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This Special Issue, titled “Gels for Oil and Gas Industry Applications (2nd Edition)”, features a
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Article

A Supramolecular Reinforced Gel Fracturing Fluid with Low
Permeability Damage Applied in Deep Reservoir
Hydraulic Fracturing
Yongping Huang 1,2, Xinlong Yao 1,2, Caili Dai 1,2,*, Yining Wu 1,2 , Lin Li 2 and Bin Yuan 2,*
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2 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China;
lilin@upc.edu.cn
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Abstract: Gel fracturing fluid is the optimum fracturing fluid for proppant suspension, which is
commonly applied in deep reservoir hydraulic fracturing. The content of polymers and crosslinkers
in gel fracturing fluid is usually high to meet the needs of high-temperature resistance, leading
to high costs and reservoir permeability damage caused by incomplete gel-breaking. In this pa-
per, a supramolecular reinforced gel (SRG) fracturing fluid was constructed by strengthening the
supramolecular force between polymers. Compared with single network gel (SNG) fracturing fluid,
SRG fracturing fluid could possess high elasticity modulus (G′ = 12.20 Pa) at lower polymer (0.4 wt%)
and crosslinker (0.1 wt%) concentrations. The final viscosity of SRG fracturing fluid was 72.35 mPa·s,
meeting the temperature resistance requirement of gel fracturing fluid at 200 ◦C. The gel-breaking
time could be extended to 90–120 min using an encapsulated gel breaker. Gel particles are formed
after the gel fracturing fluid is broken. The median particle size of gel particles in the SRG-breaking
solution was 126 nm, which was much smaller than that in the industrial gel (IDG) breaking fluid
(587 nm). The damage of the SRG-breaking solution to the core permeability was much less than the
IDG-breaking solution. The permeability damage of cores caused by the SRG-breaking solutions was
only about half that of IDG-breaking solutions at 1 mD.

Keywords: supramolecular reinforced gel; gel fracturing fluid; deep reservoir; gel-breaking solution;
low permeability damage

1. Introduction

The development of conventional oil and gas reservoirs has gradually entered the
middle or late period [1–4]. How to efficiently develop deep reservoirs with abundant
reserves attracts the interest of researchers [5–7]. The buried depth of the deep reservoir
determines that most of its permeability is low, and the process of oil or gas gathering to the
bottom of the well will be subject to great flow resistance [8,9]. As a result, the production
of the well is low, which makes it difficult to reach the level of economic development.
Although some EOR methods, such as asphaltene control and nano flooding, can effectively
improve the recovery of low permeability reservoirs, hydraulic fracturing is an important
means to realize the efficient development of deep reservoirs [10–12]. An instantaneous
pressure higher than the formation fracture pressure is generated at the bottom of the well
by pumping fracturing fluid into the formation with a high flow rate during hydraulic
fracturing, forming many fracturing fractures [13,14]. The fracturing fluids then carry
proppant throughout the fracture, maintaining the high permeability of fractures after
the pressure is released. The flow resistance of oil or gas can be greatly reduced, and the
effective flow area of the oil or gas can be expanded after hydraulic fracturing [15].

Gels 2024, 10, 2. https://doi.org/10.3390/gels10010002 https://www.mdpi.com/journal/gels1
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Fracturing fluids play an important role in hydraulic fracturing. Their main role is to
transfer pressure and carry proppant [16]. Compared with slick water fracturing fluid [17], vis-
cous water fracturing fluid [18], and viscoelastic surfactant fracturing fluid [19,20], gel fracturing
fluid is considered to be the strongest water-based fracturing fluid for proppant suspension
under high temperatures [21]. Guar gum fracturing fluid is the most widely used among
gel fracturing fluids, which is mainly crosslinked using boron crosslinker [22]. High temper-
atures, some of which can be higher than 180 ◦C, are common in deep reservoirs. Neither
the glucoside bond of the guar gum nor the boron crosslinker can be stabilized at such
high temperatures [23,24]. Currently, polyacrylamide-based gels are mainly used to replace
guar gum to solve the problem of high-temperature resistance (>180 ◦C) of gel fracturing
fluid. Polyacrylamide-based gels are usually formed by crosslinking a polyacrylamide-
based polymer with a transition metal crosslinker (Zr-crosslinker or Ti-crosslinker) [25,26].
Generally, the monomer containing the sulfonic acid group is added to the polyacrylamide
to improve the temperature and salt resistance of the polymer, and the cyclic monomer is
added to improve the thermal stability of the polymer at high temperatures [27].

Although polyacrylamide-based gels have been able to meet the high-temperature
resistance requirements of most fracturing fluids applied in deep reservoirs, the content of
polymers and crosslinkers in the gels is generally high in this condition. The high content
of polymers and crosslinkers will lead to high costs and incomplete gel-breaking [28]. The
permeability damage to the reservoir caused by incomplete gel-breaking will be a problem,
which will significantly reduce the effectiveness of deep reservoir fracturing [29,30]. Therefore,
it is very important to develop a fracturing fluid with high-temperature resistance and low
permeability damage for deep reservoir hydraulic fracturing [31].

Incomplete gel-breaking is due to the high density of crosslinking bonds and tight
network structure of gels containing high polymer and crosslinker. Therefore, the key to
solving the above problems is to reduce the density of crosslinking bonds without reducing
the gel strength. The bond energy of supramolecular forces such as hydrogen bonding,
electrostatic interaction, and hydrophobic interaction is much higher than the van der
Waals force, which has been widely used in the research and development of hydrogels
in recent years [32–34]. Therefore, it is feasible to reduce the content of crosslinker by
strengthening the supramolecular interaction between polymers to replace some crosslink-
ing bonds [35]. In this paper, a supramolecular reinforced gel fracturing fluid is constructed
by introducing functional groups with supramolecular forces into polymers, which possess
high-temperature resistance and low reservoir permeability damage after gel-breaking.
The research in this paper will provide new insights and theoretical guidance for the
development and application of gel fracturing fluids in deep reservoir hydraulic fracturing.

2. Results and Discussion
2.1. Rheological Properties of Gel Fracturing Fluid

The main function of gel fracturing fluid is to suspend and transport proppant during
the hydraulic fracturing process. However, the high-strength gel fracturing fluid is needed
for gel fracturing fluid. The modulus is an important property in judging the strength
of the gel fracturing fluid [36,37]. Therefore, the strength of gel fracturing fluid was
determined by comparing the modulus of the single network gel (SNG) fracturing fluid
and supramolecular reinforced gel (SRG) fracturing fluid. The viscoelastic modulus of SNG
(0.4 wt% polymers) fracturing fluid with different concentrations of crosslinkers is shown
in Figure 1. The elastic modulus (G′) and viscous modulus (G′′) of the SNG fracturing
fluid increased with the acceleration of oscillation frequency (Figure 1a,b) [38]. The G′

increased significantly due to the crosslinking network structure of the SNG fracturing
fluid becoming tighter with the increase in Zr-crosslinker concentration, but the G′′ was
unchanged. The G′′ was the highest, achieving 5.15 Pa when the concentration of Zr-
crosslinker was 1.0 wt% (Figure 1c). Compared to 0.4 wt%, the G′ and G′′ were greatly
improved when the polymer concentration was increased to 0.6 wt%. Similarly, the G′

and the G′′ also increased with the acceleration of the oscillation frequency (Figure 2a,b).

2



Gels 2024, 10, 2

Although the G′ of the SNG fracturing fluid increased with the increase in the crosslinker
concentration, the G′′ decreased. When the concentration of the Zr-crosslinker was 1.0 wt%,
the G′ reached 6.91 Pa (Figure 2c).
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The G′ and G′′ of SRG fracturing fluid are shown in Figure 3. Both the G′ (Figure 3a)
and G′′ (Figure 3b) increased with the increase in the oscillation frequency, except that the
G′′ increased at low frequencies when the concentration of Zr-crosslinker was 0.2 wt% and
0.3 wt% [24,25]. Unlike SNG fracturing fluid, SRG fracturing fluid could form high-strength
gels at lower Zr-crosslinker concentrations. When the concentration of the crosslinker
was 0.04 wt%, the G′ was 6.20 Pa. The G′ reached the maximum (16.80 Pa) at 0.2 wt% Zr-
crosslinker and then decreased to 12.57 Pa when the Zr-crosslinker increased to 0.3 wt% [23].
The high G′ of SRG fracturing fluid at a lower Zr-crosslinker concentration was due to
the network structure formed by the supramolecular interaction between the polymers;
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however, whether the shear viscosity could be maintained at a high temperature needed
further demonstration.
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2.2. Shear Resistance of Gel Fracturing Fluid at High Temperatures

As could be seen from Figure 3c, when the Zr-crosslinker was 0.1 wt%, the G′ of SRG
fracturing fluid reached 12.20 Pa (>10 Pa). Therefore, the concentration of Zr-crosslinker
was fixed at 0.1 wt% to conduct the shear experiment at high temperatures, and then it was
judged whether the SRG fracturing fluid could meet the high-temperature requirements of
deep hydraulic fracturing. The experimental results of shear viscosity at high temperatures
are shown in Figure 4. As can be seen from Figure 4, the viscosity stabilized at about
600 mPa·s after the initial shear. During this period, the viscosity did not change with
the increase in temperature. When the temperature exceeded 100 ◦C, the viscosity began
to decrease, and the viscosity dropped to 197.8 mPa·s as the temperature reached 200 ◦C.
The viscosity eventually stabilized at 72.35 mPa·s as the shear time continued to 2 h. The
criterion of gel fracturing fluid is that the viscosity is greater than 50 mPa·s [25,27]. The final
viscosity was sufficient to meet the proppant suspension performance of the gel fracturing
fluid, so SRG fracturing fluid fully meets the need for temperature resistance of the gel
fracturing fluid applied in deep reservoir hydraulic fracturing.

2.3. Gel-Breaking Properties of Gel Fracturing Fluid

Compared with oxidative-breaking agents such as ammonium persulfate (APS), the
encapsulated gel-breaker was beneficial in delaying the rapid degradation of the gel frac-
turing fluid at high temperatures [39]. The gel-breaker was selected, and the properties
of the gel-breaking solution were explored in this section. The conductivity of different
gel-breaker solutions is shown in Figure 5. The encapsulated gel-breaker (Capsule-A and
Capsule-B) was mainly composed of a gel-breaker wrapped in the capsule. The release
of the gel-breaker from the capsule could be judged by the conductivity [40]. It could be
seen from Figure 5a that the conductivity of the three gel-breakers (APS, Capsule-A, and
Capsule-B) did not change with the increase in soaking time at 25 ◦C. The conductivities
of APS, Capsule-A, and Capsule-B were 1131 µS/cm, 67.5 µS/cm, and 20.85 µS/cm at
600 min, respectively (Figure 5b), indicating that Capsule-A and Capsule-B did not re-
lease the gel-breaker. The conductivity of Capsule-A solution at different temperatures
is shown in Figure 5c. There was a small increase in conductivity at the initial moment
when the temperature was 60 ◦C or 90 ◦C. The conductivity increased with the extension of
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soaking time. A rapid increase in conductivity occurred at 420 min when the temperature
was 60 ◦C, meaning that Capsule-A began to release a large amount of gel-breaker at
this moment. The release time was reduced to 240 min when the temperature increased
to 90 ◦C, indicating that the release rate of Capsule-A accelerated with the increase in
temperature. The conductivity trend of Capsule-B was similar to that of Capsule-A, as
shown in Figure 5d. The difference was that the conductivity of Capsule-B had not a rapid
increase in conductivity at 60 ◦C, and the increased amplitude was much smaller than that
of Capsule-A. However, the rapid increase in conductivity also occurred at 240 min when
the temperature was increased to 90 ◦C. From the above experiments, it could be concluded
that the conductivity of the encapsulated gel-breaker solution would increase with the
increase in time and temperature, which meant that the release rate of the gel-breaker in
the capsule was affected by temperature and soaking time. The higher the temperature,
the faster the dissolution rate of the surface of the capsule. Therefore, the magnitude of
the conductivity is controlled by temperature [41]. Capsule-B has a longer delay time
than Capsule-A under the same amount of gel-breaker release. Therefore, Capsule-B was
selected as the gel-breaker to conduct the following gel-breaking experiment.
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It could be seen from the conductivity experiment that Capsule-A and Capsule-B both
had the property of delaying the release of the gel-breaker, but the mode of the delaying
release needed further research. The micro-morphology of Capsule-A is shown in Figure 6.
The Capsule-A with untreated and soaked in water at 25 ◦C are shown in Figure 6a,b.
No cracks were observed on the surface of the capsules, but the difference was that the
surface of the untreated Capsule-A was relatively rough. The reason was that the surface
of Capsule-A might be attached to a small amount of gel-breaker, which could also explain
why Capsule-A would have a very small conductivity after immersion in water. Some tiny
cracks appeared on the surface of Capsule-A when the temperature was 60 ◦C, as shown in
Figure 6c, indicating that Capsule-A began to release the gel-breaker at 60 ◦C. When the
temperature increased to 90 ◦C, there were more cracks on the surface of Capsule-A, as
could be seen in Figure 6d, and the width of the cracks was wider, indicating that the release
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rate of the gel-breaker should be faster at 90 ◦C. The above conclusions were consistent
with those obtained in Figure 5c. The experiment showed that the surface of Capsule-A
would generate cracks after being soaked in high-temperature water and then releasing the
gel-breaker [41].
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The micro-morphology of Capsule-B is shown in Figure 7. There were no obvious
cracks or holes on the surface of Capsule-B that was untreated or soaked in 25 ◦C water,
as shown in Figure 7a,b. However, tiny holes were observed when the temperature was
60 ◦C (Figure 7c). It was found that some Capsule-B even had complete rupture, as shown
in Figure 7d, when the temperature increased to 90 ◦C. It could be concluded from the
experiment that the surface of Capsule-B gradually formed holes and might eventually
rupture to release the gel-breaker after being soaked in high-temperature water [42].
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The breaking time of the SRG fracturing fluid and IDG fracturing fluid under the
action of the APS or Capsule-B and the viscosity of the gel-breaking solution are seen in
Table 1. It could be seen from the results that the gel-breaking time of the two gel fracturing
fluids was about 30–60 min when the gel-breaker was APS. However, when the gel-breaker
was Capsule-B, the gel-breaking time of the two gel fracturing fluids was extended to
90–120 min. The gel-breaking time was related to the type of gel-breaker. Compared with
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APS, Capsule-B had a longer gel-breaking time and could avoid the too-quick degradation
of the gel fracturing fluid at 200 ◦C [43]. The viscosity of all the gel-breaking solutions was
less than 2 mPa·s, which could be observed from Table 1.

Table 1. Gel-breaking time of gel fracturing fluid under different gel-breakers.

Gel Fracturing Fluid Gel-Breaker Gel-Breaking Time/min The Viscosity of Gel-Breaking Solution/mPa·s
SRG APS 30–60 1.28
SRG Capsule-B 90–120 1.57
IDG APS 30–60 1.71
IDG Capsule-B 90–120 1.96

The gel-breaking solutions of the SRG fracturing fluid and industrial gel (IDG) fractur-
ing fluid under the action of Capsule-B were investigated. The viscosity of both gel-breaking
solutions was low, as can be seen in Figure 8a, which proves that the gels are all basically
broken. However, the particle size of the SRG-breaking solution was much smaller than
that of the IDG-breaking solution, as shown in Figure 8b. The distribution size of the
SRG-breaking solution and the IDG-breaking solution was 25~658 nm and 186~1814 nm,
respectively. The median particle size of the SRG-breaking solution was 126 nm, and the
median particle size of the IDG-breaking solution was 587 nm. The difference between
the two gel-breaking solutions was 4.66 times. The morphology of the two gel-breaking
solutions could be obtained by an atomic force microscope, as shown in Figure 8c,d. The
gel particles appeared in the solution after gel-breaking. Compared with the IDG-breaking
solution, the particle size of the SRG-breaking solution was smaller, which was consistent
with the result in Figure 8b. The above experiments showed that the SRG-breaking solution
containing smaller gel particles would be cleaner, which should be conducive to reducing
the permeability damage of the reservoir in hydraulic fracturing [44].

2.4. Reservoir Permeability Damage under Gel Fracturing Fluid

The damage of different gel-breaking solutions to the permeability of cores was
studied according to the diagram of the experimental device shown in 4.2.7, and the
results are shown in Table 2. It could be seen from the results that the permeability
damage of the cores increased with the decrease in the initial permeability of the two
gel-breaking solutions [45]. The permeability damage of 0.1-1, 1-1, and 10-1 was 13.22%,
9.7%, and 7.22%, respectively. The permeability damage of 0.1-2, 1-2, and 10-2 was 26.17%,
16.96%, and 11.04%, respectively. The average permeability damage was 10.05% for the
SRG-breaking solution and 18.06% for the IDG-breaking solution. The lower the core
permeability, the smaller the pore throat size. The gel particles contained in the gel-breaking
solutions would gather in the pore throat and lead to permeability damage. However,
the permeability damage of the cores under the SRG-breaking solutions was less than
that of the IDG-breaking solutions. The permeability damage of the cores caused by the
SRG-breaking solutions was only about half that of the IDG-breaking solutions at 1 mD.
The gel particle size in the SRG-breaking solutions was much smaller than that of the
IDG-breaking solutions. The larger the gel particle size was, the more likely it was to
damage the core permeability [46].
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Table 2. Permeability damage under different gel-breaking solutions.

Core Label Gel-Breaking Solution Permeability K1/mD Permeability K2/mD Permeability Damage, η/%

0.1-1 SRG 0.121 0.105 13.22
1-1 SRG 1.691 1.527 9.70

10-1 SRG 10.983 10.190 7.22
0.1-2 IDG 0.107 0.079 26.17
1-2 IDG 1.834 1.523 16.96

10-0 IDG 9.511 8.461 11.04

The surface morphology inside the cores after the permeability damage test in Table 2
was observed using SEM, and the results are shown in Figure 9. The surfaces of core
10-1 and core 1-1 were clean, and a small amount of debris could be seen in core 0.1-1,
respectively, indicating that the SRG-breaking solution only had obvious damage to core
0.1-1. A certain amount of debris accumulated at the surface of core 0.1-2, core 1-2, and core
10-2, respectively, and more debris was observed with the decrease in core permeability,
indicating that the IDG-breaking solution had obvious damage to the permeability of the
three cores. It could also be concluded that the damage of the SRG-breaking solution
to the core permeability was much lower than that of the IDG-breaking solution. The
concentration of the polymer and crosslinker contained in the SRG was lower than that of
IDG, and the gel particles after gel-breaking were smaller in size, so there was less damage
to the core permeability. Low permeability damage would contribute to the conductivity of
the fractured fractures [28].
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3. Conclusions

In this study, an SRG fracturing fluid was constructed for deep hydraulic fracturing.
Compared to the SNG fracturing fluid, the SRG fracturing fluid could obtain higher G′

under lower concentrations of polymer and crosslinker. The network structure formed by
the interaction of supramolecular forces between polymers in the SRG replaced the part
network structure formed by the crosslinkers. The viscosity of the SRG fracturing fluid
after 2 h shearing at 200 ◦C was 72.35 mPa·s, indicating that it could effectively suspend
proppant at 200 ◦C. Capsule-B did not release the gel-breaker at room temperature. Small
holes were gradually formed on the surface of Capsule-B, and some Capsule-B completely
ruptured to release the gel-breaker with the increase in temperature. The gel-breaking time
of the gel fracturing fluid could be delayed to 90–120 min at 200 ◦C, avoiding too-quick
degradation of gel fracturing fluid. The distribution size of the SRG-breaking solution and
the IDG-breaking solution was 25~658 nm and 186~1814 nm, respectively. The median
size of the gel particles in the SRG-breaking solution was 126 nm, which was 0.21 times
that of the gel particles in the IDG-breaking solution. The smaller particle size of the gel
particles in the gel-breaking solution might cause less damage to the reservoir permeability.
The permeability damage of cores under the SRG-breaking solution only occurred signally
at very low core permeability, and the damage to permeability was much less than that
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of the IDG-breaking solution. In summary, the SRG-fracturing fluid could maintain the
temperature and shear resistance under low polymer and crosslinker concentrations, which
also contributed to lower reservoir permeability damage. The novelty of this paper is
obtaining a clean solution after the high-strength gel is broken. The gap is that the gel-
breaking time is still short at high temperatures, even with the encapsulated gel-breaker.

4. Materials and Methods
4.1. Materials

The polymers used in this paper are all polyacrylamide-based. Polymer A and polymer
B are provided by our laboratory. Chemical enterprises provided industrial polymers and
Zr-crosslinkers. Ammonium persulfate (APS) (>98%) was purchased from Sinopharm
Group Chemical Reagent Co., LTD, Shanghai, China. Deionized water was provided in
our laboratory. Encapsulated gel-breaker A (Capsule-A) was purchased from Dongying
Baiyang Petroleum Technology Co., LTD, Dongying, China. Encapsulated gel-breaker
B (Capsule-B) was provided by Beijing Shida Ode Technology Co., LTD, Beijing, China.
Cores with different permeability were purchased from Beijing Tiandi Kaiyuan Geological
Technology Co., LTD, Beijing, China.

4.2. Methods
4.2.1. Preparation of the Gel Fracturing Fluids

The composition and shortened form of gel fracturing fluids used in the paper are
shown in Table 3. The single network gel (SNG) and industrial gel (IDG) fracturing fluids
were formed by adding a Zr-crosslinker to a pre-prepared polymer solution and stirring.
To obtain a supramolecular reinforced gel (SRG) fracturing fluid, polymer A and polymer
B should be evenly mixed before adding the Zr-crosslinker. The polymer solution was
prepared with deionized water.

Table 3. The composition and shortened form of the gel fracturing fluids.

Gel Type Polymer Crosslinker Shortened Form

Supramolecular reinforced gel polymer A: polymer B = 2:1 Zr SRG
Single network gel Polymer A Zr SNG

Industrial gel Industrial polymer Zr IDG

4.2.2. Rheological Performance Test

All rheological performance tests were conducted using the HAKKE RS600B rheometer
(Thermo Hakke Corporation, Waltham, MA, America). A frosted plate module was used
for viscoelastic testing at 25 ◦C to obtain a stable value of the viscoelastic modulus. The
viscoelastic modulus of the gel fracturing fluids was obtained using frequency scanning.
The shear resistance of the gel fracturing fluids was tested using a drum module. The
temperature was gradually raised from 25 ◦C to 200 ◦C and then continued to shear for 2 h
at 170 s−1. Then, 2.75 MPa was pressurized to prevent evaporation before the experiment.

4.2.3. Conductivity Experiment

The three different kinds of gel-breakers were prepared into a 0.1 wt% solution. The
solution was placed in ovens at 25 ◦C, 60 ◦C, and 90 ◦C, respectively, and removed at
intervals for conductivity measurements. The conductivity of the solution was measured
using a conductivity meter (DDS-307, Shanghai Lei Magnetic Instrument Factory, Shanghai,
China). The probe of the conductivity meter was thoroughly cleaned with deionized water
before each measurement.

4.2.4. Micro-Morphology Experiment

Capsule-A and Capsule-B were immersed in water at 25 ◦C, 60 ◦C, and 90 ◦C for 24 h,
respectively. After most of the water was removed, it was frozen with liquid nitrogen for
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5 min and then placed in a freeze dryer (Scientz-10N, Ningbo Xinzhi Biotechnology Co.,
LTD, Ningbo, China) for freeze-drying. The cores of the permeability damage experiment
were freeze-dried according to the above steps. The surface structures of the capsules and
cores were characterized using scanning electron microscopy (SEM, instrument model:
JSM-7610F, magnification: 25–106 times, produced by Nippon Electronics, Showima City,
Tokyo, Japan).

4.2.5. Gel-Breaking Test

We added 0.001 wt% APS or 0.001 wt% Capsule-B into the prepared SRG fracturing
fluid and IDG fracturing fluid and evenly mixed them in a pressure bottle. The pressure
bottle was subsequently placed in the oven at 200 ◦C, and the time when the gel completely
broke was recorded as the breaking time.

4.2.6. Particle Size Measurement of Gel-Breaking Solution

After being set for 24 h, the particle size of the gel-breaking solution was measured us-
ing the Nano Brook Omni (Brookhaven Instruments Corporation, New York, NY, America).
The experimental temperature was 25 ◦C.

4.2.7. Permeability Damage Experiment

Six cores with different permeability (Table 2) were used in the reservoir damage
experiment, and the experimental diagram is shown in Figure 10. The green tank contained
the gel-breaking solution, and the yellow tank contained the brine solution (2.0 wt% KCl +
5.5 wt% NaCl + 0.45 wt% MgCl2 + 0.55 wt% CaCl2). We loaded the core into the core
holder and adjusted the confining pressure to 2.5 MPa. The brine solution was reversely
injected into the core at 0.1 mL/min flow rate to obtain a stable injection pressure P1. Then,
the gel-breaking solution was injected, and the pump was stopped to stabilize for 2 h.
Finally, the brine solution was reversely injected into the core at 0.1 mL/min flow rate to
obtain a stable injection pressure P2. The core permeability K1 and K2 corresponding to
injection pressure P1 and P2 were calculated using Darcy’s law, respectively. The formula
for calculating the reservoir permeability damage was as follows:

η =
K1 − K2

K1
× 100% (1)Gels 2023, 9, x FOR PEER REVIEW 13 of 15 
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Abstract: Filtrate reducer is a drilling fluid additive that can effectively control the filtration loss of
drilling fluid to ensure the safe and efficient exploitation of oilfields. It is the most widely used treatment
agent in oilfields. Due to its moderate conditions and controllable procedure, alkaline hydrolysis of
high-purity waste polyacrylonitrile has been utilized for decades to produce filtrate reducer on a large
scale in oilfields. However, the issues of long hydrolysis time, high viscosity of semi-finished products,
high drying cost, and tail gas pollution have constrained the development of the industry. In this study,
low-purity waste acrylic fiber was first separated and purified using high-temperature hydroplastization,
and the hydrolyzed product was obtained using alkaline hydrolysis with the micro-water method, which
was called MW−HPAN. The hydrolysis reaction was characterized using X-ray diffraction, scanning
electron microscopy, infrared spectroscopy, and thermogravimetric analysis, and the elemental analysis
showed a hydrolysis degree of 73.21%. The experimental results showed that after aging at 180 ◦C for
16 h, the filtration volume of the freshwater base slurry with 0.30% dosage and 4% brine base slurry
with 1.20% dosage was 12.7 mL and 18.5 mL, respectively. The microstructure and particle size analysis
of the drilling fluid gel system showed that MW−HPAN could prevent the agglomeration of clay and
maintain a reasonable particle size distribution even under the combined deteriorating effect of high
temperature and inorganic cations, thus forming a dense filter cake and achieving a low filtrate volume of
the drilling fluid gel system. Compared with similar commercially available products, MW−HPAN has
better resistance to temperature and salt in drilling fluid gel systems, and the novel preparation method
is promising to be extended to practical production.

Keywords: waste acrylic fiber; hydroplastization; micro-water method; alkaline hydrolysis; filtrate reducer

1. Introduction

The trend toward fast fashion and increased fiber consumption in the apparel industry
has led to more frequent iterations of apparel products and shorter life cycles for textiles,
generating large amounts of textile waste [1]. Textile waste is mainly generated during the
textile production process, as well as during the use and disposal by consumers, and has a
complex composition, being a mixture of different fibers, which is difficult to degrade in the
natural environment, and coarse landfilling and incineration will pollute the atmosphere [2].
At present, the global annual production of used textiles is more than 40 million tons, and
China’s annual production is more than 26 million tons, accounting for about 6% of the total
municipal solid waste [3,4]. However, due to the lack of a recycling system for used textiles
and public awareness of environmental protection, as well as the relative backwardness of
China’s recycling technology, the overall recycling rate of used textiles in China is less than
10% [5], which is far below the level of the most developed countries [6].
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Acrylic fiber is one of the most widely used textile raw materials due to its softness,
thermal stability, and other advantages. China’s acrylic fiber production ranks fourth
among synthetic fibers, accounting for about 0.79%, with an average annual production of
about 650,000 tons in the past ten years, in addition to more than 100,000 tons of imported
acrylic fiber products every year (data from the website of the National Bureau of Statistics
of China); thereby, a considerable amount of waste acrylic fiber is produced every year.
The main chemical composition of waste acrylic fibers is polyacrylonitrile, where the
polyacrylonitrile content varies from different sources. Waste acrylic fibers are difficult to
degrade and cannot be naturally degraded or thermoformed. The incineration of these
fibers produces toxic gases such as HCN and NH3, which pollute the environment. Under
the effect of acid, alkali, heat, and pressure, the hydrophobic cyano functional groups on
the polyacrylonitrile molecular chain with high chemical reactivity can be hydrolyzed to
generate amide and carboxyl groups to obtain functional polymer materials [7].

Hydrolyzed polyacrylonitrile products (HPAN) have been used as oilfield additives
for several decades, mainly as a filtrate reducer for drilling fluid gel systems. The raw
material for the preparation was changed from pure polyacrylonitrile to waste acrylic
fibers to reduce the cost, and alkaline hydrolyzed polyacrylonitrile was used for large-
scale industrial production due to the advantages of moderate conditions and controllable
process. Over the past sixty years, scientists have conducted a number of studies on the
mechanism underlying the alkaline hydrolysis reaction of polyacrylonitrile [8–13]. It is now
generally accepted that the alkaline hydrolysis of polyacrylonitrile produces six-membered
ring reaction intermediates (Figure 1) and that the properties of the hydrolysis products are
closely related to the hydrolysis degree.
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Solvents for the reaction of water-soluble polymers have a great effect on the efficiency
and stability of the reaction. Take the starch modification reaction as an example, many re-
search studies have been carried out in the field of the chemical modification of starch. Most
chemical modifications of starch, such as esterification and carboxymethylation, are wet modi-
fications, i.e., carried out in sufficient aqueous or organic solvents, including ethanol [15,16],
N,N-dimethylformamide [17], pyridine [18], etc. The aqueous solution reaction system has
the disadvantages of poor reaction efficiency, unstable product quality, and increasing side
reactions. The organic solvent method can improve the reaction efficiency, but the cost increases
and it is toxic and easily causes environmental pollution [19]. Scientists have developed dry
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and semi-dry starch modification methods on this basis [20–22]. Zhu et al. [23] investigated
the effect of different starch moistures on solvent-free esterification reactions. At low wa-
ter contents, the esterification reaction is difficult due to strong hydrogen bonding, whereas
at too high moisture, the degree of substitution and the efficiency of the reaction decrease
due to side reactions and dilution. Karic et al. [24] modified starch without solvent in the
moist/semi-moist state using betaine hydrochloride (BHC) as a cationic reagent, resulting
in starch derivatives with sufficiently high cationicity. Compared with aqueous and organic
solvent methods, solvent-free modification keeps starch in a solid state during processing,
resulting in a significantly different contact interface with chemical reagents. Due to the low
solvent content, the occurrence of side reactions is suppressed to the maximum extent, and the
microenvironment of the reaction system is made different from that of liquid-phase reactions,
resulting in a localized high concentration at the reaction site, which improves the efficiency
of the reaction. In addition, the solvent-free reaction is also an energy-saving and environ-
mentally friendly process, and it is necessary to extend it to other chemical modification
methods for water-soluble polymer materials [25].

Due to the agglomeration and hydrophobicity of polyacrylonitrile fibers, the hydroly-
sis reaction is an inhomogeneous reaction in the initial stage, resulting in a slow reaction
speed, and the high-water retention of hydrolyzed semi-finished products makes them
difficult to dry. In addition, the reaction process continues to emit irritating ammonia gas.
The development of polyacrylonitrile hydrolysis technology that reduces environmental
pollution, improves production efficiency, and lowers production costs has become essen-
tial. Thus, there is a need to improve the hydrolysis process to meet the requirements of
being an environmentally friendly and low-cost production process.

In this study, polyacrylonitrile was hydrolyzed using a novel micro-water method
process, and the effects of different reaction conditions on the filter loss reduction properties
of the samples were investigated to determine the optimum hydrolysis reaction conditions.
The occurrence of the hydrolysis reaction was characterized using analytical techniques
such as FT-IR and elemental analysis. The filtration loss performance of drilling fluid gel
systems with samples after aging at different temperatures was investigated by testing
filtration loss volume, and the morphology of the filter cake, the rheological property, and
particle size distribution of the drilling fluid gel system were analyzed. Compared with
commercially available conventional HPAN products, the samples show better temperature
and salt resistance. This research can improve the utilization and alkaline hydrolysis rate
of waste acrylic fibers. Furthermore, the hydrolysis reaction of polyacrylonitrile with the
micro-water method is simple in operation, and it can avoid the problems of high energy
consumption and high cost, which is a more environmentally friendly process than the
conventional process. This novel micro-water hydrolysis process is expected to replace the
conventional process and be scaled up to practical production.

2. Results and Discussion
2.1. Structure Characterization of MW−HPAN

The structures of the used acrylic powder (LN-PAN) and MW−HPAN were tested,
analyzed, and compared using an organic elemental analyzer, X-ray diffractometer, scan-
ning electron microscope, Fourier transform infrared spectrometer, and thermogravimetry.
MW−HPAN samples used for the tests were prepared under optimum reaction conditions:
mPAN:mNaOH:mH2O = 1:0.5:0.6, the reaction temperature was 160 ◦C, and the reaction time
was 1 h.

2.1.1. Elemental Analysis

The organic elemental content of the samples before and after hydrolysis was deter-
mined using an organic elemental analyzer. According to the results shown in Table 1, after
the hydrolysis reaction took place, there was a very significant decrease in the nitrogen
content of the sample and a large increase in the C/N ratio, corresponding to the ammonia
emitted by the cyano hydrolysis process. In addition, there was a large increase in the
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oxygen content and, therefore, a decrease in the C/O ratio, corresponding to the carboxyl
groups produced during the hydrolysis process [26]. Based on the results of the elemental
analysis and the conservation of the mass of carbon atoms, it was calculated that the mass of
MW−HPAN after the reaction was 33.4 g. Therefore, 0.2221 mol NH3 was released during
the hydrolysis of polyacrylonitrile, which corresponds to the molar amount of carboxyl
groups produced. If all the cyano groups were hydrolyzed to carboxyl groups, theoreti-
cally, 0.3034 mol of carboxyl groups would be produced, resulting in 73.21% hydrolysis of
MW−HPAN [27]. This suggests that a large proportion of the cyano groups are hydrolyzed
to carboxyl groups, which is consistent with the subsequent FTIR spectrogram.

Table 1. Elemental content of LC−PAN and MW−HPAN.

Sample
Elemental Content (wt%)

C/N C/O
C N O

LC−PAN 61.60 21.24 9.31 2.90 6.62
MW−HPAN 36.89 3.41 42.66 10.82 0.86

2.1.2. XRD Analysis

The changes in the crystallinity of the polyacrylonitrile powder before and after the
hydrolysis reaction were determined using an X-ray diffractometer, and the results are
shown in Figure 2. The XRD diffraction pattern of the original polyacrylonitrile powder
shows a strong diffraction peak at 2θ = 17.0◦ and a weaker diffraction peak at 2θ = 29.3◦,
corresponding to the (100) and (101) plane, respectively [28]. Between the two diffraction
peaks, there is a large and diffuse amorphous diffraction peak at about 2θ = 25.0◦, which is
the characteristic diffraction peak of polyacrylonitrile, corresponding to the coexistence of
relatively ordered quasi-crystalline regions and disordered amorphous regions [29]. After
hydrolysis, the XRD diffraction peaks of MW−HPAN at 2θ = 17.0◦ and 29.3◦ disappeared
completely, indicating that the crystallinity of MW−HPAN was reduced. A new charac-
teristic peak appeared at around 2θ = 8.0◦, corresponding to the appearance of the amide
peak from the hydrolysis of PAN [29]. During the hydrolysis reaction, part of the cyano
group reacted with sodium hydroxide, resulting in the destruction of the relatively regular
structure of the polyacrylonitrile molecule and leading to a reduction in crystallinity, which
was conducive to the improvement of hydrophilicity.
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2.1.3. SEM Characterization

The morphology of the polyacrylonitrile powder before and after the hydrolysis
reaction is shown in Figure 3. Before the reaction, the polyacrylonitrile powder still had
a fibrous structure with a relatively smooth surface and a small number of micropores
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(Figure 3a1–a3). After the reaction, the MW−HPAN powder was irregularly shaped, the
particle size was reduced, the surface flatness was reduced and became rougher, and, at the
same time, many cracks were formed (Figure 3b1–b3). The change in powder morphology
confirms the decrease in crystallinity and the occurrence of the hydrolysis reaction.
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2.1.4. FT-IR Characterization

Figure 4 shows the obvious changes in the infrared spectra of LC−PAN and MW−HPAN.
The peaks at 2940 cm−1 and 2860 cm−1 on the spectra correspond to the asymmetric and
symmetric stretching vibrations of the methylene group, respectively, and the peak at 1450 cm−1

is assigned to the metastable vibration of the methylene group [30]. A band at 2244 cm−1 is
observed in the spectra of LC−PAN, which is the characteristic stretching vibration peak of−CN.
The peak appears at 1736 cm−1, and 1634 cm−1 is assigned to the stretching vibration of carbonyl
and -C=C, which is derived from copolymer monomer, and the peaks at 1376 cm−1 correspond
to the bending vibration of the methylene group [31]. Compared with LC−PAN, the broader
peak at 3430 cm−1 in the MW−HPAN spectrum corresponds to the N-H stretching vibration
of the amide group generated by the hydrolysis reaction, and the peak at 2244 cm−1 almost
completely disappeared, indicating the consumption of the cyano group [32,33]. The peak at
1067 cm−1 is the stretching vibration peak of the amide group, and the peaks at 1573 cm−1

and 1410 cm−1 are typical carboxylate vibration peaks corresponding to antisymmetric and
symmetric stretching vibrations, respectively. The widening and intensification of the peak at
1047 cm−1 is due to the generation of the carboxylic acid group [34,35]. The changes in the
infrared spectra indicate that the alkaline hydrolysis process consumes the ester group and most
of the cyano group on the molecular chain of polyacrylonitrile and generates an amide group
and a sodium carboxylate group.
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2.1.5. Thermogravimetric Analysis

The thermal stability of LC−PAN and MW−HPAN was compared using thermo-
gravimetric analysis. The TGA and DTG curves are displayed in Figure 5. The thermal
decomposition process of both LC−PAN and MW−HPAN can be divided into three stages.
The first mass loss stage of LC−PAN occurs before 268 ◦C and is attributed to the es-
cape of HCN and NH3, which is produced by the splitting of side and end groups not
involved in the cyclization reaction between adjacent cyanide groups. This stage transforms
PAN from a linear into a trapezoidal structure, losing only 0.81% of its mass [36]. The
first stage of MW−HPAN occurs before 172 ◦C, resulting in a mass loss of about 5.69%,
which corresponds to the evaporation of bound water. The second stage of PAN occurs
at 268 ◦C~375 ◦C and is due to the decomposition of the cyclic structure, which releases a
large amount of hydrogen and methane, reaching the maximum rate of thermal decompo-
sition at 326 ◦C, and the mass loss of the substance is 33.33% [37,38]. The second stage of
MW−HPAN occurs at 172 ◦C~400◦C, during which the cyclization and thermal decom-
position of anhydride take place. MW−HPAN forms a more stable trapezoidal structure
than the polyacrylonitrile molecule due to the additional ionic mechanism, resulting in a
mass loss of 13.81%, which is lower than polyacrylonitrile [29]. The third stage of mass loss
of LC−PAN and MW−HPAN occurs at 375 ◦C~528 ◦C and 400 ◦C~535 ◦C respectively,
corresponding to the further oxidative decomposition of the residue [39]. The residual
carbon amount of MW−HPAN at 600 ◦C is higher than that of LC−PAN, and the thermal
decomposition behavior of MW−HPAN indicates its resistance to high temperatures.
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2.1.6. Particle Size Analysis

The particle size distribution of the sample was measured with a laser particle sizer.
The particle size of a polymer affects its dissolution rate in the drilling fluid: the larger the
particle size, the slower the dissolution rate. The particle size distribution of the sample is
shown in Figure 6. Overall, 50% of the samples have a particle size of less than 107 µm,
and 90% of the particle sizes are less than 230 µm, indicating that particle sizes are small
and can dissolve quickly, which is consistent with the experimental phenomenon.

2.2. Optimization of the Hydrolysis Parameters

The experimental parameters were optimized by testing the filtration loss performance of
the samples in freshwater and a 4% brine base slurry after being cured at room temperature for
16 h. The dosage of freshwater and 4% brine base slurry were 0.3% and 1.2%, respectively.
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2.2.1. Effect of Water Addition on the Filtrate Reduction Property

PAN was hydrolyzed with water addition dosages of 4 g, 8 g, 10 g, 12 g, 14 g, and
16 g, respectively, and the remaining experimental parameters remained unchanged. The
results are shown in Figure 7a. The filter loss volume of the sample was reduced with the
increase in water addition, indicating that the hydrolysis degree of the sample increased
and the water solubility was improved, which suggests that the increase in water addition
was beneficial to improving the filtration loss reduction performance of the sample. When
the amount of water was 12 g, the filter loss volume of the sample in the fresh water and
4% brine base slurry was 14.7 mL and 9.6 mL, respectively, which could meet the actual
requirements, and the sample could be pulverized without subsequent drying. When the
water addition exceeded 12 g, the increase in water addition did not further improve the
loss reduction performance of the sample, which would increase the cost of drying. Thus,
12 g was selected as the optimum water addition.
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2.2.2. Effect of NaOH Addition on the Filtrate Reduction Property

PAN was hydrolyzed under the conditions of sodium hydroxide dosages of 4 g, 6 g,
8 g, 10 g, 12 g, and 20 g, respectively, and the remaining variables were kept constant. When
the sodium hydroxide addition was less than 10 g, the filtration loss volume decreased with
the increase in sodium hydroxide dosage, indicating the hydrolysis degree of PAN and
the water solubility of the sample increased. When the amount of sodium hydroxide was
higher than 10 g, excessive caustic soda caused the degradation of PAN and the decrease
in molecular weight of the sample increased the filtration loss. Therefore, the optimum
amount of sodium hydroxide was determined to be 10 g (Figure 7b).

2.2.3. Effect of Reaction Time on the Filtrate Reduction Property

PAN was hydrolyzed under the conditions of a reaction time of 10 min, 30 min, 60 min,
90 min, 120 min, and 240 min, respectively, and the other experimental parameters remained
unchanged. As demonstrated in Figure 7c, when the reaction time was lower than 60 min, a
significant reduction was shown in the filtration loss of the sample with the increase in the
hydrolysis reaction time. This indicated that the hydrolysis degree of PAN increased, and the
filtration loss reduction performance of the sample was improved. After the reaction time
exceeded 60 min, the filtration loss of the drilling fluid gel system basically had no obvious
change, which indicated that the increase in the reaction time at this time did not improve the
hydrolysis degree of PAN, and the increase in the reaction time would increase the production
cost. Therefore, the optimal reaction time was determined to be 60 min.

2.2.4. Effect of Temperature on the Filtrate Reduction Property

PAN was hydrolyzed under the conditions of reaction temperatures of 80 ◦C, 100 ◦C,
120 ◦C, 140 ◦C, 160 ◦C, and 180 ◦C, respectively, and the other parameters remained unchanged.
As shown in Figure 7d, when the reaction temperature was lower than 100 ◦C, most of the
water molecules in the system existed in liquid form, the reaction was not uniform, and the
reaction speed was slow, leading to a low hydrolysis degree and a high filtration loss volume
(higher residues of acrylic powder were observed in the product). As the temperature rose,
the water molecules were transformed into a gaseous state, which was conducive to contact
with acrylic powder and improved the uniformity of the reaction, thus increasing the reaction
speed and hydrolysis degree and improving the filtration loss reduction performance of
MW−HPAN. When the reaction temperature was higher than 160 ◦C, there was no significant
difference in the properties of the products, and the optimum reaction temperature was
determined to be 160 ◦C, according to the experimental results.

2.3. Evaluation of the Filtration Control Property of MW−HPAN

The samples were prepared under optimal experimental conditions in order to com-
prehensively evaluate the filtration loss performance and action mechanism, rheological
properties, filtration reduction performance, particle size distribution, and morphology of
the filter cake in the freshwater base slurry and the 4% NaCl brine base slurry before and
after aging at 180 ◦C for 16 h were analyzed.

2.3.1. Rheological Properties of Drilling Fluid Gel Systems

A drilling fluid gel system is a kind of pseudoplastic fluid. The Bingham plastic model
and the Herschel–Bulkely model were used to simulate and evaluate the multivariate fluid
properties of drilling fluid gel systems scientifically [40].

Bingham plastic model:
τ = τ0 + µpγ (1)

Herschel–Bulkely model:
τ = τy + Kγn (2)
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where:
τ is the shear stress, γ is the shear rate, τ0 is the yield point, µp is the plastic viscosity, τy is
the yield point under this model, K is the flow consistency coefficient, and n is the fluid
behavior index.

In general, a drilling fluid gel system is required to have a higher viscosity at a lower
shear rate to carry or suspend the cuttings in the borehole, and a lower viscosity at a higher
shear rate to pump quickly to the bottom of the borehole and release the cuttings easily [41].
First, the rheological properties of the drilling fluid gel system with the freshwater base
slurry were studied at different aging temperatures. The fitting equations and curves of
different rheological models are shown in Table 2 and Figure 8. It was found that the
rheological curve of the drilling fluid gel system was more consistent with the Herschel–
Barclay model. The linear correlation coefficients R2 of the aging temperature at 25 ◦C,
120 ◦C, 150 ◦C, and 180 ◦C were 0.9986, 0.9949, 0.9980, and 0.9992, respectively.

Table 2. Rheological fitting equation of the drilling fluid at different aging temperatures.

Temperature
◦C

Flow Pattern

Bingham Herschel–Bulkely

Equation R2 Equation R2

25 τ = 2.044 + 0.0100 × γ 0.9430 τ = 0.511 + 0.0392 × γ0.8231 0.9986
120 τ = 2.044 + 0.0090 × γ 0.9247 τ = 0.511 + 0.0399 × γ0.8074 0.9949
150 τ = 0.511 + 0.0050 × γ 0.9677 τ = 0 + 0.0131 × γ0.8745 0.9980
180 τ = 0.511 + 0.0040 × γ 0.9595 τ = 0 + 0.0129 × γ0.8480 0.9992
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In addition, the effects of MW−HPAN on the rheological parameters of the drilling
fluid gel system at different aging temperatures, such as AV, PV, YP, and RYP, were in-
vestigated. Temperature has a very important influence on the stability of a drilling fluid
gel system, which is reflected in the interaction between clay particles and the polymer
additive. First, the clay particles will disperse, agglomerate, and passivate at high tem-
peratures [42,43]. Second, a high temperature will lead to degradation, a change in the
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side chain functional groups, or high-temperature cross-linking of the polymer [44]. Fur-
thermore, the high-temperature effect will weaken the adsorption capacity of the polymer
treatment agent on the clay surface, which is called high-temperature desorption [45]. At
the same time, a high temperature will also reduce the hydration ability of the treatment
agent on the clay surface, reduce the thickness of the hydration film, and weaken the
adhesion protection performance, which is called high-temperature dehydration [46,47].

As shown in Figure 9, the AV and PV of the drilling fluid gel system increased the
overall after aging at different temperatures and decreased slightly at 150 ◦C without
the sample. The YP first increased to a maximum value at 120 ◦C, gradually decreased
and reached a minimum value at 150 ◦C, and then increased with temperature. The
RYP decreased overall. These phenomena were related to the dynamic equilibrium of
high-temperature dispersion, agglomeration, and passivation of clay particles [48].
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The AV of the drilling fluid gel system at room temperature was increased with the
sample, which was because the MW−HPAN molecules in the drilling fluid gel system were
in an irregular nematic conformation, the friction within the macromolecule was greater, and,
at the same time, it adsorbed water molecules and increased the internal friction between
polymers and water molecules. In addition, the cyano and amide functional groups of the
MW−HPAN molecular side chain were adsorbed on the clay surface by hydrogen bonding
and formed a spatial network structure. Under the combined effect of these factors, the AV,
PV, YP, and RYP of the drilling fluid gel system increased. As the aging temperature increased,
the AV and PV of the drilling fluid gel system gradually decreased. This was because the
high temperature broke the MW−HPAN molecular chain. In addition, the cyano and amide
functional groups underwent hydrolysis at high temperatures, even leading to the breakage
of the functional groups and the main chain [49]. The adsorption and hydration capacity of
MW−HPAN on clay surfaces weakened with the temperature, resulting in a reduction in
the thickness of the hydration film on clay particles. These two effects negatively impact the
adhesive protection ability of MW−HPAN [44,50]. The RYP of the drilling fluid gel system
remained within a certain range with increasing aging temperature, indicating a certain level
of high-temperature resistance of MW−HPAN. It was found that the drilling fluid gel system
with MW−HPAN had good rheological properties.
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2.3.2. Filtration Performance of the Drilling Fluid Gel System

In the drilling process, the key to controlling the filtration performance of the drilling
fluid gel system is to improve the quality of the mud cake, which involves an enhancement
in the compactness, shear resistance, and lubricity of the mud cake [51]. Bentonite, a
commonly used slurry material for water-based drilling fluid gel systems, is beneficial for
forming dense mud cakes that prevent water from penetrating into the formation. However,
the instability and aggregation of bentonite can occur in high temperature and high salt
content environments, leading to increased porosity and permeability of the filter cake and
an increasing filtration loss [52].

