and ri2 are the random numbers, generated from a uniform distribution
within the range [0, 1]. The performance of each model parameter Mi in the swarm is
measured according to the cost function J. The lower cost function indicates a better Mi.
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After finalizing the best Mi to preserve the minimal cost function J at the CTU coding level,
the CTU is encoded.

For the picture level of inter coding, the rate control parameters are adjusted by
considering the residue score of the semantic residue information. The probability of
residue score Qt on a picture at time t can be computed as

Qt = ∑
k∈K

∑
j∈Sk

At
k(j)

St
k(j)

(15)

At
k(j) =

⎧⎪⎨
⎪⎩

0, if t − NGOP ≤ 0∣∣∣∣∣St
k(j)− S

t×
⌊

t
NGOP

⌋
k (j)

∣∣∣∣∣, otherwise
(16)

where �.� represents the rounded result. Additionally, in the GOP regarding the spatiotem-
poral information of the video sequence, the picture levels generally have different pairs
of encoder controller coefficients αp and βp. Therefore, the rate control parameters can be
updated by (17)–(21). The Lagrangian multiplier, λ, is defined as

λ = αpold · Rβpold (17)

If the GOPid equals 0, a pair of rate control parameters can be formulated as in (18) and (20).

αpnew = αpold + δα · (ln(λr − λc)) · αpold + ζQt (18)

βpnew = βpold + δβ · (ln(λr − λc)) · ln(bppr) +
ζ

2
Qt (19)

Otherwise, a pair of rate control parameters can be computed as in (19) and (20).

αpnew = αpold + ζQt (20)

βpnew = βpold +
ζ

2
Qt (21)

where δα and δβ are the default constant in HEVC reference software. λr represents the real
λ value, λc is a computed λ value from the real cost bppr with the previous rate control
parameters αpold and βpold at picture level, and ζ is the residue penalty constant.

For the quantization parameter (QP), it can be determined as in (21).

QP = 4.2005 · ln(λ) + 13.7122 (22)

Figure 3 provides the model flowchart of the learning-based PSO method, named
LB-PSO. LB-PSO initially randomizes the group of particle parameters. Then, the rate
control coefficients are computed using the LB-PSO estimator. Subsequently, the LB-PSO
model’s best local and global parameters have reallocated if the current position is better
than the stored position according to its cost function, J. After that, the velocity V and
position M are calculated following Equations (13) and (14). Finally, the best particle for the
LB-PSO model is determined to generate the best rate control coefficients for the current
input CTU context.
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Figure 3. Learning-based particle swarm optimization flowchart.

4. Experimental Results

To evaluate the performance of the proposed learning-based particle swarm optimiza-
tion, the experiments are conducted on various videos, including static and dynamic scenes.

4.1. Experiment Setting

In the experiment, the proposed algorithm is implemented on HEVC reference soft-
ware [14] and is compared with the PS-GOP [36] and the state-of-the-art R–λ rate control
(RC-HEVC) [11]. According to HEVC common parameter setting [3], the largest size of a
CTU produces high-efficiency coding performance. Specifically, the largest feasible size
of a CTU in HEVC is a 64 × 64 block size. We have also designed the model to adapt
bit allocation for CTUs related to their spatial information, which is extracted using a
pre-trained CNN model. Since we have implied CNN feature extraction on the largest size
of a CTU in HEVC, we transform YUV420 format to a true color (64 × 64 × 3) CTU as
the input in the feature extraction block. The proposed algorithm and baseline methods
are simulated in the same reference software HM-16.10. Precisely, the experiments are
conducted under the low-delay P main profile configurations, and the encoder parameters
are set according to the standard setting in [35] by enabling the rate control as True. In
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addition, there are 100 iterations in every decision-making process for each rate control
parameters prediction in the proposed LB-PSO. There are fifteen test video sequences
with four video resolutions, including two videos of 240p (wide quarter video graphics
array—WQVGA) [41], three videos of 480p (wide video graphics array—WVGA) [41],
five videos of 720p (HD) [42], three videos of 1080p (full HD) [41], and two videos of 4k
resolution [43]. Table 1 briefly summarizes the characteristics of the test video sequence. In
addition, the test video sequence is encoded at four target bit rates corresponding to the
video resolution. Since the goal of rate control is not only to improve the visual quality of
the video for a given bit rate but also to achieve the bit rate closest to the target bit rate,
both peak signal-to-noise ratio (PSNR) and bit rate error (BRE) are used as the criteria for
determining the performance of the rate control algorithm. The PSNR and BRE can be
computed as in (22) and (23).

PSNR = 10 log

⎡
⎢⎣ (2n − 1)2

1
N ∑N−1

j=0

(
forgj − frecj

)2

⎤
⎥⎦ (23)

BRE =
(RT − RA)

RT
× 100% (24)

where n represents bit depth.

Table 1. Characteristics of Test Video Sequences and Bit Rate.

Resolution Name of Video Sequence Frame Rate (fps) Bit Rate (kbps)

3840 × 2160 HoneyBee 120 1000, 2000,
3000, 4000Jocky 120

1920 × 1080
ParkScene 24 1000, 2000,

3000, 4000Cactus 50
BQTerrace 60

1280 × 720

FourPeople 60

384, 512,
850, 1200

KristenAndSara 60
Vidyo1 60
Vidyo3 60
Vidyo4 60

832 × 480
BasketballDrillText 50 384, 512,

768, 1200PartyScene 50
BQMall 60

416 × 240 BlowingBubbles 50 256, 384,
512, 1200BQSquare 60

4.2. Experimental Results and Analysis

(1) R–D performance and Bit Rate Accuracy: The first experiment was conducted on the
low video resolution (WQVGA), which contains two video sequences with different frame
rates, including BlowingBubbles and BQSquare. These two videos have various dynamic
characteristics, such as a moving camera, moving objects, and illumination changes. Table 2
describes the proposed method’s PSNR and BRE performance compared with the baseline
methods. Our learning-based method outperforms all the baseline methods as we achieve
the highest PSNR value with the same bit rate.
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Table 2. The Performance of PSNR and BRE of Video Sequence with Resolution of 416 × 240.

Name of Video
Sequence

Target Bit
Rate

RC-HEVC PS-GOP Proposed Method

Bit Rate PSNR BRE Bit Rate PSNR BRE Bit Rate PSNR BRE

BlowingBubbles

256 256.06 29.69 −0.02 256.08 29.79 −0.03 256.02 29.99 −0.01
384 384.05 31.14 −0.01 384.00 31.26 0.00 384.02 31.44 −0.01
512 512.06 32.26 −0.01 512.05 32.38 −0.01 512.04 32.51 −0.01
1200 1200.18 35.64 −0.02 1200.05 35.71 0.00 1200.15 35.73 −0.01

BQSquare

256 256.04 30.31 −0.02 256.01 30.42 −0.01 256.02 30.60 −0.01
384 384.03 31.53 −0.01 384.03 31.67 −0.01 384.03 31.78 −0.01
512 512.03 32.45 −0.01 512.03 32.56 −0.01 512.02 32.64 0.00
1200 1200.06 35.20 0.00 1200.04 35.33 0.00 1200.04 35.37 0.00

Average 32.28 −0.01 32.39 −0.01 32.51 −0.01

Specifically, our method’s average PSNR enhancement is 0.23 dB and 0.12 dB com-
pared with RC-HEVC and PS-GOP, respectively. Our approach also performs the maximum
PSNR improvement (max) of 0.30 dB and 0.20 dB compared to RC-HEVC and PS-GOP.
Figure 4a illustrates the R–D performance curve of the BQSquare test sequence. The
learning-based approach obtains a better R–D performance than the baselines method. In
addition, the average BRE of RC-HEVC, PS-GOP, and our methods are 0.01%, indicating
that all approaches can effectively achieve the target bit rate. However, the proposed
method has the lowest BRE at a lower target bit rate (256 kbps). It is noticed that the
RC-HEVC has poor visual quality on these WQVGA with dynamic scenes compared to all
approaches. As a result, even if the scene has dynamic properties, our algorithm can con-
structively achieve the target bit rate with the good visual quality of the WQVGA sequence.

Figure 4. Rate–Distortion curves: (a) BQSquare, (b) PartyScene, (c) FourPeople, (d) ParkScene.
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Next, the WVGA sequences were tested, such as BasketballDrillText, PartyScene, and
BQMall. The scene properties are similar to the above experiments, but these WVGA se-
quences are more challenging than WQVGA because they involve multi-object movement,
camera movement, and higher resolution. The outcomes of PSNR and BRE are summa-
rized in Table 3, where the proposed learning-based method works much better. It reaches
0.41 dB and 0.33 dB of visual quality better than RC-HEVC and PS-GOP, respectively.
Concisely, our approach has no error bit consumption on average and performs 0.23 dB
and 0.16 dB on average higher than RC-HEVC and PS-GOP, respectively. On one side of the
R–D curve, our proposed method is significantly higher than the competitive methods, as
shown in Figure 4b. Based on the outcomes of all approaches in Tables 2 and 3, the R–λ rate
control and PS-GOP are unsuitable for such dynamic scenes and cameras. Consequently, it
can indicate that the λ adjustment and quality control are not correctly estimated.

Table 3. The Performance of PSNR and BRE of Video Sequence with Resolution of 832 × 480.

Name of Video
Sequence

Target Bit
Rate

RC-HEVC PS-GOP Proposed Method

Bit Rate PSNR BRE Bit Rate PSNR BRE Bit Rate PSNR BRE

BasketballDrillText

384 384.03 30.82 −0.01 383.99 30.93 0.00 384.02 30.99 −0.01
512 512.05 31.94 −0.01 512.00 32.01 0.00 511.99 32.08 0.00
768 768.04 33.46 −0.01 768.04 33.52 −0.01 768.05 33.60 −0.01
1200 1200.10 35.15 −0.01 1200.07 35.20 −0.01 1200.07 35.32 −0.01

PartyScene

384 384.01 26.40 0.00 384.00 26.49 0.00 383.97 26.80 0.01
512 512.02 27.27 0.00 512.01 27.37 0.00 511.96 27.68 0.01
768 768.09 28.61 −0.01 768.02 28.68 0.00 768.02 29.01 0.00
1200 1200.06 30.15 −0.01 1200.02 30.20 0.00 1200.03 30.53 0.00

BQMall

384 384.01 30.68 0.00 384.13 30.77 −0.03 384.00 30.85 0.00
512 512.01 31.86 0.00 512.05 31.92 −0.01 512.03 32.00 −0.01
768 768.01 33.50 0.00 768.01 33.59 0.00 768.01 33.66 0.00
1200 1200.04 35.28 0.00 1200.03 35.33 0.00 1200.01 35.39 0.00

Average 31.26 −0.01 31.33 −0.01 31.49 0.00

After testing the WVGA sequences, the HD videos containing video conferencing and
online teaching test sequences were simulated. The HD videos are FourPeople, Kriste-
nAndSara, Vidyo1, Vidyo3, and Vidyo4. These videos have the characteristics of a static
camera with multiple objects moving. Figure 4c shows an overall outgrowth of the R–D
curve of FourPeople from the low bit rate to the high bit rate. Although the scene is used
with a static camera, the proposed method’s R–D performance is noticeably greater than
the competitive methods. Additionally, the PSNR and BRE evaluations of these HD video
sequences are recorded in Table 4, where the average PSNR enhancement value of our
method is approximately 0.17 dB (max = 0.30 dB) and 0.08 dB (max = 0.21 dB) in comparison
with the RC-HEVC and PS-GOP.
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Table 4. The Performance of PSNR and BRE of Video Sequence with Resolution of 1280 × 720.

Name of Video
Sequence

Target Bit
Rate

RC-HEVC PS-GOP Proposed Method

Bit Rate PSNR BRE Bit Rate PSNR BRE Bit Rate PSNR BRE

FourPeople

384 383.97 37.02 0.01 383.99 37.12 0.00 383.99 37.32 0.00
512 511.97 38.10 0.01 512.00 38.24 0.00 511.99 38.38 0.00
850 849.98 39.84 0.00 849.99 39.94 0.00 849.98 40.06 0.00
1200 1200.08 40.81 −0.01 1199.96 40.87 0.00 1200.05 40.97 0.00

KristenAndSara

384 384.06 39.17 −0.02 384.08 39.32 −0.02 384.12 39.37 −0.03
512 512.07 40.03 −0.01 512.09 40.17 −0.02 512.11 40.20 −0.02
850 850.12 41.31 −0.01 850.09 41.43 −0.01 850.12 41.47 −0.01
1200 1200.18 42.04 −0.01 1200.16 42.12 −0.01 1200.16 42.16 −0.01

Vidyo1

384 384.00 38.95 0.00 383.98 39.06 0.01 384.00 39.11 0.00
512 512.01 39.86 0.00 511.93 39.95 0.01 511.99 40.01 0.00
850 849.96 41.19 0.00 849.88 41.26 0.01 850.01 41.32 0.00
1200 1200.00 41.93 0.00 1199.96 42.00 0.00 1200.01 42.07 0.00

Vidyo3

384 384.01 37.85 0.00 384.00 38.00 0.00 384.02 38.01 −0.01
512 512.02 38.82 0.00 512.01 38.95 0.00 512.01 38.97 0.00
850 850.01 40.22 0.00 850.01 40.33 0.00 850.01 40.37 0.00
1200 1200.02 41.00 0.00 1200.03 41.08 0.00 1200.00 41.12 0.00

Vidyo4

384 384.01 38.68 0.00 384.01 38.73 0.00 384.01 38.86 0.00
512 512.02 39.47 0.00 512.01 39.53 0.00 512.02 39.67 0.00
850 850.02 40.67 0.00 850.01 40.74 0.00 850.02 40.86 0.00
1200 1200.02 41.39 0.00 1200.05 41.45 0.00 1200.02 41.54 0.00

Average 39.92 0.00 40.02 0.00 40.09 0.00

The last experiment was applied on full HD and 4k video test sequences. The first
three videos, ParkScene, Cactus, and BQTerrace, were used for the full HD experiment. The
last two sequences, HoneyBee and Jocky, were used for 4k videos. This last test contained
all types of scenarios. The ParkScene and Jocky videos have a moving camera and multiple
object motions, while the BQTerrace video stacks the camera motion with a static camera.
Furthermore, the Cactus video consists of a static camera and the rotation of the objects.
The HoneyBee video has multiple object motions and a static camera. According to Table 5,
the overall PSNR evaluation of the proposed method on the BQTerrace sequence at a low
bit rate is the highest compared to the other sequences. In contrast, the ParkScene sequence
has the highest PSNR at a high bit rate. The reason is that the scenes containing a dynamic
camera have significant movement changes; thus, the state-of-the-art R–λ rate control
cannot update the encoding controller correctly. In addition, PS-GOP uses parameter
sharing in GOP, which is not enough to adapt to encoder parameters following frame
characteristics. Reasoning from this fact, our method establishes a novel mapping between
frame features and R–λ coefficient parameters. We provide a computationally feasible
solution using LB-PSO to produce optimal R–D for good visual quality and to maintain
the target bit rate. Figure 4 shows the overall R–D curve on different video resolutions.
Consequently, our method has achieved the highest outcomes of all competitive methods.
From Table 2 to Table 5, the average PSNR improvement is 0.19 dB (max = 0.41 dB) and
0.10 dB (max = 0.33 dB) compared with RC-HEVC and PS-GOP, respectively.
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Table 5. The Performance of PSNR and BRE of Video Sequence with Resolution of 1920 × 1080
and 4k.

Name of Video
Sequence

Target Bit
Rate

RC-HEVC PS-GOP Proposed Method

Bit Rate PSNR BRE Bit Rate PSNR BRE Bit Rate PSNR BRE

ParkScene

1000 999.96 33.20 0.00 999.84 33.21 0.02 999.86 33.32 0.01
2000 2000.01 35.30 0.00 1999.89 35.41 0.01 2000.10 35.49 0.00
3000 2999.95 36.60 0.00 2999.91 36.68 0.00 2999.98 36.76 0.00
4000 4000.11 37.52 0.00 4000.09 37.57 0.00 4000.11 37.66 0.00

Cactus

1000 1000.01 31.62 0.00 1000.02 31.75 0.00 1000.02 31.74 0.00
2000 2000.04 33.77 0.00 2000.03 33.85 0.00 2000.03 33.87 0.00
3000 3000.09 34.96 0.00 3000.03 35.01 0.00 3000.03 35.04 0.00
4000 4000.06 35.70 0.00 3999.95 35.77 0.00 4000.07 35.81 0.00

BQTerrace

1000 1000.05 31.62 −0.01 1000.01 31.73 0.00 1000.17 31.97 −0.02
2000 2000.13 33.03 −0.01 2000.02 33.11 0.00 2000.04 33.25 0.00
3000 3000.15 33.67 0.00 3000.01 33.78 0.00 3000.08 33.82 0.00
4000 4000.53 34.10 −0.01 4000.05 34.20 0.00 4000.04 34.15 0.00

HoneyBee

1000 1000.01 38.24 0.00 1000.00 38.25 0.00 1000.03 38.31 0.00
2000 2000.01 38.63 0.00 2000.00 38.65 0.00 2000.01 38.66 0.00
3000 3000.01 38.75 0.00 3000.01 38.78 0.00 3000.01 38.78 0.00
4000 4000.40 38.81 −0.01 4000.01 38.83 0.00 4000.02 38.83 0.00

Jocky

1000 999.98 32.30 0.00 1000.01 32.40 0.00 1000.00 32.40 0.00
2000 2000.03 35.55 0.00 2000.01 35.60 0.00 2000.00 35.61 0.00
3000 3000.00 36.95 0.00 3000.04 36.97 0.00 3000.06 36.99 0.00
4000 4000.00 37.68 0.00 3999.99 37.69 0.00 4000.02 37.71 0.00

Average 35.40 0.00 35.46 0.00 35.51 0.00

The PSNR performance of our proposed model is extensively compared with other
state-of-the-art rate control methods for both the dynamic scene and interview scene as
shown in Table 6. Our proposed model achieves the highest PSNR for all bit rates in both
types of video sequences. This indicates that the inter coding approach should not only
consider the inter-block dependency coding structure but also the rate control coefficient.

Table 6. PSNR Comparisons at different bit rates with other state-of-the-art rate control schemes.

Name of Video Sequence Bit Rate BA [44] BAF [45] RCA [37] Proposed Method

FourPeople

384 36.30 36.81 37.07 37.32
512 37.49 38.19 38.31 38.38
850 39.76 39.98 40.03 40.06
1200 40.52 40.69 40.89 40.97

BasketballDrillText

384 30.82 30.81 30.89 30.99
512 31.87 31.86 31.91 32.08
850 33.41 33.44 33.52 33.60
1200 34.91 34.96 35.19 35.32

Additionally, Figure 5 shows a graph of the PSNR difference between consecutive
frames. The plot shows that the performance of the proposed method adaptively achieves
better results on frame reconstruction from the start of encoding compared to RC-HEVC
and PS-GOP. This demonstrates the effective interaction of spatiotemporal features in the
rate control model and the crossed LB-PSO model to decide on appropriate rate control
coefficients to acquire the target bit rate and perform well in PSNR. Furthermore, Figure 6
indicates the details of the rate fluctuation performance of the proposed method compared
to the baselines. This rate fluctuation describes successive frames’ historical bit allocation
performance to understand the bit flow in the video codec. Therefore, LB-PSO can control
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bit allocation better than the baselines, and it can carry out lower bit allocation and produce
higher PSNR in most consecutive frames, as shown in Figures 5 and 6.

Figure 5. Comparison of PSNR difference between consecutive frames.

Figure 6. Rate fluctuation performance comparison.

(2) Bit Heatmaps and Visual Quality: To indicate the performance of bit allocation at
the CTU level, the heatmap visualization and the subjective results of the reconstructed
frame are illustrated in Figures 7 and 8. Since there is no modification of the intra coding
of PS-GOP, Figure 7 shows only the comparison between state-of-the-art RC-HEVC with
our proposed learning-based approach. The bit consumption is highlighted by red color
intensity on each CTU, while the blue acts as a mask to cover the frame. If the red intensity
is low, the allocated bits are consumed less. The patch image is extracted from the frame to
illustrate the greatest difference in bit consumption at the CTU level of RC-HEVC and our
proposed method. Figure 7b,c reveal that the bit allocation performance of RC-HEVC on the
plane space CTU is slightly high, leading to less bit budget for the necessary spatial CTU.
On the contrary, our proposed method obtains smoother bit allocation on non-important
spatial images (low-frequency components), providing more budget to important CTU
features. Additionally, the visualization of the human face of the proposed learning-based
approach on the intra-picture shows more details with a smoother look than that of RC-
HEVC, as shown in the green box of Figure 7c,d. According to these results, our LB-PSO
can obtain better bit allocation by using the information from the mapping encoder control
parameters with the input convolution feature map of each spatial CTU instead of the fixed
initialization of R–λ rate control.
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Figure 7. Bit heatmaps and reconstructed frame of intra coding at 384 kbps: (a) original frame,
(b,d) RC-HEVC, and (c,e) proposed method.

Figure 8. Bit heatmaps and reconstructed frame of inter coding at 384 kbps: (a) original frame,
(b,e) RC-HEVC, (c,f) PS-GOP, and (d,g) proposed method.
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For inter coding, the PS-GOP is added in comparison. Similarly, the color repre-
sentation is defined the same as the intra coding. Regarding bitmaps, Figure 8b shows
that RC-HEVC has a problem with bit allocation on the essential features. Due to hand
movement, RC-HEVC should provide higher bit allocation in these necessary parts; on the
contrary, it allocates fewer bits to these blocks. Furthermore, PS-GOP attempts to allocate
the amount of bit budget to the hand movement area to keep the visual quality of the action
consistent. However, the bit budget on large hand motion blocks is still small, as shown in
Figure 8c.

Regarding residual semantic information, our proposed method can correctly regulate
the bit budget responding to the motion information in the scene, as illustrated in Figure 8d.
On the other hand, our proposed method obtains the accurate bit allocation of each CTU
corresponding to its spatial–temporal characteristics. Furthermore, the visual quality
visualization of this hand movement is shown in Figure 8e–g. In particular, RC-HEVC has
a considerable distortion in this hand movement area, while PS-GOP is slightly better than
RC-HEVC. Although PS-GOP is better than RC-HEVC, PS-GOP still has higher distortion
compared with our proposed method. As a result, the proposed method achieves better
hand and cup shapes than the competitive methods. According to our experimental results,
we can conclude that the proposed learning-based R–λ parameter outperforms other
competing methods by achieving the highest PSNR while maintaining the target bit rate.

(3) Computational Complexity: We compare the computational time of the proposed
method with RC-HEVC and PS-GOP. Regarding computational time in an average of sec-
onds per frame, as indicated in Table 7, our LB-PSO achieves 53.30 s/frame, 97.79 s/frame,
and 351.10 s/frame on WVGA, HD, and full HD resolution, respectively. We also com-
pare our computational complexity with other baseline methods. Table 6 shows that our
computational time is higher than the baseline methods. This is because our framework
is designed as online training using the integration of the forward pass network with
particle swarm optimization. However, we obtained a significantly higher PSNR value
and achieved the target bit rate. Furthermore, our bit allocation was assigned correctly
compared to baseline approaches.

Table 7. Computational Complexity.

Intel Core i9-7960× CPU @ 2.80 GHz

Resolution HM-16.10 (s/frame) PS-GOP (s/frame) Proposed Method (s/frame)

WVGA 24.10 23.75 53.30
HD 45.18 44.92 97.79
Full HD 166.15 165.47 351.10
Average 78.48 78.04 167.40

5. Conclusions

In this paper, we proposed novel learning-based R–λ parameters for HEVC. The
proposed framework is embedded with a deep convolution neural network feature map
and LB-PSO, which brings advantages to rate control parameters estimation corresponding
to spatial–temporal CTUs. LB-PSO is designed to obtain the feasible rate control coefficient
parameters solution to optimize the R–D relationship. Experimental results clearly show
that our proposed learning-based approach obtains an accurate target bit rate with 0.19 dB
on average to 0.41 dB and 0.10 dB on average to 0.33 dB maximum PSNR improvement
than the state-of-the-art RC-HEVC and PS-GOP, accordingly. Due to the bit allocation, our
algorithm can achieve an operational bit distribution to each CTU on both intra and inter
coding. In other words, our method is effective and robust for determining the bit budget
for the CTU of the frame. For future work, CTU partitioning will be considered together
with R–λ parameters to increase coding efficiency.
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Abstract: Recently, specifically designed video codecs have been preferred due to the expansion of
video data in Internet of Things (IoT) devices. Context Adaptive Binary Arithmetic Coding (CABAC)
is the entropy coding module widely used in recent video coding standards such as HEVC/H.265
and VVC/H.266. CABAC is a well known throughput bottleneck due to its strong data dependencies.
Because the required context model of the current bin often depends on the results of the previous
bin, the context model cannot be prefetched early enough and then results in pipeline stalls. To
solve this problem, we propose a prediction-based context model prefetching strategy, effectively
eliminating the clock consumption of the contextual model for accessing data in memory. Moreover,
we offer multi-result context model update (MCMU) to reduce the critical path delay of context
model updates in multi-bin/clock architecture. Furthermore, we apply pre-range update and pre-
renormalize techniques to reduce the multiplex BAE’s route delay due to the incomplete reliance
on the encoding process. Moreover, to further speed up the processing, we propose to process four
regular and several bypass bins in parallel with a variable bypass bin incorporation (VBBI) technique.
Finally, a quad-loop cache is developed to improve the compatibility of data interactions between the
entropy encoder and other video encoder modules. As a result, the pipeline architecture based on the
context model prefetching strategy can remove up to 45.66% of the coding time due to stalls of the
regular bin, and the parallel architecture can also save 29.25% of the coding time due to model update
on average under the condition that the Quantization Parameter (QP) is equal to 22. At the same time,
the throughput of our proposed parallel architecture can reach 2191 Mbin/s, which is sufficient to
meet the requirements of 8 K Ultra High Definition Television (UHDTV). Additionally, the hardware
efficiency (Mbins/s per k gates) of the proposed architecture is higher than that of existing advanced
pipeline and parallel architectures.

Keywords: high efficiency video coding (HEVC); entropy coding; context adaptive binary arithmetic
coding (CABAC); video coding; hardware design

1. Introduction

The creation of intelligent sensor nodes that enable intelligent processing for Internet
of Things (IoT) surveillance, remote sensing, and smart city applications is gaining more
and more attention [1]. In this, video data is crucial, and specifically designed video codecs
have been preferred in recent years [2]. With a focus on reducing the data burden and
improving the video quality [3], video coding and processing techniques performed in
low-cost implementations and higher compression efficiency will cope with the design
requirements of sensor nodes. The Joint Collaborative Team on Video Coding (JCT-VC)
published the High Efficiency Video Coding (HEVC) standard in 2013 [4]. With a more
flexible block division structure, a more precise coding mode, and some cutting-edge
coding tools, HEVC is the widely used worldwide video coding standard [5].

The HEVC standard’s coding structure primarily comprises Prediction, Estimation,
Motion compensation, Quantization and Transform, and Entropy coding. The video
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pixel value, which is broken down into two chrominance channels and one brightness
channel, serves as the input for this coding system. The image is chunked into coding
tree units (CTUs), which support a range of sizes [6]. Intra and inter frame prediction
is first carried out to encode this CTU video block [7]. The rate-distortion cost is then
assessed using various prediction modes, block size, and distortion degree, and the block
segmentation method and the prediction mode of this CTU are obtained [8]. To produce
the converted coefficient known as “residual”, the original pixel data must be subtracted
from the predicted data in order to obtain the difference [9]. The difference is then further
transformed and quantized [10], and some high-frequency components are removed. To
create the code stream, the projected data and the residuals will be entropy coded.

Entropy coding is a coding class that performs lossless coding based on the informa-
tion entropy principle. Contrary to the Context-based Adaptive Variable Length Coding
(CAVLC) and CABAC hybrid coding approach employed by the previous generation
video coding standard AVC/H.264 [11], HEVC/H.265 only uses the CABAC entropy
coding method.

A high-performance entropy encoder remains one of the hardware implementations’
constraints for entropy coding in video coding. The amount of data that must be processed
via entropy coding in HEVC is also significantly increased to handle more complex Rate
Distortion Optimization (RDO) operations and Syntax Elements (SEs), which places more
demands on hardware implementation. Parallel processing is challenging to implement
because of the stringent data reliance of the binary arithmetic coding employed in CABAC,
as well as the complexity of the arithmetic coding procedures, which might make it chal-
lenging to increase the primary frequency [12,13]. Ding et al. [14] proposed an optimized
CABAC “Producer–Consumer” architecture through data flow modeling to achieve high
throughput and low resource consumption. Wahiba et al. [15] proposed the processing
of 1 to 5 bypass bins at the same by duplicating the number of bypass encoding engine
(BEE) blocks for improving the throughput to be transmitted or stored. Ramos et al. [16]
presented a novel scheme for multiple bypass bin processing, named multiple bypass bin
scheme (MBBS), and the proposed method application into a baseline binary arithmetic
encoding (BAE) architecture, showing an increasing bin per cycle throughput. Li et al. [17]
considered the bypass mode encoding process in the CABAC and tried to merge bypass
bins, and implemented one clock to encode six bins in bypass encoding mode to improve
throughput. Zhou et al. [18] proposed and implemented in hardware a series of throughput
improvement techniques: pre-normalization, Hybrid Path Coverage, Lookahead rLPS,
bypass bin splitting and State Dual Transition, and by combining all these optimizations,
overall CABAC performance improved by leaps and bounds.

The throughput rates of the SE generation and processing module and the BAE
module are essential because they are two modules that both supply and process data.
Consequently, we must address the latency that the complex data preparation required by
the higher-level modules results in. Wahiba et al. [19] propose a new Register Transfer Level
(RTL) architecture of HEVC CABAC encoder, where all SEs transmitted for 4 × 4 sub-blocks
are studied and implemented. Saggiorato et al. [20] propose a novel efficient multi-core
architectural approach, named Multiple Residual Syntax Element Treatment (MRSET),
to meet the requirements of these recent CABAC designs. Tran et al. [21] and Nagaraju
et al. [22] propose efficient hardware implementations of binarization for CABAC that
focus on low area cost and power consumption while providing enough bins for high-
throughput CABAC.

There is a problem that they need to address specifically, even though the current work
considerably increases the throughput of CABAC encoders. When encoding successive
bins of the same context model in BAE, the pipeline or parallel architecture of CABAC
periodically stall, decreasing the coding efficiency. This paper aims to improve the perfor-
mance further and enhance the compatibility of the entropy coding module, which is used
to ensure the overall video coding architecture and the continuous and stable operation
of this entropy coding encoder. This study builds on our earlier work by offering several
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fresh architectural modifications to enhance the critical path delay and the number of bins
provided every clock cycle, dramatically increasing the overall throughput. Below is a
summary of this paper’s significant contributions.

1. We examine the challenges and bottlenecks in pipelined or parallel implementa-
tions brought on by arithmetic coding’s back-and-forth dependency on coding states.
We propose to use pre-range update and pre-renormalize technique to reduce the
multiplex BAE route delay due to the incomplete reliance of the encoding process.

2. We propose the variable bypass bin incorporation (VBBI) technique, which allows an
extra two bypass coding bins to be processed in the same clock cycle in a quad parallel
architecture, significantly improving the throughput of BAE in a parallel architecture.

3. When the context model cannot be prefetched early enough, the pipeline will stall
since the context model needed for the current bin typically depends on the outcome
of the previous bin. We provide a prediction-based context model prefetching strategy
to address this issue. Additionally, the Multi-result Context Model Update (MCMU)
architecture is proposed, the critical path for state transitions is shortened by the
context model update of the meticulously optimized parallel architecture.

4. Based on the HEVC video coding standard, a highly compatible hardware architec-
ture for entropy encoding is provided. The whole entropy encoding architecture is
pipelined, and the data interaction between binarization and BAE is cached using
parallel-in-parallel-out (PIPO) to improve the stability of the entropy encoder. It also
develops a quad-loop cache architecture to improve compatibility for data interaction
between the entropy encoder and other video encoder modules.

2. Analysis of CABAC

2.1. CABAC’s Process

As depicted in Figure 1, CABAC comprises three key modules: binarization, context
modeling, and binary arithmetic coding [23]. The video prediction data, reference data,
etc., are parsed into the appropriate SEs in the entropy coding process. These SEs include
prediction patterns, block segmentation flag, etc. After binarization, the values of the
non-binarized SEs are mapped into a series of a variable number of binary symbols [22].
Each binary symbol is referred to as a bin. The critical information of the video sequence
is represented by the syntax elements, which aim to represent the video with the least
amount of data possible while allowing for the reconstruction of the video sequence at the
decoding stage.

Binarization

Context
modeling

bypass bins
Syntax

elements

regular
bins

bitstreamBinary 
arithmetic 
encoding

Bypass bin
arithmetic
encoder

Regular
arithmetic
encoder

Figure 1. Key components of CABAC.

The binary symbol bin is the data that can be processed directly by the arithmetic
coding module. Arithmetic coding is primarily split into Regular Coding and Bypass
Coding, with various SEs accessing distinct selection criteria for each. Among them, the
context modeling part will supply the context probability model of the associated bin based
on the context data from the SEs for the regular coding bin.

The HEVC standard defines several binarization methods for entropy coding: Fix-
Length (FL) coding, Truncated Rice (TR) coding, K-order exponential Golomb coding,
etc. The above binarization methods are the most critical for syntax elements in HEVC,
except for very few syntax elements with their own specific binarization methods. This
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is mainly influenced by the numerical characteristics of different SE values and is related
to the context model selection methods corresponding to other SEs. In addition, although
the binarization method of SEs is specified directly by the standard, the quantization
parameters cMax and RiceParam often depend on the specific encoding situation. For
example, the cMax parameter of the merge_idx index is determined by the number of
merge mode candidates.

The probability of encoded blocks and encoded SEs is reflected in the context model
in entropy coding. The core of context modeling is to estimate the distribution probability
of the currently encoded SEs and enhance coding efficiency by using video data’s spatial
and temporal correlation. The accuracy of context modeling, which holds a key place in the
entropy coding standard, significantly affects the coding effect. For the standard coding
model, the coding procedure for each bin includes the corresponding context model. To
adaptively make adjustments to diverse videos, these context model need to be updated in
real time.

Although the arithmetic coding specified by the HEVC standard is conceptually com-
parable to the joint finite-precision binary arithmetic coding, numerous modifications have
been made to the implementation techniques to reduce the complexity of the operations.
The More Probable Symbol (MPS) and Less Probable Symbol (LPS) definitions of the encod-
ing’s binary symbols denote the symbols having a big and small probability of occurrence,
respectively. The binary arithmetic encoding inputs are the bin to be encoded and its accom-
panying contextual model. Figure 2 depicts the encoding procedure, primarily separated
into the MPS and LPS bin types. Although the two flow lines are different, they include
stages like renormalization, calculating rLPS and updating the context.

rLPS=LUT(state,range[7:6])
rMPS=range-rLPS

bin==?

range=rLPS
low=low+rMPS

state==0

state=LUTLPS(state)

MPS=1-MPS

state=LUTMPS(state)

LPS MPS

No

Yes

range=rMPS

rLPS=LUT(state,range[7:6])
rMPS=range-rLPS

bin==?

rLPS=LUT(state,range[7:6])
rMPS=range-rLPS

bin==?

rLPS=LUT(state,range[7:6])
rMPS=range-rLPS

bin==?

low[9:8]==0

range[8]==0

low[9:8]==1

bitsOutstanding++

range=range<<1
low=low<<1

low[9:8]=0

putbit(0)

putbit(1)

No

end

Yes

Yes

No

No

Yes

Renormalization

Figure 2. Flowchart of BAE. The gray section can be pre-executed before the blue section.

2.2. Bottleneck Analysis

The pipeline architecture is one successful approach to increasing the throughput of
BAE hardware, and the multi-channel parallel architecture is another. BAE in HEVC suffers
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from a huge area of memory due to lots of context models [24,25], so Static Randomaccess
Memory (SRAM) is used instead of registers. However, a particular case in the implemen-
tation causes the pipeline architecture to stall. As shown in Figure 3, when the current bin
coding is complete, the context model of the same bin must be restored for the next bin at
the next clock cycle. Updating the context model requires one clock, and reading or writing
the context model from RAM also consumes one clock, so subsequent bins cannot read the
updated context model from the adjacent clock from the context model RAM that has not
yet been written. Therefore, it is necessary to suggest a CABAC hardware design that can
implement a parallel or pipelined CABAC without stalling.

