
mdpi.com/journal/sensors

Special Issue Reprint

Sensors for Human Activity 
Recognition II

Edited by 

Hui Liu, Hugo Gamboa and Tanja Schultz 



Sensors for Human Activity
Recognition II





Sensors for Human Activity
Recognition II

Guest Editors

Hui Liu

Hugo Gamboa

Tanja Schultz

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Guest Editors

Hui Liu

Universität Bremen

Bremen

Germany

Hugo Gamboa

NOVA University of Lisbon

Lisbon

Portugal

Tanja Schultz

Universität Bremen

Bremen

Germany

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal Sensors (ISSN 1424-8220),

freely accessible at: https://www.mdpi.com/journal/sensors/special issues/671TM05M9J.

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-2803-6 (Hbk)

ISBN 978-3-7258-2804-3 (PDF)

https://doi.org/10.3390/books978-3-7258-2804-3

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Hui Liu, Hugo Gamboa and Tanja Schultz

Human Activity Recognition, Monitoring, and Analysis Facilitated by Novel and Widespread
Applications of Sensors
Reprinted from: Sensors 2024, 24, 5250, https://doi.org/10.3390/s24165250 . . . . . . . . . . . . 1

Peng Su and Dejiu Chen

Adopting Graph Neural Networks to Analyze Human–Object Interactions for Inferring
Activities of Daily Living
Reprinted from: Sensors 2024, 24, 2567, https://doi.org/10.3390/s24082567 . . . . . . . . . . . . 6

Nouf Abdullah Almujally, Danyal Khan, Naif Al Mudawi, Mohammed Alonazi,

Abdulwahab Alazeb, Asaad Algarni, et al.

Biosensor-Driven IoT Wearables for Accurate Body Motion Tracking and Localization
Reprinted from: Sensors 2024, 24, 3032, https://doi.org/10.3390/s24103032 . . . . . . . . . . . . 18

Xiankai Cheng, Benkun Bao, Weidong Cui, Shuai Liu, Jun Zhong, Liming Cai and Hongbo

Yang

Classification and Analysis of Human Body Movement Characteristics Associated with
Acrophobia Induced by Virtual Reality Scenes of Heights
Reprinted from: Sensors 2023, 23, 5482, https://doi.org/10.3390/s23125482 . . . . . . . . . . . . 44

Georgios Sopidis, Michael Haslgrübler and Alois Ferscha
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1. Introduction

The Special Issue Sensors for Human Activity Recognition has received a total of
30 submissions so far, and from these, this new edition will publish 10 academic articles.

Scientists in the fields of sensor applications and human activity recognition (HAR)
have once again collaborated for this shared academic endeavor. After the first edition of
this Special Issue [1] received significant attention, at the request of numerous authors and
readers, a second series was launched, for which we received submissions and chose many
excellent manuscripts based on a rigorous review, revision, and selection process. This edi-
tion brings together the hard work of 50 authors from 14 countries across three continents:
Oceania (Australia), Europe (France, Greece, Italy, Australia, Germany, Portugal, Slovenia,
Sweden, and the UK), and Asia (China, Pakistan, Saudi Arabia, and Thailand). Of the
51 authors who participated in the first edition [2], less than ten have once again presented
their valuable research achievements; the remaining authors are first-time participants.

From hardware to software, from pipelines to applications, from handcrafted features
to domain generalization, and from shallow learning to deep and even large language
models, the collected literature will provide readers in related fields with state-of-the-art
approaches to many challenges in HAR.

2. Overview of the Contributions

In the first edition, the literature was introduced in the order specified in the up-to-date
HAR research pipeline proposed in [3]. However, such an approach is not adopted in this
new edition because, on the one hand, most of the articles selected for this edition involve
the vast majority of the links in the pipeline, and some of them even followed the overall
HAR research pipeline to formulate their research workflow and plan; on the other hand,
the breadth and novelty of the articles’ research fields mean that each have a thoroughly
different perspective and reference significance. They will be introduced in alphabetical
order of the first letters of the titles; therefore, the order in which the articles appear in this
section is not based on their topic.

The subsection titles may not be the most comprehensive summary of the articles’
contributions, but they attempt to highlight their most prominent features and information
that sets them apart from other research.

2.1. Video-Based Human Activity Recognition (HAR) Using Graph Neural Networks

Research on the use of video as an external sensing method for HAR is increasing and
facilitates multiple daily application scenarios. Su and Chen, from Sweden, innovatively
used graph neural networks (GNNs) as their model, incorporating semantic content within
relational data rather than directly relying on high-dimensional data. They effectively
improved the recognition accuracy of activities of daily living (ADLs).

Sensors 2024, 24, 5250. https://doi.org/10.3390/s24165250 https://www.mdpi.com/journal/sensors1
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2.2. Wearable-Based HAR Plus Localization Using Inertial Plus GPS Data

As carriers of wearable sensors, mobile phones are receiving increasing attention in
HAR research [4,5]. As the real-time characteristics of wearable HAR systems face more
requirements and challenges [6], smartphones are bound to attract more study. However,
the vast majority of this research is based on unimodality, and in particular, accelerometers.
Research on superposing localization on HAR is on the rise. First, localization provides not
only an auxiliary reference for HAR but also additional motion information for the ending
system as well as the HAR results. The authors of this article incorporated GPS sensors into
the study of inertial data, expanding mobile phone-based HAR on the above two points:
(1) multimodal sensing; (2) superposing localization.

2.3. Human Body Movement Characteristics for Virtual Reality-Based Acrophobia Study

Virtual reality should be a potentially safe means of studying and treating acropho-
bia, as it effectively avoids the environmental risks of physical scenarios of simulated
acrophobia in the real world. The Chinese authors set up a series of motion tasks in a
virtual reality high-altitude scene to investigate human body movement characteristics.
The experimenters established a high-precision classification model, which confirmed that
there are differences in the movement patterns of people with and without acrophobia in a
high-altitude environment, facilitating quick screening of patients. In addition, a quantita-
tive analysis was presented to provide targeted training guidance to aviation personnel in
the future.

2.4. Human Activity Counting Using Deep Learning (DL) Maintaining Duration Flexibility

Activity counting is not widely studied but is a potentially useful area of research,
similar to the task of event-based automatic segmentation in HAR. In general, data mining
methods can be used to count activities in a black-box manner, such as feature-based
information retrieval using self-similarity matrices to discover change points and time-
series subsequence search to mark pattern reproducibility. Considering event duration
flexibility, dynamic time warping and its advanced variants can also be used to count
activities through subsequent queries. In this study, the author transformed the task
of activity counting from pure statistical analysis to deep learning and achieved robust
counting performance on weakly calibrated IMU data for hand-performed activities while
maintaining the flexibility of event duration.

2.5. Warship Commander Activities for Multisensory Mental Analysis

The authors of this study stated that human performance varies depending on the
psychological resources required to successfully complete tasks. In order to monitor
users’ cognitive resources in natural scenes, it is necessary not only to measure the needs
caused by the task itself, but also to consider the contextual and environmental impacts.
A multisource perception dataset of 18 participants was collected based on the warship
commander task. The sensor modalities involved include functional near-infrared spec-
troscopy (fNIRS), electroencephalography (EEG), electrocardiography (ECG), temperature,
respiration, and eye tracking, which are used to decode mental effort. The experimental
investigation utilized multimodal machine learning approaches that include feature engi-
neering, model optimization, and model selection steps, achieving a reliable classification
of mental effort states.

2.6. Complex HAR in the Context of Urban Environmental Exposure Research

This work links HAR with the important research field of participatory exposure
research, which transforms it into a novel and interesting interdisciplinary task. This type
of research usually uses an activity diary, while the authors innovatively used multiple
wearable and environmental sensors to perform complex activity recognition in urban
stressor exposure studies. At the same time, parameters such as particle concentration,
temperature, and humidity were also measured. The recognition experiments were con-
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ducted on three shallow learning models. Because the innovation in this research lies
in the application scenarios rather than the sensor types, sensor positions, data process-
ing, and machine learning algorithms, the experimental results are not as impressive for
less complex activities, and even worse for fuzzy activities such as resting and playing.
However, for more complex activities with clear definitions, such as smoking and cook-
ing, strong precision was demonstrated, and these activities are actually essential for the
research context.

2.7. Accelerometer-Based HAR Using Domain Generalization with Regularization Methods

The concept of domain generalization has been on the research agenda in many fields
of artificial intelligence, including HAR. Scientists are trying to find universal means to
smoothly connect excellent HAR models to diverse dataset types, including different sensor
types, wearable schemes, and data modalities, among others. For example, Motion Units
attempt to provide a generalizable, interpretable, and expandable methodology from a
human activity modeling perspective by finely distinguishing the stages of daily and
sports activities in order to efficiently model the same and different activities in multiple
datasets, respectively.

In the article included in this edition, the authors utilized regularization methods to
study the domain generalization of HAR and improved the performance of the model.
Interestingly, the article confirms again that in the case of sufficient background information,
handcrafted features still demonstrate their powerful advantages in HAR [7,8], which is
consistent with the conclusions drawn by the authors in the last edition.

It should be supplemented to readers who have conducted in-depth research in this
field that recently, studies have shown that designing high-level features based on activity
characteristics is a novel approach between traditional handcrafted feature extraction and
deep-learning-based automatic feature learning to further improve model interpretability
and recognition efficiency [9].

2.8. Finger Gesture-Based User Identification Using Radio Frequency Technology

Gesture analysis is also one of the hot topics closely related to HAR [10,11], including
finger gesture research. This work applied radio frequency (RF) technology to perceive
finger motions to perform the user identification task. The drawback of RF signals is not
only their low resolution [12] but also the associated user heterogeneity. To address these
challenges, the sensing sensitivity against RF signal interference has been significantly
improved through orthogonal signal interference, and subtle individual features have been
extracted from less distinct finger motions, such as air-writing digits, through velocity
distribution profiling. Under the few-shot model retraining framework based on the first
component reverse module, the experimenters efficiently and effectively achieved extensive
model robustness and performance in complex environments.

2.9. Associating Human Behavior, Manufacture, and Digital Interaction with Fabrication

The integration of coexisting interactive fabrication tools and a dynamic interactive
process for fabrication design is proposed in this article. Via virtual–physical integration
approaches, designers, manufacturers, and assemblers could be supported in digital fabri-
cation, comprehensively bringing Internet of Things technologies into the co-fabrication
space. Human behavior, physical manufacturing, and digital interaction, as the three
major components of the system, were focused on, and a seeing–moving–seeing thinking
framework was applied to convey the design results.

2.10. Facial Expression Understanding Using DL and Multimodal Large Language Models

Facial expressions are subtle changes that occur on the human face. External sensing [13–16]
and physiological signals [17] are increasingly facilitating this area. Similarly to the gesture
research introduced in Section 2.8, research on facial expressions is also strongly related to
HAR in scientific fields. A notable example is the world-renowned annual FG conference,
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i.e., the IEEE International Conference on Automatic Face and Gesture Recognition, which
clearly prioritizes face, gestures, and body activity computing, analysis, synthesis, and
recognition as an equally important direction of research, and which is also implied in their
study’s correlations and method cross-referencing.

As the only review included in this edition, this article provides a detailed introduction
to the current research status of deep learning and multimodal large language models
for facial expression recognition, presenting abundant reference materials for subsequent
peer researchers.

3. Conclusions and Acknowledgments

Based on the introduction in Section 2, we have extracted ten interesting individ-
ual words: graph, localization, acrophobia, counting, mental, exposure, generalization,
identification, fabrication, expression. At first glance, none of them seem to be conven-
tionally related to traditional “Sensors for HAR” research, but after careful considera-
tion, they certainly show some subtle connections to HAR which are worth investigating
more deeply. The ten articles in this edition present these discoveries in detail to readers
without reservation.

In addition to paying tribute to and expressing gratitude for the 50 outstanding con-
tributing scientists, we also want to thank all the diligent and responsible reviewers, as well
as MDPI and its editors, who have always supported this Special Issue in the background.

Author Contributions: Writing—original draft preparation, H.L.; writing—review and editing, H.L.
and H.G.; Conceptualization, T.S. All authors have read and agreed to the published version of
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.
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Scenario: A Feasibility Study on Multimodal Data Fusion and Classification. Sensors 2023,
23, 6546. https://doi.org/10.3390/s23146546.
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Adopting Graph Neural Networks to Analyze Human–Object
Interactions for Inferring Activities of Daily Living

Peng Su and Dejiu Chen *

Department of Engineering Design, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden; pensu@kth.se
* Correspondence: chendj@kth.se

Abstract: Human Activity Recognition (HAR) refers to a field that aims to identify human activities
by adopting multiple techniques. In this field, different applications, such as smart homes and
assistive robots, are introduced to support individuals in their Activities of Daily Living (ADL)
by analyzing data collected from various sensors. Apart from wearable sensors, the adoption of
camera frames to analyze and classify ADL has emerged as a promising trend for achieving the
identification and classification of ADL. To accomplish this, the existing approaches typically rely on
object classification with pose estimation using the image frames collected from cameras. Given the
existence of inherent correlations between human–object interactions and ADL, further efforts are
often needed to leverage these correlations for more effective and well justified decisions. To this end,
this work proposes a framework where Graph Neural Networks (GNN) are adopted to explicitly
analyze human–object interactions for more effectively recognizing daily activities. By automatically
encoding the correlations among various interactions detected through some collected relational data,
the framework infers the existence of different activities alongside their corresponding environmental
objects. As a case study, we use the Toyota Smart Home dataset to evaluate the proposed framework.
Compared with conventional feed-forward neural networks, the results demonstrate significantly
superior performance in identifying ADL, allowing for the classification of different daily activities
with an accuracy of 0.88. Furthermore, the incorporation of encoded information from relational data
enhances object-inference performance compared to the GNN without joint prediction, increasing
accuracy from 0.71 to 0.77.

Keywords: graph neural network; scene understanding; activities of daily living analysis

1. Introduction

Human Activity Recognition (HAR) involves multiple techniques to analyze sensory
data [1]. These sensory data constitute a basis for assessing and predicting human activities.
In the field of Human Activity Recognition (HAR), the applications of smart homes and
assistive robotic systems are paving the way to support individuals in performing their
Activities of Daily Living (ADL), therefore facilitating and monitoring their quality of life [2].
Various equipment collect operational conditions and human status by employing wearable
sensors like wrist-worn accelerometers [3] and non-wearable sensors like cameras [2,4]
to attain the recognition of ADL. Compared to wearable sensors, the adoption of camera
frames to analyze and classify Activities of Daily Living (ADL) presents a promising
solution due to the inherently multifarious features found in image data [5–7]. Most of
the approaches utilize image frames to detect ADL by combining pose estimation with
skeleton-based action recognition [8,9]. Methods based on Convolutional Neural Networks
(CNN) typically demand significant effort to identify key points and joints of human
bodies. As shown by [10,11], complex human motion capture systems can be used to
support annotating the key points through extensive data. With such data, a variety
of CNN architectures can be trained to estimate pose by formulating body joints and
extracting features [12,13]. Many Graph Neural Networks (GNN)-based solutions have

Sensors 2024, 24, 2567. https://doi.org/10.3390/s24082567 https://www.mdpi.com/journal/sensors6



Sensors 2024, 24, 2567

been considered to be support for alleviating the need for deep architectures to extract
the features from the images, as such solutions capture the key points and joints with
graph models [14–17]. Through the analysis of graph models representing skeleton-based
human bodies, GNN can be used to estimate the likelihood of human actions. However,
the uncertainties stemming from the probabilistic nature of neural networks [18,19] often
necessitate extensive training data with high sensory resolution for accurately identifying
the human body parts [8,9,13,14,16]. These requirements restrict the applicability of cameras
for recognizing daily activities in the context of assisting at-home scenarios.

To address this issue, we propose a framework where GNN are adopted to explicitly
analyze human–object interactions for inferring human activities of daily living alongside
the corresponding environmental objects. Specifically, the framework first extracts the
relational data on the interactions between humans and environmental objects from the
collected image frames. Next, GNN automatically encodes the correlations among the
interactions indicated by the respective relational data and, therefore, detects the presence
of activities and their environmental objects, leading to a more effective analysis of ADL.
We present the contribution of this paper as follows:

• Designing a conceptual framework to construct graph-based data by image frames to
infer the ADL within assisting at-home applications.

• Proposing a GNN architecture to jointly predict environmental objects and ADL by
comprehending the relational data.

• Enhancing the prediction accuracy of ADL and environmental objects by aggregating
the encoded information from the semantics of relational data.

The rest of the paper is organized as follows: Section 2 presents prior work related to
GNN with environmental scene understanding. Section 3 describes the proposed frame-
work. Section 4 presents a case study by verifying the proposed framework with the Toyota
Smart Home dataset. Section 5 presents the conclusion of the proposed framework and
discusses the future work.

2. Related Work

This section first provides background information on GNN. Next, we present previ-
ous work on GNN applied in the applications related to the topic. In addition, we exhibit
current efforts to apply image frames to relational data in scene understanding.

2.1. Background of GNN

GNN are specifically designed for processing non-Euclidean data, supporting the
analysis of graph-based data [20]. Such graph-based data structures usually consist of
nodes and edges to represent a set of objects and relations. Specifically, graphs can be
classified into heterogeneous graphs, which typically connect nodes with different types of
edges, and homogeneous graphs, where edges do not convey additional information [20].
A variety of GNN models are used to analyze these two graphs regarding their spatial and
temporal properties [21]. Spatial models support the transformation of graph-based data
into a spectrum space using Graph Laplacian [22,23] or encoding information from local
neighbors of specific nodes through aggregation operations [24] with Graph Convolutional
Networks (GCN). Building on the spatial models, the adoption of gate mechanisms from
RNN and LSTM is a common solution to enable temporal analysis of graph-based data [21].

2.2. GNN to Cope with HAR and ADL

Most GNN integrate different models to analyze human activities by synthesizing
spatial–temporal features. As mentioned earlier, some of them recognize the key points of
the human body by analyzing unstructured high-dimensional data such as video clips [9,25].
These high-dimensional data could either contain video clips with depth information as
3D data or solely rely on raw 2D images captured by cameras [26,27]. Depending on the
input data formats, these GNN can be roughly categorized into the following trends [9]:
(1) Spatio-temporal GCNs encode the key points of human bodies as nodes in graphs, while
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the evolution of human activities is usually interpreted as attributes of edges among the
nodes within the graphs [28]. This method usually requires the analysis of the graphs,
including all elements, such as edges and nodes, to identify human activities. However,
to accurately identify the key points of human bodies, such a method usually requires
high-resolution data or additional depth information. As an example in [29], the input
data requires annotating bones and joints within human bodies with depth information,
which decreases the generalization of the proposed framework. (2) Temporal-aware GCNs
focus on extracting contextual dependencies in sequential data by adopting and optimizing
attention mechanisms. This method typically analyzes contextual information across
video sequences with similar lengths. However, due to the diversity of activities within
video sequences, attention-based methods could become more time-consuming and less
efficient [30,31]. (3) Multi-stream GCN refers to an integration with different inputs for
identifying human activities. A typical example in [15,17] usually uses video clips and
skeleton-based data as two-stream input for GCN to extract features. This method aims to
identify human daily activities by aggregating image frames and incomplete skeleton-based
data, reducing the reliance on high-resolution and well-annotated datasets. While these
methods enhance the efficiency of detecting human activities, further efforts are needed
to understand the interaction between humans and environmental objects. Towards this
direction, we also investigate previous work on scene understanding through the utilization
of GNN.

2.3. Applying Relational Data to Scene Understanding

One common solution is to adopt GNN to analyze and understand scenes in image
frames. Such GNN support inferring common-sense relationships among objects within
scenes [32–34]. Therefore, a critical step in utilizing GNN for scene understanding is to
convert high-dimensional unstructured data (e.g., image frames) into relational context
within a graph-based structure. A basic process for constructing such graph-based data is to
extract objects within image frames as nodes. The edges between nodes represent pairwise
relations between the objects, depicting their spatial and temporal evolution. The semantics
of graph-based data are analyzed through the adoption of GCN. However, this imple-
mentation could be insufficient for understanding the task-specific scene. For example,
when a human detected to be overlapping with a motorcycle is represented in graph-based
data and analyzed by the GCN, their relationship is highly likely to be recognized as the
human riding the motorcycle in a public area. However, when this human is riding a mo-
torcycle without a helmet, these methods may not capture insights into unsafe behaviors.
Hence, combining task-specific scene understanding with certain prior knowledge aids in
achieving specific tasks. The presentation of such prior knowledge could be categorized as
follows: (1) Explicit rules refer to directly leveraging human knowledge imposed into the
graph-based data. In [35–37], objects from Bird’s-Eye Views (BEV) within dynamic driving
scenarios are converted into graph-based data to facilitate analysis by GCN, incorporating
specific traffic rules and common-sense knowledge. A typical human-understandable rule
is exemplified in [36], where the weighted edge within the node represents the relative
distance. GCN are used to analyze potential node pairs whose relative distance violates
specified rules. However, these methods usually require landmarks (e.g., static objects)
to annotate the relationships among objects, which limits their generalization for exten-
sion in ADL-related applications. (2) Encoded formal knowledge refers to the process of
interpreting human knowledge into machine-readable specifications. For example, in [38],
common-sense knowledge is converted into propositional logic to be incorporated with
GCN in the context of recommendation systems.

Inspired by the aforementioned methods of understanding scenes, we introduce a
GNN-based framework designed to comprehend scenarios within ADL-related applica-
tions. Unlike the conventional approach of relying solely on pose estimation for daily
activities prediction [15,17], our proposed method achieves joint prediction by mapping the
interactions, alleviating the need for skeleton-based data as part of the input. Compared
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with existing methods adopted in [35–37], the proposed method interprets common-sense
knowledge into temporal logic specifications without relying on landmarks for further
annotating the relationships.

3. Methodology

In this section, we present the framework shown in Figure 1 to infer activities of daily
living. We describe the main workflow of the proposed work as follows:

Figure 1. An example to present the overall process of extracting and constructing relational data.
The edge types #a and #b refer to interactions with different features extracted from temporal
specifications, as defined by Equation (3).

3.1. Relational Data Construction

We construct relational data for GNN analysis by extracting interactions from image
frames. Specifically, the relational data in terms of graph-based data consists of nodes and
edges. The objects in the video clips are extracted as nodes in the graph models, while the
interactions within these objects are represented as edges. Therefore, the following steps
outline the process to obtain these graph models:

3.1.1. Node Extraction

At this step, we obtain the node information required for creating graph-based data.
We define the nodes based on the information presented in image frames. Specifically, we
formulate Dai for a video clip collected from a scenario ai as follows:

Dai = {dai
1 , dai

2 , . . . , dai
n } (1)

where n refers to the number of frames in the video clip Dai . ai refers to a specific daily
activity obtaining a label ya ∈ Ta. Ta represents a set of labels for daily activities collected
in the dataset.

An object-detection module Mn(·) is used to identify the nodes of the graph model
by extracting the objects in any frames dai

k of Dai . We formulate the process as follows:

Oai
k = Mn(d

ai
k ) (2)

where Oai
k = {ok

1, ok
2, . . . , ok

j } refers to the collection containing the objects extracted from

the video clips. Each ok
i from Oai

k is a vector denoting the features of an object, such as
its bounding box sizes and object types. Each detected object ok

i obtains a label yo ∈ To
indicating the types of object. To represents a set of labels for environmental objects collected
in the dataset.

3.1.2. Edge Extraction

To represent the relationships within the video clip Dai , it is critical to analyze the
spatial and temporal properties of human and environmental objects. We label these re-
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lationships via the edges across nodes. As mentioned earlier, existing studies typically
employ data-driven approaches, such as LSTM, to extract relationships by encoding input
features from extensive graphs [35–37]. However, the duration periods within different
daily activities could exhibit extreme variety [17]. For example, drinking water in the
kitchen could be captured in a few image frames, while recognizing activities like washing
dishes in the same place may require more images. Therefore, using data-driven methods
could be inefficient for encoding an entire video clip. In contrast, the knowledge could
enhance the efficiency of data-driven methods in task-specific scenarios (e.g., human action
reasoning [16,32] and recommendation systems [39]) that involve possible known relation-
ships. Since activities of daily living typically involve well-known interactions between
humans and environmental objects, we propose a rule-based method for extracting the
relationships of nodes. Similar rule-based methods also can be found in [16,37]. Specifically,
we formulate the rule to identify the interactions by temporal logic specifications:

♦(φ ∪ (T ∧ (¬φ ∪ ρ))) (3)

where T refers to the time duration, and ρ ::= (Occmij ≥ n), where Occmij refers to the
number of appearances in the video clip Dai , n refers to the threshold of occurrence number.
φ ::= (mij ≥ τ) denotes the condition when the interaction rate mij for objects ok

i , ok
j in a

single frame k exceeds a threshold τ.
We formulate the interaction rate mij as Equation (4), which is identified by the Intersec-

tion over Union (IoU) areas between a pair of objects with non-maximal suppression [32,33].

mij =
I(xyk

i , xyk
j )

U(xyk
i , xyk

j )
(4)

where xyk
i , xyk

j refer to the bounding box sizes of ok
i , ok

j . These sizes are obtained by the

object-detection module Mn(·). I(xyk
i , xyk

j ) refers to the intersection area within the objects,

while U(xyk
i , xyk

j ) refers to the union area within the objects. Once mij satisfy the rule

defined by Equation (3), we denote the interaction as < oai
i , rai

i,j, oai
j >, where rij ∈ Mai .

Mai denotes a set of identified interactions within detected objects from the video clip Dai .
Furthermore, we denote all interaction pairs in the context of a graph Gai as follows [24]:

Gai = {(oai
i , rai

i,j, oai
j )} (5)

Additionally, each generated graph Gai obtains a label ya ∈ Ta indicating the type of
daily activities. Ta refers to a set of labels for the daily activities.

3.2. Joint Prediction via GNN

After the relational data construction phase, we utilize Message-Passing Neural Net-
works (MPNN) [40] to integrate GNN models for the joint prediction (see Figure 1).

3.2.1. Message-Passing Phase

This step involves the computation for aggregating and updating information from
the neighbors of a specific node along with the edges of shared relationships. Specifically,
we model the message aggregating process in the layer l as follows:

ml+1
i = ∑

j∈N(i)
Ml(hl

i , hl
j, ri,j) (6)

where i, j are the same as Equation (5), ri,j ∈ tai
i,j refers to the edge types connecting from

oai
i to oai

j . We denote hl
i , hl

j as the encoded information of the node oai
i , oai

j in layer l. This
encoded information is dependent on the configuration of the message-passing network.
As an example, hl

i , hl
j are equivalent to the features within oai

i and oai
j , respectively, when
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l = 1. N(i) refers to the set of all neighboring nodes of the node oai
i whose example is

shown in Figure 1. Ml(·) refers to message-passing functions, such as concatenation and
multiplication operations. Equation (6) shows that by computing all the neighboring nodes
N(i) in terms of message passing, ml+1

i merges the information from the features of both
the target node and their contextual nodes.

To further encode the aggregated relational data, the network propagates the edge
information within the neighbors by creating an edge (vertex) updating function Ul as follows:

hl+1
i = Ul(hl

i , ml+1
i ) (7)

where Ul refers to a composition of non-linear functions, such as a ReLU function and
recurrent units.

3.2.2. Readout Phase

In this step, the readout operation approximates feature vectors z for the graph-based
data Gai . We use multiple embedding z ∈ {z

ai
a , z

ai
o } to encode the information of activities

ŷa and environmental objects ŷo within the context of the graph Gai . The embedding vectors
z are formulated as follows:

z = R({hL
i |i ∈ Gai}) (8)

where R ∈ {Ra,Ro}. Ra and Ro refer to readout functions, configurable with various
operations, such as a linear layer and sum operation, to generate z

ai
a and z

ai
o , respectively. L

refers to the running steps in the message-passing phase.
Considering daily activities involving interactions between humans and objects, the

predicted object classes are often correlated with these activities. For instance, eating in a
kitchen is a typical daily activity commonly associated with specific environmental objects
such as bowls [17]. However, detecting bowls in the kitchen is insufficient to confirm that
humans are eating. Therefore, we propose an aggregation operation A(·) to enhance the
performance of predicting environmental objects by synthesizing embeddings z

ai
a and z

ai
o

as follows:
z

ai
c = A(zai

a , z
ai
o ) (9)

z
ai
c refers to an aggregated embedding to predict environmental objects. To this end, we

model the output layers as follows:

ŷ = F (ze) (10)

where ze ∈ {z
ai
c , z

ai
a }, F (·) refers to the configuration of output functions to predict activities

and objects, where F ∈ {Fa,Fo}, ŷ refers to the predicted results, where ŷ ∈ {ŷa, ŷo}. ŷa
denotes the predicted activities of daily living using the output function Fa with embedding
z

ai
a , while ŷo represents the predicted classes of environmental objects using the output

function Fo with the aggregated embedding z
ai
c .

4. Case Study

In this section, we elaborate on the implementation of the proposed framework. First,
we provide a brief introduction along with an explanation for selecting the Toyota Smart
Home dataset. Next, we present the configuration of relational data construction and
joint prediction based on this dataset. Finally, we present the results in comparison with
baseline methods.

4.1. Overview of Toyota Dataset

The Toyota Smart Home dataset [17] is a set of video clips collected from different
locations of an apartment whose Bird Eye View (BEV) is shown in Figure 2. The reasons for
selecting this dataset to evaluate the proposed methods are as follows: (1) It contains over
10,000 video clips captured from different locations in the apartment, providing diversity
to record various daily activities. (2) The resolution of video clips captured by cameras is
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640 × 480, challenging the identification of human body parts. In this case, understanding
between humans and environmental objects provides a promising solution for detecting
daily activities.

Figure 2. Bird Eye View (BEV) of the apartment. The numbers in the figure refer to the location
of the camera installation. 1©, 2©, and 3© refer to the camera locations used to capture video clips
of activities.

Specifically, we choose three camera views shown in Figure 2 recording from the dining
room, living room, and kitchen. To evaluate the proposed framework, we particularly
selected 8 daily activities, including eating meals, calling phones, and using laptops. These
activities commonly involve the interaction between humans and environmental objects.
To reduce the correlation between the daily activities and locations, these activities could
occur in multiple locations. Additionally, we select video clips that feature multiple types
of daily activities occurring in the same location, as well as the same activity taking place
in different locations. For example, a person could use a cell phone in both locations shown
in Figure 2 while also engaging in cooking and cleaning in the kitchen.

4.2. Constructing Relational Data

Existing deep neural networks designed for object detection could be employed in the
object-detection module Mn. In this paper, we adopt a pre-trained Fast-RCNN model to
detect objects in the video clips [41]. Every node consists of the types and bounding box
sizes from the detected objects. Moreover, we assign an ID to each detected object to prevent
duplicating the same types of objects occurring in the images. To extract relationships
from the video clips, we set the IoU threshold to τ = 0.4. If mij exceeds the threshold
until more than n = 20 instances or appears continuously for more than T = 0.2 length in
the image sequences throughout the entire video clips, we annotate that the relationships
between objects i and j are engaged in interaction. In particular, we annotate relationships
between people and environmental objects when constructing graph-based relational data.
Furthermore, we incorporate the location information of the video clips to enrich these
data and facilitate the GNN in aggregating node features.

As a result, we extract 33 different types of environmental objects. The following
daily activities are extracted from the dataset: cleaning, cooking, watching TV, eating
food, reading books, using the telephone, using a laptop, and drinking water. Except
for cleaning, cooking, and watching TV, the rest of the activities could occur in multiple
locations. As illustrated in Figure 3, we present the graph-based relational data of daily
activities extracted from various locations. From Figure 3, we note that even though the
person is cleaning and cooking in the same location, the edges in the graph for these two
daily activities still depict different connections. Specifically, when the person is cooking,
there is more interaction between the person and the bowls and the refrigerator. In contrast,
when the person is cleaning, the edges are more connected to the person, bottles, and sink.
Moreover, the remaining activities also manifest significant features within the context of
relational data. For instance, during eating, interactions typically occur with items such
as tables, chairs, and dishes. Similarly, when watching TV, interactions involve remotes
and humans.
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Figure 3. Samples of graph-based relational data generation based on the image frames.

4.3. Implementing Joint Prediction via GNN

We adopt two-layer message-passing networks whose layout is shown in Figure 1
to encode the information from input graphs. We use GraphSAGE in the first layer to
attain encoding the features of the edges and nodes [40,42]. Specifically, We use a mean
aggregator shown in Equation (11) as the message-passing function Ml .

ml+1
i =

⊕
j∈N(i)

(hl
i , hl

j, ri,j) (11)

where
⊕

refers to approximate element-wise mean value from the encoded information
hi, hj with their edge type ri,j.

We adopt graph convolutional operators (GCNConv) with Laplacian-based methods
based on [23] to attain message-passing functions in the embedding layers. Specifically, we
model the message function as follows:

ml+1
i = D

1
2 AD− 1

2 hlWl (12)

D refers to the degree matrix. A refers to the adjacency matrix. Wl refers to layer-wise
learnable parameters in the l-th layer [23,40].

This layer consists of two parallel GCNConv, which are used to separately generate
the embedding z

ai
a and z

ai
o from a video clip ai. We use tanh functions as the edge updating

function Ul in each layer. We propose an element-wise multiplication operation as A(·)
to aggregate the correlated features within z

ai
a , z

ai
o and generate z

ai
c . To this end, we use

SoftMax classifiers as the output layers to generate the likelihood of prediction results ŷa, ŷo
from z

ai
a , z

ai
c , respectively. Sequentially, we define the loss function L as follows:

L = Lc(ŷa, ya) + Lc(ŷo, yo) (13)

We train the parameters in the network by optimizing the loss function L, where
Lc refers to the cross-entropy between the predicted results and the ground-truth label.
To this end, we develop a GNN-based framework to classify the graph-based content ŷa
under-recognized nodes and edges and to predict nodes ŷo within a given graph. This
framework synthesizes human–object interaction to infer activities of daily living.

4.4. Ablation Study

The training platform is configured with an AMD Ryzen 7 5800 and NVIDIA RTX-
3070. During the training of the proposed methods, we collect all these daily activities,
with each activity containing 600 graphs. We configure the training ratio to 0.8, and the
training epoch is 800. We select multiple baseline methods to evaluate the proposed
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method. Specifically, we employ an MLP with two hidden layers to infer activities and
objects by solely analyzing the features of nodes. This MLP configuration is equivalent
to concatenating the intermediate embeddings from Fast-RCNN in Equation (2) to dense
layers. In addition, we introduce two GCN designs, GNN with Split Prediction (S-GNN)
and Attention-based GNN (Att-GNN), to evaluate their performance using the same dataset
as the comparison. S-GNN shares the same network topology in [28] to analyze spatial
properties of the graph-based data. This S-GNN adopts graph convolutional and dense
layers to concatenate the features within the nodes from graphs. Att-GNN identifies
correlations by modeling an energy function and attention distributions within spatial and
temporal properties, enabling the analysis of graph and node patterns. In our case, we
implement a similar network architecture used in [37], wherein a self-attention layer is
connected behind the graph convolutional layers by replacing the multiplication operation
A(·). As an ablation test, we additionally construct a Joint-Prediction Network (JP-GNN)
by removing the operation A(·) and directly predicting the data.

The final results are shown in Table 1, where we conclude that the proposed method
demonstrates significantly superior performance compared with MLP. Such results indicate
that the relationships within the nodes empower the capability to infer daily activities and
objects. Unlike GNN-based approaches, the inference process of MLP does not explicitly
incorporate semantic context within graphs, owing to the inherent properties of feed-
forward networks. Among GNN-based approaches trained for the same number of epochs,
our proposed method achieves higher accuracy compared to the attention-based method,
which also analyzes correlations within the embeddings. The possible reason for this
situation could be that the attention-based method requires more time to attain convergence
in the attention mechanism (e.g., learnable parameters in score functions). Compared with
the JP-GNN which does not include the aggregation function, our proposed method
shows significant improvement in object inference. These results indicate that the activity
classification embedding aids in inferring objects. Additionally, the embeddings of activities
and objects share the same layer, therefore affecting the convergence of the network. As a
result, the TOP-1 accuracy of activities classification of JP-GNN is lower than that of our
methods and the S-GNN which infers objects and activities separately. We also observe
that the TOP-1 accuracy of activity inference from the proposed method is slightly higher
than those of S-GNN. We believe that the reason could be the implementation of multiple
embeddings serving as regularization to optimize networks. Similar situations also could
be observed in prior studies, such as [22,39]. To further evaluate the performance of the
proposed method, we also utilize the F1-score in Equation (14) by leveraging the Confusion
Matrix in multi-classification cases [43,44].

Pr@yk
a =

TP@yk
a

TP@yk
a + FP@yk

a

Re@yk
a =

TP@yk
a

TP@yk
a + FN@yk

a

F1@yk
a =

2 × Re@yk
a × Pr@yk

a
Re@yk

a + Pr@yk
a

(14)

where TP@yk
a, TN@yk

a, FP@yk
a, FN@yk

a refer to True Positive, True Negative, False Positive,
and False Negative in the Confusion Matrix. Pr@yk

a, Re@yk
a, F1@yk

a refer to the precision,
recall and F1-Score at any activities ya with label k. Table 2 presents the overall results
with Equation (14). Compared to the other activities, the proposed method shows poorer
performance in identifying cooking and cleaning. This situation could be implied by the
presence of common interacting objects in these two activities. For instance, both cooking
and cleaning involve bowls and dishes in the same location. Additionally, the location
of the camera in the kitchen, as shown in Figure 2, may introduce some uncertainty in
efficiently detecting interactions between cookstoves and humans during cooking. This
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situation could be improved by utilizing image frames from multiple camera views with
different locations.

Table 1. TOP-1 Accuracy of Different Methods.

MLP
GNN-Based Methods

Our Method Att-GNN JP-GNN S-GNN

Activities Inference 0.49 0.88 0.82 0.83 0.86

Objects Inference 0.56 0.77 0.65 0.71 0.68

Table 2. Precision, Recall and F1-Score Comparison.

Reading Cooking Cleaning Eating Drinking
Using
Laptop

Calling
Wathcing

TV
Average

Precision 0.94 0.71 0.75 0.89 0.78 0.95 0.90 0.92 0.86

Recall 0.66 0.63 0.67 0.72 0.84 0.91 0.91 0.83 0.77

F1-Score 0.77 0.67 0.71 0.85 0.81 0.93 0.90 0.87 0.81

Additionally, we evaluate the time consumption of training each method. With the
same hyper-parameters (e.g., training epoch, batch sizes), S-GNN takes approximately
9 and 33 min to train the network to attain stable performance, respectively. Att-GNN
requires more than 25 min to train the joint prediction. The proposed method takes around
21 min. These results indicate that compared with baseline methods, the proposed method
spends less time to attain better performance.

5. Discussion and Future Work

This paper presents a framework to jointly infer the daily activities and environmental
objects. Specifically, compared to the baseline methods, our framework demonstrates
competitive performance in terms of TOP-1 accuracy and training efficiency. The proposed
method supports incorporating semantic content within relational data rather than directly
relying on high-dimensional data. This approach offers an explicit solution for inferring
human daily activities and environmental objects. Compared to prior work on GCN
related to the identification of human daily activities, the proposed method avoids the
need for skeleton-based data and reduces reliance on complex training data. However, the
proposed work relies on the semantics in the context of interaction between humans and
the environment to identify the objects and daily activities. Such a mechanism could be
inefficient in specific scenarios (e.g., entering and leaving).

Therefore, the following aspects could be future works: (1) Combining knowledge-
aware approaches (e.g., knowledge graphs) with embedding to enhance the explainability
and performance of the proposed networks. In contrast to the temporal logic constraints
imposed in the proposed framework, domain knowledge can be encoded within the GCN-
based framework to offer flexible constraints. (2) Utilizing recurrent units (e.g., LSTM)
to reduce the labeling data and improve the generalization by encoding the temporal
evolution. The proposed method can integrate various embeddings to encode and analyze
temporal correlations. This encoded evolution is expected to enhance the granularity of
daily activities, enabling the decomposition of activities (e.g., entering can be decomposed
into opening doors and walking). (3) Extending the proposed framework to diverse
datasets with complicated scenarios such as dynamic driving scenarios. In such scenarios,
environmental objects exhibit various correlated behaviors, posing challenges in modeling
and analyzing relational data in terms of their relationships and types. An extension of
the proposed work targeting heterogeneous graphs with weighted edges could address
these scenarios.
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Abstract: The domain of human locomotion identification through smartphone sensors is witnessing
rapid expansion within the realm of research. This domain boasts significant potential across various
sectors, including healthcare, sports, security systems, home automation, and real-time location
tracking. Despite the considerable volume of existing research, the greater portion of it has primarily
concentrated on locomotion activities. Comparatively less emphasis has been placed on the recogni-
tion of human localization patterns. In the current study, we introduce a system by facilitating the
recognition of both human physical and location-based patterns. This system utilizes the capabilities
of smartphone sensors to achieve its objectives. Our goal is to develop a system that can accurately
identify different human physical and localization activities, such as walking, running, jumping,
indoor, and outdoor activities. To achieve this, we perform preprocessing on the raw sensor data
using a Butterworth filter for inertial sensors and a Median Filter for Global Positioning System (GPS)
and then applying Hamming windowing techniques to segment the filtered data. We then extract
features from the raw inertial and GPS sensors and select relevant features using the variance thresh-
old feature selection method. The extrasensory dataset exhibits an imbalanced number of samples
for certain activities. To address this issue, the permutation-based data augmentation technique is
employed. The augmented features are optimized using the Yeo–Johnson power transformation
algorithm before being sent to a multi-layer perceptron for classification. We evaluate our system
using the K-fold cross-validation technique. The datasets used in this study are the Extrasensory and
Sussex Huawei Locomotion (SHL), which contain both physical and localization activities. Our ex-
periments demonstrate that our system achieves high accuracy with 96% and 94% over Extrasensory
and SHL in physical activities and 94% and 91% over Extrasensory and SHL in the location-based
activities, outperforming previous state-of-the-art methods in recognizing both types of activities.

Keywords: machine learning; segmentation; feature fusion; multi-layer perceptron; Yeo–Johnson

1. Introduction

Human locomotion activity recognition is a rapidly emerging field that analyzes
and classifies many types of physical activity and locomotion activity using smartphone
sensors [1]. Smartphones are an ideal platform for this research because they are widely
available, equipped with a variety of sensors [2], and are commonly carried by individuals.
In modern smartphones, a rich array of sensors including accelerometers, gyroscopes,

Sensors 2024, 24, 3032. https://doi.org/10.3390/s24103032 https://www.mdpi.com/journal/sensors18



Sensors 2024, 24, 3032

magnetometers, GPS, light sensors, barometers, and microphones, are utilized for com-
prehensive human locomotion activity recognition. These sensors allow for the accurate
detection and analysis of user movements and environmental interactions, enhancing the
performance of activity recognition systems. Human activity recognition using smartphone
sensors has a wide range of applications in various fields. Some of the most common appli-
cations include fitness and health monitoring, and elderly care (to monitor the movements
of elderly individuals and detect any signs of falls or other accidents [3]. This can provide
peace of mind for caregivers and family members and can also be used to trigger an alert if
assistance is needed), transportation, environmental monitoring, sports, and marketing
(to track and analyze the movements of individuals in different retail environments. This
information can be used to better understand consumer behavior and make decisions about
product placement and advertising), safety, and security [4].

Researchers have used different machine-learning approaches to recognize human
activity through smartphone sensors. These approaches have several advantages, including
the ability to recognize complex patterns and classify multiple activities simultaneously.
Additionally, machine learning algorithms can improve over time as they are fed more data,
making them more accurate and reliable [5,6]. However, there are also some disadvantages
to using machine learning for activity recognition. One of the main disadvantages is the
requirement for large amounts of labeled data to train the algorithms effectively. This can
be time-consuming and expensive, especially when dealing with numerous activities or
users. Another potential issue is the sensitivity of the algorithms to changes in sensor
placement or sensor data quality. If the sensor is not positioned correctly or the data are
noisy, the accuracy of the machine-learning algorithm can be significantly reduced [7].

The field of HAR is impeded by a variety of challenges, including sensor heterogeneity
across devices [8], which complicates the development of universal application. Differ-
ent smartphone models are equipped with various types of sensors that have differing
specifications and capabilities. This variation complicates the development of universal
applications that perform consistently across all devices. Another big challenge researchers
face is that of noise in the raw sensor data [9]. Smartphone sensors frequently capture
data contaminated with noise, which can significantly affect accuracy. The precision of
sensors varies widely between devices, often depending on the hardware quality and
sensor calibration. Additionally, variations in sensor sampling frequencies [10], mean that
the rate at which sensor sample data can fluctuate is influenced by other processes running
on the device. This inconsistency can lead to challenges in capturing the real-time, high-
resolution data necessary for precise motion recognition. Similarly, sensor characteristics
can change over time due to aging hardware or software updates, leading to a data drift.
This phenomenon can degrade the performance of motion recognition algorithms that
were trained on data from newer or different sensors. Continuous sensor data collection
is resource-intensive, consuming significant battery life and processing power. Managing
these resources efficiently while maintaining accurate motion detection is a major challenge.
Moreover, different users may carry their smartphones in various positions (e.g., pocket,
hand, or bag) [11], leading to vastly different data profiles. Algorithms must be robust
enough to handle these variations to ensure accurate motion recognition. Moving forward,
another challenge is the privacy of the user [12], collecting and analyzing sensor data in-
creases privacy concerns, as such data can inadvertently reveal sensitive information about
a user’s location and activities. Ensuring data privacy and security while collecting and
processing sensor data is critical. Lastly, the complexity of human activities and the limited
spatial coverage of sensors add to the difficulty of capturing a comprehensive range of mo-
tions, highlighting the multifaceted nature of these technological hurdles. In this study, we
developed a system that recognizes human movements along with location, and ultimately,
can provide valuable insights into an individual’s physical and localization activity levels.
We processed the raw sensor data for physical and location-based activity separately. In
the first stage, we denoised the data using the Butterworth filter [13] and Median filter [14].
In the second stage, we segmented the long sequence signal data into small pieces using
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the Hamming windowing technique [15]. After that, features were extracted. The Variance
threshold feature selection method [16,17] is used for feature selection, the selected feature
vectors are balanced using the data augmentation technique, and after that, the augmented
data are well optimized before classification using the Yeo–Johnson power transforma-
tion technique. Finally, physical and localization activity classification is performed by a
multi-layer perceptron (MLP). The contribution of this research is described below:

• Implemented separate denoising filters for inertial and GPS sensors, significantly
enhancing data cleanliness and accuracy.

• Developed a robust methodology for concurrent feature extraction from human loco-
motion and localization data, improving processing efficiency and reliability.

• Established dedicated processing streams for localization and locomotion activities,
allowing for more precise activity recognition by reducing computational interference.

• Applied a novel data augmentation technique to substantially increase the dataset size
of activity samples, enhancing the robustness and generalizability of the recognition
algorithms.

• Utilized an advanced feature optimization algorithm to adjust the feature vector distri-
bution towards normality, significantly improving the accuracy of activity recognition.

The research has been divided into the following sections: Section 2 discusses some
literature review in the field of human activity recognition, and then material and methods,
including noise removal, signal windowing and segmentation, feature extraction, feature
selection, and optimization presented in Section 3. Section 5 analyzes the computational
complexity of the proposed system, Section 6 presents a discussion and limitations. Finally,
in Section 7, the research study is concluded.

2. Related Work

Scientists have explored different approaches to studying how to analyze human
motion, both inside and outside [18]. These approaches can be divided into two main
groups: ones that depend on motion-based analysis and ones that depend on vision-based
analysis [19,20], whilst some are based on sensors-based methods that make use of sensors
such as accelerometers, gyroscopes, GPS, light, mic, magnetometers, mechanomyography,
ECG (electrocardiogram), EMG (electromyogram), and geomagnetic sensors. Vision-based
methods, on the other hand, use cameras such as Microsoft Kinect [21], Intel Real sense,
video cameras, and dynamic vision sensors [22].

The related work by Hsu et al. [23] involved a method of human activity recognition
that utilized a pair of wearable inertial sensors. On the subject’s wrist, one sensor was
mounted, while the other was mounted on the ankle. The collected sensor data, includ-
ing accelerations and angular velocities, was wirelessly sent to a central computer for
processing. Using a nonparametric weighted feature extraction algorithm and principal
component analysis, the system could differentiate between various activities. While the
method boasted the high points of portability and wireless data transmission, it was limited
by the use of only two sensors, potentially missing out on capturing the full spectrum of
human movement and requiring a dependable wireless connection to function effectively.
To improve upon this, the proposed solution in the research includes the deployment of
additional sensors on various body parts such as the torso, backpack, hand, and pocket to
provide a more comprehensive capture of human motion. Additionally, integrating sensors
embedded within smartphones eliminates the need for a continuous wireless connection,
facilitating the recognition of human activities and locations with enhanced reliability
and context awareness. In the research by A-Basset et al. [24], a novel approach to hu-
man activity recognition is introduced where sensor data is treated as visual information.
Their method considers human activity recognition as analogous to image classification,
converting sensor data into an RGB image format for processing. This enables the use
of multiscale hierarchical feature extraction and a channel-wise attention mechanism to
classify activities. The strength of this system lies in its innovative interpretation of sensor
data, which allows for the application of image classification techniques. However, its
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reliance on small datasets for training raises questions about how well it can be generalized
to real-world situations. The uncertainty regarding the computational and space com-
plexity also poses concerns about the system’s scalability. The proposed enhancement of
this system involves training on larger and more diverse datasets to enhance the system’s
capacity to generalize across various scenarios. By ensuring that the system is robust when
handling larger datasets, the solution seeks to maintain computational efficiency while
scaling up to more complex applications. Konak et al.’s [25] method for evaluating human
activity recognition performance employs accelerometer data, which is categorized into
three distinct classes based on motion, orientation, and rotation. The system utilizes these
categories either individually or in combination to assess activity recognition performance
and employs a variety of classification techniques, such as decision trees, naive Bayes, and
random forests. The primary limitation of this method is its training on a dataset derived
from only 10 subjects, raising concerns about its generalizability to a broader population.
Additionally, the study relies on common machine learning classifiers, which may not be
as effective as more advanced models. In contrast, the proposed model in the research
under discussion utilizes the Extrasensory and Huawei dataset, which includes data from
more subjects, thus providing a more robust and generalizable system that achieves state-
of-the-art performance. The research by Chetty et al. [26] presents an innovative data
analytic method for human activity recognition using smartphone inertial sensors, utilizing
machine learning classifiers like random forests, ensemble learning, and lazy learning. The
system distinguishes itself through its feature ranking process informed by information
theory, which optimizes for the most relevant features in activity recognition. Despite the
innovative approach, the system’s reliance on a single dataset for training is its primary
limitation. This constraint could hinder the model’s ability to generalize to unobserved
scenarios and potentially lead to degraded performance in real-world applications. The
proposed solution to these limitations involves a system trained on two benchmark datasets
that encompass a wider variety of activities. It includes the Extrasensory dataset, which is
notable for being collected in uncontrolled, real-world environments without restrictions
on participant behavior. This approach is intended to enhance the system’s reliability and
applicability to a broader range of real-life situations, thereby making it a more robust
solution for activity recognition.

The study by Ehtisham-ul-Haq et al. [27] introduced an innovative context recognition
framework that interprets human activity by leveraging physical activity recognition
(PAR) and learning patterns from various behavioral scenarios. Their system correlated
fourteen different behaviors, including phone positions with five daily living activities,
using random forest and other machine learning classifiers for performance evaluation.
The high points of this method are its use of human activity recognition to infer context
and its integration of additional information such as the subject’s location and secondary
activities. Nonetheless, the system’s primary reliance on accelerometer data makes it less
adept at complex activities, and it lacks more comprehensive data sources like GPS and
microphone inputs for enhanced location estimation. The proposed enhancement to this
framework includes a more integrated sensor approach, utilizing not only the smartphone’s
accelerometer, magnetometer, and gyroscope, but also the smartwatch’s accelerometer and
compass, along with smartphone GPS and microphone data. This integration promises
increased robustness and accuracy in activity recognition and localization.

2.1. Activity Recognition Using Inertial Sensors

Smartphone sensors are more popular for activity recognition. By using these sensors,
human activity can be easily detected. The most significant feature of the smartphone is its
portability, which means it can be carried easily in any place. In [28], different supervised
machine learning algorithms were used to classify human activity. The classification
precision was tested using 5-fold cross-validation. They achieved a good accuracy rate
for all classifiers. Ref. [29] presented trends in human activity recognition. The survey
discussed different solutions proposed for each phase in human activity classification, i.e.,
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preprocessing, windowing and segmentation, feature extraction, and classification. All the
solutions are analyzed, and the weaknesses and strengths are described. The paper also
presented how to evaluate the quality of a classifier. In [30], a new method was proposed for
recognizing human activity with multi-class SVM using integer parameters. The method
used in the research consumes less memory, processor time, and power consumption. The
authors in [31] analyzed the performance of the two classifiers, that is, KNN and clustered
KNN. The classifiers were evaluated with an online activity recognition system using
the Android operating system. The system supports online training and classification by
collecting data from one sensor called an accelerometer. They started with KNN and then
clustered it. The main rationale for utilizing clustered was to reduce the computational
complexity of KNN using clusters. The major goal of the article was to examine the
performance of algorithms on the phone with limited training data and memory.

2.2. Activity Recognition Using Computer Vision and Image Processing Techniques

As previously noted, identifying human activity via smartphone is a convenient
method because the smartphone is a portable device that can be readily carried anywhere.
The use of an RGB camera for activity recognition [32,33] has some limits and constraints.
To monitor a person’s activity with a camera, for example, the individual must be within
range of the camera’s eye. Nighttime (changing lighting conditions) is the second most
prevalent challenge that researchers face while tracking human activities through a webcam.
However, advancements in multimedia tools have mitigated these issues to some extent.
To recognize human movement from 2D/3D films and photos, many computer-vision and
image-processing algorithms have been utilized [34,35]. Researchers can recognize human
activities more easily by employing techniques such as segmentation [36], filtering [37],
saliency map detection [38], skeleton extraction [39], and so on. The work described
in [40] investigated human activity recognition using a depth camera. The camera first
acquired the skeleton data, and then several spatial and temporal features were retrieved.
The CNN (Convolutional Neural Network) algorithm was employed to classify the ac-
tivities. The issue with highlighting an in-depth camera is that noise can occur, leading
to misclassification.

3. Proposed System Methodology

Data were collected from various raw sensors. The data were denoised in the first
step using the Butterworth filter [40]. The Hamming windowing and segmentation ap-
proach [41] is then applied. During the third step, we worked with the data from the
inertial and GPS sensors. We picked out various features for each of them. To determine
the significance of features, we employed the Variance Threshold for feature selection. We
noted that certain activities in the Extrasensory dataset had a limited number of samples.
To address this issue, we applied data augmentation and subsequently optimized using
the Yeo–Johnson power transformation technique before conducting activity recognition.
Finally, the activity recognition was performed by the MLP. The flow diagram of the
suggested human physical and localization activity model is shown in Figure 1.
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Figure 1. The proposed system architecture.

3.1. Signal Denoising

There is a risk of noise during data collection. Noise is the undesirable portion of data
that we do not need to process. Unwanted data processing lengthens and complicates
model training. It also reduces the learning model’s performance. Therefore, noise removal
is crucial in data preprocessing. For this reason, we employed a noise-removal filter.

To get rid of the unwanted disruptions that can happen when collecting data, we
applied a low-pass Butterworth filter [42–45] to the inertial sensors. This filter is used in
signal processing and aims to make the frequency response as even as possible in the part
where it passes signals through. That is why it is called the maximally flat magnitude filter.
Equation (1) depicts the general frequency response of the Butterworth filter.