The filtration performance of the drilling fluid gel system with MW−HPAN was
measured under different aging temperatures and salt concentrations. First, the filtration
performance of freshwater base slurry before and after aging at 120 ◦C, 150 ◦C, and 180 ◦C
was evaluated, and the sample dosage was 0.3%. As shown in Figure 10a, the filtration
loss of the freshwater base slurry without samples before aging is 24.9 mL/30 min, while
after aging at 120 ◦C, 150 ◦C and 180 ◦C, the filtration loss increases to 25.2 mL, 27.1 mL,
and 28.3 mL, respectively. The increase in filtration loss means that aging will affect the
filtration performance of the drilling fluid gel system. However, the final filter loss with
samples before and after aging is significantly reduced. When the sample addition is
0.3%, the filtration loss before and after aging at 120 ◦C, 150 ◦C, and 180 ◦C is reduced to
9.6 mL, 8.8 mL, 11.6 mL, and 12.2 mL, respectively, which meets the API recommended
requirements. It can be observed that filter loss increases slightly with the temperature,
which means the increasing aging temperature does not affect the filtration reduction
performance of the sample.
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Second, in order to evaluate the salt resistance of the sample, the filtration performance
of the 4% NaCl brine base slurry before and after aging at 25 ◦C, 120 ◦C, 150 ◦C and 180 ◦C
was tested, and the sample dosage was 1.2%. As shown in Figure 10b, the filtration
loss volume of 4% NaCl brine base slurry before aging was 51.0 mL, and it increased
continuously with the increase in aging temperature. The filtration loss increased to
75.6 mL after aging at 180 ◦C, which was much higher than that of the freshwater base
slurry, indicating that the filtration performance of the drilling fluid gel system became
worse after the synergistic damage effect of high temperature and inorganic salt pollution.
However, after adding 1.2% of the sample as a filtrate reducer to the 4% NaCl brine base
slurry, the drilling fluid gel system can maintain a low filtration loss before and after hot
rolling. After aging at 180 ◦C, the filtration loss is 17.8 mL, and the viscosity of the drilling
fluid gel system is not high. It can be seen that viscosity may not be the main factor affecting
the filtration performance of the drilling fluid gel system after aging. There are many active
functional groups on the MW−HPAN molecular chain, of which the adsorption groups
(cyano and amide groups) can be firmly adsorbed on the surface of clay particles by the
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formation of hydrogen bonds with the oxygen atoms on bentonite, and the presence of
carboxyl groups improves the salt resistance of sample [53]. Furthermore, the rigidity
of the C-C and cyano group in the MW−HPAN molecule enhances its high-temperature
resistance. These factors are responsible for the good temperature and salt resistance
performance of MW−HPAN.

2.3.3. Microstructural Analysis of the Drilling Fluid Gel System

The DLVO theory is the classical colloidal stability theory that explains the stability of
charged colloidal particles in the liquid phase, showing that the stability of colloidal particles is
determined by the combined effect of van der Waals’ gravitational and electrostatic repulsive
forces between the particles. The diffusion double-layer of colloidal particles is divided into an
adsorption layer, formed by the attraction between the colloidal particles and the hetero ions,
and a diffusion layer, formed by the thermal movement of the hetero ions. According to the
DLVO colloidal stability theory, high temperature and cationic contamination will compress
the diffuse double layer of negatively charged clay in a drilling fluid gel system, destroy the
rheological and filtration properties and reducing the stability of the drilling fluid gel system,
which easily produce a thick and loose filter cake that leads to an increase in filtration loss.
Filtrate reducer can prevent the negative effect by forming thin and dense filter cake, and thus
achieve the effect of reducing filtration loss [52,54].

The thickness of the fresh filter cake was measured, and the microstructure of the filter
cake after freeze-drying was observed using SEM to evaluate the effect of MW−HPAN on
the quality of the filter cake. The thickness of the filter cake from the freshwater base slurry
without the sample before aging was 1.78 mm (Figure 11a1); under the joint destruction of
cation and high temperature, the structure of the filter cake became loose, and the thickness
of the filter cake from the 4% NaCl brine base slurry was 7.72 mm (Figure 11c1), indicating
that the stability of the suspension system decreased and the filter loss increased. However,
the thickness of the filter cake with the sample was significantly reduced before and after
aging. The thickness of the filter cake of the 4% NaCl brine base slurry was reduced
from 7.72 mm to 1.60 mm (Figure 11d1), indicating that MW−HPAN could hinder the
destruction effect of the electrolyte ion and high temperature on the filter cake.
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(4% NaCl base slurry), and (d1) with the sample after aging (4% NaCl base slurry).

The SEM images were consistent with the above findings (Figure 12). The agglomera-
tion of clay appeared on the surface of the filter cake obtained from the base slurry, and a

27



Gels 2023, 9, 974

large number of wrinkles, cracks, and pores were formed after aging (Figure 12a1). These
phenomena were more significant with the effect of cations (Figure 12c1). The increase in
the permeability of the filter cake led to a rapid increase in filter loss. However, the surface
of the filter cake after adding the sample to the base slurry was smooth and dense, and
it looked like the polymer film covered it (Figure 12b1). Under the destructive effect of
high temperature and cation, MW−HPAN could reduce the agglomeration of clay, prevent
the formation of wrinkles and cracks, reduce the permeability of filter cake, and obviously
improve the filtration performance of the drilling fluid gel system. The law of variation in
filter cake quality was consistent with the variation in filter loss in Figure 10.
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2.3.4. Particle Size Analysis of the Drilling Fluid Gel System

A reasonable size distribution of clay particles in a drilling fluid gel system is required
to form a low-permeability mud cake. Larger clay particles accumulate with each other to
form a relatively strong bridging structure, while small-sized clay particles enter into the
cracks and pores, acting as a sealer in the structure of the filter cake, which is conducive to
the formation of a stable and dense filter cake and reduces the penetration of water [55,56].

As shown in Figure 13, the particle size distribution of the freshwater base slurry
without the sample before aging was relatively reasonable: about 53.67% of the clay
particles were smaller than 10 µm, and the average particle size of the system was about
8.71 µm. The particle size distribution of the freshwater base slurry was narrower after
aging at 180 ◦C, and the average particle size of the system increased to 10.64 µm, indicating
the aggregation of clay particles at high temperatures. However, the drilling fluid gel
system still maintained a suitable particle size distribution after aging with the addition of
MW−HPAN. Specifically, 60.02% of the particle sizes in the system were less than 10 µm,
and the average particle size was reduced to 6.90 µm, which was due to the firm adsorption
between the sample and the clay surface through hydrogen bonding, preventing the clay
particles from flocculating and becoming larger. In addition, MW−HPAN stabilized the
fine particles that were not bound into large particles by adsorption, which increased the
proportion of fine particles and was conducive to the formation of a dense filter cake, called
the protective effect of colloid. The experimental results showed that the high temperature
could hardly destroy the colloid stability (colloid stability refers to the invariability in the
viscosity, particle size, and other properties of the colloidal solution system to a certain
extent) of the drilling fluid gel system with MW−HPAN, and the results were consistent
with the observations of the filter cake (Figures 11 and 12).

28



Gels 2023, 9, 974Gels 2023, 9, x  15 of 23 
 

 

 
Figure 13. Particle size distribution of freshwater base slurry (FWBS) before and after aging. (a) The 
difference distribution and (b) the cumulative distribution. 

2.4. Comparison with Commercially Available Products 
The obtained sample, MW−HPAN, is essentially a hydrolyzed polyacrylonitrile so-

dium salt, and we denoted it as MW−HPAN since it was prepared using a novel micro-
water method. Its properties were compared with hydrolyzed polyacrylonitrile sodium 
salt products synthesized with the conventional process. The filtration loss performance 
of MW−HPAN and commercially available hydrolyzed polyacrylonitrile sodium salt (ST–
NaPAN was selected as a representative product for comparison) in the freshwater- and 
4% brine-based slurries before and after aging at different temperatures was evaluated. 
As shown in Figure 14a, the filtration loss of ST–NaPAN was slightly lower than that of 
MW–HPAN when the aging temperature was lower than 120 °C in the freshwater base 
slurry, but the filtration loss reduction effect of MW−HPAN was obviously better than ST–
NaPAN when the aging temperature was higher than 120 °C. This variation trend was 
more significant in the brine base slurry (Figure 14b): the filtration loss volume of MW–
HPAN was 10.8 mL before aging, which was higher than ST–NaPAN, but it still met the 
requirements of API recommendations. The filtration loss reduction performance of ST–
NaPAN decreased drastically even after aging at a lower temperature (120 °C). However, 
the filtration loss value of MW–HPAN first decreased and then increased with an increase 
in the aging temperature, and the filtration loss reduction performance could still main-
tain a better level after aging at 180 °C. 

 
Figure 14. Filtration performance of MW–HPAN and ST–NaPAN in drilling fluid gel systems. (a) 
The freshwater base slurry and (b) the 4% NaCl brine base slurry. 

These results indicate that MW–HPAN has a significantly better anti-temperature 
and anti-salt performance than ST–NaPAN as a filtrate reducer for drilling fluid gel sys-
tems. This is due to the difference between the two hydrolysis reaction processes. First, 

Figure 13. Particle size distribution of freshwater base slurry (FWBS) before and after aging. (a) The
difference distribution and (b) the cumulative distribution.

2.4. Comparison with Commercially Available Products

The obtained sample, MW−HPAN, is essentially a hydrolyzed polyacrylonitrile
sodium salt, and we denoted it as MW−HPAN since it was prepared using a novel micro-
water method. Its properties were compared with hydrolyzed polyacrylonitrile sodium
salt products synthesized with the conventional process. The filtration loss performance
of MW−HPAN and commercially available hydrolyzed polyacrylonitrile sodium salt
(ST–NaPAN was selected as a representative product for comparison) in the freshwater-
and 4% brine-based slurries before and after aging at different temperatures was evaluated.
As shown in Figure 14a, the filtration loss of ST–NaPAN was slightly lower than that of
MW–HPAN when the aging temperature was lower than 120 ◦C in the freshwater base
slurry, but the filtration loss reduction effect of MW−HPAN was obviously better than
ST–NaPAN when the aging temperature was higher than 120 ◦C. This variation trend
was more significant in the brine base slurry (Figure 14b): the filtration loss volume of
MW–HPAN was 10.8 mL before aging, which was higher than ST–NaPAN, but it still met
the requirements of API recommendations. The filtration loss reduction performance of
ST–NaPAN decreased drastically even after aging at a lower temperature (120 ◦C). How-
ever, the filtration loss value of MW–HPAN first decreased and then increased with an
increase in the aging temperature, and the filtration loss reduction performance could still
maintain a better level after aging at 180 ◦C.
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These results indicate that MW–HPAN has a significantly better anti-temperature and
anti-salt performance than ST–NaPAN as a filtrate reducer for drilling fluid gel systems.
This is due to the difference between the two hydrolysis reaction processes. First, sufficient
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water is required in the traditional hydrolysis process as a solvent. Due to the agglomeration
of acrylic fiber and the heterogeneity of the reaction, the hydrolysis process takes a long time,
during which PAN undergoes more severe degradation in this highly alkaline environment.
Second, the drying time is long due to the high water retention of the semi-finished
product, during which further hydrolysis will occur. Therefore, a low molecular weight
and high hydrolysis degree of the hydrolyzed polyacrylonitrile product (HPAN) will be
obtained, and the reduction in molecular weight will greatly reduce the temperature and
salt resistance of HPAN. Furthermore, the stability of the performance of the samples will
vary from batch to batch due to the difference in the purity of the waste fibers. In this study,
the hydrolysis of polyacrylonitrile with hydroplastization followed by the micro-water
hydrolysis method could solve the above problems. Hydroplastization can separate and
purify low-purity waste polyacrylonitrile fibers into a high-purity polyacrylonitrile powder,
and the HPAN with a moderate hydrolysis degree can be obtained in a short time using
the micro-water “vapor-solid” reaction at high temperature. There is no degradation of
molecular weight in this novel process, and the drying cost is low. The performance of the
HPAN can be significantly improved with this new hydrolysis process.

2.5. Mechanism of Filtration Loss Reduction

Clay particles can form stable ionic and hydrogen bonds with the hydration group and
adsorption group of the polymer, respectively. These two effects contribute to the polymer
being firmly adsorbed on clay particles and the formation of a stable spatial lattice structure,
which is conducive to the formation of a dense mud cake and reducing the filtration loss
volume [57]. As shown in Figure 15, the filter loss-reducing agent MW−HPAN obtained
with the micro-water hydrolysis method contains carboxyl, amide, and unhydrolyzed
cyano groups on the molecular chain, in which the adsorption groups (cyano and amide)
can form a hydrogen bond with the oxygen atoms on bentonite, so that the MW–HPAN
is firmly adsorbed on the surface of the clay, generating a good colloid protective effect
on the suspension. A reasonable particle distribution of the drilling fluid gel system after
aging at high temperatures can be obtained with MW−HPAN. A large number of small
particles are more conducive to filling the cracks and pores, forming a dense filter cake and
reducing the permeability of the filter cake. Furthermore, the molecular chains of MW–
HPAN can be stretched in the drilling fluid gel system with the presence of a hydration
group (carboxyl group) and adsorb free water into bound water, forming a hydration layer
around the molecular chain. This large and thick adsorption of the hydration film can
still be effective in preventing the flocculation of clay particles even after aging at high
temperatures, achieving the effect of reducing filtration loss.
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3. Conclusions

The experimental results indicate that the reaction of hydrolysis of polyacrylonitrile
using the micro-water method was successful. MW–HPAN obtained with the reaction
at mPAN:mNaOH:mH2O = 1:0.5:0.6 at 160 ◦C for 1 h can be used as a filtrate reducer for
drilling fluid gel systems with excellent performance. The hydrolysis of polyacrylonitrile
is a process in which hydrophobic cyano groups react under alkaline conditions to form
hydrophilic amide and carboxyl groups. The addition of a small number of water molecules
makes the microenvironment of the hydrolysis reaction system different from that of the
liquid phase reaction, which results in a localized high concentration at the reaction site and
greatly improves the efficiency of the reaction. The results of the elemental analysis showed
that its hydrolysis degree could reach 73.21% in a short time, which was unattainable in
traditional processes under the same conditions. MW–HPAN showed better temperature
and salt resistance properties than commercially available HPAN products in the water-
based drilling fluid gel system. The method of preparing MW–HPAN using micro-water
hydrolysis has obvious economic benefits and a broad market prospect.

4. Materials and Methods
4.1. Materials

Waste acrylic fibers (industrial grade) used in the experiment were purchased from a
textile factory in Luancheng City (Shijiazhuang, China), which consisted of polyacrylonitrile
and other blended fibers (denoted as LC–PAN). Sodium hydroxide, sulphonic acid, and
anhydrous sodium carbonate, used without any further purification, were analytical grade
and purchased from Sinopharm Chemical Reagents Co., Ltd. (Beijing, China). Industrial
grade hydrolyzed polyacrylonitrile sodium salt (Na-HPAN, Na-HPAN is an abbreviation
for the product of alkaline hydrolysis of polyacrylonitrile) was obtained from Baoding
Santuo Chemical Products Co., Ltd. (Baoding, China). Calcium bentonite for the base
slurry was purchased from Drilling & Exploration Engineering Co., Ltd. (Tianjin, China).
The England evaluation clay for the drilling fluid gel system test was purchased from the
Beijing Institute of Exploration Engineering (Beijing, China).

4.2. Synthesis of Na-HPAN with the Micro-Water Method
4.2.1. Hydroplastization of Waste Acrylic Fibers

After opening, the waste acrylic fibers (40 g) and water (40 g) were added to a digestion
tank and then placed in a hot-roller furnace. The hydroplastization reaction was carried
out at 180 ◦C for 2 h. During the reaction, the structure of the acrylic fibers was destroyed,
while the structure of the non-acrylic blended fibers was unchanged. The dry plasticized
acrylic fibers were crushed with a grinder and separated from the other blended fibers with
a 60-mesh screen to obtain a high-purity polyacrylonitrile powder (Figure 16, Phase I).

4.2.2. Alkaline Hydrolysis of the Polyacrylonitrile Powder with the Micro-Water Method

The obtained polyacrylonitrile powder (20 g) and sodium hydroxide (10 g) were mixed
firmly in a grinder and poured into a reaction kettle with an outlet valve stem, to which
water (12 g) was added in two batches at the same time (Figure 16, Phase II). After sealing,
the kettle was placed in the hot-roller furnace for hydrolysis at 160 ◦C for 1 h, and then the
kettle was removed. The ammonia gas and water vapor in the kettle were immediately
absorbed with a dilute sulphonic acid solution through the valve stem. The sample was
dried with residual heat, and the hydrolyzed polyacrylonitrile sodium salt was obtained
using the micro-water method (MW–HPAN) after crushing (Figure 16, Phase III). The
product was washed three times alternately with water and anhydrous ethanol and dried
at 70 ◦C for 24 h. The dried product was ground to powder for subsequent characterization.
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4.3. Structure Characterization Techniques
4.3.1. Elemental Analysis (EA)

The organic elemental content of the samples before and after hydrolysis was de-
termined using a UNICUBE organic elemental analyzer (Elementar Trading Co., Ltd.;
Shanghai, China). The limit of detection (LOD) was 50 ppm with an accuracy of 0.01%.

4.3.2. X-ray Diffraction (XRD)

The crystal structures of the samples were analyzed using a Bruker D8 Advance X-ray
diffractometer (Hongkong, China) equipped with a Cu-Kα radiation source (λ = 0.154 nm),
and the diffraction patterns from 0◦ to 60◦ were collected at a scan rate of 2◦/min.

4.3.3. Scanning Electron Microscope (SEM)

The dry samples were mounted on an aluminum holder and an ion sputtering device
(Model E-1010, Hitachi; Tokyo, Japan) was used for gold sputter coating to make it conduc-
tive. Then, the morphologies of the samples were characterized using a Hitachi SU8020
scanning electron microscope (Tokyo, Japan) operating at an accelerating voltage of 3 kV.

4.3.4. Fourier Transform Infrared Spectra (FT-IR)

The sample testing tablets were carried out using the KBr compression method and
characterized with a Nicolet IS10 FT-IR spectrometer (Madison, WI, USA) in the range
of 4000 cm−1 to 500 cm−1 with the resolution of 4 cm−1 and the signal-noise ratio was
50,000:1. All spectrums were obtained by accumulating 64 scans.

4.3.5. Thermogravimetric (TG)

The thermal decomposition behaviors of the samples were investigated using a Net-
zsch STA449F3 thermogravimetric analyzer (Selb, Germany) under a nitrogen atmosphere
and a nitrogen flow rate of 50 mL/min. The samples were placed in a clean crucible and
heated from 30 ◦C to 600 ◦C at a heating rate of 10 ◦C/min. The derivative thermogravi-
metric analysis (DTG) curves were obtained by applying the first-order derivative to the
temperature with the TGA data.
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4.3.6. Particle Size Analysis

The particle size distribution of the sample was measured using a Mastersizer 2000
laser particle sizer (Malvern Instruments Co., Ltd., Shanghai, China). Before each test, the
samples were ultrasonically dispersed in ethanol solution for 5 min, and three parallel
experimental tests were carried out. The shading rate was set at 14%, and the measuring
range of the instrument was 0.02–2000 µm.

4.4. Comprehensive Performance Evaluation of the Water-Based Drilling Fluid Gel System

The performance of water-based drilling fluid gel systems, including filtration prop-
erties, temperature, salt resistance, and rheological properties were evaluated according
to the American Petroleum Institute Recommended Practices (API RP 13B-1-2019). All
performance evaluation experiments were carried out at least three times, and the mean
and standard deviation of the parallel experiments were calculated. The apparatus used
for the test is shown in Figure 17.
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4.4.1. Preparation of the Freshwater Base Slurry

In total, 0.525 g of anhydrous sodium carbonate and 15.0 g of bentonite were added
to a high stirring cup containing 350 mL of deionized water and stirred at high speed for
20 min, with at least two stops during this time to scrape off clay adhering to the wall of the
cup. The mixture was then cured at room temperature for 24 h as a freshwater base slurry.

4.4.2. Preparation of the 4% NaCl Brine Base Slurry

In total, 4 g of sodium chloride, 2.1 g of anhydrous sodium carbonate, 60.0 g of drilling
fluid gel system slurry with bentonite were added to a high stirring cup containing 350 mL
of deionized water and stirred at high speed for 20 min, with at least two pauses to scrape
off the clay attached to the wall of the cup. Then, the above dispersion was cured at room
temperature for 24 h as a 4% NaCl brine base slurry.

4.4.3. Measurement of API Filtration Performance

The API filtration loss of the prepared drilling fluid gel systems was determined using
a medium-pressure filter loss meter (SD3, Qingdao Tongchun Petroleum Instrument Co.,
Ltd., Qingdao, China) and standard Fann filter paper. A certain amount of the sample was
added to the well-cured 350 mL base slurry (freshwater or 4% brine) and stirred at high
speed for 20 min. Then, the mixture was poured into an airtight container and conditioned
at room temperature. After 16 h, the conditioned drilling fluid gel systems were stirred at
high speed for 5 min and poured into a filter loss cup until the level of the fluid was tangent
to the graduated line. A pressure of 100 psi (0.69 MPa) was applied with a nitrogen cylinder.
The 30-minute filtrate volume was collected to indicate the API filtration loss performance
of the drilling fluid gel system. In addition, the filter cake was carefully removed from the
loss of the filtration cup and slowly washed off the flowing mud on its surface with water,
and its thickness was then determined using a vernier caliper.
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4.4.4. Determination of Rheological Properties of Drilling Fluid Gel Systems

A certain amount of the sample was added to the well-conditioned 350 mL base slurry
(freshwater or 4% brine) and stirred at high speed for 20 min before being conditioned
at room temperature for 16 h. After 16 h, the sample was stirred at high speed for 5 min
and then poured into the drilling fluid gel system beaker of a Fanns model 351 six-speed
rotational viscometer (ZNN-D6, Qingdao Haitongda Special Instrument Co., Ltd., Qingdao,
China) until the surface of the fluid was tangent to the scale of the viscometer, and the
stable readings at different rotational speeds (600 rpm, 300 rpm, 200 rpm, 100 rpm, 6 rpm,
3 rpm) were then recorded. The apparent viscosity (AV), plastic viscosity (PV), yield point
(YP), and the ratio of yield point to plastic viscosity (RYP) of the drilling fluid gel system
were calculated using the following equations.

AV =
1
2

Φ600 (3)

PV = Φ600 − Φ300 (4)

YP =
1
2

Φ300 − PV (5)

RYP = YP/PV (6)

where:

AV is the apparent viscosity (mPa·s); PV is the plastic viscosity (mPa·s); YP is the yield
point (Pa); RYP is the ratio of the yield point to the plastic viscosity; Φ600 is the dial reading
of the 6-speed rotational viscometer at 600 r/min (dia); and Φ300 is the dial reading of the
6-speed rotational viscometer at 300 r/min (dia);

4.4.5. Measurement of the Temperature Resistance of Drilling Fluid Gel Systems

A certain amount of the sample was added to the well-maintained 350 mL base slurry
(freshwater or 4% brine) and stirred at high speed for 20 min. Then, the mixture was poured
into a high-temperature aging tank, sealed, and placed in a high-temperature aging oven
(XGRL-5, Qingdao Haitongda Special Instrument Co., Ltd., Qingdao, China), and aging
was carried out at different temperatures for 16 h. After 16 h, the drilling fluid gel systems
were allowed to cool to room temperature, high-speed stirring was carried out for 5 min,
and then the filtration loss properties and rheological properties were determined.

4.4.6. Particle Size Analysis of Drilling Fluid Gel Systems

The particle size distribution of bentonite particles in the drilling fluid gel system
before and after aging was measured using a Bettersize 2000 laser particle sizer (Dandong
Bettersize Instruments Co., Ltd., Dandong, China). Water was chosen as the dispersion
medium, sodium hexametaphosphate was used as the dispersant, the shading rate was set
at 12%, and the measuring range of the instrument was 0.02–2000 µm.

4.4.7. Morphologies of Drilling Fluid Gel System Mud Cakes

The mud cake obtained from the API filtration loss test was immersed in liquid
nitrogen and frozen for 2–3 min. Then, it was removed and rapidly transferred to a vacuum
freeze dryer (ZLGJ-18, Zhengzhou Huachen Instrument Co., Ltd., Zhengzhou, China)
and vacuum lyophilized at −30 ◦C for 48 h. The surface of the mud cake was then gold
plated, and the morphology was characterized using a Hitachi SU8020 scanning electron
microscope at an accelerating voltage of 3 kV.
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Abstract: The application results of profile control and water plugging technology are highly related
to the gelation time and strength of phenolic resin hydrogel. In this work, a hydrogel solution was
prepared by fully mixing the prepared polymer solution with a crosslinker. The static gelation process
of PFR hydrogel in ampoule bottles and porous media was analyzed by changes in the viscosity
and residual resistance coefficient. Then, the dynamic gelation of the PFR hydrogel in porous media
was tested using a circulating flow device, and the changes in viscosity and injection pressure were
analyzed during the dynamic gelation process. Finally, the effects of the polymer concentration and
crosslinker concentration on dynamic gelation were analyzed. The initial gelation time and final
gelation time in porous media were 1–1.5 times and 1.5–2 times those in ampoule bottles under
static conditions, respectively. The initial dynamic gelation time in porous media was 2–2.5 times
and 1.5–2 times the initial static gelation times in ampoule bottles and porous media, respectively.
The final dynamic gelation time was four times and two times the initial static gelation times in
ampoule bottles and porous media, respectively. The production after dynamic gelation in porous
media comprised hydrogel aggregates and water fluid, leading to a high injection pressure and low
viscosity of the produced liquid. As the concentration of polymer and crosslinker increased, the
dynamic gelation time was shortened and the gel strength was increased. In the dynamic gelation
process in porous media, the phenol resin hydrogel could migrate deeply, but it was limited by the
concentrations of the polymer and crosslinker. The results of subsequent water flooding showed
that the polymer hydrogel had a good plugging ability after dynamic gelation. The deep reservoir
could only be blocked off in the subsequent water flooding process when the migration of hydrogel
happened in the dynamic gelation process.

Keywords: PFR hydrogel; dynamic gelation; gelation time; partially hydrolyzed polyacrylamide;
plugging ability

1. Introduction

Polymer hydrogel is widely used as a profile control agent in worldwide oil fields [1–4],
and its application results are highly related to gelation time and gel strength. The gelation
time is divided into static gelation time and dynamic gelation time. Many polymer hydro-
gels can form whole structures with adjustable gelation times and controllable strength on
the ground. However, it is difficult to predict the gelation situation after injection into the
formation, which leads to application problems in profile control and water plugging [5].
A field application case showed that polymer hydrogel injected into a deep formation
would not show an obvious blockage after extending the static gelation time by 20 days.

Gels 2024, 10, 325. https://doi.org/10.3390/gels10050325 https://www.mdpi.com/journal/gels38



Gels 2024, 10, 325

When subjected to shear in the rock core, whether the polymer gelation solution can form
hydrogel or not is related to the dynamic gelation of polymer hydrogels. This directly
affects the success of profile control and water plugging.

Recently, many scholars have studied the differences between the dynamic and static
gelation of hydrogel. Ki et al. studied the fractal nature of the backbone network for the
irreversible kinetic gelation model. They suggested that the static percolation model might
be adequate to describe the sol–gel transition and related phenomena of the irreversible
growth model [6]. Dolan et al. described the gelation time and strength of the hydrogel
using small-amplitude oscillation under zero shear rate and stable shear conditions [7].
Kolnes et al. studied the effects of shear and temperature on the gelation of xanthan
gum/chromium hydrogel, and the results showed that shear disrupted the cross-linking
structure of the polymer and crosslinker [8]. Bhaskar et al. investigated the effect of
different shear modes on the gelation process of redox systems [9]. Josset et al. studied the
gelation process of cross-linked polymer hydrogel under a high shear rate and high shear
conditions in the formation near the wellbore [8]. Carvalho et al. studied the cross-linking
reaction process of cross-linked polymers during the shearing process. The results showed
that shearing could promote or delay the cross-linking reaction with a critical shear rate,
switching between these two effects [10]. McCool et al. studied the gelation behavior of
chromium acetate weak hydrogel in porous media flow using a 1036 feet long stainless-steel
conduit [11]. Series et al. used a 100 feet long thin iron pipe to simulate the flow of hydrogel
in cracks. The results showed that the residual resistance coefficient reached its peak at
20 feet and then began to decrease, while the middle and rear ends (60–100 feet) of the
thin iron pipe remained unchanged [12]. Abete et al. studied the structure and dynamics
in the formation of irreversible gels by molecular dynamics simulations, and suggested
that gelation transition was due to the random percolation of permanent bonds between
neighboring particles [13]. Sun, Z. et al. studied the influences of polymer molecular
weight and concentration on gelation time, gel strength, and adhesion ability, and indicated
that increasing the molecular weight and concentration could shorten the gelation time
and enhance the gel strength, and that adhesion strength is mainly related to the number
of hydrogen bonds [14]. Khurshid, I. and Afgan, I. analyzed the effect of polymer drive
composition on surfactant retention and new surface complexation reactions [15]. Our
research group has also studied the dynamic gelling behavior of polymer hydrogels in
recent years. The static gelation time and the main factors of the gel strength of hydrogel
at high temperatures were studied, resulting in the conclusion that temperature is an
important factor affecting the gelation process of hydrogel [16]. The effect of the injected
speed on dynamic gelation was analyzed in reference [17], showing that the injection speed
has little effect on the dynamic gelation time, but has a great effect on the gel strength.
Mechanical shear rate can also have an important influence on the gelling behavior of
hydrogels [18]. The static gelation and dynamic gelation of hydrogels are quite different
due to many factors, such as adsorption and shear [19]. The results showed that the
dynamic gelling behavior of polymer hydrogels was greatly affected by the shear rate,
which was directly related to the reservoir permeability and injection rate.

Previous studies have clarified the static and dynamic gelation processes of hydrogel.
However, the migration characteristics and main control factors after dynamic gelation in
porous media are not clear, especially the influence of the mass concentration of hydrogel
on the migration characteristics. When the polymer hydrogel migrates in the formation, it is
subjected to core shear and its structure is destroyed. During the migration process, it forms
a whole hydrogel or a dispersed hydrogel particle structure. What are the changes in the
gelation time and gel strength in formation and on the ground? These issues directly affect
the success of profile control and water plugging by polymer hydrogel. Therefore, it is of
great importance to study the gelation time and gel strength during the dynamic gelation
process of polymer hydrogels [20,21]. Based on the above issues, this article studied static
gelation in ampoule bottles and porous media, and the dynamic gelation of a hydrogel
system composed of ordinary partially hydrolyzed polyacrylamide HPAM and phenol
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formaldehyde resin (PFR). The relationship between gelation time and gel strength under
these three different conditions was investigated, and a quantitative relationship between
the static gelation time and dynamic gelation time was established. The plugging ability of
static gelation and dynamic gelation in porous media for subsequent water flooding was
comparatively analyzed.

2. Results and Discussion
2.1. Static Gelation in Ampoules

A water-soluble phenolic resin crosslinker was obtained by the poly-condensation
of phenol and formaldehyde (excess) under the catalyst action of sodium hydroxide [22].
The reaction mechanism of the crosslinker is shown in Figure 1. The hydroxymethyl
groups (-CH2OH) on the crosslinker and the amide groups (-CONH2) on the polymer were
dehydrated and condensed to form a bulk gel. The formation mechanism of the bulk gel is
shown in Figure 2.
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The commonly used methods for determining the gelation time of hydrogel include
the visual strength code method and viscosity method [23,24]. This article used the viscosity
method to determine the relationship between the viscosity of the hydrogel system and
time under different gelation times (see Figure 3). It could be seen that the viscosity did not
change significantly with time before the cross-linking reaction began. During the gelation
process, the viscosity rapidly increased with time and then stabilized [18]. The probability
of contact between the amide groups (-CONH2) and hydroxymethyl groups (-CH2OH) in
the system increased with increasing concentrations of polymer and crosslinker, which
made the formed spatial network structure denser. The gelation time of the hydrogel was
shortened and the gel strength was increased [19]. According to the research results of
Mokhtari et al., the gelation time can be divided into the initial gelation time (IGT) and
final gelation time (FGT). The initial gelation time refers to the moment when the viscosity
of the system begins to significantly increase at the beginning of the cross-linking reaction.
The final gelation time is the time when the system viscosity reaches stability at the end
of the cross-linking reaction [25]. The initial gelation time and final gelation time with
different formulations of hydrogels can be obtained from the curves in Figure 3. The
micro morphology of the PFR hydrogel after static gelation in ampoule bottles is shown in
Figure 4.
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As shown in Figure 4, the microscopic morphology of the phenolic resin hydrogel
can be clearly seen at a lower magnification, and the phenolic resin hydrogel formed a
regular network structure after static gelation in the ampoule bottle. The regular network
structure was formed by the cross-linking of the amide groups in the polymers with the
hydroxymethyl groups in the phenolic resin prepolymers. At higher multiples, it was
observed that there were pores of similar size in the middle of the network structure, with
pore sizes distributed around 3–5 µm.

2.2. Static Gelation in Porous Media

The amide groups on the polymer and the hydroxymethyl groups on the crosslinker
could be cross-linked to form a three-dimensional network structure, which had a certain
plugging ability on porous media. The strength of three-dimensional network structure was
related to the concentration of the hydrogel, which directly affected the plugging efficiency
of the porous media. The pressure change characteristics of the cross-linked polymer
hydrogel when flowing in porous media reflect the degree of the hydrogel cross-linking
reaction. As the cross-linking reaction proceeds, the plugging ability of the hydrogel for
porous media gradually increases until the end of the reaction [17]. Generally, indicators
such as the resistance coefficient and residual resistance coefficient or transition pressure
are used to describe the flow characteristics of cross-linked polymer hydrogel [26,27].
The residual resistance coefficient is calculated by measuring the breakthrough pressure
gradient of hydrogel in a series of sand pack pipes to characterize the process of the cross-
linking reaction of hydrogel. The values reflect the viscosity of the hydrogel in porous
media (see Figure 5).
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From Figure 5, it can be seen that the residual resistance coefficient first showed
no significant change with an increasing placement time, and then rapidly increased
until it stabilized. The reaction process of hydrogel can be divided into three stages:
induction, gelation, and stabilization. The initial gelation time and final gelation time
were both shortened with increasing concentrations of polymer and crosslinker. The micro
morphology of the PFR hydrogel after static gelation in porous media is shown in Figure 6.
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As shown in Figure 6, the existence form of phenolic resin hydrogel after static gelation
in porous media can be clearly reflected at a lower magnification. The hydrogels were
mainly adsorbed on the surface of porous media and trapped at smaller pore throats. At a
higher magnification, it can be observed that the structure of phenolic resin hydrogel was
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composed of a network structure formed by the winding and cementation of some thicker
chains and larger pores. Under the action of shear failure and adsorption retention, the
phenolic resin hydrogel network structure formed in the process of static gelation in porous
media was not as clear and complete as that formed by static gelation in ampoule bottles.

The results of the comparison of static gelation in ampoule bottles and porous media
are shown in Table 1. During the hydrogel injection into the sandpack pipes, the polymer
and crosslinker were subjected by the shear of porous media, which led to prolonging
the gelation time and reducing the gel strength. Due to the different molecular sizes of
the polymer and crosslinker, there was a significant difference in their migration speed
in the porous media. A change in the concentration ratio of the polymer and crosslinker
can affect the gelation time. The adsorption of the polymer and crosslinker on the surface
of the porous media directly led to a decrease in the number of molecules involved in
the cross-linking reaction, thereby prolonging the gelation time [28]. Therefore, the static
gelation time of the PFR hydrogel in porous media was longer than that in ampoules, with
an initial gelation time of 1–1.5 times and a final gelation time of 1.5–2 times.

Table 1. The IGTs and FGTs of PFR hydrogel in the process of static gelation in ampoule bottles and
porous media.

No HPAM, % PFR, %

Static Gelation in
Ampoule Bottles

Static Gelation in
Porous Media

IGT, h FGT, h IGT, h FGT, h

1 0.15 0.6 14 27 25 45

2 0.2 0.6 12 21 17 40

3 0.25 0.6 9 16.5 10 29

4 0.3 0.6 7 14.4 8 23

5 0.2 0.3 14.3 30 20 45

6 0.2 0.9 9.5 18 10 35

2.3. Dynamic Gelation in Porous Media
2.3.1. Analysis of Dynamic Gelation Process

In the static gelation of the hydrogel in porous media, there was no shear force affect-
ing the cross-linking process, ultimately forming a three-dimensional network structure.
However, the hydrogel could be subjected to the shear force from the porous media in
the dynamic gelation process. When the hydrogel network structure size was increased
to larger than the pore size, the network structure could be destroyed by the shear force,
forming dispersed hydrogel particles rather than a whole bulk hydrogel. The phenolic resin
hydrogel 0.2 wt% HPAM+0.3 wt% PFR was analyzed using a circulating flow experimental
device. The change in the injection pressure (∆Pad, ∆Pbd, and ∆Pcd) was recorded with
time (see Figure 7). During the dynamic gelation process, ∆Pad is the pressure difference
between the injection end a and the outlet end d, ∆Pbd is the pressure difference between
the measuring point b and the outlet end d, and ∆Pcd is the pressure difference between the
measuring point b and the outlet end d. The permeability was 7.07 µm2 and the injected
speed was 0.5 mL/min.

From Figure 7, in the dynamic gelation process, the pressure difference ∆Pad firstly
changed smoothly, then rapidly increased before finally stabilizing, which indicates that
the hydrogel underwent the induction stage, gelation stage, and stabilization stage. During
the induction stage, the polymers that had not been cross-linked still maintained a certain
degree of viscoelasticity. When passing through a smaller core throat, they were compressed
and deformed to generate a certain degree of elasticity, which required a certain pressure
difference to pass through [29]. At this stage, the polymer molecules still formed as
individual particles rather than a network structure [30]. Macroscopically, there was no
significant change in pressure. During the gelation stage, polymer hydrogels were subjected
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by two types of forces: cross-linking reaction force and shear fragmentation force. The
former could enhance the three-dimensional network structure of the hydrogel and increase
the apparent viscosity, while the latter could destroy the network structure and reduce the
apparent viscosity. When the size of the phenolic resin hydrogel increased with time until
its cohesion was overcome by the shear of the porous media, the hydrogel was sheared and
destroyed to form a dispersed gel particle system, instead of becoming a whole hydrogel,
as shown in Figure 8. The formed hydrogel particles remained at the pore throat of the
porous media to play a plugging role, thus leading to the subsequent pressure rise.
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Figure 8. The micro morphology of PFR gel after dynamic gelation in porous media.

The microstructure of the phenolic resin hydrogel after dynamic gelation in porous
media was dispersed hydrogel particles rather than a whole bulk hydrogel. The network
structure of the phenolic resin hydrogel was not found at a higher magnification. These
hydrogel particles were adsorbed on the surface of the porous media and aggregated at
the pore throat, reducing the seepage capacity of the porous media and playing a plugging
role. Compared to the static gelation of the phenolic resin hydrogel in porous media, the
main form of the hydrogel particles after dynamic gelation was trapping. The viscosity
results of the hydrogel solution from the middle container after the experiment are shown
in Table 2. It could be seen that, after the dynamic gelation process in the porous media,
the viscosity of the hydrogel solution was lower than the viscosity of the initial polymer
gelation solution. This confirmed that the polymer was cross-linked, but hydrogel particles
were formed under the shear action of the porous media. The adsorption and migration
of the hydrogel particles in the porous medium kept the displacement pressure gradually
increasing. The output liquid was free water, which was generated by the bound water
inside the hydrogel under the action of shear force. The pressure difference ∆Pbd saw a
small increase, and the start time of this increase was significantly delayed compared to the
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pressure difference ∆Pad. This shows that hydrogel particles formed by dynamic gelation
can realize deep migration in porous media.

Table 2. Viscosity of PFR hydrogel production after dynamic gelation in porous media.

HPAM, wt% PFR, wt% Speed, mL/min K, µm2 Viscosity, mPa·s
0.15 0.6 0.5 7.22 2.1

0.2 0.6 0.5 8.08 3.7

0.25 0.6 0.5 8.28 6.3

0.3 0.6 0.5 8.99 4.2

0.2 0.3 0.5 7.07 5.7

0.2 0.9 0.5 8.49 1.6

2.3.2. The Effect of Polymer and Crosslinker Concentration on Dynamic Gelation

The dynamic gelation experiments of the PFR hydrogel in porous media under dif-
ferent formulations were carried out by changing the concentrations of the polymer and
crosslinker. The injection rate of 0.5 mL/min was kept unchanged (see Figure 9). Due to
the small change in the pressure difference ∆Pbd and almost no change in the pressure
difference ∆Pcd, the dynamic gelation process was characterized by the pressure difference
∆Pad. The dynamic initial gelation time of PFR hydrogel in porous media refers to the
time that the cross-linking reaction begins, and viscosity increases significantly during
the flow process [31]. This is shown in the figure as the first inflection point on the inlet
pressure difference curve ∆Pad. The final gelation time refers to the moment when the inlet
pressure difference ∆Pad no longer increases and tends to stabilize, which is expressed as
the second inflection point on the inlet pressure difference ∆Pad curve. In order to eliminate
the influence of permeability, F = ∆P × K is defined as the seepage resistance of fluid
flowing in a porous medium.
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Figure 9. The change in dynamic gelation of PFR hydrogel with time in porous media under different
concentrations of polymer and crosslinker; (a) ∆Pad × K vs. time; (b) ∆Pbd × K vs. time.

The cross-linking active points increased with increasing concentrations of polymer
and crosslinker. Under the same shear conditions, the cross-linking reaction rate accelerated
and the gelation time was shortened. Therefore, the time for the inflection point to appear
on the inlet pressure difference curve was advanced, indicating that the initial gelation
time and final gelation time of the dynamic gelation in porous media were both shortened
(Figure 9a). From Figure 9b, it can be seen that, as the concentrations of polymer and
crosslinker agent increased, especially to a polymer concentration greater than 0.2 wt%, the
change amplitude of ∆Pbd × K decreased. This indicates that the migration ability of the
PFR hydrogel during dynamic gelation was limited by the concentrations of the polymer
and crosslinker. According to the experimental method of dynamic gelation in porous
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media, it can be seen that the polymer hydrogel solution with two times the pore volume
(2 PV) flowed alternately in the porous media during the entire cycle. When 1 PV hydrogel
solution flowed in the porous media at 75 ◦C, the other PV hydrogel solution flowed in
the intermediate container at room temperature (25 ◦C). The hydrogel solution of 0.2 wt%
HPAM+0.6wt% with an initial viscosity value of 8.4 mPa·s aged at room temperature for
30 days. The viscosity was 10.9 mPa·s, indicating that the PFR hydrogel solution was
not cross-linked at room temperature. Therefore, the dynamic gelation time in porous
media should be half the time required for the entire gelation process. The initial and final
gelation time were obtained through dynamic gelation experiments in porous media with
different polymer and crosslinker concentrations, and were compared with static gelation
in ampoule bottles and porous media. The IGTs and FGTs of the PFR hydrogel in the
process of dynamic gelation are shown in Table 3.

Table 3. The IGTs and FGTs of PFR hydrogel in the process of dynamic gelation.

No HPAM,
%

PFR,
%

Dynamic Gelation in Porous Media

IGT, h FGT, h

1 0.15 0.6 40 105

2 0.2 0.6 25 95

3 0.25 0.6 20 80

4 0.3 0.6 14 46

5 0.2 0.3 35 106

6 0.2 0.9 20 80

According to Table 3, the initial and final gelation times of dynamic gelation in PFR
hydrogel porous media were longer than those in ampoule bottles and porous media. The
dynamic initial gelation time was 2–2.5 times the static initial gelation time in ampoule
bottles and 1.5–2 times the static initial gelation time in porous media. According to
Formula (1), the shear rate of the PFR hydrogel during dynamic gelation in porous media
is calculated [32–34], as shown in Table 4.

γ =
3n+1

n
· v

0.5
√

8C′Kφ
(1)

Table 4. Shear rate of PFR hydrogel under the process of dynamic gelation in porous media.

HPAM, wt% PFR,
wt% Speed, mL/min K, µm2 Porosity n C’ Shear Rate, s−1

0.2 0.3 0.5 7.07 0.352 0.573 2.29 4.34

0.2 0.6 0.5 8.08 0.367 0.440 2.29 3.71

0.2 0.9 0.5 8.48 0.371 0.445 2.29 3.61

0.15 0.6 0.5 7.22 0.353 0.645 2.29 4.43

0.25 0.6 0.5 8.28 0.369 0.427 2.29 3.63

0.3 0.6 0.5 8.99 0.373 0.346 2.29 3.28

γ—shear rate, s−1; n—viscosity index of fluid, mPa·sn; v—injection rate, cm/s; C’—the
coefficient related to tortuosity, usually ranging from 25/12 to 2.5; K—permeability, µm2;
and Φ—porosity. The porosity value is the ratio of the saturated water volume to the total
volume, and the tortuosity value is the average of the lower and upper limits.

According to Table 4, there was a certain shear rate during the dynamic gelation
process of the PFR hydrogel in porous media. There were two forces in the process of PFR
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hydrogel formation: one was the cross-linking effect that facilitated the formation of the
network structure, and the other was the shear effect that destroyed the network structure.
Therefore, the initial gelation time and final gelation time of dynamic gelation in porous
media were longer than those of static gelation in ampoule bottles and porous media.

2.3.3. Analysis of Water Flooding after Dynamic Gelation

After the dynamic gelation process of the phenolic resin hydrogel was completed, the
changes in the pressure difference of subsequent water flooding were recorded at each
point with the injection water volume (see Figure 10). According to the experimental
method of the dynamic gelation of phenolic resin hydrogel, it can be seen that, during
the entire dynamic gelation process, there were two PV phenolic resin hydrogel solutions
circulating alternately in the porous media. Therefore, the residual resistance coefficient of
the subsequent water flooding was generated by the two PV phenolic resin hydrogels.
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Figure 10. The change in water flooding after dynamic gelation with pore volume under different
concentrations of polymer and crosslinker.

From Figure 10, it can be seen that, under different concentrations of polymer and
crosslinker, the subsequent water flooding pressure difference ∆Pad exhibited the same
change trend after the dynamic gelation of the phenolic resin hydrogel. With an increase
in the water flooding pore volume, ∆Pad first rapidly increased to the maximum value,
then decreased and stabilized. The change in ∆Pbd was related to the concentrations of the
polymer and crosslinker. When the concentrations of the polymer and crosslinker were
relatively small, ∆Pbd showed a certain value, especially if the polymer concentration was
less than 0.2 wt%. When the pressure difference ∆Pbd in the process of dynamic gelation
had a certain value, the subsequent water flooding pressure difference ∆Pbd showed
significant changes. This indicates that only when the phenolic resin hydrogel migrated
during the dynamic gelation process would it have a plugging effect on the deep formation
during subsequent water flooding. The residual resistance coefficient of water flooding
after dynamic gelation in porous media is calculated, as shown in Table 5.

Table 5. The residual resistance coefficient of water flooding after dynamic gelation of hydrogel with
different concentrations of polymer and crosslinker.

HPAM,
wt%

PFR,
wt% K, µm2 Speed, mL/min

Residual Resistance Coefficient

ad bd

0.15 0.6 7.22 0.5 98 77

0.2 0.6 8.08 0.5 101 33

0.25 0.6 8.28 0.5 112 -

0.3 0.6 8.99 0.5 150 3

0.2 0.3 7.07 0.5 104 46

0.2 0.9 8.49 0.5 140 -
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According to Table 5, the residual resistance coefficient of the ad section gradually
increased with increasing concentrations of polymer and crosslinker. Increases in the
numbers of polymer and crosslinker molecules were conducive to the formation of a high-
strength hydrogel, which was shown by the increase in the plugging strength of the porous
media. Therefore, the residual resistance coefficient of subsequent water flooding increased.
The difference was not significant compared with the residual resistance coefficient of water
flooding after static gelation in porous media, indicating that the phenolic resin hydrogel
after dynamic gelation had a good plugging ability. The residual resistance coefficient of
the ad section decreased with increasing concentrations of polymer and crosslinker. When
the concentration of the polymer was greater than 0.25 wt% and the concentration of the
crosslinker was greater than 0.9 wt%, effective plugging could not be formed after the
dynamic gelation of the bd section. The concentrations of polymer and crosslinker were
positively correlated with the gel strength. The storage modulus and loss modulus of the
hydrogel increased with increasing concentrations of polymer and crosslinker, which made
the hydrogel difficult to deform and gave it a strong resistance to impact and local damage.
Hydrogel with a high internal friction resistance finds it difficult to migrate in rock pores.
Therefore, hydrogel with a high gel strength was mainly retained at the injection end after
dynamic gel formation, which cannot produce effective plugging in deep formations.