Context
modeling

Regular 
coding engine

Bypass
coding engine

bin, context model

previous bin for context model update
BAE

Bitstream

bin

Figure 3. Each time a bin is encoded in the regular coding engine, the context model must be changed
and saved back into the Context Modeling.

For multiplexed parallel context model update architectures, the resulting path delay
corresponds to many levels of multiplexers, which will dominate the critical path of
CABAC. Thus, bottlenecks have emerged in determining how to improve the efficiency
of the pipeline/parallel structure, and use less hardware to achieve better throughput
CABAC designs.

For a variety of data, other video encoder modules communicate with the entropy
encoding. Numerous data will be combined in the entropy coding. The entropy coding
may occasionally fail to finish digesting the input data in a timely manner, resulting in the
loss of the input data since its coding efficiency differs from that of the other modules of
the encoder. The residual coefficient data are the largest class of data among the coded data
required for entropy coding. It also becomes challenging to balance the data supply of the
reconstruction module with the value of the entropy coding and how to store these data
more effectively.

3. Proposed CABAC Prediction-Based Context Model Prefetching Strategy

3.1. Prediction-Based Context Model Prefetching

One of the features of CABAC is that each time a regular encoding is performed,
the probabilistic model of the current encoded bin needs to be updated. The context
modeling needs to transmit the same throughput to support the BAE with multiple bins
constructed above.

However, pipeline or parallel implementation is complex when faced with some
exceptional cases. When there are successive bins with the same context model, since
one clock is required to update the context model and both reading and writing of RAM
data also occupy one clock, the latter bin cannot be read from the context model memory
CM_RAM in the adjacent clock cycle that has not yet been written to the updated context
model. To cope with the phenomenon of pipeline stall, this paper proposes a context model
prefetching strategy and optimizes it for the multi-bin case, aiming to achieve a stall-free
pipeline and low resource and high master frequency.
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The context modeling architecture of the pipeline BAE in this paper is shown in
Figure 4a. Because only one bin is processed per cycle, the design of this paper uses Parallel
In Serial Out (PISO) as the input module for context model update. The PISO module
outputs data for one bin at each clock cycle. At the same time, the context model needs
to be obtained from CM_RAM by index. Prefetching will save the relevant data and
predict the next incoming bin to be the same context model as the current bin. Finally, the
predicted bin values and other data are transferred to the next stage. Since RAM reading
and writing consume one clock cycle, if consecutive bins utilize the same context model,
the post-context model cannot access the data written after the pre-update of the adjacent
clock cycle.

bin==MPS

PISO

CM_RAM

state

CM_idx

State
Transition
Table

CM_update

Prefetching

stage 0

stage 1

Same_flag

CM_idx

ff

(a)

ST ST ST ST

SDT SDT

Context memory

（b）

Prefetching

State
Transition

Table

CM Synchronization Module

State
Transition

Table

State
Transition

Table

 State 
Dual-Transition

 State 
Dual-Transition

State
Transition

Table

1 2 3S 45 6 3D

Context memory

（c）

Figure 4. Proposed SDT-based context updating architecture. ST and SDT are 128-1 and 256-1 LUTs,
respectively. (a) Proposed architecture for updating single-way pipeline context model based on
prefetching. (b) Architecture proposed by [18] with additional state dual-transition (SDT) LUTs.
(c) Proposed MCMU architecture. The values from 1 to 6 denote the possible outputs.

When the index of the current clock cycle input to CM_RAM is the same as the
previous clock cycle, the context model is directly communicated to stage 1 of the pipeline
through the Same_flag, and the context model is directly passed through the internal
pipeline. The CM update module receives the updated model in the previous clock cycle
instead of using CM RAM. Thus, regardless of whether the context model of the next bin is
the same as the current consistent one, the correct data can be output promptly. The context
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model that needs to be updated is found in the state transition table and then saved in
CM_RAM for real-time updates. This is a prefetching strategy proposed in this paper to
solve this case, implemented by caching the model’s index.

As depicted in Figure 4b, ref. [18] designed an architecture for context model update
in parallel architecture. However, the critical path must be further optimized to prevent the
critical path delay from exceeding BAE. To address this issue, we propose the Multi-result
Context Model Update (MCMU) architecture in this paper.

Ref. [18] had to make the probabilistic state update satisfy all bin cases; many multi-
plexers are placed between state transition (ST) and state dual-transition (SDT), which is
considered to be simplified in this paper, and the new architecture is shown in Figure 4c.
The architecture utilized in this work features one clock cycle for encoding up to four bins,
where the type of bin specified in Table 1 denotes the interrelationship of the context models
of these four bins. When the bin type is the same, as indicated by the same context model,
it yields a total of only seven cases. For instance, if the bin type is ABBD, this means that
the middle two bins utilize the same context model. The proposed architecture provides
six results per clock cycle. Among them, result 3 contains two cases that must be arbitrated
by prefetching. Therefore, this architecture can obtain all the results of the context model
update by only one multiplexer, at the cost of dropping the encoding of the last bin if all
the four bins are of the same context model, i.e., only three bins are encoded in parallel in
this clock cycle.

Table 1. All cases with the context model dependencies for the four-way parallel bin.

Bin type A B C D
Forms used ST ST ST ST

The result of use 1 2 3S 4

Bin type A A C D
Forms used ST SDT1 ST ST

The result of use 1 5 3S 4

Bin type A A A D
Forms used ST SDT1 SDT2 + ST ST

The result of use 1 5 3D 4

Bin type A A A A
Forms used ST SDT1 SDT2 + ST QT

The result of use 1 5 3D NG

Bin type A B B D
Forms used ST ST SDT2 ST

The result of use 1 2 6 4

Bin type A B B B
Forms used ST ST SDT1 SDT2 + ST

The result of use 1 2 5 3D

Bin type A B C C
Forms used ST ST ST SDT2

The result of use 1 2 3 6

Suppose there are bins with the same context model in the next clock cycle. In that
case, the context model needs to transfer to the BAE module first through the cache in time
to avoid the untimely transmission of the context model due to the read and write time of
the memory.
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3.2. Proposed Pre-Range Update and Pre-Renormalize BAE Architecture

The context model update, computation of range, calculation of low, and the renormal-
ization procedure are all carried out in a cascading manner, as is already noted, making the
entire coding process feasible for pipelining activities.

A valuable fact for designing a single-way arithmetic coding pipeline is that the low of
the current coding interval depends on range unidirectionally. In contrast, range does not
depend on low. Therefore, in the design of the arithmetic coding pipeline, range and low
can be calculated separately, and range is calculated first before low to shorten the critical
path of the pipeline.

According to Figure 2, the range computation includes rLPS lookup, interval recursion,
renormalization lookup and shift; range update depends on rLPS, and rLPS depends on
the current range and context model state. Therefore, compared with the low update
and bitstream output part, the computation of range is the most complex part of the
pipeline, and the loop algorithm generated by renormalization becomes a bottleneck for
the hardware architecture.

However, one renormalization can only double the encoding interval of less than 256,
so it is often necessary to perform multiple renormalizations due to the small range, which
makes it difficult to pipeline and affects the encoding efficiency. Since only the shifting
of range and low and the counting of bitOutstanding are performed in the renormalization
process, multiple renormalizations can be completed in one operation. The times of
renormalizations differ when the bin is MPS and LPS. When the bin is MPS, if range is less
than 256, then renormalization is performed once; otherwise, renormalization is skipped.
Renormalization is required when the bin is LPS, as illustrated in Table 2; renorm count is
retrieved from the renormTab table. The lookup table uses the higher five bits of the rLPS
as an index for the times of renormalizations.

Table 2. Renormalization times table.

rLPS [7:3] 0 1 2–3 4–7 8–15 16–31

Renormalization times 6 5 4 3 2 1

Therefore, this paper proposes pre-range update and pre-renormalize, as shown in the
purple area of Figure 5. In the first stage, in addition to completing the pre-computation
rLPS, the pre-lookup table and storage structure of the renormalization count renorm_count
are added. The range update is split into two levels of pipeline. Renorm_count is obtained
from rLPS by indexing the table. The renormTab table size is 1 × 32, so in the context
of the first stage pipeline to obtain four candidate rLPSs, we can also look up the table
to obtain the renormalization number renorm_count which corresponds to the candidate
rLPS, and shift to obtain the corresponding renormalization interval rLPS_renorm with
four candidate values. So the renormalization count lookup table of rLPS can also be split
into sub-operations carried out in the first stage pipeline. In contrast, the shift operation in
renormalization is completely placed in the first stage pipeline.

The four candidate renormalization values obtained after pre-renormalize will also be
used as indexes by range [7:6] at the beginning of the second stage pipeline to determine
the final rLPS renormalization interval. For the renormalization of MPS, the above pre-
normalization method cannot be used because it depends entirely on the coding interval
range of the previous encoding. In the second stage of the pipeline, the highest bit of rMPS
is used as the judgment condition to determine whether to perform rMPS renormalization.
The final range is selected between rLPS_renorm and rMPS_renorm according to whether
the bin is MPS or not.

69



Sensors 2023, 23, 4293

Renorm TabRenorm Tab

ff6b

PreRlpsTab

Pre-rLPSList

ff8bx4 ff8bx4

LUT1 LUT3

<<1

ff1b

ri-1

ri-1[7:6]

rLPS-
rMPS

rMPS[8]

bin==MPS

ri

rLPS_renorm

stage1

stage2

x4

ff3bx4

LUT2

0 1

0

ff9b ff3b
0

ff1b

bin

ff1b

bypass_flag

ff9b ff1b

lowi-1
<<

<<1

lowi

stage3

state

Pre-rLPSTab renorm Tab
x4

Pre-
LPSrenormTab

Figure 5. Diagram of pipelined single-bin BAE architecture. The purple part is the proposed
pre-renormalize technique. The red part is the single-way hardware architecture which is bypass
bin compatible.

3.3. Area-Efficient BAE Pipeline Architecture with Compatibility

In the entropy coding of HEVC, the bins of regular and bypass coding are sequentially
arranged. If hardware is designed separately for both, it can achieve very high coding
speed under certain circumstances, especially for bypass bins. The bypass bin splitting
(BPBS) described by [18], which increases the throughput of 1 clock cycle, has several
implementation limitations. Still, at the cost of memory, resources to store intermediate
results and additional bin sequences merge to integrate. For up to five pathways of [18]
alone, 32 combinations of bin cases are included. It is also required to allocate all the results
in one clock cycle before the update of low can be performed. If more multiple bypass
bins are attempted, more cases need to be processed, which will be an extremely complex
process that will consume a large hardware area and may become a new critical path. So
this paper proposes area-efficient BAE pipeline architecture with compatibility.

The coding state is calculated differently for different coding modes, as shown in
Table 3. The bypass flag of the current bin is stored in the second stage of the pipeline to
select the encoding state computed in different encoding modes. The bypass encoding
range remains unchanged, with only low changes. Our work integrates the bypass and
regular encoding in one hardware architecture. The update of range is currently the critical
path, so combining the update of bypass coding low into the pipeline does not cause the
frequency to decrease.

Table 3. Low update with different coding methods.

Coding Method Input Low Update

Regular MPS low � renorm_count
Regular LPS (low + rMPS) � renorm_count
Bypass 1 low � 1 + range
Bypass 0 low � 1

The third stage of the pipeline architecture designed in this paper is the update
calculation of low. The number of renormalizations when the bin is LPS is obtained via
renormTab and LUT2 jointly checking the table. If the bin is MPS and rMPS is greater than
or equal to 256, the renormalization is skipped, and if the bin is MPS but rMPS is less than
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256, the renormalization is carried out once. The bypass coding only updates low, and its
coding process is shown in the red part in Figure 5. Compared to the design presented in
the previous work, the current architecture can accomplish stable and continuous coding
with a lower circuit area without extending the critical path.

3.4. Multi-Bin Parallel Architecture Based on Variable Bypass Bin Incorporation

A pipeline or parallel architecture are two efficient ways to increase the throughput
rate of arithmetic coding technology. However, the dependency on the arithmetic encoding
states makes the issue of long-timing routes in the pipeline structure even worse. This
work presents a pipeline architecture for the arithmetic encoder and a multi-path parallel
architecture with a single pipelined arithmetic encoder on each lane.

In the four-way parallel structure shown in Figure 6, the context model updates are
precomputed upfront. The range and low computed by the first encoder are used as the
state input for the second channel, and so on for multiple channels of state updates. In
particular, the encoding state of the last encoder will be saved in a register as the starting
state data for the next set of four-way bin encoding.

ff
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range 
updating
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range 
updating
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updating
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Bins & Context
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ff ff ff ff

ff ff ff ff
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updating
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Figure 6. Pipelined multibin BAE architecture.

In the first stage of the pipeline, in addition to the pre-rLPScalculation and pre-
renormalize, a pre-lookup table and storage structure for the renormalization count are
added. The renormalization count candidates are stored in registers and will determine
the final value in the second-stage pipeline, which will participate in the renormalization
calculation of low. In a basic four-bin BAE, either a regular or a bypass bin must be encoded
sequentially. As we can see through the previous section, the update phase of range in a
single-path pipeline architecture becomes the critical path, while the update of low is more
straightforward.

So this paper proposes the Variable Bypass Bin Incorporation (VBBI) architecture, as
shown in Figure 7. By taking advantage of the feature that the bypass bin does not change
the context model and range, each time four bins are encoded, if immediately followed by
one or two bypass bins, these two bins are added to the current bin sequence to achieve
the maximum throughput rate of six bins encoded in at most one clock cycle. Even if the
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update of low increases to six bins at the same time, the critical path does not exceed the
update process of the range of four bins, so there is no impairment in the main frequency
performance, and the throughput of the parallel architecture can be effectively increased.
Compared with the bypass bin separation architecture used in [18], every single path in
this paper can be adapted to bypass coded bins, which not only saves the RAM used to
store intermediate variables but also removes the hardware area generated by using bin
sequence merge, and the average throughput rate can be achieved very close.

Low Update Low Update Low Update Low Updateff

stage3

stage4
ff ff ff ff

BU

ff

BU

ff

range range range range

bypass
bin

bypass
bin

Figure 7. Variable Bypass Bin Integration (VBBI) architecture. It can encode up to 6 bins in 1 clock,
including at least two bypass bins.

4. Overall System

4.1. Quad-Loop Cache Input

Entropy coding of HEVC is a module that performs statistically based lossless data
compression of the results generated by other modules, so it is related to each module in
video coding. The coding framework of the entropy coding module is shown in Figure 8.
When the entropy coding module obtains all the SEs and residual coefficients, it needs
to pre-process the syntax elements and residual coefficients at each level, which includes
calculating the values of syntax elements to be coded, the context model index, and the
coding method. After the SEs are generated, they will enter the binarization core and input
the binarized bin into the PIPO memory. Then the prefetching module will input three to
six bins per clock cycle into the BAE, which the bit generator will finally integrate into the
bitstream output.
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CM
update

CTU Data
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Figure 8. Overall framework of a highly compatible VLSI architecture for H.265/HEVC CABAC
encoder for UHD TV applications.

The data in the entire CTU generated in the video encoding process are passed to the
entropy coding module; these data are diverse and need to be considered for hardware
architecture to match the timing of transmission. However, the data processing speed
of other modules and this module’s throughput will differ. Under the condition that the
whole video coding is pipelined architecture, the data input structure, as shown in Figure 9,
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is used to enhance the compatibility of entropy coding. The quad-loop cache architecture is
different from the First-Input-First-Output (FIFO) memory in that it completes the FIFO
function for each group of RAMs, and the data in the RAM block can be read out in disorder,
which is suitable for the data reading requirement of the entropy coding module. If Drw is
4, Write Pointer (WP) is one turn ahead of Read Pointer (RP) and points to the same RAM
as RP. If the pipeline continues to run, it will lead to data loss and coding errors. Therefore,
when Drw is equal to 4, the rest of the video encoding process needs to be paused to ensure
that the coding is absolutely correct.
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RAMs_1
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data
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CTU Data
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slice_type

RP

WP

Drw

RAMs_2

RAMs_3RAMs_4

RAMs
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Figure 9. Quad-loop cache architecture.

The input data include Depth_RAM (containing information on CU depth, TU depth,
and PU mode), Intra_PU_RAM (luminance and chrominance direction), Inter_PU_RAM
(information related to merge and amvp), Neighbor_RAM (information related to the top
side and left side CTU), Residues_RAM (residual data), etc. The data to be entropy coded
are cyclically cached through four RAMs. Each group of RAMs keeps all the data of one
CTU, effectively reducing the dependency between video coding modules.

4.2. Binarization Architecture

The binarization schemes used for most of the SEs in HEVC are Truncated Unary (TU),
Truncated Rice (TR), Kth-order ExpGolomb (EGK), and Fixed-Length (FL) codes. The rest
of the SEs use their corresponding custom binarization schemes, which will include some
compound encoding [26].

Since the binarization is carried out separately for each SE and is not the bottleneck
of the whole architecture, as long as the average throughput of the part is higher than the
average throughput of the BAE, in any case, the entire architecture can be satisfied with
smooth and efficient operation.

The architecture of the single-core binarization module is shown in Figure 10. The
input is SE encoding type value, which is encoded according to the respective encoding
rules. The output of the completed encoding are the bin value, the context model index,
and the encoding type [27].

This design uses a parallel three-stage binarization scheme to meet the goal of smooth
and efficient binarization, as shown in Figure 11. The first stage is responsible for inputting
and sorting the syntax element values SE_Value and encoding types SE_Type that need
to be binarized in order and then transferring them to the following encoding stage [28].
The second stage is responsible for binary encoding. It consists of two single-core binary
modules, one combined module, and one custom module. Each single-core binary module
supports four binary schemes, and the four modules are independent of each other. The
third stage is to type each data after binarization into a packet containing the current bin
value, the coding type, and the contextual model index. These data are then integrated into
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the PIPO module and passed into the arithmetic encoding and the context model module
as required to achieve a pipeline architecture for the entire entropy encoding module [22].

EGK TU FL TR

SE_Value SE_Value SE_Value
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cMax cMax cMax R

5 bits
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Figure 10. Proposed single-core binarization architecture.
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Figure 11. Proposed parallel binarization architecture. It can implement binarization of multiple
syntax elements in 1 clock.

5. Implementation Results

Experiments are conducted to evaluate the performance of the proposed architecture,
and the superiority of the proposed CABAC encoder is tested via the HEVC reference
software HM-16.7. The proposed CABAC encoder is implemented in Verilog HDL. RTL
simulation is performed on 18 sequences in 5 classes. Tests cover All Intra (AI), Low
Delay (LD), Low Delay P, and Random Access (RA) configurations and include settings for
Quantization Parameters (QPs) 22 and 37.

The CABAC pipeline 1 bin/clock architecture designed in this paper avoids the
pipeline stall problem. Table 4 presents the encoding time that can be saved when encoding
a video sequence since the approach in this paper avoids the stall of the pipeline architecture
caused by successive identical context models. Under general test settings in the AI
configuration, the suggested CABAC architecture can save up to 45.66% of the coding time
by employing the prediction-based context model prefetching method. Even in the LD,
LD_P, and RA settings, the encoding time can have significant reductions. When the QP
is low, the encoding time can be reduced by 27.5% on average, and even when the QP is
37, the pipeline architecture stalls can be optimized by 20.95% on average. This is because
the context model prefetching architecture proposed in this paper can be adapted to the
pipeline architecture to avoid the time consumption caused by the context model update in
memory. The time savings differ since low QP values for high-resolution video increase
the SEs associated with coding residuals. These SEs provide many bins with the same
contextual model for standard coding.
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Table 4. Percentage of encoding time (%) saved by the CABAC pipeline architecture improving the
proposed prediction-based contextual model prefetching strategy under common test conditions.

All Intra (AI) Low Delay (LD) Random Access (RA) Average

Class Sequence qp = 22 qp = 37 qp = 22 qp = 37 qp = 22 qp = 37 qp = 22 qp = 37

A PeopleOnStreet 35.50 25.56 30.78 18.47 29.03 18.96 31.28 20.28
Traffic 30.80 29.76 22.73 20.63 23.66 23.02 24.75 23.30

B

ParkScene 34.86 32.70 25.68 21.23 26.58 23.27 28.01 24.29
Kimono1 45.66 37.45 38.03 28.25 38.29 28.82 39.71 30.39

BasketballDrive 34.54 25.84 33.05 23.94 34.05 23.94 33.08 23.42
BQ Terrace 38.38 27.96 32.63 23.29 32.99 24.49 33.97 24.33

Cactus 31.47 27.70 30.34 21.82 28.14 22.74 29.64 23.38

C

BasketballDrill 22.01 21.19 23.54 17.90 22.03 18.07 22.57 18.70
BQ Mall 25.16 25.30 23.19 18.24 23.19 19.66 23.55 20.31

PartyScene 23.30 22.29 21.43 18.40 22.10 18.18 21.95 19.13
Race Horses 35.38 27.48 29.24 17.95 28.35 19.81 30.56 20.81

D

BasketballPass 26.16 22.20 22.27 17.75 22.00 18.04 23.10 18.92
Blowing Bubbles 22.80 22.98 19.44 16.71 21.30 18.23 20.68 18.67

BQSquare 27.08 21.58 18.44 11.96 17.85 15.33 20.36 15.16
Race Horses 32.46 21.59 21.94 16.72 22.92 17.04 24.81 18.02

E
Kristen And Sara 29.38 24.30 29.93 14.84 28.88 18.63 29.48 18.07

FourPeople 27.39 26.22 26.85 16.39 26.73 20.78 26.81 19.91
Johnny 33.03 26.30 30.08 17.08 30.57 20.05 30.76 20.08

Average 30.85 26.02 26.64 18.98 26.59 20.50 27.50 20.95

This paper’s architecture follows the anticipated strategy, allowing it to avoid pipeline
standstill brought on by context model updates and allocate the number of codes per group
of bins through the prefetching module in the parallel architecture, which significantly
increases coding efficiency. Our proposed CABAC encoder is implemented in Verilog. RTL
simulations are performed using the bin sequences in Table 4 across five different resolution
classes, and the QPs are 22 and 37. Table 5 shows the effect of LCMU in the simulation.
With the LCMU, the number of delivered bins per clock cycle (BPCC) is slightly reduced to
below 4, but the maximum clock frequency is substantially increased. Further using VBBI,
the final BPCC is between 4.10 and 4.39 (depending on the configuration). Table 6 shows
the probability that the parallel architecture stalls due to untimely model reads caused by
the next set of bins having the same contextual model as the previous set, the coding time
that can be optimized via the prefetching architecture proposed in this paper.

For the full pipelined architecture CABAC, the gate count is 39.52 K, the maximum
operating frequency is 714 MHz, and the maximum throughput is 714 Mbin/s. For the
CABAC with the highly compatible parallel architecture in this paper, the overall CABAC
throughput, at 513 MHZ, is 2191 Mbin/s. Numerous predictive lookup tables and alterna-
tive algorithms are required to raise the frequency and the number of parallel bins, and
these efforts have led to higher throughput. Therefore, the throughput rate is also the
highest due to the optimization of the hardware design and more advanced processes in
this work.
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Table 5. Percentage of coding time (%) saved via the prediction-based context model prefetching
strategy proposed by the CABAC parallel architecture improvement.

Sequence Config. qp = 22 qp = 27 qp = 32 qp = 37

BasketballDrive LD 30.39 25.51 22.27 18.52
RA 30.04 24.46 21.30 18.07

Traffic LD 22.09 22.36 20.96 18.83
RA 22.31 23.04 22.27 20.63

PeopleOnStreet LD 27.84 22.56 18.69 15.86
RA 25.54 21.19 18.08 15.80

BQTerrace LD 33.45 27.03 25.49 22.31
RA 32.80 26.34 23.83 22.89

Kimono LD 34.55 32.20 29.62 26.33
RA 33.52 31.12 28.46 25.61

Average 24.60 * 29.25 25.58 23.10 20.48
* Overall average.

Table 6. Performance in number of delivered BPCC for H.265/HEVC.

Sequence Config. LCMU LCMU + VBBI

BasketballDrive

LD qp = 22 3.90 4.23
LD qp = 37 3.96 4.28
RA qp = 22 3.90 4.26
RA qp = 37 3.96 4.33

Traffic

LD qp = 22 3.93 4.22
LD qp = 37 3.96 4.25
RA qp = 22 3.93 4.29
RA qp = 37 3.94 4.29

PeopleOnStreet

LD qp = 22 3.90 4.32
LD qp = 37 3.97 4.37
RA qp = 22 3.91 4.38
RA qp = 37 3.97 4.42

BQTerrace

LD qp = 22 3.86 4.10
LD qp = 37 3.93 4.23
RA qp = 22 3.87 4.15
RA qp = 37 3.93 4.27

Kimono

LD qp = 22 3.86 4.26
LD qp = 37 3.91 4.21
RA qp = 22 3.87 4.34
RA qp = 37 3.91 4.28

Average 3.92 4.27

Table 7 summarizes the design specifications of our CABAC encoder, compared with
the state of the art. Many authors have reported on the CABAC architecture in the past,
with their focus on different ASIC technologies. The pipeline architectures of [10–12] have
similar configurations. Nonetheless, this paper achieves higher throughput rates and
smaller circuit areas by targeting critical path optimization for the renormalization part of
the range update, context model accesses using RAM only, binarization using a single core
and more advanced ASIC processes. Ref. [16] parallel architecture designs use the bypass
bin splitting technique and merge bypass bins, respectively, to increase the throughput
rate. Although their bins per clock cycle are slightly higher than this paper, they pay a high
price, such as adding bins splitting/merging modules and PIPOs for storing data such
as ranges, etc. The proposed architecture in this research enhances the frequency using
the pre-renormalize technique and MCMU, while increasing the throughput by utilizing
VBBI, ultimately resulting in improved hardware efficiency, as illustrated in Figure 12.
Specifically, the hardware efficiency (Mbins/s per k gates) achieved in this paper is higher
than that of other architectures, including both pipeline and parallel architectures; this
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work achieves 20.16 Mbins/s per k gates. Additionally, the context model prefetching
strategy employed in this paper effectively eliminates the time delay that arises due to
model updates in memory, effectively mitigating the BAE stagnation problem.

Table 7. Specification and comparison with prior arts.

Design Kim [12] Peng [13] Ding [14] Zhou [18] Zhang [29] This Work

Process/nm IDEC 180 TSMC 130 Kintex-7 TSMC 90 TSMC 90 TSMC 65
gate count/K 45.089 48.94 - 110.9 54.5 39.52 108.7
Max.clock frequency/MHZ 158 357 120 420 720 714 513
bins/clock 1 1.18 3.59 3.29 (4.37) * - 1 4.27
Max·throughput/Mbin·s−1 158 261–439 431 1382 (1836 ) * 850 714 2191

Mbin·s−1/gate count 3.5 5.33–8.97 - 12.48 (16.56 ) * 15.6 18.07 20.16

* The actual results, the ones in parentheses are the occasional optimal results.

Figure 12. The proposed optimizations improved the hardware efficiency of CABAC when compared
to existing papers [12,13,18,29].

6. Summary

The occurrence of consecutive bins in the same context model can cause stalls in
the hardware pipeline architecture. To overcome this problem, we propose a prediction-
based context model prefetching strategy to alleviate data dependencies by predicting
the next bin model, and reduce critical path delays through the MCMU. In addition, we
use pre-range update and pre-renormalize technique to reduce the multiplex BAE’s route
delay due to the incomplete reliance of the encoding process. Then, we propose the VBBI
technique to improve the throughput of BAE in a parallel architecture. Moreover, the data
interaction between CABAC modules is optimized. In accordance with the experiments, our
architecture eliminates pipeline stalls and saves encoding time, and works better for high
resolution and low QP values, which is in line with the need for more high-definition videos
as time progresses. Moreover, the throughput is enhanced and the hardware efficiency
of the pipeline architecture is maximized. In future study, we will focus on making this
work compatible with the multi-channel parallel architecture and Versatile Video Coding
(VVC/H.266) hardware design [30].
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Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of Things
CABAC Context Adaptive Binary Arithmetic Coding
HEVC High Efficiency Video Coding
MCMU Multi-Result Context Model Update
VBBI Variable Bypass Bin Incorporation
QP Quantization Parameter
UHDTV Ultra High Definition Television
JCT-VC The Joint Collaborative Team on Video Coding
CTUs Coding Tree Units
CAVLC Context-based Adaptive Variable Length Coding
RDO Rate Distortion 0ptimization
AVC Advanced Video Coding
SEs Syntax Elements
BEE Bypass Encoding Engines
MBBS Multiple Bypass Bins Scheme
BAE Binary Arithmetic Encoding
RTL Register Transfer Level
MRSET Multiple Residual Syntax Element Treatment
PIPO Parallel-In-Parallel-Out
FL Fix Length
TU Truncated Unary
TR Truncated Rice
MPS More Probable Symbol
LPS Less Probable Symbol
SRAM Static Randomaccess Memory
SDT State Dual-Transition
PISO Parallel In Serial Out
ST State Transition
BPBS Bypass Bin Splitting
FIFO First-Input-First-Output
WP Write Pointer
RP Read Pointer
AI All Intra
LD Low Delay
RA Random Access
BPCC Bins Per Clock Cycle
VVC Versatile Video Coding
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Abstract: The quality of videos varies due to the different capabilities of sensors. Video super-
resolution (VSR) is a technology that improves the quality of captured video. However, the devel-
opment of a VSR model is very costly. In this paper, we present a novel approach for adapting
single-image super-resolution (SISR) models to the VSR task. To achieve this, we first summarize a
common architecture of SISR models and perform a formal analysis of adaptation. Then, we propose
an adaptation method that incorporates a plug-and-play temporal feature extraction module into
existing SISR models. The proposed temporal feature extraction module consists of three submod-
ules: offset estimation, spatial aggregation, and temporal aggregation. In the spatial aggregation
submodule, the features obtained from the SISR model are aligned to the center frame based on the
offset estimation results. The aligned features are fused in the temporal aggregation submodule.
Finally, the fused temporal feature is fed to the SISR model for reconstruction. To evaluate the
effectiveness of our method, we adapt five representative SISR models and evaluate these models
on two popular benchmarks. The experiment results show the proposed method is effective on
different SISR models. In particular, on the Vid4 benchmark, the VSR-adapted models achieve at
least 1.26 dB and 0.067 improvement over the original SISR models in terms of PSNR and SSIM
metrics, respectively. Additionally, these VSR-adapted models achieve better performance than the
state-of-the-art VSR models.

Keywords: video super-resolution; single-image super-resolution; plug-and-play; deformable convolution

1. Introduction

Numerous videos are captured every day; however, due to the different capabilities
of sensors, the quality of captured videos can vary greatly, which affects the subsequent
analysis and applications [1–4]. Recently, computer technologies have been applied to
many fields [5–8]. In particular, video super-resolution (VSR) is a technology for improving
the quality of captured video. It produces high-resolution (HR) video frames from their
low-resolution (LR) counterparts. The VSR problem is challenging due to its ill-posed
nature, but its applications include video display, video surveillance, video conferencing,
and entertainment [9].

VSR models take consecutive frames as input. Single-image super-resolution (SISR)
methods process only one image at a time. So, VSR models take both spatial information
and temporal information into account, while SISR models only exploit spatial information
for super-resolution (SR) reconstruction. Thus, many VSR methods adapt SISR models
for spatial information extraction. For example, Haris et al. [10] introduced RBPN, which
employs blocks from DBPN [11] in a recurrent encoder–decoder module to utilize spatial
and temporal information. Tian et al. [12] adapted EDSR [13] as the main design for the
SR reconstruction network in TDAN. Liang et al. [14] utilized residual Swin Transformer
blocks from SwinIR [15] in their proposed RVRT. Although these works have adapted
SISR models, each method utilizes only one SISR model. Applying SISR techniques to the
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VSR models would require considerable effort and they may not perform as effectively as
specialized VSR models.

Meanwhile, several VSR methods do not rely on SISR models. For instance, Xue
et al. [16] proposed TOF, which estimates task-oriented flow to recover details in SR frames.
Wang et al. [17] proposed SOF-VSR, which estimates HR optical flow from LR frames.
SWRN [18] can be utilized in real time on a mobile device. However, the development of a
VSR model without adapting SISR methods is very costly, as the model needs to capture
both temporal and spatial information. Moreover, compared with SISR methods, they may
be less effective in utilizing spatial information.

To alleviate the above issues, we propose a plug-and-play approach for adapting
existing SISR models to the VSR task. Firstly, we summarize a common architecture of
SISR models and provide a formal analysis of adaptation to achieve better effectiveness of
different SISR models. Then, we present an adaptation method, which inserts a plug-and-
play temporal feature extraction module into SISR models. Specifically, the temporal feature
extraction module consists of three submodules. The spatial aggregation submodule aligns
features extracted by the original SISR model. The alignment is performed based on the
result of the offset estimation submodule. Then, the temporal aggregation submodule is
applied to aggregate information extracted from all neighboring frames.

To evaluate the effectiveness of the proposed method, we adapt five representative
SISR models, i.e., SRResNet [19], EDSR [13], RCAN [20], RDN [21], and SwinIR [15], and
the evaluations are conducted on two popular benchmarks, i.e., Vid4 and SPMC-11. On the
Vid4 benchmark, the VSR-adapted models achieve at least 1.26 dB and 0.067 improvements
over original SISR models in terms of peak signal-to-noise ratio (PSNR) [22] and structural
similarity index (SSIM) [23], respectively. On the SPMC benchmark, the VSR-adapted
models achieve at least 1.16 dB and 0.036 gain over original SISR models in terms of PSNR
and SSIM, respectively. Moreover, the VSR-adapted models surpassed the performance of
state-of-the-art VSR models.

For this paper, the main contributions are as follows: (1) We propose a plug-and-play
approach for adapting SISR models to the VSR task. Instead of adapting one SISR model,
the proposed method is based on a common architecture of SISR models. (2) A plug-and-
play temporal feature extraction module is introduced. Thus, the adapted model gains
the capability to exploit temporal information. (3) Extensive experiments are conducted to
evaluate its effectiveness.

2. Related Work

2.1. Single-Image Super-Resolution

The SISR problem is an ill-posed problem, and learning-based methods have signifi-
cantly improved the performance in terms of accuracy [13,15,19–21,24,25] and speed [26–29].
In 2014, Dong et al. [30] introduced a learning-based model, namely SRCNN, into the SISR
field. Inspired by ResNet [31], Ledig et al. [19] proposed SRResNet in 2017. SRResNet [19]
accepts LR images directly and achieves high performance and increased efficiency. Kim
et al. [13] improved the SRResNet by removing unnecessary batch normalization in resid-
ual blocks and expanding the number of parameters. In 2018, Zhang et al. [21] employed a
densely connected architecture. All extracted features are fused to utilize hierarchical infor-
mation. Subsequently, Zhang et al. [20] introduced the channel attention mechanism that
adaptively weights features channel-wisely. In 2021, Liang et al. [15] proposed SwinIR by
making use of the Transformer [32]. Additionally, SwinIR uses the Swin Transformer [33]
variation, which is more appropriate for computer vision tasks. By appropriately employ-
ing convolution layers and Swin Transformer modules, SwinIR can capture local and global
dependencies at the same time, resulting in SOTA performance.

2.2. Video Super-Resolution

In recent years, deep-learning-based models have been used to solve the VSR problem,
and have become increasingly popular [9]. We roughly divide VSR models into two categories:
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(1) Models adapting SISR models: Sajjadi et al. [34] proposed FRVSR, which takes
EnhanceNet [35] as the subnetwork for SR reconstruction. Haris et al. [10] applied the
iterative up- and downsampling technique [11] in RBPN. The representative deep learning
SISR model, EDSR [13], is utilized by many VSR models. Tian et al. [12] applied a shallow
version of EDSR [13] in TDAN. EDVR [36] and WAEN [37] both employed the residual
block and upsampling module from EDSR [13] in the reconstruction module. Inspired
by [12], Xu et al. [38] adapted EDSR as the reconstruction module. EGVSR [39] applied
ESPCN [26] as the backbone for the SR net. The recently proposed RVRT [14] utilized the
residual Swin Transformer block, which is proposed in SwinIR [15].

