
mdpi.com/journal/drones

Special Issue Reprint

Path Planning, Trajectory
Tracking and Guidance
for UAVs

Edited by

Heng Shi, Jihong Zhu, Zheng Chen and Minchi Kuang

Path Planning, Trajectory Tracking and
Guidance for UAVs

Path Planning, Trajectory Tracking and
Guidance for UAVs

Guest Editors

Heng Shi

Jihong Zhu

Zheng Chen

Minchi Kuang

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester

Guest Editors

Heng Shi

Tsinghua University

Beijing

China

Jihong Zhu

Tsinghua University

Beijing

China

Zheng Chen

Zhejiang University

Hangzhou

China

Minchi Kuang

Tsinghua University

Beijing

China

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal Drones (ISSN 2504-446X),

freely accessible at: https://www.mdpi.com/journal/drones/special issues/CW6S65ZS54.

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-2947-7 (Hbk)

ISBN 978-3-7258-2948-4 (PDF)

https://doi.org/10.3390/books978-3-7258-2948-4

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

About the Editors . vii

Preface . ix

Xinghui Yan, Yuzhong Tang, Yulei Xu, Heng Shi and Jihong Zhu

Multi-Constrained Geometric Guidance Law with a Data-Driven Method
Reprinted from: Drones 2023, 7, 639, https://doi.org/10.3390/drones7100639 1

Ziyu Cao, Zhihui Du and Jianhua Yang

Topological Map-Based Autonomous Exploration in Large-Scale Scenes for Unmanned Vehicles
Reprinted from: Drones 2024, 8, 124, https://doi.org/10.3390/drones8040124 19

Ruiping Zheng, Qi Zhu, Shan Huang, Zhihui Du, Jingping Shi and Yongxi Lyu

Extended State Observer-Based Sliding-Mode Control for Aircraft in Tight Formation
Considering Wake Vortices and Uncertainty
Reprinted from: Drones 2024, 8, 165, https://doi.org/10.3390/drones8040165 37

Yanbo Fu, Wenjie Zhao and Liu Liu

Safe Reinforcement Learning for Transition Control of Ducted-Fan UAVs
Reprinted from: Drones 2023, 7, 332, https://doi.org/10.3390/drones7050332 54

Xiao Zhang, Wenjie Zhao, Changxuan Liu and Jun Li

Distributed Multi-Target Search and Surveillance Mission Planning for Unmanned Aerial
Vehicles in Uncertain Environments
Reprinted from: Drones 2023, 7, 355, https://doi.org/10.3390/drones7060355 75

Zhixiong Xu, Li Fan, Wei Qiu, Guangwei Wen and Yunhan He

A Robust Disturbance-Rejection Controller Using Model Predictive Control for Quadrotor UAV
in Tracking Aggressive Trajectory
Reprinted from: Drones 2023, 7, 557, https://doi.org/10.3390/drones7090557 98

Lexu Du, Yankai Fan, Mingzhen Gui and Dangjun Zhao

A Multi-Regional Path-Planning Method for Rescue UAVs with Priority Constraints
Reprinted from: Drones 2023, 7, 692, https://doi.org/10.3390/drones7120692 119

Zhilong Xi, Haoran Han, Jian Cheng and Maolong Lv

Reducing Oscillations for Obstacle Avoidance in a Dense Environment Using Deep
Reinforcement Learning and Time-Derivative of an Artificial Potential Field
Reprinted from: Drones 2024, 8, 85, https://doi.org/10.3390/drones8030085 151

Zhilan Zhang, Yufeng Wang, Yizhe Luo, Hang Zhang, Xiaorong Zhang and Wenrui Ding

Iterative Trajectory Planning and Resource Allocation for UAV-Assisted Emergency
Communication with User Dynamics
Reprinted from: Drones 2024, 8, 149, https://doi.org/10.3390/drones8040149 174

Jiabin Lou, Rong Ding and Wenjun Wu

HHPSO: A Heuristic Hybrid Particle Swarm Optimization Path Planner for Quadcopters
Reprinted from: Drones 2024, 8, 221, https://doi.org/10.3390/drones8060221 196

Xiaoxiong Liu, Wanhan Xue, Xinlong Xu, Minkun Zhao and Bin Qin

Research on Unmanned Aerial Vehicle (UAV) Visual Landing Guidance and Positioning
Algorithms
Reprinted from: Drones 2024, 8, 257, https://doi.org/10.3390/drones8060257 214

v

Long Chen, Guangrui Liu, Xia Zhu and Xin Li

A Heuristic Routing Algorithm for Heterogeneous UAVs in Time-Constrained MEC Systems
Reprinted from: Drones 2024, 8, 379, https://doi.org/10.3390/drones8080379 239

Yong Liao, Yuxin Wu, Shichang Zhao and Dan Zhang

Unmanned Aerial Vehicle Obstacle Avoidance Based Custom Elliptic Domain
Reprinted from: Drones 2024, 8, 397, https://doi.org/10.3390/drones8080397 260

Delong Shi, Jinrong Shen, Mingsheng Gao and Xiaodong Yang

A Multi-Waypoint Motion Planning Framework for Quadrotor Drones in Cluttered
Environments
Reprinted from: Drones 2024, 8, 414, https://doi.org/10.3390/drones8080414 292

Jia Guo, Minggang Gan and Kang Hu

Cooperative Path Planning for Multi-UAVs with Time-Varying Communication and Energy
Consumption Constraints
Reprinted from: Drones 2024, 8, 654, https://doi.org/10.3390/drones8110654 316

vi

About the Editors

Heng Shi

Heng Shi is currently an Assistant Research Fellow in the Department of Precision Instrument

at Tsinghua University. He earned his Ph.D. in Computer Science and Technology from Tsinghua

University in 2020, following M.S. and B.S. degrees in Astronautics from Beihang University in

2015 and 2012, respectively. Dr. Shi’s research primarily focuses on the guidance and control of

vehicles, particularly in the context of unmanned aerial vehicles (UAVs). His current projects involve

advancing cooperative guidance techniques and enhancing intelligent control systems through

innovative applications of sensor fusion and reinforcement learning. Throughout his career, Dr.

Shi has led several national scientific projects, published over 30 papers in esteemed journals and

conferences, and holds 14 authorized national invention patents. He also contributes to the academic

community as a Guest Editor and Topical Advisory Panel member for the journal Drones, and he

has served as a reviewer for numerous top-tier journals. His work significantly impacts the field of

autonomous systems, driving advancements in UAV technology and applications.

Jihong Zhu

Jihong Zhu is a Professor in the Department of Precision Instrument at Tsinghua University,

where he leads research in advanced control systems and precision measurement technologies. His

academic journey includes a rich background in automation and control, focusing on applications

that bridge the gap between theoretical development and practical implementation. Dr. Zhu is

currently involved in several innovative projects that explore the intersection of control engineering

and intelligent systems, aiming to enhance the reliability and performance of autonomous vehicles

and robotic systems. His scientific interests encompass adaptive control, estimation theory, and

sensor fusion, with a particular emphasis on their applications in aerospace and robotics. Dr. Zhu

has published extensively, contributing to over 200 research papers in leading academic journals and

conference proceedings. His work has garnered several honors, reflecting his influence in the field.

As an active member of the academic community, he serves on editorial boards and is a reviewer for

numerous prestigious journals, promoting advancements in technology and fostering collaboration

within the research community.

Zheng Chen

Zheng Chen received a Ph.D. degree in Applied Mathematics from the University Paris-Saclay

in 2016, and received M.Sc. and B.Sc. degrees in Aerospace Engineering from Northwestern

Polytechnical University in 2013 and 2010, respectively. Zheng is currently a researcher with the

School of Aeronautics and Astronautics at Zhejiang University and is the director of the Laboratory

of AI for Flight at Zhejiang University. Zheng has participated in more than 10 scientific projects and

was the coordinator of 7 projects. Zheng’s general interests include the development and application

of optimal control theory and methods to aerospace engineering, particularly in dynamic and

time-critical environments. To date, Zheng has contributed to more than 50 scientific publications, 36

of which are in international journals with referees.

Minchi Kuang

Minchi Kuang is an Associate Research Fellow in the Department of Precision Instrument

at Tsinghua University, specializing in intelligent control systems, with a particular focus on

vii

high-performance guidance and control for advanced aerospace applications. After earning his

B.S. and Ph.D. in Computer Science from Tsinghua University, Dr. Kuang has dedicated his career

to developing robust control solutions for national scientific projects, including intelligent control

and digital twin systems. His achievements include leading several national research projects and

receiving a prestigious national science and technology award for his innovative work. Recognized

as a Young Talent by the China Association for Science and Technology, Dr. Kuang holds numerous

patents, with several applied in critical national projects.

viii

Preface

This Special Issue on Path Planning, Trajectory Tracking, and Guidance for UAVs brings together

recent advancements in the algorithms and control systems enabling Unmanned Aerial Vehicles

to operate autonomously in complex environments. The collected works address critical aspects

of autonomous UAV functionality, from path optimization and real-time trajectory adjustments to

precise guidance and obstacle avoidance. Given the increasing demand for robust UAV applications

across various fields, this collection provides essential insights for researchers, engineers, and

practitioners focused on enhancing UAV safety, stability, and adaptability. The authors contribute

a wealth of innovative approaches and practical solutions to the challenges of UAV autonomy,

reflecting collective efforts to refine and expand UAV technology. We hope it will serve as a valuable

resource for anyone interested in the development and application of autonomous UAV systems.

Heng Shi, Jihong Zhu, Zheng Chen, and Minchi Kuang

Guest Editors

ix

Citation: Yan, X.; Tang, Y.; Xu, Y.;

Shi, H.; Zhu, J. Multi-Constrained

Geometric Guidance Law with a

Data-Driven Method. Drones 2023, 7,

639. https://doi.org/10.3390/

drones7100639

Academic Editor: Sanjay Sharma

Received: 14 September 2023

Revised: 8 October 2023

Accepted: 13 October 2023

Published: 18 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Multi-Constrained Geometric Guidance Law with a
Data-Driven Method

Xinghui Yan 1, Yuzhong Tang 1, Yulei Xu 1, Heng Shi 2,* and Jihong Zhu 2

1 School of Power and Energy, Northwestern Polytechnical University, Xi’an 710129, China;
yanxh@nwpu.edu.cn (X.Y.); tangyz@mail.nwpu.edu.cn (Y.T.)

2 Department of Precision Instrument, Tsinghua University, Beijing 100084, China
* Correspondence: shiheng@tsinghua.edu.cn

Abstract: A data-driven geometric guidance method is proposed for the multi-constrained guidance
problem of variable-velocity unmanned aerial vehicles (UAVs). Firstly, a two-phase flight trajectory
based on a log-aesthetic space curve (LASC) is designed. The impact angle is satisfied by a specified
straight-line segment. The impact time is controlled by adjusting the phase switching point. Secondly,
a deep neural network is trained offline to establish the mapping relationship between the initial
conditions and desired trajectory parameters. Based on this mapping network, the desired flight
trajectory can be generated rapidly and precisely. Finally, the pure pursuit and line-of-sight (PLOS)
algorithm is employed to generate guidance commands. The numerical simulation results validate
the effectiveness and superiority of the proposed method in terms of impact time and angle control
under time-varying velocity.

Keywords: data-driven; multi-constrained guidance; impact time control; impact angle control;
time-varying velocity

1. Introduction

Classical guidance laws, such as proportional navigation, do not give enough con-
sideration to impact time and angle, which results in poor cooperative performance. For
example, an impact angle constraint should be imposed for the UAVs to approach the target
from a specified direction in some cases [1–4]. When multiple UAVs need to be gathered in
a formation, the impact time should be coordinated [5–8]. Three performance indicators,
namely miss distance, impact time, and impact angle, should be satisfied simultaneously
during cluster flight. Therefore, impact time and angle control guidance (ITACG) laws
have attracted extensive attention in both the academic and industrial worlds [9–18].

Scholars have conducted a series of studies based on different theories and methods,
including optimal control theory, sliding mode control theory, computational geometry,
and those methods based on proportional navigation. Lee et al. [9] proposed the first
ITACG law based on optimal control theory, which consists of a feedback loop and an
additional control command. In [10], a two-phase optimal ITACG law based on the virtual
target method is proposed, which is suitable for all-around control in planar formations
under admissible initial conditions and predetermined terminal constraints. The guidance
problem is described as an optimal control model with discontinuities in [11], and an
iterative guidance method is used to realize multi-constrained control. In [12], a new robust
second-order sliding mode control law was developed by incorporating backstepping
control, the line-of-sight rate shaping method, and second-order sliding mode control. Hou
et al. [13] designed two different terminal sliding surfaces based on nonsingular terminal
sliding mode control theory. This sliding mode control-based guidance law enables the UAV
to satisfy both time and angle constraints while reaching the target. Reference [14], which
combined the impact angle control guidance law based on backstepping control and the
impact time control guidance law based on proportional navigation, achieved simultaneous

Drones 2023, 7, 639. https://doi.org/10.3390/drones7100639 https://www.mdpi.com/journal/drones1

Drones 2023, 7, 639

control of both impact angle and time. A new ITACG law with adjustable coefficients was
proposed in [15]. The bias proportional guidance with impact angle constraint is extended
with feedback control of impact time error. However, the UAVs’ flight trajectories under
the aforementioned guidance laws are implicit, making it difficult to accurately estimate
the time-to-go in advance. Zhang et al. [16] proposed a trajectory planning method based
on three circular arcs to control impact time and angle. An explicit two-phase flight
trajectory based on second-order Bezier curves was proposed in [17], allowing for precise
impact time and angle requirements. In [18], the geometric ITACG law was extended to
three-dimensional space using log-aesthetic space curves (LASCs). However, the offline
trajectory design methods in [16–18] cannot be computed quickly enough to achieve an
optimal solution and do not adequately consider time-varying velocity.

Besides the classical theories and methods mentioned above, data-driven methods [19–21]
have gained significant attention in the field of guidance law design in recent years. Data-
driven methods focus on the relationships between input and output data in a system
and approximate the behavior of the system without analytical modeling. After collecting
large amounts of input and output data, a data-driven model can be established using
machine learning techniques. In [22], a deep neural network (DNN) was trained to learn
the mapping relationship between flight states and distances. Based on this DNN, a
multi-constrained prediction–correction guidance algorithm was proposed. Guo et al. [23]
proposed a guidance law that combines data-driven methods and proportional navigation.
The data-driven methods were used to compensate for the impact time error of proportional
navigation guidance. Based on this, a biased proportional navigation guidance law was
designed to control the impact time. In [24], another impact time control guidance law was
designed based on proportional navigation and data-driven methods, which do not rely
on time-to-go information. Reference [25] designed a two-phase guidance law based on
data-driven methods to control both impact time and angle.

However, the aforementioned guidance laws are developed based on the assumption
of constant velocity and two-dimensional kinematics. In practical applications, the UAV’s
velocity varies with engine thrust and air drag in three dimensions. As a result, it is
challenging to control impact time and angle precisely under time-varying velocity. This
manuscript addresses the guidance problem of impact time and angle control in three
dimensions. A guidance law based on data-driven methods and computational geometry
is proposed. The main contributions of this manuscript are summarized as follows:

1. The proposed three-dimensional, multi-constrained guidance method develops a
geometric trajectory planning framework. It uses data-driven methods to solve the
trajectory parameters, taking impact time, impact angle, maximum overload, and
time-varying velocity into account.

2. Different from references [9–15], the proposed guidance method overcomes the re-
liance on accurate time-to-go estimation, which is quite difficult under time-varying
velocities. The proposed method achieves better performance in terms of impact time
and angle under time-varying velocity.

3. Compared to references [16–18], the proposed guidance law adopts data-driven
methods to solve trajectory parameters, which greatly speeds up the trajectory gener-
ation process. This improvement benefits the update of trajectories due to different
mission requirements.

The remainder of this manuscript is organized as follows: Section 2 introduces founda-
tional concepts, including the LASC and guidance model. In Section 3, a novel ITACG law
is proposed based on geometric planning and data-driven methods. Numeric simulations
and results are given in Section 4. Section 5 provides the conclusions.

2

Drones 2023, 7, 639

2. Preliminaries

2.1. Log-Aesthetic Space Curves

LASCs are widely applied in many fields, such as industrial design [26,27] and artistic
aesthetics [28,29]. Each LASC has a linear, logarithmic curvature graph (LCG) and a linear,
logarithmic torsion graph (LTG), as represented by Equations (1) and (2) [30].

log(ρ
ds
dρ

) = α log ρ+c1 (1)

log(μ
ds
dμ

) = β log μ+c2 (2)

where s, ρ, and μ are the curve length, radius of curvature, and radius of torsion, respec-
tively; α and β are the slopes of the segments in LCG and LTG, respectively; c1 and c2 are
constants. Setting Λ = e−c1 and Ω = e−c2 , we obtain

ds
dρ

=
ρα−1

Λ
(3)

ds
dμ

=
μβ−1

Ω
(4)

Setting ρ = 1 and μ = υ at s = 0, and integrating Equations (3) and (4), results in

ρ =

{
eΛs , if α = 0

(Λαs + 1)
1
α , otherwise

(5)

μ =

{
e(Ωs+log υ) , if β = 0

(Ωβs + υβ)
1
β , otherwise

(6)

Hence, the curvature and torsion of a curve can be represented as

κ(s) =

{
e−Λs , if α = 0

(Λαs + 1)−
1
α , otherwise

(7)

τ(s) =

{
e−(Ωs+log υ) , if β = 0

(Ωβs + υβ)
− 1

β , otherwise
(8)

Then, the LASC can be established by integrating the Frenet–Serret formula as fol-
lows [30,31]: ⎡⎢⎣

dT(s)
ds

dN(s)
ds

dB(s)
ds

⎤⎥⎦ =

⎡⎣ 0 κ(s) 0
−κ(s) 0 τ(s)
0 − τ(s) 0

⎤⎦⎡⎣ T(s)
N(s)
B(s)

⎤⎦ (9)

where T(s), N(s), and B(s) are unit tangent vector, unit normal vector, and unit binormal
vector, respectively.

2.2. Guidance Problem Statement

To facilitate analytical analysis, the following assumptions are made [10,14,18]: (1) The
UAV and target are assumed to be mass points. (2) Compared with the UAV, the target’s
velocity is low and can be considered static. (3) Since the autopilot dynamics are much
faster than the UAV dynamics, the autopilot lag is neglected in guidance law design.

The guidance scenario in three-dimensional space is shown in Figure 1. The position
coordinates in the inertial frame of the UAV and target are I(xm, ym, zm) and T(xt, yt, zt),

3

Drones 2023, 7, 639

respectively. The inertial frame is denoted as O − X − Y − Z. The subscripts 0 and f
indicate the initial and final moments, respectively. The relative kinematic equations are:

.
xm = V cos θm cos ψm.
ym = V cos θm sin ψm.
zm = V sin θm.
θm = azm

V.
ψm =

aym
V cos θm

(10)

where V is the UAV velocity. azm and aym are the corresponding pitch and yaw acceleration.
θm and ψm represent the pitch angle and the yaw angle, respectively. R is the range between
I and T.

O X

Y

Z

mv

mv

R
I

T
mfv

mθ

mψ
mfθ
mfψ

Figure 1. Three-dimensional guidance geometry.

Since air drag has a great influence on the UAV velocity, the drag model in [32,33] is
adopted. The velocity change in the UAV can be expressed as

.
V =

1
m
(T − 1

2
ρV2SCD − kDa2) (11)

where m, T, and S represent the mass, thrust, and reference area of the UAV, respectively.
CD is the parasite drag coefficient, and its relationship with the UAV velocity V is presented
in Figure 2 [17]. kD is the induced drag coefficient. m and T are functions of time t, and can
be represented as

T(t) =
{

Ten, t ≤ ten
0 , t > ten

(12)

m(t) =

{
m0 −

∫ t
0 μdt, t ≤ ten

m0 − m f u , t > ten
(13)

where Ten, μ, m f u, and ten are the thrust, fuel consumption rate, fuel mass, and maximum
working time of the UAV engine, respectively.

Considering the constraints of miss distance, acceleration limitation, impact time, and
angle, the design objective of the guidance law can be mathematically defined as⎧⎪⎪⎪⎨⎪⎪⎪⎩

lim
t→t f

xm → xt, lim
t→t f

ym → yt, lim
t→t f

zm → zt

lim
t→t f

θm → θm f , lim
t→t f

ψm → ψm f√
azm2(t) + aym2(t) ≤ amax

(14)

For the sake of simplicity, the launch position of the UAV is set to the origin of the
inertial coordinate system O(0, 0, 0). The target position is placed at T(xt, 0, 0) on the X-axis.

4

Drones 2023, 7, 639

Figure 2. Profile of the parasitic drag coefficient of the UAV with respect to velocity.

3. Guidance Law Design

In this section, the design concept of a two-phase trajectory is initially introduced
(Section 3.1). Then, the impact angle, impact time, and acceleration limitation are analyzed
(Section 3.2). Afterward, a trajectory generation data-driven method is proposed to satisfy
multiple constraints (Section 3.3). Lastly, a pure pursuit and line-of-sight (PLOS) tracking
algorithm is employed to generate the guidance commands (Section 3.4). Figure 3 shows
the block diagram of the guidance method.

Figure 3. Guidance method design block diagram.

3.1. Trajectory Design Concept

The impact time and angle control are realized by adjusting the LASC trajectory’s
length, endpoint position, and tangent vector. Denote the initial launch angle of the UAV
as (θm0, ψm0), and the desired angle at impact as (θm f , ψm f). Near the moment that the
UAV approaches the target, the terminal-phase flight trajectory can be approximated as a
straight line. If the angle formed by this straight line with respect to the target is equal to the
desired impact angle, the impact angle constraint is satisfied. To ensure a smooth transition
between the initial and terminal trajectories, these two trajectories must be tangent at the
phase switching point. Moreover, by adjusting the position of this phase switching point
along the straight-line trajectory, the length of the two-phase trajectory can be adjusted
along with the impact time.

The parameters of the multi-constrained trajectory remain to be determined, including
LASC parameters and phase switching point position. However, the complexity of the tra-
jectory generation process makes it very difficult and even impractical to find an analytical
solution. Consequently, a data-driven method is used to design the two-phase trajectory.
The design framework is illustrated in Figure 4. The initial phase trajectory is a LASC

5

Drones 2023, 7, 639

that coincides with the launch angle at the origin, while the terminal phase trajectory is a
straight-line segment that fulfills the impact angle constraint. The phase switching point is
denoted as S. O − XL − YL − ZL is the local coordinate system established for solving the
LASC parameters under given conditions.

O X

Y

Z

mv

T

S
LX

LY

LZ

Figure 4. Two-phase guidance trajectory and geometric framework.

3.2. Multi-Constrained Analysis

In order to satisfy the impact angle constraint, it is necessary to make the initial phase
trajectory tangent to the starting line at the origin point O and tangent to the collision line at
the phase switching point S. Equations (5) and (6) provide insight that the LASC involves
five trajectory parameters, namely α, β, Λ, Ω, and υ. With the values of α, β, and Ω fixed,
adjusting the values of Λ and υ is adequate to satisfy the terminal positional and tangential
constraints [30]. Thus, we set α = β = Ω = 0 in this manuscript.

For simplicity, the LASC can be normalized into a standard form by scaling and
rotating transformations [18,30]. The coordinates of the two endpoints are transformed
to O(0, 0, 0) and S′(2, 0, 0), with the scaling factor of |OS|/2. The initial condition is
determined by the starting position O(0, 0, 0) and the launch angle (θm0, ψm0). The terminal
condition is determined by the endpoint position S′(2, 0, 0) and the impact angle (θm f , ψm f).
Thus, the LASC in the standard form can be obtained by integrating Equation (9). The
generated LASC conforms to the following mapping relation f1:

(LS0 , θm f , ψm f) = f1(θm0, ψm0, Λ, υ, |OS|) (15)

where LS0 is the length of the LASC in the standard form.
To apply the standard-form trajectory to the inertial frame, the size of the LASC needs

to be scaled as
LS = LS0 · |OS|/2 (16)

The length L of the entire two-phase trajectory is

L = LS + |ST| (17)

To satisfy the impact time constraint, the trajectory length needs to be adjusted by
tuning the position of the phase switching point. The position of the phase switching point
is determined by the length of the line segment |ST|. Therefore, the desired two-phase
trajectory satisfies the following mapping relation f2:

(L, θm f , ψm f) = f2(θm0, ψm0, Λ, υ, |OS|, |ST|) (18)

The following geometric relationship can be obtained from Figure 4.

|OS|2 = |ST|2 + |OT|2 − 2|ST| · |OT|2 cos∠OTS (19)

6

Drones 2023, 7, 639

Then, Equation (18) can be rewritten as

(L, θm f , ψm f) = f3(θm0, ψm0, Λ, υ, |ST|, |OT|) (20)

Although the trajectory length and the trajectory parameters have been obtained,
the impact time still needs to be calculated due to time-varying velocity. The following
relationship between the trajectory length and the impact time needs to be satisfied.∫ t f

0
V(t)dt − L = 0 (21)

After obtaining the two-phase trajectory that satisfies the constraints of impact time
and angle, it is necessary to evaluate the maximum acceleration demand during trajectory
tracking. Because the acceleration demand imposes a constraint on the curvature of the
trajectory as follows:

V2 · |κ(s)|max ≤ amax (22)

According to Equation (7), the curvature of the LASC is monotonically decreasing.
Hence, we have

|κ(s)|max = |κ(0)| = |κ0(0)| · 2/|OS| (23)

where κ(s) and κ0(s) are the curvature in the inertial frame and the standard form, respectively.
Equation (20) can be supplemented as

(L, θm f , ψm f , |κ(s)|max) = f3(θm0, ψm0, Λ, υ, |ST|, |OT|) (24)

While the UAV velocity varies with time, it is important to determine the exact
maximum acceleration during trajectory tracking. To ensure the feasibility of flying along
the trajectory, the maximum acceleration is evaluated using the maximum velocity and
maximum curvature as

Vmax · |κ(s)|max ≤ amax (25)

3.3. Trajectory Generation
3.3.1. Analysis of Mapping Relationship

The LASC plays a crucial role in ensuring a smooth transition between the two phases.
To satisfy the impact angle constraint while maintaining the adjustability of the trajectory
length, a predefined collision line is set. The trajectory length is adjusted by tuning the
phase switching point, which further realizes control over the impact time. Consequently,
the trajectory parameters that need to be determined include LASC parameters Λ and υ,
initial relative distance |OT|, and straight-line trajectory length |ST|.

If the trajectory scaling factor is σ, then the initial relative distance |OT|, straight-
line trajectory length |ST|, and trajectory length L are all scaled in the same proportion.
Moreover, the maximum curvature becomes |κ(s)|max/σ, while the LASC parameters Λ
and υ remain unchanged. For the sake of simplicity, we assume the initial distance between
the objects is a definite value R0 for further analysis. Thus, the Equation (24) can be
rewritten as

(L, θm f , ψm f , |κ(s)|max) = f0(θm0, ψm0, Λ, υ, |ST|) (26)

It can be inferred from Equation (26) that the trajectory parameters are determined by
the initial angle, impact angle, and trajectory length. There is also a maximum curvature
associated with these trajectory parameters. The corresponding mapping relation F0 can be
expressed as

(Λ, υ, |ST|, |κ(s)|max) = F0(θm0, ψm0, θm f , ψm f , L) (27)

It is worth pointing out that when a curve rotates around the X-axis, its geometric fea-
tures, such as relative distances and angles, remain unchanged. As shown in Figures 5 and 6,
v′m0 and v′m f are the projection vectors of the initial unit vector vm0 = (x0, y0, z0) and termi-

7

Drones 2023, 7, 639

nal unit vector vm f =
(

x f , y f , z f

)
in the YOZ plane, respectively. θ0 is the angle between

vm0 and the YOZ plane, while θ f is the angle between vm f and the YOZ plane. ψ0 is the
angle between v′m0 and the Z-axis, while ψ f is the angle between v′m f and the Z-axis. The
related relation expressions are as follows:

θ0 = arcsinx0
θ f = arcsinx f
ψ0 = arctan(y0, z0)
ψ f = arctan(y f , z f)

(28)

O
X

Y

Z
mv

T
mfvY

Z

fθ

θ

mv′

mfv′

Figure 5. Illustration of the initial and terminal vectors of the curve.

O
Y

Z

ψ

fψ

mv′

mfv′

Figure 6. Illustration of the projection of the initial and terminal vectors onto the YOZ plane.

θ0, θ f , and Δψ represent the relative geometry of the initial vector and terminal vector
in space. The corresponding values remain unchanged in spite of rotating around the
X-axis. Therefore, the Equation (27) can be further simplified as follows:

(Λ, υ, |ST|, |κ(s)|max) = F(θ0, θ f , Δψ, L) (29)

where Δψ =
∣∣∣ψ0 − ψ f

∣∣∣.
Compared with Equation (27), Equation (29) reduces the dimensions of the input

variables from 5 to 4, which significantly reduces the computational burden of constructing
the database. Additionally, the proposed trajectory design method gains better flexibility
by using fewer parameters in trajectory generation.

8

Drones 2023, 7, 639

3.3.2. Acquisition of Trajectory Parameters

The LASC that satisfies the terminal constraints can be obtained by solving the LASC
parameters Λ and υ with the improved simplex method [30,34]. However, the existing
trajectory generation problem involves time-varying velocity, which makes it difficult to
solve analytically and rapidly. Local optimization algorithms like the improved simplex
method would struggle to obtain the global optimal solution, while global optimization
algorithms would suffer from time-consuming computation. Hence, a data-driven method
is introduced here to solve the trajectory parameters efficiently. Instead of relying on
complex analytical equations, the data-driven method focuses on establishing the relation-
ship between input and output variables, which benefits solving the trajectory parameters
accurately and efficiently.

Due to the strong capability of nonlinear fitting, DNN-based modeling is a widely adopted
data-driven method and has gained more and more popularity in various fields [22,35,36].
DNN is composed of multiple layers and massive neurons, which allows it to model
complex relationships and patterns through training data. Through learning from large
datasets, DNN can perform nonlinear mappings between input and output variables,
which makes it highly effective in handling complex and high-dimensional problems.

The general training process has three main steps [37]: forward propagation, loss
function calculation, and backpropagation. In the step of forward propagation, input data
are passed through the network’s input layer to the output layer:

Ym = f m(WmYm−1 + bm) (30)

where Wm and bm are the weight coefficients and biases of the mth layer, respectively. Ym

represents the output value of the mth layer. To achieve better performance in nonlinear
mapping, the activation function f m is applied.

The predicted output values are obtained through forward propagation. Then, these
predicted values are compared with the actual output values to further assess the DNN’s
mapping performance. The prediction error is obtained by the loss function, while the
weights and biases of each neuron are tuned according to the gradient of the loss function.
The commonly used loss function is the mean squared error (MSE), which is defined
as follows:

L =
1
N

N

∑
i=1

(Yi
pred − Yi

actual)

2

(31)

where N is the number of samples. Yi
pred and Yi

actual represent the predicted output and
actual output values of the ith sample, respectively.

In the step of backpropagation, the updates for weights and biases are performed
as follows:

Wm
t = Wm

t−1 − η
∂L

∂Wm
t−1

(32)

bm
t = bm

t−1 − η
∂L

∂bm
t−1

(33)

where Wm
t represents the weights of the mth layer at time t. bm

t denotes the biases of the
mth layer at time t. η is the learning rate that determines the step size for searching weight
values. ∂ represents the gradient sign. The “−” sign indicates that the weight updates are
made to reduce the loss function.

Therefore, a deep neural network, denoted as NETDNN and shown in Figure 7, can be
trained to establish the mapping in Equation (29). NETDNN is used to solve the trajectory
parameters Λ, υ, |ST| and the maximum curvature |κ(s)|max. Then, the multiple constraints
can be checked according to Equations (9) and (25).

9

Drones 2023, 7, 639

θ

fθ

ψΔ

L

ST

υ

Λ

sκ

Figure 7. Structure diagram of a neural network.

3.4. Trajectory Tracking

It is crucial to guide the UAV along the designed trajectory in the presence of distur-
bances. Otherwise, the actual flight trajectory may deviate from the designed trajectory.
Therefore, a closed-loop trajectory tracking method is needed. Four commonly used
three-dimensional trajectory tracking algorithms are compared in [38], namely lookahead,
nonlinear guidance law (NLGL), pure pursuit and line-of-sight (PLOS), and vector field.
Among these algorithms, the PLOS algorithm performs the best in both accuracy and
computational efficiency. Therefore, the PLOS trajectory tracking method depicted as
Algorithm 1 is used to track the designed multi-constrained trajectory.

Algorithm 1 Pure Pursuit and Line-of-Sight algorithm.

1: for each time step do

2: Obtain the current waypoint Wi = (x1, y1, z1), next waypoint Wi+1 = (x2, y2, z2),
current UAV position I = (x, y, z) and corresponding pitch and yaw angles θ, ψ in the
inertial frame.

3: Calculate αy ← arctan(Wi+1(2)−Wi(2)
Wi+1(1)−Wi(1)

) .

4: Calculate ψd ← arctan(Wi+1(2)− I(2), Wi+1(1)− I(1)) .
5: Calculate WR

i ← RZ(−αy)Wi , WR
i+1 ← RZ(−αy)Wi+1 , IR ← RZ(−αy)I .

6: Calculate αz ← arctan(WR
i+1(3)−WR

i (3)
WR

i+1(1)−WR
i (1)

) .

7: Calculate θd ← arctan
(

WR
i+1(3)− IR(3), WR

i+1(2)− IR(2)
)

.

8: Calculate e = RY(−αz)RZ(−αy)(I − Wi).

9: Calculate
.
ψm ← k1,ψ(ψd − ψ) + k2,ψ

(−ey
)

.
θm ← k1,θ(θd − θ) + k2,θ(ez)

10: Calculate azm and aym commands from Equation (10)
azm ← (

k1,θ(θd − θ) + k2,θ(ez)
)
V aym ← (

k1,ψ(ψd − ψ) + k2,ψ
(−ey

))
V cos θ

11: end for

Where azm and aym are the pitch and yaw acceleration commands, respectively. αz
and αy are the rotation angles used to transform the inertial frame into the local frame
with respect to UAV velocity. These rotations can be represented by rotation matrices RZ
and RY. ez and ey are the vertical and cross-track errors, respectively. k1,θ and k1,ψ are the
proportional gains of the pure pursuit strategy. k2,θ and k2,ψ are the proportional gains of
the LOS strategy.

4. Numerical Simulation

4.1. Simulation Setup

To assess the performance of the proposed guidance method, it is compared with the
guidance method in [14]. The simulation experiment involves four UAVs: I1, I2, I3, and I4.

10

Drones 2023, 7, 639

Their simulation settings are depicted in Table 1. The UAV engine thrust Ten = 10,000 N,
maximum working time of the engine ten = 10 s, UAV’s initial mass m0 = 200 kg, fuel mass
mfu = 50 kg, fuel consumption rate μ = 5 kg/s, induced drag coefficient kD = 0.05, and
maximum acceleration limit amax = 100 m/s2. The four proportional gains of the PLOS
algorithm are set as k1,θ = k1,ψ = 20 and k2,θ = k2,ψ = 0. The position of the target is
(15,000, 0, 0) m. The autopilot is assumed to have a first-order lag with a time constant of
0.2 s. Thus, the flight velocity, distance, and time can be obtained through simulation.

Table 1. Comparison of simulation settings for UAVs.

UAV Guidance Launch Time Initial Heading Direction Desired Impact Direction

I1 Proposed t = 0 s (0.4082, 0.4082, 0.8165) (0.6247,−0.6247,−0.4685)
I2 Proposed t = 2 s (0.6667,−0.3333, 0.6667) (0.4682, 0.8109,−0.3511)
I3 Ref. [14] t = 0 s (0.4082, 0.4082, 0.8165) (0.6247,−0.6247,−0.4685)
I4 Ref. [14] t = 2 s (0.6667,−0.3333, 0.6667) (0.4682, 0.8109,−0.3511)

The simulation was performed on a hardware platform with a 2.5 GHz six-core
processor and 16 GB RAM. It takes approximately 50 ms to generate a flight trajectory that
satisfies the constraints of impact time, impact angle, and maximum acceleration limit.

4.2. Establishment of Mapping Network

Before training network NETDNN , trajectory dataset samples need to be obtained
first. Here, the optimal Latin hypercube method is employed to sample the trajectory data
within the design space [39]. This sampling technique ensures that the samples are evenly
distributed across the entire design space. The value ranges of the trajectory parameters
are set to Λ ∈ [0, 1], υ ∈ (1.5, 15] and |ST| ∈ [0, 6000 m]. Other trajectory parameters
are set as α = β = Ω = 0 and R0 = 15,000 m. Based on the trajectory parameters, the
flight trajectories are obtained by integrating the Frenet–Serret Equation (9). Then the
corresponding parameters θ0, θ f , Δψ, L and |κ(s)|max can be obtained from the generated
trajectories. During the generation process of LASC, an undesired condition may occur
in which the cumulative angular variation in tangent or binormal vectors is greater than
2π. Such conditions should be excluded because of the excessive loss of UAV velocity in
practical applications. Then, a dataset of 1000 samples is obtained, as shown in Table 2.
The input data S1 are composed of parameters θ0, θ f , Δψ, and L. The output data S2 are
composed of parameters Λ, υ, |ST|, and |κ(s)|max. The mapping network NETDNN is then
trained using S1 and S2. All the data are normalized before training and split into two parts.
A total of 70% of the data is used for training, while the remaining 30% is used for testing.

Table 2. Sample data for DNN mapping network training and testing.

NO.
Input Parameter Output Parameter

θ0 θf Δψ L Λ υ |ST| |κ(s)|max

1 24.7554 42.2519 149.8320 18,234.11 0.1860 2.1069 1284 1.5675 × 10−4

2 47.3558 35.4730 167.8687 18,980.46 0.5441 5.7322 4577.62 3.7876 × 10−4

3 36.0618 30.7972 174.3580 19,442.37 0.4036 13.3226 3539.06 2.5077 × 10−4

...
...

...
...

...
...

...
...

...
1000 35.5963 23.7348 170.6936 19,876.64 0.3774 9.4083 2949 2.5318 × 10−4

Then, a feed-forward fully connected DNN is developed to learn the nonlinear rela-
tionship between S1 and S2. The appropriate selection of the hyperparameters is critical to
achieving optimal performance. Here, the optimized hyperparameters are given in Table 3.
The corresponding optimization process is similar to that in [36]. The training loss curve in
Figure 8 shows that the DNN model keeps approaching the real model during the training

11

Drones 2023, 7, 639

process. The coefficient of determination R2 is adopted to assess the approximation er-
ror [40]. Figure 9 illustrates the learning effect, which visualizes the prediction performance
of DNN. The results demonstrate that the coefficients of determination of all four output
parameters are above 0.99. Therefore, the prediction accuracy of the mapping network
NETDNN is high.

4.3. Case 1: UAV Guidance under Constant Velocity

In Case 1, the velocity is set to be constant and equal to V = 300 m/s. The desired
impact time is set to t f = 65 s. According to Equation (28), we have θ0,1 = 24.0948◦,
θ f ,1 = 38.6598◦, Δψ1 = 153.4349◦, L1 = 19,500 m, and θ0,2 = 41.8103◦, θ f ,2 = 27.9152◦,
Δψ2 = 139.9783◦, L2 = 18,900 m. Based on mapping network NETDNN , we obtain
Λ1 = 0.1553, υ1 = 2.2468, |ST|1 = 3857.56 m, |κ(s)|max,1 = 1.6785× 10−4, and Λ2 = 0.3257,
υ2 = 2.1061, |ST|2 = 1931.00 m, |κ(s)|max,2 = 2.2483 × 10−4. Both trajectories of the UAVs
I1 and I2 satisfy the maximum acceleration constraint according to Equation (25).

The simulation results are shown in Figure 10 and Table 4. It can be observed that all
the UAVs have successfully reached the target position. The impact time errors for UAVs I1
and I2 are both within 0.08 s, while the impact angle errors are both within 0.02◦. Obviously,
compared with UAVs I3 and I4, UAVs I1 and I2 achieve better accuracy in both impact time
and impact angle. This is because the guidance method in [14] adopts a linear estimation
method to calculate the time-to-go, which would degenerate under nonlinear kinematics.

4.4. Case 2: UAV Guidance under Time-Varying Velocity

In this case, the UAV velocities are time-varying according to Equation (11). The
desired impact time is set to t f = 40 s. All other simulation conditions are the same
as in Case 1. According to Equation (28), we have θ0,1 = 24.0948◦, θ f ,1 = 38.6598◦,
Δψ1 = 153.4349◦, L1 = 19,433.92 m, and θ0,2 = 41.8103◦, θ f ,2 = 27.9152◦, Δψ2 = 139.9783◦,
L2 = 18,786.81 m. Based on mapping network NETDNN , we obtain Λ1 = 0.1413, υ1 = 2.2106,
|ST|1 = 3495.75 m, |κ(s)|max,1 = 1.6338 × 10−4, and Λ2 = 0.3193, υ2 = 2.0755,
|ST|2 = 1746.41 m, |κ(s)|max,2 = 2.1801 × 10−4. Both trajectories of the UAVs I1 and I2
satisfy the maximum acceleration constraint according to Equation (25).

The simulation results are shown in Figure 11 and Table 5. It can be revealed that
although all the UAVs have reached the target point, the guidance performances of UAVs I3
and I4 have significantly decreased. Their impact time errors are close to 2 s and the impact
pitch angle errors exceed 10◦. This is mainly because the guidance law in [14] adopts a
linear estimation method for time-to-go prediction, which significantly degenerates under
time-varying velocity. By contrast, the impact time errors of UAVs I1 and I2 are both less
than 0.1 s, and the impact angle errors are both less than 0.05◦. It can be seen that the
time-varying velocity has little influence on the performance of the proposed guidance
method. This is because the proposed method has taken the influence of variable velocity
into account during neural network training.

Table 3. Hyperparameters for the DNN model.

Hyperparameters Preferences

Optimizer Adam
Number of hidden layers 4

Number of neurons per layer 4; 40; 40; 40; 40; 4
Activation functions Hidden: Relu

Regularization L2
Learning rate 0.01

Mini-batch size 150
Number of epochs 100

Weight initialization He
Loss function MSE

12

Drones 2023, 7, 639

Figure 8. DNN training loss curve.

(a) Λ learning (b) υ learning

(c) ST learning (d) sκ learning

|ST|

|ST|

Figure 9. Learning effect of the network on parameter prediction.

13

Drones 2023, 7, 639

(a) UAV trajectory (b) Relative range variation

(c) Pitch acceleration variation (d) Yaw acceleration variation

(e) Pitch angle variation (f) Yaw angle variation

Figure 10. Simulation results of Case 1 (UAVs I1 and I2 adopt the proposed guidance method; UAVs
I3 and I4 adopt the guidance method in Reference [14]).

Table 4. Simulation results of Case 1.

UAV I1 I3 I2 I4

Desired impact time 65 s
Impact time 64.92 s 65.29 s 64.94 s 64.73 s

Desired impact pitch angle −27.94◦ −20.57◦
Impact pitch angle −27.95◦ −30.50◦ −20.55◦ −23.75◦

Desired impact yaw angle −45◦ 60◦
Impact yaw angle −45.00◦ −43.05◦ 60.02◦ −56.55◦

14

Drones 2023, 7, 639

(a) UAV trajectory (b) Relative range variation

(c) Pitch acceleration variation (d) Yaw acceleration variation

(e) Pitch angle variation (f) Yaw angle variation

Figure 11. Simulation results of Case 2 (UAVs I1 and I2 adopt the proposed guidance method; UAVs
I3 and I4 adopt the guidance method in Reference [14]).

15

Drones 2023, 7, 639

Table 5. Simulation results of Case 2.

UAV I1 I3 I2 I4

Desired impact time 40 s
Impact time 39.92 s 41.93 s 39.91 s 41.71 s

Desired impact pitch angle −27.94◦ −20.57◦
Impact pitch angle −27.94◦ −49.37◦ −20.56◦ −34.19◦

Desired impact yaw angle −45◦ 60◦
Impact yaw angle −44.99◦ −47.53◦ 59.97◦ −59.18◦

5. Conclusions

This manuscript proposes a data-driven method based on a multi-constrained geomet-
ric guidance law under time-varying velocity in three dimensions. The two-phase trajectory
consists of an LASC and a collision line segment. By adjusting the phase switching points,
the UAV’s flight time and impact angle can be precisely controlled. The characteristic pa-
rameters of the desired trajectory are calculated through DNN using a data-driven method.
Finally, the guidance commands are generated using a trajectory-tracking algorithm.

The proposed guidance can generate an explicit flight trajectory, which does not rely
on accurate time-to-go information. Moreover, the trajectory generation processes are
greatly shortened by data-driven-based mapping. The simulation results demonstrate the
high performance of the proposed guidance method in terms of impact time and angle
control under both constant and time-varying velocities.

Author Contributions: Conceptualization, X.Y. and Y.T.; methodology, X.Y. and Y.T.; software,
X.Y. and Y.T.; formal analysis, X.Y. and H.S.; writing—original draft preparation, X.Y. and Y.T.;
writing—review and editing, X.Y., Y.X., H.S. and J.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China
(Grant No. 62203362).

Data Availability Statement: The authors do not have permission to share data.

Acknowledgments: The authors are thankful to the anonymous reviewers for their useful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, M.; Grider, K.V. Terminal Guidance for Impact Attitude Angle Constrained Flight Trajectories. IEEE Trans. Aerosp. Electron.
Syst. 1973, 6, 852–859. [CrossRef]

2. Ryoo, C.-K.; Cho, H.; Tahk, M.-J. Optimal Guidance Laws with Terminal Impact Angle Constraint. J. Guid. Control Dyn. 2005, 28,
724–732. [CrossRef]

3. Ratnoo, A.; Ghose, D. Impact Angle Constrained Guidance Against Nonstationary Nonmaneuvering Targets. J. Guid. Control
Dyn. 2010, 33, 269–275. [CrossRef]

4. Song, K.-R.; Jeon, I.-S. Impact-Angle-Control Guidance Law with Terminal Constraints on Curvature of Trajectory. Mathematics
2023, 11, 974. [CrossRef]

5. Jeon, I.-S.; Lee, J.-I.; Tahk, M.-J. Impact-Time-Control Guidance Law for Anti-Ship Missiles. IEEE Trans. Control Syst. Technol. 2006,
14, 260–266. [CrossRef]

6. Cho, D.; Kim, H.J.; Tahk, M.-J. Nonsingular Sliding Mode Guidance for Impact Time Control. J. Guid. Control Dyn. 2016, 39, 61–68.
[CrossRef]

7. Tekin, R.; Erer, K.S.; Holzapfel, F. Polynomial Shaping of the Look Angle for Impact-Time Control. J. Guid. Control Dyn. 2017,
40, 2668–2673. [CrossRef]

8. Shi, H.; Chen, Z.; Zhu, J.; Kuang, M. Model Predictive Guidance for Active Aircraft Protection from a Homing Missile. IET Control
Theory Appl. 2022, 16, 208–218. [CrossRef]

9. Lee, J.-I.; Jeon, I.-S.; Tahk, M.-J. Guidance Law to Control Impact Time and Angle. IEEE Trans. Aerosp. Electron. Syst. 2007,
43, 301–310. [CrossRef]

10. Zhang, Z.; Ma, K.; Zhang, G.; Yan, L. Virtual Target Approach-Based Optimal Guidance Law with Both Impact Time and Terminal
Angle Constraints. Nonlinear Dyn. 2022, 107, 3521–3541. [CrossRef]

16

Drones 2023, 7, 639

11. Deng, Y.; Ren, J.; Wang, X.; Cai, Y. Midcourse Iterative Guidance Method for the Impact Time and Angle Control of Two-Pulse
Interceptors. Aerospace 2022, 9, 323. [CrossRef]

12. Harl, N.; Balakrishnan, S.N. Impact Time and Angle Guidance With Sliding Mode Control. IEEE Trans. Control Syst. Technol. 2012,
20, 1436–1449. [CrossRef]

13. Hou, Z.; Yang, Y.; Liu, L.; Wang, Y. Terminal Sliding Mode Control Based Impact Time and Angle Constrained Guidance. Aerosp.
Sci. Technol. 2019, 93, 105142. [CrossRef]

14. Jung, B.; Kim, Y. Guidance Laws for Anti-Ship Missiles Using Impact Angle and Impact Time. In Proceedings of the AIAA
Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO, USA, 21–24 August 2006; Guidance, Navigation, and
Control and Co-located Conferences. American Institute of Aeronautics and Astronautics: Palo Alto, CA, USA, 2006; p. 6432.

15. Zhang, Y.; Ma, G.; Liu, A. Guidance Law with Impact Time and Impact Angle Constraints. Chin. J. Aeronaut. 2013, 26, 960–966.
[CrossRef]

16. Zhang, Y.; Zhang, Y.; Li, H. Impact Time and Impact Angle Control Based on CCC Path Planning. In Proceedings of the 31st
Chinese Control Conference, Hefei, China, 25–27 July 2012; pp. 4300–4305.

17. Yan, X.; Kuang, M.; Zhu, J. A Geometry-Based Guidance Law to Control Impact Time and Angle under Variable Speeds.
Mathematics 2020, 8, 1029. [CrossRef]

18. Yan, X.; Zhu, J.; Kuang, M.; Yuan, X. A Computational-Geometry-Based 3-Dimensional Guidance Law to Control Impact Time
and Angle. Aerosp. Sci. Technol. 2020, 98, 105672. [CrossRef]

19. Kirchdoerfer, T.; Ortiz, M. Data-Driven Computational Mechanics. Comput. Methods Appl. Mech. Eng. 2016, 304, 81–101.
[CrossRef]

20. Hao, G.; Ni, W.; Tian, H.; Cao, L. Mobility-Aware Trajectory Design for Aerial Base Station Using Deep Reinforcement Learning.
In Proceedings of the 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China,
21–23 October 2020; pp. 1131–1136.

21. Arani, A.H.; Hu, P.; Zhu, Y. HAPS-UAV-Enabled Heterogeneous Networks: A Deep Reinforcement Learning Approach. IEEE
Open J. Commun. Soc. 2023, 4, 1745–1760. [CrossRef]

22. Cheng, L.; Jiang, F.; Wang, Z.; Li, J. Multiconstrained Real-Time Entry Guidance Using Deep Neural Networks. IEEE Trans. Aerosp.
Electron. Syst. 2021, 57, 325–340. [CrossRef]

23. Guo, Y.; Li, X.; Zhang, H.; Cai, M.; He, F. Data-Driven Method for Impact Time Control Based on Proportional Navigation
Guidance. J. Guid. Control Dyn. 2020, 43, 955–966. [CrossRef]

24. Huang, J.; Chang, S.; Chen, Q.; Zhang, H. Data-Driven-Based Impact Time Control Guidance Law Independent of Time-to-Go.
Acta Armamentarii 2022, 44, 2299. [CrossRef]

25. Huang, J.; Chang, S. Data-Driven Method Based Impact Time and Impact Angle Control Guidance Law. Syst. Eng. Electron. 2022,
44, 3213–3220. [CrossRef]

26. Ziatdinov, R.; Yoshida, N.; Kim, T. Analytic Parametric Equations of Log-Aesthetic Curves in Terms of Incomplete Gamma
Functions. Comput. Aided Geom. Des. 2012, 29, 129–140. [CrossRef]

27. Gobithaasan, R.U.; Teh, Y.M.; Miura, K.T.; Ong, W.E. Lines of Curvature for Log Aesthetic Surfaces Characteristics Investigation.
Mathematics 2021, 9, 2699. [CrossRef]

28. Miura, K.T.; Gobithaasan, R.U. Aesthetic Design with Log-Aesthetic CurvesLog-Aesthetic Curveand SurfacesLog-Aesthetic
Curve and Surface. In Mathematical Progress in Expressive Image Synthesis III; Dobashi, Y., Ochiai, H., Eds.; Springer: Singapore,
2016; pp. 107–119.

29. Luca, L.; Popescu, I.; Cherciu, M.; Ghimisi, S.; Cirtina, M.L.; Pasare, M.M. Synthesis of Two New Mechanisms Which Generate a
Highly Aesthetic Design Image—The Flower of Life. Appl. Sci. 2020, 10, 1670. [CrossRef]

30. Yoshida, N.; Fukuda, R.; Saito, T. Log-Aesthetic Space Curve Segments. In Proceedings of the 2009 SIAM/ACM Joint Conference
on Geometric and Physical Modeling, San Francisco, CA, USA, 5–8 October 2009; Association for Computing Machinery: New
York, NY, USA, 2009; pp. 35–46.

31. Struik, D.J. Lectures on Classical Differential Geometry; Courier Corporation: North Chelmsford, MA, USA, 1961; ISBN 978-0-486-65609-0.
32. Davidovitz, A.; Shinar, J. Two-Target Game Model of an Air Combat with Fire-and-Forget All-Aspect Missiles. J. Optim. Theory

Appl. 1989, 63, 133–165. [CrossRef]
33. Alkaher, D.; Moshaiov, A. Dynamic-Escape-Zone to Avoid Energy-Bleeding Coasting Missile. J. Guid. Control Dyn. 2015,

38, 1908–1921. [CrossRef]
34. Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
35. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef]
36. Cheng, L.; Wang, Z.; Jiang, F.; Li, J. Fast Generation of Optimal Asteroid Landing Trajectories Using Deep Neural Networks. IEEE

Trans. Aerosp. Electron. Syst. 2020, 56, 2642–2655. [CrossRef]
37. Yang, M.; Liang, S.; Yi, M.; Tian, Y.; Guo, M.; Le, J.; Zhang, H. Identification of Turbulence Eddy Viscosity Coefficient in Supersonic

Isolation Section Based on Deep Neural Network. J. Aerosp. Power 2023, 38, 312–324. [CrossRef]

17

Drones 2023, 7, 639

38. Pelizer, G.V.; da Silva, N.B.F.; Branco, K.R.L.J. Comparison of 3D Path-Following Algorithms for Unmanned Aerial Vehicles. In
Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017;
pp. 498–505.

39. Jin, R.; Chen, W.; Sudjianto, A. An Efficient Algorithm for Constructing Optimal Design of Computer Experiments. J. Stat. Plan.
Inference 2005, 134, 268–287. [CrossRef]

40. Nagelkerke, N.J.D. A Note on a General Definition of the Coefficient of Determination. Biometrika 1991, 78, 691–692. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

18

Citation: Cao, Z.; Du, Z.; Yang, J.

Topological Map-Based Autonomous

Exploration in Large-Scale Scenes for

Unmanned Vehicles. Drones 2024, 8,

124. https://doi.org/10.3390/

drones8040124

Academic Editor: Diego

González-Aguilera

Received: 29 February 2024

Revised: 23 March 2024

Accepted: 24 March 2024

Published: 27 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Topological Map-Based Autonomous Exploration in Large-Scale
Scenes for Unmanned Vehicles

Ziyu Cao 1,*, Zhihui Du 2 and Jianhua Yang 1

1 School of Automation, Northwestern Polytechnical University, Xi’an 710129, China;
yangjianhua@nwpu.edu.cn

2 Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
zhihuidu@mail.tsinghua.edu.cn

* Correspondence: caoziyu@mail.nwpu.edu.cn

Abstract: Robot autonomous exploration is a challenging and valuable research field that has attracted
widespread research interest in recent years. However, existing methods often encounter problems
such as incomplete exploration, repeated exploration paths, and low exploration efficiency when
facing large-scale scenes. Considering that many indoor and outdoor scenes usually have a prior
topological map, such as road navigation maps, satellite road network maps, indoor computer-aided
design (CAD) maps, etc., this paper incorporated this information into the autonomous exploration
framework and proposed an innovative topological map-based autonomous exploration method for
large-scale scenes. The key idea of the proposed method is to plan exploration paths with long-term
benefits by tightly merging the information between robot-collected and prior topological maps.
The exploration path follows a global exploration strategy but prioritizes exploring scenes outside
the prior information, thereby preventing the robot from revisiting explored areas and avoiding
the duplication of any effort. Furthermore, to improve the stability of exploration efficiency, the
exploration path is further refined by assessing the cost and reward of each candidate viewpoint
through a fast method. Simulation experimental results demonstrated that the proposed method
outperforms state-of-the-art autonomous exploration methods in efficiency and stability and is
more suitable for exploration in large-scale scenes. Real-world experimentation has also proven the
effectiveness of our proposed method.

Keywords: autonomous exploration; path planning; PCATSP; prior information; topological map

1. Introduction

Autonomous robot exploration technology requires robots to collect data within a
given region and construct corresponding environmental maps. As a critical technology that
reveals robotic autonomy, relevant research in robotics has garnered significant attention,
driving widespread applications in geological exploration, 3D reconstruction, post-disaster
rescue, and other fields.

Numerous autonomous exploration methods have been proposed in recent years and
are divided into sampling-based and frontier-based categories. Sampling-based methods
originated from the NBV (Next Best View) algorithm in the field of 3D reconstruction.
RH-NBV (recurrent hybrid neural-based visual) first introduced the NBV algorithm into
the autonomous exploration field [1], which consisted of the robot randomly sampling
viewpoints in explored free space, constructing a rapidly exploring random tree (RRT),
and evaluating the utility of each branch on the RRT. Finally, the robot focuses on the
branch with the highest information reward and selects the first node of this branch as the
local target. After that, numerous researchers have extended and improved the RH-NBV
to meet the requirements of various application scenarios [2–6]. However, sampling-
based autonomous exploration methods have lower exploration efficiency and lead to
the robot being trapped. Ref. [7] first introduced the frontier-based exploration method,

Drones 2024, 8, 124. https://doi.org/10.3390/drones8040124 https://www.mdpi.com/journal/drones19

Drones 2024, 8, 124

which groups free voxels adjacent to unknown voxels as frontier clusters and then drives
the robot towards these frontier clusters to move to explore unknown areas. Since then,
many frontier-based exploration methods have been proposed to meet various application
requirements [8–10]. Ref. [11] proposed to select a viewpoint with minimal speed changes
as the next goal within the Field Of View (FOV) of sensors, aiming to maintain the high
movement speed of unmanned aerial vehicles (UAVs) and achieve efficient exploration.
Fast UAV expLoration (FUEL) proposes the incremental frontier information structure (FIS)
to address the problem of high computation of frontier extraction and low decision fre-
quency of the path planner [12]. Based on FIS, UAVs can quickly and incrementally extract
environmental information that the planner needs and promptly plan the exploration path.