3. Conclusions

The field implementation of hydrogel deep profile control can greatly improve oil
recovery. It is affected by the dynamic gelation of hydrogel in porous media, especially the
influence of the mass concentration of hydrogel components on the migration rule after
dynamic gelation. This paper studied the quantitative relationship between dynamic and
static gelling, the regulation of the subsequent water flooding of dynamic gelation, and the
influence of the polymer concentration and crosslinker concentration on the deep migration
of hydrogel. The main conclusions were as follows:

(1) The quantitative relationship between the static gelation of hydrogels in different
environments was established. The static gelation time of PFR hydrogel in porous media
was longer than that in ampoule bottles, where the initial gelation time increased to
1~1.5 times and the final gelation time increased to 1.5~2 times, respectively. The phenolic
resin hydrogel could form a three-dimensional network structure after static gelation in
ampoule bottles and porous media.

(2) The quantitative relationship between the dynamic gelation of hydrogels in dif-
ferent environments was established, and revealed the existing form of hydrogels after
dynamic gelation. The dynamic initial and final gelation time of PFR hydrogel in porous
media was longer than the static initial gelation time in ampoule bottles and porous media.
The phenolic resin hydrogel could only form dispersed hydrogel particles after dynamic
gelation in porous media.

(3) The subsequent water flooding experiment of dynamic gelation showed that the
residual resistance coefficient of water flooding was not significantly different from that
after static gelation in porous media, indicating that the polymer hydrogel after dynamic
gelation had a good plugging ability.

(4) The phenolic resin hydrogel could realize deep migration during dynamic gelation
in porous media, but it was limited by the concentrations of the polymer and crosslinker.
The deep reservoir could only be blocked off in the subsequent water flooding process
when the migration of the hydrogel happened in the dynamic gelation process.

4. Materials and Methods
4.1. Materials

The polymer employed in this research was the ordinary partially hydrolyzed poly-
acrylamide (HPAM), whose molecular weight was 1.2 × 107 and the degree of hydrolysis
was 22%. The crosslinker was a water-soluble phenolic resin prepolymer, which was ob-
tained by the poly-condensation of phenol and formaldehyde (excess) under the catalyst
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action of sodium hydroxide [20]. The used synthetic water (SW) contained 6921 ppm Na+,
412 ppm Ca2+, 148 ppm Mg2+, and 11853 ppm Cl−.

4.2. Experimental Methods
4.2.1. Static Gelation in Ampoule Bottles

The viscosity method was used to determine the relationship between the viscosity of
the hydrogel system and time under different gelation times. The experimental method
was as follows: the prepared polymer solutions were diluted with simulated water, then
crosslinker agents with different concentrations were added. After thorough mixing, they
were placed in a constant temperature oven at 75 ◦C. The viscosity of the system was
measured at different gelation times using a DV-II viscometer.

4.2.2. Static gelation in Porous Media

The permeability and pore volume of sandpack pipe models (Φ 2.5 cm × 10 cm) were
measured after being saturated with water. In total, 1 PV of hydrogel solution was injected
into every pipe, and the sandpack pipe models were placed in a 75 ◦C oven. At each interval,
a sandpack pipe was taken out to carry out the water flooding experiment. The relationship
between the pressure and pore volume was measured and the residual resistance coefficient
was calculated under 1 mL/min during water flooding. The determination of the gelation
time was due to the relationship between the residual resistance coefficient and gelling time.

4.2.3. Dynamic Gelation in Porous Media

The dynamic gelation of HPAM/PFR hydrogel in porous media could be estimated
with the circulating device, which comprised two piston containers at room temperature
and a sandpack at 75 ◦C. Specific methods have been shown in the literature [15], as shown
in Figure 11.
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4.2.4. Water Flooding after Dynamic Gelation in Porous Media

In order to confirm the residual resistance coefficient of the used hydrogel system after
dynamic gelation, subsequent water flooding under 1 mL/min was conducted when the
process of dynamic gelation was finished. The plugging ability could be determined by the
curve of the pressure difference with the injected pore volume of water.
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Abstract: To address the issue of ineffective injection resulting from the consistent channeling of
injected water through highly permeable channels in ultra-deep, high-temperature, high-salinity,
and strongly heterogeneous reservoirs during the production process, a gel particle profile control
agent suitable for high-temperature and high-salinity conditions was chosen. With the help of
the glass etching visual microscopic model and the heterogeneous long core model, the formation
mechanism of a water flooding channeling path and the distribution law of the remaining oil were
explored, the microscopic profile control mechanism of the different parameters was clarified, and
the profile control effect of macroscopic core displacement was analyzed. The research shows that
the formation mechanism of a water flooding channeling path is dominated by the distribution
law of the permeability section and the connection mode between different penetration zones. The
remaining oil types after water flooding are mainly contiguous block, parallel throats, and multi-
branch clusters. The profile control effect of gel particles on reservoir vertical heterogeneity is better
than that of reservoir lateral heterogeneity. It was found that 10 wt% submicron particles with a
median diameter of 600 nm play a good role in profiling and plugging pores of 5–20 µm. In addition,
10 wt% micron-sized particles with a median diameter of 2.63 µm mainly play a strong plugging role
in the pores of 20–30 µm, and 5 wt% micron-sized particles with a median diameter of 2.63 µm mainly
form a weak plugging effect on the pores of 10–20 µm. The overall profile control effect of 10 wt%
submicro particles is the best, and changes in concentration parameters have a more significant effect
on the profile control effect. In the macroscopic core profile control, enhanced oil recovery (EOR)
can reach 16%, and the gel particles show plugging, deformation migration, and re-plugging. The
research results provide theoretical guidance for tapping the potential of the remaining oil in strong
heterogeneous reservoirs. To date, the gel particles have been applied in the Tahe oilfield and have
produced an obvious profile control effect; the oil production has risen to the highest value of 26.4 t/d,
and the comprehensive water content has fallen to the lowest percentage of 32.1%.

Keywords: strong heterogeneous reservoir; channeling path; gel particle; physical simulation;
enhanced oil recovery (EOR)

1. Introduction

With the development of China’s oilfields gradually entering the middle and late
stages, the long-term water injection development method has led to a significant increase
in the water content of the produced liquid of oil wells. For heterogeneous strong reservoirs,
this will further enhance their heterogeneity, resulting in excess dispersion of the remaining
oil. Therefore, the remaining oil in a strong heterogeneous reservoir developed by long-term
water injection is rich in potential space [1–4]. The reservoir which is the fourth Triassic
member in the T block of the Tahe oilfield is an ultra-deep, high-temperature, and high-
salinity reservoir [5,6]. There are two sets of interlayers with moderate heterogeneity in the
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longitudinal direction and strong heterogeneity in the plane. After long-term water injection
development, the current oil recovery is still low. The main reason for this is that there is a
local concentration of plane streamlines in the water injection block, and the injected water
is easy to channel along the dominant channel, resulting in premature water breakthrough
in the oil well and ineffective water injection. Behzad Vaferi et al. applied deep-learning
alternative models to prove that the water injection pattern strongly affects the water
channeling reduction and the ultimate oil recovery increase [7]. However, at present,
studies on the formation law of micro-waterflood channels in real-model experiments are
still insufficient, and it is difficult to take effective measures to deal with the problems in
water channels [8,9].

As an important measure to improve the development effect of water flooding, control
water, and stabilize oil, profile control and flooding technology has been widely used in
oilfields at home and abroad [10,11]. The essence of this technology is to improve reservoir
heterogeneity and improve the water flooding sweep efficiency and oil washing efficiency
by injecting chemical agents with both profile control abilities and oil washing abilities into
injection wells, so as to achieve the purpose of enhance oil recovery (EOR) [12,13]. For the
harsh conditions of ultra-deep, high-temperature, and high-salt reservoirs, conventional
profile control and flooding systems such as inorganic gel have good temperature and salt
resistance but short gelation times, and it is difficult to control the gelation time [14,15].
Inorganic particles are less affected by temperature and salinity but are poor in selective
plugging, and raw materials are greatly affected by the origin [16–18]. Foams have strong
selective plugging abilities which enables them achieve high-temperature and high-salt
resistance, but they have short validity periods and involve complex construction tech-
nology [19–22]. Resin has a high plugging strength and a long validity period but poor
selective plugging and is difficult to remove after plugging [23–25]. Organic polymer parti-
cles are widely used because of their low cost, good selectivity, and ability to absorb water
and expand to form deep profile control under high-temperature and high-salt conditions.
At present, research into organic particles is relatively mature, which includes research
regarding profile control colloidal dispersion gel (CDG), precrosslinked gel particles (PPGs),
polymer microspheres, and gelled dispersion particles (DPGs) [26–30]. Considering the
technical comparison above and factors such as temperature and salt resistance, deep
migration, strong reservoir matching, and simple construction, the organic polymer particle
control agent is still the best choice for the control of strong heterogeneous reservoirs.

In recent years, a kind of granular micro and nano expanded polymer gel micellar
emulsion technology has been developed. The preparation process of this technology
is simple, efficient, and environmentally friendly, and the particles at the nanometer to
millimeter level can be prepared according to the requirements of the reservoir. However,
the influence of the key injection parameters of the particles on the oil displacement effect
is still unknown. Therefore, on the basis of this technology, this paper developed a kind of
reservoir pore throat size particle suitable for block T in the Tahe oilfield. At the microscopic
level, the visual microscopic model of glass etching was used to compare and analyze the
oil displacement effect of the system under different key parameters, and the formation
mechanism of a water drive channel and the distribution law of remaining oil were studied.
On the macro level, the core displacement experiment was used to analyze the displacement
effect of gel particles and verify the characteristics of the micro displacement mechanism.

2. Results and Discussion
2.1. Study on Water Flooding Microscopic Channeling Mechanism and Remaining Oil
Distribution Law
2.1.1. Mechanism Analysis of Water Flooding Channeling Path

The water flooding process is shown in Figure 1. In Figures 1–9, blue is the simulated
water, red is the simulated oil, white is the rock skeleton, and the displacement direction
is from left to right. The red circle indicates remaining oil, the black circle represents gel
particles, and the green arrow indicates the inlet and outlet. In the early stage of water
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flooding, the overall performance of the water drive front is finger breakthrough. This
means that the high-permeability section advances rapidly, while the middle- and low-
permeability sections on both sides progress slowly, leading to the formation of local finger
phenomenon within each penetration section (Figure 1a). With the increase in displacement
pressure and the difference of oil−water viscosity, the injected water not only advances
forward, but also spreads to both sides of the model (Figure 1b). The analysis shows that the
occurrence of this phenomenon depends on the degree of pore connectivity at the interface
between the permeability zones. The connection of different permeability zones belongs to
the intralayer connection, where the pores on both sides are in an almost interconnected
state, with the large pores dominating. At this time, the degree of pore connection has
improved, and the speed of the two sides is faster. If the connection belongs to the interlayer
connection, meaning there is a certain degree of interlayer at the connection, which makes
the displacement phase unable to spread to another permeability zone, then the degree of
pore connection is poor, and the speed of the two sides is slow or almost zero. However,
the formation of the overall fingering phenomenon of water flooding is still dominated by
the pore size. The injected water is rapidly channeled along the middle high-permeability
section to form the dominant channel, followed by the middle-permeability section above
(Figure 1c).
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2.1.2. Remaining Oil Distribution

After water flooding, the oil−water distribution image of the model is locally enlarged,
the distribution law of the remaining oil is analyzed, and the remaining oil is quantitatively
assessed using image analysis software. As shown in Figure 2, the distribution types of
the remaining oil in the model after water flooding are summarized as follows: (1) Large
pores surrounded by multiple fine pore throats, making it difficult for injected water to
overcome large seepage resistance and form multi-branch cluster residual oil (Figure 2a);
(2) A small pore throat is formed in parallel with the large pore channel. The injected water
tends to enter the larger pores, bypassing the smaller ones, and eventually establishes a
consistent and stable flow pathway within the larger pores, resulting in the formation of
parallel residual oil reservoirs. (Figure 2b); (3) In situations where there is only a single
flow outlet outside the channel and the injected water flows vertically towards the outlet
end, it becomes challenging for the injected water to alter the direction of its streamline
and create a pressure differential within the channel. As a result, this leads to the formation
of dead-angle points where residual oil accumulates. (Figure 2c); (4) When the rock surface
is hydrophilic, the injected water tends to flow along the contours of the rock surface,
thereby creating isolated droplets of residual oil in the central region of the larger channel.
(Figure 2d); (5) In the place where a large number of small pores exists or the large pores
are nearly enclosed by small pores, it becomes challenging for the injected water to create a
local breakthrough and subsequently disperse the flake oil, thus forming a contiguous block
of residual oil (Figure 2e) [31–34]. The distribution of various types of remaining oil after
water flooding is statistically analyzed. It can be seen from Figure 3 that the contiguous
block, parallel throat shape, and multi-branch cluster shape account for more than 20%,
and the remaining oil types mainly consist of these three types.

2.2. Study on Micro Flooding Mechanism of Key Parameters of Gel Particles

In this study, we change the heterogeneous distribution form of the model, the size
of the injected particles, and the concentration of the injected particles. We compare the
microscopic profile control effects under different key parameters of the gel particle profile
control agent.

2.2.1. Heterogeneous Distribution Form of the Model

Changing the form of the heterogeneous distribution, the vertical placement represents
vertical heterogeneity, while the horizontal placement represents plane heterogeneity. Com-
paring the experimental results of Experiment 1 and Experiment 2, as shown in Figures 4
and 5, the colorless liquid area in the subsequent water flooding represents water after high-
temperature fading. The red circle indicates oil, the black circle represents gel particles, and
the green arrow indicates the inlet and outlet. Under the condition of longitudinal hetero-
geneity, the water flooding efficiency is highest in the permeability section. Simultaneously,
the influence of gravity causes an excess accumulation of the remaining oil in the upper
part of the permeable section. However, sizable pockets of remaining oil are still observed
in the lowest part of the low-permeability section, highlighting that pore size remains a
critical factor in the formation of residual oil. The type of residual oil after water flooding
is mainly contiguous residual oil. A large number of unexpanded gel particles enter the
hypertonic channel. After 72 h of thermal expansion of gel particles in the model, large
pores can be effectively blocked. A large amount of contiguous residual oil is dispersed
into residual droplets through subsequent water flooding and peristaltic gel particles, and
then it flows out with the water [35–37] (Figure 6). The remaining oil distribution in the
three permeable sections after water flooding under the plane heterogeneity is relatively
uniform, mainly existing in parallel throats and multi-branch clusters. The presence of
expansion particles enables the efficient utilization of residual oil in the three penetration
sections. However, the effectiveness primarily depends on profile adjustments, and the oil
displacement effect is not particularly significant. From an overall perspective of the profile
control effect image, the gravitational impact of vertical heterogeneity affects the water
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flooding effect. When it comes to controlling displacement in a longitudinal heterogeneous
reservoir, the impact of expansion particles surpasses that of a transverse heterogeneous
reservoir. This observation is further supported by the analysis conducted on the enhanced
oil recovery (EOR) below.

2.2.2. Different Injection Particle Sizes

By changing the injection particle size, the experimental results of Experiment 1 and
Experiment 3 are compared. Figures 4 and 7 show that 10 wt% submicron particles (600 nm)
can penetrate the middle/high/low-permeability sections. The subsequent water flooding
can produce steering in these sections, leading to the effective utilization of the remaining
oil. The 10 wt% micron particles (2.63 µm) primarily flow into the main channel (20–30 µm)
of the high-permeability section, causing a significant plugging effect, while they hardly
enter the medium- and low-permeability sections. Therefore, the subsequent water flooding
mainly turns to the medium- and high-permeability remaining oil area and continues to
advance along the larger pores in the low-permeability section. During subsequent water
flooding process after 72 h of heat preservation, the particles disperse and deform from
their original plugging position to other areas, creating an oil displacement effect. They
deform through the fine pore throat to form re-displacement and plugging (Figure 8). From
the pressure data in Table 1, it can be seen that the subsequent water flooding pressure
in Experiment 1 and Experiment 3 is 0.11 MPa and 0.13 MPa, respectively. The better the
pressure-lifting effect of large particles, the more effective the plugging effect, and the
stronger the subsequent liquid flow steering ability. However, when combined with the
experimental image comparison results mentioned above, it can be observed that its profile
control effect in the low permeability section is inferior to that of small particles. It can be
observed that increasing the size of injected particles can elevate the injection pressure and
counteract the large capillary force of small pore throats. However, due to its large particle
size, it fails to enter the large pore channels of the low-permeability section effectively. This
limitation hinders the improvement the internal heterogeneity in the low permeability
section, resulting in a poor outcome in enhancing oil recovery. Therefore, when selecting
the injection particle size of the profile control agent, it is important not only to consider
the pressurization effects but also to comprehensively consider the migration and plugging
effect in different permeability sections.

Table 1. The pressure performance at different displacement stages under different parameters.

Number Placement
Mode

Injection
Particle
Sized

Injection
Concentration/wt%

Injection
Volume/µL

Water
Flooding
Pressure

/MPa

Particle
Flooding
Pressure

/MPa

Subsequent
Water Flooding

Pressure
/MPa

1 vertical submicro 10

100

0.005 0.006 0.016

2 horizontal submicro 10 0.003 0.004 0.011

3 vertical micron 10 0.0035 0.0075 0.0165

4 vertical micron 5 0.0075 0.0075 0.0175

2.2.3. Different Injection Concentration

By changing the injection concentration, we compare the experimental results of
Experiment 3 and Experiment 4. Figures 7 and 9 show that 5 wt% micron particles (2.63 µm)
mainly form plugging in the middle- and high-permeability sections. However, due to
the low concentration of gel particles, the plugging strength is weak, so the subsequent
profile control effect is worse than that of the 10 wt% micron (Figure 9d). Moreover, due
to the decrease in concentration, the likelihood of collisions between particles is reduced,
making it challenging for particles to adsorb and coalesce with each other. It is difficult to
achieve a state of aggregation and accumulation to block the large pores, which hinders the
increase in displacement pressure. The particle displacement pressure in Experiment 4 is
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equal to the initial water displacement pressure (Table 1). However, since the diameter of
large-particle-size and low-concentration particle aggregates is smaller than that of large-
particle-size and high-concentration aggregates, the low-concentration particle solution
will also partially enter the low-permeability section to play a role in profile control and
flooding. It can be seen that the ability of particles to migrate to the low-permeability
section to perform profile control is not only dependent on the particle size but also on the
concentration of the particles.

2.2.4. Analysis of Enhanced Oil Recovery (EOR) under Different Parameters

By using image analysis software to quantitatively analyze the remaining oil in each
stage of the model. Based on the results presented in Table 2, it is evident that when altering
the heterogeneous distribution form and injection conditions, the enhanced oil recovery (EOR)
during the particle flooding stage remains predominantly below 0.5%. The overall enhanced
oil recovery (EOR) is mainly influenced by the subsequent water drive flow and the expansion
and migration of particles. This indicates that the effect of adjustment is greater than that of
flooding. On the other hand, Yuan Chengdong believes that enhancing the microscopic oil
displacement efficiency is typically accomplished by increasing the capillary number. The
lower the interfacial tension between the displacing phase and the displaced phase, the higher
the capillary number [38]. According to the definition of the Newtonian capillary number,
along with the interfacial tension mentioned above, the viscosity of the displacing phase, the
velocity of displacement, and the contact angle, the capillary number can be calculated to be
approximately on the order of 10−3 [39]. Therefore, the capillary number of the gel particle
agent is smaller and the oil washing efficiency is poor.

Table 2. The EOR performance at different stages under different parameters.

Number Experimental
Parameters

Oil Recovery/% Enhanced Oil Recovery (EOR)/%

Water
Flooding

Particle
Flooding

Subsequent
Water

Flooding

Particle
Flooding

Subsequent
Water

Flooding

Particle + Subsequent
Water Flooding

1 vertical,
10 wt% submicron 55.98 56.38 78.30 0.40 21.92 22.32

2 horizontal,
10 wt% submicron 59.43 59.84 78.36 0.41 18.51 18.92

3 vertical,
10 wt% micron 57.86 58.28 78.2 0.42 19.92 20.34

4 vertical,
5 wt% micron 56.28 56.6 74.27 0.32 17.67 17.99

The EOR in Experiment 1 is the highest. Compared with Experiment 2, the 3.4% in-
crease in EOR indicates that the gel particles have a better effect on the vertical heterogeneity.
The difference in enhanced oil recovery (EOR) between Experiment 1 and Experiment 3,
utilizing pellet flooding followed by subsequent water flooding, is 1.98%. Meanwhile, the
EOR difference between Experiment 3 and Experiment 4, employing particle flooding along
with subsequent water flooding, is 2.35%. Upon comparing these differences, it becomes
evident that the impact of concentration parameters on enhanced oil recovery outweighs
that of particle size parameters. Comparing the EOR of particle flooding + subsequent
water flooding with different particle sizes and concentrations, it can be observed that the
profile control effect of 10 wt% submicron particles is the most effective.

2.3. Evaluation of Flooding Effect of Gel Particle Macro Core

Since the experimental conditions of the microscopic model involve normal tempera-
ture and pressure, they do not simulate the complex high-temperature and high-pressure
environment in the actual reservoir. As a result, the enhanced oil recovery (EOR) is higher
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than that of the core flooding experiment. Due to the small pore volume of the model,
accurately and quantitatively describing the change characteristics of the oil recovery factor
and water content in the displacement process is challenging. Therefore, the actual produc-
tion profile control and displacement effect of the gel particle should be based on the core
displacement experiment.

Consistent with the design of micro-scale experimental parameters, the core displace-
ment experiment compares the effects of various particle sizes and concentrations under
the conditions of vertical heterogeneity. The results are shown in Table 3. Under similar
flooding conditions, the final enhanced oil recovery of submicron particles is higher than
that of micron particles. In the case of particles of the same size, the final enhanced oil
recovery of the high-concentration 10 wt% particle solution is greater than that of the
low-concentration 5 wt% particle solution, which aligns with the enhanced oil recovery
(EOR) analysis of the microscopic model.

Table 3. The pressure and oil recovery at different stages under different parameters.

Condition Parameters

Pressure/MPa Oil Recovery/%
Ultimate
Oil Re-

covery/%
EOR/%Water

Flooding
Particle

Flooding

Subsequent
Water

Flooding

Water
Flooding

Particle
Flooding

Subsequent
Water

Flooding

Vertical heterogeneity,
similar amount of

profile control flooding

Micro
particles 0.06 0.31 0.45 58.25 2.26 9.86 70.37 12.12

Submicro
particles 0.08 0.30 0.46 57.98 2.51 10.95 71.44 13.46

Vertical heterogeneity,
submicron particles

5 wt% 0.07 0.31 0.55 58.02 2.78 11.25 71.44 14.03

10 wt% 0.08 0.33 0.57 57.61 2.88 13.01 73.50 15.89

Analysis of the production characteristic curve of the gel particle profile control
(Figure 10) shows that before the injection amount reaches about 0.3 pore volumes (pv) in
the initial stage, it is necessary to first go through the anhydrous oil production period.
During this period, all the produced liquid is oil, and the water content is almost zero. The
water content of the produced liquid sharply increases to about 90% after the subsequent
injection of approximately 0.2 pore volumes (pv) water. When the water content of the
produced fluid reaches about 98%, the efficiency of enhanced oil recovery (EOR) is almost
0%, and it can be considered that the dominant channel of water flooding has been stably
formed. The decrease in water content and the increase in the oil recovery factor during the
gel particle flooding stage are not significant. This is because the gel particles first infiltrate
into the core through the dominant channel, carried by high-salinity water initially. The
remaining oil is not utilized during this stage, aligning with the aforementioned microscopic
experiment. However, the gel particles are a type of particle agent with a specific diameter.
As the injection amount increases, they tend to cause blockages, leading to a preference for
flowing through narrower channels during particle flooding. This process helps to drive
out the remaining oil. At this time, the water content will decrease and the oil recovery
factor will increase gradually. When the particles are heated and expanded in the core,
they exert a strong plugging effect on the dominant channel, leading to increased pressure
and flow around the smaller pore throat during subsequent water flooding. Based on the
pressure data values presented in Table 3, after the gel particles are kept warm for 72 h for
subsequent water flooding, the maximum increase in subsequent water flooding pressure
can reach 0.24 MPa. This suggests that the expanded particles exhibit a more effective
plugging effect on larger pores. At present, the gel particles have been applied in Well
Group H, Block T, Tahe Oilfield, and have produced a noticeable profile control effect. The
oil production has increased to a peak of 26.4 t/d, and the comprehensive water cut has
decreased to a minimum of 32.1%.
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Figure 10. Comparison of the change in the oil recovery factor and water content in the core flooding
experiment:(a) Change particle size; (b) Change particle concentration.

3. Conclusions

(1) From the results of primary water flooding, the formation law of water flooding chan-
nels is determined by the heterogeneity distribution of the model and the connection
between different permeability sections. There are five types of remaining oil after
primary water flooding: contiguous block, multi-branch cluster, parallel throat, corner
concave, and dispersed solitary drop, mainly focusing on the first three types;

(2) The profile control effect of gel particles on reservoir vertical heterogeneity is better
than that on reservoir lateral heterogeneity. The 10 wt% submicron particle (600 nm)
can penetrate into the channel with a designed throat radius of 5–10 µm in the low-
permeability section and the medium−high-permeability section to effectively plug
it. The 10 wt% micron-sized particles (2.63 µm) can penetrate the channel with a
designed throat radius of 20–30 µm in the high-permeability section to effectively
plug it. However, it is nearly impossible for them to penetrate and cause plugging
in sections with medium and low permeability. The 5 wt% micron-sized particles
(2.63 µm) can penetrate into the channel with a designed throat radius of 10–20 µm
in the medium-permeability section and high-permeability section, mainly forming
weak plugging in the medium- and high-permeability section;

(3) Both microscopic experiments and macroscopic core displacement experiments show
that 10 wt% submicron particles have the best effect on profile control and flooding.
The concentration parameters have a more significant impact on the effectiveness of
profile control and flooding. The mechanism of action of gel particles is primarily
characterized by the agent initially entering the dominant channel and subsequently
expanding under the influence of high-temperature water. This process results in the
phenomenon of plugging, migration and deformation, and re-plugging. Therefore, it
has an efficient profile control and flooding effect on heterogeneous reservoirs.

The effects of various key parameters of the expanded gel particles were investigated
using an indoor physical model. Since the model could not simulate the actual conditions
of the high-temperature and high-salt reservoir, as well as the changes in the pore throat
after long-term water flooding, the experimental discussion may be inadequate. In the
future, more attention should be paid to the similarity between the model and the actual
field conditions so that the conclusions of laboratory experiments can better guide the field
application. In addition, considering that the oil washing efficiency of the gel particle agent
is not high, the use of nano-sized particles with smaller particle sizes or with surfactants
can be considered to enhance collaborative oil flooding.
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4. Materials and Methods
4.1. Visual Microscopic Glass Etching Experiment

Using the visual microscopic glass etching model, we designed various key parameters
for particles. The aim was to explore the mechanism of profiling and flooding effects
caused by the key parameters of the gel particle profile control agent at the micro level.
Furthermore, we studied the mechanism of water flooding and the distribution of remaining
oil. Equipment: high-grade GP−300C microscope system, polarizing microscope, micro-
injection pump, model holder, etc., as shown in Figure 11. The internal pore size of the
microscopic model is 45 mm × 45 mm. The penetration zone and three connected channels
are etched at the inlet and outlet of the model. The upper, middle, and lower parts of
the three penetration sections correspond to different permeability zones: the medium-
permeability zone with a throat diameter of 10–20 µm, the high-permeability zone with
a throat diameter of 20–30 µm, and the low-permeability zone with a throat diameter of
5–10 µm.
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The simulated oil was a mixture of white oil and aviation kerosene in proportion to
maintain a viscosity ratio of approximately 5.8:1 at room temperature. It was dyed red with
Sudan III and filtered to prevent undissolved dyes from blocking the throat. The simulated
water salinity was 210,000 mg/L, and the injected water was stained with methyl blue
and then filtered. The gel particle profile control agent is a stable particle system formed
by a high viscoelastic polymer gel through high-speed mechanical shear. The gel particle
profile control agents used in this paper are composed of submicron particles with an
initial median diameter of 600 nm and micron particles with an initial median diameter
of 2.63 µm. Under the actual high-temperature and high-salt conditions of the reservoir
(102 ◦C, 210,000 mg/L), the gel particle size can expand approximately four times within
72 h. Moreover, the viscosity of 10 wt% gel particles can be sustained at around 3 mPa·s
after shear for 5, 10, 15, 20, and 30 min at 1000 rpm, respectively. At normal temperature,
the interfacial tension of oil and water is 25.6 mN/m. This tension decreases by 2.3 mN/m
and 1.2 mN/m, respectively, after the addition of submicron and micron profile control
agents. By utilizing the sand-filled tube model, the system’s plugging rate can remain
above 80% after 30 days of aging, even under the storage environment of high temperature
and high salt. The wettability of the model is hydrophilic, and the contact angle of the
injected water in the model is 39.89◦.

Experimental steps:

1. The software was connected to the microscope and the parameters adjusted;
2. The vacuum-saturated simulation of oil was modeled at room temperature;
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3. The simulated water was injected at a constant speed of 50 µL/min until the pressure
stabilized, and the injection volume reached approximately 320 µL;

4. According to the experimental scheme in Table 4, various particle sizes and concentra-
tions of profile control and flooding agents were injected. Subsequently, the formation
temperature was maintained for 72 h;

5. Subsequent water flooding. The experiment was carried out at room temperature,
and the injection pressure, injection volume, and injection speed were recorded. The
displacement process and local feature images were taken.

Table 4. Visualization microscopic experiment scheme.

Number Placement Mode Injection
Particle Type

Injection
Concentration/wt%

Injection
Volume/µL

1 vertical submicron 10

100
2 horizontal submicron 10
3 vertical micron 10
4 vertical micron 5

4.2. Heterogeneous Rectangular Core Displacement Experiment

It is used to analyze the profile control and flooding effects of gel particles and verify
the characteristics of microscopic profile control and flooding mechanisms. Equipment:
High-temperature and high-pressure core flow evaluation device includes an advection
pump, thermostat, hand pump, core holder, intermediate container, etc., as shown in
Figure 12. The simulated water and gel particle profile control agent is the same as that
used in the microscopic experiment. The simulated oil is industrial white oil (102 ◦C,
1.64 mPa·s). The permeability design of the three-layer heterogeneous core model was
based on the permeability distribution of the perforated interval of the control and flooding
well group selected in the T block of the Tahe oilfield. Finally, the permeability design
for the rectangular three-layer heterogeneous core used in the laboratory experiment was
upper/middle/lower corresponding to the medium permeability/high permeability/low
permeability = 140/280/40 × 10−3 µm2, 30 × 4.5 × 4.5 cm.
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Experimental steps:

1. The air tightness of the equipment was tested;
2. Core drying, weighing, and vacuum pressure saturation simulation of the oil was

carried out;
3. Formation temperature aging for 24 h was conducted;
4. Water flooding of the core was stopped when the water content reached 98% at the

outlet end;
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5. According to the experimental scheme, the flooding agent was injected and main-
tained at the formation temperature for 72 h;

6. Subsequent water flooding to the outlet end of the water content reached 98%. The
experimental formation temperature was carried out, the pressure, produced water,
and oil were recorded, and the change trend in water content and the oil recovery
factor were then calculated.

By comparing the permeability measured by the gas and liquid of each core, it can
be seen from Table 5 that the gas permeability and liquid permeability measured by
different cores show little difference, which accords with the experimental error range. The
experiment completed by using this model is credible.

Table 5. Basic parameters of the core used in the experiment.

Condition Parameters Gas Permeability/10−3 µm2
Liquid

Permeability/10−3

µm2
Porosity/%

Vertical heterogeneity,
similar amount of

profile control flooding

micro
particles 154 140.55 20.44

submicron
particles 156 141.98 20.58

Vertical heterogeneity,
submicron particles

5 wt% 156 140.36 20.24

10 wt% 152 140.45 20.96
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Abstract: Gel systems are widely used as plugging materials in the oil and gas industry. Gas
channeling can be mitigated by reducing the heterogeneity of the formation and the mobility ratio
of CO2 to crude oil. Cracks and other CO2 leaking pathways can be plugged during the geological
storage of CO2 to increase the storage stability. By adding CO2-responsive groups to the classic
polymer gel’s molecular chain, CO2 responsive gel is able to seal and recognize CO2 in the formation
while maintaining the superior performance of traditional polymer gel. The application of CO2

responsive gels in oil and gas production is still in the stage of laboratory testing on the whole. To
actually achieve the commercial application of CO2 responsive gels in the oil and gas industry, it is
imperative to thoroughly understand the CO2 responsive mechanisms of the various types of CO2

responsive gels, as well as the advantages and drawbacks of the gels and the direction of future
development prospects. This work provides an overview of the research progress and response
mechanisms of various types of CO2 responsive groups and CO2 responsive gels. Studies of the CO2

responsive gel development, injectivity, and plugging performance are comprehensively reviewed
and summarized. The shortcomings of the existing CO2 responsive gels system are discussed and
the paths for future CO2 responsive gel development are suggested.

Keywords: CCUS; gas channeling; CO2 leakage; CO2 responsive gel; comprehensive review

1. Introduction

The demand for energy is growing worldwide, and the majority of the energy that
people need is currently provided by fossil fuels [1]. This also leads to the release of
a large amount of greenhouse gases such as CO2, CH4, N2O, HFCs, PFCs, and ReF6
into the atmosphere, causing the Earth’s temperature to rise day by day. According to
the National Weather Service, the earth’s temperature has risen by 0.7 ◦C since the 19th
century [2]. CO2 is one greenhouse gas and makes up more than 60% of the greenhouse
effect. The global cumulative emission reduction in CCUS is 5.5 × 1011 to 1.017 × 1012 t
CO2 to accomplish the goal of a 1.5 ◦C temperature rise control by the year 2100. The
potential of CCUS to reduce global emissions has been assessed by the International Energy
Agency and the Intergovernmental Panel on Climate Change (IPCC). To achieve near zero
emissions globally by 2070, CCUS technology must accumulate an emission reduction of
about 15% [3–6].

The development of CO2 capture utilization and storage (CCUS) as an important
technology for carbon neutrality is highly promising. CO2-based enhanced oil recovery
(CO2-EOR) in hydrocarbon reservoirs is one of the most economically attractive means
to achieve large-scale CO2 utilization and geological storage. However, CO2 channeling
through high-permeability features seriously inhibits the performance of CO2-EOR. In
addition to gas channeling issues, in the process of CO2 flooding, the injected CO2 can also
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cause inorganic salt precipitation (such as metal carbonates) and asphaltene precipitation,
leading to a decrease in reservoir permeability. Due to the fact that precipitation is also gen-
erated during water flooding, and the mechanism of precipitation generation is similar to
CO2 flooding It is possible to refer to the treatment method of water flooding and introduce
inhibitors into the CO2 flooding process to hinder or reduce the generation of precipitation.
Also, there is an urgent need for CO2 geological storage technology to solve the problem of
potential CO2 leakage via cracks, faults, and other high-permeability channels. Injecting
CO2 into hydrocarbon reservoirs is an attractive way to achieve the effective utilization
and storage of CO2 [7,8]. Current CCUS projects are mainly applied to conventional oil
and gas reservoirs, in which 0.1 to 0.6 tons of crude oil can be produced for every 1 ton of
CO2 injected. The next stage of research mainly focuses on improving the recovery rate
of unconventional oil and gas reservoirs with carbon dioxide. How to effectively inject
CO2 into shale or coal bed methane remains a key research and development direction
for improving the recovery performance of such oil and gas reservoirs [9,10]. When the
source and sink matching conditions are suitable, some CCUS projects in China have lower
costs than the enhanced oil recovery (EOR) benefits, and have the potential for negative
cost reduction [11,12]. In terms of CO2-enhanced oil recovery and geological storage, it
is a huge challenge to choose a suitable CO2 sealing agent in order to control the migra-
tion of CO2 in the formations. As a new type of plugging agent, CO2-responsive gel can
directionally identify and plug CO2 in the formation, and has good acid resistance. It has
high application potential in the CO2 sealing of formations, and has received widespread
attention from researchers [13,14].

2. Gas Channeling Control in CO2-EOR

Gas channeling, as the primary issue that restricts the significant improvement of
CO2-EOR, requires an understanding of its generation mechanisms. The factors causing
gas channeling can be attributed to the significant physical differences between CO2 and
crude oil and reservoir heterogeneities. The former can be divided into two situations
(see Figure 1): (1) the gravity overriding phenomenon: during CO2 flooding, due to the
low density of CO2, a large amount of CO2 will gradually migrate above the crude oil,
ultimately forming a gas channel at the top of the crude oil seepage channel [15]; (2) the
viscous fingering phenomenon: the viscosity of CO2 is lower than the viscosity of crude oil,
which can cause uneven propulsion during the displacement process. When the flow rate
of CO2 in a local area is too fast, gas channeling will occur [16]. The gas channeling caused
by reservoir heterogeneity can be divided into the following scenarios: (1) when there
are high-permeability channels such as natural fractures, artificial fractures, wormholes,
and conduits, CO2 will bypass the matrix and cannot displace the crude oil inside [17,18];
(2) when there is a significant difference in the permeabilities of different layers or zones,
CO2 preferentially flows through high-permeability reservoirs [19]; (3) the presence of
wormholes, ducts, and high-permeability cracks in the matrix leads to the ineffective flow
of CO2 [20].
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At present, there are several methods to mitigate oil and gas channeling in CO2
flooding: water-alternating-gas (WAG) injection, the direct thickening of CO2, hydrogel
plugging, foam plugging, and nanoparticle plugging. These methods for suppressing CO2
gas migration have been proven to be effective in practical applications and laboratory
simulations. The main purpose of this section is to figure out the sealing mechanisms of
different CO2 channeling control methods and the parameters that affect their effectiveness.

2.1. Water-Alternating-Gas (WAG) Injection

WAG is considered a reliable method to suppress gas channeling during CO2 flood-
ing [21,22]. Awan et al. reported that, in the WAG process, CO2 flooding provides high
sweep efficiency at the micro level, while water flooding provides high sweep efficiency at
the macro level. The organic combination of the two results in a significant improvement
in WAG oil recovery overall [23]. According to Leeuwenburg’s explanation, the injected
water during WAG oil displacement can adjust the CO2 flow to a certain extent. If CO2
is suppressed from flowing to high-permeability zones, it is forced to displace oil left in
low-permeability zones, thereby improving the overall oil recovery performance [24]. Ka-
mali et al. also proposed a similar view, using three oil displacement methods: continuous
CO2 injection, simultaneous CO2 and water injection, and WAG injection to conduct dis-
placement experiments on sandstone cores. It was found that WAG had the best effect and
continuous CO2 injection had the worst effect. Then, numerical simulation experiments
were conducted, and it was found that the presence of injected water during the WAG
process effectively reduced the permeability of CO2, thereby reducing the mobility ratio
of CO2 to crude oil [25]. Han explained the enhanced oil recovery mechanism of WAG
from the perspective of miscible displacement, and they believe that an increased volume
of injected water significantly increases the injection pressure of CO2, making it easy for
CO2 to mix with crude oil. This reduces the interfacial tension between crude oil and CO2,
as well as the viscosity of crude oil, allowing more formation crude oil to be extracted from
the ground [26].

It is worth noting that precipitation is often generated during the WAG process, which
can hinder the flow of crude oil in the formation and affect the improvement of oil recovery.
According to the type of precipitation, it can be divided into organic precipitation and
inorganic precipitation. Organic precipitation usually refers to asphaltene precipitation [27].
Due to the injection of foreign fluids, changes in the thermodynamic parameters (tem-
perature and pressure) and composition of the crude oil system will lead to aggregation
reactions of asphaltene in the crude oil, resulting in solid asphaltene precipitation. The
generated asphaltene precipitate will block the channel and seal the reservoir pores, ulti-
mately leading to a decrease in reservoir permeability. Usually, a precipitation inhibitor
is added to the injected fluid to hinder the flocculation of unstable asphaltene or make
the generated asphaltene precipitate easy to wash out, thereby alleviating the blocking
effect of precipitation on the formation. Inorganic precipitation mainly includes metal
carbonates. During the process of alternating water and gas injection, some CO2 dissolves
in the injected water, converting it into acidic carbonated water and accumulating CO3

2− in
the aqueous solution. When water contains metal scale ions such as Mg2+ and Ca2+, CO3

2−

will combine with metal scale ions. When the concentration of metal carbonate reaches a
critical value, precipitation occurs. These sediments can block small pores, leading to a
decrease in reservoir permeability. In addition, acidic carbonated water can also erode the
reservoir, alter its permeability and pore structure, and cause metal scale ions in the reser-
voir to enter the injected water, further exacerbating the generation of precipitation [28].
Therefore, for the injected water in WAG, chelating agents should be used before injection
into the formation to reduce the content of Ca2+ and Mg2+. Alternatively, inhibitors can be
added to inhibit the formation of precipitation.

The recovery efficiency of WAG oil displacement will be greatly impacted by the
injection parameters, which include porosity, permeability, and other formation properties,
as well as injection parameters like the water to gas slug ratio. Hao et al. first used a thin
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tube experiment to determine the minimum miscibility pressure of CO2 and crude oil at
22.79 MPa, and then connected three different permeability cores in parallel [29]. After
CO2 displacement, it was changed to WAG displacement, and it was found that under both
displacement conditions, the core with the highest permeability contributed the most to the
recovery performance, both exceeding 90%. The injection pressures were kept at 15 MPa
and 25 MPa, respectively, with oil recovery efficiencies of 33.01% and 39.42%, respectively.
A higher injection pressure was beneficial for oil recovery improvement [30]. Hosseini
and Wang et al. found that, after CO2 and WAG displacement, the oil permeability and
porosity of the core significantly decreased, and some areas of the core showed a reversal of
wettability. They attributed this phenomenon to the presence of CO2-caused precipitation
and the accumulation of asphaltene in the crude oil, blocking some channels, resulting in
a decrease in crude oil permeability and core porosity. A combination with surfactants
or other types of chemical inhibitors during WAG flooding has been reported to reduce
asphaltene precipitation [31,32].

2.2. Direct Thickening of CO2

The density and viscosity of CO2 gas can be increased by thickening it with polymers,
which reduces gas channeling issues brought on by gravity overlap and viscous fingering
phenomena [33,34]. Brien believes that the increase in density and viscosity can be achieved
by controlling the concentration of the added polymer [35]. Polymers enhance the density
and viscosity of CO2 at different levels by dissolving them in CO2. In general, the higher the
molecular weight of a polymer, the greater its viscosity, and the better its thickening effect
on CO2. However, the higher the molecular weight of the polymer, the lower its solubility
in CO2, which is unfavorable for CO2 thickening. Therefore, using low molecular weight
polymers to thicken CO2 is also a feasible option. Siloxane polymers have been proven to
be an effective CO2 thickener [36]. Bac tested the thickening ability of polydimethylsiloxane
(PDMS) on scCO2 at 2500 psi and 130 ◦F. It was found that the viscosity of CO2 increased
from 0.04 cp to 1.2 cp after thickening. In addition, the use of toluene results in the higher
solubility of polymers under the same pressure conditions. Bac conducted CO2 core
displacement experiments and found that, after adding polymers, the oil recovery rate
increased, the gas breakthrough was delayed, and the oil recovery rate increased by 3.4–9%
from its original value [37].

There is also a special polymer, which can form a three-dimensional grid structure
through a cross-linking reaction between molecular chains, and the network can swell
in water. This kind of polymer is called a gel [38–40]. Because gels have good plugging
properties, they often block high-permeability channels in CO2-EOR, thus inhibiting gas
channeling caused by formation heterogeneity [41]. There are two solutions for polymer
gels used for CO2 consistency control. The first solution is in situ gel plugging, which injects
the solution composed of a polymer monomer, cross-linking agent, and auxiliary agent into
the formation to form a gel in the formation and block the migration of CO2 in the high-
permeability channel. The second scheme is pre-crosslinked gel plugging, which can be
directly injected into the formation after the gel has been completely formed. Alternatively,
it can be processed into particles and prepared with a solution, and then injected into the
formation [42]. Durucan et al. carried out the core displacement experiment of supercritical
CO2 oil displacement, injected polyacrylamide-based polymer gel into the core, and then
conducted the CO2 displacement experiment again, and found that the permeability of
CO2 decreased by 99% [43].

2.3. Foam Injection

Foam is a gas dispersion system surrounded by liquid film prepared and stabilized
by a surfactant [44,45]. Surfactants are amphiphilic compounds, which means they are
composed of hydrophilic heads and hydrophobic tails. They are generally divided into
four types (according to the charge of the head group): non-ionic, anionic, cationic, and
zwitterionic surfactants. Yan et al. found that foam has greater effective viscosity, which
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can alleviate gravity overlap and the viscous fingering phenomenon during CO2 flooding,
and improve sweep efficiency during CO2 flooding. Foam can also control the local flow
resistance of CO2, forcing it into the low-permeability area and displacing the crude oil [46].
Through core displacement studies, Boud and Holbrook demonstrated for the first time
that foam may be used to improve oil recovery by gas flooding. Additionally, foam can
be produced in reservoir rocks under both miscible and immiscible circumstances using
this water-soluble foaming agent. Ren et al. tested the effects of three different types of
surfactants on CO2 flooding. The first two surfactants were 2 EH-PO5-EO15 and 2 EH-
PO5-EO9, both of which were nonionic surfactants. The third type was the water-soluble
anionic surfactant CD-1045. The phase behavior experiments conducted showed that none
of these three surfactants could significantly reduce the interfacial tension between water
and crude oil. However, all of them can significantly improve crude oil recovery. Compared
with pure CO2 flooding, the three surfactants can increase oil recovery by 71%, 92%, and
54%, respectively. Moreover, the effect of improving the oil recovery is closely related
to the injection scheme [47]. Zhang et al. used UC11AMPM, SDS, and their mixture as
foaming agents, respectively, to prepare CO2 foams, and tested the effect of temperature
on the stability of these three foams. With the increase in temperature, the stability of the
foams decreased, and the foam produced by the UC11AMPM and SDS mixture had the best
temperature resistance [48]. Combining multiple surfactants can achieve better oil recovery
effects, but the proportion of different surfactants will have a significant impact on the oil
displacement effect. Attarhamed and zoveidavianpoor found that the foaming performance
of the mixture of AOS and TX-100 in aqueous CO2 foam was improved compared with that
of AOS and TX-100 alone [49]. Memon et al. used AOS, TX-100, and a third surfactant, rose
amidopropylamine oxide (LMDO), to control the fluidity of CO2 and improve oil recovery.
After the water flooding of Berea sandstone using different combinations of CO2 and
surfactant solutions at 1400 psi and 96 ◦C, surfactant alternating gas (SAG) injection was
performed. According to core oil displacement experiments, CO2-SAG based on (0.6 wt%
AOS + 0.6 wt% TX-100) achieved the highest recovery rate [50].

There are three main options for introducing surfactants into oil recovery processes.
First, CO2 foam is generated from the outside and then injected into the porous medium.
Secondly, the surfactant solution and CO2 can be injected together at the same time to form
foam in porous media. Thirdly, carbon dioxide and surfactant solutions can be alternately
injected, known as SAG injection. The advantages of surfactants mainly lie in reducing
viscosity fingering, gravity segregation, and early CO2 breakthrough by changing the
magnitude of viscosity and gravity. In addition to fixing CO2, surfactants also tend to
reduce the IFT between reservoir fluids, reduce capillary forces, and thus improve crude
oil recovery. The synergistic effect of multiple surfactants may produce a better profile
control effect than a single surfactant, and this profile control effect is closely related to
the proportion of different types of surfactants, which will also an important development
direction of foam profile control and flooding in the future.