H(jw) =
1√

1 +
(

ω
ωc

)2n
(1)

where n is the order of the filter, ω is the passband frequency (also known as the operational
frequency), ωc is the filter’s cut-off frequency, and j is the imaginary unit, used to denote
the complex frequency. In Figure 2, the original vs. filtered signal for the inertial sensor
is shown. Similarly, for processing our GPS data and to enhance its clarity, we used
the median filter [46–49] a robust nonlinear digital filtering technique. The median filter
operates by moving a sliding window across each data point in our GPS sequence. Within
this window, the data values are arranged in ascending order. The central value, or median,
of this sorted list, is then used to replace the current data point. Mathematically, for a given
signal, S, and a window of size n, at each point xi in the signal, we consider:

W = {(xi − (n − 1))/2 − (xi − (n − 1))/(2 + 1), . . . .(xi + (n − 1))/(2 − 1) + (xi + (n − 1))/2} (2)

The median of this set W becomes the new value at xi in the filtered signal. In our
experiment on the GPS data, we selected a window size of 3. The selected window size
ensures that the filter assesses each data point while considering itself and one neighbor-
ing point on either side. This particular size strikes a balance by being large enough to
effectively suppress noise, and yet, be compact enough to preserve important details and
transitions in the GPS data. But it is important to note that there was not enough noise in
the GPS signal as inertial sensors.
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Figure 2. The accelerometer x axis noisy vs. filtered signal.

3.2. Signal Windowing and Segmentation

Segmentation is an important concept used in signal processing. The concept of
windowing and segmentation [50–54] involves dividing signals into smaller windows
instead of processing complete or long sequences. The advantage of windowing is that it
allows for easier data processing, reducing complexity and processing time. This makes it
more manageable for machine learning or deep learning models to process. We turned to
the Hamming windows technique to modulate the signal. Hamming windows, known for
their capacity to reduce spectral leakage [55] during frequency domain operations like the
Fourier Transform, effectively tackle the side effects that often arise during such analyses.
The principle behind the Hamming window is a simple point-wise multiplication of the
signal with the window function, which curtails the signal values at both the start and end
of a segment. This modulation ensures a minimized side lobe in the frequency response,
which is crucial for accurate spectral analyses.

Mathematically, the Hamming window is represented in Equation (3).

W(n) = 0.54 − 0.46cos
(

2πn
N − 1

)
(3)

where w(n) represents the window function, N signifies the total points in the window, and
n spans from 0 to N − 1. We utilized a window size of 5 s [56,57]. After generating the
Hamming window values based on the aforementioned formula, we multiplied each point
in our data segments with its corresponding Hamming value. In Figure 3, we visualized
the results through distinct line plots, with each of the five windows represented in a
unique color.
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Figure 3. Hamming windows first 3 windows for accelerometer data.

3.3. Feature Extraction

In this section, we listed all the feature lists used in the study specifically aligned with
each type of sensor data. We extract separate features for the physical and localization
activities. The subsequent section presents each section comprehensively.

3.3.1. Feature Extraction for Physical Activity

For physical recognition, we processed data from three sensors: magnetometer, gyro-
scope, and accelerometer [58–61]. Various statistical features were extracted.

Shannon Entropy

Shannon entropy is first extracted, as seen in Figure 4. Shannon entropy [62,63]
measures the unpredictability [64–66] or randomness of a signal. Mathematically, it can be
calculated as:

H(P) = −∑i pilog2(pi) (4)

where pi represents the probability of occurrence of the different outcomes.

Linear Prediction Cepstral Coefficients (LPCCs)

The extraction of LPCCs from accelerometer signals [67], the primary step involves
the application of linear predictive analysis (LPA). Given s(n) as the accelerometer signal, it
can be modeled by the relation

s(n) = ∑p
k=1 aks(n − k) + e(n) (5)

where p represents the order of the linear prediction, ak are the linear prediction coeffi-
cients, and e(n) denotes the prediction error. The linear prediction coefficients, ak, derived
by minimizing the prediction’s mean square error, were commonly achieved using the
Levinson–Durbin algorithm. After obtaining these coefficients, the transition to cepstral
coefficients begins. This conversion entails taking the inverse Fourier transform of the
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logarithm of the signal’s power spectrum. Specifically, the cepstral coefficients are deter-
mined through a recurrence relation, where the initial coefficient is the logarithm of the
zeroth linear prediction coefficient, and subsequent coefficients are derived using the linear
prediction coefficients and previous cepstral coefficients. The LPCCs calculated for different
activities can be seen in Figure 4.

Figure 4. LPCCs are calculated for different activities.

Skewness

In the context of signal processing for accelerometer data, skewness is a crucial statisti-
cal measure that captures the asymmetry [68–70] of the signal distribution. To compute
the skewness of an accelerometer signal s(n), where n represents the discrete time index,
we first calculate the mean (μ) and standard deviation (σ) of the signal. Following this, the
skewness (S) is obtained using the formula.

S =
1
X ∑X

x=1

(
s(x)− μ

σ

)3
(6)

Here, X is the total number of data points in the signal. The formula essentially
quantifies the degree to which the signal’s distribution deviates from a normal distribution.
A skewness value of zero signifies a symmetric distribution. Positive skewness indicates
a distribution with an asymmetric tail extending towards more positive values, while
negative skewness indicates a tail extending towards more negative values. Computing the
skewness of an accelerometer signal can provide insights into the distribution characteristics
of the signal. Figure 5 show the skewness for different locomotion activities.
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Figure 5. Skewness is calculated for different activities.

Kurtosis

Kurtosis is a statistical measure used to describe the distribution of observed data
around the mean. Specifically, it quantifies the probability distribution of a real-valued
random variable. In the context of signals, kurtosis [71] can be particularly informative as
it can capture the sharpness of the distribution’s peak and the heaviness of its tails. This, in
turn, can indicate the occurrence of abrupt or high-magnitude changes in the acceleration
data, which may be characteristic of specific activities or movements. The formula for
kurtosis is given by:

Kurtosis (x) = F

[(
x − μ

σ

)4
]
− 3 (7)

where F denotes the expected value, μ is the mean, and σ is the standard deviation. A
kurtosis value greater than zero indicates that the distribution has heavier tails and a
sharper peak compared to a normal distribution. Conversely, a value that is less than zero
suggests that the distribution has lighter tails. In our analysis, we extracted the kurtosis
from the accelerometer signals corresponding to different activities. This enabled us to
discern and distinguish the nature of signal distributions for activities such as cooking,
sitting, or cleaning. For instance, a sudden or vigorous activity might exhibit a distribution
with a higher kurtosis value, indicating rapid changes in acceleration, whereas more steady
or uniform activities might have a lower kurtosis value. In Figure 6, the kurtosis plot
is presented.
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Figure 6. Kurtosis is calculated for different activities.

3.3.2. Feature Extraction for Localization Activity

For localization activities, we try to capture the complicated movement patterns
by extracting a set of distinct features. We extracted the Total Distance, Average Speed,
Maximum Displacement, Direction Change features, heading angles, skewness, kurtosis,
step detection, and MFCCs [72].

Mel-Frequency Cepstral Coefficients (MFCCs)

In human localization using audio signals, MFCCs [73] play a pivotal role in deter-
mining the direction, proximity, and potential movement patterns. We begin with the
pre-emphasis of the signal s(n), accentuate its high frequencies, a step mathematically
represented as:

ś = s(n)− α × s(n − 1) (8)

where α is commonly set to 0.97. This amplification aids in emphasizing the subtle changes
in audio signals that may result from human movement or orientation changes. The signal
is then split into overlapping frames to analyze temporal variations, and each frame is
windowed, often using the Hamming window, to mitigate spectral leakage. The short-
time Fourier transform (STFT) offers a frequency domain representation of each frame,
and its squared magnitude delivers the power spectrum. As human auditory perception
is nonlinear, this spectrum is translated to the Mel scale using triangular filters. This
transformation is governed by:

m = 2595 × log10

(
1 +

f
700

)
(9)

The mathematics above ensures that the extracted features align with human auditory
perception. The logarithm of this Mel spectrum undergoes the Discrete Cosine Transform
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(DCT), producing the MFCCs. By retaining only the initial coefficients, one captures the
essential spectral shape, pivotal for discerning sound characteristics that aid in human
localization. The MFCCs calculated for localization activities can be seen in Figure 7.

 
(a) (b) 

Figure 7. MFCCs are calculated for (a) indoor and (b) outdoor activity.

Step Detection

To understand the steps [74–78] from accelerometer data, we harness the magnitude
of the acceleration vector. This magnitude is essentially a scalar representation of the
combined accelerations in the x, y, and z axes. Mathematically, given the acceleration values
ax, ay, az in the respective axes, the magnitude M is calculated using the formula:

M =
√

a2
x + a2

y + a2
z (10)

Once we have the magnitude of acceleration, the periodic nature of indoor or outdoor
environments produces recognizable peaks in this signal. Each peak can correspond to a
step, and by detecting these peaks, we can estimate the number of steps taken. The peak
detection is anchored on identifying local maxima in the magnitude signal that stand out
from their surroundings. The step detected [79] for indoor and outdoor activities can be
seen in Figure 8.

  
(a) (b) 

Figure 8. Steps detected for (a) indoor and (b) outdoor activity.
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Heading Angle

The heading angle [80,81] plays a pivotal role in determining the orientation or direc-
tion a person is facing. As humans navigate through environments, whether they are indoor
spaces like shopping malls or outdoor terrains like city streets, understanding their heading
is crucial for applications ranging from pedestrian navigation systems to augmented reality.
The heading angle, often termed the azimuth, denotes the angle between the North direc-
tion (assuming a geomagnetic North) and the projection of the magnetometer’s reading
onto the ground plane. Mathematically, the heading angle θ can be calculated using the
magnetic field components A and B as:

θ = arctan2(B, A) (11)

where arctan2 is the two-argument arctangent function, ensuring the angle [82] lies in the
correct quadrant and providing a result in the range [−180, 180]. The heading for indoor
and outdoor activity can be seen in Figure 9.

 
(a) (b) 

Figure 9. Heading angle calculated for (a) indoor and (b) outdoor activity.

3.4. Feature Selection Using Variance Threshold

In this experiment, we applied the variance threshold method [83–86] to the feature
vector. The goal was to identify and retain only those features that showed significant
variation across all features, ensuring that our dataset was as informative as possible. The
feature mean, standard deviation, and total distance, exhibited a relatively low variance
and were therefore removed, while all other features were retained. Variance Threshold
is a simple filter-based feature selection method. It removes all features whose variance
across all samples does not meet a specific threshold. The rationale behind this approach
is straightforward: features that do not vary much within themselves are less likely to be
informative. The variance of a feature X is given by:

Var(x) =
1
n

Σn
i=1(xi − x)2 (12)

where: n is the number of samples; xi is the value of the feature X for the ith sample; and x is
the mean value of the feature X across all samples. In the context of the variance threshold
method, we compare the variance of each feature against a pre-defined threshold. Features
with variances below this threshold are considered non-informative and are removed. The
algorithm working of the variance threshold is shown in Algorithm 1.
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Algorithm 1: Variance Threshold Feature Selection

1: Input: Dataset D with m features: f 1, f 2, . . ., fm.
Variance threshold value τ.
k: Desired number of features to select.
2: Output:
A subset of features whose variance is above
3: Initialization:

Create an empty list R to store the retained features
4: Feature Selection:

For each feature fi in (D). Compute the variance vi of fi
Add fi to the list R
end for

5: Return:

Return the list R as the subset of features with variance above τ.
6: End

3.5. Feature Optimization via Yeo–Johnson Power Transformation

We perform feature optimization before moving on to classification. In simple terms,
feature optimization makes the feature clearer to the model. We opted to optimize the
specified feature vector after selecting relevant features for the model using the Variance
Threshold. For this purpose, we utilized the Yeo–Johnson power transformation method.
The Yeo–Johnson power transformation [87] is a statistical method used to transform non-
normally distributed data into a normal or Gaussian-like distribution. This method is
highly valuable in machine learning, as many algorithms assume that the data follow a
normal distribution. By transforming the data using the Yeo–Johnson method, we can
enhance the performance of these algorithms and make the results more reliable. The
method uses a power transformation to map the original data into a new distribution,
with the power being a parameter that is estimated from the data. Mathematically, the
Yeo–Johnson optimization is given in Equation (13).

ψ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(x+1)λ−1

λ λ �= 0 and x ≥ 0,
ln(x + 1), λ = 0 and x ≥ 0,

−(−x+1)2−λ−1)
2−λ , λ �= 2 and x < 0,

ln(−x + 1), λ = 2 and x < 0

(13)

3.6. Data Augmentation

In addressing the challenge of class imbalance in datasets, the permutation tech-
nique [88–90] emerges as a novel data augmentation method, which is particularly effective
for sequential or time-series data. At its core, the permutation technique involves dividing a
signal into multiple non-overlapping segments and then rearranging these segments in var-
ious orders to generate new samples. For example, given a time-series signal divided into
three segments, A, B, and C, permutations can produce sequences such as B–A–C, C–B–A,
or even B–C–A. This method capitalizes on the inherent structure and patterns within
the data, creating diverse samples that maintain the original signal’s fundamental charac-
teristics. When applied to the minority class in an imbalanced dataset, the permutation
technique can artificially expand the number of samples, thus bridging the gap between
the majority and minority classes. This ensures that the learning algorithm is exposed to
a broader spectrum of data variations from the minority class, potentially enhancing its
ability to generalize and reducing the bias towards the majority class.

3.7. Proposed Multi-Layer Perceptron Architecture

Our proposed MLP architecture [91–94] was designed to handle the complexity and
variability inherent in the sensor data collected. With the manual feature extraction and
subsequent optimization processes we employed, our MLP [95–98] was strategically tasked
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with classifying a refined feature vector that encapsulates essential information for robust
activity recognition.

3.7.1. Architecture Overview

• Input Layer: The size of the input layer directly corresponds to the number of features
extracted and optimized from the sensor data. In our study, the dimensionality of the
input layer was adjusted based on the dataset being processed, aligning it with the
feature vector size derived after optimization.

• Hidden Layers: We include three hidden layers. The first and second hidden layers
are each composed of 64 neurons, while the third hidden layer contains 32 neurons.
We utilized the ReLU (rectified linear unit) activation function across these layers
to introduce necessary nonlinearity into the model, which is crucial for learning the
complex patterns present in the activity data.

• Output Layer: The size of the output layer varies with the dataset; it comprises
nine neurons for the Extrasensory dataset and 10 neurons for the Huawei dataset,
each representing the number of activity classes within these datasets. The softmax
activation function is employed in the output layer to provide a probability distribution
over the predicted activity classes, facilitating accurate activity classification.

3.7.2. Training Process

We trained the MLP using a backpropagation algorithm with a stochastic gradient
descent optimizer [99,100]. A categorical cross-entropy [101–103] loss function was em-
ployed, suitable for the multi-class classification challenges presented by our datasets. The
key elements of our training process included:

• Batch Size: We processed 32 samples per batch, optimizing the computational effi-
ciency without sacrificing the ability to learn complex patterns.

• Epochs: The network was trained for up to 100 epochs. To combat overfitting, we
implemented early stopping, which halted training if the validation loss did not
improve for 10 consecutive epochs.

• Validation Split: To ensure robust model evaluation and tuning, 20% of our training
data were set aside as a validation set. This allowed us to monitor the model’s
performance and make necessary adjustments to the hyperparameters in real-time.

3.7.3. Model Application and Evaluation

Following the rigorous training phase, we applied the trained MLP model to the test
sets from both the Extrasensory and Huawei datasets to critically assess their effectiveness
in real-world scenarios. Our evaluation strategy was comprehensive, focusing on a range
of metrics that provide the accuracy and robustness of the models.

• Performance Metrics: We evaluated the model based on accuracy, precision, recall, and
the F1-score [104,105]. These metrics were calculated to assess the overall effectiveness
of the models in correctly classifying the activities.

• Confusion matrix: For each dataset, a confusion matrix was generated to visually
represent the performance of the model across all activity classes. The confusion
matrix [106,107] helps in identifying not only the instances of correct predictions
but also the types of errors made by the model, such as false positives and false
negatives. This detailed view allows us to specific activities where the model may
require further tuning.

• ROC Curves: We also plotted receiver operating characteristic (ROC) curves for each
class within the datasets. The ROC curves provide a graphical representation of the
trade-off between the true positive rate and the false positive rate at various threshold
settings. The area under the ROC curve (AUC) was calculated to quantify the model’s
ability to discriminate between the classes under study.

32



Sensors 2024, 24, 3032

4. Experimental Setup

Evaluation of the proposed system was performed on a benchmark dataset: the
Extrasensory dataset and Sussex Huawei locomotion (SHL) datasets. The experiment was
performed on a Mac 2017 core i5 with 16 GB of RAM, a 3.2 GHz processor, and 512 GB
of SSD.

4.1. Datasets Descriptions

In this section, we delve into the specifics of each dataset, highlighting their diversity
and how they reflect real-world scenarios.

4.1.1. The Extrasensory Dataset

The Extrasensory dataset was compiled through the utilization of a variety of sensors,
including inertial, GPS, compass, and audio sensors. The data collection process was
facilitated by an extra-sensory smartphone app, which aimed to monitor human physical
and locomotion activities. The dataset comprises information derived from 36 individual
users, with each user contributing a substantial number of instances. Data were collected
through both Android and iPhone smartphones, and the dataset includes a comprehensive
set of 116 labels for user-reported activities. The details of the dataset are also given
in Table 1.

Table 1. Description of the extrasensory dataset.

Sensors Signal Type Sampling Rate (Hz) Duration (sec)
Number of
Recordings

Accelerometer Acceleration 32 2 308,306
Gyroscope Angular Velocity 32 2 291,883

Magnetometer Magnetic Field 32 2 282,527
Location Latitude, Longitude 1 2 273,737

4.1.2. The Sussex Huawei Dataset (SHL)

The Sussex Huawei Locomotion (SHL) dataset [108] is a comprehensive collection
of data designed to support research in mobile sensing, particularly for the recognition
of human activities and modes of transportation. It was created through a collaboration
between the University of Sussex and Huawei Technologies Co., Ltd. The dataset consists of
recordings from smartphone sensors, such as accelerometers, gyroscopes, magnetometers,
and barometers. These sensors capture movements and environmental characteristics as
people go about various activities, including walking, running, cycling, and traveling by
car, bus, or train. Participants carried smartphones equipped with these sensors went
through a series of movements in real-world settings, ensuring that the data was as realistic
and varied as possible.

4.2. First Experiment: Confusion Matrix

We perform the activity classification using MLP. To evaluate the performance, we
plotted the confusion matrix. In simple words, a confusion matrix is a table used for classi-
fication problems. It is used to see where the model made an error. The confusion matrices
calculated for physical and localization activity for both datasets are shown in Tables 2–5.

Table 2. Confusion matrix over the Extrasensory dataset for physical activity.

Obj. Classes Sitting Eating Cooking Bicycle

sitting 0.95 0.01 0.03 0.00

eating 0.00 1.00 0.00 0.00

cooking 0.00 0.00 1.00 0.00

bicycle 0.03 0.00 0.00 0.97

Mean Accuracy = 96.61%
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Table 3. Confusion matrix over the Extrasensory dataset for localization activity.

Obj. Classes Indoors Outdoors Home School Car

Indoors 1.00 0.00 0.00 0.00 0.00

Outdoors 0.00 1.00 0.00 0.00 0.00

Home 0.05 0.06 0.80 0.02 0.07

School 0.02 0.02 0.03 0.90 0.03

Car 0.00 0.00 0.00 0.00 1.00

Mean Accuracy = 94.28%

Table 4. Confusion matrix over the SHL dataset for physical activity.

Obj. Classes Sit Walk Stand Run

Sit 0.96 0.00 0.04 0.00

Walk 0.03 0.97 0.00 0.00

Stand 0.03 0.03 0.92 0.02

Run 0.02 0.01 0.03 0.94

Mean Accuracy = 94.75%

Table 5. Confusion matrix over the SHL dataset for localization activity.

Obj. Classes Indoor Outdoor In Train In Car In Bus In Subway

Indoor 0.93 0.00 0.05 0.02 0.00 0.00

Outdoor 0.00 0.95 0.04 0.00 0.00 0.01

In train 0.01 0.03 0.89 0.02 0.05 0.00

In car 0.00 0.01 0.01 0.94 0.00 0.04

In bus 0.03 0.02 0.07 0.00 0.88 0.00

In subway 0.03 0.00 0.03 0.00 0.02 0.92

Mean Accuracy = 91.83%

4.3. Second Experiment: Precision, Recall, and F1-Score

In this experiment, we evaluated our system by plotting precision, recall, and f1-score
for individual activity. In Tables 6 and 7, the evaluation for physical and localization activity
can be seen.

Table 6. Precision, recall, and F1-score over physical activity.

Classes Extrasensory SHL

Activities Precision Recall F1-Score Precision Recall F1-Score

Sitting 0.95 1.00 0.92 - - -
Eating 1.00 0.80 0.90 - - -

Cooking 1.00 0.89 0.95 - - -
Bicycle 0.97 0.95 0.96 - - -

Sit - - - 0.92 0.96 0.94
Stand - - - 0.94 0.92 0.93

Walking - - - 0.96 0.97 0.97
Run - - - 0.95 0.94 0.92
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Table 7. Precision, recall, and F1-score over localization activity.

Classes Extrasensory SHL

Activities Precision Recall F1-Score Precision Recall F1-Score

Indoors 1.00 0.94 0.91 - - -
Outdoors 1.00 1.00 0.95 - - -

School 0.84 1.00 0.92 - - -
Home 0.90 0.85 0.88 - - -

Car 1.00 1.00 1.00 - - -
Indoor - - - 0.93 0.93 0.93

Outdoor - - - 0.94 0.95 0.94
In train - - - 0.82 0.89 0.85
In car - - - 0.96 0.94 0.95

In subway - - - 0.95 0.92 0.93
In bus - - - 0.93 0.88 0.90

4.4. Third Experiment: Receiver Operating Characteristics (ROC Curve)

To further assess the performance and robustness of our system, we employed the
ROC curve, a well-established graphical tool that illustrates the diagnostic ability of a
classification system. The ROC curve visualizes the trade-offs between the true positive
rate (sensitivity) and false positive rate (1-specificity) across various threshold settings. The
area under the ROC curve (AUC) serves as a single scalar value summarizing the overall
performance of the classifier. A model with perfect discriminatory power has an AUC of 1,
while a model with no discriminatory power (akin to random guessing) has an AUC of 0.5.
In Figures 10 and 11 the Roc curve is plotted.

 
(a) (b) 

Figure 10. ROC curves: (a) physical and (b) localization activity over extrasensory dataset.

(a) (b) 

Figure 11. ROC curves: (a) physical and (b) localization activity over the SHL dataset.
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4.5. Fourth Experiment: Comparison with Other Techniques

In the last experiment, the proposed system is compared with the state-of-the-art
techniques. Table 8 shows the comparison of the proposed model with other state of the
art techniques.

Table 8. Comparison of proposed MLP with other methods.

Method Accuracy %

Extrasensory SHL

Vaizman et al. [109] 0.83 -
Vaizman et al. [98] 0.83 -
Asim et al. [108] 0.87 -
Sharma et al. [110] - 0.92
Akbari et al. [111] - 0.92
Brimacombe et al. [112] - 0.79
Proposed 0.94 0.91

5. Computational Analysis

The comparative analysis of time consumption and memory usage between the Ex-
trasensory and Huawei datasets reveals significant differences in efficiency and resource
demands. These disparities suggest diverse applicability in real-world scenarios. Specif-
ically, the extrasensory dataset, with its higher time and memory requirements, is best
suited for environments where detailed and complex activity recognition is crucial, and
computational resources are less constrained, such as in clinical or controlled research
settings. On the other hand, the Huawei dataset, with its lower resource demands, demon-
strates suitability for consumer electronics and real-time applications, such as smartphones
and wearable devices that require efficient processing capabilities. The findings show
that, while the system exhibits robust performance, its deployment in resource-limited
environments such as low-end smartphones or IoT devices might be challenging. Thus, our
system is ideal for scenarios where precision and detailed activity recognition outweigh the
need for low resource consumption, and less so for applications requiring minimal power
usage and rapid processing. Figure 12 shows the analysis visually.

Figure 12. Time and memory usage analysis of the proposed system.
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6. Discussion and Limitations

Our research has successfully demonstrated the utilization of smartphone and smart-
watch sensors to accurately identify human movements and locations. By methodically
cleaning, segmenting, and extracting features from raw sensor data, and employing a
multi-layer perceptron for classification, our system achieved high accuracy rates. Specif-
ically, we observed success rates of 96% and 94% for identifying physical activities over
the extrasensory and SHL datasets, respectively, and 94% (Extrasensory) and 91% (SHL)
for localization activities. These results represent a significant improvement over many
existing methods and underscore the potential of our approach in applications where
precise activity recognition is crucial.

• Detailed Analysis of Key Findings

The high accuracy rates in physical activity recognition demonstrate the efficacy of
the proposed system’s feature extraction and machine learning workflow. For localization
activities, although slightly lower, the success rates are still competitive, emphasizing our
system’s capability in varied contexts. These findings suggest that our approach could be
particularly beneficial in health monitoring, urban navigation, and other IoT applications
that demand reliable human activity and location data.

While our proposed system offers a promising approach for biosensor-driven IoT
wearables in human motion tracking and localization, we recognize several inherent
challenges that could impact its broader application and effectiveness. These limitations, if
not addressed, may curtail the system’s reliability and versatility in diverse environments:

• GPS limitations: The GPS technology we utilize, while generally effective, can suffer
from significant inaccuracies in environments such as urban canyons or indoors due to
signal blockage and multipath interference. These environmental constraints can affect
the system’s ability to precisely track and localize activities, particularly in complex
urban settings.

• Data diversity and completeness: The dataset employed for training our system,
though extensive, does not encompass the entire spectrum of human activities, partic-
ularly those that are irregular or occur less frequently. This limitation could reduce
the model’s ability to generalize to activities not represented in the training phase,
potentially impacting its applicability in varied real-world scenarios.

• Performance across different hardware: Our system was primarily tested and op-
timized on a specific computational setup. When considering deployment across
diverse real-world devices such as smartphones, smartwatches, or other IoT wear-
ables, variations in processing power, storage capacity, and sensor accuracy must
be addressed. The heterogeneity of these devices could result in inconsistent per-
formance, with higher-end devices potentially delivering more accurate results than
lower-end counterparts.

• Scalability and real-time processing: Scaling our system to handle real-time data
processing across multiple devices simultaneously presents another significant chal-
lenge. The computational demands of processing large volumes of sensor data in real
time necessitate not only robust algorithms but also hardware capable of efficiently
supporting these operations.

• Privacy and security concerns: As with any system handling sensitive personal data,
ensuring privacy and security is paramount. Our current model must incorporate
more advanced encryption methods and privacy-preserving techniques to safeguard
user data against potential breaches or unauthorized access.

7. Conclusions and Future Work

In this study, we successfully developed a comprehensive system capable of effectively
recognizing human physical activities and localization through a combination of inertial
and GPS sensor data. Our system initiates with denoising the raw signals using Butterworth
and median filters to reduce noise while preserving essential signal characteristics. This
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is followed by the Hamming windowing technique and segmentation processes that
structure the data for more effective analysis. Subsequently, we extract and optimize
statistical features using the variance threshold selection method and Yeo–Johnson power
transformation, respectively, significantly enhancing the relevance and performance of
these features in the activity classification process. The final classification of activities is
executed through a multilayer perceptron (MLP), which provides a robust model capable
of predicting various types of human movements and positions. The findings from our
research offer significant implications for the development of smarter, more responsive
wearable and mobile technology. By showcasing high accuracy in activity recognition, our
system lays a foundation for improved user interaction and monitoring across various
applications, spanning from personal fitness tracking to patient health monitoring in
medical settings. The successful integration of sensor data for precise activity and location
recognition paves the way for more intuitive and context-aware devices.

Moving forward, several enhancements and extensions are proposed to further enrich
the capabilities of our system and its applicability to a broader range of real-world scenarios.
First, integrating additional types of sensor data, such as environmental and biometric
sensors, could provide a more complex understanding of the context and improve the
accuracy and reliability of activity recognition. Second, developing adaptive algorithms
that can dynamically adjust to changes in the environment or user behavior would make
the system more responsive and versatile. Additionally, scalability improvements are
crucial, and future work will focus on optimizing the system to more efficiently handle
larger, more diverse datasets. This will involve refining our algorithms to manage increased
computational demands while enhancing performance. Another important direction for
future research involves enhancing the real-time processing capabilities of our system,
which is essential for applications requiring immediate responses, such as emergency
services or live health monitoring. Furthermore, given the sensitive nature of the data
involved in our system, advancing data privacy and security measures will be a priority.
We plan to explore sophisticated encryption methods and privacy-preserving data analytics
to ensure the security and privacy of user data.
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Abstract: Acrophobia (fear of heights), a prevalent psychological disorder, elicits profound fear
and evokes a range of adverse physiological responses in individuals when exposed to heights,
which will lead to a very dangerous state for people in actual heights. In this paper, we explore
the behavioral influences in terms of movements in people confronted with virtual reality scenes
of extreme heights and develop an acrophobia classification model based on human movement
characteristics. To this end, we used wireless miniaturized inertial navigation sensors (WMINS)
network to obtain the information of limb movements in the virtual environment. Based on these
data, we constructed a series of data feature processing processes, proposed a system model for the
classification of acrophobia and non-acrophobia based on human motion feature analysis, and realized
the classification recognition of acrophobia and non-acrophobia through the designed integrated
learning model. The final accuracy of acrophobia dichotomous classification based on limb motion
information reached 94.64%, which has higher accuracy and efficiency compared with other existing
research models. Overall, our study demonstrates a strong correlation between people’s mental state
during fear of heights and their limb movements at that time.

Keywords: acrophobia; virtual reality; body movement; machine learning; sensor network

1. Introduction

Human movement data are a valuable information resource. A number of studies have
now revealed that human movement information can be used to assess the quality of human
health and to classify and identify people’s daily activities. For example, inertial sensors
were attached to the legs of infants to obtain motion acceleration data and angular velocity
data to explore the relationship between motion complexity and developmental outcomes
in infants at high familial risk for autism spectrum disorder (ASD) (HR infants) [1], and to
develop a classification model between HR infants and normal infants. Statistical analysis
of motor acceleration signals at the wrist and ankle in children with normal development
and children with attention deficit hyperactivity disorder (ADHD) [2] suggests that the two
have different statistical properties of behavior. With the help of motion data from inertial
guidance sensors at the human wrist and ankle, or from the accelerometer data that comes
with the mobile phone, direct analysis is performed and a classification model [3] is built
to enable activity recognition [4,5] for everyday activities such as walking, running, and
walking up and down stairs [6], as well as more in-depth gait analysis [7], fall detection [8],
and biomedical information detection [9,10]. Further, six-axis inertial sensors [11] are
attached to the head, left forearm and right forearm, as well as the left lower tibiae and
right lower tibiae, to obtain motion information data and reproduce the human posture
through a data network.
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At the same time, human movement data in a particular environment can also be
used to stimulate and reflect certain current psychological states, such as fear of heights.
Acrophobia (fear of heights) is a psychological disorder that refers to an extreme fear and
discomfort of heights, even to the point of pathology. People with acrophobia usually feel
the fear of losing their balance or falling from high places—even when they are in the
safety of a fence or protective barrier—and experience a strong sense of unease and fear.
Research indicates that individuals with acrophobia exhibit significant differences in their
motor patterns compared to those without acrophobia. Specifically, acrophobia patients
tend to exhibit more cautious, defensive postures such as hunching and neck retraction
in high places [12,13], while individuals without acrophobia stand or walk more relaxed,
confident, and naturally. With the development of society, more and more skyscrapers have
emerged [14], creating more opportunities for people to experience high altitude. However,
for individuals suffering from acrophobia, this can be dangerous.

Therefore, it is important to assess and analyze individuals with acrophobia to help
them understand the extent of their fear and receive personalized treatment when con-
sidered necessary. Currently, the mainstream assessment and treatment methods for acro-
phobia are cognitive-behavioral therapy and virtual reality exposure therapy. Cognitive-
behavioral therapy involves face-to-face communication between a psychotherapist and
the patient for assessment and treatment [15,16]. While this approach is effective, the
one-to-one communication sessions will not only lead to overall inefficiency, but will mean
that a large number of psychotherapists will be needed at a social level to focus on the
problem; therefore, this approach will be too dependent on the professionalism of the
therapist. The second method is virtual reality exposure therapy (VRET) [17], a behavioral
therapy used for anxiety disorders, including phobias. Patients immerse themselves in a
computer-generated virtual environment that can provide various scenarios that are diffi-
cult to create in the real world [18]. The environment allows for controlled safety measures
that can be manipulated to meet the individual’s needs. As early as 1990, virtual reality
technology was used in research related to phobias [19]. In recent years, more research
on acrophobia has been based on virtual reality technology. Due to the expanded visual
range, high-altitude environments tend to cause vertigo and affect people’s control of their
posture [20–22]. It has been found that, from a power spectrum perspective, an increase in
height in the virtual environment typically reduces low frequency (<0.5 Hz) body sway
and increases oscillations in high frequency (>1 Hz) body sway in the frequency range
0–3 Hz, and this change is more pronounced in people who are truly afraid of heights [23].
In addition, the amplitude of body sway decreases with increasing virtual height [24]. This
means that people who are afraid of heights and those who are not afraid of heights will
have a different sense of motion pattern in an aerial environment.

In conclusion, we hope to investigate automated models for classifying and analyzing
acrophobia by examining the movement patterns of acrophobic and non-acrophobic people
at height, so that people can quickly and correctly recognize their acrophobic state. To
achieve this, we designed common daily movement tasks (walking, ball retrieval, ball
release, jumping) in a virtual reality altitude environment and used a set of easy-to-use,
miniaturized wireless sparse sensor devices designed to acquire movement information
at joints to characterize the movement of acrophobic and non-acrophobic humans un-
der high-altitude conditions, and proposed a set of human movement-based acrophobic
and non-acrophobic classification algorithm models, which can achieve efficient and fast
classification.

2. Materials and Methods

This section centers on the wireless miniaturized inertial navigation sensor (WMINS)
and the development of immersive virtual reality scenario, alongside the associated data
collection and analysis classification process.
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2.1. Wireless Miniaturized Inertial Navigation Sensor (WMINS)

As shown in Figure 1a, we have developed the WMINS sensor with a housing size
of only 23.5 × 18.6 × 9.6 mm and a bare board size of 16.75 × 11.22 mm, the size of a
common dollar coin in the market. The weight is amazingly light at 3.8 g, equivalent to
a common dollar coin in the market. Due to its lightweight and small size, the WMINS
sensor can be attached to any part of the human body to collect motion information without
being restricted by joints. The sensor comprises two major functional modules—a motion
collection module for collecting the motion information of the attached object and a data
transmission module that uses low-power Bluetooth technology for data transmission and
reception [25]. Furthermore, by designing a Bluetooth one-to-four wireless sensor network,
four WMINS sensors can independently collect and transmit data simultaneously, thus
constructing the motion collection system for key body parts. Figure 1b illustrates the
specific usage mode of the WMINS sensor in human motion detection and collection. Four
WMINS sensors are attached to the upper part of the left and right wrists and lower tibiae
of the human body, which are key parts of the limbs, and data acquisition and transmission
occur at 30 Hz. Therefore, motion information is obtained through these four joint parts.
As the WMINS sensor is remarkably small, it does not require an additional touch switch,
as the touch switch is already integrated on the back to save space. With just a light touch
of two fingers, WMINS can be effortlessly turned on. Once the sensor is activated, the top
left corner of the back will flash blue light at 1 Hz. When the sensor is connected to the
receiving device, WMINS will display a steady blue light. Figure 1c showcases the charging
mode of WMINS. We have designed a charging box that can accommodate multiple sensors
for charging. To minimize the size of WMINS, we have adopted a spring probe charging
mode, which incorporates a retractable spring into each charging port that matches the
WMINS in Figure 1a. In order to reduce the weight of WMINS, a small circular magnet is
placed externally on the portable charging box to fix the sensor in the charging state. The
left image in Figure 1c shows the sensor in an uncharged state, and the right image shows
the sensor in charging state, with WMINS displaying a yellow light.

Figure 1. Introduction to wireless miniaturized inertial navigation sensor (WMINS). (a) Outline
dimensions of the sensor and the introduction of the whole set of equipment. (b) Schematic diagram
of the attachment position of the sensor to the human body. (c) External magnetic charging of the
sensor. (i) No charging state, (ii), charging state.
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To collect motion data, we attached four WMINS sensors to specific joints on the
human body, as illustrated in Figure 1b. The motion data were collected at a sampling
frequency of 30 Hz for a duration of 100 s. The three-axis acceleration and three-axis angular
velocity data collected from the left wrist and left lower tibia are displayed in Figure 2.

Figure 2. The collected motion data of the left wrist and left lower tibia.

2.2. VR Scene and Task Introduction

We designed a set of virtual scenarios to induce controllable states of acrophobia and
explore two different movement states, acrophobia and non-acrophobia, in response to
acrophobia. The scenarios were created using VR scenes and WMINS, and were centered
around the psychological stress response of individuals to acrophobia environments or
events in the real world. Our goal was to create a repeatable and easily operated stress
induction paradigm in the laboratory environment, which would elicit subjects’ stress
response under natural conditions while recording their movement state. The virtual scene
mode was comprised of three main parts: the VR scenario, physical tactile stimulation, and
data acquisition. The VR scenario consisted of a 60-story high-rise building designed in VR.
Subjects were transported to the high-altitude scenario via an elevator and encountered a
virtual wooden board extending outward from the high-altitude elevator. At the end of the
wooden board, a high-altitude diving platform was designed, with four basketball hoops
placed in front, back, left, and right of the wooden board, respectively. Additionally, two
virtual tennis balls were designed in the rectangular basket at the end of the wooden board.

In addition to building a high-altitude scene in the virtual environment, we also
constructed a real scene that was 25 cm above the ground, based on the virtual coordinates.
The size of the plank and basketball hoops in the real scene were designed to be in a 1:1
ratio with the virtual scene, ensuring that the subjects could fully experience the VR scene
in the helmet while maintaining safety during the experiment. To increase the realism of
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the VR scene, we incorporated a vibration module in the elevator area in the physical touch
stimulation part. When the subject stood in the elevator area, the vibration module was
activated when the elevator in the VR scene ascended. This allowed the subject to feel
the vibration of the elevator ascending from the soles of their feet, simulating the ascent
and descent of the high-altitude elevator in the virtual environment. Figure 3b shows the
left and right swaying of the plank in the experimental scene. In the VR scene, the plank
swayed left and right, so we designed a plank rotation mode with the same amplitude and
a rotation frequency of 0.5 Hz. The maximum inclination angle of the plank was 16 degrees.
When subjects walked on the plank, they could feel the realism of the VR scene. Two
handles were placed in the end basket of the plank to simulate the tennis ball models in
the VR scene. Throughout the experiment, the subject’s motion data were collected in
real-time by the WMINS sensors and obtained and saved in real-time by connecting to
the VR scene. Overall, our experimental design allowed us to create highly realistic and
immersive experience for the subjects while collecting valuable data on their psychological
and physiological responses in high-altitude environments and related anxiety disorders.

Figure 3. Introduction to the VR experiment scene. (a) The connection between the VR environment
and the actual scene construction. (b) The plank turns left and right.

2.3. Acrophobia Scale

We utilized two assessment scales, the virtual reality scene quality assessment (VRSQ) [26]
and the height interpretation questionnaire (HIQ) [27], to evaluate the subjects’ response to spe-
cific VR environments and their level of acrophobia, respectively. The VRSQ is a questionnaire
that evaluates the level of dizziness and discomfort experienced by users in VR environments.
It was developed in 2002 by Kenneth J. Miller et al. We also comprised 16 questions that
describe the onset time, severity, and various possible symptoms of dizziness and discom-
fort. These questions aid evaluators in determining the degree of discomfort experienced by
users in VR environments. The HIQ, developed jointly by American psychologists Gary R.
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Parker and Robert G. Stumpf, is a questionnaire consisting of 32 questions designed to assess
acrophobia. The questionnaire is primarily divided into three parts: high-altitude experiences,
high-altitude imagination, and behavioral avoidance. Subjects answer these questions based
on their actual experiences, and the answer is selected on a five-level scale. By statistically
analyzing the responses of subjects, an overall HIQ score can be obtained, with a higher score
indicating a more severe level of acrophobia. The full HIQ scale has a Cronbach alpha of
0.87, meaning that the HIQ is a reliable instrument for measuring height interpretation. In
summary, the HIQ is a valid psychometric tool with high reliability and validity that can help
clinicians and psychologists understand the level of individual acrophobia and provide a
valuable reference for the treatment and prevention of acrophobia.

2.4. Experimental Design

The procedure was as follows: prior to the test, the subjects complete the VRSQ and
HIQ scale to assess their acceptance of the VR environment and to make a preliminary
assessment of their acrophobia state. The subjects then enter the three-dimensional virtual
scene using a wireless VR helmet and WMINS. They stand in the elevator area, where the
vibration module is automatically activated to simulate vibration as the elevator rises and
falls. When the virtual elevator reaches the 60th floor, the elevator door opens, and subjects
exit the elevator area, as detected by the wireless VR helmet’s movement tracking. The
movement of leaving the lift triggers a rotational movement of the board from side to side,
while the participant has to balance on the rotating board at all times and walk to the end
of the board, pick up the tennis ball in the rectangular basket at the end of the board, turn
around, and walk back to the starting position of the board and place the tennis ball into the
rectangular basket at the starting position. After placing the tennis ball in the rectangular
basket at the start, they then continue to the end of the board and pick up an-other tennis
ball and walk back to the start of the board and place the tennis ball in it. When the last
tennis ball has been placed in the rectangular basket at the start position, the left/right
switch will automatically turn off and the board will automatically re-turn to a horizontal
position. At this point, the participant walks to the end of the board and jumps 40 cm onto
a circular diving platform in front of them.

For the purpose of data analysis, we divided the entire VR acrophobia experiment
into three main stages: the rest adaptation stage, the board walking stage, and the jumping
stage. These three stages were further divided into 11 tasks, as shown in Table 1. In
the rest adaptation stage, subjects were divided into four task stages in the VR elevator
environment, including resting and waiting in the elevator interior (task0), elevator ascent
(task1), elevator door opening (task2), and elevator closing after subjects walked out of the
elevator (task3). In the board walking stage, subjects were required to walk back and forth
twice on a fixed frequency shaking board, pick up the tennis balls located at the end of the
board and place them in the net located in the same direction at the beginning of the board.
This stage included tasks 4 to 8. The jumping stage included the jump preparation stage
(task9) and the final jump stage (task10). In each stage of the experiment, the movement
status of the left and right wrist and the left and right lower tibia of the subjects were
recorded and transmitted to the computer receiver in real time by WMINS. Figure 4 details
the specific movements of subjects in the 11 tasks.

Table 1. Specific task division of VR acrophobia experiment.

Task Name Task Content Adjusted Task Name

Task 0 Rest and wait stage New task 0 (T0)

Task 1 Elevator ascending stage
New task 1 (T1)Task 2 Elevator opening stage

Task 3 Elevator closing stage New task 2 (T2)
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Table 1. Cont.

Task Name Task Content Adjusted Task Name

Task 4 Pick up the ball I

New task 3 (T3)
Task 5 Release the ball I
Task 6 Pick up the ball II
Task 7 Release the ball II
Task 8 Go to the end of the single wooden bridge

Task 9 Pre-jump preparation stage
New task 4 (T4)Task 10 Jump to the specified position stage

Figure 4. Eleven kinds of task action display under the actual VR acrophobia experiment.

2.5. Acquisition of Experimental Data

A total of 31 subjects were recruited for the present study, and each participant com-
pleted 2 experiments. All subjects had no history of neurological disorders or photosensitive
epilepsy, and furthermore, were in a normal physical state with basic limb movement abili-
ties during the experiment. Prior to the experiment, subjects were correctly informed of
the specific details of the experimental procedure, including the purpose, process, etc., and
signed an informed consent form. By triggering each task end node in order among the
11 tasks, a complete VR acrophobia experiment was performed. Finally, 1 experiment can
obtain 11 segments of movement data and generate movement data files for each partici-
pant for each experiment at key points of the limbs. Due to unexpected situations such as
task failure or task timeout during the experiment, 43 usable sample data were obtained
after data cleaning, including 24 male subjects and 19 female subjects, with all subjects
aged between 23 and 30 years old. According to the HIQ questionnaire administered before
and after the experiment to label the subjects, those with HIQ scores greater than 29 were
classified as the acrophobia group and those with scores less than 29 were classified as the
non-acrophobia group [28]. Finally, there were 16 HIQ scores greater than 29 and 27 scores
less than or equal to 29 in the 43-point sample, which included 1 sample with a score of
exactly 29.

Considering that the speed at which the subjects perform the tasks in the experiment
may vary greatly, hesitant behavior may occur in some tasks for subjects with acrophobia,
while non-acrophobia subjects may quickly pass through the experiment, resulting in
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insufficient movement data for some tasks, making it difficult to obtain accurate quantitative
features. Therefore, the 11 tasks were adjusted based on their nature and divided into
5 major tasks, as shown in Table 1. The adjusted Task 3 includes the entire process of
picking up and putting down the ball, while Task 4 includes the entire motion data during
the jumping period. As shown in Figure 5, the sample data for each subject contains
movement data of four joints (right and left wrist and the left and right lower tibia) in the
human body, with each joint movement data including five task types, with each data point
in each task type including the adjusted task name, acceleration and angular velocity along
three axes, and calculated three-axis combined acceleration and angular velocity.

Figure 5. The adjusted experimental data composition display.

3. Results

We divided the labeled motion data of the subjects into four types of joint data based
on the attachment position of the sensor, namely left wrist data, right wrist data, left
lower tibia data, and right lower tibia data. As illustrated in Figure 6, each joint data type
corresponds to a 6-dimensional matrix under 11 task types. Since the motion under the
11 task types is continuous, we preprocessed the individual joint data by interpolating and
low-pass filtering according to the data dimension. Then, we adjusted the 11 task types
into 5 major task types according to Table 1, and extracted the features from the data to
obtain a task-based feature matrix. Finally, we transformed the data to obtain four joint
feature matrices. Based on this, sample data were transformed from raw motion data to
four feature matrices, and the three-dimensional feature matrices were transposed and
concatenated to obtain an overall feature matrix. The feature matrix was subjected to
feature selection and over-sampling, and the processed data were fed into machine learning
model for training and classification, ultimately achieving a stable and highly accurate
acrophobia classification model.

3.1. Feature Analysis

We conducted a detailed feature analysis of the preprocessed data. During the experi-
ment, subjects with acrophobia label generally took longer to perform the tasks compared
to non-fearful subjects, particularly in T4, where fearful subjects had more hesitation time
during the final jumping moments, and the jumping movements appeared discontinuous.
In T0, the subjects were in a closed space elevator where the floor number increased to
represent the elevator going up. For fearful subjects, some of them may have had fewer
limb movements due to their inner fear. In T2, when the elevator door opened, the sudden
appearance of a high-altitude environment could give subjects a visual shock, increasing
the sense of reality and stimulating the subjects’ belief in the high-altitude environment.
Fearful subjects would spend more time building their confidence after the elevator door
opened, and most of them would be in a state of external calmness, rather than a natural
movement state as observed in non-fearful subjects who could adapt quickly to the en-
vironment. In T3, fearful subjects walked more carefully on the wooden board and their
walking steps became smaller and slower, resulting in poorer continuity of their walking
movements. In addition, their balance will become worse due to the movement of the plank.
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During the actual experiment, they keep the center of mass and the plank on one side at all
times by a slight outward extension of the arms and an up-and-down movement, while the
subject will bend slightly to lower the center of mass and increase stability as they move. In
contrast, non-fearful subjects had better balance and control over their body movements.

 

Figure 6. The general diagram of the motion data processing model system for scenes of acrophobia.
Ni indicates the data length of each of the 11 tasks, nt indicates the data length of each task after task
adjustment, where i and t both indicate the number of tasks.

Based on the observed behavioral characteristics, we conducted feature analysis on
preprocessed data in terms of three-axis acceleration and three-axis angular velocity. Feature
extraction was performed in both time and frequency domains to obtain a comprehensive
set of features. In the time domain [29], we extracted typical features such as mean,
variance, maximum, and minimum values for each data dimension under different task
types. In addition, we also obtained specific features such as impulse factor, skewness
factor, and peak-to-peak. In total, we extracted 16 features in the time domain. In the
frequency domain [30], we extracted 13 different types of features, including frequency
center, RMS frequency, and DC component. Ultimately, each data dimension for different
task types had a total of 29 features in both time and frequency domains. Table 2 provides
detailed information on these 29 features. Finally, we split and combined the feature data
according to the joint positions specified by WMINS, resulting in 4 joint positions with
5 × 29 × 6 feature matrices.
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Table 2. Selected time-domain and frequency-domain feature names and corresponding notations.

Symbol Feature

fea1 mean
fea2 root mean square (RMS)
fea3 square root magnitude
fea4 absolute average
fea5 skewness
fea6 Kurtosis
fea7 variance
fea8 max
fea9 min

fea10 peak-to-peak
fea11 form factor
fea12 crest factor
fea13 impulse factor
fea14 margin factor
fea15 skewness factor
fea16 kurtosis factor
fea17 Mean frequency
fea18 Standard deviation of frequency
fea19 the degree of dispersion or concentration of the spectrum
fea20 DC component
fea21 frequency center
fea22 the degree of dispersion or concentration of the spectrum
fea23 RMS frequency
fea24 Indicates a change in the position of the main frequency band
fea25 Indicates a change in the position of the main frequency band
fea26 the degree of dispersion or concentration of the spectrum I
fea27 the degree of dispersion or concentration of the spectrum II
fea28 the degree of dispersion or concentration of the spectrum III
fea29 the degree of dispersion or concentration of the spectrum IV

After feature data segmentation and solving, we obtained 3480 different feature types.
However, the number of samples was only 43, much less than the number of feature
types. To prevent overfitting in the subsequent classification model, we performed feature
selection using p-values, a statistical method [31]. p-value is a probability value obtained
from statistical analysis, which represents the probability of observing the results or more
extreme results under the null hypothesis. When the p-value is less than the set significance
level (e.g., 0.05), the null hypothesis is rejected, and the observed results are considered
significant, indicating that the differences observed in the sample may not be due to chance.
When the p-value is greater than the set significance level, the null hypothesis cannot be
rejected. Here, we have labeled the acrophobia group “0” and the non-acrophobia group
“1”. Similarly, the features solved for the acrophobia group will be labelled “0” and the
features solved for the non-acrophobia group will be labelled “1”, and finally, the p-values
for each class of features will be solved directly for that class of features based on these
feature values and the corresponding labels. We sorted the WMINS under each joint in
ascending order according to their p-values and selected the features whose p-values were
less than 0.02. We finally obtained 88 data features and replaced the original motion data
with these features to represent the motion state of each subject. These 88 features were
used as the original feature data set for building the classification model.

3.2. Sample Balancing

As there was an imbalance in the sample data between non-acrophobia and acrophobia
samples, which could lead to a decrease in model generalization and prediction accuracy,
K-means smote was used to oversample the sample data [32]. K-means smote is an im-
proved oversampling method used to address the issue of class imbalance in classification
problems. K-means smote uses a weight scheme based on the K-nearest neighbor algorithm
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to control the weights between different samples to avoid oversampling between different
clusters. The 88 features were oversampled using K-means smote for each feature dimen-
sion, resulting in an increase in the data weight of each feature type from 43 to 56 samples.
With 88 feature types representing 1 sample, a total of 56 samples were obtained, with
13 additional acrophobia feature samples.

3.3. Acrophobia Classification Model

We designed a voting classification algorithm specifically for the acrophobia and
non-acrophobia movement data. Voting is an ensemble learning-based classification algo-
rithm [33] that uses a majority vote to determine the final classification. We used KNN [34],
extra trees, random forest [35], SVM [36], and logistic regression [37] as the five classifiers
for model ensemble. First, we divided the dataset into a training set and a test set. During
the training phase, we used the training set data to train the five classifiers and obtained
five well-trained models. Finally, we input the test set data into each well-trained model
for classification, obtaining the classification results of each model. Then, we aggregated
the classification results of each model and used hard voting to determine the final clas-
sification result. Specifically, for each test sample, we counted the classification results
of the five classifiers, and selected the class with the most votes as the final classification
result. The voting classification algorithm we designed combines the advantages of five
machine learning models and has better classification performance for acrophobia and
non-acrophobia movement data.

3.4. Evaluation Metrics

In order to comprehensively evaluate the classification performance of our algorithm
models, we used four quantitative evaluation parameters: accuracy, recall, precision,
and F1-score [38]. Accuracy measures the proportion of correctly predicted samples to
the total number of samples, and is a good indicator of model performance when the
proportion of positive and negative samples is relatively balanced. Recall measures the
proportion of correctly predicted positive samples to the actual number of positive samples,
reflecting the model’s ability to detect positive samples. Precision measures the proportion
of correctly predicted positive samples to the total number of predicted positive samples,
indicating the proportion of true positives in the predicted positive samples. F1-score is the
harmonic mean of precision and recall, providing a comprehensive measure of the model’s
performance. The higher the F1-score, the better the performance of the classification model.

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

accuracy =
TP + TN

TP + FP + TN + FN
(3)

F1 =
2 × Precision × Recall

Precision + Recall
(4)

These evaluation metrics can be defined by Equation (1) to Equation (4). Here, TP
represents the number of positive samples that the model predicted as positive, FP repre-
sents the number of negative samples that the model predicted as positive, FN represents
the number of positive samples that the classification model predicted as negative, and
TN represents the number of negative samples that the classification model predicted
as negative.
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3.5. Experimental Platform and Model Setting

We employed a computer equipped with an Intel Core i5-11400 processor, 16 GB
of RAM, and an NVIDIA GeForce RTX 3060 GPU for machine learning training and
testing. The computer runs on the Windows 10 operating system and utilizes the Python
programming language for algorithm implementation.

We utilized leave-one-out cross validation (LOOCV) to evaluate the classification
performance of our model, a commonly used cross-validation method in machine learning.
LOOCV trains and evaluates the model on each sample as the validation set, ultimately
averaging the evaluation results for each sample, providing an objective evaluation of
model performance. After dividing the dataset into training and test sets using the leave-
one-out method, we standardized the training set by normalizing its feature data, ensuring
that the distribution of feature data had similar scales and ranges to improve the model’s
accuracy. The standardization formula (Equation (5)) was applied to the training set and
then to the test set to normalize the test set in the same manner.

xn =
xn − mean(x)

std(x)
(5)

To verify the effectiveness of our designed voting method, we constructed 10 typical
machine learning models, including k-nearest neighbor, decision tree, random forest, naive
Bayes classifier, support vector machine, ensemble learning, logistic regression, multi-layer
perceptron, Gaussian naive Bayes, and extremely randomized trees. We used the leave-one-
out cross-validation method to evaluate each model, ensuring the most objective evaluation
of model performance.

3.6. Results and Analysis

We evaluated our designed voting algorithm using feature sample data that had not
undergone K-means smote through 43 cycles of leave-one-out cross validation, resulting
in a final classification accuracy of 88.37%. Additionally, we fed the same data processed
through the same procedure into the other 10 machine learning models we built [39].
Figure 7a displays the final classification accuracies of these 11 models, with our voting
ensemble model achieving the highest accuracy of 88.37%, followed by ET and GNB at
around 86%. Conversely, DT, RF, and AdaBoost had poor classification performance, with
an accuracy of only approximately 60%. Among them, AdaBoost was the worst-performing
classification model with an accuracy of only 55.8%.

Figure 7. Classification accuracy of each model. (a) Classification accuracy of each model obtained by
training the sample data without K-means smote. (b) Comparison of classification accuracy obtained
by training the sample data with and without K-means smote.

55



Sensors 2023, 23, 5482

To improve the performance of the classification model for acrophobia based on
motion data, we applied K-means smote to the feature samples, oversampling the data and
feeding it into the voting ensemble model we designed. This resulted in a classification
accuracy of 91%. To verify the effectiveness of K-means smote, we fed the new feature
samples into 10 other models and compared the accuracy with and without oversampling.
Figure 7b illustrates the changes, showing that the K-means smote oversampled data are
of higher quality and lead to significant improvements in classification accuracy across
various models, including LR, MNB, SVM, and voting, with all achieving a classification
accuracy of 91%. The most significant improvement was observed in the AdaBoost model,
which achieved a final classification accuracy of 73.2%, an increase of 17.4% from the initial
accuracy. Therefore, K-means smote can optimize motion data for acrophobia classification
and improve the overall performance of the model at the data level.