(2) Models without adapting SISR models: DUF [40] reconstructs SR frames by esti-
mating upsampling filters and a residual image for high-frequency details. Kim et al. [41]
employed 3D convolution to capture spatial–temporal nonlinear characteristics between
LR and HR frames. Xue et al. [16] proposed a method, namely TOF. It learns a task-specific
representation of motion. Wang et al. [17] proposed SOF-VSR, which estimates HR optical
flow from LR frames. To better leverage the temporal information, TGA [42] introduced a
hierarchical architecture. Recently, Chan et al. [43] proposed BasicVSR by investigating the
essential components of VSR models. Liu et al. [44] applied spatial convolution packing to
jointly exploit spatial–temporal features. For better fusing information from neighboring
frames, Lee et al. [45] utilized both attention-based alignment and dilation-based align-
ment. Lian et al. [18] proposed SWRN to achieve real-time inference while producing
superior performance.

Because VSR models have to capture both temporal and spatial information, proposing
a VSR method requires more effort. Thus, many researchers turn to adapting SISR models.
Based on SISR models, proposing a VSR method can focus on capturing temporal infor-
mation. However, these models either utilize a SISR model as a subnet or adapt modules
from a SISR model to extract features. Additionally, they may be less effective than those
methods that do not adapt SISR methods. Our work proposed a plug-and-play approach to
adapt SISR models to the VSR task. The proposed method works on different SISR models
as it follows the common architecture of SISR models we have summarized. The spatial
information and temporal information are both extracted in the proposed method.

3. Methodology

In this section, we first summarize the common architecture of SISR models. Then, we
provide a formal analysis of adaptation. Following that, a general VSR adaptation method
is proposed. Finally, we present a plug-and-play temporal feature extraction module.

3.1. Revisit of Single-Image Super-Resolution Models

For the effectiveness on different SISR models [13,15,19–21,46], we first summarize
a common architecture, as shown in Figure 1. For simplicity, some operations such as
element-wise addition and concatenation are omitted. As shown in Figure 1a, the common
architecture of SISR models can be divided into three modules: shallow feature extraction
(FE) module, deep FE module, and reconstruction module. Figure 1b–e illustrate the details
of four SISR models. As one can see, the shallow FE module takes one LR image as input
and extracts features by a few convolution layers. The deep FE module consists of several
submodules or blocks, where advanced techniques, such as dense connection [21], channel
attention [20], and self-attention [15], are applied. Thus, the deep FE module is where the
key novelty of SISR models lies. Finally, the features from the deep FE module are fed to
the reconstruction module to produce the SR image.
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Figure 1. The architectures of typical SISR models.

Thus, given an LR image y ∈ R
H×W×3, these SISR models can be generalized using

the following representation:
x = MethodSISR(y), (1)

where MethodSISR(·) is the SISR model. x ∈ R
sH×sW×3 represents the SR result with upscale

factor s. H and W denote the height and width of LR image, respectively. According to the
common architecture of SISR models, Equation (1) can be expanded as

x = Recons(FEdeep(FEshallow(y)) + FEshallow(y)), (2)

where the shallow and deep FE modules are noted as FEshallow(·) and FEdeep(·), respectively.
The reconstruction module is denoted as Recons(·).

Different from the SISR problem, the VSR methods have to exploit both spatial and tem-
poral information. Thus, we make use of sliding window framework [12] to capture tempo-
ral dependency. Given consecutive 2n + 1 LR frames Y = {yt−n, · · · yt−1, yt, yt+1, · · · yt+n},
the representation of VSR models is formulated as

xt = MethodVSR(Y), (3)

where the VSR method is MethodVSR(·). xt represents the reconstructed SR frame, the
frame index of which is t.

Note that the main difference between Equations (1) and (3) is the input, and Equation (2)
is an expanded representation of Equation (1). In order to adapt existing SISR models to
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the VSR task, a straightforward method is to modify the shallow FE module. Then, the
adapted model can be represented as

xt = Recons(FEdeep(FE′
shallow(Y)) + FE′

shallow(Y)), (4)

where FE′
shallow(·) is the modified shallow FE module.

3.2. Proposed Video Super-Resolution Adaptation Method

According to the analysis in Section 3.1, we propose a general method to easily adapt
SISR models to the VSR task. As shown in Figure 2, the architecture of the proposed
VSR-adapted models consists of 4 modules. Firstly, the VSR-adapted model applies the
shallow FE module FEshallow(·) to obtain low-level features Fs,i ∈ R

H×W×C for each LR
frame yi. The subscript i represents the relative index of the center frame. The center frame
is denoted as 0, and C stands for the number of channels in a feature. The shallow feature of
center frame Fs,0 is skip-connected to the output of the deep FE module with element-wise
addition for global residual leaning. Secondly, the temporal FE module FEtemporal(·) is
employed to exploit spatial–temporal information. It takes LR frames to estimate the offsets
of pixels. It also takes shallow features which will be spatially aggregated based on the
offsets. In order to enable the deep FE module to leverage information from all LR frames,
spatial-aggregated features are temporally aggregated in the temporal FE module. Thirdly,
the deep FE module FEdeep(·) is responsible for estimating accurate residual features with
advanced techniques. Finally, the reconstruction module Recons(·) upsamples features
with specific scale factors and produces SR frames. The architecture can be represented as

Fs,i = FEshallow(yi), (5)

FT = FEtemporal(Fs,−n, · · · , Fs,0, · · · , Fs,n, y−n, · · · , y0, · · · , yn), (6)

x0 = Recons(FEdeep(FT) + Fs,0), (7)

where i denotes the relative index of the target frame, ranging from −n to n. The temporal
feature FT ∈ R

H×W×C is the output of temporal FE module.

LR
FrameLR

Frame
SR

Frame
Shallow

FE Module
Deep 

FE Module
Reconstruction 

Module
Temporal 

FE Module

Center Skip

LR
Frame

Figure 2. The Architecture of Proposed General VSR-Adapted Models.

For adapting different SISR models, the proposed method maintains the shallow
FE module, deep FE module, and reconstruction module unmodified. Furthermore, we
employ the temporal feature extraction module between the shallow FE module and the
deep FE module in accordance with accuracy and latency concerns.

From an accuracy perspective, the main difference between an input LR frame and its
ground truth HR frame is the high-frequency content. Thus, the better the residual feature
that is extracted, the better the achieved performance. The proposed architecture takes
advantage of the deep FE module, where the key novelties of SISR models lie [46]. Further,
with the information from neighboring frames, the deep FE module is able to extract more
accurate features for reconstruction. Thus, the temporal FE module is employed before
deep FE module.

From a latency perspective, the temporal FE module aggregates the features extracted
from all input frames. It requires previous modules to complete their processing for each
frame. To minimize the overall computation time, the proposed temporal FE module is
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employed after shallow FE module because its relatively small number of layers has a
negligible impact on inference latency.

3.3. Plug-and-Play Temporal Feature Extraction Module

In order to exploit spatial–temporal information, the temporal FE module is proposed.
The detailed architecture is illustrated in Figure 3, which consists of three submodules, i.e.,
offset estimation, spatial aggregation, and temporal aggregation.
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Figure 3. The Temporal Feature Extraction Module.

The offset estimation submodule takes the center LR frame y0 and each neighboring
frame yi as inputs. The intermediate feature extraction is performed by a convolution layer
and five residual blocks, and the parameters are shared across all input LR frames. The
intermediate features are noted as Fo,i ∈ R

H×W×C. The offset feature Fo f f ,i ∈ R
H×W×C is

estimated from the intermediate feature Fo,0 and Fo,i using a convolution layer and two
deformable convolution layers. The offset estimation submodule can be formulated as

Fo,i = RB5(· · · RB1(Conv1(yi)) · · · ), (8)

Fo f f ,i = DConv2(DConv1(Conv2(CAT(Fo,i, Fo,0)))), (9)

where RB(·) is residual block. Conv(·) and DConv(·) are convolution and deformable
convolution, respectively. The concatenation is denoted as CAT(·).

The shallow feature Fs,i and the estimated offset Fo f f ,i are then fed into the spatial
aggregation submodule. Here, a variation of deformable convolution is used to extract
features Fs,i, which takes Fo f f ,i for offset. This allows the offset feature Fo f f ,i to guide
the alignment in the spatial aggregation submodule. Another deformable convolution is
applied for refinement, resulting in output feature FT,i ∈ R

H×W×C. The spatial aggregation
submodule can be given by

FT,i = DConv3(DConvA(Fs,i, Fo f f ,i)), (10)

where DConvA(·, ·) is the variation of deformable convolution. The variation of deformable
convolution DConvA(·, ·) takes the first input for feature extraction and the second input
for offset.

After spatial aggregation, the temporal aggregation submodule fuses these spatial-
aggregated features FT,−n · · · FT,n. For fusing a feature with (2n + 1) × C channels, a
simple convolution layer is not sufficient. Therefore, a residual channel attention block [20]
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is employed to adaptively weight these features channel-wise. A convolution layer for
channel reduction is then applied. The channel shrinkage is performed in two steps to
minimize information loss: first reducing to twice the SISR features’ channels and then
reducing to once. The temporal aggregation submodule can be represented as

FT = Conv4(RCAB2(Conv3(RCAB1(CAT(FT,−n, · · · , FT,n)))), (11)

where RCAB1(·) and RCAB2(·) are residual channel attention blocks. The number of
channels of the features output by Conv3(·) and Conv4(·) is 2 × C and C, respectively. The
temporal-aggregated feature is FT ∈ R

H×W×C.
Overall, the spatial aggregation aligns neighboring features based on the result of

the offset estimation submodule. Then, the temporal aggregation submodule fuses the
spatial-aggregated features, resulting in an output containing information from all input
LR frames. Finally, the plug-and-play module extracts feature FT , which contains spatial–
temporal information from all input frames. Further, we summarize the detailed algorithm
of the VSR-adapted method with plug-and-play temporal feature extraction module in
Algorithm 1. For easy understanding, we divided the loop into multiple ones.

Algorithm 1: Video Super-Resolution with SISR Model and Plug-and-Play Tem-
poral Feature Extraction Module.

Input : Consecutive low-resolution frames yi. i is relative index to the center
frame ranging from −n to n.

Output : Super-resolution center frame x0.
// Shallow FE module from SISR model

1 for i = −n,−n + 1, · · · , n do

2 Fs,i = FEshallow(yi) ;
3 end

// Offset estimation submodule of temporal FE module
4 for i = −n,−n + 1, · · · , n do

5 Fo,i = RB5(· · · RB1(Conv1(yi)) · · · ) ;
6 Fo f f ,i = DConv2(DConv1(Conv2(CAT(Fo,i, Fo,0)))) ;
7 end

// Spatial aggregation submodule of temporal FE module
8 for i = −n,−n + 1, · · · , n do

9 FT,i = DConv3(DConvA(Fs,i, Fo f f ,i)) ;
10 end

// Temporal aggregation submodule of temporal FE module
11 FT = Conv4(RCAB2(Conv3(RCAB1(CAT(FT,−n, FT,−n+1, · · · , FT,n))))) ;

// Deep FE module and reconstruction module from SISR model
12 x0 = Recons(FEdeep(FT) + Fs,0) ;

4. Experiment

4.1. Datasets

Following previous studies [12,16,47], we utilized the widely used Vimeo90K dataset
for training. This dataset includes videos with different scenarios, such as moving objects,
camera motion, and complex scene structures. It consists of 90,000 video clips with a
resolution of 448 × 256. As per the official split, we use 64,612 video clips for training.
The HR frames of these videos were used as the ground truth. For training, we randomly
cropped these HR frames to patches with the size of 256 × 256, and these patches were
bicubically downsampled to the size of 64 × 64 using the Matlab function imresize. We
randomly flipped and rotated the data during training.

For testing, we evaluated the effectiveness of our proposed model on two public
benchmarks, i.e., the Vid4 [48] and SPMC-11 [47]. The quantitative metrics were PSNR [22]
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and SSIM [23], computed in the luminance (Y) channel. We also cropped 8 pixels near the
image boundary, similar to the previous approach [12].

4.2. Implementation Details

To evaluate the proposed method, we employed it on five representative SISR models:
(1) SRResNet [19] is the generator model in SRGAN. (2) EDSR [13] is a representative SISR
model. (3) RCAN [20] makes use of channel attention. (4) RDN [21] has the advantage of a
dense connection. (5) SwinIR [15] introduces Swin Transformer [33]. For SISR models, we
generated SR videos frame by frame.

In our implementation of SRResNet [19], we removed all batch norm layers. We
used the EDSR baseline [13] with a feature channel count and block count of 64 and 16,
respectively. For SwnIR [15], the LR patch size was 48 × 48, and the GT patch size was
192 × 192. We used a smaller patch size for SwinIR for lower memory consumption. The
batch size for training all models was 16. We empirically set n = 2, indicating that a
VSR-adapted model takes five frames as input. For SISR models, the number of input
frames was one. Each SISR model and its VSR-adapted model were trained from scratch
using the same setting except for the number of input frames.

We used the mean square error (MSE) as the loss function, defined as Loss = ‖HR − SR‖2.
The parameters were updated using the Adam optimizer [49] with β1 = 0.9 and β2 = 0.99.
The learning rate was initialized as 1 × 10−4 and halved for every 1 × 105 iterations. We
trained the models for 3 × 105 iterations. All experiments were implemented in Pytorch
and ran on a server with NVIDIA GPUs.

4.3. Effectiveness on Different Single-Image Super-Resolution Models

To evaluate the effectiveness of the proposed method, we conducted experiments on
five representative SISR models. Table 1 displays the quantitative results on two popular
benchmarks. The PSNR and SSIM metrics of VSR-adapted models improved by at least
1.16 dB and 0.036, respectively. It demonstrates that the proposed method works effectively
on various SISR models. Moreover, the performance of the VSR-adapted models is posi-
tively correlated with the capacity of the original models. In the SISR task, EDSR [13] is
better than SRResNet [19] but underperforms RCAN [20] and RDN [21]. The performance
of RCAN and RDN is on par, and SwinIR [15] has the best performance. As shown in
Table 1, the VSR-adapted models exhibit similar trends. We use the suffix “-VSR” to rep-
resent the VSR-adapted models. The performances of SRResNet-VSR and EDSR-VSR are
weaker than those of RCAN-VSR and RDN-VSR, and SwinIR-VSR achieves the best results
on both benchmarks. Moreover, we computed the PSNR metric on the Vid4 benchmark
during training. As illustrated in Figure 4, the VSR-adapted models benefit from the in-
formation aggregated from neighboring frames, and they performed better in the early
iterations during training. Thus, the proposed method is effective on different SISR mod-
els, and the plug-and-play temporal feature extraction module enables the VSR-adapted
models to exploit spatial and temporal information.

Further, we visualized the results of the Vid4 and SPMC-11 benchmarks for qualitative
comparison. Several processed frames are shown in Figures 5 and 6. We can observe that
the VSR-adapted models provide visually appealing results. By contrast, the original SISR
models produce blurry SR frames and incorrect textures. Overall, the VSR-adapted models
reconstruct results with clearer text, richer textures, and fewer artifacts. Among the results
of the VSR-adapted models, SRResNet-VSR and EDSR-VSR produce more artifacts than
other VSR-adapted models. This is consistent with the capabilities of original SISR models.
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Table 1. Quantitative Comparison of SISR Models and VSR-Adapted Models on Vid4 and SPMC-11.
The best results are in bold.

Original VSR Adapted
Benchmark Method PSNR SSIM PSNR SSIM

SRResNet [19] 25.30 0.728 26.56 0.797
EDSR [13] 25.27 0.726 26.58 0.798

Vid4 RCAN [20] 25.45 0.737 26.74 0.804
RDN [21] 25.40 0.734 26.75 0.806

SwinIR [15] 25.41 0.738 26.84 0.811

SRResNet [19] 27.92 0.815 29.16 0.853
EDSR [13] 27.85 0.813 29.14 0.853

SPMC-11 RCAN [20] 28.32 0.823 29.48 0.859
RDN [21] 28.24 0.821 29.55 0.862

SwinIR [15] 28.46 0.826 29.74 0.866

Figure 4. The PSNR Curve on Vid4 Benchmark During Training.

4.4. Comparisons with State-of-the-Art Methods

We compared these VSR-adapted models with 10 state-of-the-art VSR algorithms, i.e.,
STAN [50], EGVSR [39], TOFlow [16], STMN [51], SOF-VSR [17], ST-CNN [44], TDAN [12],
D3Dnet [47], FRVSR [34], and WAEN [37]. Table 2 shows the quantitative metrics on
the Vid4 and SPMC-11 benchmarks. The values with † are reported in [47]. As shown
in Table 2, the VSR-adapted models achieve competitive performance on both Vid4 and
SPMC-11 benchmarks. All VSR-adapted models perform better than D3Dnet. Compared
with D3Dnet, the SRResNet-VSR and EDSR-VSR achieve comparative performance. The
performances achieved by RCAN-VSR and RDN-VSR are between FRVSR and WAEN.
Among them, the SwinIR-VSR outperforms all models in terms of PSNR metrics.
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Figure 5. The Qualitative Comparison of SISR Models and Corresponding VSR Adaptations on Vid4
Benchmark.
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Figure 6. The Qualitative Comparison of SISR Models and Corresponding VSR Adaptations on
SPMC-11 Benchmark.
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Table 2. Quantitative comparison of Vid4 and SPMC-11. The best results are in bold. The values
with † are reported in [47].

Vid4 SPMC-11
Method PSNR (dB) SSIM PSNR (dB) SSIM

STAN [50] 25.58 0.743 — —
EGVSR [39] 25.88 0.800 — —
TOFlow [16] 25.90 0.765 — —
STMN [51] 25.90 0.788 — —

SOF-VSR [17] 26.02 0.772 28.21 † 0.832 †

ST-CNN [44] 26.12 0.823 — —
TDAN [12] 26.42 0.789 28.51 † 0.841 †

D3Dnet [47] 26.52 0.799 28.78 0.851
FRVSR [34] 26.69 0.822 — —
WAEN [37] 26.79 — — —

SRResNet-VSR 26.56 0.797 29.16 0.853
EDSR-VSR 26.58 0.798 29.14 0.853
RCAN-VSR 26.74 0.804 29.48 0.859
RDN-VSR 26.75 0.806 29.55 0.862

SwinIR-VSR 26.84 0.811 29.74 0.866

For a finer quantitative comparison on the Vid4 benchmark, we illustrate the PSNR
metric of each frame in Figure 7. For simplicity, we select four models, i.e., TDAN [12],
FRVSR [34], EDSR-VSR, and SwinIR-VSR. Compared with TDAN, the EDSR-VSR achieves
similar performance. Note that the first two and last two frames show a greater difference
between TDAN and EDSR-VSR. Because there is less neighboring information for VSR
models to exploit, the VSR models exhibit poor performance at the beginning and end
of a video. Compared with FRVSR, the SwinIR-VSR achieved better performance on the
Calendar and Walk. As the frame index increases on the Calendar, the gap between SwinIR-
VSR and FRVSR becomes smaller. Additionally, the performance of SwinIR-VSR is lower
than that of FRVSR after the first five frames on the City. This is because the SwinIR-VSR
makes use of neighboring frames in a sliding window scheme while the FRVSR utilizes
them in a recurrent scheme.

Figure 7. The PSNR curve of VSR models on Vid4 benchmark.
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For a qualitative comparison, we compared the VSR-adapted models to SOF-VSR [17],
TOF [16], TDAN [12], D3Dnet [47], and FRVSR [34]. As shown in Figure 8, the VSR-adapted
models reconstruct visually attractive results. The text on the Calendar is now easier to
read and the details of the City are clearer. Additionally, the clothes in the Walk image are
more recognizable. Moreover, we observed similar trends in the SPMC-11 benchmark, as
illustrated in Figure 9. The quality of the reconstructed results of EDSR-VSR is equivalent
to that of the compared methods. The RDN-VSR and RCAN-VSR provide results with
better quality. The result of SwinIR-VSR has the least artifacts.

TOF TDAN D3Dnet FRVSR

EDSR-VSR RDN-VSR RCAN-VSR

Calendar

City
SwinIR-VSR

TOF TDAN D3Dnet FRVSR

EDSR-VSR RDN-VSR RCAN-VSR SwinIR-VSR

Walk

TOF TDAN D3Dnet FRVSR

EDSR-VSR RDN-VSR RCAN-VSR SwinIR-VSR

Ground Truth

Ground Truth

Ground Truth

Figure 8. Qualitative Comparison of VSR Models on Vid4 Benchmark.

4.5. Comparisons of Temporal Consistency

To evaluate the temporal consistency of the proposed method, we generated temporal
profiles according to [34] for visualization. As shown in Figure 10, the positions of temporal
profiles are highlighted with red lines. The heights of temporal profiles vary due to the
video length. As shown in the Calendar, the temporal profiles demonstrate that the original
SISR models perform poorly because they are unable to capture temporal information. By
contrast, the VSR methods and VSR-adapted models produce results with fewer artifacts.
However, inappropriate aggregation of temporal information can lead to degraded results.
As illustrated in the City, the original SISR models and our VSR-adapted models exhibit
better temporal consistency than VSR models.
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Figure 9. Qualitative Comparison of VSR Models on SPMC-11 Benchmark.
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Figure 10. Qualitative Comparison of Temporal Profile on Vid4 Benchmark.
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4.6. Ablation Study

We used EDSR [13] as the baseline in the ablation study to evaluate the effectiveness
of the proposed temporal feature extraction module, which consists of offset estimation,
spatial aggregation, and temporal aggregation submodules. We evaluated three models to
determine the effectiveness of each submodule. The first variation is denoted as Model 1.
We fed shallow features from neighboring frames to the spatial aggregation submodule
without the support of the offset estimation submodule. The neighboring features were then
fused with a convolution using a 1× 1 kernel. Model 2 is referred to as the second variation.
We introduced the offset estimation submodule, which makes use of the center frame
and neighboring frames to guide the spatial aggregation. The third variation, denoted as
EDSR-VSR, combines all the components, including channel attention and progressive
channel shrinking.

Table 3 indicates that relying solely on the spatial aggregation submodule does not
lead to performance improvement. However, with the support of the offset estimation
submodule, there is a significant performance improvement. Furthermore, the temporal
aggregation submodule further improved the performance. Three submodules play an
irreplaceable role in our presented temporal feature extraction module.

Table 3. The Effectiveness of Each Component in Temporal Feature Extraction Module.

Dataset Model
Spatial

Aggrega-
tion

Offset Es-
timation

Temporal
Aggrega-

tion

PSNR
(dB)

SSIM

EDSR [13] � � � 25.27 0.726
Model 1 � � � 25.31 0.725

Vid4 Model 2 � � � 26.49 0.793
EDSR-VSR � � � 26.58 0.798

EDSR [13] � � � 27.85 0.813
Model 1 � � � 27.88 0.813

SPMC-11 Model 2 � � � 28.97 0.849
EDSR-VSR � � � 29.14 0.853

To evaluate the efficiency of the proposed method, we conducted a comparison on the
Vid4 benchmark. We evaluated three models, i.e., EDSR [13], EDSR-VSR, and EDSR-VSR 2.
The EDSR-VSR 2 employs the temporal feature extraction module after the deep feature
extraction module. Table 4 shows the performance and average latency of inference. As we
can see, the EDSR-VSR is about 1.6× faster than the EDSR-VSR 2. Although the EDSR-VSR
is slower than EDSR [13], it reaches 24 frames per second. Specifically, we analyzed the
latency of each part of EDSR-VSR. Overall, 0.89% of the latency is consumed by the shallow
feature extraction module from the SISR model. The subsequent offset estimation sub-
module, spatial aggregation submodule, and temporal aggregation submodule occupied
21.25%, 39.99%, and 15.21% of the latency, respectively. Additionally, 22.66% of the time
is spent on the deep feature extraction and reconstruction module from the SISR model.
Note that the temporal feature extraction module has to process all input frames, so each
submodule takes a longer time to complete the computation. Thus, the proposed method
balances the accuracy and latency.

Table 4. The Efficiency of Proposed Method on Vid4 Benchmark.

EDSR [13] EDSR-VSR EDSR-VSR 2

PSNR (dB) 25.27 26.58 26.61
SSIM 0.726 0.798 0.798

Latency (ms) 9.872 41.543 65.003
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5. Discussion and Limitation

The proposed method builds a bridge between the SISR model and the VSR model.
We revisited many SISR models and summarized a common architecture of SISR mod-
els. The proposed method leverages the inherent similarities and differences between
the two tasks, and the plug-and-play temporal feature extraction module is presented
to allow the VSR-adapted model to utilize information from neighboring frames. We
applied it to five representative SISR models to evaluate our method, including a gener-
ator of GAN [19], three representative SISR models [13,20,21], and a Transformer-based
model [15]. Compared with state-of-the-art VSR models, our VSR-adapted models achieve
competitive performance.

There are several strong points of the proposed method. Firstly, the proposed architec-
ture of VSR-adapted models provides a novel scheme to develop VSR models. As long as a
SISR model follows the common architecture, it can be easily adapted to a VSR model. It
reduces the delay of applications of new SISR technologies. Secondly, with the development
of VSR, better temporal feature extraction techniques will be proposed, leading to better
VSR performance. It divides the development of the VSR model into two independent
tasks. Thirdly, the plug-and-play characteristic enables a single model to perform both SISR
and VSR tasks.

Although the VSR-adapted models show promising results, we observed some failure
cases in experiments. As illustrated in Figure 11, these models fail to recover tiny details.
In these cases, the contrast is low in the ground truth, and the contrast is further reduced
in LR frames, making SR reconstruction very challenging. Furthermore, all VSR-adapted
models fail to provide clear results.

TOF TDAN D3Dnet FRVSR

EDSR-VSR RDN-VSR RCAN-VSR

Calendar

SwinIR-VSR

TOF TDAN D3Dnet SOF-VSR

EDSR-VSR RDN-VSR RCAN-VSR

veni5

SwinIR-VSR

Ground Truth

Ground Truth

Figure 11. The Qualitative Comparison of Details in Low-Contrast Areas.

6. Conclusions

In this paper, we propose a method for adapting SISR models to the VSR task. For
effectiveness on various SISR models, we summarize the common architecture of SISR
models. The VSR-adapted models leverage the capability of SISR models to learn the
mapping between LR and HR images. Then, the proposed plug-and-play temporal feature
extraction module allows VSR-adapted models to access spatial–temporal information.
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Thus, the performance in the VSR task is improved by the incorporation of the SISR model
and the temporal feature extraction module. The experiments on several SISR models
and benchmarks show that VSR-adapted models surpass the original SISR models. The
achieved performance is positively related to the capacity of SISR models, indicating the
effectiveness of the proposed method. Further, the VSR-adapted models achieved better
results than the SOTA VSR models. In the future, we plan to solve the problem of poor
performance in low-contrast areas.

Author Contributions: Conceptualization, W.W.; methodology, W.W.; software, W.W. and Y.H.;
validation, W.W. and H.L.; formal analysis, Z.L. and R.L.; investigation, W.W., H.L. and Y.H.; resources,
Z.L. and R.L.; data curation, W.W., H.L. and Y.H.; writing—original draft preparation, W.W. and
H.L.; writing—review and editing, Z.L., R.L., H.L., Y.H. and W.W.; visualization, H.L., Y.H. and W.W.;
supervision, Z.L.; project administration, W.W.; funding acquisition, Z.L. and R.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (61866009,
62172120, 82272075), Guangxi Science Fund for Distinguished Young Scholars (2019GXNSFFA245014),
Guangxi Key Research and Development Program (AB21220037), and Innovation Project of Guangxi
Graduate Education (YCBZ2022112).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The public data used in this work are listed here: Vimeo90k http://to
f-low.csail.mit.edu/ (accessed on 12 December 2022), Vid4 https://drive.google.com/file/d/1Zuv
NNLgR85TV_whJoH-M7uVb-XW1y70DW/view?usp=sharing (accessed on 12 December 2022), and
SPMC-11 https://pan.baidu.com/s/1PK-ZeTo8HVklHU5Pe26qUtw (accessed on 12 December 2022)
(Code: 4l5r).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yang, C.; Huang, Z.; Wang, N. QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small Object Detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA,
18–24 June 2022; pp. 13658–13667. [CrossRef]

2. Shermeyer, J.; Etten, A.V. The Effects of Super-Resolution on Object Detection Performance in Satellite Imagery. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019, Computer Vision
Foundation/IEEE, Long Beach, CA, USA, 16–20 June 2019; pp. 1432–1441. [CrossRef]

3. Dong, H.; Xie, K.; Xie, A.; Wen, C.; He, J.; Zhang, W.; Yi, D.; Yang, S. Detection of Occluded Small Commodities Based on Feature
Enhancement under Super-Resolution. Sensors 2023, 23, 2439. [CrossRef] [PubMed]

4. Yuan, X.; Fu, D.; Han, S. LRF-SRNet: Large-Scale Super-Resolution Network for Estimating Aircraft Pose on the Airport Surface.
Sensors 2023, 23, 1248. [CrossRef] [PubMed]

5. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko,
A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef]

6. Cheng, H.K.; Schwing, A.G. XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model. In
Proceedings of the Computer Vision-ECCV 2022—17th European Conference, Tel Aviv, Israel, 23–27 October 2022; Proceedings,
Part XXVIII; Lecture Notes in Computer Science; Avidan, S., Brostow, G.J., Cissé, M., Farinella, G.M., Hassner, T., Eds.; Springer:
Berlin/Heidelberg, Germany, 2022; Volume 13688, pp. 640–658. [CrossRef]

7. Chen, Y.; Xia, R.; Zou, K.; Yang, K. FFTI: Image inpainting algorithm via features fusion and two-steps inpainting. J. Vis. Commun.
Image Represent. 2023, 91, 103776. [CrossRef]

8. Imran, A.; Sulaman, M.; Yang, S.; Bukhtiar, A.; Qasim, M.; Elshahat, S.; Khan, M.S.A.; Dastgeer, G.; Zou, B.; Yousaf, M. Molecular
beam epitaxy growth of high mobility InN film for high-performance broadband heterointerface photodetectors. Surf. Interfaces
2022, 29, 101772. [CrossRef]

9. Liu, H.; Ruan, Z.; Zhao, P.; Dong, C.; Shang, F.; Liu, Y.; Yang, L.; Timofte, R. Video super-resolution based on deep learning: A
comprehensive survey. Artif. Intell. Rev. 2022, 55, 5981–6035. [CrossRef]

10. Haris, M.; Shakhnarovich, G.; Ukita, N. Recurrent Back-Projection Network for Video Super-Resolution. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Computer Vision Foundation/IEEE, Long Beach, CA,
USA, 16–20 June 2019; pp. 3897–3906. [CrossRef]

96



Sensors 2023, 23, 5030

11. Haris, M.; Shakhnarovich, G.; Ukita, N. Deep Back-Projection Networks for Super-Resolution. In Proceedings of the 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Computer Vision Foundation/IEEE Computer Society, Salt
Lake City, UT, USA, 18–22 June 2018; pp. 1664–1673. [CrossRef]

12. Tian, Y.; Zhang, Y.; Fu, Y.; Xu, C. TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution. In Proceedings
of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Computer Vision Foundation/IEEE,
Seattle, WA, USA, 13–19 June 2020; pp. 3357–3366. [CrossRef]

13. Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2017, IEEE Computer
Society, Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [CrossRef]

14. Liang, J.; Fan, Y.; Xiang, X.; Ranjan, R.; Ilg, E.; Green, S.; Cao, J.; Zhang, K.; Timofte, R.; Gool, L.V. Recurrent Video Restoration
Transformer with Guided Deformable Attention. Adv. Neural Inf. Process. Syst. 2022, 35, 378–393.

15. Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Gool, L.V.; Timofte, R. SwinIR: Image Restoration Using Swin Transformer. In Proceedings
of the IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021, Montreal , BC, Canada, 11–17 October
2021; pp. 1833–1844. [CrossRef]

16. Xue, T.; Chen, B.; Wu, J.; Wei, D.; Freeman, W.T. Video Enhancement with Task-Oriented Flow. Int. J. Comput. Vis. 2019,
127, 1106–1125. [CrossRef]

17. Wang, L.; Guo, Y.; Liu, L.; Lin, Z.; Deng, X.; An, W. Deep Video Super-Resolution Using HR Optical Flow Estimation. IEEE Trans.
Image Process. 2020, 29, 4323–4336. [CrossRef]

18. Lian, W.; Lian, W. Sliding Window Recurrent Network for Efficient Video Super-Resolution. In Proceedings of the Computer
Vision-ECCV 2022 Workshops, Tel Aviv, Israel , 23–27 October 2022; Proceedings, Part II; Lecture Notes in Computer Science;
Karlinsky, L., Michaeli, T., Nishino, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; Volume 13802, pp. 591–601. [CrossRef]

19. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.P.; Tejani, A.; Totz, J.; Wang, Z.; et al.
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, IEEE Computer Society, Honolulu, HI, USA, 21–26 July
2017; pp. 105–114. [CrossRef]

20. Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image Super-Resolution Using Very Deep Residual Channel Attention
Networks. In Proceedings of the Computer Vision-ECCV 2018—15th European Conference, Munich, Germany, 8–14 September
2018; Proceedings, Part VII; Lecture Notes in Computer Science; Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y., Eds. Springer:
Berlin/Heidelberg, Germany, 2018; Volume 11211, pp. 294–310. [CrossRef]

21. Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Super-Resolution. In Proceedings of the
2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Computer Vision Foundation/IEEE Computer
Society, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2472–2481. [CrossRef]

22. Horé, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern
Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [CrossRef]

23. Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans.
Image Process. 2004, 13, 600–612. [CrossRef]

24. Liu, Y.; Chu, Z.; Li, B. A Local and Non-Local Features Based Feedback Network on Super-Resolution. Sensors 2022, 22, 9604.
[CrossRef]

25. Chen, Y.; Xia, R.; Yang, K.; Zou, K. MFFN: Image super-resolution via multi-level features fusion network. Vis. Comput. 2023,
1–16. [CrossRef]

26. Shi, W.; Caballero, J.; Huszar, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video
Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, IEEE Computer Society, Las Vegas, NV, USA, 27–30 June 2016;
pp. 1874–1883. [CrossRef]

27. Lan, R.; Sun, L.; Liu, Z.; Lu, H.; Pang, C.; Luo, X. MADNet: A Fast and Lightweight Network for Single-Image Super Resolution.
IEEE Trans. Cybern. 2021, 51, 1443–1453. [CrossRef] [PubMed]

28. Lan, R.; Sun, L.; Liu, Z.; Lu, H.; Su, Z.; Pang, C.; Luo, X. Cascading and Enhanced Residual Networks for Accurate Single-Image
Super-Resolution. IEEE Trans. Cybern. 2021, 51, 115–125. [CrossRef] [PubMed]

29. Sun, L.; Liu, Z.; Sun, X.; Liu, L.; Lan, R.; Luo, X. Lightweight Image Super-Resolution via Weighted Multi-Scale Residual Network.
IEEE/CAA J. Autom. Sin. 2021, 8, 1271–1280. [CrossRef]

30. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal.
Mach. Intell. 2016, 38, 295–307. [CrossRef] [PubMed]

31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, IEEE Computer Society, Las Vegas, NV, USA, 27–30 June 2016; pp.
770–778. [CrossRef]

32. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need.
Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008.