However, most autonomous exploration methods tend to greedily guide the robot
to exploration scenes with immediate rewards and neglect some targets with long-term
rewards, resulting in lower efficiency in global exploration [12]. Although some methods
plan paths from the global exploration standpoint, the robot inevitably overlooks some
scenarios during exploration because of the limited perception range of sensors and the
unpredictability of unknown environments [12,13]. To thoroughly explore a given region,
the robot must revisit areas containing those missed scenarios, resulting in a waste of
resources. Furthermore, when exploring large-scale scenes, the more information the robot
collects with exploration, the more the path planner computes, which poses a significant
challenge to onboard computers.

In order to solve the above problems, the work [14] proposed that supplying robots
with prior information about a given region can aid them in making decisions that align
with long-term benefits. Ref. [15] proposed a probabilistic information gain map as the
prior knowledge to guide exploration. Ref. [16] introduced a general information theory
framework to control multiple robots to search and rescue, wherein the prior knowledge
of people is modeled to capture target positions and dynamics. Ref. [17] employs hand-
drawn sketches as prior information, enabling the robot to explore even when the metric
description of the environment is incomplete.

As the concision of a topological map, many researchers use them as prior informa-
tion to guide robots in autonomous exploration. Ref. [18] proposed a novel autonomous
exploration method based on a prior topometric graph, which verifies that prior informa-
tion could aid the robot in swiftly completing the exploration of unknown environments.
Ref. [19] proposed a path planning method based on topology information for 3D recon-
struction, in which the multi-view stereo path planning is decomposed into a collection of
overlapped viewing optimization problems that can be processed in parallel. In [14], the
prior topometric map is employed to improve exploration efficiency and guide the robot to
trigger a loop close, improving the localization accuracy of the Simultaneous Localization
And Mapping (SLAM) system. Finally, the environmental information collected will be
used to refine prior information.

Furthermore, some researchers focus on the generation of topological maps. Ref. [20]
proposed a framework called “topomap” to provide robots with customized maps to
simplify robot navigation tasks, transforming the sparse feature-based map from visual
SLAM into a three-dimensional topological map. Ref. [21] proposed an efficient and flexible
algorithm that generates a trajectory-independent 3D sparse topological skeleton graph
captured from the spatial structure of free space.

Inspired by the abovementioned research, we select the topological map as the prior in-
formation to guide in robot exploration and employ the frontier-based exploration method
suitable for exploring large-scale scenes to plan exploration paths. As a form of map repre-
sentation, the topological map briefly provides relative position and connectivity between
critical places in complex scenes, which could guide the robot in planning paths that follow
long-term benefits [20]. In practical cases, many methods can easily acquire the skeleton
structure of the environment as the topological map [20–23].

To fully take advantage of the guiding function of prior topological maps, we propose
an autonomous exploration method based on topological maps. The proposed method

20

Drones 2024, 8, 124

employs a hierarchical path planning framework, integrates frontier information with prior
topological maps, and plans the exploration path with long-term benefits. It first plans
a global exploration path by solving the constructed Priority Constrained Asymmetric
Traveling Salesman Problem (PCATSP). The global exploration path would follow opti-
mal or customized global exploration strategies to guide the robot to cover frontiers but
prioritizes exploring scenes outside the prior information, thus preventing the robot from
revisiting previously visited areas. Then, the exploration path is refined from the global
exploration path by quickly evaluating the rewards and costs of the candidate viewpoint
for each frontier.

Because of the one-pass exploration process, our method will maintain the frontier at a
small number, preventing excessive computational burden on the solver during exploration.
The above properties make our method more suitable for autonomous exploration in large-
scale scenes, and the contributions of this paper are as follows:

(1) An autonomous exploration method based on prior topological maps. The robot
follows an optimal or customized strategy to explore a given region autonomously but
prioritizes exploring scenes outside prior information, preventing the robot from revisiting
the explored areas.

(2) A path planning method integrates information between frontiers and prior topo-
logical maps, which makes the topological map deeply involved in the path planning of
robot exploration.

(3) A local path planning method, which quickly evaluates the rewards and costs of
each candidate viewpoint to optimize the global exploration path, enhances the stability of
exploration efficiency.

2. Design Objectives

Give the robot a region to autonomously explore, and provide it with a topological
map of the region to be explored. The topological map should reflect the fundamental
layout of the region but may not represent all of its spaces. The objectives we address are
as follows:

Objective 1: The robot completes a comprehensive exploration of the given region.
When there are no frontier clusters extractable within the given region, it indicates the
completion of an information gathering task.

Objective 2: The robot utilizes real-time collected scene information and prior topo-
logical maps to plan exploration paths. When the robot encounters scenes that are not
included in the priori information, the exploration path will guide the robot to prioritize
exploring scenes beyond a priori information.

Objective 3: The exploration path enables the robot to complete an exploration of the
visited area in a one-pass manner, preventing the robot from repeatedly visiting the areas
that have been explored.

3. Methods

We define the topological map as follows. G(S, E) consist of the global targets set
S = {s1, s2, . . . , sn} and the undirected edges set E = {e1, e2, . . . , em}. s denotes a global
target corresponding to a corner or intersection in the environment. ek = (si, sj) is an
undirected edge, connecting si and sj, representing a straight-line scene, such as a road or
corridor. With the support of a prior topological map, we can obtain a global exploration
strategy O = {o0, o1, o2, . . . , oh} for the given region by customizing or solving the Chinese
Postman Problem (CPP) [24], which is a priority queue. ok = (si, sj) denotes a directed line
segment from si to sj, corresponding to the exploration guidance. Define f as the frontier
cluster, and F = { f 1, f 2, . . . , f n} as a set of remaining frontier clusters in a scene. We adopt
the incrementally frontier information structure (FIS) proposed by FUEL to update frontier
clusters efficiently [12]. Viewpoint sequential queue VPk = {vpk

1, vpk
2, . . . , vpk

m} of frontier
cluster f k is extracted by random sampling, where vpk

1 is a viewpoint with the largest
reward of f k and will replace f k in constructing PCATSP.

21

Drones 2024, 8, 124

Figure 1 shows an overview of the proposed method, which operates upon a voxel grid
map. We employ a hierarchical architecture to plan the exploration path, which consists of
global path planning (Section 3.1) and local path planning (Section 3.4). The global path
planning module takes a prior topological map, global exploration strategy, and frontier
clusters as input to plan the global exploration path based on the Priority Constrained
Asymmetric Traveling Salesman Problem (PCATSP). Nodes with priority in PCATSP will be
extracted (Section 3.2), and the movement cost of some frontier clusters will also be updated
(Section 3.3). Then, the global exploration path is given to the local path planning module,
which refines the input path based on rewards and costs of each viewpoint candidate to
improve the stability of exploration efficiency. Finally, the exploration path will output to
the trajectory generation module. The exploration task will be completed when no frontier
clusters can be extracted from environment.

Figure 1. The overview of the proposed exploration method.

3.1. PCATSP-Based Global Path Planning

PCATSP is a variation of the classic Traveling Salesman Problem (TSP), which aims
to find a minimum-cost Hamiltonian circuit, with the constraint that some nodes must
be visited before others. If splitting the start and end points of PCATSP into two nodes,
PCATSP is equivalent to finding a path between the start and end points that satisfy priority
constraints, which is also considered a Sequential Ordering Problem (SOP) [25]. To address
Objective 3, our basic idea of global path planning is to solve PCATSP with frontiers and
priority-constrained global targets. It is equivalent to inserting frontiers into a sequential
queue of global targets, utilizing the global targets to influence the covered sequence of
some frontier clusters.

However, the construction of PCATSP faces the following challenges: First, constrained
by the perception range of sensor and obstacle obstruction, the robot cannot accurately
calculate the movement distance between global targets in unknown space and viewpoints
inside the free space. Second, for TSP, the farther the metric distance between frontier
cluster and global target, the less influence the global target can exert. So, we need to enable
global targets to influence specific frontier clusters.

To address the above challenges, we define the following: if a global target si is inside
the free space, and the other global target sj connected to si is in unknown space, then

22

Drones 2024, 8, 124

the shortest path Ppk ,sj between any node pk in free space and global target sj in unknown
space is given by

Ppk ,sj = Ppk ,a + Pa,sj , (1)

where a is an intersection point of frontier and undirected edge ek that connects si and sj,
as shown in Figure 2a. Pa,sj is a portion of ek in unknown space, and Ppk ,a is a search path
from pk to a.

(a) (b)

Figure 2. The basic scheme for autonomous exploration based on a prior topological map. (a) Extract-
ing an agent for global target sj that is in unknown space. (b) Obtain the exploration path tourexplore
from tour provided by the PCATSP solver.

Based on the above definition and by incorporating the solving property of TSP, if all
elements in a certain row or column of cost matrix D of TSP are subtracted by the same
value, a new cost matrix D∗ for the TSP will be obtained. However, D and D∗ correspond
to the same TSP solution [26]. Thus, we can subtract Pa,sj from all Pp,sj , and leave the TSP
solution unchanged. It is equivalent to setting an agent point for the global target on the
frontier. For constructing PCATSP, the intersection point aj could be extracted on a frontier
cluster as an agent for global target sj and the priority can be set to aj based on global
exploration strategy O.

Hence, based on the above theory, we define agent aj as the intersection point of a
frontier cluster f k and an undirected edge ek = (si, sj), which is associated with a global
target sj in unknown space and possesses access priority. Then, the path between any point
inside free space and an agent on frontier could be found by a path-searching algorithm,
and then path length could also be accurately calculated. The method of agent extraction
and priority assignment will be elaborated in Section 3.2.

Finally, we can naturally combine the prior topological map with real-time updated
scene information in path planning based on PCATSP. We can then solve the PCATSP with
the extracted agent set A = {ai, aj, . . . , al} and frontier cluster set F, where agents with
priority will influence the visited order of nearby frontier clusters.

In this section, we suppose that the movement cost c
(

pi, pj
)

between any two nodes
pi and pj is calculated as follows:

c
(

pi, pj
)
=

L
(

Ppi ,pj

)
vmax

, (2)

where Ppi ,pj is the shortest search path between nodes pi and pj; L() denotes the length of
search path; and vmax is the maximum velocity of the robot.

PCATSP solver provides a path tour composed of input nodes. By removing A from
tour, we obtain a global exploration path tourexplore = {vpi

1, vpj
1, . . . , vpl

1} that satisfies
global exploration strategy O, as shown in Figure 2b [27]. However, tourexplore cannot
guarantee that the robot with the priority will explore areas outside prior information, i.e.,
Objective 2. To address this objective, frontier clusters that guide the robot towards global

23

Drones 2024, 8, 124

targets will be recognized, and movement cost between these frontier clusters and the robot
will be increased. Details are discussed in Section 3.3.

Figure 3 is a schematic diagram of the robot exploration process. The blue arrows
represent the global exploration strategy, and green arrows are basic exert programs for
global exploration paths. Based on our method, the robot explores the given region
according to the global exploration strategy but prioritizes exploring scenarios outside
prior information. Finally, following the global exploration strategy, the robot actively
loops close and completes the exploration.

(a) (b)

(c) (d)

(e) (f)

Figure 3. The schematic diagram of the exploration process. (a,b) Robot prioritizes exploring
scenarios outside prior information. (c,d) After exploring scenarios outside prior information, the
robot explores the unknown environment according to a global exploration strategy. (e,f) Robot
actively conducts loop exploration according to the global exploration strategy and finally covers the
frontier clusters near the lowest-priority agent.

24

Drones 2024, 8, 124

3.2. Agent Extraction and Priority Assignment

When the position of a global target si is explored by the robot, other global targets sj
connected to si will be searched on a topological map. Then, the directed line segment ek =
(si, sj) is constructed based on ek = (si, sj), indicating from si to sj. During implementation,
we set up some satellite points for each global target to prevent the robot from missing them.
The satellite points are evenly distributed at a set distance around the global target point.

The Oriented Bounding Box (OBB) of each new frontier cluster is extracted by principal
component analysis (PCA), which is used to extract agents. As shown in Figure 4a, if f k is
crossed by ek, OBB of f k must be crossed, and the following condition is met:((

sj − si
)× (

obbp − si
))

z

((
sj − si

)× (
obbq − si

))
z < 0,

p, q ∈ {0, 1, 2, 3}, p 	= q,
(3)

where obb are vertices of OBB. For the new frontier clusters that meet the condition, proceed
with the following secondary evaluation to identify which global target the forthcoming
agent will belong to:

π > cos−1
(
(R − f k

ave) ·
(

sj − f k
ave

))
≥ χ,

0 < cos−1
(
(R − f k

ave) ·
(

si − f k
ave

))
≤ ψ,

(4)

where R is the position of the robot, and f k
ave is the average position of f k, as shown in

Figure 4b.

(a) (b)

Figure 4. Method of agent extraction. (a) Crossing determination. (b) Angle determination.

If the above conditions are met with the newly extracted frontier cluster f k, the cell
closest to f k

ave in f k will be defined as an agent aj for global target sj. An agent of the global
target is independent of the frontier cluster but is associated with it; if a frontier cluster is
deleted or updated, the corresponding agent will be deleted.

The movement cost between an agent aj and other nodes of PCATSP are calculated
as follows:

c
(

R, aj) = C,
c
(
aj, R

)
= 0,

c
(
aj, x

)
= c

(
x, aj) = L

(
P

aj ,x

)
vmax

, x = vpk
1, ai,

(5)

where C is a large value, ensuring that the robot prioritizes exploring scenes outside prior
information.

The priority pryaj of agent aj is assigned as follows:

pryaj =

{
u, ek = ou

size(O) + 1, others
, (6)

which is determined by the sequential position of its ek in O. ou is a directed line segment
in O, where u represents its ordinal position in O. The higher the sequential position of ek,
the lower the priority of the agent extracted from ek. If ek is not found in O, the priority of

25

Drones 2024, 8, 124

the agent equals size(O) + 1, and these agents with the lowest priority will not be actively
explored, as shown in Figure 3. Additionally, during exploration, not only will one agent
be generated by a directed line segment, but all agents will point towards the same global
target. In such cases, we define the agent that is further away from the global target to have
a higher priority, ensuring the robot does not miss the scene during exploration.

3.3. Update of Movement Cost of Frontier Clusters

As mentioned earlier, to ensure that the robot prioritizes exploring scenes outside
prior information, the system needs to recognize frontier clusters that would guide the
robot towards a global target and set a higher cost between them and the robot. To achieve
this, we classify frontier clusters into three categories:

The first class includes frontier clusters with agents and other frontier clusters that are
adjacent to these frontier clusters. They will guide the robot towards global targets.

The second class includes frontier clusters adjacent to the first class frontier clusters.
These frontier clusters may guide the robot towards global targets. We utilize density-
based spatial clustering of applications with noise (DBSCAN) algorithm to recognize these
frontier clusters and rely on the following methods to identify whether they could guide
the robot to global targets [28]:

e
−rsj , f k /rsj ,si ecos αk−1 cos βk ≥ ε,

rsj , f k < rsj ,R ≤ rsj ,si + γ,
(7)

as shown in Figure 5a, αk is the angle between vector
−−→
f k
avesj and −→sisj; βk is the angle between

vector
−−→
f k
avesj and

−−→
R f k

ave; and r is the Euclidean distance between two points.
However, as the robot explores, the relative position between frontier clusters and

robot changes, and frontier clusters cannot always satisfy Equation (7), as shown in
Figure 5b,c. Thus, to keep the consistency of determination for these frontier clusters
during exploration, we employ the Dynamic Time Warping (DTW) algorithm to evaluate
similarities between path PR,aj and all paths of PR,F = {PR, f 1 , PR, f 2 , . . . , PR, f n}, as shown in
Figure 5d [29]. If the similarity ranking of f k satisfies the following condition, f k is still
believed to guide the robot towards global target sj:

rank
(

dtw
(

PR,aj , PR, f k

))
≤ ϕ. (8)

The third class consists of the remaining frontier clusters. They will guide the robot to
explore scenes outside prior information.

For the frontier clusters f k∗ that guide the robot towards global targets, the movement
cost from the robot to them is set as follows:

c
(

R, vpk∗
1

)
= C. (9)

The movement cost from robot to other frontier clusters f k is computed as follows:

c
(

R, vpk
1

)
= max

⎧⎨⎩ L
(

P
R,vpk

1

)
vmax

,
min(|ξk

1−ξR|,2π−|ξk
1−ξR|)

ωmax

⎫⎬⎭+ λ cos−1 (vpk
1−R)·vR

‖vpk
1−R‖‖vR‖

, (10)

which considers the path length, yaw change, and motion consistency, where pk
1 and ξk

1 are
coordinates, and the yaw angle of viewpoint vpk

1, ωmax is the maximum angular change
rate; ξR is the yaw angle of the robot; and vR is the current velocity.

26

Drones 2024, 8, 124

As c(vpk∗
1 , R) and c(vpk

1, R) do not impact the solution results of open-loop path
planning, we set them to 0. The movement cost between all frontier clusters are calculated
as follows:

c
(

vpi
1, vpj

1

)
= c

(
vpj

1, vpi
1

)
= max

⎧⎪⎪⎨⎪⎪⎩
L

(
P

vpi
1,vpj

1

)
vmax

,
min

(∣∣∣ξ i
1−ξ

j
1

∣∣∣,2π−
∣∣∣ξ i

1−ξ
j
1

∣∣∣)
ωmax

⎫⎪⎪⎬⎪⎪⎭ . (11)

(a) (b)

(c) (d)

Figure 5. Determination of the second category of frontier clusters. (a) Determine whether the
second-category frontier f k guides the robot towards the global target based on angle and distance
conditions. (b) Robot moves towards other scenes following the generated exploration path. (c) As
the robot moves, f k no longer meets the initial judgment criteria. (d) To maintain the consistency of
the previous judgment to f k, perform a secondary judgment of f k by DTW.

3.4. Local Path Planning

The global path planning module aims to assist the robot in making decisions at a
global standpoint for efficient exploration. The local path planning module aims to find
the best viewpoints to make the robot to follow. Many previous works refine a path by
evaluating the cost and reward for efficient exploration, but they consume significant
computational resources in information evaluation [1,30]. Thus, we define the potential
reward of a candidate viewpoint as a volume of unknown space within its a Field of View

27

Drones 2024, 8, 124

(FoV) and propose a simple and fast reward evaluation method based on incremental
frontier information structure (FIS). Finally, the local path is refined by synthesizing the
reward and movement cost of each viewpoint candidate.

Cells of a frontier cluster are stored in FIS [12]. We use them to evaluate the volume of
unknown space in FOV. As shown in Figure 6, each truncated pyramid is constructed based
on cells that the candidate viewpoint could cover, and its volume is calculated as follows:

V =

(
hrw

(
hrwecell

hcell

)2
− hcell(ecell)

2

)
/3, (12)

where ecell is width of cell, hcell is distance between cell and candidate viewpoint. hrw is
effective distance to calculate reward and computed by:

hrw = min(hmax, hcell + δ), (13)

hmax is maximum range of FOV, and δ is used to control the depth of truncated pyramid to
balance movement cost and expected rewards.

Figure 6. The schematic diagram of calculating the reward of a viewpoint.

The expected reward rwk
i of a candidate viewpoint vpk

i is evaluated by accumulating V:

rwk
i =

n

∑
x=1

Vk
x + η

m

∑
y=1

Vl
y, (14)

where Vk
x is taken from current frontier cluster f k, and Vl

y is taken from next adjacent
frontier cluster f l to be visited. m and n, respectively, represent the number of cells that vpk

i
could cover. η is a weight coefficient.

We formulate local path planning as a graph search problem and refine an optimal
path from the global exploration path by balancing expected reward and movement cost,
where viewpoints of each frontier cluster serve as candidate points. Suppose that the

optimal exploration path path = {vp1
i , vp2

k , . . . , vp
Nr f
j , vp

Nr f +1
1 } provided by the Dijkstra

algorithm will minimize the cost/reward ratio:

c
(

P
R,vp

Nr f +1

1

)
=

c(R,vp1
i)

W1
i

+
c
(

vp
Nr f
j ,vp

Nr f +1

1

)
W

Nr f +1

1

+ ∑
Nr f −1
n=1

c(vpn
k ,vpn+1

k)
Wn+1

k

, (15)

28

Drones 2024, 8, 124

where Nr f + 1 is the size of the frontier clusters to be optimized, and

Wn
k =

rwn
k

VFOV
, (16)

VFOV is the volume of FOV.
Finally, the exploration path path is output to the trajectory generation module.

4. Experiments

4.1. Implementation Details

We set ψ = π/3, χ = 2π/3, and C = 500 in Section 3.2, ε = 0.4, γ = 3 m, and ϕ = 6
in Section 3.3, and δ = 1.5 m and η = 1.25 in Section 3.4. Additionally, we employ the SOP
solver from LKH-3.0 to solve PCATSP and implement the Chinese Postman Problem (CPP)
solver ourselves for the global exploration strategy [27,31]. All simulation experiments are
conducted in ROS-Kinetic Gazebo platform on Ubuntu 18.04 computer system, running
on an CPU. For real-world experiments, the unmanned ground vehicle shown in Figure 7
was utilized to explore a given region. We equipped it with a depth camera, an inertial
measurement unit, and an onboard computer with Ubuntu 18.04 computer system.

Figure 7. Real-world experiment vehicle platform.

4.2. Benchmark Comparisons

In this section, we conduct benchmark comparisons using simulation experiments
to verify the effectiveness and exploration efficiency of the proposed method. Robot
exploration in maze scenes is the most effective method to verify the efficiency of au-
tonomous exploration [13]. Thus, we manually constructed two large-scale mazes, Maze-1
(48 × 63 × 2 m3) and Maze-2 (66 × 62 × 2 m3), in Gazebo simulation platform. The cross-
sectional length of the road in Maze-1 is 4∼6 m, and in Maze-2, 8∼10 m. The topological
maps of these mazes are generated by manually placing global targets on corners and
intersections, and then connecting them according to the topology of mazes to simulate
maze information [18]. But, we leave some space for the robot to explore autonomously
without prior information. The mazes and their prior topological maps are shown in
Figure 8.

We employ the optimal exploration strategy provided by the CPP solver to guide robot
exploration and compare it with FUEL and FAEP [12,13]. They are state-of-the-art frontier-
based methods which have been proposed in recent years, and which exhibit high exploration
efficiency and have open-sourced their code to serve community. In all experiments, we utilize
UAV as the exploration robot, with vmax = 0.6 m/s, ωmax = 0.9 rad/s, and the maximum
acceleration is 0.6 m/s2. UAV equips depth camera to collect environmental information.
FOV of depth camera is configured as [80 × 60] deg, hmax is 4.5 m. The grid map of the
local update range is 5 × 5 × 2 m3. In all scenarios, three methods are run more than six
times with the same configuration.

29

Drones 2024, 8, 124

We evaluate the performance of the above methods based on exploration time, flight
distance, and coverage efficiency. FAEP also utilizes FIS to update frontier cluster infor-
mation and based TSP to plan global exploration paths. Therefore, we set the frontier
cluster length limit of all methods to 2 m and counted the remaining number of frontier
clusters during exploration. The number could directly reflect the computational burden
of the path planner: the more frontier clusters remain in scene, the more enormous the
solver computation.

Figure 8 displays exploration trajectories of different methods in two mazes. Our
method prevents the robot from unnecessarily revisiting explored areas but ensures that
the robot does not miss scenes outside prior information, even in scenes with large cross-
sectional road lengths like Maze-2. In contrast, other methods re-explore already visited
areas during exploration, leading to lower efficiency and inevitable resource wastage.

Figure 8. Benchmark comparison of exploration trajectories of the proposed method, FUEL, and
FAEP, in two mazes.

The detailed exploration process of our method in Maze-1 is illustrated in Figure 9.
The robot prioritizes exploring areas outside prior information in the given region. Sub-
sequently, it follows the global exploration strategy to explore other areas, disregarding
the direction of other frontier clusters during exploration. Finally, the robot actively loops
close to cover the frontier clusters near the agent with the lowest priority. The exploration
process aligns with the concept depicted in Figure 3.

Figure 9. Partial exploration trajectories generated by our method in Maze-1.

30

Drones 2024, 8, 124

Figure 10 displays the process of volume coverage for all methods in two mazes.
Our method demonstrates higher efficiency and nearly linear performance in conducting
exploration. In contrast, other methods exhibit coverage stagnation or slower growth
during exploration, meaning the robot moved towards a previously missed or visited space.

Figure 10. The exploration progress of three methods in Maze-1 (left) and Maze-2 (right).

The number of the remaining frontier clusters during exploration for all methods is
shown in Figure 11. Compared with other methods, our method ensures a lower count
of remaining frontier clusters. It proves that our method can avoid much computational
burden for an onboard computer and is suitable for exploring large-scale scenes.

Figure 11. The number of remaining frontier clusters during exploration of the three methods in two
mazes.

Table 1 presents a quantitative performance of three methods in two mazes. Compared
with FUEL and FAEP, the average exploration time of our method is reduced by 18.76%
and 20.87% in Maze-1, and 18.05% and 21.77% in Maze-2. Moreover, the average flight
distance of our method is reduced by 18.93% and 17.19% in Maze-1, and 15.91% and 6.79%
in Maze-2. In contrast, our proposed method outperforms other methods in exploration
time, flight distance, and stability.

The average computation time of each module is shown in Table 2. The proposed
method conducts a one-path planning with approximately 130 ms, meeting the frequency
requirements for most robots. Furthermore, only 12 ms is consumed by local path planning,
additionally proving the efficiency of the proposed reward evaluation method.

We deconstruct the proposed method to analyze the global and local path planning
module performances. OursLocal and OursGlobal correspond to implementing local and
global path planning, both built upon FUEL framework. The exploration data of OursLocal,
OursGlobal in two mazes are list in Table 1.

31

Drones 2024, 8, 124

Table 1. Exploration statistics in Maze-1 and Maze-2.

Scene Method
Exploration Time (s) Flight Distance (m)

Avg Std Max Min Avg Std Max Min

Maze-1

FUEL 826.599 25.275 849.384 777.630 618.773 16.821 635.879 589.081
FAEP 848.614 32.779 906.516 813.997 605.419 28.813 655.931 561.852
Ours 671.101 13.880 694.328 663.532 501.523 12.490 520.579 486.109

OursLocal 826.881 10.485 855.695 814.620 616.217 8.390 635.330 605.435
OursGlobal 670.742 24.009 693.757 626.820 497.563 16.467 517.316 469.384

Maze-2

FUEL 1407.048 46.729 1503.542 1356.909 1012.588 18.818 1036.984 984.151
FAEP 1474.686 67.125 1569.142 1418.180 913.552 33.502 960.631 885.397
Ours 1153.677 29.733 1200.470 1104.911 851.646 22.824 885.435 819.141

OursLocal 1396.996 27.841 1439.908 1339.974 1002.997 18.952 1037.262 980.147
OursGlobal 1210.028 52.735 1277.481 1138.502 886.096 41.552 940.927 831.196

Table 2. Average computation time of each module.

Scene
Average Computation Time (ms)

Global Planning Local Planning Total Planning

Maze-1 141.79 17.39 159.19
Maze-2 127.45 12.35 130.85

Comparing the simulation results of OursGlobal and FUEL in two mazes, the standard
deviations of OursGlobal in exploration time and flight distance are identical to FUEL.
However, the average exploration time of OursGlobal is reduced by 18.88% and 14.01%,
respectively, in Maze-1 and Maze-2. The average flight distance of OursGlobal is reduced
by 19.57% and 12.45%, respectively, in Maze-1 and Maze-2. The average performance
of OursGlobal outperforms FUEL, indicating that the primary contribution of global path
planning lies in improving exploration efficiency. The same inference can also be drawn
from comparing Ours and OursLocal.

The average exploration time and flight distance of OursLocal and FUEL in both mazes
are approximate. But, OursLocal maintains a low standard deviation, indicating more
stability. Similar performance is observed between OursGlobal and Ours. It is demonstrated
that the proposed local path planning method can effectively enhance the stability of
exploration efficiency.

Finally, we can conclude that the exploration efficiency is primarily attributed to global
path planning, while local path planning enhances the stability of exploration efficiency.

4.3. Real-World Experiment

In order to further validate the effectiveness of our proposed method, we conduct
a real-world experiment with a ground vehicle. Based on the prior topological map, the
ground vehicle will explore an indoor corridor of size 55 × 15 × 2 m3, and a cross-sectional
length of road that is 2 m, as shown in Figure 12. The prior information we provided is a
rectangular topological map that outlines the basic structure of the indoor corridor. In the
indoor corridor, the open spaces and nooks served as regions beyond prior information,
testing the effectiveness of our method.

In the experiment, we run VINS-Fusion on GPU to provide the positional state, while
the proposed method runs on CPU to plan an exploration path [32]. We set vmax = 0.5 m/s,
ωmax = 0.8 rad/s, the maximum acceleration as 0.5 m/s2, and the grid map of local update
range as 4 × 4 × 2 m3. The FOV of the depth camera is set as [80 × 60] deg, and the
maximum range hmax is 3.5 m.

Figure 13 shows the exploration trajectory of our method with the indoor environment,
where the small labeled images represent the key nodes during exploration: (a) presents
the robot exploring in the direction following a global exploration strategy; (b) and (c)

32

Drones 2024, 8, 124

present the instances where the vehicle prioritizes exploration directions beyond the prior
information. The exploration time of the whole process is 738 s, and the movement distance
is 167 m. It can be seen from the trajectory that the vehicle did not revisit the explored areas
during exploration, which proves the effectiveness of our proposed method.

Figure 14, respectively, shows the process of volume coverage and the number of
remaining frontier clusters during exploration. It reveals a stable and linear exploration
process while the number of frontier clusters is maintained at a small level, demonstrating
the efficiency of our proposed method.

Figure 12. The experimental scene for real-world experiment.

Figure 13. The exploration trajectory of the proposed method in real-world experiment. (a) shows
the robot exploring in the direction following a global exploration strategy; (b,c) show the instances
where the vehicle prioritizes exploration directions beyond the prior information.

33

Drones 2024, 8, 124

Figure 14. The process of volume coverage (left) and the number of remaining frontier clusters (right)
during exploration in real-world scenario.

5. Conclusions

This paper introduces a novel autonomous exploration method based on a prior topo-
logical map, in which a robot explores the given large-scale region, following a global
exploration strategy, but prioritizes exploring scenes outside prior information. The pro-
posed method employs a hierarchical framework to plan exploration paths. Based on
PCATSP, the global path planning module merges the prior topological map with real-time
scene information, planning efficient global exploration paths. Subsequently, the local path
planning module rapidly evaluates the rewards and movement costs for each candidate
viewpoint to refine the input global exploration paths. Finally, the output exploration path
is used to generate local trajectories. Simulation results prove that the proposed method
enables the robot to efficiently and rapidly explore a given region and is suitable for opera-
tion in large-scale scenes. The ablation study also demonstrates that our proposed local
path planning method could enhance the stability of exploration efficiency. The experiment
conducted in the real world further validates the effectiveness of our method.

Author Contributions: Conceptualization, Z.C.; methodology, Z.C.; software, Z.C.; validation, Z.C.;
formal analysis, Z.C.; investigation, Z.D.; resources, Z.D.; data curation, Z.C.; writing—original draft
preparation, Z.C.; writing—review and editing, Z.C.; visualization, Z.C.; supervision, J.Y.; project
administration, Z.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Bircher, A.; Kamel, M.; Alexis, K.; Oleynikova, H.; Siegwart, R. Receding horizon “next-best-view” planner for 3d exploration. In
Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May
2016; pp. 1462–1468.

2. Duberg, D.; Jensfelt, P. Ufoexplorer: Fast and scalable sampling-based exploration with a graph-based planning structure. IEEE
Robot. Autom. Lett. 2022, 7, 2487–2494. [CrossRef]

3. Selin, M.; Tiger, M.; Duberg, D.; Heintz, F.; Jensfelt, P. Efficient autonomous exploration planning of large-scale 3-d environments.
IEEE Robot. Autom. Lett. 2019, 4, 1699–1706. [CrossRef]

4. Xu, Z.; Deng, D.; Shimada, K. Autonomous UAV exploration of dynamic environments via incremental sampling and probabilistic
roadmap. IEEE Robot. Autom. Lett. 2021, 6, 2729–2736. [CrossRef]

5. Respall, V.M.; Devitt, D.; Fedorenko, R.; Klimchik, A. Fast sampling-based next-best-view exploration algorithm for a MAV. In
Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021;
pp. 89–95.

6. Zhu, H.; Cao, C.; Xia, Y.; Scherer, S.; Zhang, J.; Wang, W. DSVP: Dual-stage viewpoint planner for rapid exploration by dynamic
expansion. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague,
Czech Republic, 27 September– 1 October 2021; pp. 7623–7630.

7. Yamauchi, B. A frontier-based approach for autonomous exploration. In Proceedings of the 1997 IEEE International Symposium
on Computational Intelligence in Robotics and Automation CIRA’97. ‘Towards New Computational Principles for Robotics and
Automation’, Monterey, CA, USA, 10–11 July 1997; pp. 146–151.

34

Drones 2024, 8, 124

8. Dornhege, C.; Kleiner, A. A frontier-void-based approach for autonomous exploration in 3d. Adv. Robot. 2013, 27, 459–468.
[CrossRef]

9. Zhong, P.; Chen, B.; Lu, S.; Meng, X.; Liang, Y. Information-driven fast marching autonomous exploration with aerial robots.
IEEE Robot. Autom. Lett. 2021, 7, 810–817. [CrossRef]

10. Deng, D.; Duan, R.; Liu, J.; Sheng, K.; Shimada, K. Robotic exploration of unknown 2d environment using a frontier-based
automatic-differentiable information gain measure. In Proceedings of the 2020 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM), Virtual, 6–10 July 2020; pp. 1497–1503.

11. Cieslewski, T.; Kaufmann, E.; Scaramuzza, D. Rapid exploration with multi-rotors: A frontier selection method for high speed
flight. In Proceedings of the RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 2135–2142.

12. Zhou, B.; Zhang, Y.; Chen, X.; Shen, S. Fuel: Fast uav exploration using incremental frontier structure and hierarchical planning.
IEEE Robot. Autom. Lett. 2021, 6, 779–786. [CrossRef]

13. Zhao, Y.; Yan, L.; Xie, H.; Dai, J.; Wei, P. Autonomous Exploration Method for Fast Unknown Environment Mapping by Using
UAV Equipped with Limited FOV Sensor. IEEE Trans. Ind. Electron. 2023, 5, 4933–4943. [CrossRef]

14. Soragna, A.; Baldini, M.; Joho, D.; Kümmerle, R.; Grisetti, G. Active SLAM using connectivity graphs as priors. In Proceedings of the
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 340–346.

15. Zhang, Y.; McCalmon, J.; Peake, A.; Alqahtani, S.; Pauca, P. A Symbolic-AI Approach for UAV Exploration Tasks. In Proceedings
of the 2021 7th International Conference on Automation, Robotics and Applications (ICARA), Prague, Czech Republic, 4–6
February 2021; pp. 101–105.

16. Krzysiak, R.; Butail, S. Information-based control of robots in search-and-rescue missions with human prior knowledge. IEEE
Trans.-Hum.-Mach. Syst. 2021, 52, 52–63. [CrossRef]

17. Boniardi, F.; Valada, A.; Burgard, W.; Tipaldi, G.D. Autonomous indoor robot navigation using a sketch interface for drawing
maps and routes. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm,
Sweden, 16–21 May 2016; pp. 2896–2901.

18. Oßwald, S.; Bennewitz, M.; Burgard, W.; Stachniss, C. Speeding-up robot exploration by exploiting background information.
IEEE Robot. Autom. Lett. 2016, 1, 716–723.

19. Shang, Z.; Shen, Z. Topology-based UAV path planning for multi-view stereo 3D reconstruction of complex structures. Complex
Intell. Syst. 2023, 9, 909–926. [CrossRef]

20. Blochliger, F.; Fehr, M.; Dymczyk, M.; Schneider, T.; Siegwart, R. Topomap: Topological mapping and navigation based on visual
slam maps. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia,
21–25 May 2018; pp. 3818–3825.

21. Chen, X.; Zhou, B.; Lin, J.; Zhang, Y.; Zhang, F.; Shen, S. Fast 3D Sparse Topological Skeleton Graph Generation for Mobile Robot
Global Planning. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto,
Japan, 23–27 October 2022; pp. 10283–10289.

22. Mei, J.; Li, R.J.; Gao, W.; Cheng, M.M. CoANet: Connectivity attention network for road extraction from satellite imagery. IEEE
Trans. Image Process. 2021, 30, 8540–8552. [CrossRef]

23. Tan, Y.Q.; Gao, S.H.; Li, X.Y.; Cheng, M.M.; Ren, B. Vecroad: Point-based iterative graph exploration for road graphs extraction.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 8910–8918.

24. Sokmen, O.C.; Emec, S.; Yilmaz, M.; Akkaya, G. An overview of Chinese postman problem. In Proceedings of the 3rd International
Conference on Advanced Engineering Technologies, Bayburt, Turkey, 19–21 September 2019; Volume 10, pp. 1175–1184.

25. Gouveia, L.; Pesneau, P. On extended formulations for the precedence constrained asymmetric traveling salesman problem. Netw.
Int. J. 2006, 48, 77–89. [CrossRef]

26. Morrison, D.R.; Jacobson, S.H.; Sauppe, J.J.; Sewell, E.C. Branch-and-bound algorithms: A survey of recent advances in searching,
branching, and pruning. Discret. Optim. 2016, 19, 79–102. [CrossRef]

27. Helsgaun, K. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling salesman and vehicle routing
problems. Roskilde Rosk. Univ. 2017, 12, 966–980.

28. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.
In Proceedings of the Kdd, Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231.

29. Salvador, S.; Chan, P. Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 2007, 11, 561–580.
[CrossRef]

30. Tao, Y.; Wu, Y.; Li, B.; Cladera, F.; Zhou, A.; Thakur, D.; Kumar, V. SEER: Safe efficient exploration for aerial robots using learning
to predict information gain. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA),
London, UK, 29 May–2 June 2023; pp. 1235–1241.

35

Drones 2024, 8, 124

31. Helsgaun, K. An effective implementation of the Lin–Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 2000, 126, 106–130.
[CrossRef]

32. Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018,
34, 1004–1020. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

36

Citation: Zheng, R.; Zhu, Q.; Huang,

S.; Du, Z.; Shi, J.; Lyu, Y. Extended

State Observer-Based Sliding-Mode

Control for Aircraft in Tight

Formation Considering Wake

Vortices and Uncertainty. Drones

2024, 8, 165. https://doi.org/

10.3390/drones8040165

Academic Editor: Andrey V. Savkin

Received: 29 February 2024

Revised: 6 April 2024

Accepted: 17 April 2024

Published: 21 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Extended State Observer-Based Sliding-Mode Control for
Aircraft in Tight Formation Considering Wake Vortices
and Uncertainty

Ruiping Zheng 1, Qi Zhu 1, Shan Huang 1, Zhihui Du 2, Jingping Shi 1 and Yongxi Lyu 1,*

1 Department of Automatic Control, Northwestern Polytechnical University, Xi’an 710129, China;
zhengruiping@mail.nwpu.edu.cn (R.Z.); shijingping@nwpu.edu.cn (J.S.)

2 Department of Precision Instrument, Tsinghua University, Beijing 100084, China
* Correspondence: yongxilyu@nwpu.edu.cn

Abstract: The tight formation of unmanned aerial vehicles (UAVs) provides numerous advantages
in practical applications, increasing not only their range but also their efficiency during missions.
However, the wingman aerodynamics are affected by the tail vortices generated by the leading aircraft
in a tight formation, resulting in unpredictable interference. In this study, a mathematical model of
wake vortex was developed, and the aerodynamic characteristics of a tight formation were simulated
using Xflow software. A robust control method for tight formations was constructed, in which the
disturbance is first estimated with an extended state observer, and then a sliding mode controller
(SMC) was designed, enabling the wingman to accurately track the position under conditions of
wake vortex from the leading aircraft. The stability of the designed controller was confirmed. Finally,
the controller was simulated and verified in mathematical simulation and semi-physical simulation
platforms, and the experimental results showed that the controller has high tight formation accuracy
and is robust.

Keywords: tight formation; unmanned aerial vehicles; xflow; extended state observer; sliding
mode controller

1. Introduction

In recent years, UAVs have been widely used in forest fire prevention, geological
exploration, military applications, and other fields due to their low-cost, casualty-free, and
flexible characteristics [1–4]. Multiple UAVs flying in formation are capable of dealing with
more complex tasks than a single UAV and can increase the mission success rate [5]. When
multiple UAVs fly in close formation, fuel consumption is reduced and therefore range is
increased [6,7].

The notion of close-formation flight originated from migratory birds [8]. When migra-
tory birds depart from their roosts, adopting a V formation or other forms of coordinated
flight can substantially lengthen the flock’s overall travel distance. Through extensive
observation and study, researchers have determined that a flock consisting of 25 birds
flying in formation cover 71% more distance than an individual bird flying solo [9]. The
flight of the lead bird can generate upwash wake, and other birds flying in the correct
position can minimize their energy consumption, thereby facilitating the conservation of
physical strength and expanding the flock’s activity range [10,11]. Tight-formation flight is
defined as when the lateral distance between two aircraft is less than twice the span, and
the aerodynamic coupling between the aircraft affects the wingmen’s dynamics system.
The aerodynamic forces and moments of the wingman are widely different from those
of a single airplane, as demonstrated by Cho et al.’s experimentation with two small jet
aircraft in a subsonic wind tunnel [12]. Researchers at NASA’s Dryden Flight Research
Center conducted tight-formation flight tests with two F/A-18s [13], with the wingman

Drones 2024, 8, 165. https://doi.org/10.3390/drones8040165 https://www.mdpi.com/journal/drones37

Drones 2024, 8, 165

flying within the wingtip vortex of the leading aircraft; they found that the wingman’s drag
was reduced by more than 20 percent, and the maximum fuel reduction was more than
18 percent. Through aerodynamic calculations, Blake et al. found that the range of a forma-
tion of five aircraft could be increased by 60 percent, relative to that of one aircraft [14].

Researchers, including Thomas E. Kent, conducted a comprehensive case study on a
representative sample of 210 transatlantic routes. The findings revealed that two-aircraft
formations consumed less fuel by approximately 8.7% on average, whereas three-aircraft
formations used even less fuel, with savings of 13.1%, compared with that of single-
aircraft operations [15]. The C-17 [16] transport formation, studied by Pahle et al., involves
two aircraft flying at a speed of 275 knots and an altitude of 25,000 ft. The wingmen were
positioned 1000 and 3000 ft behind the lead aircraft. The replacement of the drag reduction
with the consideration of fuel consumption and thrust in level flight achieved maximum
average decreases in fuel consumption and thrust of approximately 6.8–7.8% and 9.2%,
respectively, on both the left and right sides. The Air Force Research Laboratory and
the U.S. Department of Defense’s Advanced Research Projects Agency conducted a close-
formation study based on the surfing aircraft vortex energy (SAVE) concept, resulting in
fuel consumption savings exceeding 10 percent over a duration surpassing 90 min [17]. The
National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center
(Edwards, CA, USA) completed a series of studies, in which a NASA Gulfstream C-20A
airplane (Gulfstream Aerospace, Savannah, GA, USA) was flown as the trail airplane within
the wake of a NASA Gulfstream III (G-III) airplane. The results showed fuel reductions
in formation ranging from 3.5 to 8 percent, compared with that of a single aircraft [18].
The optimal positioning of a flying wing aircraft behind a refueling plane was extensively
investigated by Okolo et al. [19], who revealed that any deviation from the static sweet
spot, whether in the vertical or lateral direction, results in reductions in the lift-to-drag
ratio benefit. The wingtip vortex field generated during leading-aircraft flight can strongly
impact the wingman’s aerodynamic performance. When the wingman is in the upwash
area, the upwash velocity increases the wingman’s angle of attack, which reduces drag and
increases lift [20].

The desired formation flight involves placing the wingman in the optimal position
when the wingman is under the maximum induced lift-to-drag ratio [21,22]. Keeping the
UAV formation stable and using the aerodynamic benefits of the formation have become
research challenges. Many researchers have studied the effects of wake vortices in tight
formations and the control of UAVs [23]. Using suitable controllers on an airplane can
reduce the operator’s burden of operation. Zheng et al. [24] used a model predictive
controller to control UAVs in tight formation. Zhang et al. studied a two-aircraft formation
during level and straight flight and designed an adaptive controller, which was robust to
external interference to some extent [25].

Pachter et al. [26] used a proportional–integral (PI) controller to allow the follow-
ing UAV to maintain an optimal position during tight-formation flight; however, the
robustness of the designed proportional–integral outer-loop controller was weak, due to
the inaccuracy of the modeling of the wake vortex. Researchers [27,28] have used the
extreme value search algorithm to study a linear formation controller to design an outer-
loop navigation controller to guide the following UAV to follow at the optimal position
during tight-formation flight. However, the use of the extreme value search algorithm
is limited in practice: to ensure the convergence of the extreme value search algorithm,
researchers added high-frequency oscillating signals to the extreme value control, which is
unsuitable for controlling UAVs. These control algorithms share the assumption that the
aerodynamic characteristics of tight formations are known or bounded, which are actually
uncertain in practice, limiting the use of these control algorithms. The results of theoretical
analyses [29,30] suggest that tracking accuracy can be increased and the tracking error
reduced by using uncertainty and disturbance estimators. This paper presents the design
of a new and robust tight formation controller that uses an expanded state observer to
estimate uncertain disturbances in the system.

38

Drones 2024, 8, 165

Sliding-mode variable structure control algorithms are widely used in control systems
in various industries due to their simplicity, robustness, and reliability. Ren et al. applied
sliding mode control for the trajectory tracking of a robot and designed a controller to
control the trajectory of the robot [31]. Ding et al. controlled the speed of a permanent
magnet synchronous motor in which a sliding mode control method was used. The results
showed that the anti-interference performance of sliding mode control was strong [32].
However, sliding mode controllers are not always robust, not performing well during
increased disturbances. In this study, an extended state observer was used to estimate the
induced velocity to which the wingman is subjected. Then, a sliding mode controller was
designed to control the tight formation, which includes interference compensation with a
larger robust stability margin. The designed controller accurately estimated the value of the
induced velocity when unknown to achieve high-accuracy and robust control performance.
The main contributions of this study can be summarized as follows:

1. A mathematical model of the wake vortex was established, and the flight characteris-
tics of two UAVs were calculated using Xflow software(The version number of the
software is 2020x), which confirmed that the established mathematical model was
relatively accurate.

2. A sliding mode controller based on an extended state observer was designed, through
which tight-formation flights were accurately controlled.

3. Numerical simulations with the designed controller were conducted in MATLAB, and
an experiment was conducted on a semi-physical platform, to verify the feasibility
and reliability of the designed controller.

The remainder of this paper is organized as follows: In Section 2, the modeling of the
induced wake vortices for tight-formation flight is described. In Section 3, the design of the
controller is explained, and the stability and accuracy of the controller are demonstrated. In
Section 4, the experimental results are provided with their analysis. In Section 5, the paper
is summarized, and areas of future research are outlined.

2. Aerodynamic Modeling of Close-Formation UAVs

2.1. Vortex Mathematical Modeling

The studied UAV was XQ7B; three views of this UAV are shown in Figure 1.

Figure 1. Three views of the aircraft.

As shown in Figure 2, the geometry of the UAV formation is determined by the
wingman’s position relative to the leading aircraft: longitudinal distance lx, lateral distance
ly, and vertical distance lz. In tight-formation flight, the effect of the longitudinal distance
lx on the induced forces and moments is much weaker than that of the lateral distance ly
and vertical distance lz. Therefore, we do not discuss the effect of the longitudinal distance
lx on the wake vortex here.

39

Drones 2024, 8, 165

Figure 2. Three views of the aircraft.

First, the induced velocity v(r) of the wake vortex was investigated. The induced
velocity model used in this study is given in Equation (1). The vortex model [33] is based
on a detailed analysis of LiDAR vortex tangential velocity observations, which draws
conclusions that are valuable as a reference for the study of wake vortices in leading
aircraft.

v(r) =

⎧⎪⎨⎪⎩1.0939 Γ0
2πr

[
1 − exp

(
−10

(
1.4rc

b

)0.75
)]

×
[

1 − exp
(
−1.2527

(
r
rc

)2
)]

if r ≤ 1.4rc

Γ0
2πr

[
1 − exp

(
−10(r/b)0.75

)]
if r > 1.4rc

(1)

where Γ0 is the vortex strength of the wake vortex, b is the wing span, rc is the radius of the
vortex nucleus (generally rc = 5.82%b) [34], and r is the vertical distance from the point of
induced velocity to the vortex line.

The vortex strength is calculated using Equation (2):

Γ0 =
LLeader
ρVb′ =

LLeader
ρV(π/4)b

=
1
2 ρV2SCLLeader

ρV(π/4)b
=

2
π

S
b

CLLeader V (2)

where CLLeader is the lift coefficient of the leader, b is the wing span and S is the wing area.
Suppose one point located on the wing of the following aircraft is at distance s from

the right wingtip. At this point, the induced upwash velocity produced by the left tail

vortex of the leading aircraft is wLe f t(s) = v(r) sin β, where r =

√
(ly − b′

2 − s)
2
+ lz2,

sin β = (ly − b′
2 − s)/

√
(ly − b′

2 − s)
2
+ lz2.

Similarly, the induced upwash velocity produced by the right tail vortex of the

leading aircraft at this point is wRight(s) = −v(r) sin β, where r =

√
(ly + b′

2 − s)
2
+ lz2,

sin β = (ly + b′
2 − s)/

√
(ly − b′

2 − s)
2
+ lz2.

The total velocity is
w(s) = wLe f t(s) + wRight(s) (3)

As such, the average induced upwash velocity on the wing of the wingman is calcu-
lated by integrating Equation (3), as shown in Equation (4):

wUpWavg =
1
b

∫ b
2

− b
2

w(s)ds (4)

As a result of the induced velocity, the lift force exerted on the wing of the wingman
rotates, as shown in Figure 3.

40

Drones 2024, 8, 165

Figure 3. Side view of wingman’s wing lift rotation.

V is the speed of the following aircraft, w is the induced upwash, and V′ is the
velocity of the wingman’s wing surface air. The initial lift and drag are denoted by L and
D, respectively; the rotated lift and drag vectors are denoted by L’ and D’, respectively.
Figure 3 shows that the change in the angle of attack of the aircraft is Δα.

Δα = arctan

⎛⎝
∣∣∣→wUpWavg

∣∣∣
V

⎞⎠ (5)

Because Δα is small, Equation (5) can be approximated as Δα ≈
∣∣∣→wUpWavg

∣∣∣/V. Figure 3
shows that the rotation of the lift force leads to a change in the value of the drag force to be

ΔD = −L tan Δα ≈ −LΔα = −L
∣∣∣→wUpWavg

∣∣∣/V (6)

The increase in the drag coefficient is

ΔCD =
ΔD
qS

=
−LΔα

qS
= −CL

∣∣∣→wUpWavg

∣∣∣/V (7)

The following aircraft’s increase in lift coefficient is

ΔCL = Δαkα = kα

∣∣∣→wUpWavg

∣∣∣/V (8)

where kα is the slope of the following aircraft’s lift coefficient.
A schematic of the induced lift coefficients and the induced drag coefficients are shown

in Figures 4 and 5, respectively. The figures show two maximum values of the induced
lift coefficient and two minimum values of the induced drag coefficient, which both occur
close to the wingtip of the leading aircraft and are symmetrical between the left and right.
Therefore, when studying the flight of aircraft in close formation, only the characteristics
of one of the sides of the leading aircraft need to be studied. The induced lift coefficient
reaches its maximum near ly/b = 0.851 and lz/b = 0; the induced drag coefficient reaches
its minimum near ly/b = 0.88 and lz/b = 0. To obtain both the maximum induced lift and
maximum drag reduction, the lateral distance ly and vertical distance lz from the optimum
point should be kept within 10% and 5% of the wingspan, respectively.

2.2. XFlow Software Calculation

Two UAVs flying in close formation were simulated using XFlow software, which
allows the simulation of real atmospheric conditions through the setting of particle density.
In the software, the wingman was placed to the right behind the leading aircraft, and the
states of the leader and wingman at different positions were calculated by changing the
relative positions of the wingman and leading aircraft. The main parameter settings of the
XFlow software are shown in Table 1.

41

Drones 2024, 8, 165

Figure 4. Variations in induced lift coefficient with lateral and vertical spacing.

Figure 5. Variations in induced drag coefficient with lateral and vertical spacing.

Table 1. Parameters of the XFlow software.

Parameter Value Unit

Velocity 27.8 m/s
Mach number 0.082

Reynolds number 827,600
Particle resolution (Far field) 1.28 m

Particle resolution (Near field) 0.0025 m
Reference area 0.11175 m2

Simulation time 0.06 s

The lift and drag coefficients of the leader and wingman are shown in Figures 6 and 7,
respectively. When lx = 2b, lz = 0, by varying the relative positions of the wingman and
leading aircraft, the maximum value of the lift coefficient occurs at ly = 0.875b (i.e., the
wingtips of the leader and follower coincide by approximately 0.125b). Similarly, the
minimum drag coefficient occurs at t ly = 0.875b. The results match those obtained with
the developed mathematical model, with the aircraft obtaining the maximum tail vortex
benefit when the wings of the two aircraft coincide at approximately 0.125b.

42

Drones 2024, 8, 165

Figure 6. Lift coefficients for leader and follower (lx = 2b, lz = 0).

Figure 7. Drag coefficients for leader and follower (lx = 2b, lz = 0).

The following section describes the design of the robust controller that ensures that
the follower maintains stable flight even in the presence of wake turbulence, thereby
maximizing the advantages of flying in formation.

3. Design of Tight Formation Controller

The nonlinear kinematic equations for wingmen in close formation are shown in
Equation (9). ⎧⎪⎨⎪⎩

.
x f = Vf cos γ f cos χ f + Wx
.
y f = Vf cos γ f sin χ f + Wy
.
z f = −Vf sin γ f + Wz

(9)

where (x f , y f , z f) is the wingman’s position coordinates in the inertial coordinate system;
Vf , γ f , χ f are the airspeed, flight path, and heading angle, respectively; and Wx, Wy, Wz is
the induced wake velocity without considering external wind.

The formation flight system is described in an inertial coordinate system, as shown
in Figure 8, where (xl , yl , zl) is the position of the leading aircraft in the inertial coor-
dinate system; (xd, yd, zd) is the desired position for the wingman to follow, i.e., the
optimal position for the follower in the formation flight system; and (x f , y f , z f) is the
position of the follower in the inertial coordinate system. (xd, yd, zd) can be obtained from
Equation (10).

43

Drones 2024, 8, 165

⎡⎣ xd
yd
zd

⎤⎦ =

⎡⎣ xl
yl
zl

⎤⎦− LWI

⎡⎣ lx
ly
lz

⎤⎦ (10)

where LWI is the rotation matrix

LWI =

⎡⎣cos(ψl) − sin(ψl) 0
sin(ψl) cos(ψl) 0

0 0 1

⎤⎦

Figure 8. Schematic of the formation flight.

The follower-to-desired-position error is projected on the aircraft’s body axis as⎧⎨⎩
ex = cos χd(x f − xd) + sin χd(y f − yd)
ey = − sin χd(x f − xd) + cos χd(y f − yd)
ez = z f − zd

(11)

where χd is the desired heading angle of the following aircraft
After differentiating Equation (11), we obtain⎧⎨⎩

.
ex =

.
χdey + v f cos γ f cos(χd − χ f)− vd cos γd + Wx cos χd + Wy sin χd.

ey = − .
χdex − v f cos γ f sin(χd − χ f)− Wx sin χd + Wy cos χd.

ez = −v f sin γ f + vr sin γr + Wz

(12)

3.1. Design of Extended State Observer

Equation (12) can be written as follows

.
X1 = F + U (13)

where X1 =

⎡⎣ ex
ey
ez

⎤⎦, F =

⎡⎣ Wx cos χd + Wy sin χd
−Wx sin χd + Wy cos χd
Wz

⎤⎦, U =

⎡⎣ .
χdey + v f cos γ f cos(χd − χ f)− vd cos γd
− .

χdex − v f cos γ f sin(χd − χ f)
−v f sin γ f + vr sin γr

⎤⎦.

A nonlinear perturbation is used to estimate the disturbance of the wake vortex
to which the follower is subjected, whereby the perturbation acting on the wingman is
expanded into new state variable X2.

The system shown in Equation (13) is expanded into the new control system shown in
Equation (14). ⎧⎪⎨⎪⎩

.
X1 = X2 + U
.

X2 = W
Y = X1

(14)

44

Drones 2024, 8, 165

The uncertainty term is involved as a state variable, and the following expansion state
observer was built for the system:⎧⎪⎨⎪⎩

E1 = Z1 − Y
.
Z1 = Z2 − β01fal(E1, 1

2 , δ) + U
.
Z2 = −β02fal(E1, 1

4 , δ)

(15)

where fal(E, α, δ) = E
δ1−α s + |E|αsign(E)(1 − s), s = 1

2

⎛⎝sign(E + δ

⎡⎣ 1
1
1

⎤⎦)− sign(E − δ

⎡⎣ 1
1
1

⎤⎦)
⎞⎠.