Building upon this, we explored the impact of different feature combinations on the
performance of the model among 88 features. We reordered the 88 features based on
their p-values in ascending order and selected the top 10, 20, and so on, at intervals of
10. We thus obtained eight new sets of feature combinations and fed them into the voting
ensemble model we designed. We obtained the optimal feature set for each feature data
combination. As shown in Figure 8a, we compared the classification accuracy of the voting
ensemble model under the 88 features with the other 8 data combinations and found that
the classification accuracy reached 94.63% for the top 80 feature combination, which was
the highest among all combinations. To further validate the results, we selected the top
75 features with the smallest p-values for voting ensemble model training and achieved an
accuracy of 91.7%. Figure 8b shows the confusion matrix of the voting ensemble model,
with a classification accuracy of 96.3% for non-fear-of-heights samples and 93.1% for fear-
of-heights samples.

Figure 8. (a) Classification effect of voting model with different combinations of feature data.
(b) Confusion matrix with the optimal combination of feature data.

The classification accuracies of the top 80 samples were fed into 10 different ma-
chine learning models, and the results are shown in Figure 9. The blue bars represent
the classification accuracies of the models using the original top 80 samples without over-
sampling, while the red line represents the classification accuracies of the models using
the top 80 samples after K-means smote oversampling. It can be observed that the Voting
algorithm model designed in this study achieved the highest classification accuracy for
both the original and oversampled feature samples.

Table 3 presents the specific performance of different algorithm models, and the
optimal voting ensemble model achieved a precision of 96.2%, a recall of 92.8%, and an
F-score of 94.5%. The precision and F-score were the highest among all models, indicating
that the voting ensemble model had the best comprehensive ability to predict non-fearful
and fearful samples. In terms of classification accuracy, both the LR model and MNB model
had the second-best classification ability, with the same accuracy of 91.07%. However, the
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precision of the MNB model was 92.59%, while that of the LR model was 88.88%, indicating
that the MNB model had a better classification effect on non-fearful samples. In terms of
recall, the scores of the 2 models were exactly opposite, with the LR model achieving a
score of 92.3% and the MNB model only achieving 89.2%. This indicates that the LR model
has a stronger ability to identify non-fearful samples compared to the MNB model.

Figure 9. Classification accuracy of each model under Top 80 feature data samples.

Table 3. Classification results of different algorithmic models in top 80 feature sample data.

Models Accuracy Precision Recall F-Score

KNN 0.83929 0.85185 0.82143 0.83636
DT 0.71429 0.62963 0.73913 0.68000
RF 0.78571 0.74074 0.80000 0.76923
ET 0.78571 0.77778 0.77778 0.77778

GNB 0.89286 0.88889 0.88889 0.88889
MNB 0.91071 0.92593 0.89286 0.90909
SVM 0.89286 0.92593 0.86207 0.89286
MLP 0.85714 0.85185 0.85185 0.85185

AdaBoost 0.71429 0.62963 0.73913 0.68000
LR 0.91071 0.88889 0.92308 0.90566

VOTE 0.94643 0.96296 0.92857 0.94546

In order to explore the optimal combination of human body limb motion features for
acrophobia classification and obtain a superior classification model, further analysis was
conducted on the top 80 features, as the number of features was too high compared to the
final 56 samples. Specifically, we computed the cross-correlation coefficients [40] between
different features and determined a series of threshold values to remove redundant features.
By setting the correlation coefficient threshold to 0.9, we removed one of the features with
a correlation coefficient greater than 0.9, resulting in 48 feature combinations. Figure 10
shows the classification performance of the voting ensemble model trained on these new
feature combinations with different correlation coefficient thresholds ranging from 0.4 to
1. We found that the model achieved the best classification accuracy when the correlation
coefficient threshold was set to 1, 0.75, 0.7, 0.6, or 0.55, with all accuracies reaching 94.6%
through the leave-one-out cross validation. When the threshold was set lower than 0.55, the
model’s performance began to decline. Therefore, 0.55 was determined as the minimum
optimal threshold, resulting in a reduced number of feature types to only 21.
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Figure 10. Classification accuracy of feature combinations in voting ensemble models with different
correlation coefficient thresholds.

4. Discussion

In this study, a high classification accuracy model of acrophobia and non-acrophobia
was developed; on the basis of that, it was revealed that acrophobic and non-acrophobic
populations possess different motor patterns under high-altitude conditions. Figure 11
illustrates the selected feature series after feature selection. T3.av_z.fea25 is the feature
with the smallest p value, representing feature 25 of the Z-axis angular velocity in the left
lower tibia movement data during the T3 task phase. The meanings of the other feature
symbols on the horizontal axis are the same as described above. Figure 11a shows the
selected left and right wrist features after screening, with a total of 22 features for the left
wrist and 21 features for the right wrist. Since the number of features in the left and right
wrists is almost equal, the contribution weight of the left and right wrists is equal in the
classification of the acrophobia and non-acrophobia labels. Figure 11b shows the selected
features in the left and right lower tibia movements, with 26 features for the left lower tibia
and 11 features for the right lower tibia, indicating that the left lower tibia contributes more
weight to the classification of acrophobia and non-acrophobia due to the asymmetry of
lower limb movements in the VR acrophobia experiment. This may be due to the limited
walking space on the wooden plank and the subjects’ high-altitude state, which causes
the lower limbs to move continuously in a single direction, leading to differences in lower
tibiae movements. Figure 11b reveals that the left leg is the main force-bearing part, and
the right leg is the driven part during walking for both acrophobia and non-acrophobia
subjects. Moreover, the T3 task phase is the main walking stage throughout the experiment,
which explains why the T3 task phase features account for over 75% of the lower tibiae
features, while only about 30% of the wrist features. In conclusion, there are 43 selected
features in the wrist and 37 in the lower tibiae, indicating that the upper and lower limbs
have a similar weight in acrophobia and non-acrophobia labels.

In addition, we compared our results with those of similar related studies. Hu et al.
collected EEG data from subjects in a virtual environment and used deep learning net-
works to build a 4-classification model, achieving an accuracy of 88.77% [41]. R. Zheng
et al. analyzed fear by acquiring EMG, Pupil, and ECG signals from subjects, and built a
classification model combining deep learning and machine learning, achieving a binary
classification accuracy of 93.93%. Other researchers have either used single or multi-modal
physiological signals for subject-related analysis in virtual environments and classified
them using ML and DL. These detailed results are shown in Table 4. Among these clas-
sifications, our system model achieved the highest classification accuracy of 94.6% using
sparse joint data. The 21 selected features significantly reduced the training data required
while improving the model’s generalizability. This will greatly enhance training efficiency
when analyzing large datasets in the future.
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Figure 11. Feature types and corresponding p values after feature selection. (a) Type of feature
selected at the wrist joint and the corresponding p-value. (b) Type of feature selected at the lower
tibiae and the corresponding p-value.

Table 4. Comparison with other stress scenario classification models.

Study Signals Method Class Accuracy

Hu et al. [41] EEG DL 4 88.77%
Bălan et al. [39] EEG, HR, GSR ML, DL 2-\4-choice scale 89.50%\42.50%

Salkevicius et al. [42] GSR, BVP, skin temperature SVM 4 86.30%
Zhang et al. [43] GSR BP 2 86.70%

R.Zheng et al. [44] EMO, Pupil, ECG ML, DL 2 93.93%
Our method body motion data EL 2 94.60%

5. Conclusions

By setting up a series of movement tasks in a virtual reality high-altitude scenario, this
study investigated human motion characteristics, and based on these motion characteristics,
an in-depth study was conducted to establish a classification model with high accuracy,
confirming that there are differences in the movement patterns of people with and without
acrophobia in high-altitude environments. This research will enable rapid screening of
both acrophobic and non-acrophobic people, and additionally, will provide quantitative
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profiling that can be used in the future to provide more targeted training guidance for
aviation personnel, as well as providing rapid training results.

In the future, we will continue to optimize WMINS to obtain more data on key human
joint movements to reconstruct human posture, improve the VR high-altitude scenario
while ensuring safety, and explore the contribution of limb movements in different parts of
the human body to the correct classification of acrophobia. We will achieve the fine-grained
classification of acrophobia and non-acrophobia under different weights, thereby exploring
the correlations between limb movement characteristics and human fears.
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Abstract: This paper presents a novel approach for counting hand-performed activities using deep
learning and inertial measurement units (IMUs). The particular challenge in this task is finding the
correct window size for capturing activities with different durations. Traditionally, fixed window
sizes have been used, which occasionally result in incorrectly represented activities. To address this
limitation, we propose segmenting the time series data into variable-length sequences using ragged
tensors to store and process the data. Additionally, our approach utilizes weakly labeled data to
simplify the annotation process and reduce the time to prepare annotated data for machine learning
algorithms. Thus, the model receives only partial information about the performed activity. Therefore,
we propose an LSTM-based architecture, which takes into account both the ragged tensors and the
weak labels. To the best of our knowledge, no prior studies attempted counting utilizing variable-size
IMU acceleration data with relatively low computational requirements using the number of completed
repetitions of hand-performed activities as a label. Hence, we present the data segmentation method
we employed and the model architecture that we implemented to show the effectiveness of our
approach. Our results are evaluated using the Skoda public dataset for Human activity recognition
(HAR) and demonstrate a repetition error of ±1 even in the most challenging cases. The findings of
this study have applications and can be beneficial for various fields, including healthcare, sports and
fitness, human–computer interaction, robotics, and the manufacturing industry.

Keywords: artificial intelligence; deep learning; counting; weakly labeled data; variable length size;
non-uniform shape data

1. Introduction

In recent times, people use more and more new technologies, devices, and sensors
that generate data to support their daily activities. Researchers can use this sensor data to
identify the human body’s actions and movements for human activity recognition, or HAR,
as it is more commonly known. Various sensor types collect data in those settings, such as
the ones that use video and inertial measurement units (IMUs). Sensors provide means to
capture data related to human activities, which can be used to develop machine learning
models for human activity recognition (HAR) and human behavior recognition (HBR).
Achievements have been made in sports and entertainment [1–3], industrial applications [4],
and healthcare [5]. Meanwhile, the academic community is actively researching innovative
sensor technologies for human activity and behavior recognition, including new sensor
designs, applications of traditional sensors, and the usage of non-traditional sensor types [6].
Many studies are currently being conducted to improve existing approaches or solve newly
identified problems for the detection and classification of activities with supervised or
unsupervised techniques. The majority of research studies and applications in the field
of HAR have, up to this point, focused on detecting activities, such as walking, standing,
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and sitting, as well as other daily living (DL) activities [7], and analyzing their characteristics
to generate new insights [8].

Building upon this existing body of work, the scope of our study is to highlight the
counting of events that occur in a given period in different activities of daily human life
(DHL) or daily work life (DWL). We focus on counting the end of an activity to determine
the number of times that activity occurs. By centering our attention on event counting,
we aim to provide a comprehensive understanding of the frequency and occurrence of
specific actions within the broader context of human activities. In daily activities, such as
workouts or sports, it is critical to correctly segment and recognize the type of activity using
a sophisticated model [9]; however, mainly classification models can offer such information.
Besides that, it is important to acknowledge that different fields exhibit variations in
sensor types, signal characteristics, produced by these sensors and face different challenges.
With small adjustments, counting with AI and IMU data can be used in the industry to
solve a variety of problems. Some examples include: (i) Sensor data analysis to monitor the
performance of equipment, detect anomalies, and optimize operations; (ii) Quality control
to count the number of defects or errors and improve the quality of products and reduce
costs; (iii) Safety monitoring to count the number of incidents to improve safety and reduce
the risk of accidents in industrial environments. For example, in an industrial setting where
the tasks are more complicated, workers have many repetitive tasks to complete daily, such
as screwing activities during assembly processes, which they occasionally miscount or
forget to execute [10]. In this regard, we aim to provide people with information and raise
awareness about the number of completed activities.

As Kim et al. [11] stated in their work, counting is one ability that humans usually
acquire from a young age, and while it appears to be a simple task, young people still
need a long period to master it. Comparably, it is challenging to develop a model that can
count the number of completed activities (CA) in a time period, based on data from Inertial
Measurement Units (IMUs) or similar body-worn sensors. With the term “completed
activities”, we refer to the repetitive activities that can constitute a single work step in a
workflow, e.g., the screwing of one screw, which is complete with the tightening of it.

The analyzed data for our research are sequences of varying length annotated with
weak labels that serve as targets for the machine learning models. Traditional approaches
for handling time-series data often involve dividing the data into fixed window lengths.
However, due to the high variance in activity durations, using a small window for a
long activity or a large window for a short activity can result in the loss of important
information [12]. Up until recently, one commonly used approach required very large
window samples that could fit all activity sizes inside, padding them with a value (typically
zeros) and feeding them as input to the networks. Annotating data, on the other hand, is
usually laborious and time-consuming, and requires considerable attention and precision.

As an overview of the challenges motivating this work, we concentrate on the follow-
ing: (i) spread of valuable information across consecutive sequences, (ii) information loss
caused by using a single, fixed window size for varying-duration activities, (iii) limited
flexibility of models that are more specific for particular data due to manual preprocessing
methods, and (iv) the topic of data annotation. To address the aforementioned issues, we
propose a model design that works with (i) variable length of data as input, (ii) data that
have some form of annotation but is not completely annotated, known as weakly labeled,
(iii) raw calibrated data that are normalized but not subjected to any further filtering,
to reduce complexity, simplify the preprocessing stage, and develop a more robust model in
unprocessed data to achieve counting, (iv) the implemented counting method, integrated
within the model’s training process rather than simply incrementing the count of correctly
classified instances, and (v) fewer training parameters than existing model architectures in
the literature to enable suitability for deployment on devices that have limited processing
and power resources. Our approach aims to improve the model’s ability to accurately
count the activities performed by a user, rather than just detect them. To the best of our
knowledge, this is the first study that investigates the counting of completed activities and
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tasks, in a way that goes beyond counting the quantity of previously correctly recognized
activities from a classifier, employing an LSTM [13] for counting patterns in a sequence.

Counting is an essential skill that humans employ in their daily lives across a wide
range of activities and tasks. Whether it is a simple task or a more complex one, the ability
to accurately count holds immense value and can benefit from technological assistance
in various fields. According to our literature review, studies in this area mostly used
video-capturing sensors and have been conducted in the sports or medical sector.

Fang et al. [14], in their study, explored the possibility of counting the number of items
in a display and raise the question, “Can a recurrent neural network learn to count things?”,
with their findings favoring a positive answer. While they also used an LSTM model, our
model takes as input unfiltered accelerometer data relating to human activities in daily life.
In a different setting, the authors of [15] proposed to count repetitive activities in a video
by sight and sound using an audiovisual model, which differs from our approach among
others in the choice of the sensors, since we aim to use body-worn sensors. In ref. [16],
the MM-Fit dataset is introduced, which contains data from inertial sensors and ambient
video sensors capturing full-body workouts. A single 3D accelerometer worn at the chest
is employed in [17] to recognize four types of workouts and count repetitions after the
workout is firstly determined and classified by their algorithm. Another study focused on
fitness exercises is the one by Ferreira et al. [18], where the authors select camera sensors
for realizing their approach to do workout repetition counting. The researchers in [19]
designed and implemented a body capacitance-based sensor and employed a residual
deep convolutional network that uses dilated convolutions for recognizing and counting
gym workouts, while their approach had competitively high counting accuracy, we opt for
sensors available in devices of daily use, such as smartwatches or smartphones, and utilize
unfiltered data in our approach. In [20], with 91% of the used Cross-fit exercises having
an error within a margin of ±1 repetition, the authors used a vibration signal during their
data collection and trained a neural network for counting that relied on whether an input
window contains a repetition start. However, our model uses only weak labels as target
data for its variable-size input, which requires less human annotation effort than models
with dense labels.

Weakly labeled data can be beneficial for deep learning algorithms in certain situations
and refer to data that are only partially labeled, meaning that they have some form of
annotation, but not all the information is present. This type of data is less expensive and
time-consuming to obtain than fully labeled data, and it can be used to train deep learning
models in a semi-supervised manner. The authors in [21] proposed an attention-based
convolution neural network to process weakly labeled human activities and recognize them.
The dataset contains information only about the type of activity that occurred in a sequence
of sensor data. A weakly labeled dataset was also included in a Dual Attention Network For
Multimodal Human Activity Recognition Using Wearable Sensors in [22], where they blend
channel attention and temporal attention on a CNN, for multimodal HAR. The activities
that are contained in the dataset are walking, jogging, jumping, going upstairs, or going
downstairs, and have a significant difference from the activities that we explore and the
way that we create our training dataset. In a related field, for locomotion activities, several
studies explored step counting using IMUs or smartphones [23], including approaches that
utilize deep learning techniques. One such approach is the attention-based LSTM model by
the authors of [24], which has been shown to effectively count steps with high accuracy.
However, unlike the continuous and repetitive movements associated with step counting,
our approach concentrates on hand-performed activities that involve discrete movements.
Furthermore, our model maintains simplicity regarding processing resources, low power
consumption, and suitability for edge computing devices.

Raw data as input for the models have the advantage of reducing the need for pre-
processing techniques, which can be a time-consuming and resource-intensive task. In our
study, we refer to the public dataset’s raw calibrated data that have not been subjected
to any further preprocessing steps other than normalization. When working with raw
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data, the model can automatically learn useful features from the data, which can save
computational resources and reduce the risk of human error. Important contributions
have been made by Shen et al. in [25], where they proposed a workout tracking system
that uses smartwatches to accurately and efficiently track both cardio and weightlifting
workouts without the need for user input. Their counting strategy begins with detecting
and labeling weightlifting sessions, followed by a naive peak detection algorithm based
on auto-correlation results. They filter out non-repeating signals and calculate the number
of repetitions by counting detected peaks. Likewise, Prabhu et al. in [26] also based
their approach on classifying the activities before counting with a peak detector method.
Their research aims to identify the most effective artificial intelligence model for repetition
counting in LME exercises to be used in wrist-worn rehabilitation programs.

In their work, Taborri et al. [27] implemented the following algorithms, one for
recognizing activities based on SVMs and one for counting actions related to workers
in the industry. Twenty-three body-worn sensors collected data from the participants,
which were divided into windows of 0.6 s and had features such as mean, standard
deviation, maximum, and minimum, were computed for each activity. Physical exercises
for indoor and outdoor environments were used to recognize the real-time segmentation
and classification algorithm in [28]. The method they proposed requires one sample of data
for each target exercise; however, once more, the counting relies on accurate classification of
the activities. Another algorithm in the context of human activity recognition that segments
repetitive motion is the one presented by the authors in [29]. This algorithm was utilized
to identify similar location patterns in indoor localization and addresses the problem of
subsequence search in univariate and multivariate time series. An automated segmentation
way and labeling of single-channel or multimodal biosignal data using a self-similarity
matrix (SSM), generated with the feature-based representation of the signals, is proposed
by the authors in [30]. Examples of data with the few-shot learning were employed
by Nishino et al. [31] to recognize workouts using a wearable sensor including data
augmentation and diversification techniques for their data to achieve repetition counting.

In our approach, we leverage deep learning models to extract features and train them
to accurately count activities using public datasets that contain raw and calibrated data of
human activities performed with hands. As with many machine learning techniques, we
normalize the raw calibrated acceleration data before we feed them to the deep learning
model. However, we do not apply additional preprocessing steps or filtering to the data.
Moreover, the sensor placement described by the dataset’s authors in [32] is essential to
recreating the study’s results. To train the model, we divide the data into segments of
variable sizes with weak labels that utilize only the number of repetitions of activities for
each sequence as the target value. Hence, the model learns to count activities regardless of
the sequences’ size, which is important for real-world applications, where activity durations
may vary.

2. Materials and Methods

2.1. Counting Approach

Counting repetitions in a sequence is a fundamental problem in various fields, such
as speech and image processing, bioinformatics, and cognitive science. Many methods
for counting can be deployed, the majority of which require hand-crafted rules, feature
extraction and statistical methods, or rule-based systems to manually count objects or
events. As was described previously, neural-network-based approaches can be used to
count repetitions in a sequence with a combination of CNNs and RNNs or encoder-decoder
architectures, trained on a labeled dataset of sequences, to learn a mapping between the
input sequence and the number of repetitions. Focusing on a system that can handle weakly
labeled data while being less reliant on human intervention and more automated can reduce
the complexity of the counting process, make the model more robust, and provide flexibility
for applying the method to a wide range of problems.
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Weakly labeled data offers a cost-effective and efficient alternative to acquiring fully
labeled data, as it is less expensive, time-consuming, and tedious. This type of data enables
the use of semi-supervised learning approaches, which can be beneficial when considering
the annotation cost associated with large and complex datasets. By leveraging weak
labels, the model is encouraged to learn more generalized patterns in the data, leading
to improved performance on unseen examples. For our experimental setup, we use IMU
acceleration data from daily human activities performed at a quality control checkpoint
in a car maintenance scenario that captures activities relevant to the inspection process.
Thus, it provides a representation of real-world conditions by addressing the complexity
of variable-length data, to develop robust and realistic models for activity counting and
recognition tasks.

Despite the fact that counting repetitions in a sequence with variable-length data
is more challenging than counting repetitions in a sequence with fixed-length data, this
structure is more realistic because data from signals, time series, texts, and other sources
have varying length. Using fixed-length tensors for the data can be efficient in certain
situations because they simplify the problem, as the model only needs to process a fixed
amount of data, regardless of the length of the input sequence. Furthermore, because the
libraries and software tools required to build the model are more widely accessible, its
implementation and deployment may be simpler. However, using variable length tensors
can also be beneficial in many situations. They allow the model to handle input sequences
of different length, which is important when dealing with complex real-world data and
activities of various length. Additionally, variable-length tensors enable the model to
process the entire input sequence at once, rather than only a fixed-length subset of it, which
can be valuable when the position of the repetitions is not known in advance.

In our approach for counting, we use data from public datasets that contain data
from human activities in the car manufacturing industry, recorded with IMU sensors. We
create sequences of data that have a variable size and we obtain a weak label for each
sequence. The label shows the executions number of one type of activity observed in
the sequences, which is fed into an LSTM regression model built with the ragged tensors.
For each sequence that is input to our algorithm, one single count is predicted as the output.

2.2. Dataset

The data used for this study are part of the Skoda Public dataset [32], which includes
repetitive activities regarded as single, discrete actions as opposed to continuous activities,
such as walking or running. The example signals of the manipulative gestures of the dataset
that were performed in a car maintenance scenario, visualized in Figure 1, are “write on
notepad”, “open hood”, “close hood”, “check gaps on the front door”, “open left front
door”, “close left front door”, “close both left door”, “check trunk gaps”, “open/close
trunk”, and “check steering wheel”. These activities were recorded for about 3 h by
20 sensors placed on one subject’s left and right upper and lower arms. For each sensor,
there are acceleration values on the x, y, and z axes that are calibrated in milli-g units
(1000 = earth gravity vector, which in S.I. units would be 0.001 g or 0.00981 m/s2 ), and the
sensor sample rate is approximately 98 Hz, as stated by the dataset’s authors.

The objective of this work is to count how many times one activity happened in a
period of time, e.g., detect in the data patterns how many times the person closed the
hood in the activity “close engine hood”. The dataset contains a dense label for each
sample, which allows the detection of the end of the activity. The weak label targets
are generated by “recording” one repetition for each task completion. Therefore, for
the training phase, for every instance where a task is successfully completed, a single
repetition sample is marked as “activity end”. By using this approach, we create weak
annotations that indicate the presence of completed repetitions, allowing the model to learn
and recognize the patterns associated with activity completion. We normalize the data
with minmaxscaler [33] in a range of [0, 1] and divide it into variable-size sequences. By
using an algorithm to generate an array of random numbers, we split the entire dataset
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into segments, which define the sample length of the sequences, as shown in Figure 2.
For example, if we want to generate 20 sequences of variable-length data, the algorithm
will create 20 random numbers between 0 and the dataset’s maximum index value. Next,
we replicate the original data for each activity to provide our model with a larger dataset to
train, without using data augmentation techniques for generating variation in the signal’s
patterns. This expanded dataset introduces greater variability in the unique length of
activity sequences and the number of activities contained within them, thereby enhancing
the model’s robustness.

Figure 1. This figure shows examples of the signals that represent each class of the Skoda Public dataset
with different colors. Starting from left to right (a) Notepad, (b) Open close hood, (c) Gaps front
door, (d) Open close left door, (e) Close both left door, (f) Check trunk gaps, (g) Open close trunk,
(h) Steering wheel. For all the activities, samples are taken from the X-axis accelerometer on the right
hand. The activities of the “open hood” and “close hood” as well as the “open left door” and “close
left door” are displayed together as “open close hood” and “open close left door”, since they are
always consecutive. The acceleration is provided in milli-g units.

Figure 2. This figure presents the non-uniform shape input for the neural network. We visualize
on top of the image time-series data that will be divided into five distinct example sequences of
segmented acceleration data with varying duration, number of samples, and weak labels that have a
range from 1 to 10 counted activities. The blue squared line shows the start and end of each activity
within each sequence. The weak label is generated by the number of spotted endings (red arrow)
inside each individual sequence.
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The labels for each sequence in this dataset are produced by the number of spotted
endings or finished tasks in the sequences, where the last timestamp of each observed
activity adds 1 count to the final label of each unique sequence. Figure 2 visualizes the
division of a time series into sequences of variable size and how the weak labels are formed.
The term “weak labels” in our method denotes the absence of data annotations that map
the start and end of an event in the sequence. The number of activities in the sequence is
the only information of the sequence that the model utilizes as a target value.

We divided the subsets of activities into 600–900 sequences, where 100 of each type
were left as a test dataset, as presented in Table 1, and 10% of each training dataset was used
as a validation set. Consecutive activities, such as “open left front door” and “close left
front door”, were merged into one class, as explained in Figure 1. In this case, the algorithm
must count +1 when one of the activities of interest is happening. In the last entry of the
table with the label “combined activities”, one can see results with 8000 training sequences,
for a class that is generated with combined data from all the previous classes in a single
one. Every activity that is not a null class will be counted in this scenario, to distinguish
between an occurring activity and null class without considering the type of activity. We
created 8000 varying-length sequences from all classes, of which 7000 were used to train the
network. Despite the more complex approach, employing variable-size sequences allows
us to extract the most valuable information from our data without padding.

Table 1. This table lists the overall summary results for accuracy and MAE across all activity classes
for the test datasets. As one can see, it contains nine separate datasets of activities. For each activity,
the samples of the original dataset, the variable length training sequences created from the data,
the range of the number of activities within the sequences, the test sequences, and the results such as
the dataset accuracy and mean accuracy in 100 sequences of each test dataset are available. The counts’
range shows the maximum number of activity counts contained in 100 sequences of different lengths
of the test dataset. The mean percentage accuracy provides an overall assessment of the model’s
performance by displaying the average deviation of the predicted number of repetitions from the true
value across all test sequences, whereas the dataset accuracy assesses the model’s ability to predict
the precise number of repetitions accurately. The last entry in the table represents a class where all
the data from all classes were combined into one class and then split into variable-length sequences
so that the model is trained on more complex data. In that case, the model learns a larger variety of
patterns from all classes as a single activity class and must identify between the activity class and the
null class to perform the counting.

Training A/A Activity No of Samples in Original Dataset Training Seq. Range Counts in Test Seq. Test Seq. Test Dataset Accuracy MAE Mean % Accuracy in Test Seq.

1 Steering wheel 51,904 500 0–08 100 60/100 0.4 72.19
2 Check trunk gaps 70,000 500 0–07 100 89/100 0.11 91.66
3 Notepad 74,000 500 0–06 100 92/100 0.08 96.12
4 Open close hood 186,399 800 0–07 100 70/100 0.3 78.58
5 Open close left door 82,000 600 0–12 100 68/100 0.33 80.22
6 Gaps front door 60,000 500 0–09 100 84/100 0.18 90.38
7 Close both left door 72,000 500 0–06 100 75/100 0.25 79.22
8 Open close trunk 95,000 600 0–10 100 74/100 0.26 81.65
9 Combined activities 705,904 7000 0–11 1000 765/1000 0.242 81.29

2.3. Counting Algorithm

A fixed window approach is a commonly used method for segmenting time-series
data before using them as input to deep learning models. The segmentation is based on
characteristics of the event that we want to identify, such as its periodicity, frequency,
and length, among others. Despite their ease of implementation and interpolation with
other libraries, fixed-length tensors with a predefined shape have limitations. For example,
they are not well suited to handling non-uniform shape data, such as sequences of varying
length, without the need for padding or truncation, which can result in additional noise to
the data, increase in the computation time, information loss, and storage inefficiency, and it
may not always be appropriate. To address the above issues, we used TensorFlow’s ragged
tensors [34], which support variable-length sequences of samples.
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In this study, nine sub-datasets were used with our algorithm to count activities,
with nine separate trainings for each subset. Figure 3 shows the architecture of the model
that is used for the counting task. The acceleration data are separated into variable-length
sequences, each of which comprises several activities and is used as input data, as was
previously mentioned. The weak label that the model uses as target data is the total
number of activities in each sequence. The model learns to relate acceleration data to the
number of activities, so when we feed as input “ new unseen” acceleration data of variable
length, it outputs the number of spotted activities. The annotation provided no information
about the location of activities within the sequence, nor does it provide any additional
supporting details to guide the model. A large grid search was deployed to explore the best
combination of parameters for the number of layers, learning rate, batch size, optimizer,
loss function, and activation functions to use in our network. We experimented with
various hyperparameters to achieve the best performance. For the number of layers, we
tried configurations ranging from one to three time-distributed layers and one to 4 Lstm
layers. For the learning rate, we tested values such as 0.01, 0.001, 0.0001, and 0.00001. We
also explored different batch sizes, including 2, 4, 8, 16, 32, and 64. As for the optimizer,
we experimented with Adam, RMSprop, and SGD. We evaluated loss functions, such
as mean squared error, mean absolute error, and Huber loss. Finally, we tried different
activation functions, such as ReLU, tanh, and sigmoid, to achieve the optimal performance
on our task.

As shown in Figure 4, two dense layers were used at the beginning of the model to
reduce the dimensions of the input data before entering the LSTM. The first dense layer is
composed of 60 neurons (number of input signals), and the second consists of 2 neurons
with the rectified linear unit (RELU) as an activation function. Two custom layers are then
placed after an LSTM layer that outputs a three-dimensional sequence and has one neuron
with a linear activation function. The custom masking layer thresholds the signal and
converts the output of the LSTM to a more binary format, and xthen, the counting layer
counts the regions where the signal value is not zero and summarizes them to one final
number, as shown in Figure 3, of the output’s graph. After experimenting with several
parameter values as mentioned above, a batch size of 2 with a learning rate of 0.0001 and the
“Adam” optimizer were selected for optimizing the model. The algorithm’s performance is
evaluated using the Huber loss as the loss function, which is a combination of the mean
squared error (MSE) loss function and the mean absolute error (MAE) loss function. This
combination improves the performance of the model when outliers are present in the data,
which is possible in our study because the input sequences were generated arbitrarily.
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Figure 3. This figure presents an example of the model architecture that was used for the counting of
activities. The acceleration data are divided into variable-length sequences and then used as input to
the model. For each sequence, there is one weak label that is generated by the number of activities
that are included in the sequence. Two time-distributed dense layers process each sensor reading
independently before entering an LSTM layer where we get an output for each time step. Since the
input data have a variable size, ragged tensors are employed for this task. The output of the LSTM
part is inserted into a mask layer that detects values above a threshold and converts the signal into a
square form before it continues to a layer that detects the created “edges” of the square shape and
gives a final summation of all edges of the sequence to one single number.

71



Sensors 2023, 23, 5057

Figure 4. From left to right, this image presents the network’s diagram of the counting model
with the input (60 acceleration signals) of variable length and output of 1 number. Moreover,
the hyperparameters include Huber loss, ADAM optimizer, a learning rate of 0.0001, and a batch size
of 2. An example of a learning curve for the training and validation sets demonstrates the model’s
performance during training. The x-axis represents the number of training epochs, while the y-axis
represents the loss metric.

3. Results

In our study, we applied deep learning approaches to acceleration data to count the
number of activities in variable-length sequences, as presented in the model architecture.

The ground truth in Figure 3 is two activities in the illustrated example sequence. It is
evident that the LSTM outputs a signal with two peaks, which is then converted to a binary
format by the masking layer, and we count +1 at the edge of each square area. Two is the
final result predicted by the model for the specific input sequence. Figure 4 visualizes the
learning curve of the training and a validation loss to present the model’s performance
during the training of the “notepad” dataset. After each training, we evaluated the model
with unseen data sequences of the same class, and the results show that the model can
predict very close to the weak label.

For two of the activities of the Skoda Dataset, we visualize example results of the
weakest and best cases of the model’s predictions in variable-length data sequences. In
Figure 5, one can see the graph showing the ground truth and prediction of the model
for the activity “writing in notepad”. There, we trained the model with 500 sequences of
variable size and variety in the number range of contained activities. The findings indicate
that the model predicts 92 out of 100 correctly, while the remaining 8 predictions have an
error of one activity. Similarly, even though the model predicted less accurately for the
dataset’s “steering wheel” class, the predictions have a maximum error of one activity, as
shown in Figure 6. Table 1 contains information regarding the training data and the results
of all dataset activities. The discussion section provides further details about the results.

The table shows in approximation the number of data samples contained in the original
dataset for each class, the number of training and test sequences, the range of the number
of activities included in different sequences, the accuracy in the test data, the mean absolute
error, and the mean % accuracy of test sequences in the test data.
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Figure 5. The figure presents the ground truth (red dots) and prediction (blue dots) of the model
for 100 unseen sequences of data. The input data are from the notepad writing activity of the Skoda
dataset. The algorithm for counting predicted accurately 92 out of 100 activities. A line connecting
the two numbers shows the difference in the incorrectly predicted sequences. The largest error per
sequence observed in the graph is 1 count.

The “notepad” class has the smallest MAE, 0.08, and the highest mean % accuracy,
while the “steering wheel” class has the highest, 0.4, and the lowest mean % accuracy. In
the “combined activities” class, the algorithm counts interesting activities in a sequence,
regardless of the activity type, in a dataset consisting of all classes combined into a single
one. The table lists 8000 training sequences of varying length, of which 7000 were used for
the network’s training. Randomly, 1000 sequences were kept as test data, and the number
of activities in 765 out of 1000 was predicted correctly. From those 1000 sequences, 230 had
an error of ±1 counts, 3 of them an error of 2 counts, and 2 of them an error of 3 counts.
As shown in the table, the mean accuracy is presented as a percentage, representing the
average accuracy of 100 sequences from each test dataset. For example, for the “open close
trunk” dataset, the mean accuracy for the 100 test sequences is 81.65%. This means that
we found the accuracy of the model for each predicted sequence of this test dataset, and
subsequently, provide an average estimate of the accuracy across all the test sequences to
evaluate the performance of the model. The dataset accuracy evaluates the model’s ability
to predict the exact number of repetitions accurately, while the mean accuracy gives an
overall measure of the model’s performance by indicating the average deviation of the
predicted number of repetitions from the true value across all test sequences.
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Figure 6. The figure presents the ground truth (red dots) and prediction (blue dots) of the model
for 100 unseen sequences of data. The input data are from the steering wheel activity of the Skoda
dataset. The algorithm for counting predicted accurately 60 out of 100 activities. A line connecting
the two numbers shows the difference in the incorrectly predicted sequences. The largest error per
sequence observed in the graph is 1 count.

4. Discussion

The current study confirms that it can count interesting events in time series with
more flexibility concerning the size of each input sequence from a model that uses (i) solely
normalized data, (ii) weak labels, and (iii) deep learning. According to our method’s
preliminary findings, when we train the model for specific activities, our algorithm can
accurately predict, in most cases, the number of times an event is repeated in a sequence.
For some of the activities, the prediction is better than others. For example, activities such
as “open close hood” and “open close left door” contain patterns of both opening and
closing the object, which can possibly create a larger confusion for the model to recognize
the pattern. The lower results were achieved for the steering wheel class. The wheel
rotates three times in each direction, clockwise and counterclockwise, before switching.
In this case, the orientation for each side within the same sequence may be contributing
to the confusion, or the data may not be sufficient for the model’s design and a deeper
architecture or new data may be needed to capture the dependencies. Likewise, for the
“combined activities” class, in each sequence, the model may contain patterns from one
or more different activities that need to be counted. However, due to the weak labels,
no other information about the activity type is available, except for the total number of
events contained in each. The consistently small error, typically within the range of ±1,
demonstrates the effectiveness of our current architecture in accurately counting activities.
However, it also highlights the potential for further research and improvements to reduce
this error even further and achieve even more precise activity counting results.
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The model must be trained on a dataset of labeled sequences where the number of rep-
etitions in each sequence is known, regardless of the architecture being used. To address the
diversity in the different activities without padding and by utilizing the entire information
of the sequence, weak labels that are less time consuming and variable-size sequences are
used. Nevertheless, it is important to note that using weakly labeled data does introduce
certain limitations since the data are only partially labeled. A more comprehensive target
for the model might be provided, for example, by a second model trained with information
on the type of activity occurring, the location, the duration, or even data examples to use for
training. In our case, we developed our ragged tensor model using calibrated data, that we
normalized on a range of [0,1] to ensure a common scale. We selected the calibrated version
because it is in S.I. units and can be replicated by anyone even though the raw data of the
public dataset with our model provided comparable results. Additionally, the calibrated
data support the use of any sensor that takes readings using the same units, not just the
specific sensor that the dataset’s authors used in their study. Despite the benefits of ragged
tensors, such as efficient storage and easy handling of variable-length data, working with
them proved to be challenging, requiring additional effort and consideration of alternative
approaches, as some operations, libraries, and software tools outside of the TensorFlow
environment are not currently sufficiently supported.

Counting with deep learning can be beneficial for a variety of fields, such as health care,
to monitor and track physical activity levels and rehabilitation progress, sports and fitness,
to track and analyze athletic performance, robotics applications, to detect and track human
movements for use in collaborative robots, identifying actions and events in industrial
settings, etc. These are only a few examples of how counting with AI can be used for the
analysis and interpretation of IMU data in industrial applications. Although depending on
the problem that needs to be addressed and the kind of data that are accessible, a specific
application must be selected and modifications and optimizations must be completed.
Furthermore, merging AI with technologies such as edge computing, IoT, and cloud
computing for data analysis in real time and making decisions based on the results can
improve these applications. Initial contributions in this direction have been made in [35],
where the authors discuss the transition to real-time models, as well as in [36], where
the authors introduce their system that uses wearable sensors to capture online data and
perform activity recognition using Hidden Markov Models.

Our next steps include the improvement of the current model to count activities from
data that are not collected in laboratory settings to enable better generalization and make
it more robust across various sources of IMU data. Counting different activities within
one sequence would be another challenge to address. Besides that, it is interesting to
investigate the potential application of our method to other time-series data. However, it is
important to consider individual differences in movement patterns that may be influenced
by factors such as body size, gender, and age. One approach is to use a diverse dataset of
individuals with varying body sizes, genders, and ages to train a deep-learning model that
can generalize to new individuals and accurately estimate their movements. Additionally,
optimizing the placement of the sensors can improve the accuracy of the model and reduce
the need for unnecessary sensor data, which can be an obstacle in the learning process.

5. Conclusions

In this paper, we presented a counting method for activities and tasks to identify
the end of an activity based on raw calibrated acceleration data that are weakly labeled.
The generated sequences from the data have variable sizes instead of a fixed window size,
which restricts the system to operate with specific settings and makes it more challenging
to fit different types of activities with varying duration. An LSTM model for regression
analysis was developed for the task where we tested its performance with data from
different classes of the Skoda dataset for HAR. Our research focuses on using raw calibrated
data rather than preprocessed or filtered data to build models that are more resistant
to changes in their settings and generalize better to different scenarios. Furthermore,
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when fully labeled data are not available, the use of weak labels reduces the expense of
data annotation.

Our results indicate that our method can count instances of activities when it corre-
sponds to a single type and has shown promising results when training input data contain
multiple types of activities. This is supported by the findings in the aforementioned cases,
which state that the error for the sequences was always within ±1 iteration. Our next stages
will involve testing the model using more complex data collected under real-world condi-
tions and making it more robust against outliers and different sources of data. Thorough
investigation and application of this method in other domains, such as object detection
in videos, can also be included in the scope of the counting problem while adapting the
approach to work with the minimum required sensor signals to produce accurate results to
create user-friendly solutions that can be used during the daily work life.

Author Contributions: Conceptualization, G.S. and M.H.; methodology, G.S. and M.H.; software,
G.S. and M.H.; validation, G.S.; formal analysis, G.S.; investigation, G.S.; resources, G.S.; data curation,
G.S.; writing—original draft preparation, G.S.; writing—review and editing, G.S., M.H., and A.F.;
visualization, G.S.; supervision, G.S.; project administration, G.S.; funding acquisition, G.S., M.H.,
and A.F. All authors have read and agreed to the published version of the manuscript.

Funding: Supported by Johannes Kepler Open Access Publishing Fund and the federal state of
Upper Austria.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Skoda public dataset for Human activity recognition.

Acknowledgments: This work has been supported by the FFG, Contract No. 881844: Pro²Future is
funded within the Austrian COMET Program Competence Centers for Excellent Technologies under
the auspices of the Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility,
Innovation and Technology, the Austrian Federal Ministry for Digital and Economic Affairs and of
the Provinces of Upper Austria and Styria. COMET is managed by the Austrian Research Promotion
Agency FFG.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Azadi, B.; Haslgrübler, M.; Anzengruber-Tanase, B.; Grünberger, S.; Ferscha, A. Alpine skiing activity recognition using
smartphone’s IMUs. Sensors 2022, 22, 5922. [CrossRef] [PubMed]

2. Rana, M.; Mittal, V. Wearable sensors for real-time kinematics analysis in sports: A review. IEEE Sens. J. 2020, 21, 1187–1207.
[CrossRef]

3. Qiu, S.; Zhao, H.; Jiang, N.; Wang, Z.; Liu, L.; An, Y.; Zhao, H.; Miao, X.; Liu, R.; Fortino, G. Multi-sensor information fusion based
on machine learning for real applications in human activity recognition: State-of-the-art and research challenges. Inf. Fusion 2022,
80, 241–265. [CrossRef]

4. Mark, B.G.; Rauch, E.; Matt, D.T. Worker assistance systems in manufacturing: A review of the state of the art and future
directions. J. Manuf. Syst. 2021, 59, 228–250. [CrossRef]

5. Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of motion tracking methods based on inertial
sensors: A focus on upper limb human motion. Sensors 2017, 17, 1257. [CrossRef] [PubMed]

6. Liu, H.; Gamboa, H.; Schultz, T. Sensor-Based Human Activity and Behavior Research: Where Advanced Sensing and Recognition
Technologies Meet. Sensors 2023, 23, 125. [CrossRef]

7. Demrozi, F.; Pravadelli, G.; Bihorac, A.; Rashidi, P. Human activity recognition using inertial, physiological and environmental
sensors: A comprehensive survey. IEEE Access 2020, 8, 210816–210836. [CrossRef]

8. Liu, H.; Schultz, T. How Long Are Various Types of Daily Activities? Statistical Analysis of a Multimodal Wearable Sensor-Based
Human Activity Dataset. In Proceedings of the HEALTHINF, Online Streaming, 9–11 February 2022; pp. 680–688.

9. Gao, H.; Guo, F.; Zhu, J.; Kan, Z.; Zhang, X. Human motion segmentation based on structure constraint matrix factorization. Sci.
China Inf. Sci. 2022, 65, 119103. [CrossRef]

10. Sopidis, G.; Haslgrübler, M.; Azadi, B.; Anzengruber-Tánase, B.; Ahmad, A.; Ferscha, A.; Baresch, M. Micro-activity recognition in
industrial assembly process with IMU data and deep learning. In Proceedings of the 15th International Conference on PErvasive
Technologies Related to Assistive Environments, Corfu, Greece, 29 June–1 July 2022; pp. 103–112.

76



Sensors 2023, 23, 5057

11. Kim, J.Z.; Lu, Z.; Nozari, E.; Pappas, G.J.; Bassett, D.S. Teaching recurrent neural networks to infer global temporal structure from
local examples. Nat. Mach. Intell. 2021, 3, 316–323. [CrossRef]

12. Antar, A.D.; Ahmed, M.; Ahad, M.A.R. Challenges in sensor-based human activity recognition and a comparative analysis of
benchmark datasets: A review. In Proceedings of the 2019 Joint 8th International Conference on Informatics, Electronics & Vision
(ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Spokane, WA, USA, 30 May–2
June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 134–139.

13. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
14. Fang, M.; Zhou, Z.; Chen, S.; McClelland, J. Can a recurrent neural network learn to count things? In Proceedings of the CogSci,

Madison, WI, USA, 25–28 July 2018.
15. Zhang, Y.; Shao, L.; Snoek, C.G. Repetitive activity counting by sight and sound. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14070–14079.
16. Strömbäck, D.; Huang, S.; Radu, V. Mm-fit: Multimodal deep learning for automatic exercise logging across sensing devices.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 168. [CrossRef]
17. Skawinski, K.; Montraveta Roca, F.; Findling, R.D.; Sigg, S. Workout type recognition and repetition counting with CNNs from

3D acceleration sensed on the chest. In Proceedings of the International Work-Conference on Artificial Neural Networks, Gran
Canaria, Spain, 12–14 June 2019; Proceedings, Part I 15; Springer International Publishing: New York, NY, USA, 2019.

18. Ferreira, B.; Ferreira, P.M.; Pinheiro, G.; Figueiredo, N.; Carvalho, F.; Menezes, P.; Batista, J. Deep learning approaches for workout
repetition counting and validation. Pattern Recognit. Lett. 2021, 151, 259–266. [CrossRef]

19. Bian, S.; Rey, V.F.; Hevesi, P.; Lukowicz, P. Passive capacitive based approach for full body gym workout recognition and counting.
In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications, Kyoto, Japan, 11–15
March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–10. [CrossRef]

20. Soro, A.; Brunner, G.; Tanner, S.; Wattenhofer, R. Recognition and repetition counting for complex physical exercises with deep
learning. Sensors 2019, 19, 714. [CrossRef] [PubMed]

21. Wang, K.; He, J.; Zhang, L. Attention-based convolutional neural network for weakly labeled human activities’ recognition with
wearable sensors. IEEE Sens. J. 2019, 19, 7598–7604. [CrossRef]

22. Gao, W.; Zhang, L.; Teng, Q.; He, J.; Wu, H. DanHAR: Dual attention network for multimodal human activity recognition using
wearable sensors. Appl. Soft Comput. 2021, 111, 107728. [CrossRef]

23. Yao, Y.; Pan, L.; Fen, W.; Xu, X.; Liang, X.; Xu, X. A robust step detection and stride length estimation for pedestrian dead
reckoning using a smartphone. IEEE Sens. J. 2020, 20, 9685–9697. [CrossRef]

24. Khan, S.S.; Abedi, A. Step Counting with Attention-based LSTM. arXiv 2022, arXiv:2211.13114 .
25. Shen, C.; Ho, B.J.; Srivastava, M. Milift: Efficient smartwatch-based workout tracking using automatic segmentation. IEEE Trans.

Mob. Comput. 2017, 17, 1609–1622. [CrossRef]
26. Prabhu, G.; O’connor, N.E.; Moran, K. Recognition and repetition counting for local muscular endurance exercises in exercise-

based rehabilitation: A comparative study using artificial intelligence models. Sensors 2020, 20, 4791. [CrossRef]
27. Taborri, J.; Bordignon, M.; Marcolin, F.; Donati, M.; Rossi, S. Automatic identification and counting of repetitive actions related to

an industrial worker. In Proceedings of the 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4. 0&IoT), Naples,
Italy, 4–6 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 394–399. [CrossRef]

28. Ishii, S.; Nkurikiyeyezu, K.; Luimula, M.; Yokokubo, A.; Lopez, G. Exersense: Real-time physical exercise segmentation,
classification, and counting algorithm using an imu sensor. In Activity and Behavior Computing; Ahad, M.A.R., Inoue, S., Roggen,
D., Fujinami, K., Eds.; Springer: Singapore, 2021; pp. 239–255. [CrossRef]

29. Folgado, D.; Barandas, M.; Antunes, M.; Nunes, M.L.; Liu, H.; Hartmann, Y.; Schultz, T.; Gamboa, H. Tssearch: Time series
subsequence search library. SoftwareX 2022, 18, 101049. [CrossRef]

30. Rodrigues, J.; Liu, H.; Folgado, D.; Belo, D.; Schultz, T.; Gamboa, H. Feature-Based Information Retrieval of Multimodal Biosignals
with a Self-Similarity Matrix: Focus on Automatic Segmentation. Biosensors 2022, 12, 1182. [CrossRef]

31. Nishino, Y.; Maekawa, T.; Hara, T. Few-Shot and Weakly Supervised Repetition Counting With Body-Worn Accelerometers. Fron.
Comput. Sci. 2022, 4, 925108. [CrossRef]

32. Zappi, P.; Lombriser, C.; Stiefmeier, T.; Farella, E.; Roggen, D.; Benini, L.; Tröster, G. Activity recognition from on-body sensors:
Accuracy-power trade-off by dynamic sensor selection. In Proceedings of the Wireless Sensor Networks: 5th European Conference,
EWSN 2008, Bologna, Italy, 30 Januar–1 February 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 17–33. [CrossRef]

33. Bisong, E. Introduction to Scikit-learn. In Building Machine Learning and Deep Learning Models on Google Cloud Platform; Apress:
Berkeley, CA, USA, 2019. [CrossRef]

34. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. In Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’16), Savannah, GA, USA, 2–4 November 2016.

77



Sensors 2023, 23, 5057

35. Liu, H.; Xue, T.; Schultz, T. On a Real Real-Time Wearable Human Activity Recognition System. In Proceedings of the 16th
International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2023), Lisbon, Portugal, 16–18
February 2023.

36. Hartmann, Y.; Liu, H.; Schultz, T. Interactive and Interpretable Online Human Activity Recognition. In Proceedings of the 2022
IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom
Workshops), Pisa, Italy, 21–25 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 109–111.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

78



Citation: Gado, S.; Lingelbach, K.;

Wirzberger, M.; Vukelić, M. Decoding
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Abstract: Humans’ performance varies due to the mental resources that are available to successfully
pursue a task. To monitor users’ current cognitive resources in naturalistic scenarios, it is essential to
not only measure demands induced by the task itself but also consider situational and environmental
influences. We conducted a multimodal study with 18 participants (nine female, M = 25.9 with
SD = 3.8 years). In this study, we recorded respiratory, ocular, cardiac, and brain activity using
functional near-infrared spectroscopy (fNIRS) while participants performed an adapted version of
the warship commander task with concurrent emotional speech distraction. We tested the feasibility
of decoding the experienced mental effort with a multimodal machine learning architecture. The
architecture comprised feature engineering, model optimisation, and model selection to combine
multimodal measurements in a cross-subject classification. Our approach reduces possible overfitting
and reliably distinguishes two different levels of mental effort. These findings contribute to the
prediction of different states of mental effort and pave the way toward generalised state monitoring
across individuals in realistic applications.

Keywords: mental effort; machine learning; multimodal physiological signals; sensor fusion;
neuroergonomics; human–machine interaction

1. Introduction

In everyday life, we constantly face situations demanding high stakes for maximum
gains; for instance, to succeed in rapidly acquiring complex cognitive skills or making deci-
sions under high pressure. Thereby, a fit between personal skills and the task’s requirements
determines the quality of outcomes. This fit is vital, especially in performance-oriented
contexts such as learning and training, safety-critical monitoring, or high-risk decision-
making. A person’s performance can be affected by several factors: (1) level of experience
and skills, (2) current physical conditions (e.g., illness or fatigue), (3) current psychological
conditions (e.g., stress, motivation, or emotions), or (4) external circumstances (e.g., noise,
temperature, or distractions; Hart and Staveland [1], Young et al. [2]).

To reliably quantify the mental effort during a particular task, different measures can
be used: (1) behavioural (i.e., performance-based), (2) subjective, and (3) neurophysiological
measures [3–5]. While performance can be inspected by tracking the user’s task-related
progress, the actual pattern of invested cognitive resources can only be derived by mea-
suring brain activity with neuroimaging techniques. Coupled with sophisticated signal
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processing and machine learning (ML), advances in portable neuroimaging techniques have
paved the way for studying mental effort and its possible influences from a neuroergonomic
perspective [6,7]. Recently, functional near-infrared spectroscopy (fNIRS) has been used
to study cognitive and emotional processes with high ecological validity [6,8–10]. fNIRS
is an optical imaging technology allowing researchers to measure local oxy-haemoglobin
(HbO) and deoxy-haemoglobin (HbR) changes in cortical regions. Higher mental effort
is associated with an increase in HbO and a decrease in HbR in the prefrontal cortex
(PFC) [11–13]. The PFC is crucial for executive functions like maintaining goal-directed
behaviour and suppressing goal-irrelevant distractions [14,15]. In addition to changes in
the central nervous system, an increased mental effort also leads to changes in the auto-
nomic nervous system. The autonomic nervous system, as part of the peripheral nervous
system, regulates automatic physiological processes to maintain homeostasis in bodily
functioning [16,17]. Increased mental effort is associated with decreased parasympathetic
nervous system activity and increased sympathetic nervous system activity [18–20]. Typ-
ical correlates of the autonomic nervous system for cognitive demands, engagement or
mental effort are cardiac activity (e.g., heart rate and heart rate variability), respiration
(rate, airflow, and volume), electrodermal activity (skin conductance level and response),
blood pressure, body temperature, and ocular measures like pupil dilation, blinks, and eye
movements [7,19,21–24].

Not surprisingly, all these measures are, thus, often used as a stand-alone indicator for
mental effort (i.e., in a unimodal approach). However, a multimodal approach has several ad-
vantages over using only one measure. It can compensate for specific weaknesses and profit
from the strengths of the different complementary measurement methods (performance,
subjective experience as well as neuro- and peripheral physiological measures) [25–27].
For instance, (neuro-)physiological measures can be obtained without imposing an ad-
ditional task [16] and allow for capturing cognitive subprocesses involved in executing
the primary task [28]. A multimodal approach, hence, provides a more comprehensive
view of (neuro-)physiological processes related to mental effort [4,5,25,29], as it can capture
both central and peripheral nervous system processes [21,27]. However, fusing data from
different sources remains a major challenge for multimodal approaches. ML methods
provide solutions to compare and combine data streams from different measurements. ML
algorithms are becoming increasingly popular in computational neuroscience [30,31]. The
rationale behind these algorithms is that the relationship between several input data streams
and a particular outcome variable, e.g., mental effort, can be estimated from the data by
iteratively fitting and adapting the respective models. This allows for data-driven analyses
and provides ways to exploratorily identify patterns in the data that are informative [32].

Data-driven approaches can also be advantageous in bridging the disparity between
laboratory research and real-world applications. For instance, when specific temporal
events (such as a stimulus onset) or the brain correlates of interest, are not precisely known.
In contrast to traditional laboratory studies that typically rely on simplified and artificial
stimuli and tasks, a naturalistic approach seeks to emulate, to some extent, the intricacy
of real-world situations. Hence, these studies can provide insights into how the brain
processes information and responds to complex stimuli in the real world [33].

Real-world settings are usually characterised by multiple situational characteristics,
including concurrent distractions that affect the allocation of attentional and cognitive
resources [34]. According to the working memory model by Baddeley and Hitch [35],
performance is notably diminished when distractions deplete resources from the same
modality as the primary task. However, Soerqvist et al. [36] propose the involvement of
cognitive control mechanisms that result in reduced processing of task-irrelevant informa-
tion under higher mental effort. To uphold task-relevant cognitive processes, high-level
cortical areas, particularly the PFC, which govern top-down regulation and executive func-
tioning, suppress task- or stimulus-irrelevant neural activities by inhibiting the processing
of distractions [28]. Consequently, the effects of distractors are mitigated. In light of these
considerations, understanding the capacity of a stimulus to capture attention in a bottom-up
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manner, known as salience, emerges as a crucial aspect. A salient stimulus has the potential
to disrupt top-down goal-oriented and intentional attention processes [37] and to impair
performance in a primary task [38–40]. Previous studies found that irrelevant, yet intelligi-
ble speech exerts such disruptive effects on participants’ performance in complex cognitive
tasks [41,42]. Consequently, intelligible speech might heighten the salience of a distracting
stimulus. Moreover, further studies revealed that the emotional intensity and valence of
a stimulus also play a role in influencing its salience [37,43]. Despite their detrimental
impact on performance, people frequently experience such salient distractions (such as
verbal utterances from colleagues) at work, even in highly demanding safety-relevant tasks.
Therefore, gaining an understanding of the underlying cognitive processes in naturalistic
scenarios and identifying critical moments that lead to performance decreases in real-world
settings are crucial research topics in the field of neuroergonomics.