2.4. Nanoparticle Injection

An NP (nanoparticle) is defined as a material composed of particles with sizes be-
tween 1 nm and 100 nm [51,52]. In terms of CO2-EOR, nanoparticles enhance oil recovery
through two pathways: improving the mobility ratio of CO2 to crude oil and reducing
asphaltene precipitation during CO2 flooding [53,54]. Lu et al. designed a CO2 core dis-
placement experiment and injected Al2O3 nanoparticles into the core. They found that
they adsorbed asphaltene in a solution prepared from toluene and dissolved asphaltene,
which means that these NPs can be used to suppress the deposition of asphaltene during
CO2 injection in porous media. A concentration of 0.5 wt% nanoparticles and a volume
ratio of 0.1 nanofluid slugs to CO2 slugs are considered the best conditions for inhibiting
asphaltene damage during CO2 flooding. Compared to the cyclic injection mode, continu-
ous CO2 and nanofluid injection may be more effective. The higher the mass fraction of
Al2O3 nanoparticles, the lower the strength of asphaltene precipitation and the greater the
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decrease in interfacial tension [55]. Other studies have also reached the same conclusion
that nanoparticles can reduce the interfacial tension between crude oil and CO2 and reduce
asphaltene precipitation in crude oil [56,57]. Ehsan et al. simulated the viscosity increasing
effect of Al2O3 nanoparticles with particle diameters of 1 nm, 2 nm, and 3 nm on scCO2 in
an environment of 380 K and 20 MPa. Particles with a diameter of 1 nm have the weakest
effect on CO2 viscosity, resulting in a 3.67-fold increase in CO2 viscosity. The author also
compared the viscosity increasing effect of spherical Al2O3 nanoparticles and columnar
CuO nanoparticles on scCO2, and found that the viscosity increasing effect of CuO was
3.4 times lower than that of Al2O3 [58].

Because the surfactant is easy to be adsorbed on the rock surface and decomposes itself,
the stability of foam in the formation is poor, and it is not suitable for large-scale application.
Nanoparticles can effectively improve the stability of foam in the formation, which has
attracted the attention of researchers. At present, there are several views on the mechanism
of nanoparticles improving the strength of foam (see Figure 2): (1) nanoparticles will gather
at the node intersection of the foam liquid film, hinder the liquid flow between liquid films,
reduce the water loss rate of the foam liquid film, and thus improve the stability of the foam
liquid film; (2) nanoparticles will form a single layer, double layer, and network of bridging
particles between foam liquid films to hinder the coalescence and water loss of the foam,
thus improving the stability of the foam [59,60]. Among them, the network aggregation of
nanoparticles has the strongest stabilizing effect on foam. AttarHamed et al. investigated
the effect of the diameter and concentration of SiO2 nanoparticles on the anionic surfactant
effect of α-AOS-CO2 foam stability. The concentrations of the nanoparticles were 0.1 wt%,
0.3 wt%, 0.5 wt%, and 1 wt%, respectively. The diameters of the nanoparticles were 15 nm,
70 nm, and 250 nm. The final experimental results are shown in the figure. When the
particle concentration was low, the larger the particle diameter, the better the stability effect
of the foam [61]. Bayat et al. compared the stabilization effect of TiO2, CuO, Al2O3, and SiO2
nanoparticles on CO2 foam. When the concentration of nanoparticles was 0.008 wt%, the
stabilization effect was the best. When using SiO2 nanoparticles under the same conditions,
the maximum increase in crude oil recovery was 17.4%. The main reason for the poor
stability of nanoparticles in foam is that nanoparticles are easily adsorbed on the rock
surface and agglomerated. Therefore, the better the dispersity of particles in the system,
the better the stability of the foam [62–64].
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The above four methods for preventing and controlling oil and gas migration in CO2
flooding have their own advantages and disadvantages, as summarized in Table 1. In order
to further solve the problem of gas migration during CO2 flooding, in addition to making
up for the shortcomings of existing technologies, efforts should also be made to develop
new CO2-enhanced oil recovery technologies.
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Table 1. Comparison between the different methods of CO2 mobility control.

Method Advantage Disadvantage Influence Factor

WAG

Reduces CO2 loss and
generate economic benefits;

Increases the sweep
coefficient;

Relieves sticky fingering;
Delays CO2 breakthrough;
Reduces the mobility ratio;

Maintains CO2 mixing with
crude oil.

Corrodes pipelines;
Unable to alleviate the phenomenon

of gravitational differentiation;
Initiates asphaltene precipitation;

Initiates inorganic salt precipitation;
Causes stress damage to the tubing;

Causes water lock effect;
There are many parameters

involved.

Reservoir factors (temperature,
pressure, thickness, porosity,

permeability, saturation,
heterogeneity);

CO2 rheological properties and
density;

Composition and viscosity of
crude oil;

Water composition and
mineralization;

Injection parameters (injection
rate, injection pressure, slug ratio);

Injection scheme;
Spacing between injection and

production wells.

Polymers for direct
thickening of CO2

It can be mixed with CO2 to
form a thermodynamically

stable solution;
Increases CO2 density and

viscosity;
Relieves early CO2

breakthrough and viscous
fingering.

The solubility of polymers is
limited by pressure, molecular
weight, and molecular chain

structure, making it difficult to meet
the requirements in many cases.

Reservoir factors (temperature,
pressure, thickness, porosity,

permeability, saturation,
heterogeneity);

CO2 rheological properties and
density;

Composition and viscosity of
crude oil;

Polymer type, molecular weight,
and molecular chain structure;

Injection scheme.

In situ polymer
gels

Good injectability;
Reduces formation

heterogeneity.
Sensitive to reservoir conditions.

Reservoir factors (temperature,
pressure, thickness, porosity,

permeability, saturation,
heterogeneity);

CO2 rheological properties and
density;

Composition and viscosity of
crude oil;

Injection scheme;
Injection parameters (injection

pressure, injection rate, injection
fluid concentration).

Preformed
polymer gels

Reduces formation
heterogeneity;

Low sensitivity to reservoir.

Difficulty in injection and inability
to act on deep formations;

Only applicable to formations with
strong heterogeneity or developed

fractures.

Reservoir factors (temperature,
pressure, thickness, porosity,

permeability, saturation,
heterogeneity);

CO2 rheological properties and
density;

Composition and viscosity of
crude oil;

Injection scheme;
Injection parameters (injection

pressure, injection rate, injection
fluid concentration).
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Table 1. Cont.

Method Advantage Disadvantage Influence Factor

Foam

Relieves sticky fingering;
Relieves gravity
differentiation;

Relieves early breakthroughs;
Reduces interfacial tension;

Changes wettability;
Easy to inject;

Prevents and controls
sedimentation.

Sensitive to temperature and
pressure, prone to cracking;

Material exchange with crude oil
results in a decrease in stability;
Adsorbs on the surface of rocks,
resulting in ineffective sealing;

Short life cycle;
Changes the properties of crude oil.

Reservoir factors (temperature,
pressure, thickness, porosity,

permeability, saturation,
heterogeneity);

CO2 rheological properties and
density;

Composition and viscosity of
crude oil;

Injection scheme;
Type and concentration of

surfactants, molecular structure;
Injection parameters (injection

rate, injection pressure).

Nanoparticle

Reduces the mobility ratio;
Prevents and controls

asphaltene precipitation;
Changes the wettability

of rocks;
Improves the stability and

viscosity of foam;
Reduces interfacial tension;
Improves CO2 rheological

properties.

Nanoparticles are prone to
coalescence, blocking the roar

channel, and failing;
Large particle sizes can pollute the

environment.

Reservoir factors (temperature,
pressure, thickness, porosity,

permeability, saturation,
heterogeneity);

CO2 rheological properties and
density;

Composition and viscosity of
crude oil;

Injection scheme;
Nanoparticle type, particle size,
hydrophilicity, concentration.

3. Pathways of CO2 Leakage

CO2 geological storage is the process of trapping CO2 emitted during the burning of
fossil fuels before it enters the atmosphere, moving it via pipelines to the burial location,
and then sealing it in a supercritical state in the formation (which typically includes deep
salt water layers, abandoned gas layers, and abandoned oil and gas reservoirs). CO2
leakage is the term used to describe the phenomenon in which stored CO2 migrates to the
ground along faults, wellbore fractures, and other formation fractures, or where it re-enters
the atmosphere due to geological events (such as earthquakes or volcanic eruptions) or
human activity, ultimately leading to the failure of storage (see Figure 3).
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3.1. Potential Inflence of CO2 Leakage

The hazards caused by CO2 leakage can be roughly divided into two categories: global
risks and regional risks. Global risk refers to the change in the global climate caused by CO2
leakage, while local risk refers to the damage to the local ecological environment caused by
CO2 leakage [65].

After CO2 leakage, it will enter the atmosphere again and cause a secondary green-
house effect [66]. Patil et al. believe that after CO2 leakage, the oxygen content in the
soil will be significantly reduced, leading to a decrease in crop yields such as grass and
soybeans. In the experiment they designed, when the CO2 flow rate reached 1 L/min,
the yield of soybeans decreased by half [67]. The United States Department of Energy
designed the “Frio Brine Pioneer Experiment”. In the experiment, the researchers injected
1600 t carbon dioxide into the sandstone layer 1550 m deep underground in an oil field
northeast of Houston, Texas. Carbon dioxide caused the pH value of the brine in the storage
formation to drop from nearly neutral 6.5 to 3.0, and dissolved a large number of carbonate
rocks, leading to CO2 leakage and the pollution of drinking water. When the concentration
of CO2 is too high, it can cause suffocation. When CO2 is excessively injected into the
formation, it can cause excessive injection pressure to cause fractures in the formation, and,
additionally, it may trigger earthquakes.

3.2. The Pathways of CO2 Leakage

There are two ways in which CO2 might leak. The first is known as engineering
leakage and is brought on by either artificially created reservoir damage or a poorly
wellbore integrity. When CO2 enters the formation and leaks due to natural geological
activities or geological characteristics during the migration process, this leakage pathway
is called natural leakage [68].

3.2.1. Engineering Leakage Pathways

When the integrity of an oil well is poor, such as when there are some small cracks
on the wellbore wall or near the wellbore, CO2 will leak along these cracks [69]. When
the depth of the well is low, the injected CO2 cannot reach the designated storage location.
The low density of CO2 will continuously migrate above the formation, ultimately leading
to leakage. CO2 leakage can be avoided by restoring wellbore integrity, but this is only
economically feasible when the number of wellbore repairs is small. It is not economically
feasible to prevent CO2 leakage by repairing poorly sealed wells. Excessive CO2 injection
pressure can lead to formation fractures and become a potential pathway for CO2 leakage.
In addition, other human activities such as oil and gas engineering operations such as
crude oil extraction and exploration can also lead to the generation of formation fractures
and CO2 leakage [70].

3.2.2. Natural Leakage Pathways

Natural leakage is a CO2 leakage caused by geological characteristics or the geological
activities of reservoirs, and is not related to human activities [71]. The mechanisms of
natural CO2 leakage typically include the following. Firstly, the poor sealing of the cover
layer, such as the presence of cracks, may lead to CO2 migration through the cover layer
and leakage [72–74]. Secondly, the presence of high-permeability channels such as fractures
or faults in the formation can lead to CO2 migration to the ground and leakage along the
fractures or faults. Bentz et al. believed that these leakage channels are usually caused by
geological activities such as earthquakes and tectonic movements [75]. Therefore, geological
activities are also a potential factor leading to CO2 leakage. The deep salt water layer serves
as a good CO2 storage site, and salt water can provide a sealing effect on CO2. Due to the
low density of CO2, it will continue to migrate laterally until it bypasses the saline layer
and leaks along areas with poor sealing of the formation.
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3.3. CO2-Sealing Agents

Manceau et al. suggested that existing CO2 plugging materials can prevent CO2
leakage using the following three techniques: (1) mitigating CO2 leakage by restoring
wellbore integrity; (2) obstructing the high-speed migration of CO2 in cracks or faults;
(3) improving the sealing of the cover layer to CO2 [68]. Wu et al. classified six types
of sealants used to alleviate cement-related wellbore leakage. They are cementitious
materials, temperature-activated resins, nano-strengthening sealants, gels, geopolymer
cements, and low melting point alloys [66]. Based on the existing literature, this article
summarizes the types, characteristics, functional mechanisms, and scope of applications
of seven CO2-sealing materials, and points out the advantages and disadvantages of each
material systems. The seven materials are Portland cement, geopolymer cement, resin, gel,
biofilm barrier, nanoparticles, and foam, as summarized in Table 2.

Table 2. Formation CO2 leakage prevention and sealing agent.

Plugging
Agent Composition Working

Region
Sealing

Mechanism Advantages Disadvantages References

Portland
cement

21–67% alite;
6–18% ferrite;
0–49% belite;

1–17%
aluminate.

Wellbore and
near wellbore

area.
Direct sealing. Having long-term

stability; low price.

Poor acid
resistance; high
CO2 emissions

during
production.

[76,77]

Geopolymer
cement

48–56% SiO2;
23–35% Al2O3;
3–15% Fe2O3;

0–8% CaO;
0.2–1.4% MgO;
0.7–0.85% K2O;
0.2–0.5% SO3;

0.3–0.5%
alkaline

liquid/fly ash.

Wellbore and
near wellbore

area.
Direct sealing.

High temperature
resistance, still usable

at 1000 ◦C; strong
acid resistance; the

shrinkage rate is
small, usually

around 0.05%; the
CO2 emission during

the production
process is about 20%
of that of Portland

cement, and the
energy consumption
is about 25% of that

of the former.

The production
steps are

cumbersome;
involves some

highly corrosive
materials, posing
a threat to human

life and safety;
needs to go
through the

curing process.

[78,79]

Resin sealing
system

Phenolic resin,
epoxy resin,

furan resin, and
hardener.

Wellbore and
near wellbore

area.
Direct sealing.

High adhesive
strength and easy to
adjust viscosity; has

good thermal
stability and

long-term stability;
good acid resistance.

The preparation
process is

complex; high
cost; difficult to

control
crosslinking

reaction.

[80]

Gel

It is divided
into organic gel

systems and
inorganic gel

systems,
represented by

silicate gel.

Casing,
microcracks, oil
storage media.

Injection of
polymer

solution or gel
particles to

form blocky gel
and block CO2
flow channel.

Good injection
performance;
controllable

crosslinking time; can
solve complex CO2
leakage problems.

The sealing effect
is generally poor;

poor thermal
stability and acid
resistance; cracks

with a width
exceeding 2 mm
cannot be sealed.

[81,82]
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Table 2. Cont.

Plugging
Agent Composition Working

Region
Sealing

Mechanism Advantages Disadvantages References

Biofilm

A type of
bacteria that
can produce

urease.

Enhances the
integrity of

wellbore
cement.

Induction of
urea hydrolysis
to form calcium

carbonate
precipitation,
blocking CO2.

Able to penetrate the
pores of the

formation and play a
role in the near
wellbore area;

environmentally
friendly;

biomineralization
process is

controllable; good
acid resistance.

High production
costs; need to
continuously

transport
nutrients; uneven

distribution of
precipitation;

unable to block
large-scale leaks.

[83,84]

Nanoparticles

Metal oxide
particles or

polymer
particles with a

diameter
between 1 and

100 nm.

Reduces CO2
mobility; as a
strengthening

agent for
cement, gel,
and foam.

Deep reservoirs
and deep salt
water layers.

It can greatly
improve the strength

of gel, foam, and
cement; does not

pollute the
environment; has
good stability and

acid resistance.

High cost;
complex

preparation
process.

[85,86]

Foam

Aqueous
solutions and

foaming agents
of surfactants.

Reduces the
mobility of CO2

in high
permeability

channels.

Near wellbore
area and deep

reservoir.

The injection
performance is good

and can reach the
deep part of the

formation.

Low sealing
strength and lack

of long-term
stability.

[87,88]

4. CO2 Responsive Gel

CO2-responsive intelligent gel refers to a kind of gel the structure and properties of
which can undergo particular transformation when contacting CO2. The stimulus source of
this type of gel is CO2, which can avoid the accumulation of a large number of impurities
in the response process using traditional stimulus sources. By utilizing the intelligent
CO2 response characteristics, it can be applied to sealing CO2 during CO2 flooding and
geological storage [13].

4.1. CO2 Responsive Functional Group

The process of synthesizing CO2 responsive gels involves adding functional groups
that are responsive to CO2 to the conventional gel’s molecular chain. As summarized in
Figure 4, there are several known CO2 responsive functional groups: primary amine groups,
amidine groups, guanidine groups, tertiary amine groups, azole-containing heterocyclic
groups, carboxylic acid [89].

Primary amine groups: CO2 can react with primary amines at room temperature to
generate negatively charged carbamate salts, and some of them are positively charged
through protonation, forming bicarbonate between them, thus achieving the salt bridge
bonding of primary amine groups, which is the basis for primary amine groups having
CO2 responsiveness.

Amidine groups: Slightly stronger in alkalinity, they will be hydrolyzed to a certain ex-
tent in aqueous solution, resulting in deviations when calculating the degree of protonation
of the amidine group from the amount of CO2 injected. When amidine group encounters
CO2, it will generate protonated amidine salt compounds. After CO2 is discharged, amidine
salt will appear deprotonated and return to the original state again.
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Guanidine: Guanidine is the most basic CO2-responsive functional group, and the
addition of aromatic substituents slows down alkalinity. Guanidine containing N-H bonds
can form carbamates or forms of salts other than bicarbonate. The alkalinity of the guanidine
group is the highest among several functional groups at present, so it has the strongest CO2
responsiveness, which also leads to more energy consumption during its deprotonation
process. At the same time, the higher temperature required to convert bicarbonate or
guanidine formate into neutral guanidine is an advantage for applications that require
high temperatures.

Tertiary amino groups: They are common weakly alkaline molecular groups that
are found in many polymers. Tertiary amino groups can undergo changes with CO2 to
form cationic tertiary amine salts. When the CO2 concentration decreases, a reversible
deprotonation reaction will occur, and the goal of a CO2 reversible response will be
achieved finally.

Azazole-containing heterocycles: Numerous organisms include heterocyclic com-
pounds including azole, and the molecular fragments of these compounds are present in
peptides, genetic elements, and amino acids. In addition, azazole heterocyclic compounds
can act as functional groups in response to CO2 and exhibit weak alkalinity. This polymer
can produce protonated histamine salts in response to CO2 in solution. Imidazole func-
tional groups can be thought of as a novel class of CO2-adsorbent materials since they are
more stable following protonation than amidine and tertiary amine groups.

Carboxylic acid and phenols: These groups are present in the solution as anions
when CO2 is not present. The pH of the solution steadily drops as the CO2 level rises
until it reaches a critical value (corresponding to the solution pKa), and the functional
groups progressively become neutral, which indicates a steady decline in the polymer’s
solubility. Typically, these groups are added to the solution as anions or acids. In cases
when the neutral form’s solubility in aqueous solution is restricted, the critical point could
be noticeably higher than the pKa.

The advantages and disadvantages of each responsive group are summarized in
Table 3. Based on the characteristics of each responsive group, its corresponding polymer
or itself usually has the following advantages and disadvantages for CO2 flooding profile
control and CO2 geological storage.
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Table 3. Characteristics of each functional group.

CO2-Responsible Group Advantage Disadvantage

Amino groups (primary,
secondary, tertiary)

The synthesis route is simple and there
are many mature industrial monomers

available for use;
The group in aqueous solution has low
alkalinity and is not easily hydrolyzed.

Slow reaction rate with CO2;
Unable to respond to low concentration

of CO2.

Amine and guanidine groups Has rapid and sensitive CO2
responsiveness.

The group in aqueous solution has strong
alkalinity and is easy to hydrolyze;

Complex synthesis route.

Azazole-containing heterocycles
The salt generated after responding to

CO2 is relatively stable;
Widely present in organisms.

The working conditions are harsh and
not suitable for geological environments.

Carboxyl and phenolic hydroxyl groups
Has good acid resistance;

Easy to synthesize, with many mature
industrial monomers available for use.

Sealing of wellbore cracks not applicable.

4.2. CO2 Responsivee Gels

The studies of CO2 responsive gels are summarized in Table 4. As early as 2003,
Carretti et al. synthesized a class of polyacrylamide-based polymers (PAAm), which con-
tained fatty alcohols and 1-methyl-2-pyrrolidone in organic solvents with a large number
of primary amine groups on their side chains at room temperature. After the continuous
introduction of CO2 into the system, the system gradually changes from the initial colloidal
state to a gel, and gels can absorb a high concentration of CO2. The primary amino group
has obvious advantages in the synthesis of CO2-responsive gels, but the primary amino
gel is relatively slow in its response to CO2 [90]. In 2005, Darabi et al. found that amidine
groups are responsive to CO2, which inspired a series of amidine gel to be designed and
synthesized [91]. In 2011, Yan et al. successfully prepared CO2-responsive and breathable
polymer vesicles using amphiphilic block copolymers containing amidine groups for the
first time. They first synthesized the functional monomer N-guanidododecylacrylamide
containing an amidine group, and polymerized it with polyethylene glycol macromolecules
through atom transfer radical polymerization to synthesize polyethylene glycolb poly
(N-guanidododecylacrylamide) (PEO-b-PAD). After introducing CO2 into the system, the
amidine group reacts with CO2 to form a protonation amidine salt structure, and the
volume of the vesicles will increase significantly. When argon is continuously injected into
the system, the amidine salt structure will undergo deprotonation, and then return to the
solid state [92].

The synthesis of amidine groups is relatively complex, and the degree of their proto-
nation is reduced due to their easy hydrolysis in water. In 2013, Zou et al. polymerized
dimethylaminoethyl methacrylate with a tertiary amino group, which was CO2-responsive,
and with the increase in CO2 concentration, the degree of protonation of the polymer also
increased [93]. In 2012, Hoshino et al. used 3-dimethylaminopropylacrylamide (DMAPM)
containing a tertiary amine as a functional monomer to copolymerize with the thermosen-
sitive monomer NIPAM and a crosslinking agent. A micro gel was formed in the solution.
The molecular side chain of the gel contains a large number of tertiary amine groups, which
can react with CO2, and fix CO2 in the gel to achieve the purpose of fixing CO2. This
is the first successful example of using microscopic materials in solution for controllable
CO2 absorption and release [94]. Nitrazole-containing heterocyclic compounds (usually
diazoles) are widely present in organisms. Azazole heterocyclic molecular fragments can
be found in amino acids, peptides, and genetic materials. At the same time, the azazole-
containing heterocyclic molecules are also weakly alkaline and can respond to CO2 to
generate protonation histamines. The protonated functional group is more stable than the
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previous protonated functional groups, and can be used to prepare an intelligent responsive
gel for CO2 adsorption.

Table 4. CO2 responsive gel.

Author, Year Responsive
Functional Group Synthesis Process Responsive Performance of Gel Reference

Carretti et al.,
2003 Primary amine Polymerization of allylamine to

form polyacrymide.

The polymer is dissolved in the
organic solvent containing fatty

alcohol and
1-methyl-2-pyrrolidone, and CO2
gas is continuously injected, which
makes the polymer change from

the initial colloidal state to
chemical gel.

[90]

Wang et al.,
2012 Primary amine

Synthesis of a class of crosslinked
porous polymer microspheres

from N-methyl-N-vinylformamide
(MVF) and Din-vinylformamide

(DVFE).

By adjusting the ratio of MVF and
DVFE monomers to control the

size of polymer microspheres, the
absorbable surface area inside the
microspheres can be maximized.

BET experiments have shown that
the maximum adsorption area can

reach 246 mg/g, and the total
adsorption amount of CO2 can

reach 97 mg/g.

[95]

Nagai et al.,
2011 Primary amine

Regulating conventional
polyaniline increases its relative

molecular weight.

CO2 is continuously injected into
the 1% polymer solution, and the
solution undergoes a sol–gel–sol

transition.

[96]

Suzuki et al.,
2011 Primary amine

In the presence of 1,8-diazabicyclo
and undecen-7-ene (DBU), a novel

hydrogel was prepared by the
crosslinking reaction of PAAm

with CO2.

The CO2 absorption capacity of
the hydrogel at room temperature
is 2.8 times that of the traditional

PAAm, and the absorption
capacity and absorption efficiency

of the polymer hydrogel are
basically unchanged after multiple

absorption of CO2.

[97]

Xu et al., 2004 Primary amine

Firstly, four urea-substituted
calixarene host units were

designed, and small molecule
monomers with primary amine
groups were obtained through

selective modification.

When CO2 is introduced into the
solution, the dimer can form linear

non-covalent bond polymer
through ammonium carbamate
bridge bond. When competitive
polar solvents are added to the

solution, the hydrogen bond
between the host molecule calix

tetraarene is destroyed, leading to
the disintegration of the
supermolecule polymer.

[98]

Xiong et al.,
2017 Primary amine Mixing HMPAM and TMPDA.

After CO2 was introduced, the
solution turned into gel, and the

zero-shearing viscosity and elastic
modulus increased by 360 and 400

times respectively.

[99]

Yan et al.,
2023 Secondary amine

0.5 wt% NaSal and 3 wt% ENPD
were dissolved in deionized

water to form the initial system.

After injecting CO2, the viscosity
of the system continues to increase
and does not change after reaching

a certain stage.

[100]

80



Gels 2023, 9, 936

Table 4. Cont.

Author, Year Responsive
Functional Group Synthesis Process Responsive Performance of Gel Reference

Yan et al.,
2011 Amidine

Polyethylene glycol b-poly
(N-amido dodecyl acrylamide)

(PEO-b-PAD) was synthesized by
aAtom transfer radical

polymerization (ATRP) of
N-amido dodecyl acrylamide and

polyethylene glycol
macromolecules. The PEO

segment in this block copolymer is
hydrophilic while the PAD

segment is hydrophobic and can
self-assemble into a vesicle

structure in solution.

Alternating CO2/Ar injection can
drive the vesicle to move towards

a compound
expansion/contraction movement.

[93]

Zhou et al.,
2009 Amidine

The (Diphenylphosphine) ethylene
terephthalate derivative

containing amidine group was
connected to the side group of
partially azide functionalized

polystyrene by Staudinger
coupling method.

After dissolving the polymer in a
DMF/water mixture and

alternately introducing CO2 and
N2, the conductivity of the system
undergoes a rapid impulse change.

It is proven that the polymer
responds to CO2 gas through the

protonation/deprotonation
process of amidine group.

[101]

Guo et al.,
2011 Amidine

A class of homopolymers
containing amidine groups on its

side groups were prepared by
RAFT method using

4-chlorostyrene as a monomer.

Alternating the stimulation of
CO2/N2 can achieve the transfer

of substances in the
organic/aqueous phase.

[102]

Yan et al.,
2013 Amidine

A complex triblock copolymer of
polyethylene glycol b poly

(N-aminododecylacrylamide) b
polystyrene (EAS) has been

developed. Due to its
amphiphilicity, the copolymer can

self-assemble into
micrometer-sized hollow tubular
structures in aqueous solution.

After introducing CO2, the
polymer gradually transforms

from a hollow tubular body to a
spherical vesicle, then into a

columnar body, and finally evolves
into a spherical micelle form.

[103]

Zhang et al.,
2012 Amidine

Lotion polymerization of N-amido
dodecyl acrylamide with styrene

monomer in CO2 gas
environment.

At 60 ◦C, continuous introduction
of N2 neutral lotion molecules into

the product will cause
condensation; when CO2 gas is

introduced, ionic lotion repel each
other statically, leading to

reversible dispersion.

[104]

Su et al., 2012 Amidine

Direct lotion polymerization of
styrene monomer in 2,2-azabis

(2-neneneba imidazoline) di
Bicarbonate initiator.

After CO2 is introduced, colloidal
particles between lotion repel and

cause lotion dispersion.
[105]

Han et al.,
2012 Tertiary amine

Copolymerization of DMAEMA
with N-isopropylacrylamide

(NIPAM) monomer using RAFT
method to synthesize P

(DMAEMA co NIPAM) random
copolymer.

After CO2 is introduced, the
solution protonation degree

increases, and LCST increases
from 35 ◦C to 60 ◦C.

[106]
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Table 4. Cont.

Author, Year Responsive
Functional Group Synthesis Process Responsive Performance of Gel Reference

Yan et al.,
2013 Tertiary amine

Polyacrylamide and Diethylamine
ethyl polymethacrylate

(PDMA-b-PDEAEMA) were
chimed. Copolymerize into a

certain proportion of monomers
containing Coumarin side groups
and carry out photo crosslinking.

After introducing CO2, the
vesicles expand and the polymer

volume increases.
[107]

Han et al.,
2012 Tertiary amine

Polymethacrylic acid oligopoly
polyethylene glycol ester co

polymethacrylic acid
Dimethylamine ethyl ester b

polyethylene glycol b
polymethacrylic acid oligopoly

polyethylene glycol ester co
polymethacrylic acid

Dimethylamine ethylene ester.

After CO2 is introduced, the gel
dissociates into sol, and after Ar is

introduced, the sol gradually
transforms into gel.

[108]

Zhao et al.,
2013 Tertiary amine Aggregating DMAEMA.

After introducing CO2, the particle
size increases and the solution

transitions from a suspended state
to a glassy state.

[109]

Lei et al., 2015 Tertiary amine
Using MBA as crosslinking agent
and V-50 as initiator, copolymerize

FS and DMAEMA.

After CO2 is introduced, gel
particles expand and gel particles

shrink when CO2 is removed.
[110]

Zhang et al.,
2015 Tertiary amine Copolymerization of pyridine and

NIPAM.

After CO2 is introduced, gel
particles expand and gel particles

shrink when CO2 is removed.
[111]

Zhang et al.,
2015 Tertiary amine

PDMAEMA-PEO-PDMAEMA
triblock copolymer was

synthesized using ATRF method.

After CO2 is introduced, the sol
changes into gel, and the process is

reversible.
[112]

Chen at al,
2015 Tertiary amine

DEAEMA stabilized by PEGMA
was obtained through lotion

polymerization.

These PDEAEMA-PEGMA micro
gel collapse within 5 s after CO2

bubbling into solution.
[113]

Zhao at al,
2019 Tertiary amine

Mixing sodium oleate (NaOA) and
the small organic counterion 2, 6,

10-trimethyl-2, 6,
10-triazaundecane (TMTAD) in a

3:1 M ratio.

After introducing CO2, the system
transitions from an aqueous

solution to a viscoelastic fluid,
followed by a milky white

solution.

[114]

Wu et al., 2023 Tertiary amine

Mix AM and DMAPMA, add AIPI
to form a responsive polymer, and

finally add PEI to form a
responsive gel.

When the pH of the solution is 4.5
and the immersion time is 48 h,

the mass of responsive gel can be
increased by 7–18 times.

[115]

Quek et al.,
2013 Heterocyclic azoles

Synthesized a class of polymers
with histamine side groups using

RAFT polymerization method.

The polymer can respond to CO2
in solution to generate protonation
histamines. Because the imidazole

functional group is more stable
than amidine group and tertiary
amine group after protonation.

[116]

5. Application of CO2-Responsive Gel in CO2 Gas Channeling and Leakage Mitigation

For the application of a CO2 responsive gel in CO2-enhanced oil recovery and geologi-
cal storage, in addition to the performance of the gel itself, such as rheology, swelling, and
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acid resistance, etc. The environmental conditions(pressur, tempreture, etc.) in the action
area of gel also greatly affect the action effect of gel Figure 5.
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Figure 5. The responsive mechanism of CO2 responsive gel.

The key point is to observe some characteristics of gel in the actual application process,
such as evaluating the plugging strength of gel by the breakthrough pressure of CO2 after
injection of gel, or evaluating gel’s ability to adjust CO2 mobility by resistance coefficient
and residual resistance coefficient. This paper summarizes some work on the evaluation of
CO2 responsive gel for CO2 plugging ability and gas channeling inhibition ability in recent
years (as shown in Table 5).

Table 5. CO2 responsive gel plugging CO2 experiment.

Author,
Year

Synthetic
Ingredient Rheology Experimental

Design Main Findings Ref.

Mingwei
Zhao, 2023

Sodium salicylate,
acetone, sodium
fluoride, erucic

acid
N,N-dimethyl-1,3-
propanediamine

(99%).

CO2 sensitivity: the
relationship between the

viscosity of gel at 25 ◦C and
the amount of CO2 injected;

rheological properties:
viscosity modulus, elastic
modulus, relaxation time.

CO2 plugging
experiment and

parallel core floods
(80 ◦C,

backpressure
4 MPa, 1038 mD).

The CO2 sealing rate reaches
97.45%, and as the

permeability increases, the
sealing rate decreases. When
the maximum permeability is
2000 mD, the sealing rate is

95%. The sealing rate
increases with injection

volume.
Increased the recovery factor
of low permeability cores by

18.7%.

[114]

Dexiang Li,
2019

Modified
polyacrylamide,

methylamine,
resorcinol.

Not mentioned.

CO2 plugging test
with gel (80 ◦C,
backpressure

10.28 MPa, 30 mD).

Water phase infiltration
reduces by 85%, and the

resistance coefficient during
CO2 flow is greater than 29.

The gel is easy to absorb near
the injection points. The closer
it is to the leakage point, the

better the plugging effect will
be. Gel stability declines

under high temperatures.

[117]

JF Ho, 2016 Polyacrylic acid Liquidity conforms to the
power law equation.

Gel plugging CO2
experiment:

remove calcium
ions with

Na5P3O10.

Gel can significantly increase
the pressure gradient of gel’s
CO2 retention, use Na5P3O10
to reduce the weakening of

calcium ions on gel strength,
and extend the action time of

gel.

[118]
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Table 5. Cont.

Author,
Year

Synthetic
Ingredient Rheology Experimental

Design Main Findings Ref.

Shayan,
2017 Polyacrylic acid

It has shear dilution
properties and conforms to

the Herschel–Bulkley model.
Under high calcium

concentration, stability is
weakened.

Gel plugging
strength test

(supercritical CO2,
backpressure

1100 psi, 70 ◦C).

Using sodium phosphate as a
chelating agent, increase the

pressure gradient of
supercritical CO2 interception

to 70 psi/ft.
The formation hypothesis of

gel deposition layer is
verified, and the protective

effect of gel on cement
integrity is confirmed.

[119]

Du et al.,
2022 AM, AFAPE20.

Shrinks under high
temperature conditions, with

a weight loss of 84.6% at
700 ◦C and a shear rate below

250 s−1. A pseudoplastic
fluid, and an expansive fluid

above a critical shear rate.

Plugging
experiment (90 ◦C,

backpressure
21 MPa).

The closer the particle
diameter to the average pore

size, the better the sealing
effect. The sealing rate >90%.

A significant power law
relationship between

resistance factor and residual
resistance factor and

concentration and rate of
injected gel particles.

[120]

Pu
W, 2021 AM, AFAPE20.

Shrinks under high
temperature conditions, with

a weight loss of 84.6% at
700 ◦C and a shear rate below

250 s−1. A pseudoplastic
fluid, and an expansive fluid

above a critical shear rate.

Plugging
experiment (68 ◦C,

backpressure
3 MPa).

After the formation of gel
plugging, CO2 injection

pressure increased 68 times;
the sealing rate reached 99%.

After the formation of gel
plugging, the CO2 flooding
recovery rate increased by

23%.

[121]

Luo et al.,
2022

N-
erucamidopropyl-

N,N-
dimethylamine.

UC22AMPM solution will
become power-law fluid after

reacting with CO2.

Core flooding test
(45 ◦C,

backpressure
17 MPa).

The recovery rate of
UC22AMPM solution WAG

increased by 8% compared to
WAG.

[122]

Du et al.,
2022

CO2-responsive
gel and

CO2-responsive
wormlike micelles.

The flow state follows a
power law equation.

Core flooding
experiments

(45 ◦C,
backpressure

21 MPa).

The higher the matrix
permeability, the poorer the

system’s ability to improve oil
recovery;

the larger the crack width, the
worse the gel plugging effect.

[123]

Du et al.,
2022

CO2-responsive
gel and

CO2-responsive
wormlike micelles.

The flow state follows a
power law equation.

Core slab models
(45 ◦C,

backpressure
0.5 MPa).

Effect of alternate injection of
gel system and CO2 slug on

oil recovery single injection of
gel system.

[123]

Ye et al.,
2022

N. N-
Dimethyloctylamide,

propyl tertiary
amine, Sodium p-
toluenesulfonate.

Not mentioned.

Plugging and core
flooding

experiment (25 ◦C,
backpressure

3 MPa).

The sealing rate for CO2 is
99.2%.

Improved CO2 flooding oil
recovery by 20%.

[124]

Li et al.,
2016

Acrylamide,
metham-

phetamine,
Resorcinol.

Strength code after reaction
with CO2 is H.

Sand pack
experiments

(90 ◦C,
backpressure
10.28 MPa).

The CO2 gas drive
permeability of sandstone has

decreased by 93.8%.
Oil recovery factor of low

permeability core increased by
46.5%.

[125]
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Table 5. Cont.

Author,
Year

Synthetic
Ingredient Rheology Experimental

Design Main Findings Ref.

Welch et al.,
2020 Methacrylate Not mentioned.

Stability tests and
Plugging

experiments
(confining pressure

0.5 MPa,
maximum

temperature
73 ◦C).

High salinity brine will reduce
the stability of gel particles;

when the ratio of monomer to
surfactant is lower than 22.1,
gel particles are not easy to

gather and have good stability.
The fluid loss rate during the
initial sealing stage decreased
by 93%. The seal fails after the

pressure exceeds 5 MPa.

[126]

Ji et al.,
2023

Sodium silicate,
modified

polyphenol,
methena-

Mine.

Gel strength code: G.
After CO2 is injected, the
viscosity decreases from
28.3 mPa·s to 20.5 mPa·s.

Plugging
experiment

(90 ◦C).

After the injection of gel, the
injection pressure increased
from 0.18 MPa to 0.64 MPa,
the plugging ratio reached
70.3%, and the oil recovery

increased by 10.4%.

[127]

6. Further Development of CO2 Responsive Gels and Concluding Remarks

The CO2-responsive gel has good profile control and plugging performance, as demon-
strated by numerous core-scale plugging studies. This suggests that the CO2 responsive gel
has great application value in the field of CO2-EOR and CO2 geological storage. At present,
the application of CO2 responsive gels on the reservoir scale is still lacking precedent,
and its popularization and application in the oil and gas industry still need to solve the
following problems. (1) All of the current CO2 responsive groups depend on H+ generation.
In hotter conditions, CO2 becomes less soluble in formation water, which inhibits the
generation of H+. The use of CO2 responsive gels in deep, high-temperature formation
is restricted, and its sensitivity is reduced. It is necessary to explore new CO2 responsive
materials. (2) The existing CO2 responsive gels are mainly used to qualitatively evaluate
their CO2 responsiveness according to the change in their macro phase state before and
after CO2 response. There is a lack of a systematic quantitative characterization method
of gel CO2 responsiveness in order to screen out the ideal CO2 responsive gel. Moreover,
CO2-responsive groups can be used not only in the preparation of CO2-responsive gels, but
also in the preparation of CO2-responsive ionic solutions, which have broad application
prospects in the field of CO2 capture [128,129]. (3) The current CO2-responsive gels are
based on the mechanism of protonation of the CO2 responsive groups, which causes the
volume expansion of the gels, and thus seal the CO2 migration channel of the formation.
However, the protonation process of the responsive group is reversible. When the re-
sponding gel encounters a large amount of non-acid gas in the formation or the formation
temperature increases, the CO2-responsive gel will return to the state before the response,
thus losing the sealing effect on the formation. Further efforts are required to make the
gels more stable and controllable. (4) In order to improve the mechanical strength, salt
resistance, and temperature resistance, the CO2 responsive gel has been suggested to be
combined with other technologies to meet the requirements of actual production in oil
fields. For example, foam compound systems, organic inorganic gel compound systems,
and nanoparticle compound systems.
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Abstract: In this study, the reservoir drill-in fluid (RDF) was modified and optimized to improve
the rheological properties and reduce the filtration properties of the drilling fluid used for drilling
the oil-bearing zone horizontally. In polymer science, degradation generally refers to a complex
process, by which a polymeric material exposed to the environment and workload loses its original
properties. Degradation is usually an unwanted process. In certain cases, however, controlled
polymer degradation is useful. For instance, it can improve the processability of the polymer or
can be used in recycling or natural decomposition of waste polymer. Thus, the drilling fluid and
parameter data of 30 horizontal wells that were drilled in the south of Iraq were collected using
several reservoir drill-in fluids (RDFs), including FLOPRO, salt polymer mud (SPM), non-damaged
fluid (NDF), and FLOPRO_PTS-200 (including the polymer thermal stabilizer). The obtained results
showed that the polymer temperature stabilizer (PTS-200) enabled reducing the filtration rate by
44.33% and improved the rheological properties by 19.31% as compared with FLOPRO. Additionally,
the average cost of NDF and SPM drilling fluids for drilling the horizontal section of the selected
wells is around USD 96,000 and USD 91,000, respectively. However, FLOPRO-based drilling fluid
showed less cost for drilling the horizontal section, which is USD 45,000.

Keywords: reservoir drill-in fluid; FLOPRO; non-damaging fluid; salt polymer mud; fluid loss;
rate of penetration; drilling cost

1. Introduction

Reservoir drill-in fluids (RDFs) made from biopolymers and synthetic polymers have a
variety of applications, such as fluid loss reduction, viscosity improvement, and suspension
stability [1–3]. Bio- and synthetic polymers deteriorate at high-temperature ranges within
the harsh conditions of the wellbore [4–7]. On the other hand, while drilling with water-
based mud (WBM), certain polymers are frequently employed to reduce filtration loss in
permeable intervals. Although they frequently operate well, they are unable to completely
limit the fluid loss and mud invasion into the reservoir, and they may seriously damage the
formation, including negative changes in surface wettability [8,9]. Biopolymers are used
to make up reservoir drilling fluid, such as non-damaging fluid (NDF) and salt polymer
mud (SPM). Therefore, during drilling under High-Pressure High-Temperature (HPHT)
conditions, they are not suitable, as the polymer breaks down at the high bottom hole
temperature of the well. Hence, a continuous treatment is needed, for the polymer breaks
down, which increases the cost of the drilling [10–13]. However, FLOPRO can be used to
overcome the high-temperature problem of drilling inside the borehole [14].

Developments in science and technology, especially over the last two decades, have led
to the production of several synthetic polymers worldwide that have resistance to higher
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temperatures, such as FLOTROL polymers that are used to make up FLOPRO drilling
fluid. FLOTROL polymers are more stable at higher temperatures, with less chemical
concentration, non-formation damage, zero non-productive time for drilling fluid, and
the ability to drill more than 2000 m horizontally at a cost that is significantly lower than
commercial polymers [15,16].

The FLOPRO fluid is a proven water-based drill-in system with non-damaging charac-
teristics, a compatibility breaker, an extremely low friction factor for low pump pressures,
high ROP, and extremely high capacity for cuttings transport, and a global environmental
compliance application revealed that this fluid had consistent performance and rheology. It
was suited for drilling horizontal wells because of its good hole cleaning, preventing the
development of cutting beds [17,18]. The main components of the FLOPRO solution are
fresh (or sea) water, calcium carbonate, the polymer preparations FLO-VIZ and FLO-TROL,
sodium or potassium salts, and LUB lubricating additives. FLOPRO is used to provide the
lowest skin damage of productive horizons with deviated and horizontal wells. Predicting
formation damage in cased-hole and open-hole completion wells is important since the
primary objective of reservoir drill-in fluids (RDFs) is to minimize formation damage and
provide a thin filter cake that can be removed by differential pressure. This is especially
important when the damage is well-bore induced and is brought on by reservoir drill-in
fluids. Cake filter removal has been shown to be an effective method for determining
induced damage and gauging the effectiveness of drill-in fluids [19,20].

Table 1 illustrates the summary of the performed studies on the application of different
types of polymers in the drilling fluid circulation. Samavati and Abdullah (2015) discovered
that using gilsonite at concentration of 17.5 gm/cm3 reduced the polymer breakdown by
72%, improving the viscosity and decreasing the fluid loss compared with the starch under
HPHT conditions [17]. In 2019, Aruther and co-workers stated that adding a novel high-
temperature polymer within WBM at a concentration of 7 ppb can increase the thermal
stability of WBM to be able to withstand 400 ◦F and maintain its original properties [21].
In addition, two biopolymers, A and B, were reported to positively influence the fluid loss
and formation damage reduction by 60% compared with the clay-free starch-containing
drilling mud [8]. Moreover, Akpan et al. (2018) investigated the effect of polyglycol on
the drilling fluid rheological properties at the concentration of 0.7 wt.%, and their results
showed that the polyethylene glycol additive maintained the suspension capability of the
drilling fluid formulations. These additives can be used to stabilize the water-based drilling
fluids containing biopolymers at 150–232 ◦C without using expensive and formation-
damaging synthetic polymers [14]. Recently, Wallace and co-workers (2020) studied the
effect of the polymeric rheology modifier at the concentration of 5 mg in 350 mL with
polymer thermal stabilizer at 2 vol.%. Their outcome shows that synthetic polymer holds
more excellent rheology suspension than xanthan gum by 48% [22]. The primary objective
of this study is to optimize the types and concentrations of chemicals/additives used to
develop reservoir-friendly drilling fluids with high tolerance to temperature to horizontally
drill specific sections of the Mishrif and Saadi formations that are in the Basra province in
the south of Iraq. For this purpose, the field data and laboratory measurements of several
RDFs used in the horizontal interval of 30 wells in the south of Iraq were analyzed. Several
drilling parameters, including the lost circulation, buildup volume, drilling cost, rate of
penetration, and drilling fluid rheological and filtrations properties, were considered.
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Table 1. Summary of the published research studies investigated on polymer temperature stabilizer,
synthetic polymer, and biopolymer within the reservoir drilling fluid.

Reference Polymer
Temperature Stabilizer Concentration Mechanism Study Outcomes

Samavati and
Abdullah [17]

Gilsonite 17.5 cm3/350 mL Rheological
improvement

Combined with thermal stabilizers,
improved the viscosity of WBM by
22% and lowered fluid losses by 25%.

Galindo et al. [18] Novel high-temperature
polymer

7 ppb Rheological
improvement

WBM can withstand temperatures of
400 ◦F while maintaining its
viscosity, excellent suspension, low
shear strengths, shale stability, and
filtration control by 18%.

Akpan et al. [15] Polyglycol 0.7 wt.% Rheological and
filtration
improvement

Synthetic polymers to stabilize
water-based drilling fluids
containing biopolymers improved
viscosity by 6%, and the filtration
rate was reduced by 14%.

Tehrani et al. [23] PAC 6 gm of PAC in
350 mL

Rheological
improvement

The efficiency with 46% fluid loss
reduction and the highest value of
plastic viscosity, yield point, and gel
strength was around 34%.

Al-Otaibi et al. [24] Xanthan gum and glycol 3 mg in 350 mL Rheological
improvement

Increased the plastic viscosity by 38%
at 170–280 ◦F.

Huang et al. [25] Laponite 25 and 50 wt.% Resistance to
temperature
improvement

Laponite could increase the onset
deposition temperature of solid-state
AAD terpolymer and substantially
increase the high-temperature
viscosity of 2 wt.% AAD terpolymer
water solution.

Zaboli et al. [19] Hydrophobic silica NPs 2 wt.% Resistance to
temperature
improvement

Hydrophilic or hydrophobic silica
NPs phase separation occurred after
only a few minutes. By contrast, the
emulsions containing the modified
silica NPs with contact angles
around 92 and 115 were stable for
months and days, respectively.

Chen H, et al. [26] Novel hyper-cross-linked
polymer (ACP)

3 gm in 400 mL Filtration
improvement

The preferred one (ACP-5) can
reduce the filtrate volume of
oil-based drilling fluid by over 90%
with a small dosage (3 g in 400 mL
drilling fluid) after hot rolling for
16 h at 840 ◦F.

Zhang et al. [27] Viscosity stabilizer
(PB-854)

2-tert-Butylphenol,
paraformaldehyde,
phloroglucinol 2:1:2.5

Resistance to
temperature
improvement

The results show that PB-854 has
good high-temperature stability and
could effectively protect the polymer
at the high temperature.

2. Results and Discussion
2.1. Rheological Properties

In this section, the rheological measurements—including the plastic viscosity (µp),
apparent viscosity (µa), yield point, and gel strength of the FLOPRO; non-damaging fluid
(NDF); salt polymer mud; and FLOPRO with PTS-200 drilling fluids—are presented and
discussed. The measurements included plastic viscosity, yield point, and gel strengths at
10 and 10 min under different temperature conditions, which are shown in Table 2. As can
be seen, the plastic and apparent viscosities of the base sample are 13 and 7 cP, respectively,
while the yield point is 25 and 14 lb/100 ft2, and the 10 s and 10 min gel strengths were 8
and 12 lb/100 ft2, respectively.

The rheological properties of 6 prepared samples of FLOPRO drilling fluid with
1.4 lb/bbl of FLO-VIS powder, 6 samples of salt polymer mud drilling fluid with 1.4 lb/bbl
of DUO-VIS powder, 6 samples of non-damaging fluid prepared with 1.6 lb/bbl of DUO-
VIS powder, and 7 samples of FLOPRO with different concentrations of PTS-200 are shown
in Table 2 and Figures 1 and 2. In the sample of FLOPRO drilling fluid, the plastic viscosity
(PV) started from 13 cP and then reduced to 8 cP. However, the gel strengths at 10 s
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and 10 min were also found to be 8 lb/100 ft2, but after the temperature increased, the
gel strength was reduced to 4 lb/100 ft2, and the gel strength at 10 min started from
10 lb/100 ft2 reduced to 5 lb/100 ft2 due to polymer breaking down. Furthermore, the yield
point was also reduced in the sample of FLOPRO drilling fluid starting from 25 lb/100 ft2

reduced to 19 lb/100 ft2 (see Figures 1a and 2a). In the sample of non-damaging fluid
(RDF), the temperature effect on rheological properties, including the plastic viscosity (PV),
started from 11 cP and then reduced to 6 cP, which means losses of 45.45% on their specific
with temperature formed are fragile for this mud. Nevertheless, the gel strength of 10 s
started at 6 lb/100 ft2 and then reduced to 3 lb/100 ft2, and the gel at 10 min started at
8 lb/100 ft2 and then reduced to 5 lb/100 ft2.