The error of the state observer is discussed next. From Equations (14) and (15), the
error system can be obtained as⎧⎪⎨⎪⎩

E1 = Z1 − X1, E2 = Z2 − X2.
E1 = E2 − β01E1.
E2 = W − β02 f al(E1, 1

4 , δ)

(16)

This error system ultimately reaches a steady state. When the positions of the two
aircraft are established, W ≤ W0 = const. As such, we have

W − β02 f al(E1,
1
2

, δ) = E2 − β01E1 = 0

Furthermore, we can conclude that

E1 =

(
W0

β02

)2
, E2 = β01E1 = β01

(
W0

β02

)2

Thus, as long as β02 is sufficiently larger than W0, these steady-state errors are of the
same order of magnitude as (W0/β02)

2.

3.2. Design of Sliding Mode Controller

The designed extended state observer accurately estimated the perturbation expe-
rienced by the wingman, i.e., Z2(t) → F(t) . By subtracting the estimated value of the
disturbance from the control system, the controlled system is as follows:⎧⎨⎩

⎡⎣ .
ex.
ey.
ez

⎤⎦ =

⎡⎣ .
χdey + v f cos γ f cos(χd − χ f)− vd cos γd
− .

χdex − v f cos γ f sin(χd − χ f)
−v f sin γ f + vr sin γr

⎤⎦ (17)

Lemma 1 ([35]). ∀a ∈ R, ∃ε > 0,The following inequality holds true

0 ≤ |a| − atanh
(a

ε

)
≤ 0.2785ε (18)

Lemma 1 is substantiated in [35] with a comprehensive proof.
In the subsequent analysis, the controller was designed to ensure that ex, ey, and ez in

Equation (17) converge to zero. The detailed design procedure and stability proof of the
controller for lateral error ey are presented below, with similar approaches applicable to the
longitudinal and vertical errors.

The design sliding mode function s(t) = e(t).
where e(t) is the tracking error, e(t) = ey − 0 = ey.

45

Drones 2024, 8, 165

We designed the control instruction as

χc = χd − arcsin

(
− .

χdex + ηs + Dtanh(s
ε)

v f cos γ f

)
(19)

where η is a constant.
The stability was analyzed as follows:
Define the Lyapunov function as

W =
1
2

s2 (20)

Therefore,
.
s(t) =

.
ey(t) = − .

χdex − v f cos γ f sin(χd − χ f) (21)

.
W = s

.
s = s(− .

χdex − v f cos γ f sin(χd − χ f)) (22)

From Lemma 1, we obtain ∣∣∣s∣∣∣−stanh
(s

ε

)
≤ 0.2785ε

So,
−stanh

(s
ε

)
≤ −

∣∣∣s∣∣∣+0.2785ε

Substituting the control law Equation (19) into Equation (22) produces

.
W = s

.
s

= s(d(t)− ηs − Dtanh(s
ε))

= s(−ηs − Dtanh(s
ε) + d(t))

= −ηs2 − Dstanh(s
ε) + sd(t))

≤ −ηs2 − D
∣∣s∣∣+0.2785Dε + sd(t))

≤ −ηs2 + 0.2785Dε = −2ηW + b

where b = 0.2785Dε.
The solution to inequality

.
W ≤ −2ηW + b is

W(t) ≤ e−2η(t−t0)W(t0) + be−2ηt∫ t
t0

e2ητdτ

= e−2η(t−t0)W(t0) +
be−2ηt

2η (e2ηt − e2ηt0)

= e−2η(t−t0)W(t0) +
b

2η (1 − e−2η(t−t0))

= e−2η(t−t0)W(t0) +
0.2785Dε

2ητy
(1 − e−2η(t−t0))

As such, lim
t→∞

W(t) ≤ (
0.2785Dε/2ητy

)
. The asymptotic convergence of W(t) is

proved.
After adding the disturbance compensation, the total control command is

χc = χd − arcsin

⎛⎝− .
χdex −

(
−ηey − Dtanh(ey

ε)− Zy

)
v f cos γ f

⎞⎠
Similarly, the control commands for the flight path angle and speed are respectively

γ f = arcsin

(
vr sin γr −

(−ηez − Dtanh(ez
ε)− Zz

)
v f

)

46

Drones 2024, 8, 165

v f =
vd cos γd − ηex − Dtanh(ex

ε)− Zx − .
χdey

cos γ f cos(χd − χ f)

4. Simulation and Experimental Verification

We built upon the results of previous studies, where the nonlinear model of the
aircraft was previously developed, and each aircraft had a separate inner-loop flight control
system. The tight-formation flight control system is shown in Figure 9. In this study,
the mathematical model of the studied wake vortex was added as a disturbance to the
aerodynamic model of the following aircraft. Then, the designed tight formation controller
was verified via mathematical and semi-physical simulations. The leading aircraft was
flying on a predetermined trajectory, and the initial position of the following aircraft was
far from the leading aircraft. By comparing the designed tight-formation controller with
the previous controller, the reliability and practicability of the sliding mode control method
based on the expanded state observer were verified. The parameters of the aircraft are
presented in Table 2.

Figure 9. Schematic of tight formation flight control system.

Table 2. Parameters of the UAV.

Parameter Symbol Value Unit

Wing area S 1.546 m2

Wing span b 2.808 m
Mean aerodynamic chord c 0.78 m

Gross mass m 15 kg
Roll moment of inertia Ix 2.369 Kg·m2

Pitch moment of inertia Iy 1.211 Kg·m2

Yaw moment of inertia Iz 3.522 Kg·m2

Product moment of inertia Ixz 0.022 Kg·m2

4.1. Numerical Simulation

The numerical simulations were performed on the Simulink platform of MATLAB.
The initial states of the leading aircraft are xl = 0 m, yl = 1000 m, hl = 1000 m,

vl = 27.8 m/s, βl = 0 deg, pl = ql = rl = 0 rad/s, φl = ϕl = 0 deg, μl = 0 deg,
γl = χl = 0 deg, θl = αl = 5.73 deg; Whereas the initial states of the following aircraft are
x f = 0 m, y f = 0 m, h f = 1000 m, v f = 27.8 m/s, β f = 0 deg, p f = q f = r f = 0 rad/s,
φ f = 0 deg, ϕ f = 0 deg, μ f = 0 deg, γ f = χ f = 0 deg, θ f = α f = 5.73 deg.

The relative positions of the aircraft at different moments of the formation flight
are shown in Figure 10, and the aircraft trajectories are shown in Figure 11. From 0 to
250 s, the leading aircraft was flying straight and level, the following aircraft’s initial lateral
distance from the leading aircraft was 1000 m, the wingman’s heading angle was negative
(to reduce the lateral distance error), and, at 70 s, the lateral error was 0. At approximately

47

Drones 2024, 8, 165

100 s, the longitudinal error reduced to zero. At this point, the following aircraft completed
the approach to the leading aircraft from a far distance, and the two aircraft executed a
tight formation. From 250 to 750 s, the aircraft turned, and the relative positions of the
two aircraft slightly wavered but within acceptable ranges.

Figure 10. Relative positions of aircraft at different times during formation flight.

Figure 11. Formation trajectory.

48

Drones 2024, 8, 165

The comparison of the results of the sliding mode control effect, with and without
ESO, are shown in Figures 12–14. The results all indicate that the sliding mode control
with ESO is more accurate, more strongly suppresses the influence of wake vortices, and
shows more robustness. In comparing the model predictive control (MPC) algorithm with
the proposed control algorithm in this paper, we see the robust controller designed in this
paper provides advantages, including faster convergence and smaller static errors.

Figure 12. Longitudinal tracking error.

Figure 13. Lateral tracking error.

4.2. Experiments with Semi-physical Simulation Platform

The platform comprised the flight control system, radio communication equipment,
UAV computer processing unit, and visual display unit, the structure of which is depicted
in Figure 15. The flight control system generated precise control commands to govern
the aircraft’s movements. The radio facilitated seamless communication between the
leading and following UAVs. The computer was responsible for solving complex UAV
data computations (airspeed, angle of attack, sideslip angle, rolling angular rates, pitching
angular rates, yawing angular rates, roll angle, pitch angle, yaw angle, flight-path angle,
and positional coordinates of the aircraft). The visual display unit provided real-time
information on the formation’s position and status.

49

Drones 2024, 8, 165

Figure 14. Vertical tracking error.

Figure 15. Architecture diagram of distributed semi-physical simulation platform.

The simulation results of the tight formation were displayed with Tacview software
(The version number of the software is 1.9.3), as shown in Figure 16. Tacview is a versatile
tool for analyzing flight data. Within this experimental platform, Tacview receives data
from the UAV computer and presents detailed information on the formation’s position and
attitude.

The following aircraft consistently maintained the optimal relative position to the
leading aircraft. According to the aforementioned experimental results, the proposed
controller effectively mitigated interference and increased system robustness. The real-time
nature of the system and the practicality of the control method were validated through
experiments conducted on a distributed semi-physical simulation platform.

50

Drones 2024, 8, 165

Figure 16. Display of close formation flights in Tacview software.

The semi-physical simulation verification demonstrated that the designed controller
can successfully operate on this hardware platform and that the computational speed of the
flight control board is sufficient for the control system. Communication delay is a critical
factor for a formation system, as excessive communication delay can cause the instability
in the tight formation flight system. The radios used in the semi-physical simulation
experiments were capable of fulfilling the requirements of the control system.

5. Conclusions

This study investigated the scenario in which two aircraft fly in close formation. First,
a mathematical model of the wake vortex was established. Second, Xflow software was
employed to simulate the formation characteristics of the two UAVs. From the simulation
results, we found that when the distance between the two UAVs is (lx = 2b, ly = 0.875b,
lz = 0), the wingman experiences the maximum formation aerodynamic benefit. This finding
aligns with the conclusion derived from studying wake vortex. Third, the disturbance of
the wake vortex experienced by the wingman was then added to the wingman’s system,
and a formation controller was developed that combines the extended state observer and
sliding mode control methods. The controller considerably mitigated the effects on the
following aircraft and enabled the following aircraft to maintain its optimal relative position
to the leading aircraft. The designed formation control was validated, thus achieving the
objectives through numerical and semi-physical simulations. In future studies, we will
investigate the complex mechanisms of close-formation flight and the collision avoidance
problems between the leading and following aircraft. Additionally, we will prepare for real
close-formation flight experiments.

Author Contributions: Conceptualization, R.Z. and Q.Z.; Data curation, R.Z. and Y.L.; Methodology,
R.Z. and S.H.; Software, R.Z. and Z.D.; Validation, R.Z. and J.S.; Writing—original draft, R.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 62373301 and 62173277; the Natural Science Foundation of Shaanxi Province, grant number
2023-JC-YB-526; the Aeronautical Science Foundation of China, grant number 20220058053002; and
the Shaanxi Province Key Laboratory of Flight Control and Simulation Technology.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

51

Drones 2024, 8, 165

Nomenclature

Γ0 Vortex circulation
CLLeader Lift coefficient of the leader
(xl , yl , zl) The position coordinates of the leading aircraft
(x f , y f , z f) The position coordinates of the following aircraft
μ, γ, χ The bank, flight path, and heading angles
Wx, Wy, Wz The induced wake velocity
S Wing area
b Wing span
c Mean aerodynamic chord
m Gross mass
Ix Roll moment of inertia
Iy Pitch moment of inertia
Iz Yaw moment of inertia
Ixz Product moment of inertia

References

1. Li, W.-H.; Shi, J.-P.; Wu, Y.-Y.; Wang, Y.-P.; Lyu, Y.-X. A Multi-UCAV cooperative occupation method based on weapon engagement
zones for beyond-visual-range air combat. Def. Technol. 2022, 18, 1006–1022. [CrossRef]

2. Zhang, Q.; Liu, H.H.T. Aerodynamic model-based robust adaptive control for close formation flight. Aerosp. Sci. Technol. 2018, 79,
5–16. [CrossRef]

3. Zhang, Q.; Liu, H.H. Robust Design of Close Formation Flight Control via Uncertainty and Disturbance Estimator. In Proceedings
of the AIAA Guidance, Navigation, and Control Conference, San Diego, CA, USA, 4–8 January 2016.

4. Frew, E.W.; Lawrence, D.A.; Morris, S. Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields. J.
Guid. Control Dyn. 2008, 31, 290–306. [CrossRef]

5. Hansen, J.L.; Cobleigh, B.R. Induced Moment Effects of Formation Flight Using Two F/A-18 Aircraft. In Proceedings of the AIAA
Atmospheric Flight Mechanics Conference and Exhibit, Monterey, CA, USA, 5–8 August 2002.

6. Zheng, R.; Shi, J.; Qu, X. Modeling, Simulation and Control of Close Formation Flight. In Proceedings of the 2021 China
Automation Congress (CAC), Beijing, China, 22–24 October 2021; pp. 3902–3907.

7. Saban, D.; Whidborne, J.F.; Cooke, A.K. Simulation of wake vortex effects for UAVs in close formation flight. Aeronaut. J.-New Ser.
2009, 113, 727–738. [CrossRef]

8. Lissaman, P.B.; Shollenberger, C.A. Formation flight of birds. Science 1970, 168, 1003–1005. [CrossRef] [PubMed]
9. Cutts, C.J.; Speakman, J.R. Energy Savings in Formation Flight of Pink-Footed Geese. J. Exp. Biol. 1994, 189, 251–261. [CrossRef]

[PubMed]
10. Rayner, J. Estimating power curves of flying vertebrates. J. Exp. Biol. 1999, 202, 3449–3461. [CrossRef] [PubMed]
11. Weimerskirch, H.; Martin, J.; Clerquin, Y.; Alexandre, P.; Jiraskova, S. Energy saving in flight formation. Nature 2001, 413, 697–698.

[CrossRef] [PubMed]
12. Cho, H.; Han, C. Effect of sideslip angle on the aerodynamic characteristics of a following aircraft in close formation flight. J.

Mech. Sci. Technol. 2015, 29, 3691–3698. [CrossRef]
13. Vachon, M.J.; Ray, R.J.; Walsh, K.R.; Ennix, K. F/A-18 Performance Benefits Measured during the Autonomous Formation Flight Project;

Armstrong Flight Research Center: Edwards Air Force Base, CA, USA, 2013.
14. Vicroy, D.; Vijgen, P.; Reimer, H.; Gallegos, J.; Spalart, P. Recent NASA wake-vortex flight tests, flow-physics database and

wake-development analysis. In Proceedings of the AIAA and SAE, 1998 World Aviation Conference, Anaheim, CA, USA, 28–30
September 1998.

15. Kent, T.E.; Richards, A.G. Analytic approach to optimal routing for commercial formation flight. J. Guid. Control Dyn. 2015, 38,
1872–1884. [CrossRef]

16. Pahle, J.; Berger, D.; Venti, M.; Duggan, C.; Faber, J.; Cardinal, K. An initial flight investigation of formation flight for drag
reduction on the C-17 aircraft. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Minneapolis, MN, USA,
13–16 August 2012; p. 4802.

17. Bieniawski, S.R.; Rosenzweig, S.; Blake, W.B. Summary of flight testing and results for the formation flight for aerodynamic
benefit program. In Proceedings of the 52nd Aerospace Sciences Meeting, National Harbor, MD, USA, 13–17 January 2014;
p. 1457.

18. Hanson, C.E.; Pahle, J.; Reynolds, J.R.; Andrade, S.; Nelson, B. Experimental measurements of fuel savings during aircraft wake
surfing. In Proceedings of the 2018 Atmospheric Flight Mechanics Conference, Atlanta, GA, USA, 25–29 June 2018; p. 3560.

19. Okolo, W.; Dogan, A.; Blake, W. Effect of trail aircraft trim on optimum location in formation flight. J. Aircr. 2015, 52, 1201–1213.
[CrossRef]

20. Zhang, Q.; Pan, W.; Reppa, V. Model-reference reinforcement learning for collision-free tracking control of autonomous surface
vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 23, 8770–8781. [CrossRef]

52

Drones 2024, 8, 165

21. Blake, W.B.; Gingras, D.R. Comparison of Predicted and Measured Formation Flight Interference Effects. J. Aircr. 2004, 41, 201–207.
[CrossRef]

22. Ray, R.; Cobleigh, B.; Vachon, M.; St. John, C. Flight Test Techniques used to Evaluate Performance Benefits During Formation
Flight. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, Monterey, CA, USA, 5–8 August 2002.

23. Wilson, D.B.; Goktogan, A.H.; Sukkarieh, S. A Vision Based Relative Navigation Framework for Formation Flight. In Proceedings
of the 2014 IEEE International Conference on Robotics & Automation (ICRA), Hong Kong, China, 31 May–7 June 2014.

24. Zheng, R.; Lyu, Y. Nonlinear tight formation control of multiple UAVs based on model predictive control. Def. Technol. 2023, 25,
69–75. [CrossRef]

25. Zhang, Q.; Liu, H.H.T. Robust Nonlinear Close Formation Control of Multiple Fixed-Wing Aircraft. J. Guid. Control Dyn. 2021, 44,
572–586. [CrossRef]

26. Pachter, M.; D’Azzo, J.J.; Proud, A.W. Tight formation flight control. J. Guid. Control Dyn. 2001, 24, 246–254. [CrossRef]
27. Binetti, P.; Ariyur, K.B.; Krstic, M.; Bernelli, F. Formation flight optimization using extremum seeking feedback. J. Guid. Control

Dyn. 2003, 26, 132–142. [CrossRef]
28. Chichka, D.F.; Speyer, J.L.; Fanti, C.; Park, C.G. Peak-seeking control for drag reduction in formation flight. J. Guid. Control Dyn.

2006, 29, 1221–1230. [CrossRef]
29. Zhang, Q.; Liu, H.H.T. UDE-Based Robust Command Filtered Backstepping Control for Close Formation Flight. IEEE Trans. Ind.

Electron. 2018, 65, 8818–8827. [CrossRef]
30. Zhang, Q.; Liu, H.H. Robust cooperative close formation flight control of multiple unmanned aerial vehicles. In Proceedings of

the Advances in Motion Sensing and Control for Robotic Applications: Selected Papers from the Symposium on Mechatronics,
Robotics, and Control (SMRC’18)-CSME International Congress 2018, Toronto, ON, Canada, 27–30 May 2018; Springer: Cham,
Switzerland, 2019; pp. 61–74.

31. Ren, C.; Li, X.; Yang, X.; Ma, S. Extended state observer-based sliding mode control of an omnidirectional mobile robot with
friction compensation. IEEE Trans. Ind. Electron. 2019, 66, 9480–9489. [CrossRef]

32. Ding, S.; Hou, Q.; Wang, H. Disturbance-observer-based second-order sliding mode controller for speed control of PMSM drives.
IEEE Trans. Energy Convers. 2022, 38, 100–110. [CrossRef]

33. Proctor, F.; Hamilton, D.; Han, J. Wake vortex transport and decay in ground effect-Vortex linking with the ground. In Proceedings
of the 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2000; p. 757.

34. Proctor, F. Numerical simulation of wake vortices measured during the Idaho Falls and Memphis field programs. In Proceedings
of the 14th Applied Aerodynamics Conference, New Orleans, LA, USA, 17–20 June 1996; p. 2496.

35. Polycarpou, M.M.; Ioannou, P.A. A robust adaptive nonlinear control design. In Proceedings of the 1993 American Control
Conference, San Francisco, CA, USA, 2–4 June 1993; pp. 1365–1369.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

53

Citation: Fu, Y.; Zhao, W.; Liu, L.

Safe Reinforcement Learning for

Transition Control of Ducted-Fan

UAVs. Drones 2023, 7, 332. https://

doi.org/10.3390/drones7050332

Academic Editor: Mostafa

Hassanalian

Received: 15 April 2023

Revised: 12 May 2023

Accepted: 18 May 2023

Published: 22 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Safe Reinforcement Learning for Transition Control of
Ducted-Fan UAVs

Yanbo Fu 1,2, Wenjie Zhao 1,2,* and Liu Liu 1

1 School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China;
22124084@zju.edu.cn (Y.F.)

2 Center for Unmanned Aerial Vehicles, Huanjiang Laboratory, Zhuji 311800, China
* Correspondence: zhaowenjie8@zju.edu.cn

Abstract: Ducted-fan tail-sitter unmanned aerial vehicles (UAVs) provide versatility and unique
benefits, attracting significant attention in various applications. This study focuses on developing
a safe reinforcement learning method for back-transition control between level flight mode and
hover mode for ducted-fan tail-sitter UAVs. Our method enables transition control with a minimal
altitude change and transition time while adhering to the velocity constraint. We employ the Trust
Region Policy Optimization, Proximal Policy Optimization with Lagrangian, and Constrained Policy
Optimization (CPO) algorithms for controller training, showcasing the superiority of the CPO
algorithm and the necessity of the velocity constraint. The transition trajectory achieved using the
CPO algorithm closely resembles the optimal trajectory obtained via the well-known GPOPS-II
software with the SNOPT solver. Meanwhile, the CPO algorithm also exhibits strong robustness
under unknown perturbations of UAV model parameters and wind disturbance.

Keywords: safe reinforcement learning; ducted fan; transition control; unmanned aerial vehicle (UAV)

1. Introduction

In recent years, vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVs)
have gained considerable attention due to their unique advantages. Distinct from traditional
fixed-wing UAVs, VTOL UAVs are capable of taking off and landing vertically, eliminating
the need for a runway [1]. Moreover, when compared to multi-rotor UAVs, they offer
several benefits, such as a larger payload capacity, higher cruise speed, and longer flight
ranges [2]. This is primarily attributed to their reliance on wings for lift production, as
opposed to the multiple rotors utilized by multi-rotor UAVs. Among the various VTOL
UAV configurations, such as tilt rotor, tail sitter, and vectored thrust, the ducted-fan tail-
sitter fixed-wing UAV stands out as a unique design. Notably, they eliminate the need for
additional moving parts to achieve VTOL capabilities, leading to a simplified mechanical
design that is both easier to maintain and less prone to mechanical failures [3]. Moreover,
the incorporation of a ducted fan enhances the propulsion efficiency, allowing the UAVs to
cover longer distances. The ducted fan also contributes to noise reduction, making these
UAVs particularly suitable for noise-sensitive environments [4].

Ducted-fan tail-sitter fixed-wing UAVs integrate the characteristics of both traditional
fixed-wing and multi-rotor UAVs, enabling them to perform level flight and hover opera-
tions. However, during the transition process, the UAV experiences aerodynamic instability
due to a stall occurring at the fixed wing [5]. As a result, the control strategies for transition
maneuvers between these two flight modes are of paramount importance, necessitating
extensive investigation and research. Generally, two prevalent methods to address this
issue can be found in the current literature [3].

The first approach conceptualizes the transition process as a trajectory optimization
problem. In [6], the direct collocation method was employed to obtain the optimal tran-
sition trajectory by Li et al. An optimization approach using the interior point method

Drones 2023, 7, 332. https://doi.org/10.3390/drones7050332 https://www.mdpi.com/journal/drones54

Drones 2023, 7, 332

was proposed that focused on altitude changes during transition in [7]. The optimal feed-
forward control input for transition was computed via sequential quadratic programming
by Kubo and Suzuki [8]. Banazadeh devised a gradient-based algorithm based on the
classical Cauchy method to generate optimal transition trajectories [9]. Naldi and Mar-
coni [10] utilized mixed-integer nonlinear programming to tackle the minimum-time and
minimum-energy optimal transition problems.

The second approach is structured in two stages: the first stage entails devising the
desired trajectory during the transition, and the second stage involves designing a controller
to track the trajectory established in the first stage [3]. Jeong et al. proposed a continuous
ascent transition trajectory consisting of the angle of attack and flight path angle and
invoked dynamic inversion control for tracking [11]. Flores provided a desired velocity
trajectory and implemented a recurrent neural network-based controller for feedback
linearization [12]. Cheng and Pei established a transition corridor based on the constraint
of maintaining a fixed altitude [13]. They planned the desired velocity in the corridor and
utilized an adaptive controller [14].

Alternatively, reinforcement learning (RL) has emerged as a promising approach to
address various challenges in the domain of UAVs, owing to its ability to learn and adapt to
dynamic environments [15]. As a result, there has been growing interest in leveraging RL
algorithms to tackle the transition problem of VTOL UAVs. In [16], an RL-based controller
for hybrid UAVs was designed that can not only automatically complete the transition
but can also be adapted to different configurations. Xu [17] proposed a soft landing
control algorithm based on the RL method. Yuksek employed the deep deterministic policy
gradient algorithm to address the transition flight problem for tilt-rotor UAVs [18].

In this paper, we solve the back-transition task of ducted-fan tail-sitter fixed-wing
UAVs (i.e., from level flight mode to hover mode) using safe RL algorithms. While prior
work [16] mainly emphasizes the successful execution of transition maneuvers, our focus
is on minimizing altitude changes and the transition time, while adhering to velocity
constraints. Our method, compared to [18], integrates trajectory optimization and control
problems into an RL-based learning process, thereby reducing the complexity and compu-
tational effort. To the best of our knowledge, this is one of the first works in which the RL
methodology is utilized to solve the back-transition control problem of ducted-fan tail-sitter
UAVs.

The main contributions of our work are as follows.

1. We develop a mathematical model of ducted-fan fixed-wing UAV dynamics. Based
on this model, we create a training environment for ducted-fan UAVs in OpenAI
GYM [19] using the fourth-order Runge–Kutta method.

2. Taking into account the velocity constraint during the transition process, we train con-
trollers using Trust Region Policy Optimization (TRPO) with fixed penalty, Proximal
Policy Optimization with Lagrangian (PPOLag), and Constrained Policy Optimization
(CPO). We assess the performance of these algorithms and demonstrate the superiority
of the CPO algorithm.

3. Comparing the CPO algorithm with the optimal trajectory obtained via GPOPS-II [20],
we find that the performance of CPO closely approximates the optimal trajectory.
In addition, the CPO algorithm has robustness under unknown perturbations of
UAV model parameters and wind disturbance, which is lacking in the GPOPS-II
software.

This paper is organized as follows. In Section 2, a mathematical model of a ducted-
fan fixed-wing UAV is described. In Section 3, the general structure of the RL transition
controller is introduced, and the reward function, action, and observation are explained.
In Section 4, comparisons between CPO and other RL algorithms are reported. We also
compare the transition trajectory of CPO with GPOPS-II and verify the robustness of the
CPO algorithm. In Section 5, concluding remarks and future works are reported.

55

Drones 2023, 7, 332

2. Mathematical Modeling

In this section, we describe a three-degree-of-freedom (DOF) longitudinal model for
ducted-fan fixed-wing UAVs. The model is derived from the Newton and Euler theorems
and is simplified from the full 6-DOF dynamic model. This 3-DOF model is able to speed
up the process of assessing the impact of different reward functions and hyper-parameter
settings compared to the 6-DOF dynamic model [21]. It is equipped with four groups of
control vanes as the main control surfaces, each consisting of three movable vanes. In
addition, four groups of fixed vanes are situated above the main control surfaces, intended
to balance the anti-torque generated by the rotor, with each fixed group consisting of two
fixed vanes (see Figure 1). The four groups of control vanes are numbered 1, 2, 3, and 4
and are employed to change the attitude of the UAVs (see Figure 2). Each group of three
movable vanes, controlled by a single servo, deflects by the same angle. We use δ1, δ2, δ3,
and δ4 to represent the deflection of group numbers 1, 2, 3, and 4.

Figure 1. Ducted-fan UAV layout.

Figure 2. Control vanes.

56

Drones 2023, 7, 332

2.1. Three-DOF Dynamics

For the ducted-fan VTOL UAV, two right-handed coordinate systems are applied to
describe the states of the aircraft (see Figure 3). The inertial frame axes are denoted as
{ΓI :XI ,YI ,ZI} and the body frame axes are denoted as {ΓB:XB,YB,ZB} with the origin located
at the center of mass. Throughout this section, the superscripts (.I) and (.B) are utilized
to specify whether a variable is formulated in the inertial or body frame. The position
of the aircraft in ΓI is described by ξ = [x, y, z]T and the velocity of the aircraft in ΓB is
defined as VB = [u, v, w]T . The Euler angle vector (i.e., roll, pitch, and yaw) is described by
Θ = [φ, θ, ψ]T and the angular velocity vector with respect to the body frame is denoted by
Ω = [p, q, r]T . It should be noted that based on the above-mentioned definition, the pitch
angle θ = 0◦ at the level flight condition, and the pitch angle θ = 90◦ at the landing and
hover conditions (see Figure 4). Thus, the longitudinal dynamics of the aircraft are derived
as follows:

Figure 3. Inertial frame and body frame.

Figure 4. Left: level flight; Right: hover mode.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ = g sin θ + (D cos α − T − L sin α)/m − qw

ẇ = (Fcw + L cos α + D sin α + Fcs)/m + qu − g cos θ

ẋ = w cos θ − u sin θ

ż = u cos θ + w sin θ

θ̇ = q

q̇ =
(

Mpitch + Mcw + Mcs

)
/Iyy

(1)

where g is gravity acceleration; Iyy is the moment of inertia on the YB axis; α represents the
angle of attack. All the forces and moments are discussed below.

57

Drones 2023, 7, 332

2.2. Rotor

In this subsection, the rotor model is discussed based on basic momentum theory and
blade element theory [22]. Considering the airspeed along the XB axis, the configuration of
the blades, the airflow through the rotor, and the thrust of the rotor can be expressed as [23]

vb = u +
2
3

ωrr
(

3
4

Ktwist

)
(2)

T =
1
4
(vb − vi)ωrr2ρ∞a0bcr (3)

where VB = [u, v, w]T is the velocity in the body frame, ρ∞ is the air density, ωr represents
the angular velocity of the rotor, r is the radius of the rotor and Ktwist is the twist of the
blades, a0 is the rotor lift curve slope, b is the number of blades, cr is the chord of the rotor
blade, and the induced velocity vi and the far-field velocity v f can be expressed as

v f =

√
(u − vi)

2 + w2 + v2 (4)

vi = T/2ρ∞πr2v f (5)

The expressions for T and vi can be solved iteratively through Equations (2)–(5) using
the Newton–Raphson method.

2.3. Aerodynamics Model

The aerodynamic forces and moments include the lift L, the drag D, and the pitching
moment Mpitch. They are primarily dependent on the fuselage, duct, and mostly on the
wings. The angle of attack has a significant impact on the aerodynamic model, which can
be expressed as follows:

α =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if w = 0

−sgn(w)
π

2
if u = 0

arctan(
w
u
) if u < 0

arctan(
w
u
) + π if u > 0

(6)

The ducted-fan UAV can be regarded as an entire lifting body, including the fuselage,
wings, and duct [15]. This simplification introduces some inaccuracies in the aerodynamic
data. To address these discrepancies, it is essential to incorporate compensation for the
disturbances within the aerodynamic data. In order to account for the modeling errors, the
lift and drag coefficients are multiplied by a perturbation factor, sampled from a uniform
distribution ranging between 0.8 and 1.2.

During the transition mode, high angle of attack conditions can induce wing stall
phenomena, leading to a significant reduction in lift. Traditional linear aerodynamic coeffi-
cient models are insufficient in accurately capturing the complexities of the aerodynamic
behavior. As demonstrated in [24], an advanced aerodynamic model that integrates both
the linear lift model and the effects of wing stall can be formulated as follows:

CL(α) = (1 − σ(α))
[
CL0 + CLα α

]
+ σ(α)[CLmax sin α cos α] (7)

CD(α) = CDp +

(
CL0 + CLα α

)2

πeAR
(8)

58

Drones 2023, 7, 332

where

σ(α) =
1 + e−M(α−α0) + eM(α+α0)(

1 + e−M(α−α0)
)(

1 + eM(α+α0)
) (9)

CLα =
πAR

1 +
√

1 + (AR/2)2
(10)

The lift and drag coefficients are shown in Figure 5. The pitching moment coefficients
will be expressed by the linear model as

Cm(α) = Cm0 + Cmα α (11)

Thus, the lift L, drag D, and pitching moment Mpitch can be written as

L =
1
2

ρ∞V2SCL(α)

D =
1
2

ρ∞V2SCD(α)

Mpitch =
1
2

ρ∞V2SCm(α)

(12)

V is the air speed of the UAV and S is the wing area.p g

Figure 5. Lift and drag coefficient.

2.4. Momentum Drag

Due to the existence of crosswinds, the duct must generate a force to align the incoming
airflow with its orientation. This results in a reaction force known as momentum drag.
Moreover, crosswinds lead to the formation of a region with higher velocity over the near
edge of the duct, as the air surrounding it is pulled into the duct by the rotor. This increased
lift on the edge produces a moment that causes the vehicle to turn away from the crosswind,
referred to as the momentum moment [22]. The formulas for the momentum drag and
moment can be represented as follows:

Fcw = −viρ∞πr2w (13)

Mcw = Cductρ∞r|r|w (14)

where w is the velocity of the Z-axis in the body frame, and vi is determined by Equation (5).

59

Drones 2023, 7, 332

2.5. Control Vanes

Each control vane can be modeled as an airfoil. In [3,14,15], the lift slope coefficient of
vane is assumed to be constant. However, our Computational Fluid Dynamics simulations
have shown that the lift coefficient of the vane remains virtually unchanged when subjected
to a large angle of attack. Thus, based on the simple model in [25], the lift slope coefficient
Clcs of the vane can be expressed as

Clcs =

{
0.0625 if |α| ≤ 16◦
0 if |α| > 16◦ (15)

The dynamic pressure qcs on each vane can be expressed as

qcs =
1
2

ρ∞(u − vi)
2 (16)

where u is the velocity of the X-axis in the body frame. Based on the control allocation
method [15], the equivalent vane deflection of pitch (Y-axis) is given as follows:

δy = δ2 − δ4 (17)

The drag forces of vanes can be neglected [15], and the vane’s angle of attack only
depends on the vane’s deflection [3]. Thus, the force and moment generated by the control
vanes are as follows:

Fcs = qcsScsClcsδy (18)

Mcs = qcsScsClcsleδy (19)

where Scs represents the vane area and le is the arm of pitch moment.

3. Approach

3.1. Problem Formulation

In this section, we provide a mathematical expression for the UAV back-transition
problem. In the back-transition process, the most straightforward strategy is that the UAV
climbs at a large pitch angle while converting the kinetic energy into potential energy [26]
(see Figure 6a). Although this approach offers a short transition time, it results in substantial
altitude loss. In this paper, our desired trajectory, referred to as a “neat transition”, aims to
complete the transition as quickly as possible with minimal altitude loss [13] (see Figure 6b).
To achieve this transition, we introduce an additional constraint on the Z-axis velocity,
expressed as

‖vz‖ < 1

Thus, we pay attention to the altitude loss and transition time after the transition has
been completed. The RL problem is defined as follows.

RL UAV Back-Transition Problem:
Minimize:

1. Terminal Velocity Error: ‖v‖ at t = t f

2. Terminal Attitude Error: ‖θ − π/2‖ at t = t f

3. Terminal Angular Velocity Error: ‖ω‖ at t = t f

4. Terminal Time: t f

5. Height loss:
∥∥∥zt f − zt0

∥∥∥
Subject to:

1. Angular Velocity Constraint: pitch angle velocity rate q < 180◦
2. Control Constraints:

∣∣δy
∣∣ < 30◦ and ωrmin < ωr < ωrmax

3. Neat Transition Constraint: ‖vz‖ < 1 m/s

60

Drones 2023, 7, 332

4. Equations of Motion (set by the environment)

To primarily optimize the terminal altitude loss and transition time, we opt to provide
error margins for the terminal velocity, terminal angle, and terminal angular velocity. When
the error falls within these margins, the transition is deemed successful. The terminal error
range can be expressed as follows:

‖vt f ‖ ≤ 1 m/s∥∥∥θt f − π/2
∥∥∥ ≤ 0.08 rad

‖ωt f ‖ ≤ 0.08 rad/s

(a) Continuous ascent trajectory

(b) Neat transition trajectory

Figure 6. Different transition trajectories.

3.2. Algorithm

To address the neat transition constraint, traditional RL methods typically apply
a fixed penalty through the reward function. However, if the penalty is too small, the
agent may learn unsafe behavior, while an excessively severe penalty might result in the
agent’s inability to learn anything. In contrast, safe reinforcement learning algorithms
employ the Lagrangian approach to tackle constraints, automatically balancing the weights
between rewards and penalties. This ensures that the entire transition process adheres
to the constraints while exploring the optimal transition performance. Among safe RL
algorithms, we introduce the Constrained Policy Optimization (CPO) algorithm to solve
the ducted-fan UAV back-transition problem [27].

3.2.1. Constrained Markov Decision Process (CMDP)

A Markov decision process (MDP) is a tuple, (S, A, P, γ, R), where S is the set of states,
A is the set of actions, and R : S × A × S → R is the reward function. P : S × A × S → [0, 1]
is the transition probability function (where P(s′ | s, a) is the probability of transitioning
to state s′ under the previous state s and the action a). γ ∈ [0, 1] is the discount factor for
future rewards, which represents a trade-off between immediate and future rewards. π
refers to a policy, which is a function that maps a state to an action. π(a|s) denotes the

61

Drones 2023, 7, 332

probability of selecting action a in state s. A trajectory τ is a set of MDP tuples in one
episode during which an agent interacts with the environment under policy π.

A constrained Markov decision process (CMDP) is an MDP subjected to some con-
straints. A set C1, . . . , Cm (with each one as Ci : S × A × S → R) is referred to as cost
functions, similar to the reward function [28]. The limits d1, . . . , dm represent the thresholds
of the cost functions. For the policy gradient algorithm, value functions, action-value
functions, and advantage functions are defined as Vπ , Qπ , and Aπ .

Qπ(st, at) = Eπ

[
∞

∑
k=0

γkRt+k

]

Vπ(st) = Eπ

[
∞

∑
k=0

γkRt+k

]
Aπ(s, a) = Qπ(s, a)− Vπ(s)

(20)

Similarly, we can replace reward R in the above equation with cost C to acquire Vπ
C ,

Qπ
C , and Aπ

C .
In a CMDP, the actor–critic framework consists of three parts: the actor, the critic, and

the cost critic. The actor is responsible for selecting actions based on the current state of
the agent, while the critic and cost critic estimate the expected discounted reward and cost
based on the current state. Typically, these three parts are usually approximated by neural
networks (NN). In the case of CMDP, let J(π) denote the expected discounted reward:

J(π) = E
τ∼π

[
∞

∑
t=0

γtRt

]
(21)

Similarly, the cumulative cost can be described as

JCi (π) = E
τ∼π

[
∞

∑
t=0

γtCi(st, at, st+1)

]
(22)

Thus, the set of feasible policies is

ΠC
.
=

{
π ∈ Π : ∀i, JCi (π) ≤ di

}
(23)

The objective in a CMDP is to find a policy that maximizes J(π) in ΠC:

π∗ = arg max
π∈ΠC

J(π) (24)

3.2.2. Constrained Policy Optimization

CPO adheres to the monotonic improvement theory proposed by Trust Region Pol-
icy Optimization (TRPO) [29]. By constraining the difference between the old and new
strategies to a small step size, it becomes possible to approximate the lower bound of the
objective function and the upper bound of the cost objective function between the old and
new policies, resulting in the following expression [27]:

J
(
π′)− J(π) ≈ Eτ∼π

[
∞

∑
t=0

Aπ(st, at)
π′(at|st)

π(at|st)

]
(25)

JCi

(
π′)− JCi (π) ≈ Eτ∼π

[
∞

∑
t=0

Aπ
Ci
(st, at)

π′(at|st)

π(at|st)

]
(26)

62

Drones 2023, 7, 332

Due to the approximation of the difference and the requirement in importance sam-
pling that the two strategy distributions must not be too far apart, a constraint is added on
the average Kullback–Leibler (KL) divergence between the old and new policies:

D̄KL
(
π‖π′) ≤ δ (27)

where δ is a step size. By employing the minorization-maximization (MM) algorithm,
policy boosting can be guaranteed through maximizing an approximate lower bound on the
difference between the old and new policies (often called the alternative objective function).
Similarly, if the sum of the upper bound of the difference between the cost function of the
old and the new strategy and the cost function of the old strategy satisfies the constraint,
then the cost objective function of the new policy can also satisfy the constraint. As a result,
this optimization problem can be expressed as

max
θ

E(st ,at)∼π

[
πθ(at | st)

π(at | st)
Âπ(st, at)

]

s.t. JCi (π) +E(st ,at)∼π

[
πθ(at | st)

π(at | st)
Âπ

Ci
(st, at)

]
≤ di ∀i (28)

D̄KL

(
π‖πθ

)
≤ δ

where θ is the parameter of the policy network and Â is the advantage value function
estimated by generalized advantage estimation [30]. Since the KL divergence limits the
difference in the policy distribution to a small step size, the objective and constraint
functions in the above equation can be expanded in the first order, while the KL divergence
constraint is expanded in the second order. Let the gradient of the objective function be g,
the gradient of constraint i be bi, the Hessian of KL divergence be H, and c be defined as
JCi (π)− di. Thus, the approximate problem is

θk+1 = arg max
θ

gT(θ − θk)

s.t. ci + bT
i (θ − θk) ≤ 0 i = 1, . . . , m

1
2
(θ − θk)

T H(θ − θk) ≤ δ

(29)

Due to the computational complexity of the Hessian matrix, CPO uses a Fisher infor-
mation matrix to approximate H, which makes the problem above a convex optimization
problem [27]. To solve this convex optimization problem, we denote the Lagrangian multi-
pliers λ and ν. Then, when the original problem has a feasible solution, a dual to (29) can
be expressed as

max
λ≥0
ν≥0

−1
2λ

(
gT H−1g − 2νTbT H−1g + νTbT H−1bν

)
+ νTc − λδ (30)

If λ∗ and ν∗ are the optimal solution to the dual problem, the policy can be updated as
follows:

θk+1 = θk +
1

λ∗ H−1(g − bν∗) (31)

When there is no feasible solution to the original problem, CPO will execute the
recovery method, which will change the search direction. The recovery method is as
follows:

θk+1 = θk −
√

2δ

bT H−1b
H−1b (32)

63

Drones 2023, 7, 332

Inspired by TRPO, the line search method is used to adjust the step size of the update
to avoid any error caused by the approximation.

3.2.3. Implementation Details

In this section, we give the corresponding design of the state space, action space, and
reward function in RL. The state and action spaces are described as

s =
(

sin θ, cos θ, vx, vz, q, tle f t, Ivx , Ivz , Iθ , z
)T ∈ R10,

a =
(
δy, ωr

)T ∈ R2.
(33)

where δy represents the vane deflection of pitch, ωr is the angular velocity of the rotor, θ is
the pitch angle, vx and vz are the velocity of the X-axis and Z-axis in the inertial frame, q is
the angular velocity of the pitch angle, tle f t is the remaining time during one episode (the
maximum time for an episode is 10 s), and z is the height. Ivx , Ivz , Iθ is the integral error of
vx, vz, θ, which can be expressed as

eθ = θ − π/2, evx = vx, evz = vz (34)

In = η In−1 + en (35)

where η is the integral coefficient, and the integration of the error is approximated by such
an incremental approach as Equation (35). The design of the reward function is a key factor
affecting the performance of the reinforcement learning algorithm. The reward function R
and the cost function C are given by the following:

Φ(st) = k1

√
v2

x + v2
z + k2|θ − π/2| (36)

R = κ + (Φ(st+1)− Φ(st))× (0.5)t/10 − χI(s)− β(q > π)− ξ(|z| > 2)− τ (37)

C = 1 if ‖vz‖ ≥ 1 else 0 (38)

where the various terms are described as follows.

1. κ is a bonus reward for successful transition, where the terminal velocity, pitch angle,
and angular velocity are all within specified limits. In addition, different amounts of
bonuses are also given based on the loss of height when a successful transition state is
reached. We use ZT to represent the terminal height loss.

κ =

⎧⎪⎪⎨⎪⎪⎩
1000 if ZT ≤ 0.125 m

100 − 100 × log2 ZT if ZT ≤ 1 m
100 − 90 × log2 ZT if ZT ≤ 2 m

10 else

(39)

2. Φ(st+1)− Φ(st) is in the form of reward shaping. The aim of reward shaping is to
accelerate the learning process, where k1 and k2 denote the weights of the speed and
angle rewards. The term (0.5)t/10, which is gradually decaying over time, is designed
to reduce the transition time.

3. χ is constant and I(s) =
∥∥0.02 × I2

vx + I2
θ + I2

vz

∥∥, β is a penalty for an angle exceeding
the limit, and ξ is a penalty when the UAV loses more than two meters in altitude. τ
is a fixed time penalty.

The cost limit d is set at 5. The terminal condition of an episode is either meeting the
termination condition specified in Section 3.1 or reaching the maximum time of 10 s.

64

Drones 2023, 7, 332

4. Simulation and Results

In this section, we present the experimental results. In our experiments, the controller
update and sensor data download frequency was set as 50 HZ. For our experiments, the
initial flight mode was set to level flight, with the initial angle of attack sampled from a
uniform distribution ranging between 6◦ and 15◦. The initial pitch angle was set equal to
the angle of attack, the initial height was set at 50 m, and the corresponding horizontal
velocity could be determined using the following equation:

vlevel = −
√

mg
1
2 CL(α)ρ∞S

(40)

4.1. Comparing CPO and TRPO with Fixed Penalty

To demonstrate the superiority of safe reinforcement learning compared to other
conventional reinforcement learning algorithms with a fixed penalty, we conducted three
different sets of experiments, which were named CPO, TRPO with penalty 1, and TRPO
with penalty 5. The experimental results are shown in Figure 7.

(a) Reward (b) Cost

Figure 7. Comparison of learning curve.

During training, we took into account the randomization of the initial state and the
perturbation of the aerodynamic coefficients. However, in evaluating the transition perfor-
mance of CPO and TRPO with penalty, we have not considered these factors. Three sets of
experiments with the same initial state (angle of attack at 6◦) for the sake of comparison are
shown in Figure 8, where the arrows represent the terminal state.

In Figures 7 and 8, we can observe that the trajectory corresponding to TRPO with
penalty 1 converges to a locally optimal continuous ascending path, resulting in a fast tran-
sition time but significant altitude loss. In contrast, the trajectory corresponding to TRPO
with penalty 5 consistently satisfies the constraints, but its terminal angle and speed exceed
the predefined range, ultimately failing to complete the task. The CPO algorithm, however,
effectively meets the constraints while accomplishing the transition with a minimal altitude
loss of 0.1 m, which complies with the requirements of a neat transition.

65

Drones 2023, 7, 332

(a) pitch angle comparison (b) Vx comparison

(c) Vz comparison (d) height comparison (initial height 50 m)

Figure 8. Trajectory comparison.

4.2. Comparing CPO and PPOLag

In the domain of safe reinforcement learning, numerous algorithms can address
constraint-related issues. For the sake of code development convenience, we have chosen
to compare the CPO algorithm with Proximal Policy Optimization with Lagrangian, also
called PPOLag (see Figure 9).

(a) Reward (b) Cost (c) Lagrangian Multiplier

Figure 9. CPO vs. PPOLag.

PPOLag is a variant of the Proximal Policy Optimization (PPO) algorithm, which
employs a Lagrangian relaxation approach to handle constraints. Constraints are integrated
into the objective function using a penalty term that is computed with the help of the
Lagrange multiplier. The Lagrange multiplier is updated during the training process based
on the discrepancy between the current constraint value and its cost limit, which serves as
a weighting factor to balance the trade-off between the reward function and the constraints.

PPOLag is a simpler algorithm in principle and easier to implement. However, as
shown in Figure 9b, this method may cause oscillations near the cost limit of the constraint,
leading to poor performance of the agent (as shown in Figure 9a). Consequently, although
PPOLag can complete the transition, its performance is inferior to that of CPO. The best-
trained model with PPOLag (at an angle of attack of 6°) has a terminal height loss of 1.2 m

66

Drones 2023, 7, 332

and a transition time of 7.84 s, but CPO has a terminal height loss of 0.1 m and a transition
time of 6.94 s.

4.3. Comparison with GPOPS-II

According to the problem formulation in Section 3.1, this problem can also be con-
sidered as an optimal control problem. As a result, we choose to employ GPOPS-II when
computing the optimal trajectory. In this case, the control variables for GPOPS-II are the
same as in our approach—namely, the angular velocity of the rotor and elevator deflec-
tion. The experimental results without perturbations at an initial angle of attack 10◦ are
compared in Figures 10 and 11. The cost function of GPOPS-II is the following:

J = 0.5t f + 0.2
∣∣∣Zt f

∣∣∣ (41)

where t f is the transition time and Zt f is the terminal height loss.

(a) angular velocity of rotor (b) elevator deflection

Figure 10. Control input comparison for CPO and GPOPS-II.

(a) pitch angle (b) angular velocity

(c) Vx (d) Vz (e) height

Figure 11. State comparison for CPO and GPOPS-II.

67

Drones 2023, 7, 332

The height loss of GPOPS-II is 0.01 m with a transition time of 5.21 s, while the
height loss of CPO is 0.103 m with a transition time of 5.62 s. As can be seen from the
figures, the performance of the CPO algorithm closely approximates that of GPOPS-II.
However, GPOPS-II has two main drawbacks. Firstly, as a model-based approach, it
provides only optimal feed-forward control input, which is an ideal solution. When the
dynamics model of the UAV changes, it requires re-solving based on the altered model. In
contrast, the CPO algorithm is highly robust and can still perform the transition task with
high performance despite certain modeling errors and wind disturbance, as discussed later
in Sections 4.4 and 4.5. Secondly, as micro-controllers onboard aerial robots generally only
have limited computational power, the optimization of GPOPS-II can be only executed
offline. However, RL algorithms such as CPO can solve the transition problem online after
a policy model has been trained, which saves a great deal of computational resources.

4.4. Robustness Validation

During the training process, the randomness of the UAV is only determined by the
randomness of the initial state and aerodynamic parameters. Therefore, in order to assess
the robustness of the system, we chose to randomize various factors, including the mass,
moment of inertia, and aerodynamic parameters of lift and drag (with a larger range), by
employing a uniform distribution. Furthermore, we took sensor noise into account because
measurement errors in the height can potentially lead to a significant decline in the system’s
performance, especially for terminal height loss. To validate the robustness of sensor noise,
Gaussian noise was introduced into the height measurements. It is important to note that
we did not consider these perturbations during training, meaning that the UAV had not
been exposed to them before.

To enable a fair comparison, we only randomized the initial state and tested each
perturbation individually. Specifically, we conducted 500 experiments for each perturbation,
while maintaining the same transition success condition as in Section 3.1. We report the
average performance of the UAV across all experiments (see Table 1). At the same time,
the trajectories under each disturbance group (50 in total) are also provided. We chose to
use the pitch angle and velocity of the UAV during the transition process to draw 2D plane
curves (see Figures 12–15), where the different color simply indicates that these trajectories
are different. Through the figures, we can find that the UAV can still complete the transition
task with excellent performance despite the change in UAV model parameters. At the same
time, we can observe that even when the UAV does not transition successfully, its terminal
velocity and pitch angle mostly remain close to our desired range.

Table 1. Experimental results under different perturbations.

Perturbation Type Parameter Range Success Rate
Transition

Time
Terminal

Height Loss
Terminal
Velocity

Terminal
Pitch Angle

Mass 21% 94% 6.30 s 0.27 m 1.01 m/s 95.09°

Lift and Drag 40% 97.0% 6.09 s 0.109 m 0.966 m/s 93.76°

Inertia 40% 100% 6.02 s 0.072 m 0.80 m/s 93.42°

Sensor Noise |μ| ≤ 0.2, 0.005 ≤ σ ≤ 0.05 100% 6.54 s 0.133 m 0.95 m/s 93.05°

68

Drones 2023, 7, 332

Figure 12. Mass perturbation.

Figure 13. Lift and drag perturbation.

Figure 14. Inertia perturbation.

69

Drones 2023, 7, 332

Figure 15. Sensor noise perturbation.

4.5. Transition under Wind Disturbance

In this section, we aim to verify the wind disturbance rejection ability of our method.
In RL-based robotic control design, the sim-to-real gap is a challenging problem because
there are inevitable mismatches between the simulator setting and real-world setting in
the UAV control problem. This is not only due to the unknown perturbations of the UAV
parameters but also the presence of adversarial disturbances such as wind in the real world.
To account for wind disturbance, we introduce two different wind scenarios: constant-
magnitude wind (ranging from −5 m/s to 5 m/s) and sinusoidal wind (with an amplitude
of 5 m/s and time periods of 2 s, 3 s, 4 s, and 5 s), both along the horizontal direction, which
is the XI axis. Furthermore, the dynamics of ducted-fan fixed-wing UAVs in the presence
of wind are described in detail in [3,14]. Therefore, we recreate the dynamic equations of
the UAV using their modeling of wind.

To address the wind disturbance, we employ domain randomization [31] and retrain
the RL agent under three different conditions: the two wind scenarios mentioned above
and a no-wind scenario. Domain randomization is an approach used to overcome the
sim-to-real gap by randomizing the simulator environment during the training of the RL
control policy. By adapting the domain randomization approach, we aim to retrain a UAV
controller that is robust against wind disturbance.

The trajectory comparison among the constant-magnitude wind (5 m/s), sinusoidal
wind (time period 2 s), and no-wind conditions is shown in Figure 16, where the arrows
represent the terminal state and all initialized from the angle of attack 6◦.

From Figures 8 and 16, we can see that compared to the controller trained with-
out domain randomization, the terminal height loss of the drone retrained with domain
randomization remains nearly the same, while the time taken increases by 1.52 s. This
phenomenon can be intuitively understood as follows: the RL algorithm selects actions
with the highest expected returns under various wind disturbance scenarios, rather than
actions that can achieve high returns in windless environments, but may fail to complete
the task in windy conditions. Thus, a certain degree of performance loss is reasonable.

In order to better evaluate the resistance of our method to wind disturbances, we
applied the UAV in 100 experiments under three conditions and from different initial states,
in addition to considering the perturbation of the aerodynamic coefficients during the
transition (a uniform distribution ranging between 0.8 and 1.2). The experimental results
are shown in Figure 17 (success rate 90%), where the different color simply indicates that
these trajectories are different.

In Figure 17, we observe that in most cases, the UAV is able to withstand wind
disturbances and complete the transition task. However, for those trajectories that do not

70

Drones 2023, 7, 332

satisfy the terminal constraint in Section 3.1, we find that the trajectories generally terminate
with an attitude close to vertical hover (90◦) and a small velocity. This suggests that the
UAV is less resistant to interference in the hovering state. In conventional approaches,
a common method is to switch to the hover controller when the UAV transitions from
level flight to near-hover. Wind disturbance can be resisted by switching between the two
controllers and enhancing the hover controller’s ability to handle wind disturbance. In
RL, resistance to wind disturbance in hovering should be treated as a separate task, and
the problem should be addressed using multi-task RL or meta-learning, which will be the
focus of our future work.

(a) pitch angle comparison (b) Vx comparison

(c) Vz comparison (d) height comparison (initial height 50 m)

Figure 16. Trajectory comparison under wind disturbance.

Figure 17. Trajectory under wind disturbance.

71

Drones 2023, 7, 332

5. Conclusions

In this study, we have successfully developed a safe reinforcement learning-based
approach for neat transition control during the back-transition process of ducted-fan
fixed-wing UAVs. By constructing a three-degree-of-freedom longitudinal model and
implementing the CPO algorithm, our method effectively addresses the challenges of
integrating trajectory optimization and control methods. By comparison, we found that
the introduction of a velocity constraint leads to better performance compared to adding
a penalty to the reward. Furthermore, we also found that our method closely resembles
GPOPS-II’s performance without the need for prior knowledge. Additionally, we confirmed
the robustness of the CPO algorithm and found that even when the transition was not
successful, the terminal conditions remained close to our desired terminal range. Future
research directions include enabling the UAV to complete multi-tasks (i.e., from hover to
level flight, hover under wind disturbance, and level flight), ensuring robustness against
wind disturbance, and validating the approach in the real world.

Author Contributions: Conceptualization, Y.F. and W.Z.; Data curation, Y.F. and L.L.; Formal analysis,
Y.F.; Funding acquisition, W.Z.; Investigation, Y.F. and W.Z.; Methodology, Y.F.; Project administration,
W.Z.; Resources, W.Z. and L.L.; Software, Y.F.; Supervision, W.Z.; Validation, Y.F.; Visualization, Y.F.
and L.L.; Writing—original draft, Y.F.; Writing—review and editing, Y.F. and W.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the 1912 project, the Key Research and Development Program
of Zhejiang Province, China (Grant No. 2020C05001), and the Fundamental Research Funds for the
Central Universities, China (Grant No. 2021QNA4030).