To decode and predict cognitive states, most research so far focused on subject-
dependent classification. These approaches face the challenge of high inter-individual
variability in physiological signals when generalising the model to others [44]. Recently,
pioneering efforts have been made to develop cross-subject models that overcome the
need for subject-specific information during training [45,46]. Solutions to address the chal-
lenge of inter-individual variability [47] are crucial for the development of “plug and play”
real-time state recognition systems [48] as well as the resource-conserving exploitation of
already available large datasets without time-consuming individual calibration sessions.
Taking into account the aforementioned considerations and research agenda concerning
the decoding of mental effort in naturalistic scenarios, we conducted a feasibility study and
developed an ML architecture to decode mental effort across subjects from multimodal
physiological and behavioural signals. We used a monitoring task simulating typical work
tasks of air traffic controllers. This adapted version of the warship commander task induces
mental effort based on a combination of attentional and cognitive processes, such as object
perception, object discrimination, rule application, and decision-making [49]. To create
a complex close-to-naturalistic scenario, three emotional types of auditory speech-based
stimuli with neutrally, positively, and negatively connotated prosody were presented dur-
ing the task as concurrent distractions [50]. Concurrently, performance-based, brain-related
as well as peripheral physiological signals associated with mental effort were recorded.

We hypothesised that a well-designed multimodal voting ML architecture is preferable
compared to a classifier based on (a) only one modality (unimodal approach) and (b) a
combined, unbalanced feature set of all modalities. We expected that a multimodal voting
ML model is capable of predicting subjectively experienced mental effort induced by the
task itself but also by the suppression of situational auditory distractions in a complex
close-to-realistic environment. Thus, we first investigated whether a combined prediction
of various ML models is superior to the prediction of a single model (RQ1) and, second,
we explored whether a multimodal classification that combines and prioritises the pre-
dictions of different modalities is superior to a unimodal prediction (RQ2). Furthermore,
our approach enables a systematic evaluation of the unimodal and multimodal models,
assessing their suitability and informativeness of each modality in decoding mental effort.
This knowledge provides researchers in the fields of Human Activity Recognition and
Behaviour Recognition with references for selecting suitable sensors, as well as a validated
multimodal experimental design and ML processing pipeline [51].

2. Materials and Methods

2.1. Participants

Interested volunteers filled in a screening questionnaire that checked eligibility for
study participation and collected demographic characteristics. Participants between the
ages of 18 and 35 and with normal or corrected-to-normal vision were included in the study.
Interested volunteers were excluded if they had insufficient knowledge of the German
language or limited colour vision, as these factors could impede their ability to perform
the tasks. Additionally, pregnant women, individuals indicating precarious alcohol or
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drug consumption, and those reporting mental, neurological, or cardiovascular diseases
were not included. Due to the data collection period in June 2021 coinciding with the
COVID-19 pandemic, individuals belonging to the risk group for severe COVID-19 disease,
as defined by the Robert Koch Institute, were also not invited to the laboratory. The final
sample consisted of 18 participants (nine female, three left-handed, mean age of 25.9 years,
SD = 3.8, range = 21–35 years) who were all tested individually. Before their participation,
they signed an informed consent according to the recommendations of the Declaration
of Helsinki and received monetary compensation for their voluntary participation. The
study was approved by the ethics committee of the Medical Faculty of the University of
Tübingen, Germany (ID: 827/2020BO1).

2.2. Experimental Task

Participants performed an adapted version of a warship commander task (WCT [52];
adapted by Becker et al. [49]). The WCT is a quasi-realistic navy command and control task
designed as a basic analogue to a Navy air warfare task [53]. It is suitable to investigate
various cognitive processes of human decision-making and action execution [53]. Here, we
used a non-military safety-critical task, where participants had to identify two different
flying objects on a simulated radar screen around an airport. Objects included either
registered drones (neutral, non-critical objects), or non-registered (critical) drones. They
had to prevent the non-registered drones, potentially being a safety issue, from entering
the airport’s airspace. Non-registered drones entering pre-defined ranges close to the
airport had to be first warned and then repelled in the next step. A performance score
was computed based on participants’ accuracy and reaction time. See Becker et al. [49],
for a more detailed description of the scoring system, and see Figure 1 for an overview of
the interface.

Figure 1. Elements of the WCT interface. Left side of the screen (map): Participants had to monitor
the aerial space of the airport. When an unregistered drone entered the yellow area (outer circle),
participants had to warn that drone; when an unregistered drone entered the red area (inner circle),
participants had to repel it. Right side of the screen (graphical user interface): Participants had to
request codes and pictures of unknown flying objects and then classify them as birds, registered
drones, or unregistered drones.
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During the task, we presented vocal utterances, either spoken in a happy, angry, or
neutral way from the Berlin Database of Emotional Speech (Emo-DB [50]). These utterances
were combined into different audio files, each one minute long, with speakers and phrases
randomly selected and as little repetition as possible within each file. We also included
a control condition where no auditory distraction was presented. The task load was
manipulated by implementing two difficulty levels in the WCT (low and high). This
resulted in a 2 × 4 design with eight experimental conditions. Participants completed
two rounds of all conditions in the experiment. Before the respective round, a resting
state measurement was conducted (30 s). Each round then consisted of eight blocks, each
comprising three 60-s trials of the same experimental condition. The task load condition
(operationalised with the difficulty level) was alternated across blocks. Half of the subjects
started with a high task load and the other half with a low task load block. Similarly, the
concurrent emotional condition (operationalised with different auditory distractions) was
randomised and sampled without replacement. Before each block, except for the first,
participants completed a baseline condition trial with a very low difficulty level where they
had to track six objects, of which three were non-registered drones. In the low task load
condition, participants had to track 12 objects, of which six were non-registered drones. In
the high task load condition, they had to track 36 objects, of which 17 were non-registered
drones. We used different emotional audio files for the trials in one block. Before and
after the whole experiment, as well as after each experimental block, participants filled
in questionnaires. See Figure 2 for a schematic representation of the whole experimental
procedure. Overall, the experiment lasted approximately 120 min, including 30 min of
preparation time of the used measurement devices and calibration procedures.

Figure 2. Procedure of the experiment. The presented procedure is exemplary as the task load condi-
tion was alternating, and the concurrent emotional condition was pseudo-randomised throughout
the different blocks.

2.3. Data Collection
2.3.1. Questionnaires

Subjectively perceived mental effort and affective states were assessed after each exper-
imental block. We used the NASA TLX effort and frustration subscales [1], EmojiGrid [54],
and categorical Circumplex Affect Assessment Tool (CAAT [55]). After the experiment,
participants answered questionnaires regarding personal traits that might have influenced
their performance and behaviour during the study. These questionnaires comprised the
short version of the German Big Five Inventory (BFI-K [56]), the German State-Trait-Anxiety
Inventory (STAI [57]), the Attention and Performance Self-Assessment (APSA [58]) and the
German language version of the Barratt Impulsiveness Scale-11 (BIS [59]). Here, we only
used the NASA TLX ratings of mental effort for labelling the (neuro-)physiological data in
the ML classification. The other subjective measures were not of interest in this analysis.

2.3.2. Eye-Tracking, Physiology, and Brain Activity

The ocular activity was recorded with the screen-based Tobii Pro Spectrum eye-
tracking system, which provides gaze position and pupil dilation data at a sampling

83



Sensors 2023, 23, 6546

rate of 60 Hz. To capture changes in physiological responses, participants were wearing a
Zephyr BioHarness™ 3 belt recording electrocardiographic (ECG), respiration, and temper-
ature signals at a sampling rate of 1 Hz. Here, we used automatically computed, aggregated
scores for the heart rate, heart rate variability, and respiration rate and amplitude from the
device. Physiological as well as behavioural measures were recorded using the iMotions
Biometric Research Platform software. Participants’ brain activity was recorded with a
NIRx NIRSport2 system, which emits light at two wavelengths, 760 and 850 nm. Data
were collected with the Aurora fNIRS recording software at a sampling rate of 5.8 Hz. To
capture regions associated with mental effort, 14 source optodes and 14 detector optodes
were placed over the prefrontal cortex [12,60] using the fNIRS Optodes’ Location Decider
(fOLD) toolbox [61] (Figure 3, for the montage). Event triggers from the experimental task
were sent to iMotions and Aurora using TCP protocols and Lab Streaming Layer (LSL).
Signals from the different recording and presentation systems were temporally aligned
offline after the data collection.

Figure 3. Location of fNIRS optodes. Montage of optodes on fNIRS cap on a standard 10–20 EEG
system, red optodes: sources, blue optodes: detectors, green lines: long channels, dark blue circles:
short channels. Setup with 41 (source–detector pairs) × 2 (wavelengths) = 82 optical channels
of interest.

2.4. Data Preprocessing and Machine Learning

Data preprocessing and ML analyses were performed with custom-written scripts in
R (version 4.1.1) and Python™ (version 3.8). Continuous raw data streams were cut into
non-overlapping 60-s intervals starting at the onset of each experimental trial (Figure 2).
Before feeding the data into the classification pipeline, we applied the following data
cleaning and preprocessing steps per modality.

2.4.1. Preprocessing of Eye-Tracking Data

Continuous eye tracker data were preprocessed using the eyetrackingR package in
R [62]. Missing values were linearly interpolated and 855 trials with a length of 60 s (on
average 47.5 trials per subject, SD = 0.9) were extracted. Next, we used the validity index
to remove non-consistent data segments from further analysis. The index is provided by
the eye tracker and indicates samples in which the eye tracker did not recognise both pupils
correctly (“track loss”). A total of 17 trials (1.99%) with a track loss proportion greater
than 25% were removed, and 838 trials were left to extract fixations and pupil dilation (on
average 46.6 trials per subject, SD = 2.4). For the preprocessing of the pupil dilation data,
we used the PupillometryR R-package [63]. First, we calculated a simple linear regression
of one pupil against the other and vice versa, per subject and trial to smooth out small
artefacts [64]. Afterwards, we computed the mean of both pupils and filtered the data
using the median of a rolling window with a size of 11 samples. To control for the variance
of pupil sizes between participants, we applied a subject-wise z-score normalisation of
pupil dilation. For the computation of fixations, we used the saccades R-package [65]. We
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obtained fixations for 565 trials (on average 31.4 trials per subject, SD = 1.2). To control
for the variance between participants, we also computed z-scores of the number and the
duration of fixations separately for each subject.

2.4.2. Preprocessing of Physiological Data

Epoching in non-overlapping 60-s time windows from the electrocardiographic raw
data resulted in 832 trials (on average 46.2 trials per subject, SD = 1.3). We applied
a correction for the between-participant variance identical to the one described for the
eye-tracking data using z-score normalisation.

2.4.3. Preprocessing of fNIRS Data

We used the libraries MNE-Python [66] and its extension MNE-NIRS [67] and guide-
lines from Yücel et al. [68] to preprocess the fNIRS data. First, we converted the raw data
into an optical density measure. A channel pruning was applied using the scalp-coupling
index for each channel which is an indicator of the quality of the connection between the
optodes and the scalp and looks for the presence of a prominent synchronous signal in the
frequency range of cardiac signals across the photo-detected signals [69]. Channels with a
scalp-coupling index below 0.5 were marked as bad channels. We further applied a tem-
poral derivative distribution repair accounting for a baseline shift and spike artefacts [70].
Channels marked as bad were interpolated, with the nearest channel providing good data
quality. Afterwards, a short-separation regression was used, subtracting short-channel data
from the standard long-channel signal to correct for systemic signals contaminating the
brain activity measured in the long-channel [68,71]. Next, the modified Beer–Lambert Law
was applied to transform optical density into HbO and HbR concentration changes [72]
with a partial pathlength factor of 6 [66]. Data were filtered using a fourth-order zero-phase
Butterworth bandpass filter to remove instrumental and physiological noise (such as heart-
beat and respiration; cut-off frequencies: 0.05 and 0.7 Hz; transition bandwidth: 0.02 and
0.2 Hz). HbO and HbR data was cut into epochs with a length of 60 s and channel-wise
z-scored normalised. In total, 730 trials were obtained for the analysis (on average 40.6 trials
per subject, SD = 9.6).

2.4.4. Feature Extraction

Our feature space comprised brain activity, physiological, ocular and performance-
related measures. Table 1 gives an overview of the included features per subject and trial
for each modality. We extracted the features of the fNIRS data using the mne-features
package [73].

Figure S24 in the supplementary material provide exploratory analyses of the distri-
bution and relationship between behavioural, heart activity, respiration, ocular measures,
and the NASA TLX questionnaire scale effort during low and high subjective load. The
Supplementary Figures S25 and S26 compare the grand average of the behavioural and
physiological measures as well as single fNIRS channels of the prefrontal cortex using
bootstrapping with 5000 iterations and 95% confidence intervals (CI) during low and high
subjective load.

2.4.5. Ground Truth for Machine Learning

Our main goal was to predict the mental effort experienced by an individual using ML
and training data from other subjects (e.g., [74,75]). Since the experimentally manipulated
task load was further influenced by situational demands (e.g., inhibiting task-irrelevant
auditory emotional distraction), the perceived mental effort might not be fully captured
by the experimental condition. Therefore, we explored two approaches to operationalise
mental effort as a two-class classification problem: First, based on self-reports using the
NASA TLX effort subscale, and second, based on the experimental task load condition.
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Table 1. Included features per modality.

Modality Features

Brain Activity Mean, standard deviation, peak-to-peak (PTP) amplitude, skewness, and
kurtosis of the 82 optical channels

Physiology

Heart Rate Mean, standard deviation, skewness, and kurtosis of heart rate
Mean, standard deviation, skewness, and kurtosis of heart rate variability

Respiration Mean, standard deviation, skewness, and kurtosis of respiration rate
Mean, standard deviation, skewness, and kurtosis of respiration amplitude

Temperature Mean, standard deviation, skewness, and kurtosis of body temperature
Ocular Measures
Fixations Number of fixations, total duration and average duration of fixations, and

standard deviation of the duration of fixations
Pupillometry Mean, standard deviation, skewness, and kurtosis of pupil dilation
Performance Average reaction time and cumulative accuracy

For the mental effort prediction based on subjective perception, we performed a
subject-wise median split and categorised values above the threshold as “high mental
effort” and below as “low mental effort”. Across all subjects, we had a mean median-based
threshold of 3.8 (SD = 3.2, scale range = 0–20) leading to an average of 23.8 trials per
subject with low mental effort (SD = 6.6, range = 12–39) and 14.5 trials per subject with
high mental effort (SD = 6.2, range = 3–21; see Supplementary Figure S1 for a subject-wise
distribution of the classes).

In addition, we performed a subject-wise split at the upper quartile of the NASA TLX
effort subscale. The upper (or third) quartile is the point below which 75% of the data lies.
We introduced this data split to also investigate the prediction and informative features
of extremely high perceived mental effort, which may indicate cognitive overload. By
performing a quartile split, we had a mean threshold of 6.1 (SD = 4.3, scale range = 0–20)
across all relevant subjects (excluding subjects 5 and 9 which did not show enough variation
to identify these two classes) with an average number of 30.9 low mental effort trials per
subject (SD = 8.0, range = 16–39) and 6.6 high mental effort trials per subject (SD = 2.3,
range = 3–9; see Supplementary Figure S2 for a subject-wise distribution of the classes).

At last, we compared the prediction of subjectively perceived mental effort with a
prediction of the mental effort induced by the task, that is the experimental condition
(“high task load” vs. “low task load”; see Supplementary Figure S15 for a subject-wise
comparison of perceived mental effort dependent on the experimental load condition). The
comparison allows to further control for confounding effects that are typical for self-reports,
e.g., consistency effects or social desirability effects.

2.4.6. Model Evaluation

We fitted six ML approaches: (1) Logistic Regression (LR), (2) Linear Discriminant
Analysis (LDA), (3) Gaussian Naïve Bayes Classifier (GNB), (4) K-Nearest Neighbour
Classifier (KNN), (5) Random Forest Classifier (RFC), and (6) Support Vector Machine
(SVM). They were implemented using the scikit-learn package (version 1.0.1; [76]). Figure 4
shows a schematic representation of our multimodal classification scheme and cross-subject
validation procedure using multiple randomised grid search operations.

For the cross-subject classification, we used a leave-one-out (LOO) approach where
each subject served as a test subject once (leading to 18 “outer” folds). With this 18-fold
cross-subject approach, we simulate a scenario where a possible future system can predict
an operator’s current mental effort during a task without having seen any data (e.g.,
collected in a calibration phase) from this person before. This has the advantage that
the model learns to generalise across individuals and allows the exploitation of already
collected datasets from a similar context as training sets.
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Figure 4. Classification procedure with cross-validated randomised grid searches (maximum number
of 100 iterations) and a validation set consisting of one or two subjects. The first grid search optimises
the hyperparameters for the different individual and unimodal classifiers. The second grid search
optimises the weights as well as voting procedure (soft or hard) for the unimodal voting classifier.
The third grid search optimises the weights as well as the voting procedure (soft or hard) for the
multimodal voting classifier.

Our multidimensional feature space consisted of four modalities: (1) brain activity,
(2) physiological activity, (3) ocular measures, and (4) performance measures. All features
were z-standardised (Figure 4). This scaling ensured, that for each feature the mean is zero
and the standard deviation is one, thereby, bringing all features to the same magnitude.
We then trained the six classifiers (LR, LDA, GNB, KNN, RFC, and SVM) separately
for each modality. Hyperparameters for each classifier were optimised by means of a
cross-validated randomised grid search with a maximum number of 100 iterations and a
validation set consisting of either one or two subjects. We tested both sizes of the validation
set to find an optimal compromise between the robustness of the model and the required
computing power. While cross-validation with two subjects counteracts the problem that
the models highly adapt to an individual’s unique characteristics, cross-validation with
only one subject leads to a lower number of necessary iterations and a computationally
more efficient approach. Due to our cross-subject approach, the selected hyperparameters
varied for each predicted test subject.

Afterwards, we combined these classifiers using a voting classifier implemented in
the mlxtend package (version 0.19.0 [77]). The ensemble classifier makes predictions based
on aggregating the predictions of the previously trained classifiers by assigning weights to
each of them. Here, we are interested in whether an ensemble approach achieves higher
prediction accuracy than the best individual classifier in the ensemble. An ensemble
approach has the advantage that, even if each classifier is a weak learner (meaning it does
only slightly better than random prediction), the ensemble could still be a strong learner
(achieving high accuracy). The voting either follows a “soft” or a “hard” voting strategy.
While hard voting is based on a majority vote combining the predicted classes, soft voting
considers the predicted probabilities and selects the class with the highest probability across
all classifiers. The weights, as well as the voting procedure (soft or hard voting), were
optimised using a third cross-validated randomised grid search with a maximum number
of 100 iterations. We restricted the weights to a maximum value of 2 (range = 0–2).

With this procedure, we were able to compare the predictions of the single unimodal
classifiers to a weighted combination of all classifiers of one modality.

For the multimodal approach, the voting predictions of each modality were combined
into a final multimodal prediction of mental effort using a second voting classifier. This
second voting classifier also assigned weights to the different modality-specific classifiers
and was optimised in the same manner as the unimodal approach. We report the average
F1 score and a confusion matrix of the training set and the test subject to evaluate model
performance. The F1 score can be interpreted as a weighted average or “harmonic mean”
of precision and recall (1—good to 0—bad performance). Precision refers to the number
of samples predicted as positive that are positive (true positives). Recall measures how
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many of the actual positive samples are captured by the positive predictions (also called
sensitivity). The F1 score balances both aspects – identifying all positive, i.e., “high mental
effort” cases, but also minimising false positives.

To compare the classification performance of different models, we calculated the boot-
strapped mean and its CI over cross-validation folds with 5000 iterations per classification
model. We corrected the 95% CI for multiple comparisons using the Bonferroni Method.
Significant differences can be derived from non-overlapping notches of the respective
boxes, which mark the upper and lower boundaries of bootstrapped 95% CI of the mean
F1 score. The upper CI limit of a dummy classifier represents an empirical chance level
estimate (dashed grey line in all subplots of Figure 5). A dummy classifier considers only
the distribution of the outcome classes for its prediction. For a prediction to be better than
chance (at a significance level below 0.05), the bootstrapped mean of a classifier must not
overlap with this grey line [78]. For a significance level below 0.01, the lower CI boundary
of a classifier’s mean must not overlap with this grey line [78]. This criterion can also be
applied when statistically comparing different models, regardless of the chance level.

3. Results

We compare the results for a mental effort prediction based on a subject-wise (1a) me-
dian and (1b) upper quartile split of the Nasa TLX effort scale as well as based on the
(2) experimentally induced task load. Further, we compare two sizes of the validation set
(one subject and two subjects).

3.1. Unimodal Predictions

The performance of the different modalities and classifiers is visualised in Figure 5.
We do not see substantially better performance when using a larger validation set of two
subjects, neither for the median split (compare Figure 5 and Supplementary Figure S3) nor
for the upper quartile split (compare Supplementary Figures S7 and S11) or the prediction
of the experimentally induced task load (Supplementary Figures S16 and S20). We will,
therefore, focus on the models fitted with a validation set of one subject, as this is more
time- and resource-efficient. In this case, we estimated the CI’s upper boundary of the
mean empirical chance level for predicting subjectively perceived mental effort to be 0.444
(M = 0.368, 95% CI [0.284; 0.444]). This estimate now serves as a reference for determining
significant performance above the chance level.

Figure 5 and Table 2 show the performance in a median-split-based unimodal approach
(Figure 5A,B,D,E) as well as for the multimodal approach (Figure 5C; elaborated on in
Section Multimodal Predictions). Regarding the unimodal classifications, we see the highest
predictions of the subjectively perceived mental effort for performance data (Figure 5E
compared with ocular, physiological, or brain activity measures; Figure 5A,B,D; see Table 2).
Except for the performance-based model, we observe overfitting indicated by the large
deviation between training and test performance (Figure 5A,B,D). None of the brain activity-
based models performs significantly better than the estimated chance level in the test data
set (Figure 5A,G, Table 2). When examining the single classification models within each
modality, the KNN, RFC, and SVM were more likely to be overfitted, as seen by the good
performance in the training set but a significantly worse performance for the test subject.
We combined the different classifiers using a voting classifier, of which we ascertained the
voting procedure (soft vs. hard voting) and the weights with a randomised grid search.
See Figure 6 for an overview of the selected voting procedures and the allocated weights
per modality.
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Figure 5. Prediction of the subjectively perceived mental effort based on a median split; validation
set: N = 1. Classifiers’ performance based on (A) fNIRS data, (B) physiological data (heart rate,
respiration, and body temperature, (C) a combined, weighted feature set, (D) visual data, (E) per-
formance data (accuracy and response time), (F) a combined, but unweighted feature set, and (G) a
dummy classifier that considers only the distribution of the outcome classes for its prediction and
represents an empirical chance level. Bootstrapped Bonferroni-corrected 95% confidence intervals
(CI; 5000 iterations) of the mean F1 scores for the training set (left, orange) and the test set (right,
blue) of the different unimodal and multimodal models. Notches in the boxes of the plot visualise
the upper and lower boundary of the CI with the solid line representing the mean and the dashed
grey line representing the median. The box comprises 50% of the distribution from the 25th to the
75th quartile. The ends of the whiskers represent the 5th and 95th quartile of the distribution. The
continuous grey dashed line shows the upper boundary of the CI of the dummy classifier at 0.444.

Table 2. Bootstrapped Bonferroni-corrected means and 95% CIs of F1 scores.

Training Set Test Set

Chance Level

Dummy Classifier 0.351, 95% CI [0.320; 0.379] 0.368, 95% CI [0.284; 0.444]

Unimodal Predictions Based on fNIRS

LR 0.924, 95% CI [0.889; 0.962] 0.392, 95% CI [0.278; 0.500]
LDA 0.845, 95% CI [0.840; 0.850] 0.387, 95% CI [0.271; 0.495]
GNB 0.532, 95% CI [0.469; 0.577] 0.366, 95% CI [0.275; 0.457]
KNN 1.0, 95% CI [1.0; 1.0] 0.348, 95% CI [0.248; 0.451]
RFC 0.721, 95% CI [0.667; 0.786] 0.308, 95% CI [0.235; 0.387]
SVM 0.756, 95% CI [0.644; 0.862] 0.386, 95% CI [0.287; 0.473]
Unimodal Voting 0.911, 95% CI [0.848; 0.954] 0.401, 95% CI [0.314; 0.489]

Unimodal Predictions Based on Physiology

LR 0.441, 95% CI [0.426; 0.454] 0.354, 95% CI [0.246; 0.464]
LDA 0.441, 95% CI [0.424; 0.456] 0.341, 95% CI [0.226; 0.448]
GNB 0.279, 95% CI [0.269; 0.297] 0.231, 95% CI [0.141; 0.318]
KNN 0.966, 95% CI [0.962; 0.973] 0.377, 95% CI [0.309; 0.439]
RFC 0.648, 95% CI [0.585; 0.708] 0.327, 95% CI [0.217; 0.425]
SVM 0.532, 95% CI [0.379; 0.715] 0.366, 95% CI [0.262; 0.455]
Unimodal Voting 0.767, 95% CI [0.691; 0.848] 0.305, 95% CI [0.212; 0.396]
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Table 2. Cont.

Training Set Test Set

Unimodal Predictions Based on Visual Measures

LR 0.318, 95% CI [0.287; 0.355] 0.201, 95% CI [0.080; 0.354]
LDA 0.314, 95% CI [0.285; 0.345] 0.198, 95% CI [0.087; 0.346]
GNB 0.492, 95% CI [0.472; 0.506] 0.390, 95% CI [0.294; 0.485]
KNN 1.0, 95% CI [1.0; 1.0] 0.386, 95% CI [0.291; 0.485]
RFC 0.690, 95% CI [0.658; 0.728] 0.322, 95% CI [0.237; 0.415]
SVM 0.517, 95% CI [0.422; 0.630] 0.301, 95% CI [0.198; 0.401]
Unimodal Voting 0.751, 95% CI [0.589; 0.915] 0.354, 95% CI [0.262; 0.442]

Unimodal Predictions Based on Performance Measures

LR 0.586, 95% CI [0.549; 0.624] 0.543, 95% CI [0.399; 0.676] *
LDA 0.584, 95% CI [0.548; 0.618] 0.499, 95% CI [0.325; 0.663] *
GNB 0.667, 95% CI [0.659; 0.677] 0.661, 95% CI [0.514; 0.792] **
KNN 0.919, 95% CI [0.914; 0.924] 0.513, 95% CI [0.367; 0.650] *
RFC 0.696, 95% CI [0.686; 0.707] 0.616, 95% CI [0.472; 0.752] **
SVM 0.679, 95% CI [0.672; 0.689] 0.641, 95% CI [0.467; 0.799] **
Unimodal Voting 0.673, 95% CI [0.662; 0.687] 0.656, 95% CI [0.509; 0.789] **

Multimodal Predictions

LR 0.919, 95% CI [0.892; 0.939] 0.498, 95% CI [0.412; 0.581] *
RFC 0.803, 95% CI [0.784; 0.830] 0.617, 95% CI [0.499; 0.742] **
Multimodal Voting 0.673, 95% CI [0.663; 0.686] 0.658, 95% CI [0.515; 0.797] **
Multimodal Voting (w/o Perf.) 0.930, 95% CI [0.905; 0.957] 0.369, 95% CI [0.276; 0.464]

Note. * p < 0.05 considering the bootstrapped mean, ** p < 0.01 considering the lower CI limit

Figure 6. Weights and procedure of an unimodal voting classifier to predict subjectively perceived
mental effort based on a median split; validation set: N = 1. Allocated weights for an unimodal
voting classifier based on (A) fNIRS data, (B) physiological data (heart rate, respiration, and body
temperature), (C) visual data, and (D) performance data (accuracy and response time). Error bars
represent the standard deviation.

Interestingly, for 8 out of 18 participants, we observed high prediction performances
with F1 scores ranging between 0.7 and 1. However, we also identified several subjects
whose subjectively perceived mental effort was hard to predict based on the training data
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of the other subjects. See Tables S1–S3 in the Supplementary Material for a detailed compar-
ison of the classifiers’ performances in the different test subjects. Concluding, the results
indicate that transfer learning and generalisation over subjects is much more challenging
when using the neurophysiological compared with the performance-based features.

3.2. Unimodal Predictions—Brain Activity

The unimodal voting classifiers for brain activity mainly used hard voting (94.4%)
and gave the highest weights to the LDA classifier (Figure 6A). However, on average
the unimodal voting classifier (M = 0.40, 95% CI [0.31; 0.49], Figure 5A) revealed strong
overfitting and was neither performing better than the single classifiers nor better than the
estimated chance level. We then compared the performance of the classifiers with respect
to the percentage of correctly and falsely classified cases in a confusion matrix (Figure 7).
Therefore, we used the best-performing classifier for each test subject and then summed
over all test subjects. We compared the distribution of the true positives, true negatives,
false positives, and false negatives in these classifiers with the respective distribution of the
voting classifier. Here (Figure 7A), we see that both distributions indicate a high number of
falsely identified “High Mental Effort” cases (False Positives), leading to a recall of 45.6%
and precision of only 39.3% for the voting classifier and a recall of 57.5% and precision of
49.8% for best single classifiers.

Figure 7. Prediction of the subjectively perceived mental effort (confusion matrix of test set) based on
a median split; validation set: N = 1. Percentage of correctly and falsely classified perceived mental
effort per model across all test subjects: TP = True Positives, TN = True Negatives, FP = False Positives,
and FN = False Negatives, with “Positives” representing “High Mental Effort” and “Negatives” rep-
resenting “Low Mental Effort”. For the “Best Performing Single Classifier” we selected the classifier
(LDA, LR, SVM, KNN, RFC, or GNB) with the best F1 score for each subject. Confusion matrices
based on (A) fNIRS data, (B) physiological data (heart rate, respiration, and body temperature), (C) a
combined, weighted feature set, (D) visual data, (E) performance data (accuracy and response time),
(F) a combined, but unweighted feature set, and (G) a dummy classifier representing an empirical
chance level.

3.3. Unimodal Predictions—Physiological Measures

For classifying subjectively perceived mental effort based on physiological measures
such as heart rate, respiration, and body temperature, soft voting was chosen in half of the
test subjects. The weighting of the classifiers varied considerably, with the KNN obtaining
the highest average weights (Figure 6B). The unimodal voting classifier (M = 0.31, 95% CI
[0.21; 0.40]; Figure 5B) showed strong overfitting, and its performance in the test subjects
was neither significantly better than any of the single classifiers nor better than the estimated
chance level. Regarding the percentage of correctly and falsely classified cases (Figure 7B),
we see that the distributions for the best-performing single classifiers seem to be slightly
better than the distributions of the voting classifier. The latter had difficulties in correctly
identifying the conditions with low mental effort as can be seen in the high number of false
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negatives. When comparing the recall and precision of both approaches, we have a recall
of only 29.9% for the voting classifier (precision: 38.6%) and an average recall of 51.0% for
the best single classifiers (precision: 50.2%).

3.4. Unimodal Predictions—Ocular Measures

For subjectively perceived mental effort classification based on ocular measures such
as pupil dilation and fixations, the split of soft vs. hard voting was 5.6% for soft voting and
94.4% for hard voting. KNN and SVM were weighted highest (Figure 6C). The F1 score of
the unimodal voting classifier (M = 0.35, 95% CI [0.26; 0.44]; Figure 5D) did not show a
significant above-chance-level classification performance. The percentage of correctly and
falsely classified cases (Figure 7D) was similar to the brain models, with a recall of 39.1%
for the voting classifier (precision: 35.1%) and an average recall of 57.9% for the best single
classifiers (average precision: 47.6%).

3.5. Unimodal Predictions—Performance

At last, we predicted subjectively perceived mental effort based on performance
(accuracy and speed). 27.8% of the test subjects had voting classifiers using soft voting, and
72.2% used hard voting with SVM being weighted highest (Figure 6D). The models GNB
(M = 0.66, 95% CI [0.51; 0.79]), RFC (M = 0.62, 95% CI [0.47; 0.75]), and SVM (M = 0.64,
95% CI [0.47; 0.80]) showed all a significant above-chance-level performance (p < 0.01).
The other models (LR, LDA, KNN) revealed also above-chance level performances but
with smaller differences (p ≈ 0.05; Table 2). The performance of the unimodal voting
classifier (M = 0.66, 95% CI [0.51; 0.79]) was also significantly better than the estimated
chance level. The percentage of correctly and falsely classified cases (Figure 7E) reveals
superior classification performance compared with the brain-, physiological- and ocular-
based models. However, the voting classifier still had many falsely identified “High Mental
Effort” cases (False Positives), leading to a recall of 78.5% and a precision of 57.6%. The
best-performing single classifiers have an average recall of 82.4% and an average precision
of 62.3%.

3.6. Unimodal Predictions Based on the Upper Quartile Split

To identify informative measures for very high perceived mental effort potentially re-
flecting cognitive overload, we also performed predictions based on the subject-wise split at
the upper quartile. Compared with the median-split-based results, we observed decreased
classifiers’ performance even below dummy classifier performance (Supplementary Figure S7).
This might be explained by the fact that we reframed a binary prediction problem with
evenly distributed classes into an outlier detection problem. Using the upper quartile split,
we created imbalanced classes regarding the number of the respective samples, which
made the reliable identification of the less well-represented class in the training set more
difficult (reflected in the recall; Supplementary Figure S9).

3.7. Unimodal Predictions Based on the Experimental Condition

We further fitted models to predict the experimentally induced task load instead of
the subjectively perceived mental effort. The prediction of mental effort operationalised
by the task load was substantially more successful than the prediction of subjectively
perceived mental effort. All modalities, including brain activity and physiological activity,
revealed at least one classifier that was able to predict the current task load above the
chance level (Supplementary Figure S16). The unimodal voting classifiers (Brain: M = 0.59,
95% CI [0.55; 0.62], Physiology: M = 0.66, 95% CI [0.62; 0.72], Visual: M = 0.69, 95% CI
[0.62; 0.77], Performance: M = 0.97, 95% CI [0.90; 1.0]) were all significantly better than
a dummy classifier (M = 0.51, 95% CI [0.47; 0.55]). Best unimodal voting classifications
were obtained based on performance measures. Interestingly, other classification models
were favoured in the unimodal voting, and the distribution between soft- and hard voting
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differed compared with the subjectively based approach, with soft voting being used more
often (Supplementary Figure S17).

3.8. Multimodal Predictions Based on the Median Split

In the final step, we combined the different modalities into a multimodal prediction.
Figures 5C and 7C show the performance of the multimodal voting classifier, and Figure 8A
the average allocated weights to the different modalities. To compare the rather complex
feature set construction of the multimodal voting with a simpler approach, we also trained
two exemplary classifiers (LR without feature selection and RFC with additional feature
selection) on the whole feature set without a previous splitting into the different modalities
(Figure 5F).

In most test subjects (55.6%), soft voting was selected to combine the predictions for
the different modalities; 44.4% used hard voting. In line with the results outlined above,
the multimodal classifier relied on performance measures to predict subjectively perceived
mental effort (Figure 8A), thereby turning it into a unimodal classifier. The voting classifier
(Figure 5C, M = 0.66, 95% CI [0.52; 0.80]) led to a significantly better classification than
the estimated chance level. The multimodal classifier exhibited an equivalent percentage
of correctly and falsely classified cases (Figure 7C) compared with the performance-based
classifier, demonstrating an average recall of 78.5% and an average precision of 57.6%. On
average, it performed better than the classifiers trained with the combined whole feature
set, which showed substantial overfitting.

Figure 8. Weights and procedure of a multimodal voting classifier to predict subjectively perceived
mental effort based on a median split; validation set: N = 1. (A) shows the allocation of weights
when all modalities are included in the multimodal classification. (B) shows the allocation of weights
when performance measures are not included in the multimodal classification. Error bars represent
the standard deviation.

In order to assess the performance of the multimodal classifier without incorporating
performance-based information such as speed and accuracy, we constrained the classifier to
utilise only (neuro-)physiological and visual measures. This approach is especially relevant
for naturalistic applications where obtaining an accurate assessment of behavioural perfor-
mance is challenging or impossible within the critical time window. For the multimodal
prediction without performance, brain activity was weighted highest (Figure 8B). However,
classifiers revealed strong overfitting during the training, and the average performance
was decreased to chance level (M = 0.37, 95% CI [0.28; 0.46], average recall: 40.6% and
average precision: 38.3%; Figure 5C).

3.9. Multimodal Predictions Based on the Upper Quartile Split

With the upper quartile split, we observed a fundamentally different allocation of
weights. High weights were assigned to brain and ocular activity (Figure 8B), while per-
formance received only minimal weights. Hence, the exclusion of performance-based
measures had minimal impact on the allocation of weights (Supplementary Figure S10B)
and the overall performance of the multimodal classifiers remained largely unaffected
(Supplementary Figure S7C). Among the eighteen test subjects, the multimodal classifica-
tion demonstrated the highest performance in two cases (Supplementary Table S2). How-
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ever, on average, the multimodal classification based on an upper quartile split (M = 0.19,
95% CI [0.08; 0.33]; average recall: 21.9% and average precision: 18.5%) did not demonstrate
superiority over the unimodal classifiers (Brain: M = 0.18, 95% CI [0.08; 0.30], Physiol-
ogy: M = 0.24, 95% CI [0.14; 0.34], Visual: M = 0.16, 95% CI [0.06; 0.28], Performance:
M = 0.20, 95% CI [0.09; 0.34]). It further did not significantly outperform the dummy
classifier (M = 0.20, 95% CI [0.12; 0.28]) or classifiers trained on a feature set of simply
combined modalities without weight assignment (LR: M = 0.26, 95% CI [0.16; 0.36], RFC:
M = 0.28, 95% CI [0.18; 0.39]; Supplementary Figure S7).

3.10. Multimodal Predictions Based on the Experimental Condition

Similar to the multimodal voting classifier based on a subject-wise median split of
perceived mental effort, classifiers predicted the experimentally induced task load solely
using the performance measures. The average prediction performance was exceptionally
high (M = 0.97, 95% CI [0.91; 1.0]; average recall: 99.7% and average precision: 91.3%),
significantly outperforming a dummy classifier (M = 0.51, 95% CI [0.47; 0.55]), and
comparable to the performance of the classifiers trained on the combined feature set
(LR: M = 0.95, 95% CI [0.90; 0.99], RFC: M = 0.96, 95% CI [0.91; 1.0]; Supplementary
Figure S16). When we only allowed (neuro-)physiological and visual measures as features,
visual measures were weighted highest (Supplementary Figure S19B). In this case, the
average performance of the multimodal classifiers (M = 0.69, 95% CI [0.64; 0.74]) was
also significantly above the chance level, with an average recall of 82.7% and precision of
58.7%, indicating a successful identification of mental effort based on neurophysiological,
physiological, and visual measures (Supplementary Figure S16C).

4. Discussion

The purpose of our study was to test the feasibility of multimodal voting in a ML
classification for complex close-to-realistic scenarios. We used both—the subjectively
experienced and experimentally induced mental effort—as ground truths for a cross-
subject classification. Our approach represents a crucial investigation for the practical
application of mental state decoding under real-world conditions. Our study aims to fill
the existing gap in the literature and address the need for online accessible naturalistic
data sets by providing a multimodal voting ML architecture along with the dataset to
decode mental effort across subjects in a quasi-realistic experiment simulating a real-world
monitoring task. This serves as the foundation for enabling the adaptation of systems to
users’ current mental resources and efforts. By incorporating adaptive systems, individuals
can enhance their performance by operating within an optimal level of demand, allowing
them to perform at their best. In tasks involving high-security risks, it is crucial for
system engineers to make every effort to prevent individuals from being overwhelmed or
bored, as such states can increase the likelihood of errors. In our analyses, we employed
multimodal voting cross-subject classification and evaluated the model performance using
a leave-one-out approach. We contribute to the existing body of knowledge on mental
state decoding by systematically evaluating the selection and informativeness of sensors
including neurophysiological, physiological, visual, and behavioural measures for the
classification of subjective and experimentally induced mental effort. Moreover, our results
show which classifier models perform best for each modality. We further observed that
in certain modalities, the combination of ML models outperformed predictions made
by individual ones. For each modality, we found a different set of classifiers that were
better performing in the prediction and, thus, also considered more informative in the
unimodal voting.

4.1. Using Subjectively Perceived Mental Effort as Ground Truth

When predicting subjectively perceived mental effort, LDA and LR performed best
and were weighted highest in the classifications based on brain activity (Figure 5). Whereas,
in physiological activity, the highest weights were assigned to KNN, RFC, and SVM.
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Regarding visual activity, the GNB and KNN revealed high classification performance
among the test subjects. However, these models aiming to predict subjectively perceived
mental effort based on brain activity, physiological activity, and visual measures were still
strongly overfitted, and their performances in the test subjects were not significantly better
than the dummy classifier. In performance-related measures, the GNB, RFC, and SVM
performed significantly better than the dummy classifier when predicting subjective mental
effort based on a median split. Using the upper quartile split for performance-related
measures, the KNN and SVM showed the highest, but still, chance-level-like performances.
Regarding the unimodal voting predictions of subjectively perceived mental effort, we
see that a weighted combination of classifiers (LR, LDA, GNB, KNN, RFC, and SVM) was
not superior to single classifiers neither when using the median nor the upper quartile
split. When we combined the different modalities into a joined prediction of subjectively
perceived mental effort, only the performance modality was considered. Hence, our
multimodal classification might rather be considered a unimodal (performance-based)
prediction. Removing the performance information from the multimodal voting classifier
increases overfitting and drops the average classification performance. However, a more
detailed investigation of the upper quartile split classification revealed that performance
was less predictive in identifying cases of exceptionally high perceived mental effort and
potential “cognitive overload” (Figure 7). In the upper quartile split classification, higher
multimodal voting weights were assigned to neurophysiological and visual measures
compared with performance measures. This seems to imply that subjects were more
heterogeneous in their performance under exceptionally high perceived mental effort, and
classifiers rather exploited correlates from neurophysiological and visual measures than
from performance to predict subjectively perceived mental effort. In summary, our findings
indicate that when utilizing only unimodal voting classification, the best prediction of
subjectively perceived mental effort was achieved through performance-based measures.
Additionally, the inclusion of the performance-based classification model is essential in our
multimodal voting classification approach to address potential overfitting in predicting
mental effort (median-based split). These findings suggest that further research is necessary
to investigate the dependence and variability of mental effort in cross-subject classification.

4.2. Using Experimentally Induced Mental Effort as Ground Truth

For the classification of the experimentally induced task load, all modalities were
able to predict mental effort with high performances already on a single classifier level.
GNB, KNN, and SVM performed above the chance level and were assigned the highest
weights in the unimodal voting based on brain activity (Supplementary Figure S16). For
the physiological activity, all classifiers—except the KNN—reached above-chance level
performance. The highest average weight in the unimodal voting was assigned to the
SVM. For visual and performance measures, we did not see substantial differences between
the classification performance of the single models, with all performing above the chance
level. A unimodal weighted combination of these classifiers was not superior to the single
classifiers in any modality. Performance exhibited the highest predictive capability for task
load (Supplementary Figure S16). As a result, the multimodal classifier transitioned again
back into unimodal voting, as it relied solely on the performance modality. When excluding
the performance-based features, the multimodal prediction based on neurophysiological,
physiological, and ocular activity was still significantly above the chance level estimated
by a dummy classifier. These findings suggest that it is feasible to differentiate between
various mental effort states, represented by experimentally induced task load, by utilizing
neurophysiological, physiological, and visual data obtained in a close-to-realistic envi-
ronment through a cross-subject classification approach. However, it was not possible to
replicate these results for subjectively perceived mental effort. The discrepancies observed
between these two ground truth approaches could potentially be attributed to the retro-
spective nature of self-reports. Self-reports rely on an individual’s perception, reasoning,
and subjective introspection [79]. They are, therefore, vulnerable to various perceptual and
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response biases like social desirability [21,80]. These post hoc evaluation processes might
not be adequately reflected in and could be learned from (neuro-)physiological and visual
measures during the task itself.

4.3. Generalisation across Subjects

For all classification approaches, we observed substantial variation in the performance
of classifiers between the test subjects. Some individuals had F1 scores above 0.8 (Supple-
mentary Table S1). Other individuals demonstrated deviations in their neurophysiological
reactions, diverging significantly from the patterns learned from the subjects included in
the training set. These results are in line with the findings by Causse et al. [81]. The authors
concluded that it is quite challenging to identify mental states based on haemodynamic
activity across individuals because of the major structural and functional inter-individual
differences. For instance, in the context of brain–computer interfaces, a phenomenon called
BCI illiteracy describes the inability to modulate sensorimotor rhythms in order to control
a BCI observed in approximately 20–30% of subjects [82]. Our findings underscore the im-
portance of developing appropriate methods to address two key aspects. First, identifying
subjects who may pose challenges in prediction due to their heterogeneity compared with
the training set. Second, enabling transfer learning for these individuals by implementing
techniques such as standardisation and transformation of correlates into a unified feature
space [83].

4.4. Limitations and Future Research

We acknowledge that certain aspects of this study can be further improved and serve
as opportunities for future advancements. One area for improvement is the complexity of
the measurement setup used in this study, which required a substantial amount of time
for the preparation and calibration of the involved devices. It is important to consider
the potential impact on participants’ intrinsic engagement and explore ways to further
streamline the process during soft- and hardware development. Furthermore, it is worth
noting that our feasibility study sample was relatively small and homogeneous in terms of
socio-demographic characteristics, consisting predominantly of young individuals with a
high level of education. The small sample size likely had a negative impact on the statistical
power of our study. Combined with the homogeneity of the sample, it could also limit the
generalisability of our results to more diverse populations. While it may seem intuitive to
increase the sample size to address the issue of heterogeneity, there is a debate surrounding
the relationship between sample size and its impact on classifier performance. With adding
more and more samples, the dataset is supposedly at some point large enough to enable
the classifier to find more generic and universal predictive patterns and achieve better
performance again. Some argue that it is necessary to train ML models with large training
datasets, including edge cases, to achieve good generalisability and attain good predic-
tion accuracy on an individual-level Bzdok and Meyer-Lindenberg [84], Dwyer et al. [85].
Nevertheless, as emphasised by Cearns et al. [86], it is worth noting that ML classifiers
demonstrate exceptional performance primarily in relatively small datasets. Consequently,
the heterogeneity of a large dataset might present a significant challenge for learning. Thus,
it may be more reasonable to train separate,specialised models for each homogeneous clus-
ter, rather than attempting to construct a single model that explains the entire variance but
yields less accurate predictions. Orrù et al. [87], for example, suggests the use of simple clas-
sifiers or ensemble learning methods instead of complex neural networks. Cearns et al. [86]
highlight the importance of suitable cross-validation methods. Especially in the case of
physiological datasets, one might also identify subjects that are very predictive for the
patterns of a specific subgroup and remove subjects from the training set that show unusual
patterns in neurophysiological reactions [85]. One interesting idea to address this problem
is data augmentation [88,89]. This can be done by artificially generating new samples from
existing samples to extend a dataset. For example, using Generative Adversarial Networks
(GANs), one could simulate data to create more homogeneous and “prototypic” training
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datasets and increase the performance and stability of respective ML models [90]. Another
suggested method to improve generalisability across subjects might be multiway canonical
correlation analysis (MCCA). An approach that allows combining multiple data sets into
a common representation and, thereby, achieves the denoising of data, and dimensional-
ity reduction, based on shared components across subjects [83]. Advancements in these
methods play a crucial role in enhancing the comparability and potential combinability of
datasets, which is a shared objective within the research community [91].

To further increase classification performance, additional artefact analyses [92], or
the implementation of inclusion criteria on a subject-, trial-, and channel-level could be
explored in order to improve poor signal-to-noise ratios. Friedman et al. [93], who used an
XGBoost classifier on EEG data, applied extensive and rigorous trial and subject selection
criteria. For example, they did not include trials where participants failed to solve the task
because they assumed that the mental effort shown by participants answering incorrectly
did not reflect the true level of load (also [94]). Although this bears the risk of a major
data loss, these rigid removal criteria might reflect an efficient solution to ensure that the
measured neurophysiological signals truly reflect the cognitive processes of interest. Future
research is necessary to a) define such exclusion and inclusion criteria depending on the
investigated cognitive processes and b) develop standardised evaluation methods to decide
which preprocessing step is beneficial and adequate.

A final limitation relates to the arrangement of the fNIRS optodes. Based on previous
research (e.g., [12]), we decided to choose a montage solely covering the prefrontal cortex
in order to reduce preparation time and facilitate transfer into close-to-realistic applications.
However, we probably would have profited from a larger brain coverage that also covers
parietal, temporal, and occipital brain areas [94]. Integrating these regions allows identify-
ing features for the classification from larger functional networks that might play a crucial
role in distinguishing mental states and cognitive control mechanisms [36,95]. Increased
activity in the frontoparietal network is, for example, associated with task-related working
memory (WM) processes (e.g., [96,97]), whereas increased connectivity between frontal
and sensory areas are linked to the suppression of distractors [95].

4.5. Feature Selection and Data Fusion in Machine Learning

A crucial aim of this study was the selection and fusion of informative sources for cross-
subject mental effort prediction. We integrated data from different modalities comprising
brain activity as assessed with fNIRS, physiological activity (cardiac activity, respiration,
and body temperature), ocular measures (pupil dilation and fixations), as well as be-
havioural measures of performance (accuracy and speed). However, this selection was
naturally not exhaustive. Other measures, such as electroencephalography or electrodermal
activity [98], could provide useful information about cognitive and physiological processes
related to mental effort. In addition, one could also explore more behaviour-related mea-
sures such as speech [99] or gaze [100]. These measures might also provide the possibility
to detect predictive patterns without significantly interfering with the actual task. When
conducting applied research and incorporating mental state decoding in real-world settings
(e.g., healthcare, entertainment, gaming, industry, and lifestyle; [101]), it is crucial to utilise
sensors that are unobtrusive, seamlessly integrated into the environment, mobile, and user-
friendly. For this purpose, further validation studies are warranted to evaluate the quality
and suitability of smart wearables such as smartwatches or fitness trackers [101,102], mobile neuro-
physiological sensors [103,104], and mobile eye-tracking [105,106]. Our results indicate that
performance-based measures as well as a multimodal approach including neurophysiologi-
cal, physiological, and visual measures are successful in decoding experimentally induced
mental effort. Visual features, followed by physiological measures, were particularly in-
formative in the multimodal approach. This insight enables researchers to optimise their
sensor setup by prioritizing measures and streamlining their data collection process.

To combine the data streams obtained from the different measurement methods, we
implemented data fusion on two levels: (1) the feature level and (2) the classification level.
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First, we aggregated our raw data, mainly time series, into informative features. We used
standard statistical features like the mean, standard deviation, skewness, and kurtosis.
Friedman et al. [93] explored more sophisticated features such as connectivity and complex-
ity metrics, which have the potential to capture additional information about relationships
within and between neuronal networks. Further investigations are required to assess the
predictive quality of these aggregated features. Additionally, future research can explore
the added value of feature selection and wrapping methods, which aim to reduce the com-
plexity of the feature space without compromising the predictive information [107,108].
Such methods, e.g., sequential feature forward selection, might be a way to improve clas-
sifiers’ performance by keeping only the most informative features. Another approach
could be the use of continuous time-series data which provide insights into differences
in the experience and processing of mentally demanding tasks separately for the differ-
ent neurophysiological modalities. Hence, some researchers implemented deep learning
methods like convolutional or recurrent neural networks to derive classifications based
on multidimensional time-series data [45,109,110]. Nevertheless, these algorithms require
that all data streams are complete (no missing data points) and have the same length and
sampling frequency. These requirements are often difficult to fulfil in naturalistic settings
with multimodal measurement methods using different measurement devices.

Once the feature space is defined, the research focus shifts towards developing strate-
gies for selecting, merging, combining, and weighting multiple classifier models and modal-
ities at the classification level. These strategies are still the subject of ongoing research
and exploration. In this context, it is important to strike a balance between computational
power, dataset size, and the benefits of finely tuned combinations of optimally stacked
or voted classifiers. The exploration of early and late fusion approaches, as commonly
employed in the field of robotics, could provide valuable insights. Early fusion involves
the early combination of all data points and the fitting of classifiers to multidimensional
data. On the other hand, late fusion involves a more fine-grained pipeline, where several
classifiers are fitted to different proportions of the dataset and subsequently combined at a
later stage. In this study, we implemented a late-fusion approach where we first combined
different classifiers for each modality. In a subsequent step, we combined classifiers to
create a unified prediction. Exploring early and late fusion strategies is especially impor-
tant when one wants to account for temporal dynamics in the different measures or the
realisation of real-time mental state monitoring. The review of Debie et al. [27] provides
a comprehensive overview of the different fusion stages when identifying mental effort
based on neurophysiological measures.

5. Practical Implications and Conclusions

Our proposed multimodal voting classification approach contributes to the ecologically
valid distinction and identification of different states of mental effort. It paves the way to-
ward generalised state monitoring across individuals in realistic applications. Interestingly,
the choice of ground truth had a fundamental influence on the classification performance.
The prediction of subjectively perceived mental effort operationalised through self-reports,
is most effectively achieved by incorporating performance-based measures. On the other
hand, the experimentally induced task load can be accurately predicted not only from
performance-based measures but also by incorporating neurophysiological, physiological
and visual measures. Our findings provide valuable guidance for researchers and prac-
titioners in selecting appropriate methods based on their specific research questions or
application scenarios, taking into account limited resources or environmental constraints.
The capacity to predict subjectively perceived and experimentally induced mental effort
on an individual level makes this architecture an integral part of future research and
development of user-centred applications such as adaptive assistance systems.

