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This editorial explores the recent advancements in the field of smart Electric Vehicle
(EV) charging approaches, particularly in the context of demand response. As EVs become
increasingly integrated into the power grid, significant challenges arise in maintaining
the balance between supply and demand. These challenges require the development of
innovative charging strategies that not only offer energy flexibility but also predict and
optimize the charging behaviors of EVs connected to charging infrastructure.

Smart charging strategies, including unidirectional (V1G) and bidirectional (V2G)
approaches, offer a means to better manage demand peaks, enhance grid reliability, and
improve power quality. According to [1], the strategic placement of EV charging stations is
crucial for optimizing grid operations, urban planning, and customer convenience. This
study underscores the importance of location analysis in maximizing accessibility while
minimizing the stress on local grids.

Incorporating renewable energy sources into EV charging infrastructure is equally
critical. Solar photovoltaic (PV) systems, for instance, can support local grid stability
while reducing reliance on fossil fuels. Reference [2] illustrates the effectiveness of smart
charging technologies in achieving peak shaving and cost savings when integrated with PV
systems. Bidirectional charging, in particular, enhances these benefits, achieving up to 8.1%
additional cost efficiency compared to unidirectional systems. These findings emphasize
the role of advanced energy management strategies in fostering sustainable urban mobility.

Moreover, innovative planning approaches are required to address the growing de-
mand for EV charging infrastructure. Reference [3] presents an optimization model for
reconfigurable EV chargers, which reduces both investment and operational costs in large
car parks while meeting diverse energy needs. Such strategies highlight the potential of
flexible and scalable solutions to adapt to varying energy demands across different regions.

1. Advanced Control and Optimization Techniques

The role of advanced control strategies and optimization algorithms in EV integration
cannot be overstated. These technologies ensure the efficient operation of EVs and their
seamless interaction with the grid. Reference [4] explores how EVs can contribute to grid
reliability by compensating for the inherent variability of renewable energy sources, such
as wind and solar. By leveraging EV batteries as distributed energy resources, grids can
achieve greater stability even under fluctuating conditions.

Another critical aspect is improving the energy efficiency of EVs through real-time
control. Nonlinear Model Predictive Control (NMPC), as discussed in [5], provides a
practical framework for optimizing energy consumption. By adapting to dynamic driving
profiles and environmental conditions, NMPC extends EV range and reduces overall energy
use. These advancements are instrumental in enhancing the practicality and affordability
of electric mobility.

Energies 2024, 17, 6273. https://doi.org/10.3390/en17246273 https://www.mdpi.com/journal/energies1



Energies 2024, 17, 6273

However, the increasing use of EVs also raises concerns about power quality. Har-
monics generated by multiple chargers operating simultaneously can affect grid stability
and equipment performance. Reference [6] investigates these issues and provides insights
into mitigating the impact of harmonic distortion. By addressing these technical challenges,
researchers are paving the way for a more resilient and reliable charging ecosystem.

2. Energy Markets and Peer-to-Peer Transactions

Beyond technical optimization, integrating EVs into energy markets presents an
opportunity for innovative business models. Reference [7] examines advanced DC-DC
converters, which enable efficient energy storage and transfer, enhancing the operational
capabilities of EV charging systems. Meanwhile, accurate battery management systems, as
highlighted in [8], are crucial for ensuring transparency in capacity estimation and overall
system performance.

Peer-to-peer (P2P) energy trading further expands the potential of EVs in modern
energy systems. Reference [9] highlights the benefits of P2P transactions in industrial multi-
energy hubs, demonstrating how these systems can enhance flexibility and reduce risk. By
allowing decentralized energy trading among EV users, renewable energy generators, and
other stakeholders, these models foster a collaborative approach to energy management
that benefits all participants.

3. Enhancing Community Resilience

The integration of EVs into local energy systems is not only about efficiency but also
resilience. During grid disturbances or natural disasters, bi-directional EV operations
can provide critical backup power to residential communities. Reference [10] proposes
a resiliency-sensitive decision-making mechanism that incorporates fuel-cell EVs in V2G
mode. This approach ensures energy stability and supports local grids during abnormal
conditions, offering a lifeline for communities in crisis.

Moreover, distributed energy resources, such as solar panels and battery storage
systems, can work synergistically with EVs to create self-sustaining energy ecosystems. By
leveraging these technologies, communities can reduce their dependence on centralized
grids and enhance their ability to recover from disruptions.

4. Remarks

The integration of EVs into power grids represents a pivotal moment in the transition
toward a sustainable energy future. Through smart charging strategies, advanced opti-
mization techniques, and innovative market models, EVs can transform energy systems
to be more efficient, resilient, and environmentally friendly. While challenges remain—
particularly in ensuring power quality and managing infrastructure demands—ongoing
research and technological advancements continue to address these obstacles.

Ultimately, the widespread adoption of EVs and their seamless integration into the
grid depend on a holistic approach that balances technical innovation, market mechanisms,
and community resilience. As evidenced by the studies cited, progress in this field not
only enhances the viability of electric mobility but also contributes to a cleaner and more
sustainable world.
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Abstract: The trend regarding providing more distributed solutions compared to a fully centralized
operation has increased the research activities conducted on the improvement of active regional
communities in the power system operation in the last decades. In this study, an energy management-
oriented decision-making mechanism for residential end-users based local community is proposed
in a mixed-integer linear programming context. The proposed concept normally includes inflexible
resiliency-sensitive load–demand activated as flexible during abnormal operating conditions, fuel
cell electric vehicles (FCEVs) fed via the hydrogen provided by an electrolyzer unit connected to the
residential community and capable of acting in vehicle-to-grid (V2G) mode, common energy storage
and photovoltaic (PV) based distributed generation units and dispersed PV based generating options
at the end-user premises. The combination of the hydrogen–electricity chain with the V2G capability
of FCEVs and the resiliency-sensitive loads together with common ESS and generation units provides
the novelty the study brings to the existing literature. The concept was tested under different case
studies also with different objective functions.

Keywords: common energy storage systems; distributed generation units; energy management;
fuel cell electric vehicles; resiliency-sensitive loads; vehicle-to-grid

1. Introduction

1.1. Motivation and Background

The environmental issues have already necessitated many changes in electric power
system operation from different points of view. On the one hand, the introduction of
new types of electric loads, such as electric vehicles (EVs), and the integration of non-
dispatchable renewable generation units in the last decades have improved the challenge of
sustaining the demand–supply balance in different operating conditions. On the other hand,
abnormal climatic events due to dramatically changing environmental conditions may
also lead to serious additional challenges for electric power system operation. Hurricanes,
earthquakes, heavy snow, etc., have shown high impacts on the physical structure of the
electric power system of different regions in the world. Thus, considering the resiliency of
electric power systems to such events is an operational challenge for electric power systems
with increasing importance [1].

Many solutions have been proposed in this manner to enhance the power system
operation under the impacts of environmental concerns driven by new technologies as well
as environmental impacts based on new operating requirements. These solutions are gener-
ally considered within the context of smart grid technologies, ensuring additional possible

Energies 2022, 15, 8729. https://doi.org/10.3390/en15228729 https://www.mdpi.com/journal/energies4
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benefits, especially for enabling a more flexible grid structure [2]. The vehicle-to-X opera-
tion option enables large amounts of EVs to act as a large-scale source during long-term
outages, uneconomical operating periods, etc. [3]. Additionally, demand-side flexibility
and different energy storage options can also further be active grid-edge technologies as
vital parts of a more flexible electric power system structure [4,5].

The mentioned attempts to enable a smarter grid also have improved the utilization
of more distributed solutions instead of a centrally operated structure. Therefore, for
smaller communities, each with separate distributed generation, energy storage, multi-type
energy utilization, flexible load, etc., options have been implemented even in real-world
pilot examples in different regions of the world. Here, especially providing residential
communities with or without grid connection enhanced by distributed energy management
structures has drawn significant attention in the aforementioned applications.

1.2. Literature Overview

The literature in this manner consists of a vast number of studies dealing with specific
or combined parts of the residential communities’ combined energy management problem.
Coordinated management of residential end-users considering varying price signals as
well as grid constraints was proposed in [6] with the opportunities of photovoltaic (PV)
based distributed generation, an energy storage system (ESS) and load rescheduling based
flexibility options at the end-user premises. A control strategy, also with the development of
proper power electronics interfaces, was presented in [7] for a multi-household residential
area, including sole battery-based EVs (SBEVs), PV and ESS units at each end-user’s
premise. A residential microgrid with multiple renewable common generation options
as well as conventional generation and ESS units was considered both from planning
and operational points of view in [8]. A centralized operation scheme for a residential
community composed of end-users, each equipped with PV, ESS, vehicle-to-grid (V2G)
capable EVs and flexible loads, was proposed in [9].

The energy management of different residential end-users with varying operational
possibilities such as distributed generation, ESS, EV, etc., availability was considered this
time in a hierarchical and distributed manner consecutively in [10,11]. Another hierarchical
study was given in [12] considering the flexibility of thermostatically controllable loads of
end-users combined with common ESS (CESS) units. A combined centralized–decentralized
management strategy for a residential neighborhood was presented in [13], where each
household was equipped with PV, ESS and EVs, and the general management scheme also
included the inclusion of a market operator. The study of Ancona et al. [14] considered
the optimum design and operation problem for a residential community, including a PV-
based common generation option together with the availability of a dual energy storage
option based on a combined electrolyzer–hydrogen tank-fuel cell (FC) structure and a
battery-based CESS. A game-theoretic approach-based energy management concept was
proposed in [15] for multiple residential communities, including common PV and wind
turbine-based generation and ESS units as well as flexible loads.

There are numerous more studies on the centralized or decentralized energy man-
agement of residential communities. In order to direct for more compact evaluations,
a detailed review of community-level coordination of residential end-users considering
demand-side flexibility options in a recent study in [16] can be referred to. Additionally,
the role of optimization-based decision-making mechanisms for residential communities’
energy management problems was discussed in detail in another recent study [17].

The studies given in [6–15] and more cited in [16,17] neglected the simultaneous avail-
ability of CESS and distributed generation units as well as the vehicle-to-grid (V2G) supply
of possible commonly connected EVs, while none of the mentioned studies considered the
possibility of the resiliency-sensitive loads in the residential community.

The study in [18] considered the resiliency conditions as mimicking a grid-outage
event for a residential community, including SBEVs, load flexibility and common PV unit.
Another study in [19] considered a residential neighborhood operation in which each
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residential end-user was equipped with a PV-based distributed generation option, and
the common area of the residential community was equipped with V2G capable common
EV parking lot and a large-scale ESS unit. The study in [20] considered multiple types of
storage options (heat and electricity) for a multi-energy community, including a common
PV, common ESS and V2G enabled SBEVS, as well as demand side flexibility. However, the
study in [18] did not consider a common ESS option, while the study in [19,20] neglected the
flexibility from the demand side arising during resiliency-challenging operational conditions.
Additionally, the studies in [18–20] did not consider the possible multi-energy flow options
(electricity and hydrogen) in which FC-based EVs (FCEVs) could act in V2G mode instead
of SBEVs ensuring a closed hydrogen chain from hydrogen production via an electrolyzer
unit step to the last step of FCEVs acting also as a source. Even a more combined structure
compared to [15,16,20] was proposed in [21], including common ESS and PV-based common
generation units, pricing-based indirect demand flexibility, multiple types of EVs (FCEVs
and SBEVs), and V2G availability for SBEVs. However, the resiliency-based conditions
and the relevant energy management system behavior to utilize the relevant demand-side
flexibility options via direct load control were not considered in [21].

1.3. Content and Contributions

In this study, a resiliency-sensitive decision-making tool for a residential community
is proposed in a mixed-integer linear programming (MILP) framework. The mentioned
residential community includes a common PV-based generation unit, a CESS, hydrogen
production and storage-connected FC-based electrified transportation solutions in the com-
mon usage area. During outages caused by abnormal operating conditions, the normally
inflexible residential loads become partially flexible by curtailment of defined resiliency-
sensitive loads. Additionally, FCEVs may also act as generating units in both normal and
abnormal operating conditions to enhance the supply capability and economic operation
of the residential community.

The contributions of the proposed study are two-fold also compared to the detailed
taxonomy given in Table 1:

Table 1. The taxonomy of the relevant literature.

Reference
Common
Distributed
Generation

Common ESS Additional ESS
Demand Side
Flexibility

Resiliency EV Type V2X

[6] X X X √ X X X

[7] X X X X X SBEV X

[8] √ √ X X X X X

[9] X X X √ X SBEV √

[10] X X X √ X SBEV √

[11] X X X X X X X

[12] X √ X √ X X X

[13] X X X X X SBEV √

[14] √ √ √ X X X X

[15] √ √ X √ X X X

[18] √ X X √ √ SBEV X

[19] X √ X X X SBEV √

[20] √ √ √ √ X SBEV √

[21] √ √ √ √ X SBEV and
FCEV

√

This study √ √ √ √ √ FCEV √
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• The combination of dual-side FCEVs integration together with common distributed
generation, CESS and multi-energy chain (hydrogen and electricity) availability is
considered in such a structure;

• The resiliency conditions are considered a sub-decision period by enabling a flexible
portion in a normally inflexible residential load profile leading to a resiliency-sensitive
decision-making mechanism.

1.4. Organization of the Paper

The rest of this paper is organized as follows. The methodology is described in
Section 2. The obtained results are presented and discussed in Section 3. Finally, concluding
remarks are presented in Section 4.

2. System Description and Methodology

In the proposed concept, the residential community includes a common PV-based
generation unit and an electrolyzer system, as well as a common hydrogen storage option.
Here, FCEVs of household owners are assumed to be parked in a common area in the
community. The hydrogen needs of the mentioned FCEVs are supplied by the common
hydrogen storage system. Additionally, each household in the residential community
owns a PV-based distributed generation unit. Moreover, apart from the grid failure-based
resiliency conditions, the load of each household is totally inflexible. However, only for
abnormal operating conditions, each household has resiliency-sensitive loads to be curtailed
if necessary. Moreover, FCEVs can also support the residential community power needs
both in normal and abnormal operating conditions.

The objective function in Equation (1) consists of two parts that can be activated
separately or simultaneously. The first part, defined as the cost, comprises the difference
between the economic correspondence of the energy exchanges between the upstream grid
and the residential community, as shown in (2). The second part, defined as the curtailment,
represents the total energy value curtailed under abnormal operating conditions from the
resiliency-sensitive loads of households, as depicted in (3).

minA · Cost + B · Curtailment (1)

Cost = ∑
t

(
PUG2RC,t · ΔT · τbuy,t − PRC2UG,t · ΔT · τsell,t

)
(2)

Curtailment = ∑
t

∑
n

∑
h

((
Prs−load−pro f ile,h,n,t − Prs−load,h,n,t

)
· ΔT

)
(3)

The power balance in (4) corresponds to the contributions of the total reverse power
flow from the households to the residential community, the power drawn from the upstream
grid by the residential community, the power production of common PV unit, discharging
power of CESS unit and the total discharging based power contribution of FCEVs on the
one hand, and the total power transfer to households from the residential community, the
possible reverse power flow from the residential community to the upstream grid, charging
power of CESS unit and the power directed to the electrolyzer unit for hydrogen production
on the other hand.

PH2RC−tot,t + PUG2RC,t + PCPVU,t + PCESS−disc,t + PFCEV−disch−tot,t
= PRC2H−tot,t + PRC2UG,t + PCESS−ch,t + Pelec,t, ∀t

(4)

The logical constraints in (5)–(12), respectively, hinder the simultaneous occurrence
of the bidirectional power exchanges, respectively, for the upstream grid and residential
community in CESS charging and discharging conditions, the households, residential
community and the electrolyzer and FCEV discharging operation.

PUG2RC,t ≤ N · u1,t · ugrid,t, ∀t (5)

7
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PRC2UG,t ≤ N · (1− u1,t) · ugrid,t, ∀t (6)

PCESS−disc,t ≤ N · u2,t, ∀t (7)

PCESS−ch,t ≤ N · (1− u2,t), ∀t (8)

PH2RC−tot,t ≤ N · u3,t, ∀t (9)

PRC2H−tot,t ≤ N · (1− u3,t), ∀t (10)

PFCEV−disch−tot,t ≤ N · u4,t, ∀t (11)

Pelec,t ≤ N · (1− u4,t), ∀t (12)

Equations (13)–(15) represent the model for the CESS unit. Here, the state-of-energy
variation in the CESS is given by (13), considering the discharging and charging power
variations as well as efficiencies and time granularity. Equation (14) initiates the state-of-
energy value of the CESS at the starting time while the mentioned state-of-energy value is
lower and upper bounded by (15).

SoECESS,t = SoECESS,t−1 + PCESS−ch,t · ΔT · CE− PCESS−disc,t · ΔT
DE

, ∀t > 1 (13)

SoECESS,t = SoECESS−init, i f t = 1 (14)

SoECESS−min ≤ SoECESS,t ≤ SoECESS−max, ∀t (15)

The local power balance in the residential community, together with the bi-directional
power exchanges with the upstream grid, is ensured by (16). The power balance within each
household is given in (17), while (18) presents the breakdown of the residential demands
into totally inflexible and resiliency-sensitive loads. The mentioned resiliency-sensitive
loads are also inflexible during normal operating conditions and are just activated during
abnormal operating conditions. The change in power profile in such loads is represented by
(19). The activation of these loads is only possible during abnormal operating conditions,
ensured by (20).

PH2RC−tot,t + ∑
h

Pbuy,h,t = PRC2H−tot,t + ∑
h

Psell,h,t, ∀t (16)

PPV,h,t + Pbuy,h,t = Psell,h,t + Ptotalload,h,t, ∀h, t (17)

Ptotalload,h,t = Pin f lexload,h,t + ∑
n

Prs−load,h,n,t, ∀t (18)

Prs−load,h,n,t = kh,n,t · Prs−load−pro f ile,h,n,t, ∀h, n, t (19)

kh,n,t ≤ ugrid,t, ∀h, n, t (20)

The calculation of hydrogen amount produced by the power value directed to the
electrolyzer unit is calculated by (21). The hydrogen amount variation within the main
hydrogen tank of the residential community is represented in (22), considering the produced
hydrogen and the hydrogen demand of the FCEVs. The hydrogen amount in the main tank
is initiated as in (23) and bounded by lower and upper limits as in (24).

mH2−CS−prod,t = Pelec,t · aH2−P, ∀t (21)

mH2−CS,t = mH2−CS,t−1 + mH2−CS−prod,t −∑
k

mFC−inj,k,t, ∀t > 1 (22)

mH2−CS,t = mH2−CS−init, i f t = 1 (23)

mH2−CS−min ≤ mH2−CS,t ≤ mH2−CS−max, ∀t (24)

The total discharging power gathered by FCEVs is calculated as in (25), while the
hydrogen consumption at each FCEV regarding this discharging operation is presented as
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in (26). The supplied, as well as consumed (with VG2 operation), hydrogen values result in
a hydrogen amount variation in each FCEV’s hydrogen tank depicted in (27). The hydrogen
value at the hydrogen tank of each FCEV is initiated by (28) and lower-upper bounded by
(29). Finally, each FCEV is ensured to leave the residential community with a hydrogen
level greater than a predefined desired value as in (30).

PFCEV−disch−tot,t = ∑
k

PFCEV−disch,k,t, ∀t (25)

mH2−cons,k,t = PFCEV−disch,k,t · aH2−P, ∀k, t (26)

mH2,k,t = mH2,k,t−1 + mFC−inj,k,t −mH2−cons,k,t, ∀k, t > Ta,k (27)

mH2,k,t = mH2−init,k, ∀k, t = Ta,k (28)

mH2−min,k ≤ mH2,k,t ≤ mH2−max,k, ∀t (29)

mH2,k,t ≥ mH2−des,k, ∀k, t = Td,k (30)

3. Test and Results

The problem of the resiliency-sensitive energy management strategy of a residential
community with FCEVs is created through the MILP approach. The proposed structure is
tested with the GAMS v.24.1.3 software and CPLEX v.12 solver. Input data and simulation
results are presented in the subsections of this section, respectively.

3.1. Input Data

In this study, a community consisting of 40 individual dwellings with different num-
bers of residents was considered. It was assumed that only one person lives in 5 of these
dwellings, 2 people live in 9 of the dwellings, 3 people live in 15 of the dwellings and
4 people live in 11 of the dwellings. It contains two group loads, inflexible and resiliency-
sensitive in dwellings. While inelastic loads are priority loads that always need energy,
flexible loads are in the category of interruptable loads. It should be underlined that the
loads are different for each house. The inelastic load data for dwelling3 (single person),
dwelling9 (two residents), dwelling24 (three residents) and dwelling39 (four residents) are
presented in Figure 1. Resiliency-sensitive loads in dwellings are iron, kettle, TV, washing
machine, vacuum cleaner and tumble dryer. Data on expected resiliency-sensitive load
usage for some of the selected dwellings (dwelling15—3 residents and dwelling39—4
residents) are presented in Figure 2. In addition, the expected total load–demand data of
the residential community are presented in Figure 3 when there is no power outage.

Figure 1. Inflexible load–demand of dwelling3, dwelling9, dwelling24 and dwelling39.
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Figure 2. Resiliency-sensitive load–demand of dwelling15 and dwelling39.

Figure 3. Total expected load–demand of residential community without power outage.

It is assumed that the residential community purchases energy from the electric power
system and sells electrical energy to the grid. For electricity purchasing and electricity
selling, the actual data of the Turkish electricity market dated 22 May 2022 in Figure 4 are
used in Turkish Liras (TL)/kWh [22]. The community is considered to have a common PV
power generation system. The power data produced using the real global radiation data of
the same day are presented in Figure 5. When the power generation data were examined, it
could be observed that the global radiation data belonged to a cloudy day. Additionally, in
each house, there is a PV system that produces 1/25 of the common PV system.

Figure 4. Electricity price data.
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Figure 5. Power generated from common PV system in the residential community.

It is assumed that there are 40 FCEVs in the community. Data on the hydrogen molar
amount in the hydrogen tanks at the time each FCEV arrives at the residential community
and desired hydrogen molar amounts of FCEVs are shown in Figure 6. Additionally, it
should be stated that the tank volume of FCEVs is 5.9 kg, while aH2−P is taken as 1.25× 10−4

(considering time resolution). The hydrogen molar amount for hydrogen exchange in
FCEVs is determined as 2 kg for one minute period.

Figure 6. Initial and desired hydrogen molar amounts of FCEVs.

Data on the arrival and departure times of 40 FCEVs are presented in Table 2. Addi-
tionally, the technical characteristics of CESS owned by the community are presented in
Table 3, while the features of the common hydrogen storage unit are given in Table 4. It
should also be stated that the common hydrogen storage system is equal to its initial value
in the final period. The maximum power consumption of the electrolyzer is 100 kW. The
time period in the study is determined as one minute.

Table 2. Data of FCEV behaviors.

EV No. * DT–AT EV No. * DT–AT EV No. * DT–AT EV No. * DT–AT EV No. * DT–AT

FCEV1 07:47–17:32 FCEV9 07:40–17:28 FCEV17 07:42–16:39 FCEV25 08:08–15:51 FCEV33 08:53–18:03

FCEV2 07:13–15:29 FCEV10 09:00–17:36 FCEV18 07:21–17:12 FCEV26 06:21–16:39 FCEV34 08:05–18:34

FCEV3 09:58–17:29 FCEV11 08:43–16:07 FCEV19 08:34–18:15 FCEV27 07:15–15:30 FCEV35 08:11–17:15

FCEV4 08:32–17:49 FCEV12 09:25–17:59 FCEV20 08:21–18:23 FCEV28 08:32–16:36 FCEV36 97:10–17:04

FCEV5 09:11–18:32 FCEV13 06:55–17:04 FCEV21 07:18–15:55 FCEV29 09:34–17:06 FCEV37 08:45–17:02

FCEV6 08:51–17:19 FCEV14 08:36–17:20 FCEV22 07:19–16:28 FCEV30 08:06–16:33 FCEV38 07:54–18:30

FCEV7 08:24–17:43 FCEV15 07:10–16:59 FCEV23 09:06–17:15 FCEV31 08:21–17:21 FCEV39 07:15–15:47

FCEV8 08:51–17:09 FCEV16 06:29–17:01 FCEV24 07:55–15:25 FCEV32 10:22–18:31 FCEV40 08:24–16:10

* DT–AT: Departure time from the residential community–arrival time to the residential community.
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Table 3. Data of CESS.

CE [%] DE [%]
SoECESS−init

[kWh]
SoECESS−min

[kWh]
SoECESS−max

[kWh]

Maximum Value
of PCESS−ch,t

[kW]

Maximum Value
of PCESS−disc,t

[kW]

0.95 0.95 500 100 500 250 250

Table 4. Data of common hydrogen storage unit.

mH2−CS−init [kg] mH2−CS−min [kg] mH2−CS−max [kg]

80 5 80

3.2. Simulation Results and Comparison

In order to demonstrate the effectiveness of the proposed optimization model, ten
case studies were realized. The data relating to the test studies carried out are given in
Table 5. These test studies are operated by changing the value of binary parameters A
and B, availability of PV, CESS and from FCEVs to the residential community mode. It is
thought that the power grid was not available between 17:30 and 19:30 in all test studies.

Table 5. Case Studies.

Cases
Parameter A

(Cost
Minimization)

Parameter B
(Curtailment

Minimization)

PV
(Common

and
Dwellings)

Power from
FCEVs to

Residential
Community

CESS

Case-1 1 0
√ √ √

Case-2 0 1
√ √ √

Case-3 1 0
√ − √

Case-4 0 1
√ − √

Case-5 1 0 − − √

Case-6 0 1 − − √

Case-7 1 0
√ √ −

Case-8 0 1
√ √ −

Case-9 1 0 − √ −
Case-10 0 1 − √ −

Results from the simulations realized are presented in Table 6. It should be stated
that the costs incurred in Case-1, Case-3, Case-5, Case-7 and Case-9, which are carried
out for cost minimization purposes, are increasing gradually from Case-1 to Case-9. The
minus expression here means that the community is making a profit. In Case-7 and
Case-9, a fee is paid for electrical energy taken from the power grid. If it is compared
to Case-1 and Case-3, the gain is reduced by USD 179.46 without the support of FCEVs
to the residential community mode. It should be stated that the cost is highest in the
absence of CESS and PVs, but CESS has a great effect on this result. In this respect, CESS
is a more effective tool than the FCEV V2G mode and PV system. In each case study,
where the cost is minimized, 16,206 kWh interruptions occur in interruptable loads. In the
curtailment minimization problem, it was concluded that there is an amount of interruption
(4271 kWh) in the resiliency-sensitive loads when CESS is not included. Considering the
low number of dwellings and the fact that the flexible loads are in operation or not during
the hours of a power grid outage, this can be expressed as the reason for the low amount
of interruption. In Case-2, Case-4, Case-6 and Case-8, where curtailment minimization
is aimed, the community does not make a profit and makes a payment. By considering
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both cost and curtailment minimization, it should be underlined that the best results are
obtained in the proposed structure. However, if no interruption in the load is desired, the
community must make a payment in addition to making a profit.

Table 6. Results for case studies.

Cases Cost [TL] Curtailment [kWh]

Case-1 −1263.81 16,206

Case-2 406.99 −
Case-3 −1084.35 16,206

Case-4 456.32 −
Case-5 −1022.63 16,206

Case-6 499.18 −
Case-7 201.41 16,206

Case-8 354.27 4271

Case-9 261.96 16,206

Case-10 409.32 5959

The total power consumption of 40 dwellings in Case-1 and Case-2 are presented in
Figure 7. In Case-1, where the cost is minimized, the total amount of power purchased from
the grid is reduced during the hours of a power outage, as resiliency-sensitive loads are cut
in order to reduce the total cost. Here, power is supplied to the residential community from
FCEVs. In Case-2, where the total amount of curtailment is minimized, the community is
operated without any interruptions. Here, the power usage is the same as the expected
power consumption. It should be stated that energy is provided by CESS and FCEVs in case
there is no energy provided in the power grid. As a result, it is seen that resiliency-sensitive
loads are de-energized in economic operation, while there is no curtailment in Case-2. It
should be stated that approximately 16.21 kWh (all of the loads) of power outage occurred
in Case-1. In order to save from such a value of the resiliency-sensitive load, as can be seen
in Table 5, the community enters a position to pay while making a profit.

Figure 7. Total power consumption of dwellings in Case-1 and Case-2.

The power balance of dwelling25 and dwelling27 is given in Figure 8. Here, the
PV productions are primarily evaluated at dwellings. Then, excess power is sold to the
residential community. Due to the relatively small size of the PV capacity, approximately
1.51 kWh of energy is produced throughout the day. Dwelling25 and dwelling27 have an
energy consumption of 5.05 and 4.04 kWh, respectively. During the day, 0.61 kWh and
0.56 kWh of energy are sold to the community, respectively, while 4.15 kWh and 3.08 kWh
of energy are purchased from the community.
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Figure 8. Power balance for dwelling25 (a) and dwelling27 (b).

Figure 9 presents the energy change in the common CESS owned by the community
throughout the day. All case studies involving CESS were reviewed here. While comparing
Case-1 and Case-2, which have different objective functions, CESS is less evaluated in
Case-2, where the aim is only to reduce curtailment. In Case-1, where economic operation is
provided, CESS is used more effectively, reducing costs. Case-3 and Case-5, where there is
no energy support from FCEVs and no PVs, are slightly different from Case-1. However, in
Case-6, where the curtailment is minimized, and there is no PV system and FCEV support,
the energy change in CESS takes place very little during the day. An interesting result here
is that CESS is not evaluated much during the hours of a mains power outage.

Figure 9. State of energy variation in CESS.
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The variation in the hydrogen molar amount in the common hydrogen storage system
is discussed in Figure 10. When Case-1 and Case-2 are compared, as in CESS, it can be said
that hydrogen exchange is less in Case-2. Hydrogen refueling and releasing events occur
more frequently in Case-1, where economical operation is performed. It should be noted
here that FCEVs offer greater energy support to the residential community. In both case
studies, it is concluded that the hydrogen molar amount decreases significantly during
power outage times.

Figure 10. Hydrogen molar change in common hydrogen storage in Case-1, Case-2, Case-5 and Case-6.

The molar change in the hydrogen tank of FCEV18 in Case-1 and Case-2 is given in
Figure 11. It should be stated that there is more refueling and releasing event in order to
increase the gain in Case-1, as in the CESS and common hydrogen storage system. While
the vehicle has 0.54 kg of hydrogen in its tank when it comes to the community, it has 5.9 kg
of hydrogen, which is the desired hydrogen level when the vehicle leaves the community.
In Case-2, it is seen that the amount of hydrogen in the vehicle’s tank decreases when there
is no energy support from the power grid.

Figure 11. Variation in hydrogen molar at hydrogen tank of FCEV18 in Case-1 and Case-2.

In Case-2, hydrogen molar changes in hydrogen tanks of FCEV4 and FCEV16 are
presented in Figure 12. Here FCEVs are considered to provide energy support to the
residential community during power outages. FCEV16 provides more support, according to
FCEV4. It should be stated that the hydrogen exchange in the tank is low according to Case-
1 because the aim is to reduce the amount of interruption only during the power outage.
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Figure 12. Variation in hydrogen molar at hydrogen tanks of FCEV4 (a) and FCEV16 (b) in Case-2.

Data on the amount of power curtailment in the absence of the power system for
Case-1, Case-8 and Case-10 are given in Figure 13. It should be said that all of the resiliency-
sensitive loads are interrupted in Case-1, which is economically operated. On the other
hand, in Case-8 without CESS and Case-10 without CESS and PV (the aim in both case
studies is to minimize curtailment), the curtailment is realized as 4.27 kWh and 5.96 kWh,
respectively. CESS has a greater impact than PV systems and FCEV energy support. In
addition, in Case-2, which is the recommended structure and curtailment is minimized, the
total amount of interruption is 0.

Figure 13. Power curtailment in Case-1, Case-8 and Case-10.

The total power consumption of the electrolyzer during the day in Case-1 and Case-2
is given in Figure 14. As can be seen from the behavior of the common hydrogen tank
and FCEVs in Case-1 and Case-2, the electrolyzer is being further evaluated in order to
minimize the total cost. In Case-2, on the other hand, there is only the aim of curtailment
minimization. The electrolyzer consumes 651.86 kWh in Case-1 and 84.11 kWh in Case-2.
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Figure 14. Power consumption of electrolyzer in Case-1 and Case-2.

Figure 15 provides data on the total power consumption from the power grid through-
out the day for all components of the residential community. It should be stated that no
power is drawn from the grid during the power outage. Approximately 1.932 kWh of
energy is purchased for Case-1 and 619 kWh for Case-2. It should be noted that CESS and
electrolyzer-induced energy purchases increased in Case-1.

Figure 15. Power consumption of residential community in Case-1 and Case-2.

Moreover, for Case-1, data on the residential community and upstream grid power
exchange are presented in Figure 16. While 1.932 kWh of energy is taken from the upstream
grid throughout the day, 1.626 kWh of energy is sold to the upstream grid.

Figure 16. Power exchange data of the residential community with the upstream grid.

The total buying and selling power amounts of dwellings in Case-1 are given in
Figure 17. It should be stated that some of the power produced in the PV system is sold,
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while a total of 20.2 kWh of energy is sold to the power grid. Dwellings have a net energy
consumption of 227.89 kWh in total.

Figure 17. Total power exchange in dwellings with residential community.

4. Conclusions

In this study, a MILP model of the resiliency-sensitive decision-making mechanism of
a residential community with common PV and rooftop PVs, common hydrogen storage
and an electrolyzer was presented. In the study, two different objective functions were
determined, namely, cost minimization and curtailment minimization.

According to the results obtained from the study, while the proposed structure works
with the least cost in the economic working condition, it can minimize the amount of
curtailment in the flexible loads in the curtailment minimization condition. However, in
this case, the resulting cost increases as no interruption in flexible loads is ensured. Even
in the case of economic operation, while the community earns a profit, it has to make
a payment if no curtailment is requested. When the results were examined, it was seen
that the share of CESS on the results has the highest value for both objective functions.
Moreover, the worst results occur in the condition where PVs, CESS and FCEV support are
absent. With the proposed structure, it is concluded that even in the absence of energy from
the grid, the community can be operated uninterruptedly, and even profit can be obtained
with a very small amount of interruption.

The consideration of the uncertainties regarding the PV-based renewable genera-
tion, FCEV-related parameters (arrival and departure times, arrival hydrogen levels, etc.),
together with the combination of different residential communities under a single decision-
making entity together with energy market participation possibilities, can be given as a
future study.
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Nomenclature
Sets

t Set of time periods.
h Set of households in the residential community.
k Set of FCEVs.
n Set of resiliency-sensitive loads.
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Parameters

A, B Binary parameters to decide the structure of the objective function.
aH2−P Hydrogen amount to electric power conversion constant [kg/kW].
CE Charging efficiency.
DE Discharging efficiency.
mH2−des,k Desired hydrogen amount in FCEV k during departure time [kg].
mH2−init,k Initial hydrogen amount in FCEV k during arrival time [kg].
mH2−max,k Maximum allowable hydrogen amount in FCEV k [kg].
mH2−min,k Minimum allowable hydrogen amount in FCEV k [kg].
mH2−CS−init Initial hydrogen amount in common hydrogen storage unit [kg].
mH2−CS−max Maximum allowable hydrogen amount in common hydrogen storage unit [kg].
mH2−CS−min Minimum allowable hydrogen amount in common hydrogen storage unit [kg].
N Sufficiently large positive constant.
PCPVU,t Power production of common PV unit in period t [kW].
Pin f lexload,h,t Inflexible load–demand of household h in period t [kW].
PPV,h,t PV power production of household h in period t [kW].

Prs−load−pro f ile,h,n,t
The expected load profile of resiliency-sensitive load n of household h in
period t [kW].

SoECESS−init Initial state-of-energy of common energy storage unit [kWh].
SoECESS−max Maximum allowable state-of-energy of common energy storage unit [kWh].
SoECESS−min Minimum allowable state-of-energy of common energy storage unit [kWh].
Ta,k Arrival time of FCEV k.
Td,k Departure time of FCEV k.
ugrid,t Grid availability binary parameter in period t.
τbuy,t Buying price of energy from the upstream grid in period t [€/kW].
τsell,t Selling price of energy to the upstream grid in period t [€/kW].
ΔT Time granularity [h].
Variables

kh,n,t
Binary variable regarding the decision to curtail the resiliency-sensitive load
n of household h in period t.

mFC−inj,k,t
Amount of hydrogen injected into the hydrogen tank of FCEV k from the
common hydrogen storage unit in period t [kg].

mH2,k,t Hydrogen amount in the hydrogen tank of FCEV k in period t [kg].

mH2−cons,k,t
Hydrogen consumption of FCEV k during community support mode in
period t [kg].

mH2−CS,t Hydrogen amount in common hydrogen storage unit in period t [kg].
mH2−CS−prod,t Hydrogen amount produced by the electrolyzer unit in period t [kg].
Pbuy,h,t Power procured by household h in period t [kW].
PCESS−ch,t Charging power of CESS unit in period t [kW].
PCESS−disc,t Discharging power of CESS unit in period t [kW].
Pelec,t Electrolyzer power in period t [kW].
PFCEV−disch,k,t Discharging power of FCEV k in period t [kW].
PFCEV−disch−tot,t Total discharging power of FCEV in period t [kW].

PH2RC−tot,t
Total power injected back to the residential community by the households in
period t [kW].

PRC2H−tot,t
Total power drawn from the residential community by the households in
period t [kW].

PRC2UG,t
Power injected back to the upstream grid by the residential community in
period t [kW].

Prs−load,h,n,t
The actual power demand of resiliency-sensitive load n of household h in
period t [kW].

Psell,h,t Reverse power injection by household h in period t [kW].
Ptotalload,h,t The total load of household h in period t [kW].

PUG2RC,t
Power drawn from the upstream grid by the residential community in
period t [kW].

SoECESS,t State-of-energy of common energy storage unit in period t [kWh].

u1,t, u2,t, u3,t, u4,t
Binary variables to prevent simultaneous occurrence of different power
exchange conditions.
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Abstract: The peer-to-peer (P2P) strategy as a new trading scheme has recently gained attention in
local electricity markets. This is a practical framework to enhance the flexibility and reliability of
energy hubs, specifically for industrial prosumers dealing with high energy costs. In this paper, a Nor-
wegian industrial site with multi-energy hubs (MEHs) is considered, in which they are equipped with
various energy sources, namely wind turbines (WT), photovoltaic (PV) systems, combined heat and
power (CHP) units (convex and non-convex types), plug-in electric vehicles (EVs), and load-shifting
flexibility. The objective is to evaluate the importance of P2P energy transaction with on-site flexibility
resources for the industrial site. Regarding the substantial peak power charge in the case of grid
power usage, this study analyzes the effects of P2P energy transaction under uncertain parameters.
The uncertainties of electricity price, heat and power demands, and renewable generations (WT and
PV) are challenges for industrial MEHs. Thus, a stochastically based optimization approach called
downside risk constraint (DRC) is applied for risk assessment under the risk-averse and risk-neutral
modes. According to the results, applying the DRC approach increased by 35% the operation cost
(risk-averse mode) to achieve a zero-based risk level. However, the conservative behavior of the
decision maker secures the system from financial losses despite a growth in the operation cost.

Keywords: peer-to-peer energy transaction; distributed energy resources; downside risk constraint;
risk-averse; risk-neutral

1. Introduction

In the power market, the role of local energy systems including energy storage units,
wind farms, distributed energy resources, and solar photovoltaic (PV) systems has become
significant [1]. The development of smart grid facilities along with the energy and pro-
sumers communities has further accelerated the trend [2]. Hence, consumer-centric types
of energy systems with modern market designs are required for future power systems to
adapt to local energy systems and buildings for the management of DERs. An emerging
method is to develop smaller units and collect them in energy hubs [3]. Therefore, due
to the differences in the trading price of energy as well as losses, sharing DERs on a local
scale can be quite effective [4]. The peer-to-peer (P2P) strategy is an emerging alternative
that encourages neighbors in a community to share excess energy to manage peak power
demands [5], through which both consumers and prosumers can be supplied. In this regard,
the effectiveness of the DERs, self-consumption, local energy balance, and grid operation
flexibility can be strengthened [6]. The P2P concept can promote not only the flexibility
of a system (storage unit, demand response program) but also energy transaction based
on local prices [7]. Hence, the grid utility tariff is a market-based feature that potentially
influences P2P trading. For instance, the peak demand charge is a promising solution in
Norway by which consumers (commercial and industrial) are incentivized to reduce their
power demand, as they are already subject to the peak demand charge [8]. Due to the high
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level of energy, large consumers can supply a major part of their energy consumption using
a distribution network [9].

1.1. Research Review

As P2P energy transaction is a new concept, there is no agreement on a pricing
scheme or market design aiming to support the development of local markets. In this
field, recent research has mainly focused on several perspectives. Firstly, the role of storage
units in coordinating local resources is investigated in [10] to create more balance in the
system functioning. Secondly, a bidding mechanism for local energy trading is developed
in [11]. Then, while the digitalization of the system components is carried out in [12],
the requirement of computational properties as well as the coordination algorithm is
taken into account for a P2P structure in [13]. Many of the research works related to P2P
power transaction are rarely considered for real-life projects, including the Enerchain [14],
Brooklyn Microgrid [15], and Sonnen Community [16]. A further step is taken in [17] by
considering possible market frameworks for the consumers and prosumers of a community
participating in the electricity market. The development of smart grid technologies will
facilitate the establishment of local P2P energy trading with consumer-based electricity
markets having access to the wholesale electricity market [18]. In this regard, blockchain
technology can be taken into account to create an affordable and secure platform for energy
transaction [19].

Several pieces of research have also been conducted on the management of multi-
energy hubs. In [20], a two-stage stochastic programming approach is used to manage
several energy hubs, in which the reliability aspect of the system is investigated. In [21],
the authors introduced a new method for the optimal design and operation of several
energy hubs concerning the cost of cables and operation costs using a two-stage stochastic
optimization method. In [22], researchers increased the operational flexibility of several
microgrids by using P2P power transaction. In addition to the incrementing of renewable
penetration, the emission cost of the system is intended to be minimized. Random EV
charging as an uncertainty is investigated in [23] for the energy management of several EHs
to minimize the operation cost along with the power losses and greenhouse gas emissions
in a multi-objective study. In [24], the authors propose a software-defined grid system
to facilitate energy sharing in an MEH using a transactive energy framework. The result
of this implementation is the reduction of the overall cost of the EHs. In [25], the chance
constraint method is applied for the optimal day-ahead planning of an MEH, considering
environmental constraints.

In a P2P strategy, thermal energy generated by CHP units can improve not only the
energy flexibility but the proficiency of the combined heat and power unit. In [26], the
transaction of power and heat among smart energy hubs is investigated in a two-stage
process. While energy trading is considered in the first stage, financial issues related to
power and heat energy are evaluated in the second stage to ensure the privacy of the EHs.
In [27], a genetic algorithm is used to analyze P2P multi-energy sharing to increase the local
energy balance and minimize the energy cost of the proposed system. In [28], a new P2P
trading model is taken into account among FC-CHP systems to enhance the resiliency and
self-sufficiency of local energy systems by the alternating direction method of multipliers
(ADMM) algorithm. In [29], the effectiveness of a novel P2P energy transaction of multiple
energy hubs is validated by a cooperative game to establish a proper payoff allocation.

In the existing literature, the importance of P2P power trading among residential
prosumers has been mainly considered to evaluate the operational and economic aspects of
systems. However, a few of them focused on the importance of P2P heat and power trading
among industrial energy hubs and the functions of system components under uncertainties.

1.2. Novelties and Contributions

In this paper, a framework of a Norwegian industrial multi-energy hub (MEH) is
developed, in which the hubs are equipped with various energy resources to supply their
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power and heat demands and share their excess energy with other peers and the electricity
network. The CHP unit, solar photovoltaic (PV) system, wind turbine (WT), and plug-
in electric vehicles (PEVs) are the generation facilities being used in the industrial hubs.
Also, load shifting is a flexibility asset that is considered for two hubs, upon which the
decision-maker can shift a part of the energy demand from peak demand to valley demand.
However, the performance of stochastic renewable generations as well as the thermal and
electrical demands with market electricity price in the energy hubs (EHs) have potential
effects on the optimal function of the system. In this concern, a scenario-based stochastic
optimization procedure called the downside risk constraint (DRC) approach is applied to
investigate the functions of the system components under uncertainties. The risk-averse
(λ = 1) and risk-neutral (λ = 0) modes are used to forecast the impact of uncertain
parameters, concisely. The contribution of this paper can be summarized below:

� Techno-economic analysis of an industrial MEH with P2P heat and power transaction.
� Risk analysis of an industrial MEH with the downside risk constraint method (DRC)

as a stochastic optimization procedure.
� Load-shifting flexibility asset and distributed energy resources, namely WTs, PVs,

convex and non-convex CHP units, and plug-in electric vehicles (PEVs) to support
energy demands.

In order to achieve a better perception, the overall structure of the proposed system is
represented in Figure 1.

 

Figure 1. The structure of the proposed system.

1.3. Paper Structure

This paper is organized as follows: Section 2 expresses the objective function as well
as the mathematical modeling of the MEHs. The constraints related to the DRC method
are presented in Section 3. The study case along with the input data and the simulation
results of the MEH are shown in Section 4. Finally, the conclusion of this paper is discussed
in Section 5.

2. Mathematical Formulation

The mathematical model of the MEH is a linear optimization model representing the
P2P interaction of the EHs and the operational decisions related to the DERs and flexibility
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assets. The objective function is to minimize the operational cost and analyze the risk level
in the industrial EHs that are equipped with the CHP units and other distribution resources.

2.1. Objective Function

Based on the market features, the industrial EHs have the opportunity to trade their
excess power through local P2P transaction. However, the operational cost arises in the
cases of grid power consumption, load-shifting practice, and importing electricity from
other peers. As there is a capability of trading power with the network and other peers,
the units can obtain an income from grid feed-in and exporting electricity to a peer, which
affects the optimal operation of the individual hubs. As shown in Equation (1), the cost of
trading power with the power network is given in the first three terms. While the fourth
term indicates the operational cost of the CHP units, the load-shifting cost is shown in the
fifth term. Finally, the power and thermal energy transaction among the industrial peers is
demonstrated in the last four terms.

min
∀t ∈ T
∀b ∈ B

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B

∑
b

⎛
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T
∑
t
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(t)

)
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]
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M
∑
m
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]
−

T
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t

[
C f eed−in
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(t,h)

]
+

T
∑
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H
∑
h

C
∑
c
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t,h,c
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+

T
∑
t
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CLS
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(t,h)

]
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T
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t

[
CP,P2P
(t,h) · Pimp

(t,h) · 1
ψP,P2P

]
− T

∑
t

[
H
∑

p �=h
CP,P2P
(t,p) · Pexp,p

(t,h→p)

]
+

T
∑
t

[
CTh,P2P
(t,b) · Timp

(t,h) · 1
ψTh,P2P

]
− T

∑
t

[
H
∑

p �=h
CTh,P2P
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⎞
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⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

The overall cost of power network electricity for the Norwegian industrial MEHs is
presented in Equation (2). As the local network company is responsible for determining
the utility tariff, the utility tariff system in Norway differs from the flat rate tariffs towards
time-of-use pricing, which has a peak-demand cost [30]. As shown in the equation, the first
and second parenthetical terms represent buying electrical energy at a spot price and the
price of energy during the peak hours, respectively. Moreover, in the second term, feed-in
energy cost is calculated and considered for selling power to the power grid.

Cg.tot
(h) = ∑

t∈T

(
Cg,SP
(t) · Pg.buy

(t,h) + Cg,eng · Pg.buy
(t,h)

)
+
(

Cg, f ix + Cg,peak · Pg.peak
(h)

)
− ∑

t∈T

(
C f eed−in
(t) Pg.sell

(t,h)

)
(2)

2.2. Energy Balance

P2P power transaction between the industrial hubs will affect the balance of the system.
In this regard, the constraint of power balance is shown in Equation (3), in which the total
amount of electrical demand is equal to the overall level of power generated by the DERs.
Also, thermal energy transaction is considered to increase the energy flexibility, though
the related constraint is given in Equation (4). As mentioned in the equation, the overall
amount of heat energy produced by CHP units along with the imported power from other
peers, bought power from the main grid, and discharged energy of PEVs must be equal
to the overall level of electrical demand. Also, the thermal energy produced by the CHP
unit and imported from other peers must be equivalent to the demand and the exported
heat energy. Finally, the limitations of trading power with a power network are shown in
Equations (5) and (6).

C
∑

c=1
Pchp
(t,h,c) + Pdem

(t,h) + Pg.sell
(t,h) + Pexp

(t,h) + Pev,ch
(t,h) + Pls,dem

(t,h) +

Pcurtail
(t,h) = PDER

(t,h) + Pg.buy
(t,h) + Pimp

(t,h) + Pev.dch
(t,h) + Pls.sh

(t,h)

(3)

C

∑
c

(
Tchp

t,h,c

)
+ Timp

t,h = Tdem
t,h + Texp

t,h (4)
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0 ≤ Pg.buy
(t,h) ≤ Pg.peak

(h) (5)

0 ≤ Pg.sell
(t,h) ≤ Pmax

f eed−in (6)

2.3. Constraints of P2P Energy Transaction

As the interconnected industrial hubs have the opportunity to trade energy among
each other, specific market mechanisms defined by local markets can secure the trading
process [31]. As the proposed P2P energy transaction methodology is a general model, the
implementation of the system on different decentralized platforms like blockchains can be
carried out according to [32,33]. The total sums of exported and imported power by hub h
are shown in Equations (7) and (8), respectively. As indicated in Equation (9), the imported
electricity from a peer must be equal to the electricity exported from the peer to the EH,
which involves power losses (ψP2P). Also, the total level of traded power among the EHs is
given by Equation (10). The mentioned constraints are also indicated for thermal energy
transaction between Equations (11) and (14)

Pexp
(t,h) = ∑

p �=h
Pexp,p
(t,h→p) (7)

Pimp
(t,h) = ∑

p �=b
Pimp,p
(t,h←p) (8)

Pimp,p
(t,h←p) = Pexp,p

(t,h→p) × ψP,P2P, ∀p �= h (9)

H

∑
h

Pexp
(t,h) × ψP,P2P =

H

∑
h

Pimp
(t,h) (10)

Texp
(t,h) = ∑

p �=h
Texp,p
(t,h→p) (11)

Timp
(t,h) = ∑

p �=b
Timp,p
(t,h←p) (12)

Timp,p
(t,h←p) = Texp,p

(t,h→p) × ψTh,P2P, ∀p �= h (13)

H

∑
h

Texp
(t,h) × ψTh,P2P =

H

∑
h

Timp
(t,h) (14)

2.4. Load-Shifting Constraints

Load shifting as a crucial strategy can help industrial hubs to reduce their operational
cost by running a production process in the low–peak interval instead of the peak de-
mand period. However, this strategy imposes productivity losses and labor rescheduling
costs, both of which are considered penalty costs in the objective function. The math-
ematical modeling of load shifting is regarded in the form of a storage unit with 10%
capacity to ease the computational burden [34], which is defined in the form of hourly
rescheduled load in Equation (15). In this regard, while the storage balance for each EH is
shown in Equation (16), their energy level with the maximum power shift is indicated in
Equation (17).

0 ≤ Pls,sh
(t,h) , Pls,dem

(t,h) ≤ 0.1× Pg,peak
(h) (15)

Els
(t,h) = Els

(t−1,h) + Pls,sh
(t,h) − Pls,dem

(t,h) (16)

0 ≤ Els
(t,h) ≤ 0.4× Pg.peak

(h) (17)
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2.5. Electric Vehicle (EV) Constraints

Vehicle-to-grid (V2G) is an on-site flexibility option providing a bi-directional use of
electricity for EHs as a fast-responding storage unit that can be used for spinning reserve
and peak shaving. As the industrial units hold a large number of employees, considering
V2G technology for the parking lots can be an alternative flexibility asset. As given in
Equation (18), the EV parking lot is a storage unit balancing the energy consumption
of EHs. Equation (19) shows the limitation of the charging/discharging process by the
nominal capacity of the EV charger. Finally, the start and end of a workday are limited by
Equation (20) and Equation (21), respectively [35].

Eev
(t,h) = Eev

(t−1,h) + ηev,ch · Pev,ch
(t,h) −

1
ηev,ch

· Pev,dch
(t,h) (18)

0 ≤ Pev,ch
(t,h) , Pev,dch

(t,h) ≤ Pnom
ev,charger · EVnum (19)

Eev
(dstart(t),h)

= Enom
ev · EVnum · Estart dstart(t) ∈ T (20)

Eev
(dend(t),h)

≥ Enom
ev · EVnum · Eend dend(t) ∈ T (21)

2.6. Constraints of CHP Units

Due to the high proficiency of CHP units, they can be used to supply both power
and thermal energy in the EHs. The concept of the feasible operation region (FOR), which
is shown in Figure 2, is used to model the constraints of the CHP units. The installed
CHP units are convex and non-convex; hence, the start-up and shutdown limitations
are given in Equations (22) and (23), respectively. While the convex unit is modeled by
Equations (24)–(28), the model of the non-convex unit is formulated by Equations (29)–(34).

Figure 2. The feasible operation regions of the CHP units.
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[
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2.7. Constraints of Renewable Energy Sources

Wind turbines and solar photovoltaic (PV) systems are renewable resources that are
considered in this model. The generated available power of wind turbines and PV systems
are modeled in Equation (35) and Equation (36), respectively. As shown in the equations,
while wind speed potentially affects the power generation of WTs, solar radiation influences
the PV system function.

Pwt
t,h =

⎧⎪⎪⎨
⎪⎪⎩

0 Vt < Vcut−in , Vt ≥ Vcut−out

Pwt
rated ×

(
Vt−Vcut−in

Vrated−Vcut−in

)3
Vcut−in ≤ Vt ≤ Vrated

Pwt
rated Vrated ≤ Vt ≤ Vcut−out

(35)

Ppv
t,h =

⎧⎨
⎩

Ppv
rated

(
I2
t

Istd IC

)
It ≤ IC

Ppv
rated

(
I2
t

Istd

)
IC ≤ It

(36)

3. Downside Risk Constraint (DRC) Method

The downside risk constraint (DRC) method is applied to control the risk of financial
losses. Regarding decision variables, convexity is the most important feature of the DRC
method. Compared to other risk measures, the DRC method has more robustness [36],
with substantial advantages from the risk-management point of view. As the DRC has a
convex function with a set of minimum points, it simplifies the optimization and control of
the uncertainty through mathematical programming. As shown in Equation (37), when the
cost of the scenario is less than the expected cost, the risk level is zero; otherwise, the level
of risk can be obtained from the difference between the scenario cost and the expected cost.
Also, the expected risk of the DRC method is given in Equation (38), in which the operator
aims to achieve a small value for DRC(C0) .