Data Availability Statement: The data presented in this study are available on request.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Symbol Description Units
x, y, z position of UAV m
u, v, w velocity in the body frame m/s
φ, θ, ψ roll, pitch, and yaw angle rad
p, q, r angular velocity rad/s
g gravity acceleration m/s2

α angle of attack rad
m mass kg
Iyy moment of inertia kg · m2

L, D, T aerodynamic lift, drag, and thrust N
Fcw, Fcs momentum drag and control vane force N
Mpitch, Mcw, Mcs pitch, momentum, and control vane moment N · m
ρ∞ air density Kg/m3

ωr angular velocity of the rotor rad/s
r radius of the rotor m
Ktwist twist of blades
a0 rotor lift curve slope
b number of blades
cr chord of the rotor blade m
vb, vi, v f airflow through rotor, induced velocity, and

far-field velocity
m/s

CL, CD, Cm lift, drag, and pitch moment coefficient
V air speed m/s
Clcs lift slope coefficient of vane

72

Drones 2023, 7, 332

qcs dynamic pressure kg/m · s2

Scs vane area m2

le arm of pitch moment m
s state space
R reward function
C cost function
a action space
P transition probability
γ discount factor
Vπ value function
Aπ advantage value function
J(π) expected discounted reward

References

1. Ozdemir, U.; Aktas, Y.O.; Vuruskan, A.; Dereli, Y.; Tarhan, A.F.; Demirbag, K.; Erdem, A.; Kalaycioglu, G.D.; Ozkol, I.; Inalhan, G.
Design of a commercial hybrid VTOL UAV system. J. Intell. Robot. Syst. 2014, 74, 371–393. [CrossRef]

2. Okulski, M.; Ławryńczuk, M. A Small UAV Optimized for Efficient Long-Range and VTOL Missions: An Experimental
Tandem-Wing Quadplane Drone. Appl. Sci. 2022, 12, 7059. [CrossRef]

3. Argyle, M.E. Modeling and Control of a Tailsitter with a Ducted Fan. Ph.D. Thesis, Ira A. Fulton College of Engineering and
Technology, Provo, UT, USA, 2016.

4. Graf, W.E. Effects of Duct Lip Shaping and Various Control Devices on the Hover and Forward Flight Performance of Ducted Fan
UAVs. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2005.

5. Oosedo, A.; Abiko, S.; Konno, A.; Uchiyama, M. Optimal transition from hovering to level-flight of a quadrotor tail-sitter UAV.
Auton. Robot. 2017, 41, 1143–1159. [CrossRef]

6. Li, B.; Sun, J.; Zhou, W.; Wen, C.Y.; Low, K.H.; Chen, C.K. Transition optimization for a VTOL tail-sitter UAV. IEEE/ASME Trans.
Mechatronics 2020, 25, 2534–2545. [CrossRef]

7. Verling, S.; Stastny, T.; Bättig, G.; Alexis, K.; Siegwart, R. Model-based transition optimization for a VTOL tailsitter. In Proceedings
of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3939–3944.

8. Kubo, D.; Suzuki, S. Tail-sitter vertical takeoff and landing unmanned aerial vehicle: transitional flight analysis. J. Aircr. 2008,
45, 292–297. [CrossRef]

9. Banazadeh, A.; Taymourtash, N. Optimal control of an aerial tail sitter in transition flight phases. J. Aircr. 2016, 53, 914–921.
[CrossRef]

10. Naldi, R.; Marconi, L. Optimal transition maneuvers for a class of V/STOL aircraft. Automatica 2011, 47, 870–879. [CrossRef]
11. Jeong, Y.; Shim, D.; Ananthkrishnan, N. Transition Control of Near-Hover to Cruise Transition of a Tail Sitter UAV. In Proceedings

of the AIAA Atmospheric Flight Mechanics Conference, Toronto, ON, Canada, 2–5 August 2010; p. 7508.
12. Flores, A.; Flores, G. Transition control of a tail-sitter UAV using recurrent neural networks. In Proceedings of the 2020

International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 1–4 September 2020; pp. 303–309.
13. Cheng, Z.H.; Pei, H.L. Transition analysis and practical flight control for ducted fan fixed-wing aerial robot: Level path flight

mode transition. IEEE Robot. Autom. Lett. 2022, 7, 3106–3113. [CrossRef]
14. Cheng, Z.; Pei, H.; Li, S. Neural-networks control for hover to high-speed-level-flight transition of ducted fan uav with provable

stability. IEEE Access 2020, 8, 100135–100151. [CrossRef]
15. Zhang, W.; Quan, Q.; Zhang, R.; Cai, K.Y. New transition method of a ducted-fan unmanned aerial vehicle. J. Aircr. 2013,

50, 1131–1140. [CrossRef]
16. Xu, J.; Du, T.; Foshey, M.; Li, B.; Zhu, B.; Schulz, A.; Matusik, W. Learning to fly: Computational controller design for hybrid uavs

with reinforcement learning. ACM Trans. Graph. (TOG) 2019, 38, 1–12. [CrossRef]
17. Xu, X.; Chen, Y.; Bai, C. Deep reinforcement learning-based accurate control of planetary soft landing. Sensors 2021, 21, 8161.

[CrossRef] [PubMed]
18. Yuksek, B.; Inalhan, G. Transition Flight Control System Design for Fixed-Wing VTOL UAV: A Reinforcement Learning Approach.

In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 0879.
19. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. Openai gym. arXiv 2016,

arXiv:1606.01540.
20. Patterson, M.A.; Rao, A.V. GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive

Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. (TOMS) 2014, 41, 1–37.
[CrossRef]

21. Gaudet, B.; Linares, R.; Furfaro, R. Deep reinforcement learning for six degree-of-freedom planetary landing. Adv. Space Res.
2020, 65, 1723–1741. [CrossRef]

22. Johnson, E.N.; Turbe, M.A. Modeling, control, and flight testing of a small-ducted fan aircraft. J. Guid. Control Dyn. 2006,
29, 769–779. [CrossRef]

73

Drones 2023, 7, 332

23. Heffley, R.K.; Mnich, M.A. Minimum-complexity helicopter simulation math model. Technical Report; Manudyne Systems, Inc.:
Los Altos, CA, USA, 1988.

24. Beard, R.W.; McLain, T.W. Small Unmanned Aircraft: Theory and Practice; Princeton University Press: Princeton, NJ, USA, 2012.
25. Puopolo, M.; Reynolds, R.; Jacob, J. Comparison of three aerodynamic models used in simulation of a high angle of attack UAV

perching maneuver. In Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and
Aerospace Exposition, Grapevine, TX, USA, 7–10 January 2013; p. 242.

26. Kikumoto, C.; Urakubo, T.; Sabe, K.; Hazama, Y. Back-Transition Control with Large Deceleration for a Dual Propulsion VTOL
UAV Based on Its Maneuverability. IEEE Robot. Autom. Lett. 2022, 7, 11697–11704. [CrossRef]

27. Achiam, J.; Held, D.; Tamar, A.; Abbeel, P. Constrained policy optimization. In Proceedings of the International Conference on
Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 22–31.

28. Yang, T.Y.; Rosca, J.; Narasimhan, K.; Ramadge, P.J. Projection-based constrained policy optimization. arXiv 2020,
arXiv:2010.03152.

29. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the International
Conference on Machine Learning PMLR, Lille, France, 6–11 July 2015; pp. 1889–1897.

30. Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; Abbeel, P. High-dimensional continuous control using generalized advantage
estimation. arXiv 2015, arXiv:1506.02438.

31. Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; Abbeel, P. Domain randomization for transferring deep neural networks
from simulation to the real world. In Proceedings of the 2017 IEEE/RSJ international conference on intelligent robots and systems
(IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 23–30.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

74

Citation: Zhang, X.; Zhao, W.; Liu, C.;

Li, J. Distributed Multi-Target Search

and Surveillance Mission Planning

for Unmanned Aerial Vehicles in

Uncertain Environments. Drones

2023, 7, 355. https://doi.org/

10.3390/drones7060355

Academic Editor: Carlos Tavares

Calafate

Received: 16 April 2023

Revised: 23 May 2023

Accepted: 26 May 2023

Published: 28 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Distributed Multi-Target Search and Surveillance Mission
Planning for Unmanned Aerial Vehicles in
Uncertain Environments

Xiao Zhang 1,2, Wenjie Zhao 1,2,*, Changxuan Liu 1,2 and Jun Li 1,2

1 School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310014, China;
12024061@zju.edu.cn (X.Z.)

2 Center for Unmanned Aerial Vehicles, Huanjiang Laboratory, Zhuji 311800, China
* Correspondence: zhaowenjie8@zju.edu.cn

Abstract: In this paper, a distributed, autonomous, cooperative mission-planning (DACMP) approach
was proposed to focus on the problem of the real-time cooperative searching and surveillance of
multiple unmanned aerial vehicles (multi-UAVs) with threats in uncertain and highly dynamic
environments. To deal with this problem, a time-varying probabilistic grid graph was designed
to represent the perception of a target based on its a priori dynamics. A heuristic search strategy
based on pyramidal maps was also proposed. Using map information at different scales makes it
easier to integrate local and global information, thereby improving the search capability of UAVs,
which has not been previously considered. Moreover, we proposed an adaptive distributed task
assignment method for cooperative search and surveillance tasks by considering the UAV motion
environment as a potential field and modeling the effects of uncertain maps and targets on candidate
solutions through potential field values. The results highlight the advantages of search task execution
efficiency. In addition, simulations of different scenarios show that the proposed approach can
provide a feasible solution for multiple UAVs in different situations and is flexible and stable in
time-sensitive environments.

Keywords: UAV swarm; cooperative search surveillance; mission planning; image pyramid

1. Introduction

With the mission environment becoming increasingly complex and dynamic, multiple
unmanned aerial vehicles (UAVs) have been used to form a cooperative combat system
with complementary advantages and cooperation to enhance the overall combat capability
of UAVs [1]. UAV swarm systems are inspired by swarm intelligence derived from the
biological swarm behavior in nature such as the behavior of ants and bees, which is coor-
dinated and controlled according to the swarm intelligence principle, making full use of
local perception and interaction ability to complete relatively complex tasks. Meanwhile,
as the number of UAVs increases, their computational and communication complexity
will increase dramatically. Moreover, a UAV swarm has high requirements for system
robustness, communication reliability, and capacity. Distributed control architecture em-
ploys an autonomous and cooperative method, breaking down complex issues into smaller
sub-problems that can be addressed by individual nodes. This approach maximizes the
independent abilities of each UAV and significantly enhances the computational efficiency
and is widely used in search and rescue (SAR) [2], surveillance [3], civil security [4], search-
ing [5–7], task allocation [8], and mapping [9] applications.

In the above tasks, the problem of path planning is crucial to ensure the safe and
efficient completion of a particular task. In general, path planning issues associated with
UAV flight can be categorized into two types: target-oriented issues and area coverage
issues. In target-oriented problems, the objective is for the UAV to arrive at a designated

Drones 2023, 7, 355. https://doi.org/10.3390/drones7060355 https://www.mdpi.com/journal/drones75

Drones 2023, 7, 355

target [10]. For instance, in a dynamic environment, UAVs may need to reach different
targets for various purposes while resolving conflicts. In contrast, area coverage problems
do not involve a specific destination, and the goal is typically to achieve full coverage of a
designated area in the least amount of time possible [11]. Considering that in collaborative
search and surveillance mission-planning problems, the UAV is not knowledgeable about
the mission environment or the a priori state of the target, we mainly considered the study
of the area coverage. In practical applications, monitoring missions that do not involve a
ground control station can be quite complex. The control logic of an individual UAV must
be meticulously designed to allow for smooth and autonomous switching between various
operating modes such as search mode and continuous target-surveillance mode.

Existing research on multi-UAV collaborative search problems has focused on geometry-
based methods, probability-based methods, and other related methods. The geometry-
based approach focuses on individual UAV planning, integrating area decomposition, and
task assignment algorithms to accomplish a multi-UAV coverage search of the area. Xu
et al. [12] put forward an optimal terrain coverage algorithm for UAV mission areas. This
offline method segments the open space into several cells and calculates the full-coverage
motion path that connects these regions, generating coverage of the deployed sensor by
solving a linear programming formulation. The authors of [13] divided the task area into
several equal sub-regions, each corresponding to a specific robot, to ensure complete cov-
erage while minimizing the coverage path. Mansouri et al. [14] addressed the problem
of infrastructure inspection tasks by developing a theoretical framework that slices the
infrastructure through the XOY plane to facilitate the identification of branches and provide
each UAV with a path to achieve full infrastructure coverage. Choi et al. [15] used this
method to consider the energy required by a UAV in different phases of flight, and for the
problem of covering multiple regions with regular shapes, it was reduced to a traveling
sales problem (TSP) with the goal of completely covering all regions with the shortest path.
Although the geometry-based approach to planning offers benefits such as no omissions, a
low repetition rate, and high reconnaissance efficiency, its centralized and offline nature
represents a limitation of this approach in dynamic environments. If a UAV fails or the
detection environment shifts, the entire team must execute a replanning process, resulting
in significant computational cost.

The probability-based approach can assist UAVs in developing cooperative search
strategies. With a probabilistic model characterizing the uncertainty of the unknown
environment, UAVs can continuously sense the environment and update the probability
map, thereby effectively using real-time detection information for online decision making,
which is applicable to dynamic search processes. Takahiro et al. [16] investigated time-
constrained multi-intelligent search and action problems. They used probability density
maps and a time–cost-based reward prediction function to evaluate actions. Multiple agents
can make near-optimal decisions, leading to maximum gains using probabilistic reasoning.
Zhen Ziyang [17] introduced a collaborative mission-planning scheme for multiple UAVs
using a hybrid artificial potential field and ant colony optimization (HAPF-ACO) method
for UAVs to search for and attack moving targets in uncertain environments. Zheng
et al. [18] proposed a biogeographically based optimization (BBO) method to minimize
the expected time for aid workers to reach a target in response to the problem of human–
UAV cooperative search planning and conducted experiments showing that the proposed
algorithm was superior to many popular algorithms. Duan [19] proposed a dynamic
discrete pigeon-inspired optimization (D2PIO) algorithm to handle cooperative search-
attack mission planning for UAVs and achieved promising experimental results. However,
probability-based path optimization methods are still subject to problems such as missing
search targets and long search times. For example, the greedy strategy is short-sighted
and only focuses on the largest value of the objective function in the current candidate
raster (i.e., it only considers the information of a single raster or a single point) without
considering the information of the whole region. Therefore, the frequently adopted greedy
strategy generates duplicate paths and missing regions, and the whole search process

76

Drones 2023, 7, 355

may easily fall into local optimality, leading to decreased search efficiency as the task
progresses. Furthermore, reinforcement learning (RL) has garnered increasing interest from
researchers for search problems. By planning each UAV’s navigation trajectory, the problem
of autonomous UAV navigation in extensive, complex environments has been tackled,
treating it as a Markov decision process, and the problem of autonomous UAV navigation
in large-scale complex environments has been solved by planning the navigation trajectory
of each UAV, which is described as a Markov decision process [20,21]. However, these
methods require a priori determination of the degree of impact of previous policies in
different training phases and often require a large number of calculations, which may not
be suitable for real-time systems.

In addition, different strategies have been adopted in target reconnaissance missions
according to specific tactical needs. Three typical applications of tactical intent in recon-
naissance missions can be specified: (1) UAVs converge to the vicinity of the target in a
short period of time for follow-on fire operations [17]; (2) UAV swarms chase and round up
the target in a hunting manner [22]; (3) UAVs converge quickly to the vicinity of the target
and maintain surveillance continuously until the target is no longer functional [3]. For the
third tactical requirement, in this paper, we propose a distributed autonomous cooperative
mission-planning (DACMP) method in the mission scenario of the search and reconnais-
sance of targets by a heterogeneous UAV swarm, which enables the UAV swarm to achieve
the reconnaissance of targets while still maintaining the optimal search capability.

Therefore, the main contributions of this paper can be summarized as follows:
(1) A DACMP method is initially presented for the search and surveillance of time-

sensitive moving targets in an uncertain dynamic environment by considering the con-
straints of maneuverability, collision avoidance, and threat avoidance. To the best of our
knowledge, this DACMP method has not been explored in the literature to date.

(2) This distributed method allows heterogeneous UAVs to adaptively switch between
area coverage and target surveillance missions, ensuring that each target is continuously
monitored by a suitable UAV while still maintaining the optimal search capability of the
entire UAV swarm for other potential targets or to handle special situations.

(3) Inspired by the successful use of image pyramids in computer vision, we developed
a grid map pyramid to represent the environment. This grid graph pyramid-based heuristic
enables a multiscale view of the environment, which can prevent the search process from
getting stuck in local optima, thus enhancing the search efficiency of the UAV swarm.

2. Cooperative Search and Surveillance Problem Description

In this section, the cooperative search and surveillance mission is modeled, and the
mission environment is established. The search and surveillance mission-planning problem
is defined, and the constraints of the model are provided.

2.1. Hybrid Mission-Planning Architecture and Assumption

Multi-UAV cooperative search and surveillance mission planning is a complex opti-
mization problem with the aim of discovering and monitoring as many targets as possible
under various constraints. As previously stated, our research focused on a group of hetero-
geneous fixed-wing UAVs performing search and surveillance missions in an unknown
region. Assume that:

1. UAVs are equipped with optical sensors that have a fixed detection range and are
projected in a circle;

2. The UAVs do not have any a priori knowledge of the threat and target location;
3. Two different types of heterogeneous UAVs with different maximum speeds are

employed. We believe that higher-speed UAVs have better search capabilities and are
better-suited for search missions, whereas lower-speed UAVs are more suitable for
continuous surveillance missions after the target has been detected;

4. Each target only needs to be monitored by one UAV, and other UAVs are encouraged
to conduct more exploratory movements to find other potential targets;

77

Drones 2023, 7, 355

5. The maximum speed of the target is lower than the speed of the UAV to ensure
surveillance efficiency.

At the beginning of the mission, the UAVs are deployed in the mission area, and
each UAV performs a coverage search of the area following a real-time online planned
path, as shown in Figure 1. The aim is to discover as many targets as possible. Each
UAV maintains a probabilistic grid map in the form of locally stored data. The UAVs then
heuristically evaluate candidate solutions and make the next state-shifting decision within
the performance constraints. Once the target is detected, UAVs within the target’s sphere
of influence are flexible in adaptive mission allocation, with low-speed UAVs maintaining
continuous detection of the target, whereas high-speed UAVs are better-suited to continue
searching for other potential targets. By planning the next waypoint of the UAVs, the search
and surveillance efficiency of the UAV swarm is maximized during the mission, resulting
in improved execution performance.

Figure 1. Illustration of a search and surveillance mission performed by the UAV swarm.

2.2. Cooperative Search and Surveillance Model of the UAV Swarm

The status of the UAV swarm is defined as:

χ = {x1, x2, . . . , xi, . . . , xN} (1)

xi = [x y v θ]T (2)

where xi is the state of UAV i, and N is the number of UAVs. The purpose of cooperative
search and surveillance of the UAV swarm is to cover the mission area and detect and
monitor multiple targets while adhering to the given constraints. The objective function of
this problem is defined as follows:

V∗ = argmax
V

(J(χ))

s.t. C ≤ 0
J(χ) = JS(χ) + JT(χ)

(3)

where V is the decision input, which represents the waypoints of the UAV swarm in the
next iteration; C represents a set of constraint items; JS(χ) represents the search benefit for
the whole area of the UAV swarm; JT(χ) represents the surveillance benefit of the UAV
swarm, which can be defined as follows:

T(χ) =
M

∑
m=1

valuem (4)

where valuem is the value of the target m, and M is the number of targets monitored by the
UAV swarm.

78

Drones 2023, 7, 355

For the distributed control structure, each sub-UAV is equipped with a processor to
build its own solution so that the centralized search-track mission planning indicator can
be transformed into a distributed form:

V∗
i = argmax

Vi

(Ji(χ))

s.t. Ci ≤ 0
Ji(Xi) = ωi JSi(xi, x̂i) + (1 − ωi)JTi(xi)

(5)

where x̂i represents the set of neighboring UAVs under the same communication topology,
and ωi is a Boolean variable, ωi = 1 means that UAV i is performing the search task;
otherwise, UAV i is performing a surveillance task. The global objective function J(χ) can
be achieved by summing the local objective functions generated by each UAV:

J(χ) =
N

∑
i=1

(ωi JSi(xi, x̂i) + (1 − ωi)JTi(xi)) (6)

The specific form of JS(χ) relies on the way the environment is modeled.

2.3. Uncertainty Map Model of The Environment

Due to the time-varying nature of the mission area, the characteristics of the target
should be taken into consideration when modeling the environment. Considering that
the target may move to the previously detected area, the environment was modeled using
a time-varying uncertainty map [23] to ensure that the UAV swarm completes the tasks
of search and tracking of all targets. Each UAV maintains an uncertainty map, which is
divided into a two-dimensional probabilistic grid map {q11, q12, . . . , qHW}. According to
the prior information of the mission, the uncertainty of a grid is expressed as follows:

qhw = 1 − e−τvt (7)

where t is the time elapsed since the last search. The uncertainty of a grid indicates the
probability that it contains a hiding target, which depends on how long it has been since it
was last detected and the prior mobility of the target. When t = 0, the grid is within the
current detection radius of the UAV, and the uncertainty of the grid is zero. The uncertainty
of the grid increases over time, and the rate of change is determined by the memory factor
(τv), which depends on the prior velocity (v) of the target. The uncertainty map for a single
UAV over time is shown in Figure 2. In the search process, the uncertainty of the area that
has not been detected is high, and the uncertainty within the UAV detection radius is 0. The
uncertainty of the searched area gradually increases with time to achieve effective return
visits to the searched area by the UAV in the long search process and timely follow-up of
the mission area situation. The aim of the UAV swarm searching the map is to increase the
certainty of the map. The more uncertain the map’s subtractions, the more aware the UAV
swarm is of its environment, and the fewer places the target can hide. The surveillance
coverage ratio indicates how certain the UAV swarm is about the mission area, which is
calculated as the sum of the uncertainty of all grids [24]:

JS(χ) = 1 −
H

∑
h=1

W

∑
w=1

qhw
HW

(8)

where H,W indicates the size of the origin grid map.

79

Drones 2023, 7, 355

Figure 2. Uncertainty grid map of a single UAV.

2.4. Constraints of the Cooperative Planning Problem

The main constraints of multi-UAV flight path planning include dynamic constraints,
collision avoidance constraints, threat avoidance constraints, and communication con-
straints, which are described as follows.

2.4.1. Dynamic Constraints

When carrying out a search mission, a fixed-wing UAV usually moves on a horizontal
plane. The motion model can be simplified to a particle’s motion on a two-dimensional
plane without considering the size of the UAV.[.

x
.
y

]
= v

[
cos θ
sin θ

]
(9)

[.
v
.
θ

]
=

[
a
ω

]
(10)

where [x y]T is the position of the fixed-wing UAV in flight profile, and θ is the heading
angle. For fixed-wing UAVs, the linear acceleration (a) is restricted by engine performance,
and its speed (v) is affected by air:

Ca : |a| − amax ≤ 0
Cv : vmin − v ≤ 0, v − vmax ≤ 0

(11)

The turning angular velocity is expressed by ω = v
r , where the turning radius (r)

should be larger than the minimum turning radius (rmin).

Cr : rmin − r ≤ 0 (12)

2.4.2. Collision Avoidance Constraints

Considering flight safety, the distance (duav) between UAVs should be longer than the
minimum distance (dmin) to avoid colliding:

Cduav : dmin − duav ≤ 0 (13)

2.4.3. Threat Constraints

In general, the mission area contains numerous threats, which have a negative impact
on the mission execution of UAVs. Therefore, UAVs must avoid threats while carrying out

80

Drones 2023, 7, 355

missions. The distance (dthreat) between a UAV and the threat should be longer than the
threat radius (RT), which can be expressed as:

Cc : RT − dthreat ≤ 0 (14)

3. Design of DACMP

3.1. Model Solving

Inspired by the foraging behavior of birds, PSO is a technique with many key advan-
tages that has been widely used in path planning for multiagent navigation [25–27]. Two
important characteristics of PSO are related to swarm intelligence, namely, cognition and
social coherence, which allow each particle of the population to search for solutions by
following individual and group experiences rather than using traditional evolutionary
operators such as mutation and crossover [25]. Therefore, compared with other algorithms,
the PSO algorithm has advantages in terms of computational efficiency and stable solution
convergence [28]. Moreover, PSO is not considerably affected by changes in the initial con-
ditions and the objective function, and can adapt to various environmental constructions
with a small number of parameters [29].

Suppose that N UAVs are performing a cooperative search and surveillance mission,
and each UAV corresponds to a particle population composed of M particles, which
represent a possible solution. Each particle can be regarded as a searching individual with
a certain flight speed and direction in n-dimensional search space, and the current position
of the particle is a candidate solution to the corresponding optimization problem. Particles
are randomly initialized within the blue circle outside the detection radius (Rs), as shown
in Figure 3. The particle moving to the optimal position changes its state by referring to its
previous optimal experience and the experience of other individuals in the swarm.

Figure 3. The distribution of particles.

To avoid early convergence to a local optimum and further improve the performance
of the PSO, the algorithm is improved. First, the initial values of the control variables obey
a normal distribution, traversing the allowed range. Second, according to the literature [30],
inertia weight (ω) and cognitive and social coefficients (c1, c2) are introduced, which
decrease linearly with each iteration. Finally, a random value (Q) is added to the position
update formula, expressed by:

zt+1
kd = zt

kd + Δzt
kdQ (15)

where zt
kd and Δzt

kd are the position and position increment vectors of particle k in the d-th
dimension, respectively.

81

Drones 2023, 7, 355

3.2. State Transfer

The state transfer of a UAV is used to evaluate the quality and feasibility of each
particle, and the objective value (J(χ)) is maximized by a reasonable design of the state
transfer function. We abstract the motion environment of the UAV swarm as a potential
field, and the potential field value (f (k)) is used to measure particle k. In the search process,
the higher the uncertainty in the region, the greater the search gain of the UAV and the
more the UAV tends to move to that region, so the effect of the uncertainty map on particle
k is modeled by the attraction potential value (fs(k)). When the target appears within
the detection range of the UAV, the target generates an attractive potential field for the
particles corresponding to the UAV within its influence range, thereby converging the
UAV’s waypoints toward the target. In order to ensure that a target is monitored by only
one UAV, the competing repellent potential values between UAVs are also considered so
that the potential value received by particle k of a UAV within the target influence range is
represented as ft(k). The total potential value (f (k)) of a particle can be described as:

f (k) = fs(k) + ft(k) (16)

3.2.1. Construction of Pyramid Map

When a UAV performs a search mission, the goal is to reduce the uncertainty in the
mission area to maximize the probability of the detection of the target. Therefore, UAVs
tend to fly to locations with high uncertainty. However, a single level of an uncertainty
map is not enough to represent the whole information of the mission area. Information at
different scales also contributes to the understanding of the environment. With the aim of
obtaining a larger global view, the image pyramids initially used in computer vision were a
series of images arranged in a pyramid shape with gradually decreasing resolution from
the same original image.

Inspired by its successful use in computer vision, a map pyramid was constructed for a
better understanding of the mission area. The map pyramid is a multiscale representation of
maps, which is an effective structure with simple concepts to interpret maps with multiple
resolutions for a better understanding of the task area. The best-known hierarchical
structures are Gaussian [31] and Laplacian pyramids [24]. The pyramid model is one of
the most intuitive multiscale descriptions of the signal and generally consists of two steps:
first, the map is smoothed by a Gaussian filter; then, the smoothed map is sampled or
interpolated to obtain a sequence of scaled-down or scaled-up maps, as shown in Figure 4.
Each level of the map in the sequence is the result of the sampling of every other row and
column after Gaussian filtering of the previous level of the map. That is,

Gl(α, β) =
2

∑
m=−2

2

∑
n=−2

w(m, n)Gl−1(2α + m, 2β + n) (17)

where Gl(α, β) is the map of the l-layer Gaussian pyramid; G0 is the original map as the
lower layer of the Gaussian pyramid; w(m, n) = h(m) · h(n) is an m × n window function
with low-pass property; h(m) is the Gaussian density distribution function that satisfies
the following constraints: normalization, symmetry, parity term, and other contribution
terms. Then, a typical 5 × 5 window function w(5, 5) can be expressed as follows:

w(5, 5) =
1

256

⎡⎢⎢⎢⎢⎣
1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

⎤⎥⎥⎥⎥⎦ (18)

82

Drones 2023, 7, 355

(a) (b)

Figure 4. Illustration of the uncertainty gird map pyramid: (a) pyramid map; (b) generation process.

Thus,G0, G1, ..., GL form the Gaussian pyramid of the uncertainty map.
To prevent the waypoints from falling into local optima during the search process, we

used information from each layer of the map to construct an attractive potential function,
which can be expressed as:

fS,l(k) =

L
∑

l=1
λl P(Xk

i (t), l)

1 +
(

D(xi(t),Xk
i (t))−Rsearch

i
Rsearch

i

)2 (19)

where P(Xk
i (t), l) is the uncertainty that the potential target exists in the same region as

particle k in the l-th level of the map pyramid at moment t. Regions with high uncertainty
should have a higher search priority. λl is a weight used to balance the uncertainty of each
layer, and Rsearch

i is the detection radius of UAV i. A Dubins path (D(xi(t), Xk
i (t))) is used

to measure the distance from particle k to UAV i.
fS,l(k) describes the local potential field of the UAV; therefore, knowledge of the

environment is still short-sighted. In order to further improve the global search capability
of the UAV, an area with high uncertainty and that could be reached by the current UAVs
in the next phase in the whole area was detected in the upper layer of the pyramid. Taking
the seven-layer pyramid as an example, the seventh layer of the pyramid divided the map
into 4 x 4 sub-areas. The center point of the area with the highest uncertainty among the
eight areas adjacent to the current UAV was selected. The attractive field function of the
global guidance point of particle k is expressed by:

fs,g(k) =
1

1 + e
θ(P(x,y),xi(t),x

k
i (t))

π

(20)

Figure 5 shows a larger view of the global guideline (P(x, y)) represented by the
center of the nearby area. θ(P(x, y), xi(t), xk

i (t)) is the angle among the position of the
global guideline (P), UAV i, and particle k, which causes the optimized waypoint to be
more inclined to the direction of the global guideline and guides the UAV to search in the
direction of the high-uncertainty region, thereby improving the search efficiency.

fS(k) = η fS,l(k) + (1 − η) fS,g(k) (21)

where η is the balancing factor and is usually set to 0.5 to maintain a balance between the
local and global information.

83

Drones 2023, 7, 355

(a) (b)

Figure 5. The use of the global guideline: (a) global guideline (P); (b) illustration of the angle.

3.2.2. Distributed Adaptive Target Allocation Approach

When the UAVs detect one or more targets, the targets have an attractive effect on
the particles within their sphere of influence, guiding the UAVs toward the targets and
maintaining surveillance on them. The attraction potential value of the target to particle k
is expressed as follows:

ft,att(k) =

⎧⎨⎩
M
∑

m=1

ωt,i
d(Xk

i (t),gm(t))vmax
i vmax

i
i f (d(Xk

i (t), gm(t)) < Di)

0 else
(22)

where ωt,i is the weight of an attractive potential item; gm(t) is the state of target m at time t;
d(Xk

i (t), gm) denotes the distance between the particle k and target m; vmax
i is the maximum

velocity of UAV i. Di is the maximum radius of influence of the target on UAV i. As shown
in Figure 6, both the high-speed UAV1 and the low-speed UAV2 were within the range of
influence of the target. Because the high-speed UAV is more suitable for area exploration
and the low-speed UAV is more suitable for maintaining continuous surveillance of the
target, the low-speed UAV had a larger range of influence and was more vulnerable to the
target than the high-speed UAV.

Figure 6. Virtual force diagram of the candidate solution.

84

Drones 2023, 7, 355

When more than one UAV is within the scope of the target, the exclusion behavior
between UAVs is introduced. The UAV swarm is encouraged to perform more exploration
actions while ensuring that one target is scouted by one UAV, preventing UAVs from
clustering in a small group, therefore searching for all targets faster. The corresponding
repulsive field value of particle k is expressed as:

ft,rep(k) =

⎧⎪⎨⎪⎩ − N
∑

j=1,j 	=i

ωr,i
d(Xk

i (t),xj(t+1))vmax
i vmax

j
i f both in the scope o f target

0 else
(23)

where ωr,i is the weight of the repulsive potential item, and d(Xk
i (t), xj(t + 1)) denotes the

distance between particle k of UAV i and the waypoint of UAV j at the next moment (t + 1).
Therefore, the potential energy function combining the target and other UAV effects is:

ft(k) = ft,att(k) + ft,rep(k) (24)

According to the different motion characteristics of the UAVs, we can adjust the values
of ft,att and ft,rep to meet the task assignment requirements. Figure 7 depicts a case of
two heterogeneous UAVs competing for a target. Assuming that a high-speed UAV with
greater search capability detects the target first, if there is no low-speed UAV within the
target range, the high-speed UAV maintains surveillance of the target, and if a low-speed
UAV appears within the target range, the integrated potential energy field of the nearby
low-speed UAV changes at this time. To make the high-speed UAV with higher search
capability continue to explore the potential target and the lower-speed UAV maintain
surveillance of the target, the attractive potential value of the target to the particle of the
low-speed UAV should be greater than the repulsive potential value of the high-speed
UAV to the particle of the low-speed UAV. Then, the integrated potential field guides the
low-speed UAV toward the target; this inequality can be achieved by adjusting ωt and ωr
as follows:

ωt,low

vlow
max

>
ωr,low

vhigh
max

(25)

Figure 7. Analysis of the motion and force situation of a low-speed UAV and a high-speed UAV
during mission exchange: (a) UAV 1 detects the target and maintains surveillance; (b) the particle
swarm of UAV 2 converges to the position of the target; (c) after UAV 2 moves to the vicinity of the
target and UAV 1, the repulsive value on the particles of UAV 1 is greater than the attractive value,
and its particle swarm no longer converges to the position of the target, thereby relieving surveillance
of the target; (d) after a period, UAV 1 maintains surveillance of the target, and UAV 2 leaves the
target area and continues area exploration.

85

Drones 2023, 7, 355

When the low-speed UAV moves near the target, the attractive potential value of the
target to the particle of the high-speed UAV should be lower than the repulsive potential
value of the low-speed UAV to the particle of the high-speed UAV:

ωt, high
vlow

max
<

ωr, high

vhigh
max

(26)

Then, the integrated force field leads the particle swarm of the high-speed UAV away
from the target and back to the search state. The result is the same when the low-speed
UAV finds the target first.

Assuming that two UAVs are isomorphic, to prevent multiple UAVs from tracking a
target at the same time, the repulsive potential value between the particles of the isomorphic
UAVs should be greater than the attractive potential value of the target to them:

ωt,i < ωr,i (27)

3.2.3. Local Planning Module Based on APF

Appropriate control sequences should be provided to the UAV to ensure that it can
reach the next optimal track point quickly and safely. In a dynamic and uncertain en-
vironment, the main challenge associated with this problem is to plan and execute an
inflation-free path. In recent years, the method based on APF has shown considerable po-
tential in path planning in highly dynamic environments due to its rapidity and simplicity.

The next optimized waypoint generates a gravitational field (Uatt) with the APF
method, which causes the UAV to approach the next waypoint by applying a gravitational
force (Fatt) to the UAV. Based on the real-time waypoints (fi(X)) of UAV i, the attraction
field is expressed as:

Uatt,i = katt · fi(X) (28)

where katt > 0 represents the gravitational coefficient. The gravitational force is the gradient
of the gravitational potential field, which can be expressed as:

Fatt,i(X) = ∇Uatt,i(X) (29)

The UAV may encounter no-fly zones that need to be avoided to ensure safety. Assum-
ing that the threat is a circle, based on the APF method, the threat area creates a repulsive
force field, keeping the UAV away from the threat area. The repulsive force of threats can
be obtained by:

FT
rep,i =

⎧⎨⎩ krep · ∑
e∈S

(1
‖xie‖2 − 1

(dt
max,e−d0)

2) · x̂ie, ‖xie‖2 ≤ dt
max,e

0, ‖xie‖2 > dt
max,e

(30)

where krep is the repulsion coefficient, and S is the threat set. xie is the position vector of the
detected e-th threat pointing to the i-th UAV, x̂ie = xie/‖xie‖. dt

max,e represents the influence
radius of the e-th threat’s repulsion field. d0 is the minimum safe distance between the UAV
and the threat center.

As the number of UAVs in the same airspace increases, the trajectories between UAVs
may appear to be close or even overlap in time and space during mission execution. To
ensure the safety of UAVs, we introduced repulsive fields between the UAVs [17]:

UV
rep,i =

⎧⎪⎨⎪⎩
N
∑

j=1,j 	=i

b

e
‖xij‖

c −e
‖xij‖min

c

, i f duav ∈ [dmin, dv
max]

0 else
(31)

where b and c are adjustable parameters that govern the magnitude and rate of change
of the repulsive field, respectively;

∥∥xij
∥∥ is the distance from UAV i to the UAV j; dmax

86

Drones 2023, 7, 355

represents the maximum operating distance of the repulsion field between the UAVs. The
repulsion force between the UAVs is:

FV
rep,i = −∇Urep,i =

N

∑
j=1,j 	=i

b
c
· 1

(e
‖xij‖

c − e
‖xij‖min

c)
2 e

‖xij‖
c ·x̂ij (32)

where x̂ij = xij/
∥∥xij

∥∥ is the unit vector pointing from UAV j to UAV i.

4. Experimental Analysis

To provide a comprehensive analysis of the DACMP algorithm presented in this paper,
a series of simulation experiments was conducted. The simulation platform consisted of a
desktop computer equipped with a 64-bit Windows 10 operating system, an Inter(R) Core
(TM) i5-8265u 1.6 GHz CPU, and 8 G of RAM. The experiment was conducted using C++14
programming language, and MATLAB was employed for the analysis of the experimental
results. In accordance with the information provided in Section 3, the procedural flow of
the simulation is shown in Figure 8.

Mission area initialization

Mission Start

Algorithm parameters initialization

Update UAVs
states by APF Update targets state

Update
environment

Communication for
information

Reaching next
waypoints?

New target?

Generate next waypoints by IPSO

Mission end

Are all targets detected
 and monitored?No

Yes

No

Yes

No

No

Add target
influence

Yes

Figure 8. Flow chart of the DACMP algorithm.

4.1. Experimental Parameters

The mission area was 50 km × 50 km, inside which both the UAVs and targets moved.
A seven-layer map pyramid with a 100 m × 100 m bottom resolution was used to model
the mission area. To verify the performance of the algorithm for heterogeneous UAVs in
a multi-target search and tracking scenario, two different types of UAVs were adopted.
We used the same kinetic model of the UAV to simulate the movement of the target and a
Wiener random process of acceleration. The information on the UAVs and targets is shown
in Table 1.

87

Drones 2023, 7, 355

Table 1. Parameter setup of the UAVs and targets.

Parameter UAV Target

Type A B /

Speed 30~50 m/s 60–90 m/s 0–20 m/s

Linear acceleration ±0.4 m/s2 ±0.6 m/s2 ±0.4 m/s2

Maximum bank angle 30◦ 20◦ /

Detection radius 1.5 km 2 km /

ωt 5.0 2.0 /

ωr 5.1 2.1 /

D 10 km 4 km

4.2. Comparison with the Search Model

Given that our method is an online, real-time, and distributed approach, it is suitable
for comparison with other probability-based methods. For this purpose, we selected
the basic but effective greedy strategy as the benchmark for comparison. To analyze
the performance of the DACMP algorithm in the search process, we conducted a set of
experiments and compared our heuristic strategy with the greedy strategy. The advantages
of the two methods were analyzed by comparing two metrics: the coverage of the region
and the number of targets searched. We used average values to estimate the performance
of the two strategies after 30 executions.

Assuming that six type-B UAVs search for 14 targets in the mission area without
considering threats, the initial positions of the UAVs were (0, 20) km, (0, 22) km, (0, 24) km,
(0, 26) km, (0, 28) km, and (0, 30) km. We believed that the target information was captured
without further surveillance if the target appeared in the UAV’s field of view, and the UAV
then continues to search for the remaining targets.

The trajectories of the UAV swarm for a regional search task guided by two methods
are shown in Figure 9 under the same initial conditions. The colored curves and dots
represent the path and current position of each UAV, respectively. The black dashed line
indicates the path of the target. Figure 9a shows the coverage path of multi-UAVs using
the greedy strategy. The multiple UAVs can complete the target search of the region, but
only the uncertainty of the current position of the candidate solution is considered in the
optimization process, which can easily cause the whole search task to fall into the local
optimum and lead to the repeated search of UAVs in a small area. Figure 9b shows the
coverage path of multiple UAVs based on the DACMP heuristic strategy, which considers
not only the uncertainty of the current candidate raster but also the uncertainty of the
region near the raster as well as the directional guidance of the urgent region to be searched.
The pursuit of long-term optimality enables the UAV to choose a better path to search
the region, thereby improving the overall search coverage. The path of the UAV is evenly
distributed in any part of the region.

Figure 10 displays the mission area coverage rates and the numbers of searched targets
under the two methods. The proposed DACMP algorithm demonstrated better mission
execution efficiency compared to the greedy strategy. As shown in Figure 10a, the mission
area coverage rates of the greedy strategy and DACMP algorithm were roughly the same in
the early stage. With an increase in the number of iterations, the advantage of the DACMP
became increasingly apparent.

88

Drones 2023, 7, 355

(a) (b)

Figure 9. The paths of multiple UAVs after 2000 simulation steps: (a) greedy strategy; (b) DACMP strategy.

(a) (b)

Figure 10. Comparison of the results of the two methods: (a) coverage rate; (b) number of tar-
gets searched.

To ensure reliability, we carried out 30 simulations of the two methods to better analyze
the performance. As shown in Figure 11, the simulation time of each method was 2000 s.
The results showed that the average coverage area under the greedy strategy was 0.712,
with 12.1 targets searched. The DACMP algorithm could search for 13.7 targets, and the
average area coverage was 0.763. Therefore, our method has a significant advantage in
terms of the number of searched targets and the coverage region.

89

Drones 2023, 7, 355

(a) (b)

Figure 11. Average coverage rate of stationarity in 30 simulation times: (a) coverage rate; (b) number
of targets searched.

4.3. Mission Execution Analysis

Organizing UAVs for collaborative search and surveillance missions under various
constraints is a challenging task, particularly in complex environments with threats. To
assess the feasibility and effectiveness of the proposed method, three cases were established.
Case 1 and Case 2 were designed as non-threatening and threatening scenarios, respectively,
to verify the feasibility and reliability of the proposed method. Case 3 builds on Case 2 by
adding a new UAV in the middle of the mission to illustrate the scalability and adaptability
of the solution.

Case 1: Three UAVs were deployed into the mission area, which contained two targets
dispersed in a threat-free environment. UAV 1 and UAV 2 are high-speed UAVs with initial
positions of (20, 22) km and (36, 22) km, with a low-speed UAV (3) located at (10, 22) km.
Figure 12a–c represents multiple UAVs performing missions at different moments. As
shown in Figure 12a, UAV 1 detected target 1 first, at which time the particles gradually
converged to the position of target 1 under the effect of the attractive field, thereby guiding
UAV 1 to fly toward target 1. Figure 12b shows that the low-speed UAV (3) within the
sphere of influence of target 1 flew toward target 1 because its particles were more attracted
to the target than repelled by UAV 1. When UAV 3 reached the vicinity of target 1, the
particles of UAV 1 were subjected to a repulsive potential value greater than the attractive
potential value, and UAV 1 automatically left target 1 to undertake the search task. As
shown in Figure 12c, UAV 1 passed through the range of influence of target 2 while
searching, but because UAV 2 maintained surveillance of target 2, UAV 1 was not disturbed
by the attraction of the target and continued to search because the repulsive potential value
among the isomorphic UAVs to which the particles of UAV 1 were subjected was greater
than the attractive potential value of the target to the particles, so the nearest UAV could
prioritize its own surveillance relationship with the target and avoid the entanglement of
multiple isomorphic UAVs to one target, leading to a reduction in the search capability of
the UAV swarm. Figure 12d shows the distance calculation results of multiple UAVs and
target 1. This experiment shows that the proposed algorithm can make the UAVs adaptively
switch between search and surveillance tasks according to their own capabilities so that
the whole UAV swarm can reach the optimal search and surveillance state. In this case,
the proposed algorithm can accomplish the distributed target assignment task quickly and
efficiently without threats, which validates the basic feasibility of the proposed approach.

90

Drones 2023, 7, 355

(a) (b)

(c) (d)

Figure 12. Cooperative search and surveillance mission-planning results in Case 1: (a) sub-mission at
second 50; (b) sub-mission at second 250; (c) sub-mission at second 350; (d) distance between UAVs
and target 1.

Case 2: Ten UAVs were deployed into the mission area, with six targets scattered in
the environment and four threats. UAVs 1–5 are high-speed UAVs with initial positions of
(10, 1) km, (29, 1) km, (30, 49) km, (15, 49) km, and (39, 49) km, and UAVs 6–10 are low-speed
vehicles located at (20, 1) km, (35, 1) km, (5, 49) km, (23, 49) km, and (45, 49) km. Figure 13
represents multiple UAVs performing missions at different moments. Targets 4, 6, 1, 3, and

91

Drones 2023, 7, 355

2 were the first to be detected and were temporarily kept under surveillance by high-speed
UAVs 1, 5, 4, 3, and 2, respectively. Target 5 was detected and kept under continuous
surveillance by low-speed UAV 7. After the high-speed UAVs detected the targets, they
shared the target information with other UAVs through information interaction, and the
particles of the low-speed UAVs near the targets started to converge toward the targets
under the effect of the target attraction field. As shown in Figure 13b,c, UAV 9 flew toward
target 3, and the particles of UAV 3 were repelled by UAV 9, which canceled the surveillance
of the target and returned to search the area. The remaining high-speed UAVs (5, 4, and
1) also completed the mission transition with low-speed UAVs (10, 8, and 6, respectively).
In this process, the low-speed UAVs replaced the high-speed UAVs to monitor the target,
and the high-speed UAVs continued to search the area. The response result of the search
and surveillance task is shown in Figure 14. Figure 15 illustrates the task execution of
UAVs during the whole search and surveillance task-planning period. Figure 15 shows
the coverage rate during the execution of the task. In this case, the UAVs completed the
search and surveillance tasks while avoiding threats and adaptively completed the target
assignment, illustrating the practicality of the proposed method in complex environments.

Case 3: To further verify the scalability and adaptability of the DACMP algorithm to
the UAV swarm system, we added a new UAV in the process of mission execution in Case 2.
We assumed that a new type-B UAV (UAV11) was initially located at position (50, 25) km
and was added to the UAV swarm system at 300 s. The response result of the search and
surveillance task is shown in Figure 16, and the task allocation of the UAV swarm is shown
in Figure 17. As shown by the comparison of the coverage rate (Figure 18), the coverage
increased after the addition of the new UAV, and the new UAV quickly adapted to the UAV
swarm system and elevated the efficiency. Therefore, the multi-UAV system based on the
DACMP algorithm is flexible, stable, and expandable.

(a) (b)

Figure 13. Cont.

92

Drones 2023, 7, 355

(c) (d)

Figure 13. Cooperative search and surveillance mission planning results in Case 2: (a) sub-mission in
second 200; (b) sub-mission in second 300; (c) sub-mission in second 1500; (d) sub-mission in second
2000.

Figure 14. Task loads of the UAV swarm.

93

Drones 2023, 7, 355

Figure 15. Coverage rate of the UAV swarm.

Figure 16. Cooperative search and surveillance mission-planning results in Case 3.

94

Drones 2023, 7, 355

Figure 17. Task allocation of the UAV swarm.

Figure 18. Comparison of the coverage rate between scenarios with 10 UAVs and 11 UAVs.

5. Conclusions

In this paper, we proposed a novel distributed autonomous collaborative mission-
planning method for the multi-UAV search and surveillance mission-planning problem.
Satisfactory performance was achieved using grid pyramid time-varying uncertainty maps
to simulate environmental cognition and construct heuristic search strategies. By modeling
the effects of uncertain maps and targets on candidate solutions as potential field values,
an adaptive distributed mission assignment was enabled for multiple UAVs, maximizing
the area coverage capability of heterogeneous UAV swarms. Numerical simulation results
and analyses demonstrated that the proposed method could achieve fast area coverage and
dynamic task assignment under multiple constraints and is robust to the dynamic topology
of the UAV swarm.

95

Drones 2023, 7, 355

However, only two types of UAVs with area coverage search strategies were analyzed
in this paper. How to cope with more UAV types and more target types is a problem to
be considered in the future, and experiments will be conducted on the performance of the
algorithm in real scenarios.

Author Contributions: Conceptualization, X.Z. and W.Z.; methodology, X.Z.; software, X.Z.; valida-
tion, X.Z.; formal analysis, X.Z.; investigation, X.Z. and W.Z.; resources, W.Z.; data curation, X.Z.;
writing—original draft preparation, X.Z.; writing—review and editing, W.Z. and C.L.; visualization,
X.Z.; supervision, W.Z.; project administration, W.Z. and J.L.; funding acquisition, W.Z. and J.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the 1912 project; Key Research and Development Program of
Zhejiang Province, China (grant No. 2020C05001); the Fundamental Research Funds for the Central
Universities, China (Grant No. 2021QNA4030).

Data Availability Statement: Data available on request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ollero, A.; Kondak, K. 10 years in the cooperation of unmanned aerial systems. In Proceedings of the RSJ International Conference
on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, 7–12 October 2012.

2. Du, Y.-C.; Zhang, M.-X.; Ling, H.-F.; Zheng, Y.-J. Evolutionary Planning of Multi-UAV Search for Missing Tourists. IEEE Access
2019, 7, 73480–73492. [CrossRef]

3. Wang, Y.; Bai, P.; Liang, X.; Wang, W.; Zhang, J.; Fu, Q. Reconnaissance Mission Conducted by UAV Swarms Based on Distributed
PSO Path Planning Algorithms. IEEE Access 2019, 7, 105086–105099. [CrossRef]

4. Wu, Y.; Wu, S.; Hu, X. Multi-constrained cooperative path planning of multiple drones for persistent surveillance in urban
environments. Complex Intell. Syst. 2021, 7, 1633–1647. [CrossRef]

5. Berger, J.; Happe, J. Co-evolutionary search path planning under constrained information-sharing for a cooperative unmanned
aerial vehicle team. In Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18–23 July 2010.

6. Li, C.; Yang, C. Cooperative search of multiple robots with a distributed algorithm. In Proceedings of the 44th Annual Conference
of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018.

7. Zhen, Z.; Xing, D.; Gao, C. Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized
algorithm. Aerosp. Sci. Technol. 2018, 76, 402–411. [CrossRef]

8. Sujit, P.B.; Sousa, J.B. Multi-UAV task allocation with communication faults. In Proceedings of the 2012 American Control
Conference (ACC), Montreal, QC, Canada, 27–29 June 2012.

9. Newaz, A.A.R.; Jeong, S.; Lee, H.; Ryu, H.; Chong, N.Y. UAV-based multiple source localization and contour mapping of radiation
fields. Robot. Auton. Syst. 2016, 85, 12–25. [CrossRef]

10. Liu, H.; Li, X.; Fan, M.; Wu, G.; Pedrycz, W.; Suganthan, P.N. An Autonomous Path Planning Method for Unmanned Aerial
Vehicle Based on a Tangent Intersection and Target Guidance Strategy. IEEE Trans. Intell. Transp. Syst. 2020, 23, 3061–3073.
[CrossRef]

11. Arribas, E.; Mancuso, V.; Cholvi, V. Coverage Optimization with a Dynamic Network of Drone Relays. IEEE Trans. Mob. Comput.
2019, 19, 2278–2298. [CrossRef]

12. Xu, A.; Viriyasuthee, C.; Rekleitis, I. Optimal complete terrain coverage using an Unmanned Aerial Vehicle. In Proceedings of the
2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011.

13. Kapoutsis, A.C.; Chatzichristofis, S.A.; Kosmatopoulos, E.B. DARP: Divide Areas Algorithm for Optimal Multi-Robot Coverage
Path Planning. J. Intell. Robot. Syst. 2017, 86, 663–680. [CrossRef]

14. Mansouri, S.S.; Kanellakis, C.; Fresk, E.; Kominiak, D.; Nikolakopoulos, G. Cooperative coverage path planning for visual
inspection. Control. Eng. Pract. 2018, 74, 118–131. [CrossRef]

15. Choi, Y.; Choi, Y.; Briceno, S.; Mavris, D.N. Energy-Constrained Multi-UAV Coverage Path Planning for an Aerial Imagery
Mission Using Column Generation. J. Intell. Robot. Syst. 2020, 97, 125–139. [CrossRef]

16. Miki, T.; Popovic, M.; Gawel, A.; Hitz, G.; Siegwart, R. Multi-Agent Time-Based Decision-Making for the Search and Action
Problem. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia,
21–25 May 2018.

17. Zhen, Z.; Chen, Y.; Wen, L.; Han, B. An intelligent cooperative mission planning scheme of UAV swarm in uncertain dynamic
environment. Aerosp. Sci. Technol. 2020, 100, 105826–105841. [CrossRef]

18. Zheng, Y.J.; Du, Y.C.; Sheng, W.G.; Ling, H.F. Collaborative Human–UAV Search and Rescue for Missing Tourists in Nature
Reserves. INFORMS J. Appl. Anal. 2019, 49, 371–383. [CrossRef]

19. Duan, H.; Zhao, J.; Deng, Y.; Shi, Y.; Ding, X. Dynamic Discrete Pigeon-Inspired Optimization for Multi-UAV Cooperative
Search-Attack Mission Planning. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 706–720. [CrossRef]

96

Drones 2023, 7, 355

20. Lakshmanan, A.K.; Mohan, R.E.; Ramalingam, B.; Le, A.V.; Veerajagadeshwar, P.; Tiwari, K.; Ilyas, M. Complete coverage path
planning using reinforcement learning for Tetromino based cleaning and maintenance robot. Autom. Constr. 2020, 112, 103078.
[CrossRef]

21. Pham, H.; La, H.; Feil-Seifer, D.; Nguyen, L. Cooperative and Distributed Reinforcement Learning of Drones for Field Coverage.
arXiv 2018, arXiv:1803.07250.

22. Liu, G.; Shu, C.; Liang, Z.; Peng, B.; Cheng, L. A Modified Sparrow Search Algorithm with Application in 3d Route Planning for
UAV. Sensors 2021, 21, 1224. [CrossRef]

23. Jin, Y.; Liao, Y.; Minai, A.; Polycarpou, M. Balancing search and target response in cooperative unmanned aerial vehicle (UAV)
teams. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 2006, 36, 571–587. [CrossRef]

24. Burt, P.; Adelson, E. The Laplacian Pyramid as a Compact Image Code. IEEE Trans. Commun. 1983, 31, 532–540. [CrossRef]
25. Lee, K.Y.; Park, J.B. Application of Particle Swarm Optimization to Economic Dispatch Problem: Advantages and Disadvantages.

In Proceedings of the 2006 IEEE PES Power Systems Conference and Exposition, Atlanta, GA, USA, 29 October–1 November 2006.
26. Mohammadi, V.; Ghaemi, S.; Kharrati, H. PSO tuned FLC for full autopilot control of quadrotor to tackle wind disturbance using

bond graph approach. Appl. Soft Comput. 2018, 65, 184–195. [CrossRef]
27. Niknam, T.; Narimani, M.R.; Jabbari, M. Dynamic optimal power flow using hybrid particle swarm optimization and simulated

annealing. Int. Trans. Electr. Energy Syst. 2012, 23, 975–1001. [CrossRef]
28. Gaing, Z.-L. Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans.

Power Syst. 2003, 18, 1187–1195. [CrossRef]
29. Eberhart, R.C.; Shi, Y. Comparison between genetic algorithms and particle swarm optimization. In Proceedings of the in

Evolutionary Programming VII, Berlin, Heidelberg, 25–27 March 2005.
30. Wu, X.; Bai, W.; Xie, Y.; Sun, X.; Deng, C.; Cui, H. A hybrid algorithm of particle swarm optimization, metropolis criterion and

RTS smoother for path planning of UAVs. Appl. Soft Comput. 2018, 73, 735–747. [CrossRef]
31. Burt, P.J.; Adelson, E.H. A multiresolution spline with application to image mosaics. ACM Trans. Graph. 1983, 2, 217–236.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

97

Citation: Xu, Z.; Fan, L.; Qiu, W.;

Wen, G.; He, Y. A Robust

Disturbance-Rejection Controller

Using Model Predictive Control for

Quadrotor UAV in Tracking

Aggressive Trajectory. Drones 2023, 7,

557. https://doi.org/10.3390/

drones7090557

Academic Editor: Vaios Lappas

Received: 30 June 2023

Revised: 10 August 2023

Accepted: 21 August 2023

Published: 29 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A Robust Disturbance-Rejection Controller Using Model
Predictive Control for Quadrotor UAV in Tracking
Aggressive Trajectory

Zhixiong Xu 1, Li Fan 1,2,*, Wei Qiu 1, Guangwei Wen 2 and Yunhan He 1

1 College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China;
22232005@zju.edu.cn (Z.X.); cyanilius@yeah.net (W.Q.); heyunhan@zju.edu.cn (Y.H.)

2 Huzhou Institute, Zhejiang University, Huzhou 313000, China; wengw@hizju.org
* Correspondence: fanli77@zju.edu.cn

Abstract: A robust controller for the waypoint tracking of a quadrotor unmanned aerial vehicle (UAV)
is proposed in this paper, in which position control and attitude control are effectively decoupled.
Model predictive control (MPC) is employed in the position controller. The constraints of motors
are imposed on the state and input variables of the optimization equation. This design effectively
mitigates the nonlinearity of the attitude loop and enhances the planning efficiency of the position
controller. The attitude controller is designed using a nonlinear and robust control law based on
SO(3) space, which enables continuous control on the SO(3) manifold. By extending the differential
flatness of the quadrotor-UAV to the angular acceleration level, the mapping of the control reference
from the position controller to the attitude controller is achieved. Simulations are carried out to
demonstrate the capability of the proposed controller. In the simulations, multiple aggressive flight
trajectories and severe external disturbances are designed. The results show that the controller is
robust, with superior accuracy in tracking aggressive trajectories.