Supplementary Materials: The following supporting information can be downloaded at https:
//osf.io/2vxs5. Figure S1: Distribution of low and high subjectively perceived mental effort for
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each subject after a subject-wise median split; Figure S2: Distribution of low and high subjectively
perceived mental effort for each subject after a subject-wise upper quartile split; Figure S3: Prediction
of the subjectively perceived mental effort (F1 scores in training and test set) based on a median
split; validation set: N = 2; Figure S4: Weights and procedure of a unimodal voting classifier to
predict subjectively perceived mental effort based on a median split; validation set: N = 2; Figure S5:
Prediction of the subjectively perceived mental effort (confusion matrix of test set) based on a median
split; validation set: N = 2; Figure S6: Weights and procedure of a multimodal voting classifier to
predict subjectively perceived mental effort based on a median split; validation set: N = 2; Figure S7:
Prediction of the subjectively perceived mental effort (F1 scores in training and test set) based on an
upper quartile split; validation set: N = 1; Figure S8: Weights and procedure of a unimodal voting
classifier to predict subjectively perceived mental effort based on an upper quartile split; validation
set: N = 1; Figure S9: Prediction of the subjectively perceived mental effort (confusion matrix of test
set) based on an upper quartile split; validation set: N = 1; Figure S10: Weights and procedure of a
multimodal voting classifier to predict subjectively perceived mental effort based on an upper quartile
split; validation set: N = 1; Figure S11: Prediction of the subjectively perceived mental effort (F1 scores
in training and test set) based on an upper quartile split; validation set: N = 2; Figure S12: Weights
and procedure of a unimodal voting classifier to predict subjectively perceived mental effort based
on an upper quartile split; validation set: N = 2; Figure S13: Prediction of the subjectively perceived
mental effort (confusion matrix of test set) based on an upper quartile split; validation set: N = 2;
Figure S14: Weights and procedure of a multimodal voting classifier to predict subjectively perceived
mental effort based on an upper quartile split; validation set: N = 2; Figure S15: Distribution of low
and high subjectively perceived mental effort for each subject separately for the two experimental task
load conditions (“High Task Load” and “Low Task Load”); Figure S16: Prediction of the experimental
task load condition (F1 scores in training and test set); validation set: N = 1; Figure S17: Weights and
procedure of a unimodal voting classifier to predict the experimental task load condition; validation
set: N = 1; Figure S18: Prediction of the experimental task load condition (confusion matrix of test
set); validation set: N = 1; Figure S19: Weights and procedure of a multimodal voting classifier to
predict the experimental task load condition; validation set: N = 1; Figure S20: Prediction of the
experimental task load condition (F1 scores in training and test set); validation set: N = 2; Figure S21:
Weights and procedure of a unimodal voting classifier to predict the experimental task load condition;
validation set: N = 2; Figure S22: Prediction of the experimental task load condition (confusion
matrix of test set); validation set: N = 2; Figure S23: Weights and procedure of a multimodal
voting classifier to predict the experimental task load condition; validation set: N = 2; Figure S24:
Distribution and correlations; Figure S25: Bootstrapped grand averages and 95% confidence intervals
of the physiological and behavioural measurements for low and high subjective load; Figure S26:
Bootstrapped grand averages and 95% confidence intervals of relative HbO and HbR concentration
in single fNIRS channels. Table S1: Comparison of Subjectively Perceived Mental Effort Classification
Performance between Test Subjects (F1 Score)–Median Split; Table S2: Comparison of Subjectively
Perceived Mental Effort Classification Performance between Test Subjects (F1 Score)–Quartile Split;
Table S3: Comparison of Experimentally Induced Mental Effort Classification Performance between
Test Subjects (F1 Score).
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Abstract: Participatory exposure research, which tracks behaviour and assesses exposure to stres-
sors like air pollution, traditionally relies on time-activity diaries. This study introduces a novel
approach, employing machine learning (ML) to empower laypersons in human activity recognition
(HAR), aiming to reduce dependence on manual recording by leveraging data from wearable sensors.
Recognising complex activities such as smoking and cooking presents unique challenges due to
specific environmental conditions. In this research, we combined wearable environment/ambient
and wrist-worn activity/biometric sensors for complex activity recognition in an urban stressor
exposure study, measuring parameters like particulate matter concentrations, temperature, and
humidity. Two groups, Group H (88 individuals) and Group M (18 individuals), wore the devices
and manually logged their activities hourly and minutely, respectively. Prioritising accessibility and
inclusivity, we selected three classification algorithms: k-nearest neighbours (IBk), decision trees
(J48), and random forests (RF), based on: (1) proven efficacy in existing literature, (2) understand-
ability and transparency for laypersons, (3) availability on user-friendly platforms like WEKA, and
(4) efficiency on basic devices such as office laptops or smartphones. Accuracy improved with finer
temporal resolution and detailed activity categories. However, when compared to other published
human activity recognition research, our accuracy rates, particularly for less complex activities,
were not as competitive. Misclassifications were higher for vague activities (resting, playing), while
well-defined activities (smoking, cooking, running) had few errors. Including environmental sensor
data increased accuracy for all activities, especially playing, smoking, and running. Future work
should consider exploring other explainable algorithms available on diverse tools and platforms. Our
findings underscore ML’s potential in exposure studies, emphasising its adaptability and significance
for laypersons while also highlighting areas for improvement.

Keywords: wearable sensors; particulate matter; activity recognition; machine learning; low-cost
sensors; participatory research

1. Introduction

Exposure studies often rely on participants or subjects to provide information about
their movements and activities relevant to the study. Time use diaries, or time activity
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diaries (TADs), have been extensively used to record specific activities and their relation
to economic or health factors [1]. While TADs have been mostly paper-based, in the last
decade, activity tracking has transitioned to smartphone apps and web-based applications,
improving diary data quality [2]. On the other hand, there are indications that using
smartphone apps can increase nonresponse levels due to several factors, e.g., not owning
a smartphone and unfamiliarity with digital tools, though there are options available to
overcome some of these issues [3].

Analysing the everyday activities of individuals can present a useful way to com-
partmentalise human behaviour and subsequently assess exposure to stressors, such as
pollution or noise. Strong evidence exists that different activities increase exposure to
stressors, e.g., elevated levels of airborne particulate matter when dusting, folding clothes,
making a bed [4], smoking cigarettes [5], vaping [6], or walking/vacuuming on carpeted
flooring [7,8], and increased exposure to noise on public transport [9]. Manually recording
activities by a large group of individuals can be imprecise or require more resources [10]. An
important constraint is temporal resolution, which has to be suited to participants/subjects’
availability and responsiveness. When individuals self-report activities, there is little con-
trol over how precise the reports are, especially when taking into account recall bias and
reliability [11–13]. In this context, participatory research, a collaborative approach that
involves stakeholders, particularly those affected by the issue being studied, in all aspects
of the research process, from defining the problem to collecting and analysing data, may
offer a more integrated and accurate method of data collection. Reviewing TAD data in
this study, in collaboration with the participants, showed a possible error rate of up to
5–10% for each activity. To reduce the probability of human error, different approaches are
employed, e.g., user-cantered study design to construct better TADs [14] and using GPS
and other variables as activity identifiers to reduce manual input [15–17].

Different classification algorithms developed over the past decades could potentially
classify different activities by using data recorded with sensors as learning data. Equipping
each individual with low-cost sensors would provide data about their movement, physiol-
ogy, and environment. Relying solely on movement data or environmental data does not
necessarily provide enough information to predict complex activities. This study utilised
machine learning methods for classification, in combination with sensor and activity data,
to provide a proof of concept for an alternative to manually recording complex activities.
Furthermore, the approach was centred on analysing the usefulness of these tools to non-
expert users involved in participatory research. To this end, two groups of participants,
equipped with biometric and environmental sensors, recorded their activities with different
temporal resolutions. The collected data were used to learn three different classification
algorithms, observe how accurately each of them classifies simple and complex activities,
and determine the role of different temporal resolutions. Overall, the aims of this study are:

(i) To evaluate the effectiveness of using a combined dataset from environmental and bio-
metric sensors for the recognition of complex individual activities, utilizing classifiers
selected for their transparency, interpretability, and accessibility to laypersons. This
involves comparing the predictive performance of different classifiers to ascertain
their suitability in a participatory-based urban health stressor context.

(ii) To investigate how different temporal resolutions of the collected data influence
the predictive performance of each classifier, thereby determining the optimal data
granularity for accurate activity recognition in urban health studies.

(iii) To assess the individual contributions and overall value of the environmental and
biometric sensors used in the study, particularly focusing on their role in enhancing
the accuracy of human activity recognition for complex urban activities.

(iv) To assess the role of these classifiers and sensors in empowering lay individuals for
participatory urban health research. This involves enhancing the accessibility and
understandability of human activity recognition technology, thereby enabling more
effective community involvement in urban environmental health studies.
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1.1. Air Quality and Environmental Data from Personal Monitors

Low-cost personal sensors and monitors that measure ambient conditions are becom-
ing increasingly popular. Particulate matter concentrations, temperature, relative humidity,
and various gases are just a few of the parameters that can be measured with low-cost per-
sonal sensors and monitors. These devices have certain drawbacks, mainly the uncertainty
of their results [18,19], although they have been improving in the past years [20] and are
“cautiously encouraged” for monitoring indoor air quality [21].

Certain complex activities, e.g., cooking, cleaning, and smoking, are characterised
by distinct environmental conditions (smoke, resuspension of particles, high humidity),
which could potentially provide enough data for a classification algorithm to identify them.
Environmental sensors for temperature, humidity, and light have been successfully used
to aid in activity recognition [22], including using humidity, CO2, and temperature to
classify specific (simple) activities in a single room [23]. To the best of our knowledge,
individual-level particulate matter concentration, in combination with biometric data, has
not been used for HAR.

1.2. Human Activity Recognition

Human activity recognition (HAR) methods have notably evolved, enabling the
distinction of various activities using low-cost sensors without manual input. Recent
advancements have shown the potential of HAR in applications such as mobile healthcare,
smart homes, and fitness monitoring [24]. While earlier research focused on utilising
sensors like accelerometers, compasses, gyroscopes, barometers, magnetometers, and GPS
present in smartphones to predict specific actions, events, or activities such as walking,
running, and falling [25,26], dedicated activity trackers (usually worn on the wrist) are
more sophisticated and provide more accurate data [27,28]. On the other hand, even as
these devices are better at HAR, they still have a high error rate (mean absolute percentage
error (MAPE) of >50%) for more complex activities (dusting, cleaning, playing cards, etc.),
but provide heart rate measurements with lower mean errors, i.e., between −3.57 bpm and
4.21 bpm, and MAPE of up to 16% [29,30]. In some instances, they have shown accuracy
>90% for certain complex activities, e.g., smoking [31], by utilising hand gestures. Sensors
measuring ambient conditions have been deployed in various HAR-oriented research
projects.

1.2.1. HAR Challenges and HAR Pipeline

Several technical challenges persist in HAR, according to Chen et al. [32]:

1. Difficult feature extraction is due to activities having similar characteristics.
2. The high cost and time-intensive nature of activity data collection leads to annotation

scarcity.
3. Person-dependent activity patterns, temporal variability of activity concepts, and

diverse sensor layouts in individuals result in sensory data heterogeneity.
4. Composite or complex activities encompass several actions, making them more difficult

to classify. Concurrent and multi-occupant activities, where an individual performs
multiple activities simultaneously or with multiple people, add to the complexity.

5. A high computational cost is associated with HAR systems that have to provide
instant responses and fit into portable devices.

6. The privacy and interpretability of the collected data have to be considered.

A recent HAR research pipeline has been introduced, offering a structured approach to
human activity recognition [33]. This pipeline consists of nine interconnected components,
guiding research from equipment selection to real-world application. It emphasises the
importance of data acquisition, segmentation, annotation, signal processing, and feature
extraction. The final phase integrates the research into practical scenarios [33]. In this
research, the proposed pipeline has been implemented into the workflow. The equipment
used was chosen for its relevance in capturing data across a range of activities in variable
environmental conditions in Ljubljana, Slovenia. The data acquisition phase was focused on
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quality data capture amidst environmental variations. The subsequent segmentation and
annotation phases were critical for accurately categorising diverse activities from indoor
to outdoor settings. In signal processing, we processed the data to filter out noise. These
methodologies were applied in the scope of this work, with an emphasis on real-world
applicability and data interpretation. Each stage addressed specific challenges, including
data quality and environmental adaptability.

1.2.2. Deep Learning Models for HAR

Deep learning models, such as those based on the self-supervised learning framework
SimCLR, have showcased competitive performance in HAR using ambient sensor data [34].
In smart homes, the use of ambient sensors has become crucial due to the increasing demand
for applications that can recognise activities in real-time [35]. Transformer-based filtering
networks combined with LSTM-based early classifiers have been proposed to address the
challenges posed by unrefined data in real-time HAR [35]. Cross-house human activity
recognition is another area of interest, aiming to use labelled data from available houses
(source domains) to train recognition models for unlabelled houses (target domains) [36].
Wearable devices have also played a pivotal role in HAR, supporting the detection of
human activities without the need for environmental sensors like cameras [37]. These
devices offer the advantage of not constraining users to remain in controlled environments.
A deep understanding of the situations in which activities are performed is essential for
applications in domains like safety, security, surveillance, and health monitoring [37].

1.2.3. Classification and Shallow Algorithms for HAR

While deep learning has shown high accuracy, usefulness, and advancements in
HAR [38], shallow machine learning algorithms continue to demonstrate effectiveness in
this field. Classification specifically is one of the major tasks in machine learning, where
an algorithm learns, from examples in the training data, how to assign a specific class to
the testing data. A task of this kind is to classify emails as “spam” or “not spam”. In its
most rudimentary form, an algorithm would check in a labelled training dataset which
words or phrases are associated with a spam email and which are not. With these learned
associations, the algorithm would be used on a new (testing) dataset, classifying new emails
into “spam” and “not-spam”. This is an illustrative task of binary classification, whereas
activity classification usually requires multi-class classification, where there are several
different classes, such as walking, running, cleaning, smoking, and so on. A variety of
algorithms can be used for classification, including kNN [39], decision trees [40], Naïve
Bayes [41], random forests [42], gradient boosting [43], support vector machines [44], etc.

Classifiers have been used in various HAR applications that use smartphones and
low-cost activity trackers or other mobility sensors, in some cases with accuracy >98% [45],
and in most cases >80% [46,47]. Combining these data points with ambient conditions,
such as temperature and relative humidity measured with a smartphone (which has certain
drawbacks [48]) or with static sensors, has shown up to 99.96% of correctly classified
activities, such as walking, sitting, cycling, running, and other similar, less complex activi-
ties [49,50]. Specifically, decision tree classifiers (DTC), random forest classifiers (RFC), and
K-nearest neighbours (KNN) have been utilised to recognise activities such as walking up-
stairs, walking downstairs, and walking normally, among others. The RFC model exhibited
superior performance, achieving an accuracy score of 97.67% [51]. A proposed framework
for HAR using smartphone sensors employed random forest, decision tree, and k-nearest
neighbour classifiers, achieving an accuracy of 93.10% [52].

These approaches have utilised an array of different classifiers with varying results,
where some algorithms, such as Naïve Bayes, achieve an average accuracy of 43.29% as
compared to random forests, with the accuracy of 99.96% [50] and 99.86% [49]. Fewer
studies have attempted to identify more complex activities, such as cooking, cleaning,
gardening, playing, smoking, and others, as they are more difficult to characterise or
distinguish from each other. Dernbach et al. [53] report over 90% accuracy for simpler
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activities for all classifiers (except Naïve Bayes with ~74%), while the accuracy for more
complex activities was ~50% (only for K-star, otherwise between 35% and 50%). As complex
and simple activities are broad terms, it is useful to define them. Sousa Lima et al. [54]
provide a good explanation to delimit these two types of activities: “Simple or low-level
activities are those activities that can only be recognized by analysing data from one or
more sensors in a short period of time (e.g., walking and running). While complex or
high-level activities can be seen as a set of low-level activities that can be recognized over
a long period of time (e.g., work and shopping).” In this study, the scope of definitions
is broadened to encompass various sensor types essential for HAR, including movement,
biometric, and environmental sensors. Simple activities such as running, sleeping, resting,
and sports typically require only a single device for effective monitoring. Conversely,
complex activities like cleaning, cooking, playing, and smoking often demand additional
data on ambient conditions. The research primarily investigates complex activities while
also considering some simpler ones.

To promote the wider adoption of machine learning and classification methods, partic-
ularly in participatory and citizen science initiatives where individuals actively contribute
data and collaborate in research, it is preferential to prioritize the explainability and ac-
cessibility of the algorithms and tools employed. In this context, WEKA, a collection of
visualisation tools and algorithms designed for data analysis and predictive modelling,
is identified as a promising tool [55]. Combining data from different environmental and
biometric sensors and devices could provide enough information to distinguish different
complex activities and somewhat resolve the listed challenges. Employing explainable
algorithms available in accessible and user-friendly environments could lead to a wider
adoption of machine learning and classification for HAR in participatory-based research.

2. Methodology

2.1. Data Collection

Two sets of data were used for this research, collected from participants living in
Ljubljana, Slovenia:

The first set (group H—hourly data) was collected as part of the ICARUS H2020 project
from 88 participants [56]. The participants were involved in the winter (February to March
2019) and summer (April to June 2019) seasons of the campaign for approximately 7 days
and were equipped with two sensor devices: a smart activity tracker (SAT) and a portable
particulate matter (PM) measuring device (PPM). Basic personal information was obtained
from each participant (age, body mass, sex, etc.). All participants had to fill out a TAD,
where information about their activities was provided for each hour. They could select their
hourly activity from 7 indoor activities (resting, sleep, playing, sports, cooking, smoking,
cleaning) and 2 outdoor activities (running, sports). The activities chosen to be included
in the TAD were based on the criteria developed within the ICARUS project, based on
available research and activity pattern databases [57]. Sensor data, collected with a 1-min
resolution, were aggregated to a 1-h resolution by calculating the mean value. A detailed
description of the sampling campaigns was published by Robinson [58].

The second set (group M—minute data) was collected from September to November
of 2020 from 18 participants. They were equipped with the same devices as the first group.
An important distinction was that they (a) had more activities to choose from and (b) had
to log activity data on the scale of minutes, not hours. The activities used for group M were
modified activities from the initial ICARUS TAD. Sensor data with a 1-min resolution were
used as-is.

All participants involved in the study provided their informed consent. Ethical
approval for the ICARUS project in Slovenia was obtained from the National Medical
Ethics Committee of the Republic of Slovenia (approval nr. 0120-388/2018/6 on 22 August
2018). The data in this paper were selected only from participants in Slovenia, and all
methods were performed in accordance with the relevant guidelines and regulations.
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A graphic representation of the methodology and dataflows used in this work is
shown in Figure 1.

Figure 1. Schematic representation of the overall methodology and data flows used in this work.

2.1.1. Smart Activity Tracker

A Garmin (Garmin, Olathe, KS, USA) Vivosmart 3 activity tracker was strapped to
each participant’s wrist for the entire duration of the data collection period, except for two
hours when the device had to be recharged. Information about the participant (sex, age,
body mass, height, etc.) was logged into the device before deployment. The temporal
resolution of the data was one minute. Data for average minute heart rate [beats per
minute], steps [number of steps], and metabolic equivalent of task (M.E.T.) [between 0.01
and 45.60] was collected from each participant. The SAT provided several other variables,
though they were not relevant to the scope of this research. Raw data, e.g., accelerometer,
was not accessible.

The device measured heart rate using photoplethysmography (PPG) [59], with the
wrist as the preferred location for its cost-effectiveness and convenience. According to
information disclosed by Garmin, this specific device contains four sensors: a Garmin
ElevateTM write heat rate monitor, a barometric altimeter, an accelerometer, and an ambient
light sensor [60]. Validation studies confirm the Garmin Vivosmart’s accuracy in capturing
relevant data, including in older adults [61–63], though caution is advised for energy
expenditure and high-intensity activities [64,65].

2.1.2. Portable Particulate Matter Sensing Device

This low-cost PPM device was developed for the ICARUS project by IoTECH (IoTECH
Telecommunications, Thessaloniki, Greece) using a Plantower pms5003 sensor (Nanchang
Panteng Technology Co., Ltd., Nanchang, China). This sensor uses the optical particle
counting principle to measure particle size and mass concentration in real time. A fan draws
particles into a beam of light, illuminating each particle as it passes through, with scattered
light being recorded on a photodetector and converted into an electrical signal. The device
provided data at a one-minute resolution. Participants carried it with them the entire period,
strapped to their clothes, handbags, backpacks, or something similar. When sedentary,
they were instructed to “have it in the same room, as close as possible”, as the device
needed to be recharged every six to seven hours or continuously plugged into a power
source. The pms5003 sensor consistently demonstrates accuracy in both short-term and
long-term evaluations, exhibiting moderate to high correlation with reference instruments
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in various settings [66–68]. While some studies suggest minimal drift over time [68,69],
others recommend regular calibration, especially in high-humidity environments [67].
Additionally, the Plantower sensor recorded ambient temperature and humidity, and the
ancillary GPS component provided data on speed of movement. Group M was provided
with a power bank with a 10.000 mAh capacity, which prolonged the use of the device
to ~24 h. The PPM provided minute-resolution data for PM1, PM2.5, PM10, temperature
[◦C], relative humidity [%], and speed [km/h]. Some other variables were also provided by
the PPM, though they were out of the scope of this research. The PPM was validated by
co-location with reference research-grade sensors [70].

2.1.3. Activity Recording

Group H was provided with 7 blank daily time activity diaries (TADs), where they
were able to fill in circles for each activity they did for every hour of the day. These files
were collected and digitalized. Information about all indoor and outdoor activities was
used. An example of a TAD can be found as supplemental information in Novak et al. [71].

Group M installed the Clockify app [72] on their smartphone, which had activities
already pre-set by the research team on the online portal. Several activity-tracking apps
were tested and reviewed, and though the Clockify app was generally meant as a time-
tracking app for work and projects, it had the functionalities that were needed for this
research. Each participant selected the activity they were beginning to perform, and the
timer would start. After they finished the activity, they would select the next activity, which
would automatically finish the first one. The time stamps had date, hour, minute, and
second information. While the activity data technically had a 1-s resolution, it was rounded
to the nearest minute. The reasoning was fourfold: (1) a few instances of activities with a
duration of <1 min, (2) the compiled dataset would be unnecessarily large, (3) the changes
between activities included in the analysis are not relevant at <1-min resolution, and (4) all
sensor data had a 1-min resolution. The recorded data were exported from the Clockify
portal in csv format.

Recording more than one activity simultaneously was deemed out of the scope of this
research. In the case of Group M, recording more than one activity at once was not possible
in the app. On the other hand, there were some instances of participants recording more
than one activity per hour in Group M. Generally, these were not the same variables as
those used in this research. In the few cases where this overlap happened, the first activity
from the right side of the TAD was selected.

All annotations of data and any segmentation were based on the activity data provided
by the participants.

2.2. Dataset Overview

Sensor, TAD, and Clockify portal data were harmonised and compiled into two
datasets: group H with 228,267 instances (per-minute recordings of all variables), and
group M with 70,139 instances. Each instance was associated with 10 variables (time, PM1,
PM2.5, PM10, temperature, humidity, speed, heart rate, steps, M.E.T., activity):

- time—indicating a time of day or a specific hour when the measurement took place
(from 0 to 23)

- PM1, PM2.5, and PM10—particulate matter concentrations in three size classes, recorded
as non-negative integer values (PPM)

- temperature, humidity—ambient temperature and humidity, recorded as a float value
(PPM)

- speed—calculated based on GPS module data, recorded as a float value (PPM).
- heart rate—heart rate per minute, recorded as a positive integer value (SAT).
- steps—number of steps per minute, recoded as a non-negative integer value (SAT).
- M.E.T.—a non-negative integer value (SAT).
- activity—recorded on TAD or in the Clockify app.
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The minimum requirement for each instance to be included in the dataset was an
activity label and at least one non-empty variable. Data preparation was done in R [73].

The number of included instances of each activity for each dataset (group M and group
H) is listed in Table 1. All activities were capped at 5000 instances for each group. When
>5000 instances were available, a random selection was made from the dataset. Resting and
sleeping were capped for group M. The ceiling was determined based on several iterations,
which showed a considerably longer time to build the models without having an impact
on the overall performance.

Table 1. Activities and number of instances of each activity in each of the two datasets.

Group M Group H

Activity/Task Nr. Activity/Task Nr.

Cleaning.dry.in 438 Cleaning.in 5000

Cleaning.steam.in 416 Cooking.in 5000

Cleaning.wet.in 516 Playing.in 5000

Cooking.cold.in 387 Resting.in 5000

Cooking.hot.in 1923 Running.out 5000

Play.on.feet.in 85 Sleep.in 5000

Play.sedentary.in 469 Smoking.in 5000

Resting.in 5000 Sports.in 5000

Resting.out 225 Sports.out 5000

Running.out 80

Sleeping.in 5000

Smoking.in 769

Sports.in 361

Sports.out 774

Basic statistics for all numeric variables in the final datasets are presented in Table 2.
All values were within expected limits. All PM variables had a ceiling fixed at 180 μg/m3 as
the highest possible value; otherwise, the mean, median, and quartile values are as expected.
The mean and median values for speed are low, as >20 km/h values were removed, as there
are no activities included in this research where speed could be >20 km/h. PM statistics
are similar between the groups. There are some differences in max and min temperature
and relative humidity, which is due to a larger and more diverse dataset for group H and
data from two seasons. Speed, heart rate, steps, and M.E.T. do not show wide discrepancies.
As individuals, on average, spend most of their time in a sedentary or stationary position,
the low median, mean, and quartile values reflect this. Similarly, the highest values reflect
vigorous movement, e.g., running, producing >200 steps per minute, and an M.E.T. of
15. These results show that the two datasets are quite similar when observed through
basic statistics, which was a key aim that was set when collecting data for group M. The
two groups should have the same general characteristics and differ only in the temporal
resolution of the data collected to facilitate an accurate comparison of the classification
results. The mean values of all variables for each activity are available in the Supplementary
Information. These show that the values are in line with expectations as there are generally
higher concentrations of PM outdoors than indoors, though this is somewhat dependent
on season, time of day, and specific activity [74,75].
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Table 2. Basic statistics for all numeric variables in the dataset.

Median Mean st. dev. Max Min 1stQ 3rdQ

Variable H M H M H M H M H M H M H M

PM1 [μg/m3] 10.0 9.0 18.7 15.4 29.9 26.1 180.0 180.0 0.0 0.0 5.0 4.0 19.0 19.0

PM2.5 [μg/m3] 13.0 13.0 25.7 21.8 37.5 30.4 180.0 180.0 0.0 0.0 7.0 6.0 28.0 29.0

PM10 [μg/m3] 15.0 14.0 28.7 24.1 39.1 31.8 180.0 180.0 0.0 0.0 8.0 7.0 31.0 31.0

Temperature [◦C] 24.0 23.8 23.6 23.6 3.3 3.2 34.3 34.6 5.9 8.5 22.4 22.4 25.4 25.0

Relative humidity
[%] 32.2 39.6 32.8 39.9 8.3 6.9 76.5 67.2 6.7 19.7 27.2 35.4 38.0 44.4

Speed [km/h] 0.6 0.0 1.5 0.1 2.4 0.6 20.0 10.6 0.0 0.0 0.0 0.0 2.0 0.0

Avg. heart rate
[bpm] 83.0 69.0 86.2 73.2 22.4 20.0 195.0 177.0 38.0 38.0 70.0 58.0 98.0 85.0

Steps [nr.] 0.0 0.0 16.7 6.1 37.5 20.0 245.0 157.0 0.0 0.0 0.0 0.0 0.0 0.0

M.E.T. [mL
O2/kg/min] 0.1 0.1 0.3 0.5 0.5 0.5 15.0 6.1 0.0 0.0 0.1 0.1 0.2 1.0

2.3. Classifiers Used

In this research, shallow algorithms were opted for over deep learning techniques,
given their inherent advantages tailored to the objectives of this research. While deep
learning methods frequently offer high accuracy, they come with increased computational
demands. This becomes a challenge when classifications are executed on devices with
limited computational power, such as smartphones, wearable sensors, or standard office
laptops. Although these demands can be mitigated through sophisticated feature extrac-
tion methods [76], it might render the approach less intuitive for those not well-versed
in machine learning. Importantly, certain shallow algorithms are recognised for their
transparency and interpretability. For instance, tree-based algorithms, like decision trees
and random forests, are visually representable, making them more comprehensible to
laypersons [77]. The k-nearest neighbours (kNN) algorithm, with its principle of similarity,
is also straightforward in its logic. In this study, shallow algorithms not only facilitate easier
explanations for research participants but also ensure that the data analysis remains acces-
sible to researchers. As artificial intelligence becomes increasingly integrated into research
and policy making, the emphasis on the explainability of these algorithms grows [78,79].
Notably, the trade-off between model accuracy and interpretability in AI has been a focal
point in recent research, with a survey paper offering an in-depth analysis of explainable
AI methodologies and suggesting future research avenues to optimize this balance [80].

The classifiers chosen for the tasks outlined in this research were selected based on the
requirements outlined in Sections 1 and 2.3. These requirements can be summarised into
four criteria:

1. All selected algorithms must be appropriate for this task, based on their use in existing
literature and proof-of-concept cases, and show promising results in terms of accuracy
in published research.

2. They should be considered (easily) explainable to laypersons, with the processes used
being transparent and understandable.

3. Accessibility must be considered, i.e., the algorithms must be available in a user-
friendly, GUI-based experimental environment allowing access to laypersons, e.g.,
WEKA.

4. The algorithms used should be executable on devices with limited computational
power, such as smartphones or office laptops, proving results in a reasonable time
frame, as per the aims of specific research.
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Based on the outlined criteria, the following classifiers were chosen: kNN, decision
trees, and random forests. All analyses were performed using the WEKA 3.8.3 [55] “Ex-
plorer” application. The specific classifiers within WEKA that were used in this research
are listed in Table 3, which also contains short descriptions of each of the classifiers.

Table 3. Classifiers in WEKA used for this research, with short descriptions.

Classifier Description

IBk
Instance-based learner [39], otherwise known as the k-nearest neighbour (kNN) classifier; kNN takes the
k closest examples (typically according to a Euclidean distance) to the given instance in the feature space
and counts how many of the k belong to each class. The new instance object is classified by plurality vote.

J48

J48 is a Java implementation of the C4.5 decision tree algorithm developed by Ross Quinlan [40]. It can
be used for classification and allows a high number of attributes. Deemed as a “machine learning

workhorse”, ranked no. 1 in the Top 10 Algorithms in Data Mining [81]. To classify data from a testing
set, each sample from the data are propagated through the tree (according to the conditions satisfied by

its attribute values). When an example reaches a leaf node, it is assigned the class value of that node.

Random Forest

Constructs a forest of decision trees in a randomized manner. Developed by Leo Breiman [42]. The
Random Forest (RF) method is an ensemble learning method for classification that constructs a forest of

decision trees in a randomised fashion. Each tree is constructed from a different randomly selected
subset of the dataset (bootstrap/sample), with a subset of (randomly chosen) features considered to
select a split at each step of tree construction. When the forest is applied to a new instance, each tree

votes for one class. The output is the class that gets the most votes from the individual trees.

2.4. Parameter Settings for the Classifiers

The settings for all classifiers were at their WEKA defaults. IBk used 1 nearest neigh-
bour for classification and did not perform distance weighting. J48 trees were pruned. The
RF contained 100 trees.

2.5. Feature Ranking Using the Relief Approach

Not all attributes in the dataset are necessarily useful for classification models, and
some can be omitted. In turn, this can reduce the time and computational cost of building
the model. The features in these datasets were ranked using the Relief approach, i.e., the
Relief Attribute Evaluator in WEKA, with 10-fold cross-validation. Relief “evaluates the
worth of an attribute by repeatedly sampling an instance and considering the value of the
given attribute for the nearest instance of the same and different class” [82].

2.6. Performance Metrics

There are many measures of the performance of classifiers, typically defined for each
class value (and then averaged across the different class values). These include true positive
and false positive rates, precision, recall, F-measure, and others. Classification accuracy
is defined as the percentage of instances that have been classified correctly. It is the most
commonly used indicator of performance. Another performance metric is Kappa (K),
which allows for direct comparison between models as it shows how closely the classified
instances match the labelled data while also considering random chance (agreement with a
random classifier).

Performance metrics are typically calculated based on the entries of the confusion
matrix for a given classifier C and a given dataset D. The entry in row x and column y
specifies the number of instances from D that actually belong to class x but have been
classified as class y by the classifier C. The diagonal entries of the matrix specify the
numbers of correctly classified instances. The confusion matrices for all three classifiers
and the two groups are provided in the supplementary information.

For a given class x, the diagonal entry corresponds to the number of true positives
(TP) for class x. The sum of all non-diagonal entries in column x corresponds to the number
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of all instances incorrectly classified as x (false positives). Based on TP and FP, the precision
for x is calculated as:

Precisionx =
TP

TP + FP

Recall (sensitivity) for class x is defined as the ratio of true positives to the total number
of instances that truly belong to class x:

Recallx =
TP

TP + FN

The F-measure is a metric that combines precision and recall into a single score,
providing a balanced measure of a classifier’s performance:

Fx =
2 ∗ Precisionx ∗ Recallx

Precisionx + Recallx

A receiver operating characteristic curve, or ROC curve, is a graphical plot that
illustrates the diagnostic ability of a probabilistic binary classifier, and the area under the
ROC curve (ROC-AUC) is also often used as a performance metric. The ROC curve plots
the true positive rate (TPR), also known as sensitivity or recall, against the false positive
rate (FPR) at various threshold settings. FPR is calculated as:

FPR =
FP

FP + TN

These metrics and the ROC curve provide valuable insights into the performance of
classifiers by considering both the ability to correctly classify instances (precision, recall)
and the ability to evaluate a model’s performance across different decision thresholds (ROC
curve).”

The performance of all three classifiers on unseen cases was estimated by using the 10-
fold cross-validation procedure. Cross-validation reduces the variance in the performance
estimates by averaging over different partitions of the dataset. The dataset is divided into
10-subsets (folds), which in turn are used as testing sets, while all remaining instances are
used as training instances. This procedure ensures that every instance from the dataset
appears in the test set exactly once.

3. Results and Discussion

3.1. Feature Importance and Ranking

In the analysis of feature importance and ranking, the focus was on identifying
significant features influencing activity recognition in groups H and M. This was necessary
for understanding activity patterns in relation to environmental exposures.

Time (hour of day) was the top-ranked feature for both groups, aligning with the
expectation that certain activities are time-specific. Heart rate, humidity, and temperature
were also important, with their order of importance varying between groups.

Notable differences between the groups were observed beyond the top four features.
For group M, Table 4 indicates that PM10 and PM2.5 were ranked 5th and 6th, with PM1
at an average rank of 9.2. This variation may be due to different temporal resolutions in
recording sensor and activity data. In group H, as shown in Table 5, steps, speed, and
metabolic equivalent of task (M.E.T.) ranked higher, followed by particulate matter (PM)
variables with the lowest average merit.
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Table 4. Feature merits (importance scores) and ranks for group M.

Group M

Average Merit Average Rank Attribute

0.127 ± 0.001 1 ± 0 Time

0.052 ± 0.001 2 ± 0 Heart rate

0.036 ± 0 3 ± 0 Humidity

0.03 ± 0 4 ± 0 Temperature

0.028 ± 0.001 5 ± 0 PM10

0.02 ± 0 6 ± 0 PM2.5

0.017 ± 0 7 ± 0 Speed

0.016 ± 0 8 ± 0 Steps

0.014 ± 0 9.2 ± 0.4 PM1

0.013 ± 0.001 9.8 ± 0.4 M.E.T.

Table 5. Feature merits (importance scores) and ranks for group H.

Group H

Average Merit Average Rank Attribute

0.193 ± 0.001 1 ± 0 Time

0.017 ± 0.001 2.5 ± 0.5 Humidity

0.017 ± 0 2.5 ± 0.5 Heart rate

0.016 ± 0 4 Temperature

0.015 ± 0 5 Steps

0.007 ± 0 6 Speed

0.001 ± 0.001 7 M.E.T.

−0.006 ± 0 8 PM1

−0.008 ± 0.001 9 PM10

−0.011 ± 0 10 PM2.5

Due to the small dataset size, no attributes were excluded. Therefore, models were
trained using a comprehensive set of features: PM1, PM2.5, PM10, humidity, temperature,
speed, heart rate, steps, M.E.T., and time.

The analysis showed expected patterns, such as the high ranking of time, and less
intuitive differences between the groups in the ranking of PM variables and physical activity
indicators. These findings emphasise the complexity of human activity patterns in relation to
environmental exposures and the need to consider a range of features in such studies.

3.2. Overall Predictive Performance of Classifiers

Table 6 shows a comparison of the most relevant metrics for all the classifiers used
in this research for groups H and M. Random Forest (RF) shows the highest correctly
classified (CC) values for both groups, and IBk shows the lowest CC values. For group H,
the percent of correctly classified instances increases gradually from IBk to J48 (Δ11.3%)
to RF (Δ6.4%). On the other hand, for group M, the share of correctly classified instances
jumps up from IBk to J48 (Δ42.6%), but then only marginally increases from J48 to RF
(Δ0.3%). This difference could be a consequence of the different number of instances for
each activity between the two groups. Some activities in group M have <500 instances,
while all activities in group H have 5000 instances. The trend for Kappa is similar to
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CC, though all values for J48 and RF are ~0.06 lower than the correctly classified percent
(divided by 100). Though there is some disagreement on the applicability of the Kappa
statistic in the context of “The Paradox of Cohen’s Kappa” [83,84] and what the guidelines
are for evaluating it [85], in this context, a value of >0.7 can be interpreted as moderate to
strong agreement. Both J48 and RF fall in this category for group M. For group H, all Kappa
values are <0.5. Importantly, the difference between J48 and RF for group M is only 0.01.

Table 6. Summary of results for all models for both groups.

Classifier/Metric CC [%] Kappa TP FP Precision Recall F-Measure ROC-AUC

H M H M H M H M H M H M H M H M

IBk 35.2 34.3 0.3 0.2 0.4 0.3 0.1 0.1 0.4 NA 0.4 0.3 0.4 NA 0.6 0.6

J48 46.5 76.9 0.4 0.7 0.5 0.8 0.1 0.1 0.5 0.8 0.5 0.8 0.5 0.8 0.8 1

RF 52.9 77.2 0.5 0.7 0.5 0.8 0.1 0.1 0.5 0.8 0.5 0.8 0.5 0.8 0.9 1

Calculated values for TP and precision again follow the CC and Kappa metrics,
showing that J48 and RF provide the highest precision. The RF model for group M has the
highest ROC-AUC (0.97), indicating the lowest FP and highest TP rate.

An important evaluator that is not included in the table is the time it took to construct
each model. For IBk, the time to build the model was <1 s for both groups. This is a positive
aspect for IBk, though all the evaluation metrics show that this model is not suited for this
type of data in comparison with J48 and RF. For group H, J48 took 4.67 s to build the model
and 0.42 s for group M. In contrast, the RF-based model took 121.89 s for group H (more
than 57 times as much time as J48) and 24.16 s for group M (26 times as much time as J48).
As these two models perform very similarly based on the evaluation metrics, the time it
takes to build and cross-validate the model is a relevant factor when considering which one
to use. In the case of the group M subset of data, it would be efficient to use the J48 classifier,
as the improvement in the correctly classified percent of instances does not offset the time
and processing power that have to be allotted. Real-world applications, based on collecting
data with personal sensors, experience larger volumes of instances and would have to
account for considerably longer run times. When a ML approach is applied to improve the
classification of activities and reduce the probability of human errors, time and processing
power should be considered. In line with the 5th challenge listed in Section 1.2, reducing
the number of unnecessary instances, e.g., for sleeping, and selecting a more fit-for-purpose
algorithm would reduce the computational cost associated with activity recognition.

3.3. Predictive Performance Per Group and Activity

Results comparing the predictive performance of the used classifiers for group H
(Table 7) show similar results as described in Section 3.2. J48 and RF show an overall
higher TP rate, precision, recall, F-measure, and ROC-AUC values compared to IBk. These
differences are more obvious in simpler activities, i.e., running, sleeping, and sports, with a
0.3 difference in ROC-AUC between IBk and J48/RF and a ≤0.2 ROC-AUC difference for
other, more complex activities. This result highlights the drawbacks of hourly recorded
activity data, with less resolution on dynamic changes in more complex activities.
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Table 7. Summary for group H, showing TP, FP, precision, recall, F-measure, and ROC-AUC for all
classifiers.

TP FP Precision Recall F-measure ROC-AUC

Class/Classifier IBk J48 RF IBk J48 RF IBk J48 RF IBk J48 RF IBk J48 RF IBk J48 RF

Cleaning.in 0.3 0.4 0.5 0 0.1 0.1 0.5 0.4 0.5 0.3 0.4 0.5 0.4 0.4 0.5 0.6 0.8 0.8

Cooking.in 0.5 0.5 0.4 0.1 0.1 0.1 0.3 0.4 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.7 0.8 0.8

Playing.in 0.3 0.4 0.4 0.1 0.1 0.1 0.3 0.4 0.5 0.3 0.4 0.4 0.3 0.4 0.5 0.6 0.8 0.8

Resting.in 0.4 0.3 0.3 0.2 0.1 0.1 0.2 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.6 0.7 0.7

Running.out 0.3 0.6 0.8 0 0 0 0.6 0.7 0.7 0.3 0.6 0.8 0.4 0.6 0.7 0.7 0.9 1

Sleep.in 0.7 0.8 0.8 0 0 0 0.8 0.7 0.7 0.7 0.8 0.8 0.7 0.8 0.8 0.8 1 1

Smoking.in 0.4 0.3 0.5 0.1 0 0.1 0.3 0.5 0.5 0.4 0.3 0.5 0.3 0.4 0.5 0.6 0.8 0.9

Sports.in 0.2 0.4 0.6 0 0.1 0.1 0.5 0.5 0.6 0.2 0.4 0.6 0.3 0.5 0.6 0.6 0.8 0.9

Sports.out 0.2 0.4 0.5 0 0.1 0.1 0.4 0.4 0.5 0.2 0.4 0.5 0.3 0.4 0.5 0.6 0.8 0.9

Weighted
average 0.4 0.5 0.5 0.1 0.1 0.1 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.6 0.8 0.9

The IBk results for group M showed several activities with values of 0 in all evaluation
classes, having a considerably worse predictive performance result than J48 and RF clas-
sifiers, as evident in Table 8. Running stands out in the ROC-AUC metric for IBk, with a
relatively low FP rate compared to its TP rate. Unique characteristics of running, compared
to other activities, such as high values for heart rate, speed, steps, intensity, and lower
temperatures and PM concentrations, could contribute to better predictive performance.
J48 and RF show a ROC-AUC and FP value of 1 and 0, respectively, for running. Results
for group M show similar patterns as group H, with simpler activities showing better
performance for all classifiers. On the other hand, group M TP and precision values are
on average higher compared to group H. Cooking has a TP rate of 0.5 in group H, and
while the TP rate for cooking.cold.in shows a value of 0.4, cooking.hot.in had a TP value
of 0.8. The latter is associated with specific environmental conditions that can make it
more distinguishable from other activities, e.g., higher temperatures and PM concentra-
tions. Contrary to this assumption, the activity of playing does not show the same pattern.
Playing.on.feet, associated with dust resuspension and an elevated heart rate, would be
more distinctive than playing.sedentary. Although, on average, group M playing activities
have better metrics compared to group H.

These conclusions are corroborated by the confusion matrix results available in the
SI. Activities with value definitions have more misclassified instances, in contrast to well-
defined activities. For example, out of the 5000 instances of resting in group M for J48
(Table S4 in Supplementary Material), 3738 are correctly classified. Out of the incorrectly
classified, two-thirds (818) are labelled as sleeping and one-fifth as cooking.hot.in. More-
over, activities often have a high number of their misclassified instances labelled as resting.
Out of 769 instances of smoking, 102 are misclassified as resting. On the other hand,
96 instances are misclassified as cooking.hot.in, which would be expected as both activities
can show high concentrations of PM.

Furthermore, sleeping and resting have well-defined time intervals, a low heart rate,
and no movement. They are consistently indicated by all participants and evenly dis-
tributed. Unlike other activities, sleep is uninterrupted for several consecutive hours,
resulting in minimally distorted minute values within an hour. For instance, if a person
runs for only 20 min but claims it is the main activity for that hour, only 1/3 of the data
support this claim, while the remaining 40 min include other activities.
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Table 8. Summary for group M, showing TP, FP, precision, recall, F-measure, and ROC-AUC for all
classifiers.

TP FP Precision Recall F-Measure ROC-AUC

Class IBk J48 RF IBk J48 RF IBk J48 RF IBk J48 RF IBk J48 RF IBk J48 RF

Cleaning.dry.in 0 0.5 0.4 0 0 0 0.1 0.6 0.6 0 0.5 0.4 0 0.6 0.5 0.5 1 1

Cleaning.steam.in 0 0.6 0.5 0 0 0 NA 0.6 0.7 0 0.6 0.5 NA 0.6 0.6 0.5 1 1

Cleaning.wet.in 0 0.4 0.5 0 0 0 NA 0.6 0.5 0 0.4 0.5 NA 0.5 0.5 0.5 0.9 1

Cooking.cold.in 0 0.4 0.4 0 0 0 0.6 0.5 0.4 0 0.4 0.4 0 0.4 0.5 0.5 0.9 1

Cooking.hot.in 0.3 0.8 0.7 0.3 0.1 0.1 0.1 0.6 0.6 0.3 0.8 0.7 0.2 0.7 0.7 0.5 0.9 1

Play.on.feet.in 0 0.6 0.4 0 0 0 NA 0.8 0.9 0 0.6 0.4 NA 0.7 0.6 0.5 0.9 1

Play.sedentary.in 0.5 0.9 0.8 0 0 0 0.4 0.9 0.9 0.5 0.9 0.8 0.4 0.9 0.8 0.7 1 1

Resting.in 0.4 0.7 0.8 0.2 0.1 0.1 0.4 0.8 0.7 0.4 0.7 0.8 0.4 0.8 0.8 0.6 0.9 0.9

Resting.out 0.4 0.4 0.5 0 0 0 0.1 1 0.8 0.4 0.4 0.5 0.2 0.6 0.6 0.7 1 1

Running.out 0.6 0.8 0.9 0.1 0 0 0 0.9 0.9 0.6 0.8 0.9 0.1 0.9 0.9 0.8 1 1

Sleeping.in 0.4 0.9 0.9 0.1 0.1 0.1 0.6 0.8 0.9 0.4 0.9 0.9 0.5 0.9 0.9 0.7 1 1

Smoking.in 0.6 0.7 0.7 0 0 0 0.5 0.9 1 0.6 0.7 0.7 0.5 0.8 0.8 0.7 1 1

Sports.in 0 0.2 0.4 0 0 0 NA 0.8 0.6 0 0.2 0.4 NA 0.4 0.4 0.5 0.9 1

Sports.out 0 0.8 0.9 0 0 0 1 0.9 0.9 0 0.8 0.9 0.1 0.9 0.9 0.5 1 1

Weighted
Average 0.3 0.8 0.8 0.1 0.1 0.1 NA 0.8 0.8 0.3 0.8 0.8 NA 0.8 0.8 0.6 1 1

Resting is also somewhat characterised by longer, consecutive time intervals without
interruptions. It also has a high FP rate and low precision in both groups. It is the second
most frequent activity chosen by participants (behind sleeping) in the study, frequently
overlapping with other activities. Resting could be understood as a “default” activity,
chosen when no other activity fits the description. It is a vaguely defined activity and open
to interpretation. Participants tend to include various activities under this term, e.g., reading
a book, playing board or computer games, watching television, chatting with friends, taking
a leisurely walk, napping, having a dinner party, etc. All of these activities can differ in
many aspects, such as heart rate, movement, speed, or PM concentrations, which would
make accurate predictions more difficult. While more detailed activity classification would
improve on this point, it would increase the burden on participants.

3.4. The Added Value of the Devices Used

One aim of this research was to determine the respective contributions of the two
devices used—the SAT and PPM—to the performance of activity classification. An as-
sessment was conducted in WEKA based on the data collected in Group M, as it showed
the best performance between the two groups. The RF and J48 classifiers were used to
classify the data from Group M (1) without the data collected with the PPM, i.e., all PM
data, temperature, relative humidity, and speed (no PPM), (2) without just the particulate
matter data (no PM), and (3) without the data collected with the SAT, i.e., heart rate, M.E.T.,
and steps (no SAT). The results showed, as evident in Table 9, that in the case of J48, the
share of correctly classified instances is not reduced much if the PM or SAT data were
removed (by 0.7% and 1.4%, respectively). On the other hand, if the PPM part of the dataset
is removed entirely, the share of correctly classified instances falls to 60.1%. The RF models
show similar values and trends.
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Table 9. Instances correctly classified by the J48 and RF models, based on selectively removing all
PPM, only PM, and SAT data from the Group M dataset, respectively.

Correctly Classified Instances [%]

Classifier Baseline no PPM no PM no SAT

J48 76.9 60.1 76.2 75.5

RF 77.2 62.5 76.6 77.2

However, the overall number does not show certain nuances, e.g., the results without
the SAT data show a lowered TP rate for sports.out from 0.8 to 0.6 (for J48). Though the
difference is not as evident for running and sports.in, there is still a small decline in classifi-
cation accuracy. This result shows that for specific activities, the SAT data increase accuracy.
Similarly, for the dataset without the PM data, accuracy for smoking, running outside,
and playing is lower, all of which are activities with increased exposure to PM, though
the difference is less pronounced than with the absence of SAT data. On the other hand,
removing the entire PPM dataset (for RF) shows worse accuracy for all activities, especially
for playing.on.feet (−0.4), smoking (−0.3), play.sedentary (−0.3), and cleaning.wet (−0.2).
The latter could be explained by the absence of data on relative humidity.

Collecting data on PM concentrations and other environmental variables is a partial
improvement on the 1st and 4th technical challenges listed in Section 1.2. With more specific
data on environmental conditions, the characteristics are more distinct and can improve
feature extraction. Moreover, as complex activities have several actions associated with
them, more data on the overall environment could offset the lack of data on these specific
activities.

4. Conclusions

4.1. Summary of Results

Two groups of participants were equipped with devices that measured their exposure
to PM and their physical activity, while they logged their activity data with a paper
TAD with hourly resolution (group H) and a smartphone app with minute resolution
(group M). The primary aims were to evaluate the effectiveness of combining low-cost
personal environmental and biometric sensor data for recognising individual activities
and to assess the impact of data temporal resolution on the performance of different
classifiers. These classifiers were selected for their proven efficacy, understandability,
and accessibility, aligning with our objective of empowering lay individuals with HAR
technology in participatory urban health studies. Successfully achieving these aims could
significantly reduce or eliminate the need for manual activity recording in exposure studies,
paving the way for a broader application of machine learning and classification methods in
HAR, particularly in participatory-based research settings.

Results showed improved accuracy when (1) the activity time resolution was changed
from 1-h to 1-min resolution and (2) more vague activities, e.g., cleaning, cooking, and
playing, were divided into more detailed categories. Most misclassified instances belong to
activities with vague definitions (resting, playing), while well-defined activities (smoking,
cooking, cleaning, running) have fewer misclassified instances. Accuracy increased for all
activities, especially playing, smoking, and running, when the environmental sensor data
were included.

All the used classifiers for group H showed accuracy above 35%, with RF being the
most accurate with 52.9%. As the training data consisted of hourly labelled activities, this
meant lower resolution and more errors (some activities do not last an hour, and most do
not last exactly a set number of full hours). An improvement in labelling data by the minute
was proposed and evaluated with group M, which showed a noticeable improvement in all
measures of performance (e.g., the accuracy of ~77% for J48 and RF models). This was an
expected outcome, as the sensor data were also recorded in minute intervals and provided
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a good starting point to achieve activity prediction without resorting to manually recording
data, which are prone to errors.

All of the models, for both groups, showed the most misclassified instances with
resting. This could be the result of a vague definition of resting in comparison with
sleeping, running, and most other activities. An educated guess of how the activities would
be ranked from most vague definition to least vague would be: resting, playing, sports,
cleaning, cooking, running, smoking, and sleeping. Resting could include naps, sitting
behind a computer, reading a book, watching TV, hanging out with friends and family,
or going for a short walk. All of these activities could have very different values for the
observed variables. This is also true for sports, which is a wide term, and in the case of this
dataset, it does not include running. What category should jogging and speed-walking
then fall into?

When separated into more specific activities for group M, these activities showed
moderate improvement, especially when considering more relevant activities pertaining to
exposure to particulate matter. When dividing cooking into two activities, hot and cold, the
results show that cooking using a heat source can be identified more easily and produces
better results in terms of classification. A similar trend is present for cleaning, though the
results are not as clear as for cooking.

On the other hand, sleeping or smoking are quite well-defined activities where there
is little room for subjectivity. Even if smoking indoors includes using vaporizers, hookahs,
pipes, or other gadgets, the observed variables would still presumably show similar results
(elevated levels of PM, sedentary activity in enclosed space, not moving, relatively high
heart rate, during the day, etc.), as would sleeping (in a chair, on a bed, on transport, taking
a nap, etc.).

4.2. Limitations and Future Work

The shallow algorithms used in this research could be replaced by deep learning
algorithms that could provide more accurate data. Additional steps could be taken to
improve accuracy, e.g., noise removal, scaling, feature extraction, segmentation, and hy-
perparameter tuning. On the other hand, these approaches would be less understandable
to non-experts. It could also limit accessibility in terms of the available software. In
participatory-based research, frequently led by non-experts in the field of ML, the selec-
tion of algorithms and approaches should be considered based on several factors, apart
from accuracy—computation requirements, visualisation options, understandable and
explainable architectures/principles, etc. Similarly, more complex approaches used in
participatory research could be exclusionary, as they would be more difficult to understand
for lay individuals, even more so for individuals with less technical skills and knowledge.

Moreover, more ambiguous or subjectively defined activities should be separated into
better-defined activities, as listed above. Although this would impose greater challenges
when collecting data for the participants, it could provide more detailed final results and
improve the classification. The consequences of these challenges can be seen in Table 1,
with fewer recorded instances of the more specific activities in Group M, leading to, in
some cases, an unbalanced dataset. A necessary focus would be to evaluate which of these
activities are more relevant to the specific study or research and only use the classification
models to predict those.

Overall, several additional suggestions and possible improvements are proposed for
future research:

- Use of direct movement sensor (accelerometer, gyroscope, magnetometer) data from
the SAT.

- Addition of possible other variables to be measured with SAT, e.g., skin temperature
and conductivity.

- Utilisation of the data from smartphones (light, movement, location, indoor/outdoor,
crowd density, barometer, accelerometer, gyroscope, magnetometer, etc.).
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- Fusion of data with government monitoring station data to improve correlations of
the measured temperature and humidity.

- Use of static sensor data at home, at the workplace, or in the car to improve or correct
measurements made by wearable sensors.

- improvement of an app for logging activity data by providing the participant with
(a) a warning when the devices detect a possible change of activity due to changes
in parameters and (b) providing suggestions for possible activities ranked from most
likely to least likely based on this research.

Half of the challenges listed in Section 1.2 remain unaddressed within the scope of this
research, i.e., challenges 2, 3, and 6. While the demonstrated approach in this work does
not require detailed personal data (as described in challenge 6), arguably the predictive
performance could potentially be improved by including personal characteristics and
GPS tracking. Moreover, the inclusion of ambient environmental data do not provide
any tangible solutions to increase the quantity of annotated data or reduce sensory data
heterogeneity. An argument could be made, to a degree, that collecting data on more
variables could require fewer instances of annotated data.

An important improvement to participatory studies would be to reduce the burden of
participants filling out time activity diaries while simultaneously reducing the chance of
human error. This research shows that machine learning, informed by low-cost personal
environmental monitors, can improve the process of recording activity data by reducing
or potentially, in the future, completely freeing study participants from recording their
activities. Combining the results of this research with environmental stressors measured
with portable, low-cost sensors will provide a more detailed picture of exposure and intake
dose on an individual scale. Further research is needed to test, validate, and improve these
approaches.

As low-cost sensors become more widely used and individuals are able to gain access
to more information about their living environment, researchers must provide adequate
tools to assess and improve accuracy. A promising step forward would be to reduce
the input of individuals and increase the role of machine learning. This research shows
that a novel approach to using classification methods with data from low-cost portable
environmental and activity sensors can be used to recognise specific activities without
direct manual human input.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23249890/s1, Figure S1: Average values for all variables, per
activity, for group H, Figure S2: Average values for all variables, per activity for group M, Table S1:
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matrix—group H, Table S4: J48 confusion matrix—group M, Table S5: Random Forest confusion
matrix—group H, Table S6: Random Forest confusion matrix—group M, Table S7: Feature merits
(importance scores) and ranks for group M.
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20. Škultéty, E.; Pivarčiová, E.; Karrach, L. The Comparing of the Selected Temperature Sensors Compatible with the Arduino
Platform. Manag. Syst. Prod. Eng. 2018, 26, 168–171. [CrossRef]

21. Sá, J.P.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. Application of the Low-Cost Sensing Technology for Indoor Air Quality
Monitoring: A Review. Environ. Technol. Innov. 2022, 28, 102551. [CrossRef]

22. Demrozi, F.; Pravadelli, G.; Bihorac, A.; Rashidi, P. Human Activity Recognition Using Inertial, Physiological and Environmental
Sensors: A Comprehensive Survey. IEEE Access 2020, 8, 210816–210836. [CrossRef] [PubMed]

23. Majidzadeh Gorjani, O.; Proto, A.; Vanus, J.; Bilik, P. Indirect Recognition of Predefined Human Activities. Sensors 2020, 20, 4829.
[CrossRef] [PubMed]

24. Hussein, D.; Bhat, G. SensorGAN: A Novel Data Recovery Approach for Wearable Human Activity Recognition. ACM Trans.
Embed. Comput. Syst. 2023. [CrossRef]

25. Saeedi, S.; El-Sheimy, N. Activity Recognition Using Fusion of Low-Cost Sensors on a Smartphone for Mobile Navigation
Application. Micromachines 2015, 6, 1100–1134. [CrossRef]

26. Kozina, S.; Gjoreski, H.; Gams, M.; Luštrek, M. Efficient Activity Recognition and Fall Detection Using Accelerometers. In
Evaluating AAL Systems Through Competitive Benchmarking; Botía, J.A., Álvarez-García, J.A., Fujinami, K., Barsocchi, P., Riedel, T.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 13–23.