97



Sensors 2023, 23, 5030

33. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, IEEE,
Montreal, QC, Canada, 10–17 October 2021; pp. 9992–10002. [CrossRef]

34. Sajjadi, M.S.M.; Vemulapalli, R.; Brown, M. Frame-Recurrent Video Super-Resolution. In Proceedings of the 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018, Computer Vision Foundation/IEEE Computer Society, Salt Lake City,
UT, USA, 18–22 June 2018; pp. 6626–6634. [CrossRef]

35. Sajjadi, M.S.M.; Schölkopf, B.; Hirsch, M. EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis. In
Proceedings of the IEEE International Conference on Computer Vision, ICCV 2017, IEEE Computer Society, Venice, Italy, 22–29
October 2017; pp. 4501–4510. [CrossRef]

36. Wang, X.; Chan, K.C.K.; Yu, K.; Dong, C.; Loy, C.C. EDVR: Video Restoration With Enhanced Deformable Convolutional
Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops
2019, Computer Vision Foundation/IEEE, Long Beach, CA, USA, 16–20 June 2019; pp. 1954–1963. [CrossRef]

37. Choi, Y.J.; Lee, Y.; Kim, B. Wavelet Attention Embedding Networks for Video Super-Resolution. In Proceedings of the 25th
International Conference on Pattern Recognition, ICPR 2020, Milan, Italy, 10–15 January 2021; pp. 7314–7320. [CrossRef]

38. Xu, W.; Song, H.; Jin, Y.; Yan, F. Video Super-Resolution with Frame-Wise Dynamic Fusion and Self-Calibrated Deformable
Alignment. Neural Process. Lett. 2022, 54, 2803–2815. [CrossRef]

39. Cao, Y.; Wang, C.; Song, C.; Tang, Y.; Li, H. Real-Time Super-Resolution System of 4K-Video Based on Deep Learning. In
Proceedings of the 32nd IEEE International Conference on Application-specific Systems, Architectures and Processors, ASAP
2021, Virtual, 7–9 July 2021; pp. 69–76. [CrossRef]

40. Jo, Y.; Oh, S.W.; Kang, J.; Kim, S.J. Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit
Motion Compensation. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018,
Computer Vision Foundation/IEEE Computer Society, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3224–3232. [CrossRef]

41. Kim, S.Y.; Lim, J.; Na, T.; Kim, M. Video Super-Resolution Based on 3D-CNNS with Consideration of Scene Change. In
Proceedings of the 2019 IEEE International Conference on Image Processing, ICIP 2019, Taipei, Taiwan, 22–25 September 2019;
pp. 2831–2835. [CrossRef]

42. Isobe, T.; Li, S.; Jia, X.; Yuan, S.; Slabaugh, G.G.; Xu, C.; Li, Y.; Wang, S.; Tian, Q. Video Super-Resolution With Temporal Group
Attention. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Computer
Vision Foundation/IEEE, Seattle, WA, USA, 13–19 June 2020; pp. 8005–8014. [CrossRef]

43. Chan, K.C.K.; Wang, X.; Yu, K.; Dong, C.; Loy, C.C. BasicVSR: The Search for Essential Components in Video Super-Resolution
and Beyond. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, Computer Vision
Foundation/IEEE, Virtual, 19–25 June 2021; pp. 4947–4956. [CrossRef]

44. Liu, Z.; Siu, W.; Chan, Y. Efficient Video Super-Resolution via Hierarchical Temporal Residual Networks. IEEE Access 2021,
9, 106049–106064. [CrossRef]

45. Lee, Y.; Cho, S.; Jun, D. Video Super-Resolution Method Using Deformable Convolution-Based Alignment Network. Sensors
2022, 22, 8476. [CrossRef]

46. Anwar, S.; Khan, S.H.; Barnes, N. A Deep Journey into Super-resolution: A Survey. ACM Comput. Surv. 2021, 53, 60:1–60:34.
[CrossRef]

47. Ying, X.; Wang, L.; Wang, Y.; Sheng, W.; An, W.; Guo, Y. Deformable 3D Convolution for Video Super-Resolution. IEEE Signal
Process. Lett. 2020, 27, 1500–1504. [CrossRef]

48. Liu, C.; Sun, D. On Bayesian Adaptive Video Super Resolution. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 346–360.
[CrossRef]

49. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Conference Track Proceedings; Bengio, Y., LeCun, Y., Eds.; Springer:
Berlin/Heidelberg, Germany, 2015.

50. Wen, W.; Ren, W.; Shi, Y.; Nie, Y.; Zhang, J.; Cao, X. Video Super-Resolution via a Spatio-Temporal Alignment Network. IEEE
Trans. Image Process. 2022, 31, 1761–1773. [CrossRef] [PubMed]

51. Zhu, X.; Li, Z.; Lou, J.; Shen, Q. Video super-resolution based on a spatio-temporal matching network. Pattern Recognit. 2021,
110, 107619. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

98



Citation: Gong, J.; Luo, S.; Yu, W.;

Nie, L. Inpainting with Separable

Mask Update Convolution Network.

Sensors 2023, 23, 6689. https://

doi.org/10.3390/s23156689

Academic Editor : Zahir M. Hussain

Received: 18 June 2023

Revised: 20 July 2023

Accepted: 21 July 2023

Published: 26 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Inpainting with Separable Mask Update Convolution Network

Jun Gong 1, Senlin Luo 1, Wenxin Yu 2 and Liang Nie 2,*

1 Information System and Security & Countermeasures Experimental Center, Beijing Institute of Technology,
Beijing 100081, China

2 School of Computer Science and Technology, Southwest University of Science and Technology,
Mianyang 621010, China

* Correspondence: jianglihuakai@gmail.com

Abstract: Image inpainting is an active area of research in image processing that focuses on recon-
structing damaged or missing parts of an image. The advent of deep learning has greatly advanced
the field of image restoration in recent years. While there are many existing methods that can produce
high-quality restoration results, they often struggle when dealing with images that have large missing
areas, resulting in blurry and artifact-filled outcomes. This is primarily because of the presence
of invalid information in the inpainting region, which interferes with the inpainting process. To
tackle this challenge, the paper proposes a novel approach called separable mask update convolution.
This technique automatically learns and updates the mask, which represents the missing area, to
better control the influence of invalid information within the mask area on the restoration results.
Furthermore, this convolution method reduces the number of network parameters and the size of the
model. The paper also introduces a regional normalization technique that collaborates with separable
mask update convolution layers for improved feature extraction, thereby enhancing the quality of
the restored image. Experimental results demonstrate that the proposed method performs well in
restoring images with large missing areas and outperforms state-of-the-art image inpainting methods
significantly in terms of image quality.

Keywords: image inpainting; image processing; separable mask update convolution; encoder-decoder
network

1. Introduction

Image inpainting restores missing or damaged portions of an image, playing a crucial
role in image coding and computational imaging. It fills in missing areas with plausible con-
tent, improving coding efficiency and fidelity. In computational imaging, it helps overcome
challenges like occlusions and incomplete data, generating accurate scene representations.
Overall, image inpainting facilitates efficient representation, transmission, and analysis of
visual data, offering promising solutions for practical applications.

This technique has been widely applied in various fields, including medicine, military,
and video processing, among others [1–6]. The early image inpainting methods were
mainly based on traditional image processing techniques, such as texture synthesis, patch-
based methods, and exemplar-based methods. Texture synthesis methods [7] typically
fill in missing areas by replicating or generating textures from the surrounding image
regions. Patch-based methods [8] use similar patches from the non-missing areas to fill
in the missing regions. Exemplar-based methods [9], on the other hand, utilize a set of
exemplar images to complete the missing regions by finding the most similar patches or
structures from the exemplars. However, these early methods often suffer from a limited
capability to handle complex structures and to generate realistic textures, resulting in visible
artifacts and inconsistencies in the inpainted regions.

Recently, deep-learning-based approaches have emerged as the state-of-the-art for
image inpainting, due to their ability to learn complex relationships and structures in the

Sensors 2023, 23, 6689. https://doi.org/10.3390/s23156689 https://www.mdpi.com/journal/sensors99



Sensors 2023, 23, 6689

image data. These methods [10–12] typically involve using encoder-decoder networks
to learn the context of the surrounding pixels, and then use this information to infer the
missing content. Pathak et al. [13] were the first to apply convolutional neural networks to
image restoration, and they designed a context encoder to capture the background infor-
mation of images. Yang et al. [14] designed a dual-branch generator network, where one
branch focuses on restoring the texture information of the image, while the other focuses
on restoring the structural information, and then the results of the two branches are fused
to improve the quality of the image restoration. Subsequently, due to the outstanding
performance of generative adversarial networks in image restoration, many deep neural
network architectures began to adopt adversarial learning strategies for image inpainting.
For example, Yeh et al. [15] proposed an adversarial learning network consisting of a gen-
erator and discriminator, which can automatically generate high-quality restored images.
The generator aims to generate complete images from the missing parts, while the dis-
criminator is used to evaluate whether the generated results are similar to natural images.
Iizuka et al. [16] proposed the concepts of the global discriminator and local discriminator.
The global discriminator is used to detect the consistency of the overall image, while the
local discriminator is used to detect the details and texture of local regions. The texture con-
sistency of the restored results is ensured by evaluating the entire image and local regions.
With the rapid development of deep learning, new technologies are constantly emerging
in the field of image inpainting. For example, contextual attention mechanisms [17] can
capture contextual information of different scales in the image, thereby improving the
accuracy of image restoration. Partial convolution [18] only convolves known regions and
ignores other missing parts, which can better handle missing areas. Gate convolution [19]
can adaptively weight information from different positions to improve image restoration
quality. Region normalization [20] can enhance the model’s generalization ability, thus
making the image restoration results more accurate and robust.

However, it is challenging to model both the texture and structure of an image using a
single shared framework. To effectively restore the structure and texture information of im-
ages, researchers, such as Guo et al. [21], have proposed a novel dual-stream network called
CTSDG. This approach decomposes the image inpainting task into two subtasks, namely
texture synthesis and structure reconstruction, further improving the performance of image
restoration. This strategy allows for better handling of different feature requirements,
resulting in enhanced quality and accuracy of the restored images.

Furthermore, existing image inpainting techniques typically provide only a single
restoration result. However, image inpainting is inherently an uncertain task, and its output
should not be limited. To address this issue, Liu et al. [22] introduced a new approach
based on the PD-GAN algorithm. They considered that the closer the hole is to the center,
the higher its diversity and strength. By leveraging this idea, they achieved satisfactory
restoration results. This method introduces more diversity and realism in the restoration
outcomes, enabling better adaptation to different inpainting requirements.

To address the restoration of boundary and high-texture regions, Wu et al. [23] pro-
posed an end-to-end generative model method. They first used a local binary pattern
(LBP) learning network based on the U-Net architecture to predict the structural infor-
mation of the missing areas. Additionally, an upgraded spatial attention mechanism was
introduced as a guide and incorporated into the image inpainting network. By applying
these techniques, the algorithm aims to better restore the missing pixels in boundary and
high-texture regions.

The aforementioned deep learning-based inpainting methods rely on the encoder-
decoder to infer the context of small missing image areas. They then infer the texture details
of the missing area based on the image features of the non-missing area and use local pixel
correlation to restore the damaged image area. However, when the missing area of the
image becomes larger and the distance between unknown and known pixels increases,
these methods can produce semantic ambiguity due to the weakening of pixel correlation.
Additionally, due to the limitations of convolution kernel size and a single convolution
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layer, the range of extracted information is too small to capture global structural information
from distant pixels. As a result, it is challenging to repair larger missing areas with more
semantics directly in one step.

Mou et al. [24] proposed a novel model called a deep generalized unfolded network
(DGU-Net). This model integrates gradient estimation strategies into the steps of the
gradient descent algorithm (PGD) to enhance the performance of the restoration process.
However, it was not successful in handling large-area missing images. This indicates that
there are indeed difficulties in effectively restoring images with extensive missing regions.

Inspired by the human learning process, by first learning some simple tasks and
then gradually increasing the difficulty of the task, this learning strategy, from easy to
difficult, can gradually learn a better performance model. The pixels inside the region
are easier to repair. Therefore, Zhang et al. [25] proposed another progressive repair
method, which progresses from the border of the missing region to the center. However,
the progressive repair method must update the feature map in each iteration mapping
back to the RGB space, resulting in a high computational cost. In response to this problem,
Li et al. [26] designed the RFR-Net model to perform progressive restoration at the image
feature level. That is, the input and output of the model need to be in the same space
representation, which greatly saves computational costs. However, the RFR-Net model only
uses the learnable convolution kernel to perceive the edge of the damaged area, ignoring
the context information outside the receptive field. There are still some problems with
blurred boundaries and incorrect semantic content that lead to repair results.

Aiming at the problem of huge amount of network parameters in image inpainting,
we naturally think of optimizing the network structure and reducing unnecessary network
layers. This paper uses the simplified encoder-decoder as the backbone of the generator.
The end-to-end one-stage network dramatically reduces the complexity of the network
compared to the progressive inpainting and multi-stage networks. Nevertheless, the cost of
doing this is that the network may lose some ability to capture fine-grained texture details
and global structural information, especially in large missing regions. In order to improve
the restoration effect, this paper proposes a separable mask update convolution to reduce
the interference caused by the missing regions in the image during the restoration process.

This paper presents three main contributions in the field of image inpainting:

• Lightweight end-to-end inpainting network: The paper introduces a novel lightweight
end-to-end inpainting generative adversarial network. This network architecture,
consisting of an encoder, decoder, and discriminator, addresses the complexity issue
present in existing inpainting methods. It enables fast and efficient image restoration
while maintaining high-quality inpainting results. The streamlined network design
ensures computational efficiency and practicality;

• Separable mask update convolution: The paper proposes a unique method called
separable mask update convolution. By improving the specific gating mechanism, it
enables automatic learning and updating of the mask distribution. This technique
effectively filters out the impact of invalid information during the restoration process,
leading to improved image restoration quality. Additionally, the adoption of deep sep-
arable convolution reduces the number of required parameters, significantly reducing
model complexity and computational resource demands. As a result, the inpainting
process becomes more efficient and feasible;

• Superior inpainting performance: Experimental results demonstrate that the proposed
inpainting network surpasses existing image inpainting methods in terms of both
network parameters and inpainting quality. The innovative network architecture,
coupled with the separable mask update convolution, achieves superior inpainting
results with fewer parameters, reducing model complexity while maintaining high-
quality restorations.
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2. Related Work

2.1. Attention Mechanism

The attention mechanism can help the image inpainting model to find the most similar
feature block from the non-missing area of the image according to the characteristics of the
missing area, thereby improving the quality of image inpainting. Yu et al. [17] added an
attention mechanism to the image inpainting network. The extracted feature information is
divided into foreground and background areas, and the image feature blocks are matched
in a long distance according to the similarity of the foreground and background. However,
this image inpainting method ignores the correlation between the internal features of
the missing area of the image. Therefore, Liu et al. [27] proposed a coherent semantic
attention mechanism, which effectively improves the semantic consistency of the internal
features in the missing area of the image. Since the features extracted by deep and shallow
layers are not the same in convolutional neural networks, Zeng et al. [28] proposed a
pyramidal context encoder network. The attention transfer network can transfer the
attention information obtained from the high-level semantic features to the low-level
features. This model is a restoration method that acts on the feature layer, which can
improve the semantic consistency of the image after restoration. Literature [26] proposes
a recurrent feature reasoning network, which works on the image feature level. In the
process of feature reasoning, the designed knowledge consistent attention (KCA) module
is added. The attention score determines the attention score of this module in the loop
process, and the current attention score is jointly determined. This method can significantly
save computational costs and achieve a more refined repair result. However, the features
located in the missing area usually have a significant deviation, leading to the attention
module’s wrong attention allocation. Finally, the model fills in incorrect texture details
for some missing areas. Phutke et al. [29] applied wavelet query multi-head attention
to image inpainting. Wavelet query multi-head attention is an attention mechanism that
combines wavelet transforms with multi-head attention. This allows the model to attend to
information from different representation subspaces at different positions, improving its
ability to capture long-range dependencies and complex relationships between the input
and output sequences.

2.2. Convolution Method

Convolution is a fundamental mathematical operation in deep neural networks to
extract essential features from input signals or images. It has revolutionized computer
vision and is widely used in various deep learning tasks, including image classification,
object detection, segmentation, and image inpainting. Researchers commonly used valid
convolution for feature extraction in the early stages of applying deep learning to image
inpainting. During this period, they mainly focused on studying the restoration of regular
square-shaped missing regions in the center of the image, as in the work of Pathak et al. [13]
and Yu et al. [17]. Since the missing regions were regular, their impact on the restoration
results was relatively low during the convolution kernel sliding process. However, what
needs to be restored is often irregular regions. In this case, feature extraction using valid
convolutions suffers interference from missing regions. Because the convolution kernel will
cover many mixed windows of effective areas and invalid areas during the sliding process,
this can lead to inaccurate learned features and thus affect image restoration results.

So, researchers began exploring using more advanced convolutional for image in-
painting. The concept of partial convolution was first proposed by Liu et al. [18]. Partial
convolution uses only valid pixels in the kernel to compute the output, ignoring invalid
pixels (such as those in missing regions). This allows the convolution operation to focus on
valid pixels, preventing missing regions from affecting the learned features. Partial convo-
lution also has some limitations. One of the main limitations is that partial convolution is
computationally expensive compared to regular convolution because it requires additional
calculations to generate the mask. Additionally, partial convolution may not be suitable
for cases where the missing regions occupy a large portion of the image because the valid
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pixels may not provide sufficient contextual information for restoration. Subsequently, in
order to solve the problem that partial convolution cannot handle large areas of missing
regions, gated convolution was proposed by Yu et al. [19]. Gated convolution is a variant
of partial convolution that introduces an additional gating mechanism to control the flow
of information through the convolutional kernel. The gating mechanism consists of a sig-
moid function that generates a gating map to modulate the convolutional kernel’s feature
responses. The gating map is used to selectively pass through the valid pixels in the convo-
lutional kernel and suppress the invalid pixels in the missing regions. Liu et al. [30] used
part of the convolution kernel to process the structure and texture features of the image
to generate feature information with different scales. Due to the excellent performance
of gated convolution in repairing irregularly missing regions, Ma et al. [31] proposed an
improved version called dense gate convolution. This method incorporates the idea of
dense connections, which allows information to flow freely within the network, thereby
enhancing feature propagation and utilization.

Although the above convolution method solves the problem of large-area irregular
mask image competition, there is still room for improvement in image restoration quality.
Moreover, the problems of parameter expansion and increased calculation consumption
caused by complex convolution methods have yet to be resolved but have intensified.

2.3. Progressive Image Inpainting

In view of the weak ability of convolutional neural networks in modeling long-distance
pixel correlations between known long-distance regions (background regions) and regions
to be inpainted (foreground regions), progressive image inpainting methods have been
widely used in recent years. Xiong et al. [32] divided the whole inpainting task into three
parts in sequence: perceiving the image foreground, completing object contours, and in-
painting missing regions [33]. first predicted the structural information of the missing
region of the image and then repaired the image according to the predicted structural
information to improve the feature structure consistency between the repaired image and
the real image. An excellent residual architecture in the full-resolution residual network
proposed by Guo et al. [34] is helpful for feature integration and texture prediction. Fur-
thermore, each residual block only reconstructs the specified missing regions to ensure
image quality during the progressive inpainting process. Chen et al. [35] completed the
image inpainting task step by step from the perspective of pyramid multi-resolution, dur-
ing which low-resolution inpainting and high-resolution inpainting are performed in a
cycle. Li et al. [36] stacked the visual structure reconstruction layer in the U-Net structure
containing some convolutional layers. They reconstructed the structure and visual fea-
tures of the missing area in a progressive manner. In this network, the updated structural
information in each visual structure reconstruction layer is used to guide the filling of
feature content to gradually reduce the missing area and finally complete the restoration
task. Liao et al. [37] proposed a progressive image inpainting network that uses semantic
segmentation information to constrain image content. However, these progressive image
inpainting methods ignore the contextual information outside the receptive field of the con-
volution kernel. Shi et al. [38] proposed a multi-stage progressive inpainting method that
divides the inpainting process into three stages: feature extraction, interactive inpainting,
and reinforcement reconstruction. They used a dual-branch structure to focus on grad-
ually restoring texture-level features. This approach avoids the redundant computation
of previous cyclic progressive inpainting methods. Liu et al. [39] also used a dual-branch
structure, but instead of having high-resolution and low-resolution branches, they focused
on two progressive feature extraction branches for structure and texture feature extrac-
tion. This approach allows for the maximum restoration of the image’s structure and
texture information.
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2.4. GAN for Inpainting

Generative adversarial networks (GAN) is a deep learning model consisting of a
generator and a discriminator. It has been widely used in image inpainting. The generator
takes an image with missing regions as input and generates a repaired image, while the
discriminator tries to distinguish between the generated repaired image and the real image.
Through adversarial training, the generator gradually learns to generate realistic repaired
images that visually resemble the real images. The application of GAN in image inpainting
has the advantage of generating natural and preserving structural and texture features in
the repaired results. In recent years, researchers have proposed different GAN-based image
inpainting methods.

Guo et al. [21] proposed a novel two-stream network that models structure-constrained
texture synthesis and texture-guided structure reconstruction in a coupled manner. The
method, named "Conditional Texture and Structure Dual Generation (CTSDG)," incor-
porates a bi-directional gated feature fusion (Bi-GFF) module to exchange and combine
structure and texture information, and a contextual feature aggregation (CFA) module to
refine the generated contents using region affinity learning and multi-scale feature aggre-
gation. Li et al. [40] introduced a novel multi-level interactive Siamese filtering (MISF)
technique that combines image-level predictive filtering and semantic filtering on deep
feature levels. Their method contains two branches: a kernel prediction branch (KPB) and a
semantic and image filtering branch (SIFB). These branches interactively exchange informa-
tion, with SIFB providing multi-level features for KPB and KPB predicting dynamic kernels
for SIFB. This method leverages effective semantic and image-level filling for high-fidelity
inpainting and enhances generalization across scenes. Chen et al. [3] proposed a feature
fusion and two-step inpainting approach (FFTI). The method utilizes dynamic memory
networks (DMN+) to fuse external and internal features of the incomplete image and
generate an incomplete image optimization map. A generation countermeasure generative
network with gradient penalty constraints is constructed to guide the rough repair of the
optimized incomplete image and obtain a rough repair map. Finally, the coarse repair
graph is optimized using the coherence of relevant features to obtain the final fine repair
graph. Xia et al. [41] proposed an effective image inpainting method called a repair network
and optimization network (RNON), which utilizes two mutually independent generative
adversarial networks (GANs). The image repair network module focuses on repairing
irregular missing areas using a generator based on a partial convolutional network, while
the image optimization network module aims to solve local chromatic aberration using
a generator based on deep residual networks. The synergy between these two network
modules improves the visual effect and image quality of the inpainted images.

Although these methods have made significant progress in image texture and struc-
ture restoration, they also have certain limitations. The multi-stage, multi-branch, and
multi-network nature of these methods leads to increased computational resource con-
sumption and longer computation time. CTSDG, while advantageous in coupled texture
synthesis and structure reconstruction, may have limitations when dealing with large-scale
corruptions or missing regions spanning important areas of the image. The computational
complexity of the Bi-GFF and CFA modules may restrict real-time performance in certain
applications. MISF, which focuses on semantic filtering rather than fine-grained texture
reconstruction, may experience a sharp performance decline when dealing with large
missing areas requiring detailed texture recovery. The effectiveness of FFTI may depend
on the quality and completeness of the external and internal features used for fusion,
making it susceptible to interference from irrelevant information. RNON, which utilizes
two independent GANs, requires more computational resources and time for training
and faces an increased risk of mode collapse. The method’s repaired results also tend to
exhibit over-smoothing.
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3. Approach

Like a person completing a jigsaw puzzle alone, the image inpainting algorithm fills in
the missing area by piecing together the surrounding pixels and keeping the contextual se-
mantic information consistent with the image structure during the filling process. However,
in the related work mentioned above, although progressive inpainting uses surrounding
pixels to progressively restore missing pixels, they cannot maintain contextual image se-
mantics and structural information well. At the same time, these algorithms have a large
number of parameters and are computationally expensive. Therefore, this paper proposes a
U-Net-like codec network with separable mask update convolution, significantly reducing
network complexity.

3.1. Network Structure

The proposed SMUC-net in this paper is a deep learning-based image restoration
model whose backbone is a codec serving as the generator. Including components such as
a discriminator, encoder, and decoder constructs an end-to-end learning framework that
allows the entire restoration process to be completed within a unified framework. The
overall structure of the SMUC-net is shown in Figure 1. Specifically, the encoder adopts
separable mask update convolution modules and region normalization modules, which can
effectively extract image feature information and optimize computation efficiency. Next,
the image feature vector undergoes processing through eight residual blocks, which can
effectively increase the depth and flexibility of the model while avoiding the problem of
gradient vanishing. Finally, the decoder consists of separable mask update convolution
layers and region normalization modules and uses the tanh function to activate the output
result, obtaining the restored image.

Figure 1. The structure of SMUC-net.

In SMUC-net, the discriminator evaluates the similarity between the generated re-
stored and original images, providing feedback mechanisms for model optimization.
Among them, the loss function is the core of model optimization. This paper adopts
multiple loss functions such as L1 loss, adversarial loss, perceptual loss, and style loss
to train the model(the loss function is consistent with [20]). The L1 loss measures the
pixel-level distance between the restored and original images, while the adversarial loss
encourages the generator to produce more realistic restored images. The perceptual loss en-
sures the perceptual quality of the restored image by comparing the feature representations
of the restored image and the original image. The style loss can make the restored image
better conform to the style characteristics.

In recent years, deep learning has dramatically advanced the field of image restoration
due to its remarkable performance in various applications. However, the challenges remain
since the image restoration problem is inherently complex and challenging. SMUC-net
represents a significant step forward in addressing these challenges, providing a powerful
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tool for restoring damaged or missing image information. Moreover, combining various loss
functions and using a unified end-to-end learning framework in SMUC-net further enhance
its effectiveness and versatility. Future research can explore improving the efficiency and
accuracy of image restoration models like SMUC-net, extending their applicability to even
more complex scenarios.

3.2. Separable Mask Update Convolution Modules

For irregular image inpainting tasks, missing regions may have arbitrary shapes and
sizes, which means that traditional vanilla convolution-based inpainting algorithms are
often incompetent. The following is the operation formula of vanilla convolution:

( f ∗ g)(x, y) =
k

∑
i=−k

k

∑
j=−k

f (x − i, y − j) · g(i, j) (1)

Among them, f is the input image. g is the filter. k is the radius of the filter. (x, y) is
the pixel position of the output image. The indices i and j represent the spatial location
within the kernel matrix.

This formula says that each pixel value in the output image is the weighted sum of the
filter at that location and surrounding pixels. It is not difficult to see from the formula that
for the coordinate point position (x, y) of each channel of the input image f , the ordinary
convolution will use the same shape of the filter g to perform convolution operations on it.
This is because in ordinary convolution, the parameters of the filter are fixed independent
of the pixel values in the input image. Therefore, no matter what the pixel values in the
input image are, the same filter will be used for convolution. However, in tasks such as
irregular image repair, since the missing area may have arbitrary shape and size, while
the filter used by ordinary convolution is fixed, it is difficult to adapt to missing areas of
different shapes and sizes, resulting in poor repair results.

In order to solve the above problems, it is necessary to control the interference of
invalid information in the missing area of the image on the convolution result. Therefore,
Liu et al. [18] proposed the concept of partial convolution. The calculation process of partial
convolution needs a binary mask to assist. This mask consists only of 0 and 1. The mask
position corresponding to the position where the pixel is 0 in the input image is also 0, and
the corresponding mask position is 1 in other cases. Partial convolution uses a mask map to
mark the areas of the input image that contain missing pixels. During convolution, only the
valid pixel-containing areas are used for the convolution operation, while the invalid areas
are excluded. This ensures that the missing areas do not interfere with the convolution
result. Furthermore, a new mask image is generated during partial convolution, which
guides the convolution operation of the subsequent layers. The operation flow of partial
convolution is shown on the left side of Figure 2. Firstly, partial convolution is used to
perform convolutional calculations on the input image, resulting in a new feature map.
During this process, only the areas containing valid pixels are involved in the calculation,
while the missing areas are excluded to avoid interfering with the convolution result. Then,
the updated mask is used to perform a dot product with the feature map to obtain the input
of the next layer in the network. Meanwhile, the updated mask is also used as the input
for the next layer to guide the subsequent convolution operation. The partial convolution
operation formula and mask update rules can be expressed as follows:

x′ =

{
∑ ∑ w ·

(
x � 1

sum(m)

)
, if sum(m) > 0

0, otherwise
(2)

w represents the weight of the current convolution filter. x is the characteristic value of
the current sliding window. � denotes element-wise multiplication. m represents the
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binary mask used for marking. (x, y) is the pixel position of the mask. After each partial
convolution, mask-update follows the following strategy:

m̂(x, y) =

{
1 if sum(m) > 0
0 otherwise

(3)

Figure 2. Illustration of partial convolution (left) and gate convolution (right).

The process of updating the mask is illustrated in Figure 3. When the mask region
covered by the current convolutional window contains valid pixels, the corresponding
region in the updated mask is marked as 1. However, the current masking method has a
problem of considering all pixels as either valid or invalid, without considering the number
of valid pixels. Therefore, in some cases, regions with only one valid pixel and regions with
nine valid pixels are considered to have the same value. This is obviously unreasonable,
especially as the network gets deeper, the actual information carried by regions of valid
pixels can be very limited, as shown in the green region in the figure. The red area contains
more effective pixels.

Figure 3. An illustration is provided to demonstrate the mask update mechanism employed by the
partial convolution method.

Based on the concept mentioned above, Yu et al. [19] proposed a novel approach to
update the mask in the feature maps. They classified the feature maps into two groups
based on the number of channels. They applied either sigmoid activation or relu activa-
tion on each group, as depicted on the right side of Figure 2. Specifically, the sigmoid
activation operation was named GATE. It generated a weight map, also known as a ‘soft
mask’, through which the pixels with lower weight values were deemed to have a higher
probability of containing invalid information. The soft mask was then multiplied with the
activated feature map to reduce the confidence of invalid pixels in the feature map, thereby
allowing the network to focus on the most informative regions. This process improved the
quality of feature representations and helped eliminate the negative influence of noise and
irrelevant information.
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The gate convolution proposed by Yu et al. [19] is undoubtedly effective in improving
the quality of feature representations. However, this approach also presents two notable
challenges that need to be addressed. Firstly, the feature maps are split into two groups,
which require twice as many convolution kernels and double the number of parameters
in the model. This operation increases the computational cost and storage requirements,
making deploying the model on resource-limited devices challenging. Secondly, the equal
division of feature maps may reduce the feature space available for learning and limit the
expressive power of the model.

This paper proposed a novel approach called separable mask update convolution
to overcome these limitations. This approach addresses the challenges mentioned above
by introducing a two-step process separating the convolutional and gating operations.
Specifically, the separable mask update convolution first applies a regular convolutional
operation to the input feature map, generating a set of intermediate feature maps. Then, a
gating operation is performed on the intermediate feature maps to obtain a set of weight
maps. By separating the two operations, the separable mask update convolution can reduce
the number of convolution kernels and parameters in the model while achieving similar
or even better performance than the original gate convolution approach. Moreover, the
separable mask update convolution approach allows more flexibility in designing the
model architecture and improves the model’s ability to learn complex representations.

Based on the operation principle shown in Figure 4, the separable mask update
convolution method follows a few steps. Firstly, the group parameter of the convolution
kernels is set to be the same as the number of input channels, which results in an equal
number of output feature maps as the input channels. Let us assume the number of input
channels is Nc. Therefore, Nc feature maps are generated.

Figure 4. Illustration of our separable mask update convolution.

Next, the Nc feature maps are divided into two groups with a proportion of Nc − 1 : 1.
The relu function activates the first group. In contrast, the sigmoid function activates
the second group. The reason for using two different activation functions is to provide
diverse nonlinear transformations to the feature maps. After activation, the two groups are
multiplied to obtain the weighted feature maps.

Finally, the weighted feature maps are passed through the convolutional layer, which
consists of filters with a kernel size equal to 1. This convolutional layer helps to expand the
output channels and generates a new set of feature maps with increased depth. By using
the separable mask update convolution method, the model can learn more complex repre-
sentations with fewer parameters, resulting in better performance and faster convergence
during training.

The convolution method proposed in this paper can significantly reduce the number
of parameters compared to gate convolution. It also optimizes the number of feature
maps required for mask update and improves the information utilization rate. Below
are the formulas for calculating parameters in gated convolution and separable mask
update convolution.
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The calculation of parameters for gate convolution [19] can be expressed as:

Ngc = Ksize × Ksize × Nout × Nin

= (Ksize × Ksize × Nin)× Nout
(4)

The calculation of parameters for separable mask update convolution can be expressed as:

Nsmuc = Ksize × Ksize × Nin + Nout × 1 × 1 × Nin

= (Ksize × Ksize + Nout)× Nin

= (Ksize × Ksize × Nin)× (1 +
Nout

Ksize × Ksize
)

(5)

The formulas show that the number of parameters required for the two convolution
methods, gate convolution (GC) and separable mask update convolution (SMUC). The
variables Ngc and Nsmuc respectively represent the number of parameters required for each
method. The kernel size is denoted by Ksize, while Nin and Nout represent the number
of input and output channels. It can be observed that when Ksize = 1, SMUC has more
parameters than GC due to the presence of an additional Nin term. However, for larger
kernel sizes, SMUC requires fewer parameters than GC.

3.3. Region Normalization

The separable mask update convolution effectively reduces the impact of invalid
information in the missing region on the restoration results during the convolution process.
In the normalization layer, regular normalization methods cannot completely avoid the
interference of invalid information in the missing region on the restoration results, especially
when the missing region is large. Traditional normalization methods usually normalize the
pixel values of each feature map to reduce the covariance between feature maps, thereby
enhancing the robustness and generalization ability of the network. However, for the
missing region, as the pixel values in the missing region are usually zero or very small,
such normalization methods often cannot effectively reduce the invalid information in the
missing region but may increase the impact of noise, further affecting the quality of the
restoration results. To solve this problem, some unique normalization methods for the
missing region have emerged in recent years, such as the normalization method based on
local variance and the normalization method based on masks. These methods can better
remove invalid information in the missing region through special processing of the missing
region, thereby improving the quality of the restoration results.

In this paper, a novel technique called Region Normalization (RN) [20] is introduced to
address the challenge of mean and variance shifts in the normalization process. The method
is specifically designed for use in the early layers of the inpainting network, where the input
feature contains large corrupted regions that result in significant mean and variance shifts.
RN addresses this issue by separately normalizing and transforming the corrupted and
uncorrupted regions, thus preventing information mixing. In specific operations, the region
normalization method divides each input feature map according to its four dimensions
(N, C, H, W). Then it divides it into damaged and undamaged regions based on whether
there is damaged data in each region. As shown in Figure 5, the height and width of
each feature map in the batch can be divided into multiple block regions. The green area
represents the damaged data, and the blue area represents the undamaged data, which are
normalized separately.
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Figure 5. This figure demonstrates the proposed Region Normalization (RN) method, which applies
different normalization parameters to pixels of different regions. Specifically, pixels within the same
region, represented by green or blue color, share the same mean and variance during normalization.
Notably, the corrupted and uncorrupted regions of the input image are normalized by different mean
and variance parameters.

3.4. Loss Function

When performing image restoration, the loss function is a crucial part. By defining
an appropriate loss function, we can guide the model to learn how to better restore the
image. In this paper, various loss functions are adopted for image inpainting, including
perceptual loss, reconstruction loss, adversarial loss and style loss. These four loss func-
tions correspond to the reconstruction error, feature similarity, adversariality, and style
similarity between the inpainted image and the real image, respectively. The total loss of
the generator can be expressed as a weighted sum of these four loss functions, where each
loss function has its own weight. The following are the specific formulas of reconstruction
loss, perceptual loss, confrontation loss and style loss:

Lrecon = ‖ŷ − y‖2
2 (6)

Lperceptual =
1
N

N

∑
i=1

‖φi(ŷ)− φi(y)‖2
2 (7)

Ladv(G, D) = log D(y) + log(1 − D(G(z))) (8)

Lstyle =
1
N

N

∑
i=1

‖Gram(φi(ŷ))− Gram(φi(y))‖2
2 (9)

Among them, ŷ is the image generated by the generator, y is the real image, φi
represents the feature representation of the i-th layer in the pre-training model, specifically
pool1, pool2, and pool3 layers. Therefore, in this paper, L = 3, Ni represents the number of
elements in φi, D is the discriminator, G is the generator, z is the input image, and Gram
represents the Gram matrix. The total loss is then expressed as:

Ladv =
1
N

N

∑
i=1

log(D(ŷ)) (10)

The weight coefficients α, β, γ, δ are used to control the contribution of each loss
function to the overall loss. The total loss function includes four losses, which constrain the
generator from different perspectives and effectively improve the quality and effectiveness
of image restoration. In this paper, α, β, γ, and δ are set to 1, 0.1, 0.1, and 250, respectively.
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4. Experiment

4.1. Experiment Setup

For our experiments, we chose to use three common datasets for image inpainting,
namely Paris Street View [13], Celeba-HQ [42] and Places2 [43]. The Paris Street View
dataset, proposed by researchers from ParisTech and INRIA (French National Institute for
Research in Computer Science and Automation), consists of 15,000 high-resolution images
capturing street views and buildings in Paris. This dataset is commonly used in research
on scene understanding, image inpainting, and image synthesis in computer vision and
image processing tasks.

The Celeba-HQ dataset, introduced by Ziwei Liu et al. in 2018, is an extension
of the Celeba (Celebrities Attributes) dataset with higher quality images. It contains
30,000 high-quality images of celebrity faces that have been carefully curated and pro-
cessed. The Celeba-HQ dataset is widely used for training and evaluating computer vision
algorithms related to face recognition, face generation, and face inpainting tasks.