RISK (ω) =

{
Cost(ω)− C0 i f Cost(ω) > C0
0 i f Cost(ω) ≤ C0

(37)
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DRC(C0) = E[RISK(ω)] = ∑
ω=Ω

π(ω) · RISK(ω) (38)

Equation (39) indicates that the scenario costs have more value than the expected
cost. In this equation, the term P(ω|Cost(ω) ≥ C0 ) shows the probability of a cost that is
higher than the target cost. If the operator is not satisfied with the obtained risk level, a risk
constraint like Equation (40) can be added to the main formulation as below:

DRC(C0) = C0 − 1
P(ω|Cost(ω) ≥ C0 )

×
Ω

∑
ω=1
{π(ω) ·max[(Cost(ω)− C0), 0]} (39)

DRC(C0) ≤ DRC0 (40)

where the term DRC0 indicates the tolerance of the downside risk constraint. The flowchart
of the proposed method with the strategy of the system operator is demonstrated in
Figure 3.

Figure 3. The framework of the DRC method.
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As shown, the initial data related to the uncertain parameters are provided based
on the historic data, upon which the scenario generation of uncertainties is performed
by applying the Monte Carlo method for the wind turbine (WT), PV, electricity price,
power, and thermal energy demands. In order to ease the computational burden, the
Kantorovich method is used to achieve an optimal allocation of scenarios being used in the
DRC programming.

4. Study Case

In this paper, a Norwegian industrial area with five energy hubs is considered, the
prosumers of which are connected to each other to become more flexible by applying
a P2P power and heat transaction strategy. These industrial units are related to food-
processing industries, mechanical workshops, and manufacturing factories. In this regard,
supporting their energy demand due to their high power consumption is a big challenge.
The EHs are equipped with several energy sources, including PV systems and wind
turbines as renewables, as well as EVs and CHP units. From a flexibility perspective, the
load-shifting strategy increases the productivity of the energy hubs significantly. Intuitively
speaking, load shifting means that the industrial building is willing to move demand from
the peak demand period to valley demand, making a production process run at a later
time. However, this strategy has rescheduling costs, namely overtime pay for laborers,
rescheduling, and productivity losses. Moreover, the interconnected EHs have a connection
with the main power grid, as the installed sources may not be able to meet the power
demand of prosumers on their own. The industrial hubs are located in different places,
and they are completely different in terms of load consumption and size [37]. As a final
remark, the simulation of the proposed system is carried out through the GAMS software
as a mixed-integer linear programming model with the CPLEX solver.

4.1. Input Data

This subsection presents the input data related to the generated scenarios for the
uncertain parameters. The market electricity price, power demand, thermal energy demand,
and renewable generations are taken into account as uncertainties. In this regard, Table 1
is given to show the price of electricity over the period of a 24 h scheduling horizon
in 10 scenarios [37]. For each energy EH, 10 scenarios of power and heat demand are
generated, which are shown in Figures 4 and 5, respectively. In fact, the scenario generation
is carried out based on the Monte Carlo method, in which a probability distribution is
used to generate 100 scenarios for each uncertainty [38]. Whereas a large number of
scenarios results in a computational burden, the Kantorovich procedure is applied to select
10 scenarios with high probability [39]. Based on the figures, hub5 has more energy demand
compared to the other hubs. Meanwhile, in Figure 6 the PV function is demonstrated in
hub1, hub4, and hub5, Figure 7 shows the function of WTs in hub2 and hub3. Also, Table 2
gives related data about the convex and non-convex CHP units [40].
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Table 1. The electricity price generated in 10 scenarios (Nok).

SC = 1 SC = 2 SC = 3 SC = 4 SC = 5 SC = 6 SC = 7 SC = 8 SC = 9 SC = 10

t = 1 0.2125 0.2762 0.4314 0.3241 0.3631 0.3883 0.2539 0.3572 0.3039 0.2153

t = 2 0.3486 0.2504 0.2775 0.2111 0.2695 0.3523 0.4421 0.2276 0.3448 0.3589

t = 3 0.3888 0.4054 0.2231 0.3130 0.4031 0.3503 0.4162 0.4021 0.4889 0.1063

t = 4 0.2782 0.2776 0.1954 0.2638 0.4112 0.3078 0.3762 0.4273 0.2813 0.2723

t = 5 0.2078 0.2883 0.2545 0.2928 0.2923 0.2534 0.2211 0.2805 0.3109 0.2404

t = 6 0.3793 0.3360 0.3259 0.4281 0.5496 0.4225 0.4046 0.3490 0.3599 0.3993

t = 7 0.3250 0.2364 0.4177 0.3110 0.4144 0.2988 0.2590 0.2448 0.4037 0.5615

t = 8 0.403 0.4308 0.3975 0.4058 0.6106 0.3087 0.3684 0.3191 0.4522 0.4082

t = 9 0.359 0.4635 0.2927 0.4026 0.4105 0.5448 0.4436 0.3942 0.2596 0.2471

t = 10 0.4481 0.3221 0.3669 0.3056 0.4082 0.4127 0.5607 0.5679 0.4941 0.4963

t = 11 0.2697 0.5027 0.2914 0.2287 0.6829 0.4115 0.3180 0.3819 0.3877 0.1839

t = 12 0.3095 0.4268 0.3803 0.2202 0.3306 0.3628 0.3846 0.2187 0.4010 0.5211

t = 13 0.2244 0.4139 0.4983 0.4084 0.4279 0.3287 0.3557 0.2662 0.3616 0.3214

t = 14 0.3112 0.5073 0.3616 0.4311 0.4074 0.2780 0.1965 0.2389 0.3982 0.3444

t = 15 0.4501 0.3423 0.2532 0.3879 0.4824 0.4033 0.3606 0.3384 0.4982 0.4647

t = 16 0.3398 0.2525 0.2937 0.4124 0.2767 0.3438 0.3690 0.3179 0.3212 0.3591

t = 17 0.3301 0.2543 0.4533 0.2948 0.4819 0.3499 0.3534 0.5068 0.4078 0.3443

t = 18 0.3051 0.3345 0.4230 0.4660 0.3892 0.3372 0.4168 0.4491 0.3440 0.5233

t = 19 0.3493 0.4706 0.4773 0.3897 0.3761 0.4688 0.2110 0.3875 0.3909 0.4194

t = 20 0.2996 0.2491 0.1309 0.4372 0.4885 0.3420 0.6137 0.3232 0.2586 0.370

t = 21 0.3960 0.4517 0.3976 0.3122 0.2389 0.3292 0.2543 0.4556 0.3758 0.2071

t = 22 0.4198 0.2960 0.5145 0.3897 0.4067 0.3089 0.4350 0.3909 0.4055 0.3539

t = 23 0.4451 0.1496 0.3993 0.4839 0.3651 0.4388 0.3263 0.4000 0.3274 0.4932

t = 24 0.4254 0.5116 0.3767 0.3750 0.4105 0.5185 0.1532 0.2211 0.5013 0.5609

Table 2. Parameters related to the operation region of the CHP unit.

CHP Units a ($/kW2) b ($/kW2) c ($) d ($/kWth2) e ($/kWth) f ($/kW.kWth)
Feasible Region

Coordinates

CHP 1 0.0345 44.5 26.5 0.03 4.2 0.031
[1.258 0], [1.258 0.324],
[1.102 1.356], [0.4 0.75],

[0.44 0.159], [0.44 0]

CHP 2 0.0435 56 12.5 0.027 0.6 0.011 [2.47 0], [2.15 1.8],
[0.81 1.048], [0.988 0]
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Figure 4. Power demand at each energy hub.

 

Figure 5. Thermal demand at each energy hub.
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Figure 6. PV generation at three energy hubs.

 

Figure 7. Wind generation at three energy hubs.

4.2. Numerical Results

In this section, the levels of operational cost and risk are shown for different iterations.
In Figure 8, the simulation result is obtained in 11 iterations, in which the lambda value
changes from zero (λ = 0) to one (λ = 1). In this case, λ = 0 and λ = 1 imply the
risk-neutral and risk-averse modes, respectively. Despite an increment in operational cost,
the existing risk level decreases as we approach a high value of λ. In order to ease the
understanding of this concept, the amount of risk in each iteration is shown in Figure 9.
As shown, In the risk-neutral mode, the amount of risk is at its maximum value, but in
the risk-averse mode, the operational cost is at its maximum amount (4.5 NOK), while the
amount of risk for the system operator is flattened. The numerical results of the operational
cost and risk level are demonstrated in Tables 3 and 4, respectively. According to Table 3, the
operational cost of the system for different lambdas is shown. When λ = 0 (risk-neutral), a
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low level of cost is obtained for all scenarios. However, in the second scenario, which is
the worst-case scenario, a high level of cost (663866 NOK) is obtained because there is a
probability of scenarios with maximum financial losses.

 
Figure 8. The operational cost performance.

 
Figure 9. Risk level at each iteration.
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Table 3. Operational cost for each scenario and iteration (NOK).

n1 SC = 1 SC = 2 SC = 3 SC = 4 SC = 5 SC = 6 SC = 7 SC = 8 SC = 9 SC = 10

λ = 0 223,296 663,866 478,104 419,689 252,088 586,506 377,805 366,694 560,148 560,861

λ = 0.1 239,965 663,866 478,104 441,956 279,744 586,506 411,143 387,756 560,148 560,861

λ = 0.2 295,246 663,867 478,105 454,059 301,644 586,506 416,584 414,024 560,148 560,861

λ = 0.3 282,311 663,867 486,978 478,361 339,428 586,506 448,238 463,084 560,148 560,861

λ = 0.4 283,285 663,867 502,102 492,357 406,741 586,506 470,921 494,234 560,148 560,861

λ = 0.5 322,415 663,867 517,226 477,362 484,446 586,506 482,204 517,226 560,148 560,861

λ = 0.6 381,447 663,867 532,350 515,415 532,350 586,506 485,118 505,438 560,148 560,861

λ = 0.7 547,474 663,867 547,474 547,474 464,808 586,506 489,965 506,162 560,148 560,861

λ = 0.8 514,006 663,867 564,691 564,691 564,691 586,506 494,385 564,691 564,691 564,691

λ = 0.9 603,371 663,867 603,371 603,371 598,991 603,371 603,371 547,256 603,371 603,371

λ = 1 663,867 663,867 663,867 663,867 663,867 663,867 663,867 663,867 663,867 663,867

Table 4. Risk level for each scenario and iteration (NOK).

C SC = 1 SC = 2 SC = 3 SC = 4 SC = 5 SC = 6 SC = 7 SC = 8 SC = 9 SC = 10

λ = 0 0 214,960 29,198 0 0 137,600 0 0 111,242 111,955

λ = 0.1 0 202,861 17,099 0 0 125,501 0 0 99,143 99,856

λ = 0.2 0 190,762 5000 0 0 113,402 0 0 87,044 87,757

λ = 0.3 0 176,888 0 0 0 99,528 0 0 73,170 73,883

λ = 0.4 0 161,764 0 0 0 84,404 0 0 58,046 58,759

λ = 0.5 0 146,641 0 0 0 69,280 0 0 42,922 43,635

λ = 0.6 0 131,517 0 0 0 54,156 0 0 27,798 28,511

λ = 0.7 0 116,393 0 0 0 39,032 0 0 12,674 13,387

λ = 0.8 0 99,176 0 0 0 21,815 0 0 0 0

λ = 0.9 0 60,495 0 0 0 0 0 0 0 0

λ = 1 0 0 0 0 0 0 0 0 0 0

Figures 10 and 11 show the amounts of electrical and thermal energy exchanged
among the EHs, respectively. According to Figure 10, all energy hubs have exported a
large proportion of their generated power to meet the power demand of hub5. Because
the load demand in hub5 is higher than in the other hubs (with a maximum value of
3000 kW), each of them has exported an amount of power between 1500 kW and 3000 kW
to hub5. Also, the same trend is achieved for thermal energy transaction, as shown in
Figure 11. As the evaluation of the energy transaction is carried out in both the risk-averse
and risk-neutral modes, the level of transacted energy in the risk-averse mode is less than
that in the risk-neutral mode due to the conservative behavior of the system operator.
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Figure 10. P2P power transaction between energy hubs.
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Figure 11. P2P heat transaction between energy hubs.

Figure 12 shows the amount of electrical energy exchanged between the network and
the EHs that are connected to the power network. Although the first, third, and fifth hubs
bought electricity from the network in the risk-neutral mode, all hubs sold a portion of their
energy to the grid which was between 400 kW and 800 kW. As shown in the figure, the EHs
sold 70% more electrical energy in the risk-neutral mode compared to the risk-averse mdoe.
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Figure 12. Power traded between the network and the energy hubs.

Figures 13 and 14 demonstrate the power and heat energy produced by the CHP units
in the EHs, respectively. By comparing the figures, it can be deduced that the second CHP
unit (non-convex) generates more power, but the first CHP unit (convex) produces more
thermal energy. The functioning of the CHP units is considerable in hub5 (CHP1 (1600 kW
in risk-neutral mode and 1250 kW in risk-averse mode) and CHP2 (3400 kW in risk-neutral
mode and 2600 kW in risk-averse mode)).

 

Figure 13. Power generation of CHP units.
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Figure 14. Heat generation of CHP units.

Figure 15 shows the charging and discharging statements of the EVs. Because we
have considered the presence of EVs for 8 h in hub5, the functioning is obtained from 8
to 16. Due to the high peak demand, a significant amount of power has been delivered to
hub5—about 20 kW. Finally, the function of the load-shifting strategy is demonstrated in
Figure 16 for hub1 and hub3. This strategy is quite helpful in terms of energy cost reduction
by moving the demand from peak demand to other time intervals. Based on this strategy,
20 kW and 15 kW of power loads in hub1 and hub3, respectively, are moved out of peak
demand to reduce the energy cost of the hubs.

 

Figure 15. Charging and discharging power of EVs.
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Figure 16. Load-shifting function in hub1 and hub3.

5. Results Validation

In this section, the generation of scenarios is carried out for different data representing
a risky condition to validate the obtained results. Under such a condition, the standard
deviation, as well as the fluctuation level, are a somewhat larger compared to the previous
model. However, there is a slight difference when there is a comparison between uncertain
parameters. In this regard, Figures 17–21 indicate the generated scenarios for PV systems
and WTs, market price, power demand, and thermal energy demand, respectively. As
shown in Table 5, the scenario costs are obtained for different lambda values, for which
the operating costs were led to a certain number (663852 NOK) in the last iteration. In the
previous section, however, the obtained value when λ = 1 is 663867 NOK, representing the
fact that in all uncertain situations, the scenario cost is quite close to our results.

 

Figure 17. Generated scenario for PV system function.
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Figure 18. Generated scenario for WT system function.

 

Figure 19. Generated scenario for electricity market price.

 

Figure 20. Generated scenario for power demand.
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Figure 21. Generated scenario for thermal energy demand.

Table 5. Obtained scenario costs versus different levels of lambda.

SC = 1 SC = 2 SC = 3 SC = 4 SC = 5 SC = 6 SC = 7 SC = 8 SC = 9 SC = 10

λ = 0 223,256 550,148 477,104 418,689 251,083 576,426 374,801 365,674 633,806 560,661

λ = 0.1 249,265 564,361 478,604 448,456 279,244 586,402 411,243 387,550 663,840 560,661

λ = 0.2 295,416 564,361 478,605 453,049 301,534 586,402 416,514 413,064 663,852 560,661

λ = 0.3 282,231 564,361 486,278 476,351 338,328 586,402 448,248 463,124 663,852 560,661

λ = 0.4 283,755 564,361 502,001 492,357 405,541 586,402 470,451 494,144 663,852 560,661

λ = 0.5 322,345 564,361 517,026 476,342 484,356 586,402 482,164 517,247 663,852 560,661

λ = 0.6 381,627 564,361 532,140 518,412 532,530 586,402 485,248 505,531 663,852 560,661

λ = 0.7 547,284 564,361 547,974 547,671 464,758 586,402 489,855 505,212 663,852 560,661

λ = 0.8 514,126 564,361 564,792 564,664 564,521 586,402 494,245 564,951 663,852 565,691

λ = 0.9 603,321 603,451 603,470 603,571 598,691 603,371 603,191 547,426 663,852 602,371

λ = 1 663,852 663,852 663,852 663,852 663,852 663,852 663,852 663,852 663,852 663,852

6. Conclusions

In this paper, the value of P2P heat and power trading in combination with different
resources of on-site flexibility is investigated for a Norwegian industrial site, where indus-
trial units are considered as EHs and equipped with energy sources including renewables
(WTs and PV systems), CHP units (convex and non-convex), and EVs. Due to the presence
of uncertain parameters that greatly reduce the flexibility of the system, the downside
risk constraint (DRC) method is applied to evaluate the flexibility of the system under
risk-averse and risk-neutral modes. In comparison with the risk-neutral mode, the operator
acts more conservatively in the risk-averse mode. For instance, as hub5 has a significant
level of electrical demand, more power is imported from the network (4500 kW), and a
small amount of value is sold to the grid (100 kW) based on the conservative behavior of
the decision maker. Also, by increasing the system’s operational cost, the amount of risk is
set at zero. In this concern, the operational cost to achieve a zero-risk condition is increased
by nearly 36%. Because the CHP units produce power and heat simultaneously, thermal
energy is exchanged among the EHs to meet their thermal loads. Also, the consideration
of the load-shifting strategy in the first and third hubs resulted in a significant electrical
load reduction in the risk-neutral mode (20 kW in hub1 and 15 kW in hub3). By and large,
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although the operational cost rises in the risk-averse mode, the decision maker becomes
capable enough to face uncertain parameters.

In future research studies, the game-theoretic modeling of energy hubs could be
examined based on free competition. Also, applying the ADMM algorithm to analyze
the P2P heat and power transaction in a decentralized mode could be another research
direction for studying the power flow among the energy hubs.
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Nomenclature

Sets CLS
h Load-shifting penalty for hub h

t Index of time interval CP,P2P
t,h Price of P2P power transaction (kWh/NOK)

h Index of energy hubs CT,P2P
t,h Price of P2P heat transaction

s Index of scenarios Cg,SP
t Spot price of wholesale (kWh/ NOK)

c Index of CHP units
a_chp
b_chp
c_chp

Cost coefficients of CHP units

Parameters Variables

Cg,eng Energy cost (NOK/kWh) Pg,buy
t,h Power consumption from the grid

Nwt
h The number of wind turbines in energy hubs Pg,peak

h The maximum power demand of hub h
Vt Wind speed Pg,sell

t,h Power feed-in to the grid

It Solar radiation Pimp
(t,h) P2P electricity imported by hub h

Pwt
rated The nominal capacity of wind turbine Pimp,p

(t,h←p) P2P electricity imported by hub h from peer p

Vrated Rated wind speed Pexp
(t,h) P2P electricity exported by hub h

Vcut-in Cut-in wind speed Pexp,p
(t,h→p) P2P electricity exported by hub h to the peer p

Vcut-out Cut-out wind speed Pchp
t,h,c Generated power by CHP units

Istd Solar radiation in a typical day Tchp
t,h,c Produced heat by CHP units

IC Radiation point Timp
t,h P2P heat energy imported by hub h

Ppv
rated The nominal capacity of solar panels Timp,p

t,h←p P2P heat energy imported by hub h from peer p
Cg, f ix Utility tariff cost Texp

t,h P2P heat energy exported by hub h
ψP2P The power loss of the distribution network and P2P transaction Texp,p

t,h←p P2P heat energy exported by hub h to the peer p
Δt Time duration of step t Eev

t The overall level of EV storage unit
Pmax

f eed-in Maximum power to meet prosumers’ needs (kWh) Pev,ch
t,h Charged power to the EV storage unit

ηev,ch The efficiency of EV charging unit Pev,dch
t,h Discharged power from the EV storage unit

ηev,dch The efficiency of EV discharging unit Pls,sh
t,h Shifted load by hub h

Enom
ev The nominal capacity of the storage unit Pls,dem

t,h Rescheduled load by hub h
Pnum

ev,charger The nominal capacity of the EV charger (kWh) Els
t,h The amount of shifted power
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Estart The energy level in EVs when they arrive at work Binary Variable

Eend The energy level in EVs when they leave work ubuy
t,h Binary variable to buy power from the network

EVnum The number of parked EVs during work time usell
t,h Binary variable to sell power to the network

Cg,peak Peak power price of utility tariff (NOK/Month) SDchp
t,h,c Strat-up status of CHP unit

Pdem
t,h Power demand of energy hubs (kW) SUchp

t,h,c Shut-down status of the CHP unit

Tdem
t,h Heat demand of energy hubs (kW) vchp

t,h,c Commitment status of the CHP unit

References

1. Lingcheng, K.; Zhenning, Z.; Jiaping, X.; Jing, L.; Yuping, C. Multilateral agreement contract optimization of renewable energy
power grid-connecting under uncertain supply and market demand. Comput. Ind. Eng. 2019, 135, 689–701. [CrossRef]

2. Islam, M.M.; Zhong, X.; Sun, Z.; Xiong, H.; Hu, W. Real-time frequency regulation using aggregated electric vehicles in smart
grid. Comput. Ind. Eng. 2019, 134, 11–26. [CrossRef]

3. Nikmehr, N. Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs. Energy
2020, 199, 117440. [CrossRef]

4. Long, C.; Wu, J.; Zhang, C.; Thomas, L.; Cheng, M.; Jenkins, N. Peer-to-peer energy trading in a community microgrid. In
Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5.

5. Haider, S.; Walewski, J.; Schegner, P. Investigating peer-to-peer power transactions for reducing EV induced network congestion.
Energy 2022, 254, 124317. [CrossRef]

6. Mbungu, N.T.; Naidoo, R.M.; Bansal, R.C.; Siti, M.W.; Tungadio, D.H. An overview of renewable energy resources and grid
integration for commercial building applications. J. Energy Storage 2020, 29, 101385. [CrossRef]

7. Nourollahi, R.; Zare, K.; Nojavan, S. Energy Management of Hybrid AC-DC Microgrid under Demand Response Programs:
Real-Time Pricing Versus Time-of-Use Pricing. In Demand Response Application in Smart Grids; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 75–93.

8. Jian, P.; Guo, T.; Wang, D.; Valipour, E.; Nojavan, S. Risk-based energy management of industrial buildings in smart cities
and peer-to-peer electricity trading using second-order stochastic dominance procedure. Sustain. Cities Soc. 2022, 77, 103550.
[CrossRef]

9. Salyani, P.; Nourollahi, R.; Zare, K.; Razzaghi, R. A new MILP model of switch placement in distribution networks with
consideration of substation overloading during load transfer. Sustain. Energy Grids Netw. 2022, 32, 100944. [CrossRef]

10. Dong, J.; Ye, C. Green scheduling of distributed two-stage reentrant hybrid flow shop considering distributed energy resources
and energy storage system. Comput. Ind. Eng. 2022, 169, 108146. [CrossRef]

11. Luo, X.; Liu, Y. A multiple-coalition-based energy trading scheme of hierarchical integrated energy systems. Sustain. Cities Soc.
2021, 64, 102518. [CrossRef]

12. Liu, C.; Chai, K.K.; Zhang, X.; Chen, Y. Peer-to-peer electricity trading system: Smart contracts based proof-of-benefit consensus
protocol. Wirel. Netw. 2021, 27, 4217–4228. [CrossRef]

13. Moret, F.; Baroche, T.; Sorin, E.; Pinson, P. Negotiation algorithms for peer-to-peer electricity markets: Computational properties.
In Proceedings of the 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018; pp. 1–7.

14. Burgwinkel, D. (Ed.) Blockchaintechnologie und deren Funktionsweise verstehen. In Blockchain Technology: Einführung für
Business- und IT Manager; De Gruyter Oldenbourg: Berlin, Boston, Germany, 2016; pp. 3–50. [CrossRef]

15. Mengelkamp, E.; Gärttner, J.; Rock, K.; Kessler, S.; Orsini, L.; Weinhardt, C. Designing microgrid energy markets: A case study:
The Brooklyn Microgrid. Appl. Energy 2018, 210, 870–880. [CrossRef]

16. Zhang, C.; Wu, J.; Zhou, Y.; Cheng, M.; Long, C. Peer-to-Peer energy trading in a Microgrid. Appl. Energy 2018, 220, 1–12.
[CrossRef]

17. Xie, B.-C.; Lu, L.; Duan, N. Environmental efficiency assessment of China’s integrated power system under the assumption of
semi-disposability. Comput. Ind. Eng. 2022, 167, 108023. [CrossRef]

18. Nourollahi, R.; Gholizadeh-Roshanagh, R.; Feizi-Aghakandi, H.; Zare, K.; Mohammadi-Ivatloo, B. Power distribution expansion
planning in the presence of wholesale multimarkets. IEEE Syst. J. 2022; early access. [CrossRef]

19. Noor, S.; Yang, W.; Guo, M.; van Dam, K.H.; Wang, X. Energy demand side management within micro-grid networks enhanced
by blockchain. Appl. Energy 2018, 228, 1385–1398. [CrossRef]

20. Seyfi, M.; Mehdinejad, M.; Mohammadi-Ivatloo, B.; Shayanfar, H. Scenario-based robust energy management of CCHP-based
virtual energy hub for participating in multiple energy and reserve markets. Sustain. Cities Soc. 2022, 80, 103711. [CrossRef]

21. Nasir, M.; Jordehi, A.R.; Matin, S.A.A.; Tabar, V.S.; Tostado-Véliz, M.; Mansouri, S.A. Optimal operation of energy hubs including
parking lots for hydrogen vehicles and responsive demands. J. Energy Storage 2022, 50, 104630. [CrossRef]

22. Qu, Z.; Chen, J.; Peng, K.; Zhao, Y.; Rong, Z.; Zhang, M. Enhancing stochastic multi-microgrid operational flexibility with mobile
energy storage system and power transaction. Sustain. Cities Soc. 2021, 71, 102962. [CrossRef]

23. Kandpal, B.; Pareek, P.; Verma, A. A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution
grid. Energy 2022, 249, 123737. [CrossRef]

24. Zargar, R.H.M.; Yaghmaee, M.H. Energy exchange cooperative model in SDN-based interconnected multi-microgrids. Sustain.
Energy Grids Netw. 2021, 27, 100491. [CrossRef]

43



Energies 2022, 15, 8920

25. Aghdam, F.H.; Kalantari, N.T.; Mohammadi-Ivatloo, B. A stochastic optimal scheduling of multi-microgrid systems considering
emissions: A chance constrained model. J. Clean. Prod. 2020, 275, 122965. [CrossRef]

26. Sobhani, S.O.; Sheykhha, S.; Madlener, R. An integrated two-level demand-side management game applied to smart energy hubs
with storage. Energy 2020, 206, 118017. [CrossRef]

27. Li, L.; Zhang, S. Peer-to-peer multi-energy sharing for home microgrids: An integration of data-driven and model-driven
approaches. Int. J. Electr. Power Energy Syst. 2021, 133, 107243. [CrossRef]

28. Nguyen, D.H.; Ishihara, T. Distributed peer-to-peer energy trading for residential fuel cell combined heat and power systems. Int.
J. Electr. Power Energy Syst. 2021, 125, 106533. [CrossRef]

29. Gan, W.; Yan, M.; Yao, W.; Wen, J. Peer to peer transactive energy for multiple energy hub with the penetration of high-level
renewable energy. Appl. Energy 2021, 295, 117027. [CrossRef]

30. Nourollahi, R.; Salyani, P.; Zare, K.; Mohammadi-Ivatloo, B.; Abdul-Malek, Z. Peak-Load Management of Distribution Network
Using Conservation Voltage Reduction and Dynamic Thermal Rating. Sustainability 2022, 14, 11569. [CrossRef]

31. Lüth, A.; Zepter, J.M.; del Granado, P.C.; Egging, R. Local electricity market designs for peer-to-peer trading: The role of battery
flexibility. Appl. Energy 2018, 229, 1233–1243. [CrossRef]

32. Howell, A.; Saber, T.; Bendechache, M. Measuring node decentralisation in blockchain peer to peer networks. Blockchain Res. Appl.
2022, 100109. [CrossRef]

33. Dong, J.; Song, C.; Liu, S.; Yin, H.; Zheng, H.; Li, Y. Decentralized peer-to-peer energy trading strategy in energy blockchain
environment: A game-theoretic approach. Appl. Energy 2022, 325, 119852. [CrossRef]

34. McIlvenna, A.; Herron, A.; Hambrick, J.; Ollis, B.; Ostrowski, J. Reducing the computational burden of a microgrid energy
management system. Comput. Ind. Eng. 2020, 143, 106384. [CrossRef]

35. Sperstad, I.B.; Helseth, A.; Korpås, M. Valuation of Stored Energy in Dynamic Optimal Power Flow of Distribution Systems
with Energy Storage. In Proceedings of the 2016 International Conference on Probabilistic Methods Applied to Power Systems
(PMAPS), Beijing, China, 16–20 October 2016; pp. 1–8.

36. Zhang, H.; Cai, J.; Fang, K.; Zhao, F.; Sutherland, J.W. Operational optimization of a grid-connected factory with onsite
photovoltaic and battery storage systems. Appl. Energy 2017, 205, 1538–1547. [CrossRef]

37. Sæther, G.; Del Granado, P.C.; Zaferanlouei, S. Peer-to-peer electricity trading in an industrial site: Value of buildings flexibility
on peak load reduction. Energy Build. 2021, 236, 110737. [CrossRef]

38. Jafarikia, S.; Feghhi, S. Built in importance estimation in forward Monte Carlo calculations. Ann. Nucl. Energy 2022, 177, 109298.
[CrossRef]
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Abstract: Battery degradation is a main concern for electric vehicle (EV) users, and a reliable capacity
estimation is of major importance. Every EV battery management system (BMS) provides a variety of
information, including measured current and voltage, and estimated capacity of the battery. However,
these estimations are not transparent and are manufacturer-specific, although measurement accuracy
is unknown. This article uses extensive measurements from six diverse EVs to compare and assess
capacity estimation with three different methods: (1) reading capacity estimation from the BMS
through the central area network (CAN)-bus, (2) using an empirical capacity estimation (ECE) method
with external current measurements, and (3) using the same method with measurements coming
from the BMS. We show that the use of BMS current measurements provides consistent capacity
estimation (a difference of approximately 1%) and can circumvent the need for costly experimental
equipment and DC chargers. This data can simplify the ECE method only by using an on-board
diagnostics port (OBDII) reader and an AC charger, as the car measures the current directly at the
battery terminals.

Keywords: battery capacity; electric vehicle; DC charger; on-board charger; BMS data

1. Introduction

1.1. Motivation

Due to the rapid growth of electric vehicle (EV) adoption, it is becoming increasingly
important to understand how batteries degrade over a vehicle’s lifetime. Li-ion battery
packs used in EV applications are always equipped with a battery management system
(BMS) [1]. This measures, controls, and manages battery usage [2], while keeping the
voltage, current, and temperature of the battery in a safe operating area [3]. In addition, a
BMS estimates capacity, a metric used to evaluate battery capacity loss. However, capacity
estimations are not standardized between car manufacturers, and internal BMS estimations
can vary from car to car depending on the applied method, frequency of recalibration, etc.
Additionally, a few commercially available solutions have been developed to estimate the
capacity of EV batteries, by using charge or discharge processes and relying on the BMS
data. However, we are left with the question, Are EV BMS capacity estimations always
reliable and accurate?

1.2. Capacity Estimation Techniques

BMS estimation techniques are divided into two groups: adaptive and experimen-
tal [4]. In adaptive methods capacity is estimated from parameters that are sensitive to
the degradation of the battery cell. Examples are neural networks [5] or Kalman filters [6],
which can provide accurate results. However, high computational needs and costs limit
their application in commercial systems [4]. In experimental methods the cycling data
history of the battery is stored, and capacity is estimated as a comparison with previously
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gained knowledge. The computational effort of experimental methods is lower, simplifying
their implementation to the disadvantage of lower accuracy. An example is given when
BMS capacity estimations are performed onboard by correlating the ampere hours charged
or discharged with the voltage difference [1]. Estimation errors accumulate when ampere-
hour counting is performed over a long period of time, resulting in inaccuracies and the
need for recalibration. Nevertheless, thanks to its simplicity, the combination of Coulomb
counting and state-of-charge (SOC)–open circuit voltage relation is used in current BMSs.

Hybrid adaptive/experimental methods, which first characterize chemical reactions
and aging mechanisms are also proposed. They are based on approaches such as incremen-
tal capacity analysis (ICA) and differential voltage analysis [7], which have been mainly
used as reliable offline tools, and have been investigated for online BMS applications [7].
The ICA method relies on plotting the derivative of the capacity with respect to voltage
as a function of voltage (incremental capacity (IC) signature) [8,9]. As the battery expe-
riences degradation, the peaks of the IC signature change location. Peaks and valleys of
an aged battery can then be compared to the ones of a new battery, and thereby derive
the capacity of the aged one [10]. This method has been applied at the EV level in [10,11],
showing comparable characteristic peaks and valleys of the IC signature between cells and
pack. However, the authors of [12,13] claim that the pack signature may not be directly
extrapolated from the already available cells, given that those are not always subject to
similar conditions.

Given the wide range of commercially available BMSs and the lack of transparency,
it is important to be able to estimate battery capacity with a methodology that is agnostic
to BMS data processing and can be applied on any EV battery chemistry, size, and usage.
A methodology with such potential is an empirical capacity estimation (ECE) method,
used for the first time in our previous work [14], but only applied to a 24 kWh Nissan
Leaf. The method consists of a full charge of the battery without disassembling it from the
vehicle and violating the warranty. When charging with onboard (AC) chargers, battery
voltage and current are not accessible for measurement due to the presence of the AC/DC
converter. Therefore, an external DC charger is used, where charging voltage and current
can be measured with external equipment at the DC charger terminals. Capacity is then
determined as the energy flowing into the battery during the full charge. The disadvantage
of this method is that it is time consuming and requires the use of external equipment (EE)
that is expensive and not readily accessible.

1.3. What Data Is Available

In series-produced cars, valuable BMS data can be read from the central area network
(CAN)-bus via the on-board diagnostics port (OBDII). Available data includes instanta-
neous measurements, like battery voltage and current, and BMS-derived battery capacity
estimations. On the one hand, this allows the use of BMS voltage/current measurements in
the ECE method instead of that from EE, after first evaluating their accuracy. On the other
hand, BMS estimations can be evaluated and compared with values obtained through a
BMS-agnostic method.

The three levels of data which are considered in this work are displayed in Figure 1.
They are

• voltage and current measured with EE during a full charge (in green), used to estimate
capacity with the ECE method;

• voltage and current BMS measurements read through the OBDII port (in blue), used
to estimate capacity with the ECE method; and

• capacity readings from the CAN-bus (in red), which are internally estimated by the
BMS, the exact estimation process of which is unknown to the authors.
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Figure 1. Data collection overview. On the left, current and voltage measurements are collected
from the DC charger with current clamp, differential probe, and datalogger. On the right, raw
measurements (in blue) are collected from the BMS and CAN-bus, together with estimations derived
by the EV microcomputer.

1.4. Paper Contributions

In this work, we investigate and compare three capacity estimation approaches for six
different EV batteries, without disassembling them from the vehicles. The main objective is
to assess whether BMS readings can be used to circumvent the need for costly and invasive
experimental measurements.

The main contributions can be summarized as follows.

• First, capacity readings from the CAN-bus are compared with estimations from the
ECE method, while providing insight regarding the observed differences.

• Secondly, the validity of BMS instantaneous current and voltage measurements is
assessed by comparing them with EE measurements.

• Thirdly, EE and BMS current/voltage datasets are used to estimate battery capacity
with the ECE method, and a comparison between the two is provided.

1.5. Paper Organization

The rest of the paper is structured as follows. Section 2 presents the theoretical
background for the capacity derivation. Section 3 presents the measurement methodology
for the estimation of EV battery capacity. Section 4 overviews the case study, along with
battery pack information and vehicle usage characteristics. Section 5 compares the battery
capacity estimations with the different datasets. Section 6 concludes the manuscript with
the main outcomes.

2. Theoretical Background

2.1. EV Battery Capacity

The total capacity of a battery (Q) is the amount of energy the pack can hold. This is a
function of the initial energy capacity (Qi), and it decreases over time due to irreversible
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degradation mechanisms, calendar, and cycle aging. Qi represents the amount of energy
that the battery can theoretically hold when it is new. The total battery capacity at time t is
expressed as

Q(t) = Qi(1− (qcal(t) + qcycle(t))). (1)

qcal and qcycle are the accumulated calendar and cycle degradation, respectively, expressed
as a percentage of Qi. Calendar aging is a function of time, temperature, and SOC, and
occurs even when the battery is not used. Cycle aging is a function of the active usage, in
terms of full equivalent charge cycles at a certain temperature and current C-rate [14,15].
To maintain the battery lifespan of EVs, BMSs can restrict capacity usage by introducing
energy reserves [16]. Thus, EV battery pack capacity can be distinguished between total
and usable. Total capacity is the amount of energy the pack can hold without accounting
for external restrictions. Usable capacity is the amount of energy that can be stored in
the pack, limited by the BMS to protect the battery. If there is no reserve, then the usable
capacity coincides with the total capacity. Moreover, it is important to point out that
capacity depends on the test conditions and cannot be defined irrespective of them. Indeed,
battery capacity changes with different temperatures and C-rate, and the test conditions
are not standardized [17].

2.2. ECE Method

The usable energy capacity of a battery can be derived based on the ampere-hour
exchange, or the energy exchange during a full charge or discharge cycle. Capacity in
Ah is used for the vehicle internal capacity estimation, whereas capacity in Wh is usually
provided as nameplate rating by EV manufacturers. Therefore, in this article, we consider
both definitions.

Without disassembling the battery from the EV, the usable capacity can be measured
during a full EV battery pack charging, and this corresponds to the total capacity if there
are no reserves. In Ah (QAh), capacity can be derived by integrating the current I(k) during
the full charge. With a time resolution of τ = 1 s, ΔT= 3600 s/h and Ns being the number
of seconds on the full charge, QAh is derived as

QAh =
1

ΔT

Ns

∑
k=1

I(k)τ. (2)

Notice that time index t is dropped in QAh and subsequent capacity values to simplify
notation. These values will refer to the time when an experiment to estimate capacity was
conducted.

When considering the battery capacity in Wh, the charging capacity accounts also for
the heat dissipation in the battery internal resistance [14]. If charging is conducted with
a low current C-rate, the heat dissipation should be limited and influence the results by
a few percentage points. The capacity in Wh (QWh) is derived by integrating the product
between the pack voltage V(k) and current I(k) as

QWh =
1

ΔT

Ns

∑
k=1

I(k)V(k)τ. (3)

3. Measurements Methodology

The battery needs to be fully discharged and then fully charged to measure its capacity.
The measurable capacity, without disassembling the battery from the EV and violating the
warranty, is the usable capacity, which coincides with the total if no reserve is present. This
section presents the system—EV and charger—used for conducting the measurements in
Section 3.1, the collected datasets in Section 3.2, and finally the methodology for performing
the tests in Section 3.3.
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3.1. System Layout

EVs can be charged via DC or AC chargers. When using an AC charger, power is
first converted from the AC/DC onboard charger in the vehicle, and then flows into the
Li-ion EV battery, see Figure 2. By using a DC charger, the power-dependent losses of the
AC/DC on-board charger are avoided. The DC charger directly injects power into the 400 V
bus, as shown in Figure 2. While charging, the motor side is off and no power is absorbed.
Therefore, the power going to the 400 V bus is shared between the Li-ion EV battery and
the 12 V bus supplying the auxiliary systems.

Figure 2. Overview of EV power flows. Modified from [14].

3.2. Data Collection

As shown in Figure 1, three types of data are available to determine EV battery capacity
with three different estimation methods.

3.2.1. EE Data

This dataset consists of the voltage and current measured at the DC side of the charger
(point A) and at the 12 V bus (point B) (see Figure 2). Current and voltage values are
collected by using EE: current clamps for the former and voltage differential probes for the
latter, with an overall measurement accuracy of 2.3% [14]. Measurements and estimated
capacity are referred to as EE data.

3.2.2. BMS Data

This dataset consists of the voltage and current measured on point C in Figure 2 from
the BMS of the vehicle. This data is collected with a maximum resolution of one value
per second. It is read through the CAN-bus and OBDII port by using the Nissan Leaf
Spy app [18], and becomes available to the user in a spreadsheet form. The accuracy of
the EV internal measurement equipment is unknown to the authors and will be further
investigated in this article. These measurements are referred to as BMS data.

3.2.3. CAN-Bus Data

The last dataset consists of battery capacity readings from the CAN-bus OBDII port.
These values are internally estimated by the vehicle. The estimated capacity values are
referred in the following as CAN-bus readings.

3.3. Measurement Process

EV battery pack capacity is measured with the ECE method, which is explained and
extended in this section. The method is applicable for all car brands that can be charged
with DC power via an external charger [14].

The ECE method involves a full charge of the battery pack from the minimum to
the maximum SOC. The charging process consists of two phases. The first is constant
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current, in which the current is kept constant until voltage reaches the maximum value.
The second is constant voltage, where battery voltage is at its maximum value, and current
decreases until the charger stops charging. During the measurements it was observed that
DC chargers stop charging when the current drops to approx. 3 A. This limitation was
experienced with four chargers of two different brands and all investigated vehicles. This
behaviour is assumed to be a common feature of DC charging due to the unnecessarily
long charging time with very low efficiency. After the DC charger stops, the battery can still
be charged if connected to an AC charger (see Figure 3). The amount of energy depends on
the minimum current reached by the DC charger. The higher the minimum current, the
higher the energy that can be charged with the AC charger.

If the battery pack is small, this energy can be a significant share of the total capacity.
Therefore, the methodology in [14] has been revised in this work as follows. After the
DC charger stops, the charging process is complemented with the final tail obtained by
connecting an AC charger (AC charging tail). Two such examples are provided in Figure 3.
Differently from the DC charger, the power coming from the AC charger goes through
the AC/DC inverter and then to the Li-ion EV battery (see Figure 2). Measuring the
current at the AC side would account for the inverter losses; therefore, this is avoided
by considering the current measured at the terminals of the battery (point C in Figure 2).
Without disassembling the battery, these values can only be obtained by the BMS.
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Figure 3. Current charging profiles of a 62 kWh battery pack with a 10 kW and a 20 kW DC charger,
including the final tail with an AC charger.

Battery capacity can be derived by considering the current and voltage measured
during the charging period with the two datasets (EE and BMS). Figure 4 shows the
respective measurement locations. Voltage and current read from the BMS are internally
measured at the battery terminals in point C, whereas EE data is measured at the DC
charger side (point A) and at the 12 V bus (point B). To compare voltage and current, EE
data are processed to derive the current at the battery terminals. This is calculated as the
difference between the current in points A and B*. To derive the current in B* (IB*(k)), the
current in B is scaled to the 400 V bus by considering the voltage measured in A (400 V bus,
VA(k)) and B (12 V bus, VB(k)) as in (4):

IB*(k) = IB(k) · VB(k)
VA(k)

. (4)

DC/DC converter losses between the 400 V and 12 V buses are assumed to be negligi-
ble.
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Figure 4. Measurement location overview. In A and B, voltage and current are measured with the
external equipment. The BMS voltage and current data are measured from point C. B* is the derived
current measurement with the external equipment.

By using (2), capacity is derived by (5) considering the external measurements in points
A and B and the additional AC tail, and by (6) considering the BMS current measurements
in point C:

QAh
EE =

1
ΔT

(Ns
DC

∑
k=1

(
IA(k)− IB*(k)

)
τ +

Ns
DC+Ns

AC

∑
k=Ns

DC+1
IC(k)τ

)
, (5)

QAh
BMS =

1
ΔT

Ns
DC+Ns

AC

∑
k=1

IC(k)τ, (6)

where Ns
DC and Ns

AC is the number of seconds while charging with the DC and AC charger,
respectively. Similarly, battery capacity can be derived in Wh by adapting (3).

In the following sections, the normalized capacity q (ratio between the measured
and the initial energy capacity) will be used. The superscript Ah or Wh will denote the
convention used to express capacity, and the subscript will refer to the used dataset (EE,
BMS or CAN).

4. Case Study

4.1. Battery Characteristics

Six EVs with different battery size, chemistry, and usage have been chosen, to demon-
strate that results are applicable independently of these factors. Additionally, to account
for the rapid technology development during the last decade, EVs introduced in 2014 and
2020 are considered. The EVs names and their characteristics are provided in Table 1.

The Ah nominal capacity (Qi) of the EVs can be read through the BMS and Leaf Spy
app [18]. Nominal voltage is derived as the average open-circuit voltage measured during
the constant current phase of the full charge. To the authors’ knowledge, the chemistry
of the 30 kWh is still unknown in the literature; however, it is expected to be similar to
previous and newer battery versions.
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Table 1. Vehicles’ battery pack and cell characteristics. The number next to E and L indicates the
nominal capacity in kWh.

EVs
Env-200
24 kWh

Env-200
24 kWh

LEAF
30 kWh

LEAF
30 kWh

LEAF
40 kWh

LEAF
62 kWh

Name E24-1 E24-2 L30-1 L30-2 L40 L62

Chemistry LMO [19] LMO + NMC(?) NMC [19] NMC [19]

Voltage [V] 369.6 360.0 350.4 350.4

Number of cells 192 192 192 288

Cells in series 96 96 96 96

Cells in parallel 2 2 2 3

Capacity [Ah] 65.4 79.5 115.4 176.4

Capacity [kWh] 24.2 28.6 40.4 61.8

4.2. Vehicle Daily Usage

All four E24 and L30 vehicles are driven during the day by the local municipality of
the Danish island of Bornholm, and provide frequency regulation (FR) during the night
since the end of 2016 [20]. Frequency control is provided for approximately 14 h during the
weekdays, and during the weekends for the entire day. An external ±10 kW vehicle-to-grid
(V2G) charger with CHAdeMO connector is used to provide FR. L40 is parked in the
laboratory of the Technical University of Denmark, and is only used for measurements a
few times per year [15]. L62 is privately owned and driven daily in Denmark [21]. Usage
characteristics are summarized in Table 2. EV battery production date is not provided to the
owners; therefore, it is here considered to be two months prior to the registration date. Only
for L40 is the battery production set eight months prior because the vehicle was previously
used for exhibition purposes [15]. The energy throughput for the distance driven per day
is derived considering an average consumption of 6 km/kWh [22]. The energy throughput
for the FR service of all four E24 and L30 vehicles is considered as in [14], because the
service is based on the same frequency and control strategy.

Table 2. Average vehicles usage, distance driven, and FR throughput. * The vehicle provided FR only
during the first year.

EV E24-1 E24-2 L30-1 L30-2 L40 L62

Registration
date 7 July 2016 23 June 2017 21 September 2017 6 December 2016 1 August 2018 30 November 2020

Distance per
day [km/day] 10 21 20 21 0 35

Throughput
drive
[kWh/day]

3.3 7 6.6 7 0 11.7

FR Yes No * Yes Yes No No

Throughput
FR [kWh/day] 45 45 45 45 0 0

Tot. throughput
[kWh/day] 48.3 52 51.6 52 0 11.7

Active cooling Yes Yes No No No No
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4.3. Charging C-Rate

External 10 kW DC chargers with CHAdeMO connector are used for charging the
EV batteries. During the constant current phase, the current is approximately 24 A. For
the considered vehicles, this corresponds to a C-rate (defined as the current divided by
the nominal capacity in Ah) between 0.37 for the smallest battery and 0.14 for the largest
one, see Table 3. In both cases, C-rate should be sufficiently low to keep the battery heat
dissipation limited to a few percentage units and estimate the battery capacity [14].

Table 3. Current and C-rate during the constant current phase of the charging process.

EV E24-1 E24-2 L30-1 L30-2 L40 L62

Capacity [Ah] 65.4 79.5 115.4 176.4
Current [A] 24 24 24 24
C-rate [-] 0.37 0.30 0.21 0.14

5. Results

Results are presented in three main steps, as shows in Table 4. During the first step
(Section 5.1), capacity estimations over five years derived via testing with ECE method and
EE data, and readings from the CAN-bus are compared. This step shows the uncertainties
arising from the nontransparent BMS estimations. Thus, in the second step (Section 5.2), the
instantaneous current and voltage values provided by the BMS are compared with those
from EE. These values are then used in the last step (Section 5.3) to compare the capacity
estimated with the two datasets, i.e., EE and BMS. Finally, Section 5.4 concludes the section
with field test insights on capacity estimation methods and data collection.

Table 4. Steps for results comparison.

STEP 1: EE capacity estimate (qEE) VS CAN-bus capacity estimate (qCAN)
STEP 2: EE current and voltage data VS BMS current and voltage data
STEP 3: EE capacity estimate (qEE) VS BMS capacity estimate (qBMS)

5.1. Step 1: EE and CAN-Bus Readings Capacity Comparison
5.1.1. Capacity EE Estimation

Figure 5 compares the normalized capacity of the different vehicles versus their age,
both in Ah and Wh. As discussed in Section 3.3, DC chargers stop charging at low current
values and more energy can still flow to the battery via AC charging. Despite the fact that
this energy is limited for newer and larger batteries, it is important to consider this effect in
the overall capacity estimation. A more detailed explanation is provided in Appendix A.2.

The used initial battery capacity values in Ah and Wh are provided in Table 1 and used
in this section for normalizing the measured capacity values. By comparing the normalized
capacity (qAh

EE and qWh
EE ) versus age, the different battery chemistry and size do not seem

to have a large impact on the degradation trend. L40 ages more slowly, which can be
explained by the sole existence of calendar aging, constant battery temperature of 22 ◦C,
and SOC of 50% [15]. Another interesting finding is that kWh capacity values are 3–4%
higher than the Ah values. The difference is caused by the battery joule losses that depend
on the C-rate during charging. For example, taking a vehicle with battery resistance in p.u.
as 6%, if charged with 1 C-rate losses are 6%, whereas if charged with 0.2 C-rate, losses are
approximately 1.2%. Therefore, the smaller the battery, the larger the C-rate and the joule
losses, and the difference between Ah and Wh normalized values.

Based on Figure 5 the measured capacity does not present a smooth, or even monotonous,
decrease. This can be due to different factors. First, battery temperature varied during
testing. Despite the fact that measurements were conducted in spring and autumn with
similar ambient temperatures, it is not possible to keep the temperature of the batteries
constant. Battery temperature variations during the charging phase are kept below 8 ◦C for
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most of the cases, with temperatures ranging between 15 ◦C and 25 ◦C (see Appendix A.1).
Only twice were the battery temperatures of E24-1 and L40 approximately 35 ◦C, due to
usage before the measurements.
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Figure 5. Normalized capacity measurements versus age of the vehicles in years.

Secondly, the ±1% accuracy of current and ±0.1% accuracy of voltage measurements
are propagated in the final capacity with an accuracy of 2.3% [14]. Thirdly, for what
concerns the discharging process, the reached minimum voltage is not always the same,
and it does not always correspond to the same minimum SOC (see Table A1). This is
because during the discharging phase the BMS stops the discharging process when the
lowest cell voltage reaches a level between 2.8 and 3.1 V. Thus, the minimum voltage can
differ from test to test, due to a different cell imbalance each time. Nevertheless, because
voltage increases quickly in the beginning of the tests (due to the initial steep relationship
between SOC and open circuit voltage of Li-ion batteries), the difference of the minimum
pack voltage has a limited effect on the measured battery capacity [14].

5.1.2. Comparison of EE and CAN-Bus Readings

Figure 6 compares the normalized measured capacity via the ECE method and EE
data (qAh

EE ) with those collected via the CAN-bus readings (qAh
CAN). Because vehicle internal

estimations are usually based on Ah values, this section is only focused on those.
CAN-bus capacity readings are always higher than the measured ones, with the

exception of L302. Moreover, CAN-bus readings above the initial capacity value (larger
than 1 p.u.) are observed for E24-1 and E24-2, whereas L30-1 dropped from 0.78 p.u.
to 0.69 p.u. in less than 6 months. For older vehicles, E24 and L30, larger differences
between the EE measurements and CAN-bus readings are observed. The CAN-bus capacity
readings cannot be fully explained by the authors, because they depend on internal vehicle
estimation.

Furthermore, the computing power, available memory and accuracy of the current
measurements can impact capacity estimations [1]. Although it is not possible to assess the
first two (and the method used by the EV microcomputer), current and voltage measure-
ments at the battery terminals can be collected from the BMS through the OBDII. Therefore,
in the next subsection the accuracy of voltage and current measurements is investigated by
comparing them with EE values.
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Figure 6. Normalized Ah capacity comparison between the measured EE (represented by asterisks)
and CAN-bus readings (represented by circles).

5.2. Step 2: EE and BMS Current and Voltage Comparison

In this subsection, the accuracy of the battery voltage and current BMS measurements
is investigated. This is done by comparing the values measured from the BMS with those
measured by the EE dataset. As shown in Figure 4, the EE current at the battery terminal
(point B*) is derived from the EE measurements in A and B considering (4). Measurements
are compared in terms of the instantaneous percentage difference in Figure 7 during the
first charging hour of the measurements. Table 5 provides the standard deviation (SD)
and mean values of the percentage difference of the current and voltage values during the
constant current phase of the charging process.

Subplot (a) shows that the voltage difference is always limited to ±0.5%, whereas
in (b) the current difference varies between ±8% for E24 and L30, and ±2% for L40 and
L62. In addition, there seems to be a bias in the current difference of E24-2 and L30-2 of
approximately 1 A. The offset of EE current at the beginning of each measurement is always
reset to zero, whereas this cannot be done with the BMS because there is no control over
the measurement equipment. Perhaps the aforementioned biases can be attributed to such
calibration issues. By comparing the SD in Table 5, it is visible that current differences are
much more volatile than the voltage ones.

Table 5. Standard deviation and mean values of the percentage difference during constant current
phase between EE and BMS datasets.

E24-1 E24-2 L30-1 L30-2 L40 L62

Voltage difference SD [%] 0.05 0.04 0.04 0.03 0.03 0.01
Voltage difference mean [%] 0.11 0.21 0.22 0.27 0.1 0.03
Current difference SD [%] 3.46 2.82 3.43 1.35 0.35 0.28
Current difference mean [%] 1.92 3.79 1.26 4.96 0.39 1.39

Additionally, we should be reminded that the current measured with the EE also ac-
counts for the DC/DC inverter losses present between the 400 V and 12 V buses, which can
also be an explanation of the current differences. Furthermore, the unknown performance
of the measurement equipment inside the EV is also expected to affect the accuracy of
current values. However, given that the differences of voltage and current with the BMS
and the EE are limited for most of the cars, in the next subsection capacity is estimated
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with the two datasets to determine the impact of the different measurements on capacity
estimation.
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Figure 7. Comparison of voltage and current difference measured between EE and BMSs datasets.
Subplot (a) shows the percentage voltage difference whereas (b) the percentage current difference.

5.3. Step 3: EE and BMS Capacity Estimation Comparison

The capacity estimated with the EE and BMS voltage and current datasets is reported
in Table 6, in Ah and kWh. The difference between EE and BMS is limited to 3.8% for
E24-2 and L30-2, and less than 1.5% for the remaining ones. This is in accordance with the
findings from Figure 7b and Table 5, wherein currents for E24-2 and L30-2 prove to have an
initial offset. Thus, the larger currents lead to a higher capacity estimation.

Thanks to the limited difference between the capacity estimated with the two datasets,
it can be concluded that the BMS current and voltage values are accurate enough for
estimating capacity with the ECE method. Because the BMS current and voltage data are
directly collected at the battery terminals, this also means that the limitation of using DC
chargers in the ECE method is lifted, and both chargers (AC and DC) can be used.

Table 6. Comparison of capacity derived with the ECE method with EE and BMS datasets in Ah and
in kWh.