Keywords: waypoint tracking; model predictive control; nonlinear attitude controller; differential
flatness

1. Introduction

Nowadays, quadrotor UAVs have been widely employed in various applications,
such as agricultural plant protection [1], transportation and logistics distribution [2], and
post-disaster rescue operations [3]. To meet the demands of different missions and stay
robust under challenging environmental conditions, the control methods for quadrotor
UAVs have been continuously developed.

In a general task, the controller is responsible for accurately tracking a time-dependent
trajectory designated by the planner. As an underactuated system, a quadrotor-UAV has
far more state variables than input variables, and the nonlinear characteristics of the system
make the control problem challenging. The cascaded PID control method is commonly
utilized for quadrotor-UAV control, in which the position of the next time step is considered
a reference input. The inner loop controls the attitude, and the outer loop takes charge of the
position. The mapping from the position loop to the attitude loop is completed using the
differential-flatness attribute of quadrotor UAVs [4–6]. However, this error-based control
method often performs well while tracing a smooth and slow trajectory, but struggles in
tracking an aggressive trajectory.

To tackle the problem, a variety of advanced control algorithms for quadrotor UAVs
have been proposed, among which MPC has received significant attention. The MPC
method constructs an optimization problem based on the quadrotor-UAV model and ap-
plies constraints on the states and inputs of the system, and it generates control commands
over the predicted time horizon by solving the optimization problem. References [7–9] have

Drones 2023, 7, 557. https://doi.org/10.3390/drones7090557 https://www.mdpi.com/journal/drones98

Drones 2023, 7, 557

demonstrated the exceptional control efficiency of this approach. Furthermore, linearized
model predictive control (LMPC) and nonlinear model predictive control (NMPC) have
been developed and compared in many studies. In the former method, Taylor expansion
is generally conducted around the hover point to linearize the quadrotor-UAV model.
Linearization saves the computation cost, but downgrades the performance in terms of
aggressive trajectory tracking, as the higher-order terms are truncated in the model. On
the contrary, the nonlinear model is employed in NMPC for predictive control, resulting
in superior tracking accuracy and robustness. However, the optimization offered by this
method is usually non-convex, which leads to longer computational time and risks of solver
non-convergence. In addition, the reinforcement learning-based control methods have been
demonstrated to be effective for quadrotor-UAV control [10–13]. Han et al. proposed a ro-
bust controller based on a hierarchical control framework and reinforcement learning [14].
A robust control performance is achieved without prior knowledge of quadrotor-UAV
dynamics. Kaufmann et al. showcased the application of learning-based approaches in
acrobatic quadrotor-UAV flights [12]. However, the end-to-end training approach limits
the reusability and generalization of the method.

As the quadrotor-UAV is an underactuated system, the state variables are coupled with
each other, which makes it difficult to accurately track all the states. The accuracy of attitude
tracking is directly related to the accuracy of position tracking. Therefore, attitude control
for quadrotor UAVs has been widely investigated in the literature. Traditional attitude
control methods for quadrotor-UAVs often rely on Euler angles to represent the attitude,
where each Euler angle is individually tracked to achieve attitude control. However,
Euler angles reach singularity at specific attitudes. To avoid these issues, quaternion is
employed to represent the attitude of quadrotor UAVs, as can be seen in references [15–18],
resulting in improved attitude control performance. In geometric theory, the changes
in attitude are correlated to the evolution of the SO(3) manifold. Therefore, Lee et al.
and Yu et al. designed attitude controllers based on Lie groups on SO(3) space [19–21],
which enables continuous control on SO(3) space. Also, with the representation of the
attitude using this method, singularities are avoided during the control process. What
is more, many researchers integrated the classical robust control algorithms into attitude
control for robustness. For instance, Lee et al. [22] came up with an adaptive control
algorithm. An adaptive law is employed to provide robust control with bounded errors
even in the presence of unknown quadrotor-UAV internal parameters. Considering that
quadrotor-UAVs are often subjected to external disturbances during flight, sliding-mode
control algorithms are employed for attitude control in references [23–25]. By incorporating
sliding-mode-control terms into the control laws, the system disturbance rejection capability
is, therefore, enhanced, and asymptotic convergences are ensured.

In most of the missions for a quadrotor-UAV, the objective of control is accurately
tracking the position. The control of the attitude loop is essentially to fulfill the demands
of the position loop. Most control approaches usually employ the entire dynamics model
of quadrotor UAVs in the optimization process for predictive control, which introduces
challenges due to the nonlinear nature of the attitude loop. However, if the desired values
can be accurately traced in the attitude loop, the attitude loop can be decoupled from the
position loop in the MPC optimization process. The nonlinearity in the attitude loop can,
therefore, be avoided. Based on this idea, this paper aims to develop a quadrotor-UAV
controller that can accurately track waypoints with temporal information. Contributions to
this paper are listed as follows:

(1) A robust controller for quadrotor-UAV waypoint tracking is proposed, in which
position control and attitude control are decoupled. The control efficiency is enhanced
while maintaining robustness.

(2) The LMPC algorithm is used in position control, where the motor constraints are
incorporated into both the input and state variables of the optimization problem. This
approach effectively mitigates the nonlinear characteristics of the attitude loop and
enhances the planning efficiency of the position controller.

99

Drones 2023, 7, 557

(3) For the attitude controller, a nonlinear robust control law is designed based on the
SO(3) space, which guarantees global asymptotic stability in the sense of Lyapunov.

(4) Extensive simulations have verified the excellent control performance of the proposed
controller, which can achieve high-precision tracking of the desired trajectory even
under severe external disturbances.

The paper is divided into five sections. In Section 2, the model of the quadrotor-UAV
as well as the coordinate systems used in current research are introduced. In Section 3,
the framework of the proposed controller is elaborated. Descriptions of each module are
provided in detail. In Section 4, control performances that have been demonstrated by
multiple numerical simulations are provided. Finally, summaries and conclusions are
provided in Section 5.

2. Model

In this article, variables are defined in a unified format. Matrices and vectors are
denoted by bold non-italic capital letters and bold non-italic lowercase letters, respectively.
Scalars are written in italic letters. The subscripts of a vector represent the components of
that vector. For example, vwx, vwy and vwz are the components of the velocity vector along
the three axes in the world coordinate system, respectively.

The coordinate systems employed in this paper are the world system W and the body
system B. For the body coordinate system, the origin is located at the center of mass of the
vehicle. The x-axis and y-axis are parallel to the two arms of the quadrotor-UAV as shown
in Figure 1 and it is a right-handed system. For the world coordinate system, the z-axis
points in the opposite direction of Earth’s gravity. Similar to the paper by Mellinger and
Kumar [26], an intermediate coordinate system C between the system W and system B is
defined, it shares the same z-axis as the world coordinate system. The numbering of the
four motors is illustrated in Figure 1.

Figure 1. Coordinate system definition and motor numbering.

The propulsion system of the quadrotor-UAV is modeled as a second-order model.
Following the discussion in reference [26], it is assumed that the force fi and torque
ni produced by each motor are proportional to the square of its rotational speed ωi, as
indicated in Equation (1). Within the equation, both k f and kn are constants, while km stands

100

Drones 2023, 7, 557

for the motor response constant. In addition, considering the issue of motor saturation,
there exists a maximum rotational speed constraint for each motor.

ω̈i = km(ω
d
i − ωi), fi = k f ω2

i , ni = knω2
i (1)

0 ≤ ωi ≤ ωmax (2)

In the body coordinate system, the thrust T and the three-axis torque τ produced by
the four motors are [

τ
T

]
= D�, τ =

⎡⎣ τx
τy
τz

⎤⎦ (3)

D =

⎡⎢⎢⎣
0 k f l 0 −k f l

−k f l 0 k f l 0
−kn kn −kn kn
k f k f k f k f

⎤⎥⎥⎦, � =

⎡⎢⎢⎣
ω2

1
ω2

2
ω2

3
ω2

4

⎤⎥⎥⎦ (4)

where l represents the length from the motor’s rotational axis to the center of mass of the
quadrotor-UAV.

Following the convention, all angular velocities are represented in the body frame,
while position and velocity vectors are represented in the world frame. The quadrotor-UAV
is subjected to the forces of gravity and the thrust generated by the motors along the z-axis
of the body frame. Newton’s second law related to the position control is

ma = −mgzw + Tzb (5)

in which zw and zb indicate the unit vectors of the z-axis for the world and body frames.
The mass of the quadrotor-UAV is m and the gravitational acceleration is g. The Euler
equation related to the attitude control is

Jẇb + wb × Jwb = τ (6)

where J denotes the inertia tensor. The roll, pitch, and yaw angles (φ, θ and ψ) based on the
Z-X-Y Euler angle sequence are employed to represent the attitude. The relation between
the first derivative of Euler angles and the angular velocities in the body frame is⎡⎣ wbx

wby
wbz

⎤⎦ =

⎡⎣ cos θ 0 − cos φ sin θ
0 1 sin φ

sin θ 0 cos φ cos θ

⎤⎦⎡⎣ φ̇
θ̇
ψ̇

⎤⎦ (7)

3. Methodology

For the proposed controller, a sequence of reference temporal waypoints is the control
input. The information of each waypoint mainly consists of the three-dimensional (3D)
position and yaw angle

[
pd

wx pd
wy pd

wz ψd
]
. Figure 2 provides the framework of the

controller. The LMPC algorithm is employed in the position loop. The relevant model
constraints are implemented on the state and input variables, thus planning the reference
trajectory within a future time domain. Based on the differential flatness property of the
quadrotor-UAV, the planned trajectory in the position loop can be mapped to the desired
input for the attitude controller. In addition, an attitude control law is designed based
on the SO(3) space. The nonlinear robust control law achieves accurate tracking of the
desired attitude angles. Regarding the control allocation of the quadrotor-UAV, an inverse
kinematics solution is obtained based on the optimization approach. Each module will be
described in detail in the following sections.

101

Drones 2023, 7, 557

Figure 2. Framework of proposed the quadrotor-UAV controller based on LMPC.

3.1. Linear Model Predictive Control

The ability to predict over a wide time domain and consider the constraints of an
actual model are the reasons why MPC is widely employed. In this paper, the LMPC
is employed in the position controller, and the model constraints primarily incorporate
considerations of motor speed limitations and motor response constraints. At each time
step, the optimal control sequence for the entire prediction horizon is computed, but only
the first control input is applied to the system. This process is iterated in a receding horizon
manner, where optimization is performed repeatedly at each time step.

As shown in Figure 2, the selected state variables are the position, velocities, accelera-
tions, and jerks along three axes. These variables are denoted by their respective initials.

x =

⎡⎢⎢⎣
p

v

a

j

⎤⎥⎥⎦, y = [p], u = [s], r = [pd] (8)

The output of the system y is the 3D position, and the control input is the snap, which
is the second derivative of acceleration. The reference input r corresponds to the desired
position. Among these variables, p, v, a, j, s ∈ R

3, y ∈ R
3, u ∈ R

3, r ∈ R
3. The reasons for

optimizing for the snap will be thoroughly analyzed in the subsequent sections.
The corresponding difference equation can be formulated based on the aforementioned

input and state variables.

x(k + 1) = Ax(k) + Bu(k)
y(k + 1) = Cx(k + 1)

(9)

where A, B, and C are defined as

A =

⎡⎢⎢⎣
I3×3 Ts∗I3×3

1
2 Ts2∗I3×3

1
6 Ts3∗I3×3

0 I3×3 Ts∗I3×3
1
2 Ts2∗I3×3

0 0 I3×3 Ts∗I3×3

0 0 0 I3×3

⎤⎥⎥⎦, B =

⎡⎢⎢⎣
1
24 Ts4∗I3×3
1
6 Ts3∗I3×3
1
2 Ts2∗I3×3

Ts∗I3×3

⎤⎥⎥⎦
C =

[
I3×3 0 0 0

] (10)

102

Drones 2023, 7, 557

in which Ts represents the discrete time interval, and I3×3 denotes the identity matrix.
Given the prediction horizon N, we define the state vector X, the reference input vector Γ,
the output vector Y, and the control input vector U over the predicted time horizon.

X =

⎡⎢⎢⎢⎢⎢⎣
x(k + 1)
x(k + 2)
x(k + 3)

...
x(k + N)

⎤⎥⎥⎥⎥⎥⎦U =

⎡⎢⎢⎢⎢⎢⎣
u(k)

u(k + 1)
u(k + 2)

...
u(k + N − 1)

⎤⎥⎥⎥⎥⎥⎦Y =

⎡⎢⎢⎢⎢⎢⎣
y(k + 1)
y(k + 2)
y(k + 3)

...
y(k + N)

⎤⎥⎥⎥⎥⎥⎦Γ =

⎡⎢⎢⎢⎢⎢⎣
r(k + 1)
r(k + 2)
r(k + 3)

...
r(k + N)

⎤⎥⎥⎥⎥⎥⎦ (11)

The relationship between them can be expressed as follows:

X =

⎡⎢⎢⎢⎢⎢⎣
B 0 0 · · · 0

AB B 0 · · · 0

A2B AB B · · · 0
...

...
...

. . .
...

AN−1B AN−2B AN−3B · · · B

⎤⎥⎥⎥⎥⎥⎦U +

⎡⎢⎢⎢⎢⎢⎣
A

A2

A3

...
AN

⎤⎥⎥⎥⎥⎥⎦x(k) = PU + Mx(k) (12)

Y =

⎡⎢⎢⎢⎢⎢⎣
C 0 0 0 0

0 C 0 0 0

0 0 C 0 0

0 0 0
. . . 0

0 0 0 0 C

⎤⎥⎥⎥⎥⎥⎦X = EX (13)

ΔU =

⎡⎢⎢⎢⎢⎢⎣
I3×3 0 0 · · · 0

−I3×3 I3×3 0 · · · 0

0 −I3×3 I3×3 · · · 0
...

...
...

. . .
...

0 0 0 −I3×3 I3×3

⎤⎥⎥⎥⎥⎥⎦U +

⎡⎢⎢⎢⎢⎣
−I3×3

0

0

0

0

⎤⎥⎥⎥⎥⎦u(k − 1) = SU + Hu(k − 1) (14)

where x(k) represents the state values at time step k, and u(k − 1) represents the control
input at the previous time step.

Considering the limitations of the control inputs and the tracking accuracy, a problem
aiming to minimize tracking errors and control input variations can be formulated as

min
U

(Γ − Y)TG1(Γ − Y) + ΔUTG2ΔU (15)

where G1 is the weight matrix related to tracking errors, and G2 is the weight matrix related
to the control input. Both G1 and G2 are positive definite diagonal matrices.

The model constraints considered in the controller are the motor speed constraints
and motor response constraints. Combining Equations (1) and (5), we obtain

ma = zb

4

∑
i=1

k f ω2
i − mgzw (16)

The motor’s maximum speed constraint is imposed on the acceleration term of the
state variables. [·]max and [·]min represent the maximum and minimum values of each
component in the vector, respectively. The attitude of quadrotor-UAV is assumed to be
unchanged within a single time step. This assumption may lead to motor speed saturation
in some extreme cases. However, the optimization-based control allocation approach
significantly reduces the impact of motor saturation.

103

Drones 2023, 7, 557

amin =

[
zb

m

4

∑
i=1

k f ω2
i − gzw

]
min

amax =

[
zb

m

4

∑
i=1

k f ω2
i − gzw

]
max

(17)

By taking the second derivative of both sides of Equation (5) and applying the motor
response constraints to the snap term of the input variables, we have

ms = 2zb

4

∑
i=1

k f (ωiω̈i + ω̇2
i) (18)

smin =
2zb

m

4

∑
i=1

k f (ωiω̈i,min + ω̇2
i), smax =

2zb

m

4

∑
i=1

k f (ωiω̈i,max + ω̇2
i) (19)

ω̈i,min = km(ω
d
min − ωi), ω̈i,max = km(ω

d
max − ωi) (20)

where ω̈i,min and ω̈i,max represent the minimum and maximum motor responsiveness,
respectively. Additional constraints, such as velocity limitations, can also be incorporated
into the current algorithm. By substituting the variables in Equation (15), an optimization
problem is formulated as

min
U

UT(PTETG1EP + STG2S)U + 2(x(k)TMTETG1EP − ΓTG1EP + u(k − 1)THTG2S)U

s.t.amin ≤ a ≤ amax

Umin ≤ U ≤ Umax

(21)

It is worth mentioning that the aforementioned optimization problem can be simplified
into a quadratic programming problem due to the absence of nonlinearity in the attitude
loop. As a result, it can be solved quickly in real-time. Through solving this optimization
equation, the desired position, velocity, acceleration, jerk, and snap can be effectively
planned within the predicted time horizon. The first control sequence of the optimization
results can then be applied to the controller in the next time step.

3.2. Nonlinear Attitude Controller Based on SO(3)

As errors in attitude significantly undermine the position tracking accuracy, an attitude
controller that can achieve high-precision tracking is very important to the overall controller.
In this paper, a nonlinear and robust attitude control law is designed based on the SO(3)
space, which ensures the attitude control is continuous on the SO(3) manifold. Furthermore,
the proposed attitude controller is proved to be global asymptotically stable in the sense
of Lyapunov.

The Euler equation for the attitude control is

Jẇb + wb × Jwb = τ + τdis (22)

where τdis represents external disturbances and τ is the input moment. Equation (22) can
be rewritten as

ẇb = J−1τ + J−1(−wb × Jwb) + J−1τdis = ηu + ξ + h

η = J−1,ξ = J−1(−wb × Jwb),h = J−1τdis
(23)

where h represents the external perturbation term, satisfying ||h||∞ ≤ hmax.
According to the Euler rotation theorem, any rotation matrix of SO(3) can be equiva-

lently achieved by rotating around a specific axis by a certain angle. Here, w
b R denotes the

rotation matrix of the current body coordinate system with respect to the world coordinate
system, while w

b Rd signifies the desired rotation matrix of the body coordinate system with
respect to the world coordinate system. Without causing any ambiguity, they are denoted
as R and Rd for simplicity, respectively. The error of the rotation matrix can be obtained as

Re = RTRd (24)

104

Drones 2023, 7, 557

Following the definition of the error of the rotation matrix, the angle error can be
calculated as

θe = cos−1(
tr(Re − 1)

2
) (25)

The angular velocity error is defined as the difference between the desired angular
velocity wd

b and the actual angular velocity wb:

we = wd
b − wb (26)

Hence, the attitude control law can be designed based on the angle error and the
angular velocity error:

u = η−1[ẇd
b − ξ + hmaxsgn(we) + K1we +

|θe|||wd
b||+ K2θe

2

||we||2 we + log(Re)] (27)

Referring to the exponential mapping and algebraic mapping between Lie groups
and Lie algebras [27], the calculation of the desired rotation axis based on the error of the
rotation matrix can be carried out as follows:

log(Re) =
θe

2 sin θe
(Re − RT

e)
∨ ∈ so(3) (28)

where the operator ∧ denotes a conversion of a three-dimensional vector into a 3 × 3 skew-
symmetric matrix, while the operator ∨ represents the inverse operation of the operator ∧.

c × d = c∧d, ∀c, d ∈ R
3 (29)

The term hmaxsgn(we) in the control law corresponds to the sliding mode control
term for angular velocity control, and it effectively mitigates the influence of external
disturbances. Moreover, this term exhibits negligible numerical values, thus ensuring the
stability of the controller without inducing any instability concerns.

To demonstrate the robustness of the control law, a Lyapunov function is conducted
as follows:

V =
1
2

θ2
e +

1
2

wT
e we (30)

By taking the derivative of the Lyapunov function, we have

V̇ = θ̇eθe + wT
e ẇe = V̇1 + V̇2 (31)

The derivative of the angle term is expanded and the calculation is derived as

V̇1 = θ̇eθe

= θe
d(cos−1(tr(Re−1)

2))
dt

= −θe
1

2

√
1−cos−1(tr(Re−1)

2)
2

dtr(Re)
dt

= − θe
2 sin θe

dtr(RTRd)
dt

= − θe
2 sin θe

tr(dRT

dt Rd + RT dRd

dt)

= − θe
2 sin θe

tr(ŵT
bRTRd + RTRdŵd

b)

= log (Re)Twe

(32)

105

Drones 2023, 7, 557

Substituting the above equation and the control law into Equation (31) and scaling it
appropriately, we have

V̇ = θ̇eθe + wT
e ẇe

= log (Re)Twe + wT
e (ẇ

d
b − ξ − h − ẇd

b+ξ − hmaxsgn(we)

− K1we − |θe |||wd
b||+K2θe

2

||we||2 we − log(Re))

= −K1wT
e we − (hmaxsum(|we|) + hTwe)− |||wd

b|||θe| − K2θe
2

≤ −K1wT
e we − K2θe

2

≤ −4 min(K1, K2)V

(33)

where sum(|we|) represents the sum of the absolute values of each element in we. It is
evident that the constructed Lyapunov function is positive definite, and its derivative
is negative definite. Consequently, it can be concluded that the control law guarantees
the global asymptotic stability of the system in the sense of Lyapunov. By adjusting the
coefficients K1 and K2, the convergence rate of the system can be tailored.

The attitude control law is designed based on the SO(3) space to avoid singularities.
Concurrently, the control outputs are more efficient on the SO(3) manifold. Simulations
presented in Section 4 have demonstrated the exceptional performance of the proposed
attitude control law, even in the presence of disturbances and observation uncertainties.
The precise tracking of the attitude loop ensures its capability to fulfill the demands of
the position loop. Although the attitude loop is excluded from the MPC optimization, its
nonlinearity can still be compensated by the attitude controller, thus the overall control
performance remains superior.

3.3. Differential Flatness

Given the above control scheme, the position and attitude controller can be designed
independently. By leveraging the differential flatness properties of the quadrotor-UAV, a
mapping from the position loop to the attitude loop is achieved. Differential flatness is
referred to as the selection of appropriate variables from the state space and describing
the entire state space using these variables and their derivatives. Similar to most articles
in the literature, the following flat outputs are selected, namely the 3D position and the
yaw angle:

σ = [pwx, pwy, pwz, ψ]T (34)

The position is planned using the LMPC method within the position loop, and the
yaw angle information is pre-defined. A direct mapping from the flat outputs to the desired
attitude, angular rate, and angular acceleration is obtained based on these variables and
their derivatives.

According to Mellinger and Kumar [26], the desired attitude is calculated through
acceleration. As mentioned in Section 2, the coordinate system C is an intermediate
coordinate system obtained by rotating the world coordinate system around the z-axis with
the yaw angle, and xc indicates the unit vectors of the x-axis for this coordinate system.

zb = ad+gzw

||ad+gzw||
xc = [cos ψ, sin ψ, 0]T

yb = zb×xc

||zb×xc||
xb = yb × zb, w

b Rd= [xb yb zb]

(35)

106

Drones 2023, 7, 557

By differentiating both sides of Equation (5), the jerk planned in the position loop can
be mapped into the desired angular velocity.

mȧ = Ṫzb + T(ww × zb)
Ṫ = zb · mȧ

h = ww × zb=
m
T (j

d − (zb · jd)zb)
wbx = −h · yb, wby = h · xb

(36)

Also in paper [26], however, the z-axis angular velocity is taken as zero for a constant
yaw setpoint, which is actually nonzero. In this paper, the z-axis angular velocity is
calculated through Equation (7). By taking the inverse of Equation (7), we obtain⎡⎣ φ̇

θ̇
ψ̇

⎤⎦ =

⎡⎣ cos θ 0 sin θ
tan φ sin θ 1 − tan φ cos θ
− sec φ sin θ 0 sec φ cos θ

⎤⎦⎡⎣ wbx
wby
wbz

⎤⎦ (37)

By solving Equation (38), the z-axis angular velocity can be determined based on the
derivative value of the yaw angle.

ψ̇ cos φ = −wbx sin θ + wbz cos θ (38)

In the attitude controller, both angular velocity and angular acceleration are required as
feed-forward terms to enhance tracking accuracy in attitude control. Thus, the differential
flatness property is extended to the angular acceleration to calculate its desired value.
Similarly, by taking the second derivative of Equation (5), we have

msd = T̈zb + 2Ṫ(ww × zb) + T
δ(ww × zb)

δt
(39)

The equation for calculating the second derivative of thrust T is

T̈ = (ww × zb) · mȧ + zb · msd (40)

Expanding Equation (39), the cross product of the angular acceleration with the z-axis
of the world coordinate system can be calculated. By projecting this quantity onto the x-axis
and y-axis of the body coordinate system, the values of ẇbx and ẇby can be derived as

δ(ww×zb)
δt = (ŵw

w
b Rwb + w

b R−1 δwb
δt)× zb + ww × (ww × zb)

ζ = ẇw × zb = w
b R−1 δwb

δt × zb

ẇbx = −ζ · yb, ẇby = ζ · xb

(41)

Furthermore, we take the derivative of Equation (38):

ψ̈ cos φ = ẇbz cos θ − ẇbx sin θ − θ̇φ̇ + φ̇ψ̇ sin φ (42)

By solving Equation (42), the angular acceleration of the z-axis in the body coordinate
system can be calculated. Based on differential flatness, the information in the position
controller, ad, jd, sd, can be mapped to the inputs of the attitude controller, Rd, wd, ẇd. There-
fore, the second derivative of acceleration, i.e., the snap variable, must be considered in
the position controller. Apart from better handling of the constraint of motor responsive-
ness, another crucial reason for this is to calculate the desired angular acceleration for the
attitude controller.

3.4. Optimization-Based Control Allocation

The desired thrust can be calculated based on the desired acceleration from the posi-
tion controller. When combined with the desired torque from the attitude controller, the
desired control inputs can be obtained. Under normal conditions, it is sufficient to compute

107

Drones 2023, 7, 557

the desired rotational speeds for each motor by solving the system of linear Equations (3).
Nevertheless, considering potential inaccuracies in the applied constraints and the pos-
sibility of excessive torque required during extreme flight conditions, the desired motor
rotational speed might still exceed the actual speed limitation. To minimize the effects of
motor saturation, the final module employs an optimization-based approach for control
allocation. The algorithm is expressed as

min
�

(

[
τ
T

]
− D�)TQ(

[
τ
T

]
− D�)

s.t.�min ≤ � ≤ �max

(43)

where Q represents the weight matrix. The desired rotational speeds for the four motors
are determined by solving the aforementioned optimization problem. Subsequently, these
desired speeds are translated into the corresponding PWM signals and transmitted to
the motors.

4. Results

The simulations were performed within the MATLAB software, and the LMPC opti-
mization equa+tions were solved using the OSQP solver. All modules were individually
implemented on a HP OMEN8 Plus laptop, which is equipped with an Intel Core i7-
12700H processor and 16 GB RAM. Under this specific hardware configuration, the average
computation time for solving the MPC optimization problem is 4 ms.

A series of simulation scenarios were conducted to validate the tracking performance
of the proposed controller. The relevant parameters of the quadrotor-UAV are provided
in Table 1, which is referred to [28]. The performance of the proposed attitude controller
in terms of attitude angle tracking is demonstrated in Section 4.1. The trajectory tracking
performance of the entire controller is presented in Section 4.2.

Table 1. Parameters of the quadrotor-UAV in simulation.

Variables Description Values

m The mass of the quadrotor-UAV (kg) 0.98
J The inertia tensor of the quadrotor-UAV Diag{2.64 × 10−3, 2.64 × 10−3, 4.96 × 10−3}

k f The force scaling factor of motor 8.98132 × 10−9

kn The moment scaling factor of motor 1.1694 × 10−10

km Motor Response Constant 10
l The arm length of the quadrotor-UAV(m) 0.26

ωmax Maximum motor speed (RPM) 42.000

4.1. Nonlinear Attitude Controller Based on SO(3)

It is crucial to substantiate the control performance and robustness of the attitude
controller, given its direct relevance to the overall controller. In the attitude control law
as shown in Equation (27), both K1 and K2 were set as 10. The desired tracking attitude is
given as

φ(t) =
π

9
sin(πt), θ(t) =

π

9
cos(πt), ψ(t) = 0 (44)

Firstly, the simulation was carried out without the external disturbances. In Figure 3,
the actual and desired attitude and angular rate in three axes are plotted over time. As can
be observed in the graph, even with an initial deviation between the actual and desired pitch
angle, the system stabilized within 2 seconds. Subsequently, the system accurately tracked
the specified attitude angles and angular velocities throughout the ensuing timeframe.

108

Drones 2023, 7, 557

0 5 10 15

Time [s]

-0.5

0

0.5

 [r
ad

] d

0 5 10 15

Time [s]

-0.5

0

0.5

 [r
ad

] d

0 5 10 15

Time [s]

0

0.02

0.04

 [r
ad

] d

0 5 10 15

Time [s]

-1

0

1

x [r
ad

/s
]

x
d

x

0 5 10 15

Time [s]

-1

0

1

y [r
ad

/s
]

y
d

y

0 5 10 15

Time [s]

0
0.1
0.2
0.3

z [r
ad

/s
]

z
d

z

Figure 3. Actual and desired attitude and angular rate without external disturbances.

Next, observation errors with an amplitude of 0.1 were added to the measured values
of attitude and angular rate, while white noise sampled every 0.2 s with an amplitude of
20% of the controller normal operating conditions was employed to simulate the external
disturbances. The actual and desired attitude and angular rate are plotted over time
in Figure 4. Despite such a large initial pitch angle deviation and a massive amount
of disturbances, the system stabilized and converged to the desired states quickly. It is
important to note that there were several significant peaks in the actual angular velocities.
This was caused by the presence of large random disturbances and observation errors
at that particular moment. The attitude controller compensated for tracking errors by
outputting a large torque. Actually, the angular velocity remained stable, but there were
certain instances where it exhibits higher rates of variation.

0 5 10 15

Time [s]

-0.5

0

0.5

 [r
ad

] d

0 5 10 15

Time [s]

-0.5

0

0.5

 [r
ad

] d

0 5 10 15

Time [s]

-0.02

0

0.02

0.04

0.06

 [r
ad

] d

0 5 10 15

Time [s]

-1

0

1

x [r
ad

/s
]

x
d

x

0 5 10 15

Time [s]

-1

0

1

y [r
ad

/s
]

y
d

y

0 5 10 15

Time [s]

0

0.2

0.4

z [r
ad

/s
]

z
d

z

Figure 4. Actual and desired attitude and angular rate with external disturbances.

The results shown above have proved that the proposed nonlinear attitude controller
based on SO(3) space has a robust control performance even under considerable
external disturbances.

4.2. Trajectory Tracking

In order to validate the tracking performance of the proposed LMPC-based robust
controller, four simulations were conducted: (a) aggressive trajectory tracking, (b) tracking
lemniscate of Bernoulli, (c) acrobatic flight trajectory tracking, and (d) aggressive trajectory
tracking under observation errors and extreme external disturbances. In these simulations,
other controllers were employed for the purpose of comparison.

In the simulations, the prediction horizon for the position control was set to 50, which
means that the LMPC optimizes the reference trajectory of the position loop for the next
50 time steps. Relevant parameters in the LMPC algorithm are presented in Table 2. The
planning frequency of the position controller was set as 20 Hz, while the control frequency
of the attitude controller was set as 200 Hz.

109

Drones 2023, 7, 557

Table 2. MPC parameter settings in simulation.

Variables Description Values

N The prediction horizon 50
G1 The weight matrix of tracking error Diag{20, 20, · · · , 20, 200}
G2 The weight matrix of control input Diag{0.01, 0.005, · · · , 0.005}
Q The weight matrix for control allocation Diag{5, 5, 5, 10}
K1

The proportional coefficient in attitude
control law 10

K2
The proportional coefficient in attitude

control law 10

4.2.1. Aggressive Trajectory Tracking

In the first simulation scenario, the initial position for the quadrotor-UAV was at
[0, 0, 0]. Both velocity and acceleration were configured as zero at the initial time. The given
reference waypoints are

pd
x,k = 3 cos(2π

5 tk)

pd
y,k = 2 sin(2π

5 tk)

pd
z,k = 4 − 2 cos(2π

5 tk)

(45)

which requires aggressive attitude changes in both roll and pitch angles. A differential
flatness-based cascaded PID controller with velocity and acceleration feedforward [24]
was employed for comparison. Furthermore, a controller that combines MPC for position
control with PID for attitude control was conducted as a comparative experiment to
validate the performance of our attitude controller. The tracking performance is evaluated
by comparing the desired and actual dynamics states (i.e., position, velocity, acceleration,
attitude, and angular rate), as shown in Figure 5.

The mean square error (MSE) of position for the aforementioned three controllers is
shown in Table 3.

Table 3. The MSE in tracking an aggressive trajectory.

Algorithms/Time 0–10 s 10–20 s 0–20 s

Proposed [0.4670, 0.0373, 0.2753] [6.507 × 10−6, 2.917 × 10−6, 3.559 × 10−6] [0.2335, 0.0186, 0.1376]
PID + FF [0.8527, 0.1652, 0.2536] [0.2183, 0.1099, 0.0098] [0.5355, 0.135, 0.1317]

MPC + PID [0.4632, 0.0507, 0.2781] [0.0008, 0.0097, 0.0007] [0.2320, 0.0302, 0.1394]

In this scenario, substantial initial deviations occurred in both the x and z-axes. More-
over, there were also significant attitude changes in roll and pitch angles with an amplitude
of 1 radius during flight. As shown in Figure 5 and Table 3, the PID controller with feed-
forward failed to track the trajectory, leading to observable phase lag in tracking. This
shortfall could be attributed to the presence of initial errors, impeding the provision of
precise feedforward information. For the controller that combines MPC and PID, although
it exhibited a good tracking performance overall, there was a significant tracking error in
the y-axis position compared to the proposed controller. This disparity became particularly
conspicuous during peaks in the y-axis position, where substantial tracking errors manifest.
On the contrary, the proposed controller tracked the given trajectory with high spatial and
temporal precision.

110

Drones 2023, 7, 557

(a) (b)

(c) (d)

(e) (f)

Figure 5. Aggressive trajectory tracking without disturbances. (a) Aggressive trajectory tracking.
(b) Desired position (blue curve), actual position by the proposed controller (red curve), actual
position by the controller that combines MPC for position control with PID for attitude control (green
curve), and actual position by the PID controller with feedforward (dashed black curve). (c) Actual
and desired velocity. (d) Actual and desired acceleration. (e) Actual and desired attitude. (f) Actual
and desired angular rate.

4.2.2. Comparison of Different Controllers in Tracking Lemniscate of Bernoulli

To examine the performance of the proposed controller in waypoint tracking, a simula-
tion was conducted utilizing the Bernoulli lemniscate as the reference trajectory. Similarly,
the above two controllers (the PID controller with velocity and acceleration feedforward
and the controller that combines MPC for position control with PID for attitude control)
were implemented for comparison. The given reference waypoints are as follows. The

111

Drones 2023, 7, 557

initial position of the quadrotor-UAV was set at [0, 4, 1], and both velocity and acceleration
were set to zero at the initial time.

R = 4, w = π
3

pd
x,k = − R cos(wtk) sin(wtk)

sin2(wtk)+1

pd
y,k =

R cos(wtk)

sin2(wtk)+1
pd

z,k = 1

(46)

The waypoints and the actual flight path by the three controllers are illustrated
in Figure 6. The comparisons between desired and actual values of position, velocity,
acceleration, attitude, and angular rate are plotted in separate subplots of Figure 6.

-2 -1.5 -1 -0.5 0 0.5 1 1.5

x [m]

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
[m

]

Waypoints
Proposed
PID+FF
MPC+PID

(a) (b)

0 2 4 6 8 10 12

Time [s]

-4

-2

0

2

v x [m
/s

] v
x
d

v
x

0 2 4 6 8 10 12

Time [s]

-5

0

5

v y [m
/s

] v
y
d

v
y

0 2 4 6 8 10 12

Time [s]

-0.01

0

0.01

0.02

v z [m
/s

] v
z
d

v
z

(c)

0 2 4 6 8 10 12

Time [s]

-20

-10

0

10

20

a x [m
/s

2
] a

x
d

a
x

0 2 4 6 8 10 12

Time [s]

-20

-10

0

10

a y [m
/s

2
] a

y
d

a
y

0 2 4 6 8 10 12

Time [s]

-0.1

-0.05

0

0.05

0.1

a z [m
/s

2
] a

z
d

a
z

(d)

Figure 6. Cont.

112

Drones 2023, 7, 557

0 2 4 6 8 10 12

Time [s]

-1

-0.5

0

0.5

1

 [r
ad

]

d

0 2 4 6 8 10 12

Time [s]

-1

-0.5

0

0.5

1

 [r
ad

]

d

0 2 4 6 8 10 12

Time [s]

-6

-4

-2

0

 [r
ad

]

10-3

d

(e)

0 2 4 6 8 10 12

Time [s]

-5

0

5

x [r
ad

/s
]

x
d

x

0 2 4 6 8 10 12

Time [s]

-5

0

5

10

y [r
ad

/s
]

y
d

y

0 2 4 6 8 10 12

Time [s]

-4

-2

0

2

z [r
ad

/s
]

z
d

z

(f)

Figure 6. Lemniscate of Bernoulli tracking. (a) Trajectory of different controllers. (b) Actual and
desired position. (c) Actual and desired velocity. (d) Actual and desired acceleration. (e) Actual and
desired attitude. (f) Actual and desired angular rate.

The MSE of position for the aforementioned three controllers is presented in Table 4.

Table 4. The MSE in tracking Lemniscate of Bernoulli.

Algorithms/Time 0–6 s 6–12 s 0–12 s

Proposed [0.0420, 0.0074, 1.4256 × 10−6] [5.027 × 10−5, 5.128 × 10−5, 4.127 × 10−7] [0.0210, 0.0037, 9.191 × 10−7]
PID + FF [0.0832, 0.0049, 0.0045] [0.0079, 0.0075, 0.0032] [0.0455, 0.0062, 0.0038]

MPC + PID [0.0451, 0.0070, 0.0008] [0.0013, 0.0025, 0.0020] [0.0232, 0.0047, 0.0014]

In this simulation, the PID feedforward controller accurately provided the velocity
and acceleration feedforward information. However, its effectiveness was limited by
the position loop, which only output the desired acceleration. Consequently, it failed to
provide additional feedforward information (desired angular velocity and desired angular
acceleration) to the attitude control loop. As a result, significant tracking errors could be
observed. The MPC combined with the PID controller showcased a satisfying tracking
performance. However, as presented in Figure 6 and Table 4, this controller achieved
precise tracking along straight paths, but exhibited larger tracking errors during aggressive
turns. This discrepancy arose due to the requirement of the quadrotor-UAV for substantial
adjustments in attitude during the turns, which the PID attitude controller failed to track
accurately. In contrast, the proposed controller exhibited superior tracking performance. It
accurately traced the desired trajectory after the initial adjustments.

4.2.3. Acrobatic Flight Trajectory Tracking

Since the design of the attitude controller is based on the SO(3) space, it possesses
the capacity to track dynamic trajectories encompassing substantial attitude maneuvers.
An acrobatic flying trajectory in the X-Z plane was prescribed in Figure 7 for testing the
proposed controller. The controller that combines MPC for position control with PID for
attitude control was added as a comparative experiment. The given reference waypoints are

wd
k =

√
v2

min+2gR(1+cos βk)
R

βk+1 = βk + wd
k(tk+1−tk)

pd
x,k = R sin βk

pd
y,k = 0

pd
z,k = R(1 − cos βk) + 1

vmin ≥ √
gR

(47)

113

Drones 2023, 7, 557

where R was set to 2 m, and vmin was set to 6 m/s. The initial position for the quadrotor-
UAV was established as [0, 0, 1], and both velocity and acceleration were set to zero at
the initial time. In order to track the given waypoints accurately, the pitch angle of the
quadrotor-UAV was required to complete a full attitude maneuver from 0 to 2π. Addition-
ally, the large steps in the velocity and acceleration terms at the initial time made it more
challenging for the controller.

Figure 7. Acrobatic flight trajectory.

The performance in terms of tracking the acrobatic flight trajectory is evaluated by
comparing the desired position, velocity, acceleration, attitude, and angular rate to the
actual values and they are plotted in Figure 8.

(a)

0 1 2 3 4 5 6 7 8

Time [s]

-2

0

2

x
[m

] xd

Proposed
MPC+PID

0 1 2 3 4 5 6 7 8

Time [s]

-1

0

1

y
[m

] yd

Proposed
MPC+PID

0 1 2 3 4 5 6 7 8

Time [s]

0

2

4

6

8

z
[m

] zd

Proposed
MPC+PID

(b)

0 1 2 3 4 5 6 7 8

Time [s]

-10

0

10

v x [m
/s

]

v
x
d

v
x

0 1 2 3 4 5 6 7 8

Time [s]

-1

0

1

v y [m
/s

]

v
y
d

v
y

0 1 2 3 4 5 6 7 8

Time [s]

-10

0

10

v z [m
/s

]

v
z
d

v
z

(c)

0 1 2 3 4 5 6 7 8

Time [s]

-50

0

50

a x [m
/s

2
]

a
x
d

a
x

0 1 2 3 4 5 6 7 8

Time [s]

-1

0

1

a y [m
/s

2
]

a
y
d

a
y

0 1 2 3 4 5 6 7 8

Time [s]

-50

0

50

a z [m
/s

2
]

a
z
d

a
z

(d)

Figure 8. Cont.

114

Drones 2023, 7, 557

0 1 2 3 4 5 6 7 8

Time [s]

-1

0

1

 [r
ad

] d

0 1 2 3 4 5 6 7 8

Time [s]

-2

0

2

 [r
ad

] d

0 1 2 3 4 5 6 7 8

Time [s]

-1

0

1

 [r
ad

] d

(e)

0 1 2 3 4 5 6 7 8

Time [s]

-1

0

1

x [r
ad

/s
]

x
d

x

0 1 2 3 4 5 6 7 8

Time [s]

-10

-5

0

5

y [r
ad

/s
]

y
d

y

0 1 2 3 4 5 6 7 8

Time [s]

-1

0

1

z [r
ad

/s
]

z
d

z

(f)

Figure 8. Acrobatic flight trajectory tracking of the quadrotor-UAV without disturbances. (a) Acrobatic
flight trajectory tracking. (b) Actual and desired position. (c) Actual and desired velocity. (d) Actual and
desired acceleration. (e) Actual and desired attitude. (f) Actual and desired angular rate.

The MSE of position for tracking the acrobatic flight trajectory is shown in Table 5.

Table 5. The MSE in tracking acrobatic flight trajectory.

Algorithms/Time 0–4 s 4–8 s 0–8 s

Proposed [0.2486, 0, 0.3217] [2.404 × 10−4, 0, 3.26 × 10−4] [0.1244, 0, 0.1610]

In the simulation, given the trajectory involving full attitude maneuvers, our attitude
controller achieved stable tracking without encountering any singularities. Despite the
presence of significant errors in both velocity and acceleration at the initial time, good
accuracy in tracking the desired waypoints could be observed in Figure 8 and Table 5.
As a comparative experiment, the controller that combines MPC with PID failed to track
the given waypoints. This inadequacy could be attributed to the PID attitude controller’s
limited ability to accurately trace the desired attitude, particularly when dealing with
aggressive attitude changes.

4.2.4. Aggressive Trajectory Tracking under Observation Errors and Extreme
External Disturbances

Considering the complex environmental factors the quadrotor-UAV may encounter
during the actual flight, in the simulation, the artificial state observation errors were
introduced for simulating the real-world conditions. Specifically, the random values were
added to the state variables to emulate the measurement values. The amplitudes of the
random values associated with each state variable are presented in Table 6.

Table 6. Observation errors in state variables.

Variables Observation Error Amplitude

Displacement 0.05 [m]
Velocity 0.05 [m/s]

Acceleration 0.03 [m/s2]
Attitude angle 0.02 [rad]
Angular rate 0.01 [rad/s]

The reference waypoints in this case are defined by Equation (45). The initial position
for the quadrotor-UAV was set at [0, 0, 0], with both velocity and acceleration initialized to
zero at the initial time. Moreover, a significant external disturbance was introduced during
the 9th to 11th seconds as shown in Figure 9. During this time interval, a constant force was

115

Drones 2023, 7, 557

exerted on the quadrotor-UAV to simulate external disturbances, with magnitudes of 2.5N,
2N, and 1.5N along the three axes, respectively. Given the desired trajectory, observation
errors, and external disturbances, the tracking performance of the controller is evaluated
by comparing the desired position, velocity, acceleration, attitude, and angular velocity to
the actual values in Figure 9.

(a)

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-2

0

2

4

x
[m

] xd

x

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-2

0

2

y
[m

] yd

y

0 2 4 6 8 10 12 14 16 18 20

Time [s]

0

2

4

6

z
[m

] zd

z

disturbance

(b)

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-5

0

5

v x [m
/s

]

v
x
d

v
x

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-2

0

2

v y [m
/s

]

v
y
d

v
y

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-5

0

5

v z [m
/s

]

v
z
d

v
z

disturbace

(c)

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-10

0

10

a x [m
/s

2
]

a
x
d

a
x

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-10

0

10
a y [m

/s
2
]

a
y
d

a
y

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-10

0

10

a z [m
/s

2
]

a
z
d

a
z

disturbance

(d)

0 2 4 6 8 10 12 14 16 18 20

Time [s]

0

0.5

1

 [r
ad

] d

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-1

0

1

 [r
ad

] d

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-0.2

0

0.2

 [r
ad

] d

disturbance

(e)

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-5

0

5

x [r
ad

/s
]

x
d

x

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-5

0

5

y [r
ad

/s
]

y
d

y

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-4

-2

0

z [r
ad

/s
]

z
d

z

disturbance

(f)

Figure 9. Aggressive trajectory tracking under observation errors and external disturbances. (a) Trajec-
tory of proposed controller. (b) Actual and desired position. (c) Actual and desired velocity. (d) Actual
and desired acceleration. (e) Actual and desired attitude. (f) Actual and desired angular rate.

The MSE of position for tracking aggressive trajectory under observation errors and
extreme external disturbances is shown in Table 7.

Table 7. The MSE in tracking aggressive trajectory under disturbances.

Algorithms/Time 0–8 s 8–12 s 12–20 s

Proposed [0.5846, 0.0469, 0.3450] [0.2929, 0.0951, 0.1592] [1.518 × 10−4, 1.1 × 10−4, 4.923 × 10−5]

116

Drones 2023, 7, 557

The results presented in Figure 9 and Table 7 demonstrated that the proposed controller
exhibited strong disturbance rejection capabilities. Even in the presence of observation
errors and substantial external disturbances, the controller was able to maintain robust
control. It is worth mentioning that the replanning time of our controller in the position
loop is less than 0.01 s, which endows our controller with online control capability.

5. Conclusions

In the context of waypoint tracking tasks for quadrotor UAVs, a robust controller is
introduced in this paper. The LMPC algorithm is employed in the position loop and a
nonlinear control law based on the SO(3) space is designed for the attitude control. The
accurate tracking of the attitude loop enables the decoupling of the attitude control from the
optimization within the MPC. The motor model constraints are taken into account for wide-
time-domain prediction and feasible trajectory optimization. Furthermore, the nonlinear
characteristics can be effectively compensated by the attitude controller, therefore allowing
the controller to maintain its superior performance while reducing the computational
expenses. Multiple aggressive trajectories and external disturbances were designed and
simulations were conducted to test the controller. The proposed scheme showed high preci-
sion in tracking performance. Since the controller requires low computational resources, it
is estimated to be implementable for real-time control for an actual quadrotor-UAV.

Author Contributions: Conceptualization, Z.X.; methodology, Z.X.; software, Z.X.; validation, Z.X.
and W.Q.; formal analysis, Z.X., W.Q. and G.W.; investigation, Z.X.; resources, L.F.; data curation, Z.X.;
writing—original draft preparation, Z.X.; writing—review and editing, G.W. and W.Q.; visualization,
Z.X. and W.Q.; supervision, L.F., G.W., W.Q. and Y.H.; project administration, L.F., G.W., W.Q.
and Y.H.; funding acquisition, L.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the Intelligent Aerospace System Team (2022R01003) of Zhe-
jiang Provincial Leading Innovative Teams and the project of “Key Technology and Verification of
Intelligent Piloted Electric Aircraft” (HYI21005) from Huzhou Institute of Zhejiang University.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xu, H.; Yi, L.; Li, C.; Sun, Y.; Hou, L.; Bai, J.; Kong, F.; Han, X.; Lan, Y. Design and Experiment of Ecological Plant Protection UAV
Based on Ozonated Water Spraying. Drones 2023, 7, 291. [CrossRef]

2. Liang, X.; Fang, Y.; Sun, N.; Lin, H. Nonlinear hierarchical control for unmanned quadrotor transportation systems. IEEE Trans.
Ind. Electron. 2017, 65, 3395–3405. [CrossRef]

3. Xiong, T.; Liu, F.; Liu, H.; Ge, J.; Li, H.; Ding, K.; Li, Q. Multi-Drone Optimal Mission Assignment and 3D Path Planning for
Disaster Rescue. Drones 2023, 7, 394. [CrossRef]

4. Li, J.; Li, Y. Dynamic analysis and PID control for a quadrotor. In Proceedings of the 2011 IEEE International Conference on
Mechatronics and Automation, Beijing, China, 7–10 August 2011; pp. 573–578.

5. Bouabdallah, S.; Noth, A.; Siegwart, R. PID vs. LQ control techniques applied to an indoor micro quadrotor. In Proceedings of
the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Sendai, Japan,
28 September–2 October 2004; Volume 3, pp. 2451–2456.

6. Greeff, M.; Schoellig, A.P. Flatness-based model predictive control for quadrotor trajectory tracking. In Proceedings of the 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 6740–6745.

7. Lu, G.; Xu, W.; Zhang, F. On-manifold model predictive control for trajectory tracking on robotic systems. IEEE Trans. Ind.
Electron. 2022, 70, 9192–9202. [CrossRef]

8. Romero, A.; Sun, S.; Foehn, P.; Scaramuzza, D. Model predictive contouring control for time-optimal quadrotor flight. IEEE Trans.
Robot. 2022, 38, 3340–3356. [CrossRef]

9. Sun, S.; Romero, A.; Foehn, P.; Kaufmann, E.; Scaramuzza, D. A comparative study of nonlinear mpc and differential-flatness-
based control for quadrotor agile flight. IEEE Trans. Robot. 2022, 38, 3357–3373. [CrossRef]

10. Zhao, W.; Liu, H.; Lewis, F.L. Robust formation control for cooperative underactuated quadrotors via reinforcement learning.
IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4577–4587. [CrossRef]

11. Wang, Q.; Namiki, A.; Asignacion, A., Jr.; Li, Z.; Suzuki, S. Chattering Reduction of Sliding Mode Control for Quadrotor UAVs
Based on Reinforcement Learning. Drones 2023, 7, 420. [CrossRef]

117

Drones 2023, 7, 557

12. Kaufmann, E.; Loquercio, A.; Ranftl, R.; Müller, M.; Koltun, V.; Scaramuzza, D. Deep drone acrobatics. arXiv 2020,
arXiv:2006.05768.

13. Li, G.; Tunchez, A.; Loianno, G. Learning model predictive control for quadrotors. In Proceedings of the 2022 International
Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 5872–5878.

14. Han, H.; Cheng, J.; Xi, Z.; Yao, B. Cascade Flight Control of Quadrotors Based on Deep Reinforcement Learning. IEEE Robot.
Autom. Lett. 2022, 7, 11134–11141. [CrossRef]

15. Serrano, F.; Castillo, O.; Alassafi, M.; Alsaadi, F.; Ahmad, A. Terminal sliding mode attitude-position quaternion based control of
quadrotor unmanned aerial vehicle. Adv. Space Res. 2023, 71, 3855–3867. [CrossRef]

16. Fresk, E.; Nikolakopoulos, G. Full quaternion based attitude control for a quadrotor. In Proceedings of the 2013 European Control
Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 3864–3869.

17. Meradi, D.; Benselama, Z.A.; Hedjar, R.; Gabour, N.E.H. Quaternion-based Nonlinear MPC for Quadrotor’s Trajectory Tracking
and Obstacles Avoidance. In Proceedings of the 2022 2nd International Conference on Advanced Electrical Engineering (ICAEE),
Constantine, Algeria, 29–31 October 2022; pp. 1–6.

18. Choutri, K.; Lagha, M.; Dala, L.; Lipatov, M. Quadrotors trajectory tracking using a differential flatness-quaternion based
approach. In Proceedings of the 2017 7th International Conference on Modeling, Simulation, and Applied Optimization
(ICMSAO), Sharjah, United Arab Emirates, 4–6 April 2017; pp. 1–5.

19. Lee, T. Global Exponential Attitude Tracking Controls on SO(3). IEEE Trans. Autom. Control 2015, 60, 2837–2842. [CrossRef]
20. Yu, Y.; Yang, S.; Wang, M.; Li, C.; Li, Z. High performance full attitude control of a quadrotor on SO(3). In Proceedings of the 2015

IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 1698–1703.
21. Lee, T.; Leok, M.; McClamroch, N.H. Geometric tracking control of a quadrotor UAV on SE(3). In Proceedings of the 49th IEEE

Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 5420–5425.
22. Lee, T. Robust Adaptive Attitude Tracking on SO(3) With an Application to a Quadrotor UAV. IEEE Trans. Control Syst. Technol.

2012, 21, 1924–1930.
23. Lian, S.; Meng, W.; Shao, K.; Zheng, J.; Zhu, S.; Li, H. Full Attitude Control of a Quadrotor Using Fast Nonsingular Terminal

Sliding Mode With Angular Velocity Planning. IEEE Trans. Ind. Electron. 2022, 70, 3975–3984. [CrossRef]
24. Tian, B.; Liu, L.; Lu, H.; Zuo, Z.; Zong, Q.; Zhang, Y. Multivariable finite time attitude control for quadrotor UAV: Theory and

experimentation. IEEE Trans. Ind. Electron. 2017, 65, 2567–2577. [CrossRef]
25. Islam, S.; Faraz, M.; Ashour, R.; Cai, G.; Dias, J.; Seneviratne, L. Adaptive sliding mode control design for quadrotor unmanned

aerial vehicle. In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA,
9–12 June 2015; pp. 34–39.

26. Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the 2011 IEEE
International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525.

27. Murray, R.M.; Li, Z.; Sastry, S.S.; Sastry, S.S. A Mathematical Introduction to Robotic Manipulation; CRC Press: Boca Raton, FL, USA, 1994.
28. Zhou, X.; Wang, Z.; Ye, H.; Xu, C.; Gao, F. Ego-planner: An esdf-free gradient-based local planner for quadrotors. IEEE Robot.

Autom. Lett. 2020, 6, 478–485. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

118

Citation: Du, L.; Fan, Y.; Gui, M.;

Zhao, D. A Multi-Regional

Path-Planning Method for Rescue

UAVs with Priority Constraints.

Drones 2023, 7, 692. https://

doi.org/10.3390/drones7120692

Academic Editors: Jihong Zhu,

Heng Shi, Zheng Chen and

Minchi Kuang

Received: 21 October 2023

Revised: 25 November 2023

Accepted: 27 November 2023

Published: 29 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A Multi-Regional Path-Planning Method for Rescue UAVs with
Priority Constraints

Lexu Du 1,2, Yankai Fan 3, Mingzhen Gui 1,2 and Dangjun Zhao 1,2,*

1 School of Automation, Central South University, Changsha 410083, China; dulx3364@csu.edu.cn (L.D.);
guimingzhen@csu.edu.cn (M.G.)

2 Hunan Provincial Key Laboratory of Optic-Electronic Intelligent Measurement and Control,
Changsha 410083, China

3 Academy of Astronautics, Nanjing University of Aeronautics and Astronautics,
Nanjing 211106, China; yankai.fan@nuaa.edu.cn

* Correspondence: zhao_dj@csu.edu.cn

Abstract: This study focuses on the path-planning problem of rescue UAVs with regional detection
priority. Initially, we propose a mixed-integer programming model that integrates coverage path
planning (CPP) and the hierarchical traveling salesman problem (HTSP) to address multi-regional
path planning under priority constraints. For intra-regional path planning, we present an enhanced
method for acquiring reciprocating flight paths to ensure complete coverage of convex polygonal
regions with shorter flight paths when a UAV is equipped with sensors featuring circular sampling
ranges. An additional comparison was made for spiral flight paths, and second-order Bezier curves
were employed to optimize both sets of paths. This optimization not only reduced the path length
but also enhanced the ability to counteract inherent drone jitter. Additionally, we propose a variable
neighborhood descent algorithm based on K-nearest neighbors to solve the inter-regional access
order path-planning problem with priority. We establish parameters for measuring distance and
evaluating the priority order of UAV flight paths. Simulation and experiment results demonstrate
that the proposed algorithm can effectively assist UAVs in performing path-planning tasks with
priority constraints, enabling faster information collection in important areas and facilitating quick
exploration of three-dimensional characteristics in unknown disaster areas by rescue workers. This
algorithm significantly enhances the safety of rescue workers and optimizes crucial rescue times in
key areas.

Keywords: UAV coverage path planning; traveling salesmen problem; priority constraints; path
optimization

1. Introduction

Unmanned aerial vehicles (UAVs) have been widely used in many domains due to
their small size, sensitive control, and high scalability. Especially in the civil field, UAVs
equipped with cameras, infrared, LiDAR, or other sensors can conduct various missions,
including personnel searches [1], field monitoring [2], and terrain detection [3]. As UAVs
can survey target areas without causing any damage, they are well-suited to performing
information sensing tasks in remote or hazardous environments and complex terrains. By
reaching a rescue site before rescue personnel, drones provide timely and precise target
information, greatly enhancing the efficiency of rescue operations. To this end, a reasonable
path should be planned such that the mobile sensor carried by a UAV can cover a region in a
finite time, giving rise to a coverage path-planning (CPP) problem with various constraints,
including energy consumption, time consumption, etc.