The Places2 dataset is a widely used large-scale image dataset proposed by researchers
from the International Computer Science Institute (ICSI) and the Berkeley Vision and
Learning Center (BVLC). It comprises over one million carefully curated images, capturing
diverse real-world scenes such as indoor and outdoor environments, natural landscapes,
urban street views, and office spaces. These high-quality images, with resolutions of
256 × 256 or 512 × 512 pixels, exhibit rich semantic and visual diversity, covering various
scene types, lighting conditions, and perspectives. The Places2 dataset serves as a vital
benchmark for scene understanding, image generation, image classification, and other
computer vision tasks, enabling researchers to train and evaluate their models and driving
advancements in the field.

In the study, the first 14,900 images from the Paris Street View dataset were used for
training the model, while 100 images were reserved for testing. As for the Celeba-HQ
dataset, the first 28,000 images were used for training, and the remaining 2000 images were
used for testing. This data split ensures that the model is exposed to representative image
samples during both training and testing, enabling accurate assessment of the performance
and generalization capability of the image inpainting algorithm across different datasets.
For the Places2 dataset, we followed the official partitioning of training and testing sets.
We created our own training set by selecting the first 100,000 images from the complete
Places2 training set. Similarly, our testing set was formed by selecting the first 2000 images
from the complete Places2 testing set.

To create the masks for our experiments, we used the irregular mask dataset [18],
which consists of a variety of randomly generated masks with different shapes and sizes.
Liu et al. created and released the dataset of irregular masks when they proposed partial
convolution. It has become one of the most widely used public datasets for irregular mask
image inpainting among existing image restoration methods. We divided the masks into
five categories based on the proportion of missing area, namely 10–20%, 20–30%, 30–40%,
40–50%, and 50–60%. Each category contained 2000 masks.

To train our model, we used a single NVIDIA GeForce GTX 1080Ti graphics card and
set the number of epochs to 10. We continued training until the model converged and
achieved satisfactory results on our test dataset.

4.2. Quantitative Comparison

In addition to describing the proposed method, this paper also compared it with other
commonly used image restoration methods, including Region Normalization (RN) [20],
Conditional Texture and Structure Dual Generation (CTSDG) [21], and Multi-level In-
teractive Siamese Filtering (MISF) [40]. These comparison methods have shown good
performance in recent years in the field of image restoration. The comparison was carried
out on two datasets, Celeba-HQ and Paris Street View, and the test results were presented
in Tables 1 and 2, respectively. The two metrics used to evaluate the performance were
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PSNR and SSIM, which reflect the pixel similarity and structural similarity between the
inpainting results and the original image, respectively.

Table 1. This is a demonstration of the quantitative results of the method in this paper at different
defect scales on the CelebA-HQ dataset (M = 220).

Mask RN [20] CTSDG [21] MISF [40] Ours

PSNR ↑

10–20%
20–30%
30–40%
40–50%
50–60%

29.339
26.344
24.060
22.072
20.274

29.842
26.550
24.652
23.122
20.459

29.868
27.154
24.993
23.185
20.455

31.472
28.321
26.053
24.420
21.578

SSIM ↑

10–20%
20–30%
30–40%
40–50%
50–60%

0.919
0.866
0.811
0.749
0.667

0.935
0.878
0.832
0.778
0.686

0.933
0.889
0.838
0.780
0.687

0.959
0.926
0.889
0.876
0.814

Parameters ↓ 25.34 M 31.26 M 27.60 M 11.02 M

Table 2. This is a demonstration of the quantitative results of the method in this paper at different
defect scales on the Paris street view dataset (M = 220).

Mask RN [20] CTSDG [21] MISF [40] Ours

PSNR ↑

10–20%
20–30%
30–40%
40–50%
50–60%

29.237
26.678
24.517
22.556
20.424

30.375
27.188
25.424
23.412
20.844

30.042
27.465
26.059
24.057
21.416

31.732
28.680
26.934
25.192
22.243

SSIM ↑

10–20%
20–30%
30–40%
40–50%
50–60%

0.912
0.848
0.781
0.707
0.598

0.930
0.875
0.819
0.743
0.647

0.926
0.877
0.833
0.761
0.655

0.945
0.928
0.873
0.832
0.792

Parameters ↓ 25.34 M 31.26 M 27.60 M 11.02 M

Finally, we compared the multi-level interactive Siamese filtering (MISF) [40], repair
network and optimization network (RNON) [41], and features fusion and two-steps in-
painting (FFTI) [3] methods on the comprehensive Places2 dataset. In this comparative
experiment, we excluded the experiments on the extreme conditions of extremely small
and extremely large missing areas. The experimental results were focused on the common
range of 20% to 50% missing regions. The experimental results are presented in Table 3.

The results show that the proposed method outperformed the comparison methods in
terms of PSNR and SSIM on both datasets, especially in the 10% to 60% range of missing
area. For example, on Celeba-HQ, the proposed method achieved a PSNR improvement
of 1.06–1.6 dB and an SSIM improvement of 0.026–0.127, depending on the scale of the
missing area. On Paris Street View, the PSNR improvement was 0.827–1.69 dB and the
SSIM improvement was 0.019–0.137. These results indicate that the proposed method can
recover more structural information, especially when repairing large missing areas.

On the comprehensive Places2 dataset, our proposed method continues to exhibit a
distinct advantage over recent state-of-the-art approaches in the restoration of large-scale
missing image regions. Particularly for missing areas exceeding 30%, as the extent of
the missing region increases, our method consistently outperforms other techniques in
terms of both PSNR and SSIM metrics. Furthermore, in the restoration of small-scale
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missing regions (below 30%), although our method may not surpass the performance of the
highly effective FFIT method, the discrepancy in PSNR values between the two approaches
remains minimal.

Table 3. This is a demonstration of the quantitative results of the method in this paper at different
defect scales on the Places2 dataset (M = 220).

Mask MISF [40] RNON [41] FFTI [3] Ours

PSNR ↑
20–30%
30–40%
40–50%

26.115
24.260
22.140

26.742
25.944
23.386

27.657
26.387
23.671

27.510
26.957
24.327

SSIM ↑
20–30%
30–40%
40–50%

0.863
0.795
0.741

0.894
0.846
0.798

0.909
0.862
0.811

0.896
0.883
0.872

Parameters ↓ 27.60 M 31.46 M 34.20 M 11.02 M

Furthermore, the proposed method has fewer parameters compared to the RN method,
which is a large-scale network with the fewest parameters. Additionally, when compared to
the RNON method, our method only has one-third of the parameter count. In comparison
to the FFIF method, the proposed approach reduces the number of parameters by nearly
two-thirds. Hence, the proposed method not only demonstrates better performance but
also exhibits a more compact structure.

4.3. Qualitative Comparison

Figures 6 and 7 show the restoration results of two datasets under different missing
ratios. The results demonstrate that our proposed method outperforms other methods in
restoration effectiveness at any scale. It is worth noting that the performance of the existing
methods and our proposed method vary when dealing with different types of images.
For example, on the CelebA-HQ dataset, which consists of facial images, the SMUC-net
produces more natural-looking results with softer facial contours. In contrast, the other
methods tend to generate slightly more artificial-looking images. This indicates that our
proposed method is more effective in preserving the natural features of facial images.

(a) Input (b) RN (c) CTSDG (d) MISF (e) Ours (f) GT

Figure 6. The result display of our method on CelebA-HQ dataset under different missing data scales.
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(a) Input (b) RN (c) CTSDG (d) MISF (e) Ours (f) GT

Figure 7. This is the result display of our method on Paris street view dataset under different missing
data scales.

In contrast, on the Paris Street View dataset, which includes a variety of urban scenes,
our method performs better in restoring texture details of objects such as branches and
windows. This is due to our method’s ability to recover the structural information of the
missing areas, which is crucial in restoring the texture details of objects.

Another significant advantage of our method is its ability to handle large missing areas.
As demonstrated in Figure 7, our method can effectively recover the structural information
of the missing areas and generate more realistic images than other methods, even when up
to 60% of the image is missing.

As shown in Figure 8, on the Places2 dataset, it is easy to observe that our proposed
restoration method outperforms other methods in terms of preserving more detailed
information in large-scale irregular missing regions. Notably, it effectively restores finer
details such as the texture on buildings or the intricate details of a child riding a toy horse.

(a) Input (b) MISF (c) RNON (d) FFTI (e) Ours (f) GT

Figure 8. This is the result display of our method on Places2 dataset under different missing data scales.
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However, it should be noted that our method may still encounter challenges in restor-
ing certain types of objects, such as text or other highly structured elements. In such cases,
our method may be unable to repair them successfully. Nevertheless, our method produces
fewer artifacts and more realistic results compared to other methods.

In summary, our proposed method outperforms existing methods in restoring natural
features and texture details, handling large missing areas, and producing more realistic
results with fewer artifacts. These findings demonstrate the potential of our method for
various applications, such as image editing and restoration.

4.4. Ablation Study

To validate the effectiveness of the proposed method in this paper, we conducted
ablation experiments on the CelebA dataset. The mask used in this case is based on
a general damage range of 30% to 40%. Following the proposed repair method, we
restored separable mask update convolutions to ordinary convolutions and normalized the
region normalization layer to a standard normalization layer as the base model. Then, we
separately added separable mask update convolutions and region normalization layer for
training and finally added both methods to the base model for training. The final model we
obtained is the proposed repair method in this paper. The experimental results are shown
in Table 4.

Table 4. This table provides a detailed display of the inpainting results of different network models.
The base model does not include the separable mask update convolution and region normalization
methods, while the SMUC-net includes both mechanisms (M = 220).

Models PSNR SSIM Parameters

Base Model 23.76 0.799 12.83 M
Base Model+SGC 25.67 0.855 11.02 M
Base Model+RN 24.94 0.832 12.83 M
SMUC-net 25.92 0.871 11.02 M

After conducting experimental comparisons, we see that both replacing separable
mask update convolution and region normalization layers can significantly improve the
restoration performance compared to the original basic network architecture. This indicates
that both methods are effective in improving restoration performance. Because both sepa-
rable mask update convolutions and region normalization can reduce the interference of
invalid pixels in the damaged area to some extent, they contribute to improving the repair
results. It is worth noting that the core separable mask update convolution module pro-
posed in this paper also plays an essential role in reducing network parameters. Ultimately,
our experimental results show that the proposed SMUC-net achieves the best results in
both restoration performance and network parameter count.

5. Conclusions

This article proposes a simple encoder-decoder network that combines separable mask
update convolutions and region normalization techniques to improve image restoration.
The network parameters are significantly reduced using separable mask update convo-
lutions instead of traditional convolution operations. Additionally, the separable mask
update mechanism can preserve more feature information and reduce the impact of invalid
pixels by providing different weights to masked and unmasked areas, further enhancing
the restoration effect.

Furthermore, the article introduces the region normalization technique to provide
different means and variances for masked and unmasked areas. This method can reduce
the influence of masked areas on the restoration results, thereby improving the accuracy
of image restoration. Through experimental comparisons, we found that the proposed
method achieved a good restoration effect and network parameter quantity results.
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Experimental results on the Celeba-HQ and Paris Street View datasets show that our
proposed method outperforms FFTI by 1.06–1.6 dB and 0.827–1.69 dB in terms of PSNR and
by 2.6% to 12.7% and 1.9% to 13.7% in terms of SSIM under damage rates of 10% to 60%.
Moreover, our method successfully reduces the parameter quantity by 16.58 M, making it
the model with the minor parameters but the best restoration results.

The image inpainting method proposed in this paper has achieved significant im-
provements in terms of network parameters and inpainting quality. However, the main
limitation of our approach is it lacks interactivity. A possible future direction could be to in-
corporate user guidance information into the inpainting process, which may provide more
opportunities for user participation and customization. In addition, robot painting [44,45]
is also a promising application direction. In practical applications, our image inpainting
method can assist robots in better filling in missing image content.
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Abbreviations

The following abbreviations are used in this manuscript:

SMUC Separable Mask Update Convolution
GC Gate Convolution
RN Region Normalization
CTSDG Conditional Texture and Structure Dual Generation
MISF Multi-level Interactive Siamese Filtering
RNON Repair Network and Optimization Network
FFTI Features Fusion and Two-steps Inpainting
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Abstract: Due to the proliferation of video data in Internet of Things (IoT) systems, in order to
reduce the data burden, most social media platforms typically employ downsampling to reduce
the resolution of high-resolution (HR) videos before video coding. Consequently, the loss of detail
and the introduction of additional artifacts seriously compromise the quality of experience (QoE).
Recently, the task of compressive video super-resolution (CVSR) has garnered significant attention,
aiming to simultaneously eliminate compression artifacts and enhance the resolution of compressed
videos. In this paper, we propose an edge-oriented compressed video super-resolution network
(EOCVSR), which focuses on reconstructing higher-quality details, to effectively address the CVSR
task. Firstly, we devised a motion-guided alignment module (MGAM) to achieve precise bi-direction
motion compensation in a multi-scale manner. Secondly, we introduced an edge-oriented recurrent
block (EORB) to reconstruct edge information by combining the merits of explicit and implicit edge
extraction. In addition, benefiting from the recurrent structure, the receptive field of EOCVSR can
be enhanced and the features can be effectively refined without introducing additional parameters.
Extensive experiments conducted on benchmark datasets demonstrate that our method surpasses the
performance of state-of-the-art (SOTA) approaches in both quantitative and qualitative evaluations.
Our approach can provide users with high-quality and cost-effective HR videos by integrating with
sensors and codecs.

Keywords: compressed video super-resolution; edge-oriented; recurrent structure

1. Introduction

Nowadays, the explosion of high-resolution (HR) videos has surged with the rapid
advancement of portable device sensors and 5G communication technology. Some popular
social media platforms, such as TikTok and WeChat, often downsample HR videos before
compression to minimize the expenses associated with data storage and transmission,
especially when bandwidth and storage space are severely constrained. The decoded
low-resolution videos need to be upsampled back to their original resolution to meet user
requirements. However, ensuring a satisfactory quality of experience (QoE) is extremely
challenging due to the information loss caused by downsampling and the introduction of
compression artifacts.

Despite the significant achievements of deep learning techniques in video quality
enhancement (VQE) [1–6] and video super-resolution (VSR) tasks [7–11], simply cascading
two networks to upsample the LR compressed videos in two stages often fail to yield
satisfactory results. The main reason is that the information of the two independent pro-
cesses cannot be effectively collaborated. Recently, there has been a growing interest in the
task of compressed video super-resolution (CVSR) [12–14], which sought to address both
compression artifacts removal and resolution enhancement in compressed videos simulta-
neously. An end-to-end restoration-reconstruction deep neural network (RR-DnCNN) [12]
was first proposed to entirely solve degradation from compression and downsampling.
The authors utilized upsampling skip connections to pass the useful features extracted
by restoration to reconstruction. He et al. introduced a novel model, named Feature
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Multiplexing Video Super-Resolution for Compressed Video (FM-VSR) [13], to recover
high-quality, high-resolution videos from low-resolution videos compressed with high
compression rates. However, these methods lack targeted processing for high-frequency
components, particularly edge components. Furthermore, they solely rely on the mean
squared error (MSE) loss function during training, resulting in the inadequate reconstruc-
tion of details and overly smooth and blurry outputs. There is a strong demand for robust
CVSR algorithms that collaborate with sensors and video codecs to produce exceptional
HR videos.

To this end, we propose an edge-oriented compressed video super-resolution network
(EOCVSR), which pays more attention to reconstructing high-quality details to effectively
address the CVSR task. EOCVSR takes the target frame and its two temporally adjacent
frames as inputs to fully leverage the information from multiple frames. Firstly, we de-
vised a motion-guided alignment module (MGAM) to achieve precise bi-direction motion
compensation. We analyzed the explicit optical flow between two frames in a multi-scale
manner to generate an attention map. The offset of the deformable convolution [15] gener-
ated under the guidance of the attention map enables accurate implicit temporal alignment.
Secondly, we proposed an edge-oriented recurrent block (EORB) to reconstruct edge infor-
mation. We adopted several conventional filters and some learnable convolution kernels
with specific shapes to derive edge information. By combining the merits of explicit and
implicit edge extraction, we can perform a more targeted and high-quality reconstruc-
tion of high-frequency components. Furthermore, we designed a recurrent structure to
enhance the receptive field and the performance of EOCVSR without introducing addi-
tional parameters. The edge-oriented loss function is also employed during training to
boost performance. Extensive experiments conducted on benchmark datasets demonstrate
that our method surpasses the performance of SOTA approaches in both quantitative and
qualitative evaluations. The main contributions can be summarized as follows:

• We propose an edge-oriented compressed video super-resolution network (EOCVSR)
to address the CVSR problem. By incorporating a structure that specifically processes
edge information and introduces edge-related loss functions, EOCVSR is able to
reconstruct richer details and output higher-quality frames.

• We propose a motion-guided alignment module (MGAM) to achieve precise bi-
direction motion compensation. The utilization efficiency of temporal information is
enhanced by employing explicit motion information to guide the generation of offsets
for implicit temporal alignment.

• We propose an edge-oriented recurrent block (EORB) to reconstruct edge information.
Combining the merits of explicit and implicit edge extraction enables the high-quality
reconstruction of high-frequency components. In addition, a recurrent structure is
also adopted to realize effective feature refinement.

2. Related Works

2.1. Video Quality Enhancement (VQE)

With the widespread dissemination of video content and the increasing demand for
storage, improving the quality of compressed videos has become a crucial task. Traditional
video coding techniques introduce various distortions and compression artifacts during
video compression, leading to a degradation in video quality. Consequently, researchers
have begun exploring the use of deep learning methods to enhance the visual quality of
compressed videos. An early work in the field of deep learning-based elimination of coding
artifacts is the Variable-filter-size Residue-learning CNN (VRCNN) [1]. VRCNN integrates
convolutional neural networks (CNNs) into the in-loop filter of High-Efficiency Video
Coding (HEVC) [16] intra-coding, leading to improved coding performance. Wang et al. [2]
introduced a Deep CNN-based Auto-Decoder (DCAD) approach , which directly enhances
the decoded frames without modifying the specific components of the decoder. Recognizing
the distinction between intra-coding and inter-coding in HEVC, Yang et al. [3] proposed the
Quality-Enhancement Convolutional Neural Network (QECNN) . QECNN comprises
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two subnetworks, namely QECNN-I and QECNN-B, which are designed to enhance
the compressed I frames and P/B frames, respectively. Due to the lack of utilization
of adjacent frames, the enhancement performance of these single-frame methods is limited.
Therefore, some multi-frame methods [4–6] have been developed to leverage the temporal
relationships between frames. Yang et al. observed that frames captured within a short
period exhibit high similarity, leading them to propose a multi-frame quality enhancement
(MFQE) approach [4]. This approach comprises a peak quality frames (PQFs) detector and
a multi-frame convolutional neural network (MF-CNN). Building upon this, MFQE 2.0 [5]
introduces an improved PQF-detector based on LSTM and a lightweight architecture for the
MF-CNN, aiming to achieve enhanced performance more efficiently. Additionally, a spatio-
temporal deformable fusion scheme [6] is employed, utilizing deformable convolutions
to leverage temporal information. However, these existing methods need to be followed
by an upsampling process to be applied to the CVSR task. The independence of the two
processes from each other leads to an incoherent enhancement of the compressed video.

2.2. Video Super-Resolution (VSR)

Video super-resolution aims to improve video quality and detail reconstruction by
learning the spatial and temporal characteristics of the video and upgrading the low-
resolution video to high resolution. VSRnet [7] is an extension of the image super-resolution
algorithm SRCNN [17] to the video domain. The major improvement lies in the inclusion of
motion estimation and motion compensation modules, where the input is transformed from
a single frame to multiple frames. Jo et al. introduced a DUF network [11] that generates
dynamic upsampling filters and a residual image, which are computed depending on the
local spatio-temporal neighborhood of each pixel to avoid explicit motion compensation.
Tian et al. proposed a temporally deformable alignment network (TDAN) [10] to adaptively
align the reference frame and each supporting frame with a feature level without computing
optical flow. Concurrently, EDVR [8] devised an innovative spatio-temporal attention
fusion module, along with enhanced deformable convolutions, to effectively handle motion
compensation. However, when applying these methods to the CVSR task, compression
artifacts may become more pronounced, significantly impacting video quality.

2.3. Compressed Video Super-Resolution (CVSR)

Recently, there has been a growing interest in the task of compressed video super-
resolution (CVSR), which seeks to address both compression artifact removal and reso-
lution enhancement in compressed videos simultaneously. An end-to-end restoration-
reconstruction deep neural network (RR-DnCNN) [12] was proposed, which uses the
degradation-aware technique to effectively deal with video compression distortion and up-
sampling degradation. In its extended version, RR-DnCNN v2 [14], the authors redesigned
the network architecture by adopting a U-shaped form and incorporating upsampling
skip connections. This architectural modification enables the propagation of valuable
features captured during the restoration process to the subsequent reconstruction stage.
He et al. proposed a one-stage video super-resolution network (FM-VSR) [13] to recover
high-quality, high-resolution videos from low-resolution videos. They make full use of
the internal correlation between the VQE and VSR tasks by adopting a feature multi-
plexing mechanism. However, these methods exhibit limitations in their treatment of
high-frequency components, specifically edge components, as they do not incorporate
targeted processing techniques. Additionally, their reliance solely on the mean squared
error (MSE) loss function during the training phase leads to suboptimal reconstruction of
fine details and outputs that are excessively smooth and blurry.

3. The Proposed EOCVSR Approach

3.1. Overall Framework

The overall framework of our proposed EOCVSR approach is depicted in Figure 1.
EOCVSR takes the target frame It and its two temporally adjacent frames It−1 and It+1 as

121



Sensors 2024, 24, 170

the input. First of all, a parameter-shared feature extraction module transforms three input
frames from pixel space to feature space. As shown in Figure 1, the following procedure can
be divided into two stages: restoration and reconstruction. The restoration stage aims to
eliminate the compression artifacts. To make full use of temporal multi-frame information,
a motion-guided alignment module is employed to achieve precise bi-direction motion
compensation. Then, we stack three edge-oriented recurrent blocks (EORBs) to refine the
aligned feature. The intermediate outputs of EORBs in the restoration stage are fused by a
convolution layer. The fused feature is fed into a feature reconstruction module to obtain a
residual image, which will be added to It to generate the result of the restoration stage Ores

t .
The reconstruction stage, which takes the fused feature output by the restoration

stage as the input, aims to enhance the resolution and reconstruct high-quality details.
The pixel-shuffle operation is first adopted to upsample the input feature. Another three
cascading EORBs extract edge information at a larger scale. In the reconstruction stage,
the output of each EORB is integrated with the output of the EORB, which is in the same
order in the restoration stage. Such internal correlation between the two stages improves
the learning ability of EOCVSR. Same as in the restoration stage, we use a convolution
layer to fuse the outputs of EORBs from the reconstruction stage. Finally, the result of the
reconstruction stage Orec

t can be obtained by adding the residual image reconstructed from
the high-resolution fused feature to the result of upsampling It using the Bi-cubic operation.
The function of our proposed EOCVSR can be formulated as

Ores
t , Orec

t = Φ(It−1, It, It+1|θ), (1)

where Φ is the proposed approach and θ is the parameters of the network. The symbols
that will appear with the corresponding explanations are shown in Table 1.

 +    

 

Figure 1. The overall framework of our proposed EOCVSR.

Table 1. List of symbols.

Symbols Explanation

It Input video frame t
Ores

t Video restoration output
Orec

t Video reconstruction output
Ft The feature of frame t

MV Motion vector
O The offset of the deformable convolution kernel

Faligned The aligned feature
Fmgam

t The output feature of MGAM for frame t
Convm×n Convolutional layer with kernel of m × n
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Table 1. Cont.

Symbols Explanation

So f tmax Softmax normalized activation function
SobelDx Vertical edge detection operator of Sobel
SobelDy Horizontal edge detection operator of Sobel

Laplacian Laplacian edge detection operator⊙
Element-wise product⊕

Element-wise add
GLR

t Low-resolution Ground Truth at frame t
GHR

t High-resolution Ground Truth at frame t
Lmse Mean squared error loss function

3.2. Feature Extraction Module

The feature extraction module is defined as

Fn = f f e(In), n ∈ {t − 1, t, t + 1}, (2)

where f f e(·) denotes the feature extraction function, and F represents the extracted feature
of the input frames I. First, a convolution layer (Conv) is used to transform the input
frames from a pixel space to a higher dimensional feature space. Then, we adopt a typical
residual block (RB) [18] to roughly process the features. The parameters used to process
the inputted three frames are shared.

3.3. Motion-Guided Alignment Module

The motion-guided alignment module (MGAM) aims to achieve precise bi-direction
motion compensation and derive useful temporal multi-frame information for restoration.
As shown in Figure 2, the structure of MGAM is divided into two parts, bi-direction motion-
guided alignment and feature modulation. In the first part, we utilize explicit motion prior,
i.e., optical flow, to guide feature-level temporal alignment. Take the forward alignment as
an example, we first obtain the motion vector MVt−1→t using a pre-trained SpyNet [19],
which is a widely used optical flow prediction network.

MVt−1→t = SpyNet(It, It−1) (3)

Then, we employ a parameter-shared Conv with a different dilation d ∈ {1, 2, 4} to
implement multi-scale analysis on MVt−1→t. The analyzed results are concatenated, fused,
and outputted by a softmax layer, resulting in the generation of a motion prior in the form
of an attention map. ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h1 = Conv(MVt−1→t)d=1,

h2 = Conv(MVt−1→t)d=2,

h3 = Conv(MVt−1→t)d=3,

MotionPrior = So f tmax(Conv([h1, h2, h3])).

, (4)

where [·, ·] and So f tmax are concatenation and the softmax layer. Meanwhile, an offset of
the deformable convolution (DCN) kernel Ot−1→t is dynamically predicted from Ft and
Ft−1. Before directly applying Ot−1→t to DCN, we fine-tune Ot−1→t by multiplying the
motion prior with it, so that it can better capture the motion correlation. By feeding Ft−1

and the fine-tuned Ot−1→t into a DCN, a forward-aligned feature Faligned
t−1→t can be obtained.

The detailed process is given below:{
Ot→t−1 = Conv([Ft, Ft−1]),

Faligned
t−1→t = DCN(Ft−1, Ot→t−1 � MotionPrior).

, (5)
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where DCN and � denote the deformable convolution layer and element-wise product.
The backward alignment takes Ft, Ft+1, and the backward optical flow takes MVt+1→t as
the input and outputs a backward-aligned feature Faligned

t+1→t . The processing is mirrored in
the forward alignment.

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 2. The structure of motion-guided alignment module (MGAM).

In the second part, we adopt the method of feature modulation to realize the fusion
of multi-frame information. Faligned

t−1→t and Faligned
t+1→t are first concatenated together, and then

the concatenation result is fed into two Convs to generate the shift and add weights for
modulation, respectively. This operation can be described as⎧⎪⎪⎨

⎪⎪⎩
shi f t = Conv([Faligned

t−1→t , Faligned
t+1→t ]),

add = Conv([Faligned
t−1→t , Faligned

t+1→t ]),

Fmgam
t = Ft � shi f t + add.

. (6)

Thanks to precise motion alignment in the MGAM, the aligned features provide
significant improvement to the overall performance.

3.4. Edge-Oriented Recurrent Block

Most existing CVSR approaches lack targeted processing for high-frequency com-
ponents, particularly edge components. Furthermore, they solely rely on mean squared
error (MSE) loss function during training, resulting in inadequate reconstruction of details
and overly smooth and blurry outputs. To this end, we devise an edge-orient recurrent
block (EORB) to augment the network’s capacity for perceiving and reconstructing details.
As shown in Figure 3, the recurrent unit is the key component of the EORB. The input
of the recurrent unit is first processed by six different filters for edge-aware. To perceive
horizontal edges, we adopt a horizontal Sobel filter and a learnable Conv with the size of
1 × 9. To perceive vertical edges, we adopt a vertical Sobel filter and another learnable
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9 × 1 Conv. We also extract the second-order spatial derivative using a Laplacian filter,
collaborating with a learnable 3 × 3 Conv. Combining the merits of pre-defined and learn-
able edge filters, the edge information can be efficiently derived. It is worth noting that the
shapes of the six detectors will not change, and the parameters of the three learnable edge
detectors can be updated through the back-propagation operation. Then, the summation of
all the outputs, followed by the application of a global average pooling (GAP) layer, two
Convs, and a softmax layer, generates the weights corresponding to each output. By multi-
plying the outputs with their corresponding weights and subsequently accumulating them,
valuable edge information is filtered and preserved. The process within the recurrent unit
is described as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O1 = Conv9×1(FRU−k
t ), O2 = SobelDx(FRU−k

t )

O3 = Conv1×9(FRU−k
t ), O4 = SobelDy(FRU−k

t )

O5 = Conv3×3(FRU−k
t ), O6 = Laplacian(FRU−k

t )

W1 ∼ W6 = So f tmax(Conv(Conv(GAP(
6

∑
i=1

Oi)))),

RU(·) = Conv(
6

∑
i=1

Oi � Wi)

, (7)

where RU(·) represents the process of the recurrent unit. k ∈ [1, K − 1] stands for the
current iteration of recursion and K is the maximum number of recursions. At last, we
stack three RBs to further process the feature. The output of the previous RB is utilized as
the input of the next RB. Only the output of the last RB is added to the input feature of the
EORB, which is Fmgam

t .

  

Figure 3. The structure of edge-oriented recurrent block (EORB).

To enhance the receptive field and performance without introducing additional param-
eters, we adopt a recurrent strategy. For the current recursion, the output of the previous
recursion is added to the input of the EORB Finput

t and is subsequently passed through a
channel attention layer. No matter how many times the recursion is performed during the
training, it still belongs to the forward inference phase and does not involve updating the
parameters. Therefore, in each recursion, the parameters of the recurrent unit are shared.
The output of the EORB Feorb

t is obtained by using a Conv to fuse the concatenation result
of the outputs of all recursions. The detailed process is given below:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
FRU−k

t = CA(RU(Finput
t ) + Finput

t ),

FRU−(k+1)
t = CA(RU(FRU−k

t ) + Finput
t )

Feorb
t = Conv([FRU−1

t , FRU−(k+1)
t ]).

. (8)
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3.5. Feature Reconstruction Module

The feature reconstruction module takes the fused result of the outputs of all previous
EORBs as the input. The feature reconstruction module consists of an RB and a Conv, which
outputs a residual image Rt. The process is defined as

Rt = f f r(Conv([Feorb−M
t ])), (9)

where f f r(·) is the feature reconstruction function. M is the number of EORBs of each
stage. In the restoration stage, the residual image will be added to It to obtain Ores

t . As for
the reconstruction stage, the residual image will be added to the upsampling result of
It to obtain Orec

t . It is worth mentioning that the feature reconstruction modules in the
restoration and reconstruction stages use different parameters.

3.6. Loss Function

Firstly, in addition to calculating the reconstruction error between the super-resolution
result Orec

t and the uncompressed HR frame GHR
t , we also use the uncompressed LR frame

GLR
t as an auxiliary supervised label to assist the network training. Thus, the total loss

function is defined as
Ltotal = α ∗ Lres + Lrec, (10)

where α is the weighted factor for the restoration loss.
However, only relying on the mean squared error (MSE) loss function during training

may cause inadequate reconstruction of details and overly smooth and blurry outputs.
To this end, we introduce an edge-orient loss function to direct constraints on the learning
of edge reconstruction. Specifically, we explicitly extract high-frequency components using
a Gaussian kernel blur g(·, ·) with the width of σ. The details of the loss function are
shown below:

Lres = Lmse(Ores
t , GLR

t ) + β ∗ Lmse(OEres
t , GELR

t )

Lrec = Lmse(Orec
t , GHR

t ) + β ∗ Lmse(OErec
t , GEHR

t )

OEt = Ot − g(Ot, σ = 3)

GEt = Gt − g(Gt, σ = 3)

. (11)

4. Results

4.1. Experimental Setup

To train our proposed EOCVSR, we use the Vimeo dataset [19], which contains about
65,000 video sequences. Each sequence has seven frames with 448 × 256 resolution. We
first use Bi-cubic interpolation to obtain uncompressed LR videos by a downsampling
factor of two. Then, we compress these LR videos using FFmpeg [20] with the default
mode and CRFs = 32, 37, 42, and 47. Finally, the bitstream is decoded to generate the
compressed LR videos. To evaluate the trained EOCVSR, we adopt the test sequences
from the standard HEVC common test condition (CTC) [21], the UVG dataset [22], and the
MCL-JCV dataset [23]. The downsampling and compression settings are consistent with
those in the training.

During the training, we randomly crop 120 × 120 patches from a mini-batch as the
input. The batch size is set as eight. The hyperparameters regarding the network structure
K and M are both set as three. The model trained with the loss function described in
Section 3.5, and the weights α and β, are set as 0.2 and 0.1, respectively. The learning rate
is initialized as 1 × 10−4 and then divided by a factor of 10 every 30 epochs. The training
stops after 100 epochs. The Adam optimizer [23] is used by setting β1 = 0.9 and β2 = 0.999.
During the evaluation, we use BD-BR [24], which presents the quality improvement (dB)
at the same bitrate, and PSNR for quantitative analysis of the compressed video super-
resolution results. All the models are implemented with PyTorch 1.4.0 [25] on Nvidia
Geforce 2080Ti GPUs. All calculations are on the luminance channel (Y channel).
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4.2. Performance of Proposed EOCVSR

The performance of our proposed EOCVSR is compared with the latest CVSR ap-
proaches, including RR-DnCNN v2 [14] and FM-VSR [13]. As shown in Table 2, we compare
the characteristics between EOCVSR and other CVSR approaches. We also retrain some
advanced video super-resolution approaches, including [8] and BasicVSR++ [9], over our
training dataset for comparison. The comparison of the size of each model and computa-
tion cost is displayed in Table 3. We evaluate the quality enhancement, the rate–distortion
performance, and subjective performance. The details are described as follows.

Table 2. Comparison with previous CVSR works.

Approach Multi-Frame Utilization Edge Preservation

RR-DnCNN v2 × ×
FM-VSR � ×

EOCVSR (proposed) � �

Table 3. The comparison of the number of model parameters and GFLOPs. GFLOPs are calculated
on an image with an input size of 64 × 64.

RR-DnCNN v2 FM-VSR EDVR BasicVSR++ EOCVSR

Parameter Number 1.8M 7.1M 2.7M 7.1M 3.5M
GFLOPs 20.9 96.1 66.6 104.3 88.4

4.2.1. Quality Enhancement

Table 4 presents the PSNR results over HEVC standard test sequences. First, the
results illustrate that the proposed EOCVSR outperforms all the prior approaches over
four compression ratios. Specifically, the PSNR of EOCVSR is 29.037 dB, which is 0.038 dB
higher than the state-of-the-art approach, i.e., BasicVSR++ (28.999 dB), and 0.107–0.325 dB
higher than others [8,13,14]. Table 5 shows the PSNR results over the UVG and MCL-JCV
datasets, and the results demonstrate that EOCVSR also achieves the most significant boost.
In terms of the UVG dataset, the PSNR improvement of EOCVSR ranges from 0.022 to
0.140. In terms of the MCL-JCV dataset, the PSNR improvement of EOCVSR ranges from
0.031 to 0.200. Thanks to MGAM’s precise motion alignment and EORM’s powerful edge
information extraction and reconstruction capabilities, our proposed EOCVSR achieves the
highest quality enhancement over all evaluation datasets.

Table 4. The comparison of PSNR gain over HEVC standard test sequences. Red indicates the best
performance, and blue indicates the second-best.

QP Class Sequences RR-DnCNN v2 FM-VSR EDVR BasicVSR++EOCVSR

32

A PeopleOnStreet 29.608 29.813 28.859 30.029 30.129
Traffic 32.817 32.866 32.976 33.069 33.102

B

BasketballDrive 31.726 31.902 32.422 32.471 32.531
Cactus 31.012 31.297 31.566 31.712 31.735

Kimono 34.456 34.735 34.799 34.844 34.876
ParkScene 31.229 31.384 31.608 31.655 31.671

C BasketballDrill 30.177 30.379 30.460 30.636 30.706
RaceHorses 24.544 26.111 27.524 27.599 27.609

E
FourPeople 33.757 33.865 33.929 34.103 34.260

Johnny 35.705 35.926 36.101 36.137 36.162
KristenAndSara 34.282 34.510 34.660 34.919 34.973

Average 32.017 32.072 32.348 32.470 32.523

37 Average 29.962 30.093 30.137 30.210 30.262
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Table 4. Cont.

QP Class Sequences RR-DnCNN v2 FM-VSR EDVR BasicVSR++EOCVSR

42 Average 27.559 27.610 27.775 27.851 27.838

47 Average 25.308 25.366 25.459 25.464 25.524

Overall 28.712 28.785 28.930 28.999 29.037

Table 5. The comparison of average PSNR gain over the UVG and MCL-JCV datasets. Red indicates
the best performance, and blue indicates the second-best.