Table 2. Measured values of the plastic viscosity (µp), apparent viscosity (µa), yield point, and gel
strength (10 s and 10 min) of the FLOPRO, non-damaging fluid, salt polymer mud, and FLOPRO
with PTS-200 drilling fluid.

Drilling Fluid Sample
Temperature YP µp Gel Strength (lb/100 ft2)
◦F (Ib/100 ft2) (cP) Gelinital Gelfinal

FLOPRO FLOPRO_1 220 25 13 8 10
FLOPRO_2 280 25 11 7 9
FLOPRO_3 320 23 10 7 9
FLOPRO_4 360 23 9 6 8
FLOPRO_5 400 20 8 6 7
FLOPRO_6 500 19 8 4 5

NDF NDF_1 220 24 11 6 8
NDF_2 280 21 11 6 7
NDF_3 320 19 10 5 7
NDF_4 360 17 10 4 6
NDF_5 400 15 8 4 6
NDF_6 500 14 6 3 5

SPM SPM_1 220 25 12 8 10
SPM_2 280 24 12 8 9
SPM_3 320 23 10 8 9
SPM_4 360 22 9 7 9
SPM_5 400 20 8 5 7
SPM_6 500 18 7 4 5

FLOPRO with
PTS-200

FLOPRO_PTS-200_1 220 23 13 8 10
FLOPRO_PTS-200_2 280 25 12 8 12
FLOPRO_PTS-200_3 320 26 12 9 12
FLOPRO_PTS-200_4 360 24 11 7 11
FLOPRO_PTS-200_5 400 25 9 8 11
FLOPRO_PTS-200_6 500 21 9 6 8
FLOPRO_PTS-200_7 500 23 11 7 10

In addition, the yield point also reduced from 24 to 14 lb/100 ft2, which means losses
of 41.66% on their rheological properties with a high-temperature shape are frail for this
mud (see Figures 1b and 2b). In the sample of salt polymer mud RDF, the plastic viscosity
was found from 12 lb/100 ft2, then reduced to 7 lb/100 ft2. However, the gel strength was
affected by the temperature: gel 10 s from 8 lb/100 ft2 reduced to 4 lb/100 ft2 and gel 10 min
from 10 to 5 lb/100 ft2. Furthermore, the yield point was reduced from 25 to 18 lb/100 ft2

(see Figures 1c and 2c). Polymer temperature stabilizer (PTS-200) was employed to protect
the polymer from breaking down and added to the FLOPRO sample; for plastic viscosity,
the result shows that it was precisely 20.08% more stable than FLOPRO without PTS-200,
and salt polymer and NDF, about 26.28 and 30.07%, respectively. Furthermore, the gel
strength of both 10 s and 10 min FLOPRO with PTS-200 is more stable when compared with
FLOPRO without PTS-200, NDF, and salt polymer mud about 49.7, 44, and 37.5% separately.
Moreover, the yield point of FLOPRO with PTS-200 also showed better performance than
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FLOPRO without PTS-200, NDF, and salt polymer mud about 24, 41.66, and 28, respectively
(see Figures 1d and 2d).
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2.2. Filtration Properties and Filter Cake Thickness

For the filtration characteristics to obtain better filtration control, 2 types of polymers
added to each RDF of the FLOPRO drilling fluid (RDF) were prepared with 6.3 lb/bbl of
FLOTROL and 3.5 lb/bbl of M-I PAC UL powder. In total, 6 samples were prepared: salt
polymer mud drilling fluid (RDF) prepared with 5 lb/bbl of M-I PAC UL and 4.2 lb/bbl
of Polysal powder was used for six samples; Non-Damaging Fluid (RDF) was prepared
with 6.8 lb/bbl of PAC LV and 5 lb/bbl of Starch powder and also used for 6 samples. The
materials were studied and determined under different temperature ranges from 220 to
500 ◦F. Table 3 displays the HP/HT fluid losses of three reservoir drilling fluids. As is
obvious, the fluid loss is increasing with the increasing of the temperate from 220 to 500 ◦F.

Table 3. Measured values of the HPHT fluid losses with temperature applied, including initial and
final thickness of filter paper, and filter cake thickness of the FLOPRO (RDF), non-damaging fluid,
salt polymer mud, and FLOPRO with PTS-200 drilling fluid.

Drilling Fluid Sample
Temp.

HPHT
Fluid Loss

Filter Cake Thickness

Initial Final Average
◦F cm3/30 min 1/32′′ 1/32′′ 1/32′′

FLOPRO FLOPRO_1 220 9.1 0.004 0.0045 0.0005
FLOPRO_2 280 9.3 0.004 0.0047 0.0007
FLOPRO_3 320 10.1 0.004 0.005 0.001
FLOPRO_4 360 10.5 0.004 0.0055 0.0015
FLOPRO_5 400 10.9 0.004 0.0059 0.0019
FLOPRO_6 500 11.8 0.004 0.007 0.003

NDF NDF_1 220 10.1 0.004 0.005 0.001
NDF_2 280 10.6 0.004 0.0055 0.0015
NDF_3 320 10.9 0.004 0.0059 0.0019
NDF_4 360 12.8 0.004 0.0081 0.0041
NDF_5 400 13.5 0.004 0.0089 0.0049
NDF_6 500 15.6 0.004 0.009 0.005

Salt Polymer mud SPM_1 220 9.7 0.004 0.0048 0.0008
SPM_2 280 10.3 0.004 0.0051 0.0011
SPM_3 320 10.7 0.004 0.0057 0.0017
SPM_4 360 12.3 0.004 0.0079 0.0039
SPM_5 400 13.1 0.004 0.0085 0.0045
SPM_6 500 14.5 0.004 0.011 0.007

FLOPRO
with PTS-200

FLOPRO_PTS-200_1 220 9.1 0.004 0.0045 0.0005
FLOPRO_PTS-200_2 280 9.3 0.004 0.0047 0.0007
FLOPRO_PTS-200_3 320 9.6 0.004 0.0048 0.0008
FLOPRO_PTS-200_4 360 9.9 0.004 0.0049 0.0009
FLOPRO_PTS-200_5 400 10.2 0.004 0.0051 0.0011
FLOPRO_PTS-200_6 500 10.6 0.004 0.0055 0.0015
FLOPRO_PTS-200_7 500 10.2 0.004 0.0051 0.0011

Figure 3 illustrates the filtration rate of the FLOPRO, non-damaging fluid, salt polymer
mud, and FLOPRO with PTS-200 drilling fluid for 30 min. As can be seen, the NDF fluid
had the highest filtration rate, which increases with temperature to 15.6 mL at 30 min.
Generally, the salt polymer mud drilling fluids prepared from M-I PAC UL and Polysal
powders showed better performance in reducing the filtration rate due to creating sufficient
filter cakes, which are impermeable at about 14.5 m. While the FLOPRO drilling fluids
were prepared with FLOTROL and M-I PAC, fluid losses of 11.8 mL were recorded. In ad-
dition, PTS-200 after being added to FLOPRO showed the best performance; the minimum
filtration rate of 10.2 mL at 30 min was obtained. During the investigation of the drilling
fluid with the optimum temperature for polymer before breaking down, it was found that
FLOTROL started to break down at 320 ◦F; meanwhile, drilling was required to treat the
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active system. However, PAC LV and M-I PAC UL polymer started to break down at 280 ◦F.
Furthermore, Polysal polymer started to break down at 170 ◦F. Moreover, adding 2 wt.% of
PTS-200 to FLOPRO (RDF) at 500 ◦F obtained the best performance to reduce filtration and
protect the polymer from breaking down when the previous sample of FLOPRO at 500 ◦F
with 1.5% PTS-200 was about 10.78% (see Figure 3).
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Furthermore, Figure 4 illustrates the filter cake thickness of three types of the reservoir
drilling fluids; FLOTROL filtration polymer shows better resistance to temperature, and
the thickness increased by 83%. However, in the sample of non-damaging fluid, polysal
showed poor results, with the lowest resistance to the temperature and a higher filtration
rate at 500 ◦F. Moreover, the thickness of the filter cake increased by 94.44%. Furthermore,
the sample of salt polymer mud showed slightly better resistance to the temperature, and
the filter cake thickness was thinner than non-damaging fluid, but thicker than FLOPRO;
the result showed 92.85%. Moreover, adding a polymer temperature stabilizer (PTS-200) to
RDF can protect the polymer from breaking down by 66.66%, but the filter cake thickness
increases by 40%.
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Figure 4. Measured filter cake thicknesses of 3 types of reservoir drilling fluids (RDFs) under different
temperatures from 220 to 500 ◦F: (a) FLOPRO, (b) non-damaging fluid, (c) salt polymer mud, and
(d) FLOPRO with PTS-200.
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2.3. Drilling Parameters
2.3.1. Rate of Penetration

Overall, FLOPRO drilling fluid was used to drill 22 wells, whereas salt polymer mud
(SPM) was used to drill 4 wells and non-damaging drilling fluid to drill 4 wells. The well
was drilled using FLOPRO with a maximum ROP of 37 m/h for Well X-9. The minimum
ROP was 16 m per hour in Well X-16. The well’s highest ROP while using NDF was 14 m
per hour in Well X-14, and the minimum ROP was 11 m/h in Well X-1. Furthermore,
the greatest ROP for the salt polymer-drilled well was 26 m/h. The minimum ROP was
15 m per hour, as shown in Figure 5. Figure 5 displays the ROP for all wells that were
drilled utilizing the three different types of RDF. Among all the used drilling fluids, the
maximum ROP of 37 m/h was obtained when FLOPRO was used in drilling Wells X-8
and X-25. However, NDF illustrated the minimum ROP of 11 m/h in Well X-11. Overall,
NDF reduced the ROP in all four wells that were used for drilling the horizontal section of
the reservoir.
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2.3.2. Cost per Meter (USD/m)

The cost per meter calculation of the drilling fluid used for drilling the horizontal
section of thirty wells, excluding the drilling rig and other services in drilling, is shown in
Figure 6. FLOPRO’s average cost is roughly USD 29.64, compared with salt polymer mud’s
average cost of USD 38.28 and NDF’s average cost of USD 48.67. As a result, FLOPRO
is more affordable and performs better compared with the other types of used reservoir
drilling fluids. The overall cost of the FLOPRO drilling fluid supplied for drilling about
2000 is 41.52% less than the SPM drilling fluid supplied for 4 wells and the NDF drilling
fluid used in 4 wells. The highest cost of USD 83.3 for drilling a meter of the reservoir
section horizontally was recorded for Well X-14 using SPM drilling fluid when only 811 m
were drilled. However, the minimum cost of USD 14.8 for drilling a meter of the reservoir
horizontally was obtained when drilling Well X-8 using FLOPRO reservoir drilling fluid
when drilling 798 m (see Figure 6). In addition, the number of meters drilled of the reservoir
section horizontally are shown in Figure 6. The horizontal section in almost all wells is
about 2000 m. The minimum number of meters were drilled in Well X-9, which is 736 m,
and the maximum was 2114.5 m in Well X-22.
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2.3.3. Formation Losses

Overall, 30 wells were drilled with 3 different types of reservoir drilling fluids. Drilling
with salt polymer mud resulted in no downhole losses, whereas drilling with NDF resulted
in 2 wells with average losses of 82.22 m3. In addition, 14 FLOPRO-drilled wells experienced
downhole losses, with an average losses rate of roughly 60.85 m3, as shown in Figure 7.
As is clear, the highest losses of 152.2 m3 happened within Well X-19, which was drilled
using FLOPRO drilling fluid, while Well X-25 showed a minimum loss of the FLOPRO
drilling fluid of 17 m3. The loss of NDF drilling fluid is also high in both Wells X-13 and
X-14, which was 99 and 65.45, respectively.
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2.4. Cost Analysis
2.4.1. Cost of Reservoir Section, Volume Build-Up, and Cost Per Barrel (USD/bbl)

NDF drilling fluid was used in Wells X-1, 2, 13, and 15, and SPM RDF was used in
Wells X-3, 14, 23, and 24, as shown in Figure 8a, while FLOPRO drilling fluid was used in
22 wells (see Figure 8b). The average costs of NDF and SPM drilling fluids were 342 and
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267 USD/m3, respectively, and USD 165.11 was the average cost of each cubic meter of
FLOPRO drilling fluid used in drilling the reservoir section horizontally. Hence, FLOPRO’s
end-of-well cost is significantly lower than that of NDF and salt polymer. The volume
buildup of NDF and SPM drilling fluids was starting from 146.5 m3 used in Well X-23 to
the highest amount of 880 m3 in Well X-15, as shown in Figure 8a. Furthermore, the costs
of each cubic meter of SPM and NDF RDFs used in Well X-14 and Well X-1 are 133.57 and
653 USD/m3, respectively. The FLOPRO buildup volume varied from 143 to 445.5 m3,
along with its cost per m3, which started from 58 to 314 USD/m3 (see Figure 8b).
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2.4.2. Completion Cost (USD/bbl)

Wells that were drilled with FLOPRO fluid had a lower overall completion cost
compared with those drilled with NDF and SPM fluids because the NDF needed a D-
Destroyer system to remove the filter cake from the borehole wall, and SPM needed a CaCl2
filtration unit to complete the Saadi Formation. The NDF fluid was used in the completion
of Wells X-1, 2, 13, 14, 28, and 29, and the maximum cost was recorded for Well X-1, which
is USD 76,844. The cost of other wells by NDF was much less, that is, around USD 10,000.
In addition, the completion cost of almost all wells by FLOPRO is around USD 10,000,
expect for Wells X-22 and X-23. The average completion cost with FLOPRO is USD 8034
for all 20 wells used, from the minimum of USD 9945 to the maximum rate of USD 75,072.
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Hence, the average cost of the completion with FLOPRO is lower compared with the NDF
and SPM fluids, which are USD 21,818 and USD 16,947, respectively (see Figure 9).
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2.5. Challenges and Prospective the Reservoir Drill-in Fluid

The breakdown temperature of polymers depends on the type of polymer and the
drilling conditions. Some polymers, such as starch, can break down at temperatures as
low as 150 degrees Fahrenheit. Others, such as FLOTROL, can withstand temperatures
up to 300 degrees Fahrenheit when a polymer temperature stabilizer (PTS-200) is added.
PTS-200 is a solution that can benefit modern industry challenges and promote the strategic
opportunities of oil and gas companies [28–32].

It is important to take steps to protect polymers from breaking down. One of the
main challenges in the oil industry is the lifecycle of polymers in long-term and short-term
projects. As long as polymers break down, continuous treatment is required to keep drilling
fluid parameters in the acceptable range. At the end, the well concentration and cost will
be much higher than the planned cost of drilling the well [33–38].

After the end of a recent project, data were collected and compared from 30 turnkey
project wells that used 3 different types of drilling fluid (RDF). The results indicated that
FLOPRO had a positive economic impact and improved the KPI performance for drilling
parameters. However, the study was limited by the fact that no core samples were taken
during the drilling operation. This means that there was no core sample that could be used
in the lab to test the filter cake removal performance of FLOTROL. Additionally, PTS-200
was not used in the NDF and salt polymer mud.

Overall, the results of this study suggest that FLOPRO is a promising new RDF that
can help to improve drilling efficiency and reduce its costs. However, further research
is needed to confirm the filter cake removal performance of FLOTROL and to assess its
impact on skin damage.

3. Conclusions

The main goal of this study was to formulate a drilling fluid using an optimum
concentration of polymer temperature stabilizer (PTS-200) to protect the polymers from
breaking down at a temperature greater than 220 degrees Fahrenheit in order to achieve
better filtration and rheological properties and lower cost. During the investigation period,
starch polymer, an anti-filter loss polymer, began to degrade at 170 ◦F, whereas FLOTROL
(modified starch) degraded at 320 ◦F. The optimum concentrations of polymer temperature
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stabilizer (PTS-200) were discovered at a temperature above the 320 degrees Fahrenheit
required for 1% of PTS-200, based on achieving the lowest filtration rate. However, wells
with greater temperatures, such as 500 ◦F, required using 2 wt.% of PTS-200, based on the
archiving of better filtration and rheological properties. The results showed that polymers
used to make FLOPRO, including FLOTROL and M-I PAC UL, are more stable than those
used to make NDF and salt polymer mud, such as starch and PAC LV, which will break
down at temperatures over 320 ◦F and result in viscosity that is 13.66% less stable and
31.14% less suitable for filtering.

4. Materials and Methods
4.1. Materials

Various additives were used in this study, such as modified natural (Duo-Vis) and
synthetic viscosifier (FLO-VIS), sodium carbonate (Na2CO3), starch, biopolymer filtration
(Polysal), poly anionic cellulose ultra-low viscosity (M-I PAC UL), polyanionic cellulose
low-viscosity (PAC LV), synthetic polyanionic cellulose low-viscosity (FLOTROL) poly-
mer, caustic soda (NaOH), NaCl salt, chloromethyl-isothiazolinone (M-I Cide), low-cost
surfactant, drilling torque reducer (drillzone), ester lubricant (Lube XLS) and water-soluble
brine lubricant (Safe Lube), phosphate-base corrosion inhibitor (Qonqor 404), and polymer
temperature stabilizer (PTS-200). Each of the above chemicals and additives was added
for a specific purpose, such as fluid loss control, viscosity improvement, corrosion inhibi-
tion, lubricity improvement, and temperature stability. All the mentioned chemicals were
provided by the M-I SWACO—Schlumberger company (Basra, Iraq) with a purity of 99.8%.

4.2. Field Data and Study Area

Field data of drilling horizontal sections of 30 wells (X-1 to X-30) in the south of Iraq
were collected. The drilled reservoir sections were Mishrif Formation from the middle
cretaceous and Saadi Formation from the late cretaceous, which are limestone white chalky.
The thicknesses of the Saadi and Mishrif formations are 136 m (from 2017 to 2153 m MD)
and 110 m (from 2242 to 2352 m MD), respectively. Both formations are drilled horizontally
at a 90◦ angle with an open-hole section length of about 2000 m. Table 4 shows the collected
data from wells X-1-30. As can be seen, two drilling rigs, A and B, were used for drilling
these wells. In addition, the meterage drilled, true of vertical depth (TVD), times taken to
drill the sections, and horizontally drilled meterage are shown.

Table 4. Field data were collected from 30 wells in South Iraq using RDFs through the reservoir
horizontally.

No. Rig Well TVD Meterage Drilled
(MD)

Days to Finish
Well

Meterage
Drilled at 90◦

1 A X-1 2137 4867 56 1997
2 A X-2 2405.88 4590 60 1910
3 A X-3 2134 3520 37 811
4 A X-4 2369.15 4686 38 1700
5 A X-5 2397.75 4778 26 2000
6 A X-6 2383.62 4770 27 2000
7 A X-7 2416.96 5114 27 2000
8 A X-8 2413.85 3729 22 798
9 A X-9 2431.47 4176 22 736
10 A X-10 2387 4826 47 2019
11 A X-11 2408.23 4114 41 1386
12 A X-12 2366 4946 46 2000
13 B X-13 2379 5015 76 2005
14 B X-14 2364.13 5456 52 1995
15 B X-15 2477.01 5120 54 2000
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Table 4. Cont.

No. Rig Well TVD Meterage Drilled
(MD)

Days to Finish
Well

Meterage
Drilled at 90◦

16 B X-16 2371 4690 46 2003
17 B X-17 2367 3767 24 1081
18 B X-18 2373.31 4855 25 2005
19 B X-19 2368.1 4917 23 1960
20 B X-20 2379.77 4434 35 1276
21 B X-21 2427.79 4839 30 1997
22 B X-22 2442.46 5571 45 2114.5
23 B X-23 2371 4684 39 1997
24 B X-24 2106.39 4523 31 2000
25 B X-25 2368 4681 26 2000
26 B X-26 2370 5026 42 1997
27 B X-27 2363.5 4695 35 1995
28 B X-28 2135 3411 37.8 789
29 B X-29 2371 4690 46 2003
30 B X-30 2413.54 5201 31 1995

4.3. Preparation of the Drilling Fluids

Excluding the base sample, four types of RDFs were prepared. The developed RDFs
are categorized into FLOPRO (six samples), salt polymer mud, SPM (six samples), non-
damaging fluids, NDF (six samples), and an additional seven samples of FLOPRO with
polymer temperature stabilizer (PTS-200). All drilling fluids were prepared using a hot plate
stirrer and Hamilton Beach mixer for 30 min. The composition of the formulated drilling
fluids is shown in Table 5, which includes the concentration of each chemical/additive
used within each different drilling fluid sample.

Table 5. Composition of the formulated reservoir drill-in fluids used in this study.

Drilling Fluid
Component

Reservoir Drilling Fluid (RDF)

FLOPRO SPM NDF FLOPRO_PTS-200

1 2 3 4 5 6 7

Water, mL 350 350 350 350 350 350 350 350 350 350
Soda ash, gm 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Caustic Soda, gm 0.5 0.5 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5
FLO-Vis, gm 1.4 - - 1.4 1.4 1.4 1.4 1.4 1.4 1.4
FLOTROL, gm 6.3 - - 6.3 6.3 6.3 6.3 6.3 6.3 6.3
Safe Carb-20, gm 14 - - 14.0 14.0 14 14 14 14 14
Safe Lube, cm3 2.0 1.5 - 2.0 2.0 2.0 2 2 2 2
M-I Cide, cm3 0.2 0.2 - 0.2 0.2 0.2 0.2 0.2 0.2 0.2
M-I PAC UL, gm 3.5 - 5.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Qonqor 404, cm3 1.0 - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0
DUO-Vis, mg - 1.6 1.4 - - - - - - -
PAC LV, mg - 6.8 - - - - - - - -
CaCO3 F, mg - 14.0 14.0 - - - - - - -
Starch, mg - 5.0 - - - - - - - -
NaCl, mg - - 1.11 - - - - - - -
Lube XLS - - 2.0 - - - - - - -
DrillZone, cm3 - - 1.0 - - - - - - -
Polysal, mg - - 4.2 - - - - - - -
ZnCO3, mg - - 0.7 - - - - - - -
PTS-200 - - - - 0.5 1.0 1.0 1.5 1.5 2.0
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4.4. Rheological Measurements of the Drilling Fluids

An API standard viscometer (FANN 35) was used to measure the rheological parame-
ters of all prepared drilling fluid samples, including apparent viscosity, plastic viscosity,
yield point, and gel strength under different temperature conditions of 220 to 500 ◦F. The
apparent viscosity, plastic viscosity, and yield point are calculated using readings of 300
and 600 RPM of the viscometer rotor using Equations (1)–(3). The device is modified to
measure gel strengths at 10 s and 10 min by observing the greatest, or maximum, deflection
of the dial prior to the gel breaking. The recorded deflections of the rotating viscometer
at various speeds allowed for the determination of shear loads, shear rates, and drilling
fluid’s 10 s and 10 min gel strengths.

Plastic Viscosity (µp) (cP) = 600 rpm reading − 300 rpm reading (1)

Apparent Viscosity (µa) (cP) = 600 rpm reading/2 (2)

Yield Point (τy) (Ib/100 ft2) = 300 rpm reading − µp (3)

4.5. Filtration Measurements of the Drilling Fluids

The filtration properties of the prepared drilling fluids at different concentrations of
FLOTROL, M-I PAC UL, polysal, starch, and PAC LV were studied using a Series 300 HPHT
Filter Press (M-I SWACO—Schlumberger company, Basra, Iraq) at 600 psi and 220–500 ◦F.
The drilling fluid sample was put into the filter cell for each of the samples depicted in
Table 5. The filter press is set up for the tests, and a graduated cylinder is positioned
beneath the filtrate tube. As soon as the equipment is ready, timing is started, and the
test begins. The test may continue for 30 min, and the amount of filtrate in the graduated
cylinder was recorded.

4.6. Analysis of Drilling Field Data

Field data collected from 30 horizontal wells are for all the different types of RDFs
mentioned in Table 5; NDF was used in drilling Wells X-1, 2, 13, and 15; SPM was used
within Wells X-3, 14, 2,3, and 24; and FLOPRO was used in other wells. The profile of
Well X-1 is shown in Figure 10, which includes a horizontal section of the reservoir that
the field data are taken from. However, the rest of the wells almost have the same well
profile. The mentioned drilling fluids were used under different temperature conditions
through the reservoir interval of 2000 m horizontally. Field data will be focusing on the
rate of penetration (ROP), cost of drilling in the reservoir section, cost per meter (USD/m),
completion cost, volume build-up, cost per barrel (USD/bbl), and downhole losses using
the following formulas:

Cost per meter (USD/m) = Cost of reservoir section (USD)/meterage drilled (m) (4)

Rate of Penetration (m/h) = Meterage drilled in reservoir section/day to complete section (5)

Cost per barrel (USD/bbl) = Cost of reservoir section/volume build-up (6)
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Abstract: High water cut of produced fluid is one of the most common problems in reservoir develop-
ment. At present, injecting plugging agents and other profile control and water plugging technologies
are the most widely used solutions. With the development of deep oil and gas resources, high-
temperature and high-salinity (HTHS) reservoirs are becoming increasingly common. Conventional
polymers are prone to hydrolysis and thermal degradation under HTHS conditions, making polymer
flooding or polymer-based gels less effective. Phenol–aldehyde crosslinking agent gels can be applied
to different reservoirs with a wide range of salinity, but there exist the disadvantage of high cost
of gelants. The cost of water-soluble phenolic resin gels is low. Based on the research of former
scientists, copolymers consisting of acrylamide (AM) and 2-Acrylamido-2-Methylpropanesulfonic
acid (AMPS) and modified water-soluble phenolic resin were used to prepare gels in the paper. The
experimental results show that the gelant with 1.0 wt% AM-AMPS copolymer (AMPS content is
47%), 1.0 wt% modified water-soluble phenolic resin and 0.4 wt% thiourea has gelation time of 7.5 h,
storage modulus of 18 Pa and no syneresis after aging for 90 days at 105 ◦C in simulated Tahe water
of 22 × 104 mg/L salinity. By comprehensively comparing the effectiveness of the gels prepared by a
kind of phenolic aldehyde composite crosslinking agent and modified water-soluble phenolic resin, it
is found that the gel constructed by the modified water-soluble phenolic resin not only reduces costs,
but also has shorter gelation time and higher gel strength. The oil displacement experiment with a
visual glass plate model proves that the forming gel has good plugging ability and thus improves the
sweep efficiency. The research expands the application range of water-soluble phenolic resin gels,
which has an important implication for profile control and water plugging in the HTHS reservoirs.

Keywords: low-cost gel; AM-AMPS copolymer; high-temperature and high-salinity resistant gel; oil
displacement experiment

1. Introduction

The problem of high water cut in oilfield development needs to be solved urgently, as
it has the potential to reduce the utilization efficiency of injected water. A large amount
of injected water flows through the high permeability layer, resulting in premature water
emergence in oilfield development and a low sweep efficiency of the injected water [1]. To
solve the above problems, common method is to inject selective plugging agents into high-
permeability channels such as fractures [2,3]. Phenolic gel is one of the most commonly used
plugging agents, the use of which is mainly divided into two methods: one is to make gelants
by adding phenol and aldehyde solutions to the polymer solutions [4–14]; the other is to
directly add a water-soluble phenolic resin solution into the polymer solutions [2,3,15–23].

The first type of gels has been widely studied and applied in reservoirs with different
temperatures and salinities [4–14]. This paper focuses on the second kind of gels. Compared
with the phenol–aldehyde crosslinking system gels, the latter can be prepared at a low
cost. At present, some scientists have studied some gelling behaviors using water-soluble
phenolic resin to replace the phenol–aldehyde crosslinking agent system [15–23]. According
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to the microstructure of chrome gel and phenolic resin gel prepared by Zhang et al. [16],
the network structure of the phenolic resin gel is more prone to deformation under external
forces. At high magnification rates, the phenolic gel network is more developed than the
dendritic cluster structure of the chrome gel. Under the conditions of low temperature
and salinity, the properties of the gels formed by cross-linking water-soluble phenolic resin
with different polymers were also studied. Shang et al. [17] prepared a gel system formed
by partially hydrolyzed polyacrylamide (HPAM) crosslinked with organic chromium and
water-soluble phenolic resin at a temperature lower than 80 ◦C, a salt concentration lower
than 16,000 mg/L, and a pH value between 6 and 8. The blocking rate of the system in
the simulated core was reported to be 96%. Cui et al. [18] determined that gels with good
thermal stability and shear resistance could be obtained when the concentration of HPAM
was greater than 600 mg/L and the concentration of water-soluble phenolic resin was more
than 1400 mg/L. Zhao et al. [19] selected phenolic resin cross-linked non-ionic PAM to
prepare gels for deep profile control. The salinity in their experiment was 492.08 mg/L,
and the experiment temperature was 80 ◦C. Gu et al. [20] used phenolic resin to crosslink
non-ionic polyacrylamide to prepare gels and observed that when the concentration of the
polymer and the crosslinking agent increased, so did the gels’ viscosity and strength, but the
viscosity and strength decreased when the concentration of salt or pH value increased. The
phenolic resin gel system could maintain good stability at 95 ◦C under alkaline conditions
with a salt concentration lower than 30,000 mg/L or a pH value greater than 7.

In the past five years, water-soluble phenolic resin has been further applied in oil fields.
In 2019, Ge et al. [2] and Wu et al. [3] prepared a water-soluble phenolic resin gel at 70 ◦C for
the low porosity and ultra-low permeability fractured reservoir in the Honghe Oilfield. The
gel had good long-term stability after 180 days of heat treatment, and the strength was more
than 10 Pa. In 2022, the impact of shear rate on the gelling behavior of phenolic resin gel in
porous media was investigated by Yu et al. [21]. The findings revealed that the dynamic
gel time was minimally influenced by the injection speed, whereas the gel strength was
significantly affected. Guo et al. [22] used partially hydrolyzed polyacrylamide (HPAM) as
the main agent, water-soluble phenolic resin (WSPR) as the crosslinking agent, and nano-
SiO2 as the stabilizer. The gelation time could be varied between 3 h and 23 h at 110 ◦C
and 12,124 mg/L of salinity, and within 180 days, the gel’s stability was still excellent. Xu
et al. [23,24] chose AM-AMPS copolymer as the gel-forming agent and studied the plugging
performance of a water-soluble phenolic resin gel system under the conditions of a salt
concentration of 41,110 mg/L and a temperature range of 80–90 ◦C. Qu et al. [25] presented
a gel with gelation time of 26–34 h at 55 ◦C using polyacrylamide, chromium acetate and
water-soluble phenolic resin for the purpose of controlling water coning. In 2023, Zhi
et al. [26] prepared a weak gel that demonstrated excellent resistance to temperature and
salt by utilizing a crosslinking agent in conjunction with the phenolic resin when the salinity
was 40,300.86 mg/L at 120 ◦C. From the above studies, it can be found that during the
preparation of gels, most of the water-soluble phenolic resins are used at temperatures
between 70 ◦C and 90 ◦C, and the reservoir salinity is usually lower than 4 × 104 mg/L.
It is because water-soluble phenolic resins would precipitate and stick to walls in high
salinity water, resulting in poor stability and unsatisfactory gelling properties.

In view of this, copolymers consisting of acrylamide (AM) and 2-acrylamido-2-
methylpropanesulfonic acid (AMPS) and a modified water-soluble phenolic resin are
used to prepare gels in this paper. The experimental results show that the gelant with
1.0 wt% AM-AMPS copolymer (AMPS content is 47%), 1.0 wt% modified water-soluble
phenolic resin, and 0.4 wt% thiourea has a gelation time of 7.5 h, a storage modulus of
18 Pa, and no syneresis after aging for 90 days at 105 ◦C in simulated Tahe water with a
salinity of 22 × 104 mg/L. That is to say, compared to the application conditions of the gels
prepared by other scientists using water-soluble phenolic resin, this gel can be used in a
higher salinity condition. The state changes of the modified water-soluble phenolic resin
gel added to simulated Tahe water were observed, and the plugging performance of the
modified water-soluble phenolic resin gel in porous media was evaluated in the experiment
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which proved that the forming gel had good stability and plugging ability. This research
expands the application range of water-soluble phenolic resin gels, which has an important
implication for profile control and water plugging in the HTHS reservoirs.

2. Results and Discussion
2.1. Evaluation of Gelation Performances of the Modified Soluble Phenolic Resin Gels

Phenol–aldehyde crosslinking agent gels can be applied to different reservoirs with a
wide range of salinities, but they have the disadvantage of high cost of gelants. The cost of
water-soluble phenolic resin is relatively low, so we are trying to use it to prepare a cheaper
gel to meet the needs of the HTHS reservoirs.

The water-soluble phenolic resin is prone to self-polycondensation at room temper-
ature and has poor solubility under high salinity. Clearly, this is not a good situation for
making high-temperature and high-salinity resistant gels. Liu et al. [27] prepared a modi-
fied water-soluble phenolic resin by adding p-hydroxybenzoic acid. Their research shows
that when the dosage of p-hydroxybenzoic acid is 10%, the phenolic resin can stably exist
in Tahe water for more than 4 weeks at 50 ◦C. In other words, the modified water-soluble
phenolic resin has excellent solubility in high-salinity water. Additionally, the research
papers by Zhang et al. [28] and Guo et al. [29] showed that AM-AMPS copolymer could
enhance the long-term stability of the prepared gel and reduce its syneresis rate in the
HTHS environment.

Referring to the preparation method of conventional water-soluble phenolic resin, adding
AM-AMPS copolymer solutions to the water-soluble phenolic resin modified by adding
p-hydroxybenzoic acid may generate a uniformly high-strength gel to achieve a plugging
effect. AM-AMPS copolymers with AMPS content of 0%, 25%, and 47% are referred to as
PAM, AM-AMPS 30 and AM-AMPS 50, respectively. They were selected as gelling agents.
The modified water-soluble phenolic resin was used as a crosslinking agent, and thiourea with
a mass fraction of 0.4 wt% was added as a stabilizer to investigate the gelling performance of
the prepared gels in simultated Tahe water at a temperature of 105 ◦C.

2.1.1. Gelation Time of the Modified Soluble Phenolic Resin Gels

At a temperature of 105 ◦C and a salinity of 22 × 104 mg/L, copolymers with different
AMPS content were crosslinked with the modified water-soluble phenolic resin. The
gelation time of the prepared gels is shown in Figure 1.
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Figure 1. Gel formation time of different component gels aged at 105 °C: (a) Gel formation time of 
PAM and modified soluble phenolic resin; (b) Gel formation time of AM-AMPS 30 and modified 
soluble phenolic resin; (c) Gel formation time of AM-AMPS 50 and modified soluble phenolic resin. 
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105 °C after 5 days were measured. It can be seen that the strength has a good positive 
association with the mass fraction of the polymer and crosslinking agent. When the mass 
fractions of the polymer and crosslinking agent are both 0.4–1.0 wt%, the strength of 
AM-AMPS gels composed of AMPS monomer content of 0%, 25% and 47%, respectively, 
is 14–40 Pa, 10–30 Pa, and 5–18 Pa. That is to say, as the AMPS content in the polymer 
increases, the gel strength weakens, which is similar to the research results of Wang et al. 
[15].  
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Figure 2. Storage modulus of different component gels aged at 105 °C: (a) Storage modulus of PAM 
and modified soluble phenolic resin; (b) Storage modulus of AM-AMPS 30 and modified soluble 
phenolic resin; (c) Storage modulus of AM-AMPS 50 and modified soluble phenolic resin. 

2.1.3. Long-Term Stability of the Modified Soluble Phenolic Resin Gels 
The stability of the gels was characterized by the syneresis rate at 105 °C after 90 
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Figure 1. Gel formation time of different component gels aged at 105 ◦C: (a) Gel formation time of
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soluble phenolic resin; (c) Gel formation time of AM-AMPS 50 and modified soluble phenolic resin.

It is evident that the gelation time and the mass fraction of the polymer and crosslink-
ing agent have a negative relationship when the content of AMPS is constant. When the
mass fractions of the polymer and crosslinking agent are both 0.4–1.0 wt%, the gelation time
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with PAM as the main agent is 4–32 h; the gelation time of an AM-AMPS copolymer with
AMPS content of 25% as the main agent is 5–40 h; and the gelation time of an AM-AMPS
copolymer with AMPS content of 47% as the main agent is 7.5–55 h. That is to say, when
the AMPS content increases, the gelation time becomes significantly prolonged, which is
similar to the results of Xu et al. [23,24].

2.1.2. Storage Moduli of the Modified Soluble Phenolic Resin Gels

As seen in Figure 2, the storage moduli of the gels prepared by crosslinking polymers
with different AMPS content and the modified water-soluble phenolic resin at 105 ◦C after
5 days were measured. It can be seen that the strength has a good positive association
with the mass fraction of the polymer and crosslinking agent. When the mass fractions
of the polymer and crosslinking agent are both 0.4–1.0 wt%, the strength of AM-AMPS
gels composed of AMPS monomer content of 0%, 25% and 47%, respectively, is 14–40 Pa,
10–30 Pa, and 5–18 Pa. That is to say, as the AMPS content in the polymer increases, the gel
strength weakens, which is similar to the research results of Wang et al. [15].
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Figure 2. Storage modulus of different component gels aged at 105 °C: (a) Storage modulus of PAM
and modified soluble phenolic resin; (b) Storage modulus of AM-AMPS 30 and modified soluble 
phenolic resin; (c) Storage modulus of AM-AMPS 50 and modified soluble phenolic resin. 
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Figure 2. Storage modulus of different component gels aged at 105 ◦C: (a) Storage modulus of PAM
and modified soluble phenolic resin; (b) Storage modulus of AM-AMPS 30 and modified soluble
phenolic resin; (c) Storage modulus of AM-AMPS 50 and modified soluble phenolic resin.

2.1.3. Long-Term Stability of the Modified Soluble Phenolic Resin Gels

The stability of the gels was characterized by the syneresis rate at 105 ◦C after 90 days.
The syneresis rate of the gels prepared by crosslinking copolymers of different AMPS content
with the modified water-soluble phenolic resin is shown in Figure 3.

As can be observed, the stability of gels with different AMPS content is positively
correlated with the mass fraction of copolymer and crosslinking agents. As the mass
fraction of copolymer and crosslinking agents increases, the syneresis rate of gels decreases.
When the mass fractions of the polymer and crosslinking agent are both 0.4–1.0 wt%, the
syneresis rate of the gels with PAM polymer as the main agent aged at 105 ◦C for 90 days is
between 50% and 80% (exceeding 50%). The syneresis rate of the gels mainly composed
of an AM-AMPS copolymer with AMPS content of 25% varies from 10% to 70%. The gel
with a high mass fraction of copolymer and crosslinking agent has good stability and a
low syneresis rate. The syneresis rate of the gel prepared with 1.0 wt% copolymer and
1.0 wt% crosslinking agent is only 10%, and the syneresis rate of the gel prepared with a
0.4 wt% copolymer and a 0.4 wt% crosslinking agent is 70%. In addition, the increase in
AMPS content also enhances the stability of the gel. The syneresis rate of the gels using a
copolymer with AMPS content of 47% as the main agent is 0–15%, indicating a significant
improvement in the stability of the gel.
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Figure 3. Syneresis rate of different component gels aged at 105 °C: (a) Syneresis rate of PAM and 
modified soluble phenolic resin; (b) Syneresis rate of AM-AMPS 30 and modified soluble phenolic 
resin; (c) Syneresis rate of AM-AMPS 50 and modified soluble phenolic resin. 
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In summary, examining the gelation performance of the gels prepared by the modified
water-soluble phenolic resin and AM-AMPS copolymer, it becomes clear that with the increase
in the AMPS content, the gelation time of the gels becomes longer and the long-term stability
increases, but the strength of the gel decreases. This is related to the structure of the copolymer.
The crosslinking mechanism of the gel is the polycondensation of phenolic resin and amide
group in polymer chains [1]. As the copolymer’s AMPS content rises, the amide group content
correspondingly reduces, resulting in a longer crosslinking time and weaker gel strength.
However, the rate of hydrolysis and degradation of the copolymer at high temperature slows
down. Therefore, the long-term stability of the prepared gel is enhanced.

The performance of the prepared gel using the AM-AMPS copolymer and the phe-
nolic aldehyde composite crosslinking agent was evaluated at 105 ◦C and a salinity of
22 × 104 mg/L, as shown in the following Figure 4. The copolymer with AMPS monomer
ratio of 47% was selected as the gelling agent, the phenolic crosslinking agent was hydro-
quinone, and the aldehyde crosslinking agent was urotropine.
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Figure 4. Performance of different component gels aged at 105 °C: (a) Gel formation time of 
AM-AMPS 50 and phenolic aldehyde composite crosslinking agent; (b) Storage modulus of 
AM-AMPS 50 and phenolic aldehyde composite crosslinking agent; (c) Syneresis rate of AM-AMPS 
50 and phenolic aldehyde composite crosslinking agent. 
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It can be seen that the gelation time is 12–83 h, the strength after 5 days is 4.9–9.8 Pa,
and the dehydration rate after 90 days is only 0–7%. When the mass fraction of AM-AMPS
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copolymer is 1.0 wt%, the hydroquinone is 0.4 wt%, and the urotropine is 0.8 wt%, the
gelation time of the prepared phenolic aldehyde crosslinking agent gels can be shortened
to 12 h, and the storage modulus after 5 days of aging is 9.8 Pa (Sydansk’s gel strength code
of “G”: when the ampoule is inverted, the gel flows down to about half of the ampoule).
The gel has good stability and does not dehydrate within 90 days, making it suitable for
the harsh conditions of high temperature and high salinity in Tahe Oilfield.

Using a mass fraction of 1.0 wt% AM-AMPS copolymer (AMPS content is 47%), 1.0 wt%
modified water-soluble phenolic resin, and 0.4 wt% thiourea as the formula, a low-cost gel
with gelation time of 7.5 h, storage modulus of 18 Pa, and no syneresis at 105 ◦C after 90 days
can be prepared. By comprehensively comparing the performance of the gel prepared by a
phenolic aldehyde composite crosslinking agent and the modified water-soluble phenolic
resin, it can be found that the gel constructed by the modified water-soluble phenolic resin
not only reduces costs, but also has a shorter gelation time and higher gel strength, albeit with
slightly poorer stability.

This may happen because the crosslinking reaction between the water-soluble phenolic
resin and the polymer skips the early process of the phenol–aldehyde reaction, leading to a
shortened crosslinking reaction time. In addition, the water-soluble phenolic resin has a
larger conformation and a certain degree of rigidity, resulting in the formation of gels with
higher strength.

2.2. Evaluation of Plugging Performance of Modified Water-Soluble Phenolic Resin Gel
2.2.1. Gel Strength after Adding Water

After the modified water-soluble phenolic resin gel is injected into the formation, it
first comes into contact with a large amount of formation water. In order to investigate the
effect of high-salinity Tahe water on the performance of the gel under 105 ◦C conditions,
simulated formation water was added to the gel in a 1:1 volume ratio to observe the strength
changes in the gel. The results of the experiment can be seen in Figure 5.
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From the results, it can be seen that for the modified water-soluble phenolic resin gel,
after the Tahe simulated formation water was added, the gel strength level was H (when
the ampoule is inverted, only the surface of the gel is slightly deformed) after 30 days, and
it could still maintain good stability.
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2.2.2. Plugging Ability of Gel in Porous Media

The performance of the most stable water-soluble phenolic resin gel (1.0 wt% AM-
AMPS 50 + 1.0 wt% modified water-soluble phenolic resin + 0.4 wt% thiourea) was evalu-
ated by conducting a displacement experiment in a self-made visual glass flat plate model
filled with sand. The experimental process, which is shown in Figure 6, can be divided into
three steps: first, after the model is saturated with oil, primary water flooding is carried
out until the water cut reaches 94%; then, 0.3 PV of the modified water-soluble phenolic
resin gelant is injected and allowed to sit for 24 h; finally, the subsequent water drive is
conducted until the water cut reaches 98%.
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Figure 6. Visualized plate model displacement experiment.

The distributions of residual oil at different stages were observed using a heteroge-
neous visual sand-filling model, as shown in Figure 7. From Figure 7b, it can be seen
that during water injection development under heterogeneous reservoir conditions, water
gives priority to flow in the high permeability zones to form fluid channeling, and the
color becomes significantly lighter because of the decrease in oil content after the primary
water drive. The analysis of Figure 7d reveals that the gelling agent successfully forms a
robust gel in the central region of the reservoir, thereby inducing a plugging effect. The gel
formation obstructs the “dominant channel” in the high permeability zones, leading to the
displacement of oil by water in the low-permeability section. Consequently, the oil sand in
the low permeability zones exhibits a lighter color, indicating an enhancement in the sweep
efficiency and an improvement in the recovery of crude oil due to the injection of gel.
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Figure 7. Residual oil distributions at different stages of heterogeneous model: (a) Residual oil
distribution before first water drive; (b) Residual oil distributions after first water drive; (c) Residual
oil distributions after gel formation; (d) Residual oil distributions after subsequent water drive.

Figure 8 illustrates the correlations of oil recovery and water cut with injected volume
of water in the experiment. The results indicate that an increase in water injection leads
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to a gradual rise in oil recovery. At water cut of 93.48%, the cumulative oil production
amounted to 16.3 mL, resulting in a recovery rate of 20.45%. After the gel is injected, it
occupies the pores in the highly permeable zone of the model. Subsequently, during the
secondary water flooding phase, water infiltrates the low permeability layer, displacing
some of the oil before creating a new water flooding path. The displacement of oil by water
flooding results in a gradual improvement in recovery. After water cut of 97.84% is reached,
the cumulative oil production amounts to 31.22 mL, and the recovery rate reaches 39.17%.
The introduction of gel during secondary water flooding leads to an increase in oil recovery
by 18.72%.
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Figure 8. Production curve of heterogeneous model.

3. Conclusions

Different gels were prepared using the modified water-soluble phenolic resin and AM-
AMPS copolymers with AMPS content of 0%, 25%, and 47%, respectively. The experimental
results indicate that the gelation time decreases with the increase in the mass fraction of
the copolymer and crosslinking agent when the content of AMPS is constant. Furthermore,
with the increase in the AMPS content of the copolymer, the gelation time is significantly
prolonged, the strength of the gel decreases, but Its long-term stability improves.

The optimal formulation for the gelling solution is 1.0 wt% AM-AMPS copolymer
(AMPS content is 47%), 1.0 wt% modified water-soluble phenolic resin, and 0.4 wt%
thiourea. The high-performance gel with a gelation time of 7.5 h, a storage modulus of
18 Pa, and no syneresis after 90 days can be prepared in the simulated Tahe water at
105 ◦C and a salinity of 22 × 104 mg/L. By comprehensively comparing the performance
of the gel prepared by a phenolic aldehyde composite crosslinking agent and the modified
water-soluble phenolic resin, it can be found that the gel constructed by the modified
water-soluble phenolic resin not only reduces costs, but also has a shorter gelation time
and higher gel strength, though it has slightly poorer stability.

The displacement experiment with a visual glass plate model has proved that the formed
gel has good plugging ability and can improve the sweep efficiency. This research expands
the application range of water-soluble phenolic resin gels, which has an important implication
for profile control and water plugging in high-temperature and high-salinity reservoirs.
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4. Materials and Methods
4.1. Materials

A series of analytical pure chemical reagents such as NaCl, CaCl2, MgCl2, NaHCO3,
formaldehyde, phenol, sodium hydroxide, and p-hydroxybenzoic acid were purchased
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China); hydroquinone, thiourea,
and urotropine were provided by Aladdin Biochemical Technology Co., Ltd. (Shanghai,
China); PAM was provided by Anhui Jucheng Fine Chemical Co., Ltd. (Huaibei, China);
AM-AMPS copolymers (AMPS content is 25% and 47%, respectively) were prepared by
an aqueous solution polymerization method, with the initiator being a redox system con-
sisting of ammonium persulfate and sodium bisulfite; nitrogen was provided by Qingdao
Xinkeyuan Technology Co., Ltd. (Qingdao, China)

The main instruments are shown in Table 1.

Table 1. The main instruments.

Instrument Name Instrument Type Manufacturer

Precision digital display mixer JJ-1 Jintan Jincheng Guosheng Experimental Instrument Factory
(Changzhou, China)

Electronic balance ME403 Mettler Toledo International Trade Co., Ltd. (Shanghai, China)
Projector display stand GK-8000A Ruiying Information Technology Co., Ltd. (Guangzhou, China)
Micro injection pump 100DX Teledyne Isco, Inc. (Lincoln, Nebraska, USA)

Alcohol blowtorch GW-6 Subei Experimental Instrument Co., Ltd. (Taizhou, China)
Constant temperature oven DHG-9070A Jinghong Experimental Equipment Co., Ltd. (Shanghai, China)

4.2. Methods
4.2.1. Preparation of the AM-AMPS Copolymer Solution

The molecular weight of a water-soluble AM-AMPS copolymer is relatively large, and
its dissolution in water requires a certain amount of time. The AM-AMPS copolymer with
AMPS content of 47% was taken as an example, and the AM-AMPS copolymer was added to
the simulated Tahe water to prepare a certain mass fraction of the copolymer solution, which
was stirred slowly for 24 h, left to swell for 72 h, and then stirred for an additional 2 h.