In recent years, extensive research on the CPP problem for covering single regions
with energy constraints and photography constraints has been carried out [4–8]. A covered
route primarily exhibits various shapes, including round-trip and spiral patterns. However,

Drones 2023, 7, 692. https://doi.org/10.3390/drones7120692 https://www.mdpi.com/journal/drones119

Drones 2023, 7, 692

the UAV’s motion capabilities in actual flight are limited, making it challenging to precisely
follow sharp corners in simulated routes at turning points. Therefore, smoothing out the
sharp corners of the flight path becomes essential to save UAV flight time and reduce
jitter during turning. This challenge is extensively studied in the realm of UAV obstacle
avoidance in flight and is also applicable in UAV path-planning route optimization. The
Bezier curve was initially widely employed in robot motion planning. In recent years,
its application has expanded to include the field of UAVs. Machmudah et al. [9] studied
the incline and turn flight trajectory optimization of fixed-wing UAVs at a fixed altitude.
Utilizing the Bezier curve as the maneuvering path, the speed change reduces the load
coefficient of the inclined steering mechanism, and a simultaneous on-arrival target mission
has also been successfully conducted when the turning radius was small. However, in
practical scenarios of large-scale search and rescue missions, it is often not feasible to
consider the entire disaster area as a single region for coverage. Instead, the area is divided
into multiple areas of interest (AOIs) based on disaster information. Multiple disaster
locations are then selectively surveyed to effectively obtain post-disaster information.
Therefore, the challenge of path planning to cover multiple regions becomes a compelling
research topic.

In general, the multi-regional path-planning problem can be converted to a combi-
nation of two subproblems: a traveling salesmen problem (TSP) and a CPP problem [10],
constituting a TSP-CPP problem. A two-step path-planning method [11] is proposed to
cover multiple disjoint regions: (1) the access order of UAVs between regions is determined
in the first step by using genetic algorithms, and (2) the coverage path inside a region is
determined in the second step by using the rotating caliper algorithm [12]. Xie et al. [10]
planned the coverage path for multiple two-dimensional rectangular areas based on the
grid approach and dynamic programming methods. The target area is first split into mesh
grids according to the sensor’s sampling range; thus, the original TSP-CPP problem is
converted to a TSP problem, which is then solved by a dynamic programming method.
Further, the authors proposed a heuristic algorithm based on NN-2Opt [13] for efficiently
covering all regions even when there is a large number of regions. In [14], the minimum
distance strategy was considered, and an improved simulated annealing algorithm was
proposed to determine the access sequence of multiple regions, after which a back-and-forth
(BF) path is generated to cover multiple convex polygonal regions. Ko et al. [15] proposed
a novel UAV trajectory-planning method to optimize location-dependent visual coverage.
In this method, the UAV dynamically adjusts its altitude to meet varying image-resolution
requirements. Comprising three components, the approach effectively minimizes task
completion time.

Indeed, in numerous disaster relief missions, the significance of regions is determined
by factors such as severity, distance from the disaster center, and population density. While
the aforementioned methods have effectively tackled the traditional TSP-CPP problem, they
have failed to consider the diverse priorities of multi-target regions inherent in many large-
scale rescue missions. To date, there has been scarce research on path-planning problems
that accommodate distinct priorities for different regions. Miao et al. [16] introduced
UAV-assisted moving edge computing (MEC) using UAVs as MEC nodes and proposed a
multi-UAV-assisted MEC unloading algorithm based on global and local path planning.
The approach takes into account the priority of monitoring sites but focuses on optimizing
drone swarm scheduling, distribution, and communication coverage to minimize flight
length and energy consumption. In [17], the access order of multiple regions is manually
prescribed, and a heuristic algorithm is used to generate the sequence of regions without
considering the different priority levels of different regions.

In order to deal with priority constraints, the planned access order for multiple regions
depends on the prescribed priority levels of each region; thus, the original TSP should be
extended as a hierarchical traveling salesman problem (HTSP) [18]. In [19], regions with
the same priority are clustered into one cluster; correspondingly, regions with different
priorities are clustered into different clusters, whose access sequences are determined

120

Drones 2023, 7, 692

by their priority levels. However, this planning approach ensures that the accesses are
planned in order of priority, but it invariably results in a significant degree of path-length
redundancy. In some application scenarios, this strategy may not be the most efficient
and effective. Panchamgam et al. [18] proposed a d-relaxed priority model, in which
priority was adjusted to a certain extent during the planning process while taking path
length into account. The rule of this model is as follows: if p is the highest priority of all
unvisited locations, the vehicle is allowed to access one of the positions whose priority is p,
p + 1, . . ., p + d. The value of the positive integer d can be flexibly controlled to realize the
trade-off between path cost and emergency degree. Hà et al. [20] established a d-relaxed
priority integer programming model based on [18] and introduced a metaheuristic method
based on the framework of iterated local search with problem-tailored operators to find
approximate solutions.

In the realm of drone path planning for real-life rescue scenarios, a comprehensive
and systematic approach for multi-regional path-planning tasks with priority constraints is
lacking. Such a method should have the ability to determine priority sequences and path
lengths tailored for evaluating emergency rescue tasks effectively. This paper presents the
following contributions: building upon the work presented in [18], we formally define
the HTSP-CPP problem and formulate it as a mixed-integer programming model with
d-relaxed constraints. In the realm of intra-regional path planning, we present an enhanced
BF path coverage method that leverages the minimum width of polygonal regions. This
method ensures complete coverage of convex regions by sensors equipped with circular
sampling ranges. And simulate a comparison with the spiral path, optimizing both paths
using Bezier curves. To optimize inter-regional access order planning, we introduce two
different strategies for generating initial solutions, enabling efficient determination of the
access sequence for multiple regions, and utilizing the RVND algorithm to optimize the
initial solution. Additionally, we propose a distance–priority evaluation rule to assess the
trade-off between distance and priority with respect to the solutions.

The structure of this paper is as follows. In Section 2, we present a mixed-integer
programming model based on the HTSP-CPP. In Section 3, we discuss the related algorithms
and explain the specific algorithm design and process for intra-regional and inter-regional
path planning. We also propose a result evaluation index during the experimental design
stage, design a specific simulation scheme, and present the simulation and experiment
results in Sections 4 and 5.

2. Mathematical Model of the HTSP-CPP

The sensors integrated into UAVs mainly consist of LiDARs, RGB cameras, NIR cam-
eras, and others. Studies by Salach et al. [21] and Domingo et al. [22] have highlighted
LiDARs’ superiority in terrain detection and 3D modeling compared to other sensors. How-
ever, concerning search and rescue missions, NIR cameras and RGB cameras demonstrate
more significant potential. In complete disaster relief operations, UAVs equipped with
LiDAR are initially utilized to gather terrain data in affected regions, aiding in disaster
severity assessment and the formulation of relief strategies. Subsequently, UAVs outfitted
with infrared or optical sensors conduct a secondary search in areas where individuals may
be trapped, precisely identifying their locations for efficient rescue efforts. Therefore, the
path-planning method should be applicable to various sensor types. However, due to the
unique sampling shape of LiDAR, this paper focuses on improving the coverage method
based on circular sampling ranges. Table 1 shows the main symbols used in this article.

121

Drones 2023, 7, 692

Table 1. Summary table of important symbols.

Symbol Definition Symbol Definition

Ai The region’s parameter set d The coefficient of relaxation

C The set of accessed regions dL The distances from the strip’s sides to the base edge

Ci The central point coordinates of the region ei
p

Decision variable, whether the waypoint, p, is the
entrance of the region

D The distance matrix g The number of priorities

E The set of unvisited regions mi The number of waypoints in the region

G The priority set ni The number of vertices in the region

Li The sides of the strip proximal to the bottom o The path overlap rate of the UAV

L′
i The sides of the strip further to the bottom pi The priority of the region

N The region’s number set ti
p

Decision variable, whether the waypoint, p, is the
export of the region

N0 The region’s number set including the depot ui The position of the region in the access sequence

Nb The number of stripes in the region vij The vertex coordinates of the region

P The priority matrix wij The coordinate of the waypoints

Rk The set of regions with the same priority xij
Decision variable, whether there is a connecting path
between two regions, i, j

S The width of the convex region yi
pq

Decision variable, whether there is a connecting path
between two waypoints, p, q, in the region

Vi The vertex set of the region ω The sensor’s sampling diameter

Wi The waypoints set of the region Δd The distance between the UAV’s scan lines

2.1. Problem Description

We assume that there are n convex polygonal regions with different sizes and shapes to be
covered, and these regions are denoted by Ai =< Vi, Ci, pi >, where Vi =

{
vi1, vi2, . . . , vini

}
is the vertex coordinates of the clockwise arrangement of polygons, vij is the coordinates
of the j-th vertex of the i-th region, ni is the number of vertices in the i-th region, Ci is the
central point coordinate of the i-th region, and pi is the priority of the i-th region, where
pi ∈ G = {1, . . . , g}.

Now, a UAV equipped with a sensor (LiDAR) is utilized to initiate a comprehensive
coverage detection of these n areas starting from the base for acquiring the height and
obstacle information of each region. Upon completion of the coverage task, the UAV returns
to the base. The ground sampling range of the sensor is circular in shape, as depicted
in Figure 1.

Figure 1. Ground sampling range of sensor.

122

Drones 2023, 7, 692

The sampling diameter of the sensor is influenced not only by the sensor’s perfor-
mance, including the field of view angle, the angular resolution, and the maximum de-
tection radius, but also the flight parameters, such as the flight height and velocity. As
the flight altitude increases, the sampling range expands while the range that satisfies the
required sampling precision decreases. Therefore, there exists a maximum flight altitude
that ensures adequate sampling precision. Similarly, there exists a minimum flight altitude
that guarantees the minimum required sampling range. When the UAV operates within
this permissible altitude range, minor fluctuations in altitude will not impact sampling
effectiveness. This allowable range is determined by both task-specific sampling precision
requirements and sensor parameters. To simplify matters, we treat the sampling range
necessary for achieving the desired precision as a fixed value and introduce a concept of
“sampling overlap rate” to ensure that UAV altitude changes during flight do not com-
promise the task’s overall quality of data collection. The sampling diameter is w, and the
distance between scan lines is given as:

Δd = ω(1 − o) (1)

Since UAVs maintain a constant flight height regardless of the terrain’s ups and downs,
this problem can be considered a two-dimensional HTTP-CPP problem. Assuming that the
sensor’s sampling footprint can completely cover the target region, the aggregate flight path
length of the UAV is taken as the flight cost, and the access sequence between regions and
the flight path within each region are the decision variables to be optimized for minimizing
the flight cost.

2.2. Problem Modelling

The path of a UAV is generated by a set of a series of waypoints Wi =
{

wi1, wi2, · · · , wimi

}
,

i ∈ {1, 2, · · · , n}, where n is the number of target areas and mi represents the number of
waypoints in the i-th region, indicating the number of elements in the point set Wi. Each
waypoint signifies a change in direction for the UAV. It is important to note that the UAV
maintains a straight-line trajectory between any two consecutive waypoints. We divide the
flight paths into two types: (1) intra-regional paths in a single region and (2) inter-regional
paths connecting different regions.

a. Intra-regional paths

Let yi
pq denote the access order of waypoints p, q ∈ {1, 2, · · · , mi} of the intra-regional

path for the i-th region and yi
pq = 1 indicate that the UAV flies from point p to point q, while

yi
pq = 0 indicates that there is no connecting path between the waypoints p and q. Then, let

ei
p and ti

p denote the import and export of the i-th region, respectively. When ei
p = 1 means

that the UAV flies into region i from the waypoint p, ei
p = 0 means that the waypoint p is

not the entry point in region i. Similarly, when ti
p = 1 represents that the UAV flies out of

region i from the waypoint p, ti
p = 0 represents that the waypoints p is not the exit point in

region i.

b. Inter-regional paths

The priority constraints should be imposed on the inter-regional path planning to
obtain the optimal access sequence of multiple regions. Intending to cover high-priority
regions as extensively as possible while minimizing flight costs, it becomes necessary to
slightly relax the priority of individual regions. In this paper, we employ d-relaxed priority
to model this problem. The d-relaxed priority approach ensures that during the planning of
an inter-regional access sequence, if the current region has a priority of k ∈ G = {1, · · · , g},
the priority of the subsequent region to be accessed should not exceed k + d. When d = 0,
regional access should strictly adhere to the order of priority from high to low. Conversely,
when d = g − 1, the problem is degraded into an ordinary TSP problem without any

123

Drones 2023, 7, 692

priority constraints. By selecting an appropriate value for d, a suitable compromise can be
achieved between the distance traveled and the priority of regions.

Suppose the target regions are classified into different groups, Rk, according to their
priorities, which represent the set of regions with priority level k. When planning the
sequence of inter-regional access, an access sequence Order is generated. The value of ui
represents the sequence number in which the i-th region is accessed, that is, the index value
of region i in Order. Let N = {1, 2, · · · , n} be the set of all area numbers to be accessed and
N0 = {0, 1, 2, · · · , n} be the set of numbers containing the depot, where 0 is the number of
the depot. A decision variable xij (i, j ∈ N0) is introduced to represent the inter-regional
access order, and xij = 1 if the UAV flies from region i to region j, while xij = 0 if there is
no connection path between region i and region j. Therefore, the constraints on ui and xij
can be expressed as follows.

ui + 1 − M(1 − xij) ≤ uj, ∀i, j ∈ N0, j 	= 0 (2)

ui + 1 < uj, ∀i ∈ Rk, j ∈ Rl ; k, l ∈ G, l > k + d (3)

The first constraint states that for any two regions i and j, when region j is not the
depot and there exists a path from i to j, then the access order of region j should be after
region i. Alternatively, if there is no path from i to j, this inequality is also satisfied when a
sufficiently large M is used. The second constraint states that when the priority of region j
does not meet the d-relaxed constraint, the access order of region j should be after region i
and not in the immediate subsequent access position after region i.

c. Integer programming model of the HTSP-CPP Consider the following specific scenarios:

1. In the case where the sensor’s sampling range can only cover region i, i.e.,
mi = 1, meaning there is only one waypoint, wi1, in region i, which coincides
with the center of mass of region i. The UAV enters and exits region i from
wi1 simultaneously. In other cases where mi > 0, it is necessary to ensure that
the UAV enters and exits region i from different points to avoid redundant
path lengths.

2. When there are multiple regions and each region has only one waypoint, i.e.,
N > 1, then the problem simplifies to the TSP.

3. When there is only one region and its area exceeds the sampling range of the
sensor, i.e., N = 1 and m1 > 0, the problem becomes a CPP problem with a
starting point and an ending point.

Taking into account the above scenarios, the objective function for this problem is
as follows.

J = ∑n
i=1 ∑n

j=1,j 	=i ∑mi
p=1 ∑

mj
q=1 xijti

pej
qd

(
wip, wjq

)
+ ∑n

i=1 ∑mi
p=1 ∑mi

q=1,q 	=p yi
pqd

(
wip, wiq

)
+∑n

i=1 ∑mi
p=1 x0iei

pd
(
c0, wip

)
+ ∑n

i=1 ∑mi
p=1 x0iti

pd
(
wip, c0

) (4)

where d(a, b) represents the Euclidean distance from a to b and c0 is the coordinates of the
depot. In Equation (4), the first term is the path length between regions, the second term
represents the sum of path lengths within all regions, the third term represents the path
length from the base to the entrance of the first region, and the fourth term represents the
path length from the exit of the last region back to the base.

In addition, the following constraints should be imposed on Equation (4):

∑n
j=0,j 	=i xij = 1, ∀i ∈ N0 (5)

∑n
i=0,i 	=j xij = 1, ∀j ∈ N0 (6)

124

Drones 2023, 7, 692

ui + 1 − M
(
1 − xij

) ≤ uj, ∀i, j ∈ N0, j 	= 0 (7)

ui + 1 < uj, ∀i ∈ Rk, j ∈ Rl ; k, l ∈ G, l > k + d (8)

∑i∈Rk
∑

j∈Rl

xji = 0, ∀k, l ∈ G, l > k + d (9)

∑i∈Rk
x0i = 0, ∀k ∈ G, k > 1 + d (10)

∑i∈Rk
xi0 = 0, ∀k ∈ G, k < g − d (11)

∑mi
q=1,q 	=p yi

pq = 1 − ti
p, ∀i ∈ N, p ∈ {1, 2, · · · , mi} (12)

∑mi
p=1,p 	=q yi

pq = 1 − ei
p, ∀i ∈ N, q ∈ {1, 2, · · · , mi} (13)

∑mi
p=1 ei

p = 1, ∑mi
p=1 ti

p = 1, ∀i ∈ N (14)

∑i,j∈M1
xij ≤ |M1| − 1, ∀M1 ⊂ {0, 1, 2, · · · , N}, 2 ≤ |M1| ≤ N − 1 (15)

∑p,q∈M2
yi

pq ≤ |M2| − 1, ∀i ∈ {1, 2, · · · , N}, M2 ⊂ {1, 2, · · · , mi}, 2 ≤ |M2| ≤ mi − 2 (16)

xij ∈ {0, 1}, ∀i, j ∈ N0 (17)

ui, uj ∈ N0, ∀i, j ∈ N0, j 	= 0 (18)

yi
pq, ei

p, ti
p ∈ {0, 1}, ∀i ∈ N, p, q ∈ {1, 2, · · · , mi} (19)

ei
p + ti

p ≤ 1, ∀i ∈ N, mi > 1, p ∈ {1, 2, · · · , mi} (20)

Equations (5) and (6) specify that the UAV enters and exits each region, including
the depot, only once. This implies that each region can be visited only once. Equation (7)
represents the relationship between the position variable, ui, and the decision variable, xij.
Equations (8)–(11) describe the constraint conditions of d-relaxed priority: Equation (8)
defines the relationship between regional positions under the d-relaxed priority constraint
and Equation (9) specifies that, when the d-relaxed priority constraint is not satisfied, a
region with lower priority cannot be directly transferred to a region with higher priority.
Equations (10) and (11) are the constraints of the d-relaxed priority rule when leaving
the depot and returning to the depot, respectively. Equations (12) and (13) indicate that,
apart from the entrance and exit of each region, for each other waypoint, the UAV will fly
from one waypoint to another, ensuring that each waypoint can be accessed only once and
avoiding the redundant path length caused by repeated access to waypoints. Equation (14)
states that each region has one and only one entrance and exit. Equations (15) and (16)
ensure the continuity of paths to eliminate subloops within and between regions, and |M|
represents the cardinality of set M. Equations (17)–(20) specify the value ranges of the
decision variables to ensure their effectiveness.

125

Drones 2023, 7, 692

3. Algorithm Design

Based on the aforementioned analysis, the resolution of the HTSP-CPP problem
articulated by Equations (4)–(19) can be solved through the proposed algorithm, which
encompasses the following three key steps:

(1) Calculation of the inter-regional path and parameters: The initial step involves de-
termining the optimal flight direction for the UAV within each convex polygonal
region. This is achieved by calculating the width of the region. Simultaneously, the
distance between flight paths is determined based on predefined sampling require-
ments. This information facilitates the generation of parallel flight lines within the
region, subsequently yielding four potential candidate flight entry points;

(2) Construction of the priority-constrained TSP: The algorithm designates both the center
of each region and the depot as “cities” to be visited. This lays the foundation for
formulating a traveling salesman problem with priority constraints. To compute the
most efficient order of access, a heuristic algorithm is employed. This step aids in
identifying the optimal sequence for visiting the designated cities;

(3) Selection of optimal entry points and path generation: Utilizing the determined
optimal access order, the algorithm proceeds to select the best entry points within
each region. By amalgamating all selected waypoints, a coherent and comprehensive
UAV path is formulated, which represents the final output of the algorithm.

In the following subsections, we will delve into the principles and code logic of
this algorithm, conducting a comprehensive analysis of its effectiveness in solving HTSP-
CPP problems. Additionally, we introduce a region order optimization algorithm and
showcase the optimization impact on region access order using distance and priority
evaluation criteria.

3.1. Calculation of Inter-Regional Paths and Parameters

In this paper, we employ a BF path pattern for comprehensive coverage of the desig-
nated region. Notably, executing turns with a UAV entails heightened energy consumption
and concomitant augmentation of the overall path length. Consequently, diminishing the
frequency of turns stands as a pivotal means of curtailing drone flight costs. Guided by the
imperative of turn reduction, this paper embarks on a quest to ascertain the optimal width
of convex polygons [23]. Subsequently, the UAV’s BF path aligns with the vertical direction
of the width of these polygons, a strategic alignment that serves to minimize path length
across the targeted expanse.

a. Calculate the width of the convex polygon to determine the best flight direction of
the UAV

The authors of [23] proposed a method for determining the width of a convex polygon,
which is defined as the minimum span of the polygon. This characteristic is evident
specifically in polygon configurations featuring vertex–edge patterns. Notably, the span
between two parallel edges can also represent the width of the polygon, which is recognized
as a distinct instance of the vertex–edge scenario.

To calculate the width of a convex polygon, a comprehensive procedure is followed
for each of its sides. This involves the calculation of the distances from all vertices to the
selected edge. The longest calculated distance corresponds to the height of the chosen edge,
thereby identifying the vertex associated with this particular height. By performing this
calculation for all sides of the convex polygon and subsequently comparing the computed
lengths, the minimum height emerges as the polygon’s width, denoted as S. Remarkably,
the edge linked with this minimum height establishes the optimal flight direction for the
UAV [12].

The optimal flight direction is shown in Figure 2. Herein, the red edge and the green
vertex are indicative of the edge and vertex corresponding to the width of the polygon,
respectively. Consequently, the optimal flight orientation for the UAV is one that parallels
the identified red edge.

126

Drones 2023, 7, 692

S

Figure 2. Optimum flight direction.

b. Dividing the region into strips along the width direction according to the distance
between flight lines

Due to the circular sampling range of the sensor system, the scenarios depicted in
Figure 3a,b are likely to arise when employing the conventional convex polygon coverage
method [12]. In Figure 3, the red-shaded regions within the red boxes illustrates the
uncovered area. The blue arrows denote the flight path, the green dots indicate the starting
point of the flight path, and the orange area represents the coverage achieved by the sensor.
To address this limitation and ensure comprehensive coverage of both vertices or edges,
this paper employs a strategy involving the division of a polygon into multiple strip-like
subregions along the width direction [24]. The resultant coverage effect is illustrated in
Figure 3c. It becomes evident that this approach facilitates the complete coverage of all
corners within the designated area, while concurrently adhering to the requisite standards
for sampling quality.

(a) (b) (c)

Figure 3. Effects of different coverage methods. (a) The flight line starts on the edge of the polygon.
(b) The edge of the sensor is tangent to the edge of the polygon. (c) The method proposed in this paper.

The width of a strip corresponds to the scanning diameter, w, of the sensor. As shown
in Figure 4, the median line that runs parallel to the optimal flight direction in the strip
serves as the designated UAV flight trajectory. Furthermore, the intersection points between
this median line and the strip delineate the specific path points for the UAV. Notably, the
length of the strip plays a pivotal role in dictating the extent of the flight trajectory, thereby
ensuring that the sensor can effectively encompass regions at the vertex or edge of the
polygon. This strategic arrangement safeguards against scenarios akin to those depicted in
Figure 3a,b.

Figure 4. Strip division method.

127

Drones 2023, 7, 692

For the i-th strip, which aligns with the best flight direction, the two parallel sides are
denoted as Li and L′

i, respectively. Among these, Li corresponds to the side proximal to the
bottom, while L′

i pertains to the side situated further from the bottom. The determination
of the strip’s position is achieved by calculating the distances, dLi and dL′

i
, from the strip’s

sides to the base edge. This calculation is performed according to the following equation:{
dLi = Δd · (i − 1)

dL′
i
= dLi + ω

(21)

where Δd = ω · (1 − o), i ∈ {1, 2, · · · , Nb}. Nb denotes the overall quantity of stripes, and
its calculation is delineated as follows:

Nb =

⎧⎪⎨⎪⎩
⌊

S
Δd

⌋
, i f S\Δd ≤ ω · o⌈

S
Δd

⌉
, i f S\Δd > ω · o

(22)

The extent of a strip’s length is determined by the minimal measure required for each
strip to precisely encompass the polygon. This entails considering three distinct scenarios:

(1) When both edges of the strip intersect the polygon, generating two intersections, as
illustrated in Figure 5a, the strip’s length is essentially the greater of the distances
between the two intersections. Mathematically, the length of the strip is represented
by d(I3, I4);

(2) In instances where the strip is defined by a single edge that intersects with the polygon
at two points, depicted in Figure 5b, the strip’s length equates to the distance between
these two intersection points. This is succinctly expressed as d(I1, I2);

(3) If a strip encompasses vertices within its scope, as illustrated in Figure 5c, the strip’s
length is the shortest distance capable of covering the given vertex. This length is
symbolized by d(I5, I6).

c. Generate candidate paths based on the four entry points

(a) (b) (c)

Figure 5. Strip length analysis. (a) Two edges, two points. (b) One edge, two points. (c) Strip
containing vertices.

Once Nb parallel scan lines have been determined, the initial and terminal points of
the first scan line and the Nb-th scan line inherently constitute the four potential flight entry
points for the current designated region. Subsequently, the UAV embarks on its coverage
mission by entering the region through these four flight entry points. This sequential
process engenders the creation of four distinct, complete paths confined within the region’s
bounds, as visually depicted in Figure 6.

128

Drones 2023, 7, 692

Figure 6. Different entry points of the path.

With the inter-regional access sequence firmly established, the judicious arrangement
of entry points assumes a paramount role in minimizing path lengths. Therefore, subse-
quent to the formulation of the optimal inter-regional access sequence, a pragmatic selection
is made among these four paths. This selection serves as a strategic step toward ultimately
deriving the most optimal overall path configuration.

The pseudocode for generating path points within the region is presented in Algorithm
1. Lines 1–6 encompass the computation of the region’s width and determine the optimal
flight direction for the UAV. Subsequently, lines 7–25 provide a comprehensive description
of how strip-related parameters are calculated along with the determination of endpoints
for parallel scanning lines of the UAV. Moving forward, lines 26–30 ascertain both the set of
path points and their corresponding lengths at each of the four inlet points. Ultimately, this
function yields four distinct paths and their respective lengths within a given region.

Algorithm 1: getIntraWay (Ai, ω, o)

Input: Regional parameter Ai, sensor parameter ω, o
Output: Complete collection of waypoints path, the path length in the region dist
1: // Get the width of the region and the best flight direction
2: For each j in 1 to ni do

3: Calculate the distance between the vertex vij and all edges of the region, and take its
maximum value, denoted as hj, and the corresponding edge denoted as edgej

4: End for

5: S ← min([h1, h2, · · · , hni])
6: EDGE ← the edge corresponding to S
7: // Get the scan lines by calculating strip parameters
8: Δd ← ω ∗ (1 − o)
9: If S\Δd ≤ ω ∗ o then

10: Nb ← �S\Δd�
11: Else

12: Nb ← �S\Δd�
13: End if

14: Dor each k in 1 to Nb do

15: dLk ← Δd(k − 1)
16: dL′

k
← dLk + ω

17: The length of the strip len ← the maximum value
generated by the intersection of the two sides and the middle line of the strip with the region

18: Lk ← the coordinates of the two endpoints on one side of the strip are determined by dLk

and len
19: L′

k ← the coordinates of the two endpoints on the other side of the strip are determined by
dL′

k
and len

20: End for

129

Drones 2023, 7, 692

21: mi ← 2 ∗ Nb
22: For each l in 1 to mi do

23: wil ← the coordinates of the midpoints of the lines connecting corresponding points in Lk
and L′

k
24: Wi ← {Wi, wil}
25: End for

26: // Get the candidate paths based on the four entry points
27: For each t in 1 to 4 do

28: path(t) ← Sort the waypoints in Wi with the t-th candidate point as the entry point
29: dist(t) ← the length of the path(t)
30: End for

31: Return path, dist

In addition to BF coverage, the spiral coverage method can avoid the frequent ac-
celeration and deceleration of the drone during turning, reducing drone jitter. It is an
effective method for obtaining stable terrain data. To generate a spiral flight trajectory, for
any convex polygonal region, start by selecting adjacent sides among all edges to form
perpendicular bisectors, resulting in the same number of intersection points (coordinates
may be identical). Take the average of these coordinates, and the resulting point is marked
as the reference point for the polygon. Subsequently, connect the vertices of the polygon to
the reference point, calculate the lengths of the resulting line segments, and then divide
these lengths by the sensor diameter to obtain the segment count. Assuming the UAV
enters from the reference point of the polygon, it first flies toward the farthest vertex from
that point for a distance equal to the sensor diameter. Then, it flies in the direction of the
second-farthest vertex and continues flying in that direction until it exits the polygonal
region, as illustrated in Figure 7. The green lines in Figure 7 represent the connections
between reference point and vertices, the blue points denote flight waypoints, and the red
lines depict the flight path.

Figure 7. Spiral-curve generation method.

However, the UAV’s motion capabilities in actual flight are limited, making it chal-
lenging to precisely follow sharp corners in simulated routes at turning points. Therefore,
smoothing out the sharp corners of the flight path becomes essential to save UAV flight
time and reduce jitter during turning.

If there are two points, P0 and P2, around the turning point P1 in the UAV flight path,
these three points can be used to form a second-order Bezier curve. This is illustrated in
Figure 8a, wherein:⎧⎨⎩p01(t) = (1 − t)P0 + tP1

p12(t) = (1 − t)P1 + tP2

⇒ p2(t) = (1 − t)p01 + tp12, t ∈ [0, 1]

130

Drones 2023, 7, 692

(a) (b) (c) (d) (e)

Figure 8. Bezier curve and optimized path. (a) A second-order Bezier curve. (b) Determine control
points according to parameter ω. (c) A special case. (d) The solution. (e) Two consecutive paths.

Therefore, the turning point of the UAV flight path is considered as P1. Two points,
denoted as P0’ and P2’, are selected on the two adjacent edges of point P1 at a sensor
sampling radius of w. These three points, P0, P1, and P2, act as control points to create
a Bezier curve, resulting in a smoothed UAV flight path, as depicted in Figure 8b. This
approach helps reduce the jitter during UAV flight. Additionally, the length of the flight
path P0→P0’→P2’→P2 is shorter than the straight flight path from P0→P1→P2.

In the method described above, a special case arises when the distance between P0
(or P2) and P1, determined by the sensor sampling radius, w, is not less than the distance
between P1 and the adjacent vertices. More precisely, the distance between the two vertices
is less than twice the sensor radius, resulting in an incorrect position for point P0 (or P2),
as illustrated in Figure 8c. To address this issue, in such cases, the original point P0 (or
P2) can be replaced by the midpoint of the adjacent vertices, as shown in Figure 8d. This
optimization scheme ensures the correct placement of the point. Two continuous Bezier
curves established by the two vertices of this short edge are then depicted in Figure 8e.

When the UAV utilizes a circular sensor for flight with an improved back-and-forth
path, the Bezier curve can optimize the flight path, as depicted in Figure 9a, to the improved
path shown in Figure 9b, thus optimizing two consecutive turning movements into a single
U-turn. When the drone adopts a spiral trajectory, Bezier curves can optimize the flight
path shown in Figure 9c to resemble that shown in Figure 9d, smoothing the turning points
in the path. Bezier curves are applicable to both of these coverage methods to reduce the
length of the flight path and mitigate the jitter phenomenon caused by a too-small turning
radius, almost without compromising the coverage effect.

(a) (b) (c) (d)

Figure 9. Optimization effects of Bezier curves on BF and spiral paths. (a) BF path without Bezier.
(b) BF path with Bezier. (c) Spiral path without Bezier. (d) Spiral with Bezier.

131

Drones 2023, 7, 692

3.2. Construction of the Priority-Constrained TSP

The formulation of the inter-regional access order entails addressing a TSP that accom-
modates the imposition of priority constraints. In this paper, a meta-heuristic algorithm
rooted in the random variable neighborhood descent (RVND) framework [25] is harnessed
for this purpose. The algorithmic approach commences by generating an initial solution via
the K-nearest neighbors (KNN) heuristic, subsequently adopting the variable neighborhood
descent (VND) technique for local search operations. The combination of these strategies
effectively yields an approximate optimal solution for the complex problem.

a. Two methods of initial solution generation based on PKNN

KNN is a well-established classification algorithm within the realm of machine learn-
ing predominantly employed for categorizing samples characterized by similar features.
An extension of this, the priority K-nearest neighbors (PKNN) algorithm, draws inspiration
from the principles of the KNN algorithm. In the PKNN algorithm, during each iteration,
the highest-priority region is chosen from the K-nearest neighboring regions with respect
to the current region, serving as the subsequent target for access. The value of K in the
PKNN algorithm functions as a limiting factor for the search scope. This algorithm en-
compasses the capacity to effectively balance priority considerations and path lengths to a
reasonable degree.

In this paper, two distinct strategies are advanced for the selection of K-nearest neigh-
bor regions. The following discussion initially outlines the procedural steps intrinsic to the
implementation of the first strategy, which is named PKNN-Full, focused on identifying
K-neighboring regions across all regions.

Step 1: Introduce a set denoted as C serving as a repository for region numbers that
have undergone access alongside a collection E designated to accommodate region numbers
that remain unexplored. Simultaneously, establish a collection termed Order designed to
retain the region numbers, which are systematically arranged according to the computed
access order. Given that UAVs are required to initiate coverage operations from a depot,
the initialization phase incorporates the inclusion of the depot within the Order collection.
Proceed to formulate a region matrix denoted as D and devise a corresponding priority
matrix named P. Within D, each i-th row systematically arranges the sequence numbers
of regions in an ascending order, signifying their proximity to region i. Simultaneously,
P, having the same dimensions as D, ascribes each individual element to represent the
priority attributed to regions occupying corresponding positions in D.

Step 2: The last element in the Order represents the current region. By consulting
matrix D, the K-nearest neighboring regions pertaining to the current region are discerned,
and their presence in set C is evaluated—this assessment essentially determines whether
they have been visited or not. Subsequently, the regions that are yet unvisited are compiled
in E, effectively emerging as candidate regions. The respective priorities corresponding to
these unvisited regions are simultaneously acquired from matrix P.

Step 3: Select the region with the highest priority from collection E as the subsequent
target for access. Incorporate its sequence number into the Order while concurrently
removing the region from the set C. In instances where the highest-priority regions exhibit a
non-unique presence, the region that is proximate to the current region is elected for access.

Step 4: Iterate through the execution of Step 2 and Step 3 until all the regions within
set C have been visited, leading to the eventual emptiness of C. This iterative process
culminates in the attainment of an inter-regional access sequence Order.

The ensuing scenarios are anticipated during the implementation of Step 2 and Step 3,
each warranting its own resolution strategy, as outlined below:

(1) If all K-neighboring regions of the current region have been visited, continue to select
the subsequent set of K-neighboring regions for the Step 2 operation; if it is found
that all such regions have been visited as well, repeat this process until an unvisited
region emerges within any group of K-neighboring regions. This unvisited region is

132

Drones 2023, 7, 692

then cataloged within the collection in E, subsequently triggering the commencement
of Step 3 operations;

(2) In instances where the final set of neighboring regions adjacent to the current region
consists of fewer elements than the stipulated value K, it is still treated as a valid set
for Step 2 operations;

(3) When all neighboring regions in the current region have been visited, the current
region is designated as the last region in the sequence of visits. It is subsequently
appended to the Order collection, thereby culminating in the aforementioned itera-
tive loop.

The pseudocode for PKNN-Full is presented in Algorithm 2, where lines 1–5 corre-
spond to Step 1, mentioned above. Lines 6–18 constitute a loop body that corresponds to
the loop in Steps 2–4, described earlier. Finally, the function outputs the initial solution of
the access order.

Algorithm 2: PKNN-Full (A, c0, K)

Input: All regional parameter set A, when A ← {A1 · · · An}, the coordinate of depot c0, nearest
neighbor parameter K
Output: The initial solution of the inter-regional access sequence Order
1: Initialize: Create a set C for the unvisited region set where all region numbers are stored, an

empty candidate region set E, and an empty set Order for the access sequence
2: For each i in N0 do

3: D(i, :) ← region numbers in ascending order of distance from region i
4: P(i, :) ← the priority of the region corresponding to the location in D

5: End for

6: Order ←
7: While C 	= ∅

8: cr ← the last element in Order
9: Item = 1
10: While E ∪ C = ∅

11: E ← D(cr, (item − 1) · K + 1 : item · K)
12: Item ← item + 1
13: End while

14: ar ← the number of the area with the highest priority in E according to P

15: Order ← {Order, ar}
16: C ← C set without region ar
17: E ← ∅

18: End while

19: Return Order

The second KNN search strategy, referred to as PKNN-Excluded, involves seeking
out the K-nearest regions among the unselected regions. In contrast to the aforementioned
procedure, the divergence lies solely within the implementation of Step 2. The modified
Step 2 operations are delineated as follows:

Step 2: The last element in the set Order denotes the current region. Subsequently,
matrix D is consulted to identify the K-nearest regions that remain unvisited in relation
to the current region. These K regions are stored in the collection E as candidate regions.
Their corresponding priorities are simultaneously extracted from matrix P.

The pseudocode of PKNN-Excluded is presented in Algorithm 3, where only lines
9–13 exhibit variations from Algorithm 2 due to the distinct approach employed for neigh-
borhood region selection.

133

Drones 2023, 7, 692

Algorithm 3: PKNN-Excluded (A, c0, K)

Input: All regional parameter set A, when A ← {A1 · · · An}, the coordinate of depot c0, nearest
neighbor parameter K
Output: The initial solution of the inter-regional access sequence Order
1: Initialize: Create a set C for the unvisited region set where all region numbers are stored, an

empty candidate region set E, and an empty set Order for the access sequence
2: For each i in N0 do

3: D(i, :) ← region numbers in ascending order of distance from region i
4: P(i, :) ← the priority of the region corresponding to the location in D

5: End for

6: Order ← {Order,0}
7: While C 	= ∅

8: cr ← the last element in Order
9: While E ∪ C = ∅

10: F ← D(cr, :)
11: F ← F set without region in Order
12: E ← the first K elements of the set F
13: End while

14: ar ← the number of the area with the highest priority in E according to P

15: Order ← {Order, ar}
16: C ← C set without region ar
17: E ← ∅

18: End while

19: Return Order

The primary objective of the KNN algorithm is to expedite the visitation of regions
with higher priority by increasing the value of K. As K varies within the range from 1 to the
total number of regions n − 1, the search scope progressively extends from nearby regions
to encompass all available regions. In situations where the count of searchable regions
equals 1, it signifies that, exclusively, the region closest to the current region qualifies
for selection as the next target. This approach indeed facilitates ensuring shorter travel
distances to a certain extent. However, as the K value gradually increases towards N − 1,
the scope of searchable regions encompasses the entirety of available regions. In such
instances, the next target region is attributed to the region characterized by both the highest
priority and proximity to the current location. Ultimately, this methodology guarantees
the attainment of optimal priority sequencing. Furthermore, when dealing with regions of
identical priority, the principle of minimum distance governs the arrangement of access
paths, thereby underlining a comprehensive optimization approach.

Within the context of the two KNN search strategies, PKNN-Full incorporates the
regions that have been accessed within the process of identifying K neighbors. This strategy
proves advantageous when dealing with a limited number of regions in proximity to the
current region. Instead of expending additional distance to uncover regions of higher
priority, this strategy endeavors to locate regions in closer proximity, thereby optimizing
resource utilization. PKNN-Excluded involves identifying K neighbors by excluding re-
gions that have already been accessed. The advantage of this strategy lies in its immunity
to disruption from regions already accessed. This prevents regions of higher priority
from being overlooked, ensuring consistent access to the region with higher priority. Both
strategies demonstrate flexibility in their application. Therefore, the KNN algorithm incor-
porating these two search strategies avoids the necessity of rigidly defining a standardized
or constant K-value selection logic throughout the research process. Instead, it prioritizes
adaptability, dynamically employing the most effective strategy to achieve the highest total
score for comprehensive coverage of the target region. This approach is centered on opti-
mizing conditions in response to changing variables. In essence, it strives to generate the
finest quality and most gratifying search path, thereby offering invaluable, comprehensive
assistance in time-sensitive relief operations functioning under tight time constraints.

134

Drones 2023, 7, 692

b. Local search strategy

Random variable neighborhood descent (RVND) stands as a meta-heuristic algorithm
framework proposed by Mladenovi et al. [26]. This framework leverages a diverse range of
neighborhood structures, each comprising distinct actions, to facilitate alternating searches,
thereby striving for optimal results. Let t denote the number of neighborhood structures and
{N1, N2, · · · , Nt} denote the set of neighborhood structures. Within the RVND approach,
when the present neighborhood structure fails to improve the current optimal solution,
the algorithm seamlessly transitions to the subsequent neighborhood to continue the
search. The search process concludes once all neighborhoods exhaustively fail to yield
improvements to the optimal solution.

In this paper, the approach of the variable neighborhood search (VNS) strategy [20]
with a d-relaxed priority constraint is employed to solve the intricacies of access order
planning between regions governed by priority constraints. The configuration of the neigh-
borhood structure set, denoted as Ni, is underpinned by the d-relaxed priority constraint.
The corresponding requirements to satisfy the d-relaxed criteria are outlined below. Impor-
tantly, the current operation is performed solely when the constraints corresponding to the
pertinent neighborhood structure are successfully satisfied.

(1) Relocated (1)—N1: Reallocate Order[i] to a position succeeding the j-th index in
the access sequence Order contingent upon the fulfillment of any of the following
conditions: 1© If j < i,

pmin
j(i−1) ≥ pOrder[i] − d (23)

2© If i < j − 1,
pmax
(i+1)(j−1) ≤ pOrder[i] + d (24)

(2) Relocated (2)—N2: Reallocate Order[i], Order[i + 1] to a position succeeding the j-th
index in the access sequence Order contingent upon the fulfillment of any of the
following conditions: 1© If j < i,

pmin
j(i−1) ≥ max

(
pOrder[i], pOrder[i+1]

)
− d (25)

2© If j > i + 2,
pmax
(i+2)(j−1) ≤ min

(
pOrder[i], pOrder[i+1]

)
+ d (26)

(3) Swap (1-1)—N3: Swap Order[i] and Order[j] contingent upon the fulfillment of any of
the following conditions: 1© If i < j,

pmin
i(j−1) ≥ pOrder[j] − d and pmax

(i+1)j ≤ pOrder[i] + d (27)

2© If j < i,
pmin

i(j−1) ≥ pOrder[j] − d and pmax
(i+1)j ≤ pOrder[i] + d (28)

(4) Swap (2-1)—N4: Swap two adjacent regions Order[i], Order[i + 1] and another region
Order[j] in the access sequence Order contingent upon the fulfillment of any of the
following conditions: 1© If j > i + 1,

pmin
i(j−1) ≥ pOrder[j] − d and pmax

(i+2)j ≤ min
(

pOrder[i], pOrder[i+1]

)
+ d (29)

2© If j < i,

pmin
j(i−1) ≥ max

(
pOrder[i], pOrder[i+1]

)
− d and pmax

(j+1)(i−1) ≤ pOrder[j] + d (30)

(5) Swap (2-2)—N5: Swap the two adjacent regions Order[i], Order[i + 1] and the other
two adjacent regions Order[i], Order[i + 1] in the access sequence Order contingent
upon the fulfillment of the following conditions: If i + 1 < j,

135

Drones 2023, 7, 692

pmin
j(i−1) ≥ max

(
pOrder[i], pOrder[i+1]

)
− d and pmax

(i+2)j ≤ min
(

pOrder[i], pOrder[i+1]

)
+ d (31)

where pmin
ij and pmax

ij respectively represent the minimum and maximum values of
priorities from region i to region j in the access sequence Order.

c. Disturbance

When the local search cannot improve the current solution, a perturbation operator
comes into play, introducing a random perturbation to guide the current solution away
from the local optimality. This study uses a straightforward yet efficacious perturbation
strategy encompassing two core operations: Relocated (1) and Swap (1-1). These operations
align with the d-relaxed constraints and are executed with distinct selection probabilities of
p and (1 − p), respectively.

The primary section of the pseudocode for access order optimization is illustrated in
Algorithm 4. Lines 1–2 depict the generation of the initial solution, while the subsequent
lines focus on RVND optimization. The function incorporates the five neighborhood
structures of d-relaxed constraints as predefined parameters.

Algorithm 4: getOrder (A, K)

Input: All regional parameter set A, when A = {A1 · · · An}, the coordinate of depot c0, nearest
neighbor parameter K
Output: The inter-regional access sequence Order
1: Order ← PKNN-Excluded (A, c0, K) or Order ← PKNN-Full (A, c0, K)
2: Dist ← the length of the Order is obtained from the center point of the region
3: Order’ ← Order
4: For each t in 1 to 5 do

5: For each i in 1 to n + 1 do

6: For each j in 1 to n + 1 do
7: Order’ ← use the neighborhood structure Nt to operate on Order
8: Dist’ ← the length of the Order’ is obtained from the center point of the region
9: If Dist’ < Dist then

10: Order ← Order’
11: End if

12: End for

13: End for

14: End for

15: Return Order

3.3. Selection of Optimal Entry Points and Path Generation

In this paper, drawing inspiration from the principles of the greedy algorithm, a
method is devised to determine the entry points for each region based on the inter-regional
access order derived in Section 3.2. Specifically, from the four prospective candidate entry
points identified in Section 3.1 for each region, the entry point that is closest to the flight
point of the previous region is selected as the entry point of the current region. Subsequently,
a meticulous arrangement of endpoints for the flying scan lines is orchestrated in alignment
with the designated entry points. This arrangement is integral to facilitating the formation
of coherent BF scanning path trajectories, effectively constituting the waypoints in the
region. This process culminates in the procurement of a comprehensive collection of
waypoints spanning multiple regions. These waypoints encompass both the depot and
region-based waypoints, organized according to the order of internal access.

The pseudocode for the function that generates the complete path is illustrated in
Algorithm 5. This function takes the outputs of Algorithms 1 and 4 as inputs and sequen-
tially connects the intra-regional paths based on regions by selecting appropriate fly-in
points. It should be noted that while Algorithm 1 generates intra-regional paths for a single

136

Drones 2023, 7, 692

region, Algorithm 5 requires intra-regional paths for all regions, necessitating running
Algorithm 1 separately for each region before executing it.

Algorithm 5: getWaypoint (c0, Order, path)

Input: Depot coordinates c0, access sequence Order, intra-regional waypoints path
Output: Complete collection of waypoints PATH
1: PATH ← {PATH; c0}
2: For each i in 1 to n + 1 do

3: For each j in 1 to 4 do

4: dj ← the distance between the last coordinate in the PATH and the j-th entry point in
the region Order (i)

5: End for

6: Path’ ← the entry point corresponding to the minimum value in d1 · · · d4 and the path
within region Order (i) starting from that point

7: PATH ← {PATH; Path′}
8: End for

9: Return PATH

3.4. Path Evaluation Criteria Based on Priority and Distance

Given that the paths generated in individual regions adhere to specific length criteria,
the evaluation metric in question exclusively assesses the effectiveness of the inter-regional
access sequence planning algorithm under the ambit of priority constraints. In this paper,
we produce two distinct categories of solutions: distance reference solutions without factor-
ing priority and priority reference solutions without factoring distance. These solutions
are generated through specific strategies tailored for each approach. Subsequently, the
solution derived from the proposed algorithm—which incorporates both distance and
priority considerations—is juxtaposed against these two aforementioned solutions. This
comparative process yields the distance score and priority score separately. By summing
these scores, the overall score for the current solution is computed. A higher score is indica-
tive of superior optimization outcomes. The subsequent sections outline the methodologies
employed for distance scoring and priority scoring.

a. Distance scoring strategy

As the strategy overlooks the intra-regional path and the inherent regional priority,
a simplification is employed, treating each region as a singular particle and regarding
the central point’s coordinates as the representative location of the region. Furthermore,
the task of planning the paths connecting every region to the depot is regarded as a
conventional TSP.

The realm of the general TSP problem is well-established and has been extensively
studied. Given reasonable constraints on the number and dimensions of regions, numerous
algorithms have been developed to uncover the optimal solution. In this paper, a genetic al-
gorithm is employed to obtain the reference solution OrderRe f along with its corresponding
distance, DistRe f . Comparatively, the optimization algorithm proposed herein yields Order
as the solution, accompanied by its respective distance, Dist. However, as the algorithm
introduced in this paper considers both distance and priority, it necessitates a trade-off,
which is manifest as a certain sacrifice in distance length to harmonize the prioritization
sequence. As a result, the distance score of the current solution can be expressed as follows:

SCD =
DistRe f

Dist
(32)

It can be seen that the smaller the distance from Dist, the higher the distance score SCD.

b. Priority scoring strategy

In this paper, we employ the strategy of sequential penalty accumulation for priority
scoring. This approach aims to assign a penalty factor, denoted as P f , to each level of

137

Drones 2023, 7, 692

priority. In cases where the priority level is defined as G = {1, 2, · · · , g}, the respective
penalty factor is designated as P f = {g, g − 1, · · · , 1}. This assignment illustrates the
relationship between priority and penalty factors, with higher priority levels receiving
higher penalty factors in accordance with their importance. For a given access sequence
Order, let us consider the i-th region, whose priority is represented as pOrder[i] = k ∈ G,
and it corresponds to a specific penalty factor denoted as P fk. In the context of sequential
penalty accumulation, the penalty accumulation process for the Order can be defined
as follows:

T = ∑n
i=1 i · P fk, k = pOrder[i] (33)

Evidently, when the pathway sequence meticulously adheres to the prioritization
levels—meaning that regions endowed with higher priorities are addressed foremost—an
optimal outcome marked by the minimal sequence penalty accumulation value, TRe f , can
be achieved. The algorithm expounded within this paper considers both distance and
priority assignment, which consequently leads to the emergence of heightened penalty
accumulation. This augmented penalty accumulation acts as a counterbalance to the
distance aspect when weighed against a solution hewing strictly to priority constraints.
Consequently, the formulation for the priority score of the prevailing solution can be
articulated as follows:

SCP =
TRe f

T
(34)

c. Comprehensive scoring strategy

Designating the significance of both spatial distance and priority within the solution,
we introduce the distance weight, wD, and the priority weight, wP. In fact, these weights
serve to quantify the respective contributions of distance and priority in the solution’s
evaluation process. Consequently, the comprehensive appraisal of the current solution is
encapsulated in the integrated score, which is precisely the weighted mean of the distance
score and the priority score:

SC =
wD · SCD + wP · SCP

wD + wP
(35)

Within the context of this paper, a balanced consideration between the significance of
spatial distance and priority is established by fixing both wD and wP at 0.5. This deliberate
choice underscores the equivalence of importance attributed to both factors within the
solution evaluation framework. Nevertheless, it is important to acknowledge that, in
real-world applications, the assignment of the distance weight and the priority weight
can be tailored to the precise demands of the scenario at hand. The flexibility to adjust
these weights allows for a customized approach that aligns more closely with the specific
requirements of the problem under investigation.

4. Simulation and Experiment

To commence, the initial step involved generating a collection of 20 convex quadrilat-
erals, each encircled by an external circle with a radius of 50 m. These quadrilaterals were
designated as the target regions necessitating access. Subsequently, a random assignment of
priority values, ranging from 1 to 3, was applied to each distinct region. This distribution is
visually represented in Figure 10, where priority 1 regions are demarcated by the red zones,
priority 2 regions are indicated by the yellow zones, and priority 3 regions are highlighted
in green.

138

Drones 2023, 7, 692

Figure 10. Original area.

Within this spatial setup, the point of origin (0, 0) was established as the starting
point for the UAV’s coverage task. Similarly, the termination point of this coverage task
coincided with the same origin. To govern the UAV’s sensory reach, a sensor coverage
radius spanning 20 m was employed. Moreover, to ensure a judicious sampling process
along the UAV’s paths, an overlap rate of 0.1 was instituted.

These defined parameters collectively formed the foundation for the simulation. They
served as the bedrock upon which the algorithm’s efficacy was scrutinized and validated
in a simulated environment.

4.1. Obtainment of Three Different Initial Solutions

The simulation entailed the execution and analysis of path-planning results for two
distinct initial solutions, employing the set of randomly generated regions. Through this
simulated process, an intricate evaluation was performed to dissect both the merits and
drawbacks of the outcomes. Moreover, a careful examination of the trajectory of scores was
undertaken to discern evolving trends.

By subjecting these initial solutions to rigorous simulation, a comprehensive under-
standing emerged regarding their practical implications. This scrutiny not only dissected
the strengths and weaknesses exhibited in the generated paths but also traced the trajectory
of scores across the simulation. Such insights contributed significantly to appraising the
effectiveness of the path-planning algorithm under scrutiny.

a. The PKNN-Full Strategy

The evaluation methodology followed the PKNN-Full strategy to derive distinct
metrics: the distance score, the priority score, and the cumulative total score for varying K
values, as well as the relationship between these scores and the corresponding K values,
which were meticulously examined and are visualized in Figure 11.

As illustrated in the figure, a notable trend emerged where the path’s length score
exhibited a rapid reduction accompanied by a gradual ascent of the priority score towards
full realization coinciding with increasing values of K. This pattern can be attributed
to the amplified tendency of the path to preferentially select regions of higher priority
as target destinations within the process of augmenting K values. This inclination was
further substantiated by the positive correlation between higher K values and an increased
availability of alternative regions, thereby ensuring earlier selection of regions with elevated
priority status.

139

Drones 2023, 7, 692

Figure 11. PKNN-Full score trend.

Examining the distinctive instances highlighted in the graphical representation, a
pivotal observation arises: a zenith in the total score can be observed at K = 2. This specific
point signifies the pinnacle performance achievable through the proposed planning method-
ology. This outcome is indicative of the path length closely approximating the optimal
trajectory length while concurrently maintaining a relatively intact priority hierarchy.

Upon closer inspection, for K = 3 and K = 4, a sustained elevation characterizes both
scores, manifesting a harmonious equilibrium. This equilibrium proves especially pertinent
in scenarios demanding a balanced consideration of both priority and path dynamics, thus
adhering to the requisites of balanced solution paradigms.

Upon entering the domain of K = 8, a notable transition can be observed. Here, while
the priority score strictly adheres to the higher-priority sequence delineated by distance-
based constraints in the selection of a larger set of neighbors, there is a conspicuous decline
in the distance score. Consequently, an overall evaluation slightly inferior to the preceding
cases ensued.

Beginning at K = 16, a distinctive pattern emerges. The trajectory of region selection
becomes stabilized, culminating in the attainment of an optimal priority configuration.
Subsequent path planning unfolds meticulously, aligning exactly with the priority order
specified by distance-based constraints. This configuration finds particular relevance in
environments where priority considerations hold substantial weight.

Guided by the principles underpinning the KNN algorithm, it is evident that, as K
approaches n − 1, the path progressively attains an optimal priority orientation. To provide
a visual portrayal, the comprehensive path corresponding to K = 2 is depicted in Figure 12.
The red line in the Figure 12 represents the flight path of the UAV from the depot to the
first waypoint, while the remaining flight paths are depicted in black. Various colored
polygonal areas represent different priority levels.

b. The PKNN-Excluded Strategy

The evaluation methodology followed the PKNN-Full strategy to derive distinct
metrics: the distance score, the priority score, and the cumulative total score for varying K
values, as well as the relationship between these scores and the corresponding K values,
which were meticulously examined and are visualized in Figure 13.

140

Drones 2023, 7, 692

Figure 12. Completed path with PKNN-Full.

Figure 13. PKNN-Excluded score trend.

Figure 13 showcases the outcomes of the KNN algorithm implemented with the
adapted search strategy, and, notably, it attained the highest overall score when K = 2.
This algorithm variant yielded a path length marginally shorter than that of the previously
discussed search methodologies. Nevertheless, it significantly approximated the optimal
path length while concurrently elevating the priority, resulting in similar total scores that
signified commendable equilibrium. As K = 3, a conspicuous decline in distance becomes
apparent. By the onset of K = 5, the priority score experiences a gradual stabilization
at an elevated threshold, which also coincides with a deceleration in the descent of the
distance score. Echoing the trend, from K = 16 onwards, the trajectory of region selection
stabilizes, and its priority reaches its apex configuration. Illustrating this empirically, the
comprehensive path for K = 2 is visually presented in Figure 14. The meanings of the colors
in Figure 14 are the same as those in Figure 12.

141

Drones 2023, 7, 692

Figure 14. Completed path with PKNN-Excluded.

4.2. Optimizing Initial Solutions by RVND

Building upon the initial solution, we employed the RVND algorithm for the purpose
of optimizing the path. By comparing the outcomes of this optimization process with
those of the initial solution, we substantiated the efficacy of the RVND algorithm in cur-
tailing path length while upholding the assured priority score. This comparative analysis
served to validate the algorithm’s capability in achieving path length reduction without
compromising the stipulated priority constraints. The influence of the RVND algorithm on
the optimization of the path was examined within the context of the PKNN-Full strategy.
Initially, the trend of the total scores was computed across all K values, encompassing the
range from 0 to g − 1, during d-relaxation. Subsequently, this trend was juxtaposed with
the total score progression exhibited by the initial solution, visualized through a line chart,
as depicted in Figure 15a. Analogously, the trend of the optimization’s total scores for the
PKNN-Excluded strategy was also obtained and illustrated in Figure 15b. This comparative
analysis served to shed light on the impact of the RVND algorithm on the optimization
efficacy of these strategies.

(a) (b)

Figure 15. Different results of the two strategies: (a) d-value comparison using PKNN-Full;
(b) d-Value comparison using PKNN-Excluded.

142

Drones 2023, 7, 692

The simulation results distinctly illustrate the discernible efficacy of the RVND algo-
rithm in enhancing the initial solutions generated by the PKNN-Full strategy. Particularly
noteworthy was its performance in scenarios where d = 1, showcasing a pronounced en-
hancement range across several outcomes and thereby exhibiting conspicuous optimization
capabilities. However, in instances where d = 2, the magnitude of priority relaxation
was substantial, leading to the compromise of priority’s significance in favor of a strictly
distance-optimized approach. Consequently, given the prevailing distribution of regional
priorities, the total score experienced a reduction due to the abrupt depreciation of the
priority score.