Capacity in Ah Capacity in kWh

Data EE BMS EE BMS

E24-1 55.3 55.5 20.9 20.9

E24-2 56.3 58.2 21.3 22.0

L30-1 65.9 65.1 24.2 23.8

L30-2 65.3 67.9 24.2 24.9

L40 104.4 104.0 38.1 37.9

L62 165.3 163.0 59.7 58.9

164.4 162.5 59.6 58.9
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5.4. Discussion

This section compares the findings, highlighting advantages and disadvantages of
each estimation approach. The main results are summarized in Table 7.

Table 7. Data collection comparison.

Characteristic/Data EE BMS CAN-bus

Measurement accuracy High Medium/high, still unknown Medium/high, still unknown
Measurement location DC charger and 12 V bus Battery terminals Battery terminals
Equipment Expensive Limited (app to read data) Limited (app to read data)
Electrical knowledge Advanced Limited Limited
Data processing info Full knowledge Full knowledge Limited knowledge

The CAN-bus capacity readings cannot be fully interpreted by the authors, due to
restricted knowledge on methodology and internal vehicle calculations. Therefore, this
subsection mainly focuses on capacity measurements using EE and BMS current data, and
insights regarding the quality and accessibility of the datasets is provided.

First, with the ECE method and EE measurements both a DC and an AC charger,
current clamps, voltage differential probes, and a data logger are necessary. Such equipment
with a reasonable accuracy is expensive and not readily available. In contrast, battery
current is continuously measured by the BMS, but the accuracy of the measurements is
unknown to the authors. The instantaneous difference between the current measured with
EE and the BMS was found to be higher for older vehicles, and limited to 2% for the newest
Nissan Leafs. In this comparison, it should be taken into account that EE measurements
also include the DC/DC converter losses between the 400 V and the 12 V buses, which are
instead bypassed with the BMS current measurement.

Secondly, DC chargers are used to bypass the AC/DC converter located between the
AC charger and the 400 V bus. In addition to being more expensive, DC chargers have
higher charging currents that result in higher joule losses during charging. By considering
BMS data, current is directly measured at the battery terminals, meaning that both DC and
AC chargers can be used. Given the observed limited difference between current readings
from BMS and EE, it can be concluded that capacity estimation can be performed by using
only onboard chargers and the BMS, without the need for expensive experimental setups.

Thirdly, to connect the external equipment to the 400 V side of the DC charger, it has
to be possible to open the charger door and have access to the correct terminals, which also
means that electrical component knowledge is required. On the other hand, BMS data is
collected from the OBDII-CAN bus of the vehicle. For Nissan Leaf vehicles, information
from the OBDII is made accessible by the Leaf Spy app, but similar applications could be
developed for other cars.

The accessibility to BMS current measurements could greatly simplify ECE applicabil-
ity by only using an OBDII, a mobile phone, and an AC charger. Thus, costs are decreased
and collection time is limited, e.g., by charging the vehicle during night. Nevertheless,
this comes with a need for BMS data reading and translation availability, which is at the
moment accessible only for a few vehicles. A few commercial solutions are already using
charging/discharging events to estimate battery capacity. These rely on data from the BMS,
e.g., current, voltage, etc., to estimate the battery capacity. Because the full methodology is
unknown to the user, our future research will compare the capacity estimations from these
solutions with the methodology presented in this work.

6. Conclusions

The present paper investigated and compared capacity estimation approaches for six
different EV batteries without disassembling them from the vehicles. The main objective
of this work was to assess whether BMS readings can be used to circumvent the need for
costly experimental measurements.

By connecting an OBDII to the vehicle CAN-bus, it is possible to read capacity esti-
mates derived from the BMS. These were compared with the estimates from an empirical
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capacity method based on experimental measurements, showing large differences for older
and smaller vehicles but acceptable deviations in newer and larger EVs. However, CAN-
bus estimates are not transparent, they depend on the car manufacturer, and the underlying
method may change over time, so no certain conclusions can be drawn regarding their use.

The empirical capacity estimation method, which consists of a full charge of the EV
battery with a DC charger, was also used to estimate battery capacity. A DC charger is
needed to bypass the AC/DC converter in the EV, and external measurement equipment is
used to obtain reference capacity estimations independently of the ones reported by the
BMS. However, with the OBDII connection it is also possible to collect current and voltage
data directly measured at the battery terminals from the OBDII. This gives the possibility
to estimate capacity with the empirical method by using the BMS current and voltage.

The instantaneous current and voltage measured from the BMS and the EE were compared,
showing differences limited to±2% for the newest vehicles and resulting in a capacity estimation
difference of 1.5 percentage points. This confirms that BMS current values can be used to derive
capacity, and that EV battery capacity tests can be greatly simplified by using an AC charger
and an OBDII, without any electrical equipment know-how.

Future work should focus on the development of translation tools/apps to access
and download BMS data. The tools/apps should be simple to understand and to apply,
and should be compatible with as many EV brands and versions as possible. Finally, it
is important to observe that the approaches presented in this paper are expected to be
applicable to all car brands. However, complications in understanding the results can occur
in the event that, for certain car models, the car releases battery capacity over the vehicle
lifetime. This aspect will be further investigated in our future work.
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The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
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EV electric vehicle
BMS battery management system
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ICA incremental capacity analysis
NMC nickel manganese cobalt
LMO lithium manganese oxide

58



Energies 2022, 15, 9656

OBDII on-board diagnostics port
IC incremental capacity
CAN central area network
OCV open circuit voltage
ECE empirical capacity estimation
SD standard deviation
EE external equipment

Appendix A

Appendix A.1. BMS Data

Table A1. Leaf Spy data (N/A stands for not available).

Vehicle
Years

Distance
[km]

Vin

[V]
SOCin

[%]
SOCend

[%]
Tin

[◦C]
Tend

[◦C]
Tout

[◦C]

E24-1

2.6 9073 277 4.6 92.5 20 16 N/A

3.5 14,380 282 8.9 91.8 35 15 5

4.1 16,374 291 4.7 91.0 19 16 17

4.5 17,061 296 7.5 90.3 20 16 19

5.5 18,422 286 6.0 91.6 27 17 N/A

E24-2

1.6 14064 275 5.6 94.2 16 21 N/A

2.6 22,687 274 10.9 97.8 20 25 11

3.1 24,724 308 4.9 94.0 19 24 14

3.5 26,735 303 3.8 94.0 22 28 17

4.0 30,999 307 9.4 94.1 13 19 10

4.5 33,644 N/A 1.8 93.4 21 27 16

L30-1

1.3 8147 266 3.2 97.7 26 25 N/A

1.9 13,152 265 2.1 95.9 16 20 N/A

2.3 17,058 258 2.4 97.6 22 24 12

2.9 20,248 272 2.4 91.8 16 19 14

3.2 22,999 N/A 0.7 97.7 21 22 18

3.8 26,657 289 0.2 96.8 9 16 10

4.2 30,719 286 0.0 97.8 25 28 16

L30-2

2.1 17506 277 2.2 97.7 26 25 N/A

2.7 21,676 285 3.4 96.5 19 21 N/A

3.1 25,310 277 2.5 96.0 17 21 10

3.7 28,202 264 3.2 97.7 14 20 13

4.6 34,040 272 3.4 96.8 15 20 10

5.1 38,524 297 0.6 97.8 23 27 16

L40

1.1 35 271 0.9 N/A 37 32 23

2.0 38 304 1.5 93.8 23 30 22

2.9 43 294 0.1 93.9 24 32 23

3.6 43 294 1.1 98.0 23 31 23

3.8 43 283 1.2 98.0 24 31 23
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Table A1. Cont.

Vehicle
Years

Distance
[km]

Vin

[V]
SOCin

[%]
SOCend

[%]
Tin

[◦C]
Tend

[◦C]
Tout

[◦C]

L62

0.3 961 302 1.8 96.5 18 26 22

1.0 12,631 290 1.8 96.9 26 30 22

1.1 14,343 292 0.4 96.4 18 25 20

Appendix A.2. Effect of AC Charger Tail

DC chargers stop charging at approximately 3 A. If an AC charger is then connected,
more energy can be stored in the battery. Consequently, a more accurate measurement of
the actual capacity can be achieved by force-charging each vehicle in AC mode. Table A2
provides values for energy measured in A, B, and C, battery capacity, AC charging energy
tail, and derived capacity, both with Ah and kWh.

The additional AC charged energy is limited, but not always negligible. For both E24
it represents 3–4% of the total capacity, with a minimum DC charging current of 3–4 A.
This value was also observed for the E24 vehicles investigated in [14]. A lower value
of 0.6% is measured for the L30-1, which is expected due to the low minimum current
values reached with the DC charger of 1–2 A. L30-2 results are not provided because
the DC charger stopped charging when the current was still constant at 24 A, due to
equipment malfunction while conducting the experiment. For L40, the additional energy
of 4% is caused by the considerable minimum DC charging current of 6 A. During the L62
measurements, the DC current reached 3 A, resulting in an additional energy of 0.7%. Given
that the minimum current is typically 3 A, its influence on capacity is greater for smaller
batteries, and for 62 kWh models it seems negligible. Results cannot be easily generalized
though, because the minimum DC charging current also plays a role, and it seems to
depend both on the DC charger and vehicle. Nevertheless, because it is still unclear why
and when DC chargers stop charging, it is recommended to check the minimum DC current
and consider the impact of the additional AC charging tail.

Table A2. Energy, battery capacity, and share of AC charging both considering Ah and kWh values.

Energy
in A

Energy
in B

Energy AC
Charge (in C)

Battery
Capacity

Share AC
Charge

[Ah] [%]

E24-1 55.1 2.0 2.2 55.3 4.0

E24-2 56.2 1.9 2.0 56.3 3.5

L30-1 66.6 1.1 0.4 65.9 0.6

L40 101.9 1.8 4.3 104.4 4.0

167.1 2.9 1.1 165.3 0.7L62
166.2 2.9 1.1 164.4 0.7

[kWh] [%]

E24-1 20.8 0.8 0.9 20.9 4.3

E24-2 21.2 0.7 0.8 21.2 3.7

L30-1 24.4 0.4 0.2 24.2 0.8

L40 37.0 0.6 1.7 38.1 4.5

60.3 1.1 0.5 59.7 0.8L62
60.2 1.0 0.4 59.6 0.7
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Abstract: This paper proposes a high-frequency isolated current-fed dual active bridge bidirectional
DC–DC series resonant converter with an inductive filter for energy storage applications, and a
steady-state analysis of the converter is carried out. The performance of the proposed converter has
been compared with a voltage-fed converter with a capacitive output filter. The proposed converter
topology is operated in continuous conduction mode with zero circulation current (ZCC), less current
stress and high efficiency. The conditions required for soft switching are determined, and it is found
that the converter operates with soft switching of all switches for a wide variation in load and input
voltage without loss of duty cycle. Current-fed converters are suitable for low-voltage renewable
energy applications because of their inherent boosting capability. An inductive output filter is chosen
to make the output current ideal for fast charging and high-power-density battery storage applications.
Simple single-phase shift control is used to control the switches. The performance of the converter is
studied using PSIM simulation software. These results are confirmed by an experiment on a 135 W
converter on an OPAL-RT real-time simulator. The maximum efficiency obtained in simulation is
96.31%. Simulation and theoretical results are given in the comparison table for both forward and
reverse modes of operation. A breakdown of the losses of this converter is also presented.

Keywords: dual active bridge; energy storage systems; current-fed; voltage fed; soft switching;
photovoltaic; fuel cell

1. Introduction

With increasing pollution and an alarming climate situation, it has become imperative
to switch from conventional energy sources to renewable energy sources. These renewable
energy resources can produce cleaner energy than conventional energy resources. Renew-
able energy resources are abundant but intermittent in availability. Among the renewable
energy resources, solar energy is the most abundant in nature. To utilize this energy, power
electronics play a crucial role. In power electronics, DC-DC converters, in combination
with photovoltaic systems, can convert solar energy into electrical energy. Due to the
non-availability of solar energy at night and lack of sufficient technological advancements,
this energy has been given less importance in previous decades. Due to the advances in
photovoltaic technology, and pollution damaging the environment, it has become necessary
for industry, policymakers and academia shift the focus to solar energy [1,2]. Policymakers
are encouraging the use of renewable energy sources such as fuel cells, photovoltaics, wind,
etc., for power generation. Currently, solar PVs are becoming more popular and are being
installed on rooftops of individual houses. In this scenario, using DC-DC converters and
recent advancements in energy storage systems, the drawback of the non-availability of
solar energy during the night is no longer a severe problem and soon DC-DC converters
will enable solar power to be stored in energy storage systems [3].
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Isolated bidirectional dual active full-bridge converters (IBDC) have more advantages
in terms of DC-DC converters. Galvanic isolation separates both bridges electrically. Dual
active-bridge converters are symmetrical in structure and easy to analyze and control [4–6].
In isolated dual active-bridge converters, both voltage-fed non-resonant [7–10] and reso-
nant [11–15] converters have been discussed. In voltage-fed converters [7,11], the output
current has a negative component, which is circulating and incurs more losses. To avoid the
circulating current, a discontinuous mode of operation has been chosen for these convert-
ers [8,9] in which no power is transferred to the load for a short time. A method has been
discussed for a series-resonant DAB converter to reduce the current stress, increase the soft
switching range and efficiency, and reduce the effect of dead-time on power transmission
and soft switching [16]. A topology has been discussed without an isolation transformer
to integrate the photovoltaic system and the grid. The absence of a transformer makes
this converter compact but results in a lack of protection through isolation [17]. In [18], a
hybrid bridge has been discussed to integrate the DC bus and energy storage system. This
topology is a solution when the transformation ratio ‘n’ is away from unity and it has been
operated with high efficiency and soft switching even when ‘n’ is not close to unity [18].
A controller has been discussed in [19] to regulate power transmission and reduce losses
using a minimum-current-point-tracking technique. This controller is generic in design, as
it does not depend on the circuit parameters and complicated circuit modeling [19].

In [20], a topology has been discussed to transfer more power than a conventional dual
active-bridge (DAB) converter. This topology has twice the power transmission capacity of
conventional DAB converters and has found application in electric-powered aircraft [20].
In a topology with a high step-down ratio, inverter bridges are stacked in series through
a capacitor, and rectifier bridges are connected in parallel. Series-connected bridges lead
to additions of voltage at the input. Parallel-connected bridges at the output lead to less
voltage and more current. This converter uses GaN semiconductor switches and offers
the highest efficiency of 99% and the least of 97.5% [21,22]. In [23], a scheme has been
discussed to increase the dynamic response, especially for a wide range of load changes.
Specifically, this topology is a good candidate for DES, solid-state transformers and energy
storage applications [23]. A hybrid-switching scheme has been proposed to reduce the
losses for a DAB converter with advanced switching devices like SiC; it has achieved 98.96%
efficiency [24].

Voltage-current-fed isolated bidirectional DC-DC (IBDC) converters without a resonant
network [25–27] have been discussed. The magnetizing current in these converters results
in more current stress and losses. Voltage-current-fed IBDC converters with resonant
networks [28–30] can offer a nearly sinusoidal current. This feature provides lower current
stress and conduction losses. Voltage-current-fed converters are unsymmetrical structures
due to extra inductors on one of the bidirectional operations. This structure leads to the
uneven distribution of current on the switches. Current-fed isolated bidirectional DC-
DC resonant converters (IBDC), in both the forward and reverse modes of operation, are
symmetrical. These converters require less gate drive than voltage-fed converters, making
them suitable for low-voltage applications due to their inherent boosting capability. A
search of the literature shows that current-fed isolated bidirectional DC-DC series resonant
converters with an inductive filter have not been studied in detail. In this work, a current-
fed IBDC with an inductive filter has been studied. The important contributions of this
paper are: (i). The converter is operated with an inductive output filter (ii). Continuous
conduction mode without loss of duty cycle, (iii) The circulating current at the load is zero to
avoid the current stress on the switches and corresponding losses. Due to their bidirectional
power transfer capability and high gain, these converters have become an essential part of
the conventional structure of plug-in hybrid electric vehicles [6,10]. Current-fed converters
allow solar energy generation utilizing PV with a small voltage output, even for individual
households. This article presents the operational performance of a high-frequency series-
resonant IBDC with a current source for energy storage application. Section 2 describes
the proposed circuit in forward and reverse modes of operation. Section 3 describes the
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steady-state analysis and soft switching boundary conditions for the current-fed IBDC
converter. Simulation and experimental results are presented in Section 4; Section 5 gives a
comparison of results, and Section 6 presents the conclusion.

2. Proposed Circuit: Current-Fed Isolated Dual Active Bridge Bidirectional DC-DC
Series Resonant Converter

Renewable energy resources require power electronics to make use of the energy that
they generate. The importance of power electronics in distributed energy systems is shown
in Figure 1. Different types of low-voltage DC DES, which are in operation across the
globe, are discussed along with their power and voltage ratings [31]. The voltage-fed
DAB and proposed current-fed isolated DAB (CFIBDC) converters are shown in Figures
2a and 2b, respectively. These converters are very useful in charging the battery during
daylight hours and discharge the same power from the battery whenever necessary [5]. The
CFIBDC shown in Figure 2b consists of a boost stage with ‘Vpv’ as the input voltage, and
inductor ‘Lb’, capacitor ‘Cb’, and inductor ‘Ldc’ are used for maintaining a constant current.
The switches Q1 to Q4 are on the primary bridge, and Q5 to Q8 are on the second bridge.
Diodes D1 to D8 are the anti-parallel body diodes of the switches Q1 to Q8, as shown in
Figure 2b. The high-frequency transformer has a turns ratio of 1: n. The elements Lr and
Cr are part of the series-resonant circuit. Circuit element Cr aids in avoiding transformer
saturation [13–15,32]. An inductor Lo can reduce ripples in the load current [28].

DC-DC

AC-DC

DC-DC

AC Load

 
Figure 1. Block diagram of a distributed energy system.

 
(a) (b) 

Figure 2. Isolated Bidirectional DC-DC Converter (a) Voltage-fed DAB converter (b) Current-fed
DAB converter.
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The model operating waveforms of the voltage-fed converter and current-fed converter
for both forward and reverse operation modes are shown in Figure 3a,b and Figure 3c,d,
respectively. These features can be avoided in the current-fed IBDC converter. Figure 3c,d
shows a DC current without any negative component at the output of the second bridge in
both modes of operation. This means no circulating current or stress on the switches due
to the circulating current. This feature enhances the efficiency of the converter [9]. Due to
technological advancements in power semiconductor switches, a high-frequency current-
fed isolated bidirectional DC-DC converter (CFIBDC) can offer low input-current ripples,
built-in short circuit protection, no duty cycle loss, higher gain, easy-to-control current and
high-power density. The merits of these CFIBDC converters, which are given in [27], make
them suitable for various applications, such as electric vehicles, battery storage power
quality improvement and fuel cell EVs [27].

  
(a) (b) (c) (d) 

Figure 3. Model waveforms for voltage DAB converter (a) Forward mode (b) Reverse Mode and
Current-fed converter (c) Forward mode (d) Reverse Mode.

For the CFIBDC converter, a single-phase shift control (SPS) control technique is ap-
plied. This technique is the simplest and most-preferred technique for isolated bidirectional
dual active-bridge converters. In this technique, diagonal switch pairs in two bridges
are turned ON to produce square waveforms having a 50% duty cycle for the respective
switches. The square waveforms on either side of the isolation transformer have a phase
difference; the leading voltage-side bridge delivers the power to the lagging voltage-bridge
side of the transformer. Only a phase-shift ratio (or angle) ‘ϕ’ is chosen as the freedom of
control; adjusting ‘ϕ’ allows power between the bridges to be controlled [33]. The various
operation intervals in the converter’s forward and reverse modes of operation are described
in the following subsections. The equivalent circuits during the forward and reverse modes
of operation are shown in Figure 4.
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(a) Forward Mode 

 
(b) Reverse Mode 

Figure 4. Modes of operation.

2.1. Forward Mode of Operation

Mode-1 (t0–t1): for t ≥ t0, Q1 and Q2 are given the pulses, and since the primary
current ip is negative, Q1 and Q2 remain off. Primary current flows through the anti-parallel
diodes D1 and D2 on the primary side. Q5 and Q6 are triggered and are reverse-biased;
negative current on the secondary side flows through diodes D5 and D6 through the load
till t = t1. Vab = V′o, Vcd = −Vo, vcr(to

+) is zero and ip(to) = (−nIo).
Mode-2 (t1–t2): At t ≥ t1, primary current continues to flow through the anti-parallel

body diodes D1 and D2 till t = t2. On the secondary side, switches Q7 and Q8 are triggered
and a secondary current starts flowing through Q7 and Q8; the current reaches zero at t = t2.
Vab = V′o, Vcd = Vo, vcr(t2) = −Vcp and ip(t2) = 0.

ip(t2) = Cr
dvcr

dt
and Lr

dip
dt

+vcr(t2) =
−Vo

n
(1)

ip(t) = ILr cos(ωrt) +
(vab − nvcr −Vo)

nZc
sin(ωrt) (2)

vcr(t) =
−Vo

n
+ ILrzc sin(ωrt)+(vcr +

Vo

n
−Vab) cos(ωrt)+Vab (3)

Mode-3 (t2–t3): At t2, iP ≥ 0, switches Q1 and Q2 conduct on the primary side, and the
primary current increases till the end of this mode. Q7 and Q8 didn’t conduct; increasing ip
makes Q7 and Q8 reverse-biased. D7 and D8 conduct on the secondary side. At t2, the end
of this mode, Q1 and Q2 turn off. At t3, IP reaches a maximum and then decreases for t > t3.
Vab = V′o, Vcd = Vo,

ip(t) = ip(t2) cos ωr(t− t2) +
n(vab − nvcr)−Vo

nZc
sin ωr(t− t2) (4)
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cr(t2) = Vab − Vo

n
+ ip(t2)zc sin ωr(t− t2)+(vCr(t2) +

Vo

n
−Vab) cos ωr(t− t2) (5)

Mode-4 (t3–t4): Since Q1 and Q2 turn off at t3, Switches Q3 and Q4 are triggered but
reverse-biased by the IP. IP decreases linearly till t4 and discharges through D3 and D4 on
the primary side; its voltage remains zero during this interval. The anti-parallel diodes D7
and D8 still conduct on the secondary side, Q7 and Q8 are still reverse-biased by the Ip and
the current starts decreasing from its peak value from t3 onward.

Vab = −V′o, Vcd = +Vo, ip(t3) = Ip(peak) (6)

ip(t) = ip(t3) cos ωr(t− t3) +
n(vab − nvcr)−Vo

nZc
sin ωr(t− t3) (7)

Mode-5 (t4–t5): At t4, Q3 and Q4 are still reverse-biased. IP is positive and continues
to freewheel through D3 and D4, linearly decreasing to zero at t5. On the secondary side,
switches Q5 and Q6 are triggered, and current flow through the load in the opposite
direction, making the net current reach zero at t = t5. During this interval Vab = −V′o,
Vcd = −Vo, ip(t5) = 0.

Mode-6 (t5–t6): For t≥ t5, the primary current is negative and starts increasing linearly;
Q3 and Q4 are already triggered. These switches start to conduct and the −Ip reaches a
maximum at t = t6. At t ≥ t5, Q5 and Q6 are reverse-biased, and the secondary current gets
discharged through the anti-parallel diodes D5 and D6. Switches Q3 and Q4 are turned off
at t = t6. Vab = −V′o, Vcd = −Vo, ip(t) is negative.

ip(t) = −ip(t4) cos ωr(t− t4) +
n(−vab − vcr(t4) + Vcd)

nZc
sin ωr(t− t4) (8)

vcr(t) =
Vcd
n
−Vab + ip(t4)zc sin ωr(t− t4)+(vCr(t4)− Vcd

n
+ Vab) cos ωr(t− t4) (9)

2.2. Reverse Mode of Operation

Mode-1 (t0–t1): At t0, Q7 and Q8 are turned on; since the secondary current is discharg-
ing and is negative, these switches (Q7 and Q8) are forward biased, and the voltage (vcd &
vab) across the secondary and primary is positive. Current on the primary flows through
the anti-parallel body diodes D1 and D2 in this reverse mode of operation.

Vab = V′o, Vcd = VBattery, vcr(t1)is Vcp (peak) and ip(to) = (−nIo).

ip(t) = Cr
dvcr

dt
, and Lr

dip
dt

+vcr(t1) = −nVo (10)

vcr(t) =
Vo

n
+ ILrzc sin(ωrt)+(vcr +

Vo

n
−Vab) cos(ωrt)−Vab (11)

Mode-2 (t1–t2): At t1, ip ≥ 0, switches Q7 and Q8 are triggered, and the positive ip
makes these switches reverse-biased. Current conducts through the anti-parallel diodes D7
and D8 on the secondary side. On the primary, this change in the direction of the current
makes Q1 and Q2 forward-biased and current flows through Q2 and Q1. The current
increases linearly till the end of the following mode. Vab = V′o, Vcd = VBattery, vcr(t1) is −Vcp
(peak value); for t = t1

+ voltage across the resonant capacitor starts decreasing towards
zero, and ip(t2) = 0, ip(t) reaches a maximum by the end of this mode.

Ip(t) = ip(t1) cos ωr(t− t1) +
n(vab − nvcr) + Vo

nZc
sin ωr(t− t1) (12)

vcr(t2) =
Vo

n
−Vab + ip(t1)zc sin ωr(t− t1)+(vCr(t1)− Vo

n
+ Vab) cos ωr(t− t1) (13)
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Mode-3 (t2–t3): For t = t2, the Q5 and Q6 switches are turned on. For t > t2, the
secondary current is increases linearly and passes through Q5 and Q6 on the HV-bridge
side. Switches Q1 and Q2 continue to conduct on the primary side of the converter. The
current reaches its peak value at t = t3, the end of this mode. Switches Q1 and Q2 on the
primary side are turned off at the end of this mode. Vab = V′o, Vcd = −VBattery, vcr(t3) is
zero; and ip(t2) = Ip (peak). ip(t) starts decreasing from t = t2.

Mode-4 (t3–t4): For t > t3, the Q5 and Q6 switches continue to conduct on the secondary
side. The current is starts decreasing linearly from its peak value. The current starts flowing
through the anti-parallel body diodes D3 and D4 on the primary side. The current reaches
zero at t = t4, the end of this mode. Vab = −V′o, Vcd = −VBattery, vcr increases with a positive
slope and reaches a maximum Vcp at t = t4; ip(t) starts decreasing from t = t3 and reaches
zero at t = t4, ip(t4) = 0.

Vab = −V′o, Vcd = +Vo, ip(t3) = Ip(peak) (14)

ip(t) = ip(t3) cos ωr(t− t2) +
n(vab − nvcr)−Vo

nZc
sin ωr(t− t2) (15)

Mode-5 (t4–t5): For t≥ t4, the current changes its direction, and switches Q5 and Q6 are
reverse-biased. Now, the current is starts flowing through the anti-parallel diodes D5 and
D6 during this interval on the secondary side. This change in the direction of the current
makes the switches Q3 and Q4 forward-biased on the primary side. So, the current starts
linearly increasing for t ≥ t4. Vab = −V′o, Vcd = −VBattery, vcr decreases with a negative
slope and reaches zero t = t5

+; and. ip(t) starts increasing negatively from t = t4 and reaches
-Ip (peak).

Ip(t) = −ip(t4) cos ωr(t− t4) +
n(−vab − vcr(t4) + Vcd)

nZc
sin ωr(t− t4) (16)

vcr(t) =
Vcd
n
−Vab + ip(t4)zc sin ωr(t− t4)+(vCr(t4)− Vcd

n
+ Vab) cos ωr(t− t4) (17)

Mode-6 (t5–t6): For t > t5, switches Q7 and Q8 are forward-biased and start conducting
on the secondary side. Switches Q3 and Q4 continue to conduct on the primary side till the
end of this mode. is reaches its peak value at t = t5. Vab = −V′o, Vcd = VBattery, vcr decreases
with a negative slope and reaches zero at t = t5

+; and. ip(t) starts increasing negatively from
t = t4 and reaches −Ip (peak).

To summarise, a current-fed isolated bidirectional DC-DC series resonant converter
has been analyzed for different operating intervals. Next, a 135 W converter with the
specification given in Table 1 is studied through PSIM simulation and experiment, and the
results are presented in Section 4.

Table 1. Specifications of the converter.

Parameter Specification

Output power (Po) 135 W

Output voltage (Vo) 48 V

Switching frequency (f s) 100 kHz

DC Input supply (VPV) 12–18 V

3. Steady-State Analysis of the Current-Source IBDC Converter

The current-fed isolated DAB bidirectional DC-DC converter transfers power by a
phase shift between the gating signal between the primary and secondary sides on either
side of the isolation transformer. To carry this analysis to the proposed topology using
approximate analysis, the exceptions are given in [12,34–36]. The circuit shown in Figure 2b
can be implemented in the forward mode of operation for PV and FC applications; the input

68



Energies 2023, 16, 258

is controlled by using the switch Qb1 to maintain a constant voltage, as shown in Figure 5a.
Figure 5b shows input-voltage control by turning off the switch Qb1. Voltage vcd is taken
as ‘Vrt’ in Figure 6a [11]. The phasor equivalent circuit of the proposed topology is shown
in Figure 6b. The equivalent circuit of the proposed topology with fundamental voltages
‘vab’ and ‘vcd’ is shown in Figure 6c. The expression for the fundamental components of the
voltages shown in Figure 6c is given as

vab1 = Vab sin(ωt) (18)

vcd1 = vcd cos(ωt− ϕ) (19)

 
(a) (b) 

Figure 5. (a) CFIBDC Converter with switch Qb1 conducting in FM (b) CFIBDC Converter with
switch Qb1 off.

(a) (b) (c) 

Figure 6. (a) Equivalent circuit of the converter with secondary referred to the primary side, (b).
Phasor equivalent circuit at the output terminals of the inverter, (c). Equivalent circuit with the
fundamental components of voltages.

The current transferred from one source to another, as shown in Figure 6b, is given as

ILr=
vab1 − vcd1

j
(

ωLr − 1
ωCr

) (20)

The power transferred to load in forward mode Pcd(t) is given as pcd(t) = vcd(t)i(t), and
the resultant power then becomes the average power over one full cycle as

pcd(t) =
vab vcd(

ωLr − 1
ωCr

) sin(ωt) cos(ωt− ϕ) (21)
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3.1. Rac for the Inductive Output Filter

The output current (io) referred to the primary side, as shown in Figure 6a, is given by
the following equation

i′o =
2
Ts

∫ Ts/2

0

ILr

n
sin(ωt)d(ωt) (22)

so the peak current of the i′o is given as I′o = 2ILr
nπ ; The series-resonant tank current in

terms of I′o is given as iLr(t) = nπ
2 I′o sin(ωt). By using Fourier-series analysis, the peak

and fundamental component of the voltage input to the rectifier bridge (at the ‘c’ and ‘d’
terminals) in terms of V′o (output voltage referred to primary side) is

Vb =
4V′o
nπ

; vb(t) =
4

nπ
V′o sin(ωt) (23)

Rac =
vb(t)
iLr(t)

=
8

π2 R′L (24)

The sinusoidal current flowing in the series-resonant components is expressed as

iLr(t) = ILrSin(ωt − φ) (25)

The peak current stress is the same for the resonant elements and switches, and it is
expressed as

ILr =
Vab1(peak)

|Zab| (26)

The impedance (Zab) offered by the circuit across the terminals ‘a’ and ‘b’ is given as;

Zab = Rac + j Xab (27)

From Zab, the expression for φ is given as

φ = tan−1(Xab/Rac) (28)

The sign of the magnitude of the resonant current iLr(t) at ωt = 0 decides the kind of
soft switching (either zero-voltage switching (ZVS)/zero-current switching (ZCS)). If iLr(0)
is negative then switches are turned-on with ZVS.

iLr(0) = ILr Sin(−φ) (29)

When iLr(0) is positive, this indicates that the switches are turned off with ZCS. The
ZVS/ZCS schemes minimize switching losses. The maximum voltage across Cr is VCP is
given as VCp = ICsp · |XCr|.

3.2. Soft Switching

The performance of the current-fed DAB converter can be analyzed by determining
the soft-switching range and conditions of the converter. These boundary conditions of the
converter are the critical factors that define the soft switching of the converter [33]. This
converter is operated under the above resonance method to achieve ZVS for the switches;
the corresponding switching pulses, voltage and current waveforms are shown in Figure 7.
The two expressions given in (30) are derived by using simple trigonometry for the current
waveshapes shown in Figure 7a. The corresponding equivalent circuit, which depicts the
waveforms of Figure 7a during the turn-on transient time in the forward mode, is shown
in Figure 8a,b, where Cstray,Qz (z = 1~8) represents stray capacitance in parallel with the
switches (Q1 to Q8).

It2 = πnVb−(π−2∅)n2Vo
2πLr fs

It1 = πn2Vo−(π−2∅)nVb
4πLr fs

⎫⎬
⎭ (30)
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(a) (b) 

Figure 7. Triggering pulses for switches (Q1 to Q8), voltage (vab & vcd) and current (ip or iLr) of the
converter (a) Forward mode (b) Reverse mode.

    
(a) (b) (c) (d) 

Figure 8. Equivalent circuits with the stray capacitance of the switches (a) input bridge and (b) output
bridge in forward mode (c) output bridge (d) input bridge during the reverse mode of operation.

The bridges are symmetrical, so events belonging to Q4 on the input and Q7 on the
output bridge are considered. The dynamic expressions (31) belong to the capacitor Cstray,Q4
and the series inductor are shown in Figure 8a,b.

Lr
dip(t)

dt = vCstray,Q4(t)−
[
Vb − vCstary,Q3(t)

]−V′o
= 2vCstray,Q4(t)−V′o −Vb

Cstray,Q4
dvCstray,Q4(t)

dt = − 1
2 ip(t)

ip(0) = −nIt2
vCstray,Q4(0) = Vb

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(31)

The expression for the capacitor voltage can be given with a frequency ω1

vCstray,Q4(t) =
Vb −V′o

2
cos(ω1t)− nIt2ω1Lr

2
sin(ω1t) +

Vb + V′o
2

(32)

where ω1 = 1√
LrCstray,Q4

. By reorganizing (32), the expression for θ1 is expressed in (33).

From (32), ZVS of Q4 can occur when its capacitance-voltage reaches zero by resonance.
The ZVS condition for the input bridge is given in (34).

θ1 = sin−1

⎡
⎢⎢⎣ nIt2ω1 Lr/2√(

Vb−V′o
2

)2
+
(

nIt2ω1Lr
2

)2

⎤
⎥⎥⎦ (33)

It2 ≥ 2
n

√
VbV′oCstray,Q4

Lr
(34)
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The dead-time is essential and must be controlled so that switch turns on when
the capacitor voltage of the respective switch discharges to a minimum value, and this
will reduce the turn-on loss. The dead-time for the input bridge in the forward mode is
derived [33] by substituting ω1 and (33) into (35) and is given as (36)

Tdead,ab =

{
θ1/ω1 ; (Vb < V′o)

(π − θ1)/ω1 ; (Vb ≥ V′o)
(35)

Tdead,ab =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
LrCstray,Q4 sin−1

[√
I2
t2Lr

n2Cstray,Q4(Vb−nVo)
2+I2

t2Lr

]
;

(Vb < V′o)√
LrCstray,Q4

{
π − sin−1

[√
I2
t2Lr

n2Cstray,Q4(Vb−nVo)
2+I2

t2Lr

]}
;

(Vb ≥ V′o)

(36)

For the bridge on the secondary, its ZVS analysis is simple, after t = t1, ip has a relatively
small di/dt. It is assumed constant as I1 over a short duration. During the transient time
of the switch Q7, its capacitor Cstray,Q7 discharges by a current It1/2, instead of resonance
between Lr and Cstray,Q7. The voltage across the switch Q7 capacitor (Cstray,Q7) drops from
Vo to zero and is supposed to satisfy the condition given in equation (37). This equation
provides the condition for achieving ZVS for the output bridge given in (38)

It1
2

Tdead,l,c ≥ Cstray,Q7Vo (37)

It1 ≥
2Cstray,Q7Vo

Tdead,l,c
(38)

The switches (Q1 to Q8) for the input and output bridges are shown in Figure 8c,d. The
expression for θ2, It1 and, during this mode, the charging and discharging of the capacitor
across the switches, are shown in Figure 7b. The corresponding equivalent circuits of the
input and output full bridges are shown in Figure 8b, It2 and It1 are still aligned with
the turn-off of Q1 at t2 and Q8 at t1. The soft-switching conditions are evaluated for the
single-phase shift control scheme, and it is as follows.

nIt2

2
Tdead,h,d ≥ Cstray,Q4Vb (39)

It2 ≥
2nCstray,Q4Vb

Tdead,l,c
(40)

Using regular trigonometry, the expression for It2 and It1 in the discharging or reverse
modes are the same as the expressions (30) derived in forward mode. The voltage and
current waveforms for the reverse mode are shown in Figure 7b. Equivalent circuits
representing the capacitors of the switches (Q1 to Q8) for the input and output bridges
are shown in Figure 8c,d. The expression for θ2, It1 and dead-time (Tdead,cd) for reverse
operation are derived just as in the forward mode of operation. These expressions are given
in (41) to (44)

θ2 = sin−1

⎡
⎢⎢⎣ n2 It1ω2 Lr/2√(

nVo−Vb
2n

)2
+
(

n2 It1ω2Lr
2

)2

⎤
⎥⎥⎦ (41)
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It1 ≥ 2

√
nVbVoCstray,Q1

Lr
(42)

Tdead,cd =

{
(π − θ2)/ω2 ; (Vb < nVo)

θ2/ω2 ; (Vb ≥ nVo)
(43)

Tdead,cd =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
LrCstray,Q7

n sin−1
[√

I2
t1Lr

Cstray,Q7(nVo−Vb)
2+I2

t1Lr

]
;

(Vb ≥ nVo)√
LrCstray,Q7

n

{
π − sin−1

[√
I2
t1Lr

Cstray,Q7(nVo−Vb)
2+I2

t1Lr

]}
;

(Vb < nVo)

(44)

4. Simulation and Experimental Results

This section presents the simulation and experimental results of the proposed current-
fed isolated DAB bidirectional DC-DC series resonant converter (CFIBDC) in Sections 4.1
and 4.2, respectively.

4.1. Simulation Results

The specifications and design values for the proposed converter are shown in Tables 1
and 2. Results are presented for three cases with an output power of 135 Watts. Case 1: In
forward mode with an input voltage Vin(min) = 12 Volts, Vo = 48 Volts at 100% and 10% of
full load. Case 2: In forward mode with a Vin(max) = 18 Volts, Vo = 48 Volts at 100% and
10% of full load. If the load starts transferring back power to the input, then it is a reverse
mode of operation. Case 3: In reverse mode, Vbattery = 48 Volts, V′o = 42.5 Volts at 100% and
10% of full load. The comparison values of the theoretical and simulation values are given
in Table 3.

Table 2. Designed values of the converter.

Parameter Specification

Frequency ratio (F) 1.1

Gain (M) 0.95

Vo reflected to the primary side (V′o) 42.75 V

Transformer turns ratio (1:n) 1.12

Load resistance (RL) 13.6 Ω

Resonant Inductor (Lr) 23.8 μH

Resonant Capacitor (Cr) 0.128 μF

Impedance (Zab) 11.02 + j2.52 Ω

Peak current (ILr) 4.71 A

Peak voltage (Vcp) 65.5 V

Filter inductance (Lo) ≤403.4 μH

Filter capacitance (Co) ≥1405 μF
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Table 3. Comparison of theoretical and simulation values in forward mode with an input voltage Vin

= 12V(min) & 18V(max). and reverse mode with an input voltage V2 or Vo = 48 V.

P
a
ra

m
e
te

r

Forward Mode Reverse Mode

V in(min) = 12 V V in(max) = 18 V V2 = 48 V

100% Load 10% Load Full Load 10% Load Full Load 10% Load

Cal. Sim. Expt. Cal. Sim. Expt. Cal. Sim. Cal. Sim. Cal. Sim. Expt. Cal. Sim. Expt.

Vload(V) 48 44 48 48 49 50 48 44.8 48 49 42.7 39.8 50 42.7 43 50

Iload(A) 2.81 2.57 2.5 0.28 0.3 0.6 2.81 2.62 0.28 0.29 3.1 4.38 2.8 0.31 0.46 0.6

Isr,peak 3.92 4.4 5 1.09 1.23 0.5 3.93 4.41 1.29 1.45 3.9 4.38 5 0.41 0.46 0.5

Vcp 62.9 56.8 52 5.7 12.9 14 62.9 57.1 5.7 15 62.9 58 55 5.7 6.29 16

δ (o) 180 180 170 170 180 170 179 179 165 165

ZVS/ZCS All All All All All All All All All All

The voltage at the inverter output terminal voltage (vab), rectifier bridge input (vcd),
primary current (ip) and the voltage across the resonant capacitor (vcr) are shown in
waveforms. The HV-side terminal current iload, load voltage vload, load current iLoad and
current input to the IBDC converter ib from the boost stage and the switches Q1 to Q8
voltages and currents are shown in Figures 9–11. Simulation waveforms of the CFIBDC
for Case 1 are shown in Figure 9, and for Case 2 are shown in Figure 10. Case 3, with
the current input to the IBDC converter idischarge from stored energy in a forward mode,
which is fed back, is also shown in Figure 11. Soft switching is achieved for the switches
Q1 to Q8 at full load; the corresponding voltage and current waveforms are offered for
both forward and reverse modes of operations. Various losses of the converter are used
for the simulation of the losses and efficiency of the converter. The simulation results and
theoretical calculations are compared and found to be approximately equal, as can be seen
in Table 3.

 
(a) (b) 

Figure 9. (a). Simulation results in FM mode with 100% Load at Vin(min) = 12 V, vab, vcd, ip and vcr.
Soft-switching characteristics for the primary (Q1 to Q4) and secondary side (Q5 to Q8) switches are
also shown. (b). Simulation results in FM mode with 10% Load at Vin(min) = 12 V, vab, vcd, ip and
vcr. Soft-switching characteristics for the primary (Q1 to Q4) and secondary characteristics for the
primary (Q1 to Q4) and secondary side (Q5 to Q8) switches are also shown.
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(a) (b) 

Figure 10. (a). Simulation results in FM mode with 100% Load at Vin(max) = 18 V, vab, vcd, ip and vcr.
Soft-switching characteristics for the primary (Q1 to Q4) and secondary side (Q5 to Q8) switches are
also shown. (b). Simulation results in forward mode (FM) with 10% Load at Vin(max) = 18 V, vab, vcd,
ip and vcr. Soft-switching characteristics for the primary (Q1 to Q4) and secondary side (Q5 to Q8)
switches are also shown.

     
(a) (b) 

Figure 11. (a). Simulation results in reverse mode (RM) with 100% Load at VBattery = 48 V, vab, vcd,
ip and vcr. Soft-switching characteristics for the primary (Q1 to Q4) and secondary side (Q5 to Q8)
switches are also shown. (b). Simulation results in RM mode with 10% Load at VBattery = 48 V, vab,
vcd, ip and vcr. Soft-switching characteristics for the primary (Q1 to Q4) and secondary side (Q5 to
Q8) switches are also shown.

4.2. Experimental Results

To study the proposed converter’s performance, an experiment has been conducted.
Experimental results are taken at Vin(min) and Vo for a variation in load from 100% to 10% in
both forward and reverse modes of operation. The specifications and designed values are
shown in Tables 1 and 2. The experimental waveforms are presented in forward and reverse
modes. The forward mode has two cases, Case 1 (Full load): square-wave voltages (vab &
vcd) across the terminals ‘a’, ’b’ and ‘c’, ’d’ are shown in Figure 12a along with the primary
current and voltage across the resonant capacitor. The voltages vab & vcd are the resultant
of a single-phase shift control technique. The current flowing through the cross-connected
switches such as Q1, Q2 & Q3 and Q4, in a bridge, is the same. The waveforms showing the
ZVS for the four switches on the primary side through the complementary switches Q1 and
Q3 are shown in Figure 12b. Similarly, the currents flowing through the switches Q5, Q6
& Q7 and Q8 are also the same. The corresponding ZCS for the four switches is shown in
Figure 12c through switches Q5 and Q7. The load voltage, load current and input current
are shown in Figure 12d, along with the voltage at the boost stage of the converter at 100%
load. Case 2 (Full Load): The waveforms, as mentioned above, are shown in Figure 12e–h in
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the same order at 10% of full load. The reverse mode of operation waveforms are shown in
Figure 13. Case 1 (10% of full load): Square waveforms vab & vcd with an input voltage V2
= 48 V and an output voltage Vo = 42.5 V are shown in Figure 13a along with the primary
current ip and resonant capacitor voltage vcr. The waveforms showing ZVS for the switches
(Q5 to Q8) on the primary side in the reverse mode of operation through complementary
switches are shown in Figure 13b. The ZCS for the secondary side switches (Q1 to Q4) is
shown in Figure 13c through the voltage and current waveforms of switches Q1 and Q4.
The output voltage, load current and input current or discharge current in the reverse mode
of operation are shown in Figure 13d. Case 2 (10% of full load): As mentioned above in the
reverse mode of operation, the waveforms are shown in Figure 13e–h in the same order for
10% of the full load.

 

Figure 12. Forward Mode Case 1: At full load (a) Waveforms of vab, ip, vcd, and vcr (b) waveforms
showing ZVS for switches Q1 & Q3 (c) waveforms showing ZCS for switches Q5 & Q7 (d) Waveforms
of vo, io, vb, and idis; Case 2: (e) Waveforms of vab, ip, vcd and vcr (f) waveforms showing ZVS for
switches Q1 & Q3 (g) waveforms showing ZCS for switches Q5 & Q7 (h) Waveforms of vo, vb, io and
is.

 

Figure 13. Reverse Mode Case 1: At full load (a) Waveforms of vab, ip, vcd and vcr (b) waveforms
showing ZVS for switches Q5 & Q7 (c) waveforms showing ZCS for switches Q1 & Q3 (d) Waveforms
of vo, vb, io and is; Case 2: (e) Waveforms of vab, vcd, ip and vcr (f) waveforms showing ZVS for
switches Q5 & Q7 (g) waveforms showing ZCS for switches Q1 & Q3 (h) Waveforms of vo, vb, io
and is.
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5. Comparison of Results

The performance of the proposed current fed series resonant dual active bridge con-
verter with inductive output filter is analysed by comparing various losses as shown in
Figure 14. The efficiecny of proposed converter at various loads is shown in Figure 15, and
efficiency comparison of various topologies [7,8,10,11] is shown in Figure 16. The current
stress of the proposed converter with the existing dual active bridge (DAB) converters of
different topologies [7,8,10,11] is shown in Figure 17. The conventional DAB converter [7]
without resonance achieved 93.5% efficiency at full load and 81% efficiency at 10% of full
load. However, the converter is operated in discontinuous conduction mode to avoid the
circulating current. The voltage-fed dual active-bridge converter with series resonance [11]
has been operated with a single-phase shift control technique, and an efficiency of 95% at
full load and 77% at 10% of full load is obtained. It has a circulating current at both full
load and light load conditions. The non-resonant voltage-fed dual active-bridge (DAB)
converter given in [8] has been operated with a zero circulating current modulation scheme.
The proposed converter has achieved 94.5% efficiency at full load and 88% efficiency at
10% of full load. This modulation scheme results in low efficiency at light load as the
converter is operated in discontinuous mode. The proposed current-fed series-resonant
DAB converter has achieved 94.6% efficiency at full load and 83.02% efficiency at 10% of
full load. In addition, this converter has achieved 96.31% efficiency at 50% of full load
with an input voltage Vin(max) = 18 V and Vo = 48 V. The efficiency comparison of various
topologies with the proposed current-fed isolated bidirectional DC-DC converter (CFIBDC)
is given in Table 4. The proposed converter operated with soft switching for a wide range
of loads; the reduced loading conditions are generally due to the peak switch currents
(current stress) not reducing with the load.
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Figure 14. Conduction, turn-off, transformer and body diode losses of the CFIBDC converter at
various input voltages (Vin(min), Vin(max) and Vo) and loads (100%, 50% and 10% of load).
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Table 4. Comparison of efficiencies of different topologies with proposed current-fed isolated bidirec-
tional DC-DC converter (CFIBDC) (Percentage of output power (% of Po) Vs. Efficiency of Topologies
given with reference number).

% of Po [7] [8] [10] CFIBDC

10 84.5 77.5 69 83.02

20 86.5 79.5 74 86.5

30 88 83.5 89.5 90

40 90.5 89 82 94.5

50 91 92.5 83.5 95.19

60 91.5 92.5 84 94.3

70 92 93 86 94

80 93 93.5 87 94.2

90 93.2 94 88 94.3

100 93.5 95 89 94.6

The current stress of various topologies compared to that of the proposed CFIBDC
converter is shown in Table 5. High current stress on the switching devices leads to more
conduction losses of the switches, which in turn reduces the efficiency of the converter and
requires a more oversized heat sink. The current stress for a conventional dual active-bridge
(DAB) converter is less during the light load condition, but it increases gradually. The
conventional DAB [7] has been operated with two inductors, L1 and L2, to increase the light
load efficiency of the DAB converter. If this converter uses only one inductor, L1, it will
have higher current stresses, but with two inductors, L1 + L2, it offers less current stress,
giving higher efficiency at light load conditions. The voltage-fed series resonant DAB [11]
converter offers less current stress, as shown in Figure 17. As per the percentage of full
load current, the proposed current-fed series resonant converter with an inductive output
filter offers lower current stresses from light load to full load compared to any other dual
active-bridge converter topologies as can be seen in Figure 17.

Table 5. Comparison of current stress in different topologies with current stress of proposed converter
CFIBDC (Percentage of output power (% Po) Vs. Current of Topologies given with reference number).

% of Po
[7]

(Amp)
[8]

(Amp)
[10]

(Amp)
CFIBDC
(Amp)

10 2.2 0.83 0.8 1.23

20 2.7 1 1.5 1.42

30 3.7 1.3 2.3 1.6

40 - 1.45 3 2

50 - 1.67 3.4 2.33

60 - 1.82 3.8 2.5

70 - 2.1 5 2.8

80 - 2.5 5.2 3.2

90 - 2.75 5.8 3.7

100 - 2.83 6 4.4

6. Conclusions

A current-fed series resonant dual active-bridge isolated bidirectional DC-DC con-
verter with an inductive output filter has been proposed, and its steady-state analysis has
been carried out. The performance of the proposed converter has been compared with
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voltage-fed non-resonant and series-resonant isolated bidirectional DC-DC converters with
a capacitive filter, and the results are presented. The proposed converter has been operated
in continuous conduction mode without loss of duty cycle. It has shown better efficiency
and less current stress and zero circulating current at the load than the voltage-fed non-
resonant and series resonant dual-active bridge converters. The condition required for
soft switching in both forward and reverse modes of operation for both bridges is derived.
Simulation and experimental results for a load variation of 100% to 10% of full load are
presented. A maximum efficiency of 96.31%, along with the breakdown of losses for the
converter, are presented for a 135 W converter.

Strategies can be designed to overcome the disadvantages of current-fed isolated
bidirectional converters, such as charging the inductor at the instant of turn-on and the
occurrence of voltage spikes across the switches during the turn-off mode. The latter
appears due to the mismatch in current flowing through the boost inductor at the input
and leakage inductor of the HF isolation transformer. These current-fed IBDC converters
can aid in building hybrid microgrid systems by using renewable energy resources with
low voltage capacities such as fuel cells, PV systems and wind energy.
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Abstract: Increasing the range of electric vehicles (EVs) is possible with the help of eco-driving
techniques, which are algorithms that consider internal and external factors, like performance limits
and environmental conditions, such as weather. However, these constraints must include critical
variables in energy consumption, such as driver preferences and external vehicle conditions. In
this article, a reasonable energy-efficient non-linear model predictive control (NMPC) is built for an
electric two-wheeler vehicle, considering the Paris-Brussels route with different driving profiles and
driver preferences. Here, NMPC is successfully implemented in a test bed, showing how to obtain the
different parameters of the optimization problem and the estimation of the energy for the closed-loop
system from a practical point of view. The efficiency of the brushless DC motor (BLCD) is also
included for this test bed. In addition, this document shows that the proposal increases the chance
of traveling the given route with a distance accuracy of approximately 1.5% while simultaneously
boosting the vehicle autonomy by almost 20%. The practical result indicates that the strategy based
on an NMPC algorithm can significantly boost the driver’s chance of completing the journey. If the
vehicle energy is insufficient to succeed in the trip, the algorithm can guide the minimal State of
Charge (SOC) required to complete the journey to reduce the driver energy-related uncertainty to
a minimum.

Keywords: NMPC; two wheel; electric vehicle; eco-driving profile; efficiency; optimization; auton-
omy increasing

1. Introduction

Technology is improving the efficiency and use of electric automobiles due to the
increasing number of electric vehicles (EVs) on the market. EVs are becoming increasingly
popular since they are considered a clean option in terms of pollution, even though they
face various challenges (charging time, range, standardization of the charging process,
charging stations, and the recycling process). The balance between an eco-driving profile
and performance impacts the autonomy of the electric vehicle. EVs can be charged heavily
using renewable energy systems, which means fewer carbon emissions and more use of
renewable energy [1]. Switching to EVs can help reduce greenhouse gas emissions and
help people in some countries get ahead economically.

Advanced Driver Assistance Systems (ADAS) are algorithms that assist the driver.
According to [2,3], the algorithm’s main task is to set performance boundaries for a vehicle
based on a given criterion. Theoretical models, historical data, or unsupervised learning
systems can all be used [4–6]. When the algorithm determines that the current power
demand is insufficient to complete the journey, constraints on the use of the driver modes
are placed on the vehicle’s performance [5]. These settings can be divided into Eco, Normal,
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and Sports categories. The constraints may change depending on the algorithm. In some
cases, it alludes to the maximum motor power, maximum acceleration, or top speed [7,8].
There are also cases when eco-driving is computed when receiving trip time importance
and presenting each road point’s optimal speed [9].

Several techniques can improve the driving profile and vehicle-based autonomy [10].
The two most common are the driving alert system and the eco-driving characteristics
optimizer [11]. The distinction between them is the assessment of energy needs. The
driving alert system is used to notify the driver if the energy available in the vehicle is
insufficient to continue the trip. In the eco-driving optimizer, energy estimation helps to
decide what type of driving mode is necessary to ensure an energy consumption rate for
the duration of the trip. Therefore, the bounds provided by the speed profile optimizer
are constant and, in some cases, excessive concerning the actual needs of the driver. In
particular weather and road conditions, the efficiency of the BLDC engine decreases from
64% to 12%. Moreover, it has been proven that the input parameters affect an electric
motorcycle’s dynamic characteristics and consumption characteristics [12].

In this study, evaluating autonomy involves using dynamic models and external
data to ascertain whether the driver can successfully achieve the route. Considering
factors such as traffic, vehicle limits, and driver preferences can determine the ideal speed
profile to lower total energy use. Therefore, an eco-driving approach using a non-linear
predictive controller has been developed. All-electric vehicles can use the eco-driving
strategy. However, this article concentrates on two-wheeled EVs because the driver’s
activities account for the majority of energy consumption, and the size of the vehicles
imposes additional limits that must be taken into account. In [12], a simulation model of
the electric motorcycle was used to determine the velocity, propulsion torque, and electric
consumption characteristics with variable electric motorcycle mass, driver mass, wheel
radius, frontal area, and transmission ratio.