Dataset QP RR-DnCNN v2 FM-VSR EDVR BasicVSR++ EOCVSR

UVG

32 35.352 35.358 35.450 35.526 35.558
37 33.142 33.167 33.151 33.237 33.250
42 30.683 30.701 30.755 30.822 30.822
47 28.267 28.243 28.326 28.331 28.375

Overall 31.861 31.867 31.920 31.979 32.001

MCL-JCV

32 34.860 34.935 35.053 35.140 35.172
37 32.748 32.749 32.774 32.890 32.930
42 30.426 30.480 30.500 30.575 30.568
47 28.222 28.304 28.313 28.328 28.386

Overall 31.564 31.617 31.660 31.733 31.764

4.2.2. Rate–Distortion Performance

Here, we evaluate the rate–distortion of EOCVSR over three datasets, and the results
are shown in Table 6. Considering full-resolution compression as an anchor, the perfor-
mance has been improved in terms of 14.364% BD-BR reduction on average over HEVC stan-
dard test sequences, which is 0.843% more than BasicVSR++ (13.521%), and 2.737–8.277%
more than other approaches [8,13,14]. As for the UVG and the MCL-JCV datasets, the bitrate
saving achieves 29.849% and 28.217%. To present more intuitively, rate–distortion curves
of our and other approaches over all test sequences are shown in Figure 4. In this figure,
we can observe that the curve of EOCVSR is above that of full-resolution compression.
In brief, the quantitative results demonstrate that our proposed EOCVSR realizes the best
compression performance.

Table 6. The comparison of BD-BR over HEVC standard test sequences. Red indicates the best
performance, and blue indicates the second-best.

Dataset Class Sequences RR-DnCNN v2 FM-VSR EDVR BasicVSR++ EOCVSR

HEVC

A PeopleOnStreet −11.621 −13.780 −15.541 −18.113 −20.621
Traffic −3.916 −5.019 −6.153 −7.833 −8.584

B

BasketballDrive 0.687 −7.133 −11.365 −14.361 −14.140
Cactus −0.224 −9.965 −12.462 −14.842 −15.386

Kimono −13.743 −17.421 −20.907 −22.182 −22.501
ParkScene 5.323 −4.408 −7.121 −8.035 −8.452

C BasketballDrill 0.307 −3.147 −4.883 −6.685 −8.300
RaceHorses −6.599 −7.366 −8.185 −10.610 −11.420

E
FourPeople −11.528 −12.154 −12.788 −13.591 −14.836

Johnny −19.018 −19.580 −20.076 −21.614 −22.046
KristenAndSara −7.181 −7.877 −8.414 −10.864 −11.721

Average −6.137 −9.804 −11.627 −13.521 −14.364

UVG Average −27.086 −27.313 −27.804 −29.502 −29.849

MCL-JCV Average −24.066 −24.526 −24.913 −27.599 −28.217
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Figure 4. The RD curve over all test datasets of various resolutions under different compression
distortion conditions.

4.2.3. Subjective Performance

Figure 5 shows the visual results of the different methods. Observing the results, it is
evident that our proposed EOCVSR has demonstrated substantial advancements in visual
perception when compared to other approaches. The compression artifacts are effectively
eliminated. Thanks to the excellent edge-awareness of EOCVSR, the edges and textures
are reconstructed with high quality. For example, the face in the sequence BasketballDrive
and the letters in the sequence KristenAndSara. Therefore, our EOCVSR approach achieves
promising performance in subjective quality.

4.3. Ablation Study

In this section, we conduct several ablation experiments to analyze the impact of
different structures of the proposed EOCVSR on performance. All the experiments are
performed over the MCL-JCV dataset and the compression ratio CRF is set as 47. In general,
the results demonstrate that EOCVSR is delicately designed to achieve optimal performance.
The details are described as follows.
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Figure 5. Visual comparisons of different methods on video frames from HEVC standard test
sequences (QP = 42). The zoom-in of red box area is shown.

4.3.1. Analysis of the EORB

An ablation study has been conducted to verify the effectiveness of our proposed
EORB. We modify the EORB by removing the six filters used to perceive the edges and
leaving only the RBs. As shown in Table 7, the original EORB achieves a 28.386 dB
improvement in PSNR, while the performance of the modified EORB degrades to 28.317 dB.
The results prove that combining the merits of pre-defined and learnable edge filters enables
EOCVSR to efficiently extract the edge information for higher performance. Furthermore,
we provide a feature map visualization example. As shown in Figure 6, the original EORB
is more sensitive to edges and textures.

Table 7. The performance of the EORB with edge-perceiving filters vs. without edge-perceiving filters.

EORB w/o Edge-Perceiving Filters EORB w/ Edge-Perceiving Filters

PSNR (dB) 28.317 28.386

Figure 6. The feature map output by EORB with edge-perceiving filters vs. without edge-perceiving filters.

4.3.2. Analysis of the Number of Recursions K

We design a recurrent structure to enhance the receptive field and the performance
of EOCVSR without introducing additional parameters, and the number of recursions
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within an EORB has an impact on the performance of EOCVSR. As shown in Figure 7a,
the performance increases quickly when K is from one to three, while the performance
increases slowly when K is larger than three. Considering more recursions may extend the
processing time, K is set as three in this work.

Figure 7. Ablation study on (a) the number of recursions within an EORB and (b) the number
of EORBs.

4.3.3. Analysis of the Number of EORBs M

We evaluate EOCVSR with different numbers of EORBs. Integrating more EORBs
can enhance the representation capabilities of the network but introduce more parameters.
Figure 7b shows the performance of quality enhancement versus the number of EORBs M.
The performance gain increases slowly when M is from 6 to 10. Thus, M is set as six (three
in the restoration stage and another three in the reconstruction stage) in this work.

4.3.4. Model Adaption

We evaluate the adaptability of the proposed EOCVSR to different types of tasks.
Theoretically, the proposed design can be applied to many other video tasks, such as
denoising tasks, enhancement tasks, deblurring tasks, and so on. We add Gaussian noise
to the image frames to train and test the ability of EOCVSR to perform super-resolution
denoising at noise levels of σ = 15, 25, and 50. The parameter settings and network training
are the same as for the original task. We compared the performance of EOCVSR with
MIRNet [26]. As shown in Table 8, the PSNR of EOCVSR is improved by 0.45–1.4 dB.
The results show that our method outperforms the learning-based super-resolution denois-
ing method, illustrating that our model possesses the ability to adapt to different types
of tasks.

Table 8. The adaption of the proposed design on video super-resolution denoising task.

Noise Level Scale MIRNet EOCVSR

σ = 15 ×2 34.65 35.10
σ = 25 ×2 33.86 34.45
σ = 50 ×2 31.06 32.46

5. Conclusions

In this paper, we proposed an edge-oriented compressed video super-resolution
network (EOCVSR), which pays more attention to reconstructing high-quality details to ef-
fectively address the CVSR task. We devised a motion-guided alignment module (MGAM),
which uses the explicit optical flow to direct the generation of offsets for deformable convo-
lutions leading to precise bi-direction motion compensation. In addition, we proposed an
edge-oriented recurrent block (EORB) to reconstruct edge information. Several pre-defined
filters and some learnable convolution kernels with specific shapes were exploited to derive
edge information. By combining the merits of explicit and implicit edge extraction, we can
perform a more targeted and high-quality reconstruction of high-frequency components.
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We also designed a recurrent structure to enhance the receptive field and the performance
of EOCVSR without introducing additional parameters. Our approach can provide users
with high-quality and cost-effective HR videos by integrating with sensors and codecs.
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Abstract: Multiple object tracking (MOT) plays an important role in intelligent video-processing
tasks, which aims to detect and track all moving objects in a scene. Joint-detection-and-tracking (JDT)
methods are thriving in MOT tasks, because they accomplish the detection and data association in
a single stage. However, the slow training convergence and insufficient data association limit the
performance of JDT methods. In this paper, the anchor-based query (ABQ) is proposed to improve
the design of the JDT methods for faster training convergence. By augmenting the coordinates of
the anchor boxes into the learnable queries of the decoder, the ABQ introduces explicit prior spatial
knowledge into the queries to focus the query-to-feature learning of the JDT methods on the local
region, which leads to faster training speed and better performance. Moreover, a new template
matching (TM) module is designed for the JDT methods, which enables the JDT methods to associate
the detection results and trajectories with historical features. Finally, a new transformer-based MOT
method, ABQ-Track, is proposed. Extensive experiments verify the effectiveness of the two modules,
and the ABQ-Track surpasses the performance of the baseline JDT methods, TransTrack. Specifically,
the ABQ-Track only needs to train for 50 epochs to achieve convergence, while that for TransTrack is
150 epochs.

Keywords: video processing; multiple-object tracking; anchor-based query; transformer; template
matching

1. Introduction

Multiple object tracking (MOT) is a thriving field in intelligent video processing,
and has wide applications in autonomous vehicles, video surveillance, and intelligent
transportation [1]. The objective of the MOT methods is to estimate the movement states of
objects and maintain identifications of those objects within a single video stream. Despite
the numerous efforts dedicated to MOT, the design of efficient and robust trackers remains
a challenge, primarily due to the need to address two critical sub-tasks within a single
tracker: detection and data association [2].

In the field of Multiple Object Tracking (MOT), Tracking-by-Detection (TBD) has
been the domain framework, which utilized detection methods to find objects in the
scenes, and applied the data association to join the detection results into the trajectories.
The detection and data association were conducted separately, which neglected the inner
link between the two procedures [3]. Furthermore, the training of the TBD methods was
complicated since the training procedures of models for detection and data association were
different [4,5]. To overcome these problems, Joint-Detection-and-Tracking (JDT) methods
were proposed, which performed the detection and data association in one stage [6–8].
Specifically, the JDT modified the transformer-based network for MOT, which consists of
the encoder and the decoder. The encoder is utilized for feature enhancement, and the
decoder is implemented for detecting the objects based on the object queries and the tracker
queries, respectively. As shown in Figure 1, the decoder detects the objects in the images
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by applying the object queries, which are learned in the training procedure. Meanwhile,
the queries obtained in the previous image (track queries) were fed into the decoder, which
shared the same structure with the decoder for detection, to estimate the location of the
object in different trajectories. By computing the IoU scores of the detection results based
on the two set of queries, the identifications were maintained. In general, the JDT methods
unified the detection and data association in one network, and competitive performance
was achieved.

Figure 1. Comparison of the pipeline of the classical transformer-based MOT tracker, TransTrack,
and the proposed tracker, ABQ-Track.

However, the JDT methods face challenges related to extended training times due
to inappropriate design of the learnable queries [9]. In the cross-attention module of
the decoder, an attention map is learned with the queries and keys. The two queries,
the object queries and the track queries, are applied to match the content and spatial
information in the keys [10], and the spatial information in the queries is not encoded
with the same pattern [9]. Consequently, more training epochs are needed for the JDT
methods to learn strong enough queries. Additionally, JDT associates detection results
with tracking results from previous frames with spatial information, the IoU scores, which
is insufficient for maintaining stable trajectories. Objects within a trajectory may become
occluded by other objects in the background, and their appearance may undergo significant
changes [11,12]. The data association methods in JDT lack an explicit model for maintaining
stable trajectories.

To address the above issues, a new MOT method, ABQ-Track, is proposed. To begin
with, the explicit prior spatial knowledge for each trajectory is introduced by 4D anchor
box (ABQ) and added into each query corresponding to the trajectory. The 4D anchor
boxes consist of the locations and sizes of objects in the previous image, helping the data
association module focus on a local region corresponding to the object in each trajectory,
and the locations and sizes are encoded with the same ways as the positional embedding
for the keys. Consequently, the tracker augmented with additional spatial prior knowledge
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achieves better performance, while the network is trained for fewer epochs. Additionally,
the template matching (TM) is implemented to stabilize the trajectories. In addition to asso-
ciating the trajectories and the detection results with spatial information, the TM enables the
JDT to accomplish the data association with appearance information. In previous images,
the TM reserves the appearances of the objects in different trajectories and fuses these
appearances to obtain templates, which represent the appearances of objects in different
trajectories. By comparing the templates with the features corresponding to the detection
results, the ABQ-Track associates the data with appearance information. Finally, the ABQ
and TM are instanced in the classical JDT method, TransTrack [7], as shown in Figure 1. Ex-
tensive experiments verify the effectiveness of the proposed methods. ABQ-Track achieves
better performance than TransTrack on MOT-17 [13] and MOT-20 [14], and only needs to
be trained for 50 epochs, which is much faster than that of TransTrack.

In general, the main contributions of this work can be summarized as follows:

(1) The ABQ approach is proposed to reduce the convergence time and improve the
discriminative ability of the JDT method by incorporating explicit spatial knowledge
into the queries.

(2) The TM method is introduced to stabilize the trajectories by associating the trajectories
and detection results with historical appearance information in the trajectories.

(3) A new JDT method based on the two methods, ABQ-Track, is proposed. Extensive
experiments are conducted, and the results verify the effectiveness of the proposed
methods. Moreover, the ABQ-Track surpasses the performance of the other JDT
methods, TransTrack, in faster training convergence.

2. Related Work

With the development of intelligent sensors, intelligent video-processing methods
have been thriving for decades. Multi-object tracking (MOT) is an important task in
intelligent video processing owing to its wide applications in the real-world. MOT focuses
on tracking an unknown number of objects within given categories [15]. In this section,
the two main pipelines, tracking-by-detection (TBD) and joint-detection-and-tracking (JDT),
are reviewed firstly. The transformer architecture is then introduced since the method
proposed in this paper is based on it.

2.1. Tracking-by-Detection

TBD methods directly applied the given detection results in the MOT datasets or
the detection results outputted by existing detectors [16–19], and focused on associating
the detection results with the trajectories across frames in the image sequences [3,20,21].
The simple online and real-time tracking (SORT) associated the detection results by com-
puting the distance between the locations of the currently detected boxes and the predicted
boxes via Hungarian algorithm [20]. Predicted boxes were estimated with Kalman Filter
(KF) [22]. Only associating the data with positional information was insufficient, which
caused unstable trajectories [23]. DeepSORT further augmented a metric based on the
similarity of features in the data association method [21]. Following the two works, efforts
have been devoted into exploring more discriminative metrics on features and positional
information [23–27]. For obtaining better predicted boxes, some methods merged the detec-
tion scores into the KF [23,24] or adopted the camera motion compensation (CMC) [25–27].
For better association based on the features, additional neural networks for feature extrac-
tion was applied to obtain the similarity metrics for the features [2,28,29]. In general, a large
number of TBD methods have been proposed, and leading performance has been achieved.
Nevertheless, the high performance of the TBD methods relied on strong detectors and
complex models, which restricted their applications.

2.2. Joint-Detection-and-Tracking

The joint-detection-and-tracking (JDT) methods aimed to detect and track multiple
objects in one stage. The pioneering works conducted the object detection in current frame,
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and performed the data association on two successive frames [30,31]. The CenterTrack then
took the objects as points, and performed a tracking-conditional detector to detect objects
and associate the data [32]. JDE [2] and FairMOT [33] built object detection networks and
ReID network with shared feature extraction networks. Moreover, as Transformer [34]
has been introduced in computer vision and impressive performance was achieved, it has
been applied in MOT [7,8]. TransTrack built the MOT network with a detection network to
obtain the detection boxes with object queries, and augmented an additional decoder for
estimating the predicted boxes based on track queries [7]. By computing the IoU of two sets
of boxes, it associated the detection boxes and predicted boxes, which was corresponding to
the trajectories. TrackFormer directly applied the track queries from the previous frame as
the inputs of the decoder in the current frame, and detected the objects with both locations
and identities [8].

2.3. Transformer-Based MOT Method

Transformer has been a popular architecture in computer vision [34], and signifi-
cant performance improvements have been achieved in numerous tasks, i.e., classifica-
tion [35,36], detection [37,38], and segmentation [39]. The Vision Transformer (ViT) intro-
duced a pure transformer network for computer vision tasks, which flatten the images into
tokens and process them with stacked layers of multi-head self-attention [40]. The perfor-
mance improvements were gained for the global context modeling ability of the transformer.
However, the local information was neglected and the computational cost was high. Some
works proposed designs into ViT to learn local context information [36,41]. Others devoted
to reduce the computation and memory cost of the vanilla multi-head self-attention [42–44].
For the detection task, DETR [37] built the detection network with encoder–decoder ar-
chitecture based on transformer, and utilized learnable queries to predict objects without
non-maximum suppression. Many follow-up studies have explored the methods to address
the slow convergence of DETR by reforming the learnable queries [10,45,46].

3. Proposed Methodology

In this section, the mechanism of a representative JDT method, TransTrack, is revisited
firstly, where the proposed methods are implemented. The anchor-based queries are then
presented for the JDT methods. Following this, the template matching is sketched. Finally,
the training and interfering of the new tracker based on the proposed modules are detailed.

3.1. Revisit of the TransTrack

The transformer-based TransTrack [7] formulates the object detection and data associa-
tion in one network, which consists of four main parts, i.e., backbone, encoder, decoder,
and prediction heads. The backbone extracted the features of images. The ResNet-50 [47]
and FPN [16] are implemented as the backbone. The input of the encoder is the feature
map of the image, and the encoder learned the long-range dependency information across
the tokens in the feature map. It stacks multi-head self-attention layers and feed-forward
networks (FFN) in one block. For the decoder, two parallel modules were applied to detect
objects based on the object queries for the current frame and the track queries from the pre-
vious frame, respectively, [7]. The two modules have the same architecture, which is built
with multi-head self-attention layers, multi-head cross-attention layers and FFN. The inputs
for the two modules are the output of the encoder and learnable queries. The difference
of the two modules is the query types in the inputs, i.e., the object queries and the track
queries. The object queries are a set of learnable parameters, and trained with the other
parameters for object detection. The track queries are the reserved output of the module
used for detection from previous frame, which are the features of the detected objects in
the previous frame. With object queries and track queries, the detection boxes and the
track boxes are predicted with two prediction heads, which are the feed forward networks.
The data association is conducted by calculating the box IoU scores of the predicted boxes
sets. And the Hungarian algorithm is applied for associating each track box with the
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detection box based on the IoU scores. For the unmatched detection boxes, new trajectories
are created. The trajectories of the unmatched track boxes are kept a fixed number of frames
since the objects in the trajectories may blocked or disappeared. Although TransTrack ac-
complish the detection and data association in one network, the slow training convergence
and insufficient data association limit its applications.

3.2. Anchor-Based Query

The slow training convergence of the TransTrack is caused by inappropriate design
of the learnable queries. The queries are fed into the cross-attention module to learn an
attention map with keys, and the content information and spatial information are contained
in the queries and keys. It can be described as follows.

(
Cq + Sq

)T
(Ck + Sk) = CT

q Ck + CT
q Sk + ST

q Ck + ST
q Sk (1)

where Cq and Ck are the content part in the queries, Sq and Sk are the spatial part in the
keys. The content part of the queries not only need to match the content information in the
keys, but also need to match the spatial information in the keys [10]. Moreover, the spatial
information in the queries randomly initialized, while the spatial information for the keys
are generated with the sinusoidal function function [9]. Therefore, the anchor-based-query
is proposed to augment explicit prior spatial knowledge into the queries, which encodes
the spatial information of the queries with the sinusoidal function function, to accelerate
the training.

The anchor-based-query is implemented in the decoder of the tracking network.
As shown in Figure 2, two parts are included in the anchor-based-query (ABQ), i.e., content
query and spatial query. Specifically, the content queries and spatial queries for the detection
module are the object queries and the anchor boxes, and that for the track module are
the track queries and the anchor boxes. The two sets of anchor boxes are generated
independently. The content query is same to that in TransTrack, while the spatial query
formulates the spatial information in 4D anchors, i.e., (x, y, w, h), which includes both
the position and size of the anchor box. The queries are utilized to probe the features
of the images, which leads to directly prediction without non-maximum suppression.
The 4D anchor boxes are concatenated with the content queries in the channel domain to
match the content information and spatial information separately. Therefore, the locations,
(x, y) in the 4D anchor boxes, are generated to math the positional embeddings in the
keys, which include the locations (x, y). The sizes, (w, h), are utilized for learning the
self-attention of the queries with size information, which can adjust the attention maps
with scale information. Each element in the anchor boxes is a learnable parameter, which
can be learned in the training procedure. As shown in Figure 2, similar ABQ methods are
applied in the two modules of the decoder, the detection module and the track module.
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Figure 2. Illustration of the architecture of the decoder based on Anchor-based Query.

For the detection module, self-attention layers and cross-attention layers are used for
query updating and feature investigation. The anchor box is defined as B = (x, y, w, h).
The positional encoding for each element in the anchor can be calculated as follows.⎧⎨

⎩x′2i = sin
(

x
T2i/D

)
x′2i+1 = cos

(
x

T2i+1/D

) (2)

where T is a hand-craft temperature as it in [9], 2i and 2i + 1 are the indices, D is the half of
the dimension of the content queries. Specifically, the dimension of the content queries is
256 in this work. The positional encoding generates a vector with 128 channels from a float,
i.e., the positions. For the self-attention learning, the ABQ can be obtained as follows.

Bq = MLP
(
CAT

(
x′, y′, w′, h′

))
(3)

where, MLP(•) denotes the multiple layer perceptron, which consists of 2 layers of linear
layer with ReLU activation. CAT(•) stands for concatenation operation. The output of the
concatenating operation has 2 × D channels, and the MLP operation reduce the dimension
of it to D channels so that the spatial queries can be concatenated with the content queries.
The queries and keys for the self-attention are the combination of the spatial queries and
the content queries as follows. {

Qs = Cq + Bq

Ks = Cq + Bq
(4)

where Qs and Ks represent the queries and keys for the self-attention learning, respectively,
Cq is the content item, which is a set of learnable parameters similar to the object query in
TransTrack. The values equal the content item. For the cross-attention, the keys contain a
feature map and the corresponding positional embedding, the feature map is outputted
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from the encoder. The values are the image features same to the keys. They are obtained
as follows. {

Kc = CAT(F, P)
Vc = F

(5)

where Kc and Vc represent the keys and values for the cross-attention, respectively, F and P
stand for the feature map and the corresponding positional embedding. The queries for the
cross-attention learning is the union, which consists of content query and the locations in
the spatial query, which can be described as follows.

Qc = CAT
(

C′
q, CAT

(
x′, y′

)
• MLPc

(
Cq

))
(6)

where C′
q represents the content queries outputted from the self-attention layer, Cq is

the content queries same to that in Equation (4), x′ and y′ are the locations. MLPc(•)
is a multiple layer perceptron, which is utilized to learn a scale reference map on the
content query, and • is the element-wise multiplication. The concatenations of the content
information and spatial information in the queries and keys enable the cross-attention
learning, and decouple the matching of the content information and spatial information.

The content queries and spatial queries for the detection module are sets of learnable
parameters, and the queries for the tracking module are the outputs of the detection module.
Specifically, the track queries and the ABQ for the tracking module are the object features
and anchor boxes outputted from the detection module in the previous frame. The anchor
boxes are the positional encoding corresponding to the ABQ.

3.3. Template Matching

To enable data association in JDT methods with feature information, template matching
(TM) is augmented in the network. The TBD methods applied additional networks to match
the features of the detected objects and the objects in the trajectories. This solution is not
suitable for the JDT methods due to the additional network increase the complexity of
the JDT methods. Meanwhile, these features are already been extracted in the networks
of JDT methods. Therefore, the TM utilizes the features from the tracking networks to
compute the feature similarity scores. By comparing the features of the detected objects and
the templates corresponding to the trajectories, the ABQ-Track can associate the detection
results and trajectories with additional feature information. Moreover, the tracker can
maintain the trajectories with long-time memory by integrating the former features into
the corresponding templates.

Considering the Ft
Track is the feature map outputted from the right branch in the

decoder as shown in Figure 2, the superscript t and subscript Track represent the number
of the frame and the identity of the trajectory. The template for each trajectory can be
computed as follows.

TTrack =
M

∑
t=M−m

wt
TrackFt

Track (7)

where TTrack represents the template corresponding to the trajectory, Track, wt
Track denotes

the learnable weights of the features, M and m are the number of current frame and the total
number of features, respectively. Taking FObject as the features of detected object, which is
the output of the left branch in decoder as shown in Figure 2, each element in the feature
similarity score map is obtained with mahalanobis distance as follows.

Si,Track
Feature = MD

(
Fi

Object, TTrack

)
(8)

where i and Track represents the index of detected objects and the templates, respectively.
The MD(•) represents the mahalanobis distance function.

According to Equation (8), the more similar the two features are, the lower Si,Track
Feature will

be. However, the score map based on spatial information is computed with IoU, which is
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higher when two boxes share larger overlapping area. Hence, the feature similarity score is
further processed as follows.

Si,Track
Feature = 1 − Norm

(
Si,Track

Feature

)
(9)

where Norm(•) is the normalization operation.

3.4. Architecture

The pipeline of the ABQ-Track is illustrated in Figure 3. The two methods proposed
in this paper is applied in the decoder and the matching section of the network. For fair
evaluation, the rest parts of the network share the same structure to the TransTrack. In the
decoder, 6 blocks are implemented for each module, which is described in Section 3.2.
The number of the content queries is set to 500, which is based on the experimental results.
And the dimension of the content queries is set to 256. The spatial queries for the self-
attention and the cross-attention in the decoder have the dimension of 256, and the number
is 500. The keys for the self-attention shares the same size with the queries. The keys for the
cross-attention are obtained by concatenating the feature outputted from the encoder and
the positional embedding. The decoder outputs two sets of feature maps and anchor boxes
corresponding to the object queries and the track queries. The feature maps are fed into
the two prediction heads to obtain two prediction maps, m ∈ R500×4, which indicates the
locations of the objects detected with the detection module and the track module. The IoU
scores are computed with the locations of the two set of objects. The feature maps are also
fed into the TM module to obtain the feature scores.
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Figure 3. Illustration of the pipeline of the proposed tracker, ABQ-Track.

3.5. Training and Inference

The tracking network is trained with data from CrowdHuman [48] and MOT [13,14].
The data are randomly sampled from a real video clip in the two data sets. Due to the two
modules in the decoder perform predictions in the same images, the two modules can be
trained with same loss function. Following [37], the loss function of the tracking network
can be formulated as follows.

L = λ1Lcls + λ2LL1 + λ3Lgiou (10)

where λ1, λ2 and λ3 stand for the weights of the losses. Lcls represents the focal loss
of classification [17]. LL1 and Lgiou are the L1 loss and generalized IoU loss [49] for the
regression of the coordinates of the predicted boxes.

In the initial image of a given sequence, the ABQ-Track detects only the objects
with the parts for detection in the network. Then, the detection and data association are
conducted on the rest images of the sequence with the whole tracking network. Two sets
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of predicted box can be obtained with the features outputted from the decoder based on
the object query and track query, respectively. The IoU similarity score map between the
two sets of box is computed with the Kuhn-Munkres algorithm. Additionally, the template
matching module outputs the similarity score map based on the features of the detected
objects and the object within each trajectory. The finally score map can be obtained with
the two score maps with weights as follows.

S = wIoUSIoU + wFeatureSFeature (11)

where SIoU and SFeature stand for the score maps of the IoU and feature similarity, wIoU and
wFeature represent the corresponding learnable weights. Based on the score map, the tradi-
tional Hungarian algorithm [20] is applied for data association. For the unmatched boxes
based on the object query, new trajectories are birthed for them. And for the trajecto-
ries who have not associated to any boxes based on the object query for 30 consecutive
frames, the trajectories are removed. In this way, each box based on the object query has a
unique ID.

4. Experiment

To evaluate the proposed methods, experiments have been conducted on commonly
applied data sets for multiple object tracking, MOT17 [13] and MOT20 [14]. An ablation
study on the effectiveness of proposed methods is presented, and the comparison of the
proposed tracker and the other MOT trackers are given to show that the proposed tracker
has competitive performance.

4.1. Implementation Details

The network of the ABQ-Track is trained on 2 datasets, CrowdHuman and MOT.
The CrowdHuman is utilized to train the network firstly, which is a dataset on scenarios
of dense pedestrians. 15,000 training images and 470,000 instances are contained in the
CrowdHuman, which provides more categories of the samples. Then, the network is
trained with CrowdHuman and MOT. The training data in MOT is split into two subsets
for training and validation, respectively. Regular data augmentations are applied on the
training data, which include random horizontal, random crop and scale augmentation.
The trained tracking network is tested locally with the testing data in MOT dataset, and the
results are uploaded to the given server for evaluation. The evaluation metrics in the
experiments are MOTA, IDF1, FP, FN, IDS, et al., which follow that in [13]. MOTA is the
metric specially designed for MOT task, which is calculated with false positive (FP), false
negative (FN), ID switches (IDS) and ground truth (GT).

The backbone in the proposed ABQ-Track is ResNet-50, which is same with the
TransTrack. The encoder and decoder have 6 blocks. In each block of the encoder, a self-
attention module and a FFN is applied. The structure of the decoder blocks is shown in
Figure 2. Each of the two prediction heads have 3 layers of perceptron with ReLU activation
function and a linear projection layer. The parameters of the backbone are initialized with
that learned on ImageNet [50], and the rest parameters are initialized with Xaxiver-init [51].
There are two steps of training of the tracking network, and the optimizer is AdamW.
Firstly, the tracking network is trained on the CrowdHuman for 50 epochs, and the batch
size is set to 16. The learning rate is set to 2 × 10−4 , and it drops to 2 × 10−5 after 30th
epoch. Secondly, the tracking network is fine-tuned for 40 epochs, including CrowdHuman
and the splits of MOT. The learning rate and the batch size for the fine-tuning are set to
2 × 10−5 and 16. Commonly used data augmentations, i.e., random horizontal, random
crop, scale augmentation, are applied for the two training steps. The weights of the losses
are set to λ1 = 2; λ2 = 5; λ3 = 2.
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4.2. MOT Challenge Test Results and Discussion
4.2.1. MOT17

The upper section of Table 1 reports the evaluation results of ABQ-Track and 10 other
trackers on the MOT17 test dataset. ABQ-Track, which is pre-trained with the CrowdHu-
man dataset, achieved the best score in MOTA, FP and FN. In terms of the other metrics,
competitive performance is achieved. The better performances of SOTMOT, CSTrack and
TransCenter in IDF1 are achieved with larger pre-train data set. ABQ-Track chooses the
CrowdHuman for fair comparison with TransTrack. Comparing to TransTrack, ABQ-Track
achieves better performance in MOTA, IDF1, FP, MT, ML and IDS. The better scores in
MT and ML can be attributed to the implementation of the ABQ, which improves the
detection performance of the tracking network. The utilization of TM reduces the IDS,
for the feature mathcing stablizing the trajectories. The ABQ and TM work together to
improve the performance in MOTA. Notably, the network of TransTrack is needed training
for 150 epochs, while that of ABQ-Track is trained in only 50 epochs.

Table 1. Results on the MOT17 and MOT20 Test Sets: The upper section presents results on private
detection in the MOT17 dataset, while the lower section displays the detection outcomes on the
MOT20 dataset.The upward (downward) arrows in the table indicate that the larger (smaller) the
parameter, the better the corresponding performance.

Method MOTA↑ IDF1↑ FP↓ FN↓ MT↑ ML↓ IDS↓
MOT17

UMA [52] 53.1 54.4 22,893 239,534 21.5 31.8 2251
TubeTK [53] 63.0 58.6 27,060 177,483 31.2 19.9 4137
CenterTrack [32] 67.8 64.7 18,489 160,332 34.6 24.6 3039
QuasiDense [2] 68.7 66.3 26,589 146,643 43.8 17.22 3378
TraDeS [54] 69.1 63.9 20,892 150,060 36.4 21.5 3555
SOTMOT [55] 71.0 71.9 39,537 118,983 42.7 15.3 5184
TransCenter [56] 72.5 58.1 25,722 114,310 64.7 12.2 2332
FairMOT [57] 73.7 72.3 27,507 117,477 43.2 17.3 3303
TransTrack [7] 74.5 63.9 28,323 112,137 46.8 11.3 3663
CSTrack [58] 74.9 72.6 23,847 114,303 41.5 17.5 3567
ABQ-Track (ours) 75.9 65.4 16,977 115,667 52.8 2.8 3135

MOT20

FairMOT [57] 61.8 67.3 103,440 88,901 66.3 8.5 5243
TransTrack [7] 64.5 59.2 28,566 151,377 49.1 13.6 3565
CorrTracker [59] 65.2 69.1 79,429 95,855 66.4 8.9 5183
CSTrack [58] 66.6 68.6 25,404 144,358 50.4 15.5 3196
ABQ-Track (ours) 66.3 60.3 20,179 149,536 38.0 45.1 3383

4.2.2. MOT20

The lower section of Table 1 presents the performance of ABQ-Track and the other
5 trackers on the MOT20 test dataset. MOT20 consists of 4 training sequences and 4 test-
ing sequences, which are obtained in more challenging tracking scenarios. Specifically,
the test data in MOT20 contain extremely dense scenarios. As shown in Table 1, ABQ-Track
achieves competitive performance in the comparison with the other 5 trackers. The track-
ers, i.e., CSTrack, CorrTrack, SOTMOT, surpass the performance of ABQ-Track for larger
training dataset. However, the IDS of ABQ-Track is lower for the utilization of the TM.
Compared to TransTrack, ABQ-Track achieves better performance in all the metrics. which
reveals that the proposed modules improves the performance of the JDT trackers in dense
multiple object tracking scenaros.
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4.3. Ablation Study
4.3.1. Anchor-Based-Query

In this section, the ABQ-Track networks trained for different numbers of epochs
are evaluated on the validation data in MOT17 since that the motivation of utilizing the
ABQ is to reduce the training epochs of JDT methods. Table 2 reports the performance
results of the trackers in this experiment. All models are trained with the same data.
TransTrack, ABQ-10, ABQ-25, and ABQ-50 are trained in 150 epochs, 10 epochs, 25 epochs
and 50 epochs, respectively. The tracker with ABQ achieves convergence in 50 epochs,
and further training brings no performance improvement. Comparing to TransTrack,
the tracker with ABQ has faster training procedure and better performance. As the queries
in the decoder works as pooling feature from a feature map. The content queries represents
the semantic information, while the spatial queries constrain the pooling feature around
the content queries. The Anchor-based-Query leads the tracker to focus on the local area
around the corresponding object. This is the main reason for the better performance and
faster convergence than that of TransTrack.

Table 2. Comparison of the tracker with ABQ trained in different epochs. The experiment is conducted
on the validation data in MOT17. The IDs represents the percentage of the number of the ID switches
to all the identities. The upward (downward) arrows in the table indicate that the larger (smaller) the
parameter, the better the corresponding performance.

Architecture MOTA↑ FP↓ FN↓ IDF1↑ IDs↓
TransTrack 65.0% 4.3% 30.3% - 0.4%
ABQ-10 37.8% 33.1% 68.5% 44.8% 17.1%
ABQ-25 54.8% 19.3% 45.4% 56.8% 13.7%
ABQ-50 66.1% 3.9% 28.6% 66.7% 0.6%
ABQ-75 65.8% 4.1% 29.0% 60.2% 10.5%

Moreover, the performances of the trackers with different ABQ designs are reported
in Table 3. The Location represents the generating ABQ locations. The Adding stands
for the augmenting the ABQ into the object queries and track queries with summation.
The ABQ in the table represents the methods described in Section 3.1. All trackers are
trained for 50 epochs, and with the same training data. The None tracker achieves lowest
performance scores since it needs more epochs to convergence. The Adding tracker have
similar performance as the None tracker due to summation mixes the content queries and
anchor-box queries for the attention learning. Comparing the Location and ABQ, adding
scale information in the ABQ improves the performance of the trackers.

Table 3. Comparison of the trackers with different ABQ designs. The upward (downward) arrows in
the table indicate that the larger (smaller) the parameter, the better the corresponding performance.