Similarly, in cases where d = 0 and the priority order remained unchanged, the RVND
algorithm still displayed discernible path-optimization capabilities. Broadly, the RVND
algorithm demonstrably possesses the capacity to optimize path outcomes and is capable of
ascertaining relatively optimal pathways tailored to specific requirements. This underscores
the algorithm’s adaptive capabilities in tailoring solutions in accordance with distinct prior-
ities and demands. The impact of the RVND algorithm on optimizing the initial solution
generated by the PKNN-Excluded strategy was notably pronounced. Upon juxtaposition
with Figure 15, it becomes evident that this strategy is inherently more inclined to prioritize
priority performance. Consequently, its total score exhibits a marginal reduction due to its
lower distance score, a characteristic that sets it apart from the Full strategy.

In this context, a notable observation emerges: the disparity between the two al-
gorithms in terms of the maximum value of the initial solution at K = 2 was effectively
diminished. Additionally, the value of K derived from the initial solution was optimized
towards its maximum value. This phenomenon underscores that an algorithm with modest
baseline performance can achieve the same peak outcome after undergoing optimization
by a superior algorithm. This manifestation illuminates the robust optimization prowess of
the RVND algorithm.

When K = 2 and d = 1, the RVND algorithm was used to optimize the two initial
solutions, and the complete paths obtained are shown in Figure 16a,b. The meanings of the
colors in Figure 16 are the same as those in Figure 12.

(a) (b)

Figure 16. Complete paths obtained with PKNN-Full-RVND and PKNN-Excluded-RVND: (a) PKNN-
Full-RVND; (b) PKNN-Excluded-RVND.

4.3. Analysis and Comparison of Optimization Results

a. Intra-regional path optimization analysis

At the turning points of the intra-regional flight path, replacing the original polyline
with Bezier curves and calculating the overall path length as shown in Table 2, through
comparative analysis of path length calculations, it can be inferred that Bezier curves can

143

Drones 2023, 7, 692

optimize approximately 5% of the path length without affecting the coverage effectiveness
within the region. This indicates a notable energy-saving efficiency. Similarly, applying the
research conclusions about Bezier curves mentioned in the introduction, several optimiza-
tion effects can be observed in the overall UAV path after incorporating Bezier curves:

(1) Smooth Trajectory: Bezier curves contribute to smoothing the turning angles, reducing
the drone’s jitter and oscillation during turns, thereby improving flight stability.

(2) Energy Saving: Bezier curves effectively reduce motion energy consumption in aspects
such as path length and motion control, resulting in energy savings for UAV operations.

(3) Ease of Control: The control method is simple and easy to implement, leading to
improved operational efficiency for the UAV.

Table 2. Path length optimization rate of Bezier curve.

Path PKNN-Full PKNN-Exclude
PKNN-Full

RVND
PKNN-Exclude

RVND

Original 29,178.3249 29,486.1863 28,617.9472 28,726.4042
Bezier 27,553.6353 27,862.4824 27,003.0889 27,121.3444

Opt. (%) 5.5681 5.5067 5.6428 5.5874

b. Comparison of two optimized coverage methods

Comparing the BF and SP coverage methods, common experimental parameters were
set as follows: the minimum circumscribed circle radius of the polygon: 50 m; the sensor
scanning radius: 8 m. The number of vertices increased from 4 to 15, with the experiment
repeated 20 times for each set of vertices. The average path length for both methods was
calculated, and the variation in the average path length is shown in Figure 17. From
the figure, it can be observed that, with a small number of polygon edges, the BF path
demonstrated better coverage. However, as the number of polygon edges increased, the
growth in path length for BF became significantly higher than that for SP. At a vertex count
of eight, the two paths were closest, but after reaching nine vertices, the effectiveness of SP
surpassed that of BF.

Figure 17. Trend: Path length with the number of polygon vertices.

As stated in Section 3.1, both coverage methods can achieve complete coverage within
a region, but there will be a certain amount of redundant area. Continuing the analysis of the
simulation results, by calculating the coverage area and the polygon area, the redundancy
rate of the sensor coverage area for both methods under different vertex conditions was
obtained, as shown in Figure 18. It can be observed that the redundancy rate of the BF path

144

Drones 2023, 7, 692

remained stable, while the redundancy rate of the SP path, although substantial when the
number of polygon vertices was low, significantly decreased as the vertex count increased.
Vertex counts of eight and nine were also critical points for the superiority or inferiority of
the two methods in terms of redundancy rate.

Figure 18. Trend: Area redundancy rate with the number of polygon vertices.

From the two aforementioned analytical approaches, it can be observed that if the
polygon vertices are evenly distributed around the center of the minimum circumscribed
circle of the polygon and when the number of polygon vertices is small, the BF path is
likely to have better coverage advantages. It can reduce coverage-area redundancy while
obtaining a shorter flight path. However, as the number of polygon vertices increases and
the polygon shape gradually becomes smoother, with mostly large internal angles, the UAV
is more suitable for using the SP path for coverage flight.

c. Inter-regional path optimization analysis

Through simulating different numbers of regions and priorities, the optimization
performance of the RVND algorithm was analyzed, as presented in Table 3. In this table,
minDist. represents the length of the shortest generated path, while maxSCP, maxSCD,
and maxSC represent the maximum priority score, the maximum distance score, and the
maximum total score, respectively. The term Time denotes the computation time under
specific computer performance conditions. Additionally, Opt. signifies the optimization
rate of the algorithm towards improving initial solution scores, while Gap indicates the
difference in scores between two optimal optimization results.

According to the simulation results recorded in Table 3, when the number of regions
and priorities is small, the optimization algorithm exhibits limited effectiveness. This
can be attributed to the sufficiency of the generation algorithm for initial solutions in this
task, resulting in significantly reduced computation time compared to the optimization
algorithm. Hence, when dealing with a small number of regions and priorities, employing
two PKNN algorithms can yield higher computational speed. Conversely, when confronted
with a large number of priorities, the priority factor plays a more pronounced and crucial
role in planning outcomes, thereby highlighting the impact of the optimization algorithm.
Considering real-world path considerations, it is recommended to utilize the optimization
algorithm for path optimization under conditions involving numerous priorities and
regions to achieve superior planning results.

145

Drones 2023, 7, 692

Table 3. Summary table of important symbols.

Params PKNN-Full PKNN-Excluded Gap

No n g d Min
Dist.

Max
SCP

Max
SCD

Max
SC

Time
(s)

Opt.
(%)

Min
Dist.

Max
SCP

Max
SCD

Max
SC

Time
(s)

Opt.
(%)

F-E
(%)

1 10 2
- 7271.9 1.000 0.995 0.937 0.003

1.17
7271.9 1.000 0.995 0.937 0.008

1.17 00 7271.9 1.000 0.995 0.937 0.028 7271.9 1.000 0.995 0.937 0.029
1 7232.9 0.929 1.000 0.948 0.028 7232.9 0.929 1.000 0.948 0.029

2 10 2
- 7244.8 1.000 0.899 0.928 0.003

3.23
7244.8 1.000 0.899 0.863 0.003

5.79 +4.930 6553.4 1.000 0.994 0.944 0.025 6553.4 1.000 0.994 0.910 0.028
1 6515.4 0.938 1.000 0.958 0.029 6515.4 0.826 1.000 0.913 0.029

3 10 2
- 7468.4 1.000 0.927 0.918 0.003

0.87
7468.4 1.000 0.927 0.918 0.003

0.87 00 7468.4 1.000 0.927 0.918 0.028 7468.4 1.000 0.927 0.918 0.025
1 6920.1 0.897 1.000 0.927 0.032 6920.1 0.897 1.000 0.927 0.027

4 10 3

- 8323.2 1.000 0.858 0.895 0.003

6.25

8646.7 1.000 0.826 0.895 0.003

2.23 +3.93
0 7904.6 0.986 0.904 0.914 0.025 8400.7 0.973 0.850 0.899 0.261
1 7144.2 0.973 1.000 0.951 0.029 7144.2 0.890 1.000 0.915 0.026
2 7144.2 0.830 1.000 0.915 0.029 7144.2 0.901 1.000 0.915 0.032

5 10 3

- 6948.2 1.000 0.879 0.876 0.003

8.90

6948.2 1.000 0.879 0.878 0.003

8.66 0
0 6735.9 0.989 0.907 0.903 0.036 6859.0 0.989 0.891 0.890 0.028
1 6108.1 0.908 1.000 0.954 0.030 6108.1 0.908 1.000 0.954 0.050
2 6108.1 0.908 1.000 0.954 0.033 6108.1 0.908 1.000 0.954 0.031

6 10 3

- 7332.5 1.000 0.945 0.859 0.003

7.92

7332.5 1.000 0.945 0.869 0.003

6.67 0
0 7332.5 0.967 0.945 0.873 0.024 7332.5 0.989 0.945 0.869 0.027
1 7332.5 0.937 0.945 0.927 0.026 7332.5 0.927 0.945 0.927 0.029
2 7136.5 0.927 0.971 0.927 0.031 7136.5 0.918 0.971 0.903 0.029

7 20 3

- 8335.3 1.000 0.951 0.909 0.033

1.10

11,165 1.000 0.784 0.836 0.013

1.79 +7.99
0 7930.2 1.000 0.951 0.909 0.293 10,827 1.000 0.808 0.851 0.280
1 7946.9 0.966 0.998 0.911 0.338 10,082 0.868 0.863 0.834 0.300
2 7930.2 0.848 1.000 0.919 0.303 9518.7 0.819 0.919 0.842 0.303

8 20 3

- 10417.0 1.000 0.840 0.843 0.009

5.46

8812.0 1.000 0.9 0.898 0.011

2.34 −3.37
0 9942.3 1.000 0.880 0.875 0.275 8582.7 1.000 0.924 0.906 0.287
1 9856.1 0.886 0.888 0.875 0.325 7946.9 0.894 0.998 0.911 0.292
2 8749.9 0.823 1.000 0.889 0.293 8008.8 0.848 0.990 0.919 0.314

9 20 3

- 8870.3 1.000 0.943 0.887 0.008

2.71

9043.1 1.000 0.925 0.853 0.011

6.21 +0.56
0 8657.8 0.997 0.967 0.897 0.284 8772.1 0.997 0.954 0.872 0.281
1 8369.3 0.926 1.000 0.911 0.286 8369.3 0.924 1.000 0.894 0.293
2 8456.6 0.895 0.990 0.911 0.315 8555.6 0.895 0.978 0.906 0.306

10 20 5

- 9301.3 1.000 0.871 0.852 0.008

6.57

9301.3 1.000 0.871 0.852 0.011

6.57 0

0 9048.7 0.995 0.895 0.864 0.275 9048.7 1.000 0.895 0.864 0.277
1 8643.9 0.941 0.937 0.890 0.291 8643.9 0.964 0.937 0.887 0.281
2 8175.1 0.943 0.991 0.908 0.294 8175.1 0.912 0.991 0.908 0.292
3 8118.3 0.890 1.000 0.908 0.305 8175.1 0.916 0.991 0.908 0.298
4 8175.1 0.849 0.991 0.908 0.288 8175.1 0.857 0.991 0.908 0.302

11 20 5

- 9144.6 1.000 0.821 0.786 0.007

7.00

9144.6 1.000 0.821 0.775 0.013

9.68 −1.07

0 8940.2 0.993 0.840 0.802 0.315 8940.2 0.993 0.840 0.802 0.287
1 8473.3 0.947 0.886 0.824 0.300 8473.3 0.933 0.886 0.850 0.295
2 8320.6 0.912 0.903 0.841 0.307 8320.6 0.896 0.903 0.841 0.293
3 8285.5 0.866 0.906 0.828 0.322 8285.5 0.830 0.906 0.828 0.299
4 8113.4 0.874 0.926 0.830 0.318 8113.4 0.874 0.926 0.826 0.318

12 20 5

- 10,569.01.000 0.855 0.848 0.007

2.00

11,034 1.000 0.817 0.791 0.012

8.97 +0.35

0 10,132.00.992 0.890 0.865 0.264 10,403 1.000 0.866 0.821 0.275
1 9938.9 0.955 0.907 0.864 0.286 10,266 0.955 0.878 0.851 0.290
2 10,100.00.911 0.892 0.863 0.289 10,266 0.911 0.878 0.862 0.290
3 9790.2 0.842 0.921 0.863 0.304 10,278 0.867 0.877 0.858 0.298
4 9790.2 0.801 0.921 0.846 0.293 9941.1 0.850 0.907 0.837 0.304

146

Drones 2023, 7, 692

Although there is no fixed optimal K value due to the influence of regional charac-
teristics, an optimal d value can generally be identified from the simulation results: when
facing few priorities, a larger d value brings about greater distance benefits, thus making
it preferable as an optimal d value; however, when both region and priority numbers are
slightly high simultaneously, the optimal d value often appears around the median among
all d values.

4.4. UAV Path-Planning Simulation Platform Based on Unity3D

In order to simulate the flight of a UAV in a realistic environment, we have developed
a UAV path-planning simulation system using the Unity3D virtual engine. We import a
realistic 3D terrain and drone model and add rigid body components to both the terrain
and drone. Additionally, for better realism in simulating the environment, it is necessary to
incorporate environmental components, such as wind direction, wind speed, lighting, etc.

Unity3D relies on scripts to implement the operational logic of each object within the
virtual environment. Therefore, several scripts need to be added, including region drawing,
UAV attitude control, motion trajectory display, sensor data access, etc., along with design
of the UI interface and control scripts for UI components. All these scripts work together to
ensure the smooth operation of the simulation system. The UI interface of this system is
depicted in Figure 19.

Figure 19. UI interface of UAV path-planning simulation system.

The input data for this simulation system consist of path points and area information
obtained from MATLAB planning. Upon running the system, it first generates an area
range for the terrain that needs coverage; subsequently, the drone flies through this scene
based on waypoints while displaying its real-time trajectory. Furthermore, the position and
attitude of the drone can also be observed in real time via the UI panel.

4.5. Flight-Path Experiment

The experimental section of this study is based on the MATLAB simulation analysis
results discussed earlier. Through the use of a UAV for actual coverage flights in a specified
area, the effectiveness of adaptive flight trajectories in practical applications was validated,
as shown in Figure 20. We selected a spacious environment near the laboratory, as shown
in Figure 20a, designating two nearby open areas for overall coverage. These areas were

147

Drones 2023, 7, 692

used to delineate internal regions, and a random location within was chosen as the base
position, as illustrated in Figure 20b. In the figure, the region enclosed by the red line
is the experimental area, the gray polygon represents the coverage area, and the yellow
points indicate the depot of the UAV. The flight path was imported into the UAV remote
controller to guide the UAV in flying along the planned path. The resulting flight path in
the simulation program is depicted as blue lines in Figure 20c. After the flight experiment,
the flight route from the UAV’s flight log was exported and is shown as green lines in
Figure 20d.

(a) (b)

(c) (d)

Figure 20. Experimental environment and flight experiments. (a) The experimental area. (b) The
drone base, scanning area, and polygonal region. (c) The simulated trajectory. (d) The experimen-
tal trajectory.

Comparative analysis of simulation paths in real environments and paths from actual
flight experiments demonstrates that the path-planning algorithm used in this study is
well-suited for practical applications in real environments. It effectively achieves UAV path
planning within and between areas. The algorithm’s performance in real-world applications
is thus confirmed. Hence, the flight experiments were successful, as the UAV accurately
tracked the theoretical and simulated flight trajectories, validating the practicality of the
path-planning method proposed in this study.

5. Conclusions

This paper introduces a comprehensive and easily implementable solution to the UAV
path-planning problem under priority constraints. We enhance the coverage approach
by employing a BF path, ensuring complete coverage within circular sensor sampling
ranges and employing Bezier curves to optimize both the round-trip path and the spiral
path. Furthermore, we introduce two initial solution generation techniques for priority
paths based on the KNN algorithm. These methods are employed to devise the access
sequence between regions, incorporating priority considerations. Through comparisons

148

Drones 2023, 7, 692

with planning algorithms lacking priority planning capabilities, our approach demonstrates
its ability to intelligently plan paths based on priority orders.

The results of evaluation metrics demonstrate that our proposed method can quickly
find high-quality solutions in terms of distance and priority. Furthermore, by optimizing
both initial solutions using the RVND algorithm, we enhanced the optimization capabilities
of the paths. The simulation results demonstrate the algorithm’s strong performance in
both distance and priority, indicating its ability to refine solutions from initial states. These
outcomes validate the algorithm’s effectiveness. Based on our real-world experiments,
the algorithm has been demonstrated to exhibit favorable practical prospects in actual
application environments. Consequently, the path-planning method presented in this paper
holds significant potential for widespread application in the realm of emergency rescue.

Future research will focus on employing intelligent optimization algorithms, such as
genetic algorithms, differential evolution, and reinforcement learning, to further enhance
the optimization capabilities. It will also work on optimizing CPP path generation strategies
to better enable UAVs to cope with external interference. In addition, we plan to explore
the use of multi-drone cooperation to simulate more regions and priorities to accomplish
complex missions more efficiently.

Author Contributions: Conceptualization, L.D. and Y.F.; methodology, L.D.; validation, L.D. and
Y.F.; formal analysis, D.Z. and M.G.; investigation, L.D.; resources, D.Z.; data curation, L.D. and
Y.F.; writing—original draft preparation, L.D. and Y.F.; writing—review and editing, D.Z. and M.G.;
visualization, L.D. and M.G.; supervision, D.Z. and M.G; project administration, D.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by grants from the National Key Research and Development
Program of China (grant no. 2021YFC3090401) and the Open Fund of the Laboratory of Pinghu.

Data Availability Statement: Partial data is already included in the charts of the article. The remain-
ing portion of the raw/processed data cannot be shared temporarily as it is part of ongoing research.

Acknowledgments: The authors would like to thank the editors and the reviewers for their con-
structive comments and to thank Chenggong Li and Xingda Zhu for their support during the data
collection and analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jiong, D.; Ota, K.; Mianxiong, D. UAV-based Real-time Survivor Detection System in Post-disaster Search and Rescue Operations.
IEEE J. Miniat. Air Space Syst. 2021, 2, 209–219. [CrossRef]

2. Naidoo, Y.; Stopforth, R.; Bright, G. Development of an UAV for search & rescue applications. In Proceedings of the IEEE Africon
‘11, Victoria Falls, Zambia, 13–15 September 2011; pp. 1–6.

3. Verykokou, S.; Doulamis, A.; Athanasiou, G.; Ioannidis, C.; Amditis, A.; Instrumentat, I.; Measurement, S. UAV-Based 3D
Modelling of Disaster Scenes for Urban Search and Rescue. In Proceedings of the IEEE International Conference on Imaging
Systems and Techniques (IST)/IEEE International School on Imaging, Chania, Greece, 4–6 October 2016; pp. 106–111.

4. Cabreira, T.M.; Di Franco, C.; Ferreira, P.R.; Buttazzo, G.C. Energy-Aware Spiral Coverage Path Planning for UAV Photogrammet-
ric Applications. IEEE Robot. Autom. Lett. 2018, 3, 3662–3668. [CrossRef]

5. Jensen-Nau, K.R.; Hermans, T.; Leang, K.K. Near-Optimal Area-Coverage Path Planning of Energy-Constrained Aerial Robots
With Application in Autonomous Environmental Monitoring. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1453–1468. [CrossRef]

6. Wang, H.P.; Zhang, S.Y.; Zhang, X.Y.; Zhang, X.B.; Liu, J.T. Near-Optimal 3-D Visual Coverage for Quadrotor Unmanned Aerial
Vehicles Under Photogrammetric Constraints. IEEE Trans. Ind. Electron. 2022, 69, 1694–1704. [CrossRef]

7. Luna, M.A.; Isaac, M.S.A.; Ragab, A.R.; Campoy, P.; Peña, P.F.; Molina, M. Fast Multi-UAV Path Planning for Optimal Area
Coverage in Aerial Sensing Applications. Sensors 2022, 22, 2297. [CrossRef] [PubMed]

8. Cabreira, T.M.; Brisolara, L.B.; Paulo, R.F. Survey on Coverage Path Planning with Unmanned Aerial Vehicles. Drones 2019, 3, 4.
[CrossRef]

9. Machmudah, A.; Shanmugavel, M.; Parman, S.; Abd Manan, T.S.; Dutykh, D.; Beddu, S.; Rajabi, A. Flight Trajectories Optimization
of Fixed-Wing UAV by Bank-Turn Mechanism. Drones 2022, 6, 69. [CrossRef]

10. Xie, J.F.; Carrillo, L.R.G.; Jin, L. An Integrated Traveling Salesman and Coverage Path Planning Problem for Unmanned Aircraft
Systems. IEEE Control. Syst. Lett. 2019, 3, 67–72. [CrossRef]

149

Drones 2023, 7, 692

11. Irving Vasquez-Gomez, J.; Herrera-Lozada, J.-C.; Olguin-Carbajal, M. Coverage Path Planning for Surveying Disjoint Areas. In
Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; pp. 899–904.

12. Torres, M.; Pelta, D.A.; Verdegay, J.L.; Torres, J.C. Coverage path planning with unmanned aerial vehicles for 3D terrain
reconstruction. Expert Syst. Appl. 2016, 55, 441–451. [CrossRef]

13. Xie, J.F.; Carrillo, L.R.G.; Jin, L. Path Planning for UAV to Cover Multiple Separated Convex Polygonal Regions. IEEE Access 2020,
8, 51770–51785. [CrossRef]

14. Chen, X.; Chen, J.; Du, C.; Xu, Y. Region Coverage Path Planning of Multiple Disconnected Convex Polygons Based on
Simulated Annealing Algorithm. In Proceedings of the 2021 IEEE 4th International Conference on Computer and Communication
Engineering Technology (CCET), Beijing, China, 13–15 August 2021; pp. 238–242.

15. Ko, Y.C.; Gau, R.H. UAV Velocity Function Design and Trajectory Planning for Heterogeneous Visual Coverage of Terrestrial
Regions. IEEE Trans. Mob. Comput. 2023, 22, 6205–6222. [CrossRef]

16. Miao, Y.M.; Hwang, K.; Wu, D.; Hao, Y.X.; Chen, M. Drone Swarm Path Planning for Mobile Edge Computing in Industrial
Internet of Things. IEEE Trans. Ind. Inform. 2023, 19, 6836–6848. [CrossRef]

17. Khanam, Z.; Saha, S.; Ehsan, S.; Stolkin, R.; McDonald-Maier, K. Coverage Path Planning Techniques for Inspection of Disjoint
Regions With Precedence Provision. IEEE Access 2021, 9, 5412–5427. [CrossRef]

18. Panchamgam, K.; Xiong, Y.P.; Golden, B.; Dussault, B.; Wasil, E. The hierarchical traveling salesman problem. Optim. Lett. 2013,
7, 1517–1524. [CrossRef]

19. Ahmed, Z.H. The Ordered Clustered Travelling Salesman Problem: A Hybrid Genetic Algorithm. Sci. World J. 2014, 2014, 258207.
[CrossRef]

20. Hà, M.H.; Phuong, H.N.; Nhat, H.T.N.; Langevin, A.; Trépanier, M. Solving the clustered traveling salesman problem with
d-relaxed priority rule. Int. Trans. Oper. Res. 2022, 29, 837–853. [CrossRef]

21. Salach, A.; Bakula, K.; Pilarska, M.; Ostrowski, W.; Górski, K.; Kurczynski, Z. Accuracy Assessment of Point Clouds from LiDAR
and Dense Image Matching Acquired Using the UAV Platform for DTM Creation. ISPRS Int. J. Geo Inf. 2018, 7, 342. [CrossRef]

22. Domingo, D.; Orka, H.O.; Næsset, E.; Kachamba, D.; Gobakken, T. Effects of UAV Image Resolution, Camera Type, and Image
Overlap on Accuracy of Biomass Predictions in a Tropical Woodland. Remote Sens. 2019, 11, 948. [CrossRef]

23. Yu-Song, J.; Xin-Min, W.; Hai, C.; Yan, L. Research on the Coverage Path Planning of UAVs for Polygon Areas. In Proceedings of the
2010 5th IEEE Conference on Industrial Electronics and Applications (ICIEA 2010), Taichung, Taiwan, 15–17 June 2010; pp. 1467–1472.
[CrossRef]

24. Berger, C.; Wzorek, M.; Kvarnström, J.; Conte, G.; Doherty, P.; Eriksson, A. Area Coverage with Heterogeneous UAVs using Scan
Patterns. In Proceedings of the 14th IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Lausanne,
Switzerland, 23–27 October 2016; pp. 342–349.

25. Silva, M.M.; Subramanian, A.; Vidal, T.; Ochi, L.S. A simple and effective metaheuristic for the Minimum Latency Problem. Eur. J.
Oper. Res. 2012, 221, 513–520. [CrossRef]

26. Mladenovic, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

150

Citation: Xi, Z.; Han, H.; Cheng, J.;

Lv, M. Reducing Oscillations for

Obstacle Avoidance in a Dense

Environment Using Deep

Reinforcement Learning and

Time-Derivative of an Artificial

Potential Field. Drones 2024, 8, 85.

https://doi.org/10.3390/

drones8030085

Academic Editors: Jihong Zhu, Heng

Shi, Zheng Chen and Minchi Kuang

Received: 10 January 2024

Revised: 26 February 2024

Accepted: 27 February 2024

Published: 1 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Reducing Oscillations for Obstacle Avoidance in a Dense
Environment Using Deep Reinforcement Learning and
Time-Derivative of an Artificial Potential Field

Zhilong Xi 1,†, Haoran Han 1,†, Jian Cheng 1,* and Maolong Lv 2

1 School of Information and Communication Engineering, University of Electronic Science and Technology of
China, Chengdu 611731, China; xijohnston@gmail.com (Z.X.); hanadam@163.com (H.H.)

2 Air Traffic Control and Navigation College, Air Force Engineering University, Xi’an 710051, China;
maolonglv@163.com

* Correspondence: chengjian@uestc.edu.cn
† These authors contributed equally to this work.

Abstract: Obstacle avoidance plays a crucial role in ensuring the safe path planning of quadrotor
unmanned aerial vehicles (QUAVs). In this study, we propose a hierarchical framework for obstacle
avoidance, which combines the use of artificial potential field (APF) and deep reinforcement learning
(DRL) for training low-level motion controllers. Unlike traditional potential field methods, our
approach modifies the state information received by the motion controllers using the outputs of
the APF path planner. Specifically, the assumed target position is pushed away from obstacles,
resulting in adjustments to the perceived position errors. Additionally, we address path oscillations
by incorporating the target’s velocity information, which is calculated based on the time-derivative of
the repulsive force. Experimental results have validated the effectiveness of our proposed framework
in avoiding collisions with obstacles and reducing oscillations.

Keywords: quadrotor unmanned aerial vehicle (QUAV); obstacle avoidance; artificial potential field
(APF); deep reinforcement learning (DRL); oscillations

1. Introduction

Due to their high flexibility, quadrotor unmanned aerial vehicles (QUAVs) have gained
significant popularity in various applications, including parcel delivery [1], precision
agriculture [2–4], search and rescue [5,6], and surveillance [7]. In these scenarios, the
QUAV is typically required to autonomously navigate to a target position. However, in
dense environments, unexpected obstacles can obstruct the path and lead to collisions.
This task is even more challenging in a multi-agent system [8,9]. Therefore, obstacle
avoidance becomes a crucial task for ensuring safe path planning. The QUAV must find an
unobstructed path to the target while considering its physical limitations. Conventional
approaches to obstacle-free path planning include Dijkstra, probabilistic roadmap (PRM),
rapidly-exploring random trees (RRT), and artificial potential field (APF) [10–13]. Since
these approaches do not assume the physical realization of the agent to be of a certain
type, they are applicable to QUAV navigation. APF faces a critical challenge in dense
environments. When multiple obstacles narrow the passageway to the target, the agent
may experience oscillations due to the repulsive force created by the obstacles that conflicts
with the attractive force towards the target. As a result, reaching the target smoothly
becomes difficult.

Most existing approaches to reducing APF oscillations either rely on second-order
optimization theory techniques or employ an escaping mechanism when the agent detects
oscillations. However, these approaches are not fully compatible with a hierarchical
path planning framework because they directly modify the forces applied to the QUAV
without considering its often nonlinear dynamics. Additionally, they commonly attribute
oscillations to local minima, which is not always the case. One possible solution to this

Drones 2024, 8, 85. https://doi.org/10.3390/drones8030085 https://www.mdpi.com/journal/drones151

Drones 2024, 8, 85

problem is to utilize global obstacle information to bend an imaginary rubber band path [14].
However, this approach poses challenges for real-time decision-making, as it requires prior
knowledge of obstacle positions.

Based on the symmetrical motion controller design in [15], our previous work [16] en-
abled the utilization of an APF in a hierarchical framework, utilizing only local information
provided by sensors mounted on the QUAV. In this framework, an APF path planner gen-
erates a state that incorporates modified position errors, while low-level motion controllers
are responsible for both position and attitude control. In [17], we introduced the Hessian
matrix of the APF as a damping term, which effectively dissipates system energy, and we
proved its stability using an energy-based Lyapunov function. In this current work, we
utilize the time-derivative of the APF to further reduce oscillations in QUAV path planning
within a hierarchical control framework.

Considering that the QUAV dynamic system is nonlinear and strongly coupled, we
use deep reinforcement learning (DRL) to train the low-level motion controllers [18]. DRL
not only alleviates the labor-intensive process of parameter tuning, as compared to the tra-
ditional proportional–integral–derivative (PID) method, but also demonstrates remarkable
fitting capability with the aid of deep neural networks. The key contributions of this study
are outlined as follows.

1. We incorporate the time-derivatives of the potential function to account for the veloci-
ties of intermediate target points, thereby resolving the conflict between the fixed-point
chasing logic of the DRL motion controller and the potentially erratic movements of
the intermediate target points.

2. To enhance the control performance of a high-dimensional nonlinear system, we
reconfigure the states of the DRL motion controller to eliminate any asymmetry and
ensure stability.

3. We conducted comparative simulation experiments to validate the effectiveness of
the proposed method in reducing oscillations and preventing overshooting.

4. The complex dynamics of the QUAV system are considered, which is different from
other approaches that either do not discuss agent dynamics or simplify the dynamics
as a simple second-order point mass model.

The structure of this paper is outlined as follows. In Section 2, we provide a compre-
hensive overview of the existing research on obstacle-free path planning. In Section 3, we
introduce the necessary background knowledge, including the principles of conventional
artificial potential fields, drone dynamics, and deep reinforcement learning. Section 4
elaborates on the methodology that we have employed in this study. We present the ex-
periments conducted in Section 5 to validate the effectiveness of the proposed method in
reducing oscillation and overshooting. Section 6 discusses limitations of this work and its
applicability to dynamic and irregular environments. Finally, in Section 7, we conclude
our findings.

2. Related Work

We identify three major approaches to achieve obstacle-free path planning. Since they
do not set restrictions on the type of agents being used, these approaches are applicable to
QUAV obstacle avoidance. The first approach is grid search, exemplified by algorithms such
as Dijkstra, A*, and D* [10,19,20]. These algorithms are guaranteed to find a viable least-cost
path when the environment is finite. However, they suffer from the curse of dimensionality,
as the number of vertices to be explored grows exponentially with the dimensionality of the
working space. Additionally, the need for higher control resolutions further increases the
computational burden. The second approach is sampling-based search, with PRM [11] and
RRT [12] being typical examples. For example, Farooq et al. [21] guided the QUAV to avoid
dangerous zones in a dynamic environment by computing the PRM. Compared to grid
search, these algorithms are capable of quickly producing paths in high-dimensional spaces.
However, since sampling-based methods rely on global information, such as environment
boundaries, they are not well-suited for real-time control where sensor data are used to

152

Drones 2024, 8, 85

generate actions for the next step. The third approach is APF, which assumes that both the
target and obstacles generate potential fields that influence the movement of the agent. By
leveraging the gradient of the summed potential field, the agent is attracted to the target
while being repelled from nearby obstacles. For example, Ma’arif et al. [22] used APF to
guide a single QUAV to reach the target and avoid collisions with dynamic obstacles. APF
is widely used in QUAV navigation due to its ease of implementation and ability to guide
the QUAV using only local information.

Despite its numerous advantages, APF has certain inherent limitations [23]. One
recognizable limitation is that the agent can easily become trapped in local minima, where
the attraction and repulsion forces cancel each other out. Algorithms designed to address
this problem can generally be classified into three categories. The first category is local
minimum removal. For example, Kim et al. [24] employed harmonic functions to construct
potential fields, allowing for the selection of singularity locations and the elimination of
local minima in free space. The second category is local minimum escape. For instance,
Park et al. [25] combined APF with simulated annealing, which introduces randomness to
the agent’s actions, enabling it to escape from local minima. Wang et al. [26] proposed the
Left Turning scheme, which effectively handles U-shaped obstacles and helps the agent
escape local minima. Lai et al. [27] proposed a dynamic step-size adjustment method to help
the multi-UAV escape the local minima. The third category is local minimum avoidance.
For instance, Doria et al. [28] utilized the deterministic annealing approach to expand the
repulsive area and shrink the attractive area. This allows the agent to avoid local minima
at the beginning, when the potential function is convex due to a high initial temperature.
Additionally, Ge et al. [29] addressed a specific case of the local minimum problem known
as goals non-reachable with obstacles nearby (GNRON). They considered the relative
distance between the agent and the target when designing the repulsive potential function.
As the agent approaches the target, this function approaches zero, thereby reducing the
repulsive force in the target’s vicinity and overcoming the local minimum problem. Overall,
these different approaches highlight the efforts made to overcome the limitations of APF
and improve its performance in various scenarios.

APF faces another dilemma, which is the occurrence of oscillations in narrow passages
with densely distributed obstacles nearby. Previous research on oscillation reduction is
relatively limited and mainly draws inspiration from optimization theory techniques. For
instance, Ren et al. [30] proposed the use of Levenberg’s modification of Newton’s method
as a solution to oscillation problems. This approach incorporates second-order information
by utilizing the Hessian matrix. Additionally, they adjusted the control law to maintain
a constant speed, ensuring smooth movement of the agents. Biswas et al. [31] further
compared first-order gradient descent methods with two second-order approaches and
concluded that Levenberg–Marquardt is more effective in generating smoother trajectories
and improving convergence speeds.

The second branch of oscillation reduction algorithms introduces the concept of virtual
obstacles or targets. Similar to LME used in tackling local minima, methods belonging
to this branch often employ escaping techniques once oscillations are detected. For in-
stance, Zhao et al. [32] enhanced the manipulator’s predictive ability by incorporating
dynamic virtual target points and utilized an extreme point jump-out function to escape
oscillations. Zhang et al. [33] employed tangent APF to avoid local oscillations and intro-
duced the back virtual obstacle setting strategy-APF algorithm, which enables the agent
to return to previous steps and withdraw from concave obstacles. In a rule-based fashion,
Zheng et al. [34] specified the condition for adding obstacles, compelling the resultant
force to deflect when its angle to the obstacle center is too small. The dynamic step-size
adjustment method proposed by Lai et al. [27] is also able to escape the jitter area where a
local minimum is encountered, but it does not address oscillations in other cases, such as
narrow passageways.

Oscillations can also be mitigated by modifying the repulsive forces in a certain
manner. Tran et al. [35] estimated the projection of the repulsive force vector onto the

153

Drones 2024, 8, 85

attractive force vector and subtracted this component to prevent the agent from moving in
the opposite direction of the attractive force. Martis et al. [36] introduced vortex potential
fields to achieve seamless cooperative collision avoidance between mobile agents, and
these were validated using Lyapunov stability analysis. For larger obstacles with irregular
shapes, Szczepanski [37] combined the benefits of repulsive APF and vortex APF by
defining multiple layers around the surface area of the obstacles. This approach surpassed
traditional APF and pure vortex APF in terms of path smoothness.

There are also works specifically designed for QUAV path planning and obstacle
avoidance. For example, Meradi et al. [38] proposed a nonlinear model predictive con-
trol method based on quaternions for QUAVs’ obstacle avoidance. Valencia et al. [39]
constructed a QUAV obstacle detection and avoidance system using a monocular camera.
Gageik et al. [40] discussed the use of complementary low-cost sensors in QUAV collision
avoidance. However, the problem of oscillation reduction in QUAV obstacle-free path
planning based on APF is largely under-explored.

With the advancement in DRL technology, motion controllers based on DRL have
gained widespread usage in QUAV path planning and obstacle avoidance by virtue of
their strong fitting capability. In this context, the APF can be seen as an upper layer that
indirectly or directly influences the agent’s current pursuit position, while the low-level
motion control task is handled by the DRL agent. For instance, the RL environment
may employ convolutional neural networks to receive information about the surrounding
potential energy and generate estimated rewards for various actions [41]. Xing et al. [42]
combined the enhanced APF method with deep deterministic policy gradient to navigate
autonomous underwater vehicles. In our previous research, we developed a hierarchical
framework where the APF path planner was utilized to modify the position errors perceived
by the DRL motion controllers, effectively altering the target position [16]. In this study, we
further address oscillations by considering the velocity of the virtual target point, which
has been validated in a collision-free formation control task [17]. Experimental results
demonstrate that this improved algorithm reduces oscillations compared to approaches
that do not incorporate second-order information, such as velocities.

3. Preliminaries

3.1. Drone Dynamics

The simulation environment is built based on gym-pybullet-drones [43]. In this work,
a QUAV with an “X” configuration is considered. Similar to many fixed-wing UAVs [44],
it has six degrees of freedom. Its position and Euler angles are defined as p = [x, y, z]T

and Θ = [φ, θ, ψ]T , respectively. The Euler angles as shown in Figure 1 are obtained
following the intrinsic z-y-x sequence (or, equivalently, extrinsic x-y-z sequence). Therefore,
the rotation matrix from the body-fixed frame {xb, yb, zb} to the earth frame {xe, ye, ze} is
calculated by

R = [xb, yb, zb] =

⎡⎣cθcψ cψsθsφ − sψcφ cψsθcφ + sψsφ

cθsψ sψsθsφ + cψcφ sψsθcφ − cψsφ

−sθ sφcθ cφcθ

⎤⎦, (1)

where the coordinates of xb, yb, and zb are in the earth frame, zb = [zx
b, zy

b, zz
b]

T , cξ and sξ

(ξ = φ, θ, ψ) are short for cos ξ and sin ξ, respectively, and R ∈ SO(3).
In this work, we use the frame of SE(3) control [45] to avoid using a transformation

matrix W between the Euler angles Θ and the angular velocity ω = [ωx, ωy, ωz]T , which
suffers from singularity as θ approaches π

2 . This technique overcomes the small angle
restriction. The hat map ·̂ : R3 → so(3) is defined as

α̂ =

⎡⎣ 0 −α3 α2
α3 0 −α1
−α2 α1 0

⎤⎦, (2)

154

Drones 2024, 8, 85

where α = [α1, α2, α3]
T is a three-dimensional vector. Using the differential property of Lie

Group, the QUAV’s dynamic system can be formally described by

ṗ = v,

mv̇ = RF − mg,

Ṙ = Rω̂,

Jω̇ = −ω × Jω + τ,

(3)

where the velocity v = [vx, vy, vz]T and the gravity g = [0, 0, g]T are in the earth frame,
external thrust F = [0, 0, f]T and torque τ = [τφ, τθ , τψ]T are in the body-fixed frame, m is
the mass, and J = diag(Iφ, Iθ , Iψ) is the inertia matrix.

The four rotors are controlled by the pulse width modulation (PWM) signal u, and the
rotation speed Ω = [Ω1, Ω2, Ω3, Ω4]

T is described by

TmΩ̇ = kmu + bm − Ω, (4)

where Tm, km, and bm are the motors’ coefficients, which remain constant. The thrust F and
torque τ are then generated by the four rotors according to

⎡⎢⎢⎣
f

τφ

τθ

τψ

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
CT CT CT CT

− L√
2

CT − L√
2

CT
L√
2

CT
L√
2

CT

− L√
2

CT
L√
2

CT
L√
2

CT − L√
2

CT

−CD CD −CD CD

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

Ω2
1

Ω2
2

Ω2
3

Ω2
4

⎤⎥⎥⎦, (5)

where L is the arm length and CT , CD are the thrust and torque coefficients, respectively.
The environment contains N obstacles denoted by O = [1, 2, · · · , N]. The geometric

relationship between the QUAV, the target, and obstacle i is shown in Figure 2, in which
we define p = [x, y, z]T as the QUAV’s current position, pd as the target position, and oi
as the closest point of obstacle i to the QUAV. Moreover, ei = p − oi = [ex

i , ey
i , ez

i]
T and

ed = p − pd = [ex, ey, ez]T are error vectors to obstacle i and the target, respectively.

Figure 1. The body-fixed frame and the corresponding Euler angles.

Figure 2. Geometric relationship of the QUAV, the target, and obstacle i.

155

Drones 2024, 8, 85

3.2. Classical APF

The concept of APF was initially introduced by Khatib [13] with the aim of distributing
collision avoidance across different levels of control. This approach involves creating a
potential field, similar to an electrostatic field, within the agent’s working space. In this
field, the target location is represented as a valley, while obstacles are represented as
peaks. By computing the negative gradient of the total potential function, the agent can
determine a feasible path to the target while avoiding collisions with obstacles. From
another perspective, the target exerts an attractive force on the agent, while the obstacles
exert a repulsive force. To ensure the existence of these attractive and repulsive forces, the
potential functions must be continuous and differentiable, except at the target position or
within the obstacles. The calculation of the attractive and repulsive forces is performed by

Fatt = −∇pUatt(||ed||),
Frepi

= −∇pUrepi
(||ei||),

(6)

where Uatt(·) and Urepi
(·) are potential functions that receive scalars instead of vectors.

This maintains the isotropy of the overall system, since the norms of the APF forces are
only determined by the radial distances and not by the relative angles to the attraction or
repulsion sources.

Figure 3 depicts the attractive and repulsive forces in the APF algorithm. In this figure,
the green star represents the target position, while the orange circles symbolize obstacles
with specific regions of influence. The repulsive force generated by obstacle i is denoted as
Frep, and the attractive force generated by the target is denoted as Fatt. The resultant force
exerted on the agent is represented as Fr. It is worth noting that APF can be applied to both
global path planning and local path planning, as illustrated in Figure 3a and Figure 3b,
respectively. In the global case, the obstacles have a maximum influence distance ρ0, and
their positions and shapes are known in advance. However, in the local case, which is
employed in this study, the QUAV solely relies on the relative distances and velocities
obtained from sensors to calculate the APF forces. The maximum sensing range is denoted
as d.

Figure 3. Schematic diagrams of APF forces. (a) The forces are generated based on the information
returned by the QUAV’s sensors. (b) The forces are generated using global geometric information.

3.3. Deep Reinforcement Learning

RL is a commonly adopted methodology in machine learning. An RL problem is usu-
ally characterized as a Markov decision process with the state initialized by a distribution
P(s1). In this work, we assume that the Markov property is satisfied. In other words, the
transition probability for the next state is only determined by the current state and action,
which is formalized as P(st+1|s1, a1, . . . , st, at) = P(st+1)|st, at). At time step t, the agent
receives the current state st and, depending on whether the policy is stochastic or determin-

156

Drones 2024, 8, 85

istic, takes an action at according to its policy πα(·|s) : S → P(A) or μα(s) : S → A, where
α denotes policy parameters. The environment will then give a scalar reward rt ∼ R(st, at)
and the next state st+1 ∼ P(st, at). The aim of the agent is to maximize the expected return
Gt = ∑∞

i=t γi−tri, where γ ∈ (0, 1) is the discount factor that prevents Gt from approaching
infinity and controls how myopic the agent is.

To train the motion controller, we employ twin-delayed deep deterministic policy
gradient (TD3), which is a model-free actor-critic DRL algorithm featuring three distinct
characteristics. Firstly, it utilizes two critic networks, Qw1 and Qw2 , to tackle the issue of
action value overestimation. Secondly, it incorporates smooth regularization to minimize the
variance of the target update, which means the action is given by Equation (7), ensuring a
more stable and reliable training process, which is crucial for achieving optimal performance:

ãt+1 = μα′(st+1) + ε, ε ∼ clip(N (0, σ̃),−c, c), (7)

where μα′ is the target actor network, ε is the Gaussian noise, σ̃ is the standard deviation,
and c is the noise bound. The loss function for the i-th critic network is represented by

LTD3(wi) = Est ,at ,rt ,st+1∼D[(rt + γ min
j=1,2

Qw′
j
(st+1, ãt+1)− Qwi (st, at))

2], (8)

where D is the replay buffer and Qw′
j
(j = 1, 2) represent the target critic networks.

The third feature of TD3 is that actor networks are updated only after a fixed number
of updates d to the critic. The actor network’s updates follow

∇α J(α) = Eat=μα(st)[∇αμα(st)∇w1 Qw1(st, at)]. (9)

4. Methodology

4.1. Motion Controller Training

As is shown in Figure 4, motion control is divided into two hierarchies: translational
control and angular control. Due to the presence of gravity, vertical control differs inherently
from horizontal control. Hence, we further subdivide translational control into vertical
and horizontal control. As the three angular controllers adhere to the same control logic,
and likewise the two horizontal controllers, only three networks are required. The actor
networks’ parameters for angular, vertical, and horizontal control are denoted by αa, αv,
and αh, respectively. Their states are designed as

sξ = [eξ , ωξ]T , (ξ = φ, θ, ψ)

sx = [ex, vx, sign(ex)ez, sign(ex)vz, θ̄, ˙̄θ]T ,

sy = [ey, vy, sign(ey)ez, sign(ey)vz, φ̄, ˙̄φ]T ,

sz = [ez, vz]T ,

(10)

in which θ̄ and φ̄, variables that characterize the pitch and the roll, are defined as

θ̄ = arctan
zx

b
zz

b

φ̄ = arctan
zy

b
zz

b
.

(11)

There are a few points to note here. First, xd, yd, zd, and ψd are given by external
sources, while φd and θd are calculated from the outputs of the translational controllers.
Second, horizontal states not only consider the corresponding position and velocity errors
but also take into account height and angular information. Third, angular errors eξ are de-

157

Drones 2024, 8, 85

fined using the rotation matrix instead of the angular differences, and they are calculated by

eR = [eφ, eθ , eψ]T =
1
2
(RT

dR − RTRd)
∨, (12)

in which the vee map ∨ : so(3) → R
3 is the inverse of the hat map, and Rd is the desired

rotation matrix uniquely determined by φd, θd, and ψd.
To obtain φd and θd, the translational controllers’ networks first generate desired forces

along each axis following
f x
d = mctμαh(s

x),

f y
d = mctμαh(s

y),

f z
d = m(ctμαv(s

z) + g),

(13)

where the networks’ outputs are bounded by (−1, 1), and ct is the maximum translational
acceleration. Then, the desired roll and pitch can be calculated as [15]

φd = arcsin
sψd f x

d − cψd f y
d

||[f x
d , f y

d, f z
d]

T || ,

θd = arctan
cψd f x

d + sψd f y
d

f z
d

.

(14)

The ultimate desired thrust and torques are generated following Equation (15), where
cr is the maximum angular acceleration. We can find the desired steady-state rotor speed
Ωss = kmu + bm by taking the inverse matrix in Equation (5), and the PWM signal u will
eventually be obtained.

fd =
f z
d

cφcθ
,

τ
ξ
d = Iξcrμαa(s

ξ). (ξ = φ, θ, ψ)

(15)

Equation (16) defines the reward function for the angular, vertical, and horizontal
reinforcement learning environments. In this equation, eζ

t represents the error at the current
time, and ζ indicates the specific controller to which the error is applied. The agent
receives a reward when the error approaches zero and is penalized otherwise. One notable
advantage of this reward design is the absence of hyperparameters that require manual
fine-tuning.

rζ
t = |eζ

t | − |eζ
t+1| (16)

During the training process, the reinforcement learning environments receive the
agent’s action aζ

t and output the next state sζ
t+1 as well as the reward rζ

t based on the

current state sζ
t . In this work, the pitch and x-axis controllers are chosen as the proto-

types for the angular and horizontal controllers, meaning that ζ = θ, x, z during training.
The training follows a certain order. First, the roll and vertical controllers are trained
independently. When the pitch controller is being trained, we set fd, τ

φ
d , and τ

ψ
d as zero,

and τθ
d = Iθcrμαa(s

θ), while when the vertical controller is being trained, we set fd as
m(ctμαh(s

z) + g)/cφcθ and the desired torques as zero. The x-axis controller is trained only
after αa and αh are obtained because sx contains height and pitch information, which is
affected by the vertical and pitch controllers. No obstacles or external disturbances are
considered during training.

158

Drones 2024, 8, 85

Figure 4. The general framework of the motion controller.

4.2. State Transformation

The trained motion controllers have the ability to navigate the QUAV in the cor-
responding dimension. However, when the states in the testing phase are too large, it
becomes challenging for the networks to generate reasonable outputs based on the limited
training samples. This issue typically arises in translational control, where the position
errors are not bounded, except by the simulator. Since it is not feasible to gather information
for position errors of arbitrary magnitude within a finite training period, using the policy
networks in a large or boundless environment can result in uncontrollable behavior, which
is inherently dangerous. To mitigate the impact of large horizontal position errors, we
employ a hard-clipping technique on the variables ex and ey, with a clipping bound of dc.
Although no hard-clipping is applied to ez, its range is constrained due to the presence of a
floor and a ceiling in the working space of this study.

As observed in [18], the trained DRL controllers will decelerate to avoid overshooting,
indicating that there exists a natural velocity upper bound ṽ, since μα(s) > 0 when the
velocity is smaller than ṽ and μα < 0 when it exceeds the bound. Considering that ṽ is
sometimes too large to guarantee safety in the testing phase, we manually set an upper
bound v̄ to the velocity in the testing phase to prevent the QUAV from moving too quickly
in a free space. To increase data efficiency, we multiply evx

and evy
by ṽ/v̄, which can map

the horizontal velocity errors from [0, v̄] to [0, ṽ] and therefore force the actual velocity
inputs to have a similar scale as the training samples.

In addition to the aforementioned issues, it is necessary to address the problem of
anisotropic control performance. As depicted in Figure 5a, we denote the force exerted
on the QUAV as F1 when it is located at position A and as F2 when it is at position B.
Ideally, if positions A and B are equidistant from the target at a distance r, we expect the
two force vectors to have identical magnitudes and angles relative to the corresponding
position error vectors. This implies that the control performance should exhibit isotropy.
However, the current motion controllers we have obtained do not guarantee isotropy
due to two reasons: (1) the x-axis and y-axis controllers independently calculate the force
components along each axis based on sx and sy, and (2) the policy networks are non-linear.
To preserve this property, we transform the horizontal coordinate system such that the
force vector components are calculated radially and tangentially to the horizontal error
vector eh = [ex, ey, 0]T . As shown in Figure 5b, the unit radial and tangential vectors are
defined as

h =
eh

||eh|| , T(h) = h × [0, 0,−1]T . (17)

The horizontal states in the testing phase are so far modified as

srad = [erad, (ṽ/v̄)vTh, sign(erad)ez, sign(erad)vz, θ̃, ˙̃θ]T ,

stan = [etan, (ṽ/v̄)vTT(h), sign(etan)ez, sign(etan)vz, φ̃, ˙̃φ]T ,
(18)

159

Drones 2024, 8, 85

in which erad, etan, θ̃, and φ̃ are defined as

erad = clip(eT
dh,−dc, dc),

etan = clip(eT
d T(h),−dc, dc),

θ̃ = arctan
zT

b h

zz
b

,

φ̃ = arctan
zT

b T(h)
zz

b
.

(19)

Similarly, the horizontal forces defined in Equation (13) should be modified following

[f x
d , f y

d, 0]T = mctμαh(s
rad)h + mctμαh(s

tan)T(h). (20)

It should be noted that, up to now, erad =
√
(ex)2 + (ey)2 ≥ 0 and etan = 0, and there

is no reason for the QUAV to move along T(h). This is because no obstacles are taken into
consideration yet. As we shall see in the next section, they will be further modified by the
repulsive potential fields.

Figure 5. Isotropic control performance. (a) For the property of isotropy to be maintained, the norms
of F1 and F2 should be the same. (b) The horizontal coordinate system is transformed such that
horizontal axes are either parallel or tangential to the horizontal position error vector.

4.3. APF for Network Controller

In a hierarchical framework, RL motion controllers are solely responsible for the
navigation of the QUAV in open spaces and do not address higher-level tasks such as
obstacle avoidance. In this study, we incorporate the use of APF to guide the RL motion
controllers by influencing the state inputs, thereby indirectly altering the QUAV’s current
pursuit position. Figure 6 provides an illustration of how the target is updated, with the
saturated target being the direct result of the clipping operation along the radial direction.
Similar to traditional APF methods, any obstacle that falls within the QUAV’s sensing range
generates a repulsive force. However, instead of directly applying this force to the agent, it
is utilized to further modify the target’s position. This is accomplished by providing the
motion controllers with modified position errors in the following manner:

erad = clip(eT
dh, 0, dc)− FT

reph,

etan = −FT
repT(h).

(21)

160

Drones 2024, 8, 85

It is important to note that distance clipping is performed prior to the modification of
errors by Frep, as depicted in Figure 6a. This implies that the radial and tangential position
errors, er and et, are not strictly limited by the distance d. This is done to ensure that the
repulsive forces exerted by nearby obstacles have a significant impact on the movements of
the QUAV. Without this consideration, the actual influence of repulsion on the target would
be insignificant, as shown in Figure 6b, particularly when the original target is located
far away.

Figure 6. The target position is further adjusted based on the repulsive force. (a) In this study, the
order of operations involves conducting the clipping operation before the target is pushed by the APF.
(b) The clipping operation is performed at the end, which minimizes the impact of the repulsion.

The newly-introduced repulsive forces are dynamic, as the geometric relationship
between the QUAV and adjacent obstacles changes. This implies that the position of the
target also changes dynamically. Therefore, it is not enough to solely consider the agent’s
current velocity in the motion controllers’ states, as the target was assumed to be stationary
during the training process. In this study, we calculate the derivative of the repulsive
force with respect to time to determine the target’s velocity. Using the chain rule, we can
obtain that

vtar = Ḟrep = − ∑
i:di≤d

∇2
pUrepi

(||ei||)ṗ = − ∑
i:di≤d

Hiv, (22)

in which vtar is the velocity of the dynamic target, di =
√
(ex

i)
2 + (ey

i)
2 is the horizontal

distance to the i-th obstacle, and Hi is the Hessian matrix for the i-th obstacle’s repulsive
field. A few properties are to be satisfied when designing Urepi

(·) : (0, d] → R:

• Urepi
(x) should be monotonically decreasing with respect to x;

• ||∇pUrepi
(x)|| should be monotonically decreasing with respect to x;

• limx→0+ ||∇pUrepi
(x)|| = +∞ and ||∇pUrepi

(d) = 0||;
• Urepi

(x) should be second-order differentiable.

The first requirement is to ensure that the force is repulsive. The second property states
that the influence of the obstacle weakens as the distance increases. The third property
implies that the repulsion force approaches infinity at the surface of the obstacle, while
it becomes zero when the obstacle is at the boundary of the sensing range. The final
requirement guarantees the existence of the Hessian matrix. Since the repulsive APF is only
applied through its derivative forms, it is reasonable to directly design Frepi

as

Frepi
=

⎧⎨⎩ λ

(
1
d2

i
− 1

d2

)
ei

||ei || di ≤ d

0 di > d
, (23)

where λ is a manually set factor that scales the intensity of repulsion.
Considering that the calculation of Hi necessitates significant computational resources

and is time-consuming, we approximate vtar by utilizing the time difference of Frep. If

161

Drones 2024, 8, 85

the radial component of vtar points towards the target, we eliminate it, as in such cases,
the obstacle poses no threat to the agent. To be more specific, we define a distinct target
velocity in the radial direction using the following approach:

vrad =

{
vtar hTvtar > 0

0 hTvtar ≤ 0
. (24)

This technique prevents er from exceeding the bound d and therefore avoids over-
shooting. Ultimately, the horizontal states in the testing phase are modified as

srad = [erad, (ṽ/v̄)(v − vrad)Th, sign(erad)ez, sign(erad)vz, θ̃, ˙̃θ]T ,

stan = [etan, (ṽ/v̄)(v − vtar)TT(h), sign(etan)ez, sign(etan)vz, φ̃, ˙̃φ]T .
(25)

This design enables the seamless integration of RL motion control and APF obstacle
avoidance, without requiring any modifications to the underlying structure of the pre-
trained motion controllers. The modification of states only occurs during the testing phase.
What sets this strategy apart from traditional APF approaches is that, instead of directly
applying forces to the QUAV, they are utilized to propel the target. This approach is
equivalent to generating a sequence of waypoints that are carefully designed to avoid any
potential obstacles.

5. Simulation Experiments

5.1. Training Setup

The QUAV’s dynamics followed Crazyflie 2.0 [46]. All agents were trained using TD3,
whose hyperparameters are summarized in Table 1. The time step was set as 0.02 s to
ensure control accuracy, while the upper bounds of translational and angular acceleration
were ct = 5 m/s2 and cr = 20 rad/s2, respectively.

Table 1. TD3 hyperparameter settings.