27. Su, X.; Tong, H.; Ji, P. Activity Recognition with Smartphone Sensors. Tsinghua Sci. Technol. 2014, 19, 235–249. [CrossRef]
28. Shoaib, M.; Bosch, S.; Incel, O.; Scholten, H.; Havinga, P. Complex Human Activity Recognition Using Smartphone and Wrist-Worn

Motion Sensors. Sensors 2016, 16, 426. [CrossRef] [PubMed]
29. Tedesco, S.; Sica, M.; Ancillao, A.; Timmons, S.; Barton, J.; O’Flynn, B. Accuracy of Consumer-Level and Research-Grade Activity

Trackers in Ambulatory Settings in Older Adults. PLoS ONE 2019, 14, e0216891. [CrossRef]
30. Oniani, S.; Woolley, S.I.; Pires, I.M.; Garcia, N.M.; Collins, T.; Ledger, S.; Pandyan, A. Reliability Assessment of New and Updated

Consumer-Grade Activity and Heart Rate Monitors. In Proceedings of the SENSORDEVICES 2018: The Ninth International
Conference on Sensor Device Technologies and Applications, IARIA, Venice, Italy, 16–20 September 2018; p. 6.

31. Añazco, E.V.; Lopez, P.R.; Lee, S.; Byun, K.; Kim, T.-S. Smoking Activity Recognition Using a Single Wrist IMU and Deep Learning
Light. In Proceedings of the 2nd International Conference on Digital Signal Processing, Tokyo, Japan, 25–27 February 2018;
Association for Computing Machinery: New York, NY, USA, 2018; pp. 48–51.

32. Chen, K.; Zhang, D.; Yao, L.; Guo, B.; Yu, Z.; Liu, Y. Deep Learning for Sensor-Based Human Activity Recognition: Overview,
Challenges and Opportunities. ACM Comput. Surveys 2021, 54, 1–40. [CrossRef]

33. Liu, H.; Hartmann, Y.; Schultz, T. A Practical Wearable Sensor-Based Human Activity Recognition Research Pipeline. In
Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies—WHC, Virtual,
9–11 February 2022; SciTePress: Setúbal, Portugal, 2022; pp. 847–856.

34. Chen, H.; Gouin-Vallerand, C.; Bouchard, K.; Gaboury, S.; Couture, M.; Bier, N.; Giroux, S. Leveraging Self-Supervised Learning
for Human Activity Recognition with Ambient Sensors. In Proceedings of the 2023 ACM Conference on Information Technology
for Social Good, Lisbon, Portugal, 6–8 September 2023; Association for Computing Machinery: New York, NY, USA, 2023;
pp. 324–332.

35. Lee, T.-H.; Kim, H.; Lee, D. Transformer Based Early Classification for Real-Time Human Activity Recognition in Smart Homes.
In Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, Tallinn, Estonia, 7 June 2023; Association for
Computing Machinery: New York, NY, USA, 2023; pp. 410–417.

36. Niu, H.; Ung, H.Q.; Wada, S. Source Domain Selection for Cross-House Human Activity Recognition with Ambient Sensors. In
Proceedings of the 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA), Nassau, Bahamas,
12–14 December 2022; pp. 754–759.

37. Apicella, G.; D’Aniello, G.; Fortino, G.; Gaeta, M.; Gravina, R.; Tramuto, L.G. A Situation-Aware Wearable Computing System for
Human Activity Recognition. In Proceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure
Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data
Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech),
Physical Conference, Calabria, Italy, 12–15 September 2022; pp. 1–7.

38. Zhang, S.; Li, Y.; Zhang, S.; Shahabi, F.; Xia, S.; Deng, Y.; Alshurafa, N. Deep Learning in Human Activity Recognition with
Wearable Sensors: A Review on Advances. Sensors 2022, 22, 1476. [CrossRef]

39. Aha, D.; Kibler, D. Instance-Based Learning Algorithms. Mach. Learn. 1991, 6, 37–66. [CrossRef]
40. Quinlan, J.R. C4.5: Programs for Machine Learning; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 978-0-08-050058-4.
41. John, G.H.; Langley, P. Estimating Continuous Distributions in Bayesian Classifiers. In Proceedings of the Eleventh Conference on

Uncertainty in Artificial Intelligence, Montreal, Canada, 18–20 August 1995; Morgan Kaufmann: San Mateo, CA, USA, 1995;
pp. 338–345.

42. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
43. Friedman, J.H. Stochastic Gradient Boosting; Stanford University: Stanford, CA, USA, 1999.
44. Chang, C.-C.; Lin, C.-J. LIBSVM—A Library for Support Vector Machines. ACM Transact. Intell. Syst. Technol. 2011, 2, 1–27.

[CrossRef]
45. Dohnálek, P.; Gajdoš, P.; Peterek, T. Human Activity Recognition: Classifier Performance Evaluation on Multiple Datasets.

Available online: https://www.jvejournals.com/article/15013 (accessed on 18 June 2020).

124



Sensors 2023, 23, 9890

46. Rodrigues, L.M.; Mestria, M. Classification Methods Based on Bayes and Neural Networks for Human Activity Recognition.
In Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery
(ICNC-FSKD), Changsha, China, 13–15 August 2016; pp. 1141–1146.

47. Bustoni, I.A.; Hidayatulloh, I.; Ningtyas, A.M.; Purwaningsih, A.; Azhari, S.N. Classification Methods Performance on Human
Activity Recognition. J. Phys. Conf. Ser. 2020, 1456, 012027. [CrossRef]

48. Chau, N.H. Estimation of Air Temperature Using Smartphones in Different Contexts. J. Inf. Telecommun. 2019, 3, 494–507.
[CrossRef]

49. Barna, A.; Masum, A.K.M.; Hossain, M.E.; Bahadur, E.H.; Alam, M.S. A Study on Human Activity Recognition Using Gyroscope,
Accelerometer, Temperature and Humidity Data. In Proceedings of the 2019 International Conference on Electrical, Computer
and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 7–9 February 2019; pp. 1–6.

50. Shelke, S.; Aksanli, B. Static and Dynamic Activity Detection with Ambient Sensors in Smart Spaces. Sensors 2019, 19, 804.
[CrossRef] [PubMed]

51. Nia, N.G.; Kaplanoglu, E.; Nasab, A.; Qin, H. Human Activity Recognition Using Machine Learning Algorithms Based on IMU
Data. In Proceedings of the 2023 5th International Conference on Bio-engineering for Smart Technologies (BioSMART), Paris,
France, 7–9 June 2023; pp. 1–8.

52. Noorani, S.H.; Raheel, A.; Khan, S.; Arsalan, A.; Ehatisham-Ul-Haq, M. Identification of Human Activity and Associated
Context Using Smartphone Inertial Sensors in Unrestricted Environment. In Proceedings of the 2023 International Conference on
Communication, Computing and Digital Systems (C-CODE), Islamabad, Pakistan, 17–18 May 2023; pp. 1–6.

53. Dernbach, S.; Das, B.; Krishnan, N.C.; Thomas, B.L.; Cook, D.J. Simple and Complex Activity Recognition through Smart Phones.
In Proceedings of the 2012 Eighth International Conference on Intelligent Environments, Washington, DC, USA, 26–29 June 2012;
pp. 214–221.

54. Sousa Lima, W.; Souto, E.; El-Khatib, K.; Jalali, R.; Gama, J. Human Activity Recognition Using Inertial Sensors in a Smartphone:
An Overview. Sensors 2019, 19, 3213. [CrossRef] [PubMed]

55. Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and
Techniques”, 4th ed.; Morgan Kaufmann: Burlington, MA, USA, 2016.
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Abstract: The study of Domain Generalization (DG) has gained considerable momentum in the
Machine Learning (ML) field. Human Activity Recognition (HAR) inherently encompasses diverse
domains (e.g., users, devices, or datasets), rendering it an ideal testbed for exploring Domain Gen-
eralization. Building upon recent work, this paper investigates the application of regularization
methods to bridge the generalization gap between traditional models based on handcrafted features
and deep neural networks. We apply various regularizers, including sparse training, Mixup, Distri-
butionally Robust Optimization (DRO), and Sharpness-Aware Minimization (SAM), to deep learning
models and assess their performance in Out-of-Distribution (OOD) settings across multiple domains
using homogenized public datasets. Our results show that Mixup and SAM are the best-performing
regularizers. However, they are unable to match the performance of models based on handcrafted
features. This suggests that while regularization techniques can improve OOD robustness to some
extent, handcrafted features remain superior for domain generalization in HAR tasks.

Keywords: Human Activity Recognition; deep learning; Domain Generalization; regularization;
accelerometer

1. Introduction

Human Activity Recognition (HAR) addresses the problem of identifying specific
kinds of physical activities or movements performed by a person based on data that can
be collected by several types of sensors [1]. It is a critical technology that supports several
applications, including remote patient monitoring, locomotor rehabilitation, security, and
pedestrian navigation [2]. This work focuses on HAR relying on inertial sensors, such as
accelerometers, which measure the acceleration of a body, or gyroscopes, which measure
angular velocity. These sensors are usually combined in Inertial Measurement Units (IMUs),
which are present in most smartphones and smartwatches, and nearly ubiquitous in our
daily life [3]. This translates into an increasing availability of sensor data, which, along
with its importance in several fields, has motivated the growth of HAR in the past years [1].

Despite being a widely studied field, there are still challenges to be faced in HAR, one
of which is the difficulty in developing models that generalize effectively across different
domains [4]. This results in HAR models that perform well when tested on a randomly
selected portion of a meticulously acquired dataset, but exhibit a performance decline when
tested in realistic Out-of-Distribution (OOD) settings. These settings are characterized by a
domain shift (or distribution shift) between the source and target domains [5]. In the HAR
context, this can occur when the models are tested across different users, devices, sensor
positions, or data acquisition setups [6–8].

The problem of distribution shift can be found in most data-related fields. A straight-
forward solution involves collecting data from the target domain and adapting the model,
which was initially trained on source data, using the target data. This approach, known
as domain adaptation, has been extensively explored [5]. However, it presupposes the
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availability of target data, a condition that may not always be met in real-world scenarios.
In order to simultaneously tackle the domain shift and the absence of target data, the
problem of domain generalization originated. Domain Generalization (DG) focuses on
leveraging only source data to develop models that generalize to OOD target domains [5].

In traditional HAR approaches, features are extracted manually through signal process-
ing techniques before being used as input to a machine learning model [9]. More recently,
deep learning has attracted attention as a potential tool for HAR tasks [10]. In this modern
approach, features are automatically extracted during the training process [10]. Given the
large number of learnable parameters associated with deep learning models, they should
be able to learn more complex and discriminative features [11]. This capability is expected
to help deep learning thrive in DG scenarios. Nevertheless, several limitations have been
identified upon deploying deep learning models, such as the convergence to solutions that
rely on spurious correlations [12]. In our previous work, Bento et al. [13] compared the
effectiveness of Handcrafted (HC) features versus deep neural representations for DG in
HAR. Our findings revealed that while deep learning models initially outperformed those
based on HC features, this trend was reversed as the distance from the training distribution
increased, creating a gap between these methods in the OOD regime.

Our work attempts to bridge this gap by using regularization, which primarily fo-
cuses on mitigating overfitting, consequently leading to improved generalization perfor-
mance [14,15]. For that purpose, several regularization methods are compared by following
a methodology introduced in Bento et al. [13], leveraging five public datasets that are
homogenized, so that they can be arranged in different combinations, creating multiple
OOD settings.

The research questions addressed by this work are the following:

1. How do different regularization methods impact the Domain Generalization perfor-
mance of human activity recognition models?

2. Can regularization methods bridge the OOD performance gap between deep neural
networks and models based on HC features?

2. Related Work

Concerning classical machine learning approaches using HC features, several algo-
rithms have been proposed for the recognition of human activities. Despite the considerable
progress made by these algorithms in HAR, they may not capture more complex signal
patterns, which can hinder their generalization performance [10]. To overcome this limita-
tion, research has turned to Deep Learning (DL) models, which can automatically extract
high-level features from raw data [10].

With that in mind, recent work [16–20] has compared traditional Machine Learning
(ML) with DL approaches for HAR. Their findings consistently demonstrate that deep
learning outperforms traditional methods. However, it should be noted that, in these
experiments, the data splits were created by randomly shuffling the datasets. As a result,
the training and test sets contain samples from distinct domains, therefore mitigating the
distribution shift in their evaluations. As such, models optimized for these data splits may
achieve suboptimal results in a real-world environment [21].

In studies where data splits took into account the distribution shift caused by different
domains [13,20,22,23], the ability of DL methods to generalize has been put into question,
as traditional ML models achieved similar or even better results, in some cases.

One of the reasons why DL models may not generalize well is that they are known
to suffer from overfitting since they possess many parameters and their optimization
process is not perfect [14]. One of the ways to prevent overfitting is by using regularization
methods, which can be seen as applying constraints to the training process or the models
in the form of penalties applied to parameter norms (e.g., L2 regularization), elimination
of parameters (e.g., dropout), early stopping, among other techniques [14]. As well as
these popular regularization techniques, recent work has yielded progressively superior
methods [24–27]. Mixup regularization works by performing a linear interpolation between
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input/target pairs and has been shown to outperform previous methods such as dropout
and weight decay [24,25]. The optimization algorithms used for training can also be
considered a form of regularization [28]. Methods that attempt to regularize stochastic
gradient descent include averaging weights over various iterations [29] or actively searching
for flat minima [26]. Sparsity is another form of regularization that can improve both
generalization performance and model efficiency in deep learning by promoting the use of
fewer non-zero parameters, leading to simpler models [30]. Sparse training is an efficient
and effective way to add this type of regularization to a neural network [27,30,31].

Distributionally Robust Optimization (DRO) is a promising approach for address-
ing the need for optimizing models for Domain Generalization [21,32]. These methods
usually regularize the training process by considering the distribution shift between the
existing domains. Invariant Risk Minimization (IRM) [21] and Variance—Risk Extrapo-
lation (V-REx) [33] introduce penalties to the loss function with the objective of learning
representations that are invariant across multiple domains. Ahuja et al. [34] showed
that adding a penalty based on the information bottleneck principle to IRM improves
generalization—IB-IRM.

Some of the aforementioned regularization methods have been investigated as a
potential solution to the OOD generalization problem in HAR. Gagnon et al. [35] included
a HAR dataset in their Domain Generalization benchmark. Their results indicate a 9.07%
drop in accuracy from 93.35% In-Distribution (ID) to 84.28% OOD on a dataset where
different devices worn in different positions characterize the possible domains. IB-IRM [34]
was the best-performing method. However, results did not improve significantly over
empirical risk minimization (ERM), which is still a strong baseline [36]. Lu et al. [37]
introduced a semantic-aware version of Mixup, which outperformed several Domain
Generalization methods in HAR tasks. They presented results across different users,
datasets, and positions. However, handcrafted features were not addressed in their work.
Trabelsi et al. [20] compared three deep learning approaches and a random forest classifier
with handcrafted features as input. Similarly to the experiments in our work, the datasets
were homogenized by including only shared activities and separating the test sets by user.
They concluded that only one of the deep learning approaches outperformed the baseline
model with handcrafted features. Regularization methods were not studied in their work.

Our previous work, Bento et al. [13] showed that while DL methods outperformed
traditional ML approaches when the training and test sets were split randomly, as the
distance between the distributions grows, the tendency inverts, with methods based on
DL usually performing worse in OOD settings. This paper builds on that work, adding
different regularization methods to the models in order to assess if and by how much the
OOD performance gap between HC features and deep representations is reduced. Our
experiments include four Domain Generalization settings with different distances between
training and test sets. To the best of our knowledge, this is the first attempt at comparing
regularization methods for Domain Generalization in HAR.

3. Methodology

3.1. Datasets

The data employed in this study are the same as that used in Bento et al. [13]. Therefore,
the datasets are composed of human activity data collected with smartphones and wearable
IMUs. All the datasets are publicly available, and a comprehensive description of each is
presented in Table 1.

The datasets were selected according to three criteria: (a) a sampling frequency su-
perior or equal to 50 Hz; (b) most of the main human activities in the literature (walking,
sitting, standing, running, upstairs, and downstairs); and (c) at least one common sensor
position with another of the chosen datasets.

For this study, only the accelerometer data were used. In addition to the three ac-
celerometer channels (x, y, and z) produced directly by the sensors, a fourth channel
comprising the accelerometer magnitude was computed and utilized in the classifica-
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tion process. Five-second windows without overlap were then extracted from those four
channels.

Table 1. Description of the datasets, including number of subjects, activities, devices, sample rate,
positions, and sources.

Dataset Subjects Activities Devices
Sample
Rate

Positions Source

PAMAP2 9
Sitting, lying, standing,
walking, ascending stairs,
descending stairs, running.

3 IMUs 100 Hz Wrist, chest, and ankle. [38,39]

SAD 10
Sitting, standing, walking,
ascending stairs, descending
stairs, running and biking.

5 smartphones 50 Hz Jeans pocket, arm,
wrist, and belt. [40]

DaLiAc 19

Sitting, lying, standing,
walking outside, ascending
stairs, descending stairs,
treadmill running.

4 IMUs 200 Hz Hip, chest, and ankles. [41]

MHEALTH 10

Sitting, lying, standing,
walking,
climbing/descending stairs,
jogging, running.

3 IMUs 50 Hz Chest, wrist, and ankle. [42,43]

RealWorld 15

Sitting, lying, standing,
walking, ascending stairs,
descending stairs,
running/jogging.

6 IMUs 50 Hz
Chest, forearm, head,
shin, thigh, upper arm,
and waist.

[44]

Data homogenization consisted of resampling all the datasets to 50 Hz and mapping
activity labels of all datasets to a shared naming convention: “walking”, “running”, “sit-
ting”, “standing”, and “stairs”. Note that the class “stairs” does not differentiate between
ascending and descending stairs. Given the discrepancy between the number of windows
generated by each dataset, only one-third of the windows from the RealWorld dataset were
randomly sampled and used in the experiments. Table 2 displays the final distribution of
windows and activities for each dataset.

For further details regarding the datasets used and decisions concerning data prepro-
cessing, please refer to Bento et al. [13].

Table 2. Distribution of samples and activity labels per dataset. The # symbol represents the number
of samples. Retrieved from [13].

Activity
Datasets (%) Total

PAMAP2 SAD DaLiAc MHEALTH Real World % #

Run 10.5 16.9 20.0 33.3 19.1 18.3 7975
Sit 19.8 16.9 10.6 16.7 17.0 16.3 7102
Stairs 23.6 32.2 12.3 16.7 30.0 26.3 11,460
Stand 20.4 16.9 10.6 16.7 16.4 16.2 7047
Walk 25.7 16.9 46.5 16.7 17.5 22.8 9927

Total
% 12.7 24.4 15.3 4.96 42.6 - -
# 5541 10,620 6644 2160 18,546 - 43,511

3.2. Handcrafted Features

The TSFEL library [45] was used to extract features from the windows produced from
each public dataset. Features including individual coefficients and audio-related features
were excluded to reduce the computation time. This resulted in a total of 192 features
per window.
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The following steps were used to split the samples based on their task (see Section 4)
and perform Z-score normalization with statistical information regarding the training
set. The classification algorithms used were a Logistic Regression (LR) and a Multilayer
Perceptron (MLP).

Additional details regarding feature extraction and preprocessing can be found in
Bento et al. [13].

3.3. Deep Learning

The architectures used in our experiments were different variations of convolutional
neural networks. We chose the two best-performing architectures from [13], which were
CNN-base and ResNet. Refer to the original paper for a detailed explanation of the used
architectures and training process.

For the hybrid models, the HC features are concatenated with the flattened representa-
tions of each model and fed to a fusion layer before entering the final classification layer.
An illustration of the hybrid version of CNN-base is shown in Figure 1.

For all these models, the input windows were scaled by Z-score normalization,
with mean and standard deviation computed across all the windows of the train set.
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Figure 1. Simplified illustration of the hybrid version of CNN-base (excluding the CNN backbone for
ease of visualization) [13].

3.4. Regularization

In this study, several regularization methods are compared:

• Mixup regularization [24,25]: It linearly interpolates input/target pairs to create new
examples, which are used to make decision boundaries smoother and avoid overfitting.

• Sharpness-Aware Minimization (SAM) [26]: Optimization method that actively seeks
flat minima. This type of minima was shown to be less prone to overfitting [46].

• GraNet [27]: It is a state-of-the-art method for sparse training that gradually reduces
the number of non-zero weights during training.

• IRM [21]: It attempts to learn invariant representations by minimizing the sum of the
squared norms of the gradients across multiple environments.

• V-REx [33]: It has the same purpose of IRM, but instead it minimizes the gradient
variance across environments.

• IB-IRM [34]: It introduces a term to the IRM loss corresponding to the variance in the
model parameters, following the information bottleneck principle.

3.5. Evaluation

Various metrics are used in research literature to assess model performance. These
include accuracy, sensitivity, specificity, precision, recall, and f1-score [2]. However, due
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to the frequent occurrence of class imbalance in many public HAR datasets (as indicated
in Table 2), f1-score was chosen as the primary performance metric, as it proved to be
more resilient than accuracy in these types of situations [47]. For the sake of comparing
deep learning models and traditional models using HC features, f1-scores were used as the
comparison metric. This comparison was carried out across multiple OOD scenarios and
took into consideration five public HAR datasets.

4. Experiments and Results

The goal of this study is to assess the improvement brought by using different regular-
ization techniques on Domain Generalization tasks involving models based on HC features
and deep neural networks. To that end, various combinations of model architectures and
regularization methods were implemented and evaluated. A scheme of the full pipeline
used for the experiments is presented in Figure 2.

Public HAR Datasets 

x5

• PAMAP2
• SAD
• DaLiAc
• MHEALTH
• RealWorld

• Resampling to 
50 Hz
• Label 
homogenization
• Window 
splitting
(5 seconds)

Pre-Processing

Feature Extraction

• TSFEL
• Z-score normalization

Deep Learning

• CNN-base
• ResNet

Hybrid

• CNN-base 
• ResNet

HC Models

• MLP
• LR

Regularization

• Mixup
• Sparsity
• SAM
• IRM
• IB-IRM
• V-REx

Figure 2. Scheme of the experimental pipeline.

HAR is a task where different domains naturally occur, becoming a Domain General-
ization task if these domains are preserved when splitting the data into training and test
sets. To measure how different a test set is from the training set, or how OOD it is, Bento
et al. [13] computed Wasserstein distance ratios. Following that study, our experiments
were conducted over the same four domain generalization settings, comprised of a baseline
ID setting and three OOD settings [13]: (a) splitting by user within the same dataset (OOD-
U); (b) leaving a dataset out for testing (OOD-MD); and (c) training on a dataset and leaving
another for testing (OOD-SD). Test sets in the OOD-U setting were closer to the training
distribution, being further away in the OOD-MD and OOD-SD settings. Non-exhaustive
hyperparameter optimization was applied to the regularization methods on a small private
HAR dataset. The chosen hyperparameters for each method are specified in Table 3.

132



Sensors 2023, 23, 6511

Table 3. Chosen hyperparameters for each regularization method.

Method Hyperparameter Value

Mixup α 0.1

GraNet
prune rate 0.5

initial density 0.5
final density 0.1

SAM base optimizer Adam
ρ 0.05

IRM λ 100

V-REx β 10

IB-IRM λ 100
γ 10

Table 4 presents the results for the first experiment, which combines neural network
architectures and regularizers. The DRO models (IRM, V-REx, and IB-IRM) used in this
experiment require the formulation of different environments (i.e., domains) in the training
set. For the ID and OOD-U settings, the environments are split by the user. For OOD-MD,
each environment can be trivially devised as a dataset. However, for the OOD-SD, only
a single dataset is present in the training set, so there is no trivial way to simulate the
distribution shift that occurs between the training and test sets. Consequently, this setting
was removed from the experiment. In Table 4, it can be verified that ResNet is the best-
performing deep learning architecture, as it consistently shows higher f1-scores compared
to CNN-base. For CNN-base, only SAM improved over the baseline model without
regularization. Still, this improvement was not significant, and the performance was far
from its hybrid version (CNN-base hybrid). For the ResNet architecture, Mixup, SAM,
IRM, and IB-IRM improved over the baseline. Mixup achieved the best results (76.44%),
marginally surpassing the score of the hybrid version (76.29%). Overall, Mixup and SAM
can be considered the best-performing regularizers since the scores either improved or
remained approximately the same in both architectures. The larger improvement verified
on the ResNet may be due to the increased effectiveness of regularization methods in
overparameterized regimes [12,48].

DRO methods are known to heavily depend on the chosen hyperparameters [36]. This
may have hindered their performance. For these methods, hyperparameter optimization
was performed over only three different values (10, 100, and 1000) for their regularization
weights since the regularization methods should require as little computational overhead
as possible.

As a second experiment, the best architecture (ResNet) and the two best regularizers
(Mixup and SAM) were chosen, so that it could be assessed whether a combination of the
best regularizers could further improve the generalization of deep learning models. The
results are presented in Table 5. Since none of the DRO methods were considered, the
OOD-SD setting could be recovered for this experiment, as none of the remaining methods
require information about the environments. After adding the OOD-SD setting, the ResNet
hybrid (66.77%) slightly outperformed the regularized ResNet models (66.42% and 66.48%).
However, the difference is minimal, so we can consider that their performance is approx-
imately the same. In the OOD-MD setting, ResNet with Mixup regularization (71.18%)
outperformed some classical models. Despite that, this improvement loses significance
when assessing the average scores.

The best-performing model across both experiments was TSFEL + LR, followed by
the remaining HC feature-based models, which includes TSFEL + MLP and the hybrid
models. Despite the effectiveness of regulariztion, it was insufficient for deep learning
models to reach the desired OOD performance levels. Still, as regularizers did not improve
the overall results of any of the models that make use of HC features (i.e., TSFEL + LR,
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TSFEL + MLP and hybrid models), it can be observed that these regularizers can help bridge
the generalization gap between deep learning models and models based on HC features.

Table 4. Average f1-score in percentage (%) over all the tasks in all the settings except OOD-SD.
Values in bold indicate the best performance for each setting. * indicates the experiments without
regularization performed in [13].

Model
Setting

Avg. OOD
ID OOD-U OOD-MD

CNN-base * 92.10 ± 5.06 80.79 ± 9.68 66.94 ± 5.19 73.87 ± 5.49
CNN-base Mixup 91.18 ± 4.56 80.66 ± 9.33 67.05 ± 3.88 73.86 ± 5.05
CNN-base Sparse 92.01 ± 5.02 80.75 ± 10.04 66.11 ± 5.48 73.43 ± 5.72
CNN-base SAM 91.44 ± 4.86 81.46 ± 10.56 66.68 ± 4.49 74.07 ± 5.74
CNN-base IRM 90.70 ± 5.41 80.24 ± 9.89 66.86 ± 4.25 73.55 ± 5.38

CNN-base V-REx 88.69 ± 7.29 80.31 ± 9.71 67.05 ± 5.68 73.68 ± 5.63
CNN-base IB-IRM 84.33 ± 14.98 80.55 ± 10.60 65.59 ± 4.90 73.07 ± 5.84
CNN-base hybrid * 93.48 ± 4.35 85.28 ± 6.64 67.74 ± 3.37 76.51 ± 3.72

ResNet * 92.46 ± 4.73 81.16 ± 9.60 67.22 ± 4.89 74.19 ± 5.39
ResNet Mixup 92.10 ± 4.59 81.71 ± 9.91 71.18 ± 4.18 76.44 ± 5.38
ResNet Sparse 92.48 ± 4.61 80.86 ± 10.80 67.10 ± 3.32 73.98 ± 5.65
ResNet SAM 92.01 ± 4.46 81.36 ± 10.56 68.82 ± 3.57 75.09 ± 5.57
ResNet IRM 91.40 ± 4.68 80.66 ± 9.80 69.00 ± 5.53 74.83 ± 5.63

ResNet V-REx 90.64 ± 5.54 80.74 ± 9.61 67.00 ± 5.66 73.87 ± 5.58
ResNet IB-IRM 85.14 ± 15.26 80.63 ± 10.00 68.69 ± 5.52 74.66 ± 5.71
ResNet hybrid * 93.79 ± 4.21 84.71 ± 7.72 67.87 ± 3.40 76.29 ± 4.22
TSFEL + MLP * 92.87 ± 4.70 87.09 ± 5.35 70.11 ± 3.57 78.60 ± 3.22
TSFEL + LR * 90.54 ± 5.15 87.08 ± 5.55 71.94 ± 3.19 79.51 ± 3.20

Table 5. Average f1-score in percentage over all the tasks in a given setting. Values in bold indicate
the best performance for each setting. * indicates the experiments without regularization performed
in [13].

Model
Setting

Avg. OOD
ID OOD-U OOD-MD OOD-SD

ResNet * 92.46 ± 4.73 81.16 ± 9.60 67.22 ± 4.89 46.57 ± 4.84 64.98 ± 3.94
ResNet Mixup 92.10 ± 4.59 81.71 ± 9.91 71.18 ± 4.18 46.56 ± 6.27 66.48 ± 4.15

ResNet Mixup SAM 92.03 ± 4.27 82.22 ± 10.32 70.04 ± 4.00 46.99 ± 6.25 66.42 ± 4.24
ResNet hybrid * 93.79 ± 4.21 84.71 ± 7.72 67.87 ± 3.40 47.73 ± 2.11 66.77 ± 2.90

ResNet hybrid Mixup SAM 93.30 ± 3.54 83.83 ± 9.00 69.87 ± 2.47 46.60 ± 4.22 66.77 ± 3.41
TSFEL + MLP * 92.87 ± 4.70 87.09 ± 5.35 70.11 ± 3.57 51.45 ± 5.31 69.55 ± 2.78
TSFEL + LR * 90.54 ± 5.15 87.08 ± 5.55 71.94 ± 3.19 50.97 ± 3.29 70.00 ± 2.40

TSFEL + LR Mixup SAM 90.38 ± 5.03 87.05 ± 5.23 71.67 ± 3.97 50.41 ± 3.58 69.71 ± 2.49
TSFEL + MLP Mixup SAM 93.03 ± 4.58 87.46 ± 5.97 70.39 ± 2.71 51.26 ± 4.00 69.71 ± 2.56

5. Discussion

The work conducted in this study evaluated the differences in the performance of differ-
ent regularization techniques on Domain Generalization tasks applied to HAR classification.

In the first experiment, a comparison between various combinations of neural network
architectures and regularizers was carried out. ResNet outperformed CNN-base consis-
tently across different ID and OOD settings. This result aligns with the general perception
about the superiority of ResNet in handling a broad range of tasks due to its deeper archi-
tecture and residual connections, enabling it to learn more complex representations [49].
Regarding regularization methods, Mixup and SAM were considered to be the best-
performing methods in both architectures. This agrees with the original premises behind
these techniques, as Mixup attempts to improve generalization by enforcing a smoother
decision boundary [24], while SAM adds robustness to label noise [26].
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In the second experiment, a combination of the two best regularizers (Mixup and
SAM) and the best architecture (ResNet) was performed to assess if it further improves
the generalization of deep learning models. Combining the two methods did not yield
better results than using Mixup alone. This experiment also showed that regularization
only improved the performance of deep learning models that did not include HC features.
The fact that the average OOD score of the ResNet hybrid did not change with the use of
regularizers may indicate that the use of these features as an auxiliary input can already
have a regularizing effect.

Overall, despite none of the deep learning models being able to surpass the perfor-
mance of models based on HC features, regularization improved the generalization ability
of deep Llearning models and was as effective as the auxiliary features for the ResNet
architecture. Moreover, as regularizers did not improve the results for the classical methods,
they were clearly able to reduce the generalization gap.

This study shows that HC features still have their place in modern machine learning,
as they can be more robust to distribution shift and allow simple classifiers to achieve
better results.

We also showed that merging all the datasets for training (OOD-MD) resulted in a
performance gain of 20% when compared to using a single dataset for training (OOD-SD).
This indicates that each dataset has limited information. In practice, if a larger space of
possible scenarios can be covered during the acquisition process, it will result in a more
diverse dataset and, consequently, in better generalization. This means that an ML-based
HAR system can improve if data are recorded using a wider range of devices, users, sensor
positions, and physical environments, among other possible factors of variation.

Our work has some limitations, as the choice of datasets was limited to the field of
HAR and only a few regularization techniques were tested. Additional research should
explore datasets from different fields and a wider range of increasingly novel regularization
methods to comprehensively understand their effects on domain generalization. Future
work could also investigate the use of different neural network architectures, such as
transformers, or even neural architecture search [50] since it has been shown that, in some
cases, the choice of model architecture may have more impact than the loss function [51].
Domain-specific regularization methods [37] were also demonstrated to have the potential
to vastly improve the generalization of deep learning models. Despite that, these methods
suffer from the caveat of not being directly applicable to other tasks.

6. Conclusions

This study has addressed the impact of different regularization methods on the domain
generalization performance of HAR models and whether these methods can bridge the
OOD performance gap between deep neural networks and HC feature-based models.
Our experimental results indicate that state-of-the-art regularization methods, such as
Mixup and SAM, can improve OOD generalization and reach the results of hybrid models.
However, it was not enough to be on par with classical ML approaches. We conclude that
the use of HC features, regularizers, and diverse training data may enable more robust
HAR systems.

Overall, this study contributes to the understanding of how regularization methods
can impact the Domain Generalization performance of HAR models and their potential
to narrow the OOD performance gap between deep neural networks and traditional
approaches. These insights will be valuable for researchers and practitioners working on
HAR and related fields, helping them build more robust and generalizable models for
real-world applications.
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Abstract: Radio frequency (RF) technology has been applied to enable advanced behavioral sensing
in human-computer interaction. Due to its device-free sensing capability and wide availability on
Internet of Things devices. Enabling finger gesture-based identification with high accuracy can be
challenging due to low RF signal resolution and user heterogeneity. In this paper, we propose MeshID,
a novel RF-based user identification scheme that enables identification through finger gestures with
high accuracy. MeshID significantly improves the sensing sensitivity on RF signal interference, and
hence is able to extract subtle individual biometrics through velocity distribution profiling (VDP)
features from less-distinct finger motions such as drawing digits in the air. We design an efficient
few-shot model retraining framework based on first component reverse module, achieving high
model robustness and performance in a complex environment. We conduct comprehensive real-
world experiments and the results show that MeshID achieves a user identification accuracy of
95.17% on average in three indoor environments. The results indicate that MeshID outperforms the
state-of-the-art in identification performance with less cost.

Keywords: device-free behavioral sensing; orthogonal signal interference; user identification

1. Introduction

Human Activity Recognition (HAR) and Human Behavior Recognition (HBR) tech-
nologies are integral components of Human-Computer Interaction (HCI) systems. They
enable computers to interpret and respond to human actions and behaviors, enhancing the
overall user experience. HAR and HBR systems [1] utilize various sensors and algorithms
to analyze data such as movement patterns, gestures and physiological signals, facilitat-
ing seamless interaction between humans and computers. However, they raise security
concerns about potential misuse or unauthorized access to users’ data. Through robust
user identification methods such as biometrics, passwords, or behavioral analysis, HCI
systems can mitigate the risk of unauthorized access. Vision technology [2,3] can identify
different users through physical activity characteristics captured from image frames using
high resolution cameras, but it is susceptible to failure in the presence of luminous changes
and obstacles within the line-of-sight (LoS) [4], thus exacerbating significant concerns
regarding user privacy. In stark contrast, RF sensors (such as WiFi, RFID, and Zigbee) offer
numerous advantages, including freedom from illumination constraints, reduced privacy
apprehensions, equitable penetration and widespread availability on IoT devices. As a
result, they are widely proposed to enable advanced device-free behavioral sensing [5,6].
Towards RF-based behavioral sensing, existing systems propose a variety of behavioral
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characteristics including daily activities [7–10], vital signs [11,12] and gestures [13–15].
Although these systems have demonstrated their effectiveness with fair accuracy in labora-
tory settings, they may still encounter real-world constraints. Extracting biometric features
from daily activities usually require users consistently performing a set of pre-defined
activities for long-term tracking [5]. The motion of vital signs (e.g., heartbeats [16] and
respiration rate [17]) remains fragile, and identification may be prone to failure due to
body movement artifacts and ambient noise. In contrast, performing gestures (e.g., finger
gesture) for identification can practically mitigate the impact of motion noise and offer con-
siderable user-friendliness [18–20]. Gesture-based interaction stands as the most common
and efficient method of HCI [21–23]. Gesture recognition technology is mature and capable
of achieving high accuracy. When users write in the air, they commonly use their forefinger
naturally. In our experiment, we adhere to this habit by employing forefinger gestures for
user identification. Enabling user identification through finger gestures with high accuracy
is a non-trivial challenge, which requires addressing two key challenges.

Firstly, as the movement of the finger motion is quite small, the amplitude change
in the RF reflected signal caused by finger motion could be very faint, hence it is difficult
to identify minor variance among users’ biometrics extracted from the limited signal
variance. According to the theory of the Fresnel model [24,25], when a user moves his/her
hand across the boundaries of Fresnel zones, the CSI of the signal will form a series of
peaks and valleys. We regard this variance pattern as a kind of RF signal resolution. If
we have more peak values in an unit area we can say that the RF signal resolution is
higher. Once the motion becomes smaller, like finger motion, the number of peak values
is reduced and the amplitude change in CSI diminishes much smaller, resulting in low
accuracy for identification. The key question we have is how to fundamentally improve
the RF signal resolution (i.e., CSI variance). Inspired by Young’s double-slit interference
experiment [26], we use a pair of transmitters (double-source) in the same frequency to
induce the signal interference. The double-source interference produces numerous dense
narrow beams. In other word, it greatly increases the number of boundaries in the same
unit area compared with traditional methods. By setting up two orthogonal double-source
pairs, the sensing area will be covered by a dense signal mesh, hence the signal resolution
is enormously improved.

Secondly, due to user heterogeneity (e.g., different users, preferences, and surround-
ings), in reality, the data distribution of users’ biometrics may become complex and un-
predictable to fail user identification. The performance of the traditional deep learning
(DL) technique relies heavily on collecting a large amount of user data as a prerequisite,
especially assuming that the represented data distribution is relatively stationary without
dynamic changes. Towards robust and efficient model retraining, we utilize a one-shot
learning approach based on the Siamese network [27–29], with two core techniques: first
component reverse (FCR) extraction and convolution block attention module (CBAM),
achieving high model robustness and performance in heterogeneous scenarios (e.g., identi-
fying unseen users). A unique velocity distribution profiling (VDP) is calculated from a
double-source interference pattern, reflecting the personal motion features.

When users perform finger gestures in a complex environment, the input feature
space of extracted biometrics contains both non-related features (i.e., common features
shared by the same gestures of users and ambient noise) and user-specific features (i.e.,
personal features), but the issue is that the non-related features may strongly affect the
performance of identifying users. To improve it, we design a first component reverse (FCR)
extraction, inspired by principal component analysis (FCR) extraction, inspired by principal
component analysis (PCA), hat removes the non-related features (i.e., first component in
PCA) and helps extract user-specific features from the input feature space, boosting our
CBAM-based Siamese network with a superior identification capability.

To address the above issues, we propose MeshID, a novel RF-based user identification
approach leveraging signal interference for accurate finger gesture tracking. MeshID is
able to significantly improve the sensing sensitivity by leveraging double-source signal
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interference and extracting subtle individual biometrics from less distinct finger motions.
Due to the effect of enhancing CSI variance, our mesh approach can mitigate the multi-
path effects and contribute to resisting the interference from ambient environments. By
applying an efficient CBAM-based few-shot deep learning framework with FCR extraction,
MeshID achieves high model robustness and can be easily adapted to new users with
complex surroundings.

The main contribution are summarized as follows:

• We present MeshID, an RF-based user identification approach based on a beam struc-
ture caused by double-source orthogonal signal interference. The system is able to
detect user in-air finger motion with high accuracy, which could support for a variety
of smart home/building applications especially for user identification.

• To the best of our knowledge, MeshID is the first solution that derives the unique
velocity distribution profiling (VDP) features from signal patterns leveraging the novel
mesh beam structure. It fully enables user identification by essentially enhancing the
signal sensing sensitivity compared to traditional RF-based approaches

• We design a first component reverse (FCR) extraction method to emphasize user-
specific features and remove non-related features, hence improving the identification
accuracy and model capability. We propose a one-shot learning framework with
CBAM in a Siamese network for model retraining robustness and efficiency.

• We evaluate MeshID in comprehensive real-world experiments. The results demon-
strate that MeshID is able to achieve an average identification accuracy of 95.17% on
average by performing single finger gestures in three indoor environments.

The rest of the paper is organized as follows. Section 2 discusses the preliminary
knowledge of the method. Section 3 presents the design of MeshID. Section 4 demonstrates
the comprehensive evaluation results. Section 5 shows the key discussions. Section 6
reviews the related works. Section 7 concludes the paper and discusses future works.

2. Preliminary

In this section, we introduce the fundamental concept of Channel State Information
(CSI) and then explore the double-source interference phenomenon for finger gesture-based
user identification.

CSI is a fine-grained physical layer that depicts how RF signals propagate between
a transmitter and a receiver [30,31]. It captures the slight change in the surrounding
objects in both the time domain and spatial domains. The CSI channel H is modeled
by Y( f , t) = H( f , t)X ( f , t) + N, where Y is the received signal, X is the pre-defined
modulated signal and N is the noise vector.

Empirical Study of double-source interference. In tradition, for a pair of transmitters
and receivers, as shown in Figure 1a, the signal variance pattern caused by the reflection
of target activity is usually identified as Fresnel zones. Small finger motions in the same
zone usually have a small impact on the signal variance, while user activity across different
zones causes a large signal variance. We may regard these zones as a kind of “sensing
sensitivity”. The zone number can be a measure of sensitivity to sensing. For example, in a
1 × 1 m area (without losing generality, the frequency is set as 5.76 GHz), roughly we may
have only seven Fresnel zones.

To increase the boundaries of sensing, our intuition is to apply RF signal interference.
Inspired by Young’s double-slit interference experiment [26], we use a pair of transmitters
with same frequency to induce the signal interference, resulting in a stripe pattern in a
parallel way. The simulation results of signal reflection are depicted in Figure 1b. The reason
why we can see such a fringes pattern is that multiple sources signals can interfere with each
other constructively, where the amplitude of combined signal is greater than the individual
one, while interference destructively where the amplitude of the combined signal is smaller
than the individual one or same with the original. We call the above phenomenon double-
source interference. Double-source interference obeys the Huygens-Fresnel Principle [32],
hence the Fresnel zones still exist under this double-source setting, as shown in Figure 1d.
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The double-source fringes pattern and the Fresnel zones are overlapping with each other,
the Fresnel zones will be divided into several “mesh” cells. Within this dense mesh, if
use activity is crosses the cell borders, it also causes a larger signal variance. That is, in
the same 1 × 1 m area, we may roughly have more than 83 separated areas in total. The
boundaries of “mesh” with fringes are notably increased by interference compared to
the Fresnel zones, which indicates that the sensing sensitivity on RF signal interference
increases. The interference of multiple waves are generally regarded as a not-so-trivial
negative effect leading to unpredictable signal patterns and poor signal quality in wireless
sensing, many studies aim to mitigate interference for better accuracy. However, our
objective is to utilize such negative effect in user identification and change the effect from
“negative” to “positive”.

(a) (b) (c) (d)

Figure 1. The simulation heatmaps: (a) Fresnel zones from single source; (b) Interference patterns
from double sources; (c) Mesh of the formed by orthogonal signal interference; (d) Fusion of interfer-
ence and Fresnel zone from double sources.

User identification based on orthogonal double-source interference: Since that a
finger gesture may lead to motions in different directions (e.g., drawing a digit “0”), one
transmitter pair may only be sensitive to the motions in the perpendicular direction to
the transmitters, hence it may lose useful motion features. To address this, we propose a
new setup of orthogonal antenna pairs to enable a dense interference pattern (i.e., dense
mesh) from both vertical and horizontal directions. Our basic idea is that if we deploy
another pair of transmitters with the same distance, but in another direction (e.g., parallel
to the x-axis) and with a slight frequency difference, such transmitters also cause a stripe
result but in a vertical way. The amplitude of the received signal appears like a dense
mesh with two orthogonal interference transmitter pairs, as shown in Figure 1c. We name
such pairs of transmitters as orthogonal antenna pairs. To observe the mesh pattern of
orthogonal double-source interference clearly, the Fresnel zone is omitted from this figure.
Consequently, we are able to achieve a higher sensing sensitivity on RF signal compared to
traditional methods.

The received CSI comprises a mixture of signals, including the line-of-sight component,
double-source component, and others. We utilize the Complementary Ensemble Empirical
Mode Decomposition (CEEMD) to separate the double-source interference component from
the CSI data. With this feature, we propose a noval VDP feature to capture the fine-grained
finger motions of users within the sensing area. The VDP encapsulates the motion change
pattern of the user and the corresponding potential biometric features such as the motion
speed. Since users have diversity motion habits and behavioral habits (e.g., drawing digit
“0” clockwise or anticlockwise, different pauses and speeds when performing gesture), even
when executing the same gesture, the moving finger interacts with RF signals differently,
resulting in distinct patterns. As shown in Figure 2, Figure 2a–c are the CSI variances
of three different users drawing the same digit “0” based on their own writing habits.
Figure 2d–f are the corresponding VDPs that have different velocity patterns. Therefore,
we can depict users’ behavioral characteristics by leveraging biometric feature extraction
methods and bring the opportunity for user authentication.
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(a) (b) (c)

(d) (e) (f)

Figure 2. The VDP of different users when writing digit 0. (a) CSI of user 1. (b) CSI of user 2. (c) CSI
of user 3. (d) VDP of user 1. (e) VDP of user 2. (f) VDP of user 3.

3. Methodology

3.1. Framework

As shown in Figure 3, our design consists of four components: (1) data collection from
orthogonal double-source interference, (2) noise removal and gesture recognition, (3) FCR
extraction analysis to extract user-specified features, (4) data transform and (5) CBAM-based
few-shot learning for identification.

Figure 3. MeshID design overview.

Firstly, we introduce our design of the orthogonal signal interference. The signal
interference pattern is like a dense mesh. The user is able to perform finger gestures within
this area. Under this setting, CSI information is collected from both horizontal and vertical
transmitters. Secondly, a low pass filter algorithm is used to remove the high-frequency
noise and a down sampling algorithm is used to reduce the data size in order to effectively
process the data. Then, we use Complementary Ensemble Empirical Mode Decomposition
(CEEMD) [33] on the data to obtain ensemble Intrinsic Mode Function (IMF) which is
related to the interference pattern. Thirdly, with the IMF data from the CSI series, we
utilize a CNN-based LSTM method to recognize the user’s gesture. Then, we leverage
FCR extraction to remove the effect of the shared component, so that it can remove the
correlated non-related features among different users and leave the user-specified features
of the user. Fourthly, we estimate the user instantaneous moving speed according to the
fringe-based variance pattern, then we generate the VDP for following user identification.
Finally, we can identify users by leveraging the CNN-based Siamese Network.
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3.2. Double-Source Interference

In free-space scenarios, where two RF waves with the same frequency f travel along
two different paths to converge at the same destination point, the difference of two path
lengths is equivalent to a multiple of wavelength λ, which is known as constructive
interference [34] Similarly, if the two waves are out of phase by half of the wavelength, the
result is destructive interference. In this case, the combined signals produce several fringes,
where the high points of fringes are called the crests, and the low points of the fringes are
called the troughs.

Given this phenomenon, we may deliberately utilize the aforementioned double-
source signals, each possessing the same radio frequency, to create a combined signal Hsum,
which can be defined as follow:

Hsum( f , t) = H1( f , t, r1) + H2( f , t, r2) (1)

where H1 is the received signal travel with distance r1 from the first antenna, and H2 is
from the second antenna and travels with distance r2.

The width of the neighbouring fringes can be calculated by three primary major
parameters: the distance between the transmitter node pairs, the wavelength of the radio
wave, and the distance from the transmitter pairs. The node distance between nodes and
the wavelength of the radio wave are the known values. The impact range of finger motion
usually is small compared to the sensing area, hence the distance from the transmitter pair
can be regarded as the middle of the sensing area. The fringes are symmetrical starting
from the central line (thick red line in the figure) of the receiver antenna, we refer to the
upper fringes as f ringeu

m and bottom fringes as f ringeb
m, m is the number of a specific fringe

number, as shown in Figure 4. The width Δdist between fringe f ringeu
m and f ringeu

m+1 (or
between fringe f ringeb

m and f ringeb
m+1) at a position whose distance to the y axis is l, can

be calculated by

Δdist = mλ

√
4 +

l2

d2 − m2λ2 (2)

where d is the node distance between the transmitter antennas pairs, λ is the wavelength.

Figure 4. Illustration of double-source interference.
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3.3. Orthogonal Signal Interference

In previous instances of interference fringes, employing a pair of antennas in trans-
mission resulted in fringes appearing predominantly along one direction (e.g., horizontal
direction in Figure 1b). Introducing another pair of antennas orthogonally (e.g., vertically,
as shown in Figure 1c), operating at slightly different frequencies, produces interference
fringes along a different axis (vertical direction). Therefore, the combined interference
signal fringes appear like a mesh. We can effectively capture the fine-grained finger motion
from any direction, thereby enhancing signal resolution.

We may have CSI data from both vertical and horizontal antenna pairs at the same
time. The orthogonal RF signals can be represented as below:

M(RX1, RX2) =

[
HRX1( f , t)
HRX2( f , t)

]
(3)

where HRX1 is the received signal at receiver RX1, and HRX2 is the received signal at
receiver RX2.

3.4. Noise Removal and Gesture Recognition

The raw wireless signals are inherently noisy due to the multipath effect. In order
to effectively identify the human, we should remove noise first, then perform the data
transformation for enhanced analysis.

3.4.1. Low Pass Filtering

The CSI variance caused by human motion has a relatively low frequency specified as
fl , while the high-frequency data usually contain environment noise. Therefore, we utilize
a a low-pass FIR filter to remove the environmental noise. The cut-off angular frequency
used in the low pass filter is calculated as ωc = 2π

fl
f̃s

.

3.4.2. Down Sampling

To expedite calculations and enhance processing speed, we initially employ a down-
sampling (interpolation) method to stretch the input CSI matrix. Assuming the original
sampling rate is fs, and the data length of the original data is m. After the re-sampling, the
data length is n with the new sampling rate f̃s = fs ∗ m

n . The CSI matrix after re-sampling
can be rewritten as M̃( f̃s) = F(M, fs) where M is the input orthogonal RF signal.

3.4.3. Interference Pattern Extraction

Given that interference theory remains constrained by the principles of the Fresnel
Zone, the interference pattern can be covered by the Huygens-Fresnel Principle. Figure 5
shows an example of how both the Fresnel zone and environment noise can detrimentally
impact the interference pattern. We place the receiver antenna on the right side of the
drawing area. The transmitter is placed on the left side. Horizontal zones/fringes will exist
with a single sourcesetting/double source setting, as shown in Figure 1a,b. While a user
draws a straight line from center top to center bottom and just crosses the Line-of-Sight
(LoS), the amplitude variance with a single source setup is shown in Figure 5a, we identify
the start point and the endpoints with a red dashed line. The figure clearly shows that
only one peak value is shown within this range. For purposes of a fair comparison, we
repeat the same finger motion under a double-source interference setup. We also identify
the start point and end point with red dashed lines. The amplitude variance is shown in
Figure 5b. The result indicates that three peak values are distributed in the same range
compared with a single source. We utilize a green line to separate the interference fringes
based on the peaks. On the basis of Equation (2), we could estimate the width of the fringes.
Theoretically, motion features based on personal velocity can be derived if the boundaries
of the fringes are accurately identified. Therefore, there is a pressing need for an efficient
method to detect these fringe boundaries with precision.
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(a) (b)

(c) (d)

Figure 5. Comparison of Fresnel Zones patterns and interference patterns when user’s finger moves
perpendicular to the LoS. (a) CSI of 1st Fresnel zone with single source. (b) CSI of Interference fringes
with double sources. (c) IMF of 1st Fresnel zones with single source. (d) IMF of Interference fringes
with double sources.

We apply Complementary Ensemble Empirical Mode Decomposition (CEEMD) on
the CSI matrix M̃ to detect the fringe boundaries.

M̃(t) =
N

∑
i=1

f (IMFi(t), εi) + resN(t) (4)

where f (IMFi) is the ith Intrinsic Mode Function (IMF ) component, εi is the residue of
added white noises, and resN(t) is the residue.

To simplify the pattern extraction, we can roughly divide the received CSI signals into
four layers: noises, interference variances, Fresnel zone variances and trends related to
with the distance of transmitter and target objects. Hence, N = 3 in our system, and the
residue of the decomposition represented the trend of the CSI series. We will use IMF2
as the input of the following calculation. The results of CEEMD processing are shown in
Figure 5c and 5d respectively.

3.5. Finger Gesture Recognition

In this subsection, we describe the gesture recognition methods to recognize users’
finger gestures. Unlike some existing work, they require the collection of lots of gesture
samples for training the gesture recognition network to meet the requirement for real-
world applications that may have few gesture samples for first-time usage. Also, the
recognition system is required to offer a short response for real-time applications. We
employ Convolutional Neural Network (CNN) based Long Short-term Memory (LSTM)
for finger gesture recognition. In our system, only a few gesture samples of a user are
needed for re-training the network. The gesture recognition network contains four 1d CNN
layers to suppress the data size to shorten the training time. Next, the features are fed into
a two-layer LSTM. Based on the known gesture, we use a general Principal Component
Analysis (PCA) algorithm to analyze the CSI value for removing the common features of
the same gesture.
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3.6. First Component Reverse Extraction

Principal Component Analysis (PCA) has been widely used for signal denoising to
enhance classification performance [35,36]. Most of the existing works usually keep the top
three principal components (especially the first component) of the data and ignore the rest,
as PCA ranks the principal components in descending order in terms of their variance.The
design of a first component reverse (FCR) extraction method is shown in Figure 6.

In our user identification scenario, the first component derived from the received CSI
data of the same finger motion may majorly contain the common features shared among
different users when they are performing the same gestures. As shown in Figure 7a–c,
when three users perform the same gesture digit “8”, the major CSI variance from the
same gesture is quite similar. The major CSI variance is caused by the finger motion. We
recognize the first component of PCA from these similar variances as the common feature.
It is a non-related feature for user identification. Instead, our aim is to extract user-specified
features. After remove the non-related features, the rest variances are influenced by diverse
body structures, environmental factors, and other sources of noise. Although non-related
features may aid in recognize the defined finger gestures across different people, they can
adversely impact user identification. We aspire to incorporate more user-specific features
for accurate identification. As shown in Figure 7, the CSI result of three different users
are Figure 7a, 7b and 7c, respectively. All three users are writing the digit “8” freely.
Figure 7d–f are the corresponding CSI by applying FCR extraction. The first component of
different users is almost similar to each other. Upon removing these similar components,
user-specific features become more pronounced. Therefore, in our design, we remove the
principal component to effectively reduce the impact of such non-related features, and
extract the characteristic of personal information (i.e., user-specified features) accordingly.
This methodology aids in identifying different users by filtering out interference from
non-related features without sacrificing personalized information.

Figure 6. Architecture of FCR extraction.

(a) (b) (c)

(d) (e) (f)

Figure 7. When three different users perform same gesture (digit “8”), the comparison of CSI
amplitude before and after FCR extraction. (a) User 1 (before FCR extraction). (b) User 2 (before FCR
extraction). (c) User 3 (before FCR extraction). (d) User 1 (after FCR extraction). (e) User 2 (after FCR
extraction). (f) User 3 (after FCR extraction).
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Applying the FCR extraction algorithm, we will have a coefficient matrix [W1,W2, . . . ,Wn].
We remove the first component to enhance the performance of one-shot learning for
user identification

X = XIMF − XIMF ×W1 (5)

where W1 is the coefficient of first component and XIMF is the IMF component of CSI.