4.2.2. Synthesis Method of the Modified Water-Soluble Phenolic Resin

At present, many scientists have synthesized soluble phenolic resins using phenol and
formaldehyde in the laboratory. The two-step catalytic method is a commonly used method
with similar steps [30–32]. The thermostatic water bath is controlled at 50 ◦C, with the molar
ratio of formaldehyde to phenol set at 3:1, and 8.0% NaOH of the total mass of formaldehyde
and phenol added as the catalyst. Then, the formaldehyde is slowly dropped into the
chemical reactor using a separatory funnel, with the dropping time controlled at 30 min. The
temperature is quickly raised to 70 ◦C after the synthesis of water-soluble phenolic resin,
10.0% p-hydroxybenzoic acid of the total mass of formaldehyde and phenol is added to the
water-soluble phenolic resin and the mixture is stirred thoroughly for 40 min. Finally, the
modified water-soluble phenolic resin with good transparency is obtained.

4.2.3. Preparation Method of Water-Soluble Phenolic Resin Gel

The gel consists of a copolymer solution, the crosslinking agent, or a certain stabilizer.
Firstly, at room temperature, the prepared water-soluble phenolic resin is added to the
simulated Tahe water according to the designed gel formula, and a mass fraction of 0.4 wt%
thiourea is added as a stabilizer. Then, AM-AMPS copolymer is added while stirring, and
a uniform gel solution is obtained after stirring. A total of 20 g of the gelling solution is
weighed and injected into an ampoule, sealed with an alcohol blowtorch, and then placed
in a thermostatic oven at 105 ◦C for heat treatment to form the gel.
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4.2.4. Determination of Gelation Time and Strength of Gel

The gelation time and gel strength were qualitatively determined using the bottle test
method, following Sydansk’s gel code [33]. The gelation time was defined as the duration
required for the gels to attain Sydansk’s code of “D” (when the ampoule is inverted, only
a small part of the gel is difficult to flow to the bottom). After sealing the sample, the
gelation time and gel strength were observed at ambient temperature. In addition, the
storage modulus of the gel was evaluated using a rheometer at a temperature of 25 ◦C. The
setting method of the instrument can be referred to our previous article [34].

4.2.5. Method for Determining the Syneresis Rate of Gel

The evaluation of the long-term stability of a gel is mainly based on the syneresis rate
of a gel as a reference indicator; when the syneresis rate of the gel is high after aging under
the same temperature conditions, it can be considered that the long-term stability of the
gel is poor, whereas if the syneresis rate is low or there is no syneresis phenomenon, the
long-term stability of the gel is good. Thermal stability experiments were conducted at
105 ◦C; the gelling solution was sealed in an ampoule bottle, and after gelation, it was taken
out of the oven at the set time and the ampoule bottle containing the gel was opened. The
mass of gel syneresis was measured using a ME403 electronic balance; due to the initial
mass of the gel forming solution being 20 g, the syneresis rate of gel was equal to the mass
of the separated water weighed by the balance divided by 20 g.
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Abstract: This study focuses on the characteristics of fractured and vuggy high-temperature and
high-salt reservoirs in the Tahe Oilfield. The Acrylamide/2-acrylamide-2-methylpropanesulfonic
copolymer salt was selected as a polymer; the hydroquinone and hexamethylene tetramine was
selected as the crosslinking agent with a ratio of 1:1; the nanoparticle SiO2 was selected, and its dosage
was optimized to 0.3%; Additionally, a novel nanoparticle coupling polymer gel was independently
synthesized. The surface of the gel was a three-dimensional network structure, with grids arranged in
pieces and interlaced with each other, and the structure was very stable. The SiO2 nanoparticles were
attached to the gel skeleton, forming effective coupling and enhancing the strength of the gel skeleton.
To solve the problem of complex gel preparation and transportation, the novel gel is compressed,
pelletized, and dried into expanded particles through industrial granulation, and the disadvantage
of the rapid expansion of expanded particles is optimized through physical film coating treatment.
Finally, a novel nanoparticle coupling expanded granule plugging agent was developed. Evaluation
of the performance of the novel nanoparticle coupling expanded granule plugging agent. With an
increase in temperature and mineralization, the expansion multiplier of granules decreases; aged
under high-temperature and high-salt conditions for 30 days, the expansion multiplier of granules
can still reach 3.5 times, the toughness index is 1.61, and the long-term stability of the granules
can be good; the water plugging rate of granules is 97.84%, which is superior to other widely used
particle-based plugging agents.

Keywords: temperature and salt resistant type; expanded granule; nanoparticle SiO2; coupling;
performance evaluation

1. Introduction

The Tahe Oilfield is located in the Tarim Basin, a rare large ultra-deep marine seam-
hole-type carbonate reservoir, with a planar well-controlled oil-bearing area of 2800 km2.
By August 2019, the Tahe Oilfield submitted a total of 13.5 × 108 t of proven petroleum
geological reserves, and the cumulative oil production exceeded 1× 108 t. The Tahe Oilfield
reservoirs are divided into fracture, seam-hole, and cavern. The reservoir temperature is as
high as 120–150 ◦C, and the total mineralization of the formation water is (200–250) g/L,
which belongs to the super high temperature and high salt reservoir [1,2]. At present, the
main challenges encountered in the extraction process of the Tahe Oilfield are the rapid
increase in water content of oil wells, rapid production reduction of oil wells, and overall
deviation of the water plugging effect; therefore, it is urgent to slow down the increasing
rate of water content after water is seen in oil wells [3].

A granular plugging agent is a popular plugging agent commonly used in water
plugging and dissection. It is stable, has a wide variety, has good mechanical properties,
and is suitable for plugging water in oil reservoirs with large pores. Expanded granules
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are a type of granular plugging agent developed in the last 20 years and can be expanded
when encountering water; they are cross-linked, granulated, and dried on the ground,
avoiding the influence of complex conditions of the formation on the cross-linking of the
system, which can better plug the reservoir with large pores [4]. Compared with cement-
based inorganic granular plugging agents and curable granular plugging agents widely
used in the Tahe Oilfield, the expanded granules can absorb water and swell, can plug
the throat with their deformation, or penetrate the formation through deformation under
certain pressure differences to seal the high-permeability layer containing seams and, large
pores [5,6].

In this paper, a novel nanoparticle coupling polymer gel was independently synthe-
sized. The novel gel is compressed, pelletized, and dried into expanded particles through
industrial granulation. The disadvantage of too fast expanded particle expansion is op-
timized through physical film coating treatment. Finally, a novel nanoparticle coupling
expanded granule-plugging agent was developed. The novel gel was chemically char-
acterized by FT-IR analysis, SEM, and a structural diagram, and the performance of the
plugging agent was evaluated from the aspects of temperature impact on expansion ratio,
salinity impact on expansion ratio, and long-term thermal stability of particles. This article
provides favorable technical support for applying the bulk expanded granule plugging
agent in the Tahe Oilfield.

2. Results and Discussions
2.1. Synthesis of Novel Nanoparticle Coupling Polymer Gel
2.1.1. Polymerization of Polymer Gel

In this paper, Acrylamide/2-acrylamide-2-methyl propane sulfonic copolymer salt
(AM/AMPS) was selected as the polymer. The AM/AMPS polymer was polymerized by
acrylamide (AM) monomer and AMPS monomer; for AMPS monomer, the highly stable
carbon chain was its main chain, and strong anionic hydration groups, i.e., methyl propyl
sulfonate groups, were introduced into its molecule, which not only improved the hy-
drophilicity, but also greatly improved the salinity resistance of AMPS monomer due to the
hyposensitivity of propane sulfonic acid groups to external cations; after the polymerization
of acrylamide and AMPS monomer, the steric hindrance of polymer molecule significantly
increased, effectively inhibiting the hydrolysis of amide groups, empowering strong stabil-
ity to the polymer, and greatly improving its heat resistance and salt tolerance, which laid a
solid foundation for the subsequent preparation of heat-resistant and salt-tolerant gels.

The hydroquinone and hexamethylenetetramine were selected as crosslinking agents
with a ratio of 1:1. Hydroquinone and hexamethylenetetramine can form water-soluble
(methyl) phenolic resin, which contains a benzene ring structure, making its temperature
resistance even better; In addition, hydroquinone contains two hydroxyl groups. The
ortho and para positions of the hydroxyl groups are chemical reaction active points, which
is easier to form free hydroxymethyl groups so that they can be better crosslinked with
AM/AMPS polymers, forming a network-like gel structure with a skeleton structure
extending to four aspects.

The synthesis idea of polymer gel polymerization is as follows Figure 1:
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2.1.2. Screening and Dosage Optimization of Nanoparticles

The size range of nanoparticles is generally 0.1–100 nm. Nanoparticles coupled with
polymer gel can strengthen the viscoelasticity and rheological properties of the gel system,
enhance the strength of the gel skeleton, improve the water retention capacity, and form a
higher strength and more compact filling network [7].

Nine different types of nanoparticles were screened out and added to the gel system.
The viscosity and dehydration rate of the gel prepared with the Tahe simulated formation
water at 130 ◦C in 20 days were investigated. The viscosity of the gel was measured by
DV2T Viscometer, and the shear rate is 5.8 rpm. The experimental results are shown in
Table 1.

Table 1. Effect of different types of nanoparticles on the dehydration rate of gel.

20 Days Nanoparticle
ZrO2

Nanoparticle
SiO2

Nanoparticle
Al2O3

Nanoparticle
Fe2O3

Nanoparticle
ZnO

Nanoparticle
MgO

Nanoparticle
TiO2

Nanoparticle
CaCO3

Attapulgite
Soil

Gel viscosity,
Pa·s 36.8 43 37 42.8 36 36.4 19.8 20.6 27.2

Dehydration
rate%, % 8.4 2.8 10.2 4.3 9 12.5 36.2 30.8 24

According to Table 1, adding nanoparticles to the gel system can effectively improve
the long-term stability of the gel system. The nanoparticle SiO2 was aged for 20 days under
high temperatures and high salt, the viscosity of the gel was up to 43 Pa·s, and the dehy-
dration rate was only 2.8%. Therefore, nano SiO2 was screened as coupling nanoparticles.

The dosage of nanoparticles was optimized by setting the dosage of nanoparticle SiO2
as 0.05%, 0.08%, 0.1%, 0.3%, 0.5%, and 1.0%, and other conditions remain unchanged. Using
the Tahe simulated formation water to prepare the gel, and place the system at 130 ◦C
for cross-linking reaction. The investigation time is 10 days. The experimental results are
shown in Figure 2.
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As shown in Figure 2, within a certain concentration range, the gelling strength of the
system gradually increases with the increase of the dosage of nanoparticle SiO2. When
the dosage of nanoparticle SiO2 reaches 0.3%, the gel viscosity is up to 42.8 mPa·s, and
the dehydration rate for 10 days is only 3.2%. If the dosage of nanoparticle SiO2 continues
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to increase, the gelling strength of the system shows a downward trend, So 0.3% is the
optimal dosage of nanoparticles.

Nanoparticles have a surface effect, volume effect, quantum size effect, and macro
quantum tunnel effect [8] and do not participate in chemical crosslinking reactions in the
whole gel system. Nanoparticles are mainly combined with gel molecular chains in the
way of hydrogen bonds, forming effective coupling, increasing the bonding point of the
gel system, improving the tensile and compressive strength of the system, and greatly
improving the stability of the gel system structure, The three-dimensional network skeleton
of the gel system is effectively strengthened. In addition, nanoparticles coupled with
polymer gel can effectively change the wettability of rock surfaces, reduce the interfacial
tension between oil and water, and improve oil recovery efficiency. As shown in Figure 3.
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2.1.3. Chemical Structure Characterization of Nanoparticle Coupling Polymer Gel

The nanoparticle coupling polymer gel belongs to soft-solid-like systems with a per-
manent system of bonds, which has high strength. According to FT-IR analysis, as shown
in Figure 4. There is an obvious vibration absorption peak at 1203 cm−1, which belongs to
the C-H vibration absorption peak in the benzene ring, which indicates that the aromatic
ring crosslinker has been successfully introduced into the gel structure [9]. At the same
time, under normal circumstances, the vibrational absorption peak of C=O in the amide
group is at 1600 cm−1. Still, the vibrational absorption peak of C=O in the amide group in
this graph moves to 1629 cm−1, with a significant shift, indicating that the amide group in
AM/AMPS undergoes a crosslinking reaction with the crosslinking agent [10].
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The microstructure of the nanoparticle coupling polymer gel was analyzed by SEM, as
shown in Figure 5.
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As shown in Figure 5, the surface of the novel nanoparticle coupling polymer gel is a
three-dimensional network structure, with grids arranged in pieces and interlaced with
each other, and the structure is very stable.

2.2. Preparation of Laminated Expanded Granules

The new nanoparticle coupled polymer gel has a stable three-dimensional network
structure, good temperature, and salt resistance, and it is suitable for water plugging
and profile control of fracture cavity reservoirs in high temperature and high salinity
reservoirs in Tahe Oilfield. However, the preparation of the polymer gel is complex, and the
transportation is tedious. To facilitate the on-site construction, the polymer gel is processed,
compressed, pelletized, and dried into nanoparticle coupling expansion granules, as shown
in Figure 6.
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Figure 6. Morphology of nanoparticle coupling polymer gel (left) and nanoparticle coupling expan-
sion granules (right).

The novel expansion granules have been treated professionally in industrialization,
and the gel framework structure has been preserved. In a reservoir with rich water content,
the granules can absorb water and expand. This is due to the main chain of the granule
molecule containing more hydrophilic groups. When the granule first comes into contact
with water, the hydrophilic functional group can hydrate with water and draw water
molecules into the interior of the granule. The water molecules can form hydrogen bonds
with the main chain of the granule molecule, making water enter the granule molecule’s
three-dimensional network structure smoothly. The granule network-like structure is
very stable and has a good water retention capacity, which makes the osmotic pressure
difference formed inside and outside the granule molecule. Under this pressure difference,
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the granules can be induced to absorb water continuously until the dissolution equilibrium
is reached inside and outside the molecule [11]. According to the whole aspect, the
granule water absorption swelling results from both physical and chemical adsorption. The
absorbed water exists in the network structure mainly in two states: free water molecules
and hydrated molecules formed by hydrogen bonds.

The expansion rate of the nanoparticle coupling expansion granule is too fast. The
expansion multiplier can reach 4.7 times within 0.5 h in the Tahe simulated stratigraphic
water. The maximum expansion multiplier is reached within 8 h, which badly affects the
injection of field granules. The novel expansion granules were optimized for achieving a
slow expansion effect.

This section exhibits the idea of physical coating of the granules by using reagents that
do not react chemically with the granules [12] to form a coating film on its surface, thus
retarding its expansion, as shown in Figure 7. Polyvinylidene chloride viscosity (average
molecular weight of 3 million), unsaturated sulfide (antioxidant), and organophosphate
(stabilizer) were used to formulate the laminating solution. Polyvinylidene chloride has
strong intermolecular cohesiveness, high crystallinity, excellent barrier properties, and does
not react chemically with the granules. It can well physically coat the granules and form a
capsule-like coating on their surface, thus, the swelling gets retarding.
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The 1% and 2% coating solutions were prepared in the laboratory, and the nanoparticle
coupling expansion granules were coated with a film. Finally, two types of coating granules
were prepared, which were the expanded granules with a film and the expanded granules
with a thick film.

According to Figure 8, the initial expansion of the granule is rapid, reaching the
maximum expansion multiplier within 8 h. In contrast, the thin and thick film of the
granule begins to slowly decompose at high temperatures, and the granule slowly expands,
reaching the maximum expansion multiplier of 5.31 within about 24 h, with good slow
expansion performance. After the granules reached the maximum expansion multiplier, the
granule began to shrink slowly and finally stabilized gradually, the expansion multiplier of
72 h stabilized at about 4 times.

Considering the effect of retarding expansion, economic costs, and other factors, using
thin overcoated expanded granules is recommended.

2.3. Evaluation of the Nanoparticle Coupling Expanded Granule
2.3.1. Effect of Temperature on the Expansion Multiplier

There is a test to the effect of temperature on the expansion multiplier of overcoated
granules, Tahe Oilfield is a high-temperature reservoir, so three higher temperature gra-
dients, 120 ◦C, 130 ◦C, and 140 ◦C, are set. By comparing the expansion performance of
overcoated type expansion granules in 1–10 days, the experimental results are shown in
Figure 9.
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Figure 9. Effect of Temperature on the Expansion Multiplier of the Laminated Expanded Granules.

According to Figure 10: the granule swelling multiplier of 1 day is 5.66 under 120 ◦C
condition, and the swelling multiplier of 10 days can reach 4.13. Under the condition
of 140 ◦C, the granule swelling multiplier declines to 4.23 after 1 day, and the swelling
multiplier after 10 days is 3.21. The granule swelling multiplier is between the above
temperatures under 130 ◦C. It shows that the temperature has a great influence on the
granule swelling multiplier, and the granule swelling multiplier tends to decrease as
the temperature increases. The results indicate that the high temperature reduces the
performance of water-absorbing functional groups on the surface of the granules, the water
molecules entering the molecular network structure of the granules are reduced, which has
a certain inhibitory effect on the water absorption capacity of the granules [13,14].

2.3.2. Effect of Mineralization Degree on Expansion Multiplier

The mineralization of the simulated formation water in Tahe River was 220 g/L. The
simulated formation water was diluted with distilled water by 20% and 60%, and the water
samples with mineralization of 44 g/L and 132 g/L were prepared, respectively. 3% NaCl
was added to the simulated formation water and water samples with mineralization of
250 g/L were prepared to investigate the changes in granule swelling times under different
mineralization. The evaluation time was 10 days and the experimental results are shown in
Figure 10.
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From the figure, we could know that when the mineralization of the water sample
rises from 44 g/L to 220 g/L, the swelling multiplier of the granules shows an obvious
decreasing trend. There are several main reasons for this. First, according to the theory
of absorption thermo dynamics, the size of the ionic strength of the external solution
can affect the absorption capacity of the body’s expansion particles. With the increase of
mineralization, the ionic strength in the solution increases. The osmotic pressure inside
and outside the granules’ molecules also decreases, inhibiting the expanded granules’
water absorption capacity, and the swelling multiplier decreases accordingly. In addition,
the Ca2+ ion content in the Tahe model formation water is high, and Ca2+ ions affect the
functional groups’ activity on the granule macromolecules’ surface, making the swelling
multiplier decrease. When the mineralization of the water sample increased from 220 g/L
to 250 g/L, the change in the swelling multiplier was very small, indicating that the change
in the granule swelling multiplier decreased when the mineralization exceeded a certain
range [15].

2.3.3. Long-Term Thermal Stability of the Granules

The 7 groups of granule suspensions of the same granule size and 10% mass concen-
tration were prepared with simulated formation water (mineralization of 220 g/L) from
the Tahe River and placed at 130 ◦C for 30 days. They were removed at 2 h, 1 day, 2 days,
5 days, 10 days, 20 days, and 30 days. The granule swelling multiples and the granule
strength were measured to evaluate the long-term stability performance of the granules
under high temperatures and high salt.

Here, J. E. Smith’s toughness index method was used to measure the strength of the
granules, quantifying the tensile and compressive strength of the granules. The toughness
index can be defined as follows: selecting a sieve with a suitable mesh (the mesh should
be smaller than the granule size after expansion), and measuring the pressure difference
between the granules passing through the sieve twice (P1, P2). The multiplier of the two
pressure differences is the toughness index, that is toughness index = P1/P2, the closer the
toughness index is to 1.0, the better the strength of the granules. The pressure difference
between the granules passing through the screen twice before and after different aging
times was recorded and the toughness index value was calculated, as shown in Table 2.

To summarize and compare the experimental results of the expansion multiplier and
toughness index measured by aging the granules under high temperature and high salt for
2 h–30 days, as shown in Figure 11.

According to Figure 11, under the conditions of high temperature and high salt, the
granules swell slowly from 0 to 1 day, and the swelling multiplier increases linearly, while
the toughness index decreases, reaching the maximum swelling multiplier of 5.31 and
the minimum toughness index 1.14 within 1 day. This indicates that the granule strength
increases with the increase of the swelling multiplier during the water absorption stage,
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the granule swelling multiplier and strength both reach the maximum in 1 day. This is
mainly due to the high temperature and high salt, which have a certain inhibitory effect on
the granules’ water absorption capacity and surface functional group activity [16]. After
5 days, the curves of the expansion multiplier and toughness index all tend to be stable,
and after 30 days of aging, the expansion multiplier of the granules can reach 3.5 times. The
toughness index goes to 1.61, which can meet the water plugging requirements of the Tahe
Oilfield, indicating that the granules have good long-term stability under high temperature
and high salt conditions.

Table 2. Toughness Index of Granules at Different Aging Times.

Times 2 h 1 Day 2 Days 5 Days 10 Days 20 Days 30 Days

P1/MPa 0.06 0.058 0.069 0.072 0.07 0.074 0.074

P2/MPa 0.045 0.051 0.056 0.051 0.046 0.047 0.045

Toughness index 1.33 1.14 1.23 1.41 1.52 1.57 1.61
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Figure 11. Experiment to evaluate the long-term stability performance of the granules.

2.3.4. Granule Sealing Reservoir Performance

The core flow experiments were conducted to evaluate the water-blocking ability of
the granules in the reservoir. In the experiment, the saturated oil was dehydrated, and
degassed crude oil from Tahe Oilfield (with a viscosity of 55.1 mPa·s), and the injected
water was simulated with Tahe formation water at an injection rate of 0.5 mL/min, as
shown in Figure 12.

The particles slowly absorb water and expand in the cracks and pores, and the ex-
panded particles are prone to accumulate and bridge at the junction of the cracks and
pores, forming a sealing effect. Based on the pressure difference data in Figure 13, the
water phase permeability Kw before particle injection and the water phase permeability
Kw after injection of the sealing agent is calculated; the particle water blocking rate is
ΦW = (Kw − Kw′ )/Kw × 100% = 97.84%. It can be seen that particles can effectively seal
cracks and holes, with a sealing rate superior to other widely used particle-based plug-
ging agents.
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Figure 12. Pressure variation curve of core flow experiment.
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3. Conclusions

1. This article focuses on high-temperature and high-salt reservoirs in the Tahe Oilfield.
Selecting Acrylamide/2-acrylamido-2-methylpropane sulfonic acid copolymer as a
polymer; selecting hydroquinone and hexamethylene tetramine as the crosslinking
agent with a ratio of 1:1. To enhance the stability of the system, nanoparticles are
added to the system. The nanoparticle SiO2 was selected from nine different types of
nanoparticles, and its dosage was optimized to 0.3%; A novel nanoparticle coupling
polymer gel was synthesized.

2. To solve the problem of complex gel preparation and complicated transportation, the
novel gel is compressed, pelletized, and dried into expanded particles through indus-
trial granulation, and the disadvantage of too fast expansion of expanded particles
is optimized through physical film coating treatment. Finally, a novel nanoparticle
coupling expanded granule plugging agent is developed. The granules have the
characteristics of slow expansion.

3. Evaluation of the performance of the novel nanoparticle coupling expanded granule
plugging agent. After 30 days of high temperature and high salt aging conditions,
the granule expansion performance is good, and the granules have high strength and
good long-term stability performance. With the increase of temperature or salinity,
the expansion ratio of particles shows a decreasing trend, indicating that excessive
temperature and salinity inhibit the water absorption ability of particles. The water
plugging rate of particle plugging agents is as high as 97.84%, which is superior to
other widely used particle-based plugging agents.
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4. Materials and Methods
4.1. Experimental Materials

Experimental water: Simulated formation water prepared according to the ion compo-
sition of the produced water from the Tahe Oilfield, as shown in Table 3.

Table 3. Simulated formation water ion composition.

Ion Content/(mg·L−1) Total Salinity
/(mg·L−1) pH Value

Cl− HCO3− Ca2+ Mg2+ Na+ + K+

138,000 200 11,000 1500 73,000 223,700 6.8

Experimental chemicals: hydroquinone, thiourea, hexamethylene tetramine, nano
zirconium dioxide, nano silicon dioxide, nano aluminum oxide, nano iron oxide, nano zinc
oxide, nano magnesium oxide, nano titanium dioxide, nano calcium carbonate, attapulgite
soils, shown in Table 4. All drugs were analytically pure and provided by Shanghai
Macklin Biochemical Technology Co., Ltd., Shanghai, China. The polymers used in this
paper is Acrylamide/2-acrylamido-2-methylpropanesulfonic copolymer salt, belongs to
block copolymers, with a solid content of >88%, AMPS content of 58%, and viscosity
average molecular weight of 5 million; polymers were purchased from Shandong Baomo
Biochemical Co., Ltd. (Dongying, China).

Table 4. Nanoparticle properties.

Nanoparticle
ZrO2

Nanoparticle
SiO2

Nanoparticle
Al2O3

Nanoparticle
Fe2O3

Nanoparticle
ZnO

Nanoparticle
MgO

Nanoparticle
TiO2

Nanoparticle
CaCO3

Attapulgite
Soil

Particle size,
nm 25 ± 5 20 ± 5 30 ± 5 30 30 ± 5 30 25 30 30 ± 5

Surface Area
(m2/g

Gsurface)
150–500 45–150 500–700 400 500–700 450 150 450 500–800

4.2. Experimental Apparatus

FT-IR Hoffen-10, Shanghai ZHUJIN Analytical Instrument Co., Ltd., Shanghai, China;
EM-30AX scanning electron microscope (SEM), COXEM, Korea; DV2T Viscometer, Brook-
field, WI, USA (belongs to the plate/cone type); precision aging tank (6-bore screws,
500 mL volume), Jiangsu Lianyou Scientific Research Instrument Co., Ltd., Nantong, China;
85–2 thermostatic magnetic stirrer, Changzhou Longhe Instrument Manufacturing Co.,
Ltd., Changzhou, China; Core Flow System Device, Jiangsu Lianyou Scientific Research
Instrument Co., Ltd., Nantong, China.

4.3. Experimental Methods
4.3.1. Determination of Gel Dehydration Rate

Put the prepared gelling solution into an ampoule bottle, which is recorded as m1;
After gelling, take it out of the incubator, open the ampoule, and weigh the mass of gel
dehydrated water, which is recorded as m1. The ratio of this mass to the mass of the initial
gelling solution is the dehydration rate. Dehydration rate = (m1/m) × 100%.

4.3.2. Determination of Expansion Multiplier

Characterize the water absorption and swelling performance of the granules by the
mass multiplier of water absorption of the granules: weigh the mass of the dried granules
m0, add them into the simulated stratigraphic water of Tahe, stir them into a dispersion
system, then filter the granule solution through a filter, absorb the free water on the surface
of the granules with filter paper, weigh the mass of the granules m1 after water absorption
and swelling, and the swelling multiplier is Sw = m1/m0.
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4.3.3. Determination of Granule Strength

The method of foreign scholar J. E. Smith [17] was used to determine the granule
strength. The experimental steps are as follows: (1) Screen out the granules with a granule
size of 0.4–0.6 mm, and age the granules under the set high temperature and high salt
conditions; (2) Prepare the aged granules into a granule suspension with a mass concen-
tration of 10%; (3) Install a 10-mesh screen at the outlet of the sand-filling tube and drive
the granule suspension at a high flow rate of 25 mL/min until it completely flows out of
the sand-filling tube, and record the first differential pressure P1; (4) Collect the outgoing
suspension and flow through the screen again under the same conditions, and record the
second differential pressure P2. Toughness Index = P1/P2.

4.3.4. Measurement of Particle Blocking Rate in Core Flow Experiment

(1) Saturate the core with formation water, raise the temperature to 130 ◦C, establish
bound water saturation through oil flooding, and let it stand for 24 h; (2) Simulate the
displacement of formation water to 98% water content in the core, record the pressure
after liquid production, and calculate the KW before plugging agent injection; (3) Reverse
injection of a 10% particle solution 1 PV and aging at 130 ◦C for a while; (4) Forward water
drive again, record the breakthrough pressure and calculate the Kw’ after core plugging
after the pressure stabilizes.
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Abstract: The paper describes the introduction and estimation of performance criteria for the gelling
agent injection technology based on a general approach to modeling physical and chemical enhanced
oil recovery (EOR) methods. The current mathematical models do not include performance criteria
for the process of gelling agent injection and do not allow for assessing the level of success of a
treatment job in production wells. The paper introduces such criteria for the first time. To simulate
the effect on injection wells, the mass conservation laws and the generalized flow law are used,
and closing relations for the gelling rate are taken into account. A conformance control coefficient
is introduced which characterizes the positive effect of well treatments and injectivity drop which
characterizes the negative effect. The performance criteria allow for identifying the wells where
the treatment jobs were the most successful. The model verification, based on the comparison of
post-treatment injectivity estimated in the developed model, with Rosneft’s field data showed a
satisfactory match. The developed correlations can be used as the basis for a surrogate model that
allows for avoiding building sector geological and flow simulation models of the treated zone.

Keywords: gelling agents; incremental oil production; mass conservation law; flow characteristics;
conformance control coefficient; injectivity drop

1. Introduction

Flooding of oil reservoirs is a conventional technology of secondary oil recovery. It
addresses two main issues: maintenance of reservoir pressure (and, therefore, the flow rates
of production wells), and the displacement of oil from the rock pores [1]. However, due to
vertical and lateral heterogeneities of reservoirs, the behavior of the water–oil displacement
front is rather complex. Such complex behavior leads to an early breakthrough of the
injected water into production wells. Oil production with high water content shows low
performance and incomplete sweep efficiency.

The term “water control” includes defining the field zones with minimal fluid cross-
flows, measures to control water injection into various injection wells, and controlling
the voidage replacement by injecting water in certain zones [2]. Recently, a new term has
been widely used, i.e., “flooding control” or “conformance control”. This term implies
comprehensive measures to redistribute flows in a reservoir vertically and laterally and
reduce the water cut of recovered fluid resulting from such well interventions [3].

Water-flood management covers two focus areas. The first is stimulating the bottom-
hole zone of injection wells and ensuring conformance control between layers with various
permeabilities [4]. The response of the nearest producers is determined by a change
in lateral piezo-conductivity when forming low-permeable barriers in high-permeable
interlayers.

Gels 2022, 8, 621. https://doi.org/10.3390/gels8100621 https://www.mdpi.com/journal/gels132
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However, the presence of vertical cross-flows between interlayers leads to flow forming
around these barriers and the return of the flows to their original state. The difference in
the rate of vertical conformance and lateral transmission of pressure disturbances leads to a
short-term (several months) positive effect on producers (reduction of water-cut, increase in
oil rate) [5]. Examples of conformance control technologies or stimulating the zone closest
to wells are the injection of cross-linked polymer agents [6–8] and sodium-silicate-based
gelling agents [9–13], sediment-forming technologies [14], the use of thermo-gels [15,16]
and injection of suspensions [17], etc. The examples are shown in Figure 1 below.
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The second focus area is related to reservoirs with local highly permeable channels be-
tween injection and production wells. Examples of such irregularities are “super-reservoirs”
with permeabilities that differ from the average field values by tens or hundreds of times,
regional or induced fracturing of formations. Examples include the local occurrence of
a super-reservoir at the Talinskoye Field [18] or the development of induced or so-called
auto-fractures at the Priobskoye Field, where the water breaks through into fractured
producers due to the convergence of two types of fractures [19]. Manipulating these causes
of reduced reservoir sweep is called flow-diverting technologies, although the agent bases
of conformance control and injected water diverting technologies are very close, as a rule,
only the content and injection volumes differ.

The flow-diverting technologies allow the injected agents to be pushed deep enough
into the formation or effectively block the fractures without a noticeable impact on the
formation matrix. For this purpose, the same suspension agents are used, Deep Diverting
Gel agents [6], such as Colloidal Gel Diverters [20], and Preformed Gel Particles [21,22].

The considered approach includes a model of “deep-bed suspension migration” [23]
and a general compositional model with chemical reactions [24]. In the first model, the
“active” component is suspended particles; in the compositional simulator, the principal
components are dissolved substances reacting in porous media. Several analytical solutions
were obtained for 1D problems in the framework of deep-bed suspension migration [25].

The 1D objective of oil displacement from a homogeneous reservoir by polymer
solution is a “classical” problem [26] and has an analytical solution, which was used to
solve an inverse problem for adsorption parameters determination in this paper. For
relatively low agent injection volumes in a layered reservoir, vertical fluid cross-flows are
negligible in comparison with lateral flows. Therefore, the 1D approximation approach can
be applied. This approach allows for considering the conformance improvement problem
as a set of 1D objectives in each interlayer without cross-flows [27].
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With relatively high treatment performance (more than 1500 m3 of incremental oil per
well treatment), the success rate for the analyzed sample does not exceed 70%. The reason
for this is likely due to the insufficient attention to the geological and physical features
of the wells selected for treatment and the non-optimal process parameters of treatment
jobs. The solution to this problem is the preliminary designing of treatment jobs based on
mathematical models of the process.

Two reasons hinder the use of special reservoir models for treatment design purposes.
The first is the high time and financial costs, the second is the fact that the objectives of
agent injection to form low-permeable barriers and the response of production wells are of
different scales. To solve this problem, the authors suggest applying a combined approach
or a “surrogate” model.

This paper discusses only the conformance control technologies. Such an approach
allows us to estimate and optimize the technologies to maximize the flow redistribution ef-
fect. Another application of such models includes evaluating and comparing the treatment
performance under certain geological and physical conditions.

2. Results and Discussion
2.1. The Influence of Slug Volume

The influence of slug volume on the introduced coefficients was calculated for a
particular well described in Section 4.1 and the treatment parameters, which are mentioned
in the Materials and Methods section. The results are presented in Figure 2. For comparison,
the same calculations were made for a vertical well without a fracture and are given in
Figure 2. For the generality of the results, a dimensionless volume of the gel was introduced:
M = β V/Vr, where β is the rock damage coefficient, V is the volume of the injected slug
and Vr is the volume of the treated reservoir zone.
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Figure 2. The correlation of CC performance criteria and the dimensionless mass of the injected
gelling agent (green line—injectivity drop S for linear inflow, red line—injectivity drop S for radial
inflow, yellow line—CC coefficient B for linear inflow, blue line—CC coefficient B for radial inflow).

The analysis of the resulting correlations shows that with the growth of the injected
agent mass, the conformance control (CC) coefficient increases, the flows are redistributed
more efficiently, and the injectivity profile is improving; however, this leads to a decrease
in the overall well injectivity.
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2.2. Analysis of Field Experience in Gelling Agents Injection

We analyzed the available data on the use of gelling agents based on HPAA and
sodium silicate in recent years at Rosneft’s license blocks in West Siberia. The field data
analysis allowed us to identify a few features of applying gelling agents. First of all, we
concluded that basically such treatments are used in vertical and directional wells both
with and without hydraulic fracturing, as well as in horizontal wells without hydraulic
fracturing. Next, we will talk only about vertical and directional wells with and without
hydraulic fracturing.

As mentioned in Materials and Methods section, the CC technology performance for
injection wells is characterized by two parameters: the CC coefficient, which is an “internal”
parameter that is not determined in the field, and the injectivity drop coefficient, which is
measured after the treatment. The internal parameter characterizes the processes inside the
formation, which can not be accurately measured by production logging tools describing
the flow rates through perforation intervals, which poorly correlate with flows in layers
with various permeabilities. The injectivity drop coefficient is a well-measured parameter
(the rate related to drawdown).

Figure 3 shows a cross-plot of the estimates, modeled using the described model,
and actual injectivities after the treatment for all well completion types. The cross-plot
is described with sufficient accuracy (characterized by the correlation coefficient D) by
a straight line leaving zero and having an inclination of about 45◦, which validates the
assumptions of the developed approach. The linear trend is chosen because the field
and the calculated data should match. This corresponds to a straight line with an angle
of inclination of 45◦. The low accuracy of the approximation is associated with the low
precision of the field data.
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The main point of analyzing the reliability of the ideas embedded in the developed
line of gelling mathematical models is to confirm the influence of the formulated criteria on
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incremental oil production as a result of applying these technologies. For the generality
of the results, the processing of dimensionless parameters should be used to characterize
incremental oil production from the previously introduced dimensionless criteria for the
process’s performance. As such a parameter, it is advisable to use a dimensionless ratio of
the incremental volume to the injected volume. We can denote it as G.

The developed approach is based on the description of the efficiency of flow redistri-
bution in the interlayers through the CC coefficient. This criterion should have a positive
effect on incremental oil production, respectively. To confirm this idea, the incremental pro-
duction data on vertical and directional injection wells were compared with the estimated
CC coefficient (B). These calculations are based on well-logging interpretations, as well
as the treatment parameters (volumes, compositions, and injection rates). The results of
data statistical processing are shown in Figure 4. The resulting function demonstrates a
satisfactory correlation coefficient D = 0.7.

Gels 2022, 8, x FOR PEER REVIEW 6 of 16 
 

 

 

Figure 4. The results of statistical processing of the correlation between the specific incremental 

production in producers responding to gelling agents injection and the CC coefficient (blue dots 

and trend) and injectivity drop (green dots and trend). 

A negative consequence of the use of gelling agents is a decrease in the injectivity of 

injection wells, which forces an increase in the BHP to maintain the level of water injection 

into the reservoir. Statistical processing of data on the effect of the introduced injectivity 

drop coefficient S on dimensionless incremental oil production from applying the gelling 

technology is also shown in Figure 4. The correlation coefficient is D = 0.68. Figure 4 anal-

ysis shows that for the considered process, we can set and solve an optimization problem 

of maximizing incremental oil production with a minimum reduction in well injectivity. 

Today, the developed approach for the gel and suspension treatment designs is consid-

ered in the Rosneft Company. Executed designs are recommended but the field confirma-

tion has not yet been obtained. 

3. Conclusions 

The paper presents a new approach to modeling the conformance improvement pro-

cesses in the application of gelling technologies in a porous medium with the formation 

of gel barriers leading to the redistribution of flows in an inhomogeneous reservoir. The 

approach identifies two related tasks: predicting the processes of forming gel barriers in 

the bottom-hole zone of a heterogeneous reservoir and the response of production wells 

to treatment jobs. Analysis of the characteristic times of various effects shows that the first 

problem can be considered in the framework of a one-dimensional flow in non-connected 

interlayers. The second task can be considered on the basis of a statistical analysis of the 

field experience in applying gelling technologies. 

In the first problem, the efficiency of flow redistribution in the bottom-hole zone can 

be characterized by the difference in the root-mean-square deviation of the interlayers’ 

permeability and the average value before and after the treatment or by the CC coefficient, 

which was introduced for the first time. It is established that the CC coefficient increases 

with the increase in the slug volume. The negative effect of the well treatment is mani-

fested through a decrease in the reservoir injectivity. These coefficients describe the inte-

gral effect of near-wellbore flow distribution. 

The experimental procedures for the model’s parameter determination are consid-

ered. The solution of inverse problems was used to find the common time of the gelling 

reaction, polymer adsorption parameters, and flow characteristics. Examples of such pro-

cedures are presented. Unlike the existing approaches, the developed experimental 

method does not require destructing the core sample to determine the adsorption con-

stants. 

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50

SB

G

Figure 4. The results of statistical processing of the correlation between the specific incremental
production in producers responding to gelling agents injection and the CC coefficient (blue dots and
trend) and injectivity drop (green dots and trend).

A negative consequence of the use of gelling agents is a decrease in the injectivity of
injection wells, which forces an increase in the BHP to maintain the level of water injection
into the reservoir. Statistical processing of data on the effect of the introduced injectivity
drop coefficient S on dimensionless incremental oil production from applying the gelling
technology is also shown in Figure 4. The correlation coefficient is D = 0.68. Figure 4
analysis shows that for the considered process, we can set and solve an optimization
problem of maximizing incremental oil production with a minimum reduction in well
injectivity. Today, the developed approach for the gel and suspension treatment designs
is considered in the Rosneft Company. Executed designs are recommended but the field
confirmation has not yet been obtained.

3. Conclusions

The paper presents a new approach to modeling the conformance improvement
processes in the application of gelling technologies in a porous medium with the formation
of gel barriers leading to the redistribution of flows in an inhomogeneous reservoir. The
approach identifies two related tasks: predicting the processes of forming gel barriers in
the bottom-hole zone of a heterogeneous reservoir and the response of production wells to
treatment jobs. Analysis of the characteristic times of various effects shows that the first
problem can be considered in the framework of a one-dimensional flow in non-connected
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interlayers. The second task can be considered on the basis of a statistical analysis of the
field experience in applying gelling technologies.

In the first problem, the efficiency of flow redistribution in the bottom-hole zone can
be characterized by the difference in the root-mean-square deviation of the interlayers’
permeability and the average value before and after the treatment or by the CC coefficient,
which was introduced for the first time. It is established that the CC coefficient increases
with the increase in the slug volume. The negative effect of the well treatment is manifested
through a decrease in the reservoir injectivity. These coefficients describe the integral effect
of near-wellbore flow distribution.

The experimental procedures for the model’s parameter determination are considered.
The solution of inverse problems was used to find the common time of the gelling reaction,
polymer adsorption parameters, and flow characteristics. Examples of such procedures are
presented. Unlike the existing approaches, the developed experimental method does not
require destructing the core sample to determine the adsorption constants.

The specific effect in the nearest producers from an injector can be characterized by
the specific value or the ratio of incremental oil production to the volume of the injected
gelling agent. Existing approaches do not contain such characteristics. An analysis of the
field experience in applying HPAA/sodium-silicate-based gelling agents showed that the
specific incremental oil production will also be determined by the CC coefficient and a
decrease in the injectivity coefficient. The developed correlations can be used as the basis
for a surrogate model that does not require building geological sector models and flow
simulation sector models of the treated zone.

4. Materials and Methods
4.1. General Approach to Modeling

With all the variety of agents recommended for conformance control (CC) applications,
three main groups can be distinguished by the sedimentation/gelling mechanism. The
most widely used group includes injection of polymers and cross-linkers. These are
partially hydrolyzed polyacrylamides (HPAA) [28,29] cross-linked by polyvalent anions
that change valence under reservoir conditions, or organic cross-linkers having a low
kinetic constant [24]. For some cases, biopolymers [30] or other types of polymers are
recommended.

The second group includes gels formed at high reservoir temperatures [14,15] or
preformed gels that swell at elevated temperatures [6,22,31,32]. Sometimes the temperature
triggers a primary reaction, the products of which create conditions for gelling [15].

The third group includes agents that form an insoluble precipitate during reaction
under reservoir conditions. Most of those agents contain sodium silicate as the main agent
reacting with calcium chloride [4]. Somewhat apart in this group is the use of suspended
particle systems, the main difference of which is that the particles are captured in a porous
medium much faster than chemical actions occur and the particles can break away into the
flow due to a change in the liquid flow rate [23].

Thus, the main feature of these processes is the presence of two principal components
dissolved in water. For suspensions, the principal component in the mixture is particles
that are trapped in a porous medium to form a precipitate. Polymers or gels in suspensions
have an auxiliary function of stabilizing the injected system and preventing its gravitational
segregation.

The conformance control technology consists of injecting into an injection well a slug
of agents that form a gel or sediment in a porous medium and form a low-permeable barrier.
The slugs used for such purposes have small volumes of up to 2000 m3. Such volumes are
several orders of magnitude smaller than the volumes of injection sites and surrounding
production wells. Therefore, from the point of view of mathematics, the problem of a
production wells response is a small-parameter problem.

It is impossible to find a solution to such a problem in the general formulation, even
with a sector flow simulation model. In such cases, the general task is divided into two
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components. The first is to analyze the distribution of gel or sediment in the bottom-hole
zone of injection wells and determine the quantitative characteristics of the redistribution
of flows in the bottom-hole zone. The second is the response of production wells taking
into account these characteristics.

Before solving these problems, it is advisable to estimate the time of lateral transmis-
sion of the pressure disturbance within the reservoir system and the time of gravitational
vertical flows. The lateral transmission of pressure disturbances is described by the piezo-
conductivity equation, where we can assume that the piezo-conductivity coefficient is
determined by the average lateral reservoir permeability kx. The viscosity of a reservoir
fluid mixture is denoted as µef, and the compressibility of a saturated porous medium is βl .
Then, the common time scale of pressure transfer or flow redistribution is estimated as

τp ∼
L2βlµe f

kx
, (1)

where L is the typical size of a problem.
The time of the gravitational flow of fluid between the layers is determined by the

Buckley–Leverett equation where the pressure drop is due to the difference in the fluid
densities ∆ρg, where ∆ρ is the difference in the densities of water and oil, and g is the
acceleration of gravity. The flow time can be estimated as

τS ∼ H∅
µe f

ky∆ρg
, (2)

Here, Ø is the average reservoir porosity, ky is vertical reservoir permeability, and H is
reservoir thickness; the effective viscosity is determined by the formula:

1/µe f = ( fw/µw + fo/µo)∂F/∂S, (3)

where fw, fo, µw, µo are water and oil relative permeability and water and oil viscosity and
F is the Buckley–Leverett function.

Let us consider the tasks set for the reservoir with the following parameters: L = 1000
m, H = 50 m, Ø = 0.2, anisotropy a =

√
ky/kx = 0.1, βl = 10–7 Pa–1, µef = 1 mPa · s, g∆ρ

= 1000 Pa/m. The time of gravitational cross-flows for such a reservoir will be 1–2 years
and the time of the pressure disturbance propagation is 10 times less. Thus, in the first task
of injecting agents into the reservoir, it is possible to neglect the cross-flows between the
layers, i.e., consider them isolated, and consider the flow radial near vertical or directional
wells and linear near hydraulic fractures. In the second task, it is possible to estimate the
time during which the effect of the redistribution of flows will be noticeable, which is about
a year.

As a result, we can consider the first task in the simplified formulation of single-
phase water flow at residual oil saturation as a one-dimensional statement (radial or linear,
depending on the well completion type) for all layers of the reservoir separated from
well-logging interpretations. Let us first consider this problem for a single interlayer.

As noted above, for the principal gelling components, the continuity equations that
determine the kinetics of reactions may be written, as well as the continuity equation
for immobile gel or sediment. The generalized Darcy’s law is used as the momentum
conservation equation for slow flows. The closing conditions are the laws of the chemical
reaction kinetics. Let us consider these equations using an example of two components
flowing to form a gel. The mass conservation equations for a multicomponent mixture are
written for the mass concentrations of the components in question:

Compositional or multiphase: multicomponent flow models are a common tool for
the simulation of fluid flow in reservoirs. These models use the standard specification
of specific phase density in terms of saturations and component mass concentrations.
Heterogeneous mechanics introduce the concepts of volumetric content of phases and
mass concentration of components dissolved in a phase, as well as a pseudo homogeneous
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mixture in which the velocities of the carrier phase and suspended particles coincide. The
latter is often called advective flow. As a result, under the condition of the incompressibility
of fluid and rock matrix, the laws of mass conservation are reduced to equations for mass
concentration of the components in question:

∂(∅− σ)(1− Sor)ciρw + ai(1−∅)ρr

∂t
+ div

(→
Uciρw

)
= −Kiρw j, (4)

where ci is the mass concentration of the i-th component in the carrier phase (© = 1, 2); ai is
the concentration of the adsorbed i-th component of the polymer; σ is the volume fraction
of gel in a single volume of a saturated porous medium; Sor is residual oil saturation of the
porous medium; ρw, ρr are the density of the water phase and porous medium matrix; U is
the flow rate; Ki is the mass fraction of the i-th component necessary for the formation of 1
kg of sediment or gel; j is the rate of precipitate formation/gelling; and t is time.

The profile of the change in the gel mass per unit volume of the entire saturated porous
medium is written as:

∂
(
σρg

)

∂t
= ρg j, (5)

where ρg is gel density.
The generalized flow law takes into account the change in flow resistance due to the

formed gel:
→
U = − k kr(Sor)

µR f (σ, ai )
grad P, (6)

where k is the absolute permeability; kr(Sor) is the phase permeability of water at residual
oil saturation; µ is the viscosity of the injected solution; R f (σ, ai ) is the resistance factor in
the zone of formation of a low–permeable barrier; and P is the pore pressure.

The closing relations for the gelling rate in the approximation of an elementary ho-
mogeneous one-sided chemical reaction in a closed system proceeding at constant volume
and temperature will be written in the form of Guldberg and Waage’s Law of Mass Action
and the reaction constant through the Arrhenius law [33]:

j = Z ∏i cni
i , Z = Z0 exp

(
− E

RT0

)
, (7)

where the cni
i function determines the probability of finding the number of molecules of the

i-th component necessary for the reaction at a given point in space; ni is the stoichiometric
reaction coefficient (the number of molecules involved in the reaction) for the i-th com-
ponent; Z is the reaction constant; Z0 is the kinetic coefficient; E is the reaction activation
energy; RT0 is the energy of molecules thermal motion; R is the universal gas constant;
and T0 is the temperature. Note that the complex nature of the reaction can manifest itself
in fractional values of ni and the need to determine the empirical value of the reaction
constant. A similar approach to describe the polycondensation reaction is presented, for
example, in [21].