Trackers MOTA↑ FP↓ FN↓ IDF1↑ IDs↓
None 54.5% 16.0% 33.7% 57.9% 13.9%
Location 64.8% 4.3% 29.6% 65.2% 0.6%
Adding 55.3% 15.8% 33.8% 58.2% 13.1%
ABQ 66.1% 3.9% 28.6% 66.7% 0.6%

Additionally, the comparison on performances of the trackers with different numbers
of the ABQ is conducted due to the quantity of queries has obvious affect on the perfor-
mance of the transformer-based detection methods. The experimental results are reported
in Table 4. Comparing the trackers with 300 anchor-based-queries and 500 anchor-based-
queries, more anchor-based-queries improve the performance of the tracker. And further
adding more anchor-based queries does not lead to obvious performance improvement.
This is because too many anchor-based queries leads to excessive fragmentation of the
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feature map, which results in confusion between the localization targets in dense scenarios.
Based on this experiment, the number of the anchor-based-queries in ABQ-Track is set
to 500.

Table 4. The experimental results on the comparison of different anchor-based-queries settings. The
upward (downward) arrows in the table indicate that the larger (smaller) the parameter, the better
the corresponding performance.

num_Query MOTA↑ FP↓ FN↓ IDF1↑ IDs↓
300 66.7% 6.6% 25.3% 63.7% 1.4%
500 68.6% 4.3% 26.2% 70.1% 0.9%
900 68.4% 5.5% 24.9% 68.3% 1.1%

4.3.2. Template Matching

The classical JDT methods, TransTrack, focus on associating the detected objects and
trajectories based on the spatial score, i.e., IoU score. Id switches often occur when objects
are occluded during tracking or objects with similar appearances appear. Preserving
historical feature information can benefit for maintaining the stable trajectories. Hence,
to avoid identity switches and maintain stable trajectories, the TM module is designed for
TransTrack. The TM module bring historical feature information, add feature-based score
into the data association method in the tracker. In the section, the performance comparison
is made between the trackers with or without the TM module. Meanwhile, the amount of
past feature information saved in the template is evaluated. The results are reported in
Table 5.

Table 5. Performance comparison for TM modules. The upward (downward) arrows in the table
indicate that the larger (smaller) the parameter, the better the corresponding performance.

Trackers MOTA↑ FP↓ FN↓ IDF1↑ IDs↓
MOT-None 66.1% 3.9% 28.6% 66.7% 0.6%
TM-Input 66.4% 5.5% 25.5% 67.1% 1.2%
TM-5 66.6% 5.5% 25.5% 67.7% 1.3%
TM-10 66.9% 5.4% 25.1% 67.9% 1.2%
TM-20 67.6% 4.7% 24.9% 68.9% 1.3%
TM-30 68.6% 4.3% 26.2% 70.1% 0.9%

In Table 5, the None represents the ABQ-Track without the TM module. TM-Input
stands for the ABQ-Track with the TM module, and only one feature is saved to obtain the
template. TM-5, TM-10, TM-20, TM-30 stand for the TM utilizes 5, 10, 20 and 30 features
from the past to obtain the template, respectively. As shown in Table 5, trackers apply
the TM modules outperform the tracker without the TM modules, which verifies the
effectiveness of the TM module. Moreover, TM-30 achieves the best performance among
the trackers with the TM module. Hence, the ABQ-track in Table 1 utilizes 30 features from
the past to obtain the template.

4.3.3. Visualization of Experimental Results

To better illustrate the enhancement in MOT tracking performance with the ABQ and
TM, the visualization of the tracking results of the trackers in one sequence is presented
in Figure 4. These results are all derived from the MOT17-02 validation video sequence.
The first row represents the tracking results of TransTrack, the second row depicts the
results of the tracker applying the ABQ, and the third row illustrates the tracking result of
the ABQ-Track.

As shown in Figure 4, the tracker with Anchor-based query detected the object which
is missed by the TransTrack, and certain ID switch in the results of TransTrack does not
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occur in the results of the tracker with Anchor-based query. This reveals that the ABQ
improves the detection performance and reduces the ID switches of the tracker. Comparing
the second and third row, the ID switches is further reduced, which verifies the effectiveness
of the TM.

Figure 4. Visualization of tracking results of TransTrack, tracker with ABQ and ABQ-Track.

5. Conclusions

In this paper, a JDT method based on a transformer, ABQ-Track, is proposed. First,
the explicit spatial knowledge is augmented in the query of the decoder with a four-
dimensional anchor box (ABQ). The ABQ increases the performance of the tracker, and leads
to faster training convergence. Additionally, a new template matching module (TM) is
proposed to enable the JDT methods to associate the trajectories and detection results based
on historical features. Based on the two modules, the ABQ-Track is built by modifying
the classical JDT method, TransTrack, and achieves better performance than TransTrack on
MOT 17 and MOT 20, 75.9% and 66.3% in MOTA, respectively. Specifically, the ABQ-Track
achieves the better performance after being trained for 50 epochs, while the TransTrack
needs to be trained for 150 epochs.
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Abstract: Recently, advancements in image sensor technology have paved the way for the prolifera-
tion of high-dynamic-range television (HDRTV). Consequently, there has been a surge in demand for
the conversion of standard-dynamic-range television (SDRTV) to HDRTV, especially due to the dearth
of native HDRTV content. However, since SDRTV often comes with video encoding artifacts, SDRTV
to HDRTV conversion often amplifies these encoding artifacts, thereby reducing the visual quality of
the output video. To solve this problem, this paper proposes a multi-frame content-aware mapping
network (MCMN), aiming to improve the performance of conversion from low-quality SDRTV to
high-quality HDRTV. Specifically, we utilize the temporal spatial characteristics of videos to design a
content-aware temporal spatial alignment module for the initial alignment of video features. In the
feature prior extraction stage, we innovatively propose a hybrid prior extraction module, including
cross-temporal priors, local spatial priors, and global spatial prior extraction. Finally, we design a
temporal spatial transformation module to generate an improved tone mapping result. From time to
space, from local to global, our method makes full use of multi-frame information to perform inverse
tone mapping of single-frame images, while it is also able to better repair coding artifacts.

Keywords: standard dynamic range (SDR); high dynamic range (HDR); video coding; artifact removal

1. Introduction

Over the past few decades, television production technology has seen rapid advance-
ments. From standard definition (SD) to high definition (HD) and then to ultra-high
definition (UHD or 4K, and even 8K), the progress in television and video technology
is evident. Central to these advancements is the role of improved sensor technology,
which has enabled the capture of richer details and more accurate color reproduction.
Similarly, advancements in color gamut and dynamic range have transitioned from the
BT.709 standard to the BT.2020 standard, largely due to the capabilities of these advanced
sensors. Concurrently, standard dynamic range (SDR) technology has gradually evolved
into high dynamic range (HDR) technology, offering audiences a more realistic, dynamic,
and color-rich visual experience.

The incorporation of enhanced sensors in modern cameras has been pivotal in HDR
technology. They have been implemented in many modern display devices and televisions,
providing users with a higher contrast and a richer color representation. However, despite
the advancements in sensor technology, the availability of HDR video content remains
relatively low. Most of the existing video resources are still provided in SDR format, which
to some extent limits consumers’ opportunities to experience HDR display technology. This
phenomenon might be attributed to various factors, including but not limited to the cost
of producing HDR content and technical requirements. Therefore, while the proliferation
of HDR display technology offers the potential for elevating video content quality, the
production and distribution of HDR video content still face some challenges.
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Upon capturing light, a camera equipped with state-of-the-art sensors performs several
processes before displaying the video image on a monitor. Initially, the light signal is
transformed into a digital signal via a CMOS sensor. Following this, tone mapping [1] is
employed to convert the high-dynamic digital signal captured by the sensor into a low-
dynamic signal. Subsequently, gamut mapping adjusts the image color to match the target
color gamut. The linear signal is then altered to a nonlinear signal through the optical
electronic transfer function (OETF) [2,3]. This digital signal is then quantized and subjected
to arithmetic coding [4], making it ready for encoding and decoding through a codec [5,6].
After decoding, the nonlinear signal is reverted to a linear digital signal via an electronic
optical transfer function (EOTF), which is then converted into an optical signal for playback
on the monitor. The primary distinction between SDR and HDR lies in the utilization of
different EOTFs and OETFs, which are crucial in rendering image brightness and color.

HDRTVs, compared to SDRTVs, offer notable advancements in visual perception,
among other aspects. However, a significant portion of current video resources remain in
SDR format, a historical issue rooted in the capabilities of earlier video recording hardware
and sensors that stored videos in the SDRTV format. Given this, devising a solution for
converting SDRTV to HDRTV, especially leveraging the data from advanced sensors, is
valuable. In this discourse, the process of converting SDRTV to HDRTV is represented as
SDRTV-to-HDRTV, aligning with the method mentioned in [7]. SDR-to-HDRTV denotes
the conversion from an SDR television image to an HDR television image, where HDR
television images, especially those captured with modern sensors, can be displayed on
devices through tone mapping.

Earlier approaches [8–10] combined super-resolution techniques with SDRTV-to-
HDRTV conversion, endeavoring to establish a pipeline to transition from low-resolution
SDR video to high-resolution HDR video. In a different vein, HDRTVNET [7] introduced a
multi-stage mechanism to achieve SDRTV-to-HDRTV conversion, employing global tone
mapping, local image enhancement, and image generation. Similarly, the HDCFM frame-
work [11] involves hierarchical dynamic context feature mapping to facilitate the learning
of the mapping function from the SDR frame to the HDR frame.

As mentioned above, historical technical constraints and copyright issues have resulted
in a vast quantity of current SDRTV videos lacking nearly lossless versions, leaving only
relatively low-quality SDRTV versions available. The practical application of the SDRTV-
to-HDRTV method necessitates the conversion of low-quality (LQ) SDRTV to high-quality
(HQ) HDRTV. Concurrently, prior research [12,13] discovered that the traditional technique
of transitioning from LQ SDRTV to HQ HDRTV tends to magnify the coding artifacts.

In particular, as illustrated in the left figure of Figure 1, applying inverse tone mapping
to LQ SDRTV significantly amplifies blocking artifacts. Likewise, the right part reveals
how banding artifacts are intensified due to the oversight of encoding compression during
the conversion process. These observations confirm that the process of converting SDRTV
to HDRTV often exacerbates the encoding artifacts inherent in SDRTV, which in turn
diminishes the visual quality of the resultant video. The challenges posed by encoding
artifacts are a crucial consideration in developing and refining methods for SDRTV-to-
HDRTV conversion in order to attain a superior visual output in the HDRTV format.

In this paper, we present a method to address the challenge of converting low-quality
standard-dynamic-range television (LQ-SDRTV) to high-quality high-dynamic-range televi-
sion (HQ-HDRTV) with a focus on improving the visual quality of the converted video. We
propose a multi-frame content-aware mapping network, encompassing temporal-spatial
alignment, feature modulation, and quality enhancement to significantly improve the
performance of LQ-SDRTV to HQ-HDRTV conversion while simultaneously enhancing
visual quality. Through the adoption of dynamic convolutions, hybrid prior extraction,
and modulation modules, we demonstrate a robust and structured approach to handle the
intricacies involved in SDRTV-to-HDRTV conversion, laying a solid foundation for further
research and practical applications in this domain.
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Figure 1. Amplified artifacts when applying the previous SDRTV-to-HDRTV method to low-quality
SDR video. The notable artifacts are highlighted within the red rectangles. As shown in the left figure,
HDR videos generated by the previous methods will contain amplified blocking artifacts. In the right
figure, the banding artifacts are also amplified due to the lack of encoding compression.

The main contributions can be summarized as follows:

• We propose a multi-frame content-aware mapping network (MCMN) which takes
into consideration the temporal continuity and spatial features of video frames in
a structured manner to improve the performance from low-quality SDRTV to high-
quality HDRTV.

• An innovative content-aware temporal spatial alignment module (CTAM) is introduced,
employing dynamic deformable convolution to enhance the alignment accuracy of
features across different frames and scales. Temporal spatial dynamic convolution
(TSDC) adapts its convolution kernels based on the evolving temporal spatial patterns
in the video, which is crucial for accurately capturing inter-frame relationships.

• The hybrid prior extraction module (HPEM) is designed to capture the multi-scale
information in video content which is crucial for subsequent temporal spatial content-
adaptive dynamic modulation.

• The temporal spatial transformation module (TSTM) employs a sequence of temporal
spatial dynamic convolutions and mapping modules to perform content-adaptive
dynamic modulation. Specifically, a cross-temporal mapping module (CTMM), a local
spatial mapping module (LSMM), and a global spatial mapping module (GSMM) are
introduced to refine both local and global details within images, leading to improved
inverse tone mapping results and enhanced correction of encoding artifacts.

The rest of this paper is organized as follows. In Section 2, we introduce the related
works to our proposed MCMN. Section 3 presents the motivation and detailed design of
the MCMN for SDRTV-to-HDRTV artifact removal. The implementation and experimental
results are demonstrated in Section 4. Finally, we conclude this paper in Section 5.

2. Related Work

2.1. SDRTV-to-HDRTV

Low dynamic range to high dynamic range (LDR-to-HDR) conversion methods aim
to predict the physical brightness of a scene, allowing images to represent a broader
spectrum of luminance. This is crucial for capturing scenes with significant light variation.
Traditional techniques focus on estimating the light source density, which then aids in
further expanding the dynamic range. Earlier methods [14–17] centered on estimating
the light source density, using this as a foundation to broaden the dynamic range. Recent
advancements have seen the application of deep learning, specifically deep convolutional
neural networks, for this conversion. A notable method [18] introduced in 2020 directly
converts LDR images to HDR without intermediate steps. Refs. [19,20] introduce the
techniques that specifically target and recover overexposed areas in images. Another
intriguing approach introduced in [21–24] offers a prediction mechanism. It predicts multi-
exposure LDR image pairs using just a single LDR image. After this prediction, HDR
images are synthesized based on the generated multi-exposure image pairs.
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The SDRTV-to-HDRTV conversion approach has only emerged in the last two years.
Ref. [8] proposes a GAN-based architecture that jointly achieves super-resolution and SDTV
to HDRTV conversion. Ref. [9] proposes a hierarchical GAN architecture to accomplish
super-resolution and SDRTV to HDRTV conversion. Ref. [7] proposed a method using
global feature modulation, local enhancement, and over-exposure compensation, which
achieved the best performance. Ref. [10] proposed a global priors guided modulation
network to extract color conformity priors and structural similarity priors that are beneficial
for SDRTV-to-HDRTV and SR tasks, respectively. Similarly, the HDCFM framework [11]
involves hierarchical dynamic context feature mapping to facilitate the learning of the
mapping function from SDR frames to HDR frames. This is achieved through a hierarchical
feature modulation module coupled with a dynamic context feature transformation module,
providing a structured approach to understanding and transforming visual data from
SDR to HDR and enhancing the visual output and potentially paving the way for better
utilization of existing SDR video resources in the newer HDRTV format.

2.2. Artifact Removal

In terms of artifact removal task, numerous studies [25–35] are dedicated to improving
the visual quality of compressed images and videos. ARCNN [25] was pioneering in its use
of a CNN to alleviate image compression artifacts. Following this, Zhang et al. [26] intro-
duced the DnCNN, which focused on various aspects of image restoration like denoising,
deblocking, and super-resolution.

On the video quality enhancement front, Dai et al. [27] made the first stride by adapting
a CNN for post-processing in HEVC intra coding. Building on this, Zhang et al. [28] aimed
to replace HEVC’s in-loop filter. On the other hand, Yang et al. [29] aimed to minimize
distortion in HEVC by enhancing the quality of I and P/B frames without any encoder
modifications. In a novel approach, He et al. [30] introduced a partition-masked CNN
that leveraged coding unit size data to optimize network performance. Moreover, Ding
et al. [31] proposed a squeeze-and-excitation filtering CNN which was designed as an
optional in-loop filter to boost HEVC’s efficiency. Xue et al. [32] devised a task-oriented
flow network and employed motion compensation through a flow estimation module
to enhance video quality. MFQE [33,34] recognized the significant fluctuations between
compressed video frames and introduced a peak quality frame detector to improve videos’
visual appearance. Lastly, to overcome the computational inefficiencies of optical flow, the
spatio-temporal deformable fusion method [35] was presented as a solution for enhancing
compressed videos.

3. Methodology

3.1. Overall

Our method can be primarily divided into three components: temporal-spatial align-
ment, tone mapping modulation, and quality enhancement. This approach aims to signifi-
cantly improve the performance of converting low-quality SDRTV to high-quality HDRTV
while simultaneously enhancing visual quality.

Given 2r + 1 consecutive low-quality SDR frames X[i−r:i+r], we denote the center
frame Xi as the target frame that needs to be mapped and the other frames as the reference
frames. The input of the network is the target frame Xi and the 2r neighboring reference
frames, and the output is the enhanced target frame Yo

i . X is a stack of low-quality SDR
frames which is defined as

X = [Xi−r, · · · , Xi−1, Xi, Xi+1, · · · , Xi+r], (1)

where i denotes the frame index and r is the maximum range number of reference frames.
The architecture of the MCMN is shown in Figure 2. In the following subsection, we will a
present a detailed analysis of the motivation behind and rationality of each module.
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Figure 2. Architecture of our multi-frame content-aware mapping network (MCMN). Specifically, a
series of low-quality SDR (LQ-SDR) frames are input to a content-aware temporal spatial alignment
module to generate content-aware alignment features. Before proceeding with feature modulation,
LQ-SDR frames are sent to the hybrid prior extraction module to yield triplet hybrid priors simulta-
neously. Next, with the help of a temporal spatial transformation module, the alignment features
are tone-mapped into high-dynamic-range features with these hybrid priors. Finally, we employ a
quality enhancement module to generate high-quality HDR results.

3.2. Content-Aware Temporal Spatial Alignment Module

When addressing the task of video conversion, we require a profound understanding
of the temporal spatial correlation between adjacent video frames. To effectively har-
ness this correlation, we introduce the content-aware temporal spatial alignment module
(CTAM). The structure of the CTAM is shown in Figure 3. Considering the efficacy of
prior deformable convolution [36] in video frame alignment tasks, we propose a dynamic
deformable convolution (DDC) for the initial alignment in this task. We first employ
the UNet [37] structure to extract feature offset with temporal spatial information, which
can capture subtle changes in image features across different scales, thereby enhancing
alignment accuracy. Specifically, the UNet-based offset extraction part consists of two
down-sampling convolutional blocks, three convolutional blocks, and three up-sampling
convolutional blocks. The number of neurons is 32 in all layers.

Figure 3. Structure of the content-aware temporal spatial alignment module (CTAM). By introducing
learnable dynamic weights, dynamic deformable convolution is proposed to perform content-aware
temporal spatial alignment.

To adaptively align these features from different temporal and spatial scales in a
content-aware manner, we design a dynamic deformable convolution (DDC). Contrasting
this with the standard deformable convolution [36], where only static weights are leveraged,
DDC is engineered to determine content-aware characteristic features by introducing
dynamic weights. This enables content-based temporal spatial alignment using the initial
static weights. In DDC, the regular sampling grid R = {(−1,−1), (−1, 0), · · · , (0, 0), · · · ,
(0, 1), (1, 1)} is defined as the 3 × 3 convolution kernel with dilation 1. Here, the UNet-
based offset extraction part is used to gather temporal spatial clues between Xi−r and Xi+r
at diverse scales and generate the sampling parameters �P of the convolution kernel. It
can be described as

�P = UNet([Xi−r, · · · , Xi−1, Xi, Xi+1, · · · , Xi+r]), (2)
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where �P = {�pk|k = 1, · · · , |R|} is the collection of learnt predicted offsets �pk.
Many variants of DConv focus on finding better ways to enhance the offset. It should

be noted that the weights of standard deformable convolution are static. Therefore, we
introduce dynamic weights WD which are learned from the original input directly. Here,
we utilize cascaded global pooling, a 1 × 1 convolutional layer, and the sigmoid activation
function to obtain the dynamic weights WD. The content-adaptive weights are the com-
bination of the static and dynamic weights in a dot multiplication. The aligned features
FCTAM from DDC at location p0 can be computed:

FCTAM(p0) = ∑
pk∈R

(WS
k ⊗ WD

k ) · X(p0 + pk +�pk), (3)

The convolution will be performed on the deformed sampling locations pk +�pk,
where WS

k , WD
k , pk, and �pk denote the static weights, dynamic weights, pre-specific offset,

and learnt offset for k-th location in R. ⊗ denotes dot multiplication.
After this, the content-adaptive temporal-spatial feature alignment features can be

acquired. The success of this alignment process is crucial for subsequent tasks, as it aids in
precisely capturing the temporal-spatial relationship between video frames, laying a solid
foundation for feature modulation and recovery.

3.3. Hybrid Prior Extraction Module

In the field of video processing, features extracted from SDR video frames typically
reside in the SDR feature space, while those extracted from HDR video frames are in the
HDR feature space. As a result, the conversion from SDRTV to HDRTV can be modeled
as a feature mapping. Correspondingly, previous works on SDRTV-to-HDRTV primarily
focused on processing individual frames, obtaining low-dynamic-range features from
SDR frames via a convolutional neural network, then mapping these features to high-
dynamic-range features and finally restoring them to the HDR image space. Our approach
is based on video, and fully exploits the spatio-temporal characteristics of videos. Hence,
we introduce the spatio-temporal transformation module, aimed at capturing the spatio-
temporal characteristic of videos, thereby achieving a superior conversion result.

Before proceeding with feature mapping, it is essential to extract mapping priors. To
accommodate the unique requirements of our task, we design a hybrid prior extraction
module (HPEM), specifically incorporating the cross-temporal prior extraction branch, local
spatial prior extraction branch, and global spatial prior extraction branch. The detailed
structure of the HPEM is shown in Figure 4. In the context of this module, we input the
adjacent reference frames (Xi+t, t ∈ [-r, · · · , r], t �= 0) of the current target frame to the prior
extraction module to obtain the cross-temporal prior FCTP.

FCTP = HPEM(Xi+t), t ∈ [−r, · · · , r], t �= 0, (4)

where HPEM denotes the hybrid prior extraction module. Specifically, five down-sample
blocks are employed to generate down-sampled features FD. Each block is composed of
1 × 1 conv, average pooling with a stride of 2, and LeakyReLU activation. The numbers of
neurons in the five down-sampling blocks are 16, 32, 64, 128, and 128, respectively. For the
cross-temporal prior FCTP, adaptive pooling is used to yield the temporal weights.
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Figure 4. Structure of the hybrid prior extraction module (HPEM). In the cross-temporal prior branch,
the adjacent reference frames (Xi+t, t ∈ [-r, · · · , r], t �= 0) are used to generate the cross-temporal
prior using HEMP. In the local spatial and global spatial prior extraction branches, the local spatial
prior and global spatial prior are generated using a single target center frame Xi simultaneously.

The current target frames are simultaneously individually processed by the HPEM
to yield both the local spatial prior FLSP and the global spatial prior FGSP. The first part of
this process involves distilling spatial information, and thus, the HPEM is employed to
generate FLSP and FGSP simultaneously.

FLSP, FGSP = HPEM(Xi). (5)

Specifically, for the local spatial prior (FLSP), which targets pixel-level mapping, we
employ a bilinear up-sampling operator to upscale the down-sampled features FD to match
the resolution of the input image. Conversely, for the global spatial prior (FGSP), which
is intended for frame-level mapping, we apply an average pooling operator to further
down-sample the down-sampled features FD. This process yields one learned global weight
for each frame, facilitating effective global spatial mapping. This nuanced handling of
spatial priors at different scales is critical for the fidelity of our spatial mapping operations.

The hybrid prior extraction module can adeptly capture multi-scale information
of video content, preparing for the subsequent temporal spatial content-adaptive dy-
namic modulation.

3.4. Temporal Spatial Transformation Module

In the process of converting SDRTV to HDRTV, it is insufficient to process pixels
from varied spatial locations identically due to the nuances they present. For example,
a frame might contain both overexposed and underexposed areas, requiring tailored
processing strategies for each exposure condition. To address this challenge, we develop a
temporal spatial transformation module (TSTM) that is adaptive to spatio-temporal content.
As shown in Figure 5, this method integrates a sequence of temporal spatial dynamic
convolutions (TSDCs), a cross-temporal mapping module (CTMM), a local spatial mapping
module (LSMM), and a global spatial mapping module (GSMM). Next, we will introduce
each part in detail.
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Figure 5. Structure of the temporal spatial transformation module (TSTM). It integrates a sequence of
temporal spatial dynamic convolutions (TSDCs), a cross-temporal mapping module (CTMM), a local
spatial mapping module (LSMM), and a global spatial mapping module (GSMM) to obtain better
tone mapping results.

Temporal spatial dynamic convolution (TSDC) can adeptly modify its convolution
kernels in response to the evolving spatio-temporal patterns in the video, aiding in cap-
turing the inter-frame relationships more accurately. Specifically, we utilize the cross-
temporal prior to generate the temporal weight WTemporal which contains a plethora of
useful temporal-spatial information. The derived WTemporal is then fused with the original
content weights WContent to obtain the fused weight WFusion. Finally, the input features are
convoluted with the temporal spatial dynamically corrected weight to yield the feature
output. This process can adaptively adjust the convolution kernel based on the input
data to better capture the dynamic information within videos. The TSDC operator can be
formulated by the following equation:

Fo(p0) = ∑
pk∈R

(Wcontent ⊗ Wtemporal) · Fi(p0 + pk). (6)

After TSDC, we propose the cross-temporal mapping module (CTMM) to perform
tone mapping in the temporal dimension. Therefore, we revisit the spatial feature transform
(SFT) [10,38] and global feature modulation (GFM) [7,39]. Inspired by the SFT and GFM,
the proposed CTMM generates a pair of (αCT , βCT) by definition priors and performs
modulations through scaling and shifting, respectively. The CTMM can be formulated by:

Fo(Fi|FCTP) = αCT ⊗ Fi ⊕ βCT , (7)

where ⊗ refers to element-wise multiplication and ⊕ is element-wise addition. Fi and Fo
are the input and output of the CTMM.

Moreover, spatial feature modulations, both local and global, focus on refining the
details within images, leading to an improved inverse tone mapping result and a heightened
ability to rectify encoding artifacts. The processes can be formulated by

Fo(Fi|FGSP) = αGS ⊗ Fi ⊕ βGS,
Fo(Fi|FLSP) = αLS ⊗ Fi ⊕ βLS,

(8)

where the pairs of (αGS, βGS) and (αLS, βLS) by definition map and perform modulations
through scaling and shifting in the global spatial mapping module and the local spatial
mapping module.
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3.5. Quality Enhancement Module

Encoding compression will lead to a deterioration in video quality, manifesting as
blurring, block artifacts, or other visible compression distortions. To eliminate the artifacts
by encoding compression, we introduce a quality enhancement module (QEM) at the final
stage. Here, we take advantage of residual learning to generate the results. As illustrated in
Figure 6, the module starts by applying a cascade of convolutional layers (here, we employ
four layers) to extract the high-frequency information, denoted as the residual Ro

i . The final
output, an enhanced high-quality HDR frame Yo

i , is then obtained by residual learning.
The process is formulated as follows:

Ro
i = QEM(FTSTM),

Yo
i = Xi + Ro

i .
(9)

Figure 6. Structure of the quality enhancement module (QEM). We employ a cascade of convolutional
layers with residual learning to yield the final enhanced high-quality HDR frame Yo

i .

The primary idea of the QEM is to fully explore the complementary information within
the fused feature maps and accordingly generate an enhanced high-quality HDR frame Yo

i .
Without bells and whistles, this straightforward QEM is capable of achieving satisfying
enhancement results.

4. Results

In this section, we show the performance of the proposed MCMN. Section 4.1 in-
troduces the training dataset and implementation details. In Section 4.2, we present the
quantitative performance of the MCMN. Section 4.3 presents the qualitative performance.
Moreover, the ablation study in Section 4.4 is demonstrated to prove the effectiveness of
the designed architecture.

4.1. Experimental Settings
4.1.1. Dataset

We employ the well-used HDRTVNET dataset [7] as our benchmark. We use X265 [6]
to encode SDR videos with different quantization parameters (QPs) (27, 32, 37, 42) to
process the videos with different degrees of coding degradation. We compute the multi-
scale structural similarity index (MS-SSIM) [40] of adjacent frames for scene segmentation.
The MS-SSIM can evaluate the quality of video frames at multiple scales. This feature is
crucial for capturing finer details and nuances that are especially relevant in HDR content.

4.1.2. Implementation Details

All experiments were conducted using PyTorch 1.6.0, Python 3.8, CUDA 10.1. The
server was equipped with an Intel Core i9-13900K CPU and an NVIDIA GeForce RTX 4090
GPU. In our architecture, the range number r for the reference frame is 3. This configuration
results in a total of seven input frames being considered for processing. Except for the
previous special instructions, the number of neurons in all convolutional layers is 64.
Moreover, the ReLU activation function is consistently used across these layers. During the
training phase, we employ the SDR video with a quantization parameter (QP) of 37 as input
data, and the output is a high-quality HDR video. The Adam optimizer, as mentioned
in [41], is employed with an initial learning rate of 0.0005. After reaching 100,000 iterations,
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the learning rate is adjusted to halve every 60,000 iterations, totaling up to 660,000 iterations
for the entire training process. We use L1 Loss between the high-quality high-dynamic
standard image YHQ−HDR

i and the enhanced output Yo
i of our MCMN to supervise network

training. The loss function can be formulated as follows:

L =
∥∥∥YHQ−HDR

i − Yo
i

∥∥∥
1
. (10)

To verify the performance of different algorithms in a fair generalization, we take
the last six stored weights to test the metrics. The model trained on coding degradation
with a fixed QP = 37 was tested on four different QP coding test sets. As with [42], this
multiple evaluation ensures that we can accurately and fairly evaluate the performance of
different models.

4.2. Quantitative Results

The table presents a quantitative comparison of various image quality enhancement
methods; specifically, it details their performance in terms of the peak signal-to-noise ratio
(PSNR) and structural similarity index measure (SSIM) at different quantization parameter
(QP) values. The PSNR is a widely used metric to measure the quality of reconstructed
images, with higher values indicating a better quality. Similarly, the SSIM is another
crucial measure that evaluates the perceptual quality of images by comparing structural
similarities. We compare the proposed method with state-of-the-art SDRTV-to-HDRTV
methods (FMNet [43], HDRUNET [44], HDCFM [11], HyCondITM [45], etc.). For a fair
comparison, each method was retrained on the same training set. The last six checkpoints
of each model were then tested on a common test set, and the average PSNR value was
derived.

The quantitative results for each metric are shown in Table 1. The mean PSNR of our
method is 33.208, while the mean PSNR of previous methods varies from 21.826 dB to
33.100 dB. It can be observed that our method consistently outperforms all comparison
methods in terms of the mean PSNR for the test set, highlighting its robustness and
superior performance. The difference in performance between the proposed method
and the previous state-of-the-art (SOTA) method is notable. Specifically, comparing the
proposed method with the preceding best performer, there is an improvement of 0.18 dB
in the PSNR metric when the QP is set to 27. The proposed method showcases a superior
performance in enhancing image quality across various quantization parameters.

Table 1. Quantitative comparison with previous methods. For each model on each QP, we selected
the last six checkpoints for evaluation and calculated the mean PSNRs and SSIMs for comparison.
The processing time (ms) was calculated for a resolution of 256 × 256. Best and second best results
are bold and underlined, respectively.

Methods Time
PSNR Mean- Mean-

QP = 27 QP = 32 QP = 37 QP = 42 PSNR SSIM

CSRNET [39] 0.3 33.598 32.472 31.288 29.946 31.826 0.9518
STDF [35] 3.7 33.978 32.810 31.591 30.163 32.135 0.9455
AGCM [7] 0.4 34.260 33.123 31.878 30.395 32.414 0.9526
AILUT [46] 3.3 34.265 33.058 31.789 30.350 32.366 0.9498

DeepSRITM [8] 7.4 34.688 33.332 31.998 30.483 32.625 0.9515
FMNet [43] 1.4 34.462 33.474 32.146 30.584 32.666 0.9523

HDRUNET [44] 2.9 34.586 33.591 32.262 30.706 32.786 0.9514
HDCFM [11] 2.4 34.897 33.784 32.440 30.929 33.012 0.9538

HyCondITM [45] 8.3 34.860 33.862 32.573 31.103 33.100 0.9554

Ours 3.8 35.072 34.026 32.651 31.083 33.208 0.9555
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Moreover, the superiority of our method extends to the SSIM as well, where it leads
the pack among all the compared methods. This achievement in SSIMs, coupled with the
high PSNR values, offers a more comprehensive assessment of our method’s performance.
By excelling in both objective metrics like the PSNR and subjective metrics like the SSIM,
our method presents itself as a potentially pioneering solution in the realm of image quality
enhancement, offering improvements from both objective and subjective perspectives.

4.3. Qualitative Results

Figure 7 presents the subjective comparison between our method and previous meth-
ods. In the first image, our approach can map the color of sunflower petals to the high-
dynamic-range space with greater precision. Observing the second image, we can see
that the artifacts in the lake section of the sample image are amplified by methods such as
CSRNET [39], ACGM [7], HDCFM [11], and HyCondITM [45]. However, our technique
effectively eliminates these artifacts caused by compression, bringing the image closer to
the ground truth. In the third image, compared to other methods, our approach is able to
restore the original image to a greater extent.

Figure 7. Qualitative results. Our method produces results with fewer artifacts and of a higher
quality than previous methods (CSRNET [39], ACGM [7], AILUT [46], DeepSRITM [8], HDCFM [11],
and HyCondITM [45]). Ground truth represents the reference standard against which the quality of
our method’s output is compared. The areas enclosed by the red rectangles are magnified for better
observation.
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4.4. Ablation Study

In this section, we will perform an ablation study to verify the effectiveness of the each
part of our multi-frame content-aware mapping network (MCMN) design.

4.4.1. Ablation Study of the Content-Aware Temporal Spatial Alignment Module (CTAM)

To verify the effectiveness of our CTAM module, we conducted ablation studies. In this
context, Exp. 1 denotes a baseline without any spatial temporal alignment, Exp. 2 denotes
using deformable convolution for temporal alignment operations, and MCMN denotes
a structure that utilizes dynamic deformable convolution for content-aware temporal
spatial alignment. The results are demonstrated in Table 2. Without any temporal spatial
alignment, as seen in the Exp. 1, the model’s average PSNR stands at 32.390 dB. When the
DCN is introduced for temporal alignment, there is a rise in the PSNR, reaching 32.689 dB.
Most significantly, with the incorporation of the CTAM for content-aware temporal-spatial
alignment in the model, the PSNR peaks at a value of 33.208 dB. This shows that our
method effectively extracts spatial temporal information, aiding the model in tone mapping
and artifacts.

Table 2. Ablation study of the content-aware temporal spatial alignment module (CTAM) in terms of
the PSNR (dB). Best results are bold. � indicates that the feature or component was enabled, while �

signifies that it was not enabled.

Exp. Baseline DCN CTAM Time
PSNR

Mean
QP = 27 QP = 32 QP = 37 QP = 42

1 � � � 2.88 34.097 33.133 31.894 30.437 32.390

2 � � � 2.95 34.595 33.409 32.137 30.617 32.689

MCMN � � � 3.83 35.072 34.026 32.651 31.083 33.208

4.4.2. Ablation Study of the Temporal Spatial Transformation Module (TSTM)

To validate the efficacy of individual components within the temporal spatial trans-
formation module (TSTM), we undertook a comprehensive ablation study. This analysis
spanned the global spatial mapping module (GSMM), the local spatial mapping module
(LSMM), the cross-temporal mapping module (CTMM), and temporal spatial dynamic con-
volutions (TSDC), with a focus on adaptively reconstructing high-dynamic-range features.

Global spatial mapping module (GSMM) performance. When only the global spatial
mapping module (GSMM) is employed (without the LSMM, the CTMM, and TSDC), the
average PSNR is 32.390 dB. This serves as our baseline metric for performance.

Local spatial mapping module (LSMM) impact. Incorporating the LSMM alongside
the GSMM (without the CTMM and TSDC) improves the average PSNR to 32.748 dB. This
increment indicates the value of local spatial mapping in enhancing video quality.