3.7. Interference-Based Velocity Distribution Profiling

In observational experiments, we notice that users exhibit brief pause intervals during
gesture execution, causing fluctuations in instance motion velocity. Each user possesses
a unique instance velocity profile due to his/her inherent writing behavior. We calculate
the user velocity profile based on the xIMFn by analyzing the interference pattern. It’s been
observed that when a target user moves his/her finger across from the boundary of an
interference fringe to the middle part of the neighbour interference fringe, a maximum
value Amax

i and a minimum value Amin
i of the CSI amplitude occur in corresponding CSI

time series, as shown in Figure 5d. For two neighboring extreme values, we derive the
width of the fringe Δdist which is calculated by Equation (2). Hence, the instantaneous
velocity is

v(inst)(t) =
Δdist

Δt
(6)

where Δt is decided by the sampling rate.
For each receiver, we segment the signal with a small time window winl , and calculate

the velocity profile by the interference fringes. The two velocity profiles from two receivers
RX1 and RX2 can be identified as the horizontal velocity profile V(vx) and vertical velocity
profile V(vy), because in the MeshID system, receivers are perpendicular to each other. For
each time window, we search for the extreme values of the one-dimensional IMF time series
to identify the corresponding fringe boundaries, and use them to derive the instantaneous
velocity V(vx, vy). A two-dimensional VDP matrix VDP[M × N] with size [M × N] by
quantizing the discrete instantaneous velocity from horizontal and vertical directions. The
VDP combines the velocity distribution of the two velocity profiles. VDP can effectively
extracts the real-world features of the users since it reflects real-world movements. On one
hand, when a user performs the same gestures at different movements with fixed antennas
but different movements, the corresponding VDPs are similar to each other. On the other
hand, as Figure 2 shows, VDP is different from user to user.

3.8. CBAM-Based Siamese Network

In order to facilitate efficient model retraining for addressing user heterogeneity, we
leverage the Siamese neural network for few-shot learning in user identification. It aims
to train only few data from unseen users, requiring less model retraining preparation to
achieve satisfactory performance. Additionally, the few-shot learning takes advantage
from features of previously learned VDP samples, showcasing its capability to identify new
individuals with reduced effort. As shown in Figure 8, our proposed model comprises two
twin networks that share same parameters and weights.

The purpose of the Siamese network is to minimize the pairwise distances between
personal drawing features from the same people and maximize the distances of features
from different people. The process can be illustrated as follows:

δ(X(i),X(j)) =

{
min‖F(X(i))−F(X(j))‖, U(i) =U(j)

max‖F(X(i))−F(X(j))‖, U(i) �=U(j)
(7)

where F is a non-linear transform based on a twin network.
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Figure 8. Few-shot learning overview.

Particularly, we adopt the Convolutional Block Attention Module (CBAM) [37] in
our Siamese network to emphasize extracting informative features along both the channel
and spatial axis. CBAM is an effective attention module for most feed-forward CNN
networks. For a given feature map Υs1, CBAM calculates its channel and spatial weight
matrix sequentially and then refines the feature map based on these two weight matrices.
Specifically, the Siamese network uses the two same networks to extract features, examine
the similarity of the input anchor VDP image and store the VDP image for user identification.
Therefore, though the CBAM-based Siamese network with a learned VDP feature of an
individual, MeshID can authenticate users with a high identification accuracy.

In the training phase, the VDP matrix/spectrogram with size [M × N] triplets (anchor
VDP image, negative VDP image, positive VDP image) are fed into the CBAM-based
Siamese model. The basic idea is that the distance between drawing patterns of the same
person on the same character should be smaller than that between the drawing patterns of
different people. We take combined VDP (i.e., horizontal antenna pair RX1 and vertical
antenna pair RX2) as inputs to each stream (sub-network). The architecture of each sub-
network is mainly divided into three modules.

More specifically, the input VDP matrix/spectrogram will first be processed by a
batch normalization B. Then, the model learns the features from four convolutional layers
C(nc, ks). Here nc is the number of feature maps and ks is the kernel size. We have used
a 3 × 3 kernel size in the convolutional layer with a stride of 1. The stride determines
how many pixels the filter shifts. The depth (number of channels) of the features in each
convolutional layer is shown in Figure 8. The pooling layer is used to reduce the size
of the features. We have employed max-pooling which retains only the maximum value
within a pool. Afterward, the flattening layer is applied, which involves transforming the
two-dimensional matrix into a column matrix (vector). This column vector is then passed
to the fully connected layer. We will use a non-linear ReLU function for activation.

The CNN architecture of sub-network is abbreviated as Υs1 = F1(X): B → C(16) →
P → B → C(32) → P → B → C(64) → P → B → C(128), where P is the max-pooling
layer. We deploy CBAM in the second module F2, which adaptively refines the feature map,
defined as Υs2 = F2(Υs1). Finally, three fully connected layers F3 are applied to encode
the output of CBAM as the feature vector X. A person can be identified by calculating the
pairwise distance with the template in the database.

4. Evaluation

In this section, we begin by outlining our experimental equipment, setup and system
workflow. Subsequently, we present our experimental results and comparison with other
algorithms. Finally, we conduct an assessment of each component of MeshID.
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4.1. Experiment Setup

In principle, our approach is fundamentally applicable to a wide range of RF-based
devices, e.g., WiFi, Universal Software Radio Peripheral (USRP), Bluetooth and RFID. To
flexibly design carrier signals and baseband waveforms, we utilize USRP devices (Ettus
Research, Austin, United States) for system implementation. Specifically, we have two
USRP N210 devices (RX1 and RX2), each equipped with an omnidirectional receiver
antenna. At the same time, we have two NI USRP 2953R devices with two omnidirectional
antenna transmitter pairs. The transmitter sends a simple sinusoidal waveform at a fixed
frequency. The transmitters are connected to the PXI Chassis(Ettus Research, Austin,
United States). All of the devices are synchronized to the CDA-2990 Clock Distribution
Device(Ettus Research, Austin, United States).

To capture two-dimensional CSI variance, we set the two transmitter pairs orthogo-
nally. When performing gestures, the drawing area typically aligns parallel to the user’s
orientation. Therefore, the optimal orientation is that placing two transmitter pairs and two
receivers orthogonally in front of the user so that the finger could cross more double-source
interference fringes. Utilizing only one transmitter pair would render the system sensitive
primarily to motions perpendicular to the transmitter pair.

Specifically, the transmitter pair 1 (TX1) operates at 5.76 GHz is placed horizontally
positioned with a 50 cm apart, while the transmitter pair 2 (TX2) operates at 5.72 GHz is
placed vertically positioned, also with a 50 cm apart, as shown in Figure 9a. The optimal
node distance of a transmitter pair is 50 cm, which will be discussed in later Section 4.2.
The distances between TX1 and RX1, TX2 and RX2 are both 1 m. Since the frequency of the
TX1 pair and TX2 pair have a slight difference, the transmitted signals only interfere with
each other inside each transmitter pair. The devices are shown in Figure 9b. Both receivers
and transmitters are deployed on a customized shelve with an orthogonal setting. Our
algorithms are performed in a DELL server with an i7-6850K 3.6 GHz Processor and 64 G
RAM. The operation system of the server is Windows 10 with 64-bit.

We thoroughly evaluate our prototype across three different indoor environments: a
standard office (3.4 m × 3.8 m), a meeting room (5 m × 7 m), and a hallway (2.8 m × 35 m),
as shown in Figure 10. During data collection, ambient individuals within these environ-
ments were not required to vacate the premises.

(a) (b)

Figure 9. Experimental setup. (a) Setting. (b) Devices.

Our experiments involve the collection of two datasets. During data collection, users
are instructed to freely perform in-air gestures at their desired speed and size. The first
dataset contains 2268 gesture samples (6 users × 3 scenes × 6 gestures × 21 samples). We
select 6 in-air finger gestures from three categories: digits, letters, and symbols for user
identification, as they are the most commonly used in passwords. Specifically, we use “3”
and “6” for digits, “d” and “M” for letters, and “@” and “&” for symbols. The second
dataset serves to evaluate the system. The data is collected from another 18 users. This
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dataset comprises a total of 3600 gestures samples (18 users × 10 gestures × 20 samples).
Users are instructed to perform 10 Arabic numerals “0–9” to further analyze user-to-user
feature variations. Digits are a basic and familiar form of characters for most people. They
are universally understood and accepted across different languages and cultures, making
them accessible to a wide range of users without language barriers. In total, our dataset
comprises 24 users, including 18 males and 6 females with heights ranging from 155 cm to
185 cm and weights ranging from 45 kg to 80 kg. Standard cross-validation techniques are
employed in our evaluation process.

(a) (b) (c)

Figure 10. Three indoor environments. (a) Office. (b) Meeting room. (c) Hallway.

4.2. Impact of Node Distance between Transmitters

In MeshID, the resolution of the signal is determined by the density of the mesh,
which in turn relies on the node distance between each transmitter pair. This subsection
explores the impact of such node distance on the mesh pattern. Since the interference setting
mandates the node distance to be a multiple of the wavelength (approximately 5 cm in our
setup), within the 100 cm × 100 cm area, we varied the node distance from 1 × λ to 10 × λ,
incremented by 5λ. The theoretical interference patterns are illustrated in Figure 11a–c.
The findings indicate a direct proportional relationship between the node distance of each
transmission pair and its density when the radio frequency remains constant. Opting for a
denser mesh pattern necessitates a larger node distance, and vice versa.

(a) (b) (c)

Figure 11. Double−source interference pattern at three different distance of a TX pair. (a) Distance of
a TX pair is λ. (b) Distance of a TX pair is 5 × λ. (c) Distance of a TX pair is 10 × λ.

We employ the first dateset for the subsequent two subsections, where six users are
tasked with performing six gestures across three categories. To be specific, “3” and “6” for
digits, “d” and “M” for digits, and “@” and “&” for symbols. Performance evaluation for
gesture recognition and user identification is conducted using the standard cross-validation
method. Few samples (4 in our model) of the one user are used for retraining and the rest
of the samples from this users are used for testing. The data from another five users are
only used for pretraining).
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The experiments results for three different transmitter node distances (e.g., 30 cm,
50 cm and 70 cm) are shown in Figures 12 and 13. The results demonstrate that using 5 cm
node distance setting achieve the highest average accuracy for both gesture recognition ac-
curacy and user identification. In Figure 12, with the node distance set to 50 cm, the gesture
recognition accuracy of three types of symbols are 93.75%, 95.83% and 93.23%, respectively.
The average accuracy of gesture recognition across the three different transmitter node
distances is 88.19%, 94.27% and 88.72%, respectively. Figure 13 illustrates the impact of
employing three different node distances on user identification. The average accuracy for
user identification in different settings is 91.12%, 95% and 95.13%, respectively. The system
may fail in gesture recognition, but it still possible to identify user successfully. This is
attributed to the fact that although the FCR extraction is trained based on the result of
gesture recognition, but we transformed CSI time series to several components, only few
top components (the first component in our FCR design) is removed. Consequently, user-
specified features for user identification may still be retained. Hence, the user identification
could has better performance than gesture recognition.

Figure 12. Gesture recognition accuracy under different distance of a transmitter pair.

Figure 13. User identification accuracy under different distance of a transmitter pair.

Additionally, the results indicate minor differences between different node distances
in MeshID. Hence, the antennas placement in MeshID is flexible to accommodate various
real-world scenarios with practicability. Considering our scenario is to identify the users
through finger gestures, we need to make sure that the mesh cell size is able to match the
finger width (approximately 2–3 cm) of an average person. Therefore, we default to setting
node distance as 10 × λ (λ = 5 cm) by default in our subsequent experiments.
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4.3. Performance of MeshID

Table 1 presents the results of gesture recognition and user identification across three
different environments, spanning from a compact office space to an expansive hallway.
These assessments utilize the first dataset and adhere to the standard cross-validation pro-
cedure. Results reveal that the gesture recognition accuracy of MeshID achieves 94.27% in
an office, 94.1% in a meeting room and 93.4% in a hallway. Notably, since the differences of
the results across these environments are minor, MeshID is able to achieve a fair robustness
in adapting to diverse indoor settings. MeshID attains identification accuracy of 94.3% in an
office, 95.03% in a meeting room and 97.1% in a hallway, respectively. Notably, the highest
identification accuracy is recorded in the hallway environment, attributed to the minimal
presence of multipath effects. On average, MeshID system achieves an identification accu-
racy of 95.48%. According to the results, the identification accuracy on average of three
gesture categories is 95.25% for digits, 95.52% for letters, and 95.67% for symbols. It can be
observed that all types of gestures perform well in three indoor environments. Delving
into specific gestures, the average accuracy of gesture “3” is 93.3%, gesture “6” is 97.2%,
gesture “d” is 97.5%, gesture “M” is 93.5%, gesture “@” is 99.1% and gesture “&” is 92.2%.
Digits are universally understood and accepted across different languages and cultures,
making them accessible to a wide range of users without language barriers. Therefore,
to make the evaluation more general, we choose digits as the identification gestures for the
following experiments.

Table 1. MeshID performance in different environments.

Recognition Gesture Office Meeting Room Hallway

Gesture Recognition
Digits 93.8% 95.8% 93.2%
Letters 96.9% 92.2% 93.2%

Symbols 93.2% 94.8% 92.2%

User Identification
Digits 92.9% 97.4% 95.5%
Letters 90.9% 97% 98.8%

Symbols 99.2% 90.8% 97.1%

4.4. Performance of User Identification

To further investigate the performance of our user identification system, we employ
a larger second dataset for subsequent evaluations. 18 users are asked to perform the
same finger gestures 20 times. Data from the remaining 6 users are only used for intrude
detection in later. Other 12 users are evaluated using the standard cross-validation method.
Without loss of generality, we test digital numbers (“0” to “9”) 20 times for each user.
Consistency was maintained in the stroke order for each digit, with users instructed
to write the digits in a clockwise manner (e.g., writing digit “0” clockwise). The user
identification results are shown in Figure 14. The average identification accuracy across
the 10 gestures stands at 93.19%. With the exception of digit “1”, the accuracy of all other
digits exceeds 84%. Specifically, four digits demonstrate outstanding accuracy: 98.9% for
digit “0”, 96.3% for digit “4”, 96.8% for digit “5”, and 98.4% for digit “8”. Conversely,
the identification accuracy for finger gesture "1" and "9" is comparatively lower than others.
This discrepancy could be attributed to the simplicity of the strokes for “1” and “9”, where
different users might not exhibit significant variations in their finger gestures. Conversely,
for the remaining finger gestures, we observe a notably high identification accuracy.

To further evaluate the security level of the system, we conducted an intrusion de-
tection scenario where we enlist 6 unseen users to act as spoofers. These 6 spoofers are
replicate the gestures of target users in an attempt to bypass the user identification process.
We employ the true negative value to measures the probability that MeshID correctly
identifies an unauthorized user. The results, presented in Table 2, reveal a detection accu-
racy exceeding 80% for all 6 spoofers, with four of the six users achieving approximately
90%. While our primary focus lies on user identification rather than binary classification,
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the framework of MeshID could still achieves an overall detection accuracy of 91.7% with
no prior information of the testing environments.

Figure 14. Comparison of key components.

Table 2. Detection accuracy of spoofer.

Spoofer s1 s2 s3 s4 s5 s6 Avg

Detection accuracy 95% 95% 85% 100% 80% 95% 91.7%

4.5. Impact of Signal Interference

As mentioned in Section 3, we have learned in theory why signal interference can
improve the sensing sensitivity. To further understand how the signal interference affects
the performance, we conducted a comparative analysis of experimental results using
spectrograms based on our double-source interference setting and the traditional single-
source setup. We transform the CSI signals obtained from both settings to Continuous
Wavelet Transform (CWT) spectrograms. Since the VDPs serve as a unique feature based
on interference patterns, we opted for the more commonly used CWT for the comparison.

In single-source experiments, only one ominidirectional antenna is connected to a
transmitter, resulting in no signal interference within the finger movement area, in contrast
to the double-source setup. In double-source interference scenario, two ominidirectional
antennas, referred to as an antenna pair, are connected to a transmitter. Both antennas
operate under the same transmission settings, including frequency. Data from 10 users of
second dataset are used in this experiment. The other setting remains consistent with those
previously introduced.

Figure 15 illustrates the Cumulative Distribution Function (CDF) of the identification
error rate with interference and without interference. We can see that the average accuracy
of double-source interference setting significantly surpasses that of the single-source setup.
Specifically, the inclusion of interference in the signal enhances the system’s identification
accuracy by 28.3% compared to scenarios without interference. Therefore, double-source
interference setup creates a fine-grained signal mesh within the designated area, leading to
high user identification accuracy.

154



Sensors 2024, 24, 1978

Figure 15. CDFs of MIMO and MeshID.

4.6. Impact of Ambient People Moving

In a typical public room, it is a common condition that other people may dynamically
move around when the user is performing finger gestures. Since the wireless signal
is sensitive to ambient environment changes, ambient people moving may easily affect
the CSI variances, which may have a side effect on user identification. We study the
performance of MeshID under the impact of ambient people moving. Figure 16 showcases
identification results when a single gesture is performed while an individual moves within
a 3-m range. Similarly, Figure 17 depicts results when two consecutive gestures are executed
amidst ambient movement. The presence of ambient movement causes a slight decrease
in identification error rates, which remain within acceptable bounds for most scenarios.
Furthermore, increasing the number of finger gestures performed by the user enhances
identification accuracy. This result demonstrates that MeshID is performed as robust to
the impact of ambient people moving. Theoretically, the proposed interference wave,
comprising a superposition of two waveforms with same frequency, results in stronger CSI
variances, facilitating more resilient feature extraction for user identification compared to
traditional single-wave setups. Consequently, MeshID effectively mitigates the adverse
effects of ambient movement, enhancing overall robustness.

Figure 16. User identification error rate of user performing one gesture when ambient people
walk around.
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Figure 17. User identification error rate of user performing two sequential gestures when ambient
people walk around.

4.7. Performance of FCR Extraction and CBAM

FCR extraction and the CBAM Module are two key components of MeshID. The former
removes the non-related features from the input feature space, while the latter extracts
features from both channel and spatial axes and focuses on the places with more important
information. In order to investigate how these two components affect the performance, we
compare our algorithm with a traditional CNN and test the impact of each component.

As shown in Figure 14, employing only the basic CNN yields an average accuracy of
83.2%. Introducing the PCA reverse extraction algorithm enhances the average accuracy
to 86.8%, surpassing the basic CNN by 3.6%. Furthermore, integrating both the PCA
reverse extraction algorithm and the CBAM Module elevates the average accuracy to 93.5%,
marking a 6.7% improvement. Therefore, both components significantly contribute to
enhancing user identification accuracy.

4.8. Comparison with Baseline Approaches

MeshID could be a more robust and flexible extended authentication component in
existing recognition systems. We evaluated our system on user identification by comparing
it with two alternative state-of-the-art approaches, FingerPass [38] and FreeAuth [18]. Both
of them are leveraging wireless information for user authentication. Specifically, FingerPass
utilizes segmented CSI time series as learning features and adopts the LSTM-based DNN
model. FreeAuth proposes a CNN-based method for extracting CSI features. FreeAuth
applies a Recurrent Neural Network (RNN) model to extract users’ gesture characteristics
and maximize the individual uniqueness characterized by a Gaussian Mixture Model
(GMM). To control the variable, the training and evaluation process for the baselines follow
the same rules of MeshID (e.g., the number of training epoch). We utilize the same dataset,
which is our first dataset, for training and evaluation purposes. The comparison results of
user identification are summarized in Table 3. Both MeshID and FreeAuth exhibit superior
identification results, achieving over 90% accuracy, compared to FingerPass when tested
with seven users.

Table 3. Method Comparison with Different User Number.

User Number
System

FingerPass FreeAuth MeshID

7 users 83.6% 93.93% 97.4%
8 users 78% 87.24% 96.5%
9 users 76.8% 70.76% 95.3%

10 users 71.1% 68.69% 94.7%
11 users 62.6% 67.0% 94%
12 users 60.9% 66.3% 93.4%
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To ascertain the relationship between system performance and the number of users,
we evaluated the three systems with varying numbers of users, ranging from 7 to 12.
FingerPass and FreeAuth experience a significant degradation in identification accuracy
as the number of users increases. However, our system maintains an average identification
accuracy of over 90% for up to 12 users. MeshID achieves better overall performance
than the other two approaches, specifically, outperforming FingerPass by about 6% and
FreeAuth by nearly 30% with up to 12 users. We noticed that emphasizing user-specified
features can mitigate the side effect of the same gesture, and improve the robustness of the
system with a larger user number.

It satisfies the demands of most families and some small groups. The performance
of MeshID keeps consistency as the number of users increases from 7 to 12. In reality, the
challenge of user heterogeneity increases significantly with a large number of users (e.g.,
thousands of users). However, collecting and labeling finger gestures from such a massive
user pool for evaluation purposes poses considerable‘difficulties.

5. Discussion

Impact of user height. Different user height may impact the identification accuracy. To
investigate the relationship between identification accuracy and user height, we analyzed
the height distribution of users. As the statistical result shows in Figure 18, shorter users
tend to achieve higher identification accuracy. The height distribution, ranging from 155 cm
to 185 cm, is represented on the left axis. In our experiments, we fixed antenna pairs at
relatively low positions to accommodate users of different heights. Consequently, taller
users may experience more reflected signals from lower parts of their body, such as the chest.
Despite this challenge, MeshID maintains a high capability of identification, as gesture
pattern retain their uniqueness with interference settings. However, it’s worth noting that
antenna height adjustments can be made to suit different scenarios.

Impact of user weight. The weight of the users varies from 45 kg to 80 kg. The right
axis in Figure 18 represents the weight of the user. The figure shows that the identification
decrease is not caused primarily by user weight. Although some of the statistical values
show that identification accuracy is better when user has lower weight. That is because
user who is shorter usually has lower weight. To delve deeper into this relationship, we
conducted a focused analysis on data from users within the same height range. Surprisingly,
our findings reveal no discernible pattern in the distribution of identification accuracy,
indicating that weight alone does not dictate accuracy levels.

Figure 18. Statistics of users.

Impact of motion speed. In our experiments, users are free to perform gestures
de-pending on their habits. Different motion speeds may result in different sample
lengths.However, RF devices usually have a related high sampling rate (e.g., more than
250 Hz), hence the sampling interval is less than 0.004 s. It is short enough to capture
the normal motion finger. The sampling rate of USRP is much higher; it could be up to
200 MHz. In our setup, the signal sampling rate is 651 Hz, It is adequate for different
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motion speed samples. There-fore, the motion speed is not the significant factor that affects
the identification accuracy.

Impact of different environments. The multipath effect is a phenomenon prevalent in
radio frequency applications where signals travel multiple paths from transmitter, encoun-
tering reflections, diffraction, and scattering off objects and surfaces in the environment.
Consequently, the receiver detects various versions of the transmitted signal, each arriving
at slightly different times and exhibiting diverse amplitudes and phases. In principle, RF
systems in outdoor environments usually perform better than indoor. Since in indoor envi-
ronments, with numerous reflective surfaces and obstacles, the multipath effect becomes
particularly pronounced, leading to signal degradation and complicating signal processing.
We conducts MeshID in three environments: an office, a meeting room and a hallway.
According to the identification results, which are 94.3% in the office, 95.03% in the meeting
room and 97.1% in the hallway. These outcomes suggest that reduced multipath effects
likely contribute to the system’s enhanced performance.

Latency. It takes about 1 s to 30 s to perform a gesture in our evaluation. This timeframe
is sufficient to satisfy most users, including those with physical limitations who can only
draw gestures slowly. We also implement MeshID on a desktop with 12th Gen Intel(R)
Core(TM) i3-12100F 3.30 GHz. The time consumption of MeshID mainly comes from the
noise removal module and the data transformation module. It demands, on average, 1.743 s
to identify the user when eight users are in the database after segmenting the gesture. We
believe it is adequate for the majority of identification application scenarios for users.

From the results, it is convincing that the proposed mesh and one-shot DL approach
can address the challenge of user heterogeneity, enabling MeshID with high robustness.

6. Related Work

6.1. Behavioral Identification

Behavioral identification as a subset of biometric authentication has been well pro-
posed using a range of sensing technologies. Vision technology [39,40] can identify dif-
ferent users through physical activity characteristics captured from image frames using
high-resolution cameras, but it may easily fail in the conditions of luminous changes
and obstacles placed in line-of-sight (LoS) [4], in particular raising severe user privacy
concerns. Bioelectrical technology [41–44] can utilize bioelectrical sensors, e.g., electrocar-
diogram (ECG), electromyogram (EMG) and electroencephalogram (EEG), to precisely
extract unique biomedical information through body’s electrical activities. Ashraf et al. [45]
propose a fusion system that uses biometric features of the iris and foot. It achieves a very
high accuracy of 98%. Ref. [46] utilizes the phase transform method and Fourier decom-
position method to identify individual ECG features. Since these sensors are required to
be attached carefully to the user’s body, such wearable requirements may compromise
user experience, leading to inconvenience in reality [47]. In contrast, since our identifica-
tion system is essentially developed by RF technology, MeshID can enable user-friendly
device-free identification with the advantages of being illumination-free and having fewer
privacy concerns.

6.2. RF-Based Behavioral Identification

Existing works focus on different individual behavioral characteristics [10,15], e.g.,
daily activities, walking gaits, vital signs, and gestures. For gait-based identification,
WiWho [48] uses commercial WiFi devices to verify a small group of users using walking
gaits. WiFi ID [49] explores the relationship between the feature pattern of subcarrier-
amplitude frequency (SAF) based on WiFi CSI and individual walking style, and employs
a linear-kernel support vector machine (SVM) to identify users. For daily activity-based
identification, E-eye [50] proposes to identify users using the WiFi CSI profiles caused by
the activities across the home on a mobile device, while Au-Id [5] uses the reflected RFID
signal of users’ activities for identification. Since these works usually require a long-term
user activity tracking, the real-world applications still remain limited. Besides, a numbers
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of works propose to enable gait-based identification. Shi et al. [51] extract WiFi features
of walking and stationary activities for human authentication. RFree-ID [52] identified
human targets based on walking gait by using a phase matrix from tag array. Due to
the large range of gait motion, these works may be strongly vulnerable to the impact of
ambient environments. Similarly, some works demonstrate vital sign based identification to
estimate users’ heartbeat rate [16,53,54] and respiratory biometrics [17,55] from RF signals,
but the identification may practically fail as the motion of vital signs remains brittle to body
movement artifacts and ambient noises. Since performing gestures is user-friendly in a
small motion area, gestures-based identification is promising to have much less impact
on ambient noises. WiHF [19] is proposed to recognize gestures using WiFi signals for
enabling user identification, but the proposed gestures still remain as a large range of arm
motions, resulting in much less user-friendliness compared to using in-air finger gestures.
FingerPass [38] proposes to identify users through finger gestures with fair accuracy, but the
identification performance may still be subject to the issue of low RF signal resolution due
to using a traditional RF setup. Unlike these two works, MeshID leverages on the effects of
orthogonal signal interference and an attention-based siamese network to fundamentally
improve the signal resolution and model retraining, achieving high identification accuracy
and robustness.

7. Conclusions and Future Work

This paper presents a novel RF-based user identification scheme that leverages on
the proposed mesh and few-shot deep learning approaches to enable highly accurate
user identification through finger gestures. MeshID can essentially promote the sensing
sensitivity on RF signal to extract sufficient individual biometrics from the movements
of finger gestures, accurately identifying different users even in a complex environment.
Also, MeshID is able to efficiently retrain the model to ensure high robustness, adapting
to an unseen user with little data. In practice, MeshID as an appealing add-on can be
easily integrated into existing RF-based gesture recognition systems at low cost. To further
investigate the robustness of MeshID, we plan to test our approaches on existing large
finger gesture datasets, and develop MeshID for efficient integration with existing RF-based
gesture recognition systems. Other methods [56] such as SVM, Logistic Regression and
Random Forest will be considered as the improving module in our system. Also, we plan
to further evaluate the robustness of our prototype in more real-world scenarios in our
future work.
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Abstract: In factories, energy conservation is a crucial issue. The co-fabrication space is a modern-day
equivalent of a new factory type, and it makes use of Internet of Things (IoT) devices, such as sensors,
software, and online connectivity, to keep track of various building features, analyze data, and
produce reports on usage patterns and trends that can be used to improve building operations and
the environment. The co-fabrication user requires dynamic and flexible space, which is different from
the conventional user’s usage. Because the user composition in a co-fabrication space is dynamic and
unstable, we cannot use the conventional approach to assess their usage and rentals. Prototyping
necessitates a specifically designed energy-saving strategy. The research uses a “seeing–moving–
seeing” design thinking framework, which enables designers to more easily convey their ideas to
others through direct observation of the outcomes of their intuitive designs and the representation of
their works through design media. The three components of human behavior, physical manufacture,
and digital interaction are primarily the focus of this work. The computing system that connects the
physical machine is created through communication between the designer and the digital interface,
giving the designer control over the physical machine. It is an interactive fabrication process formed
by behavior. The Sensible Energy System+ is an interactive fabrication process of virtual and real
coexistence created by combining the already-existing technology, the prototype fabrication machine,
and SENS. This process analyzes each step of the fabrication process and energy, fits it into the
computing system mode to control the prototype fabrication machine, and reduces the problem
between virtual and physical fabrication and energy consumption.

Keywords: internet of things; prototyping process; energy-saving; interactive design; user behaviors;
ambient agents

1. Introduction

1.1. Background

With the introduction of technology and software-based services, much research has been
done to create smart environments that allow for seamless interaction between users and their
immediate surroundings [1]. The focus of smart home/environment architecture is to develop
practical collaboration between users and devices to optimize use and improve the quality
of experiences and services [2]. The primary goal of a smart environment is to enable users
to easily control and regulate appliances with the use of IoT-enabled sensors [3–6], therefore
enhancing energy efficiency and reducing wastage.

In factory settings, especially in co-fabrication spaces, energy conservation by human
activities is a crucial issue. As identified by the editorial of Volume 1 of this Special Issue [7],
how advanced sensors can be integrated from the smart environment with human activity
recognition and how one can be further connected to the energy consumed by these human
activities provide a way to allow users to be aware of the consequence of their activities
and further change these activities for the sake of energy conservation.
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Co-fabrication spaces can monitor various building features, such as sensors, software,
and online connectivity, analyze data, and generate information on usage patterns and
trends that can be used to optimize the environment and building operations [8–12]. It is
important to note that co-fabrication users have different needs compared to typical users,
as they require dynamic and flexible spaces. Since co-fabrication spaces have a high level
of user turnover, the common methods for evaluating usage and rent are not suitable. As a
result, prototyping requires a specifically designed energy-saving strategy.

In co-fabrication spaces, rapid prototyping is critical during the user’s prototyping
process, as it involves high energy consumption stages. During the prototyping process,
the user typically works independently and attempts to solve practical problems or refine
designs through a trial-and-error process. The emergence of rapid prototyping has lowered
the fabrication threshold and increased the production of innovative designs, while also
providing feedback on machined parts based on knowledge of the actual fabrication
process [13,14].

Presently, many fabricators, designers, and researchers use digital devices, content,
teaching guidelines, and even videos to learn, understand, and obtain information about
prototyping to reduce the threshold for contact [15–18]. However, there are hidden technical
operation issues and professional divisions of labor in the fabrication process that force
designers to hand over design drawings to other professionals. This not only increases
the design threshold and energy consumption but also causes the designer to spend more
time consulting professionals and waiting for fabrication, while preventing the creation of
different methods and allowing other experts to intervene in the design.

Collective data fusion approaches are critical in improving the efficiency and effective-
ness of design processes that involve multiple disciplines. Such approaches can help in
implementing experimental interactive installations and using innovative design methods.
Traditional processes can be time-consuming and inefficient and require tailor-made con-
struction processes for fabrication and assembly to test proposed prototypes. One example
of a collective data fusion approach is the System of Design–Fabrication–Assembly (ViDA).
This approach facilitates co-fabrication, cooperation, and information transmission. The
ViDA system provides a platform for designers, engineers, and builders to share data and
collaborate on projects, improving the efficiency of the design process. Another approach is
the use of the Internet of Things (IoT) to collect data on building operations. Although this
approach may not necessarily lead to behavior change, it can help to collect data on the
building’s energy consumption, air quality, and other environmental factors. These data
can be used to identify areas for improvement and optimize building operations. To im-
prove the accuracy of sensing and help users manage the process between virtual data
and physical environments, a proposed control mechanism called the human behavior
sensor can be used. This mechanism uses gestures, behaviors, and interfaces to enhance
the precision of the fabrication process and provide a smooth user experience. The use of
a camera on another manipulator can allow for viewpoints to be executed at appropriate
times during a task, ensuring that there is always a robust view suitable for monitoring
the task. Collective data fusion can enable more efficient and effective design processes by
incorporating these approaches. The integration of various design tools, technologies, and
disciplines can enable designers to create innovative solutions that are more efficient and
effective than traditional approaches.

1.2. Motivation and Approach

The purpose of this study is to integrate the Design–Fabrication–Assembly (DFA)
architecture with the real-time interface and smart energy information in the digital twin.
The motivation for the project is to improve the usage rate of the facilities of the co-
fabrication space, to reduce unnecessary prototyping for users, and to maximize the use
of dynamic energy for power consumption. The advantage of the DFA approach is that it
can improve the fabrication and design process. DFA is mainly used for new innovative
designs, and there is no practical example yet. Many applications in the materials or
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assembly are unknown, and design and manufacture need to take into account how the
finished product will be assembled, and the process requires constant trial and error. The
digital twin is a way to connect the virtual model and the physical, finished prototype. If
the virtual and physical model can be integrated into a digital interface for designers to
interact with, the problem of an digital communication medium in DFA can be solved,
and the final prototype can be shown in advance in real time and can be used in a variety
of materials.

Through further discussion, the development and problems in the three directions
of human behaviors, digital system energy integration, and co-existing fabrication can be
understood. The designer interacts with the transmission of digital information, energy
consumption forecast, and physical fabrication through behavior, which can be embedded
in the process of fabrication systems. Through the interaction of the above three directions
and integrating the co-existing fabrication system for a smart DFA environment based on
energy fusion information, a tool that supports designers, manufacturers, and assemblers
in digital fabrication behaviors through virtual–physical integration technology can be
created. In this project, it was hypothesized that every user could have an agent system,
and the agent could change the effect of the device according to the user’s actions. Users
do not have static identities and have multiple uses. Its behavior cannot be calculated
using a single ID. Dynamic calculation and analysis are required. In this way, the user
can understand not only her consumption and daily behavior, but also her investment in
generated energy to improve the user experience. The tool system will provide construction
method suggestions for users in the digital fabrication process to modify and manufacture
in real time, and perform an interactive fabrication process of coexistence of virtual and real
through the interactive interface combined with the real-time information of the system to
solve (1) the designer’s concern about fabrication differences in understanding, (2) physical
objects that can be augmented with virtual information, (3) problems with assemblers
during component assembly, and (4) energy consumption alert and representation.

2. Related Research

2.1. Virtual Environment Energy with the Co-Fabrication Space

Smart environments connect computers and other smart devices to everyday settings
and tasks, extending pervasive computing and promoting the idea of a world connected to
sensors and computers [19]. These sensors and computers are integrated with everyday
objects in people’s lives and are connected through networks. Human activity recogni-
tion (HAR) is the process of interpreting human motion using computer and machine
vision technology. Human motion can be interpreted as activities, gestures, or behaviors,
which are recorded by sensors. The movement data are then translated into action com-
mands for computers to execute, and human activity recognition code is an important
and effective tool [20–22]. The composition of co-fabrication spaces requires smart sensors
and apps to create opportunities for more in-depth environmental monitoring compared
to formal monitoring networks and to involve the public in environmental monitoring
through participatory data collection and monitoring systems [23].

As electronic devices and their applications continue to grow [24], advances in ar-
tificial intelligence (AI) have also greatly improved the ability to extract deeply hidden
information for accurate detection and interpretation. Additionally, current architectures
must accommodate the number of devices dynamically available in the smart environment
and the high degree of data heterogeneity to match the complexity of human activity. A key
feature expected of backbones connecting smart environments is reliable communication
that ensures lossless and low-latency data transmission over the network. Another aspect
is to monitor the state of smart devices, handle error cases, and reallocate resources to
maintain overall system performance [25,26].

Therefore, HAR proposed in this research contains three major technologies: (1) smart
devices [24,26] for human interface and data collectors, (2) an agent-based system (an
acting role model for its dynamic role model features [27,28]) as the software framework
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for communication and coordination among smart devices, and (3) Internet of Things (IoT)
technology [29,30] for a hardware framework to collect signals from the physical environ-
ment and fabrication devices.

The Sensible Energy System (SENS) [30] configures an agent communication frame-
work, which includes Human Agents, Devices, Local Servers, Consumption Managers,
Communication Protocols, Location Servers, Power Switches, and Cloud Servers. Ev-
ery user is a human agent, and a human agent uses a device in physical space. Once the
local server receives the user’s information, it interacts with other agents in the system
environment through its sensor module, execution module, and communication module.
Building upon the existing work in the attribute-based access control model, it is possible
to capture the physical context through sensed data (attributes) and perform dynamic
reasoning over these attributes and context-driven policies using technology to execute
access control decisions. By leveraging the existing structure, it becomes easier to access
and capture user data.

Mixed reality (MR) not only occurs in the physical world or virtual world, but it also
includes augmented reality technology that combines reality, and VR real-time interaction
technology [8,31]. We can use an agent to describe event simulations in combination with
physical objects placed in a virtual environment. Users in different roles can manipulate
physical objects as physical counterparts to different machines and equipment in virtual
space in real time. The system will visualize engineered factories, data, and behaviors
and perform further analysis. This method combines dynamic discrete-event simulation
seamlessly connected to physical objects placed in the virtual environment to enable co-
design. The bridge between simulation and physical objects is made through a digital
integration platform. Using physical artifacts as counterparts to the simulation’s virtual
objects, participants can safely interact with the simulation regardless of their skill or ability.
This design provides a framework by which many participants can engage in the process,
experiment with the concept (Figure 1), and immediately respond to the adaptation of
interactive surfaces.
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Figure 1. The concept of the user behavior dataflow in the SENS virtual environment [30].

2.2. Sensing the Physical Environment with the Smart Factory

The integration of technology and intelligent services is essential for most ubiquitous
intelligent automation systems, especially those that require agile situational management,
such as smart homes. Smart environments (SEs) evolve from ubiquitous computing follow-
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ing the idea that a physical world is richly and invisibly interwoven with sensors, actuators,
displays, and computational elements, embedded seamlessly in the everyday objects of our
lives, which are emotional and connected through a continuous network [19,32]. A smart
environment provides a large amount of data because it consists of multiple heterogeneous
sensors placed throughout the environment. A scalable and flexible platform integrates
such devices and provides applications with the necessary interfaces to interact with infor-
mation from available resources. Therefore, current architectures must accommodate the
number of devices dynamically available on the smart environment and the high degree of
data heterogeneity. A key feature expected of backbones connecting smart environments is
reliable communication that ensures lossless and low-latency data transmission over the
network. Another aspect is to monitor the state of smart devices, handle error cases, and
reallocate resources to maintain overall system performance [25,26].

In the co-fabrication space, rapid prototyping is critical in the prototyping process of the
user, and it is the stage that consumes the most energy. In the prototyping process, the user
mainly works by himself and through practical problem-solving or design experimentation to
find solutions. The emergence of rapid prototyping not only decreases the original fabrication
threshold but also increases innovative design production. Presently, many manufacturers,
designers, and researchers use digital devices, content, teaching guidelines, and even videos
to learn, understand, and obtain information for prototyping to decrease the threshold of
contact. However, there are some hidden technical operation issues and the professional
division of work in the fabrication process that forces the designer to hand over the design
drawings to other professionals to complete. When the fabrication process is divided, it not
only increases the design threshold and energy consumption but also prevents the creation of
different methods and allows other experts to intervene in the design.

Every design is a unique and innovative structure that affects the prototyping pro-
cess’s results. Therefore, the concept of customized small-batch production has become
popular. Such development not only allows designers to create many different unique
and special designs but also enables designers to undergo continuous trial and error and
adjust processes, improving the realization of their ideas. If we can structure the trial–error
process and anticipate possible problems in advance, it will reduce the number of attempts
by designers to make mistakes. Among others, such a concept can be explored through
the proposed DFA framework (Figure 2). DFA is a collective method that systematically
maps out the prototyping process of an interactive interface in three stages: (1) the design
stage, in which a device prototype is designed, (2) the fabrication stage, in which device
components are tested and produced, and (3) the assembly stage, in which the components
are assembled and tested [33]. To assist designers in reviewing designs and presenting
more specific design concepts, 3D technology has further developed Augmented Reality
(AR), Virtual Reality (VR), and Mixed Reality (MR). It is a simulation of 3D sketches on
the computer, which allows designers to preview the real size, position, and angle of
the virtual model. MR is the integration of both real and virtual worlds to generate new
environments and visualizations in which physical and digital objects coexist and interact
instantly [34–36].
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Figure 2. The Design–Fabrication–Assembly (DFA) process.
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2.3. Human Interaction and Behaviors with the Co-Fabrication Space

The presence of human beings in various processes introduces a problem as they
cause a source of disturbance and unpredictability in the form of performance variation.
In the traditional digital fabrication process, designers ignore differences in the fabrication
process due to unfamiliarity with the workmanship during the design-to-assembly process.
In the process of making prototypes, the effect of different methods on different materials
and the differences between various materials will affect the result of the actual work.
Despite humans’ natural ability to be flexible, their presence still serves as a disturbance
within the system. This makes modeling and optimization of these systems considerably
more challenging and, in some cases, even impossible. The most common scenario is that
the machine is unable to produce the design components, resulting in repeated errors.
To enable many ideas in the larger intelligent manufacturing paradigm to be realized, it is
crucial to overcome the significant challenge of improving the ability of robotic operators
to adapt their behavior to variations in human task performance [37]. ViDA is part of the
refinement in the co-fabrication space problem encountered and revolves around the DFA
model [38]. The system suggests methods for the model, such as grouping components,
wiring groups, and setting sensor positions. It generates several fabrication documents
and assigns them to several different machines through different file types to let the user
finish this document. Finally, when the fabrication documents are completed and enter
the assembly stage, the assembler (Figure 3) comes into play. By the same token, the
Co-Existing Fabrication System (CoFabs) [39] aims to enable the cyber-physical integrated
system to extend the rapid prototyping application to other fabrication processes and show
information on the MR device.

Interface Setting

Virtual Design Models Equipment Models Product Models Diagnosis Models

Product Prototype Physical Equipment Fabricated Product Finished Product

Process

Physical

Component Setting Fabrication Finish

Output

Input

Seeing

Tool

Seeing

Tool

Seeing

Tool

Visual

Control

Visual

Control

Seeing

Tool

Visual

Control

Visual

Control

Repair 

Product

Figure 3. The concept of the visualization system of the DFA (ViDA) process.

AR and MR are rapidly growing in popularity as mainstream technologies that can be
used to develop intelligent settings that combine the physical world and virtual items, provid-
ing new options for supporting both solitary and group human activities. Augmented reality
refers to a medium in which digital information is added or superimposed onto the real world
in accordance with the world itself and shown to a user depending on their position and per-
spective [40]. In an interactive simulation, human behavior is used as the basis for interaction,
rather than deliberate interaction, allowing users to further integrate into the experience and
enhance the immersion of the interaction through a variety of different behaviors, as well as
by performing system functions in a wearable manner [41–45].

To allow the maker to program and operate the fabrication tool more quickly and
intuitively, a simple operation is accompanied by complex programming, forming the
interaction between the human and the fabrication tool. The MR environment is a way to
decrease the designer’s fabrication threshold, as the designer can immerse themselves in
the MR environment, interact with virtual objects with direct gestures, and even introduce
existing physical objects into their designs. The concept of ViDA [38,39] is currently a
system operating on the common design software named Rhino [46]. The system can pro-
vide dynamic simulation, physical, structural, and environmental analysis, microcontroller
programming, and fabrication tool programming, calculate and coordinate component
numbers, component attributes, and binding numbers through imported geometric models,
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and split the prototype structure to generate corresponding mechanisms and component
assembly maps. However, it can be hard to imagine the size and effect of the design on a
computer screen. Thus, the ViDA system disassembles the design process and generates
different stage-specific documents to help different users join the project. When making pro-
totypes, common 3D modeling systems give designers operational control over prototype
size and assembly. Fabrication documents, such as assembly sequence, component number,
and sensor location maps, provide construction method suggestions in the prototyping
process, improving the quality of the prototype. Such technology can make the self-created
achieve an immersive effect.

3. Co-Existing Space for the Smart Factory

The aim of this project is to help users manage their activities and identify potential
sources of energy consumption based on their choices, activities, and behaviors. Al-
though there are many ways to track user activity and display energy information, they
are limited in their effectiveness in changing user behavior and providing visualizations in
a timely manner. The co-existing fabrication system for a smart DFA environment based
on energy fusion information proposes new avenues for the design and interaction for a
smart environment system that optimizes energy recommendations. With this in mind, the
following design criteria are proposed for the development of the SENS+ system.

Recognition of human behaviors: The designer interacts with the transmission of
digital information, energy consumption forecast, and physical fabrication through behav-
ior, which can be embedded in the process of fabrication systems. Through the interaction
of the above three directions and the integration of the co-existing fabrication system for a
smart DFA environment based on energy fusion information, a tool that supports designers,
manufacturers, and assemblers in digital fabrication behaviors through virtual–physical
integration technology can be created.

Recommendation of energy behaviors: The project aims to improve the usage rate
of the facilities in the co-fabrication space, reduce unnecessary prototyping for users, and
maximize the use of dynamic energy for power consumption. The proposed DFA design
framework aims to improve the fabrication and design process. DFA is mainly for new
designs, and there is no practical example for many applications in materials or assembly,
which requires constant trial and error. The digital twin is a way to connect the virtual
model and the physical, finished prototype. If the virtual and physical models can be
integrated into a digital interface for designers to interact with, the problem of the analog
communication medium in DFA can be solved, and the final prototype can be shown in
advance in real time and can be used in a variety of materials.

User interaction and information visualization: It is hypothesized that every user
could have an agent system, and the agent could change the effect of the device according to
the user’s actions. Users do not have static identities and have multiple uses. Their behavior
cannot be calculated using a single ID and requires dynamic calculation and analysis. In
this way, the user can not only understand their consumption and daily behavior, but also
understand their investment in generated energy to improve the user experience. The tool
system will provide construction method suggestions for users in the digital fabrication
process to modify and manufacture in real time, and perform an interactive fabrication
process of coexistence of virtual and physical through the interactive interface combined
with real-time information.

3.1. The System

Every design is a unique and innovative structure that affects the process of proto-
typing results. Therefore, the concept of customized small-batch production has become
popular. This development not only allows designers to create many different, unique, and
special designs but also enables them to undergo continuous trial-and-error and adjustment
processes, improving the realization of their ideas. If we can structure the trial-and-error
process and anticipate possible problems in advance, we can reduce the number of at-
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tempts made by designers to rectify mistakes. SENS+ provides a framework in which
many participants can engage in the process, experiment with the concept, and respond
to the adaptation of interactive surfaces. Figure 4 shows the SENS+ system structure,
which is different from SENS [30] in terms of human agent and application design. In the
SENS+ design process, the user will provide information and documents to the system,
which will produce corresponding documents for different role users. SENS+ will focus on
construction method suggestions, document readability, and user communication results.
During the prototyping process, the user will undergo an iterative try–error process to
improve their design. The backward modification of the design is a decentralized fabri-
cation feature, so the prototyping process requires continuous communication to reach a
consensus before completion [33]. Finally, SENS+ will (1) record the entire process and
use the user behaviors and location data to give them future appointments for energy
suggestions, (2) analyze the user-provided file and generate possible construction method
suggestions for the user, (3) give the user machine suggestions when they choose a method,
and (4) allow the user to set the machine function based on their requirements or suggest
settings based on the system’s recommendations.
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3.2. The Virtual Environment with the Agent and Co-Fabrication Communication Framework

The scenario awareness system is an important component of a smart environment,
essential for conducting research. It involves obtaining various signals from the envi-
ronment and users via home automation [47,48] to provide user services that meet their
needs. The acquired situational information is converted into user needs through inference
technology, and this process is called a situational awareness service. The activity percep-
tion system is an important research field that uses the external context to determine the
user’s current internal activity context using perception and reasoning, including two main
sub-studies of activity recognition and activity prediction. Automation can significantly
improve the efficiency of penetration testing [48–51]. The proposed structure used IoT to
present a penetration testing methodology, and its automation is based on the belief–desire–
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intention (BDI) model, which is one of the classical cognitive architectures of agents to
evaluate IoT security. The BDI model provides a method to distinguish between choosing a
plan from a library of options or an external planner application and carrying out already-
active plans. As a result, BDI agents can balance the time spent thinking through ideas and
deciding what to do with the time spent carrying out those plans. A third task, which is
left to the system designer and programmer, is making the first blueprints, which are not
covered by the model.

Beliefs: Beliefs represent the informational state of the agent, i.e., about the world,
including itself and other agents. This stage includes inference rules and allows forward
chaining to lead to new beliefs. Beliefs are literals of first-order logic, representing informa-
tion about the world, updated by the perception of the environment and by the execution
of intentions. Using the term belief rather than knowledge recognizes that what an agent
believes may not necessarily be true and, in fact, may change in the future. Beliefs are
stored in a database, sometimes called a belief base or a belief set, although that is an
implementation decision.

Desires: Desires represent the motivational state of the agent and represent objectives
or situations that the agent would like to accomplish or bring about. Desires can correspond
to the task allocated to the agent and are usually considered logically consistent. Two kinds
of desires are usually adopted: To achieve a desire, expressed as a belief formula, and to
test a situation formula, which is a belief formula or a disjunction and/or a conjunction of
them. Achieving goals involves practical reasoning, test goals involve epistemic reasoning.
A goal is a desire that has been adopted for active pursuit by the agent. Usage of the term
goals adds the further restriction that the set of active desires must be consistent.

Intentions: Intentions show the agent’s deliberate state, or what the agent has decided
to do. Intentions are aspirations to which the agent has made a commitment. Plans are sets
of instructions, recipes, or related knowledge that an agent can use to achieve one or more
of its goals. Plans can merge with other plans, and they are often only partially formed at
first, with details being added as the project moves forward. Each plan in the preset library
of plans available to BDI agents contains multiple components. The trigger serves as a
plan’s invocation condition by defining the event that the plan is meant to handle. If the
agent detects an event in the event queue, it will consider the plan relevant. The context
specifies, as a situation formula, when the plan is applicable, i.e., when the plan should
be considered to form an intention. When a plan is filled out, goals are added to the event
queue, after which other plans that can deal with similar events are considered. A plan
may also include certain “maintenance conditions”, which specify the conditions that must
endure for the plan to continue to be carried out. For both successful and unsuccessful
implementations of the strategy, a set of internal actions is prescribed.

Events: Events serve as the agent’s reactionary activity triggers. An event could
change goals, set off plans, or change beliefs. Externally produced events may be collected
by sensors or other integrated systems. Additionally, internal events may be developed
to activate disconnected updates or activity plans. Events in a queue are mapped to
perception. There are three different types of events: receiving a message, acquiring a
desire, and acquiring a belief. Events are implemented as structures that keep track of past
data, such as the responses made to them and their success or failure. The transmission
and reception of messages are used to put BDI agents’ MAS learning skills into practice.

To integrate the originally separated virtual and physical spaces, some researchers [5,28,52,53]
have used field observation, focus groups, and participatory observations to analyze user
behaviors. The research used a series of methods to record and analyze their behaviors to
design a suitable user interactive structure and usability evaluation. Simulating, predict-
ing, and learning behavior can be done by adopting the Acting Role Model (ARM) [28],
agent technologies (SENS) [30], intelligent dynamic interactions with the design system
(DARIS), and BDI evaluation and learning [49,54–58] to examine interactive behaviors. The
network entity system is generated by combining digital and physical information through
the process of the embedded computer, network monitoring, and controlling the entity,
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calculating its feedback loop through the influence of the entity information [59], forming a
co-existing interactive space. The researchers used smart sensors as sensor ports to create a
coexistence space for sensory energies. In the environment, each physical object has its own
environmental agent. The environmental agents in Figure 5 are divided into human agents,
interface agents, preference agents, and sensitive agents. When a user enters the space,
their local server starts tracking user behavior and device consumption. Consumption
data and user behavior are sent to the Place Server and stored in a database for integration,
calculation, and analysis. Finally, the information and details will be shown on the MR and
App device.
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Figure 5. The concept of the communicate process in SENS+ smart sensor agents.

3.3. The Physical Environment with a Smart Factory Architecture

There are many cases in which 3D modeling programs are used in engineering envi-
ronments for the visualization and evaluation of design elements [60–62]. The information
contained in the 3D modeling programs is necessary for presenting the design feasibility
and for conducting research analysis. Rapid prototyping and 3D modeling programs allow
for more direct and personal interactions with investors, designers, and other professionals
involved in the project. The main function of rapid prototyping is to reduce the problems
between the designer’s ability, the threshold, and operation time. Since the 1990s [63],
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many fabrication machines have required human control to carry out processes such as
metal bending, sewing, and other fabrication tools. However, due to certain dangers in
the fabrication process, professional skills are also required to operate these machines.
Rapid prototyping aims to automate construction methods through prefab, with some
degree of customization and support to avoid problems with usage. The convenience and
rapid prototyping brought by digital fabrication have become the development trend of
fabrication tools. However, for makers, the technical threshold of these machines is very
high, and the manual assembly of parts is as complex as the parts constructed by fabrica-
tion tools [64,65]. In the early days, makers needed to communicate with manufacturers
through drawings to confirm the physical finished product and subsequently hand it over
to the manufacturer to produce the finished product, or even enter the factory to ensure
the quality of the physical finished product. Therefore, it is necessary to consider a holistic
approach to successfully incorporate fabrication tools, humans, and material mechanisms
into the field. Digital fabrication focuses on single-task robots that can be deployed in the
field, and designs a system to integrate the physical and virtual environment. The system is
divided into a five-layer structure (Figure 6) including a remote terminal, a master control
layer, a communication layer, a perception layer, and a driver layer, with the ultimate goal
of designing construction sites that work similar to factories.
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Figure 6. The concept of the architecture design of the SENS+ behaviorsystem.

1. The remote terminal allows users to view information using a variety of tools, such
as IoT Explorer, MR, XR, VR, App, and Mobile Devices, making it easy for them to
understand the data.

2. The master control layer uses advanced technology such as the NXP RT1062, Rasp-
berry Pi 3B+, and ibeacon to issue control commands and collect data from the entire
system. The NXP RT1062 development board connects to Tencent IoT Explorer via an
ESP8266 WiFi module to upload sensing data and receive remote control commands
using the MQTT protocol stack. Additionally, the Raspberry Pi 3B+ development
board’s network port communicates with radar to obtain point cloud data, which is
then sent to the NXP RT1062 development board after processing.

3. The communication layer serves as the interface between the main control layer and
the perception and driver layers. It provides several communication interfaces such
as WiFi, LoRa, ZigBee, NB-IoT, Ethernet, and others.

4. The sensing layer contains three types of sensors: user gesture sensors, environmental
state sensors, and energy sensors.
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5. The driver layer receives commands from the main control layer and completes the
movement control of the user, local machine, and device during the prototyping and
design phase.

3.4. User Interaction in the MR Device

The fabrication process can pose a challenge for designers during the prototype fabri-
cation phase. The lack of cleanliness in the fabrication process may lead to an inability to
accurately evaluate the fabrication results of the prototype. To address this challenge, the
Design–Manufacture–Assembly (DFA) design framework has been presented as an inte-
grated prototyping process that allows users to leverage fabrication as part of a collaborative
process. Schon and Wiggins [66] proposed a theoretical model called “Seeing–Moving–
Seeing”, which is primarily used in design because it requires hands-on practice, creative
thinking, design thinking, and observation. In this context, designers often allow their
ideas to be converted and shown on the design media to better explain the circular thinking
related to hands-on implementation and testing. However, as mentioned earlier, the fabri-
cation process can sever the relationship between the designer and the finished product,
making it difficult to fully apply the “Seeing–Moving–Seeing” model in digital fabrication.