In this article, eco-driving algorithm design incorporates thermal, electrical, mechan-
ical, and theoretical models to predict power usage. To do that, the non-linear model
predictive controller (NMPC) is a helpful technique for prediction and optimization, for
example, in speed terms, [13]. This work develops a tool that enables users to maximize
energy efficiency depending on input data such as state of charge (SOC), distance traveled,
elapsed time, and speed. Because of this procedure, the EV will tell the driver the best speed
and driving conditions to cover the remaining distance most efficiently and cost-effectively.
This research shows how to implement the NMPC and practically compute different op-
timization problem parameters, such as (i) Weights of the cost function, (ii) Necessary
physical bounds in the constraints, and (iii) Efficiency of the motor concerning torque and
speed. This article gives a deeper understanding of what the authors proposed in [14] and
presents experimental results through a testbed platform. Here, it is shown how the test
bed is built and adapted to emulate the route Paris-Brussels. Practical implementation in
the test bed is crucial since it validates results from theory. Results indicate that the strategy
based on an MPC algorithm can significantly boost the driver’s chance of completing the
journey. If the vehicle’s energy is insufficient to succeed in the trip, the algorithm can guide
the minimal State of Charge (SOC) required to complete the journey to reduce the driver’s
energy-related uncertainty to a minimum. It gives results that can be achieved afterward to
integrate different power sources [15].

The rest of the paper is organized as follows. Section 2 presents the mathematical
model used in this work. Section 3 explains the closed-loop controller considering pertur-
bations. The experimental platform development that served as the basis for the present
research can be detailed in Section 4. The model validation is presented in Section 5, and the
experimental results and some findings of this research are presented in Section 6. Finally,
conclusions and future studies are given in Section 7.
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2. Mathematical Model

This section summarizes the mechanical model used to represent the degrees of
freedom of the vehicle motion. All the variables are listed at the beginning of this article.
The longitudinal model examines the accumulation of forces along the X-axis. Longitudinal
dynamics are set as shown in Figure 1. Other phenomena, such as wheel slip and angular
velocity, are excluded from this study [16–18]. According to [16], Newton’s second law of
motion in the X-axis is stated in Equation (1).

mẍ =
T

Rw f
+ Froll + Faerx + Fwsin(θs)sin(β) (1)

Considering that the aerodynamic force, rolling resistance force, and road slope are all
critical forces in a vehicle’s longitudinal motion [19,20], the aerodynamic force and Rolling
Resistance Force are stated as in (2) and (3), respectively.

Faer =
−1
2

ρCd A f (Vwind ∗ cos(αair))
2 (2)

Froll = −(μ0 + μ1 ẋ2)Fzcos(θs) (3)

Road friction parameters can take values from 0.001 to 0.00082 according to the road
conditions (new, wet, frozen, etc.) [20]. β is assumed used to be near 90◦. Road Slope
is stated as Fw = mg. The total traction force, from the right-hand of Equation (1), is
computed based on a power profile associated with θs. This process is vital for comparing
the performance of different vehicles since the energy demand depends indirectly on speed
values and the energy required by the EV to maintain a desired speed, for example, if there
are considered different road classifications (urban or rural), climate, and driving skills can
also be included in driving profiles.

The driving profile is the representation of vehicle speed vs. time. The shapes are
advantageous to designing, calibrating, or improving the test. Different driving cycles exist,
such as (EPA - United States Environmental Protection Agency, WLTP, and NEDC—created
by UNECE World Forum for Harmonization of Vehicle Regulations, Artemis—cycles
created during the Artemis project in EU) [21]. Figure 2 shows six different driving profiles,
which is helpful for the research.

Figure 1. Force Diagram.
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Figure 2. Driving Cycles for Evaluation.

Therefore, the energy used is a function of how a vehicle of 150 kg is affected by outside
forces and how well it works electrically. The study’s target route is Paris to Brussels, and
Google Maps determines the slope profile and wind speed data. Its analysis is required
to improve the performance of the controller. Moreover, according to [22], energy losses
may exist in various electrical or mechanical devices. Indeed, power losses are caused
by the BLDC motor’s electrical and magnetic properties. Magnetic losses are caused by
temperature fluctuations in the motor’s magnetic material. There are also losses which are
due to power loss in the winding. When the winding is loaded, core losses result from the
unintended magnetization of the core via inductive action [23–26].

Consequently, an efficiency map’s geometric representation can orient the optimal
controller in the correct direction and reduce the energy estimation error [18,27]. In [14], a
“Cauer network” is proposed in each circumstance to alter the resistance and capacitance
values anticipated by electrical models under temperature changes. The battery losses are
incorporated into the model, allowing for consideration of the internal losses of the battery
and their temperature-dependent change. Then, the expected error in energy use can be
kept below 5% without making the electrical models challenging to understand [28,29].
Therefore, according to [14], energy E can be modeled as stated in (4).

Ė =
T

Rw f E f f (ẋ, T)
ẋ (4)

where E f f (ẋ, T) represents the geometrical abstraction of the motor efficiency that shows
how the vehicle can behave in the real world [14].

3. Model Predictive Control

This section shows a proposal for a Non-linear model predictive control (NMPC).
Its objective is to determine the proper torque T to drive a given distance using the least
feasible energy. Figure 3 depicts the implemented controller. It has a prediction horizon of
N = 10. These values balance the compilation time and speed/acceleration dynamics.
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Figure 3. Control Diagram.

The proposed controller Figure 3 calculates the energy required to finish the trip εec

based on the remaining distance traveled Dreq and the current vehicle dynamics. External
variables related to noise from the Na actuators and Ns sensors are also included in the
control loop. The vehicle’s driver determines the speed x2re f . However, based on the
driver’s behavior and the estimated energy path, the system suggests the optimal driving
style β2 to be adopted by the driver. The algorithm implemented by the NMPC controller is
shown in Figure 4. There are both external and internal sources of errors. External factors,
such as traffic signals, influence the behavior of a vehicle driver. Internal sources include
sensors and actuators and can also alter the operation depending on their performance.
The closed-loop controller must also be able to reduce the impact of disturbances on vehicle
energy performance.

The estimated speed profile is responsive to the driver’s desires but bounds the
maximum speed values and tends to bring the average speed closer to the most efficient
speed value based on the torque required. The optimal problem solved by the NMPC is
stated in Equations (5)–(11).

min J
(
x, T, k

)
(5)

J(x, T, k) = β1β2φ1
(
x3(N)

)
+

N

∑
0
−β2φ2

(
x2(k), T(k)

)
+
(
x2(k)− x2re f

)2 (6)

s.t. Tmin ≤ T(k) ≤ Tmax (7)

0 ≤ x1(k) ≤ x1 f (8)

x2min ≤ x2(k) ≤ x2max (9)

0 ≤ x3(k) ≤ TotEne (10)

x(k + 1) = f
(
x(k), T

)
(11)

where (5) and (6) represent the objective function of the NMPC, β1 and β2 are parameters for
the optimization problem. β2 is computed to be used within the forecast horizon without
exceeding the vehicle or system capabilities and the estimation of the energy to finish
the journey εec [14]. Constraint (7) is the physical constraint that describes the maximum
force mechanical structures can generate, including the maximum torque the system can
produce. The vehicle cannot replicate the behavior if the states are outside this feasible
region. Constraints (8) and (9) impose the feasible region and avoid an over-damped
behavior; constraint (10) is a physical limitation of the quantity of energy available in the
battery. (4), x(k) is a vector composed by the discrete variable of x, ẋ and E. Finally, φ1 to
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φ2 are stated in (12) and (13) and (11) is a simplified discrete representation of the model
given in (1).

φ1
(
x3(k)

)
= x3(k) (12)

φ2
(
x2(k), T(k)

)
= E f f (x2, T) (13)

Figure 4. NMPC Algorithm.
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4. Experimental Platform

One of the objectives of this research is to propose a viable method for estimating
efficiency values in real-time of EV. In addition, it is necessary to ensure the accuracy of
the estimation process in the control algorithm. For achieving accuracy and viability, a
scale motorcycle model is built with a test bench to validate the proposed method (see
Figure 5). Furthermore, the geometric representation can be modified depending on the
engine parameters to obtain any efficiency point from the hyperbolic Equation (14). In
the test, two main characteristics are altered. First, the engine power is decreased due to
safety constraints, and the speed profile used is WLTP in urban, rural, and mixed environ-
ments. Thus, this section describes the mechanical specifications of the motorcycle platform
and the framework required to reflect internal and external events during operation accu-
rately. Experiments are conducted to determine the controller parameters indicated in the
previous section.

Figure 5. Practical Test bench image.

4.1. Specifications

The test bench consists of a BLDC motor that replicates the motorcycle’s traction
(traction motor). The traction motor is supported by a framework that ensures its integrity
even at maximum torque and speed. In addition, a system that may be adjusted to define
several torque profiles due to wind, slope, or weight variations is incorporated. In this
method, opposing forces are simulated by a torque generator by a 300-Watt auxiliary
engine connected to the traction motor through a generator-equipped bicycle chain. Both
electric machineries (traction motor and generator) are coupled to a 32-toothed cycling
disc. A Zenon load AL3008BLDC-200V-10KW MD2-1.06 is used to change the torque of
the generator. The Semikron 08753450/309 inverter interacts with the generator and the
load. This component rectifies the current profile of the asynchronous motor to supply the
changeable load with the current. Figure 5 depicts the experimental setup.

A BLDC1200 W from the OZO Speed Donkey kit with a maximum power rating of
1200 W, rated at 1000 W, and bounded to 25 A, is used. This kit converts conventional
motorcycles to electricity, and the maximum torque is 98 Nm and the maximum top speed is
30 km/h (due to the power supply of 36 V). It includes a field-oriented control mechanism
(FOC) and the option to contain or exclude Hall effect sensors. Here, dSPACE DS1104 real-
time controller board is the hardware and software interface. The traction is measured using
the encoder XCC1514TSM02Y with a constraint of 6000 rpm as the maximum revolution
speed. Figure 6 shows the electric integration between different elements.
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Figure 6. Electrical diagram of the test bench.

In determining the relationship between the voltage of the throttle signal and the
speed of the traction motor, the signal range is determined, and the throttle signal and
traction motor speed are compared. The measured voltage range for the unaltered throttle
signal is between 1.35 V and 2.65 V. This value means that the traction motor speed can
be controlled with a Vre f from 0 to 12 m/s. This values determines vmin and vmax. The
equation which describes the data behavior is Vac = Vre f ∗ (1/9.23) + (12.4/9.23), where
Vac and Vre f are the acceleration in volts and velocity in meters per second, the behavior is
showed in Figure 7.

Figure 7. Accelerator vs. motor speed voltage behavior.

It is important to consider noise due to hardware and software components. There
are two significant noise sources, the interaction between the sensor and the analog-to-
digital converter on the DSpace board and the exchange between the actuator and the
digital-to-analog converter. Furthermore, they can produce system oscillation.

The characteristics of the test are shown in Table 1 and in [30]. The sensors have errors
of 0.12 and 0.02, respectively. Moreover, the actuator error resulting from throttle and driver

89



Energies 2023, 16, 1950

variations has an RMS error of 0.4, which is incorporated into the ADC resolution, which
can affect the open loop motor controllability is essential.

Table 1. Parameters related to Test bed [30].

Device Parameter Value

Motor System

Technology BLDC

Nominal power 1200 [W]

Max power 1365 [W]

Max speed 40 [km/h]

Max torque 98 [Nm]

Wheel diameter 21 [cm]

Braking System

Technology Brushless

Nominal power 300 [W]

Max current 0.95 [A]

Max speed 1500 [rpm]

BLDC inverter

Control technique full wave rectifier

Nominal voltage 15 [V]

Max voltage 56 [V]

Max output current 25 [A]

Brake inverter

Control technique Full wave rectifier

Nominal control voltage 15 [V]

Nominal voltage 200 [V]

Max output current 25 [A]

Encoder

Encoder type Incremental encoder

Shaft diameter 14 [mm]

Resolution 256 to 4096 [points]

Max speed 60,006 [rpm]

Voltage Supply 5 to 30 [V]- DC

Voltage sensor

Range 500 [V]

Resolution 100 [mV]

Voltage Supply 220–240 [V]-AC

Current sensor

Range 50 [A]

Resolution 10 [mA]

Supply voltage 220–240 [V] - AC

Variable load

Voltage range 10–1000 [V]

Voltage resolution 100 [mV]

Max input power 14 [kW]

Current resolution 100 [mA]

Voltage Supply 220–240 [V] tri phases

DSpace card

I/O range −10 to 10 [V]

I/O resolution 1 [mV]

I/O max current 0.005 [A]

Voltage Supply 12 [V]
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Speed profile NREL class 3 described in Section 2 gives the least sensitive energy
behavior for external perturbations, with a 16% increase over the projected energy per
kilometer. In addition, the WLTC class 2 velocity profile is most influenced by disturbances
present on the experimental platform, with an increase in power per kilometer of 25%.

4.2. Efficiency and Bounds

The mechanical limits and efficiency maps were derived by logical programming,
co-simulation, and the magnetic simulation software ANSYS/Maxwell©), such as in [31].
The assessed parameters of the electric motor are shown in Table 1 as in [30]. This initial
stage allows the estimation of subsequent phases’ and predicts outcomes.

Then, perform rotor blocking testing. This test attempts to impede the rotor with a
progressive load. Throughout each trial, the load must exceed the motor’s maximum load
at maximum speed. Consequently, the rotor’s speed must decrease, and the mechanical
limits of the engine will be identified. This process is crucial to prevent motor damage
and to remember that the maximum torque obtained during this test must be less than
90 percent of the maximum torque motor limitation. Next, the values of the efficiency
maps inside the area identified by the rotor blockage test were calculated. The data are
extracted from the datasheet, and the traction motor parameters are shown in Table 1. Then,
construct a linear representation of the mechanical motor restrictions determined in the
preceding phase. Finally, Check the maximum efficiency level. Since an initial efficiency
estimate is made in step 1, verifying the maximum value by working as near as feasible to
that point and measuring the efficiency value is necessary. After the co-simulation process
shown in Figure 8, the rotor blocking test gradually obstructs the motor’s rotor. In addition,
because torque cannot be measured, the link between speed and torque shown in the
depiction of simulated efficiency is used. A method for preventing exceeding 90 percent of
the maximum torque is keeping the speed value at no less than 30 percent of the maximum
speed. From Figure 8, it is around 160 rpm.

Figure 8. Efficiency map estimation result E f f (x2, T).

Due to the rotor blocking test, the speed restriction shown in Figure 9 is determined.
This representation is oriented and positioned again in a plane (speed-torque) using the
following information: minimum and maximum speed (x2min = 0 and x2max = 12), minimal
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and maximal torque (Tmin = 0 and Tmax = 95), and co-simulation results as shown in
Figure 10.

Figure 9. Experimental result of speed curve during rotor blocking test.

Figure 10. Simplified efficiency representation.

After obtaining the constraint speed curve, linear representations are incorporated and
integrated into the estimation process. The linear expressions defined by the expression:
Yi = miXi + bi. Where Yi is the torque, ist Xi is the velocity i-st, and bi, mi are the Y-axis
intercept and the slope. The obtained values are presented in Table 2, which shows the
linear representations of the physical limits of the system. It is essential to mention that this
approximation is made to avoid the overburden in computation time due to nonlinearity.
Figure 10 shows the speed-torque constraints of the motor with the efficiency map and the
linear approximations with the points where these limits start and end.

Finally, the geometrical representation needs a suitable efficiency value to orient the
optimization issue from NMPC in Equations (5)–(11). To verify convergence, the bike
training roller’s brake is used to measure torque near maximal efficiency. Zenon variable
electrical load makes modest modifications. The geometrical representation’s proposed
total efficiency point is inaccurate by 67 rpm in speed and 7.1 Nm in torque. The Speed-
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Torque limitations curve and simulated efficiency map from Figure 8 are used to calibrate
this number. Thus, the geometrical representation shifts to the maximum point. The
simulation and calibration resulted in Figure 10 and Equation (14).

E f f
(
T, x2

)
= B0 − B1

(
T − xc

)2 − B2
(
x2 − yc

)2 (14)

where B0 = 92.6, B1 = 1.2859e−4, B2 = 0.0011, xc = 204 and yc = 32.6.

Table 2. Linear approximation of torque-speed constraints.

Slope Value Intercept Value

m1 −2.92 b1 40.86

m2 −6.45 b2 68.96

m3 −10.81 b3 94.57

m4 −37.97 b4 219.74

m5 −97.18 b5 443.03

Figure 10 represents the physical constraints of the experiment. The absolute power
limits of the torque speed curve, which has a non-linear nature, are depicted in black “o”.
Because of the non-linear limitations, an approximation to the natural limits is required;
the approximation is replicated by the five red “o” curves. This recreation aims to develop
a series of linear functions “function by parts” to linearize the physical limits to ensure the
shortest possible computation time in the MPC structure. Each linear limit’s change limits
are denoted by an “x” in red.

4.3. Speed and Energy Coefficient

Once the efficiency function has been computed, the information must be included
in the block “energy estimation” of Figure 3. This parameter allows you to evaluate the
battery’s energy quantity concerning the required distance to perform a more stringent or
light estimation. The first test estimates the energy parameter along the velocity signal in
the form of steps. This test allows investigation of the energy coefficient at various values
to check the suggested efficiency function and demonstrate the minimal energy coefficient
the controller platform can get in constant speed profiles. The current, velocity, power, and
voltage signals are displayed in Figure 11 are acquired due to the test.

The power is integrated along the time corresponding to each step and divided by the
distance covered to calculate the energy used in each speed signal phase in stairs shapes.
Torque area test from 0 to 10 Nm is also essential. This torque spans all speeds. The driver’s
necessary distance and battery SOC are used to calculate the highest practicable energy
coefficient needed to complete the journey. The εec coefficient is determined from the total
energy consumed over the trip’s distance and represents the energy used per kilometer.
In addition, the estimation block looks at past traffic data to estimate the speed profile.
Estimating the profile is vital for the Eco-Driving Controller to work in real-time and to take
into account the randomness of the actual driving cycle. Figure 12 depicts the relationship
between EFF and β2. In this figure, while the β2 increases, the energy required to achieve
the trip decreases. Figure 12 shows the energy coefficient data and the εec energy estimation
comparison with β2.

Now that the whole efficiency function and parameters have been calculated, a test
to achieve the β2 value may be performed. This test estimates the speed profile along
various variables to determine the controller’s optimal performance. This test is performed
without any extra disturbance (actuator and sensor disturbances proper of test bed), and
the velocity profile estimates are assured of avoiding a perturbation that an open-loop
controller cannot fix. As a result of the tests, the most efficient velocity in this torque range
is roughly 4 m/s, which translates to 204.6 rpm. Then, increasing β2 always ensures that
the energy coefficient goes down. Lastly, Figure 12 shows the result of this test.
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Figure 11. Speed vs. Power.

Figure 12. Energy coefficient behavior.

5. Model Validation

The approach used to validate the mathematical model with the experimental model
under specific operation settings is described in the following paragraphs. In this section,
it is vital to note that, according to [17], lateral dynamics are not required to indicate the
vehicle’s energy condition. This assumption is only valid if the speed is less than 60 km/h,
and as demonstrated below, all tests are only valid for velocities less than 60 km/h; indeed,
the testbed has a max speed of 40 km/h. The proposed road (see Figure 13) consists of
two 50-meter-radius curves with a bank angle of 30% and a junction with an elevation
of 2 meters and a slope angle of 5◦. A virtual test scenario is incorporated into a vehicle
dynamic simulation tool to validate the model’s behavior. Two tests are conducted: one with
constant and varying speeds to determine the yaw reaction at different speeds and another
with variable speeds within the same range to determine the error’s dynamic response.
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Figure 13. Designed Road.

5.1. Constant Speed Test

This test verifies the behavior shown in Equation (1) and identifies discrepancies in the
model. Using the linear pneumatic friction model, the inaccuracy of angle yaw increases
rapidly. As shown in Figure 14, the estimation is deemed acceptable if the longitudinal and
lateral speed has an error less than 5%.

Figure 14. Static speed profile results (error percentage).

Therefore, a speed profile estimator cannot use yaw information as a constraint under
these conditions. Figure 15 displays the test’s error rate.

Figure 15. Static speed profile results (error percentage).
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5.2. Dynamic Speed Test

Due to changing speed references, this test’s error rate may rise. As illustrated in
Figure 16, under dynamic speed conditions, a forecast horizon of fewer than 10 s is reason-
able.

Figure 16. Dynamic speed profile results (error percentage).

Figure 17 depicts the prediction horizon for the model’s present accuracy. These results
demonstrate the prediction horizon in 8 s for errors in longitudinal velocity and yaw angle
of less than 10%.

Figure 17. Dynamic speed profile results (error percentage).

To fully understand the impact of the current findings, a sensitivity analysis must be
conducted to see how the error % varies as a function of the friction coefficients. However,
the Pacejka equation represents the friction coefficients’ non-linear behavior in the simulator,
despite the model’s assumption that they are constant. (see Figure 18 [17]), better results
are expected with a more accurate estimation of these parameters for a 0 to 60 km/h urban
drive profile.
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Figure 18. Tire Pressure Curve Calculator (with Magical Formula- Pacejka equation).

5.3. Simulation Results after Sensitivity Test

The sensitivity test is based on how each adjustment in friction coefficient impacts
the average percentage error between the analytical model and the simulated model. The
pneumatics industry has recognized physical limits to pneumatic dynamics and friction
coefficients, which are described by minimum and maximum test results. It is crucial to
note that in the test with an a priori estimation value, only one of the four parameters
changes during the experiment. The selected delta values guarantee that the model’s
state does not fluctuate by more than half a percent from iteration to iteration. The aver-
age yaw error fell by 73% after new friction coefficients were implemented, as expected
by the sensitivity analysis. According to the results of the static speed test (shown in
Figures 19 and 20, the average error percentage is 1.15 percent for longitudinal speed and
3.40 percent for yaw angle. Even if the mean errors increase during the test, the ratio stays
around 1/100 s for a longitudinal speed and 1/40 s for a yaw angle.

Figure 19. Static speed profile results after sensitivity test.

Moreover, the dynamic speed test in Figures 21 and 22 indicate a mean error percentage
of 4.47% for longitudinal speed and 23.12% for yaw angle, with the sensitivity changes.
The revised friction coefficients determined by the sensitivity test drop to 71.97% of the
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mean error percentage during the dynamic speed test compared to the previously reported
yaw mean error percentage.

Figure 20. Static speed profile results after sensitivity test (error percentage).

Figure 21. Dynamic speed results after sensitivity test.

As shown in Figure 22, even though the yaw angle implies the error percentage is still
significant, the improved results allow for a forecast horizon of 66 s when an acceptable
yaw error is less than 10%. Results may be satisfactory up to a speed of 60 km/h (urban
speed profile); however, the lateral dynamic model can reproduce the mechanical behavior
of a motorcycle in the presence of roll, slope, and bank angles with a maximum error of
10% on time around 1 min; this error represents an unacceptable energetic representation
in the electric model. The lateral dynamic model’s maximum speed values will be used
as constraints in estimating behavior since their primary function is to ensure the driver’s
safety and comfort over the proposed speed profile. Because of its ability to provide an
energy estimate that is both fast and precise enough for use in the control phases, the
longitudinal model is chosen.
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Figure 22. Dynamic speed profile results after sensitivity test (error percentage).

6. Test Results

This section covers the elements needed to determine the eco-driving strategy’s oper-
ating torque and speed range. The purpose of the exam is to:

• Expected autonomy exploration and comparison with autonomy attained using speed
and position state feedback.

• To contrast predicted autonomy with autonomy attained in a particular scenario with
energy feedback.

• The effect of the velocity estimator on the control signal is investigated. Because the
velocity estimator has a 28% possibility of misinterpreting, this inaccuracy generates
an initial energy estimate error that the closed-loop controller must fix. To understand
the controller capabilities appropriately, the estimation results must address the worst-
case scenario.

The first test consists in running the same distance many times at different speed
profiles with a specific Set on β2 value to establish the energy consumption throughout the
path. Then, β2 is varied to assess its impact on all velocity profiles, sensor, and actuator
errors. Additionally, β2 is adjusted based on the maximum normalized energy usage
(kW/km) for each WLTC category (class 6, class 3, class 2, and class 1). Each criterion
assesses the maximum normalized energy usage based on a rural and urban trajectory.
Figure 23 illustrates the relationship between β2 and the normalized peak energy consump-
tion (kW/km). In Figure 24 is presented the autonomy behavior of the test.

The estimated autonomy in the test bench findings is reduced from 30% in simulation
to 20%. The energy coefficient exhibited similar behavior to that observed in the simulation
but with notable changes in autonomy. While the speed profiles have equal autonomy
with low β2 values, the simulations demonstrate that the “Class 3” speed profile is the
most battery-consuming. Furthermore, rural speed profiles are more likely to improve
autonomy than urban speed profiles. Both variances are due to motor power and projected
efficiency function. The speed range of the motor is limited. It results in a distinct behavior
of the efficiency function, leading the stop times and lower speed trajectories to be more
efficient than in a larger motor, even when the speed profiles are normalized to be coherent
between both tests. At the same time, there are striking parallels. The ranges of autonomy
estimation are still consistent across the two studies. Except for the “NREL Class 3” speed
profile in its urban and rural approaches, the autonomy variation of β2 from minimum to
maximum is roughly 20% (in the simulation experiment, it was 30%). Because of the halted
time in each speed profile, the autonomy augmentation recorded by the “Class 3” speed
profile is more significant than 30% in both circumstances (simulation and test bench). The
controller’s primary function is to assure the trip distance required by the driver under
various beginning conditions. For these reasons, it is important to investigate the dynamic
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of energy estate and how β values can correct miscalculations caused by the speed profile
estimator.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Beta Variation 

60

70

80

90

100

110

120

130

140

150

E
n

er
g

y 
co

n
su

m
p

ti
o

n
 (

kW
/k

m
)

Maximun Energy Consumption Related Speed Profile

Class 6 - Rural
Class 6 - Urban
Class 3 -Rural
Class 3 - Urban
Class 2 - Rural
Class 2 - Urban
Class 1 - Rural
Class 1 - Urban

Figure 23. Energy coefficient along each speed profile.

Figure 24. Autonomy comparison.

In the second test, the energy state is sent to the controller so that the energy coefficient
can be fixed through the β2 parameter. This value is dynamically varied from 0 to 5 β2maxA
without traffic restrictions and from 0 to 2 with traffic constraints β2maxNA . The test results
are provided in Table 3.
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Table 3. Closed-Loop distance error values.

Maximum β2 → β2maxA

SOC [%] Expected by
Estimator [km] Reference [km] Computed [km] Distance Error [%]

100 79.70 71.73 71.05 −0.95

50 39.84 35.86 35.48 −1.06

20 15.93 14.34 14.07 −1.92

Middle β2 → β2maxNA

SOC [%] Expected by
Estimator [km] Reference [km] Computed [km] Distance Error [%]

100 70.5 70.5 70.61 0.16

50 35.25 35.25 35.25 0.54

20 14.1 14.1 14.08 0.09

Minimum β2 → β2min

SOC [%] Expected by
Estimator [km] Reference [km] Computed [km] Distance Error [%]

100 60.7 60.7 64.07 5.49

50 30.36 30.36 32 5.4

20 12.1 12.14 12.24 0.8

As can be seen, distance error (difference between driver request and vehicle location)
is always less than 5.5%. This indicator can improve if only cases in which the trip still
needs to be completed are considered. These produce error decreases to approximately 2%
in the absence of traffic conditions.

Under traffic conditions where β2 cannot be rapidly saturated due to unplanned stops
and a brief period where traffic is not restricted (the vehicle is stopped), distance error drops
to a minimum of 0.6%, which means the eco-driving approach can guarantee 99.4% of the
distance required by the driver under realistic traffic, weather, and road circumstances. This
result shows an optimum speed profile with a correlation of approximately 0.87 with the
driver-proposed initial speed profile. The speed profile provided by the NMPC can be seen
in Figure 25. The maximum and minimum values are avoided in experimental findings and
simulation, except for unplanned stops. The resulting speed profile is sensitive to speed
changes proposed by the driver. It maintains a soft constraint over the speed values to
ensure the safety and comfort of passengers and dynamically controls the intended energy
consumption rate by integrating the speed constraint. All reported results do not account
for estimated errors. It indicates that the speed profile calculation was accurate in every
instance. The estimator’s precision is 72%. The impact of this inaccuracy is examined in the
following section.

This evaluation uses a variety of speeds and accelerations to try to guess how much
energy will be needed to finish the trip, whether in a city or a rural setting. Appropriately
approximating the speed profile (rural or urban) yields accurate estimates. The estimation
error is 72% when the data is less than 120 s and 88% when it is 500 s. Then, from this
concept, Figures 26 and 27 show two situations of correct estimation via the behavior of
the signal beta2 and its effect on the estimated range along the route. The anticipated
speed profile utilized in instance A is “class 3 urban”, with SOC in 100% for the start and
70.5 km of distance trip. The estimation is correct in this situation, but due to the inaccuracy
produced by the amplitude of the disturbance relative to the velocity signal, β2 must fix
the energy parameter to demand the suitable energy required and reduce the distance
error to 0.82%. However, in some circumstances, the perturbation magnitude is modest
enough that the β2 value does not need to be corrected. Figure 27 depicts an example of
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this circumstance. The estimation and used velocity profile are equaled, except because the
initial SOC is 20%, and the distance is 14.1 km. The distance inaccuracy in this situation is
roughly 0.18 m.
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Figure 25. Effect of speed estimation.

Figure 26. Case A, Good estimation.
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Figure 27. Case B, Good estimation.

Between proper and inaccurate categorization, a medium category will be designated
(wrong estimation). An accurate velocity estimation seeks to decrease the distance error,
but the random behavior of the disturbances accounts for a significant portion of the error
compared to the speed data. The proportional energy controller can manage the energy co-
efficient inaccuracy with some time delays if the speed profile is incorrect, but the approach
(rural or urban) is right. The outcomes of these cases are depicted in Figure 28. In this
scenario, the starting SOC is 50% and is configured at 35.25 km for the trip. The inaccuracy
induced by incorrect velocity profile estimation generates an inaccuracy corrected by the
controller, but the control signal is sluggish due to the significant variation in sampling
time. In those circumstances, though, the distance inaccuracy remains at approximately
1.3 percent. This final distance mistake is determined by the amount of distance traveled
and the misunderstood speed profile.

A “completely erroneous estimation” is achieved when the urban/rural approach
and velocity profile are misconstrued or the anticipated velocity profile has a high energy
coefficient compared to the genuine one. As seen in Figure 29, the control signal saturates
itself to minimize the energy coefficient error as much as possible. If the required distance
is short, the inaccuracy can be as low as 4% if enough time is allowed. The inaccuracy is
even reduced to 2.12%. (as in the presented example). In certain circumstances, the control
signal climbs to the maximum speed variable limitations, resulting in a trip that behaves
more like a driver-controlled experience than an autonomous experience.

Furthermore, the distance error is negative, indicating that the vehicle will not be
able to complete the journey. The likelihood of encountering this circumstance within a
measurable period of 120 s is approximately 20%. This reduces the possibility of completing
the trip with a distance error of less than 1.5% from 98.4% to 78.4%. As a result, an additional
estimating tool is used. When the difference between the predicted and observed energy
coefficient is more than 10 W/m, the rural/urban approach estimates are replaced by the
hypothetical rural/urban approach inferred from the road type used (highway, urban road,
etc.). Using this approach, if the distance error is about 1.3 percent and the error is positive,
it is considered “totally incorrect estimation”, in addition to “bad estimation” (It means the
trip is completed with the remaining energy in the battery).
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Figure 28. Correct urban/rural estimation.

Figure 29. Bad speed profile estimation.

7. Conclusions

This article presented a practical energy-efficient non-linear model predictive for an
electric two-wheeler vehicle with different driving profiles and driver preferences. In the
proposal, the feedback loop allows energy computation and estimates the parameters in
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the cost function of the problem. Moreover, it is shown how to implement the NMPC
in a test bed with its specifications and the different test. The proposed method has
been successful regarding the energy consumption of the vehicle. Indeed, the presented
implementation concludes that the NMPC can be used under realistic conditions with
specific configurations well adapted to real-time operation. Comparisons with simulations
showed an excellent approach. Even if the speed profile estimator has 72% reliability, the
supplemental information on the rural/urban component of the speed profile derived
from historical data was enough to guarantee a 98% probability of finishing the trip with
various initial SOC or driving behaviors. The gap between the absolute needed and the
final required distance was less than 1.5 percent. The distance error is positive in 98% of
the cases, which indicates that the distance traveled is always more significant than the
amount required by the driver. Finally, the tighter speed profile restrictions allow for a 20%
increase in autonomy.

Future research could compare and improve new speed profile estimators to mitigate
this effect. Lastly, estimating energy use increases autonomy by about 20%, even when
the estimated speed profile keeps a 68% correlation with the driver’s most demanding
speed profile. The eco-driving technique suggested and validated in this work effectively
reduces the energy requirements for transportation. It is a tool for increasing the presence
of electric vehicles in the transportation sector due to the driver’s confidence in the vehicle’s
autonomy capacity and the reduction in energy needs.
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Abbreviations
ADAS Advance Driver Assistance System
BLDC Brushless DC
EV Electric Vehicles
FOC Feld-Oriented Control
GUI User Graphic Interface
MPC Model Predictive Controller
NMPC Nonlinear Model Predictive Controller
NREL National Renewable Energy Laboratory Drive Cycle
PI Proportional–Integral
SOC State of Charge
WLTC Worldwide harmonized Light-duty vehicles Test Cycles
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Nomenclature
ẍ Acceleration
Faerx Aerodynamic Force in X-axis
ρ Air Density
αair Angle Between Air and Vehicle Direction
β Bank Angle
Nc Control Horizon
ẋ1 Distance
Cd Drag Coefficient
Rw f Effective Radius of Rear Wheel
EVs Electric Vehicles
E Energy
εec Energy necessary to end the trip
t f Final Time
A f Front Area
g Gravity
t0 Initial Time
m Mass
Tmax Maximum Torque
Tmin Minimum Torque
Ef f (X2, T) Motor Efficiency Abstraction
Fz Normal Force
β11 Cost Function Normalized coeff
β13 Cost Function Normalized coeff
β12 Cost Function Normalized coeff
Np Prediction Horizon
μ0,1,2 Road Parameters
μ1,2 Road Parameters
Froll Roll Resistance
s Seconds
θs Slope
ẋ Speed
t Time
ts Time Period (1000 s)
T Torque
TotEne Total Energy
d(t) Travel Distance
Fl Uncontrolled Torque Inputs (losses)
ẋ3 Vehicle energy
ẋ2 Vehicle Speed
Fw Weight
Vwind Wind Speed
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Abstract: The electric vehicle (EV) market is growing rapidly due to the necessity of shifting from
fossil fuel-based mobility to a more sustainable one. Smart charging paradigms (such as vehicle-to-
grid (V2G), vehicle-to-building (V2B), and vehicle-to-home (V2H)) are currently under development,
and the existing implementations already enable a bidirectional energy flow between the vehicles and
the other systems (grid, buildings, or home appliances, respectively). With regard to grid connection,
the increasingly higher penetration of electric vehicles must be carefully analyzed in terms of negative
impacts on the power quality; and hence, the effects of electric vehicle charging stations (EVCSs) must
be considered. In this work, the interactions of multiple electric vehicle charging stations have been
studied through laboratory experiments. Two identical bidirectional DC chargers, with a rated power
of 11 kW each, have been supplied by the same voltage source, and the summation phenomenon
of the current harmonics of the two chargers (which leads to an amplification of their values) has
been analyzed. The experiment consisted of 100 trials, which considered four different combinations
of power set-points in order to identify the distribution of values and to find suitable indicators for
understanding the trend of the harmonic interaction. By studying the statistical distribution of the
Harmonic Summation Index, defined in the paper, the impact of the harmonic distortion caused by
the simultaneous charging of multiple electric vehicles has been explored. Based on this study, it can
be concluded that the harmonic contributions of the electric vehicle charging stations tend to add up
with increasing degrees of similarity of the power set-points, while they tend to cancel out the more
the power set-points differ among the chargers.

Keywords: electric vehicles (EVs); vehicle-to-grid (V2G); EV charging stations (EVCSs); harmonics;
power quality

1. Introduction

The increasing share of renewable energy sources (RESs) in the electrical infrastructure
is a mandatory consequence of the European set of proposals, designed to make the EU’s
climate, energy, transport and taxation policies fit for reducing net greenhouse gas emissions
by at least 55% by 2030, compared to 1990 levels [1]. As a result, in the last few years,
the Electric Vehicle (EV) market has experienced a rapid growth, as the world is moving
toward more sustainable mobility systems, sustained by the increasing electrification of the
road transport sector, with a consequent reduction in its carbon emissions. According to
the Global EV Outlook 2023 [2], the sales of EVs, including both Battery Electric Vehicles
(BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs), reached USD 10.5 million, and
this rising trend seems to be continuing. Moreover, according to the IEA report [3], by
2030, EVs will represent more than 60% of vehicles sold globally, so the the number of
public (or publicly accessible) charging points (2.7 million reached in 2022) will continue
to expand. This will be reflected in the number of products available on the market for
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charging vehicles, which need to be evaluated as in the review [4]. In the context of a rising
number of EVs, the Vehicle-to-X (V2X) paradigm, including both Vehicle-to-Grid (V2G)
and Vehicle-to-Building (V2B), is becoming increasingly interesting, both for the grid and
for different energy community configurations. In these applications, a high number of
Electric Vehicle Charging Stations (EVCSs) will be connected to a grid infrastructure (either
public or part of an energy community) close to each other. The storage capabilities of
EVs have led to the development of smart charging approaches, enabling to use of EV
batteries in the most cost-effective way. In fact, thanks to the bidirectional electricity flow
between vehicles and the network, the power can be sent back to the grid when needed,
thus providing benefits both to the vehicle owners (in terms of additional revenues) and to
grid operators (in terms of the offered services that may improve quality, reliability, and
sustainability of the grid itself) [5]. The harmonic current content has to adhere to the limits
established by the IEEE Standards [6] or to those fixed by the European Standards [7]. The
widespread adoption of EVs may however have negative effects on the power quality of
the electrical grid. Therefore, it is crucial to consider the impact of EVCSs on the grid side.
According to [8], integrating several EVs into the grid could lead to voltage imbalances and
to a decrease in the transformer efficiency. Moreover, when multiple vehicles are charging
or discharging simultaneously, as in large parking lots, the individual harmonics could add
up and hence approach the standard limits, resulting in strong harmonic injections into
the power grid. This behavior can negatively impact the energy supplied to the relevant
electrical node, potentially hindering proper equipment functioning. This paper will try to
study the disturbances injected from multiple EV chargers connected to the same electrical
node, as in a realistic environment. Unlike other works, the results of this paper have been
obtained by analyzing the currents coming from two identical real chargers, by studying the
contribution of each of them to the selected frequencies and by comparing the theoretical
sum of the current harmonics with the measured harmonics. The paper explores the known
effects of the EV charger aggregation in Section 2 and introduces the setup of the tests in
Section 3. Then, Section 4 reports the approach used to carry out to the tests. In Section 5,
the results for the considered harmonic orders are reported. Finally, some concluding
remarks are given.

2. Overview of the Effects of Aggregating Several EV Charging Points

The expression “power quality” indicates the “characteristics of the electric current,
voltage and frequency at a given point in an electric power system, evaluated against a
set of reference technical parameters” [9]. In Europe, the EN 50160 Standard specifies the
main characteristics that the grid voltage should meet at the public low-, medium-, and
high-voltage AC supply terminals [10]. Any deviation in the voltage or current waveforms
that can degrade the performance of a device, equipment, or system, or adversely affect
living or inert matter is an “electromagnetic quality disturbance”, as stated in [11]. In more
detail, the definition of a power quality disturbance is generally accepted as any change
in voltage, current, or frequency that interferes with the normal operation of electrical
equipment [12] or in the quality of power while supplying an electrical equipment [13].

The integration of several EVs can have a potential impact on the power quality
of the grid they are connected to: the magnitude of the impact depends on the num-
ber of EVs being charged at the same time, their location, and their charging rate [14].
The paper [15] examines the impact of V2G operation when multiple vehicles are connected.
Various scenarios and EV penetration levels are analyzed to study both the harmonic dis-
tortion and stability effects. The results indicate that the primary concern for power quality
is the harmonic distortion; in fact, the higher the EV share, the higher the Total Harmonic
Distortion (THD). Consequently, the number of equipment affected by the reduced power
quality and absorbing distorted current from the grid increases. Some studies, such as [16],
have analyzed the impact of equipment diversity within a EVCS. The study tested four dif-
ferent fast chargers and recorded full charging cycles four times for each charger, analyzing
the amplitude and phase angles of each harmonic. The research found that the phase angles
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of the current harmonics varied within a preferential range that could potentially lead to
an increase in the current THD. In [17], one EV charger was analyzed both in AC and DC.
Current harmonics emissions and conductive electromagnetic disturbances were consid-
ered, while the THD was used to evaluate the global power quality level. This analysis,
however, was based on a single EV charger, so it was suggested that it should be repeated
by including different Devices Under Test (DUT) to highlight possible differences. Another
case study which considers both the harmonics and supra-harmonics content is presented
in [18]. Supra-harmonics are defined in [19] as waveform distortions in the frequency range
from 2 to 150 kHz. This range is still only partially standardized, while the amount of de-
vices emitting in this range is increasing [20], so it could lead to undesirable effects. In [18],
the emissions caused by nine different BEV models have been studied and eigth out of
nine have proven to be the source of supra-harmonics. The tests have also been conducted
for power levels differing by the nominal one: they show a variation of the fundamental
reactive power and lead to the recommendation to execute future tests at non-nominal
power in order to account for possible differences. With reference to the aggregation of EV
charging points, the effects of multiple EVs connected to electrical grids have already been
studied in order to assess how the disturbances injected from the aggregate propagate in
the low- and medium-voltage networks. For example, the JRC report [21] studied the grid
harmonic impact of multiple EVs. Focusing on the phase summation or cancellation of the
harmonics, it was revealed that the phase angles between the same harmonic order tend to
be lower than 90°, leading to a summation of the harmonics and therefore suggesting that
there could be a maximum acceptable number of chargers connected to the same infras-
tructure. In contrast, the authors of [22] had previously pointed out how adding chargers
from different manufacturers may result in a notable harmonic cancellation. Some of the
tests, however, showed how the chargers failed to comply to standard limits, suggesting
that the harmonics added up until reaching a maximum tolerable value. What seems to be
a recurrent element in these published works is that when multiple chargers are operating
together on the same electrical node (e.g., a parking lot), their disturbances would sum-up,
approaching the standard limits, potentially amplifying their values and hence causing
issues to the other customers.

3. Laboratory Set-Up

The authors of previous work established a laboratory test bed using real-time simula-
tion and Power Hardware-in-the-Loop (PHIL) layout to study bidirectional EVCSs [23,24].
In this setup, the currents measured on a single EV charging point under test were mul-
tiplied to emulate 20 charging points connected to the same electrical node. However,
this resulted in a harmonic spectrum summation, leading to instabilities and preventing
the equipment from operating correctly. Starting from those results, the current work
studies the behavior of the charger in depth without the simulated environment, evaluating
the interaction of multiple chargers by employing two identical EV DC chargers with a
rated power equal to 11 kW. The chargers were supplied by the same voltage source: in
Case 1, the voltage source was a linear power amplifier; in Case 2, the voltage source was
the electrical grid. The latter case enabled us to achieve the maximum power for both
chargers simultaneously. Figure 1 shows a simplified layout of the test bed, with the current
measurement points highlighted.

The main components used to carry out the tests are as follows:

• Power amplifier: A three-phase linear power amplifier with a nominal power of 7 kVA
per phase has been used. This technology has been chosen because of its performance.
In fact, the linear amplifier has a maximum distortion on the generated voltages equal
to 0.7% at the maximum output power [25]. Moreover, the introduced short time delay
enables the use of a simple interface topology and guarantees high stability.

• Chargers and electric vehicles: The cars used are two Nissan Leaf, with battery capacities
of 62 kWh and 40 kWh, respectively, and equipped with the DC CHAdeMO plug.
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The model of charger (which cannot be disclosed for confidentiality reasons) is a
bidirectional WB, with rated power 11 kW in G2V and 10 kW in V2G operation.

• Data acquisition: The HBM GEN7tA is a transient recorder and data acquisition system.
It has been used to visualize, monitor, record, and post-process the electrical quantities
involved in the tests. Three identical Hioki 9018-50 clamp probes have been employed
for capturing the currents during the tests. The clamps have a range from 10 A to
500 A AC, for a total of six ranges, with the amplitude accuracy equal to ±1.5% rdg
±0.1% f.s. (45 to 66 Hz) and the phase accuracy equal to ±2.5 for frequencies from
40 Hz to 3 kHz.

Figure 1. Representation of the experimental setup with measurement points.

4. Test Description

The WBs were supplied with a standard voltage Vnom = 230 V by the linear power am-
plifier in order to have low disturbances injected from the amplification stage.
The testing was conducted using different charging power set-points. Initially, the ve-
hicles were charged at power P1 = 4 kW, and then the power set-point was changed for
the two chargers. To ensure that the tests were independent from each other, the WBs
were turned in the stand-by state after each measurement. Different power scenarios
were studied as suggested by the authors of [18], which indicated that there may be slight
variations in the disturbance during a charging with power differing by the nominal one.
The preliminary measurements and comparisons were carried out by using the power
amplifiers (Case 1); after that, we proceeded by using as a voltage source the real network,
in order to reach the maximum rated power for both the WBs (Case 2). The harmonic
content was similar in both cases, as the THD of the network supply was very low. The
power set-point combinations and the relative cases are listed in Table 1.

Table 1. Set-point combinations.

Cases WB1 (kW) WB2 (kW)

Case 1
4 4
8 6

10 2
Case 2 11 11

4.1. Procedure

The current measurements, as depicted in Figure 1, have been taken on the first
phase of each WB and on the output of the power amplifier (in Case 1), or grid supply (in
Case 2), in order to acquire the sum of the currents of the two WBs. The observed behavior
was the same for the other phases, so, the results are reported for the first phase only.
The data gathering consisted of acquiring the current waveforms 100 times for each
power set-point combination, with a sampling rate of 20 kSample/s. This sampling
frequency will be sufficient to avoid the aliasing phenomenon till the 40th order, as
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the frequency of the acquisition is ten times higher than the highest measured order.
The acquisitions have been made with the recorder presented above. The Fast Fourier
Transform (FFT) has been calculated in Matlab from the acquired current recordings,
based on 10 cycles of the target currents, as stated in the IEEE Standard [26], in or-
der to achieve a 5 Hz resolution. The harmonic component magnitude is then calcu-
lated by taking the RMS value of the center frequency combined with the values at
the two adjacent ±5 Hz frequency bins as calculated in Equation (1) for the example
in Figure 2.

Gh =

√√√√ 1

∑
i=−1

X2
(10h+i)Δ f (1)

where:

• Δ f = Bins width (5 Hz in this case);
• h = Harmonic order;
• Gh = Group value at the order h.

Figure 2. Main order grouping.

4.2. THD Evaluation

Harmonics can be evaluated in two ways:

• Individually, by comparing their amplitude to the fundamental frequency;
• Globally, using the THD.

The THD% has been computed for each one of the 100 tests. Tables 2 and 3 contain
the mean values of the THD for the 100 tests for each set-point combination under test.
Currents and voltages of the THD have been measured both on the power supply (as
shown in Figure 1) and on the two WBs. The THD% is always below the 8% limit, so
the disturbances are acceptable in all tests. Based on the previous measurements, it was
noted that on the grid side, the THD was under the limits, so the impact of the grid
voltage harmonics on the tests was considered negligible. It is visible how the total THD
can be lower than the one on each WB; nevertheless, as the THD averages on all the
harmonic orders, the contribution on each frequency needs to be investigated due to
possible problems caused by some specific harmonics.
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Table 2. Current THD %.

Cases WB1 Power WB2 Power Power Supply WB1 WB2

Case 1
4 kW 4 kW 5.26% 5.63% 5.25%
8 kW 6 kW 4.05% 4.30% 4.57%

10 kW 2 kW 3.79% 3.52% 7.30%
Case 2 11 kW 11 kW 3.01% 3.05% 3.10%

Table 3. Voltage THD %.

Cases WB1 Power WB2 Power Power Supply WB1 WB2

Case 1
4 kW 4 kW 2.08% 2.09% 2.07%
8 kW 6 kW 2.31% 2.32% 2.30%

10 kW 2 kW 2.22% 2.26% 2.22%
Case 2 11 kW 11 kW 2.08% 2.11% 2.07%

4.3. Harmonic Sum Evaluation

After collecting all the measurements for the 100 tests, a dataset has been extracted,
whereby an example of the structure (for the case P1 = 10 kW, P2 = 2 kW) is reported
in Table 4. Each column shows the harmonic order, whereas the rows represent the data
collected in terms of the value of HSI as defined in Equation (2). Then, in Tables 5–7, the
harmonic current components used to calculate the HSI for the same case are reported.
A similar approach, which defines an index to evaluate the summation phenomenon
called the diversity factor, was adopted by the authors of [27] for the study of harmonics
summation or cancellation at an industrial facility. This index is the ratio between the
RMS current value extracted from the FFT of the grouping described in Equation (1) and is
directly measured on the first phase of the network (namely Ih,SUPPLY), and is the sum of
the same quantities measured on the first phase of each one of the two WBs (i.e., Ih,WB1 and
Ih,WB2). This ratio is the only cause of error propagation due to the elaboration of the data
that will reflect on the HSI and, from the current clamp specification, will be around the 3%
of the HSI index itself.

HSI =
Ih,SUPPLY

Ih,WB1 + Ih,WB2
(2)

This index can be:

• HSI ≥ 1: The harmonics summed;
• HSI < 1: The harmonics canceled.

The lower the HSI, the highest is the cancellation effect on a certain harmonic order.

Table 4. HSI dataset structure.

Test No.
Harmonic Order

1 2 . . . 39 40

0 0.9976 0.6073 . . . 0.7367 1.0349
1 0.9973 0.7611 . . . 0.8793 0.6176
2 0.9975 0.4813 . . . 1.0236 0.9997

. . . . . . . . . . . . . . . . . .
98 0.9977 0.3999 . . . 0.8607 0.7854
99 0.9974 0.4660 . . . 1.0150 0.3912

100 0.9976 0.8801 . . . 0.5548 0.9968
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Table 5. IWB1 harmonic components.

Test No.
Harmonic Order

1 2 . . . 39 40

0 14.5776 0.0249 . . . 0.0082 0.0027
1 14.3311 0.0224 . . . 0.0082 0.0048
2 14.4597 0.0187 . . . 0.0048 0.0042

. . . . . . . . . . . . . . . . . .
98 14.4420 0.0201 . . . 0.0097 0.0059
99 14.4745 0.0175 . . . 0.0069 0.0037

100 14.5909 0.0154 . . . 0.0079 0.0025

Table 6. Current IWB2 harmonic components.

Test No.
Harmonic Order

1 2 . . . 39 40

0 4.2347 0.0123 . . . 0.0047 0.0042
1 4.2324 0.0192 . . . 0.0062 0.0049
2 4.2647 0.0204 . . . 0.0030 0.0035

. . . . . . . . . . . . . . . . . .
98 4.2683 0.0167 . . . 0.0045 0.0041
99 4.2781 0.0128 . . . 0.0032 0.0046

100 4.2731 0.0106 . . . 0.0049 0.0045

Table 7. Current ISUPPLY harmonic components.

Test No.
Harmonic Order

1 2 . . . 39 40

0 18.7676 0.0226 . . . 0.0095 0.0071
1 18.5142 0.0317 . . . 0.0127 0.0060
2 18.6780 0.0188 . . . 0.0079 0.0077

. . . . . . . . . . . . . . . . . .
98 18.6665 0.0147 . . . 0.0122 0.0078
99 18.7041 0.0141 . . . 0.0102 0.0032

100 18.8189 0.0229 . . . 0.0071 0.0070

4.4. Data Cleaning

Based on the experience gained from previous studies [23,24] on the analyzed DUT, it
has been observed that the power set-point of the charger exhibits high variability. To obtain
a more accurate representation of this phenomenon, a statistical approach has been used.
This approach does not only focus on increasing the number of measurements taken, but
also enables both removing possible outliers and analyzing the probability distribution of
the index defined for each acquired harmonic. Firstly, the instantaneous currents acquired
have been elaborated through the FFT in order to obtain the RMS value of the current for
each frequency. The first outcome was a spectrum of the absorbed current harmonics from
the two chargers for each of the one hundred tests and for each of the four power set-points.
In Figure 3, the FFT spectrum of one charger at the power of 10 kW is shown. The harmonic
spectra of the same charger for the other five power set-points are presented in Appendix A.
The amplitudes of each frequency have been collected in a dataset and used to compute the
index defined in Equation (2).

Then, the point cloud plot of each frequency for the four different power set-points has
been created to identify possible outliers in order to find non-reliable points.
The outlier identification was firstly conducted with the box plots of each frequency, but
the number of non-feasible points was not reasonably high, so a second approach, based
on the distance calculation, has been used. For this purpose, the Mahalanobis distance m
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is calculated for all the observations as in Equation (3). The Mahalanobis distance is an
effective multivariate distance metric that measures the distance between a point and a dis-
tribution. It has excellent applications in multivariate anomaly detection and classification
on highly imbalanced datasets.

m =
√
(x− x) · S−1 · (x− x)T (3)

where:

• x is the measured sample (taken as column);
• x is the mean value of the measured sample;
• S is the variance–covariance matrix of the transposed measured sample;
• T represents the transpose operator.
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Figure 3. FFT spectrum of IWB1 at 10 kW.

The confidence ellipse, whose dimensions depend on the distance calculated using
Equation (3), is then used to graphically distinguish the possible outliers, as shown in
Figure 4, where, for the third harmonic order taken as an example, the point cloud plot is
reported and the points outside the confidence ellipse are the possible outliers. The found
distances are then compared with a cut-off value based on a chi-squared distribution with
the probability of rejecting the null hypothesis when it is true and equal to 0.02.
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Figure 4. Third harmonic HSI scatter plot with confidence ellipse in the 10/2 kW case.

5. Test Results

The main hypothesis, as mentioned in other works like [16,23,24], was that the har-
monics will add-up due the common supply voltages. The HSI represents how much
each harmonic tends to sum up with the frequency of the same order injected by the other
chargers connected nearby. For this purpose, each frequency multiple of the fundamental,
up till the 40th harmonics, has been individually analyzed based on the valid measures
obtained from the data cleaning process previously described in Section 4.4. Figures 5–8
show the third harmonic HSI distribution for each tested power set-point in the form of
both a continuous distribution and a bar plot. On the the x-axis, the index is reported, while
on the y-axis, the number of occurrences is shown. The third order was chosen due to the
importance noted on this specific hardware; however, the behavior is the same for the other
studied frequencies. Is is clear that varying the power set-point impacts the distribution of
the index, moving its average values.