The functional relationship of the resistance factor on the sediment or gel in a porous
medium is described by different functions. This is due to the fact that there is extremely
little special research in this area. Here are just a few examples of the resistance factor as a
function of the volume content of precipitate in the rock [5]:

R f = (1 + βσ), R f = (1 + βσ)γ, (8)

where γ is the exponent and β is the rock damage coefficient.
The description of suspension flow also fits into the framework of the proposed ap-

proach. Suspension consists of micron particles of clay, chalk or wood flour in water,
stabilized from gravitational segregation by additives of polymer or weak gel. The mi-
gration of particles in a porous medium is described in the framework of a homogeneous
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multiphase medium in which the velocities of the carrier and dispersed phases coincide.
The fraction of particles in the flow is recorded through the mass concentration of the
suspension and the particles trapped in the porous medium through the volume fraction in
a single volume of the entire porous medium. Such a model is called deep bed suspension
migration. The main conditions for its application are a small particle size (smaller than the
pore size), and small suspension concentrations (significantly less than the porosity value).

The mechanism of particle capture may vary, but its nature is not chemical, so the
trapping kinetics is usually considered proportional to the particle flow modulus:

j = λUc, (9)

where λ is the flow coefficient and c is the concentration of suspension particles.
This model of suspension flow is widely used to describe the processes of propagation

of small particles in a porous medium [23].
When gelling agents are injected into a layered reservoir, they are unevenly distributed

over the productive interval: a larger volume of agents enters the highly permeable layers,
and a smaller volume, respectively, enters the less permeable ones. Therefore, larger
low-permeable barriers will be formed in high-permeable interlayers.

As an example, let us consider the process of HPAA and chrome acetate injection into
a vertical well with a fracture with l length in layered strata with reservoir net pay Hef.
The reservoir consists of N layers with corresponding thicknesses hn, porosities Øn and
permeabilities kn, where n identifies the layer’s number.

The governing equations in each layer are as follows:

∅n
∂c1n
∂t

+ div(Unc1n) = −c10c20Zc1n (10)

∂σn

∂t
= c20zc1n (11)

Un = − kn kr(Sor)

µ(1 + βσn)
gradP (12)

Here, c10 and c20 are the initial polymer and chrome acetate concentrations.
The initial conditions for the equation set are the absence of components in a reservoir,

the boundary conditions are constant injection rate Q0 and agents concentrations c10 and
c20 in the well. The analytical solution for the initial and boundary conditions of the model
(10)–(12) is as follows:

σn =
Zc10c20Vinj

Q0
exp

(
2HlZc10c20 ∑m kmhm

Q0knhn
x
)

, x > 0 (13)

where Vinj is the agent slug volume; Q0 is the injection rate; x is the linear distance from the
fracture; and n and m are the layer’s indicators.

The method and procedure of the governing equations’ solution are presented in the
authors’ previous paper [27].

The values of layer permeability after treatment k∗n are calculated through the provided
analytical solution [27] of gel distribution σ©). For the linear flow near the fracture, for
example, this formula has the view:

k∗n =
knrc∫ L

0 (1 + βσn)dx
(14)

where rc is the mid-length between the injector and the nearest producer.
The methodology for assessing the redistribution of the injectivity profile is given, for

example, in [27]. Analytical solutions on the distribution of gel or precipitations in each
layer of the reservoir system allow for estimating additional hydraulic resistance. Based
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on the additional resistance, it is possible to estimate the mathematical expectation of the
redistribution of flows near an injection well.

The authors recommend characterizing the reservoir heterogeneity through the mean-
square deviation of the interlayers permeability:

B0 =

√
1
N ∑n

( kn He f

∑m kmhm
−

ka He f

∑m kmhm

)2

; B1 =

√
1
N ∑n

( k∗nHe f

∑m k∗mhm
−

k∗a He f

∑m k∗mhm

)2

,B = B0 − B1, (15)

where ka, k∗a is the arithmetic mean of permeability before and after the treatment job, B0
and B1 are the difference in the mean-square deviations of the interlayers permeabilities
before and after the treatment job kn and k∗n are permeabilities before and after the treatment
job; hm is the thickness of the m-th interlayer; and N is the number of interlayers. For brevity,
the difference between these indicators B is called the CC (conformance control) coefficient.
The growth of parameters characterizing the reservoir heterogeneity shows an increase in
the CC performance.

The negative effect of treatments is associated with a drop in injectivity of injection
wells due to deteriorating reservoir properties after the treatment due to partial block-
ing of the porous medium channels by gel. Therefore, the second important parameter
characterizing the negative effect of treatments should be an injectivity drop:

S =
PI1

PI0
, PI1 =

Q1

∆P1
,PIo =

Q1

∆Po
, (16)

where PI1 and PI0 are injectivities after and before the treatment; Q1 and Q0 are injection
rates before and after the treatment; and ∆P1 ∆P0 are pressure differences between the
bottom-hole and the reservoir (at the distance rc).

As an example of the algorithm for calculating the parameters of flow redistribution
in the bottom-hole zone of an injection well, let us consider a treatment job in a vertical
well with a fracture of length l = 20 m intersecting a reservoir with net pay H = 4.7 m,
containing seven interlayers with the following parameters: kn = 5 mD, 100 mD, 15 mD,
50 mD, hn = 1 m, 0.8 m, 0.7 m, 2.2 m, k(Sor) = 0.2. HPAA and chromium acetate solution
with initial concentrations c10 = 0.1, c20 = 0.091 were injected as slug Vo = 600 m3 into
the well, the initial viscosity of the solution was close to the water viscosity of µ = 1 cP.
The following values were accepted for the HPAA adsorption and reaction constants:
aimax = 10–7, Z = 0.002 s–1, β = 21.

Application of the described procedure resulted in a CC coefficient of 0.34 and an
injectivity drop factor of 0.74. The redistribution of layers’ permeabilities is shown in
Figure 5.
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Figure 5. Calculated data on permeability kn, k∗n change due to gel treatment for concrete well (blue
line stands for kn, orange line stands for k∗n ).
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The schematic view of the key objectives and the whole solution process are demon-
strated in Figure 6.
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4.2. Experimental Determination of Constants Closing the Described Models

Let us consider schematically the gelling reaction of partially hydrolyzed polyacry-
lamide and, for example, a chromium-acetate-based cross-linker:

n1·Mp + n2·MCr + n3·Mw → n4·Mg, (17)

where Mp, MCr, Mw and Mg are the averaged analogs of the masses of polymer, chromium
acetate, water, and gel molecules. It is assumed here that the polymerization reaction or the
formation of the gel mesh structure occurs when interacting with polyvalent metal anions
with water absorption into the mesh structure. The mass ratio of the reacting components
cannot be calculated or determined from this equation. However, a classical theory of
homogeneous reactions allows us to model the process under certain assumptions that
simplify further reasoning.

In physical chemistry, the gel point is defined as the time of the beginning of rheological
changes in the system. This time is associated with the transition from the formation of
linear or branched oligomers or sol to polycondensation of oligomers into two or three-
dimensional meshes [34].

For the analysis of the gelling process kinetics, a more important time is the char-
acteristic gelling time, which determines the completeness of the gelling reaction [35].
The characteristic gelling time is determined under laboratory conditions and its value is
usually estimated by the following: (a) by the ability to hold a stick in an upright position
in a test tube with the initial agents, (b) by forming a 15% immobile gel layer on the walls
of the glass when pouring the mixture out of it [24], (c) by forming a 5 cm gel column
when dipping and lifting the chemical spatula at the mixture level [36]. All methods allow
only for estimating the characteristic time. We will conditionally call these methods “bottle
tests”.

We can consider the continuity Equations (11) and (12) in the conditions of chemical
experiments (in a beaker, test tube, etc.). There is no movement of components in the vessel
and the porosity is equal to unity. Then, the defining system of equations using the gelling
reaction as an example will take the form:

dci
dt

= −Ki j,
dσ

dt
= j, j = Zcn1

1 cn2
2 cn3

3 , (18)
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where it is assumed that the water phase density is close to the gel density ρg ≈ ρw.
An example of a partially hydrolyzed polyacrylamide (PAA) cross-linker, as mentioned

earlier, is chromium acetate, and a change in its valence under reservoir conditions is the
triggering mechanism of the reaction. Sometimes organic cross-linkers are used to form
gels that are more resistant to reservoir conditions [24].

Let us estimate the mass fractions of the components in the Equation (13) reaction.
The average molecular weight of polymer molecules is thousands of grams of molecules
and the proportion of water in gelling process is high (more than 90% of the gel consists of
water), therefore, the mass fractions of these agents in the reaction significantly exceed the
proportion of the cross-linker.

Thus, we can assume that the reaction proceeds with an excess of water (c3 ≈ 1,
c1 ≈ 0.001, and c2 ≈ 0.001), and the consumption of the cross-linker is insignificant (K2 → 0,
c2 ≈ c20). We will also consider the reaction to be of the first order for the polymer. Thus, the
rate of the chemical reaction will be approximated by the expression: j = Zc1c20. Analysis
of the mass balance of the chemical reaction shows that this approach can also be applied
to sodium-silicate-based gelling systems [37]. These approximations make it possible to
obtain analytical solutions for estimating the kinetic constant.

Let us consider the bottle test results for the studied system, described in [24]. The
initial agents were as follows: partially hydrolyzed PAA (25% degree of hydrolysis) with a
molecular weight of 20 molecular-mass distribution (MMD), with a mass concentration of
0.003, polyethyleneimine was used as an organic cross-linker that allows for increasing the
temperature of gel destruction, with a concentration of 0.0005 in water. In the above study,
the results obtained by various methods were compared and the most accurate method
was identified with the outflow of reaction products from a chemical beaker and forming
of 15% gel on the beaker walls.

The solution of the system of Equation (4) with a simplified setting of the chemical
reaction rate is transformed to:

c1 = c10 exp(−(K1Zc20)t), σ =
c10

K1
(1− exp(−(K1Zc20)t)). (19)

Here, the initial conditions are used when the polymer concentration is equal to
c1 = c10 and the gel concentration is σ = 0. According to the solution, for a sufficiently long
time, the volume fraction of the gel is equal to unity, provided the reaction is complete.
In this case, the condition for the reaction completeness is equality: K1 = c10. Usually, the
initial composition of the solution is selected from the condition of reaction completeness,
so further we will assume that the polymer mass fraction in the reaction is determined by
its initial concentration.

The solutions of Equation (15) are called kinetic curves. With a volume fraction of the
gel equal to 0.15, the characteristic reaction time τ or the reaction constant Z = (c10 c20 τ)–1

is determined. Using the data from [24], the following values were obtained: τ = 52 h
and Z = 0.579 s–1. In the absence of kinetic experimental data, it is possible to obtain the
considered constants from the history matching data [38].

The flow characteristics of the gelling agent are also considered by the example of
determining the flow and adsorption characteristics of a polymer–hydrolyzed polyacry-
lamide (HPAA) [39]. These characteristics are determined from core flow experiments with
polymer solution with measuring differential pressure drop and, if possible, measuring the
polymer concentration in the outgoing flow.

After pumping a sufficient volume of polymer solution (pressure stabilization), the
resistance factor R(a) is determined, where a is the concentration of the adsorbed polymer.
The transient flow regime is compared with the classical solutions for water displacement
by the polymer solution, which allows for determining the adsorption characteristics of a
porous medium. Analysis of the flow of the tail and leading edges of the polymer slug also
allows us to conclude that the pore volume is inaccessible to the polymer [36].
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An example of solving these inverse problems is schematically shown in Figure 7,
where ∆P is the pressure drop, T is the number of pumped pore volumes, Tb is the break-
point, and α is the inclination angle. The formulation of inverse problems and their solution
are presented in [26,39].
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Figure 7. Graphical solution of inverse problems to determine the polymer adsorption parameters
(stage 1 and blue line—determination of water permeability, stage 2 and purple line—determination
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The paper [38] describes a similar approach to determine the flow parameters of the
suspension λ and β. In the absence of experimental data, characteristics can be obtained
from solving a more complex inverse problem of treating the bottom-hole zone of an
injection well for a reservoir consisting of non-connected interlayers with various flow
parameters [40].

Author Contributions: Conceptualization, K.F.; methodology, A.S.; software, I.V.; validation, A.G.
and N.M.; formal analysis, K.F.; investigation, A.S. and D.A.; resources, N.M.; data curation, D.A. and
N.M.; writing—original draft preparation, K.F.; writing—review and editing, A.S.; visualization, N.M.;
supervision, A.A.; project administration, D.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

144



Gels 2022, 8, 621

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Willhite, G.P. Waterflooding; Society of Petroleum Engineers: Richardson, TX, USA, 1986; pp. 1–326.
2. Wolcott, D. Applied Waterflood Field Development; Energy Tribune Publishing: Houston, TX, USA, 2009; pp. 1–417.
3. Sydansk, R.D.; Laura, R.-Z. Reservoir Conformance Improvement; Society of Petroleum Engineers: Richardson, TX, USA, 2011; pp.

1–138.
4. Zemtsov, Y.V.; Mazaev, V.V. The Current State of Physical and Chemical Enhanced Oil Recovery Methods (Literature and Patent Review);

LLC “Izdatelskiye resheniya”: Yekaterinburg, Russia, 2021; pp. 1–240. (In Russian)
5. Ruchkin, A.A.; Yagafarov, A.K. Optimization of Conformance Improvement Technologies Application for Samotlor Oil Field; Vector Buk:

Tyumen, Russia, 2005; pp. 1–165. (In Russian)
6. Okeke, T.; Robert, L. Simulation and Economic Screening of Improved Oil Recovery Methods with Emphasis on Injection Profile

Control Including Waterflooding, Polymer Flooding and a Thermally Activated Deep Diverting Gel. In Proceedings of the Society
of Petroleum Engineers (SPE) Western Regional Meeting, Bakersfield, CA, USA, 19–23 March 2012. [CrossRef]

7. Kang, W.; Kang, X.; Lashari, Z.A.; Li, Z.; Zhou, B.; Yang, H.; Sarsenbekuly, B.; Aidarova, S. Progress of polymer gels for
conformance control in oilfield. Adv. Colloid Interface Sci. 2021, 289, 102363. [CrossRef] [PubMed]

8. Ding, F.; Dai, C.; Sun, Y.; Zhao, G.; You, Q.; Liu, Y. Gelling behavior of PAM/Phenolic crosslinked gel and its profile control in a
low-temperature and high-salinity reservoir. Gels 2022, 8, 433. [CrossRef] [PubMed]

9. Kan, V.A.; Poddubniy, Y.A.; Sidorova, I.A. Hydrogels from sodium silicate solutions. Oil Ind. 1984, 10, 44–46. (In Russian)
10. Hatzignatiou, D.G.; Askarinezhad, R.; Giske, N.H.; Stavland, A. Laboratory testing of environmentally friendly sodium silicate

systems for water management through conformance control. SPE Prod. Oper. 2016, 31, 337–350. [CrossRef]
11. Krumrine, P.H.; Boyce, S.D. Profile Modification and Water Control with Silica Gel-Based Systems. In Proceedings of the Society

of Petroleum Engineers (SPE) Oilfield and Geothermal Chemistry Symposium, Phoenix, AZ, USA, 9–11 April 1985. [CrossRef]
12. Tang, X.; Kang, W.; Zhou, B.; Gao, Y.; Cao, C.; Guo, S.; Iqbal, M.W.; Yang, H. Characteristics of composite microspheres for

in-depth profile control in oilfields and the effects of polymerizable silica nanoparticles. Powder Technol. 2020, 359, 205–215.
[CrossRef]

13. Tang, X.; Zhou, B.; Chen, C.; Sarsenbekuly, B.; Yang, H.; Kang, W. Regulation of polymerizable modification degree of nano-SiO2
and the effects on performance of composite microsphere for conformance control. Colloids Surf. A Physicochem. Eng. Asp. 2020,
585, 124100. [CrossRef]

14. Brilliant, L.S.; Antipov, V.S.; Starkova, N.R.; Gordeev, A.O.; Chernavskikh, S.F.; Chernyshov, A.V.; Negomedzyanov, V.R.
Technologist Handbook; JSC “SIBINKOR”: Tyumen, Russia, 1998; pp. 1–91. (In Russian)

15. Altunina, L.K.; Kuvshinov, V.A. Physical and chemical enhanced oil recovery methods. St.-Petersburg Univ. Her. 2013, 4, 46–76.
(In Russian)

16. Ghaddab, F.; Kaddour, K.; Tesconi, M.; Brancolini, A.; Carniani, C.; Galli, G. A Tertiary Method for Enhanced Oil Recovery for a
Mature Field. In Proceedings of the Society of Petroleum Engineers (SPE) Production and Operations Conference and Exhibition,
Tunis, Tunisia, 8–10 June 2010. [CrossRef]

17. Gazizov, A.S.; Nizamov, R.K. Evaluation of the effectiveness of the polymer-dispersed system application technology based on
the results of field studies. Oil Ind. 1990, 7, 49–52. (In Russian)

18. Volkov, V.P.; Brilliant, L.S. Geological aspects of the reservoir of Shercalinskaya suite of Talinskaya area. Oil Ind. 2013, 1, 18–22.
19. Shel, E.V.; Kabanova, P.K.; Tkachenko, D.R.; Bazyrov, I.S.; Logvinyuk, A.V. Modeling of initiation and propagation of hydraulic

fractures at an injection well for non-fractured terrigenous rocks on the example of the Priobskoye field. Prof. Oil 2020, 2, 36–42.
(In Russian)

20. Manrique, E.; Reyes, S.; Romero, J.; Aye, N.; Kiani, M.; North, W.; Thomas, C.; Kazempour, M.; Izadi, M.; Roostapour, A.;
et al. Colloidal Dispersion Gels (CDG): Field Projects Review. In Proceedings of the Society of Petroleum Engineers (SPE) EOR
Conference at Oil and Gas West Asia, Muscat, Oman, 31 March–2 April 2014. [CrossRef]

21. Bai, B.; Liu, Y.; Coste, J.-P.; Li, L. Preformed particle gel for conformance control: Transport mechanism through porous media.
SPE Reserv. Eval. Eng. 2007, 10, 176–184. [CrossRef]

22. Caili, D.; Qing, Y.; Fulin, Z. In-depth profile control technologies in China—A review of the state of the art. Pet. Sci. Technol. 2010,
28, 1307–1315. [CrossRef]

23. Bedrikovetsky, P.; Siqueira, F.D.; Furtado, C.A. Modified particle detachment for colloidal transport in porous media. Transp.
Porous Media 2011, 86, 353–383. [CrossRef]

24. Al-Anazi, A.; Al-Kaidar, Z.; Wang, J. Modeling Gelation Time of Organically Crosslinked Polyacrylamide Gel System for
Conformance Control Applications. In Proceedings of the Society of Petroleum Engineers (SPE) Russian Petroleum Technology
Conference, Moscow, Russia, 22–24 October 2019. [CrossRef]

145



Gels 2022, 8, 621

25. Vaz, A.; Bedrikovetsky, P.; Fernandes, P.; Badalyan, A.; Carageorgos, T. Determining model parameters for non-linear deep-bed
filtration using laboratory pressure measurements. J. Pet. Sci. Eng. 2017, 151, 421–433. [CrossRef]

26. Barenblatt, G.I.; Entov, V.M.; Ryzhik, V.M. Theory of Fluid Flows through Natural Rocks; Springer Science and Business Media LLC:
Berlin/Heidelberg, Germany, 1990; pp. 1–396.

27. Fedorov, K.M.; Gilmanov, A.Y.; Shevelev, A.P.; Kobyashev, A.V.; Anuriev, D.A. A theoretical analysis of profile conformance
improvement due to suspension injection. Mathematics 2021, 9, 1727. [CrossRef]

28. Al Brahim, A.; Bai, B.; Schuman, T. Comprehensive review of polymer and polymer gel treatments for natural gas-related
conformance control. Gels 2022, 8, 353. [CrossRef]

29. Rozhkova, Y.A.; Burin, D.A.; Galkin, S.V.; Yang, H. Review of microgels for enhanced oil recovery: Properties and cases of
application. Gels 2022, 8, 112. [CrossRef]

30. Agzamov, F.A.; Morozov, D.V. Application of biopolymers for reservoir waterproofing. Neftegazov. Delo 2002, 1, 1–8. (In Russian)
31. Aqcheli, F.; Salehi, M.B.; Taghikhani, V.; Pahlevani, H. Synthesis of a custom-made suspension of preformed particle gel with

improved strength properties and its application in the enhancement of oil recovery in a micromodel scale. J. Pet. Sci. Eng. 2021,
207, 109108. [CrossRef]

32. Farasat, A.; Younesian-Farid, H.; Sadeghnejad, S. Conformance control study of preformed particle gels (PPGs) in mature
waterflooded reservoirs: Numerical and experimental investigations. J. Pet. Sci. Eng. 2021, 203, 108575. [CrossRef]

33. Stromberg, A.G. Physical Chemistry; Vysshaya Shkola: Moscow, Russia, 1999; pp. 1–527. (In Russian)
34. Tcharkhtchi, A.; Nony, F.; Khelladi, S.; Fitoussi, J.; Farzaneh, S. Epoxy/amine reactive systems for composites materials and their

thermomechanical properties. In Advances in Composites Manufacturing and Process Design, 1st ed.; Boisse, P., Ed.; Woodhead
Publishing: Sawstone, UK, 2015; Volume 1, pp. 269–296. [CrossRef]

35. Frolov, Y.G.; Shabanova, N.A.; Savochkina, T.V. Kinetics of gelation and spontaneous dispersion of silicic acid gel. Colloid. J. 1980,
42, 1015–1018. (In Russian)

36. Safarov, F.E.; Gusarova, E.I.; Karazeev, D.V.; Arslanov, I.R.; Telin, A.G.; Dokichev, V.A. Synthesis of polyacrylamide gels for
restricting the water inflow in development of oil fields. Russ. J. Appl. Chem. 2018, 91, 872–876. [CrossRef]

37. Khamees, T.K.; Flori, R.E.; Fakher, S.M. Numerical Modeling of Water-Soluble Sodium Silicate Gel System for Fluid Diversion and
Flow-Zone Isolation in Highly Heterogeneous Reservoirs. In Proceedings of the Society of Petroleum Engineers (SPE) Trinidad
and Tobago Section Energy Resources Conference, Port of Spain, Trinidad and Tobago, 25–26 June 2018. [CrossRef]

38. Fedorov, K.M.; Shevelev, A.P.; Kobyashev, A.V.; Zakharenko, V.A.; Kochetov, A.V.; Neklesa, R.S.; Usoltsev, A.V. Determination of
Suspension Filtration Parameters from Experimental Data. In Proceedings of the Society of Petroleum Engineers (SPE) Russian
Petroleum Technology Conference, Moscow, Russia, 26–29 October 2020. [CrossRef]

39. Fedorov, K.M.; Pospelova, T.A.; Kobyashev, A.V.; Gilmanov, A.Y.; Kovalchuk, T.N.; Shevelev, A.P. Determination of Adsorption-
Retention Constants and Inaccessible Pore Volume for High-Molecular Polymers. In Proceedings of the Society of Petroleum
Engineers (SPE) Russian Petroleum Technology Conference, Moscow, Russia, 12–15 October 2021. [CrossRef]

40. Fedorov, K.M.; Zubkov, P.T. Placement of gels in stratified reservoirs using a sequential injection technique. J. Pet. Sci. Eng. 1996,
15, 69–80. [CrossRef]

146



Citation: Wang, M.; Wu, W.; Chen, S.;

Li, S.; Li, T.; Ni, G.; Fu, Y.; Zhou, W.

Experimental Evaluation of the

Rheological Properties and

Influencing Factors of Gel Fracturing

Fluid Mixed with CO2 for Shale Gas

Reservoir Stimulation. Gels 2022, 8,

527. https://doi.org/10.3390/

gels8090527

Academic Editors: Mario Grassi,

Qing You, Guang Zhao and Xindi Sun

Received: 25 July 2022

Accepted: 17 August 2022

Published: 23 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 gels

Article

Experimental Evaluation of the Rheological Properties and
Influencing Factors of Gel Fracturing Fluid Mixed with CO2 for
Shale Gas Reservoir Stimulation
Mingwei Wang 1, Wen Wu 2, Shuyang Chen 3, Song Li 4,* , Tao Li 5, Gensheng Ni 2, Yu Fu 1 and Wen Zhou 6

1 School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
2 Development Division, PetroChina Southwest Oil and Gasfield Company, Chengdu 610041, China
3 Sinopec Northwest Oilfield Company, Urumqi 830000, China
4 Engineering Research Institute, PetroChina Southwest Oil and Gasfield Company, Chengdu 610017, China
5 Shunan Gas Mine, PetroChina Southwest Oil and Gasfield Company, Luzhou 646000, China
6 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology,

Chengdu 610059, China
* Correspondence: lisong03011640@163.com

Abstract: Foam gel fracturing fluid has the characteristics of low formation damage, strong flowback
ability, low fluid loss, high fluid efficiency, proper viscosity, and strong sand-carrying capacity, and
it occupies a very important position in fracturing fluid systems. The rheological properties of gel
fracturing fluid with different foam qualities of CO2, under different experimental temperatures
and pressures, have not been thoroughly investigated, and their influence on it was studied. To
simulate the performance of CO2 foam gel fracturing fluid under field operation conditions, the
formula of the gel fracturing fluid was obtained through experimental optimization in this paper, and
the experimental results show that the viscosity of gel fracturing fluid is 2.5 mPa·s (after gel breaking
at a shear rate of 500 s−1), the residue content is 1.3 mg/L, the surface tension is 25.1 mN/m, and the
interfacial tension is 1.6 mN/m. The sand-carrying fluid has no settlement in 3 h with a 40% sand
ratio of 40–70-mesh quartz sand. The core damage rate of foam gel fracturing fluid is less than
19%, the shear time is 90 min at 170 s−1 and 90 ◦C, the viscosity of fracturing fluid is >50 mPa·s,
and the temperature resistance and shear resistance are excellent. The gel fracturing fluid that was
optimized was selected as the base fluid, which was mixed with liquid CO2 to form the CO2 foam
fracturing fluid. This paper studied the rheological properties of CO2 foam gel fracturing fluid
with different CO2 foam qualities under high temperature (65 ◦C) and high pressure (30 MPa) and
two states of supercooled liquid (unfoamed) and supercritical state (foamed) through indoor pipe
flow experiments. The effects of temperature, pressure, shear rate, foam quality, and other factors on
the rheological properties of CO2 foam gel fracturing fluid were considered, and it was confirmed
that among all the factors, foam quality and temperature are the main influencing factors, which is of
great significance for us to better understand and evaluate the flow characteristics of CO2 foam gel
fracturing fluid and the design of shale gas reservoir fracturing operations.

Keywords: shale gas reservoir; CO2 foam fracturing; gel fracturing fluid; foam quality; rheological
property

1. Introduction

The use of foam gel fracturing fluid is a great achievement of liquid technology. Foamed
fracturing fluid is formed by dispersing N2 or CO2 in water, acid, methanol/water mixture, or
hydrocarbon liquid as bubbles, and is usually a two-phase mixture of 70%–80% dryness gas
(N2 or CO2) and fracturing of fluid (water-based polymer solution). Foam gel fracturing
fluid is essentially a kind of gas-in-liquid emulsion, and bubbles provide high viscosity
and excellent proppant-carrying capacity. Because it has the characteristics of low reservoir
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damage, strong flowback ability, low fluid loss, high fluid efficiency, proper viscosity,
and strong sand-carrying capacity, it occupies a very important position in fracturing
fluid systems.

To solve the shortcomings and defects of conventional fracturing technology, re-
searchers began to study foam fracturing technology in the 1970s [1]. Since foam fracturing
was first completed in Lincoln County, West Virginia, USA, foam fracturing technology
has developed from the initial N2 foam fracturing to the present CO2 foam fracturing. In
1986, in the Federal Republic of Germany, 60% CO2 foam gel fracturing fluid was used in
the carboniferous gas reservoir in Fez Dolf, which was buried 3400−3650 m underground.
The fracturing was successful, and the natural gas production increased by nearly 12 times
after fracturing [2]. By the 1990s, about 90% of gas wells and 30% of oil wells in the United
States and Canada had adopted CO2 foam fracturing technology [3]. Nowadays, it is
very common to use foam fracturing technology for fracturing worldwide. In the United
States, about 3600 foam fracturing operations are carried out every year, which not only
has a high success rate but also has an obvious effect on increasing production. Foams
have been considered the most attractive and preferred fluid for fracturing unconventional
reservoirs due to their ability to reduce formation damage and improve the recovery of
injected fluid [4,5]. Gel and foam systems, as the two most widely used plugging agents for
lost circulation control, have achieved positive progress in both laboratory experiments and
field applications in recent decades [6,7]. Wang et al. (2022) developed a composite gel foam
plugging system, which is used to plug and control flooding for heterogeneous reservoirs,
and it showed better plugging and recovering performance for field applications [8].

The characteristics of CO2 foam fracturing fluid can also influence the propagation of
hydraulic fractures. Several authors reported that the high performance of CO2 foam is
attributed to its unique and favorable rheological characteristics [9–13]. However, due to
the complex nature of foam, it is difficult to understand and model its flow behavior, espe-
cially under operating conditions. The versatility and uniqueness of foam are attributed
to its enormously high viscosity profile compared to its base fluids and the efficiency
of foam fracturing is dictated by the complex non-Newtonian behavior of foam [14–18].
Numerous authors agree that the design of fracturing treatments highly depends on foam
rheology and it governs the overall process performance [19–26]. Foam rheology also
determines the properties of the fracture network that may help in obtaining the required
fracture geometry. At present, due to the limitation of equipment conditions and research
methods, the research on the rheological properties of fracturing fluid under simulated
field construction conditions has not been reported. The prediction of foam rheological
behavior is a complex task and the direct determination of foam rheology under operating
conditions is still considered a challenge [27]. Fu et al. (2021) investigated the rheology
and stability of nanoparticle-stabilized CO2 foams under reservoir conditions (high tem-
perature and high pressure) for fracturing applications [28]. Li et al. (2022) investigated
the rheology properties of thickened liquid CO2 by measuring the viscosity of thickened
liquid CO2 in different physical parameters of this prepared thickener and explained the
causes of the rheological changes [29]. Kadafur et al. (2022) investigated the rheology of
a CO2 foamed chelating agent, L-glutamic acid-N, N-diacetic acid (GLDA), which was
conducted at 100 C, 1000 psi, 3.5 pH level, and various water salinities, resembling harsh
reservoir conditions [30]. Tariq et al. (2022) established a data pool, which was analyzed
using four machine learning techniques: Artificial Neural Network (ANN), Decision Trees
(DT), Random Forest Regressor (RFR), and K-Nearest Neighbor (KNN), and it provides
a simplified ANN-based model which can be used on the fly to predict the effective bulk
foam viscosity in both laboratory and field conditions [31].

Presently, the limit pressure of the experimental system for studying the rheological
properties of CO2 foam gel fracturing fluid is only 2000 psi (13.8 MPa). Under the condition
of simulating tubing or formation temperature (30−50 ◦C), the gas phase of the foam
gel fracturing fluid is in a gas state, so the foam gel fracturing fluid in the experiment is
in a gas-liquid two-phase flow, while for the actual fracturing technology, the pumping
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pressure is extremely high, reaching tens of MPa. At the same time, the fluid temperature
in the wellbore or formation fracture is also high. For CO2 foam gel fracturing fluid, CO2
is in a supercritical fluid state. The physical property of the supercritical fluid is closer
to that of liquid, and the rheological property at this time is closer to that of a liquid–
liquid emulsion. Most of the literature has investigated the rheological performance of
the CO2 foam gel fracturing fluid unfoamed and ignored the different foam qualities’
effects in the foaming process, and the experimental temperature and pressure are so low
that they are unable to simulate actual field fracturing conditions. Therefore, it is very
important to study the rheological properties of foam gel fracturing fluid in the two states
of supercooled liquid (unfoamed) and supercritical state (foamed) under simulated actual
construction conditions—high pressure (tens of MPa) and high shear rate—for the effective
implementation of fracturing technology, the selection of reasonable fracturing parameters,
more accurate fracturing prediction, and the evaluation of fracturing effects.

To simulate the rheological performance of CO2 foam fracturing fluid in the two
states of foamed and unfoamed under field operation conditions, the formula of the gel
fracturing fluid is obtained through experimental optimization firstly, and the viscosity,
static sand setting performance, and rheological performance of the foam gel fracturing
fluid are experimentally evaluated. The goal is to obtain a foaming gel fracturing fluid
with good performance parameters and which is mixed with liquid CO2. This paper
selects the foam fracturing fluid formed by CO2 and gel fracturing fluid and studies the
rheological properties of CO2 foam fracturing fluid under high temperature (65 ◦C) and
high pressure (30 MPa), considering the two states of supercooled liquid and supercritical
through indoor pipe flow experiments. The effects of temperature (15–90 ◦C), pressure
(10, 20, 30 MPa), shear rate (100–3000 s−1), foam quality (0, 45, 55, 65, 75%), and other
factors on the rheological properties of fracturing fluid are investigated, which is of great
significance for better understanding and evaluating the flow characteristics of CO2 foam
gel fracturing fluid and on-site fracturing construction design.

2. Results and Discussion
2.1. Experimental Study on the Rheological Characteristics of CO2 Foam Gel Fracturing Fluid

The effects of temperature, pressure, shear rate, and foam quality on the rheological
properties of fracturing fluid are considered. In this experiment, the inner diameter of the
test instrument pipeline was 12 mm. The effective viscosity of the CO2 foam gel fracturing
fluid changed with the shear rate at 20 MPa, 30 MPa, and 40 MPa, and the temperature
changed from 0 to 80 ◦C.

2.1.1. Effect of Shear Rate on the Effective Viscosity of CO2 Foam Gel Fracturing Fluid

In actual fracturing construction, high-pressure supercooled liquid CO2 is often mixed
with guanidine gum and then injected into the formation by tubing for fracturing. As the
fracturing fluid enters the formation, the temperature gradually rises, and the high-pressure
CO2 completely changes from supercooled liquid to a supercritical state, and the effects
of CO2 in the two states on the effective viscosity of CO2 foam gel fracturing fluid are
completely different. Therefore, the research on the influence of various factors on the
effective viscosity of CO2 foam gel fracturing fluid is divided into two processes for analysis.
The CO2 foam fracturing fluid with CO2 in the liquid state is defined as the fracturing fluid
system under unfoamed conditions, and the CO2 foam fracturing fluid with CO2 in the
supercritical state is defined as the fracturing fluid system under foamed conditions.

Figure 1 is the curve of the effective viscosity of the fracturing fluid under the un-
foamed condition, with a pressure of 10 MPa and a temperature of 20 ◦C changing with the
shear rate. It can be seen from the figure that the effective viscosity of the fluid decreases
exponentially with the increase in the shear rate at the same temperature, which fully
shows that the unfoamed fracturing fluid is a typical shear-thinning non-Newtonian fluid,
and the changing trend when the shear rate is lower than 500 s−1 is other than that when
the shear rate is higher than 500 s−1. The shear-thinning characteristics of the foam system
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in the unfoamed state are mainly due to the influence of shear on the base liquid of the gel
fracturing fluid. Linear guanidine gum is a long-chain polymer without a cross-linking
structure. Increasing the shear rate will reduce the intermolecular interaction force caused
by polymer molecular entanglement and hydrogen bonding, which will lead to a decrease
in effective viscosity.
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Figure 1. Variation curve of effective viscosity with shear rate (unfoamed, T = 20 ◦C).

Figure 2 is the curve of the effective viscosity of CO2 foam gel fracturing fluid with a
shear rate at a pressure of 10 MPa and a temperature of 65 ◦C. It can be seen from the figure
that the effective viscosity of CO2 foam gel fracturing fluid decreases exponentially with the
increase in the shear rate at the same pressure, indicating that the CO2 foam gel fracturing
fluid system is a typical shear-thinning non-Newtonian fluid, with a changing trend when
the shear rate is lower than 1000 s−1. It can be seen from the figure that for CO2 foam gel
fracturing fluid during foaming, CO2 is in a supercritical state, and its physical properties
are increasingly close to those of gas. At this time, the emulsion formed by guanidine
gum solution and supercritical CO2, which are two limited miscible fluids, is closer to the
traditional foam system. The weakening effect of shearing on the viscosity of CO2 foam
fluid is mainly reflected in two aspects: on the one hand, the shearing mentioned above
will reduce the intermolecular interaction force caused by polymer molecular entanglement
and hydrogen bonding; on the other hand, it is due to the destruction of the internal-phase
CO2 foam structure by shearing.
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Figure 2. Variation curve of effective viscosity with shear rate (foamed, T = 65 ◦C).
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2.1.2. Effect of Foam Quality on the Effective Viscosity of CO2 Foam Gel Fracturing Fluid

Figure 3 is the curve of the variation of effective viscosity of fracturing fluid with a
CO2 volume fraction when the pressure is 10 MPa and the temperature is 20 ◦C. It can be
seen from the figure that the effective viscosity of unfoamed fracturing fluid decreases with
the increase in the CO2 volume fraction, and the change range is large. The main reason
is that the unfoamed CO2 is in the supercooled liquid form, similar to Newtonian fluid
in this mixed system. At this time, CO2 has little significance for the viscosity increase in
the whole system. On the contrary, the increase in the CO2 volume fraction will dilute the
guanidine gum base liquid. When the volume shares of CO2 increase to a certain extent,
the fluid-structure will suddenly change, from the previous guanidine gum base liquid
as the continuous phase to the liquid one. When the guanidine gum base liquid changes
from the external phase to the internal phase, the continuous phase of the fluid becomes
the liquid CO2, which greatly reduces the viscosity of the whole system.
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Figure 3. The curve of effective viscosity changes with CO2 volume fraction (Unfoamed, T = 20 ◦C).

Figure 4 is the variation law curve of the effective viscosity of CO2 foam gel fracturing
fluid with foam quality under foaming conditions, with a pressure of 10 MPa and tem-
perature of 65 ◦C. It can be seen from the figure that the change rule of effective viscosity
with foam quality is opposite to that without foam. The increase in foam quality makes
the effective viscosity of the whole system increase, and the increased range is large. For
example, when the shear rate is 834 s−1, the viscosity of foam gel fracturing fluid increases
from 26.45 mPa·s to 56.32 mPa·s, with an increasing range of 113%. When the foam mass is
75%, the effective viscosity reaches the maximum value, and when the foam mass is more
than 75%, the viscosity of foam gel fracturing fluid decreases obviously. In the research of
this system, it can be seen that when the foam mass is more than 55%, with the increase in
foam mass, the number of bubbles in the foam system increases, the mutual interference,
and deformation among bubbles increase, the bubble structure becomes denser, and the
viscosity of the foam system continues to increase.
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Figure 4. Variation curve of effective viscosity with foam quality (Foamed, T = 65 ◦C).

2.1.3. Effect of Temperature on Effective Viscosity of CO2 Foam Gel Fracturing Fluid

The effective viscosity of CO2 foam gel fracturing fluid with a foam mass of 45−75% was
tested at elevated temperatures, and the influence of temperature on the effective viscosity
of CO2 foam gel fracturing fluid was analyzed. In the experiment, a pipe diameter of
12 mm, a shear rate of 170 s−1, a heating rate of 1 ◦C/min, and a temperature of 80 ◦C were
selected, and the viscosity−temperature characteristics of CO2 foam gel fracturing fluid
under conditions of 10−40 MPa were tested.

Figures 5 and 6 are the curves of the effective viscosity of the fracturing fluid with
temperature in an unfoamed state, pressure 20 MPa, and different shear rates and CO2
volume fractions. The temperature ranges from 5 to 25 ◦C, the shear rate ranges from
503 s−1 to 1500 s−1, and the volume fraction of CO2 from 45 to 75%. It can be seen from
the figure that the effective viscosity of unfoamed fluid decreases with the increase in
temperature, showing an exponentially decreasing trend. The main reason is the influence
of temperature on the rheological properties of the guanidine gum base liquid: with the
increase in temperature, the movement activity of guanidine gum molecules increases, and
the thermal fracture of the hydrogen bonds of linear guanidine gum in the n liquid system
is accelerated, so that the activation energy of guanidine gum base liquid decreases, which
comprehensively shows that the effective viscosity of the solution decreases.

Figures 7 and 8 are the curves of the effective viscosity of CO2 foam gel fracturing
fluid with temperature under the foaming condition, with a pressure of 20 MPa, different
shear rates, and foam quality. The temperature ranges from 35 to 75 ◦C, the shear rate
ranges from 503 s−1 to 1500 s−1, and the foam mass ranges from 45 to 75%. It can be seen
from the figure that the effective viscosity−temperature characteristics of CO2 foam gel
fracturing fluid during foaming are consistent with those of unfoamed fracturing fluid,
showing an exponentially decreasing trend. At the same time, when the temperature is
greater than 55 ◦C, the variation ranges of the effective viscosity of foam gel fracturing fluid
with temperature becomes smaller.
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Figure 5. Variation curve of effective viscosity with temperature (unfoamed, 65% by volume).
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Figure 7. Variation curve of effective viscosity with temperature (foamed, foam mass is 65%).
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Figure 8. Variation curve of effective viscosity with temperature (foamed, the shear rate is 1000 s−1).

2.1.4. Effect of Pressure on the Effective Viscosity of CO2 Foam Gel Fracturing
Fluid (Shear Rate)

Figures 9 and 10 are the curves of the effective viscosity of CO2 foam gel fracturing
fluid with a shear rate under different pressure conditions and under unfoamed and foamed
conditions at 25 ◦C and 65 ◦C, respectively. It can be seen from Figure 9 that the effective
viscosity of the unfoamed fracturing fluid system is affected very little by pressure, and
the effective viscosity increases slightly with the increase in experimental pressure. The
influence of pressure on the effective viscosity of fracturing fluid without foaming is mainly
that pressure can effectively change the interaction between guar gum molecules, making
the linear structure change and improving the stability of the linear structure, which shows
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that the increase in pressure strengthens the long-chain linear structure of guar gum, slows
down the damage of shear to the linear structure, and makes the viscosity of the solution
increase to a certain extent. Figure 10 shows the variation law of the effective viscosity
of CO2 foam gel fracturing fluid with pressure under the conditions of foaming at 65 ◦C,
55% foam mass, and 10 MPa, 20 MPa, and 30 MPa respectively. Similar to the unfoamed
condition, the effective viscosity is less affected by pressure due to the pressure’s influence
on bubble size and distribution in the foam gel fracturing fluid. The results show that the
diameter of bubbles in the foam system gradually decreases with the increase in pressure,
and the higher the pressure, the more uniform the bubble size distribution. On the one
hand, the stability of bubbles is increased, while on the other hand, the nonlinear interaction
between bubbles is enhanced, and the viscosity of the foam gel fracturing fluid is improved
as a whole.
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Figure 9. Variation of effective viscosity with shear rate under different pressures (unfoamed).
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2.2. Changes in the Rheological Parameters of CO2 Foam Gel Fracturing Fluid with
Various Factors

Figures 11 and 12 are curves of the flow index and consistency index of fracturing
fluid with CO2 volume fraction when the temperature is 25 ◦C and the pressure is 10 MPa,
20 MPa, and 30 MPa, respectively. It can be seen from the figure that, when unfoamed,
the flow index gradually increases with the increase in CO2 volume fraction, while the
consistency index decreases. Under experimental conditions, the change range of the flow
index is 0.37−0.72; the variation range of the consistency index is 0.23−0.39.
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The flow index is a parameter used to describe the non-Newtonian property of the
fluid. It can be seen from the figure that the flow index n of the unfoamed fracturing fluid is
less than 1, indicating that the fluid is a shear-thinning non-Newtonian fluid, and the value
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of n is closer to 1 with the increase in CO2 volume fraction, indicating that the fluid property
of the fracturing fluid gradually changes to a Newtonian fluid with the increase in the CO2
volume fraction, which is precise because the unfoamed CO2 exists as a supercooled liquid
similar to a Newtonian fluid, and its non-Newtonian property weakens with the increase
in the CO2 volume fraction.

2.2.1. Effect of Pressure on the Effective Viscosity of CO2 Foam Gel Fracturing Fluid
(Foam Quality)

Figures 13 and 14 are the curves of the flow index and consistency index of CO2 foam
gel fracturing fluid with foam quality when the temperature is 65 ◦C and the pressure
is 10 MPa, 20 MPa, and 30 MPa, respectively. As can be seen from the figure, with the
increase in foam quality, the flow index gradually decreases, and the consistency index
increases, and from the perspective of the change range, it starts to increase substantially
when the foam quality is 55%. This shows that the CO2 foam gel fracturing fluid in
the foaming stage still belongs to the shear-thinning non-Newtonian fluid, and with the
increase in foam quality, the non-Newtonian fluid properties of the foam gel fracturing
fluid gradually increase.
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2.2.2. Effect of Temperature on the Rheological Parameters of CO2 Foam Gel
Fracturing Fluid

Figure 15 is the curves of the flow index and consistency index of fracturing fluid with
temperature when the pressure is 20 MPa and the volume fraction of CO2 is 65% without
foaming. It can be seen from the figure that with the increase in temperature, the flow index
of the fluid increases, and the consistency index decreases.
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Figure 15. Variation curves of flow index n and consistency index k with temperature (unfoamed).

Figure 16 is the curves of the flow index and consistency index of the CO2 foam gel
fracturing fluid with temperature when the pressure is 20 MPa and the foam mass is 65%. It
can be seen that the change rule of rheological parameters of foamed fracturing fluid with
temperature is consistent with that of unfoamed fracturing fluid, which shows that with
the increase in temperature, the flow index of fluid increases and the consistency index
decreases. From the action mechanism, it is the same as that of the previous temperature
on the viscosity characteristics of CO2 foamed fracturing fluid.
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Figure 16. Variation curves of flow index n and consistency index k with temperature (foamed).

2.2.3. Effect of Pressure on the Rheological Parameters of CO2 Foam Gel Fracturing Fluid

Figures 17 and 18 are curves of the rheological parameters of CO2 foam gel fracturing
fluid changing with pressure when the temperature is 65 ◦C and the foam quality is 45%,
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55%, 65%, and 75% respectively. It can be seen from the figures that with the increase in
pressure, the change of fluid flow index and consistency index is very small, which shows
that the influence of pressure on the rheological properties of the foam gel fracturing fluid is
almost negligible compared with temperature and foam quality. Meanwhile, the influence
of pressure on the rheological properties of the foam gel fracturing fluid is negligible.
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under foaming.

2.3. Sensitivity Analysis

Sensitivity analysis is a method to analyze system stability in system analysis. There is
a system, and its system characteristics, P, are mainly determined by n factors
a = {a1, a2, . . . , an} and P = f (a1, a2, . . . , an). In a certain reference state, a* = {a1*, a2*, . . . , an*},
the system characteristic is P*. Let each factor change within its possible range, and analyze
the trend and degree of the deviation of the system characteristic P from the benchmark
state P* due to these factors. This analysis method is called sensitivity analysis.
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We define the dimensionless sensitivity function and sensitivity factor. That is, the
ratio of the relative error of the system characteristic P to the relative error of the parameter
ak is defined as the sensitivity function Sk(ak) of the parameter ak.

Sk(ak)
( |∆P|

P

)

( |∆ak |
ak

) =

∣∣∣∣
∆P
∆ak

∣∣∣∣
ak
ak

k = 1, 2, . . . . . . , n (1)

When |∆ak|/ak is small, Sk(ak) can be approximately expressed as:

Sk(ak) =

∣∣∣∣∣
d φ kak

dak

∣∣∣∣∣
ak
P

k = 1, 2, . . . . . . , n (2)

Sk*, k = 1, 2, . . . , n, is a set of dimensionless non-negative real numbers. The larger the
Sk* value, the more sensitive P is to ak in the reference state. Through the comparison of Sk*,
the sensitivity of system characteristics to various factors can be compared and evaluated.

To understand the sensitivity of the rheological properties of foam gel fracturing fluid
to various factors, the above sensitivity analysis method was used to analyze the main
factors affecting the rheological properties of foam gel fracturing fluid, and the sensitivity
of each factor was compared. The characteristics of the system, that is, the rheological
characteristics of foam gel fracturing fluid, are characterized by the effective viscosity of
the system. The parameters for sensitivity analysis are shear rate, pressure, foam quality,
and temperature. Observe the shape of the rheological curve and establish the functional
relationship between effective viscosity and shear rate, temperature, and other parameters
to obtain the sensitivity function, and then calculate the sensitivity factor. After analysis,
the sensitivity values of each parameter are obtained (Table 1), which are ranked by size,
followed by foam quality, temperature, shear rate, and pressure. It can be seen that among
all the factors, foam quality and temperature are the main influencing factors. Therefore,
the performance of CO2 foam gel fracturing can be mainly regulated by the two parameters,
which is helpful for application in shale gas reservoir fracturing.