Cross-temporal mapping module (CTMM) impact. Engaging the plain CTMM (only
with the GSMM) further elevates the PSNR to 32.847 dB. This underscores the significance
of temporal tone mapping. Notably, when introducing the LSMM simultaneously, the
performance of the mean PSNR soared to 33.120 dB, marking a significant improvement of
0.273 dB. This finding reinforces the complementary nature of local and global and intra-
frame and inter-frame information, collaboratively enhancing the method’s performance.

Comprehensive module activation. The highest PSNR value of 33.208 dB was achieved
when all modules (the GSMM, the LSMM, the CTMM, and TSDC) are utilized. This
combined approach delivers the most optimal performance, with an impressive average
PSNR increase of 0.818 dB compared to the baseline. Moreover, we conducted a qualitative
comparison as part of our ablation study, shown in Figure 8. Compared with the ablation
variants, our MCMN effectively eliminates artifacts and achieves color reproduction that
closely matches the ground truth. This visual evidence, alongside the quantitative data,
provides a more comprehensive evaluation of each part of our proposed method.
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Figure 8. Qualitative results of the ablation study. Compared with the ablation variants (Exp. 1–6),
our MCMN effectively eliminates artifacts and achieves color reproduction to closely match the
ground truth. Ground truth represents the reference standard against which the quality of our
method’s output is compared. The areas enclosed by the red rectangle are magnified for better
observation.

In conclusion, the temporal spatial transformation module (TSTM) plays a pivotal
role in enhancing video quality during the SDRTV-to-HDRTV conversion process. Each
module within the TSTM contributes uniquely to this enhancement, with their collective
use delivering the most superior results.

4.5. Processing Time

We evaluated the processing time required for converting SDRTV using our method.
All measurements were conducted on an NVIDIA GeForce RTX 4090Ti GPU to ensure a con-
sistent testing environment. The processing time was calculated for a resolution of 256 × 256.
As detailed in Table 1, our method achieves a processing time of 3.83 milliseconds (ms),
corresponding to a real-time processing speed of approximately 261 frames per second
(fps). Notably, our MCMN method is significantly more efficient, reducing the conversion
time by over 50% compared to the previous SOTA algorithm, HyCondITM. This marked
improvement in processing speed, coupled with enhancements in video quality, highlights
the practical benefits of our approach.

Furthermore, we analyzed the processing times for various ablation study variants.
Tables 2 and 3 illustrate that while adding each module increases the processing time, the
corresponding performance enhancements are substantial. This demonstrates a favorable
trade-off between processing time and performance improvements.

Table 3. Ablation study of the temporal spatial transformation module (TSTM) in terms of the PSNR
(dB). Best results are bold. � indicates that the feature or component was enabled, while � signifies
that it was not enabled.

Exp. GSMM LSMM CTMM TSDC Time
PSNR

Mean
QP = 27 QP = 32 QP = 37 QP = 42

3 � � � � 3.09 34.097 33.133 31.894 30.437 32.390

4 � � � � 3.49 34.628 33.498 32.195 30.673 32.748

5 � � � � 3.43 34.865 33.567 32.252 30.704 32.847

6 � � � � 3.56 34.977 33.923 32.569 31.012 33.120

MCMN � � � � 3.83 35.072 34.026 32.651 31.083 33.208

5. Conclusions

In conclusion, this paper delineates a comprehensive and innovative methodology for
addressing the nuanced task of converting low-quality standard-dynamic-range television
(LQ-SDRTV) to high-quality high-dynamic-range television (HQ-HDRTV). The focal point
of this endeavor is not only to achieve a superior conversion quality but also to significantly
enhance the visual quality of the resultant videos, addressing the prevalent issues associ-
ated with existing methods. The proposed multi-frame content-aware mapping network
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(MCMN) epitomizes a holistic approach towards this objective, including temporal-spatial
alignment, feature modulation, and quality enhancement within a coherent framework.

The introduction of the content-aware temporal spatial alignment module (CTAM)
underscores a crucial step towards accurately aligning features across various scales and
frames, facilitated by dynamic deformable convolution. Combining this with temporal-
spatial dynamic convolution (TSDC) lays a robust foundation for capturing the intricate
inter-frame relationships inherent in video sequences. The hybrid prior extraction module
(HPEM) and the temporal spatial transformation module (TSTM) further accentuate the
methodical approach employed in this work. These modules diligently capture multi-scale
information and perform content-adaptive dynamic modulation, respectively, thereby
addressing both local and global details within images. The resultant enhanced inverse
tone mapping and the correction of encoding artifacts signify notable advancements in the
SDRTV to HDRTV conversion domain.

The proposed methodology not only showcases the flexibility and scalability of the
approach but also heralds a promising avenue for future research and practical applications.
Each module within the network embodies a targeted strategy to tackle specific challenges
associated with SDRTV to HDRTV conversion, making the methodology adaptable and
conducive for further refinements.

From time to space, from local to global, our method makes full use of multi-frame
information to perform inverse tone mapping of single-frame images, while it is also able to
better repair coding artifacts. The results emanating from this work underscore a significant
stride towards bridging the gap between SDRTV and HDRTV technologies, making a
compelling case for the adoption and further exploration of the proposed methodology in
real-world applications.
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Abstract: The need for efficient video coding technology is more important than ever in the current
scenario where video applications are increasing worldwide, and Internet of Things (IoT) devices
are becoming widespread. In this context, it is necessary to carefully review the recently completed
MPEG-5 Essential Video Coding (EVC) standard because the EVC Baseline profile is customized
to meet the specific requirements needed to process IoT video data in terms of low complexity.
Nevertheless, the EVC Baseline profile has a notable disadvantage. Since it is a codec composed
only of simple tools developed over 20 years, it tends to represent numerous coding artifacts. In
particular, the presence of blocking artifacts at the block boundary is regarded as a critical issue
that must be addressed. To address this, this paper proposes a post-filter using a block partitioning
information-based Convolutional Neural Network (CNN). The proposed method in the experimental
results objectively shows an approximately 0.57 dB for All-Intra (AI) and 0.37 dB for Low-Delay (LD)
improvements in each configuration by the proposed method when compared to the pre-post-filter
video, and the enhanced PSNR results in an overall bitrate reduction of 11.62% for AI and 10.91% for
LD in the Luma and Chroma components, respectively. Due to the huge improvement in the PSNR,
the proposed method significantly improved the visual quality subjectively, particularly in blocking
artifacts at the coding block boundary.

Keywords: EVC; MPEG-5; video coding standard; post-filtering; CNN

1. Introduction

The current growth in global video applications, driven by consumer desire for high-
quality experiences, has expanded the relevance of devices dramatically [1]. This spike has
resulted in a significant increase in frame rates per second to support natural motion, lead-
ing to an increase in video content capacity. According to Cisco statistics [2], video-related
traffic accounts for around 80% of overall Internet traffic, highlighting the widespread
relationship between data transmission and video content. This trend is not confined to
2D movies; it includes 3D videos, volumetric stereoscopic images, 360-degree videos, and
VR/AR material, all of which require more data capacity [3].

At the same time, the increase in Internet of Things (IoT) systems has increased the
need for effective video coding technology [4]. The significant growth of video data in
IoT systems pursues dedicated coding and processing methods. As these systems focus
on local data processing for intelligent sensor nodes, the importance of minimizing data
volume while ensuring high-quality decoded images becomes important [5]. Thus, video
coding technology has importance in nodes that extend beyond traditionally used areas,
including small edge units of computing.

Traditionally, video compression technology has been developed through standards
created by organizations such as the ISO/IEC Moving Picture Experiences Group (MPEG) and
ITU-T Video Coding Experiences Group (VCEG). Standards such as MPEG-2/H.262 [6], Ad-
vanced Video Coding (AVC)/H.264 [7], and High Efficiency Video Coding (HEVC)/H.265 [8]
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have contributed significantly to the efficient compression and transmission of video data.
Recently, new video coding standards such as Versatile Video Coding (VVC)/H.266 [9] and
MPEG-5 Essential Video Coding (EVC) [10] have been introduced. While VVC/H.266 was
developed jointly by the MPEG and VCEG, EVC is a product exclusively for the MPEG.

In this context of the growth of video data in IoT systems, it is necessary to carefully
review the completed EVC standard. In particular, the EVC Baseline profile is customized
to meet the specific needs of handling IoT video data. Since this profile aims to build a
royalty-free codec using conventional coding techniques that are more than 20 years old,
focusing only on performing key functions, avoiding the integration of complex tools,
results in high-performance compression even at a low complexity [11]. Therefore, it is
believed that the EVC Baseline profile proves to be a proper video codec for sensor node
networks that require high-performance compression while operating at low power and
complexity, and it is expected to play a pivotal role in addressing the growing need for
high performance within the IoT ecosystem.

However, the EVC Baseline has a notable drawback. Being a codec comprised solely
of simple tools developed over 20 years, it tends to exhibit numerous coding artifacts.
Specifically, the presence of blocking artifacts at the block boundaries is considered a critical
issue that needs resolution. To address this, a post-filter leveraging block partitioning
information-based Convolutional Neural Network (CNN) is introduced in this paper. The
proposed filter aims to rectify the challenges associated with the EVC Baseline profile, char-
acterized by a high occurrence of coding artifacts. The proposed post-filter seeks to provide
a high-efficiency compression performance and enhanced image quality, making it suitable
for node sensor networks with low-complexity requirements. The main contributions of
this study can be summarized as follows:

(1) A CNN-based post-filter for the EVC Baseline profile was developed, offering a
promising video coding solution for IoT devices.

(2) An analysis of the major artifacts in the EVC Baseline profile was conducted, and a
method indicating the area where these artifacts appear was exploited.

(3) The incorporation of a guide map based on blocking partitioning information was
implemented to identify attention areas and enhance visual quality in the target image
and video.

(4) Consideration was given to IoT applications with low complexity, allowing IoT de-
vices to selectively add the post-filter based on the available extra computing power.

(5) A scenario-based CNN-based post-processing network was developed for real IoT
applications, whether in image-based or real-time broadcasting/streaming services.

The remainder of this paper is organized as follows. Section 2 provides an overview of
the EVC Baseline profile, related works of CNN-based filtering technologies, and standard
activity. The proposed method is presented in Section 3. Section 4 provides an overall
performance evaluation and analysis. Finally, Section 5 concludes this paper.

2. Related Work

To examine the relevant work of the proposed method, this section initially offers
background information on EVC Baseline profiles. Following that, it explores CNN-based
filtering for video coding, encompassing both in-loop filtering and out-loop filtering. Finally,
it will outline the recent developments in standards for neural network-based video coding
at the Joint Video Exploration Team (JVET), a collaboration between the MPEG and ITU-T.

2.1. Overview of EVC Baseline Profile

The block structure of the EVC Baseline profile is based on a partitioning method
that supports quadtree division based on 64 × 64 blocks. The maximum block size of the
coding unit is 64 × 64 and the minimum size is 4 × 4. For intra prediction, the process is
performed based on the coding unit block, incorporating five supported prediction modes.
The intra prediction supported by the Baseline profile would be impossible to accurately
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predict direction, but the major intra directionality can be predicted, thereby reducing the
redundancy of directional information within a frame.

The residual value generated in the prediction process is converted into a frequency
value through Discrete Cosine Transform (DCT), and the converted coefficient value is
converted into a quantized coefficient value through a quantization process. The size
of the transformation aligns with the size of the prediction block, and a process with a
quantization parameter (QP) in the range of 0 to 51 is used for quantization. After the
quantization process, the quantized coefficient values are scanned through a zigzag scan
order and are then binarized through a basic run-level coding method, and the binarized
values are streamed to the entropy coding engine as described in JPEG Annex D [12]. In
the case of the filtering tool in the Baseline profile, an initial version of the deblocking filter
in AVC/H.264 was applied to improve the objective and subjective image quality. The
method is the same as that applied to H.263 Annex J [13].

For the EVC Baseline profile, it has been reported that it achieves approximately
30% bit savings in the objective evaluation and about 40% in the subjective evaluation
compared to AVC/H.264, which is widely utilized on the Internet, while maintaining the
same quality [14]. Moreover, in terms of complexity, it exhibits one-fourth of the algorithmic
complexity when compared to AVC/H.264, making it a promising candidate as an optimal
compression codec for next-generation sensor nodes [15].

2.2. CNN-Based Filtering Technologies for Video Coding

To improve coding artifacts during the encoding and decoding process, the latest
video coding standard comes equipped with an in-loop filter designed. In the case of
the VVC/H.266 standard, it incorporates three traditional in-loop filters: Deblocking
Filter (DBF), Sample Adaptive Offset (SAO), and Adaptive Loop Filter (ALF). These filters
are sequentially applied to the reconstructed frames. The DBF focuses on suppressing
blocking artifacts at the block boundaries, while the SAO filter and the ALF aim to eliminate
artifacts resulting from quantization. Despite the effectiveness of these filters, there is still
considerable room for improvement in terms of visual quality.

Recently, developments have seen an active pursuit of research aimed at minimizing
video coding artifacts using neural networks. That research focuses primarily on two
aspects: (1) the design of a filter using a neural network for an in-loop filtering method
applicable within the codec, similar to the DBF, SAO, and ALF, and (2) the investigation of
a post-filter method that can be selectively applied outside the codec as needed.

Park et al. [16] introduced a CNN-based In-Loop Filter (IFCNN) capable of replacing
the SAO in HEVC/H.265, and the proposed IFCNN showed a promising coding perfor-
mance on Bjontegaard Delta bitrate (BD-BR) [17], with reductions of 2.6% and 2.8% for the
Random-Access (RA) and Low-Delay (LD) configurations, respectively. Dai et al. proposed
a Variable Filter Size Residual Learning Convolutional Neural Network (VRCNN) [18],
designed to replace conventional filters in HEVC/H.265, such as the DBF and SAO, in
HEVC/H.265. The proposed method in [18] utilized the variable block size of transform
in HEVC/H.265; thus, residual learning led to faster convergence. According to [18], the
VRCNN reduced the BD-BR by an average of 4.6% in the All-Intra (AI) configuration.
Similar to the motivation of earlier methods, Kang et al. introduced a multi-scale CNN
(MMS-net) [19] that could replace the DBF and SAO in HEVC/H.265 by utilizing skip
connections with different scales from subnetworks to enhance the restoration process. The
proposed MMS-net’s performance on the BD-BR showed a reduction of 8.5% for the AI
configuration. Wang et al. [20] proposed an attention-based dual-scale CNN (ADCNN),
which utilized the encoding information, such as the QP and partitioning information,
and the proposed ADCNN’s performance on the BD-BR showed reductions of 6.5% and
2.8% for the AI and RA configurations, respectively. The residual highway CNN (RHCNN)
in [21] utilized residual units with a progressive training scheme for the QP bands, and
the proposed RHCNN’s performance on the BD-BR showed reductions of 5.7%, 4.4%,
and 5.7% for the AI, RA, and LD configurations, respectively. Similar to the approach
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of [21], Wang et al. [22] applied a neural network-based in-loop filter (CNNLF) in the
conventional video coding framework in VVC/H.266 by conducting the modules of fea-
ture extraction and image quality enhancement. Compared with VTM-15.0, the proposed
CNNLF improved the PSNR by 0.4 dB and 0.8 dB at 0.1 Mbps, respectively, and by 0.2 dB
and 0.5 dB at 1 Mbps, respectively. Huang et al. [23] also added the CNN-based network
to the conventional video coding framework specifically between the DBF and SAO in
VVC/H.266. The proposed method based on a variable CNN utilized an attention module
into a residual block to extract informative features, and the proposed method in [23]
showed reductions of 3.6%, 3.6%, and 4.2% in performance on the BD-BR for the AI, RA,
and LD configurations, respectively.

The purpose for post-filtering approaches is similar to that of in-loop filtering; how-
ever, it is used outside of the codec architecture. Thus, CNN-based post-filtering algorithms
can be selectively applied to decoded images to improve visual quality. Dong et al. [24] in-
troduced a CNN-based artifact removal method (AR-CNN) designed for JPEG compressed
images, which was an extension of the super-resolution CNN (SRCNN) from previous
studies. The results presented in [24] demonstrated a 1 dB improvement achieved by the
proposed AR-CNN when compared to JPEG images. Li et al. [25] presented a method
employing a twenty-layer CNN architecture with residual learning. An interesting aspect
of the method proposed in [25] involved transmitting side information related to video
content complexity and quality indicators from the encoder to the decoder at each frame.
The performance of the method, as reported in [25], demonstrated a 1.6% BD-BR reduction
compared with HEVC/H.265 on the six sequences given in the 2017 ICIP Grand Challenge.
Zhang et al. [26] introduced a post-processing architecture based on a CNN for VVC/H.266
compressed video sequences. This architecture utilized 16 identical residual blocks and
incorporated three types of skip connections, and it was reported that the proposed method
in [26] showed a reduction of 3.9% in performance on the BD-BR for the RA configuration
compared to VVC/H.266. The authors extended the [26] method, incorporating a genera-
tive adversarial network (GAN)-based training strategy to improve the visual quality of
VVC/H.266-decoded images. The proposed method in [27] showed a notable enhancement
in perceptual visual quality, achieving a reduction of 3.9% in performance on the BD-BR
for the RA configuration compared to VVC/H.266. Bonnineau et al. [28] introduced a
multitask learning-based approach that employed a QP map to generalize the model with
various QPs by sharing parameters within a single network and task-specific modules. The
method presented in [28] exhibited a significant improvement in perceptual visual quality,
achieving a reduction of 2.8% in performance on the BD-BR for the RA configuration
compared to VVC/H.266. Wang et al. [29] aimed to enhance the visual quality of decoded
images by incorporating partitioning information with QP information, introducing a
three-branch network. The method described in [29] demonstrated a notable improvement
in perceptual visual quality, achieving a reduction of 6.5% in performance on the BD-BR
for the AI configuration compared to VVC/H.266. Meng et al. [30] presented a network
for enhancing visual quality, combining temporal motion and spatial information through
a fusion subnet and an enhancement subnet. The approach outlined in [30] showed a
significant improvement in perceptual visual quality, achieving a 0.29 dB enhancement
compared to VVC/H.266-decoded images.

2.3. Neural Network-Based Video Coding

Meanwhile, various applications have recently explored the advancement in neural
network (NN) technology. For instance, machine learning is leveraged in natural language
processing and computer vision to overcome performance barriers. This trend is also
making an impact on the development of video coding. The JVET is actively monitoring
the adoption of NN technology and has initiated research into Neural Network-based
Video Coding (NNVC) [31]. During the 130th MPEG meeting and 19th JVET meeting, two
independent Ad Hoc Groups (AHGs) related to NNVC were formed, both focusing on the
development of (1) an end-to-end (E2E) video coding framework and (2) the integration of
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NN in a hybrid video coding framework. Subsequently, these two AHGs were consolidated
under the JVET, with the merged group tasked with assessing the feasibility of NNVC for
potential coding gains compared to traditional video coding standards based on signal
processing technology. Currently, the development of in-loop filtering mainly using neural
networks is being actively discussed in the JVET. It should be noted that in JVET activities,
the main architecture of the network is based on a res-block CNN structure. Considering
the fact that video coding generally uses a residual-based encoding/decoding approach
that relies on accurate predictions about intra/interframes, the focus for improvement is
mainly on preserving the details expressed through content distribution without changing
the DC value. Thus, this approach, using the res-block basis CNN architecture, aligns well
with the overall architecture of video coding, proving effective for in-loop filtering.

3. CNN-Based Post-Filtering with Block Partitioning Information

In the previous section, we reviewed the filtering technologies employed in conven-
tional video coding standards and the recently emerged neural network-based filtering
methods. While the future outlook for neural network-based filtering technologies appears
promising, it is acknowledged that they still present challenges in terms of complexity.
Given this context, one might argue that a post-filter, capable of adaptively enhancing
image quality as needed, is more practical than an in-loop filter, which must be consistently
applied to sensor nodes requiring fast processing with low complexity. Therefore, this
paper proposes a CNN-based post-filter for EVC, aiming to enhance the image quality and
compression rates while maintaining the constraints of low power and low complexity.

3.1. Analysis of Coding Artifacts

The EVC Baseline profile employs a quadtree-based coding structure, allowing the
utilization of blocks up to 64 × 64, as illustrated in Figure 1. This method involves
determining the optimal block size through processing from 64 × 64 to 4 × 4 in the encoder
and transmitting this information to the decoder based on the quadtree. For example,
during the decoding process, if the split flag is 0, the coding block for the process is 64 × 64.
If the split flag is 1, four additional split flags are transmitted, indicating whether the
coding block should be divided into units of 32 × 32. This process continues until the
information is transmitted down to 4 × 4, a leaf node. The size of the coding block is
determined according to the characteristics of the content, and specifically, the coding block
is determined as a large block in homogeneous areas and a small block in delicate areas.
Nevertheless, while the EVC block decision process ensures optimal rate–distortion (RD)
performance, the absence of high-performance in-loop filtering in the EVC Baseline profile
leads to the generation of significant artifacts around the block.

 

Figure 1. Quadtree-based coding structure in EVC Baseline profile.

Errors in the video coding process include ringing artifacts, blocking artifacts, and
bending artifacts. Among these, the most noticeable artifact for video consumers is the
blocking artifact, primarily occurring at the block boundaries in block-based video coding.
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Specifically, in the EVC Baseline profile, the discontinuity at the block boundary is pro-
nounced, leading to a significant degradation in the image quality of the decoded image.
Figure 2 shows an example of the result of encoding by the EVC Baseline profile on QP = 37
to the RaceHorses sequence, clearly showing the prominent presence of blocking artifacts at
the block boundary. The problem is that the Baseline profile contains an excessive number
of such blocking artifacts. To address this concern, our research aims to improve the visual
quality of the decoded images produced by the EVC Baseline profile. This improvement is
accomplished by employing a block partitioning strategy within the context of CNN-based
post-filtering.

 

Figure 2. Example of coding artifacts detected in the area of the block boundary encoded with the
EVC Baseline profile at the RaceHorses sequence with QP = 37.

3.2. Architecture and Network

Figure 3 depicts the overall pipeline for applying the proposed filtering in this paper.
As depicted in the figure, in the case of this proposed post-filter, a filtering process is
performed in the out-loop with the decoded image of the EVC Baseline profile. The CNN-
based post-filter takes the decoded image and the block partitioning information extracted
during the decoding process as the input and then improves the image quality by passing
it through the trained CNN model.

Figure 3. The overall pipeline for applying the proposed post-filtering in the use case.

The architecture in our proposed method is an extension of [32]. In the previous work,
we utilized QP map information in the context of CNN-based post-filtering targeting the
VVC/H.266 standard. In this paper, we extended this concept by integrating the block
partitioning information into CNN-based post-filtering, specifically targeted for the EVC
Baseline profile, which is suitable for video data transmission in sensor nodes. Figure 4
outlines the comprehensive network design employed in our proposed method.
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Figure 4. Proposed CNN-based post-filtering with block partitioning information.

In the initial processing block, the decoded image from the EVC Baseline profile is
combined with a block partitioning map and framed. Both the decoded image from the
EVC Baseline profile and the block partitioning map operate based on YUV channels. After
concatenation, the number of input channels doubled. This package uses the decoded image
from the EVC Baseline profile as the target for improvement, and the block partitioning
map guides the areas with artifacts in the target decoded image.

The packaged video is then fed into the head block, comprising a 1 × 1 convolution
filter with 128 output channels and a Parametric Rectified Linear Unit (PReLU). The
primary function of the head block is to decrease the input dimensions for the subsequent
backbone blocks. In this head block, we configured 128 channels to generate multiple
feature representations, and the resulting 128 channels undergo the activation function (i.e.,
PReLU) to apply non-linearity to the output of the head block.

The features extracted from the head block are then directed to the backbone blocks,
which encompass multiple blocks focused on extracting features. In the fundamental
feature extraction block, a 3 × 3 convolution filter with 128 output channels and a PReLU
is employed. The 3 × 3 convolution filter plays a crucial role in extracting features from the
input and generating essential features for the subsequent layers. The 128 output channels
from the 3 × 3 convolution filter undergo the PReLU activation function, and this process
is repeated through the layers up to the final feature extraction block to ensure convergence
in the deeper layers of the network.

In the proposed method described in this paper, we utilized 16 feature blocks based
on empirical studies, but this number can be adjusted depending on the characteristics of
the input decoded image. To maintain network simplicity, we designed the backbone block
with a shape similar to the head block. While the head block primarily reduces the input
dimensions, the backbone block focuses on capturing residual features for training.

The tail block, responsible for processing the output channels from the backbone
blocks, integrates a 1 × 1 convolution filter with three output channels and employs the
Tanh activation function, replacing the PReLU. To achieve precise quality improvement, we
chose to update the residuals of the decoded image. As a result, the input decoded image
from the head block is connected to the output of the tail block through a skip connection.
The residual updates ensure that the primary values of the decoded image remain unaltered,
while enabling adjustments to the corrupted areas introduced during the encoding and
decoding processes, which represent the core objective of the proposed method.

3.3. Training

To create the training dataset, we utilized the BVI-DVC [33] dataset, comprised of
800 videos of varying resolutions ranging from 270 p to 2160 p, providing a diverse set of
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training data. Given that the BVI-DVC dataset is based on mp4 files, we converted these
files to the YUV420 format with 10-bit files for the training dataset using FFmpeg [34].
To streamline the dataset creation, we extracted 10 frames from each video, resulting in
a training dataset of 8000 frames. Ensuring uniform sizes for each Y, U, and V channel,
we upsampled the U and V channels to match the size of the Y channel. Following
the conversion, the original YUV format videos were processed through XEVE [35] and
XEVD [36] to produce decoded images in the YUV format. Subsequently, instead of utilizing
the entire image size for the training dataset, we cropped each image from the original
and decoded YUV images to a size of 256 × 256. We then randomly selected the cropped
images produced through horizontal and vertical flipping processes.

For the models in the proposed method, we generated five models corresponding
to the QP values. Standard groups, such as the MPEG and JVET, use a common test
condition (CTC) for experiments to evaluate suggested contributions, usually utilizing
four or five QP values. A QP value in a codec plays an important role in this process. An
increase in the QP results in higher distortion due to a coarser quantization step applied to
transform coefficients with a larger QP. This leads to the loss of high-frequency information
and a broader distribution range for the compensation value between the reconstructed
and original pixels. Conversely, a low QP value yields better visual quality but requires a
relatively high bitrate. Therefore, the QP number serves as a fundamental control parameter
determining the visual quality and bitrate of the video.

In the proposed method, the utilization of models dependent on the QP is a critical
aspect contributing to the generation of high-quality outputs. During the training process, we
generated five bitstreams and reconstructed YUV files, depending on the QP value, in accor-
dance with the experiments carried out by the JVET CTC [31]. Subsequently, the proposed
model was trained using these five bitstreams and reconstructed YUV files independently.
Additionally, we generated models based on different configurations as well. Acknowledging
that error characteristics vary with the QP and configuration, we developed a strategy to
customize each model to specific error characteristics. The separate models for each scenario
in the proposed approach are to ensure that the model is tailored to the specific requirements
of each scenario. For instance, the AI model is trained for image-centric applications, while
the LD model is designed for real-time broadcasting and streaming purposes. More detailed
information on the training process is available in Table 1.

Table 1. Details of the training environment.

Training dataset BVI-DVC

Videos 800 videos with 10 frames

Framework Pytorch 1.13.0

Epoch 50

Optimizer Adam optimizer with a learning rate of 10−4

Models Five models at QP22, 27, 32, 37, and 42 for AI
Five models at QP22, 27, 32, 37, and 42 for LD

Anchor encoder XEVE with Baseline profile setting

Anchor decoder XEVD with Baseline profile setting

Hardware AMD EPYC 7513 32-Core CPUs, 384 GB RAM (AMD, Santa Clara, CA,
USA), and an NVIDIA A6000 GPU (NVIDIA, Santa Clara, CA, USA).

4. Experimental Results and Discussion

To evaluate the effectiveness of the proposed method, the JVET CTC [37] sequences
were chosen for evaluation but were not included in the training dataset. These 19 sequences
were classified into classes A1, A2, B, C, and D based on their resolution with characteristics.
The test QP values for all configurations were 22, 27, 32, 37, and 42, corresponding to the
JVET CTC. Given the potential applications for the EVC Baseline profile with CNN-based
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post-filtering, which could be used for a low-complexity, low-power sense node for video
data transmission, we evaluated the proposed method using AI and LD configurations.
Table 2 contains detailed test sequences and conditions.

Table 2. Details of the testing environment.

Test dataset

Class A1(4K): Tango2, FoodMarket4, Campfire
Class A2(4K): CatRobot, DaylightRoad2, ParkRunning3
Class B(2K): MarketPlace, RitualDance, Cactus, BasketballDrive, BQTerrace
Class C(WVGA): BasketballDrill, BQMall, PartyScene, RaceHorses
Class D(WQVGA): BasketballPass, BQSquare, BlowingBubbles,
RaceHorses

Frames Full frames

Framework Pytorch

Models Five models at QP22, 27, 32, 37, and 42 for AI
Five models at QP22, 27, 32, 37, and 42 for LD

Anchor encoder XEVE with Baseline profile setting

Anchor decoder XEVD with Baseline profile setting

Hardware AMD EPYC 7513 32-Core CPUs, 384 GB RAM, and an NVIDIA
A6000 GPU.

4.1. Objective Testing Result

For the objective evaluation, the increase in the PSNR was measured at the same
bitrate of each sequence over all the QP values (i.e., BD-PSNR) [37], and the BD-BR was also
measured to check on the bitrate reduction at the same visual quality that is usually used
in standard experiments. Tables 3 and 4 present the experimental results of the proposed
method for the AI and LD configurations, comparing the decoded image of the EVC
Baseline profile to the enhanced image filtered by the CNN-based post-filter. The numbers
in the table represent the average bitrate and PSNR of the five QPs of each sequence in the
reference and proposed method.

Those metrics, the BD-PSNR and BD-BR, compare the improvement in the PSNR
and coding efficiency of different video codecs or encoding settings while taking into
consideration both the bitrate and video quality. The fundamental concept involved fitting
a cubic polynomial curve through five data points and subsequently deriving an expression
for the integral of the curve. The BD-PSNR allows for an objective assessment of PSNR
improvement by calculating the difference in the PSNR to achieve a comparable bitrate
between two codecs. In the BD-PSNR, a higher number indicates an improvement in the
PSNR over the anchor. Similarly, by measuring the difference in the bitrate needed to
attain an equivalent quality level between two distinct codecs, the BD-BR metric facilitates
an objective assessment of the compression efficiency. The lower BD-BR value signifies a
higher coding efficiency than the anchor at the same visual quality.

Table 3 shows the results of the proposed method compared to the reference in the
AI configuration. As shown in Table 3, the proposed method increases the PSNR at the
same bitrate by approximately 0.57 dB, 0.75 dB, and 0.95 dB for the Luma and Chroma
components in the AI configuration when compared to the post-filter pre-processed video.
The increased PSNR results in overall BD-BR reductions of 11.62%, 24.5%, and 28.79% for
the Luma and Chroma components, respectively, in the AI.

Table 4 shows the results of the proposed method compared to the reference in the
LD configuration. Similar results can be observed in the LD configuration. As shown in
the table, the proposed method increases the PSNR at the same bitrate by approximately
0.37 dB, 0.82 dB, and 0.95 dB for the Luma and Chroma components in the LD configuration
when compared to the post-filter pre-process video. The improved PSNR results in overall
BD-BR reductions of 10.91%, 31.22%, and 32.30% for the Luma and Chroma components,
respectively, in the LD.
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The objective test results show that the proposed method significantly improved the
visual quality of the decoded images of the EVC Baseline profile, regardless of the QP or
configuration. Notably, the proposed method outperforms the AI configuration in terms of
a low resolution and high QP values. The main reason for the significant improvements
can be attributed to areas where blocking artifacts noticeably appear. Blocks in the AI
configuration typically determine the number of coding blocks with a small coding block
size; increasing the number of coding blocks results in more blocking artifacts in the block
boundary area. This phenomenon can also be applied to the output of low-resolution
sequences. Because of the high amount of quantized values for en/decoding, the artifact
can be widely visible in coding blocks regardless of the coding block size or number. As a
result, the improvements at high QP sequences would be due to an improvement in visual
quality across the entire decoded image.

4.2. Subjective Testing Result

To assess the improvement in visual quality achieved by our proposed method, indi-
vidual visual quality evaluations were conducted. Figures 5 and 6 present a comparative
analysis of the visual quality for the AI and LD configurations between the decoded image
of the EVC Baseline profile and the proposed results. The visual quality assessment was
performed at a middle QP value as QP = 32. Figure 5 illustrates the comparison results for
PartyScene with the AI configuration. The filtered image by post-filtering reveals a supe-
rior visual quality compared to the video before post-filtering, aligning with the 0.49 dB
improvement observed in the objective evaluation. Notably, the figure of the proposed
method in Figure 5 shows a further reduction in artifacts, especially in the face of the
child and around the area of the boxes. Similar results are evident in the LD configuration.
Figure 6 shows the comparison results for BQTerrace with the LD configuration. In this
figure, the filtered image by the proposed method reveals more textural detail than the
reference, especially notable in the parasol, where texture lines are clearly observed in the
proposed filtered image.

   
(a) (b) (c) 

Figure 5. Visual quality comparison with AI configuration at PartyScene with #0 frame: (a) original
image, (b) decoded image, (c) proposed method.
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(a) (b) (c) 

Figure 6. Visual quality comparison with LD configuration at BQTerrace with #11 frame: (a) original
image, (b) decoded image, (c) proposed method.

4.3. Discussion

The experimental results of the proposed method showed both objective and subjec-
tive improvements in performance. In the objective results, the PSNR showed a significant
enhancement in both the AI and LD configurations. This PSNR improvement corresponds
to a reduced bitrate at the same image quality. Considering the historical fact of video
coding standards improving performance by about 50% every decade, achieving a 10%
enhancement with just one tool is quite impressive objectively. The subjective experimental
results also reveal a remarkable improvement in image quality. The proposed method
effectively addresses blocking artifacts, a specific target of enhancement, noticeably elimi-
nating them. Another noteworthy aspect in the subjective experiments is the preservation
of details in the original video that typically disappear due to coding artifacts. The pro-
posed method successfully restores these lost details, bringing the visual quality closer
to the original video. The significant improvement in visual quality is attributed to the
CNN-based post-filter guided by the partitioning map, which identifies areas affected
by blocking artifacts and guides the CNN model to enhance these areas in line with the
original video.

Nevertheless, it should be noted that implementing the proposed CNN-based method
involves considerable complexity, particularly when applied directly to devices within the
IoT. The decision to employ a post-filter for enhancing image quality, accounting for diverse
computing performances, aligns with the practical challenge of deploying CNN-based
filters across the spectrum of IoT devices. In this context, it is believed to be more pragmatic
to adaptively apply these filters as add-ons using post-filtering instead of in-loop filtering
when external resources are available, as illustrated in the proposed configuration.

4.4. Future Work

This paper introduced a CNN-based post-filtering method designed for the EVC
Baseline profile to address the requirements of IoT devices. While the proposed method is
specifically applied to the EVC Baseline profile, its foundational architecture, shared with
other video coding standards, suggests its potential applicability in the EVC Main profile
or diverse video codecs. The exploration of extending the method outlined in this paper to
other video codecs is considered an interesting topic for future research.

Additionally, it is noted that CNN remains an important role in enhancing the coding
performance in this paper. With NNVC in the JVET successfully employing CNN-based
deep-learning technology, a similar investigation into CNN-based filtering technology for
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the EVC Baseline profile has been conducted in the proposed method. Given the novelty of
the MPEG-5 EVC Baseline profile and the limited research on leveraging CNN as a post-
filter for this codec, exploring this aspect in conjunction with the latest machine-learning
techniques is also considered an interesting topic for future research.

5. Conclusions

In this paper, a post-filter utilizing a CNN with block partition information for the
EVC Baseline profile was proposed. As the demand for efficient video coding technology
intensifies, driven by the surge in video data from IoT devices, the EVC Baseline can
be considered as a promising solution designed to address the specific requirements of
processing IoT video data with low complexity. Nevertheless, enhancements are required
to address coding artifacts within the EVC Baseline profile. To tackle this issue, a post-
filter utilizing a CNN based on block partition information was introduced in this paper.
Through experimental results, both objective and subjective assessments showed significant
improvements in both the AI and LD configurations when compared to the pre-post-filter
video. The advancements achieved by the proposed method notably enhanced the visual
quality, especially in blocking artifacts at the boundaries. Thus, this proposed method is
expected to benefit networks of high-performance, low-complexity sensor nodes in IoT
ecosystems using the EVC Baseline profile.
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