Figure 5. Third harmonic HSI distribution for the combination WB1 = 11 kW, WB2 = 11 kW.
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Figure 6. Third harmonic HSI distribution for the combination WB1 = 4 kW, WB2 = 4 kW.

Figure 7. Third harmonic HSI distribution for the combination WB1 = 8 kW, WB2 = 6 kW.

Figures 9 and 10 and Tables 8 and 9 summarize the phenomenon, showing the two
most different scenarios in terms of the power level of the tested chargers’ set-points for
two of the analyzed cases. The y-axis represents the amplitude of a certain harmonic order
expressed in percentage with respect to the fundamental. The shown frequencies are the
nine with a higher amplitude in percentage with respect to the fundamental, since real-life
applications could benefit more from their cancellation. The x-axis represents the HSI as
computed using Equation (2). The values presented are the average values of the 100 tests,
after the removal of the outliers. It is clear how the summation index increases as the
difference between power set-points decreases. In certain cases, the HSI can reach values
slightly larger than 1. This can be due to the combination of the measurement errors of the
current probes and data acquisition system.
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Figure 8. Third harmonic HSI distribution for the combination WB1 = 10 kW, WB2 = 2 kW.

Figure 9. Difference between power set-points: 10/2 kW and 11/11 kW.

118



Energies 2023, 16, 7051

Figure 10. Difference between power set-points: 4/4 kW and 8/6 kW.

Table 8. Difference between power set-points: 10/2 kW and 11/11 kW.

Harmonic
Order

Index Values

P1 = 10 kW
P2 = 2 kW

P1 = 11 kW
P2 = 11 kW

P1 = 10 kW
P2 = 2 kW

P1 = 11 kW
P2 = 11 kW

17 0.98 1 2.23 1.8
5 0.9 0.97 2.03 1.76
11 0.91 1.01 1.29 0.82
19 0.81 0.99 1.15 0.86
3 0.84 1.11 0.67 0.42
25 0.96 0.96 0.64 0.53
13 0.63 0.96 0.48 0.34
7 0.41 1.03 0.46 0.64

Table 9. Difference between power set-points: 4/4 kW and 8/6 kW.

Harmonic
Order

Index Values

P1 = 8 kW
P2 = 6 kW

P1 = 4 kW
P2 = 4 kW

P1 = 8 kW
P2 = 6 kW

P1 = 4 kW
P2 = 4 kW

11 0.99 0.98 1.65 2.73
5 0.99 1 2.31 2.54
7 0.56 0.98 0.34 1.85
19 0.84 0.96 1.26 1.79
13 1 0.91 0.81 1.47
17 0.9 1.03 1.72 1.08
25 0.99 1.01 1.05 0.89
3 0.9 1.05 0.52 0.81
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6. Conclusions

This paper presents an analysis of the harmonics interaction between two electric
vehicle chargers based on measurements on real devices. These results are applicable on
the specific tested hardware, but in future works, different charging converter topologies
will be studied, both in terms of technology and rated charging power. The experimental
distributions show how the summation phenomenon appears on the tested hardware for
some specific harmonic orders. It is clearly visible how the power set-points impact the
cancellation of certain harmonics. The results are presented in detail for the third harmonic;
even though other frequencies have slightly different behavior, the trend of the harmonic
cancellation was essentially repeated. The phenomenon is all the more evident the more
distant the setpoints are in terms of power. From these results, it can be stated that to
decrease the impact of the harmonics on the low-voltage grid, in the case of a high number
of chargers connected to the same electrical node, it is possible to elaborate a control strategy
of the power set-points of the WB, in order to keep the power of the chargers as different
as possible.
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Abbreviations

The following abbreviations are used in this manuscript:

BEV Battery Electric Vehicle
DUT Device Under Test
G2V Grid-to-Vehicle
EV Electric Vehicle
EVCS Electric Vehicle Charging Station
FFT Fast Fourier Transformation
HSI Harmonic Summation Index
PHEV Plug-in Hybrid Electric Vehicle
PHIL Power Hardware-in-the-Loop
RES Renewable Energy Source
RMS Root Mean Square
THD Total Harmonic Distortion
V2X Vehicle-to-Everything
V2B Vehicle-to-Building
V2G Vehicle-to-Grid
WB WallBox

Appendix A

In Figures A1–A5, the harmonic spectra of the same charger for the other five power set-
points are shown; note that these signatures are only one of the one hundred measurements
taken in the study. The behavior among the tests are similar, but some differences can
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be found; this aspect has been considered in the present work to find the distribution of
the HSI.
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Figure A1. FFT spectrum of IWB1 at 11 kW.
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Figure A2. FFT spectrum of IWB1 at 8 kW.
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Figure A3. FFT spectrum of IWB1 at 6 kW.
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Figure A4. FFT spectrum of IWB1 at 4 kW.
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Figure A5. FFT spectrum of IWB1 at 2 kW.
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Abstract: Wind energy has been recognized as a clean energy source with significant potential for
reducing carbon emissions. However, its inherent variability poses substantial challenges for power
system operators due to its unpredictable nature. As a result, there is an increased dependence
on conventional generation sources to uphold the power system balance, resulting in elevated
operational costs and an upsurge in carbon emissions. Hence, an urgent need exists for alternative
solutions that can reduce the burden on traditional generating units and optimize the utilization of
reserves from non-fossil fuel technologies. Meanwhile, vehicle-to-grid (V2G) technology integration
has emerged as a remedial approach to rectify power capacity shortages during grid operations,
enhancing stability and reliability. This research focuses on harnessing electric vehicle (EV) storage
capacity to compensate for power deficiencies caused by forecasting errors in large-scale wind energy-
based power systems. A real-time dynamic power dispatch strategy is developed for the automatic
generation control (AGC) system to integrate EVs and utilize their reserves optimally to reduce
reliance on conventional power plants and increase system security. The results obtained from this
study emphasize the significant prospects associated with the fusion of EVs and traditional power
plants, offering a highly effective solution for mitigating real-time power imbalances in large-scale
wind energy-based power systems.

Keywords: electric vehicle area; automatic generation control; forecasting errors; power dispatch
strategies; modern power grid

1. Introduction

Among other renewable energy technologies, wind energy technology has made
significant progress globally, with interconnections to various voltage levels of power
systems. However, the inherent intermittency of wind speed makes wind farms stochastic,
yielding inaccurate predictions that can cause mismatches between generation and load
demand, affecting power system operations and leading to deviations from scheduled
values. Power system schedulers use various strategies to balance generation and load
throughout the day. However, the uncertainty of wind power often results in an energy
imbalance between supply and load demand that necessitates the deployment of additional
operational reserves. These reserves are usually provided by conventional power plants,
resulting in higher operational costs and increased CO2 emissions [1]. Extensive research on
large-scale wind power integration has pertinently increased the use of operating reserves
to sustain an active power balance in the system. This emphasizes the influence of wind
power’s uncertain behavior on reserve requirements. To optimize the utilization of wind
power resources effectively, it is essential to instill flexibility into electric vehicles (EVs),
allowing them to actively engage in the demand–supply equilibrium as needed [2–4].
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The concept of flexibility in the smart grid context has been explained in detail using
mathematical models for flexibility [5]. Moreover, real-time flexibility is ensured using
peer-to-peer energy trading. Implementing superior coordination control strategies is vital
for the optimal utilization of EVs, leading to substantial reductions in operating costs and
carbon emissions [6–8].

1.1. Related Work

Over the past decade, extensive research has focused on the vehicle-to-grid (V2G)
technology of EVs, driven by their significant potential to provide grid ancillary services
actively [6–13]. By adopting the V2G mode, EVs can operate as battery storage systems,
enabling bi-directional power flow with the power grid. This enhanced capability supports
grid flexibility and resilience, paving the way for more efficient energy utilization and
demand response management. EVs are not confined to a single location but are dispersed
across regions and utilized for commuting or long-distance travel [9]. A study indicated
that the average roundtrip driving distance in the U.S. is approximately 50 km, with an
average driving time of ~52 min, although there is significant variability. A survey of U.S.
drivers nationwide reveals that 60% of commuters travel distances less than 80 km [9].
Importantly, EVs employed for daily commuting remain idle for approximately 22 h per
day, accumulating surplus energy stored in their batteries during travel. This excess energy
presents an opportunity to support the grid and can be used to recharge EV batteries. Over
the past decade, extensive research has explored the contribution of EVs to secondary
frequency response and conceptually frame worked the EVs integration into bulk power
systems, considering technical grid operation and the electricity market [9–11]. The chal-
lenges and benefits of the proposed integrated framework have been examined, focusing
on mitigating anticipated errors. Regarding distributed system management, energy com-
munities’ growth driven by cheaper storage and economy-driven energy exchange has
been explored [12,13]. Further, novel transactive control frameworks were introduced,
optimizing energy scheduling between prosumers and storage providers and offering two
game-theory-based algorithms adaptable to grid communication.

Meanwhile, the system response has been thoroughly analyzed at the inertial and
primary control levels [14,15], employing a finely tuned adaptive mechanism to ensure
utmost system reliability even under arduous conditions. Hence, the efficient harnessing of
EVs’ capabilities for grid regulation holds great potential for significantly augmenting the
proportion of renewable energy in future power systems. Giordano et al. [16] investigated
the impact of increasing EVs on grids, focusing on aggregator-led scheduling for grid
stability. They proposed automated logic for day-ahead EV fleet charging, maintaining
grid balance, and successfully testing it on three EVs without grid disruption. Diaz-
Londono et al. [17] proposed two optimal strategies; one focused on lower energy prices
and the other on providing flexible grid capacity, aimed at integrating EVs efficiently
and avoiding transformer overloads. Moreover, the same group discussed how evolving
energy practices impact power grid regulations and the role of aggregators in connecting
flexible loads, like EVs, to the grid [18]. Based on a financial perspective and methodology,
the benefits for aggregators and end-users were assessed, highlighting scenarios where
aggregation is advantageous, and revealing potential conflicts of interest, with numerical
results demonstrating varied consumer benefits and situations where intermediaries may
not be beneficial.

Mignoni et al. [19] presented a novel control strategy for optimizing the scheduling of
an energy community comprising prosumers with unidirectional V1G and V2B capabil-
ities. Long-term parked EVs served as temporary storage systems for prosumers, while
prosumers offered V1G services to EVs at charging stations. To handle the framework’s
stochastic nature, EVs shared their parking and recharging time distributions with pro-
sumers, enhancing energy allocation. Prosumers and EVs, acting as self-interested agents,
engage in a rolling horizon control framework to reach operating strategy agreements,
framed as a generalized Nash equilibrium problem solved in a distributed manner. Mean-
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while, Hosseini et al. [20] present a resilient, decentralized charging approach for extensive
EV fleets, aiming to reduce energy expenses and battery degradation while addressing
fluctuations in power costs and inelastic loads. A robust optimization based on uncertainty
sets formulated the challenge as a manageable quadratic programming problem with re-
strictions on grid resource sharing. The practicality of utilizing a commercially available EV
to offer grid flexibility in real distribution networks has been examined [21]. More specif-
ically, the employed controller who adheres to IEC 61851 and SAE J1772 standards [22]
and a Nissan Leaf was assessed in a Danish distribution grid to deliver congestion man-
agement, voltage support, and frequency regulation. Performance metrics, including
EV response time and precision, were appraised to validate smart grid concepts using
standard-compliant equipment. EVs provide frequency regulation services in renewable
energy-rich power systems [23], employing a leader–follower game between EVs and
their aggregator to optimize charging and regulation scheduling while addressing signal
uncertainty. The aggregator incentivizes EV participation through pricing, and EVs aim to
balance consumption costs and regulation revenues. Moreover, Tushar et al. [24] discuss the
importance of microgrid technology and integrating electric vehicles, energy storage, and
renewables for efficient electricity management. They introduce a real-time decentralized
demand side management system that optimizes residential electricity consumption and
improves microgrid planning for enhanced power delivery quality.

While a substantial body of literature has addressed EVs integration challenges, it
is imperative to note that significant considerations and gaps persist, awaiting further
exploration and resolution. For instance, a closed-loop control methodology implemented
in the context of EV participation in the AGC system [25] accomplished bidirectional
power flow for charging and frequency regulation. However, the study’s assumed time
delay of 1–2 s contrasts with actual turbine and EV responses, which suggests a longer
delay time of 7–8 s. Moreover, a robust frequency regulator was devised for a power
grid comprising multiple interconnected regions, considering EVs involvement in load
frequency control services, thus enhancing the resilience of Automatic Generation Control
(AGC) services [26]. However, this study lacked consideration for practical constraints,
such as higher time delays and dead bands, and did not thoroughly assess realistic EV
capacity. Meanwhile, Sanki et al. [27] integrated plug-in EV services into the AGC system
to tackle the grid stability challenges of integrating highly intermittent solar and wind
technologies into grid operations. Khezri et al. [28] incorporated EVs in the AGC regulation
process utilizing a consolidated model of EVs governed by a fractional order-PID controller
to manage the discharging state of EVs. However, this study omitted the EV contribution
over 24 h when assessing EV availability from the consumer side. Therefore, the responsive
involvement of the EVs in AGC necessitates a more thorough examination of extensive
power grid models. This requires careful consideration of practical constraints, including
delays, parametric uncertainties, and dead bands. The approach used in this study will
offer valuable perspectives into the dynamic performance of EVs and their influence on
grid stability, ultimately contributing to establishing more resilient and reliable AGC-based
power systems.

1.2. Our Contributions

This study investigates utilizing the storage capabilities of EVs to reinforce future
power systems, particularly in controlling operations involving massive wind power
integration. The primary aim is to create a simple yet sturdy and responsive AGC system for
a real power system network to regulate the system frequency efficiently and cost-effectively.
By effectively combining the capacities of EVs with thermal energy systems (TES), the
AGC model offers improved active power regulation services. The developed model
introduces an enhanced allocation of regulating reserves from EVs while considering their
power threshold levels. The dispatch strategy formulated for the AGC system prioritizes
the utilization of reserves from EVs over those from TESs in grid balancing procedures.
Integrating EVs ensures greater flexibility, cost-effectiveness, and reduced environmental
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strain, leading to a more resilient and eco-friendly energy landscape. Moreover, the Dig
SILENT Power Factory software (2019 SP3) assesses the proposed AGC dispatch strategy.
The proposed model integrates detailed models of various generating units, including wind
energy systems (WES), TES, gas turbine energy systems (GTES), and an electric vehicle
area (EVA). Additionally, a specific windy day in 2023 was chosen to study and analyze
forecasting errors in a large-scale wind energy-based power system network.

The primary contributions of this research are as follows:

• A comprehensive power system model has been developed, incorporating key gener-
ating units like TES, GTES, and WES. Furthermore, a comprehensive EVA model is
developed, harnessing frequency control capabilities utilizing the concepts of positive
and negative regulation capacities.

• A centralized AGC model for the proposed power system is developed to facilitate
secondary frequency response and ensure power balancing operations.

• A real-time dynamic dispatch strategy is formulated for the AGC model to efficiently
integrate reserve capacities from the EVA model and prioritize its utilization over TES.

1.3. Paper Outline

This paper is structured systematically, with Section 2 focusing on the detailed mod-
eling of TES, GTES, WES, and the EVA model. In Section 3, the AGC system modeling
is outlined, incorporating the model of the power plant units and EVA system. Section 4
delineates the proposed power dispatch approach and validates its performance. Section 5
concludes the paper, drawing insightful conclusions from the investigation and providing
future recommendations.

2. Generating Units and EVA Modelling

This section comprehensively overviews EVs’ modeling process and various power
plant units, such as TES, GTES, and WES. Governors are accurately engineered and strate-
gically positioned on each generating unit to ensure a highly efficient primary frequency
response. Their vital role is effectively regulating and stabilizing the system’s power out-
put. Additionally, we developed a sophisticated EVA model that plays a key role in this
integrated system. The EVA model receives dispatch orders from the AGC system and
employs an advanced inbuilt algorithm to efficiently route the instructions to individual
EVs. This intelligent routing system ensures that the required secondary regulating re-
serves are promptly provided, contributing to the overall grid stability and efficient energy
management.

2.1. EVA Modelling for Grid Support

The integration of EVs offers substantial potential in effectively managing the system
frequency and maintaining a harmonious equilibrium between demand and generation.
This is accomplished by employing the EVs as both load and source, controllable by the
AGC regulator. The AGC controller is crucial in supporting grid operations, as it promptly
responds to any fluctuations in the system frequency. An EVA designates a specific zone
where many EVs are assembled and overseen by a dedicated control center. These EVAs are
entrusted with dispatch orders from the AGC and utilize an intrinsic algorithm, illustrated
in Figure 1, to allocate the orders to individual EVs. The algorithm functions in actual time,
perpetually calculating the controlling capability of EVAs for the existing dispatch interval.
Consequently, the aggregator must comprehend each EV condition and conduct during
this duration.

This research proposes a novel EVA model designed specifically for the AGC system.
The formulation of the model follows a first-order transfer function, incorporating two piv-
otal parameters: frequency gain ( KEV) and the time constant for charging and discharging
(TEV). To attain maximum precision and pragmatic feasibility, we carefully integrated the
inherent time lag reaction of the EVA model into the AGC system, covering a span of 0 to
3 s. This time delay encompasses two critical factors significantly influencing the overall
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system dynamics. The first is the duration for the aggregator to transmit the received orders
to individual EVs within the system. This step introduces a certain degree of time delay
in the overall response. The second factor contributing to the time delay is the inherent
latency arising from communication channels, typically on the order of milliseconds. By
acknowledging these time delay elements, we aims to construct a model that closely em-
ulates real-world conditions. Our study delves into analyzing the response of EVs in the
AGC system at the power system level, considering various important aspects, such as the
time delay, dead band, and dynamic response characteristics. This comprehensive analysis
provides valuable insights into the functioning and performance of the AGC system in
conjunction with the proposed EVA model.

Gather real-time information from each EV, including Tde, 
SOCneed, SOCt, and Pev,t.

Start 

Calculate SOCimin, t+ t using (1) and (2), and formulate the max 
charg-battery constraint using (5).

Obtain the real-time upper limits for EV charge and discharge 
power using (4) and calculate the minimum allowable charging 

power using (8).

Calculate the upward and downward regulation capacity by 
employing equation (3) and equation (7) correspondingly.

Process completed 
for entire EVA, 
i.e., when i = N.

Discover the 
subsequent EV's 

Dispatchable 
capacity (i=i+1)..

Compute the total 
PRC and NRC using 

(6) and (9).

Figure 1. Flow chart for calculation of PRC and NRC.

The EVA model provides positive regulation capacity (PRC) during positive imbal-
ances in the system and negative regulation capacity (NRC) during negative imbalances.
We consider a group of 17,000 EVs, each with an average battery capacity of 60 KWh (Ci).
The installed inverters have an average capacity of 7.5 KW. Consequently, the cumulative
peak power accessible for regulation intentions is ±127.5 MW. Figure 2 illustrates the
calculations for PRC and NRC. In the case of a single EV, within a specific time interval
Δt, PRC can be defined as the discrepancy between the present charging power (Pi

EV,t < 0)

and the maximum discharging power (P i
Δt > 0). Conversely, NRC is determined by the

difference between the current discharging power (P i
EV,t > 0) and the maximum charging

power (Pi
Δt < 0). To execute the PRC process, the loads linked to EVs are restricted, or the

accumulated energy in their batteries is transmitted back to the grid using sophisticated
V2G technology. In contrast, the EVs’ power demand is augmented for NRC operation to
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facilitate power absorption from the grid to charge their batteries. The role of the aggre-
gator is paramount in efficiently managing the collective operation of all EVs, seamlessly
orchestrating their contributions during specific time intervals, thereby ensuring a highly
effective and harmonized regulation response.

Figure 2. Calculation of PRC and NRC of EVs.

Regulation Capacities

Determining PRC and NRC entails a scrupulous procedure, as depicted in Figure 2,
where specific parameters are carefully measured. Subsequently, precise calculations
are carried out for each dispatch interval to accurately evaluate the PRC and NRC. The
realization of the PRC operation entails two key methods: mitigating the load effect or
facilitating the transfer of EV battery stored power back to the grid through precise controls.
For PRC computation, this study incorporates two important constraints. First, the current
state of charge (SoC) represented as

(
SoCi

t

)
must align with the user’s specific requirements

SoCi
need. It is employed for regulation purposes at time ( t + Δt) as formulated in (1):

SoCi
min, t+Δt ≥

(
SoCi

need −
(
−Pcharg, max

)
× η ×

(
Tdep, i − (t + Δt)

))
Ci

(1)

where η represents the coefficient signifying the battery’s discharge and charge effectiveness,
Ci indicates the battery’s capability, and Tdep, i specifies the time of departure for the ith
electric vehicle.

The second constraint pertains to battery deterioration, predominantly induced by
charge cycles. Consequently, to balance achieving sufficient regulatory capacity and safe-
guarding battery health, careful attention is paid to the depth of discharge. This research
establishes a limit of 60% for the depth of discharge (DoD) power, ensuring that the battery
operates within a controlled DoD, mitigating the detrimental effects of excessive cycling
while providing the necessary regulatory capacity.

SoCi
min, t+Δt ≥ 40 (2)

Figure 2 depicts the charging or discharging power of EVs that can be precisely
adjusted or increased within a specified Δt when Pi

Δt surpasses Pi
EV,t. This observation

highlights the ability to enhance the PRC of each EV for the interval Δt, enabling an active
contribution to grid stabilization and power regulation. The PRC of an EV within Δt
is determined by considering the dynamic interrelationship between the EV’s charging
or discharging power and its maximum available discharging power. This calculation
effectively quantifies the capacity of each EV to participate in the positive regulation
process, optimizing the overall power management system.

Pi
PRC = Pi

Δt − Pi
EV,t (3)
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Here, Pi
Δt=

⎧⎪⎨
⎪⎩

min( Pcharg,max,
(ΔSoC i

t×Ci

)
Δt×η ) if ΔSoCi

t > 0

max( Pdicharg,max,
(ΔSoC i

t×Ci

)
Δt×η ) if ΔSoCi

t < 0

⎫⎪⎬
⎪⎭ (4)

where Pi
PRC represents the PRC capacity of the ith vehicle, and the variation in SoC repre-

sented as ΔSoCi
t indicates the potential for increasing the maximum capacity of the EVs

within Δt.
ΔSoCt

t = SoCi
EV,min, t+Δt − SoCi

EV,t (5)

Derived from this, the entire PRC of EVAs can be computed in the following manner:

ΔPi
PRC(total) =

N

∑
i=1

Pi
PRC (6)

Analogously, the charge or discharge rate of EVs can be curtailed for a specific time
interval Δt when Pi

Δt surpasses Pi
t as shown in Figure 2. By implementing this measure, the

NRC of each EV for the time interval Δt can be effectively ascertained. The NRC capacity
of an EV during Δt is determined through a comprehensive assessment of its charging or
discharging power in comparison to the maximum available discharging power.

Pi
NRC = (P i

EV,t − Pi
Δt

)
(7)

Pi
Δt = min (Pcharg, max,

(ΔSoC i
t × Ci

)
Δt× e f f

) (8)

where Pi
NRC represents the ith vehicle participating in the negative regulation capacity.

Given this premise, the cumulative NRC of EVA can be computed as follows:

ΔPi
NRC(total) =

N

∑
i=1

Pi
NRC (9)

In this context, it is essential to note that the constraints governing NRCs primarily
revolve around the SoC and the maximum charging power of the charger.

SoCi
min, t+Δt ≤ 100% (10)

2.2. Modelling of the Thermal Energy System (TES)

This research extensively analyses the aggregated TES model concerning active power
balancing control. A particular emphasis is placed on the boiler response time, a crucial
parameter affecting the overall plant’s reaction and system stability. The TES model,
depicted in Figure 3, is derived from previously described models [29,30]. The TES model
underwent simplification to facilitate long-term dynamic simulations. Two essential inputs,
main steam pressure (Pt ) from the boiler and control block, and the control valve (cv) from
the governor block, determine the mechanical output power ( Pmech) of the steam turbine
block. When load fluctuations (LR) arise, the boiler model quickly computes the suitable
(Pt ) value to offset the load changes, considering the turbine’s output limitations and steam
energy storage delays.

This all-encompassing approach guarantees superior precision and dependability in
the dynamic simulation studies of the TPS model. The LR signal assumes a pivotal role,
functioning as a forward signal to the boiler and a controller for the turbine valve. The
model combines the influence of steam temperature regulation and generator reference
current for accuracy and steadiness. The ramp-rate limit is maintained at 30 MW/min for a
controlled response. The time lags (Tb1, Tb2, and Tb3) in the boiler model profoundly affect
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frequency and power time reactions. The boiler response severely affects the overall turbine
response, taking about 5 to 6 min to settle. The power-to-mechanical conversion relies on the
boiler model’s response (Pt) and the governor’s output (cv), contributing to system dynamic
behavior and stability. The steam turbine’s response depends on four-time constants (T1,
T2, T3, and T4) representing different volumes. Coefficients (K1–K8) determine power
contributions from turbine sections. The speed governor regulates the turbine’s speed
valve, considering generator speed and droop settings as inputs for primary frequency
response, ensuring stability with a dead zone to prevent unnecessary adjustments.

Figure 3. Thermal energy system model.

2.3. Modelling of Gas Turbine Energy System (GTES)

A detailed GTES model was developed (Figure 4). The GTES is the primary response
source, achieved through the governor linked to the generator’s turbine. The GTES gover-
nor incorporates a dead band and a low-pass filter, showcasing droop characteristics. The
dead band ensures stability by disregarding low-frequency deviations, while the low-pass
filter stabilizes rotor speed against high-frequency deviations, further promoting system
stability. Any power deviation beyond the dead band’s limits leads to frequency deviations,
which activates the droop characteristic signal, ultimately generating a power demand
signal (ΔP c). This signal drives the necessary adjustments in the power generation process,
allowing the GTES to promptly and effectively respond to power fluctuations within the
system. The ΔPc signal holds utmost significance in the functioning of the GTES, which
includes the power limitation block (PLB), power distribution block (PDB), and gas turbine
dynamics block (GTDB) (Figure 4). The PLB imposes physical constraints on the turbine’s
response, enforcing upper and lower power level restrictions (Pmax and Pmin) based on
combustion technology limitations. To comply with combustion constraints, the set points
Lmax and Lmin act as maximum and minimum load limits. Additionally, a rate limiter block
carefully regulates the rate of change for the ΔPc signal to optimize gas turbine performance
while ramping up and down processes. The PLB produces a CLC signal that acts as an
input to the PDB. Two sequential combustion chambers are included in the PDB block that
skillfully blend compressed air with fuel to initiate efficient combustion processes. Initially,
the environment incineration chamber receives compressed air, subjecting it to warming,
and deftly blends it with 50% of the overall fuel. Subsequently, the mixture is forcibly ex-
pelled through a high-pressure turbine, provoking its rapid rotation. The resultant mixture
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is directed into the SEV chamber. Here, an additional 50% of the distributed gasoline is
intricately amalgamated with a measured quantity of supplementary air, guaranteeing an
optimal combustion process.

Figure 4. Gas turbine energy system model (GTES).

The setup includes a low-pressure turbine with operational adaptability, low emissions,
and high efficacy. Power contribution coefficients such as CVGV, CFM, CEV, and CSEV are
precisely adjusted to mirror system traits. The capabilities of the combustors, air compressor,
and CLC signal from the power limitation block determine the output variables SPEV,
SPSV, and SPVG. The configuration ensures optimal performance and environmental
consciousness. The sophisticated interaction of factors significantly influences power
generation, providing resource optimization. Gas turbine dynamics are closely linked
with compressor and combustor dynamics. First-order leg functions elegantly represent
the environment and sequential environment combustor dynamics, while second-order
functions aptly describe VIGV dynamics. The mechanical power output (Pmech) of the
GTES relies on CFM, CEV, CSEV, CVGV, and CLC, ensuring optimal performance within
the specified limits. The GTES exhibits a response time of 30 to 40 s when subjected to
a step change in input power, primarily due to turbine ramp rates impacting its overall
response time.

2.4. Modelling of Wind Energy System (WES)

Figure 5 provides a comprehensive investigation into the dynamic behavior of WES
and its capacity to contribute to grid balancing through active power control. WES em-
phasizes the overall performance of aggregated wind energy systems (WESs) within the
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power system. The WES model is expertly streamlined and tailored for active power
regulation and long-term dynamic simulation studies [7]. WES comprises essential blocks,
such as wind turbine active power controller (WTAPC), WES active power controller (WE-
SAPC), and generator reference current block. The frequency droop block is crucial in
providing primary frequency response ( ΔPc) contingent on available wind power and
systemic frequency droop parameters. This intricate relationship ensures the power plant
responds actively and effectively, maintaining grid stability and balance through active
power control. The efficacy of this reaction is contingent upon the magnitude of wind
power accessible ( PWESavail

)
and the intricacies of the power system’s frequency droop

parameters, amplifying the plant’s dynamic interplay with the power grid.

 

Figure 5. Wind energy system model.

When the reference power ( Pre f _WES

)
of the WES is modified, the WESAPC block

swiftly generates a novel turbine allusion power Pre f _WT . The calculation for Pre f _WES
within the WESAPC block is reliant on the allusion power Pre f , the prime frequency re-
sponse signal ΔPc, and the gauged power at the point of shared coupling Pmeas_PCC . The PI
regulator in the WESAPC block maintains the regulation of the allusion power signal for
the WTAPC block. This regulation is established through an error comparison between
Pre f _WPP and Pmeas_PCC . To avert extra power output, the available power signal PWESavail is
employed to restrict the PI regulator’s output. Meanwhile, the WTAPC block generates the
current active component ( IPcmd) of the generator as its output, calculated by the PI regula-
tor within the WTAPC block. This calculation relies on the discrepancy arising between
the wind turbine reference power Pre f _WT and Pmeas_PCC . The investigation involves the
intelligent development of the wind turbine’s generator type IV model, which confers un-
matched operational flexibility compared to other generator models. This advanced design
significantly boosts the wind turbine’s performance and adaptability in various operational
situations, rendering it a beneficial option for wind power plants. The wind turbines are
equipped with distinct machine-side and grid-side inverters, operating autonomously. The
machine-side converter facilitates seamless generator rotation at the optimal rotor speed,
while the grid-side converter independently regulates the flow of active and reactive power.
The wind turbine generator is a static generator utilizing the model based on the current
sources technology. The reference current and input from the phase-locked loop determine
the dynamic response of the stationary generator. Controlled operation is ensured by
limiting the ramp rate of the available wind power. The WES showcases a remarkable
response time, swiftly adapting to fluctuations in system load within 2 to 4 s.
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3. AGC Modelling

An effective, reliable, and consistent electricity supply within a cohesive power grid is
achieved through AGC, which continuously monitors load oscillations and adapts gener-
ator output accordingly. The efficient operation of the AGC service requires continuous
monitoring of frequency fluctuations to establish the area control error (ACE). The essential
step in AGC control involves PACE,i as expressed in (11):

PACE,i = ∑
j ε An

βiΔ f + (P Sch
ij − PAct

ij

)
(11)

where PACE,i signifies the total discrepancy, and PSch
ij and PAct

ij represent the prearranged
and real data flows in the line; the difference between these is represented by ΔPtie. In this
context, the parameter βi takes on significance as it embodies the frequency bias constant
specific to the ith area. Its computation involves the ratio Di +

1
Ri

. Notably, Δf symbolizes
the frequency deviation from the present value, making it a crucial indicator in AGC
operations. During power supply–demand discrepancies, the speed governor initiates
the frequency containment reserve (FCR) to address the imbalance. Simultaneously, the
AGC system detects alterations in PACE,i and triggers the frequency regulation reserves to
stabilize ACE error and safeguard the pre-activated reserves. AGC, while acquiring the
data input from the ACE, regulates the load operating points (ΔPre f ,i) of all the power plant
units to efficiently operate the system. This study incorporates the characteristics of the PI
regulator to regulate PACE, as defined in (12):

ΔPSec = K·ΔPACE + KT
∫

ΔPACEdt (12)

The attainment of the network’s original frequency and the restoration of tie-line
power to its pre-determined value necessitate the determination of suitable parameters, T
and K. These parameters are crucial in governing the secondary control system. To ensure
effectiveness and adherence to industry standards, selecting K and T values follows a
widely recognized guideline. The K constant typically ranges from 0 to 0.5, providing a
spectrum of options for fine-tuning the control response. Meanwhile, T (time constant)
spans from 50 s to 200 s, enabling flexibility in adjusting the system’s response time. These
ranges are widely considered to strike an optimal balance between speed and stability,
promoting efficient regulation of the PACE.

The time constant calculates the tracking speed of the regulator in activating the
operating reserves from the power units, which contributes to the AGC regulation process.
The resultant generated error of the AGC is divided into the power units and the EVA
system as per the defined dispatch strategy in Figure 6. This study incorporates a diverse
mix of resources in the AGC system, comprising TES, WES, and EVs, all contributing to
the provision of regulation reserves. The dispatching section of the AGC, upon receiving
inputs, such as ΔPSec, the EV aggregator data, and the PTES, PWES, Pwind, Avail , effectively
calculates the necessary adjustments in the load reference of the power producing units,
denoted as ΔPTES, and ΔPEVs, respectively.
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Figure 6. Optimized power system AGC network.

4. Performance Validation

The efficacy of the proposed AGC model was assessed on the established power grid
model, comprising TES, GTES, WES, and an EVA model. An external grid with an interval
of 16 s and a response rate of 6161 MW/Hz was connected to support the grid. The details
regarding the parameters related to the power plant units and the EVA model are listed in
Table 1, along with the maximum limits of the secondary operating reserves.

Table 1. Parameter data for power plant units and the EVA system.

Generating Units (MW) TES GTES WES EVA

Maximum Power (MW) 1755 222 2820 127.5
Operating Reserves (MW) ±100 0 −500 ±75

Figure 7a illustrates the actual power generation from various power plant units,
comprising TES, GTES, and WES, over 24 h of the Pakistan power system. For data
acquisition, a winter day in 2023, was carefully chosen as input data for the TES and WES.
However, the GTES power remained constant, maintaining a fixed value throughout the
entire period. An essential aspect to consider is that the real inputs of the WES differ
from the reference values (forecasted values) initially used to calculate the load-generation
balance. Hence, variations between the actual and forecasted values of WES and changing
load demands cause a power disparity between power demand and supply, significantly
impacting the overall power system performance.
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Figure 7. (a) Power generation, (b) net load and power demand, (c) frequency, (d) power demand error.

Figure 7b exhibits the disparateness amid the load exigency and cumulative gener-
ation from all three sources. The constant alterations in the frequency response of the
developed power grid model are clearly illustrated in Figure 7c, revealing the dynamic
principle engendered by the oscillating load and generation behaviors. To rectify these
power incongruities within the network, this investigation advanced a control strategy for
the AGC regulator to optimally use the operating reserves sourced from generating units
and EVs. Figure 7d depicts the consequential power asymmetry within the load demand
and overall power generation, represented for subsequent comparison. Active power
balance management entails multifarious phases. At the outset, disparities in the power
grid result in frequency oscillations identified by the governors on individual generating
units. Consequently, the governors trigger the utilization of FCRs based on the features of a
power plant and the synchronous power of the entire network. These intricate adaptations
are crucial for reestablishing balance and stability within the power system. FCRs quickly
stabilize the system frequency using governors’ droop characteristics. Secondary reserves
fine-tune frequency back to the nominal level. AGC dispatches balancing power to mini-
mize ACE, however, lacks flexibility, increasing costs and risking system security. Hence, a
more appropriate approach is required for efficient and secure power system operation.

Implementing an AGC system with a dynamic dispatch approach is crucial. This study
proposes a smart power distribution approach for AGC, supporting grid integration with
abundant renewable energy resources. The suggested system utilizes EVs and a thermal
energy system for power regulation operation in wind energy-based power systems. The
AGC system’s dispatch strategy overcomes challenges by integrating EVs. This intelligent
power system effectively balances the grid, reducing the need for conventional regulation
sources. Hence, it reduces costs and operational stress, while providing an eco-friendly
solution, curbing greenhouse effects. The case study demonstrates the efficacy of combining
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EV storage capacities with TES reserve power for a secondary response, ensuring a stable
and responsive power system.

Case Study: Power Balancing through EVA and TES

This case study explores the integration of EVs and TES for power-balancing oper-
ations. The study demonstrates how EVs contribute to AGC by providing regulatory
power to handle intermittent wind power. The AGC effectively minimizes system fre-
quency deviations by regulating reserves from TES and EVs. The intelligent allocation
of operating reserves optimizes power balancing, enhancing overall power system sta-
bility and reliability. As shown in Figure 8, the AGC dispatch strategy was developed
utilizing EVs’ ability to provide positive and negative regulation strength. The process
depicted in Figure 2 systematically determined these capacities. Initial measurements of
various parameters led to calculating PRCs and NRCs for each dispatch interval. When
PRC ΔPs > 0, the AGC commanded the EVA to employ all existing reserves before the
TES responded. This involved either decreasing the load impact or supplying battery
power to the grid. Conversely, during NRC, the battery’s discharge power was increased
to counteract the frequency deviation. Integrating EVs facilitated a more advanced and
dynamic AGC dispatch, enabling better power balancing control and overall power system
efficiency and stability.

 

Figure 8. EVs and TES integration process.

The observed occurrence can be recognized as the inferior incremental cost of generat-
ing power from EVs. In the NRC, battery power loading is increased solely when the TES
hits its lower limit ( PTES, min), fixed at 20% of its capacity, or when the AGC’s secondary
dispatch touches its lower limit (ΔPTES, min), which equals −100 MW. Figure 7d visually
depicts the initial demand and generation imbalance, effectively compensated through
the AGC system. The AGC achieves this by dispatching the operating reserves from EVs
and the TES. This responsive and dynamic control mechanism efficiently mitigates power
imbalances, ensuring grid stability and a dependable power supply.

The cumulative secondary dispatch (ΔPSec) from the power sources in the secondary
response is visually depicted in Figure 9a, closely tracking the PACE error. The relatively
sluggish response can be ascribed to the inherent delays linked to the AGC system and
the power plant units. Figure 9b presents the dispatch (secondary) power producing units
(ΔPEV and ΔPWPP). TES responded only after all the reserve power from EVs was utilized
during the up-regulation process. This highlights the prioritization of using EV reserves
before engaging the TES resources. In scenarios where power generation is exceeded,
operating reserves from the TES are rendered before dispatching power from EVs. This
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approach effectively reduces the incremental cost associated with power generation and
enhances overall system efficiency. The strategic deployment of secondary reserves and
the coordination between generating units and EVs contribute to successfully managing
power imbalances, ensuring optimal grid operation, and minimizing operational costs.

 
Figure 9. (a) ACE and power dispatch, (b) TES and EVs individual dispatch, (c) resulted system
frequency, (d) power imbalances comparison.

Figure 9c presents the frequency variations observed in the system grid after the
AGC’s response. The AGC actions effectively mitigated the frequency deviations, leading
to a more stable and controlled power system operation. Figure 9d compares real-time
power disparities before and after the AGC response. The AGC intervention significantly
reduced power imbalances in generation deficit and generation excess scenarios. This
underscores the crucial role of AGC in maintaining grid stability and ensuring that power
demand is met efficiently. To measure the EV response, the AGC activated 1.8 GWh of
energy from EVs during generation shortages and surpluses. This indicates the substantial
contribution of EVs in addressing active power imbalances in a power system characterized
by large wind power integration. Without leveraging EVs for power balancing, many
conventional power plants would be required to compensate for the imbalances, leading to
higher operational costs and reduced sustainability. Thus, integrating EVs into the AGC
process is a valuable solution for power system operators, providing dynamic and cost-
effective reserve resources to enhance grid reliability and accommodate the intermittent
nature of renewable energy sources.

Additionally, the study conducted a quantitative analysis to enhance the understand-
ing, and compare the outcomes, of the AGC control system with the initial system error.
This involved calculating the area under the positive and negative curves depicted in
Figure 9d; the results have been presented in Table 2. These findings demonstrated a
significant reduction in power error due to integrating large-scale wind energy systems
into the network.
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Table 2. Quantitative comparative analysis.

Case Studies
Up-Regulation

Area
(106)

Down-
Regulation

Area
(106)

% Reduction
in Positive
Regulation

Error

% Reduction
in Negative
Regulation

Error

Initial Error 3.137 4.135 0.00% 0.00%
Case Study 0.3471 0.2145 90.0% 93.25%

5. Conclusions and Future Directions

This research conducted an extensive analysis of providing active power support
to power systems heavily reliant on wind integration, utilizing the capacities of EVs
in conjunction with TES. Wind-based power systems inherently possess an intermittent
character, leading to forecasting errors that cause power imbalances between demand and
generation. Additional operating reserves of traditional power plants often seek to meet the
increased reserve requirements. However, such an approach is economically impractical
and burdensome to the environment. Hence, in the current study, a real-time dynamic
dispatch strategy was formulated for the AGC system to utilize EV capabilities in secondary
power dispatch processes. A case study was conducted, integrating EVs into the proposed
AGC system alongside the TES to offer regulation services. The performance analysis
demonstrates that the integration of EVs with TES can substantially alleviate real-time
power imbalances stemming from extensive wind power integration, elevating system
operational security and reliability. Further, the quantitative comparison conducted in
this study highlights the significant cost savings achieved through the reduced reliance
on conventional power plants, underscoring the valuable role of EVs in the power system.
Hence, this research provides valuable insights for power system operators to strategically
leverage EVs as a dynamic and cost-effective solution to address power imbalances and
improve power systems’ overall sustainability and efficiency.

The study lays a strong foundation for future extensions, particularly in an artificial
intelligence (AI)-based AGC system. The power system’s operational parameters can be
accurately forecasted using AI techniques like machine learning and predictive analytics.
Moreover, while the current control system was tailored for a power system with substantial
inertia, it holds promise for application in future micro-grid scenarios where system inertia
is minimal due to the massive integration of renewable energy sources. This adaptability
highlights the versatility of the suggested control system, making it well-suited for diverse
power system configurations and ensuring its relevance in the face of evolving energy
landscapes. Additionally, integrating building loads, particularly those utilized for heating
or cooling purposes, represents a crucial avenue for future exploration. By incorporating
building loads alongside EVs in the proposed control strategies, the potential for harnessing
energy from diverse sources becomes more comprehensive. This integration could lead to
a scenario where the reserve capacity obtained from traditional generation sources is fully
replaced, resulting in a more sustainable and eco-friendly power system.
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Abbreviations

Acronym Definition

BESs Battery Energy Storage System
PA Up-regulation area
CESs Capacitive Energy Storage System
CEV Environmental Burning Capacity
CFM Baseload function
CIGRE International Council on Large Electric Systems
CSEV Sequential Environmental burner capacity
CVGV Variable inlet guide vane position compressor capacity
FCR Frequency Containment Reserve
FRR Frequency Regulation Reserves
GTDB Gas turbine dynamics block
GTES Gas Turbine Energy System
NRC Negative regulation capacity
NA Down-regulation area
PDB Power distribution block
PLB Power limitation block
PJM Regional Transmission Company
RPS Reference Power Signal
SEV Sequential environmental combustion
SMA Smart Management Approach
STC Steam Temperature Control
SEV Sequential environmental combustion
TSO Transmission system operator
TES Thermal Energy System
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Abstract: A conventional electric vehicle charger (EVC) charges only one EV concurrently. This leads
to underutilization whenever the charging power is less than the EVC-rated capacity. Consequently,
the cost-effectiveness of conventional EVCs is limited. Reconfigurable EVCs (REVCs) are a new
technology that overcomes underutilization by allowing multiple EVs to be charged concurrently.
This brings a cost-effective charging solution, especially in large car parks requiring numerous
chargers. Therefore, this paper proposes an optimal planning strategy for car parks deploying REVCs.
The proposed planning strategy involves three stages. An optimization model is developed for each
stage of the proposed planning strategy. The first stage determines the optimal power rating of power
modules inside each REVC, and the second stage determines the optimal number and configuration
of REVCs, followed by determining the optimal operation plan for EV car parks in the third stage. To
demonstrate the effectiveness of the proposed optimal planning strategy, a comprehensive case study
is undertaken using realistic car parking scenarios with 400 parking spaces, electricity tariffs, and
grid infrastructure costs. Compared to deploying other conventional EVCs, the results convincingly
indicate that the proposed optimal planning strategy significantly reduces the total cost of investment
and operation while satisfying charging demands.

Keywords: electric vehicle (EV); reconfigurable electric vehicle chargers (REVCs); planning; EV car
park; operation

1. Introduction

The speed of the global transition of the transport industry towards environmental
friendliness is critically based on the rate of adoption of EVs [1–3]. Therefore, to increase the
rate of adoption, more EV chargers (EVCs) are required. Further, with growing EV charging
demands, more EVCs are expected to be publicly available [4–6]. Careful consideration
must be given to various factors to properly plan EVC investments for public charging
purposes. These include satisfying charging demands that vary in location and the charging
time allowed [7–12], minimizing waiting time [13], and peak-load shaving and valley filling
to mitigate grid loading impacts [14–20].

Satisfying public charging demands depends on properly planning the number and
location of EVCs [7–13]. Meeting these demands can ensure the utilization rate of EVCs is
high, which improves the cost-effectiveness of investment. However, the average utilization
of public level-two and fast chargers is only 25% and 37%, respectively [21]. Numerous
EVC planning issues for public charging have been addressed in the literature, including
locations and installing appropriate numbers of fast and slow EVCs to meet charging
demands with minimum investment costs [7–13,22]. However, existing works only consid-
ered the number of EVCs to be installed without determining the optimal power rating
of each EVC. Nevertheless, satisfying charging demands also depends on determining
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the appropriate power ratings of EVCs. For example, EVCs that are undersized in terms
of power rating may be highly utilized but unable to fully satisfy all charging demands.
Not being able to satisfy charging demands introduces a risk that EV users may run out of
charge, which lowers the attractiveness of owning and using an EV. If EVCs are oversized
in terms of power rating, the level of utilization is lowered, and the cost-effectiveness of
the investment is reduced. Currently, the average utilization of the rated capacity of EV
chargers is only from 35% to 71% [21]. Therefore, EVC planning must be appropriate to
ensure EVC investment is cost-effective without compromising on the ability to satisfy
charging demands.

Less work exists on the planning of EVCs for large car parks. A planning approach for
large car parks to determine the optimal number of fast EVCs and waiting queue size was
presented in [23]. In [24], a planning method was developed to optimally plan the number
of fast EVCs and EV charge waiting spaces, with the charging demands modeled using
queuing theory and the Markov chain. An energy management strategy was presented
in [25] to maximize the EV penetration level and revenue in a car park with a transformer
capacity limit. In each of the studies reported in [23–25], different issues related to EV
car parks were addressed. However, the EVCs used in those studies were conventional
types that allow for charging only one EV at a time. This leads to underutilization of
EVCs whenever the charging power demanded is less than the rated capacity of EVCs.
This can occur for several reasons, for example, when the battery state-of-charge (SOC)
is high and the charging power demanded from the EVC is low, or when the charging
capacity allowed for a particular EV model is less than the power rating of the EVC. Thus,
the cost-effectiveness of conventional EVC investments is limited. This can be addressed
by raising the flexibility of EVCs, allowing one EVC to serve multiple EVs. An approach
to improving the flexibility of EVCs was presented in [26] by using a four-way switch
to adjust the connection of the EVC to only one of four connected EVs parked at four
different charging spaces. However, this approach does not allow for concurrent charging
of several EVs and gives limited improvement. In [27], the authors proposed a method to
improve the flexibility of EVCs by allowing an EVC to connect multiple EVs. Thus, the
charging schedules of the connecting EVs on an EVC can be controlled. By applying their
method, fewer EVCs can be installed, increasing the utilization of EVCs. The authors in [28]
designed a charging system to improve the flexibility of EVCs by connecting serval EVCs
to serval charging spaces. In their method, the random parking behaviors of EV users at
charging spaces can be solved by controlling the power flow from an available EVC to a
charging space via the connection cables among the charging spaces and EVCs. However,
the methods in [27,28] have some limitations. Firstly, the charging power of EVCs is not
flexible, making EVCs less likely to adapt to the charging power requirements of different
EV models. In addition, each EVC can only charge one EV at a time, so concurrent charging
of multiple EVs is not available. Moreover, the fact that their methods are practically viable
is unknown because they did not mention any EVC manufacturing companies that had
produced similar products.

To address the shortcomings of the existing methods, conventional EVCs have been
specifically adapted to overcome flexibility and utilization issues. EVCs of this type are
referred to as reconfigurable EVCs (REVCs).

A REVC comprises internal PMs that can be dynamically allocated to realize different
levels of output power at multiple outlets [29]. Several outlets can be coupled to a power
cabinet housing the PMs, with a control unit used to connect and disconnect PMs in a
power cabinet between outlets. This flexibility allows for better use of charging resources.
For example, if an EV needs only a portion of the power rating of a REVC, idle PMs can
be used for charging other EVs concurrently, which cannot be achieved by conventional
EVCs. Further, since the PMs of a REVC are self-contained, they are easily installed
and removed. Moreover, the wide power range makes a REVC suited to a wide range
of charging powers. These are significant benefits, and numerous manufacturers have
developed REVC products with similar functionality [30–38]. REVCs have been utilized
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in public areas, and some customers have provided positive feedback on using REVCs in
terms of flexibility [39]. A comparison of REVCs and conventional slow and fast EVCs is
shown in Table 1.

Table 1. Comparison of REVC and conventional types of EVCs.

EVC Type Slow EVC Conventional Fast EVC REVC

AC or DC AC DC DC
Number of EVs

Charged
Concurrently

1 1 >1

Flexibility Low Low High
Degree of
Resource

Utilization
Low Low High

There are two types of REVCs on the market. One is the integrated-type REVCs, where
each REVC has multiple identical PMs inside, as illustrated in Figure 1a. Generally, the
number of EVs that can be charged concurrently by an integrated-type REVC depends
on the number of PMs inside and the number of charging cables connected to a REVC. A
disadvantage of the integrated-type REVCs is the need for long charging cables to reach
charging spaces distant from the REVCs. For example, the lower-level charging spaces in
Figure 1a are distant from the REVCs in the upper charging spaces. This need for long
cables is an inconvenience and safety issue that practically limits the number of charging
cables fitted to an integrated-type REVC to two or three. Consequently, the number of
charging spaces served by an integrated-type REVC is limited.

 

(a) (b) 

Figure 1. Schematic of (a) Integrated-type REVCs; (b) a split-type REVC.

The other type of REVC is the split-type, shown in Figure 1b, which has a power
cabinet and separate charging posts (CPs). For split-type REVCs, power outlets are CPs
connected to a REVC. The CPs are distributed at each charging space and connected to a
power cabinet via unobtrusive underground cables (dashed lines in the figure). Charging
cables of a convenient length connect to the CPs and are used to plug into the EVs. The
use of underground cables and charging posts allows charging spaces to be served that are
distant from the power cabinet, such as lower-level charging spaces. The PMs within the
split and integrated-type REVCs are controlled and reconfigured as necessary to deliver
the required power levels to different EVs.
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The planning of REVCs has not previously been reported, despite key differences with
conventional EVCs that mean higher levels of flexibility and utilization can potentially be
realized. The key differences include the ability to charge multiple EVs concurrently and to
change the power allocated to each connected EV dynamically. Especially for split-type
REVCs, each one can connect many CPs, which introduces the numerous combinations of
REVC numbers and corresponding CP numbers for planning in large car parks. Therefore,
it is critical to have an optimal planning strategy to obtain the optimal plan for deploying
REVCs in large car parks. An optimal planning strategy that incorporates these key
differences and is suited to the planning of REVCs for small or large car parks is needed to
realize the full potential of REVC technology. Accordingly, an optimal planning strategy for
REVCs is presented in this paper. Compared with existing research, the key contributions
of this paper are summarized as follows:

• The proposed optimal planning strategy can be applied as a planning tool for car
parks deploying REVCs under various scenarios.

• The proposed optimal planning strategy can be applied as an operation controller for
REVCs to allocate charging powers and spaces for individual EVs.

• The proposed optimal planning strategy can not only determine the size (number of
REVCs) of EV car parks but also determine the optimal power rating for PMs and
each REVC.

• A grouping method is proposed to aggregate EV charging demands for scenarios with
a large number of EVs.

The remainder of the paper is organized as follows: The overall framework for the
proposed optimal planning strategy is illustrated in Section 2. In Section 3, the modeling
for determining the power rating of power modules is described. The optimization model
for determining the number and configuration of REVCs is formulated in Section 4. In
Section 5, the optimization model to determine the operation plan of REVCs is formulated.
In Section 6, a comprehensive case study is undertaken to illustrate the effectiveness of
the optimal planning strategy under various conditions and to show the benefits of using
REVCs compared to conventional EVCs. Finally, conclusions are given in Section 7.

2. Overall Framework for Optimal Planning Strategy

In this section, the overall framework of the proposed three-stage optimal planning
strategy is introduced. To provide an integrated plan, each stage of the proposed strategy
should be closely related. The outputs of the previous stage are applied as parameters to
the next stage. The first stage is to determine the optimal power rating of PMs. In this stage,
the degree of utilization of PMs is modeled. Therefore, the objective is to determine the
optimal power rating of PMs with a maximized degree of utilization. After the optimal
power rating of PMs is determined, this optimal power rating is used as a parameter for
the second stage. The second stage is to determine the optimal number and configuration
of REVCs, including determining the number of REVCs, the number of PMs in each REVC,
and the number of CPs connected to each REVC. Then, in the third stage, the optimal
operation plan can be determined based on the EV charging demands, which include the
charging profile for the whole car park, the additional transformer capacity to be upgraded,
and allocations of charging space and charging power for individual EVs. The determined
number and configuration of REVC in the second stage and the collected charging demands
are applied as parameters and constraints for the third stage to allocate the optimal charging
space and charging power for each EV. To obtain EV charging demands, government travel
reports or data mining methods can be utilized [40,41]. Once the data on EV charging
demand is obtained, advanced forecasting strategies can be applied to predict future EV
charging behaviors [42,43]. The forecasting of the data is out of the scope of this paper,
and please refer to the references for detailed explanations. Detailed explanations of the
proposed strategy and modeling are demonstrated in the following sections. The overall
framework of the proposed optimal planning strategy is displayed in Figure 2.
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Figure 2. Framework of the proposed three-stage optimal planning strategy.

3. Model for Determining the Power Rating of Power Modules

Because a REVC is made up of multiple identical PMs, and PMs are key components
of a REVC, determining the optimal power rating of PMs is essential. The objective is to
select the optimal power rating of PMs to achieve the highest degree of utilization. For
example, in Figure 3, an EV with a low battery SOC allows for charging at a 50 kW rate. If
the EVCS comprises five 10 kW PMs, all PMs will be fully utilized. If the EVCS comprises
four 15 kW PMs or three 20 kW PMs, underutilization will occur on the last PM. From this
example, it is apparent that the highest degree of utilization is achieved with 10 kW PMs.
In addition, the degree of utilization also depends on the charging power of an EV.

 
Figure 3. Block diagram of the degree of utilization of PMs.