In the DFA design framework, the designer first designs the virtual model through
CAD/CAM, transfers the model to the fabrication machine for fabrication, and then takes
the manufactured components back for assembly. During this process, the designer must
keep trying and making mistakes to find the best solution. In this system, users may have
varying levels of technical knowledge, including tool assembly and machine parameter
adjustments. The information is displayed on both the user app and the HoloLens in-
terface (Figure 7). Therefore, the system decomposes each step into different tasks and
systematizes and modulates each step through design computing. Cyber-physical technolo-
gies are integrated into an interactive fabrication process that controls the physical machine
to perform tasks, lowering the technological threshold. All hand icons are converted to
gesture input, and all non-hand icons are automated. To perform an action, the user first
selects the appropriate icon and then performs a gesture or waits for the system to complete
its task. Virtual objects displayed in the user interface (UI) can have three different states.
When the gesture icon is not selected, objects that cannot be modified are shown in light
gray. When the object can be modified, the object turns yellow, and the object currently
being modified is displayed in green. This color display provides information about the
current system state. Feedback is provided, especially when grabbing objects, to help
users determine whether the system recognizes their engaging gestures and how their
movements affect the scene. Through these features, users can perform digital fabrication
through simple gestures, integrating the real world with the virtual environment to create
new environments and visualization effects. This allows reality and virtualization to coexist
and interact immediately.
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Figure 7. The concept of the co-existing human interaction process of SENS+.
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4. Evaluation of User Behavior in Co-Fabrication Space

The co-existing fabrication system for a smart DFA environment integrates real-world
and virtual environments, as well as energy usage, based on the agent concept of a system.
This system references physical entities and virtual information to each other in a recursive
way through a series of physical changes, information analysis, generative fabrication, and
energy design suggestions. This approach optimizes the workflow and can be applied to
various types of users.

The purpose of the DFA design framework is to improve the fabrication and design
process, which is mainly for new designs. However, there is no practical example of DFA
applications in materials or assembly, and design and fabrication must consider how the
finished product will be assembled, which requires constant trial and error. The agent is
a way to connect the virtual model and the physical finished prototype. By integrating
the virtual and physical models into a digital interface for designers to interact with,
the problem of the analog communication medium in DFA can be solved, and the final
prototype can be shown in real time and used in a variety of materials.

To integrate virtual and physical models, the system combines cameras and infrared
sensors in a co-existing fabrication system to build an intelligent system of an intelligent
DFA environment. The research uses the Seeing–Moving–Seeing–Design–Thinking model
to help users refine their ideas. This process of the SENS+ system can be divided into
two recursive sequences. One creates a virtual interface layer on top of the physical user
perspective, constructing an environment with understandable information for the user.
The other captures user gestures and movements to control a robotic arm for handcrafting
or fabrication. Users can observe objects in physical space, interact with virtual objects,
and recalibrate design properties during fabrication by comparing the appropriate hybrid
environment with the virtual model.

To render the model in physical space and generate the model interface, Fologram, a
Grasshopper plugin, transfers the geometric information to the SENS+ system and guides
the machine end effector along the path. The research designed a UI and computer server
system that generate fabrication tool code. The system communicates by scanning a QR
code, enabling virtual models to generate data strings and return them to Grasshopper.
Additionally, custom C# scripts perform fabrication calculations, such as path calculations
that incorporate geometric data, behavioral variables, and remapping parameters between
the fabrication tool and UI system. These processes allow for the efficient and accurate
translation of virtual models into physical reality.

4.1. Human Behavior Data

The interaction between the user and the space connect devices can modify the user be-
haviors and change their usage and the consumption at the environment and co-fabrication
configuration. A different user can use the devices to understand the operating procedures
and energy usage. Table 1 represents an actual co-fabrication space scenario. In this co-
fabrication space, the researcher observes and collects information regarding 10 users to
analyze their weekly usage in a co-fabrication process in real time.

The research models a variety of human activities using recorded data mining and
machine learning approaches, sensor-based activity recognition in the environment, and
the developing field of sensor networks. In Figure 8, the X-axis is the record date, the Y-axis
is each device’s consumption energy in a month, and the lines of different colors represent
different devices. The app on the user’s mobile phone connects to the environment sensor
network for energy consumption predictions, and the environment records the user’s real
position through the mobile phone’s GPS and beacon. Real-time tracking of the user’s
entry and exit to the building, activity within the co-fabrication space, equipment usage
patterns, and energy consumption is carried out. Researchers in the field of sensor-based
activity detection believe that by equipping them with powerful computers and sensors
that monitor the behavior of agents, these computers can better act on our behalf. HoloLens
and other vision sensors that consider color and depth information enable more precise
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automatic action recognition and integrate a wide range of new applications in smart
environments.

Table 1. Co-fabrication space usage.

Space Machine A B C D E F G H I J

Laser Cutter Room Laser Cutter � � � �
Prototyping � � � � � �
Cutting Machine � � �
Computer �
Laser Cutter Teaching � �

3D Printer Room 3D Printer Class �
3D Printer � � � � �
CNC Machine � �
Metal Printing �
Light Curing Printing �
Resin Printing

Teaching Space lecture � � � � �
Administration � �
Conference � � � � � � � �
Manager Meeting � � � � � �
Teaching Assistant Class � � �

Muse Space Project Discuss � � � �
Idea Thinking

Scrub Room Polisher Machine
Exhaust Fan �
Sandblasting Machine � �
Bandsaw Machine � �

Metalworking Room Hand Jointer Machine �
Angle Slot Machine �
Vertical Flower Planer � � �

Model Room Polisher Machine �
Hand Jointer Machine � �

Robotic Room Robotic Arm � � �
Motor � � � � �
Pressurizer � � � � �

Figure 8 shows the recorded dates of each device in a month, while Figure 9 shows the
daily usage of each user in the space over a month. The graphs indicate that usage still has
a different effect, especially if a user stays in the same place each day. The system can use
users’ demand to change their behaviors and day-to-day conditioning. Therefore, yearly
records can help understand users’ introductory behaviors and usage. The value increases
and decreases allow one to explore daily energy usage differences. In Figure 9, the green
line represents co-fabrication space usage, while the blue line represents co-working space
usage. It is easy to record the energy used by a single user in a space, but it is difficult to
record and distribute energy in a co-fabrication space. This space includes more hidden
user behavior, which is different from general usage. For example, one person may lease
but divide energy consumption into subdivisions. To address this, the researchers identified
users and their locations to help distribute energy usage and make personalized energy
suggestions. Overall, the research shows that usage still has a different effect, especially if
a user stays in the same place each day. By exploring daily energy usage differences, the
system can help change user behaviors and encourage day-to-day conditioning. The yearly
records can help understand users’ introductory behaviors and usage.

However, with the introduction of distributed storage, it becomes possible to balance
the forecast and simulation of daily swings, such as the ones observed in the test research,
with consumption patterns. The experiment has shown that human behaviors are complex
and usage patterns are influenced by a variety of circumstances. Energy usage fluctuations
throughout the day cannot be accurately predicted or specified. However, simulation
feedback suggests that providing real-time access to consumption statistics may be a

176



Sensors 2023, 23, 2890

useful strategy for persuading users to alter their usage patterns. Ultimately, the results
demonstrate that users can understand consumption data on their devices and that they
need access to relevant information at all times.

K
w

Date

Figure 8. Monthly usage of every device.

Figure 9. Different space compare data.

4.2. User Interaction with the Scenario and the User Interface

To gain insights into the practical implementation of the design, the researchers
conducted an initial experiment using MR technology to superimpose and project complex
shapes and shape grammar onto real-life environments. The experiment was divided
into two stages. During the first stage (Figure 10a), user employed shape grammars to
design 40 × 40 × 40 structures. As user designed and created small models, there were
no issues with fabrication, assembly, or differences in construction methods or design
comprehension, likely due to the models’ small size. In the second stage (Figure 10b), the
user plans to scale up the design to a 300 × 300 × 300 funicular weaving structure with
a folded plate skin design that has been calculated using shape grammar. However, the
fabrication process may encounter some challenges due to the use of a single method,
which can affect the assembly of individual components and make the construction process
more complex. Consequently, designers will need to devote more time to describing the
process and creating images to help others understand it. To address these challenges, users
will evaluate and refine the fabrication and assembly methods to optimize the practical
implementation of the design. This will involve considering multiple fabrication methods
and potential solutions to potential assembly issues. By doing so, the user aims to ensure
that the design can be successfully realized and applied in real-world scenarios.
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(a) (b)
Figure 10. Users discussing the prototype and the final result. (a) Assemblers use HoloLens;
(b) 300 × 300 × 300 prototype.

Through the analysis of the actual operation process, the scenario is divided into
two parts. The first part is the user app interaction, and the other scenario is the MR
device. In the user app part, the user will use the agent to describe the interaction process.
A modular individual reasoning architecture is represented by each agent. The benefits of
that depiction are the simplicity with which operational reasoning or tactics for various
interaction scenarios within the building may be put up, modified, and expanded. Users
(Human Agents) must make a reservation on the machine they intend to use in a time slot
with the appropriate dataset before they visit the area. In the co-fabrication scenario, a set of
machine options must be selected, and the system must be given the power, speed, duration,
and consumption for each machine. In the interaction scenario of SENS+ (Figure 11), users
enter each space of the co-fabrication space with an app via the QR code, accessed via the
screen on the door.

1. After scanning the QR code, the energy consumption, the generation of the location,
and the reserve item are displayed in the system with basic location information
(Figure 11a).

2. When the user approaches the electronic devices that are in the room, there are two
ways to see the current consumption load of the device. First, through the system, it
is displayed as energy consumption information on the user’s mobile device. Second,
the demand and use are displayed on an MR with a notification sent to the user.
Users can update their design to the system. The system will automatically analysis
and disassemble the component and will provide a construction methods suggestion
(Figure 11b).

3. After that, the system will generate three types of document for the user. First, an
E-design document is generated by the designer 3D model. This document can help
designers immediately examine their design (Figure 11c).

4. The e-design document is provided by the designer before fabrication, and this
document can help the designer check their design directly. The second type of
archive is the e-fabrication document (Figure 11d).

5. This file is provided for the fabricator to see. This stage is the file produced by solving
the communication and imagination problems of the traditional digital fabrication
process. These files will provide a detailed fabrication process and advice on how to
break down each component. The last e-assembly document mainly provide the basis
and step understanding for assembler assembly (Figure 11e).

6. Finally, the designer checks that their file is complete and can use their preferences
and habits to choose their methods and fabrication machine (Figure 11f).

The energy suggestion is the system through which the 3D model file’s complex
range provides the available machines and evaluates the consumption energy of different
machines so that users can choose. When the machine completes the task, users can evaluate
whether they are satisfied with the results by themselves. If the user is not satisfied with
the results, MR will provide other options for construction method suggestions to the user.
After the user evaluates and decides to switch to other construction method suggestions,
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they can make a new round of appointments through the app again. Through the app,
users have the option to evaluate how much energy their chosen construction method can
save, and the MR and app will tell users which devices are accessible in the area. In the
scenario where the user evaluates the equipment usage and selects energy production, the
system will display the energy usage as well as the estimated monthly savings from the
energy source.

To create and test a behavior-based co-fabrication space environment, the system
integrates smart sensing, a sensor network design, and user experiences. Within shared
co-making spaces, the prototype integrates both energy generation and consumption. Each
user’s unique usage patterns, habits, and energy use in the co-fabrication spaces have an
impact on the everyday environment and energy usage. An option will also affect the
consumption result because higher energy consumption occurs over longer periods of time,
but the machine result will be more detailed, as desired by the maker. The optimization and
standard options for the machine path recorded can provide energy consumption patterns
as well as potential user awareness of the patterns. As a result, each agent will interact
with one another, have a distinct mission and goal, and offer a chance for improvement to
the user. The optimized alternatives consume less energy, even if they frequently do not
produce optimal results.
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5. Conclusions and Future Work

This paper presents an integration of the Co-Existing Interactive Fabrication Tool and
proposes a Dynamic Interaction Process for Fabrication Design, a tool that supports designers,
manufacturers, and assemblers in digital fabrication behaviors through virtual–physical
integration technology. Linking the three phases of the DFA design framework and sharing
information through the concept of digital twins allows the three phases to be continuously
retraced and tested, enabling a real-time preview of the finished product in advance as well
as a testing of multiple material applications. The tool framework illustrates the possibilities
and flexibility of an immersive interactive environment and provides users with the ability
to instantly view and confirm the production details based on the information provided.
Through human–computer collaboration, the difference between the virtual and the physical
in the cyber-physical coexistence space can be reduced, and the fabrication of complex spatial
structures can be realized while reducing cost, risk, and complexity. The incorporation of
method recommendations into the fabrication process can enhance user knowledge and
ability for preparing fabrication. Users can discuss and adjust the graph and 3D model
with fabricators immediately. The system provides a systematic perspective on disassembly,
allowing fabricators to receive accurate fabrication documentation and complete accurate
component fabrication in a multimodal environment.

In a future study, biosignal processing and activity modeling for multimodal human
activity recognition [67] will provide further affective information needed for the SENS
system. Additionally, the information-sharing function can also improve, such that other
design members, participants from different fields, or remote designers can participate in the
design or share that design together. The following three research directions are proposed.

1. Fabrication process automation: In the interactive fabrication process, fabricators
are currently provided with the ability to design, manufacture, and assemble the
operating components required for some of the fabrication processes one by one.
After the fabrication is completed, the maker may then work out the path of the
movement of the fabrication machine. To make digital fabrication easier to operate,
design, and manufacture, in future development, the step-by-step design process can
be automated through digital computing so that designers can control and prolong
the design development process.

2. Customized fabrication process integration: In the current study, the fabrication
process provided workflow recommendations that allowed individual machines to
process and distribute, but it lacked a more precise workflow. On this basis, it is
possible to extend the processing module through precise system calculations so
that designers, fabricators, and assemblers can be involved in the same process by
the integration of the tool, so as to achieve the aim of customizing the fabrication
process integration.

3. Digital twins for integrated method applications: In the future, this study can fo-
cus on the fusion of real and virtual coexistence under the concept of digital twins.
At present, spatial sensing as a mechanism feeds back physical products to the virtual
environment, but only intercepts the current state for analysis, which is not in line
with real-time physical signal transmission. The ability to receive signals in real time
could be investigated in the future and combine sensors with interactive fabrication
tools to allow physical feedback to occur in real time, making the finished product
more compatible with virtual models.
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Abstract: This paper provides a comprehensive overview of affective computing systems for facial
expression recognition (FER) research in naturalistic contexts. The first section presents an updated
account of user-friendly FER toolboxes incorporating state-of-the-art deep learning models and elab-
orates on their neural architectures, datasets, and performances across domains. These sophisticated
FER toolboxes can robustly address a variety of challenges encountered in the wild such as variations
in illumination and head pose, which may otherwise impact recognition accuracy. The second section
of this paper discusses multimodal large language models (MLLMs) and their potential applications
in affective science. MLLMs exhibit human-level capabilities for FER and enable the quantification
of various contextual variables to provide context-aware emotion inferences. These advancements
have the potential to revolutionize current methodological approaches for studying the contextual
influences on emotions, leading to the development of contextualized emotion models.

Keywords: automatic facial expression recognition; naturalistic context; deep learning; multimodal
large language model

1. Introduction

Recent advances in computer vision have greatly facilitated the development of so-
phisticated affective computing systems for facial expression recognition (FER) research [1].
Researchers across domains have applied various computational techniques to analyze
diverse and complex mental states, including emotions [2], pain [3], physiological corre-
lates [4], personality traits [5], and clinical disorders [6]. Nevertheless, our understanding
of facial expressions remains mostly limited to inferences drawn from laboratory studies.
Facial expressions produced in controlled laboratory settings may suffer from a lack of eco-
logical validity and fail to represent the full spectrum of facial behaviors observed in real-life
scenarios [7,8]. There is a growing emphasis on investigating naturalistic facial behaviors
coupled with advanced computational techniques to spark theoretical advancements in
affective science [9].

Naturalistic facial expressions can be observed in connection with a wide range of
psychologically significant contexts encountered in everyday situations. Naturalistic facial
expressions may more accurately reflect the complex and dynamic nature of emotional
experiences in the real world than expressions elicited by experimental manipulations that
are often artificial or short-lived (e.g., receiving an electrical shock). One approach toward
studying more ecologically valid facial expressions relies on materials sourced from third-
party media such as reality shows, vlogs, movies, and documentaries. Such sources often
comprise millions of facial expressions accompanied by perceptually rich contexts, which
are being made available in several newly developed datasets for FER research [10]. For
surveys of existing naturalistic facial expression databases, readers are referred to [11–13].
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Examining naturalistic expressions presents vast conceptual and empirical opportuni-
ties to yield further insights into how emotions emerge and reconfigure in naturalistic
situations [14], discover new emotion categories that are rarely observed in laboratory
environments [15], and document a comprehensive taxonomy of facial behaviors [16].

However, there are two main challenges in the studies of naturalistic facial expressions.
The first challenge relates to the difficulties in detecting and tracking facial behaviors in
unconstrained environments. Naturalistic expressions are often captured in uncontrolled
settings with unexpected variations in head orientation, illumination, complex background,
and facial occlusions, which may result in errors in detecting facial behaviors. More robust
affective computing models are required to effectively analyze facial behaviors captured
in wild conditions, as traditional models often exhibit drastic drops in performance in
uncontrolled environments [17]. The second challenge concerns the interpretation of
naturalistic facial expressions. Unlike laboratory studies that can validate the underlying
emotional experiences of expressions through self-report measurements, it is not feasible
to collect retrospective data to validate naturalistic expressions sourced from the Internet.
Hence, accurately inferring the emotion states of naturalistic expressions can be more
challenging than working with laboratory data. Nevertheless, this issue can be addressed
through multimodal annotation and a comprehensive analysis of situational contexts to
specify the underlying psychological states [18].

This review is divided into two sections to discuss the applications of deep learning-
based FER toolboxes and multimodal large language models (MLLMs) for tackling these
challenges. The first section evaluates several newly developed and easy-to-use FER tool-
boxes for facial expression analysis in unconstrained environments. To support researchers
in making informed decisions regarding the selection of appropriate toolboxes, we crit-
ically review the performance of five FER toolboxes, namely OpenFace 2.0 [19], Affdex
2.0 [20], Py-Feat [21], LibreFace [22], and PyAFAR [23], along with their underlying neural
architectures and databases used for model training. The second section discusses the
potential utilization of MLLMs for analyzing and interpreting naturalistic expressions in
association with contextual cues. Naturalistic expressions can be rendered meaningful
by referencing the specific contexts in which they occur and interact [18]. MLLMs such
as GPT-4V [24] and LLaVA [25] exhibit promising capabilities for quantifying contextual
variables, which can serve as contextualized FER models for robust, explainable emotion
inferences of naturalistic expressions.

2. Analyzing Naturalistic Facial Expressions with Deep Learning

The general processes of facial expression analysis consist of three components: face
detection, feature extraction, and the prediction of facial action units (AUs) [26] and/or
emotions. In particular, feature extraction has been regarded as the most crucial component
in the FER process, which can be categorized into handcrafted and learned features [15].
Handcrafted features can be extracted with methods such as histograms of oriented gra-
dients (HOGs) and local binary patterns (LBPs) for capturing facial textures and shapes.
FER models trained based on handcrafted features using shallow learning approaches
(e.g., support vector machines (SVMs)) achieve good performance in facial expressions
produced in laboratory settings but have recently been outperformed by models trained
on learned features [27]. Learned features are directly extracted from raw data through
deep neural networks (DNNs) comprising multiple layers that hierarchically learn more
complex, representative spatial–temporal features than the previous layers. Accumulating
research evidence suggests that DNN models consistently surpass most of the shallow
learning models based on handcrafted features by a large margin [28]. Compared to shallow
learning models, cross-domain experiments reveal that DNN models such as convolutional
neural networks (CNNs) and vision transformers (ViTs) achieve superior generalizabil-
ity and accuracy for emotion recognition [29–32] and AU detection [33–35] on unseen
datasets with different demographics, camera views, and emotion-eliciting contexts. More
importantly, deep FER models are fairly robust to variations in brightness, head poses, and
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occlusions [27], whereas shallow learning models trained on handcrafted features (e.g.,
LBPs) may be substantially impacted by variations in luminance [21] and head rotation [36].

Despite their impressive performance, accessing state-of-the-art (SOTA) deep learning
models for FER research has been hindered by several obstacles. SOTA models are rarely
released for public use in repositories such as GitHub or are rarely open source for end
users to fine-tune the models with their own datasets for new tasks. Open source models
often lack graphical user interfaces or documentation for easy implementation for users
who may lack specific programming knowledge. These SOTA models might be too heavy
to run for real-time analysis, restricting their potential application in practical settings. Ad-
ditionally, early FER models have been primarily trained on datasets captured in controlled
recording conditions with invariant illumination and fixed camera position [37]. These
models may learn features that rarely align with real-world situations, which limits their
effectiveness in analyzing naturalistic expressions. To bridge this gap between cutting-edge
FER techniques and their implementation, we discuss a selection of the most prominent,
publicly accessible, lightweight, and user-friendly toolboxes that incorporate SOTA models
suitable for analyzing facial expressions in the wild.

In the remainder of this section, we will first provide an overview of two FER toolboxes
that incorporate both shallow and deep learning models for facial behavior analysis, namely
OpenFace 2.0 and Py-Feat. Next, we will discuss three FER toolboxes that are primarily
trained on deep learning methods: Affdex 2.0, LibreFace, and PyAFAR. Table 1 summarizes
the main characteristics and access information of each FER toolbox.

Table 1. FER toolbox comparison on functionality, neural architecture, and type of dataset used for
training emotion or AU models. The deep learning models are shown in bold. The datasets are
categorized as W (wild), S (spontaneous), or P (posed), representing facial expressions sourced from
the Internet or nonlaboratory environments, induced by experimental procedures, or deliberately
mimicked by actors in laboratory settings, respectively. * Please consult the website for complete
documentation of all face detection models incorporated in Py-Feat. ** The emotion model of Affdex
2.0 is not specified as it is based on the activation of AUs. *** The dataset used to train AU models in
Affdex 2.0 is considered spontaneous despite being captured in nonlaboratory settings.

OpenFace 2.0 Py-Feat Affdex 2.0 LibreFace PyAFAR

Face Detection CE-CLM
MTCNN,

RetinaFace * R-CNNs MediaPipe
MediaPipe,

Facenet

Emotion
Recognition ResMasNet, SVM ** ViT, ResNet-18

Action Unit SVM, SVR SVM, XGB CNNs ViT, ResNet-18 ResNet-50

Datasets P, S P, S, W S *** S, W S
Open Source/Free Yes Yes Yes Yes
Graphical User
Interface Yes Yes Yes Yes

Website

github.com/
TadasBaltrusaitis/

OpenFace
(accessed on 29

November 2023)

py-feat.org
(accessed on 29

November 2023)

www.affectiva.
com (accessed on

29 November 2023)

github.com/ihp-
lab/LibreFace

(accessed on 29
November 2023)

affectanalysisgroup.
github.io/

PyAFAR2023
(accessed on 29

November 2023)

2.1. FER Toolboxes Based on Mixed Learning Models

OpenFace 2.0 [19]: OpenFace 2.0 is a representative tool of the SOTA shallow learning
models based on handcrafted features (i.e., HOGs) for AU recognition. OpenFace 2.0
is capable of a variety of facial analysis tasks, including facial landmark detection, gaze
and pose estimation, and AU detection. OpenFace 2.0 uses a deep convolutional expert-
constrained local model (CE-CLM) for facial landmark detection and tracking, which is
trained on wild datasets with nonfrontal faces and varying illumination. It can better
detect profiles or severely occluded faces than its previous version [37]. For AU detection,
OpenFace 2.0 relies on shallow learning algorithms, including linear SVM for binary detec-
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tion (presence or absence) and support vector regression (SVR) for intensity probability
estimation. The AU models are trained in seven laboratory databases with AU annotations,
which contain posed (Bosphorus [38]; FERA 2011 [39]), spontaneous (CK+, also containing
posed expressions [40]; UNBC-McMaster [3]; DISFA [41]; and BP4D/FERA 2015 [42]), and
conversational (SEMAINE [43]) expressions. Research by [36] demonstrated that OpenFace
2.0 outperformed several commercial FER toolboxes such as FaceReader 7.0 [44] for AU
detection on datasets that contain posed (DISFA+ [45]), conversational (GFT [46]), and wild
(Aff-wild2 [47]) expressions. However, OpenFace 2.0 was found to have inferior generaliz-
ability ability in AU detection on unseen datasets compared to deep FER models [48]. This
is likely due to the limited discriminative values of handcrafted features or the inability of
shallow learning algorithms to capture intricate, nonlinear patterns of facial behaviors.

Py-Feat [21]: Py-Feat provides various pretrained models based on both handcrafted
and learned features, allowing users to flexibly decide which combinations of models to
use according to specific task requirements. Py-Feat includes several face detection models
such as multitask convolutional neural networks (MTCNNs [49]) and RetinaFace [50],
which demonstrate robustness on partially obscured or nonfrontal faces. For AU detec-
tion, Py-Feat uses popular shallow learning methods for computing binary results with
SVM and continuous results with optimized gradient boosting (XGB [51]), which are
pretrained on both laboratory (BP4D, DISFA, CK+, and UNBC-McMaster) and wild (Aff-
wild2 [47]) datasets. Its AU models have been shown to be slightly less accurate than the
reported results of OpenFace 2.0 benchmarking on the DISFA+ dataset. However, Py-Feat
yielded more consistent and reliable AU estimation for faces with varying head orienta-
tions, whereas the performance of OpenFace 2.0 drops dramatically when head angles
are larger than 45 degrees [36]. The superior performance of Py-Feat on AU detection for
occluded faces might be attributed to the inclusion of the wild dataset [47], which contains
nonstandardized facial images and videos for pretraining models. Py-Feat provides direct
emotion inferences for six basic emotions with emotion models trained on datasets with
spontaneous (CK+ [40]), posed (JAFFE [52]), and wild (ExpW [53]) expressions. Since not
all facial regions contribute equally to emotion perception, and some facial regions may
be occluded in unconstrained conditions, Py-Feat exploits the residual masking network
(ResMasNet [54]), a deep learning method that utilizes attention mechanisms to adaptively
weight and select the most emotionally salient regions of the face while ignoring irrelevant
features (e.g., facial occlusion). The ResMasNet outperforms another shallow learning
model (i.e., SVM) adopted in Py-Feat and a commercial FER toolbox (FACET [55]) on a
wild dataset (AffectNet [56]). Py-Feat provides numerous functional packages for data
preprocessing, statistical analyses (e.g., time-series correlation and regressions), and visual-
ization, which facilitate data exploration. Py-Feat is written in the Python programming
language. Although a graphical user interface is currently not available in Py-Feat, it is
relatively easy to use following step-by-step tutorials.

2.2. Deep FER Toolboxes

Affdex 2.0 [20]: Affdex 2.0 is a commercial software program designed to analyze facial
behaviors in the wild. For face detection, it exploits region-based convolutional neural
networks (R-CNNs [57]), which perform better on challenging conditions (e.g., variations in
illumination, hand occlusions, etc.) compared to Affdex 1.0 [58]. For AU detection, Affdex
2.0 utilizes large samples of a private dataset collected using a web-based approach [59] to
train CNN models, which showed enhanced accuracy and less biased results on ethnic mi-
norities (e.g., African and South Asian) than its previous version. On benchmark evaluation
for AU detection, Affdex 2.0 outperforms numerous SOTA methods on the DISFA dataset,
which contains spontaneous expressions induced by emotion-evoking videos. Although
Affdex 2.0 performs slightly worse than OpenFace 2.0, it is important to note that the
AU models of Affdex 2.0 have not been trained on the DISFA, which may bias the result.
Unlike other FER toolboxes that directly predict emotions with separate models specifically
trained on emotional expression datasets, Affdex 2.0 estimates seven basic emotions [60]
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based on the reverse inference of the activation of AUs with assigned weights postulated in
EMFACS [61]. Negative weights are assigned for emotion prediction when opposite AUs
occur to reduce a false-positive rate. For instance, the presence of a “lip corner lowerer”
(AU15) may decrease the likelihood of predicting “happiness” based on the activation of a
“lip corner raiser” (AU12). Affdex 2.0 outperforms several SOTA emotion models on the
Aff-wild2 dataset [47]. In addition to basic emotions, Affdex 2.0 can predict other affective
states such as confusion, sentiment, and engagement based on predefined rules for AU
activation. Although it is a commercial software program, Affdex 2.0 has been trained on a
large sample of wild dataset with 11 million annotated images of people of all ages, genders,
and ethnicities, which might be otherwise difficult to collect and annotate without financial
support. By contrast, many open source systems are trained on a comparatively limited
number of publicly accessible laboratory datasets with a small number of participants and
a narrow range of demographic diversity. They are thus at a disadvantage with respect to
the development of robust, unbiased models. However, since Affdex 2.0 is not open source,
it does not allow users to further fine-tune the models for downstream tasks.

LibreFace [22]: LibreFace is a newly developed toolkit that incorporates several SOTA
deep networks for facial AU and emotion expression analysis. LibreFace utilizes Medi-
aPipe [62] for precise face detection with 468-point 3D landmark registration and normal-
ization with geometric transformation. Model performances including feature extraction,
robustness, and generalizability are enhanced by several pretraining processes. Specifically,
a ViT-base model and a ResNet-18 model [63] were pretrained on several large wild datasets
sourced from the Internet, including the training set of AffectNet [56], EmotioNet [64], and
FFHQ [65], which consist of millions of facial images with a wide range of variations in
demographic features, illumination, and head orientation. After the pretraining phase,
the models were fine-tuned on the DISFA dataset [41] for AU intensity estimation and the
BP4D-Spontaneous datasets [66] for AU detection. LibreFace leverages the Swin Trans-
former model [67] to capture the spatial correlations and interactions between different
facial features from a global perspective, which could achieve better performance than
traditional CNNs that focus on local patterns and features within facial subregions [68,69].
Moreover, LibreFace bypasses the need for large, labeled datasets by exploiting the masked
autoencoder (MAE) method that allows for learning representative facial features through
the process of image and video reconstruction [70]. LibreFace utilizes feature-wise knowl-
edge distillation to reduce computational costs, thereby boosting the inference efficiency
for real-time facial expression analysis. LibreFace outperforms OpenFace 2.0 [19] and
other SOTA deep learning models [35,71] on the DISFA and BP4D datasets for predict-
ing the activation of AU. For emotion prediction, LibreFace achieves competitive results
comparable or superior to more complicated and heavier SOTA models [72] on two wild
datasets, AffectNet and RaF-DB [73]. LibreFace is currently open source in Python, and for
Windows users, an easy-to-use graphical user interface is available using the OpenSense
platform [74].

PyAFAR [23]: PyAFAR is developed for facial AU detection and intensity estimation
in addition to head orientation and facial landmark detection. For face detection, it uses
MediaPipe and Facenet [75], which can identify and track individuals even if they exit and
re-enter the field. PyAFAR adopts two separate DNN models based on ResNet50 [63], with
increased depth of neural architecture to perform more effective convolution operations
for complex facial feature representation. The models have been pretrained on the Ima-
geNet [76] dataset for detecting 12 Aus in adults and 9 Aus in infants. The adult model
is fine-tuned on BP4D+ [77], an expansion of the BP4D-Spontaneous dataset containing
spontaneous facial expressions induced by both active (e.g., singing) and passive (e.g.,
watching emotionally loaded videos) tasks. The infant model is trained on the MIAMI [78]
and CLOCK [79] databases, which capture infants’ responses induced by experimental
procedures, such as the removal of attractive toys and still face paradigms [80]. Both adult
and infant models achieve accurate results on within-domain validation [23]. PyAFAR
shows superior cross-database performance on the GFT dataset [46] compared to OpenFace

188



Sensors 2024, 24, 126

2.0 and the previous version of AFAR [81]. An executable interface and a step-by-step
visual instruction guide are available for the easy implementation of the toolbox.

These FER toolboxes empower researchers to effectively address the challenge of
unexpected variation in naturalistic behaviors acquired from unconstrained environments.
However, it is important to note that some FER toolboxes (e.g., Affdex 2.0, LibreFace, and
Py-AFAR) have only been recently created and validated by their developers. Further
empirical research conducted by independent researchers is required to compare and
validate the cross-domain performance of these toolboxes [1].

What is still missing in the studies of naturalistic facial expressions is the lack of a
comprehensive analysis of contextual information critical for a naturalistic understanding
of emotions [82]. Prior works have focused extensively on the analysis of facial features
using FER toolboxes for emotion inferences, while contextual variables have been largely
ignored [83]. Emotion inferences made solely based on decontextualized faces are ecologi-
cally invalid and meaningless. For instance, a smile can be reliably recognized as expressing
“happiness” by FER toolboxes, but it is difficult to evaluate the meaning of the emotion
without referencing the emotional stimuli or surrounding contexts (e.g., smile as reflecting
the anticipation of a music festival [84,85]). Elucidating the interaction between facial
behaviors and concurrent contexts is an important research question for affective science.

A comprehensive analysis of contextual elements can provide important cues for an
accurate assessment of the underlying emotional experience associated with naturalistic
facial expressions [18]. For example, naturalistic facial behaviors (e.g., a smile) are often
accompanied by contextual cues presented in various forms such as clothing (e.g., a gown),
scenery (e.g., wedding venues), activities (e.g., marriage proposal), voices (e.g., “I love
you”), body postures (e.g., holding hands), other faces, and so forth, which shape how faces
are perceived (e.g., the enjoyment of interpersonal connection). Contextual variables can be
measured and quantified by human annotators [86]. When facial expressions are presented
with perceptually rich contextual information, human annotators show substantially greater
agreement for labeling facial expressions than decontextualized faces [87]. This indicates
that the current limitations of evaluating facial expressions with FER systems could be
addressed by including contextual cues, as human perceivers can make more robust, reliable
emotion inferences. However, annotating naturalistic expressions and their contexts can
be more complicated and labor-intensive than laboratory datasets. Advanced multimodal
annotation tools [88] may help provide multimodal annotation to evaluate facial expressions
together with other nonverbal modalities and rich contextual information to provide
accurate portrayals of the interaction between facial expressions and contexts. In the
following section, we discuss the novel applications of MLLMs that could circumvent
the need for extensively annotated datasets, fostering further advancement in naturalistic
affective research.

3. Advancing Naturalistic Affective Science with Multimodal Large Language Models

Recent advancements in MLLMs have demonstrated remarkable versatility and capa-
bility in various domains and tasks. Although MLLMs are not specifically programmed
for emotion recognition tasks, such capabilities emerge as the result of data scaling [89].
The main idea of using MLLMs for emotion recognition is to use powerful large language
models as an intelligent brain to process and align textual, visual [25,90], and/or audi-
tory [91,92] information to perform emotion inferences [93]. There is an increasing number
of open source MLLMs, including LLaVA [25] and MiniGPT-4 [90], available on platforms
such as HuggingFace. Many MLLMs also provide a user-friendly web interface that enables
more flexible interactions with the user. This section provides an in-depth discussion on
the emergent novel applications of MLLMs for context-aware emotion recognition, gen-
eralizable facial expression analysis, and adaptability to other related tasks such as the
classification of nuanced emotion categories.
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3.1. MLLMs as a Contextualized Emotion Model

MLLMs can serve as a contextualized model quantifying contextual variables to
provide robust emotional reasoning for naturalistic expressions (see Figure 1 for example).
Several studies have demonstrated the exceptional capabilities of MLLMs in identifying
emotionally evoking context and comprehending how these contextual cues may influence
the emotional state of a person [94]. To quantify contextual variability, MLLMs can be used
to perform a wide range of visual reasoning tasks such as spatial relationship analysis and
object recognition to understand the visual world with a simple prompt, i.e., “describe
the image”. This can provide a detailed description of the situational contexts, which can
then be used to infer relevant emotional states and related antecedents or consequences.
Such contextualized inferences are more in line with how humans naturally perceive
emotions in real-life situations by synthesizing concurrent multisensory information from
the face and contextual cues [95]. This potential application is exemplified in a recent
technical report of GPT-4V in the sense that it can make accurate emotion inferences
based on integrated contextual cues such as “protest crowd” and “presence of policies” for
inferring “injustice” and “anger” [24]. Moreover, research by Etesam et al. [94] has revealed
that MLLMs outperformed vision language models in context-aware emotion recognition
tasks using the EMOTIC dataset [96], which contains contextually rich images annotated
with 26 emotion categories. While vision language models like CLIP [97] are effective at
detecting immediately visible characteristics such as facial expressions, body postures, and
activities, they fail to reason about the underlying causal relationships of these contextual
data for emotion inferences. In contrast, MLLMs like LLaVA [25] not only identify these
visible characteristics but also integrate and capture the complex relationships among these
contextual cues for emotion inferences. For instance, while CLIP may perceive “raising
arms” as signifying “surprise” and “fear”, MLLMs may reason that this body posture
actually reflects “happiness” and “excitement” given the context of skiing. This empirical
evidence supports the practical utility of MLLMs for affective research, which can further
improve our understanding of how naturalistic emotions manifest in real-life scenarios by
considering contextual variability.

Furthermore, the contextual reasoning generated from MLLMs can complement the
results obtained from FER toolboxes to produce context-aware emotion inferences, which
are more robust and insightful than simply analyzing the face alone. This is particularly
important for accurately identifying and interpreting complex or vague expressions that
convey mixed emotional signals such as sarcasm and Schadenfreude indicated by the
incongruence between facial behaviors and contexts (e.g., a polite smile accompanied
by sarcastic statements [98]). More importantly, future studies can utilize MLLMs and
FER toolboxes for examining the relationship between different types of contexts and
facial expressions. Past research by Cowen et al. [14] has utilized sophisticated DNNs to
automatically classify facial expressions and contexts from over millions of videos sourced
from the Internet. They found that sixteen types of facial expressions consistently occur
in specific contexts, suggesting substantial contextual dependence on facial expressions.
Nevertheless, in this study, the DNN models for context classification could only predict
the topics of videos. For instance, a context like “the bride dressed in a gown dancing with
the groom dressed in a suit in a banquet hall filled with tables and wine glasses” may be
simplified into a label like “wedding”. This may lead to the oversimplification of contextual
variability that could significantly alter emotion perception. A small object shown in the
wedding context, such as a gun, may completely shift the emotion perception from “joy”
to “fear”. Therefore, future studies are encouraged to utilize MLLMs to generate detailed
context descriptions, as illustrated in Figure 1, to fully examine the complex relationships
between facial expressions and contextual variability. In this way, researchers can not
only leverage contextual information for inferring the emotional states of naturalistic
expressions but also utilize facial information to guide the prediction of situational contexts
(e.g., appeasement smile indicating submissive contexts [99]).
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Figure 1. Contextualized emotion inferences generated from LLaVA-7B [25] (image from OASIS [100]).
Temperature is set to zero for reproducible response; note that the model can identify the association
between the emotion of “excitement” and the activity of “swing through the air”, but it mistakenly
describes the person as wearing a black helmet. Prompt: “Describe the image? What emotions can be
inferred based on the context?”. LLaVA-7B: “The image features a woman wearing an orange vest
and a black helmet, hanging from a rope or wire. She appears to be enjoying herself as she swings
through the air, possibly on a rope swing or a zip line. The woman’s smile and the fact that she is
wearing a helmet suggest that she is having a fun and adventurous time. The scene conveys a sense
of excitement and joy, as the woman embraces the thrill of the activity.”

3.2. MLLMs as Generalizable FER Toolboxes

Several technical reports have documented the impressive human-level capabilities
of MLLMs for analyzing facial expressions [24]. Researchers can conduct FER tasks using
MLLMs with a simple query “What is the facial expression?” MLLMs can detect emotions
from facial expressions and can generalize well to unseen data because MLLMs are de-
veloped to address a diverse range of tasks. MLLMs can also analyze a wide spectrum
of emotion categories based on natural language processing, which allows researchers to
capture more nuanced emotions (e.g., awe, shame, emotional suppression, etc. [24]). By
contrast, prior emotion models have typically been programmed to predict a limited set
of basic emotions, which restrict their potential applications in more generalized domains
(e.g., monitoring student engagement in the classroom or pain in the ICU). MLLMs can
also provide multiple emotion labels for comprehensive descriptions of complex emotional
states. Such responses are more aligned with the human perception of facial expressions
that have been conceptualized as a manifold representation of varying degrees of emotions
(e.g., a face may be perceived as 51% anger and 49% disgust [101]). In comparison, most
existing emotion models rely on majority voting to determine the single most representa-
tive label [102]. Although such approaches may enhance the overall reliability of emotion
prediction, they may exclude other relevant but less dominant emotions and fail to detect
compound emotions [103]. Moreover, unlike prior works that mainly focus on emotion
prediction, MLLMs can take a further step to provide reasonable explanations of the facial
features being used for emotion inferences (see Figure 2, for example). For instance, after
inferring a facial image as showing “fear” or “anxiety”, GPT-4V can offer detailed descrip-
tions of the visual cues to interpret these emotional states (e.g., “wide-open eyes” revealing
“a sense of shock or surprise” and “hands covering the mouth” indicating “suppressing
scream” [24]). It can also modify its emotional inferences based on hand gestures, which
are often ignored or treated as facial occlusion by existing FER toolboxes. Furthermore,
Lian et al. [93] examined the performance of several MLLMs, including Video-LLaMA [91],
PandaGPT [92], and Valley [104], for generating explainable emotional inferences from a
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subset of the MER2023 dataset [105] comprising dynamic facial expressions sourced from
the Internet. Specifically, they evaluated the abilities of MLLMs to identify emotion-related
cues (e.g., “lifted eyebrows”, “smiling face”, etc.) and predict emotional states (e.g., “happi-
ness”) based on the identified cues. In addition, the plausibility of the emotion reasoning
process was validated by human observers. Valley consistently achieved the best perfor-
mance, with 72.1% accuracy in identifying emotion-related cues and 57.8% accuracy in
predicting emotional states. It should be noted that the paper did not report the base rates
for emotion prediction, and the authors used ChatGPT to relabel more subtle emotions, go-
ing beyond the original labels introduced in MER2023 as a baseline. The emotion reasoning
process demonstrated by Valley also aligned most closely with human perception, receiving
a plausibility score of 65.0%. This study provides empirical evidence demonstrating the ca-
pabilities of MLLMs in identifying explainable cues for emotion inferences, which supports
their potential utility in FER research. However, further efforts are required to improve the
model’s performance. With the enhanced interpretability of emotion recognition processes,
FER researchers can be more confident in asserting the psychological states of naturalistic
expressions, thereby achieving greater reliability and specificity.

 
Figure 2. Explainable facial expression recognition generated from LLaVA-7B [25] (image from
OASIS [100]). Temperature is set to zero for reproducible response. Prompt: “What emotions are
shown on the baby’s face? What specific facial cues are used to infer the emotions?” LLaVA-7B:
“The baby’s face shows a mix of emotions, including sadness, fear, and possibly discomfort. The
baby’s facial cues include a frowning expression, tears in the eyes, and a slightly puckered mouth.
These cues suggest that the baby is experiencing negative emotions or discomfort, possibly due to the
situation or the environment around them”.

3.3. Adaptability of MLLMs for Different Emotion Recognition Tasks

MLLMs have strong adaptation capabilities for more challenging emotion recognition
tasks through few-shot in-context learning (ICL). Few-shot ICL refers to the ability to
quickly adapt to novel tasks given a short instruction and few examples without fine-tuning
the models and abundant labeled data. After few-shot ICL, MLLMs such as Flamingo [106]
can outperform some of the SOTA contrastive models [97] despite using only around 30 task-
specific examples, which are about 1000 times fewer data inputs required for fine-tuning
the models. There are numerous potential applications of few-shot ICL for naturalistic
affective research such as the classification of nuanced emotion categories. For instance,
several large-scale datasets contain a broad spectrum of facial behaviors captured in the
wild, which present new opportunities for investigating the complexity and variability of
emotional experiences and their underlying psychosocial processes in real-life scenarios.
However, many of these datasets are only annotated with a few emotion classes, which
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limits their potential utilization in affective research. With the advanced ICL functionality,
researchers can further exploit these datasets by applying MLLMs to identify new emotion
categories for a more fine-grained analysis of human emotions [93]. Specifically, FER
researchers can provide a few demonstration examples of facial expressions categorized
by specific emotions in the format of image–test or video–text pairs to extrapolate to new
emotion recognition tasks with a visual query such as “identify the images that display
the same facial expression illustrated in the above examples”. This approach may enable
FER researchers to evaluate more specific and contextualized expressions in the wild
that may not be accounted for by the limited set of expressions detected by existing FER
toolboxes. This could also pave the way for examining the assumptions of various emotion
theories, e.g., appraisal theories [107], the theory of constructed emotions [82], and the
behavioral ecology view [108]. Coupled with ICL techniques, researchers can also examine
if facial expressions produced in laboratory settings generalize to naturalistic contexts,
thereby gaining deeper insights into the ecological validity of these facial displays and their
potential implications in real-world situations. Unfortunately, to the best of our knowledge,
in-context learning tailored specifically for FER tasks has not received much empirical
attention. Future studies should leverage the intriguing emergent ability to further advance
the field of naturalistic affective science.

3.4. Limitations of MLLMs

While MLLMs have the potential to revolutionize the domain of FER research, it is
essential to acknowledge their limitations and work toward addressing them. For facial
behavior analysis, it is unclear whether MLLMs can provide FACS-like inferences [26] that
are precise enough for accurate facial behavior analysis. It is important to test if MLLMs
can capture the variations in facial parameters [109] and distinguish the subtle differences
between various types of facial behaviors [110]. For instance, smiles can be characterized
by different facial configurations such as Duchenne smiles (e.g., AU6 + 12), “selfie smiles”
(e.g., AU13), or “miserable” smiles (e.g., AU12 + 14 or 12 + 15), which are associated
with distinct psychological states [111]. Further empirical investigation is required to
systematically examine the similarity between the facial behaviors described by MLLMs
and the facial AUs detected by FER toolboxes, as well as explore methods to fine-tune the
models to achieve comparable or superior results. Before such empirical testing is carried
out, it is recommended to incorporate both MLLMs and FER toolboxes for fine-grained
facial behavior analyses. In addition, it remains unclear to what extent the contextual
perception of MLLMs aligns with human perception in terms of emotion inferences [93,112].
It is possible that contextualized emotion inferences may be biased by random noise in
the context. Variability also exists in the susceptibility to contextual influences among
individuals [113], as evidenced in the case of depressed individuals who often exhibit
facial responses insensitive to contextual cues [114]. Therefore, it is critical to formulate
theories and models to elucidate the mechanisms underlying the integration of contextual
information during the process of facial expression recognition [115]. Finally, it is crucial
to acknowledge that despite an extensive search for empirical evidence across various
domains, some arguments concerning MLLMs remain hypothetical, particularly regarding
their adaptability, as discussed in Section 3.3. Although MLLMs have demonstrated
promising capabilities in addressing numerous important research questions in affective
science, as illustrated in Sections 3.1 and 3.2, they are still in the early phases of development,
awaiting further improvement. Further empirical research is required to explore the
versatility of MLLMs for emotion recognition tasks, thereby bridging the gap between their
potential applications and practical implementation.

4. Conclusions

In this review, we have provided an overview of publicly accessible and user-friendly
FER toolboxes for robust facial analyses under unconstrained conditions and an intro-
duction to the potential applications of MLLMs to further advance the field of affective

193



Sensors 2024, 24, 126

science. However, it is important to emphasize that most of these techniques have only
been recently developed. Additional empirical investigations are needed to validate their
practical utility across various domains and further improve their performance. Future
studies are encouraged to utilize these sophisticated techniques to expand our knowledge
of naturalistic facial expressions and develop contextualized emotion models to achieve a
comprehensive understanding of emotional experiences in the real world [116].

Author Contributions: Conceptualization, Y.B. and E.G.K.; writing—original draft preparation, Y.B.,
D.K., H.L. and E.G.K.; writing—review and editing, Y.B. and E.G.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Dupré, D.; Krumhuber, E.G.; Küster, D.; McKeown, G.J. A performance comparison of eight commercially available automatic
classifiers for facial affect recognition. PLoS ONE 2020, 15, e0231968. [CrossRef] [PubMed]

2. Krumhuber, E.G.; Küster, D.; Namba, S.; Skora, L. Human and machine validation of 14 databases of dynamic facial expressions.
Behav. Res. Methods 2021, 53, 686–701. [CrossRef] [PubMed]

3. Lucey, P.; Cohn, J.F.; Prkachin, K.M.; Solomon, P.E.; Matthews, I. Painful data: The UNBC-McMaster shoulder pain expression
archive database. In Proceedings of the 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG), Santa
Barbara, CA, USA, 21–23 March 2011; pp. 57–64.

4. Chang, C.Y.; Tsai, J.S.; Wang, C.J.; Chung, P.C. Emotion recognition with consideration of facial expression and physiological
signals. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology,
Nashville, TN, USA, 30 March–2 April 2009; pp. 278–283.

5. Biel, J.I.; Teijeiro-Mosquera, L.; Gatica-Perez, D. Facetube: Predicting personality from facial expressions of emotion in online
conversational video. In Proceedings of the 14th ACM International Conference on Multimodal Interaction 2012, Santa Monica,
CA, USA, 22–26 October 2012; pp. 53–56.

6. Fisher, H.; Reiss, P.T.; Atias, D.; Malka, M.; Shahar, B.; Shamay-Tsoory, S.; Zilcha-Mano, S. Facing Emotions: Between- and Within-
Sessions Changes in Facial Expression During Psychological Treatment for Depression. Clin. Psychol. Sci. 2023, 21677026231195793.
[CrossRef]

7. Küster, D.; Steinert, L.; Baker, M.; Bhardwaj, N.; Krumhuber, E.G. Teardrops on my face: Automatic weeping detection from
nonverbal behavior. IEEE Trans. Affect. Comput. 2022, in press. [CrossRef]

8. Krumhuber, E.G.; Skora, L.I.; Hill, H.C.H.; Lander, K. The role of facial movements in emotion recognition. Nat. Rev. Psychol.
2023, 2, 283–296. [CrossRef]

9. Lin, C.; Bulls, L.S.; Tepfer, L.J.; Vyas, A.D.; Thornton, M.A. Advancing naturalistic affective science with deep learning. Affect. Sci.
2023, 4, 550–562. [CrossRef] [PubMed]

10. Ren, Z.; Ortega, J.; Wang, Y.; Chen, Z.; Whitney, D.; Guo, Y.; Yu, S.X. VEATIC: Video-based Emotion and Affect Tracking in
Context Dataset. arXiv 2023, arXiv:2309.06745.

11. Siddiqui, M.F.H.; Dhakal, P.; Yang, X.; Javaid, A.Y. A survey on databases for multimodal emotion recognition and an introduction
to the VIRI (visible and InfraRed image) database. Multimodal Technol. Interact. 2022, 6, 47. [CrossRef]

12. Guerdelli, H.; Ferrari, C.; Barhoumi, W.; Ghazouani, H.; Berretti, S. Macro-and micro-expressions facial datasets: A survey. Sensors
2022, 22, 1524. [CrossRef]

13. Weber, R.; Soladié, C.; Séguier, R. A Survey on Databases for Facial Expression Analysis. In Proceedings of the 13th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018), Madeira,
Portugal, 27–29 January 2018; pp. 73–84.

14. Cowen, A.S.; Keltner, D.; Schroff, F.; Jou, B.; Adam, H.; Prasad, G. Sixteen facial expressions occur in similar contexts worldwide.
Nature 2021, 589, 251–257. [CrossRef]

15. Zhu, Q.; Mao, Q.; Jia, H.; Noi, O.E.N.; Tu, J. Convolutional relation network for facial expression recognition in the wild with
few-shot learning. Expert Syst. Appl. 2022, 189, 116046. [CrossRef]

16. Srinivasan, R.; Martinez, A.M. Cross-cultural and cultural-specific production and perception of facial expressions of emotion in
the wild. IEEE Trans. Affect. Comput. 2018, 12, 707–721. [CrossRef]

194



Sensors 2024, 24, 126

17. Dhall, A.; Goecke, R.; Joshi, J.; Wagner, M.; Gedeon, T. Emotion recognition in the wild challenge 2013. In Proceedings of the 15th
ACM on International Conference on Multimodal Interaction 2013, Sydney, Australia, 9–13 December 2013; pp. 509–516.

18. Barrett, L.F. Context reconsidered: Complex signal ensembles, relational meaning, and population thinking in psychological
science. Am. Psychol. 2022, 77, 894. [CrossRef] [PubMed]

19. Baltrusaitis, T.; Zadeh, A.; Lim, Y.C.; Morency, L.P. Openface 2.0: Facial behavior analysis toolkit. In Proceedings of the 2018 13th
IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp. 59–66.

20. Bishay, M.; Preston, K.; Strafuss, M.; Page, G.; Turcot, J.; Mavadati, M. Affdex 2.0: A real-time facial expression analysis toolkit. In
Proceedings of the 2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG), Waikoloa Beach,
HI, USA, 5–8 January 2023; pp. 1–8.

21. Cheong, J.H.; Jolly, E.; Xie, T.; Byrne, S.; Kenney, M.; Chang, L.J. Py-feat: Python facial expression analysis toolbox. In Affective
Science; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–16.

22. Chang, D.; Yin, Y.; Li, Z.; Tran, M.; Soleymani, M. LibreFace: An Open-Source Toolkit for Deep Facial Expression Analysis. arXiv
2023, arXiv:2308.10713.

23. Hinduja, S.; Ertugrul, I.O.; Cohn, J.F. PyAFAR: Python-Based Automated Facial Action Recognition for Use in Infants and Adults.
2023. Available online: https://www.jeffcohn.net/wp-content/uploads/2023/08/ACII_2023_paper_242-2.pdf (accessed on 29
November 2023).

24. Yang, Z.; Li, L.; Lin, K.; Wang, J.; Lin, C.C.; Liu, Z.; Wang, L. The dawn of lmms: Preliminary explorations with gpt-4v (ision).
arXiv 2023, arXiv:2309.17421.

25. Liu, H.; Li, C.; Li, Y.; Lee, Y.J. Improved Baselines with Visual Instruction Tuning. arXiv 2023, arXiv:2310.03744.
26. Ekman, P.; Friesen, W.V. Facial Action Coding System. Environmental Psychology & Nonverbal Behavior. 1978. Available online:

https://www.paulekman.com/facial-action-coding-system/ (accessed on 29 November 2023).
27. Karnati, M.; Seal, A.; Bhattacharjee, D.; Yazidi, A.; Krejcar, O. Understanding deep learning techniques for recognition of human

emotions using facial expressions: A comprehensive survey. IEEE Trans. Instrum. Meas. 2023, 72, 5006631.
28. Sajjad, M.; Ullah, F.U.M.; Ullah, M.; Christodoulou, G.; Cheikh, F.A.; Hijji, M.; Muhammad, K.; Rodrigues, J.J. A comprehensive

survey on deep facial expression recognition: Challenges, applications, and future guidelines. Alex. Eng. J. 2023, 68, 817–840.
[CrossRef]

29. Li, S.; Deng, W. A deeper look at facial expression dataset bias. IEEE Trans. Affect. Comput. 2020, 13, 881–893. [CrossRef]
30. Georgescu, M.I.; Ionescu, R.T.; Popescu, M. Local learning with deep and handcrafted features for facial expression recognition.

IEEE Access 2019, 7, 64827–64836. [CrossRef]
31. Hasani, B.; Mahoor, M.H. Spatio-temporal facial expression recognition using convolutional neural networks and conditional

random fields. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG
2017), Washington, DC, USA, 30 May–3 June 2017; pp. 790–795.

32. Mollahosseini, A.; Chan, D.; Mahoor, M.H. Going deeper in facial expression recognition using deep neural networks. In
Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10
March 2016; pp. 1–10.

33. Büdenbender, B.; Höfling, T.T.; Gerdes, A.B.; Alpers, G.W. Training machine learning algorithms for automatic facial coding: The
role of emotional facial expressions’ prototypicality. PLoS ONE 2023, 18, e0281309. [CrossRef]

34. Cohn, J.F.; Ertugrul, I.O.; Chu, W.S.; Girard, J.M.; Jeni, L.A.; Hammal, Z. Affective facial computing: Generalizability across
domains. In Multimodal Behavior Analysis in the Wild; Academic Press: Cambridge, MA, USA, 2019; pp. 407–441.

35. Zhao, K.; Chu, W.S.; Zhang, H. Deep region and multi-label learning for facial action unit detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3391–3399.

36. Namba, S.; Sato, W.; Osumi, M.; Shimokawa, K. Assessing automated facial action unit detection systems for analyzing cross-
domain facial expression databases. Sensors 2021, 21, 4222. [CrossRef] [PubMed]

37. Baltrušaitis, T.; Robinson, P.; Morency, L.P. Openface: An open source facial behavior analysis toolkit. In Proceedings of the 2016
IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 10 March 2016; pp. 1–10.
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