Table 1. Sensitivity factors of influencing factors.

Influencing Factors Shear Rate Pressure Foam Quality Temperature

Sensitivity factor 0.685 0.092 0.973 0.735
Sensitivity grade III IV I II

3. Conclusions

The formula of the gel fracturing fluid was obtained through experimental optimiza-
tion, which evaluated experimentally the viscosity, residue, surface tension, sand-carrying
capacity, and interfacial tension of the gel fracturing fluid. The core damage rate of the
gel fracturing fluid is less than 19%, the shear time is 90 min at 170 s−1 and 90 ◦C, and the
viscosity of the fracturing fluid is >50 mPa·s.

The rheological properties of CO2 foam gel fracturing fluid and its influencing factors
were studied experimentally. For the foam gel fracturing fluid with CO2 in supercooled
liquid and at a supercritical state, the effects of temperature, pressure, shear rate, and foam
quality on the rheological properties of the gel fracturing fluid were considered. The main
conclusions are as follows:

In the unfoamed state, the effective viscosity of foam gel fluid decreases exponentially
with the increase in shear rate, gradually decreases with the increase in CO2 volume
fraction, and the effective viscosity of fluid decreases with the increase in temperature. The
effective viscosity is little affected by pressure. In the foaming state, the change rule of
effective viscosity with shear rate is the same as that without foaming, the change rule with
foam quality is opposite to that without foaming, and the effective viscosity−temperature
characteristics of fluid are the same as that without foaming.
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Without foaming, the foam quality increases, the flow index gradually increases, and
the consistency index decreases. With the increase in temperature, the flow index of fluid
increases, and the consistency index decreases. When foaming, the foam quality increases,
the flow index gradually decreases, and the consistency index increases. When the foam
quality is about 50%, a sudden change begins. With the increase in temperature, the flow
index of fluid increases, and the consistency index decreases. With the increase in pressure,
the flow index and consistency index of fluid change very little.

Based on the sensitivity analysis method, the influencing factors of the rheological
behavior of CO2 foam gel fracturing fluid are foam quality, temperature, shear rate, and
pressure, in turn, which provides a theoretical basis for CO2 foam fracturing technology.

4. Experiments and Methods
4.1. Experimental Optimization of Gel Fracturing Fluid
4.1.1. Formula Design

In recent years, the CO2 foam gel fracturing fluid system, which has been applied suc-
cessfully to reservoir stimulations, is a cross-linked fracturing fluid system with guanidine
gum as the thickener.

The commonly used foam sealing and channeling systems are mainly composed of a
foaming agent, foam stabilizer, and gas phase [32,33]. Therefore, guanidine gum fluid is
used as the basic liquid phase in this study, the thickener and foaming agent are optimized
by experiments, and the gel fracturing fluid that is needed to mix with liquid CO2 in
this research is formed. According to the characteristics of foam gel fracturing fluid, the
high-speed mixing method (Waring Blender method) was selected to evaluate the foaming
ability and foam stability of the foaming agent.

Single Agent Optimization

(1) Thickener optimization

To select a liquid that can form foam with good stability at a low dosage, the frequently
used thickeners were evaluated and optimized by experiments, including CT5-7, CT5-
7WI, hydroxypropyl guar gum (CMHPG), instant carboxymethyl cellulose (CMC), and
polyanionic cellulose (PAC), and the results of the thickeners’ foam stability are shown in
Table 2. The experimental results showed that the foam stabilizing performance of CT5-7 is
much better than the others. Therefore, the CT5-7 thickener is selected as the thickener of
the gelled fracturing fluid formula.

Table 2. Experimental results of thickening agent foam stability.

Thickening Agent Modulators Foaming Agent V0/mL Foam Quality/% The Half-Life of Foam/h

0.3% CT5-7

0.3% CT5-7U 0.3% CT5-7B

280 70.4 90
0.5% CT5-7 WI 280 68.3 75
0.5% CMHPG 280 61.4 65

0.5% instant CMC 280 60.6 18
0.5% CMC 280 60.2 28
0.5% PAC 280 60.3 16

The CT5-7 is a thickener, which is prepared from acrylamide, vinylpyrrolidone, maleic
acid, anionic functional monomer, initiator, inorganic salt, etc. It includes acrylamide
25~30%, vinylpyrrolidone 3~5%, maleic acid 4~6%, anionic functional monomer 5~7%,
initiator 0.08~0.15%, potassium hydroxide 1~8%, inorganic salt 5~10%, and the rest is water.

(2) Foaming agent optimization

The foaming ability and foam half-life of 0.3% CT5-7B, CT5-7S, sodium dodecylben-
zene sulfonate (ABS), alkyl betaine (DSB), CT5-7C and other foaming agents in CT5-7
thickener solution were experimentally evaluated. These are the foaming agent, and their
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main component is alcohols; CT5-7B is fusel, CT5-7S is methyl isobutyl methanol, and
CT5-7C is triethoxybutane. The results are shown in Table 3. The calculation formula of
foam quality Γ is:

Γ = (V0 − 100)/V0 (3)

where V0 is the volume of gel fracturing fluid, mL.

Table 3. Evaluation of foaming and foam stabilizing properties of the foaming agent.

Thickener Foaming Agent V0/mL Foam Quality/% The Half-Life of the Foam/h

0.5% CT5-7

0.3% CT5-7B 270 60.6 110
0.3% CT5-7S 270 64.9 120

0.3% DSB 270 64.3 95
0.3% CT5-7C 270 64.2 100

0.3% ABS 270 63.7 96

The foaming power and foam stability data of five foaming agents were analyzed, and
CT5-7S with good foaming power and foam stability was selected as the foaming agent of
the foam gel fracturing fluid formula.

Optimization of a Single Dosage

(1) Thickener dosage

To optimize the amount of thickener in gel fracturing fluid, an experimental evaluation
was carried out on the sand suspension (settling velocity of 40–70 mesh quartz sand) of
fracturing fluid with 0.2, 0.3, 0.4, and 0.5% of thickener at 30~90 ◦C, and the experimental
results are shown in Table 4.

Table 4. Experimental results of gel fracturing fluid-suspended sand at different temperatures
(mm/s).

CT5-7 Dosage/% 15 ◦C (Room Temperature) 30 ◦C 50 ◦C 70 ◦C 90 ◦C

0.2 12.5 25.0 33.3 50.0 100.0
0.3 0.70 1.29 2.32 5.56 9.52
0.4 0.019 0.057 0.11 0.70 0.98
0.5 Almost motionless Almost motionless 0.046 0.16 0.46

The experimental results show that the sedimentation rate of quartz sand in the gel
fracturing fluid increases with the increase in temperature. When the amount of CT5-7
is 0.2% and 90 ◦C, the suspension capacity of quartz sand is poor. When the amount
is 0.3–0.4%, the sedimentation rate of quartz sand is 1–10 mm/s at 90 ◦C, but when the
amount is increased to 0.5%, the quartz sand hardly sinks.

The analysis shows that after the gel fracturing fluid forms foam, its apparent viscosity
increases, and the ability to suspend and carry solid particles increases significantly.

(2) Stability of foam with different thickener dosage

The stability (half-life) of gel fracturing fluid with thickener dosages of 0.2, 0.3, 0.4%,
and 0.5% was experimentally evaluated at room temperature and up to 90 ◦C The dosage
of 0.3% CT5-7S foaming agent was 0.3%, as shown in Table 5. It can be seen from Table 5
that with the increase in temperature, the half-life of foam decreases. At a dosage of 0.2%,
the half-life is 0.2 h at 90 ◦C; at a dosage of 0.3~0.4%, the half-life of foam is 1.4~2.5 h at
90 ◦C; and at a dosage of 0.5%, the half-life of foam is 4.2 h at 90 ◦C.
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Table 5. The half-life of foam in gel fracturing fluid at different temperatures.

CT5-7/%

15 ◦C (Room Temperature) 30 ◦C 50 ◦C 70 ◦C 90 ◦C

Foam
Quality/% Half-Life/h Foam

Quality/%
Half-

Life/h
Foam

Quality/%
Half-

Life/h
Foam

Quality/%
Half-

Life/h
Foam

Quality/%
Half-

Life/h

0.2 75.21 89 79.13 75 79.62 40 82.32 21 93.13 0.2
0.3 71.60 92 76.27 76 76.76 60 80.53 37 92.25 1.4
0.4 69.57 109 71.43 105 74.21 70 79.16 56 91.01 2.5
0.5 66.04 133 67.03 119 71.17 90 77.45 68 89.32 4.2

Based on the experimental data on viscosity, sand suspension, and the half-life of foam
in gel fracturing fluid, the thickener dosage of gel fracturing fluid with a foam formula is
determined to be 0.5%.

(3) Determination of Foaming agent dosage

To determine the dosage of the foaming agent, the half-life of foam when the dosage
of CT5-7S foaming agent is 0.1, 0.3, and 0.5%, the experimental temperature is 30 ◦C, and
the experimental data are shown in Table 6. It can be seen from Table 6 that as the dosage
of CT5-7S foaming agent increases from 0.1% to 0.5%, for CT5-7 thickener, the half-life of
foam shows an increasing trend. Considering the performance and cost factors, the dosage
of the CT5-7S foaming agent is determined to be 0.3%.

Table 6. The half-life of foam in gel fracturing fluid with different dosages of CT5-7S.

Foaming Agent Thickening Agent V0/mL Foam Quality/% The Half-Life of Foam/h

0.1% CT5-7S
0.5% CT5-7

288 63.5 90
0.3% CT5-7S 292 65.7 110
0.5% CT5-7S 292 65.8 113

The formula of Gel Fracturing Fluid with Foam

Through the experimental evaluation of the single agent of gel fracturing fluid with
foam such as foaming agent and thickener, the experimental evaluation data analysis of
foam half-life, foam quality, and the viscosity of gel fracturing fluid is carried out, and the
formula of gel fracturing fluid is determined: 0.5% CT5-7 thickener + 0.3% CT5-7S foaming
agent + 0.3% CT5-7D high-temperature stabilizer + 0.3% CT5-7U regulator.

4.1.2. Performance Testing
Gel Breaking Performance

The gel fracturing fluid volume of 1000 mL was prepared in the mixer, and then
the 600 ppm gel breaker (ammonium persulfate) was added, which may break the gel
fracturing fluid at 90 ◦C. The gel fracturing fluid after the gel was broken was centrifuged
and dried with the separated residue at 105 ◦C ± 1 ◦C. Then, the residue content in the gel
fracturing fluid was determined. The results are shown in Table 7.

Table 7. Gel breaking performance of gel fracturing fluid.

Breaker Viscosity /mPa·s Residue Content/mg·L−1 Surface Tension/mN/m Surface Tension/mN/m

2.5 1.3 1.6 25.1

The residue content in the gel breaker is calculated according to the following formula:

η =
m
V

× 1000 (4)

where η is the residue content in the gel breaker, mg/L, m is the residue mass in mg, and V
is the volume of gel fracturing fluid in mL.
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Sand Setting Performance at the Static Station

It is necessary to test the sand carrying performance of gel fracturing fluid by a static
suspended sand experiment. The gel fracturing fluid with foam quality (Q = 65%) was
prepared according to the liquid formula and 200 mL of fluid was poured into the beaker
and then placed in a 90 ◦C water bath at a constant temperature for 20 min. Then, the
liquid was poured into the mixer, and 40−70 mesh quartz sand was added according to
the 40% sand ratio and stirred evenly. Then, the mixed liquid with sand was poured into a
250 mL measuring cylinder and put into an oven at 90 ◦C (formation temperature is usually
85~100 ◦C). The volume of clear liquid separated from the upper layer was recorded at
regular intervals. The static suspended sand test results of the gel fracturing fluid are shown
in Figure 19. The experiment shows that after the gel fracturing fluid forms a stable foam,
the proppant is evenly dispersed in the foam fluid. Due to the interface effect between
foam, the proppant has a wrapping and supporting effect. From room temperature up
to 90 ◦C, the sand mixing fluid remains uniform for 3 h, there is no obvious stratification
phenomenon, and the sand carrying performance is good.
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Formation Damage Evaluation

The core of the shale reservoir is used to evaluate the damage performance of gel
fracturing fluid. The test results are shown in Table 8. It can be seen that the damage rate of
foam gel fracturing fluid to shale is less than 19%.

Table 8. Core damage performance of gel fracturing fluid.

Core No.
Gas phase Permeability
before Fracturing Fluid

Injection/10−3 µm2

Gas Phase Permeability
after Fracturing Fluid

Injection/10−3 µm2
Damage Rate/% Average Value/%

1# 0.12863 0.10821 15.87

15.05
2# 0.09756 0.08602 11.83
3# 0.03584 0.03023 15.65
4# 0.02424 0.02016 16.83

164



Gels 2022, 8, 527

Rheological Properties

Evaluation method: take 70 mL of gel fracturing fluid, add regulator according to the
proportion of 0.3% (v/v), adjust the pH value of the liquid to 5.8, then add foaming agent
according to the design proportion, mix it evenly, transfer it to the closed system of the
RS6000 high-temperature rheometer, connect the CO2 gas source to pressurize 10 bar and
ensure that the gel fracturing fluid is in the CO2-saturated state, and test the temperature
resistance and shear resistance of the fracturing fluid. The experimental results show that
the fracturing fluid can still maintain a high apparent viscosity after a long time of shearing
at 90 ◦C at a shear rate of 170 s−1 and the apparent viscosity is greater than 50 mPa·s,
indicating that it has excellent temperature and shear resistance.

The formula of the gel fracturing fluid is obtained through experimental optimization,
and the viscosity, static sand setting performance, and rheological performance of the
foam gel fracturing fluid are experimentally evaluated. The experimental results show
that the viscosity of the fracturing fluid is 2.5 mPa·s (after gel breaking and at a shear rate
of 500 s−1), the residue content is 1.3 mg/L, the surface tension is 25.1 mN/m, and the
interfacial tension is 1.6 mN/m. The 40−70 mesh quartz sand commonly used in shale
gas fracturing is used for static sand setting experiments and the sand ratio is 40%. The
static sand carrying experiment was carried out. The sand-carrying fluid had good flow
performance, and the proppant showed no settlement in 3 h. The core of the shale reservoir
was selected for the damage evaluation experiment of the foam gel fracturing fluid. The
test results are shown in Figure 20. It was observed that the core damage rate of foam gel
fracturing fluid is less than 19%, the shear time is 90 min at 170 s−1 and 90 ◦C, and the
viscosity of the fracturing fluid is >50 mPa·s, and the temperature resistance and shear
resistance are excellent.
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Figure 20. Evaluation of rheological properties of gel fracturing fluid with foam.

4.2. Preparation Methods of Gel Fracturing Fluid with Different CO2 Foam Mass

According to the formula of the gel fracturing fluid optimized in Section 2.1, the gel
fracturing fluid was obtained in the laboratory and stirred well to obtain the liquid-phase
CO2 foam gel fracturing fluid (Figure 21).

The proportion of gas phase in foam gel fracturing fluid is usually described by foam
quality or foam dryness, which indicates the phase’s percentage in the total volume of the
foam gel fracturing fluid; that is, the gas volume contained in a unit volume of foam gel
fracturing fluid.
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Usually expressed by Γ:

Γ =
VG

VG + VL
× 100% =

VG

VF
× 100% (5)

where: Γ is the foam quality; VG is the gas volume, m3; VL is the liquid volume, m3; and
VF is the total volume of the foam, m3.
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Because CO2 is in a supercooled liquid state and supercritical state in this experiment,
the foam quality is defined as the percentage of CO2 volume in the whole foam volume
under certain temperature and pressure conditions.

4.3. Experimental Principle of the Rheological Properties of CO2 Foam Gel Fracturing Fluid

For CO2 foam gel fracturing fluids, within the range of practical shear rate, they are
close to power-law fluids, and a set of n and k values can be used to characterize their
rheological characteristics.

A thin-tube rheometer calculates the relationship between shear stress and shear rate
through the measured pressure drop and flow rate of fluid in the tube, to determine the
rheological characteristics of the fluid. The flow of fluid in a narrow tube better meets the
following conditions: 1⃝ viscous laminar flow; 2⃝ constant flow; 3⃝ uniform flow; 4⃝ no-slip
pipe wall.

The basic formula for the laminar flow of viscous fluid in a circular tube is:

U =
D

2τ3
w

∫ τw

0
f (τ)τ2dτ (6)

where U is the average velocity of the fluid in the pipe, D is the diameter of the pipe, and
τw is the wall shear stress.

Transforming Formula (6) into Formula (7):

1
4

8U
D

τ3
w =

∫ τw

0
f (τ)τ2dτ (7)

Formula (7) is the basic formula for the rheometer.
For power-law fluid, the constitutive formula is:

f (τ) =
(τ

k

) 1
n

(8)
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Substituting Formula (8) into Formula (7) of tube rheometer to obtain Formula (9):

1
4

8U
D

τ3
w =

∫ τw

0

(τ

k

) 1
n

τ2dτ (9)

Integrate the above formula to obtain Formula (10):

τw = k
(

8U
D

)n(3n + 1
4n

)n
(10)

Take the logarithm on both sides of the formula and obtain Formula (11):

lgτw = lgk
(

3n + 1
4n

)n
+ nlg

(
8U
D

)
(11)

Type, the wall shear stress τw is:

τw =
∆pD
4L

(12)

After the pressure drop and flow, Q is measured, and the relationship curve
lg(∆pD/4L) ∼ lg

(
8U/D

)
is compiled, as shown in Figure 22. From the slope tgθ and

intercept B of the straight line, the rheological characteristic parameters n and k of the
power-law fluid can be determined.

n = tgθ (13)

k = B/
(

3n + 1
4n

)n
(14)

B

Figure 22. Power-law fluid flow curve (logarithmic coordinates). (Reprinted/adapted with permis-
sion from Ref. [9], 2014, copyright X. Sun et al.).
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Abstract: Acidizing with gelling acid is the key technology in developing a carbonate reservoir
successfully. It is difficult for the laboratory to carry out the radial displacement experiment with a
large rock core. It is necessary to establish the gelling acid wormhole expansion model under the radial
conditions, simulate the gelling acid wormhole expansion law under the radial conditions, optimize
the construction parameters, and provide the basis for the optimal design of carbonate reservoir matrix
acidizing. The research objective is to simulate the gelling acid etching wormhole expansion in a deep
carbonate reservoir and make clear its influencing factors, which are helpful for reservoir stimulation.
The mathematical model of gelling acid wormhole expansion was established, considering the
influence of pore microscopic characteristics on acid flow and acid rock reaction. The simulation
results indicated that viscosity, surface reaction rate, and hydrogen ion diffusion coefficient have
different effects on gelling acid etching wormhole. The spatial distribution of pores determines
the trend of gelling acid solution and thus the shape of the armhole. Perforation completion has a
significant impact on the expansion of gelling acid etching wormhole. The wormhole extends forward
along the perforation hole, and perforation increases the length of the wormhole. This wormhole
expansion law is very suitable in situations where a deep carbonate reservoir is needed for gelling
acid fracturing.

Keywords: reservoir stimulation; gelled acidizing; wormhole propagation; carbonate rocks; simulation

1. Introduction

Gelling acidizing is carried out under the radial conditions of the wellbore. It is
difficult for the laboratory to carry out the radial displacement experiment with a large
rock core. It is necessary to establish the gelling acid wormhole expansion model under
the radial conditions, simulate the gelling acid wormhole expansion law under the radial
conditions, optimize the construction parameters, and provide the basis for the optimal
design of matrix gelling acidizing [1].

At present, there are a capillary model, network model, single pore model, two-
scale model, and lattice Boltzmann model [2–5], they also investigate the dynamics of
model polymer networks formed by the condensation of linear poly precursor and PDCA
ligand and the subsequent complexation with different metal ions at various pH values
and oxidation states [6]. Huang et al. (2000) [7] proposed a single wormhole model to
represent the wormhole via a cylindrical tube and considered the effects of fluid leakage
and reaction kinetics on wormhole growth. Panga et al. (2004, 2005) [8,9] established
the two-scale continuous model to explore the wormhole’s initiation and propagation in
acidizing carbonate reservoirs. The model considered the effect of reaction rate regime,
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wormhole density, and dimension on wormhole expansion. Cohen et al. (2007) [10]
extended this model to radial flow to study the effect of flow geometry on the PVBT curve.
They showed that the optimum injection rate in radial flow is higher than that of linear flow.
Akanni and Nasr-El-Din (2015, 2016) [11–13] confirmed that gelling acidizing can reduce
the reservoir skin factor by injecting gelling acid, which can consequently be created in the
wormholes. The wormhole models were developed to simulate the wormhole patterns,
which were observed in the experiment and account for physical phenomena of acidizing
such as diffusion, convection, pore dissolution, and rock heterogeneities very well. They
were also extended to radial coordinate or spatially correlated pore distributions (Liu et al.,
2012; Zhang et al., 2014; Mou et al., 2015) [14–16]. Qiu et al. (2018) [17] completed a
series of radial acid injection and linear acid flow experiments, which are conducted at
various injection rates while maintaining the same operating conditions. It is found that
the pore volume to breakthrough values of the linear acid flow case is lower for the radial
acidizing case. QI Dan et al. (2019) [18] established a calculation model of wormhole to
analyze wormholes quantitatively, optimize assumed gelling acid volume, and pumping
rate and obtain the best production rate, which can be used to describe the method of the
fractal. sensitivity analysis of influencing parameters and field acidification calculation was
carried out. L Wang et al. (2019) [19] conducted research on wormhole propagation under
radial flowing conditions in naturally fractured carbonates, natural fracture models were
established by using the Monte Carlo method, and extensive numerical simulation was
conducted to study wormhole characteristics considering the effects of natural fractures.
N.Z. Liu et al. (2016) [20] developed a novel model to simulate wormhole propagation
through VES acidizing. The simulation results showed that the injection velocity of VES
acid was a significant factor for wormhole propagation. They also considered that the
diversion effectiveness of wormhole was determined by the effect of both viscosifying
and wormhole. W Wei et al. (2020) [21] established a two-scale continuum model in a 3D
compositional reservoir simulator considering fractures by EDFM (Embedded Discrete
Fracture Model), which describes convection and dispersion while IPhreeqc is responsible
for the dissolution calculation both in the matrix and on the fracture surface.

N Qi et al. (2019) [22] studied the wormholes of the two-scale continuum model and
pseudo-fracture model considering different fractures, and it is found that the gelling acid
can be concentrated and accelerated penetrating the formation if fractures parallel to the
injection direction. The effect of straight fractures and arc fractures on wormholes was de-
fined. Mustafa et al. (2022) [23] established acid efficiency curves which included different
rock lithologies (chalk, limestone, and dolomite) that react with gelling acid at different
injection rates. The rock surface hardness at ambient pressure was measured by the impulse
hammer technique, and the dynamic Young’s modulus and Poisson ratio were measured
through acoustic measurements at high confining pressures. Ghommem et al. (2015) [24]
developed and validated a predictive model for carbonate acidizing, benchmarked by lin-
ear core flooding experiments, which used the two-scale continuum approach to simulate
gelling acid flowing and wormhole propagation in carbonate rocks. H Yoo et al. (2021) [25]
developed the wormhole propagation behavior to optimize an efficient acid treatment in
carbonate acidizing, which used micro X-ray computerized tomography (CT) to observe
wormhole visualization clearly. It is found that the wormhole diameters were gradually
reduced along with the wormhole propagation axis in all cases, and the wormhole diam-
eter tended to increase according to the higher acid concentration and permeability. A
continuum two-scale model for linear and radial flow geometry was developed to simulate
dissolution patterns. The simulation results showed that the in-situ generated hydrochloric
at low injection rates could create longer wormholes with less pore volume to breakthrough,
due to low face dissolution [26].

Research on gelling acid for reservoir stimulation has focused on middle and deep
carbonate reservoirs and other areas [27–30]. Yuman Wu et al. (2022) [31] proposed a
betaine-based gel used for hydraulic fracturing, it was proved that KCl improves the
temperature resistance and increases the viscosity of the optimized fracturing fluid, and the
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viscoelastic surfactant gel had high shear resistance and high sand-carrying performance.
Fei Ding et al. (2022) [32] developed a PHRO gel that was composed of gelatinizing agents,
crosslinking agents, and crosslinking promoting agents (oxalic acid). The performance
evaluation showed that it has good salt-resistance properties and is suitable for conformance
control of low-temperature and high-salinity reservoirs.

At present, more two-scale models are used. This model can take into account the
physical phenomena such as gelling acid flow, gelling acid rock reaction, and pore structure
change, and can better simulate the gelling acid wormhole morphology obtained in the
laboratory. Double scale refers to the Darcy scale and pore scale, that is, the flow is
calculated on the Darcy scale; gelling acid rock reaction considers the characteristics of
the pore scale, and the reaction speed of gelling acid rock is controlled by specific surface
and mass transfer speed, which is the affected by pore size. Therefore, it is necessary to
establish a model on a pore scale and consider the influence of micro characteristics on flow
and reaction.

2. Results and Discussion
2.1. Effect of Injection Rate on the Morphology of Vermicular Foramen

Displacement (injection rate) is an important parameter in gelling acidizing con-
struction. It is necessary to study the impact of injection rate on wormhole expansion.
Figures 1–8 show the changes in wormhole morphology and displacement differential
pressure under different gelling acid injection rates. Dimensionless differential pressure
is defined as the ratio between the differential pressure at both ends of the core and the
initial value during gelling acid injection, which reflects the flow of gelling acid in the rock
core. Zero dimensionless differential pressure means that the gelling acid breaks through
the core.
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Figure 1. Change of dissolution form and differential pressure with gelling acid injection volume
(gelling acid injection speed 0.0065 cm/min).
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Figure 2. Change of dissolution form and differential pressure with gelling acid injection volume
(gelling acid injection speed 0.0135 cm/min).
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Figure 3. Change of dissolution form and differential pressure with gelling acid injection (gelling
acid injection speed 0.035 cm/min).
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The gelling acid injection rate increased from 0.0065 cm/min to 65 cm/min, and the
model simulation results are shown in Figures 1–8. The gelling acid corrosion morphology
showed the phenomena observed in the experiment: surface corrosion, main wormhole,
branch wormhole, and uniform corrosion. When the gelling acid injection speed is very
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small because the diffusion effect of hydrogen ions in the gelling acid solution is greater
than the convection effect, the hydrogen ions are more likely to diffuse upward (i.e., the
hole wall), which prevents the gelling acid solution from dissolving the wormhole, and
there is less gelling acid reaching the front end of the wormhole. Under this injection speed,
increasing the wormhole size is not conducive to increasing the wormhole length, and the
excessive dissolution of rocks on the well wall may easily cause the collapse of the well
wall. With the increase in gelling acid injection speed, as are shown in Figures 1–8, the
convection effect of hydrogen ions gradually increases, but it is still less than the diffusion
effect. More gelling acid is consumed on the wall of the earthworm hole. However, due to
the enhancement of convection, the dissolution form gradually transits to the earthworm
hole. As shown in Figure 5, when the gelling acid injection speed is relatively moderate,
the diffusion and convection of hydrogen ions are equivalent. More gelling acid reaches
the front end of the wormhole, and the gelling acid reaching the front end of the wormhole
not only completely reacts with the rock to promote the growth of the wormhole, but also
forms the main wormhole. With the further increase in gelling acid injection speed, the
convection effect of hydrogen ions is gradually greater than the diffusion effect. The gelling
acid liquid flows forward before it has time to completely react with the encountered rock.
The wormholes formed due to the influence of heterogeneity are branched. When the
gelling acid injection speed is high (Figure 8), the convection effect of hydrogen ions is
much greater than the diffusion effect. The gelling acid liquid flows into the pores before
consumption, so that live gelling acid can be obtained everywhere, forming a more uniform
dissolution form, and the efficiency of removing pollution is low.

The effect of injection rate on breakthrough volume multiple is shown in Figure 9.
The trend of this curve is similar to that obtained in the laboratory. When the injection
speed gradually increases from the lowest, the breakthrough pore volume multiple first
decreases and then reaches a minimum value. The injection speed corresponding to this
point is called the optimal injection speed and then continues to increase the injection speed,
resulting in the slow increase in breakthrough pore volume multiple. On the left side of the
optimal injection speed, the breakthrough pore volume multiple increases sharply with
the decrease in the injection speed, while on the right side of the optimal injection speed,
the breakthrough pore volume increases slowly with the increase in the injection speed.
In actual construction, it is difficult to obtain the optimal injection speed. For the sake of
safety, try to keep the injection speed on the right side of the optimal injection speed. If it is
on the left, the injection speed fluctuates, which has a great impact on the breakthrough
pore volume. On the right side of the optimal injection velocity, the fluctuation of injection
velocity has little effect on the breakthrough pore volume. The simulation results show
that for this simulation condition, the optimal injection rate is about 1 cm/min, and the
corresponding breakthrough pore volume multiple is about 1.4. The simulation of gelling
acid wormhole expansion under radial conditions shows that it is necessary to select an
appropriate injection rate. The injection rate is too low, the gelling acid solution dissolves
near the wellbore, the action distance is very short, and the plugging removal effect cannot
be achieved. The gelling acid injection speed is too fast, forming uniform corrosion, unable
to form wormhole, and the transformation effect is not good. At the optimal injection
rate, the main wormhole is formed, and the seepage resistance in the wormhole can be
ignored. The wormhole passes through the pollution zone to remove the pollution, which
is equivalent to expanding the wellbore radius and increasing the production capacity.
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Figure 9. Effect of injection rate on breakthrough volume multiple.

2.2. Influence of Gelling Acid Properties

The properties of gelling acid solution mainly include these aspects: viscosity, surface
reaction rate, and hydrogen ion diffusion coefficient. In matrix gelling acidification, to
facilitate injection, low viscosity gelling acid solution is used, and viscosity is not the main
factor. The reaction between carbonate rock and gelling acid is mainly affected by the mass
transfer rate, and the hydrogen ion diffusion coefficient is the controlling factor of the mass
transfer coefficient. Therefore, only the influence of hydrogen ion diffusion coefficient is
analyzed. Figure 10 shows the effect of the hydrogen ion diffusion coefficient on wormhole
morphology, and other conditions are the same. When the diffusion coefficient is low, the
wormhole is fine. With the increase in the diffusion coefficient, the wormhole near the
well becomes thicker, and more gelling acid is consumed near the well; when the diffusion
coefficient is high, there is more dissolution in the wellbore wall and the wormhole is
thicker. When the diffusion coefficient is high, to form the main wormhole, the injection
speed needs to be increased to match the injection speed with the reaction.
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Figure 10. Effect of hydrogen ion diffusion coefficient on wormhole morphology.

2.3. Effect of Pore Space Distribution on Wormhole Morphology

The spatial distribution of pores determines the trend of gelling acid solution and thus
the shape of the wormhole. Cv is the coefficient of variation of porosity. The smaller the Cv is,
the weaker the heterogeneity is, on the contrary, it is about strong. When Cv is 1, more high
porosity places can be seen on the pore distribution map. Figure 11 shows the wormhole
morphology when the heterogeneity gradually becomes stronger from left to right. For
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the mean value case, there are more wormholes, and each wormhole is similar; when the
heterogeneity is strong, the non-uniform competition of gelling acid flow and reaction is
stronger, and the numerical simulation of the main wormhole is less. When Cv = 0.7 and 1,
the simulated wormhole is more like the wormhole observed in the experiment.
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Figure 11. Effect of pore space distribution on wormhole morphology.

Figure 12 shows the wormhole shape when adding holes. When the holes are dis-
persed, the influence of the convection field is small, so it has little influence on the direction
of wormhole. If the holes are continuously distributed, the gelling acid easily flows along
hole distribution area, thus affecting the wormhole shape.
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Figure 12. Effect of hole distribution on wormhole expansion.

Figure 13 left shows the real pore spatial distribution of the core. The figure shows
that the core porosity distribution is not random, but spatial correlation. There is a high
seepage band from the core inlet to the outlet. The figure on the right shows the simulated
gelling acid etching wormhole diagram. In the simulation, the wormhole is formed from
the upper left and gradually expands to the lower right corner along the high seepage zone.
The wormhole path is the distribution area of the high seepage zone, indicating that the
pore space distribution determines the direction of the wormhole.
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2.4. Effect of Perforation on Wormhole Shape

The perforation hole is a macro channel. For the perforation completion wellbore,
the seepage resistance in the hole can be ignored. The injected gelling acid flows to
the formation through the perforation hole and bypasses the perforation coverage area.
Therefore, the perforation completion will have a significant impact on the expansion of
the gelling acid wormhole. Figures 14 and 15 simulate the shape of gelling acid-etched
wormholes under perforation conditions. Wormholes are formed and expanded at the
front end of perforations. When perforating with a 60◦ phase angle, 6 wormholes expand
outward, and when perforating with a 90◦ phase angle, 4 wormholes expand outward. As
the outward radius increases, the overflow cross-sectional area increases, the gelling acid in
the wormhole is filtered around, and the wormhole branches. The more outward, the more
branches; the larger the perforation phase angle is, the less the initial expanded wormhole
digital modulus is, and the wormhole branch increases because the gelling acid fluid loses
more to the surrounding. Through comparative analysis, it is found that the 6 wormholes
with a 60◦ phase angle perforation expand outward shorter than the 4 wormholes with a
90◦ phase angle perforation. The perforation hole is equivalent to a very large wormhole.
The perforation completion is when the wormhole extends forward along the perforation
hole, and the perforation increases the length of the wormhole.
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3. Conclusions

(1) The mathematical model of gelling acid etching wormhole is established, and the
expansion experiment of wormhole in the radial core is carried out with a real core to verify
the correctness of the model.
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(2) The gelling acid injection rate increased from 0.0065 to 65 cm/min, corresponding
to the gelling acid corrosion morphology of wormhole: surface corrosion, main wormhole,
branch wormhole, and uniform corrosion.

(3) Viscosity, surface reaction rate, and hydrogen ion diffusion coefficient have different
effects on gelling acid etching wormhole. Viscosity and surface reaction rate are not the
main factors. The reaction between carbonate rock and gelling acid is mainly affected by
mass transfer rate. The hydrogen ion diffusion coefficient determines the mass transfer
coefficient. When the diffusion coefficient is low, the wormhole is fine; with the increase in
the diffusion coefficient, the wormhole near the well becomes thicker, and more gelling acid
is consumed near the well. When the diffusion coefficient is high, there is more dissolution
in the wellbore wall and the wormhole is thicker. When the diffusion coefficient is high, to
form the main wormhole, the injection speed needs to be increased to match the injection
speed with the reaction.

(4) The spatial distribution of pores determines the trend of gelling acid solution and
thus the shape of the armhole. The smaller the coefficient of variation of porosity is, the
weaker the heterogeneity is, and the more the numerical models of wormholes are, and
the wormholes are similar. When the heterogeneity is strong, the non-uniform competition
of gelling acid flow and reaction is stronger, and the numerical simulation of the main
wormhole is less.

(5) Perforation completion has a significant impact on the expansion of gelling acid
etching wormhole. The wormhole extends forward along the perforation hole, and perfora-
tion increases the length of the wormhole. When 60◦ phase angle perforation, 6 wormholes
expand outward, and when 90◦ phase angle perforation, 4 wormholes expand outward.
As the outward radius increases, the overflow cross-sectional area increases, the gelling
acid in the wormhole is filtered around, and the wormhole branches. The more outward,
the more branches. The larger the perforation phase angle is the less the initial expanded
wormhole digital modulus is, and the wormhole branch increases.

4. Materials and Methods

Two-scale continuum model was considered to simulate acid flow, acid-rock reaction,
porosity change, and wormhole expansion during acidizing of carbonate reservoirs. The
detail of the model has been discussed by Panga et al. (2005). The model of Gelling Acid
Etching Wormhole that we established is considering the influence of pore microscopic
characteristics on acid flow and acid rock reaction. It is considered a natural transition
between porous media flow and Stokes free flow in wormholes; fractures are influenced by
pressure and velocity fields.

4.1. Continuity Equation

According to the fluid mass balance, inflow term-outflow term + source-sink term = cu-
mulative term. As shown in Figure 16, the micro hexahedron unit is taken in the stratum,
and the components of mass velocity of point P in unit on the three coordinates are ρux,
ρuy and ρuz, then the mass flow of point P′ in the x-direction is:

ρux −
∂(ρux)

∂x
dx
2

The mass flow flowing in through the face of P′ in dt time is:

[ρux −
∂(ρux)

∂x
dx
2
]dydzdt

Similarly, the mass flow of the plane where P” is located in the x-direction is

[ρux +
∂(ρux)

∂x
dx
2
]dydzdt
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Then the mass flow difference of hexahedron flowing in and out from x-direction in dt
time is

− ∂(ρux)

∂x
dxdydzdt

Similarly, the mass flow difference of inflow and outflow from y and z directions in dt
time is

−∂(ρuy)

∂y
dxdydzdt−∂(ρuz)

∂z
dxdydzdt
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Then the total mass flow difference of inflow and outflow in the hexahedron in dt
time is

− [
∂(ρux)

∂x
+

∂(ρuy)

∂y
+

∂(ρuz)

∂z
]dxdydzdt

The total change of fluid mass in dt time is

∂(ρφ)

∂t
dxdydzdt

where, ρ is the fluid density, kg/m3; φ is formation porosity, %.
Then the total mass change of hexahedron in dt time equals to the mass difference

between inflow and outflow of hexahedron in dt time:

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
+

∂φ

∂t
= 0 (1)

The above formula is the continuity equation of incompressible fluid seepage in
porous media. If the z-direction is ignored and the above formula is converted to the polar
coordinate system, the two-dimensional continuity equation can be obtained as:

1
r

∂(rur)

∂r
+

1
r

∂uθ

∂θ
+

∂φ

∂t
= 0 (2)

where, ur and uθR are speed in direction r and θ direction, m/s.

4.2. Equation of Motion

The motion equation is the Darcy seepage equation, and the motion equation in the
polar coordinate system is as follows:

(ur, uθ) = −
K
µa

(
∂p
∂r

,
1
r

∂p
∂θ

) (3)
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where, K is the rock permeability, µm2; µa is gelling acid viscosity, mPa·s; p is reservoir
pressure, MPa.

4.3. Gelling Acid Distribution Equation

The flow of gelling acid in porous media is affected by both convection and diffusion.
Similar to the derivation of the continuity equation, suppose a hexahedral element, the
mass flow caused by diffusion at point P is ui, and then the x-direction passes through P′

ui −
∂ui

∂x
dx
2

The mass flow of the outflow unit through the face of P” is:

ui +
∂ui

∂x
dx
2

Then the mass flow difference of inflow and outflow units in the x direction is:

− ∂ui

∂x
dx

Similarly, the mass flow difference of inflow and outflow units in y and z directions is:

−∂uj

∂y
dy,−∂uk

∂z
dz

The mass flow of point P caused by convection in the x-direction is uxCf, and the mass
flow difference in the X direction through the P′ and P′′ planes is:

− ∂(uxCf)

∂x
dx

where, Cf is gelling acid concentration, mol/L.
Similarly, the mass flow difference in the y, z direction of inflow and outflow unit is:

−∂(uyCf)

∂y
dy,−∂(uzCf)

∂z
dz

It can be seen from the above that the mass change caused by convection and diffusion
in dt time is:

− (
∂ui

∂x
+

∂uj

∂y
+

∂uk
∂z

)dxdydzdt− [
∂(uxCf)

∂x
+

∂(uyCf)

∂y
+

∂(uzCf)

∂z
]dxdydzdt

The mass change caused by convection-diffusion in dt time must be equal to the total
mass change in dt time:

− (
∂ui

∂x
+

∂uj

∂y
+

∂uk
∂z

)− [
∂(uxCf)

∂x
+

∂(uyCf)

∂y
+

∂(uzCf)

∂z
] =

∂(φCf)

∂t

According to Fick’s law and considering the effective diffusion in porous media, the
above formula can be written as:

∇(φDe · ∇Cf)−∇(UCf) =
∂(φCf)

∂t
(4)

where, De is the effective diffusion coefficient of the gelling acid solution, m2/s.
Due to the gelling acid rock reaction, the quality change caused by the chemical

reaction must be considered. Here, assuming that the gelling acid flow to the wall of porous
media completely reacts with the rock, the gelling acid concentration on the wall of the
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pore can be regarded as 0, and the gelling acid concentration in the pore is the original
gelling acid concentration. In this way, there is a concentration gradient from the center of
the pore to the wall of the pore. The size of the concentration gradient depends on the mass
transfer rate from the fluid mass transfer to the fluid-solid surface and the reaction rate on
the pore surface. If the reaction speed is less than the mass transfer speed, the concentration
gradient can be ignored. At this time, the speed of the whole gelling acid rock reaction
is controlled by the reaction speed of the liquid-solid interface. When the reaction rate is
greater than the mass transfer rate, a large concentration gradient appears in the pores,
which can be described by a simple concentration difference, as follows:

kc(Cf − Cs) = ksCs = R(Cs) (5)

where, kc is the mass transfer coefficient of the gelling acid solution, m/s; Cs is gelling
acid concentration on liquid-solid surface, mol/L; ks is the gelling acid rock reaction rate
constant, m/s.

Therefore, the mass change caused by a reaction can be expressed as:

kcav(Cf − Cs)

where, av is specific surface area, m−1.
Bring the above formula into Equation (4):

∇(φDe · ∇Cf)−∇(UCf)− kcav(Cf − Cs) =
∂(φCf)

∂t
(6)

The above formula is the gelling acid mass balance equation considering convection,
diffusion, and reaction, which is converted to the polar coordinate system:

∂(φCf)

∂t
+

1
r

∂

∂r
(rurCf) +

1
r

∂

∂θ
(uθCf)

=
1
r

∂

∂r
(rφDer

∂Cf
∂r

) +
1
r

∂

∂θ
(

φDeθ

r
∂Cf
∂θ

)− kcav(Cf − Cs)

(7)

where, Der and Deθ are, respectively, effective diffusion coefficients in the r and θ direc-
tion, m2/s.

Equation (5) can be converted into the following formula:

Cs =
Cf

1 + ks/kc
(8)

ks << kc, when the reaction rate constant is much less than the mass transfer coefficient,
Cs approximately equal to Cf; ks >> kc, when the reaction rate constant is much greater than
the mass transfer coefficient, Cs approximately equal to 0. Since the reaction rate constant
is approximately determined for a specific gelling acid solution, the control conditions of
the whole gelling acid rock reaction are determined by the mass transfer coefficient. For
porous media, due to the existence of heterogeneity and gelling acid rock reaction, the mass
transfer coefficient also changes with time and space.

4.4. Model Validation

To verify the correctness of the model, it is necessary to make some experiments to
simulate, and the simulation results are compared with the experimental results to verify
the model. Wormhole expansion experiments are conducted in radial cores using real
formation cores obtained from carbonate rock in Longwangmiao zone Sichuan of China,
and the experiments’ results are shown in Figure 17. The data required in the simulation are
taken from the experimental data of tardy et al. [33], as is shown in Figure 18, for example,
the outer diameter and inner diameter of the core are 7.04 cm and 0.32 cm, respectively.

182



Gels 2022, 8, 470Gels 2022, 8, x FOR PEER REVIEW 15 of 17 
 

 

 

Figure 17. Simulated etching wormhole morphology obtained by CT scanning the rock end face 

gelled acid treated. 

 

Figure 18. Radial wormhole morphology (adapted with permission from Ref. [27]. 2007, copyright 

Tardy et al.) 

Author Contributions: M.W.: Conceptualization, Funding acquisition, Project administration, Re-

sources, and Software. W.Z.: Conceptualization, Funding acquisition, Project administration, Meth-

odology. S.L.: Data curation, Formal analysis, Methodology, Writing—original draft and Writing—

review and editing. W.W.: Investigation, Methodology, Software and Visualization. All authors 

have read and agreed to the published version of the manuscript. 

Funding: This work was supported by the support of the National Natural Science Foundation of 

China: Study on dynamic characteristics of methane/carbon dioxide in shale heterogeneous reser-

voir under multi-field coupling (Program No. 41772150). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data are contained within the article. 

Acknowledgments: The authors are grateful to Xuangang Meng (Yanchang Oilfield Co., Ltd.) for 

his modifications, and as well as reviewers and editors for careful review of this manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Hung, K.M.; Hill, A.D.; Sepehrnoorl, K. A mechanistic model of wormhole growth in carbonate matrix acidizing and acid frac-

turing. J. Pet. Technol. 1989, 41, 59–66. 

2. Gdanski, R. A fundamentally new model of acid wormhole in carbonate. In Proceedings of the SPE European Formation Dam-

age Conference, The Hague, The Netherlands, 31 May–1 June 1999; Paper SPE-54719-MS. 

3. Fredd, C.N.; Fogler, H.S. Influence of transport and reaction on wormhole formation in carbonate porous media. AIChE J. 1998, 

44, 1933–1949. 

4. Kang, Q.J.; Zhang, D.X.; Chen, S.Y.; He, X. Lattice Boltzmann simulation of chemical dissolution in porous media. Phys. Rev. E 

2002, 65, 036318. 

Experiment 1 Experiment 2 Experiment 1 Experiment 2

Spatial correlation distribution random distribution

Porosity

Experiment 1 Experiment 2

Figure 17. Simulated etching wormhole morphology obtained by CT scanning the rock end face
gelled acid treated.

Gels 2022, 8, x FOR PEER REVIEW 15 of 17 
 

 

 

Figure 17. Simulated etching wormhole morphology obtained by CT scanning the rock end face 

gelled acid treated. 

 

Figure 18. Radial wormhole morphology (adapted with permission from Ref. [27]. 2007, copyright 

Tardy et al.) 

Author Contributions: M.W.: Conceptualization, Funding acquisition, Project administration, Re-

sources, and Software. W.Z.: Conceptualization, Funding acquisition, Project administration, Meth-

odology. S.L.: Data curation, Formal analysis, Methodology, Writing—original draft and Writing—

review and editing. W.W.: Investigation, Methodology, Software and Visualization. All authors 

have read and agreed to the published version of the manuscript. 

Funding: This work was supported by the support of the National Natural Science Foundation of 

China: Study on dynamic characteristics of methane/carbon dioxide in shale heterogeneous reser-

voir under multi-field coupling (Program No. 41772150). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data are contained within the article. 

Acknowledgments: The authors are grateful to Xuangang Meng (Yanchang Oilfield Co., Ltd.) for 

his modifications, and as well as reviewers and editors for careful review of this manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Hung, K.M.; Hill, A.D.; Sepehrnoorl, K. A mechanistic model of wormhole growth in carbonate matrix acidizing and acid frac-

turing. J. Pet. Technol. 1989, 41, 59–66. 

2. Gdanski, R. A fundamentally new model of acid wormhole in carbonate. In Proceedings of the SPE European Formation Dam-

age Conference, The Hague, The Netherlands, 31 May–1 June 1999; Paper SPE-54719-MS. 

3. Fredd, C.N.; Fogler, H.S. Influence of transport and reaction on wormhole formation in carbonate porous media. AIChE J. 1998, 

44, 1933–1949. 

4. Kang, Q.J.; Zhang, D.X.; Chen, S.Y.; He, X. Lattice Boltzmann simulation of chemical dissolution in porous media. Phys. Rev. E 

2002, 65, 036318. 

Experiment 1 Experiment 2 Experiment 1 Experiment 2

Spatial correlation distribution random distribution

Porosity

Experiment 1 Experiment 2

Figure 18. Radial wormhole morphology (adapted with permission from Ref. [27]. 2007, copyright
Tardy et al.).

Different porosity distributions will produce different wormhole expansion patterns.
Although random porosity distribution is mostly used to simulate in the literature, a
large number of experimental results show that the porosity value of carbonate rocks
conforms to the normal distribution law of spatial correlation. To study the influence of
different porosity distribution laws on wormhole expansion, two porosity distributions
are used in the simulation: random distribution porosity and spatially related porosity
distribution. Figure 3 shows the wormhole morphology under the spatial correlation
distribution and random distribution of porosity. It can be seen that although only one main
wormhole breaks through the core, the dissolution forms of different porosity distributions
are quite different. For the spatial correlation porosity distribution, there is only one
relatively developed wormhole in the rock core, while other wormholes are relatively
short and relatively undeveloped. For random porosity distribution, there are several
relatively developed wormholes in the rock core at the same time. This is because the
heterogeneity of spatially correlated porosity distribution is stronger than that of random
porosity distribution. When the gelling acid is injected into the highly heterogeneous rock
core, the gelling acid will produce uneven competition at the inlet and tend to enter the
hole with the lowest resistance to produce wormholes. Once the wormhole is generated,
most of the gelling acid will enter the wormhole, and then the main wormhole will be
generated, resulting in the lack of development in other later-formed wormholes. For
randomly distributed porosity, gelling acid liquid produces uniform competition at the
inlet, resulting in multiple wormholes of the same size. Compared to the experimental
results of Tardy et al., it is obvious that the wormhole morphology under the spatially
correlated porosity distribution is similar to the experimental results, which verifies the
correctness of the model.
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