When an individual EV is applying a REVC, mathematically, the number of working
PMs is expressed as:

Nindividual = ceil(
PEV

x
PPM

u
), (1)

where the charging rate of this EV is at PEV
x , and the power rating of PMs is PPM

u . Conse-
quently, for this EV, the degree of utilization for the last PM is:

UDindividual = 1− [Nindividual − PEV
x

PPM
u

]. (2)

The degree of utilization can be generalized to a scenario with several different EV
types with diverse charging rates:

UDall = ∑x=X
x=1 wx·UDindividual (3)

where X is the number of EV types, and wx is the weighting factor of each EV type.
Therefore, the objective is to choose the optimal power rating of PMs when the degree

of utilization is maximized, which can be expressed as:

.
P

PM
u = argmax

PPM
u

UDall(PPM
u ). (4)
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4. Model for Determining the Number and Configuration of REVCs

After determining the optimal power rating of PMs, the optimal number and con-
figuration of RVECs can be determined. The number and configuration of REVCs are
determined by the parking behaviors of EV users. However, parking behavior is uncer-
tain. Therefore, some typical scenarios with different parking behaviors are considered
to represent uncertainty. Consequently, for determining the number and configuration
under uncertainty, an optimization model is formed as a robust optimization problem. The
purpose is to calculate an optimal solution when the worst-case scenario occurs within a
number of scenarios “δ∈Δ”. From the EV car park operator’s perspective, at this stage, the
objective includes minimizing the equivalent annual investment cost of REVCs and the
degree of dissatisfaction due to losing some EV customers, as expressed in (5). The degree
of dissatisfaction is described by the time at which EV users look for charging spaces at
other EV car parks. The constraints account for the technical specifications of REVC and
the number of parking spaces, as formulated in (9)–(16). Thus, the optimization model is
formulated as follows:

min
a

max
δ∈Δ

CRF·[costinv(a,δ) + costtime(a,δ )] , (5)

where:

CRF =
d(1+d)m

(1+d)m − 1
, (6)

costinv(a, δ) = (NPM(δ)· .
P

PM
u ·costkW

PM + NCP(δ)·costCP + NCP(δ)·costcable + costother)·N(δ), (7)

costtime(a,δ) = Nloss(δ)·costperEV
time , (8)

subject to:

Pmin
REVC ≤ NPM(δ)· .

P
PM
u ≤ Pmax

REVC, (9)

nmin
CP ≤ NCP(δ) ≤ nmax

CP , (10)

NEV
pt (δ) = NCP(δ)·N(δ) + Nloss(δ), (11)

NCP(δ)·N(δ) + Nloss(δ) ≤S, (12)

NPM(δ) ∈ {Z+
}

, (13)

NCP(δ) ∈
{
Z
+
}

, (14)

N(δ) ∈ {Z+
}

, (15)

Nloss(δ) ∈
{
Z
+
0
}

. (16)

The objective function and constraints are further explained as follows.

4.1. Objective Function

The objective function is to minimize the equivalent annual investment cost of REVCs
and the time cost (dissatisfaction degree) of some EV customers, which is expressed in
(5). Decision variables are the number of power modules for a REVC (NPM(δ)), number of
charging posts for a REVC (NCP(δ)), number of REVCs to be installed (N(δ)), and number
of lost EVs (Nloss(δ)). In (6), d is the discount rate, m is the life cycle of the project, and CRF is
the capital recovery factor of the costs. The capital recovery factor represents the conversion
relationship from the present value to equivalent annual costs in years. Equation (7) defines
the investment costs of deploying the split-type REVCs, including PMs, CPs, underground
and charging cables, and other expenses. If the integrated-type REVCs are deployed, the
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second term can be removed from (7). The time cost (dissatisfaction degree) is defined
in (8), which indicates the inconvenience of the user experience due to losing some EV
customers. The time cost (dissatisfaction degree) is calculated by the product of the number
of lost EVs and the cost of losing an EV. Because the number of charging EVs changes on
different days of the year, it is necessary to determine the optimal number of REVCs to
guarantee that most EVs have charging spaces. However, if too many REVCs are installed
to satisfy all the charging EVs on peak days, the cost-effectiveness of the REVCs will be
reduced. The reason is that many charging spaces will be idle on off-peak days due to too
many REVCs. Therefore, the purpose of having the time cost (dissatisfaction degree) in
the objective function is to save investment costs by not installing too many REVCs but
accommodating most EVs.

4.2. Constraints

REVC must follow the technical specifications of the manufacturers. These technical
specifications include the power rating of each REVC and the number of CPs allowed for
each split-type REVC. These constraints are expressed in (9) and (10). For certain places,
such as workplaces, commercial areas, and residential areas, EV users normally park their
EVs in parking spaces for longer durations. EV users may set up their charging demands
and connect charging cables on arrival. Therefore, to accommodate peak-time charging,
the sum of the total number of CPs to be installed (NCP(δ)·N(δ)) with the number of lost
EVs should be equal to the number of charging EVs during peak time (NEV

pt (δ)), defined
in (11). In addition, the total number of CPs with the number of losing EVs should not be
greater than the total number of parking spaces (S) in a car park, as defined in (12). The
product of the number of CPs connected to each REVC (NCP(δ)) and the number of REVC
(N(δ)) defines the total number of parking spaces offering charging (charging spaces). All
the variables in this optimization model are integers, as shown in (13)–(16).

5. Model for Determining the Operation Plan

After the optimal number and configuration of REVCs are determined, the operation
plan can be determined. The operation plan is also an important factor to be determined
when planning EV charging infrastructure. This is because the operation cost is a large
proportion of the total cost. In most of the studies, the operation cost of EV charging is
defined by the charging schedule of each EV [26–28]. To determine the charging schedule
of each EV, a group of decision variables is applied to control how much power is delivered
to each EV during each time slot. However, this is not suitable for planning scenarios with
a large number of EVs because it is impractical and inefficient for the power distribution
network (PDN) operator to control individual EVs directly. Therefore, to accommodate
the large-scale EV charging scenarios, a hierarchical method is proposed to determine the
operation plan, as displayed in Figure 4. Before EVs arrive at the EV car park, the EV
users set up their charging demands via the mobile app. Some mobile apps have been
commercialized for public EV charging [44–46]. Next, the charging demands are sent to the
communication and control center (CCC) of the EV car park. Then, the CCC aggregates
individual charging demands and sends the aggregated charging demand to the PDN
operator on behalf of the EV car park. After the PDN operator receives the power request
from the EV car park, the PDN operator dispatches power to the EV car park. The EV
car park obtains the daily charging profile based on the dispatched power. Afterwards,
based on the charging profile, the CCC calculates the optimal operation plan for each EV
and sends the allocation information for charging spaces to each EV via the mobile app.
Finally, each EV goes to the allocated charging space and gets charged. This method fits the
large-scale EV charging infrastructure planning problems and day-ahead scheduling of EV
charging problems since the EV charging demands are normally forecasted beforehand.
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Figure 4. Framework for determining the operation plan.

To apply the proposed hierarchical method, there are two sub-stages to determine
the optimal operation plan, as shown in Figure 2. In the first sub-stage, the individual
EV charging demands are aggregated. Then, the aggregated charging demand is used to
determine the optimal charging profile and additional transformer capacity to be upgraded.
Afterwards, in the second sub-stage, the determined charging profile and additional trans-
former capacity are applied as constraints to determine the allocation of charging spaces
and powers for individual EVs.

5.1. Determining the Charging Profile and Additional Transformer Capacity to Be Upgraded

In this sub-stage, individual EV charging demands are aggregated, and EVs are classi-
fied into different groups depending on their arrival and departure times, as demonstrated
in Figure 5. Different colors are applied to represent different arrival and departure times
of EVs. For example, in Figure 6, EV1, EV2, and EV5 arrive and depart during the same
time slot, as highlighted in blue; therefore, they are grouped into the same set. EV3 and
EV4 arrive and depart during the same time slot, as highlighted in orange; therefore, they
are grouped into the same set.

 

g

g

I 

Figure 5. Flowchart for aggregating and grouping EVs.
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Figure 6. Example of parking duration for EVs.

For a group of EVs (g ∈ G) under scenario δ, to satisfy the energy demand, the
total energy supplied from the grid should not be less than the total energy demands, as
expressed in (17). To protect the EV batteries, (18) defines the sum of the total charged
energy and energy at arrival for each group to be not more than the group battery capacity.

∑
t=td

g
t=ta

g
Ptot

g,t (δ)·Δt·η ≥ ∑gi∈GI(SOCd
gi − SOCa

gi)·BCgi, ∀g ∈ G, (17)

∑gi∈GISOCa
gi·BCgi + ∑

t=td
g

t=ta
g
Ptot

g,t (δ)·Δt·η ≤ ∑gi∈GIBCgi, ∀g ∈ G, (18)

where Ptot
g,t (δ) is the total charging power of a group in a time slot t; Δt is the duration

of a time slot; η is the charging efficiency; SOCd
gi is the desired SOC; SOCa

gi is the SOC at
arrival; and BCi is the battery capacity for an EV. Apart from utilizing the SOCs of an EV,
the energy level during a time slot of an EV can be utilized to represent the charging process
as well. In this study, to simplify the representation of the model, SOCs of EVs are applied
to the model.

The total charging power for each group should not be smaller than zero, as expressed
by (19). During each time slot (t ∈ T), which is taken as 15 min in this paper, the sum of
the total charging power in all the groups cannot exceed the sum of the maximum allowed
charging power of all EVs, as expressed by (20).

Ptot
g,t (δ) ≥ 0, ∀t ∈ T, ∀g ∈ G, (19)

∑g∈GPtot
g,t (δ) ≤ ∑i∈I Pmax

i , ∀t ∈ T, (20)

where Pmax
i is the maximum allowed charging power for an EV i.

To protect the transformer of the PDN, during each time slot, the total charging power
of all EV groups must not exceed the difference between the upgraded transformer capacity
and the baseload (Lbase

t ). The upgraded transformer capacity is defined by adding the
existing transformer capacity (Cex) with additional transformer capacity to be upgraded
(Ctransformer(δ)) to accommodate EV charging demands, as formulated in (21) and (22).

Therefore, the peak demand (Ppeak
demand(δ)) is not larger than the upgraded transformer

capacity but not smaller than the addition of charging power for all EV groups and the
baseload, as expressed by (23).

∑g∈GPtot
g,t(δ) ≤ (Cex + Ctransformer(δ))·PF− Lbase

t , ∀t ∈ T, (21)

Ctransformer(δ) ≥ 0, (22)

Cex + Ctransformer(δ) ≥ Ppeak
demand(δ) ≥ ∑g∈GPtot

g,t (δ) + Lbase
t , ∀t ∈ T, (23)

where PF is the power factor of the transformer.
From the EV car park operators’ perspective, the objective is to minimize the expected

operational cost in all the scenarios. The corresponding optimization model is formulated
as a linear programming problem below.

min
b

Eδ

{
costoperation(b, δ)

}
= min

b

{
∑δ∈Δwδ·costoperation(b, δ)

}
, (24)
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where:
costoperation(b, δ) = CRF·Ctransformer(δ)·costkVA

transformer,

+365·∑G
g=1∑T

t=1

[
Ptot

g,t (δ)·ETt·Δt
]
+ 12·Ppeak

demand(δ)·costkW
demand,

(25)

subject to (17)–(23).
The charging demands of EVs are uncertain. Therefore, some typical scenarios are

taken to represent the uncertainty of the charging demands. These typical scenarios have a
different probability (wδ). Consequently, to comprehensively consider these scenarios, the
expected value of the annual operation cost of all the scenarios with different probabilities is
calculated. Thus, the objective function in this sub-stage is to minimize the expected value
of the annual operation cost, as expressed by (24). The annual operation cost incorporates
three parts: the first term is the upgrade cost of the transformer; the second term is the
EV charging cost; and the third term is the cost of demand charge, as expressed by (25).
The decision variables are the transformer capacity to be upgraded (Ctransformer(δ)), total

charging power of each group in each time slot (Ptot
g,t (δ)), and the peak demand (Ppeak

demand(δ)).
The upgrade cost of the transformer is the cost that the EV car park operator spends to
upgrade the additional capacity of the transformer to accommodate EV charging demands.
The EV charging cost is based on the EV car park operator purchasing electricity from the
utility company. The electricity tariff ETt is set up by the utility company. The demand
charge is a monthly fee to maintain the amount of grid capacity needed to deliver enough
power to a large energy user. It depends on the peak power that a large energy user puts
on the grid.

5.2. Allocation of Charging Spaces and Powers for EVs

In this sub-stage, the charging spaces and powers can be allocated to individual EVs
based on the EV charging demands, the determined number and configuration of REVCs,
and the determined charging profile.

To satisfy the energy demand, the total energy supplied from the grid for each EV
(i ∈ I) should not be less than the energy required by each EV, as expressed by (26). To
protect the battery of each EV, (27) defines the sum of the charged energy and energy at
arrival for each EV as not more than the battery capacity of each EV.

∑
t=td

i
t=ta

i
∑n∈N Pi,n,t(δ)·Δt·η ≥ (SOCd

i − SOCa
i )·BCi, ∀i ∈ I, (26)

∑
t=td

i
t=ta

i
∑n∈N Pi,n,t(δ)·Δt·η + SOCa

i ·BCi ≤ BCi,∀i ∈ I, (27)

where ta
i and td

i are the arrival time and departure time of an EV, respectively; SOCa
i and

SOCd
i are the arrival and departure SOC of an EV, respectively; BCi is the battery capacity

of an EV.
The charging power of each EV (Pi,n,t(δ)), during each time slot, should not be smaller

than zero or greater than the maximum charging power allowed by each EV, as expressed
by (28).

0 ≤ Pi,n,t(δ) ≤ Si,n,t(δ)·Pmax
i (δ), ∀i ∈ I, ∀n ∈ N, ∀t ∈ T, (28)

where Si,n,t(δ) is a set of binary variables defining the connection between an EV i and a
REVC n ∈ N, as shown in (29).

Si,n,t(δ) ∈ {0, 1}. (29)

The summation of the individual EV charging power during each time slot should not
be greater than the total charging power for the whole EV car park, as expressed in (30).

∑i∈I∑n∈N∑t∈T Pi,n,t(δ) ≤ Ptot
t (δ), ∀t ∈ T, (30)
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To avoid situations where the sum of the charging power of EVs exceeds the deter-
mined charging profile, a new set of variables Padd

t (δ) is applied to indicate that the CCC
makes additional power requests to the PDN operator. In (31), the additional power request
during each time slot should be greater or equal to zero because the power is dispatched
from the PDN.

Padd
t (δ) ≥ 0, ∀t ∈ T, (31)

Thus, the total charging power for the whole EV car park is the sum of the determined
charging profile and the additional power requests, as expressed in (32).

Ptot
t (δ) = ∑g∈GPtot

g,t (δ) + Padd
t (δ), ∀t ∈ T, (32)

In (33), for each REVC, during each time slot, the total charging power provided by a

REVC cannot exceed its power rating (NPM(δ)· .
P

PM
u ).

∑i∈I Pi,n,t(δ) ≤ NPM(δ)· .
P

PM
u , ∀n ∈ N, ∀t ∈ T, (33)

where
.
P

PM
u is determined in Section 3, and NPM(δ) is determined in Section 4.

Since the configuration of the REVCs is determined in Section 4, for each REVC, the
number of connected EVs during each time slot cannot be more than the number of CPs
linked to each REVC, as expressed by (34).

∑i∈ISi,n,t(δ) ≤ NCP, ∀n ∈ N, ∀t ∈ T, (34)

An EV is only allowed to connect one REVC during the time it stays in the car park, as
formulated in (35). In (36), an EV is not connected to any REVCs before it arrives or after it
leaves the car park.

∑n∈NSi,n,t(δ) = 1, ∀i ∈ I, ∀t ∈
[
ta
i , td

i

]
, (35)

∑n∈NSi,n,t(δ) = 0,∀i ∈ I, ∀t ∈
[
1,ta−1

i

]
∪
[
td+1
i , T

]
, (36)

The primary purpose of this sub-stage is to ensure that the sum of the power allocated
to EVs is close to the charging profile determined in the previous sub-stage. Therefore, the
objective is to minimize the difference between the total charging power for the whole EV
car park and the summation of the charging power of individual EVs in each time slot.
Thus, the optimization model for allocating charging spaces and powers is formulated
below as a mixed-integer linear programming problem.

min
Pi,n,t(δ)

[
Ptot

t (δ)−∑i∈I∑n∈N∑t∈T Pi,n,t(δ)
]
, (37)

subject to (26)–(36).

6. Case Study

6.1. Case Overview and Parameter Settings

The proposed optimal planning strategy is applied to an existing car park with 400
parking spaces on the south campus of Auckland University of Technology, New Zealand.
The existing transformer capacity, Cex, is 750 kVA. In this case study (University), there are
four typical types of days based on the weather conditions in Auckland city. According to
the annual calendar of the University, the probabilities of the occurrence of these types of
days are 0.26 (University days in summer), 0.31 (University days in winter), 0.33 (holiday
days in summer), and 0.10 (holiday days in winter) [47]. The existing baseload of the
campus is illustrated in Figure 7. There are a total of 461 vehicles on a university day, and
there are a total of 182 vehicles on a holiday day. Arrival times and parking durations
of these vehicles were recorded during working hours from 9:00 to 17:00, as shown in
Figures 8 and 9, respectively. The data were collected in the University car park from 9
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am to 5 pm on University days and holiday days, respectively. Arrival and departure
times and parking durations of vehicles were recorded manually. Then, the recorded data
were summarized according to the University days and holiday days. All the vehicles
parked were internal combustion engine vehicles. For the case study, the vehicles are
assumed to be EVs. Popular EV models in New Zealand, including the Nissan Leaf, BMW
i3, Hyundai Kona, and Renault Zoe, are applied in this case study. The proportions of these
EV models are assumed as 40%, 30%, 20%, and 10%, respectively. Rated battery capacities
and maximum charging powers for each EV type are shown in Table 2. In the summer
season, the usable battery capacities were assumed to be rated capacities. However, in
the winter season, due to the influence of temperature, the usable battery capacities were
assumed to be 90% of the rated capacities [48]. The arrival SOC and departure SOC for each
EV are taken as 40% and 80%, respectively [26,49–51]. Transformer and REVC parameters
are displayed in Table 3 [52]. The electricity tariffs are listed in [53], used as electricity
purchase prices paid by REVC operators, as shown in Table 4. The demand charge per kW
(costkW

demand) is taken as 8.46 $/kW [54]. The discount rate (d) is assumed to be 6% [55]. The
life cycle of the project (m) is assumed to be 10 years. The time cost (dissatisfaction degree)
of losing an EV is set as the time cost of an EV looking for an available charging space in
another EV car park. The time cost per hour is taken as the median hourly wage, which
is NZD 29.66 [56]. Therefore, in 10 years, the time cost (dissatisfaction degree) of losing
an EV is the multiplication of time cost per hour (NZD 29.66/hour), time spent every year
(17 h) [57], and the project life cycle (10 years).

Figure 7. Baseload of the transformer.

Figure 8. Arrival times of EVs.
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Figure 9. Parking duration of EVs.

Table 2. Rated battery capacity and maximum charging power.

EV Type Nissan Leaf BMW i3 Hyundai Kona Renault Zoe

Battery Capacity 62 kWh 42.2 kWh 67.5 kWh 54.7 kWh
Maximum Charging Power 100 kW 49 kW 77 kW 46 kW

Table 3. Transformer and REVC parameters.

Parameter Value Parameter Value

Pmax
REVC 480 kW (split-type) 160 kW (integrated-type) costcable NZD 1500

Pmin
REVC 120 kW (split-type) 100 kW (integrated-type) costother NZD 1500
nmax

CP 12 (split-type) 3 (integrated-type) PF 0.99
nmin

CP 2 (either type) Cex 750 kVA

costkW
PM NZD 100/kW costkVA

transformer
NZD

150/kVA
costCP NZD 1500 η 95%

Table 4. Electricity tariffs.

Period Type Tariff (NZD/kWh) Times (Hour)

Peak 0.2167 (12:00~19:00]
Shoulder 0.1116 (10:00~12:00] and (19:00~21:00]
Off-peak 0.0837 (21:00~10:00]

In Section 6.3, the comparison primarily focuses on split-type REVCs and conven-
tional EVCs, as split-type REVCs are considered to have the highest flexibility. After that,
Section 6.5 compares split-type REVCs and integrated-type REVCs.

6.2. Optimal Power Rating of PMs

According to REVC manufacturers, five commonly available power ratings of PMs
are used. These power ratings include 10 kW, 15 kW, 16 kW, 20 kW, and 30 kW [58,59].

Based on (3) and (4), calculated degrees of utilization of PMs are displayed in Table 5.
In this scenario, PMs with a 10 kW power rating have the highest degree of utilization.
Consequently, 10 kW PMs are selected and will be utilized as a parameter in the number
and configuration determining stage.
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Table 5. Degrees of utilization of PMs.

Power Rating of PMs (kW) Degree of Utilization

10 87%
15 38.14%
16 36.875%
20 73.5%
30 48.74%

6.3. Planning Results

The optimization in the number and configuration determining stage is conducted
according to the selected power rating of PMs and other parameters. The numerical simula-
tion results of planning are shown in Table 6. The outputs of the number and configuration
determining stages are utilized as parameters in the operation plan determining stage. The
planning results of REVC are compared with slow and fast EVCs under coordinated and
uncoordinated charging. Coordinated charging is an operation to control the charging
schedules of EVs to realize some objectives, such as peak shaving or reducing charging
costs. Uncoordinated charging is an ordinary operation in which EVs get charged immedi-
ately after connecting EVCs. The optimization problems were solved by CPLEX using the
branch-and-bound method [60]. Planning results show that the number of REVCs to be
deployed is much fewer than the number of slow EVCs or fast EVCs, and the total cost of
planning REVCs is less than the other two types of EVCs. This is because each REVC can
serve several charging spaces concurrently and dynamically allocate charging power to
different charging spaces. This contrasts with conventional slow or fast EVCs, which can
serve only one charging space at a time.

Table 6. Planning results.

EVC Type REVC (Split-Type) Slow EVC Fast EVC Slow EVC Fast EVC

Operation Manner Coordinated Coordinated Coordinated Uncoordinated Uncoordinated

EVC Number 30 362 360 362 360

Charging Post/cable
per EVC 12 1 1 1 1

EVC Power Rating (kW) 120 20 100 20 100

Upgraded Transformer
Capacity (kVA) 750 + 771 750 + 771 750 + 771 750 + 1937 750 + 5762

Equivalent Annual
Investment Cost (k NZD) 201.764 245.921 2445.623 245.921 2445.623

Equivalent Annual
Time Cost (Dissatisfaction

Degree) (k NZD)
1.370 0 1.370 0 1.370

Annual Operation
Cost (k NZD) 102.674 102.674 102.674 319.620 986.262

Annual Cost of
Demand Charge (k NZD) 154.412 154.412 154.412 281.515 661.098

Equivalent Annual
Transformer Upgrade Cost

(k NZD)
6.914 6.914 6.914 39.476 117.431

Total Annual Cost (k NZD) 428.789 471.576 2672.648 886.532 4211.784
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According to the outputs of the number and configuration determining stage and EV
charging demands, optimization in the operation plan determining stage is conducted. The
coordinated charging strategy can be achieved by applying the proposed charging strategy,
where the operation cost is reduced significantly, as indicated in Table 6. Even though
the operation cost, the cost of demand charge, and the transformer upgrade cost of three
different types of EVCs are the same with coordinated charging, the total annual cost of
deploying REVCs is 9% and 84% less than slow and conventional fast EVCs, respectively.
This is due to the fact that a smaller number of REVCs can be deployed than conventional
EVCs, and a larger number of EVs can be charged concurrently by each REVC. The charging
profiles of REVCs under different scenarios by applying the proposed optimal planning
strategy are illustrated in Figure 10. Comparing Figure 10a,b, the peak load is larger in the
summer than in the winter. This is because the driving range of an EV is short in winter
due to the weather impact on the usable battery capacity [39]. Consequently, under the
same arrival and departure SOCs, the energy delivered to an EV is less in winter. For
charging profiles on a holiday day of the summer season or winter season, most of the
charging sessions happen during the peak-tariff period. This is because most of the EVs
arrive after 12:00 and depart before 18:00. Therefore, due to the constraints of arrival
and departure times, their charging sessions are arranged during the peak-tariff period.
Comparing the charging profiles on a university day and on a holiday day, the peak load
is much smaller on a holiday day than on a university day. This is due to the fact that
the number of charging EVs on a holiday day is much smaller than on a university day.
The charging profiles of slow and fast EVCs with uncoordinated charging are shown
in Figures 11 and 12, respectively. In Figure 10, many charging sessions are scheduled
during off-peak and shoulder periods, compared to Figures 11 and 12. This is because by
applying the optimization model in the third stage of the proposed strategy, the function of
coordinated charging can be achieved, and charging sessions can be shifted to relatively
lower tariff periods to minimize the operation cost. For EVs stayed overnight, charging
sessions can be arranged during night periods with off-peak tariffs. For EVs parked for a
short time, charging power can be designated to a proper level without compromising on
charging demands.

In addition, the cost of the demand charge and the upgraded transformer capacity
by applying coordinated charging are relatively smaller. However, for uncoordinated
charging, charging sessions occur immediately after the arrival of EVs. Therefore, at the
peak time of the arrival of numerous EVs, many charging sessions are carried out at the
same time, resulting in a high peak load. Consequently, high peak loads result in a large
demand charge and upgraded transformer capacity.

  
(a) (b) 

Figure 10. Cont.
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(c) (d) 

Figure 10. Charging profiles with the proposed strategy (a) a university day of the summer season;
(b) a university day of the winter season; (c) a holiday day of the summer season; (d) a holiday day
of the winter season.

  
(a) (b) 

  
(c) (d) 

Figure 11. Charging profiles by applying slow EVCs with uncoordinated charging (a) a university
day of the summer season; (b) a university day of the winter season; (c) a holiday day of the summer
season; (d) a holiday day of the winter season.
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(a) (b) 

  
(c) (d) 

Figure 12. Charging profiles by applying conventional fast EVCs with uncoordinated charging (a) a
university day of the summer season; (b) a university day of the winter season; (c) a holiday day of
the summer season; (d) a holiday day of the winter season.

6.4. Influence of State-of-Charge

The arrival SOC and departure SOC depend on the battery energy left when each EV
arrives at a car park and the energy required before each EV leaves, respectively. Thus,
different arrival and departure SOCs would influence the charging demands of EVs and
further influence the total annual cost. The total annual costs under different arrival SOCs
and departure SOCs are given in Figure 13. The lower the arrival SOC and the higher the
departure SOC, the higher the total annual cost. For the battery health of EVs, it is suggested
that battery SOC be maintained between 20% and 80% [36]. Consequently, applying a 20%
arrival SOC to 80% departure SOC is appropriate for a worst-case planning scenario.

Figure 13. Total annual cost under different arrival and departure SOCs.
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6.5. Comparison of Split-Type and Integrated-Type REVCs

The comparison of two types of REVCs is undertaken in this section under different
charging spaces. Under a small number of charging spaces, the equivalent annual invest-
ment cost of planning integrated-type REVCs is less than that of planning split-type REVCs,
as shown in Figure 14a. However, under a large number of charging spaces, the equiv-
alent annual investment cost of planning split-type REVCs is less than that of planning
integrated-type REVCs, as illustrated in Figure 14b.

 
(a) (b) 

Figure 14. Equivalent annual investment cost comparison (a) with a small number of charging spaces;
(b) with a large number of charging spaces.

A car park with a small number of charging spaces only requires a few EVCs. Due to
the technical specifications, the power rating of each split-type REVC is larger than that of
each integrated-type REVC. Consequently, the number of PMs in each split-type REVC is
greater than that of each integrated-type REVC. Therefore, the cost of each split-type REVC
is more expensive than each integrated-type REVC. Thus, the annual investment cost of
deploying split-type REVC is more costly than deploying integrated-type REVC. However,
because each split-type REVC can connect more EVs, the charging resources of a split-type
REVC can be shared with more EVs compared to an integrated-type REVC. Consequently,
for a car park with a large number of charging spaces, relatively fewer split-type REVCs
are deployed compared to integrated-type REVCs. Thus, the annual investment cost of
deploying split-type REVC is less expensive than deploying integrated-type REVC.

6.6. Sensitivity Analysis for REVC Component Costs

The component costs of REVCs and conventional EVCs vary depending on the manu-
facturers. Therefore, to evaluate the influence of the component costs on the equivalent
annual investment cost of the planning, a sensitivity analysis is undertaken in this section.
The main components of REVCs are PMs, CPs, and cables. The cost range for these com-
ponents is presumed according to [44], shown in Table 7. The cost range for a 20 kW slow
EVC is from NZD 5000 to NZD 8000. The cost range for a 100 kW fast EVC is from NZD
50,000 to NZD 75,000. To compare the equivalent annual investment costs with deploying
REVCs, slow EVCs, and fast EVCs, the same scenario in Section 6.1 is applied. With the
variations in the cost range, the equivalent annual investment cost of deploying REVCs is
smaller than that of deploying slow or fast EVCs, as shown in Figure 15. This is because
the number of REVCs to be deployed is much smaller than the other two types of EVCs, as
each REVC can charge multiple EVs concurrently.

Table 7. Cost range for REVC components.

Component Cost Range

Power Module 100~150 (NZD/kW)
Charging Post 1500~2500 (NZD)

Cable 1500~3500 (NZD)
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Figure 15. Comparison of equivalent annual investment costs with deploying different types of EVCs.

7. Conclusions

An optimal planning strategy for REVCs has been proposed in this paper. The pro-
posed optimal planning strategy involves three stages, and an optimization model has been
developed for each stage. The optimization model of the first stage determines the optimal
power rating of internal PMs inside each REVC, and the optimization model of the second
stage determines the optimal number and configuration of REVCs, followed by determin-
ing the optimal operation plan of REVCs from the optimization model of the third stage.
To demonstrate the effectiveness of the proposed optimal planning strategy based on the
optimization models, a comprehensive case study has been undertaken using realistic car
parking scenarios with 400 parking spaces, electricity tariffs, and grid infrastructure costs.
The results of the case study have shown that deploying REVCs by applying the proposed
optimal planning strategy can reduce the total annual cost by 9% and 84%, respectively,
compared to deploying other conventional types of EVCs.
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Abstract: Electricity storage systems, whether electric vehicles or stationary battery storage systems,
stabilize the electricity supply grid with their flexibility and thus drive the energy transition forward.
Grid peak power demand has a high impact on the energy bill for commercial electricity consumers.
Using battery storage capacities (EVs or stationary battery systems) can help to reduce these peaks,
applying peak shaving. This study aims to address the potential of peak shaving using a PV plant
and smart unidirectional and bidirectional charging technology for two fleets of electric vehicles and
two comparable configurations of stationary battery storage systems on the university campus of
Saarland University in Saarbrücken as a case study. Based on an annual measurement of the grid
demand power of all consumers on the campus, a simulation study was carried out to compare the
peak shaving potential of seven scenarios. For the sake of simplicity, it was assumed that the vehicles
are connected to the charging station during working hours and can be charged and discharged
within a user-defined range of state of charge. Furthermore, only the electricity costs were included
in the profitability analysis; investment and operating costs were not taken into account. Compared
to a reference system without battery storage capacities and a PV plant, the overall result is that
the peak-shaving potential and the associated reduction in total electricity costs increases with the
exclusive use of a PV system (3.2%) via the inclusion of the EV fleet (up to 3.0% for unidirectional
smart charging and 8.1% for bidirectional charging) up to a stationary battery storage system (13.3%).

Keywords: bidirectional charging; electric vehicle; smart charging; peak-shaving

1. Introduction

The amended Federal Climate Protection Act (KSG) passed by the German Bundestag
in 2021 raises Germany’s greenhouse gas reduction target from 55% to 65% compared to
1990. A reduction rate of 88% is to be achieved by 2040 and greenhouse gas neutrality
by 2045. These climate protection targets will set in motion an extensive and far-reaching
transformation process in Germany that will affect all sectors. With the increased use of
decentralized, fluctuating generation systems (e.g., PV systems) and the penetration of
e-mobility and other controllable loads such as heat pumps, the demands on the public and
non-public grids (local area grids (LAG)) and their operators are growing. Cost-efficient
measures and concepts for grid operation are becoming a key factor for an economical
energy supply that meets the requirements of the customer and the regulatory framework.
The backbone of future smart-grids is the infrastructure of information and communication
technology (ICT) and automation technology (AT). Without communication connections,
the use of information and the resulting targeted control of actuators in the network will not
be possible. Wired (e.g., fiber optics) or wireless communication technologies (e.g., GSM,
LTE, and LoRaWAN) can be used as transmission media. The distribution grid operator
(DGO) or LAG operator (LAGO) can access measuring devices (MD) and controllable loads
(CL) in their network structure with their own communication infrastructure.

The EU also classifies battery technology as an Important Project of Common European
Interest (IPCEI) across the entire value chain from raw material extraction to recycling in
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a circular economy. The EU’s efforts in this context also involve developing innovative
battery systems including battery management systems. Over the next few years, the EU
will invest 2.9 billion euros in research and development projects for renewable energies
and energy storage [1]. As efficiency increases and supply expands, demand will rise
rapidly and the price of energy storage systems will fall as a result. According to their data
for the years 2010 to 2019 and a forecast up to 2025, the Statista Research Department sees a
downward trend in the global price trend for lithium-ion batteries [2].

In 2022, the Renewable Energy Research Association (FVEE) formulated recommen-
dations for the implementation of system integration that are aimed at industry, society,
research, and politics. This refers to the technical and digital linking of energy system com-
ponents and the development of various flexibility options for the use of high proportions
of volatile renewable energies [3]. One requirement here is the rapid implementation of the
anchoring of energy storage as an independent pillar of the energy system, as stipulated in
the coalition agreement of the current federal government. In the area of digitization of
an integrated energy system, the intensification of the standardization of digital interfaces
and data formats is called for as well as the implementation of grid-supportive behavior of
energy market participants. In particular, it highlights the need for research into system
integration with joint research and development work between research institutes, energy
suppliers, and municipal players.

The provision of flexibility is therefore indispensable in the future electricity grid,
which will be characterized by a high proportion of fluctuating electricity generation from
wind power and photovoltaic systems, and battery storage systems are absolutely essential.
As a rule, the installation of battery storage systems is initially dependent on economic
considerations. The revenue opportunities, and thus, the question of whether the storage
system is worthwhile, are heavily dependent on the local conditions (renewable generation
and consumption capacity). With this knowledge, it is then necessary to investigate
combinations of several applications, so-called Multi-Use approaches, which, by providing
flexibility, enable both profit maximization for the operators and economic optimization of
grid expansion via their system-beneficial behavior.

The transmission system operators’ 2022 draft of the grid development plan up to
2037 [4] lists forecasts in which battery storage in particular will become significantly
more relevant in the future. This applies to both large-scale battery storage systems and
decentralized PV home storage systems. The increase in PV home storage systems is
based on the expansion of building PV systems. While around half of all new rooftop
PV systems with storage systems have been installed in recent years, forecasts assume
that the proportion will increase to 100% by 2035. The expansion of stationary large-scale
battery storage systems is based on the expansion of ground-mounted PV systems, which
is assumed to increase linearly. The forecast expansion rate is 30% by 2030, up to 70% in
2035, and up to 100% in 2040.

In the Ariadne Report [5], the authors also assume a necessary expansion of electrical
storage capacities—stationary battery storage, but also mobile batteries in the Vehicle-2-
Grid (V2G) network. Suitable market integration must be created for these storage systems
in order to reduce any disadvantage compared to grid expansion and communication
technologies must be established to ensure meaningful operation in the entire electricity
system. The study recommends a review of the extent to which battery storage systems can
contribute even more flexibility to the electricity grid. Flexibility is defined by the Federal
Network Agency as a change in feed-in or withdrawal in response to an external signal
(price signal or activation) with the aim of providing a service in the energy system [6].

In the Prognos study [7], the authors also assume a future electricity grid with a high
degree of flexibility by 2045. This will be characterized by the rapid expansion of battery
storage, load management, and intensive electricity trading with other countries.

Due to the immense ramp-up of battery storage technologies, the aspect of sustainabil-
ity must also be given greater consideration in future product development [8]. Also, the
European Parliament and the Council accounts for that in the new Batteries Regulation,
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adopted in 2023, which should minimize the environmental impact and strengthen the
circular economy concerning battery storage appliances.

Grid peak power demand has a high impact on the energy bill for commercial elec-
tricity consumers. Using battery storage capacities (EVs or stationary battery systems) can
help to reduce these peaks, applying peak shavings.

This study aims to address the potential of peak shaving using smart unidirectional
and bidirectional charging technology for an EV fleet and a stationary battery storage sys-
tem (BSS) in combination with a PV plant on the university campus of Saarland University
(UdS) in Saarbrücken as a case study.

The major contribution of this paper is to answer the following questions:

• How much peak load and electricity cost can be reduced with peak shaving using an
EV fleet with bi-directional charging technology?

• What is the impact on different sizes of the EV fleet?
• What is the impact of bi-directional charging technology compared to smart unidirec-

tional charging?
• Is there more of less potential on using a stationary BSS of the same performance?

Based on an annual measurement of the grid demand power of all consumers on the
campus, a simulation study was carried out to compare the peak shaving potential of a fleet
of EVs (30 EVs/50 EVs) with, on the one hand both, smart unidirectional and bidirectional
charging and, on the other hand, a stationary BSS (due to the comparability with the same
capacity and performance as EV fleets).

For the sake of simplicity, it was assumed that the vehicles are connected to the
charging station during working hours and can be charged and discharged within the
user-defined charging limits.

In addition, we assume that the smart EV charging technology uses perfect prediction
on the future grid power demand to control the EV charging process in an optimal way to
minimize the grid demand power peaks for the whole day.

Furthermore, only the annual costs of electricity (per kWh and kW) that the end
consumer has to pay were included in the profitability analysis; investment and operating
costs were not taken into account. The scenarios with EV fleets and a stationary BSS were
also combined with a PV system with a peak power of 1 MW. Additionally, the case with a
1 MW PV system without storage capacity (EV fleets/stationary BSS) was also considered.

The structure of this contribution is as follows: After describing the importance of the
flexibility of battery storage capacities in the context of the German energy transition in this
section, the next section presents marketing options for the flexibility of battery storage,
in particular the peak-shaving functionality. Furthermore, the next section analyzes the
measured consumption data and presents the basis for calculating the electricity procure-
ment costs for the evaluation of the simulation studies based on the price sheet of the local
distribution grid operator. The vehicle-to-everything (V2X) concepts are presented and the
scenarios under consideration are assigned to them. In addition, the models for the PV
system and the electric vehicles are presented and the optimization problem is formulated.
Section 3 presents and discusses the results of the simulation study for the seven use cases
considered. Section 4 concludes this article with a summary and an outlook.

2. Materials and Methods

2.1. Review Marketing of Battery Storage Flexibility

In order to operate battery storage systems (BSS) for both stationary and EV in an
economically viable manner and to develop business models, a regulatory framework is
required. In many cases, the flexibility provided is currently only used for a single applica-
tion (SINGLE-USE). However, there is additional potential in using several applications
at the same time and thus utilizing different sources of income. This is referred to as a
MULTI-USE approach. However, the application service does not necessarily have to be
provided simultaneously (in parallel). For example, it can also be provided sequentially at
fixed times or dynamized [9].
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In the following, a distinction is made between four options for marketing the flexibil-
ity provided by storage capacities such as EVs or BSS [10,11]:

• System owner-friendly operation
End consumer-related applications lie in the self-consumption optimization of the
emergency power supply and are used in conjunction with e-mobility or the local
Virtual-Power-Line (VPL). In the VPL concept, battery storage serves as a buffer
after energy sources and before energy sinks in order to limit power peaks on the
intermediate supply line and guarantee a constant energy flow.

• Market-serving operation
This includes participation in arbitrage trading on the electricity markets and the day-
ahead and intraday markets. The storage capacities charges at times when prices are
low and discharges when electricity is scarce and prices are therefore high. Power-to-X
models should also be mentioned.

• System-serving operation
The storage capacities participate in the balancing power market and maintains capac-
ity to stabilize the electricity grid. Depending on the dimensions and response time of
the system and within the European Network of Transmission System Operators for
Electricity (ENTSO-E) grid, three frequency regulation products are offered: Frequency
Containment Reserve (FCR), Frequency Restoration Reserve (FRR), and Replacement
Reserve (RR), whereas, depending on the duration of the imbalance in the grid, FRR
replaces FCR and RR replaces FRR after a fixed time period. Battery storage systems
are particularly suitable for participation in the FCR market due to their short response
time. Other applications include black start capability and voltage stabilization of the
power grid by providing reactive power.

• Grid-serving operation
While the system-serving operation is aimed at stabilizing the electricity grid at the
national and European level, the grid-serving operation of the battery has a different
focus: The focus here is on the local grid and local congestion management. As the
expansion of decentralized renewable energy production plants progresses and the
number of electric cars increases, this is becoming increasingly important, as line
bottlenecks will occur more frequently due to a delay in the expansion of electricity
grid capacities. The provision of battery flexibility represents an alternative to the
expensive grid expansion.

However, the terms system-serving operation and grid-serving operation are not
used consistently.

Furthermore, battery storage applications can be divided into Front-of-The-Meter
(FTM) and Behind-The-Meter (BTM) applications. FTM applications take place on the
side of the public grid and BTM applications take place on the side of the end consumer.
Figure 1 summarizes the described flexibility options once again.

The electrification of the transport sector is a key pillar of the German energy transition.
The German government’s goal is to have six million electric vehicles on German roads
by 2030. The resulting ramp-up of electric vehicles and their charging facilities and, in
the future, battery storage systems, will pose major challenges for public distribution
grids and non-public LAG, such as the campus of Saarland University as a result of
the university’s own vehicle fleet and of the EVs of university staff due to considerably
higher low-voltage power consumption and significantly higher simultaneity. In most
cases, however, the EVs’ charging and, in case of bidirectional charging, discharging
behavior can be controlled. However, there are limits to the extent to which this leads
to a noticeable loss of comfort for consumers or the aging of battery cells due to cyclic
stress. Fraine et al. [12] interviewed 89 persons from groups of young people (18–25 years),
parents, and non-parents (29–56 years), among others, concerning their driving behavior.
The average driving time was between 9.3 and 10.6 h per week, which means 1.4 h in
average per day. This means that the car stands around unused for an average of 22.6 h
(94%) a day and therefore EVs, in conjunction with the currently developed technology
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of bidirectional charging to control the power flow in the connected public or non-public
electricity grid, offer great potential for flexibility in the electricity grid, which will give
e-mobility a new boost in the future. By using the storage capacity of EVs to support the
grid, grid expansion costs can be reduced, e.g., by reducing grid bottlenecks or applying
peak shaving.

Figure 1. Behind-The-Meter and Front-of-The-Meter applications for battery storage systems.

A lot of effort has already been invested in scientific research into the potential of
applications that consider EV and/or BSS capacities in the energy system.

In some studies, only smart unidirectional charging was examined [13]; in others, the
bidirectional charging of EVs [14–19]. Some focused on a building energy system ([18]),
while others examined the impact on local grids (commercial, industrial, and parking
lots) [20,21].

Either renewable energy sources (e.g., PV systems) are considered in the system [17]
or not [13,14,16,22]. Other studies look at stationary battery storage for peak shaving
during the charging process of electric vehicles [22]. And still, other researchers are
investigating the positive effect of exclusively stationary battery storage systems on local
power grids [23,24].

Ioakimidis et al. [20] examined the Vehicle-to-Building (V2B) functionality on a parking
lot for a maximum of 65 vehicles. The real parking lot occupancy was measured and
used as the basis for the simulation-based investigation of three scenarios with 8, 35, and
65 randomly selected parking spaces. The results show that the power peaks could be
reduced to between 3% and 20% depending on the scenario.

Minhas et al. [19] presented a multi-timescale, cost-effective scheduling and control
strategy of energy distribution in a model predictive intelligent home energy management
system comprising EVs and PV. In their study, the authors found that electricity energy
costs from the grid supply could be reduced by 13%.

Mahmud et al. [21] have investigated the peak shaving of a commercial building
using six EVs with bidirectional charging functionality in a parking lot. In their results, the
industrial peak loads can be reduced by 50% and the energy cost can be reduced by 27.3%.

In their study, Fenner et al. [25] investigated the potential of peak shaving in
parking areas in the Helsinki region. Based on real measurement data on the charging
behavior of 25,000 charging cycles, a peak load reduction of 55% was achieved using
optimization algorithms.

Van Kriekinge et al. [26] investigated the effect of smart unidirectional and bidirec-
tional EV charging on electricity costs and peak load reduction for a commercial building
with a connected PV system near Brussels based on measured energy consumption and
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production data. According to their results, all MPC-based charging strategies were able to
achieve a peak load reduction between 14.6% and 33.7% and total electricity cost reduc-
tions between 6.71% and 7.67% compared to uncoordinated charging, with bi-directional
charging delivering the best results.

Peak shaving serves to stabilize the electricity grid, which is heavily stressed by short-
term, heavy loads and must also be permanently available for these load cases. Short-term,
particularly high electricity loads from large industrial or commercial consumers, drive
up their electricity prices enormously; as such, electricity customers not only have to pay
the energy price, but also a demand power charge. With peak shaving, the costs for high
electricity loads can be reduced by means of Demand Response (DR) measures or BSS.

BSS are ideal for smoothing out dynamic load peaks within the scope of their perfor-
mance characteristics. Assuming an appropriate charging/discharging strategy, battery
storage capacities in EVs and a stationary BSS connected to the power grid are capable of
realizing fast and reliable load peak compensation.

DR is understood as a short-term, deliberate change in consumer load in response to
price signals in the market. DR is achieved either via load shifting or flexibilization of the
load profile or a load reduction. Electricity consumption is brought forward, delayed, or
avoided altogether. Therefore, peak shaving can be performed in three ways:

• On the consumer side
A consumer reduces its electricity consumption quickly and at short notice (load shed-
ding), so as not to cause a peak load. This can be achieved by throttling production.

• On the self-generation system side
By switching on self-generation plants based on renewable energy sources (e.g., PV
or wind power plants) or conventional energy sources (e.g., diesel generators), the
electricity demand from the supply grid is reduced on balance depending on the ratio
of generation and consumer output. In this way, self-generated electricity is used to
balance out the impending peak load.

• On the electricity storage side
Similar to the generation systems, battery storage systems can also smooth out the
grid demand peak power by discharging. Due to their technology, battery storage
systems and electrical storage systems can quickly provide high current densities and
are therefore particularly suitable for compensating for short-term load peaks.

2.2. Load Demand Analysis

The measured data on the electricity demand of all consumers on the university
campus is available with a time resolution of 15 min. The meter readings were recorded
at these intervals. These values were then converted into average power values in an
initial processing step. According to this dataset, the annual consumption for 2022 is
25,003.810 MWh. Analysis of the available electrical consumption power for the year
2022 shows a maximum peak power of 4.38 MW (30 June 2022 11:45 a.m., day 181) and a
minimum power of 1.61 MW (4 June 2022 5:30 a.m., day 155) (Figure 2).

Including the information about the day type [27], Figure 3 shows that the daily
peak loads of consumers on weekdays are almost twice as high as on Sundays and public
holidays. On Saturdays, they are somewhere in between. A seasonal course of the daily
peak loads can also be seen. These are higher on summer and winter days than in spring
and fall. This is presumably caused by the cooling loads in summer and the heating
demand in winter. Figures 2 and 3 clearly show the reduced demand on weekends. It can
also be seen that consumer demand is lower between June 4 and 6 (days 155 to 157) and
November 12 and 13 (days 316 and 317) than on weekdays and weekends. Both periods
are weekends.
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Figure 2. Electrical load profile for the UdS campus in 2022.

Figure 3. Daily consumption peaks, differentiated by type of day (Working Day/Sunday and Public
Holiday/Saturday).

2.3. Peak Loads and Grid Usage Fees

Grid operators do not like load peaks as the electricity grid is planned and designed
on the basis of the maximum power in the grid.

Nevertheless, many industrial companies that are connected to the different grid levels
(high-, medium-, or low-voltage grid) cause fluctuating loads in everyday operation; for
example, when starting up production facilities, heating up, or pumping processes. The
source of the sudden increase in load, i.e., the commercial or industrial electricity customer,
is reliably detected via consumption metering.

In Germany, electricity consumers are divided into two groups according to the type
of consumption metering [28]:

• Customers with Recording Power Metering (RPM customers);
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• Customers without recording power metering (SLP customers). Their consumption
will be estimated based on Standard Load Profiles (SLP).

In the energy industry, peak shaving refers to the smoothing of load peaks and the
associated grid consumption peaks for industrial and commercial electricity consumers
(RPM customers). These peaks in electricity consumption are not only relevant for grid
stability, but also, as explained above, for electricity costs. As the grid usage fees, which
make up a large proportion of the total costs, are based on the highest power consumption
in the billing period.

RPM customers are large commercial and industrial consumers whose annual electric-
ity consumption exceeds 100,000 kWh and whose power requirement is at least 30 kW (see
Section 12 of the Electricity Grid Access Ordinance (StromNZV)).

In Germany, distribution grids are managed with two voltage levels: Medium voltage
and low voltage. Medium-voltage distribution grids generally have a voltage of 10 kV or
30 kV. In the medium-voltage grid, electricity is distributed between grid stations within
the individual urban or rural districts. The low-voltage grid is the grid that transports
electricity to the end consumer. The low-voltage grid is operated at a voltage of 0.4 kV and
is connected to the medium-voltage grid via grid stations.

The total annual electricity costs for an industrial or commercial consumer (RPM
customer) are made up of three components:

• the energy costs;
• the capacity costs;
• the basic annual costs for the metering equipment.

The costs for power measurement in the medium-voltage grid are slightly higher than
measurement in the low-voltage grid due to higher technical requirements in terms of
dielectric strength.

The total annual charge Ctotal,a is the sum of three price components:

• fixed basic annual charge for the metering equipment Cbc,a;
• costs for grid capacity, that is, the product of the grid demand power peak price CkW

and the maximum annual grid power consumption Pmax,a;
• costs for energy from the grid, that is, the product of the electricity energy price CkWh

in EUR per kWh and the annual energy demand from the grid Ea in kWh

Therefore, the following equation generally applies to the calculation of grid usage
fees for RPM customers:

Ctotal,a = Cbc,a + CkW Pmax,a + CkWhEa (1)

The annual usage period is an important key figure in the energy industry. It is the
quotient of the annual energy and the maximum output of a system. It indicates how
many hours of electricity would have been drawn in a year if the maximum output had
been constantly drawn. In the ideal case, with absolutely constant consumption without
interruption, the annual usage period is 365 × 24 h = 8760 h. The annual usage period
also has an impact on the costs for grid usage. The higher the annual usage period, the
higher the capacity price for grid usage, but conversely, the lower the energy price for
grid usage. Therefore, constant consumption, which results in a low maximum output
and a high annual usage period, is economically advantageous. When pricing the use of
electricity grid infrastructure, a distinction is often made between two or three ranges of
annual usage periods. In this case, the local DGO distinguishes between two ranges: less
than or equal to 2500 h and greater than 2500 h.

The annual usage period ta is calculated from the annual energy Ea and the annual
maximum grid demand power Pmax,a according to the following equation:

ta =
Ea

Pmax,a
(2)
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According to the fee table of the local DGO for 2023 [29], Stadtwerke Saarbrücken
GmbH charges the annual basic fee for metering point operation with consumer/feed-in
power metering from a medium voltage of 485.01 EUR for power metering, a capacity price
of 26.07 EUR/kW, and a energy price of 0.0649 EUR/kWh for an annual usage period of up
to 2500 h. For an annual usage period of more than 2500 h, the price is 159.28 EUR/kW
and 0.0116 EUR/kWh (Table 1).

Table 1. Charges of the local DGO for consumption from medium voltage and annual power system.

Charges Value

Annual Usage Period ta ≤ 2500
Capacity Price CkW 26.07 EUR/kW
Energy Price CkWh 0.0649 EUR/kWh

Annual Usage Period ta > 2500
Capacity Price CkW 159.28 EUR/kW
Energy Price CkWh 0.0116 EUR/kWh

Basic Fee for Metering per Year Cbc,a 485.01 EUR

According to the measured load profile for 2022, the annual maximum consumer capac-
ity as a 15 min average is 4.38239 MW. With an annual electricity demand of 25,003.810 MWh,
this results in an annual utilization period according to Equation (2) of 5705 h, and thus,
more than 2500 h. A peak load of 4.38239 MW in the corresponding tariff at a capacity
price of 159.28 EUR/kW leads to an annual capacity price of 698,027 EUR per year. The
energy price of 0.0116 EUR/kWh results in annual costs of around 290,044 EUR and, with
the basic price of 485.01 EUR, results in total electricity costs of around 988,556 EUR in 2022
according to Equation (1). This value serves as a reference for the simulation studies with a
PV system and storage capacities of EVs or a stationary BSS.

2.4. Smart Unidirectional Charging and Bidirectional Charging for Electric Vehicles

In addition to uncoordinated unidirectional charging, where the battery will be
charged with maximum power given by the charging characteristics, unidirectional smart
charging (V1G, smart charging) for electric vehicles offers the possibility of using dynamic
charging tariffs and times via adapted charging in order to save costs or to make optimum
use of a supply of renewable energy. According to Hildermeier et al. [30], charging technol-
ogy can be considered smart or intelligent if it meets the following minimum requirements:

• It can measure consumer energy consumption in real-time or near real-time;
• It can transmit this data to the consumer and to other authorized parties;
• It has the ability to automatically control consumption and is also below the maximum

charging power.

Therefore, smart charging technology enables customers to apply DR, due to reacting
on control signals (e.g., price signals) quickly with the help of ICT.

With smart charging, the charging infrastructure can be optimized by distributing
the available power efficiently and flexibly. This means that even charging stations with
limited power capacity can be used optimally at all times.

The technology of bidirectional charging comprises several applications that are
generally referred to as V2X (“Vehicle-to-Everything”) and, as explained briefly below, can
be divided into several categories (see Figure 4):

• Vehicle-to-Load (V2L)
V2L is a bidirectional function that enables an electric vehicle to use its built-in high-
voltage battery to charge or supply low-voltage devices. It is sometimes also referred to
as vehicle-to-device (V2D). Depending on the type of device to be charged or powered,
V2L can be used while the electric vehicle is driving or parked. This conversion from
a direct current to an alternating current is integrated into the vehicle. Electric vehicles
usually offer one or both of two options for V2L charging: an AC socket (in the vehicle)
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and a V2L adapter (vehicle-to-charging plug) that is used with the electric vehicle’s
charging port.

• Vehicle-to-Home (V2H)
With V2H, the battery is used as a power backup to feed a local building or local grid
downstream of the grid connection point. The electricity temporarily stored in the
battery, for example, from renewable energy sources, can be used to optimize your
own electricity requirements. However, no electricity is fed back into the public grid.
With V2H, it is important that not all of the battery capacity is available as electricity
storage, so that you always have sufficient range when you set off.

• Vehicle-to-Building (V2B)
V2B works in a similar way to V2H, but on a larger scale. By bundling several electric
vehicles or entire fleets, the energy requirements of buildings in an area network are
optimized. Typical areas of application are properties or industrial plants. With your
significantly larger battery capacity and total output, line losses and imbalances can
be corrected, particularly in industrial plants with high inductive loads, and effective
measures can be taken to smooth out grid power peaks.

• Vehicle-to-Vehicle (V2V)
This concept provides for the connection of two electric vehicles via a cable; for
example, to charge a broken-down vehicle or to use parked, provided vehicles as
charging stations.

• Vehicle-to-Grid (V2G)

– Self-Consumption Optimization
Electricity from the vehicle battery is provided for direct consumption on site be-
hind the grid connection point in the respective property as part of comprehensive
in-house optimization via a (local) energy management system;

– Grid-serving Charging
This means that the grid operator influences the charging behavior of the EV
against the background of its load monitoring in order to reduce/avoid the grid
consumption of the existing consumption devices for a limited period of time;

– Electricity Trading
Electricity is fed into the distribution grid on the basis of a contract with a sup-
plier/dealer or made available to them. The supply/feed-in takes place in accor-
dance with the specifications or a control signal from the supplier/dealer and in
coordination with the local grid operator;

– System-serving Charging
Electricity is fed into or supplied to the grid on the basis of a contract with the
transmission system operator (TSO). The supply/feed-in takes place according to
the specifications or via a control signal from the TSO and in coordination with
the local grid operator.

V2G technology is covered by the international ISO 15118 [31] standard. ISO 15118
defines the basic standards that apply to bidirectional communication between vehicles and
charging stations and also regulates plug-and-charge and payment at charging stations.

The scenario considered here of integrating electric vehicles into the Saarbrücken
campus grid is assigned to the V2B topology.

The technical requirements for bidirectional charging must be taken into account in
all components involved and the communication between them. The charging process is
controlled either by the EVs’ integrated Battery Management System (BMS) in AC charging
mode (On-board-charger) or via communication to the DC charging station (Off-board
charger) that controls the power flows via given control signals from the EVs’ BMS [32].
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Figure 4. V2X Topology: V2G = Vehicle-to-Grid; V2L = Vehicle-to-Load; V2H = Vehicle-to-Home;
V2B = Vehicle-to-Building; DGO = Distributed Grid Operator; PP = Power Plant.

In order to benefit from the advantages of bidirectional charging, three key conditions
must be met:

• The wallbox must support bidirectional charging
• The vehicle must support bidirectional charging
• The vehicle and wallbox must have compatible DC connections (e.g., CCS, CHAdeMO)

When it comes to charging infrastructure, a distinction must be made between alternat-
ing current (AC) charging stations and direct current (DC) charging stations. Bidirectional
charging makes sense where vehicles are parked for long periods and remain connected
to a charging station, i.e., particularly at home or at work. AC charging stations with
outputs of up to 22 kW are currently mainly used there. DC charging stations in this
power range are currently only available from individual providers. On the vehicle side,
there are also two approaches to implementing bidirectionality, which differ according
to where the electricity is converted from DC to AC voltage. This can take place either
in the vehicle or in the charging station. This means that, depending on the charging
technology, modifications to the vehicle or the charging station are necessary in order to
use bidirectionality. These changes are associated with additional costs for the charging
infrastructure or the vehicle side.

The ISO 15118-20 [33] communication standard, which will be used by European and
American vehicle manufacturers together with the Combined Charging System (CCS),
enables bidirectional charging via both three-phase AC (maximum 44 kW) and DC fast
charging (maximum 50 kW). Depending on the car manufacturer, both directions are
currently being pursued.

Vehicles that use the CHAdeMO standard (DC) have already supported bidirectional
charging for several years. CHAdeMO is an acronym for “CHArge de MOve” (charging
to move). The first regenerative vehicle models (AC and DC) based on the Chinese GBT
standard also already exist. The implementation of ISO 15118-20 together with CCS as the
predominant standard for communication between the vehicle and the charging station
will enable intelligent and grid-friendly charging in the future and create a basis for V2X as
a way of integrating e-mobility.

The availability of the EEBUS communication standards will also support its use.
EEBUS is a communication interface to support interoperability and data exchange between
the components of an energy management system (e.g., PV, storage, and e-mobility).
The OCPP protocol (Open Charge Point Protocol), which has been transferred to the
international standard IEC 63110 [34], has become established for controlling the charging
infrastructure (communication between charging station and charging station management
system) in public charging. Communication between electric vehicles and charging stations,
on the other hand, is described in the international standard ISO 15118. As things stand at
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present, the application of bidirectional charging is still in the early stages. Although there
are already vehicle manufacturers offering this technology (see Table 2), the appropriate
infrastructure does not yet exist. Suitable wallboxes are not expected until the second
half of 2023. In addition, various manufacturers are still limiting the use of the function.
This is due to the warranty conditions regarding the service life or mileage of the battery.
Volkswagen limits the discharge energy of the ID models to 10,000 kWh and 4000 h [35].

Table 2. Overview of some electric vehicles that support bidirectional charging [36].

Model Plug Type AC/DC V2X Functionality

Hyundai Ioniq 6 Schuko plug AC (single-phase) V2L
Ford F-150 Lightning CCS DC V2H/V2G

Honda CCS DC V2H/V2G
Nissan eNV200 CHAdeMO DC V2H/V2G

Nissan Leaf CHAdeMO DC V2H/V2G
VW ID.3,4,5 CCS DC V2H/V2G
Volvo EX90 Schuko plug/Typ 2/CCS AC (single phase)/DC V2H/V2G

At present, the range of bidirectional charging stations is still limited. Some of them
have been listed in Table 3 and the price for a bidirectional charging station is significantly
higher than for a normal unidirectional wallbox. Depending on the model, the cost of a
bidirectional wallbox can amount to several thousand euros. As the supply of V2H, V2B,
and V2G charging stations is likely to increase in the future, lower prices can be expected.
The manufacturer data in Table 3 shows that the current maximum output of bidirectional
wallboxes is 22 kW.

Table 3. Overview of some wallboxes that support bidirectional charging [37].

Manufacturer Model Plug Type Max Power [kW]

Wallbox Chargers Quasar 1 ChAdeMO 7.4
Wallbox Chargers Quasar 2 CCS 12.8

Kostal BDL Wallbox CCS 11
Eaton BDL Wallbox CCS 22

Ambibox ambiCHARGE CCS 22
Silla Duke 44 CCS 22 (2x)

On the basis of the market situation described above, a VW ID.4 with a battery capacity
of 77 kWh was selected for the electric vehicle fleet in this case study. The charging curve
can be seen in Figure 5, but this is limited in both the charging and discharging directions
by the wallbox’s maximum output of 22 kW, which, according to the charging curve,
corresponds to the charging power at full charge (SOC = 100%). The charging curve was
linearly interpolated using the five interpolation points from the data collection provided
in [? ]. The maximum charging power of the EV is 125 kW at a SOC between 0% and 30%,
has a constant power of 65 kW between 70 and 80%, and decreases linearly to 22 kW at 0%.

The basic behavior in the use case with bidirectional charging follows the sequence
shown in Figure 6. The figure shows the time of day of the charging process and the
resulting potential for flexibility services (e.g., peak shaving). The electric vehicle arrives
at the charging point on the campus at the arrival time ta,w at 8:00 a.m., with a certain
state of charge (SOC) which is assumed to be 50% (SOCEV,a) for all scenarios and for the
entire EV fleet. During the idle time up to the departure time td,w at 18:00, the battery
capacity can be used freely within the lower discharge limit SOCEV,min, which is 30%, and
the upper discharge limit SOCEV,max. However, the state of charge at departure (SOCEV,d)
is chosen to be 90% and must be reached again at the departure time td,w. The lower state
of discharge is defined as a buffer for spontaneous mobility. The upper discharge limit
SOCEV,max corresponds to the desired state of charge SOCEV,d for all vehicles at the time of
departure. As hard boundary conditions in the optimization algorithm, these limit values
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cannot be exceeded or undercut. The flexibility range is limited by the maximum charging
capacity towards the departure time.

SOC [%]

Figure 5. Charging Curve of Volkswagen ID.4 with 77 kWh.

Figure 6. Schematic representation of the flexibility potential of an EV within the arrival and departure
time at the workplace.

An entity EEV was created for the simulation, which has the properties described
above and listed in the following Table 4. At the current state and in this use case, a fleet of
a single entity is considered. In future model development, several entities with different
properties will be considered.

A constant power conversion efficiency of 90% was assumed for charging (ηbatt,ch)
and discharging (ηbatt,disch) for both the EV fleet and the stationary BSS [39,40]. Round trip
efficiency has not been considered as well as temperature-depending efficiency or depen-
dencies on the SOC. The stationary BSS was modeled with the same capacity, performance,
and SOC limits as the EV fleet.
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Table 4. EV entity properties considered in this use case.

EV Property Value

State of charge on arrival at the charging station on campus SOCEV,a 50%
Total battery capacity of the EV (WEV) 77 kWh

Nominal charging and discharging power of the wallbox (Pnom,wallbox) 22 kWh
Daily arrival time ta,w 8:00 a.m.

Daily departure time td,w 18:00 a.m.
Destination SOC at departure time SOCEV,d 90%

Minimum discharge depth during charging time SOCEV,min 30%
Maximum discharge depth during charging time SOCEV,max 90%

2.5. PV System

The MATLAB library PVlib [41] was used to model the PV system. The data for the
solar irradiation of a Typical Meteorological Year (TMY) was retrieved from the PVGIS
platform [42] for the Saarbrücken location. In addition, the NREL (National Renewable
Energy Laboratory) sun position algorithm (SPA) [43] was used to calculate the position of
the sun as this provides very accurate sun positions.

The individual steps and parameters are listed below in Table 5.

Table 5. Steps and parameters of the PV system model.

Step Description PVlib Function/Parameter

1 Set location (Saarbrücken) latitude = 49.233°; longitude = 7°; elevation = 193 m

2 Retrieve the solar radiation data
for a TMY from PVGIS

https://re.jrc.ec.europa.eu/api/v5_2/tmy?lat=49.2
33&lon=7&outputformat=json (accessed on
2 November 2023)

3 Set PV array parameters Tilt Angle = 30°; Azimut Angle = 180° (South); 12
PV modules in series; 12 parallel strings

4 Calculate the sun position with
SPA algorithm

location (step 1); time; air pressure/dry bulb
temperature (step 2)

5 Define the PV module pvl_sapmmoduledb(); BP Solar SX150 (No. 100)

6 Define the PV Inverter SNLInverterDB(); Agepower AP 20000 TL3-US 277V
20.4 kW (No. 80)

7 Calculate Relative Air Mass pvl_relativeairmass(); sun elevation position (step 4)

8 Calculate Absolute Air Mass pvl_absoluteairmass(); relative air mass (step 7); air
pressure (step 2)

9 Determine Angle of Incidence pvl_getaoi(); PV array orientation (step 1); sun
position (step 4)

10 Calculate Beam Radiation
Component on Array

Direct Normal Irradiance (step 2); Angle of
Incidence (step 9)

11 Determine extraterrestrial
radiation from day of year pvl_extraradiation(); Day of the Year

12
Calculate Sky Diffuse Radiation
Component on Array using Perez
model and france1988 coefficients

pvl_perez(); PV array orientation (step 3); sun
position (step 4); Horizontal, Direct Beam (step 2)
and Horizontal Extraterrestrial Irradiation (step 11)

13 Determine Ground Reflected
Radiation Component on Array

pvl_grounddiffuse(); PV array orientation (step 3);
Global Horizontal Irradiation (step 2), albedo = 0.2

14 Calculate Total Diffuse Radiation
Component on Array

Sky Diffuse Radiation (step 12) + Ground Reflected
Radiation (step 3)

15 Calculate Total Radiation
Component on Array

Sky Diffuse Radiation (step 12) + Ground Reflected
Radiation (step 3) + Beam Radiation (step 10)

16 Determine PV Module Cell
Temperature

pvl_sapmcelltemp(); total incident irradiance (step 15);
wind speed/dry bulb temperature (step 2);
reference irradiance = 1000 W/m²; PV module
parameters (step 5)
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Table 5. Cont.

Step Description PVlib Function/Parameter

17

Calculates the SAPM effective
irradiance using the SAPM
spectral loss and SAPM angle of
incidence loss functions

PV module parameters (step 5); absolute air mass
(step 8); angle of incidence (step 9); beam radiation
component on array (step 10); diffuse radiation on
array (step 14); soiling factor = 0.98

18

Determine Module/Array I-V
Performance (DC power, voltage,
current output) using Sandia PV
Array Performance Model (SAPM)

pvl_sapm(); PV module parameters (step 5); cell
temperature (step 16); SAPM effective irradiance
(step 17)

19 DC Power to AC Power
Conversion

pvl_snlinverter(); Inverter parameters (step 6); PV
array I-V performance parameters (step 18)

20 Scaling PV array to 1 MWp
PV plant

Applying the PV system model described in Table 5 results in the electricity production
of the PV system shown in Figure 7 over the course of a year.

Figure 7. AC power production of the modeled PV plant using solar irradiance data from PVGIS for
a TMY and PVlib.

2.6. Optimization Problem Formulation

The optimization problem was formulated as a mixed integer problem in MATLAB
R2021b [44] using the YALMIP toolbox, R20210331 [45] and Gurobi 9.5 [46] as a solver.
The simulation was carried out in 15 min steps. All results are based on the 15-min
based average time base. The optimization cycle takes place once to create an optimized
schedule for the entire next day. This assumes a perfect forecast of consumption and PV
production. The behavior of the EV fleet can also be seen as a perfect prediction as there is
no spontaneous mobility and the assumed availability of the vehicles with the assumed
parameters is fixed (see Table 4).

The energy balance equation is:

Ppv(t) + Pgrid,dem(t) = Pgrid, f eedIn(t) + Pbatt(t) + Ppv,loss(t) + Pload(t) (3)

where Ppv is the PV production, Pgrid,dem is the energy demand from the grid, Pgrid, f eedIn
is the energy that is fed into the grid, Ppv,loss is the loss of unused PV power, and Pload is
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the load power consumption. Due to the design of the PV system, there is effectively no
feed-in of PV electricity; the minimum consumption power of 1.61 MW exceeds the peak
power of the PV system (see Figure 2). Nevertheless, Ppv,loss can also be considered as a
slack variable to ensure a solution to the optimization problem.

The PV production Ppv and the consumer power demand Pload serve as input and the
other power values in Equation (3) are optimization variables.

When formulating the optimization problem, several binary variables were introduced
to cover all use cases. These can be divided into switches, parameters, and optimization
variables. A description of the state values is given in Table 6. The switches are essentially
used to set user-defined properties of the system configuration and are selected before the
simulation. They include the variables sEV , sstat and sbidi. Parameters, on the other hand,
change their values at the simulation runtime. They include the variables swork and sEV,avail .
The values of the optimization variables are determined by the solver at the simulation
runtime in order to minimize the objective function. They include sbatt,ch and sbatt,disch.

Table 6. Binary variables in the Optimization Problem.

Type Description

sbidi switch to choose whether EV fleet has bidirectional charging capability (1: yes, 0: no)

sbatt
switch to choose whether there is battery capacity in the model (scenarios 2–7) or not
(scenario 1) (1: yes, 0: no)

sstat switch to choose whether battery is EV or stationary BSS (1: BSS, 0: EV)
swork parameter showing if current day is working day (1: yes, 0: no)

sEV,avail
parameter showing if EV is available, i.e., day time is between ta,w and td,w (1: yes,
0: no)

sbatt,disch optimization variable indicating battery storage is in discharge state (1: yes, 0: no)
sbatt,ch optimization variable indicating battery storage is in discharge state (1: yes, 0: no)

The state of charge of the battery (EV fleet or BSS) at time t (SOC(t)) results from the
state of charge at time t− 1 and the relative amount of energy supplied or dissipated in the
time step Δt (15 min), which results from the battery power Pbatt(t) and the nominal total
battery capacity. This is the product of the number of EVs (nEV) and the storage capacity of
the individual EV (Wbatt).

SOC(t) = SOC(t− 1) +
Pbatt(t)Δt
WbattnEV

(4)

The battery power Pbatt(t) is the sum of the discharging power Pbatt,disch(t) and the
charging power Pbatt,ch(t), taking into account the corresponding efficiencies ηbatt,disch and
ηbatt,disch. This should only be the case at times when the battery is available, i.e., sEV,avail = 1.

Pbatt(t) = (− 1
ηbatt,disch

Pbatt,disch(t) + ηbatt,chPbatt,ch(t))sEV,avail (5)

A distinction must be made between two cases of availability. If the EV fleet is
considered, this depends on the time of day and the type of day (working day or no
working day). If, on the other hand, a stationary BSS is considered sstat, the day type and
time of day are irrelevant as the following equation shows.

sEV,avail =

{
1 : (ta,w ≤ t ≤ td,w and swork = 1) or sstat = 1
0 : else

(6)

where swork is a binary parameter that is 1 if the current day is a working day, otherwise it
is 0.

The maximum charging power of the battery Pbatt,ch,max is controlled by the EVs’
BMS. In case of charging, the upper power limit is given by the charging curve (Figure 5),
where the minimum value is 22 kW at 100% SOC. Therefore, in both cases, charging and
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discharging, the power is limited by the nominal power of the wallbox Pnom,wallbox that is
22 kW. For the maximum power of the fleet, the number of EVs in the fleet nEV (30 or 50)
must be taken into account. In addition, the presence of storage capacities is realized with
sbatt as a switch in order to be able to select the corresponding scenarios.

Pbatt,ch,max = Pnom,wallboxnEVsbatt (7)

Two additional conditions must be taken into account, that of the bidirectional charging
function and the presence of battery capacities as given in Equation (8).

Pbatt,disch,max = Pnom,wallboxnEVsbidisbatt (8)

where sbidi is the binary switch indicating that the EV fleet has a bidirectional charging
capability or not and sbatt is a user-defined binary switch to choose whether the model has
a battery capacity (scenarios 2–7) or not (scenario 1).

The charging and discharging power of the battery is limited in each case by the
maximum values Pbatt,ch,max and Pbatt,disch,max explained above and the respective binary
optimization variables sbatt,ch and sbatt,disch as formulated in Equations (9) and (10).

0 ≤ Pbatt,ch(t) ≤ Pbatt,ch,maxsbatt,ch (9)

0 ≤ Pbatt,disch(t) ≤ Pbatt,disch,maxsbatt,disch (10)

As already explained, the state of charge SOC(t) for both the EV fleet and the stationary
BSS is limited by the two limits SOCEV,min and SOCEV,max.

SOCEV,min ≤ SOC(t) ≤ SOCEV,max (11)

In the use cases with the EV fleet, the initial SOC on each day is the defined starting
value SOCEV,a (50%), while in the scenarios with a stationary BSS, this only applies at the
start of the simulation on the first day.

The grid reference power is limited upwards by the maximum value Pgrid,dem,max.

0 ≤ Pgrid,dem(t) ≤ Pgrid,dem,max (12)

where Pgrid,dem,max has been chosen as 20 MW, which is high enough to give no constraint
on the grid demand power.

The grid feed-in power, on the other hand, is limited upwards by Ppv,nom, that is, the
peak power of the PV plant.

0 ≤ Pgrid, f eedIn(t) ≤ Ppv,nom (13)

The binary variables sbatt,ch and sbatt,disch were introduced, turning the optimization
problem into a mixed integer problem. They indicate whether the battery storage is in a
discharge or charge state, but not both at the same time.

sbatt,ch(t) + sbatt,disch(t) ≤ 1 (14)

The objective function is a weighted sum of three terms for the EV fleet (JEV ,
Equation (15)) and two terms for the use cases with stationary battery storage (JBSS,
Equation (16)). Weighting factor w is chosen be 0.9. For both cases, the maximum grid
consumption (peak) (Equation (18)) and the power loss of PV production (Equation (19))
should be minimized. In the cases with an EV fleet, the state of charge at the end of the
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working time td,w should correspond to the target value SOCEV,d, so the difference between
these two values must be minimized (Equation (17)).

JEV = min(w(J0 + J2) + (1− w)J1) (15)

JBSS = min(wJ2 + (1− w)J1) (16)

J0 =
∥∥SOCEV(t)− SOCEV,d

∥∥
2 (17)

J1 = max(Pgrid,dem) (18)

J2 =
∥∥∥Ppv,loss

∥∥∥
2

(19)

During optimization, a schedule for the next day is generated using a perfect prediction
of the consumption profile and PV production.

3. Results and Discussion

As aforementioned, to increase comparability, the stationary BSS was modeled with
the same capacity and performance as the EV fleet. The same limits were also assumed
for the SOC (SOCEV,min, SOCEV,max). In contrast to the use of electric vehicles, however,
restrictions such as the target SOC at departure time (SOCEV,d) or of time-limited charging
and discharging (availability only on working days and between arrival and departure)
were omitted for the scenarios with a stationary BSS.

The following scenarios in Table 7 are considered as use cases.

Table 7. Considered scenarios.

Scenario PV EV/BSS uni/bi 1 Number of
EVs

Accumulated Storage Capacity [MWh]/
Maximum Peak Power [MW]

1 yes - -
2 yes EV uni 30 2.31/0.66
3 yes EV uni 50 3.85/1.1
4 yes EV bi 30 2.31/0.66
5 yes EV bi 50 3.85/1.1
6 yes BSS - - 2.31/0.66
7 yes BSS - - 3.85/1.1

1 uni = uni-directional smart charging; bi = bi-directional charging.

The current system state without a PV system and storage capacities (EV fleet/stationary
BSS) serves as the reference scenario.

This study assumes that the charging of EVs is free of charge for the participants. In
the case of bidirectional charging, this is understood as an incentive and compensation for
providing the battery storage capacity of the electric vehicle.

The results of a 1-year simulation of all the scenarios and the reference system are
shown in Figures 8–10.

In the following figure, Figure 8, energy flows and the SOC of the reference scenario
(Figure 8a) and scenarios 1, 4, 5, and 7 are shown (Figure 8b–e). When looking at the
system with a PV plant (scenario 1; without storage capacities), in Figure 8b, in comparison
to the reference case (Figure 8a), it is noticeable that there is a good overlap between PV
production and the consumption profile on the campus. The consumption peaks are also at
midday. With a suitable design of the PV system, there could be a high potential for peak
shaving here alone, at least in the summer months.
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Figure 8. Energy flows and battery SOC shown as an example for one week (Monday to Sunday,
4–11 July 2023) for the reference case without storage capacities and PV plant in (a) and scenarios 1,
4, 5, and 7 (b–e).

Figure 9. Comparison of costs and maximum annual peak power for the scenarios under consideration.
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Figure 10. Cost savings and peak power reduction compared to the scenarios under consideration.

Figure 8c shows use case 4. The behavior of the EV before arrival at the workplace
(t < ta,w) and after the end of working hours (t > td,w) was not modeled, whereby the
SOC on each working day corresponds to the start value SOC(EV,a) = 50% for t < ta,w and
the target value SOC(EV,d) = 90% for t > td,w. It can be seen that the smart charging opti-
mization algorithm charges the EV fleet particularly during periods of high PV production
and on days with low PV production (see July 7 and 8), where charging takes place in the
afternoon, i.e., after the midday consumption peaks.

Use case 5 (Figure 8d) shows the EV fleet feeding back into the local area grid. As
expected, this occurs at midday, when the load is at its highest. Furthermore, it can be seen
that the EVs are already pre-charged in the morning in order to be able to reduce the power
peaks at midday by discharging.

If a stationary BSS is used instead of the EV fleet (Figure 8e, scenario 7), the time
restrictions on storage use no longer apply. As the PV system is not sufficient to cover
consumption, the stationary storage system is also pre-charged from the electricity grid
like the EV fleet in use case 5 in order to achieve peak shaving. This already takes place
at night.

The annual electricity costs of grid supply energy and the maximum grid supply
power peaks that occurred during the year (c.f. Section 2.3, Equation (1)) and the sav-
ings and reductions of the same via utilization of storage capacities (EVs and BSS) are
discussed below.

For the reference system, the total annual costs amount to 988,556 EUR, with energy
costs of 290,044 EUR and capacity costs of 698,027 EUR.

With a 1 MWp PV system (scenario 1), the total costs can be reduced by 31,874 EUR,
of which 14,259 EUR is attributable to energy costs and 17,615 EUR to capacity costs. The
maximum annual grid power consumption was reduced by 110.59 kW.

As expected, the additional use of 30 electric vehicles in scenario 2 with a maximum
charging capacity of 22 kW and the given boundary conditions (Table 4) reduces the savings
again. The total savings compared to the reference case then only amount to 29,184 EUR,
whereby the grid capacity costs do not increase due to the use of Smart Charging technology
in this case. For the energy costs, the savings amount to only 11,569 EUR. Smart Charging
optimization can effectively reduce an increase in the peak grid consumption and distribute
the grid consumption together with the additional PV power more evenly.
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The same applies to the scenario with a PV system and 50 vehicles in unidirectional
charging mode (scenario 3). The total savings are further reduced to 27,390 EUR, which is
also only due to the reduced savings in energy costs of 9775 EUR.

In contrast, the use of electric vehicles with bidirectional charging technology and V2B
integration by means of optimization-based charging and discharging management can
increase the savings in electricity costs to a far greater extent. In scenario 4, the total savings
amount to 80,705 EUR, which corresponds to a share of 8.1%. The energy costs account for
11,715 EUR and increase by 2544 EUR due to the additional energy required for charging
compared to the scenario with a PV system but without EVs (scenario 1). Consequently,
the high savings are due to a reduction in capacity costs of 68,989 EUR. The maximum grid
power peak was reduced by 433 kW (9.9%) compared to the reference scenario.

However, a savings in capacity costs does not follow an increase in the number of
electric vehicles with bidirectional charging technology—on the contrary, as the scenario
with 50 EVs in scenario 5 shows. The savings per year then only amount to 69,039 EUR (7%),
with a capacity cost reduction of 59,177 EUR and an energy cost reduction of 9862 EUR
compared to the reference scenario. In this scenario, the maximum grid power peak con-
sumption can only be reduced by 371 kW. This is due to the increased energy requirement
in order to achieve the charging target of a 90% state of charge at departure time.

It can be concluded from this that even in the bidirectional case, there is a certain
optimum number of EVs participating in the campus area network on a case-specific basis.

The evaluation of the additional energy for charging the EVs in unidirectional smart
charging mode results in a demand of 257,693 kWh (30 EVs) or 429,488 kWh (50 EVs). At
the stated energy price of 0.0116 EUR/kWh (Table 1), this results in additional energy costs
of 2989 EUR (30 EVs) or 4982 EUR (50 EVs). In this tariff, the additional costs of charging
the electric vehicles are therefore marginal compared to the previous costs.

In addition to the scenarios with electric vehicles and a PV system, two scenarios with
a stationary battery storage system with comparable values for storage capacity (2310 kWh
corresponds to 30 EVs/3850 kWh corresponds to 50 EVs) and nominal power were selected
for comparison with the two cases with 30 and 50 vehicles and bidirectional charging
technology.

The savings could be further increased in both cases. In scenario 6 with a 2310 kWh bat-
tery capacity, 112,035 EUR were saved, which corresponds to 11.3% of the total annual costs
of the reference scenario. The savings were made both in terms of energy costs (14,284 EUR)
and capacity costs (97,751 EUR). In scenario 7 with a storage capacity of 3850 kWh, the sav-
ings even increased to a total of 131,864 EUR (energy cost savings of 14,270 EUR, capacity
cost savings of 117,593 EUR). At the same time, it was possible to reduce the grid power
demand peak by 613 kW (scenario 6) and 738 kW (scenario 7), respectively.

Contrary to the results from the scenarios with EVs, the electricity costs can be further
reduced with the increasing storage capacity and performance of the stationary BSS. This
can be explained by the elimination of the boundary conditions regarding availability
(presence on campus due to working hours) and driver comfort (reaching a target SOC at
departure time).

Given the summarized results in Table 8, one can answer the research question from
the introduction chapter:

• Peak load can be reduced with peak shaving technology between 8.5% and 9.9% and
the total electricity cost between 7% and 8.1% for an EV fleet with a size of 30 or 50,
respectively, with bi-directional charging technology.

• Peak load reduction and cost savings do not increase with growing size of the EV
fleet. There exists an optimal number of EVs that is beneficial for the operator of the
local grid.

• Bi-directional charging has a significant positive impact on peak load and electricity
cost reduction. Peak loads can be reduced up to 7.4% and the total electricity costs can
be further reduced by 5.1% compared to smart uni-directional charging.
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• Using a stationary BSS of the same storage capacity and performance as the two
considered EV fleets has a further significant positive impact. Peak load can be
reduced by 6.9% and total electricity costs by 5.2% compared to the EV fleet with
bidirectional charging.

Table 8. Summarized results.

Scenario
Peak Reduction
[kW]

Peak Reduction
[%]

Total Cost
Savings [EUR]

Total Cost
Savings [%]

1 110.59 2.5 31,874 3.2
2 110.59 2.5 29,184 3.0
3 110.59 2.5 27,390 2.8
4 433.13 9.9 80,705 8.1
5 371.53 8.5 69,039 7.0
6 613.7 14 112,035 11.3
7 738.28 16.8 131,864 13.3

4. Conclusions

Electricity storage systems, whether electric vehicles or stationary battery storage
systems, stabilize the electricity supply grid with their flexibility and thus drive the energy
transition forward. This study aims to address the potential of peak shaving using a PV
plant and smart unidirectional and bidirectional charging technology for two fleets of
electric vehicles and two comparable configurations of stationary battery storage systems
on the university campus of Saarland University in Saarbrücken as a case study. Based
on an annual measurement of the grid demand power of all consumers on the campus, a
simulation study was carried out to compare the peak shaving potential of seven scenarios
with a fleet of electric vehicles with, on the one hand, both smart unidirectional and
bidirectional charging, and on the other hand, stationary battery storage systems. For the
sake of simplicity, it was assumed that the vehicles are connected to the charging station
during working hours and can be charged and discharged within a user-defined charging
status. Furthermore, only the electricity costs were included in the profitability analysis;
investment and operating costs were not taken into account.

Overall, the simulation results show that

1. An optimization-based unidirectional charging technology (Smart Charging) in com-
bination with a PV system increases the potential for peak load smoothing. The
scenarios with the PV system and electric vehicle in unidirectional charging mode
show that the grid capacity peak is at the same level as the scenario with a PV sys-
tem only.

2. The bidirectional charging technology enables a further reduction in the maximum
grid supply power, but there is an optimum in the number of participating EVs.

3. The limiting boundary conditions of bidirectional charging (time-limited storage use,
target charging status at departure time) are circumvented by using a comparable
stationary BSS, thus enabling a further significant reduction in total grid supply costs.
In addition, this solution offers a controlled risk reduction in power shaving, as the
number of EVs effectively connected to the grid cannot be predicted with certainty
and, therefore, the decisive load peak cannot be covered with certainty.

Therefore, the peak-shaving potential and the associated reduction in capacity costs
from the grid increases with the exclusive use of a PV system via the inclusion of the EV
fleet up to a stationary battery storage system when considering only the capacity costs
from the grid.

The model described here was created with some simplifying assumptions. For
example, an ideal prediction for the load profile and the PV power generation is used in
the optimization process. Furthermore, no investment costs either for the installation of
the charging infrastructure and the ICT required for the optimization algorithm used here
nor investment or operating cost of the stationary BSS were taken into account. In the
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market model applied here, which provides for the free provision of EV storage capacity in
exchange for free charging, these investment costs are eliminated. When using a stationary
BSS, these not inconsiderable costs are incurred in addition to other operating costs. It
remains to be examined whether the degree of increased flexibility takes account of the
higher procurement costs. Future work will also focus on the resulting cost for the EV
owner due to battery aging and further financial compensation models for the provision of
the EV’s battery capacity. Furthermore, the real availability of EVs (arrival and departure
times and number of vehicles, initial state of charge, and the charging preferences of car
owners) and their performance spectrum in terms of battery capacity and power must be
measured and statistically evaluated in order to create a behavior model. In addition, more
realistic forecasts of the load profile (based on historical time series) and PV production
(e.g., with the help of weather forecasts) must be created. As already mentioned, some
vehicle manufacturers have limited the possibilities of using bidirectional charging in order
to avoid premature aging of the battery, among other things. It is therefore important to
add an aging model to the battery model for a complete evaluation.
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Abstract: The location of Electric Vehicle Charging Stations (EVCSs) is gaining significant importance
as part of the conversion to a full-electric vehicle fleet. Positive or negative impacts can be generated
mainly based on the quality of service offered to customers and operational efficiency, also potentially
involving the electrical grid to which the EVCSs are connected. The EVCS location problem requires
an in-depth and comprehensive analysis of geographical, market, urban planning, and operational
aspects that can lead to several potential alternatives to be evaluated with respect to a defined number
of features. This paper discusses the possible use of a multi-criteria decision-making approach,
considering the differences between multi-objective decision making (MODM) and multi-attribute
decision-making (MADM), to address the EVCS location problem. The conceptual evaluation leads
to the conclusion that the MADM approach is more suitable than MODM for the specific problem.
The identification of suitable attributes and related features is then carried out based on a systematic
literature review. For each attribute, the relative importance of the features is obtained by considering
the occurrence and the dedicated weights. The results provide the identification of the most used
attributes and the categorization of the selected features to shape the proposed MADM framework
for the location of the electric vehicle charging infrastructure.

Keywords: multi-attribute decision-making; criteria; attributes; features; electric vehicle; charging
station; siting

1. Introduction

The environmental commitment is leading towards the progressive reconversion of
the vehicle fleet from conventional Internal Combustion Engines (ICEs) to Electric Vehicles
(EVs). The need to reduce vehicle-related CO2 emissions is forcing the acceleration of the
electrification process of circulating vehicles. The benefits can be observed by reducing
the global emissions due to transportation from 19% to 33% [1]. The electrification process
relating to the vehicle fleet used for public transport is more incentivized and supported,
and charging solutions can be designed on purpose and easily installed inside hubs and
maintenance depots. However, the situation is different for private vehicles based on their
unique concerns. The need for a widespread charging infrastructure strongly influences
the EV diffusion level. To ensure e-mobility to take place and develop, the charging needs
must be satisfied in every condition, assisting an increase in the EV market. For advancing
EV diffusion, the charging infrastructure must be available in terms of capillary diffusion.
An acceptable EV penetration is generally accompanied by a satisfactory penetration of EV
charging infrastructure, thus enabling charging operations for EV owners and drivers [2].
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Moreover, more widespread EV charging infrastructure helps reduce the anxiety drivers
experience with respect to the EV driving distance range. Therefore, the location of Electric
Vehicle Charging Stations (EVCSs) nowadays represents a constraint for the diffusion
of EVs, but also an opportunity for market share and competitors. EVCS location may
be considered as a technical problem, searching for the most appropriate solutions in
grids with photovoltaic and battery storage systems, from distribution systems [3] to
micro-grids [4]. Considering the spatial target of EV charging, specific solutions can be
studied for different cases of residential communities [5], cities and urban areas [6,7],
highways [8], and regional areas of a country [9]. The present work aims to consider the
EVCS location problem as the main topic of interest and is based on an overview of the
scientific literature. The location of EVCS infrastructures is addressed as a preliminary step
to create and design a geo-localization tool that aims to select the eligible location among an
initial set of alternatives for the installation of EVCSs for a Charging Point Operator (CPO).
The methodological approach followed herein addresses the EVCS location problem from
the multi-criteria decision-making (MCDM) point of view. In particular, this paper presents
the following:

• The first novelty of this work consists of the conceptual categorization of the criteria,
tailored to the EVCS location problem considered, based on the results actually avail-
able in the scientific literature regarding this subject. Starting with the categorization
results and from the attributes that refer to each criterion, a numerical assessment
regarding the importance of the attributes is performed, with the aim of identifying
the most relevant attributes that can be considered to assist the decision maker in
the choice of the most suitable EVCS location. The numerical assessment is shaped
through the computation of appearances and weights for each study contribution
considered, whose results are aggregated into two separate matrices. This method
is exploited not only to quantify and evaluate the distribution of criteria in the liter-
ature, but also to extrapolate which attributes are predominantly considered, thus
establishing a hierarchical order.

• The second novelty of this paper is the release of the ranking of the most relevant
attributes, which can be considered as a basis for the implementation of EVCS loca-
tion tools to guide the decision makers towards consistent attribute-driven choices.
Moreover, this aims to constitute a standard framework of criteria to be implemented
in the future for further research projects regarding the EVCS location problem. There-
fore, a common basis can ensure direct comparisons between different solutions
and approaches.

• The greatest challenge in the application of this approach is the need to deal with the
highly fragmented and non-homogeneous background that is fundamentally related
to the scopes and achievements expressed by each study contribution, together with
the different focus points set by different authors on the types of attributes and the
assignment of weights. Different points of view addressed in the literature, i.e., the
cases seen from the perspective of stakeholders or policy-makers that are not always
clearly stated, and a variable framework of criteria among the papers considered make
the research context uneven. If not handled and addressed correctly, all these aspects
can lead to meaningless final judgements.

The first aspect is the identification of the most suitable MCDM method to apply. The
related discussion is presented in Section 2, underlining advantages and drawbacks of the
different options and indicating the preferred solution. Then, based on a systematic litera-
ture review, the most recurring criteria are identified and rearranged to create the novel
framework of the proposed criteria illustrated in Section 3. The new categorization is pro-
vided in Section 4 with a focus on the relative relationships and importance assigned within
the literature references examined. Then main achievements of this study are summarized
with the final conclusions. Figure 1 clarifies the process followed in the implementation of
this paper.
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Figure 1. Locating EVCS problem roadmap.

2. Multi-Criteria Decision-Making Approaches

2.1. Overall View on Multi-Criteria Decision-Making

Multi-criteria decision-making problems have the general purpose of the identification
of the preferred solution, which satisfies the decision maker’s preferences. It is worth
noting that in this conceptual framework, it is not possible to find an optimal solution,
because this would imply that such a solution would present the best option in all the
criteria considered and thus with no conflicts among them. Conversely, in the multi-criteria
framework, this choice is made in the presence of conflicting information, which would
lead to choosing a different solution depending on the prevalent feature considered. Hence,
the choice of the preferred solution implies a comparison among different alternatives that
can be either predetermined as the input of the problem or must be created from scratch by
applying an appropriate methodology. This difference leads to the identification of two
families of MCDM problems [10]:

• In the case of an initial set of a predefined number of alternatives, one has to “simply”
select the most preferred one among those that compose an initial set; this case falls
into a multi-attribute decision-making (MADM) problem.
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• When MCDM methods are used to create the best solution (through, for example,
an optimization method in a design process), the case falls into a multi-objective
decision-making (MODM) problem.

Some common elements can be identified:

• Multiple attributes/objectives, representing the features that characterize the alterna-
tives. In general terms, attributes/objectives can be called criteria. Relevant criteria
must be adapted to the problem under analysis.

• Existence of conflict among the criteria. This means that no alternative is the best for
all criteria.

• Different natures of the criteria: some of them can be numerical while some of them
can be expressions (better, worse, higher, lower, and so on), which should eventually
be translated into numerical terms. This aspect is much more relevant in MADM than
in MODM, because the latter is usually based on a set of quantitative objectives and
constraints rather than qualitative, as they better suit the design purpose.

Moreover, by definition, beyond the preferred and the optimal solutions, one can identify
the following:

• An ideal solution: This is also called the utopia point and represents the solution char-
acterized by the optimal values for all the objectives. This solution is unfeasible
because of the conflicting nature of the criteria considered.

• Non-dominated solutions: These are also called Pareto optimal solutions. A solution α
is non-dominated if and only if there is no other solution β improving at least one
criterion with respect to the solution α without degrading at least another criterion.
Being non-dominated is necessary (but not sufficient) for the preferred solution.

• Satisfactory solutions: Also called compromise solutions, these form a subset of the non-
dominated solutions. They somehow exceed the acceptable level for all the criteria.
The preferred solution is taken from this set of solutions.

The MCDM conceptual framework also allows us to include approaches based on
decision theory: in this case, the criteria used to compare the alternatives are scenarios,
and the application of decision theory approaches allows us to understand which alternative
is more convenient. The scenarios are weighted with subjective weights or objective weights
determined through the scenario occurrence probability or other mathematical elaborations
based, for example, on the information entropy, or by combining subjective and objective
weights [11]. The scenarios are built by including the potential evolution/modification
of the boundary conditions (e.g., over a multi-year horizon) that can affect the values
of attributes/objectives. Concerning the solution methods for MODM, depending on
the nature of the problem and the variables involved, different approaches can be used,
for example, as follows:

• Multi-Objective Linear Programming (MOLP): If the problem can be formulated in a lin-
ear optimization framework, the solution can be found by using linear programming,
which guarantees convergence to the global optimum.

• Evolutionary Multi-Objective Optimization (EMO): when the computation times become
prohibitive, the set of non-dominated solutions is approximated by using evolutionary
algorithms that start with an initial set of solutions and improve these solutions
iteratively until converging to a solution that becomes stable for a successive number
of iterations.

2.2. Why Opt for Multi-Attribute Approaches?

The choice between MODM and MADM is essentially linked to the available in-
formation and the simulation approach, in particular, the presence of non-numerical
attributes [12] and the identification of proper modelling approaches for social impact.
In the presence of non-numerical attributes, the integration of the attributes within an
optimization procedure is not straightforward: it is required to use proper scales to trans-
late the non-numerical attributes into a quantitative numerical form. The evaluation of
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the impacts of some attributes (for example, the existence of a point of particular interest,
such as malls or museums) may require complex simulation approaches referring to social
aspects and human behaviour, which are only partially implementable and would require
the creation of numerous customer profiles that can only be built with a large amount of
detailed information.

In particular, the aspect of social simulation aspect constitutes the main obstacle to
MODM implementation. Hence, the approach used by MADM essentially avoids providing
a direct evaluation of the impact and allows for providing a relative comparison among
different alternatives based on the available elements. For example, the presence of points
of interest will not be evaluated by indicating the increase in number of accesses per hour,
but instead, it will provide the information that the presence of a mall could impact much
more than the presence of a museum because the use of cars is more common in the former
case than in the latter one. Table 1 summarizes the elements to be considered when choosing
the most appropriate approach, providing some brief notes for each element.

Table 1. Summary of MODM vs. MADM.

Characteristics MODM MADM MADM Examples for EVCSs

Easy inclusion of
non-numerical

attributes

NO: A mathematical formulation is
required

YES: Appropriate scales do exist

Providing the judgement by the DM in
relation to the impact of different points of
interest: the presence of a mall could have

more of an impact compared to the
presence of a museum because the use of
cars is more common in the former case

than in the latter one

Easy inclusion of
potential mutual

interactions of
the features

NO: It is necessary for all the
interactions in the model to be explicit

YES: If a feature has influence on
another, it can be considered through

appropriate weighting

Government support and installation
permits are somehow linked together; they

cover the question “how easy is it to do
this business in this particular area of this

particular country?”

Data required
Usually not negligible, either for

validation of new model, or tuning
of parameters

The amount of data required depends
on the models developed to give the
value of the attributes. In absence of
data, the decision maker can make
hypothesis to make a comparison

among alternatives, enabling a
successive sensitivity analysis

The evaluation of the impacts of some
attributes (for example, the existence of

point of particular interest, such as malls
or museums) may require complex

simulation approaches referring to social
aspects and human behaviour, which are
only partially implementable and would

require the creation of numerous customer
profiles that can be built only with a large
amount of detailed information. The use of
MADM would reduce the amount of data

required (see the first item in this table)

Model updating
The update of the model is constrained by

the number and types of state variables
and on the optimization method

The framework is usually easy to
modify, with some exceptions

The addition of one or more alternatives
does not change the entire mathematical
formulation (as instead may happen with
optimization methods), even though the

impact of the reversal ranking must
be evaluated

Normalization Depending on the method Included as part of the procedures -

2.3. Choice and Implementation of the MADM Method for EVCS Location

As shown in Table 1, the choice of MADM with respect to the MODM approach is
ultimately linked to five elements, all of them favouring MADM compared to MODM.
In fact, the following pointa were uncovered:

1. MADM methods allow the decision maker to use non-numerical attributes. Con-
versely, MODM approaches do not.
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2. Mutual interactions among the features can be taken into account (even without
formulating a model that links them together) through adequate weighting in MADM
methods. As an example, government support and installation permits are somehow
linked to each other (they are the features covering “how easy is it to do this business
in this particular area of this particular country?”). The decision maker can provide
weights whose sum represents how important the policy aspect is for him/her, with-
out any model linking these two aspects. In MODM approaches, it would be quite
complex to account for these interactions.

3. Without accurate and trustable data, MODM approaches are not suggested (because
parameter tuning and the validation of new introduced models require a huge amount
of “good enough” data).

4. The introduction of new features and the consequent updating of the model is usually
simple with MADM approaches, while it is more difficult for MODM methods. In fact,
introducing new features may involve the introduction of new state variables that
must be included in the overall formulation. This limits the flexibility of use.

5. Data normalization is naturally included (and tested) in MADM methods, while it is
truly “method-dependent” in the case of MODM optimization methods (i.e., it is an
additional aspect to include).

In conclusion, (i) when all the features may be represented with a mathematical
formulation, (ii) when it is not of interest to catch mutual interaction among features,
and (iii) when the data (quantity and consistency) are enough for validating the model
and tuning parameters, a MODM approach may be a viable option (even though the
normalization and model update aspects must be carefully considered). Otherwise, MADM
methods are the suggested choice. For EVCS location, there is a variety of features with
possible mutual interactions, some of which are expressed in a categorical or qualitative
way. Moreover, availability of enough data from the field cannot be guaranteed, and some
choices need to be made by the data analyst. On these bases, adopting the MADM approach
is suggested.

3. Proposed MADM Scheme

The MADM problem can be formalized in terms of the useful attributes found during
the review of the scientific literature. To identify relevant case studies on the EVCS location
problem, a systematic literature search was conducted using the main indexed databases. It
was necessary to identify all studies that had as one of their objectives the EVCS location
based on each attribute and characteristic. These studies were then combined with the results
of the MCDM approach searches. Articles were considered based on their relevance and
impact, excluding any publication that could not provide sufficient data on the EVCS location
methodology. Publications that were outdated and those that were not peer-reviewed were
also excluded. It was considered that studies more than 10 years old may not accurately
represent the current problem. This filtering process resulted in a set of 43 scientific articles
that helped to define categories, attributes and features. In this way, the selected studies
were analysed to identify the most recurring attributes and features used to locate the EVCS.
The attributes were coded and classified according to their frequency of occurrence and
assigned weights. This analysis made it possible to determine the relative importance of each
attribute and feature in the context of EVCS location. Since each scientific paper customizes
the attribute classification (based on the purposes of their own analysis of the problem),
it is worth reorganizing the attributes according to a novel scheme that better suits the
purposes of the analysis. The new classification scheme is built according to a three-
level arrangement, represented in a synoptic form in Table 2. The columns show the
following data:

1. Attribute category: This identifies the macro-sector fields and includes all attribute sub-
categories. The most recurring and interesting attribute categories are the following:

(a) Economic;
(b) Territorial;
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(c) Social;
(d) Technical.

2. Attribute subcategory: This highlights a particular aspect of the category to which it
belongs. Each subcategory includes one or more attributes that complement and
satisfy the meaning of the targeted aspect (for a total of 11 attribute subcategories).

3. Output attributes (forming the proposed classification): Starting from several basic
attributes considered relevant with respect to the purposes of the EVCS location
problem, along with other interesting attributes to be considered, the basic attributes
have been grouped into 24 output attributes. Each category is described below by
relating it to the basic attributes.

Table 2. Proposal of the new attribute framework.

Attribute Category Attribute Subcategory Basic Attributes Output Attribute

Construction cost; Total Construction cost; Land
occupation; Power grid connection costs; Equipment
purchasing costs

Installation costs

O&M costs O&M costs
Cost

Update/Removal costs Update and removal costsEconomic

Benefit
Annual profits; Solar energy potential/Renewable
resources; Alternative revenue sources

Revenues

Installation permits Installation permits
Policy Incentives; Local government support; Maturity of the

legal framework to implement tenders
Government support

Traffic convenience; Traffic condition Traffic flow

Road patency/topography; Slope; Number of roads;
Main number of roads; Roads; Accessibility of the site

Road network characteristics

Traffic Presence (and type) of EVCS (public/private); Public
facilities; Coordination with the transportation network;
Parking lots; Public transport; Hubs; More interaction
with other infrastructures

Interactions with other
infrastructures

Service radius (“green” field) Service radius

Territorial Spatial coordination with urban development planning;
Urban development

Urban development

Geography
Terrain advantage; Heatwave zone; Flooding zone;
Landslide zone; Earthquake zone; Forest; Soil type;
Availability; Utilization

Land

Dismantling waste; Easiness of re-establishment in the
future; Recycling

End of life management

Sustainable development of charging station areas;
Ecological influence; Destruction of soil, vegetation and
landscape; Destruction of water resources

Territory sustainabilityEnvironmental

Global emissions; Local pollutants/noise reduction; Air
quality

Emissions

Acceptability of new solutions; Adverse impact on
people’s lives; Improvement of employment; Benefits for
people life

Impact on people’s lives

Population density; Population intensity; (Local)
Number of vehicles; (Local) Number of EVs; (Local) EV
sales; Residents’ average income

Demographic informationSocial
Collective

Social areas; Fuel station proximity Points of interest

Personal
Driver comfort; Home/private charging vs. public
charging; ICE vs. BEV

User preferences
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Table 2. Cont.

Attribute Category Attribute Subcategory Basic Attributes Output Attribute

Power and energy management; Power quality;
Harmonic pollution on power grid; Impact on load
levels of power grid; Impact on voltage; Power grid
security implications; Consumption level;
Electromagnetic interference; Level of penetration of RES

Grid operation

Grid side
Power supply capacity of transmission and distribution
systems; Distance to the substation; Substation;
Substation capacity permits; Substation capacity; Power
grid capacity

Grid planning
Technical

User side
Further services to drivers; Charging services;
Fast-charge ratio

Charging station services

Possibility of EVCS capacity expansion in the future EVCS planning

EVCS side Safety/Security and ability to tackle with the emergency;
Reliability; Charging station capacity; Service
capability/service capacity

EVCS operation and reliability

3.1. Category 1: Economic Attributes

The first category considers the economic aspects, directly or indirectly related to
investments, construction and policy framework. It is divided into three subcategories:
(i) costs, (ii) benefits, and (iii) policy.

3.1.1. Cost Subcategory

This subcategory takes into account some output attributes such as the installation
costs, the operation and maintenance (O&M) costs, and the update and removal costs.
The installation costs include the following basic attributes found in the literature:

• Construction cost: This includes land cost, demolition cost, equipment acquisition
cost, and project investment cost [13–15]. In [16], the following items are listed: land
lease or acquisition costs, survey and design costs, infrastructure construction costs,
equipment and tool purchase costs, construction management and production costs,
and project capital costs. Moreover, ref. [17] lists the following items: land acquisition
costs, demolition costs, transportation costs, and auxiliary facilities costs.

• Equipment purchasing cost: In [18], this cost is reported with reference to a Battery
Swapping Station (BSS) and is explained as the initial equipment acquisition cost
during the construction of BSS. This concept is generalized for the equipment required
for the EVCS construction.

• Land occupation cost: Considering BSS, it is described in [18] as the land that the
Battery Swapping Station needs to occupy in order to store the battery, which will
affect the cost and economic benefit.

• Power grid connection cost: The cost sustained for the connection of the EVCS to
the power grid (Table 3). In [19], this cost depends on the distance of the charging
station from the point of connection to the electric grid, as well as on the connection
technology, assuming that the EVCS is directly connected to the electrical substation
via a dedicated overhead line.

• Total construction cost: When no detailed description of the construction cost is avail-
able, often the total construction cost attribute is instead used, considering different
aspects. These can refer to the equipment purchasing cost, land occupation cost,
and power grid connection cost attributes explained above. The O&M costs include
aspects such as the electricity charge, staff wages, financial expenses, taxes, battery
depreciation, and so on [13–15]. The daily maintenance cost of machinery is also
indicated in [15]. In [16], the operation and maintenance costs include personnel
salaries, employee benefits, daily operation and maintenance, equipment depreciation,
and business costs. The update and removal costs group the costs related to the
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expected price of the surrounding land in the future and the fixed cost of the targeted
EVCS site [17]. Higher update and removal costs mean that it would be more difficult
to change the intended destination of use of the site.

Table 3. An example of investment and operating costs of EVCSs [20].

Economic Data Unit 2 × 22 kW AC Charging Station 2 × 22 kW DC Charging Station

Equipment costs [€] 5000 25,000

Grid connection costs [€] 2000 5000

Authorization and planning costs [€] 1000 1500

Installation and building costs [€] 2000 3500

Total investment cost [€] 10,000 35,000

Operating costs [€/y] 1500 3000

3.1.2. Benefit Subcategory

The benefit subcategory considers all the possibilities to account for earnings and
revenues related to the operation of the EVCS. It includes the revenues that can be broken
down through the following basic attributes:

• Annual profits: Defined in [15] as the future revenues of the EVCS without an analytical
expression, this basic attribute refers to the profits derived directly from charging op-
erations.

• Alternate revenue sources: Proposed in [21], this is related to the capability of a location
to profit from non-power sales such as advertising, participation in grid dispatching,
and renewable energy generation. An additional example can be represented by
the possibility to integrate different mobility solutions according to the needs to be
charged, such as parking spot payment while charging the EV through a shared
information technology platform. Another possible revenue source can be represented
by solar energy potential related to Renewable Energy Sources (RESs). RESs can be
exploited as an opportunity for implementing and feeding the power grid through a
sustainable energy production network [22]. In particular, a practical example may
indeed refer to the possibility of installing an RES production plant in areas suitable
for selling the energy produced on the market.

3.1.3. Policy Subcategory

The policy subcategory considers all the issues that may arise facing the bureaucracy
of a country to locate one or more EVCS. In particular, it reflects the actual legal conditions
that may or may not allow for the installation of an EVCS in a given location. This
subcategory encompasses two output attributes. The first one is the installation permit
output attribute, including the necessary authorizations and approval procedures as strong
factors for selecting a project. In addition to the licensing procedures for the charging station
installation, construction approvals may be required depending on the space ownership
and type [20]. This strongly depends on the legal framework of the country. The second
output attribute is the government support, which is mostly related to the legal framework
existing in the eligible location of installation for an EVCS and includes the following
basic attributes:

• Incentives (or subsidies to increase the EV fleet): The adoption of measures, either
financial incentives for EV purchase or non-financial traffic incentives for EVs, or tax
exemptions and subsidies for charging infrastructure, all play a positive effect on the
promotion of e-mobility, especially at the early stage of the market, when the economic
viability of investments in charging infrastructure is uncertain [20].

• Maturity of the legal framework to implement tenders: In the case of developing public
charging points through open tenders held by a municipality, the limited experience
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for the implementation may adversely affect the interest in the charging infrastructure
market [20].

• Local government support: This basic attribute includes the subsidy policy, favourable
prices, and tax preferences, which are established to strongly promote the develop-
ment of EVs [23]. Most of these aspects have already been reported in the attribute
incentives and maturity of the legal framework. The EVCS project has a large initial
investment cost and a long payback period, which is highly vulnerable to the influence
of government policies [24]. Specifically speaking, the approval of construction land,
the upgrading and transformation of the distribution network, the implementation
of the subsidy policy, and the traffic planning in the vicinity of the EVCS all need
government support. Currently, green policies are meant to be discussed and ap-
proved to push towards an electric conversion of mobility. Hence, the attitude of local
government support is one of the indicators that must be considered.

3.1.4. Cost Functions

To provide some quantitative values, we refer to interesting analytical relations re-
ported in [20] about the infrastructure costs; these are classified in investment costs, fixed
operating costs, and variable operating costs. Investment costs concern equipment own-
ership and installation, grid connection, and licensing expenditures. In [20], the values
reported in Table 8 of that paper are taken as reference, even though the authors stated that
they “are not precise cost figures but provide a clear picture of the economic parameters that serve
this study to highlight the cost differences between the two technological options”.

Almost all the papers contain a description of economic objectives without any analyt-
ical expression; an exception is [25], which reports an equation for the calculation of the
costs of an EVCS. They consider V types of EV charging stations, Q cells and U EV charging
units. An optimization problem is set up, in which the decision variables are xquv (binary
variables, equal to 1 if a charging station of type v is located in cell q with u charging units).
The objective function is the total cost (intended as all the necessary costs of building a
refuelling station). Let cqv denote the cost of locating a new charging station of type v
in cell q with one charging unit; the cost of constructing a new station with h charging
points is hδcqv, where the exponent δ (with 0 < δ < 1) refers to the rate of cost increase as
capacity options rise. The value of δ is less than unity because of the economies of scale
for constructing a station. The construction cost saved by a gas station-based location is
denoted by ε. The 0–1 parameter bq is used to describe the existing gas station network.
The total costs is thus determined:

CT =
Q

∑
q=1

V

∑
v=1

U

∑
u=1

(hδcqv − εbq)xquv (1)

Another reference that reports analytical expressions for cost determination is [26].
The total cost in [26] is the sum of the annual construction cost of the charging station,
the annual O&M expense (including worker wage, maintenance expense, equipment
depreciation expense, and electricity purchase expense) and operation expense of charging
stations, and the wastage cost in the process of user charging (containing direct and
indirect costs). Also, ref. [19] includes some analytical expressions, which are reported
below. The “Station development cost” is the sum of the station equipment cost and land
cost. The equipment cost is assumed to vary linearly with the station capacity, which is
itself a function of the number and capacity of the connectors installed in the station [19].
For station e, the development cost DCe is then calculated as

DCe = Cinit + 25ClandNCe + PCCcon(NCe − 1) (2)

where PC is the single EVCS connection rate power (in kW). In the EVCS, more than one
connection may exist. Ccon is the connection development cost (in USD/kW or EUR/kW);
Cinit (in USD or EUR) is the EVCS fixed cost (i.e., the cost associated with basic equipment
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and facilities used to establish a charging station); Cland is the land rental cost (in this case,
for 5 years); and NCe is the number of connectors in the EVCS; hence, the capacity of
the e-th EVCS is calculated as PEVCS = PC NCe. The station electrification cost depends
on the distance of the station from the point of connection to the electric grid, as well
as the connection technology. It is assumed that the station is directly connected to the
substation via a dedicated overhead line. The electrification cost of the e-th EVCS to the
closest substation by a line with a given cross-section A(line)

e in [mm2] is [19]

C(EL)
e =

(
8000 + 65.7A(line)

e

)
l(line)
e (3)

where l(line)
e is the length of the line from the substation.

3.2. Category 2: Territorial Attributes

The second category of attributes considered is territorial. This category focuses on
all aspects involving environmental variables, from the surrounding nature to the human
activities. The identified subcategories are (i) traffic, (ii) geography, and (iii) environment.

3.2.1. Traffic Subcategory

It is strictly important to evaluate the traffic to decide where to locate an EVCS, since
charging needs depend on traffic volumes. Furthermore, the physical characteristics of
roads influence the traffic volumes—let us think about a large high-speed road rather than
a narrow low-speed limited road. The location of the EVCS must also take into account the
possibility of the potential interactions with other networks like public transport. In this
way, intermodal e-mobility can be enhanced, accelerating the change in transport habits
and mobility. Therefore, this subcategory considers the following output attributes: traffic
flow, road network characteristics, and interactions with other infrastructures. Traffic flow
consists of two very similar basic attributes:

• Traffic convenience: This refers to the number of main roads surrounding the targeted
EVCS site, the level of traffic flow, and possibility of traffic jams. Convenient traffic
implies that more consumers would be willing to use the targeted EVCS site and there
would be higher potential customers [17]. In [27], this basic attribute is evaluated as
the number of intersections within 5 km from site location.

• Traffic conditions: This is seldom defined as the actual distance between two adjacent
EVCSs [15]. However, it can refer to the actual traffic criticalities being present in
particular points or zones of the road network, thus giving a starting thumb-rule
on identifying the critical points of traffic and hence concerning potential on-route
charging demand.

Road network characteristics include all information regarding the roads. This output
attribute is particularly interesting in terms of factors involved as basic attributes, since it
declines different aspects, like the actual conditions of the road network, their topographic
characteristics, and number. Below is the attributes in detail:

• Road patency/topography: The “patency” is defined as the average status of mainte-
nance for the road surface. Sometimes, it is also meant to indicate road topography,
with superimposition with the slope, the next basic attribute [28].

• Slope: It collects the slope of road sections considered within the area eligible to locate
an EVCS. The location of an EVCS must avoid sites in which the road slope is high,
and it is established that the maximum threshold slope is 7% [29]. Moreover, roads
featured by high slopes offer a negative impact for construction and operations [22].

• Number of roads: This represents the total number of roads included within the eligible
areas considered where to install an EVCS.

• Main road number: This defines the total number of main roads present within the
considered area, thus neglecting roads of minor importance. It is closely related to the
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previous basic attribute traffic conditions. The main difference is that here the number
of main roads is taken into account.

• Roads: The meaning of this attribute seems to recall what was already seen for the
previous road-related attributes. Here, the meaning is centred more on the energy
demand depending on the vehicle mobility: the EVCS should be close to high-energy
demand due to vehicle mobility [22]. The measure used is the Euclidean Distance.

• Accessibility of site: It is mentioned as an attribute in [30,31] without any definition
published. It can be easily associated to guarantee an accessible EVCS location to
allow for and facilitate charging operations.

Interactions with other infrastructures gather all information regarding the possible
interchanges with every kind of transportation-oriented infrastructure. As previously
exposed, the aim of this attribute is to create an inter-modal transportation system, thus
pushing human behaviour to exploit inter-modality. This attribute is relevant in terms of
the following:

• Presence (and type) of EVCSs (public/private): Since the location of alternative EVCSs
should not be very close to existing EVCSs, the suitability of current EVCSs is examined
and a comparison among current EVCSs is made [22]. No distinctions are made
referring to EVCS ownership of competitors.

• Public facilities: This is mentioned in [28] with no definition given. According to the
Collins dictionary, facilities are buildings, pieces of equipment, or services that are
provided for a particular purpose. It can represent every kind of public infrastructure
available in the eligible areas, i.e., mayor or other public institutions’ offices, public
network, etc.

• Coordination with the transportation network: This is an evaluation of the level of integra-
tion of EVCSs with the public transport network [32]. It is based on the availability of
an already existing public transportation system near the EVCSs, which is essential
when the EV user/driver intends to continue the journey by public transport [32].
Here, the drawback is represented by a transportation network that is too widespread
and branched, since it would discourage the use of EVs—and the mobility of private
vehicles in general—in favour of public transport.

• Parking lots: Since the EV charging time is long, parking lots are suitable EVCS
locations [22]. The measure used is the Euclidean Distance. This attribute refers to
the achievement of inter-modality in the transportation system. Parking lots are thus
a very suitable area to install EVCSs since the vehicles can recharge when parked.
Parking lots can also be managed by public transport operators themselves that are
located and built in the neighborhood of a public transport line.

• Public transport: The measurement of the simplicity of accessing public transport [15].
It can be related to the ease of connection with the public transportation network.
This attribute highlights that if the eligible area is close to a public transport service
(line, terminal station or stop), the probability that customers will use the EVCS
installed will be high. It is strictly linked with the previous attributes, parking lots,
coordination with transportation network, and the following hubs basic attribute,
since inter-modality is the main concept shared among them.

• Hubs: The EVCS should be close to a place with high-energy demand due to vehicle
mobility [22]. The measure used is the Euclidean Distance. As previously recalled in
the attribute roads, hubs (also called junctions) are meant as interchange spots with
transportation services. This helps in increasing the potential charging demand. More
interactions with other infrastructures are defined as the coordination with the main
artery, inlet and outlet, residential areas, urban main functional areas, and a stable
supply of electricity power [14]. This coordination is a benefit. It contributes to assign
a high rate to the area considered if a high number of infrastructures of any type
are present.
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3.2.2. Geography Subcategory

Alongside traffic-related aspects, a relevant field to be analysed is the geography of
the sites. This subcategory is more focused on examining the environmental and natural
characteristics of the potential sites for locating EVCSs. The focus starts to move outside the
urban area and evaluate the environmental impact of the EVCS location on the area. This
subcategory considers the following attributes: (i) service radius, (ii) urban development,
and (iii) land.

Service radius is expressed as the actual distance between two adjacent EVCSs [15].
This underlines the aspect already considered in the presence (and type) of EVCS (pub-
lic/private) with an additional value. This attribute focuses on the aspect of the “green
field”, i.e., on the planning phase of new EVCSs to be added, and therefore, it focuses on
areas that are not already reached by a capillary diffusion of EVCSs, thus contributing to
increasing the diffusion of CS infrastructure.

Urban development gathers two basic attributes that results in a relationship between
the EVCS infrastructure and the urban network. They are as follows:

• Spatial coordination with urban development planning: This highlights the integration
of the EVCS infrastructure with the spatial development of urban pattern. Thus,
the aspect highlighted by this basic attribute is the need of coordination between
the charging needs and demand—that is expected to grow—with the expansion or
improvement of urban areas [20].

• Urban development (or coordinated level of EVCS with urban development planning):
This basic attribute gives the name to the corresponding output attribute and is defined
as follows: It indicates if the targeted EVCS site satisfies the development planning
for the urban electric grid and road network. If the targeted EVCS site is better
coordinated with the urban development planning, there is less update and remove
risk [17]. In this way, the meaning added by this last attribute goes to complete the
global meaning of the output attribute. An EVCS plan coordinated with the urban
development results in a less unpleasant impact on the urban pattern.

Land includes all information regarding the geographic characteristics of the areas
considered. This output attribute aims to highlight the impact that the environment can
have on the proposed location and also evaluates the possible produced drawbacks. Here,
risks deriving from land characteristics are taken into account to assess if the location can be
considered eligible for the installation of an EVCS. In detail, land is formed by the following
basic attributes:

• Terrain advantage: It represents the eligibility of the area in terms of potential space to
be used and traffic volumes. It is a general evaluation on the area.

• Flooding risk: This attribute was not found in the reviewed scientific literature. Since
climate-related phenomena are becoming more and more destructive and aggressive
on anthropic activities, it is reasonable to consider it. Flooding directly involves the
EVCS infrastructure since its effects can heavily interfere with the electrical system.
Historic and open-access data publicly available either from research institutes or
released by public administration can be a good starting point to establish a rank of
alternatives among the sites selected.

• Heatwave risk: Similar to the validity of the details for flooding risk, it is important
to focus on heatwaves as well. Thermal phenomena can especially influence the
underground distribution system, affecting the quality of the service.

• Landslide risk: Similar to the flooding risk, it is important to also consider the landslide
attitude of the area within the process of selecting the appropriate location to install
an EVCS. Landslide can compromise the availability of the EVCS and, in the worst
case, can generate damages to the infrastructure. Therefore, the EVCS location must
avoid sites in which the risk of landslide is high [29]. Also, here, open-access historic
data can help in ranking the alternatives.

201



Energies 2024, 17, 3920

• Earthquake risk: Similar to the details for landslide risk, earthquakes can compromise
the availability of an EVCS infrastructure as well. Therefore, the eligible locations for
installing an EVCS must avoid sites in which earthquake events can downgrade the
availability of EVCS [22] or damage it in an irreversible way.

• Forest: The presence of a forest surrounding the EVCS site location can represent a
potential danger for the natural environment. Anthropic activities like construction
works can interfere with wild fauna and vegetation and vice versa, undermining the
full availability and operation of the EVCS infrastructure. Therefore, the potential
location of an EVCS must be far from naturalistic areas, thus avoiding exploitation
and interference with the surrounding environment of natural areas [22].

• Soil type: This strongly influences construction operations, since further technical
aspects must be taken into account in the presence of a non-suitable soil (e.g., founda-
tions, stability of soil type). Therefore, soil type influences the choice of the eligible
location for the installation of EVCSs [23].

• Availability: With this basic attribute, a focus is set on the resources that are available
for the construction phase of an EVCS once the location is selected. A site featured by
the good availability of construction water and power should be given priority for the
purpose of allowing for a fast construction schedule [23]. This is mainly determined
by the nature of land use and intensity of land development [5,33]. Under the same
conditions of residential land, different residential communities have different devel-
opment intensities. With a larger intensity of land development, a greater charging
demand is expected. An alternative name for this basic attribute could be a more
generic resources distribution [31].

• Utilization: This attribute indicates aspects that are directly correlated to the previous
attribute. In fact, it gives a measurement of the efficiency of resource utilization
during the construction and operation of the EVCS, made by expert evaluation after
discussions [16]. It can be classified as a preliminary evaluation of the potential
eligible sites.

3.2.3. Environmental Subcategory

Once examined traffic-related and geographic-related aspects, the environmental char-
acteristics of the sites must be considered. Here, the focus is on the environmental impact
that all human activities connected to the installation of EVCSs can generate. The following
output attributes are gathered: (i) end of life management, (ii) territory sustainability,
and (iii) emissions.

End of life management groups all the basic attributes that focus on the future of the
area selected to install the EVCS. In this way, the aim is to at most reduce the environmental
impact of anthropic interventions. In particular, the basic attributes recurring here are
as follows:

• Dismantling waste: This measures two fundamental aspects. The first is more related to
the operative activities such as the construction garbage and sewage discharged during
the EVCS construction, as well as battery disposal during the EVCS operation [14].
This is the most occurring definition given to waste problems. The second aspect
that can be added is related to the waste that will be produced in case of dismantling
the EVCS from the area. In this way, an accurate choice on the building materials
can be set in advance during the preliminary design phase preferring eco-friendly
or environmentally low-impacting materials, thus reducing the whole burden of
environmental impact related to the dismantling phase.

• Easiness of re-establishment in the future: This gives a measurement of the simplicity of
generalization and re-establishment of the area [15]. It completes the last aspect of
the previous basic attribute since it focuses on the future destiny of the area selected.
In this case, the post-business phase is considered.

• Recycling: With this basic attribute, the direct environmental impact of the EVCS
installation is fully examined. Improving the recovery and utilization rate of resources
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is crucial for achieving sustainable development [16]. This is a measure of the resources
recovered during the construction and operation phases of the EVCS. It underlines
the degree of recycling (or reuse) of the resources available in the area.

Territory sustainability focuses on all aspects that have a role on the destruction and
ecological influence on the surrounding environment. Also, here, the aim is to at most
reduce the environmental impact of anthropic interventions, joining and completing the
target of the previous output attribute. Here, the following are considered:

• Sustainable development of charging station areas: This basic attribute focuses on the
effects carried out by the presence of EVCSs on both the environment and humans.
In particular, the benefits generated on e-mobility by the presence of EVCS infrastruc-
ture are reflected in exceeding the cost of financial incentives for new EV acquisition
even in an adverse EV penetration scenario [20]. The EVCS infrastructure acts as a
flywheel for EV penetration and plays a fundamental role in enhancing EV diffusion.

• Ecological influence: This prompts the measurement of “the influence on the flora
and fauna surrounding the targeted EVCS site” [17], recalling the details marginally
presented for the land attribute.

• Destruction of soil, vegetation, and landscape: This basic attribute is one of the most
important, as it quantifies the measurement of “the vegetation deterioration due to the
land development for building EVCSs” [14]. Sometimes, it is found to also be referred
to as the water losses. For this peculiar aspect, it is better to reserve a dedicated
basic attribute.

• Destruction of water resources: Similar to the previous one, it prompts the measurement
of the damage to the surface flow and groundwater system [17].

Emissions is an output attribute that groups all the basic attributes that focus their
attention on the future of the area selected for installing the EVCS. In this way, the aim is to
at most reduce the environmental impact of anthropic interventions. In particular, the basic
attributes recurring here are as follows:

• Global emissions: This attribute gives a measurement of the environmental pollutants’
emission reduction by using EV rather than ICE vehicles [14]. In this case, the immedi-
ate effect carried out by the enhancement of EVs and EVCSs is evaluated as a benefit
for citizens.

• Local pollutant and noise reduction: ICE vehicles cause significant noise pollution and
have an adverse effect on community health. The enhancement of e-mobility con-
tributes to a drastic reduction in noise pollution [20]. This basic attribute provides an
additive part with respect to global emissions since it includes the noise reduction
factor, which contributes to city life quality improvement.

• Air quality: Reducing air pollution is the biggest motivation for the use of EVs [22].
This basic attribute is defined in a very similar way to the two previous basic attributes.
Moreover, here, it is seen from a social perspective, improving the effects on the use of
EVs. It is evaluated as a benefit.

3.3. Category 3: Social Attributes

The third category is named “social”. It regards all social factors that are involved in
EVCS network expansion; these can positively (or negatively) influence or be influenced by
the EVCS propagation. The subcategories identified here are (i) collective and (ii) personal.

3.3.1. Collective Subcategory

The collective social factors considered here are related to demographic, behavioural,
and attitude aspects that can influence the location of EVCSs or that can be influenced
by the chosen location of the EVCSs themselves. Here, the focus is on the environmental
impact which can be generated by all human activities connected to the installation of
EVCSs. The following output attributes are considered: (i) impact on people’s lives,
(ii) demographic information, and (iii) points of interest.
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Impact on people’s lives groups all basic attributes that are related to the influence that
the operations of positioning the EVCS can have on the local people. This output attribute
is better described by the following basic attributes:

• Acceptability of new solutions: Public awareness and support will affect the development
of similar projects and the future development speed of EVs [24]. A diffused positive
acceptance of EVCSs in the neighbourhood will increase the expansion of EVCS
network, boosting the technical solutions offered. This can be achieved through social
commitment in creating or developing new social areas capable of carrying forward
the improvement of selected areas.

• Adverse impact on people’s lives: This takes into account the adverse impacts of noise
and electromagnetic field due to the construction and operation of EVCSs on the daily
life of local residents [14]. An alternative approach is to account in advance for the
local resident attitude and opinion on the EVCS construction and operation. This
enables to find out in advance whether the local population is inclined to tolerate
noise and electromagnetic field due to the construction and operation of the charging
station [23].

• Improvement on employment: The construction and maintenance of EVCSs can provide
more job opportunities, including for local people in different fields. In this way,
if the employment rates of the local territory are low, it can offer work opportunities;
therefore, employment rates can be boosted up [5]. This can become an important
aspect regarding the social well-being of the local areas.

• Benefits for people’s lives: The difference compared to the previous basic attribute
is that, here, it is defined in a more general way and can also consider positive
effects, i.e., improving the quality of life of the residents, in people’s opinion, which
are underlined here [15]. An alternative point of view is given considering that
the construction and operation of EVCSs may generate poor acceptance among the
local population due to the negative effects of noise and electromagnetic radiation.
This can lead to forcing the shutdown of the project even at the very beginning,
particularly in residential communities. Therefore, efforts must be put into practice by
investors to change the level of acceptance of residents to reduce investment losses at
most [5]. For example, if the local area sees a contextual improvement of the residential
zone through the construction of new social areas or the redevelopment of the same
neglected areas, this can lead to changing the mentality of local residents, pushing
them to accept rather than refuse the presence of EVCSs.

Demographic information includes all the basic attributes that can address the needed
information related to EV diffusion. These can be summed up as follows:

• Population density: This attribute indicates that the need for charging stations is higher
in areas where EVs are frequently used. Population density can be used as an indicator
to determine which regions are best suited to see the location of one or more EVCSs,
since population density may represent a potential ideal charging request. If the
location is characterized by a high population density, it will be more suitable [34].
The information suggested here needs to be strengthened by considering further
information given by the next basic attributes listed here; otherwise, it will have no
meaning when considered alone.

• Population intensity: This is defined in the same way as population density, but it
seldom appears to be called with a different denomination.

• Number of vehicles (local): This considers the total number of vehicles (of all types) in
the local area selected. It represents an additive information with respect to population
density, since it prompts the indication of high vehicle potential and the transformation
of conventional vehicles into EVs [22]. This information must be associated with the
next basic attribute: the number of EVs (local).

• Number of EVs (local): This considers the actual number of EVs being present in the
local area considered as eligible to locate EVCSs. It is important to be considered
because it addresses the relation between the charging demand and EV ownership.
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The former is meant to increase if the latter increases. It gives the estimated potential
charging demand at the beginning [22].

• EV sales (local): This basic attribute addresses the projected number of EVs that the
EVCS site is called to serve. When the number of EV sales in the area surrounding the
targeted EVCS site is higher, a higher number of the EVCS is needed [17].

• Residents’ average income: The consumption characteristics and income levels of resi-
dents in different residential communities are diverse, which depend on the employ-
ment level, the consumption structure, the growth of consumer expenditure, and
the cost of living [5]. High-income-rate districts are meant to be suitable to locate
EVCSs [34].

Points of interest includes all the basic attributes that focus on locating EVCS in
correspondence of nodes important for what concerns the public utility, seen by the user
perspective. These can be summed up by the following:

• Social areas: EVCS locations should be close to popular centres like shopping malls,
stadiums, universities, public buildings, hospitals, due to merging the needs of mobil-
ity, sociality, and public services [22]. Also, working areas can represent a potential
location in terms of charging demand.

• Fuel station proximity: This basic attribute takes into account two aspects, given by the
variety of EV typologies. PHEVs need both fuel products and electricity, while BEVs
require longer charging times. Therefore, the proximity of fuel stations can represent a
constraint for EVCS location [22].

3.3.2. Personal Subcategory

Personal social factors considered here are related to behaviours and attitude aspects
seen by the user perspectives. Hence, the only output attribute is user preferences. This is
described by the following basic attributes:

• Driver’s comfort: This refers to whether the driver can immediately start charging
operations and avoid waiting times due to queuing. If the EVCS is located in a place
featured by heavy traffic and large charging volumes, it may generate longer waiting
times, thus reducing the drivers’ comfort [18]. This last concept is defined for the
location of Battery Swapping Stations, but it can be easily applied to the location of
EVCS cases.

• Home/private charging vs. public charging: Since charging needs for EV owners is be-
coming more and more urgent, the balance between public and private infrastructure
must be accounted for, since home charging can show “high rates of preference by EV
users” [20].

• ICE vs. EV: This aspect was not found in the literature review, but it constitutes a
threshold attitude for users. Even though the available EVs ensure a relatively long
duration of a fully charged battery, the users can still prefer to travel by using an
ICE for covering long hauls rather than using an EV. In addition, waste management
for existing vehicles replaced by EVs could impact the possibility to purchase an EV
by benefiting from dedicated incentives for vehicle replacement or fiscal discounts
applied to the use of EVs.

3.3.3. Social Category: Analytical Expressions

Analytical expressions are provided in [32] for evaluating the level of integration of
EVCSs with the public transport network, and it is divided into two terms, i.e., the intensity
of integration of primary and secondary transport networks with a considered EVCS. The
values considered are the number of stops of the public transport system located at a
distance not exceeding a given threshold:

max
L

∑
l=1

P

∑
p=1

xl(Bl(R̄) ∩ SS) (4)
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where L indicates the number of potential EVCS locations; xl ∈ [0; 1] is a binary variable,
i.e., 1 if EVCS is located in the l-th alternative location and 0 otherwise; Bl is a zone around
l potential location of the ECVS with radius R̄; and SS is a set of s stops that belong to the
public transport system. The reference [32] also provides similar analytical expressions for
evaluating the integration of EVCSs with the main roads of the city system in terms of the
number of EVCSs located no more than a threshold distance from the main roads of the
city. Adequate indicators to represent the integration of EVCSs with points of interest are
also reported.

3.4. Category 4: Technical Attributes

The last category is named “technical”. It regards all technical factors and engineering
aspects that are involved in both EVCS and grid planning and operation. The interaction
between an EVCS and an electrical grid can represent an obstacle to the physical integration
of the EVCS infrastructure. The identified subcategories are (i) grid side, (ii) user side,
and (iii) EVCS side.

3.4.1. Grid Side Subcategory

Grid planning gathers several technical aspects that can impact the electrical grid
transmission and distribution once the suitable location of EVCS is chosen. This is described
by the following output attributes: (i) grid operation and (ii) grid planning.

Grid operation focuses on all aspects concerning the operability of the EVCS infras-
tructure. Here, several technical issues are considered and explained:

• Power and energy management: This aspect involves the effects of the EVCS operation
on the actual balance of electric loads influencing the power stability of the grid. EVCS
constitutes a non-negligible component of medium- and low-voltage distribution
systems. As an immediate consequence, the EVCS should be located in an area that is
sufficiently far from the heavy loaded electric lines to ensure a stable operation of the
distribution network [23,35,36]. Moreover, to improve the stability of the grid, energy
storage systems can be installed to increase the reliability of the grid and its response
to extended overloads.

• Power quality: This is defined with the same meaning for power and energy man-
agement, but with the focus that is put on an EVCS, from an opposite perspective.
As already mentioned in the previous attribute, the quality for EVCS-delivered electric
power can be improved with the installation of energy storage systems, thus contribut-
ing also to stabilize the network against unforeseen overloads or voltage drops.

• Harmonic pollution in the power grid: This basic attribute focuses on the harmonic dis-
tortion of the EVCS. This is due to a large amount of charging demand that generates
harmonics injection in the power grid. If it cannot be effectively compensated and
filtered, it will seriously affect the power supply quality, damage the already existent
capacitors, and threaten the safety of the whole power grid [18].

• Impact on the load levels of power grid: This basic attribute is associated with an aspect
that is becoming more relevant in the last period, that is, vehicle-to-grid (V2G). It is
assumed that the battery can also serve as an energy storage system for the grid while
satisfying the charging needs of EVs. In order to ensure the stability of the power
grid and to avoid the rising of huge impacts on the power grid, the real-time load
levels of the power grid itself should be taken into account, and the charging and
discharging threshold of the battery should be reasonably selected, ending in a good
compromise [18].

• Impact on voltage: This is defined as the quality of the electricity supplied to the
targeted EVCS site that determines the service quality of targeted EVCSs. Since the
EVCS is usually planned within an electric power distribution network, when charging
operations start, a higher power load will be generated, which will cause the voltage to
drop by seriously endangering the safe and stable operation of the power grid [17,18].
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• Power grid security implications: This basic attribute refers immediately to the previous
one, since it quantifies through a significant indicator the measurement of the influence
of the targeted EVCS site on power grid the [17]. A higher score of this index indicates
a greater threat to the local power grid security.

• Consumption level: This refers to an energy efficiency measure that can be seen either
under an energy point of view, i.e., if the EVCS shows high efficiency with minimized
energy and thermal losses, or from an economic perspective in terms of missing cash
flows [28,37]. Although it is not occurring with the following meaning within the
scientific literature examined, it can also refer to the difference between the potential
demand initially estimated and the actual charging demand.

• Electromagnetic interference: This can be wrongly misunderstood and confused with the
effects of electromagnetic fields on the natural environment. Conversely, it identifies
the interference produced by electromagnetic fields generated by large radio trans-
mitters and industrial electromagnetic fields on the site location of EVCSs. Therefore,
it measures the influence of an electromagnetic interference on the power supply
stability of the EVCS. It is assumed that at a longer distance, a weaker electromag-
netic interference on the targeted EVCS will be observed, ensuring a stable feeding of
charging power [17].

• Level of penetration of RES: This aspect is not adequately pointed out from the literature
review. Despite this, it can represent an important aspect due to the following reasons.
First, a high-RES penetration can enable us to dedicate an RES production that is able
to reinforce the actual electric/power grid distribution network feeding the EVCS,
and thus increase the responsiveness of the EVCS infrastructure against the overloads
and unforeseen peak demands. Secondly, it can represent a huge potential for what
concerns an increment of the capacity of EVCS sites.

Grid planning accounts for all the technical issues that can influence the supply
capacity and thus the technical problems that can potentially rise in the presence of EVCSs.
In particular, it is described by the following basic attributes:

• Power supply capacity of transmission and distribution systems: This is defined as the
amount of electric power that must be delivered by the grid when the EVCS operates
and electricity loads are supplied. It strongly depends on the charging services that
the EVCS will provide that must show compatibility with the actual state of the grid.
Therefore, it should be adapted to the power supply capacity of the local transmission
and distribution systems [17,18,35].

• Distance to the substation: This is defined as the distance between the EVCS infrastruc-
ture and the first useful substation, which should be close enough to areas charac-
terized by high energy demand [22]. In a few cases, this aspect is included in a cost
item [19]. In fact, the farther away the substation is, the longer the wiring will be;
therefore, the higher the power losses will be. This can be related with O&M costs
output attribute.

• Substation: This refers to the concept of substation proximity, with a very close meaning
already reported by the previous basic attribute [22].

• Substation capacity permits: This is defined as a measure of the integration degree
between the electricity demand of the targeted EVCS site and the substation capacity
of the located area [17]. It can also indicate the level of overloading of the substation
and its attitude to sustain these conditions. A higher score to this index indicates that
the site is more suitable and can obtain permits for its installation.

• Substation capacity: This is used with the same reference of the previous definition [28].
Here, it indicates the power capacity of the substation.

• Power grid capacity: This basic attribute focuses on an important aspect that must
not be overlooked when defining the planning phase. The power grid capacity is an
important factor for the integration of the charging infrastructure. Major technical
work may occur due to a strengthening of the existing network or the need for
transformer installations to enable a full operability of EVCSs in the area [20].
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3.4.2. User Side Subcategory

The focus is now progressively set on all aspects concerning the services and options
offered by the EVCS infrastructure. Here, only the charging station services output attribute
exists, whose basic attributes are described as follows:

• Charging services: This basic attribute refers to the service level offered by the EVCS.
This is defined as the EV number and service radius that the EVCS can serve [16]. This
basic attribute can consider the different possibilities of charging the EV offered by
EVCS, like, for instance, DC/AC sockets, and the related maximum capacity.

• Further services to the drivers: Although in the scientific literature the services are limited
to the charging services offered to the drivers—indicated at the previous point—the
services can be extended by also referring to different additional services that can
be offered to the drivers while charging. This basic attribute is the opportunity to
offer appropriate services to the drivers in correspondence to the EVCS, meant as
a benefit indicator. Often, the notion of Electricity Accessibility (EA) is introduced,
aimed at measuring the service quality of a charging station network. EA is measured
by the average time spent by a random driver to complete charging [15,25]. The
analytical formulation of the EA used in [25] is represented with tqz, i.e., the travel
time from cell q to cell z, and with tv the service time of charging stations of type v.
The objective function to be minimized is the average EA, where F is the total number
of charging demand in the network; Dq is the demand in cell q; and yqzv is the fraction
of vehicles in cell q that is served by charging station of type v in cell z, as reported
in (5). The perspective here is seen as the opposite of the point of interest attribute,
where the EVCS is located depending on an already existent service of public interest.
The difference here is that an additional point of interest can be created, with paybacks
that could also directly involve the local population.

EA =
Q

∑
q=1

Z

∑
z=1

V

∑
v=1

Dq
(
tqz + tv

)yqzv

F
(5)

• Fast-charge ratio: This is defined in the literature as the ratio of the number of fast-
charging stations to the total number of EVCSs. EV users can prefer using fast-charging
facilities to save time rather than conventional charging. Therefore, the location served
by EVCS infrastructure with a higher fast-charge ratio is thus more likely to provide
efficient charging services and to attract more customers to charge, thereby exploiting
fast-charging solutions [21].

3.4.3. EVCS Side Subcategory

The EVCS infrastructure is now focused on the planning phase. This subcategory is
described by the two last output attributes, concerning several aspects: (i) EVCS planning
and (ii) EVCS operation and reliability.

EVCS planning accounts for the possibility of capacity expansion in the future, since
the expansion of the capacity of EVCSs needs to consider the number of charging users
in the future, the projected new EV sales in the area, land resources nearby, government
policies, and the upgrade of the distribution network [24].

EVCS operation and reliability focuses on the aspects of safety and reliability of the
EVCS. In particular, here, several basic attributes are grouped, each described with a
technical or safety issue that must be considered:

• Safety/security and ability to tackle the emergency: This refers to the capability to sustain
emergency conditions and also evaluate the protection of the EVCS. It can consider the
security of the EVCS in an emergency situation, including grid safety, fire protection
facilities, and the resilience properties of the EVCS site, i.e., the ability to resist natural
disasters [15,16].

• Reliability: This evaluates the reliability as the resistance and durability of the EVCS
with respect to many external conditions. It is measured as the stability of alternative
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EVCS sites to future changes in external conditions. It sometimes accounts for the
reliability of the power supply located near the site locations, meant as time to failure.
It is often defined as derived from the concepts of Mean Time To Failure or Mean Time
Between Failures [15,16,27]. A high score means high reliability.

• Charging station capacity: The power capacity of the EVCS determines the maximum
number of daily charging sessions. These are essentially the “sales units” of the
investment. A high-power 50 kW charging station can serve up to 60 charging sessions
per 24 h, while the maximum capacity of a normal-power 22 kW station is limited
to 26 charging sessions [20]. During the operation phase, an increased number of
EVCS units available on the same charging site could emerge as needed to satisfy
the demand.

• Service capability/service capacity: This is defined as the number of EVs that can obtain
access to the charging service provided by the EVCS, the daily charging volume,
and the maximum charging volume. It can also be defined as the daily service volume
and the maximum number of EVs that could obtain access to the charging service
provided by the charging station [14,23].

4. Importance of the Attributes

This section provides a review of the attribute appearances and weights as they are
used in the literature, organized in the form of matrices. In this context, absolute and relative
weight values can be distinguished throughout the literature examined. In particular, the
following can be noted:

• An absolute weight provides the importance of a single attribute compared to the total
attributes considered in all categories. To be as clear as possible, the absolute weight
value defines the global influence of one specific attribute on the rest of the attributes
considered.

• A relative weight defines the importance of one attribute in comparison to the others
within the same attribute category. It defines the local influence of the single attribute
among the others that belong to the same category of attributes.

The evaluation of absolute and relative weights requires a broad and in-depth liter-
ature review, so that it is possible to extrapolate the weights of each attribute from every
single study contribution and then evaluate the impact of the weight of each attribute by
considering the whole set of attributes. According to this rationale, the sum of the weights
for the single literature contribution will be unitary. A practical example, with values
referring to the contents of one of the papers considered [17], is shown in Table 4. The
output attributes mentioned in this paper are marked with one, while at least one of the
basic attributes included in the output attribute appears. Conversely, the output attributes
that are not included are marked with null value. Furthermore, the corresponding weights
assigned by the authors are reported in the "Weights" column. The total number of the
appearances reported at the bottom of Table 4 indicates the number of attributes appearing
in [17], while the sum of all weights assigned reaches unity (i.e., 100%). This operation has
been repeated for covering all the works selected and reviewed from the scientific literature.

It is important to highlight that the weight values found in the literature are strictly
connected to the total number of attributes considered in the single literature contribution.
Moreover, the same attribute may be calculated differently in different papers, because of
the different attributes considered within the same paper. In fact, as indicated in Section 3,
the literature contributions examined were retrieved to deal with different attributes among
them, but that showed similar semantics. And seven significant papers are taken as ex-
amples here. With a focus on the overall multiplicity of the criteria, only 10 attributes
are considered in [34], rising up to 13 in [20] and 15 in [15,29]. Higher numbers are
found in [22,30], with 19 and 21 total attributes, respectively, while [36] considers up to
45 attributes jointly. Moreover, despite the variability encountered, a further difference is
identified in the way of proceeding the aggregation for the attributes considered. For ex-
ample, three categories are exploited in [29], four categories in [15,30], five in [20,22], and
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nine are used to group attributes in [36]. Conversely, [34] does not use any category to
enclose attributes. Treating the attributes recalled in those contributions semantically, it
is possible to observe that the same meaning is not always reflected uniformly across the
examples with the same undertone. If only the economic category is isolated, no attributes
are considered by the authors of [34], which represents an outlier in this sense, while [29]
focuses on land cost, thus discarding construction costs and O&M costs as [15,20,22,30,36]
have reportedly performed.

The approach chosen by the authors of [20] is noticeable since it considers O&M costs
and equipment cost rather than construction costs. This comparison can also be extensively
repeated for other categories (environmental, social, and technical), where basically each
paper proposes its own framework of attributes, thus increasing the multiplicity of criteria
classification and hence the sparsity of approaches, given that the topic covered is common.
Therefore, a re-ordered categorization of attributes aimed at constituting a common practice
needs to be provided to be adopted in future research, allowing for direct comparisons
between different strategies and consequently increasing uniformity.

Table 4. Example of appearances and weights calculated from the contents of [17].

Attribute Category Attribute Subcategory Output Attribute Index (row,col)
From Xu et al. (2018) [17]

Appearance Weight

Installation costs 1 1 4.50%

O&M costs 2 1 4.30%Cost

Update and removal costs 3 1 3.40%

Economic Benefit Revenues 4 1 5.50%

Installation permits 5 0 0
Policy

Government support 6 0 0

Traffic flow 7 1 6.40%

Road network characteristics 8 0 0Traffic

Interactions with other infrastructures 9 0 0

Service radius 10 0 0

Territorial Urban development 11 1 3.70%Geography

Land 12 0 0

End of life management 13 0 0

Territory sustainability 14 1 24.80%Environmental

Emissions 15 0 0

Impact on people life 16 0 0

Demographic information 17 1 12.10%

Social

Collective

Points of interest 18 0 0

Personal User preferences 19 0 0

Grid operation 20 1 29.70%
Grid side

Grid planning 21 1 5.40%

Technical User side Charging station services 22 0 0

EVCS planning 23 0 0
EVCS side

EVCS operation and reliability 24 0 0

Total 10 100.00%

Starting from the information relating to each paper, the basic attributes of the entire
sets were jointly considered, with the aim of providing the outcome regarding the relative
importance of the output attributes to which they refer. The relative importance of each
attribute is provided by considering different aspects: (i) the occurrence of the output
attribute in the literature and (ii) its weight. The generalized scheme of attributes described
in Section 3 is validated using numerical analysis to motivate generalized considerations,
in order to orient the decision maker about the importance that each attribute has in the
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literature. Therefore, to provide a synthetic analysis of the two aspects mentioned above,
two matrices have been built and calculated as illustrated below, considering the general
case with NT output attributes and NP papers analysed:

AO ∈ N
NT ,NT , ao(g, j) =

⎧⎨
⎩ ∑NP

p=1 x(j)
p g = j

∑NP
p=1 x(g)

p g �= j
(6)

where x(j)
p = 1 if the output attribute j exists in the literature contribution p, and x(g)

p = 1 if
both output attributes j and g are mentioned in the literature contribution p, and

AW ∈ R
NT ,NT , aw(g, j) =

⎧⎨
⎩ ∑NP

p=1 w(j)
p g = j

∑NP
p=1 w(g)

p g �= j
(7)

where w(j)
p is the weight of attribute j in the literature contribution p, and w(g)

p is the
weight of attribute g in the literature contribution p when attribute j is also included in
the literature contribution p. These two matrices have been computed and graphically
rearranged in heatmap form, as shown in Figures 2 and 3, considering the correspondence
shown in the column named “Index (row, column)” of Table 4. The rearrangement in the
heatmap of the matrix AO shows that the higher the number of papers citing the output
attribute j, the darker the colour of the element ao(j, j). Moreover, it is worth to note that
matrix AO is symmetric due to its construction. In fact, let us take as an example the values
contained in ao(1, 3) and ao(3, 1). In ao(1, 3), the output attribute of row 3 (update/removal
costs) appears 13 times together with the output attribute of column 1 (installation costs).
The dual condition is represented by the element ao(3, 1), which contains the number of
appearances of the output attribute in row 1 (installation costs) when the output attribute of
column 3 (update/removal costs) appears, and it is already known that it appears 13 times.

Normalization of the matrix AO could lead to the notion that a relative importance
with respect to appearances of attributes can emerge. This is misleading, since the symmetry
of the matrix does not prompt reciprocity relationships between the elements below and
above the main diagonal. With reference to the matrix AW , shown in Figure 3, the higher
the value of aw(g, j), the higher the relevance of the g-th output attribute with respect to the
j-th output attribute. Conversely, the lower the value of aw(g, j), the lower the relevance of
the g-th output attribute with respect to j-th output attribute. This provides an immediate
comparison among the different output attributes. In addition, if aw(g, j) > aw(j, j), the g-th
output attribute takes more importance than the j-th output attribute. When aw(g, j) = 0,
no weights were assigned in the literature for the given association of the g-th and the j-th
output attribute, i.e., the two attributes were never considered together. Also in this case, the
normalization of the matrix AW would lead to misleading results. An immediate example
is given considering column 5—the one featured by the lowest value on the main diagonal.
Normalizing the values of column 5 with respect to cell aw(5, 5) will result in having values
higher than 1, which are difficult to interpret, as the matrix AW is non-symmetric and no
reciprocity relation exists with the corresponding elements on row 5.

The matrix of occurrence for the output attributes shown in Figure 2 provides a
detailed view of the frequency with which each attribute is mentioned in the literature.
This specific visual representation provides an immediate understanding of the absolute
importance of the attributes. On the other hand, the matrix of weights for the output
attributes, proposed in Figure 3, provides an immediate comparison between the different
attributes, showing the relative importance of each one. This systematic, visual approach
makes it possible to identify meaningful associations between attributes, providing new
insights that may influence future EVCS siting decisions.
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Figure 2. Matrix of occurrence for the output attributes.

Figure 3. Matrix of weights for the output attributes.

By combining the information from both matrices, it is possible to list the ten most
relevant output attributes:

• 14—Territory sustainability;
• 1—Installation cost;
• 9—Interactions with other infrastructures;
• 20—Grid operation;
• 24—EVCS operation and reliability;
• 17—Demographic information;
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• 15—Emissions;
• 2—O&M costs;
• 8—Road network characteristics;
• 16—Impact on people’s lives.

The same procedure has been repeated considering the subcategories of attributes, thus
aggregating the original starting data according to the scheme reported in Table 5. Thus,
the results are constituted by a pair of [11× 11] matrices for subcategories of attributes,
i.e., A

(SC)
O and A

(SC)
W , with the first for appearances and the second for weights assigned

(shown in Figure 4). If only subcategories of attributes are considered, the reduction in the
matrix dimensions is observed with the corresponding increase in the values contained
in the cells. In the presence of one or more recurring attributes belonging to the same
subcategory in the literature, the appearance will be set as equal to 1 within the same
paper considered. For instance, the attributes belonging to the economic costs subcategory
in Table 5 all appear in [17], but the appearance of the cost subcategory for that particular
paper remains to be equal to unity.

Here, the aggregation of attributes belonging to the same subcategory is performed.
The matrix A

(SC)
O has been computed and reported in Figure 4a. As was previously reported

for the matrix AO, here, the rearrangement of the matrix into a heatmap also points out
which subcategories are considered more relevant. It appears that rows and columns 3,
8, and 10 are less considered in the literature, corresponding to the economic–policy, social–
personal and technical–user side attribute subcategories. The matrix A

(SC)
W instead considers

in each matrix element the corresponding sum of weights assigned in the literature. The
matrix A

(SC)
W remarks the distinction pointed out by the matrix A

(SC)
O , considering the

aggregation of weights. Hence, weights of attributes included within the same subcategory
are summed up for each paper, thus resulting in the matrix reported in Figure 4b. It is
possible to note that weights are now taking a very high value with respect to the values
that appear in the matrix AW , because of the aggregating procedure of weights coming
from the first step. It is possible to perform a subsequent step towards aggregating all
subcategories of attributes in their corresponding categories; thus, a pair of [4× 4] matrices
for categories of attributes, i.e., A

(C)
O and A

(C)
W shown in Figure 5, can be computed. These

will deliver the idea of which category is predominant among the others. The indices of
matrices are reported in Table 6 for the sake of simplicity. As already presented for the
subcategories, all the attributes belonging to the economic category in Table 6 appear in [17],
but the appearance of the economic category for that paper is always equal to unity.

Table 5. Indices of attribute subcategories.

Attribute Category Attribute Subcategory Index (row,col)

Cost 1

Economic Benefit 2

Policy 3

Traffic 4

Environmental Geography 5

Environmental 6

Collective 7

Social Personal 8

Grid side 9

Technical User side 10

EVCS side 11

The attribute subcategory matrices shown in Figure 4 aggregate the data to clearly
show which subcategories are most highly regarded in the literature. As for the matrices
for the output attributes, the occurrence matrix representation defines the relevance of
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the subcategory in the research, while the weight matrices define its relative importance
among them. This representation offers a level of detail and clarity that helps us to better
understand current trends in EVCS research. From Figure 5a, it is possible to appreciate
the appearance distribution of the four categories of attributes in matrix A

(C)
O . The total

number of occurrences of each category compared to the other categories is very close, thus
pointing out that all attribute categories are considered with equal importance. Only the
associations of the technical category with the social and territorial categories show a slightly
lower number of appearances. This means that the scientific literature reviewed focuses
mainly on economic with social and territorial aspects, giving relatively less importance
to technical aspects. The matrix A

(C)
W in Figure 5b instead points out the aggregation of

weights assigned by the different authors to these four categories. From this distribution,
it is possible to note that the aspects related to the territorial category and linked with
the economic and social categories are featured by a higher aggregated weight assigned,
thus considered relevant within the literature examined. Social seems to be less important
than the other attribute categories. This can be explained with the fact that, in general,
lower weight is assigned to this specific category. Finally, as far as the technical category is
concerned, the results shown in the matrix A

(C)
W allow us to classify this category as having

a relevance similar to the economic one.

Table 6. Indices of attribute categories.

Attribute Category Index (row,col)

Economic 1

Environmental 2

Social 3

Technical 4

The analysis carried out herein allows us to formulate further considerations, con-
tributing to set a path for future research related to the EVCS location problem. Keeping in
mind the aforementioned information that is valid as general considerations and mediated
by numerical analysis—i.e., the inter-relationships discovered between categories and sub-
categories of attributes—it is worth noting that the analysed literature contributions have
mainly focused on solving the EVCS location problem under technical and environmen-
tal aspects, since those attribute categories are retrieved to have high aggregated weight
compared to the rest. This is what Figure 4b points out, where the aggregated weight
provides a hierarchical order of attribute categories: territorial, technical, economic, and social.
Motivations can be extrapolated from this, extending the attention from attribute categories
to output attributes as follows. The urgency of pushing towards the widespread use of
EVs with a charging infrastructure aware of the surrounding environment and harmonized
with existing electrical grids and loads should be realized.

The territorial aspect is strongly considered, even much more than technical, in order
to propose environmentally sustainable solutions oriented towards providing less impact
on the natural environment and a satisfactory level of integration with the surrounding
environment. The economic category is therefore only considered afterwards, but the higher
aggregated weights set a priority in considering this category with respect to social. These
statements are reflected in the analysis of how the aggregated weighing is distributed across
the subcategories and, furthermore, across the output attributes. In fact, within the territorial
category, all subcategories are considered (4—traffic; 5—geography; 6—environmental), with
4 and 6 predominantly weighted, while technical presents high weights for 9 and 11 (grid
side and EVCS side, respectively). Then, both economic and social are represented with only
one subcategory, having high weight among the others belonging to the same attribute
category (i.e., 1—cost and 7—collective, respectively).
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(a)

(b)

Figure 4. Matrices for attribute subcategories: (a) occurrence, (b) weights.

Other subcategories that are less considered are, for instance, 2 (benefits) and 3 (policy)
in economic, 5 (geography) in territorial, and 8 (personal) in social. These last considerations can
be analysed item by item considering the weighing of output attributes. As recalled before,
aspects related to the territorial category are targeted by the existing research, with some
valuable differences among them. Output attributes no. 8 (road network characteristics), 15
(emissions), 9 (interactions with other infrastructures), and 14 (territory sustainability) are the
most predominantly weighted; this implies a selection of EVCS locations able to increase
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the level of integration into the citizens’ pattern and facilities in order to potentially increase
the future use of EVCSs from EV users.

(a)

(b)

Figure 5. Matrices for attribute categories: (a) occurrence, (b) weights.

As far as technical aspects are concerned, a strong attention is set on 20 (grid operation)
and 24 (EVCS operations and reliability) to ensure that the locations of EVCSs are fully inte-
grated in the existing infrastructure for electric distribution, minimizing the disturbances
induced on the grid operation and risk of outages. In the economic category, the majority of
the literature contributions addressed 1 (installation costs) and 2 (O&M costs), while lower
weights are assigned to other attributes. An outlier here is represented by 6 (government
support), which is considered in only a few papers (5). For social, the two most relevant at-
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tributes are 17 (demographic information) and 16 (impact on people’s lives), while less relevance
is assigned in general to 18 and 19 (points of interest and user preferences).

The discussion proposed here strongly depends on the point of view considered, i.e., of
the different stakeholders involved, in the process and on the targeted focus preliminarily
set by researchers. In fact, the recently developed research is strongly dedicated to reducing
invasive impacts or interferences arising from the installation of a new infrastructure in an
already-existing context, i.e., grids and roads. Furthermore, the location of EVCSs must
address social aspects in an important way, aiming to maximize the future exploitation
of the charging infrastructure from the user side, and thus also increasing economic in-
comes. Here, the capillary presence of EVCSs on a given area must be intended as strategic
to allow for the increase in EV penetration within the private vehicle fleet, in terms of
being diffused based not only on traffic volumes, but also on social activities, and thus
reaching the highest number of EV users and capturing their need to charge. Moreover,
the policies being progressively approved in Europe to increase the number of EVs in the
private sector is enhancing the local administrations to concede more areas to be included
in public tenders to be assigned for the installation of EVCS infrastructure. Therefore, this
last point is expected to be considered with increasing weight with respect to the past,
as stakeholders will orient their business strategies where public governments are support-
ing this change. This analysis offers a valuable overview of the broad set of key factors
influencing the EVCS infrastructure’s location selection process and a practical approach
to systematically categorize and weigh the main attributes to support the deployment
strategy of a CPO. The framework aids in making informed decisions that balance technical,
economic, and environmental factors, facilitating a more streamlined and effective roll-out
of charging stations. The emphasis on attributes such as territory sustainability, grid opera-
tion, and installation cost is in line with practical considerations in infrastructure planning.
Furthermore, the inclusion of both numerical and non-numerical attributes in the MADM
approach allows us to consider a very broad spectrum of factors, thereby enhancing the
robustness of the decision-making process. Overall, this study provides a comprehensive
basis that can support a CPO’s approach to strategic EVCS location planning, fostering the
development of a more efficient and user-oriented charging network.

5. Conclusions

This paper has presented a structured categorization of the attributes considered
within a multi-attribute analysis that addresses the EVCS location. The analysis of the
literature highlighted the existence of different nomenclatures for similar aspects, intro-
ducing difficulties in defining the multi-criteria problem, as well as confusion in choosing
the most convenient attributes. Therefore, the proposed categorization started from the
information found in the literature and introduced a novel structure with basic attributes,
categories, and subcategories. In this way, similar aspects have been methodically merged,
allowing the decision makers to easily find high-level aspects to be included in the analysis.
In particular, the new framework is composed of input attributes obtained from the litera-
ture review, combined with additional items relevant for the actual application, shaping
the features contained as categories and subcategories. The new framework is defined
according to four main categories (economic, territorial, social, and technical), and the
features are defined by tailoring the solution on real cases, which represents the novelty of
this work.

The new feature framework also focuses on the relative importance among groups of
features, evaluating both the occurrences and the assigned weights based on the literature
outcomes. A numerical assessment was carried out through the computation of aggregated
appearances and weights organized into two matrices for all the literature contributions
considered. Through this analysis, it was possible to examine both the distribution of the
criteria and their relative importance, finally establishing a hierarchical order based on the
actual literature background retrieved. The proposed categorization is also convenient for
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better understanding the most common attributes used in the literature and their relative
importance. This provides suggestions to the decision maker on the choice of weights.

As a future development, the analysis can be extended by setting up a comparison
among the different MCDM methods mainly exploited for EVCS location, evaluating their
performance, limitations, and strengths. Moreover, an interesting insight is to examine the
relevant points of view of the different actors involved in the EVCS location problem. Based
on this last point, it can be observed how the categorization of the attributes will change,
highlighting which output attributes will be considered or excluded in the analysis.

The application of the new criteria presented here offers a conventional basis for
future research works in the field. The adoption of this framework can allow for a direct
comparison among different works and proposed solutions. This makes it possible to
partially attempt to resolve the inhomogeneity of the retrieved attributes, which constitutes
the main challenging aspect in the application of the proposed framework.
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Nomenclature

BSS Battery Swapping Station

CPO Charging Point Operator

EA Electricity Accessibility

EMO Evolutionary Multi-objective Optimization

EV Electric Vehicle

EVCS Electric Vehicle Charging Station

ICE Internal Combustion Engine

MADM Multi-Attribute Decision-Making

MCDM Multi-Criteria Decision-Making

MOCO Multi-Objective Combinatorial Optimization

MODM Multi-Objective Decision-Making

MOLP Multi-Objective Linear Programming

O&M Operation and Maintenance

RESs Renewable Energy Sources
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32. Schmidt, M.; Zmuda-Trzebiatowski, P.; Kiciński, M.; Sawicki, P.; Lasak, K. Multiple-Criteria-Based Electric Vehicle Charging
Infrastructure Design Problem. Energies 2021, 14, 3214. [CrossRef]

219



Energies 2024, 17, 3920

33. Wu, F.; Sioshansi, R. A stochastic flow-capturing model to optimize the location of fast-charging stations with uncertain electric
vehicle flows. Transp. Res. Part D Transp. Environ. 2017, 53, 354–376. [CrossRef]

34. Guler, D.; Yomralioglu, T. Suitable location selection for the electric vehicle fast charging station with AHP and fuzzy AHP
methods using GIS. Ann. GIS 2020, 26, 169–189. [CrossRef]

35. Zhao, H.; Li, N. Optimal Siting of Charging Stations for Electric Vehicles Based on Fuzzy Delphi and Hybrid Multi-Criteria
Decision Making Approaches from an Extended Sustainability Perspective. Energies 2016, 9, 270. [CrossRef]

36. Ayyildiz, E. A novel pythagorean fuzzy multi-criteria decision-making methodology for e-scooter charging station location-
selection. Transp. Res. Part D Transp. Environ. 2022, 111, 103459. [CrossRef]

37. Bahaj, A.S.; Turner, P.; Mahdy, M.; Leggett, S.; Wise, N.; Alghamdi, A. Environmental assessment platform for cities racing to net
zero. J. Phys. Conf. Ser. 2021, 2042, 012140. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

220



MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Energies Editorial Office
E-mail: energies@mdpi.com

www.mdpi.com/journal/energies

Disclaimer/Publisher’s Note: The title and front matter of this reprint are at the discretion of the

Guest Editors. The publisher is not responsible for their content or any associated concerns. The

statements, opinions and data contained in all individual articles are solely those of the individual

Editors and contributors and not of MDPI. MDPI disclaims responsibility for any injury to people or

property resulting from any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-7258-2930-9