Symbols Descriptions Values

|D| Replay Buffer Size 1 × 104

N Batch Size 512
γ Discount Factor 0.99
τ Target Update Rate 0.1
δ Learning Rate 1 × 10−3

σ̃ Noise Variance 0.2
c Noise Clip 0.5
d Policy Update Delay 2

An MLP with two layers, each consisting of 32 nodes, was utilized to train each
controller. The optimizer used in this process was Adam. The targets were randomly
sampled from a uniform distribution. Specifically, angular targets were chosen from the
range of (−π

2 , π
2), while translational targets were selected from the range of [−5, 5]. It is

worth noting that the horizontal network was trained only after the angular and vertical
networks had been obtained. The training stage of each controller comprised a total of
200 training episodes, with episode lengths set at 100 and 500 for angular and translational
control respectively. This ensured that the agent had sufficient time to reach the target
before an episode concluded. Throughout the training phase, no obstacles or external
disturbances were taken into consideration.

5.2. Testing Setup

We designed three different controllers for all experiments. Controller 1 utilized the
default setting, while controller 2 excluded the axial target velocity cancellation operation.

162

Drones 2024, 8, 85

On the other hand, controller 3 solely employed APF to influence position errors, without
affecting velocity errors.

The testing environment consisted of an open space with a floor and a ceiling that
was 5 m high. Additionally, there were several cylindrical obstacles, each standing at a
height of 5 m, strategically placed around the center of the space. The positions of these
obstacles were determined by uniformly selecting the distances of their axes from the
center within the range of [0, 6]. Furthermore, the radii of the cylinders were uniformly
chosen from the range of [0.9, 1.1]. It was ensured that the minimum distance between any
two obstacles was at least dmin. For each trial, three QUAVs were utilized, which acted
as dynamic obstacles and generated APF repulsive forces similar to the fixed obstacles in
the environment.

They were initialized at [8 sin(2kπ
3), 8 cos(2kπ

3)], and the corresponding targets were
at [−8 sin(2kπ

3),−8 cos(2kπ
3)], where k = 0, 1, 2. As the agents moved, proximity sensors

mounted on them could detect nearby obstacles. The maximum sensing range d was 2 m,
the position error clipping bound dc was 0.5 m, while the repulsive force scaling factor λ
was set as 0.18. The manually set velocity upper bound v̄ was set as 2 m/s, and through
experiments, it was found that the natural velocity upper bound ṽ = 1.5 m/s.

The agents faced the challenge of reaching the targets on the opposite side without any
collisions. The success of navigation was determined by whether each agent entered the
0.1 m proximity of its corresponding target. We created four different environments with
specific values for dmin and N: (0.7, 15), (0.7, 12), (0.9, 12), and (0.9, 9). In each environment,
we conducted 1000 trials for every controller setting. Based on these trials, we calculated
the success rates and the average time taken for successful trials.

To evaluate path smoothness, we calculated the curvatures of projection of the actual
paths on the horizontal plane according to

κ =
|ẋÿ − ẍẏ|
(ẋ2 + ẏ2)

3
2

, (26)

in which the time-derivatives of positions are approximated by the differences between two
time steps. It should be emphasized that κ may be either positive or negative, depending
on the turning direction. Path oscillations are reflected by the occurrence of sharp turns,
which correspond to huge absolute curvatures. In other words, if a path contains multiple
points with huge absolute curvatures, it is oscillatory. In this work, the curvature threshold
for a sharp turn is defined as 1000.

5.3. Experiment Results
5.3.1. General Performance

Figure 7 is a vertical view of the agents’ trajectories as they moved around in the four
environments, where the circles represent cylindrical obstacles, the curves in orange, green,
and blue illustrate the trajectories, and the stars at their ends are the targets. A smaller
dmin indicates a more challenging scenario, since the minimum width of the passageway
between two obstacles was smaller, while a bigger N means there were more obstacles
around the origin. It can be seen that the hierarchical control framework we have proposed
is capable of navigating the agents to the corresponding targets smoothly without collisions
or detours, even in the densest environment.

To validate the effectiveness of the proposed modifications, we conducted 1000 trials
for the three controllers in various environments. The success rates and average reaching
times are presented in Table 2. In the environment with low density (0.9, 9), all con-
trollers achieved a high success rate. Among them, controller 2 demonstrated the fastest
performance, with an average reaching time of only 22.801 s. This can be attributed to
controller 2’s tendency to accelerate more dramatically when the repulsive force contributes
to the attractive force. However, as the density increased, controller 2 experienced a more
significant decrease in success rate compared to controller 1. This is because the higher

163

Drones 2024, 8, 85

acceleration increases the risk of overshooting, which will be discussed in the following
section. Furthermore, controller 3, which did not consider any velocity errors, exhibited
a severe decline in performance. It not only took more time to reach the targets but also
struggled to handle dense environments. This was due to the delay between the assumed
target and the actual target, modified by the repulsive APF forces. As a result, oscillatory
behaviors were observed. In summary, the introduction of velocity errors effectively miti-
gated oscillations, while the cancellation of the target velocity radial component enhanced
the agents’ ability to address overshooting and the resulting oscillations. However, this
came at the expense of slower agent movement.

Figure 7. QUAV performance with the designed controllers in four environments, with the densest on
the leftmost side and the sparsest on the rightmost side. (a) dmin = 0.7, N = 15. (b) dmin = 0.7, N = 12.
(c) dmin = 0.9, N = 12. (d) dmin = 0.9, N = 9.

Table 2. Success rate (SCR) and average reaching time (ART) of different controllers.

Settings
Controller 1 Controller 2 Controller 3

SCR ART (s) SCR ART (s) SCR ART (s)

(0.7, 15) 0.950 29.545 0.886 27.433 0.364 32.236
(0.7, 12) 0.968 27.194 0.945 25.223 0.675 29.012
(0.9, 12) 0.986 26.000 0.953 24.181 0.950 27.836
(0.9, 9) 0.989 24.529 0.975 22.801 0.968 25.984

164

Drones 2024, 8, 85

The method is also applicable to an environment with more QUAVs, as shown in
Figure 8. The environment setting is similar to that discussed in the testing setup. In general,
the agents are able to reach their targets without collisions. For example, in Figure 8b,
where three pairs of agents move head to head, they can still reach the targets safely.

Figure 8. The method is applicable to cases with more QUAVs. The environment settings are
dmin = 0.7, N = 12. (a) The case with 5 agents. (b) The case with 6 agents.

5.3.2. Oscillation Reduction and Overshooting Prevention

Table 3 lists the average number of points with an absolute curvature greater than
1000 for the three controllers over all successful trials. It can be seen that controller
3 demonstrates the worst performance in terms of path smoothness, which testifies that
target velocity information plays an essential role in reducing path oscillations. On the
other hand, controllers 1 and 2 are close, with the path of the former being slightly more
oscillatory. It should be noted that overshooting is not equivalent to global path smoothness,
since it only occurs at certain areas, such as the triangular trap. Therefore, the oscillations
caused by overshooting cannot easily be reflected by path curvature.

Table 3. The average number of sharp turns (|κ| > 1000) of different controllers.

Settings Controller 1 Controller 2 Controller 3

(0.7, 15) 79.427 73.855 122.403
(0.7, 12) 54.788 51.731 90.938
(0.9, 12) 41.925 33.658 75.417
(0.9, 9) 30.434 25.136 53.372

To give quantitative analysis to the effectiveness of radial target velocity cancellation
operation as defined by Equation (24), another experiment setting was used. Concretely,
three cylindrical obstacles with a radius of 1.5 m were randomly placed on a ring whose
inner and outer radii were 2.3 m and 2.5 m, respectively. The three QUAVs were initialized at
[0.6 sin(2kπ

3), 0.6 cos(2kπ
3)], and the corresponding targets were at [−8 sin(2kπ

3),−8 cos(2kπ
3)],

where k = 0, 1, 2. In this way, they were trapped by the encircled obstacles at first, and the
task was to escape the triangular trap. Ideally, the maximum distance between any QUAV
and the corresponding target position is 8.6 m, otherwise it is caused by overshooting.
In this experiment, overshooting cases are defined as cases where at least one QUAV’s
distance to its target exceeded 10 m, as shown in Figure 9a. Furthermore, we define
trapped cases where at least one QUAV’s distance to the origin is within 4 m, as shown in
Figure 9b. Table 4 shows the results. It can be seen that controller 1 encountered the fewest
overshooting cases, which shows that the velocity cancellation operation helps prevent-

165

Drones 2024, 8, 85

ing overshooting. Moreover, since this operation simplifies the obstacle environment by
neglecting obstacles behind it, trapped cases are largely avoided as well.

Figure 9. (a) Overshooting case. (b) Trapped case.

Table 4. The number of overshooting and trapped cases of different controllers.

Controller 1 Controller 2 Controller 3

Overshooting Cases 23 145 481
Trapped Cases 24 199 641

SCR 0.969 0.732 0.237
ART (s) 13.735 13.958 18.566

An intuitive comparison of the three controllers can be found in Figure 10. In
Figure 10b, the agent represented by the green trajectory experienced oscillation within
the triangular area formed by obstacles 1, 2, and 3. The reason behind this oscillation
was that the combined force exerted by obstacle 1 and obstacle 2 was directed towards
the target and was not counteracted even though they did not pose a threat to the agent.
Consequently, the force towards the goal became excessively strong, leading to the agent
overshooting in this direction. Furthermore, disregarding velocity information entirely
resulted in more frequent oscillations. The reason was that, in this case, the agent assumed
the intermediate target to be fixed, while in reality the intermediate target was affected by
the relative position between the agent and the obstacles. Oscillations occurred when the
intermediate target updated before the agent reached the previous one. This can be ob-
served in Figure 10c, where all agents’ trajectories exhibit a zigzag pattern, especially when
maneuvering between obstacles. This increases the risk of collision with nearby obstacles.

5.3.3. The Effect of a Clipping Bound

In the mentioned experiments, we utilized a position error clipping bound of
dc = 0.5 m. This choice was made based on previous experiments that indicated that
it was the safest option. We varied the value of dc for controller 1, ranging from 0.3 m to
1.0 m with an increment of 0.1 m. A total of 1000 trials were conducted with the environ-
ment parameters set at (0.7, 12). Additionally, we observed that, for dc values of 0.3 m
and 0.4 m, the agent’s velocity was relatively low, resulting in a longer time to reach the
target. To account for more trials that had the potential to reach the targets, we relaxed
the time requirement for success. This adjustment allowed us to consider a broader range
of trials. The results of these experiments are presented in Table 5. From the table, it can
be observed that the average reaching time is inversely correlated with dc. Furthermore,
dc = 0.5 yielded the highest success rate. This can be attributed to the fact that, when the
agent moved too slowly, it lacked the flexibility to handle imminent collisions. Conversely,

166

Drones 2024, 8, 85

when the agent moved too quickly, the outputs of the low-level flight controllers were
not sufficiently strong to decelerate the agent in time, thereby increasing the likelihood
of collisions.

Figure 10. Performance comparison of different controllers in the same environment, where
dmin = 0.7 and N = 12. (a) Controller 1. All the designs mentioned previously were used.
(b) Controller 2. Radial component of the target velocity was not canceled even when it contributed
to the attractive force. (c) Controller 3. No velocity errors were introduced to the states. (d) A close-up
view of controller 2’s path.

Table 5. Success rate (SCR) and average reaching time (ART) of different controllers.

dc 0.3 * 0.4 * 0.5 0.6 0.7 0.8 0.9 1.0

SCR 0.517 0.930 0.968 0.941 0.851 0.714 0.585 0.568
ART (s) 43.437 34.983 27.194 22.340 19.606 18.705 19.146 17.710

* The time requirement for success was relaxed from 3000 steps to 5000 steps.

5.3.4. Comparison to Existing Methods

This section compares the proposed method to two other existing methods in terms of
success rate, average reaching time, average absolute curvature, and the number of sharp
turns. The first method to be compared uses A* as the path planner and the SE(3) control
law proposed in [45] as the motion controller. This method discretizes the environment into
cubes with side length 0.2 m, which are also known as voxels. It should be noted that the
environment information of this algorithm is known in advance instead of being obtained

167

Drones 2024, 8, 85

with sensors. The second method to be compared [47] is a hierarchical DRL method that
uses a DQN network to generate waypoints based on the sensor information returned by
16 rangefinders. The waypoints then serve as the target points of the motion controller
trained with PPO. The testing environment was a single-angle scenario, where the agent
was initialized at [0, 4.5, 2.5], and the target position was [0, −4.5, 2.5]. Twelve cylindrical
obstacles with a radius of 0.4 m were randomly placed around the origin. The positions of
these obstacles were determined by uniformly selecting the distances of their axes from
the center within the range of [0, 3] and dmin = 0.6. The results are listed in Table 6, which
also includes the performance of controller 3 in this environment. We can see that the
proposed method outperformed the other two algorithms in terms of success rate and
average reaching time, with the path slightly more oscillatory. Although path oscillation is
an inherent problem with APF, it can be reduced to a large extent with the help of velocity
information. After addressing this issue, the controller can navigate the QUAV in a more
safe and efficient manner.

Figure 11 illustrates the paths of the four methods in the same environment. It can
be seen that the proposed method’s path is smooth on a macro level and is far away from
obstacles. The path of A* + SE(3) is mostly straight because the waypoints returned by
A* are exactly on the centers of the voxels. Figure 11c shows a similar path, in that there
are only 16 possible directions to choose from when updating the waypoints. The path of
controller 3, on the other hand, is the most oscillatory one.

Figure 11. Performance comparison of the four methods in the same environment. (a) Proposed
method. (b) A* + SE(3). (c) DQN + PPO. (d) Controller 3.

168

Drones 2024, 8, 85

Table 6. Comparison of the proposed method to existing methods.

APF + TD3 A* + SE(3) DQN + PPO Controller 3

SCR 0.983 0.969 0.885 0.761
ART (s) 15.312 19.458 36.694 18.249

|κ| 7.121 4.794 6.610 11.426
sharp turns 0.651 0.480 0.431 1.112

6. Discussion

6.1. Limitations

Although the designed controller can achieve high success rates with moderate reach-
ing time even in a dense environment, there is still room for improvement. We considered
cases as failures when the agents were close to the targets but still outside the 0.1 m neigh-
borhood. This issue is referred to as the GNRON problem, which is discussed in Section 2.
Table 7 provides the number of GNRON cases for different controllers, where the success
requirement is relaxed to entering the 0.3 m neighborhood of targets. It is evident that the
success rates could have been higher if we had employed a strategy that actively addressed
this problem. By introducing a damping term in the repulsive forces when the agents are
in close proximity to the targets, this problem can be effectively resolved. Additionally,
there are other limitations to the proposed method, such as the absence of explicit collision
detection, leading to occasional collisions, and the hyperparameter dc, which needs to be
manually adjusted.

Another limitation of the proposed method is that it fails to escape local minima
created by U-shaped obstacles, which is shown in Figure 12a. Moreover, when the QUAV’s
moving direction is almost collinear with the joint force, the path is usually not smooth, as
shown in Figure 12b. One possible solution is to combine the proposed method with the
vortex potential field method discussed in [36,37], since in this way the agent will move
smoothly around the obstacle instead of heading directly towards it and spending a long
time adjusting the path.

Table 7. The number of GNRON cases for different controllers.

Environments (0.7, 15) (0.7, 12) (0.9, 12) (0.9, 9)

Controller 1 19 12 10 8
Controller 2 20 10 11 3
Controller 3 6 4 4 1

Figure 12. (a) The QUAV failed to escape the local minimum caused by a U-shaped obstacle. (b) When
the approaching angle is close to zero, the path is not smooth.

169

Drones 2024, 8, 85

6.2. Applicability to Dynamic Environments

The proposed method has the potential to be transferred to dynamic environments
since collision avoidance behavior is only determined by the repulsive forces updated
at every time step. In fact, the preceding experiments have verified this ability because
all the QUAVs are dynamic, generating repulsive forces to other QUAVs. As shown in
Figure 13, when they move close to each other, the QUAVs are able to take actions to avoid
collisions. This behavior resembles the cooperative collision avoidance mentioned in [36].
One significant difference between agents and obstacles is that the former ones usually
actively take action to avoid collisions while the latter ones’ behavior may be unpredictable.
Therefore, avoiding collisions between moving QUAVs and moving obstacles is more
challenging. One possible solution is to combine the current framework with reciprocal
velocity obstacles [48] based on the current velocity information of the obstacles.

Figure 13. Cooperative collision avoidance. (a) The case with 3 agents. (b) The case with 6 agents.

6.3. Irregular Obstacles

In real applications, the shapes of obstacles may not be as simple as cylinders. Since this
work assumes that the QUAV only detects nearby obstacles with sensors, it is impractical
to generate a global potential field in advance. There are two simple ways to adapt this
framework so as to make it applicable to environments with irregular obstacles. The first
method, as shown in Figure 14a, is to replace the surface of the sensed part with smaller
cylinders. In this way, the irregular obstacle’s repulsive force equals the joint repulsive force
of all cylindrical obstacles. The second method is to assume the part behind the sensed
surface as solid and calculate its center of gravity. The distance to the obstacle is obtained
as shown in Figure 14b. Some works deal with irregular obstacles in advanced ways. For
example, Ge et al. [49] integrated the repulsive force of every part of the obstacle to calculate
the ultimate repulsive force. This can model the obstacles more accurately, but it requires
the QUAV to have prior global information of the environment. Guo et al. [50] used the
closest point on the obstacle’s surface to generate repulsive force, which is the same as our
method when the obstacles are cylindrical or round. However, separate discussions are
needed for obstacles with corners or edge points. This makes it difficult to achieve stable
control using the Hessian matrix considering that its calculation will be even more complex
under such circumstances.

170

Drones 2024, 8, 85

Figure 14. Two possible ways to model irregular obstacles, where the sensed parts are shown in dark
blue. (a) The surface of the sensed part is replaced with smaller cylindrical obstacles, illustrated as
orange circles. (b) Assuming the sensed part is a solid object.

7. Conclusions

In this study, we have proposed an efficient hierarchical controller that combines the
use of an APF for path planning and obstacle avoidance with DRL motion controllers to
generate rotor signals. Our approach differs from traditional APF methods in that the APF
force is no longer directly applied to the QUAV but instead used to modify the position
errors, effectively pushing the sensed target position. Additionally, we have introduced the
calculation of the time-derivative of the APF force and incorporated a second-order term in
the velocity error of the DRL controllers’ inputs. This modification has successfully reduced
oscillations that occur when an agent is surrounded by multiple obstacles. The oscillation
technique not only ensures smoother paths but also significantly improves the robustness
of the controller. Furthermore, we have demonstrated that canceling the projection of the
target velocity on the attractive force when they are in the same direction is an effective
method to prevent overshooting and enhance the success rate. Although this approach may
slightly decrease the speed at which the target is reached, it is a reasonable compromise
that prioritizes safety, especially in dense environments. We would like to emphasize the
importance of the clipping factor dc as a hyperparameter in our design. It is crucial to find
an optimal value for dc, as both excessively small and excessively large values can lead to
significant performance degradation. Lastly, we discussed the limitations of the proposed
method and provided some possible solutions. The control framework in this work can
be applied to a real testing environment considering that it is based on real parameters
of a QUAV. Potential challenges include the accumulated errors of the discrete system
that generates outputs based on differences, a key point that needs to be addressed in
future work.

Author Contributions: Conceptualization, H.H.; methodology, H.H.; software, Z.X.; validation,
Z.X.; formal analysis, Z.X. and H.H.; investigation, Z.X., H.H., J.C. and M.L.; writing—original
draft preparation, Z.X. and H.H.; writing—review and editing, J.C. and M.L.; visualization, Z.X.;
supervision, J.C. and M.L.; project administration, J.C.; funding acquisition, J.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the NNSFC&CAAC under Grant U2233209 and in
part by the Natural Science Foundation of Sichuan, China, under Grant 2023NSFSC0484.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

171

Drones 2024, 8, 85

References

1. Pugliese, L.D.P.; Guerriero, F.; Macrina, G. Using Drones for Parcels Delivery Process. Procedia Manuf. 2020, 42, 488–497.
[CrossRef]

2. Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani,
M. Unmanned Aerial Vehicles (UAVs): A survey on Civil Applications and Key Research Challenges. IEEE Access 2019, 7,
48572–48634. [CrossRef]

3. Huang, Y.; Thomson, S.J.; Hoffmann, W.C.; Lan, Y.; Fritz, B.K. Development and Prospect of Unmanned Aerial Vehicle Technolo-
gies for Agricultural Production Management. Int. J. Agric. Biol. Eng. 2012, 6, 1–10.

4. Muchiri, G.N.; Kimathi, S. A Review of Applications and Potential Applications of UAV. In Proceedings of the Sustainable
Research and Innovation Conference (SRI), Pretoria, South Africa, 20–24 June 2022; pp. 280–283.

5. Valsan, A.; Parvathy, B.; GH, V.D.; Unnikrishnan, R.S.; Reddy, P.K.; Vivek, A. Unmanned Aerial Vehicle for Search and Rescue
Mission. In Proceedings of the 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli,
India, 16–18 April 2020; pp. 684–687.

6. Silvagni, M.; Tonoli, A.; Zenerino, E.; Chiaberge, M. Multipurpose UAV for Search and Rescue Operations in Mountain Avalanche
Events. Geomat. Nat. Hazards Risk 2017, 8, 18–33. [CrossRef]

7. Pinto, M.F.; Melo, A.G.; Marcato, A.L.; Urdiales, C. Case-based Reasoning Approach Applied to Surveillance System Using an
Autonomous Unmanned Aerial Vehicle. In Proceedings of the 2017 IEEE 26th International Symposium on Industrial Electronics
(ISIE), Edinburgh, UK, 19–21 June 2017; pp. 1324–1329.

8. Lv, M.; Wang, N. Distributed Control for Uncertain Multi-agent Systems with the Powers of Positive-odd Numbers: A Low-
complexity Design Approach. IEEE Trans. Autom. Control. 2024, 69, 434–441 . [CrossRef]

9. Wang, Y.; Dong, L.; Sun, C. Cooperative Control for Multi-player Pursuit-evasion Games with Reinforcement Learning. Neurocom-
puting 2020, 412, 101–114. [CrossRef]

10. Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959 , 1, 269–271. [CrossRef]
11. Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. 1996. Probabilistic Roadmaps for Path Planning in High-dimensional

Configuration Spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]
12. Elbanhawi, M.; Simic, M. Sampling-based Robot Motion Planning: A Review. IEEE Access 2014, 2, 56–77. [CrossRef]
13. Khatib, O. Real-time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. Robot. Res. 1986, 5, 90–98. [CrossRef]
14. Tang, L.; Dian, S.; Gu, G.; Zhou, K.; Wang, S.; Feng, X. A Novel Potential Field Method for Obstacle Avoidance and Path Planning

of Mobile Robot. In Proceedings of the 2010 3rd International Conference on Computer Science and Information Technology
(ICCSIT), Chengdu, China, 9–11 July 2010; pp. 633–637.

15. Han, H.; Cheng, J.; Xi, Z.; Lv, M. Symmetric Actor–critic Deep Reinforcement Learning for Cascade Quadrotor Flight Control.
Neurocomputing 2023, 559, 126789. [CrossRef]

16. Han, H.; Xi, Z.; Cheng, J.; Lv, M. Obstacle Avoidance Based on Deep Reinforcement Learning and Artificial Potential Field. In
Proceedings of the 9th International Conference on Control, Automation and Robotics (ICCAR), Beijing, China, 21–23 April 2023;
pp. 215–220.

17. Han, H.; Xi, Z.; Lv, M.; Cheng, J. Acceleration of Formation Control Based on Hessian Matrix of Artificial Potential Field. In
Proceedings of the 2023 42th Chinese Control Conference, Tianjin, China, 24–26 July 2023; pp. 5866–5871.

18. Han, H.; Cheng, J.; Xi, Z.; Yao, B. Cascade Flight Control of Quadrotors Based on Deep Reinforcement Learning. IEEE Robot.
Autom. Lett. 2022, 7, 11134–11141. [CrossRef]

19. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst.
Man, Cybern. 1968, 4, 100–107. [CrossRef]

20. Stentz, A. Optimal and Efficient Path Planning for Partially-known Environments. In Proceedings of the 1994 IEEE International
Conference on Robotics and Automation (ICRA), San Diego, CA, USA, 8–13 May 1994; pp. 3310–3317.

21. Farooq, M.U.; Ziyang, Z.; Ejaz, M. Quadrotor UAVs Flying Formation Reconfiguration with Collision Avoidance using Probabilis-
tic Roadmap Algorithm. In Proceedings of the 2017 International Conference on Computer Systems, Electronics and Control,
Dalian, China, 25–27 December 2017; pp. 866–870.

22. Ma’arif, A.; Rahmaniar, W.; Vera, M.A.M.; Nuryono, A.A.; Majdoubi, R.; Çakan, A. Artificial Potential Field Algorithm for
Obstacle Avoidance in UAV Quadrotor for Dynamic Environment. In Proceedings of the 2021 IEEE International Conference on
Communication, Networks and Satellite (COMNETSAT), Online, 17–18 July 2021; pp. 184–189.

23. Koren, Y.; Borenstein, J. Potential Field Methods and Their Inherent limitations for Mobile Robot Navigation. In Proceedings of
the 1991 International Conference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991; pp. 1398–1404.

24. Kim, J.O.; Khosla, P. Real-time Obstacle Avoidance Using Harmonic Potential Functions. In Proceedings of the 1991 International
Conference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991; pp. 790–796.

25. Park, M.G.; Jeon, J.H.; Lee, M.C. Obstacle Avoidance for Mobile Robots Using Artificial Potential Field Approach with Simulated
Annealing. In Proceedings of the 2001 IEEE International Symposium on Industrial Electronics, Pusan, Republic of Korea, 12–16
June 2001; pp. 1530–1535.

26. Wang, D.; Li, C.; Guo, N.; Song, Y.; Gao, T.; Liu, G. Local Path Planning of Mobile Robot Based on Artificial Potential Field. In
Proceedings of the 2020 39th Chinese Control Conference, Shenyang, China, 27–29 July 2020; pp. 3677–3682.

172

Drones 2024, 8, 85

27. Lai, D.; Dai, J. Research on Multi-UAV Path Planning and Obstacle Avoidance Based on Improved Artificial Potential Field
Method. In Proceedings of the 2020 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA), Shanghai,
China, 16–18 October 2022; pp. 84–88.

28. Doria, N.S.F.; Freire, E.O.; Basilio, J.C. An Algorithm Inspired by the Deterministic Annealing Approach to Avoid Local Minima in
Artificial Potential Fields. In Proceedings of the 2013 16th International Conference on Advanced Robotics, Montevideo, Uruguay,
25–29 November 2013; pp. 1–6.

29. Ge, S.S.; Cui, Y.J. New Potential Functions for Mobile Robot Path Planning. IEEE Trans. Robot. Autom. 2000, 16, 615–620. [CrossRef]
30. Ren, J.; McIsaac, K.A.; Patel, R.V. Modified Newton’s Method Applied to Potential Field-based Navigation for Mobile Robots.

IEEE Trans. Robot. 2006, 22, 384–391.
31. Biswas, K.; Kar, I. On Reduction of Oscillations in Target Tracking by Artificial Potential Field Method. In Proceedings of the 2014

9th International Conference on Industrial and Information Systems (ICIIS), Gwalior, India, 15–17 December 2014; pp. 1–6.
32. Zhao, M.; Lv, X. Improved Manipulator Obstacle Avoidance Path Planning Based on Potential Field Method. J. Robot. 2020, 2020,

1701943. [CrossRef]
33. Zhang, W.; Xu, G.; Song, Y.; Wang, Y. An Obstacle Avoidance Strategy for Complex Obstacles Based on Artificial Potential Field

Method. J. Field Robot. 2023, 40, 1231–1244. [CrossRef]
34. Zheng, S.; Luo, L.; Zhang, J. Non-oscillation Path Planning Based on Artificial Potential Field. In Proceedings of the IEEE International

Conference on Control, Electronics and Computer Technology (ICCETC), Jilin, China, 28–30 April 2023; pp. 1225–1228.
35. Tran, H.N.; Shin, J.; Jee, K.; Moon, H. Oscillation Reduction for Artificial Potential Field Using Vector Projections for Robotic

Manipulators. J. Mech. Sci. Technol. 2023, 37, 3273–3280. [CrossRef]
36. Martis, W.P.; Rao, S. Cooperative Collision Avoidance in Mobile Robots using Dynamic Vortex Potential Fields. In Proceedings

of the International Conference on Automation, Robotics and Applications (ICARA), Abu Dhabi, United Arab Emirates,
10–12 February 2023; pp. 60–64.

37. Szczepanski, R. Safe Artificial Potential Field-Novel Local Path Planning Algorithm Maintaining Safe Distance from Obstacles.
IEEE Robot. Autom. Lett. 2023, 8, 4823–4830. [CrossRef]

38. Meradi, D.; Benselama, Z.A.; Hedjar, R.; Gabour, N.E.H. Quaternion-based Nonlinear MPC for Quadrotor’s Trajectory Track-
ing and Obstacles Avoidance. In Proceedings of the International Conference on Advanced Electrical Engineering (ICAEE),
Constantine, Algeria, 29–31 October 2022; pp. 1–6.

39. Valencia, D.; Kim, D. Quadrotor Obstacle Detection and Avoidance System Using a Monocular Camera. In Proceedings of the
Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Singapore, 21–23 July 2018; pp. 78–81.

40. Gageik, N.; Benz, P.; Montenegro, S. Obstacle Detection and Collision Avoidance for a UAV with Complementary Low-cost
Sensors. IEEE Access 2015, 3, 599–609. [CrossRef]

41. Yao, Q.; Zheng, Z.; Qi, L.; Yuan, H.; Guo, X.; Zhao, M.; Liu, Z.; Yang, T. Path Planning Method with Improved Artificial Potential
Field—A Reinforcement Learning Perspective. IEEE Access 2020, 8, 135513–135523. [CrossRef]

42. Xing, T.; Wang, X.; Ding, K.; Ni, K.; Zhou, Q. Improved Artificial Potential Field Algorithm Assisted by Multisource Data for
AUV Path Planning. Sensors 2023, 23, 6680. [CrossRef]

43. Panerati, J.; Zheng, H.; Zhou, S.; Xu, J.; Prorok, A.; Schoellig, A.P. Learning to Fly—A Gym Environment with Pybullet Physics
for Reinforcement Learning of Multi-agent Auadcopter Control. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Prague, Czech Republic, 28–30 September 2021; pp. 7512–7519.

44. Lv, M.; Ahn, C.K.; Zhang, B; Fu, A. Fixed-time Anti-saturation Cooperative Control for Networked Fixed-wing Unmanned Aerial
Vehicles Considering Actuator Failures. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 8812–8825. [CrossRef]

45. Goodarzi, F.; Lee, D.; Lee, T. Geometric Nonlinear PID Control of a Quadrotor UAV on SE(3). In Proceedings of the 2013 European
Control Conference (ECC), Zurich, Switherland, 17–19 July 2013; pp. 3845–3850.

46. Bitcraze. Crazyflie 2.0. Available online: https://www.bitcraze.io/products/old-products/crazyflie-2-0/ (accessed on
2 January 2024).

47. Xi, Z.; Han, H.; Zhang, Y.; Cheng, J. Autonomous Navigation of QUAVs Under 3D Environments Based on Hierarchical
Reinforcement Learning. In Proceedings of the 2023 42nd Chinese Control Conference (CCC), Tianjin, China, 24–26 July 2023;
pp. 4101–4106.

48. Van den Berg, J.; Lin, M.; Manocha, D. Reciprocal Velocity Obstacles for Real-time Multi-agent Navigation. In Proceedings of the
2008 IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, USA, 19–23 May 2008; pp. 1928–1935.

49. Ge, S.S.; Liu, X.; Goh, C.H.; Xu, L. Formation Tracking Control of Multiagents in Constrained Space. IEEE Trans. Control Syst.
Technol. 2015, 24, 992–1003. [CrossRef]

50. Guo, Y.; Chen, G.; Zhao, T. Learning-based Collision-free Coordination for a Team of Uncertain Quadrotor UAVs. Aerosp. Sci.
Technol. 2021, 119, 107127. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

173

Citation: Zhang, Z.; Wang, Y.; Luo, Y.;

Zhang, H.; Zhang, X.; Ding, W.

Iterative Trajectory Planning and

Resource Allocation for

UAV-Assisted Emergency

Communication with User Dynamics.

Drones 2024, 8, 149. https://doi.org/

10.3390/drones8040149

Academic Editor: Emmanouel T.

Michailidis

Received: 13 March 2024

Revised: 7 April 2024

Accepted: 9 April 2024

Published: 11 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Iterative Trajectory Planning and Resource Allocation for
UAV-Assisted Emergency Communication with User Dynamics

Zhilan Zhang 1, Yufeng Wang 2,*, Yizhe Luo 3, Hang Zhang 1, Xiaorong Zhang 1 and Wenrui Ding 2

1 School of Electronics and Information Engineering, Beihang University, Beijing 100083, China;
zzl1223@buaa.edu.cn (Z.Z.); zhangh102@buaa.edu.cn (H.Z.); zhangxiaorong@buaa.edu.cn (X.Z.)

2 Institute of Unmanned System, Beihang University, Beijing 100083, China; ding@buaa.edu.cn
3 School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China;

luoyizhe@zzu.edu.cn
* Correspondence: wyfeng@buaa.edu.cn

Abstract: The demand for air-to-ground communication has surged in recent years, underscoring
the significance of unmanned aerial vehicles (UAVs) in enhancing mobile communication, particu-
larly in emergency scenarios due to their deployment efficiency and flexibility. In situations such
as emergency cases, UAVs can function as efficient temporary aerial base stations and enhance
communication quality in instances where terrestrial base stations are incapacitated. Trajectory
planning and resource allocation of UAVs continue to be vital techniques, while a relatively limited
number of algorithms account for the dynamics of ground users. This paper focuses on emergency
communication scenarios such as earthquakes, proposing an innovative path planning and resource
allocation algorithm. The algorithm leverages a multi-stage subtask iteration approach, inspired by
the block coordinate descent technique, to address the challenges presented in such critical environ-
ments. In this study, we establish an air-to-ground communication model, subsequently devising a
strategy for user dynamics. This is followed by the introduction of a joint scheduling process for path
and resource allocation, named ISATR (iterative scheduling algorithm of trajectory and resource).
This process encompasses highly interdependent decision variables, such as location, bandwidth,
and power resources. For mobile ground users, we employ the cellular automata (CA) method to
forecast the evacuation trajectory. This algorithm successfully maintains data communication in the
emergency-stricken area and enhances the communication quality through bandwidth division and
power control which varies with time. The effectiveness of our algorithm is validated by evaluating
the average throughput with different parameters in various simulation conditions and by using
several heuristic methods as a contrast.

Keywords: unmanned aerial vehicles; resource allocation; trajectory planning; iterative scheduling;
cellular automata

1. Introduction

UAV-assisted mobile communication takes the role of an efficient technology that uses
unmanned aerial vehicles (UAVs) as communication nodes in wireless networks, with UAVs
performing as aerial base stations, communication relays, and data connection stations. In
research on B5G/6G communication, UAVs have already been widely applied [1]. They
can provide enhanced coverage, capacity, and connectivity for applications in various
communication scenarios, such as surveillance management [2], smart agriculture [3], and
aerial delivery [4]. Drone-assisted IoT (the Internet of Things) systems are also called
IoD (Internet of Drones) [5]. The authors in [6] have demonstrated the data collection
ability of drones, which is also applied in emergency [7] or MEC cases [8]. More than a
data transmitting node, a UAV can also serve as a cloud computation center with limited
ground processing capability [9]. In other applications, UAVs provide sensing [10], target
search [11], and healthcare supply service [12,13] based on their mobility.

Drones 2024, 8, 149. https://doi.org/10.3390/drones8040149 https://www.mdpi.com/journal/drones174

Drones 2024, 8, 149

In recent years, the integration of UAVs into emergency communication systems has
caught significant attention due to their ability to overcome limitations in traditional ground
base stations [14]. In emergency-stricken cases, disasters such as earthquakes, hurricanes,
and wildfires can inflict severe damage on ground communication infrastructure, making
them either disabled or inaccessible. Consequently, timely and reliable communication
services in such contexts play a vital role in rescue and response. Both civil and military
institutions can benefit from UAV-assistance communication. Emergency response agencies
like FEMA (Federal Emergency Management Agency) would be interested in leverag-
ing UAVs to enhance communication capabilities during disasters or emergencies, while
telecommunication companies could benefit from UAV-assisted communication planning
algorithms to improve their capacity for assisting in affected areas. During the 2021 Henan
flood, China Mobile dispatched Yilong drones to temporarily restore communication in the
disaster area. UAV-assisted mobile communication has several advantages over traditional
terrestrial or satellite-based communication systems, such as flexibility, mobility, scalability,
ease of deployment, and low cost, therefore they can match the requirements needed in
emergency communication cases.

However, the field also encounters many challenges, especially in intricate problems.
In UAV deployment, costs of moving and energy consumption need to be considered,
which provide constraints on assistance quality optimization. In problems of trajectory
planning or routing, the communication environment changes rapidly, resulting in im-
perfect channel state information. Coordination, security, and power management also
matter in related problems, making the algorithm design rather complicated [9]. Generally
speaking, research on UAV-assisted communication mainly involves two aspects: one is
the establishment of an air-ground communication model, and the other is the design and
optimization of drone scheduling algorithms.

1.1. Related Works

Differing from conventional ground-based communication, air-to-ground (A2G)) com-
munication is subject to the influence of altitude differentials, thus presenting a more
complex and dynamic model of the environment [15]. In recent years, many researchers
have focused on the design of evaluating indicators, along with communication models
in both general and certain environments [16] for air-to-ground channels. To assess the
effectiveness and robustness of UAV-assisted networks, various metrics have been pro-
posed for A2G networks. The authors in [17] considered energy efficiency, while [18]
considered throughput. In [19], the average completion time of subtasks was applied
for assessment. Other evaluating factors include the arrival rate, spectral efficiency, and
channel capacity, while factors such as time delay, coverage [20], and outage probability
also affect A2G networks.

Communication parameters of A2G channels differ in typical scenes involving differ-
ent environments such as urban, dense urban, suburban, etc. In [21], researchers developed
the A2G path loss model in the urban environment, while [22] focused on multilink channel
model analysis at 2.4 and 5.9 GHz, both in low altitude circumstance. For aerial sensor
networks, [23] introduced a realistic channel model leveraging cooperative UAVs in order
to reach maximum spatial exploration efficiency. In [24], the statistical characteristics of
the airframe shadowing loss were further analyzed. In [25], the authors gave a spatially
and temporally correlated A2G channel model in cellular-connected UAV swarms, as well
as a design for performance analysis. Ref. [26] considered atmospheric refractivity and
precipitation, and they obtained path loss along the range and altitude. Moreover, [27]
proposed a clustering method to analyze time-varying channels.

Blessed with auto-mobility and self-decision ability, UAVs can usually perform as
aerial base stations in emergency cases when ground base stations are blocked. To execute
communication assistance missions, researchers need to design trajectory planning and
resource allocation algorithms for UAVs’ scheduling. In the field of UAV trajectory planning,
researchers have proposed various algorithms and methods to address path-planning

175

Drones 2024, 8, 149

problems in different environments. Heuristic-based methods employ heuristic algorithms
such as genetic algorithms, simulated annealing, etc., to find optimal paths. Heuristic-based
methods are often suitable for complex environments but may exhibit lower efficiency
for large-scale problems. Ref. [28] introduced a 3-D path planning method improved
from ant colony optimization, and Ref. [29] searched the UAV configuration space with
a modified Mayfly algorithm. For collision avoidance, the slime mold algorithm (SMA)
performs well with a design preventing it from local optimization points [30]. Inspired by
a genetic algorithm, [31] proposed the ANSGA-III method with enhanced planning ability
in complex environments. Graph theory-based methods model the environment as a graph
and use classical graph algorithms to find the shortest or optimal paths, which also tend to
perform well in simple environments. Ref. [32] discussed an approach of dynamic coloring
for UAV planning in emergency cases, and [33] proposed a 3-D deployment method
based on Dijkstra’s algorithm, with UAV playing both as an aerial base station and relays.
The idea of TSP (Traveling Salesman Problem) was applied in [18] with classified stressed
regions, while [34] combined graph theory and convex optimization. Moreover, recent years
have witnessed remarkable advancements in path planning facilitated by deep learning
methodologies. Convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) have been employed to predict flight trajectories and have shown impressive
performance in complex environments. Deep reinforcement learning (DRL) techniques
have also been harnessed for this purpose, further contributing to enhanced performance.
The trajectory planning method varies with the environment. Path planning for UAVs in
windy environments was proposed in [35], with simulated moving targets for UAVs to
pursue. Ref. [36] took advantage of the traditional collision avoidance method and DRL
method, resulting in long trajectory planning with unknown obstacles. In [37], UAVs serve
in a warehouse for stock inventory, updating real-time paths with image recording.

Resource allocation constitutes another critical aspect of ensuring UAV assistance. The
efficiency of UAVs is often limited by their battery life, prompting research into spectrum
resource allocation and efficient energy management [38], including task scheduling and
dynamic recharging strategies. Given that the resource allocation problem is NP-hard,
researchers strive for sub-optimal solutions using methods from convex optimization,
machine learning, etc. Zhang et al., in [39], proposed a safe-DQN method to optimize
UAV trajectories, considering constraints such as user equipment (UE) energy limits and
obstacles in emergency scenarios. Furthermore, for target assignment in multi-object
scenes, multi-agent reinforcement learning (MARL) has been demonstrated to be effective,
as shown in [40].

In the context of an evacuation, the trajectory of moving ground users requires statisti-
cal data or simulation for accurate consideration [41]. Since the moving behavior of users
varies with the environment, cellular automata can be employed to adjust their trajectories.
Cellular automata model the map as a two-dimensional grid space and assign different val-
ues to different grids to represent users, obstacles, exits, etc. Therefore, the state transition
of certain grids can be predicted according to the states of their neighboring grids. Ref. [42]
utilized cellular automata in forest fire spread prediction, specified influencing factors to
adjust cell state and cell transition rules, and gave a 3D visualization for the fire spread
model. In [43], cellular automata and the ant colony algorithm were used to optimize the
evacuation model, which is applicable in emergency scenarios.

1.2. Our Contributions

To address the challenges in the communication of emergency cases, we propose
an iterative scheduling algorithm for trajectory and resource (ISATR) for path planning
and limited resource allocation in a UAV-assisted emergency communication network. In
addition to commonly discussed variables, we consider the dynamics of ground users
and present a comprehensive approach using a quasi-convex method to optimize UAV
path, power, and bandwidth allocation across different time slots. This approach spans

176

Drones 2024, 8, 149

dimensions of time, space, spectrum, and energy; therefore, it can provide a rather accurate
and comprehensive plan. The main contributions of this paper are summarized as follows:

1. UAV-assisted communication model with the dynamic environment. For emergency
cases, few researchers test their algorithm with dynamic users. We have established
an A2G communication model with moving ground users, where the energy con-
sumption and assistance communication quality are jointly optimized.

2. Dynamic bandwidth allocation. For resource allocation in UAV-assisted communi-
cation, few researchers focus on bandwidth, due to its high complexity. Our work
tackles dynamic bandwidth allocation, providing an algorithm for real UAV planning.

3. Designed iterative algorithm. For the NP-hard optimization problem of UAV planning
in emergency communication, we leverage the idea of subtask iterative algorithm and
work out an effective iterative scheduling algorithm of trajectory and resource.

4. Simulation analysis. Experiments are implemented to evaluate the effectiveness of the
proposed optimization algorithm, which achieves obvious performance compared
with non-optimized and several other methods and can maintain the performance in
different environments.

Benefiting from its high accuracy, ISATR can serve as a necessary baseline in case of
emergency communication situations, applied for a pre-planning scheme derived before
emergency strikes.

This paper is organized as follows:

• The A2G communication model, user moving strategy, and mathematical optimization
model are established in Section 2.

• The iterative scheduling algorithm for trajectory and resource (ISATR) is elaborated
on in Section 3.

• In Section 4, the results and performance are discussed, with comparisons in different
environments.

• Section 5 concludes the paper.

2. Modeling of UAV-Assisted Communication

2.1. UAV Air-to-Ground Channel Model

In dense urban environments, communication is primarily supported by ground-based
stations serving mobile users distributed across cellular networks. However, during certain
emergencies such as earthquakes, urban communication infrastructure may fail. When
the ground-based station in the earthquake-stricken area malfunctions, it results in the
loss of signal coverage within the community. This disruption complicates communication
for ground users, leading to panic and impeding emergency relief efforts. Therefore,
unmanned aerial vehicles (UAVs) are introduced as temporary aerial base stations to
provide communication services in emergency scenarios. In this section, we present the
basic model of UAV-assisted A2G communication.

When the ground base station malfunctions, the UAV can be utilized as an aerial base
station to serve urgent communication. Before establishing a UAV-assisted emergency
communication model, it is necessary to discuss the air-to-ground channel. In A2G com-
munication, there are LoS (line of sight) paths and NLoS (not line of sight) paths, in which
the NLoS is obstructed by obvious obstacles. While A2G communication can enjoy LoS
channel in common cases, NLoS channel occurs when obstacles exist. As Figure 1 demon-
strates, urban architecture and natural landscape both perform as obstacles in UAV-assisted
communication. The occurrence probability for LoS/NLoS channel differs according to the
location of UAV and the density of obstacles.

It can be seen that the ratio of LoS and NLoS path varies with the height of UAV.
Therefore, a probabilistic LoS/NLoS channel model is applied [21] with parameter pLoS to
denote the occurrence probability of LoS channel and pNLoS for that in NLoS channel. In

177

Drones 2024, 8, 149

consideration of varied environmental factors, pLoS and pNLoS for a single A2G link can be
calculated by Equations (1) and (2).

pLOS = α(
180θ

π
− 15)γ, (1)

pNLOS = 1 − α(
180θ

π
− 15)γ, (2)

in which θ refers to the elevation angle between each user equipment and UAV, reflecting
the impact of UAV height and position on the link. Parameters α and γ are influenced by
environmental characteristics at the same time.

Figure 1. LoS/NLoS A2G channels in UAV-assisted communication. The model consists of a
UAV aerial base station, ground user equipment, urban obstacles, and natural obstacles, which can
influence LoS probability and then determine the A2G channel.

In the discussed earthquake-stricken cellular cells, mobile users evacuate from build-
ings and move toward certain exits. The ground base station breaks, interrupting commu-
nication. To plan a UAV for urgent communication, we need to model the environment
of the cell, and then adjust the UAV’s resources and location to maximize communication
quality.

As Figure 2 displays, the path of a UAV can be planned according to ground users’
evacuation trajectory in order to enhance communication quality and increase coverage.

Figure 2. UAV-assisted emergency communication with malfunctioned ground base station and

moving users. The model considers obstacles that impact both the trajectory of users and the signal
transmission with the UAV base station, and our research is dedicated to the scheduling of UAV
trajectory and resources to optimize the efficiency of communication during the evacuation.

178

Drones 2024, 8, 149

The LoS path of UAV is obstructed by several obstacles, including compound buildings
and greenery such as trees. Buildings are also regarded as obstacles for mobile users
to evacuate from. Moreover, at each communication timeslot, transmission power and
spectrum division of the UAV are determined.

As the proposed problem mainly focuses on the path planning and resource allocation
algorithm of the UAV base station, a number of assumptions are introduced to simplify the
model with no influence on algorithm construction. The UAV and valid moving ground
users are constrained in the area of earthquake-stricken cells, which means one user turns
invalid as soon as he/she runs out of the exit. When optimizing the trajectory, the height of
UAV is fixed in each experiment. The FDMA (frequency division multiple access) technique
is applied; thus, there is no interference between ground users and between ground users
to drones.

To build up this UAV-assisted communication model, specifically defined parame-
ters, formulas, and functions are introduced as follows. Briefly speaking, air-to-ground
communication quality is used as an evaluation index and expressed in terms of sys-
tem throughput.

Communication throughput depends on the arrival rate of bi-directional links. There-
fore, transmission power of uplink and downlink channels in A2G communication can be
calculated, followed by the corresponding SINR (Signal to Interference plus Noise Ratio).
Pug denotes received power at ground users in downlink communication, with Pgu defined
for received power at UAV in uplink mode. Taking the link parameter into consideration,
P(u, gj) describes transmission power between link j, in which u refers to UAV and gj

refers to jth ground user. The probabilistic LoS/NLoS space power propagation model is
clarified in (3) and (4), which defines transmission power P, received gain G, euclidean
distance d, and environmental loss parameter k0. PLoS and PNLoS refer to the occurrence
possibility of LoS and NLoS channel, while φLoS and φNLoS refer to the corresponding
shadow parameters.

Pug(u, gj) =
PuG(dj)

(k0dij)n(pLoSφLoS + pNLoSφNLOS)
. (3)

Pgu(u, gj) =
PgG0

(k0dij)n(pLoSφLoS + pNLoSφNLOS)
. (4)

SINRug =
Pug(ui, ej)

σ2 , SINRgu =
Pgu(ui, ej)

σ2 . (5)

Finally, the throughput is calculated through Shannon’s law as follows, as the consid-
ered communication occurs in the channel with AWGN (Additive White Gaussian Noise).

C = B × log2(1 + SINR). (6)

2.2. User Trajectory Prediction Model

Before conducting optimization for UAV path planning and resource allocation, it is
essential to define the ground users’ moving trajectories as the initial input data for optimiz-
ing UAV strategies, as we consider user dynamics. In this context, we introduce the cellular
automata (CA) method as a means to simulate and predict the users’ moving trajectories.

Cellular automata (CA) is a discrete grid-based dynamic model that encompasses
discrete representations of time, space, and state variables. Notably, it exhibits a local-
ized spatial interaction and temporal causality, enabling it to simulate the spatiotemporal
evolution process of intricate systems. CA methods have been found with extensive ap-
plications, including fire spread simulations and other domains. Due to its capability to
achieve a balance between accuracy and efficiency, CA is also well-suited for simulating
evacuation scenarios.

The CA model is kind of a multi-dimensional dynamic programming method to some
degree, as shown in Figure 3. Grids represent states at each location and are influenced

179

Drones 2024, 8, 149

by neighbor grids based on certain transition probability matrices. With the idea of the
CA model, the method for predicting users’ trajectories is then derived. To simplify the
evacuation model, we suppose all the mobile users in the earthquake-stricken compound
have already left their residential buildings and, therefore, are initially located within
so-called valid areas. Once a user successfully escapes from the evacuation exit, his or
her location becomes invalid and is no longer considered in the calculation of the overall
communication throughput.

Figure 3. Cellular automata schemes. States of grids change according to states of neighbors; thus,
they can predict data along time sequence with an initial input. CA model is applied to generate the
evacuation trajectory data of users.

Considering that the moving ground users are residents of the neighborhood, it is
reasonable to assume that they possess knowledge of the map, including the distribution
of obstacles and the location of exits. Accordingly, it can be supposed that the moving
trajectory of each ground user follows the shortest path from their current location to the
evacuation exit.

Suppose there are overall K users placed randomly in the valid area of the cellular zone,
with only one exit, while residential buildings play as obstacles in the area. The environment
is modeled as a 2-dimensional grid map, and the moving direction of the ground user can
be defined in a discrete direction set D = {east, south, west, north, northeast, southeast,
northwest, southwest}, mapping to numbers 0 to 7.

Mobile users select their moving direction from the direction set D according to the
current location, and adjust moving speed regarding current crowd density, namely the
influence of neighbor grids. The moving speed affected by the current density of adjacent
users is defined in the following equation:

v = v0/ρ (m/s), (7)

in which v0 refers to the typical moving speed of humans with no obstacles and neighbors.
ρ changes with the current number of users in a neighbor range, being an integer no less
than 1 m/s. Therefore the state of any grid can be initialized and then transformed into a
next state step by step, until reaching convergence.

By this means, after gridding the current map, the evacuation trajectories of users with
different initial distributions can be obtained through the CA method, and obtain the data
of user positions at each time point. The gridded map is illustrated in Figure 4.

180

Drones 2024, 8, 149

Figure 4. Grid map of valid evacuation area. The area includes obstacles, one exit, and 10 ground
users in the simulation. Each grid equals a square area of 1 m × 1 m in actual simulation.

2.3. Optimization Mathematical Model

In the UAV-assisted emergency communication discussed above, we propose the
air-to-ground communication model and simulation of the user evacuation trajectory. The
optimization mathematical functions are defined in this section, followed by complex-
ity analysis.

The main task is to recover the interrupted service and enhance communication
quality; thus, we set the total throughput as the objective function in optimization, as
shown in Equation (8). In the planning model with K users and N time slots, user location,
bandwidth division, and transmission power are considered decision variables. Both uplink
and downlink communication happens, regarding the UAV as the aerial base station.

Ri,n =
1
2
· Bn · [log2(1 + SINRug) + log2(1 + SINRgu)]. (8)

Subscript i represents the current moving user and subscript n represents the current
time slot. Moreover, design for constraint functions is also necessary. In the above discus-
sions, it can be seen that the objective function consists of the bi-directional arriving rate
Ri,n at each resource block. On one side, as UAVs have real physical characteristics, the
energy, velocity, and power are limited. On the other, the communication resource is also
limited, involving maximum bandwidth.

Therefore, the constraint variables are divided into 3 sets, which are U = [vn, an],
B = [Bn], and P = [EC

n , EF
n , Pn], referring to variables of UAV’s location and velocity,

variables of bandwidth resource, and variables of energy and power consumption. EC
n

represents communication energy cost at time slot n, and EF
n refers to flight consumption. To

ensure data communication, the lower bound of Ri is also specified. The total optimization
functions are shown in Equation (9),

max
UBP

N

∑
n

K

∑
i

Ri,n

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ Pu ≤ Pmax

∑C
i Ei,n + EF

n ≤ Emax

∑ Bi,n ≤ Bi
vn ≤ vmax
Rmin ≤ Ri

(9)

181

Drones 2024, 8, 149

The complexity of the discussed problem is proved to be NP-hard (non-deterministic
polynomial-time hard) in this section, which can reveal the significance and effectiveness
of our algorithm.

NP means a problem can not be resolved in polynomial time, and all the NP problems
can reduced to the NP-hard problem. Reduction is a reversible process, which means that
the solvers of both problems can be transformed into one. Therefore, any certain problem
can be proved NP-hard if it can be reduced to other typical NP-hard problems.

According to the list of proven NPH problems, the bounded knapsack problem (BKP)
is a NPH model with a basic optimization model:

max
n

∑
i=1

vixi

s.t.
{

∑n
i=1 wixi ≤ W, xi ∈ 0, 1, 2, . . . , c

(10)

xi refers to decision sequence, while wi stands for weight cost and vi represents value.
Similarly, in our problem, the decision sequence for UAV aims to maximize total throughput
with certain vi factors, and weight constraints are controlled in the communication energy
aspect. Thus, our problem can be reduced to a bounded knapsack problem, which indicates
the NPH characteristic of our model. Therefore, the joint optimization problem discussed
can only achieve an approximate solution, necessitating highly accurate algorithms.

3. Iterative Scheduling Algorithm for Throughput Optimization

To address the multi-objective optimization in the evacuation scenario, two primary
stages require deliberation, after the establishment of the communication model outlined
in the preceding section. The initial stage involves predicting unknown environmental
information, specifically the trajectories of moving ground users. Subsequently, the second
stage revolves around formulating an optimization algorithm for UAV to enhance total
communication efficiency based on these predictions.

3.1. Algorithm Architecture of ISATR

In the non-linear optimization field, the coordinate descent method differs from the gra-
dient descent method, as it searches for optimal values along all coordinates. The block coor-
dinate descent method adds the problem division stage to the traditional coordinate descent
method, which means it performs coordinate descent on several designed sub-problems.

x
(k)
i = arg min

xi

f (x(k)1 , . . . , x
(k)
i−1, xi, x

(k−1)
i+1 , . . . , x

(k−1)
n). (11)

As shown in (11) and Algorithm 1, the block coordinate descent algorithm groups all
the variables into several blocks including x1, x2, . . . , xn, and then in each iteration, only
the variables in one block are optimized, while the variables in the other blocks remain
unchanged. By updating the variables in different blocks alternately, the objective function
is finally reduced.

To tackle the throughput optimization problem with high complexity, we designed the
ISATR (iterative scheduling algorithm of trajectory and resource) for this solution, inspired
by the idea of BCD. The variables are divided into three categories, which are location,
transmission power, and bandwidth allocation of UAV at all considered time slots.

The energy cost of flight consumption is calculated in Equation (12), followed by
communication cost derived in Equation (13). EC represents communication energy cost,
with normalized emission power P0 of unit space distance. EF refers to flight consumption.
Other relative variables and abbreviations are listed in Table 1.

EC =
N

∑
n

∑
i

P0ΔT. (12)

182

Drones 2024, 8, 149

EF =
N

∑
n

mv2
n. (13)

Algorithm 1: Block coordinate descent algorithm

Data: Initial variables in n designed blocks X = {x0
1, x0

2,. . . ,x0
n}

Result: Optimal {x1, x2,. . . ,xn}
1 X ← X0;
2 for k = 1, 2, . . . do

3 for i = 1, 2, . . . do

4 xk
i ← xk

i , update xk
i with other blocks fixed;

5 end

6 end

7 if stopping criteria satisfied then

8 return {xk
1, xk

2, . . . , xk
n};

9 end

Table 1. Abbreviation definitions.

Variable Definition

m Mass of UAV
un UAV location at nth time slot
an Flight direction of UAV at nth time slot
vn Flight velocity of UAV at nth time slot

vmax Maximum flight speed of UAV
ei,n ith user’s location at nth time slot
Pu,n Transmission power of UAV at nth time slot
Pmax Upper bound of transmission power
Bi,n Bandwidth allocated to ith user at nth time slot
Bi Total bandwidth for A2G communication at time slot i

EC
i,n UAV communication power consumption with ith user at nth time slot

EF
n UAV flight energy consumption in nth time slot

Emax Upper bound of total energy consumption
Ri Throughput for communication with user i
R Total throughput of A2G communication

The simulation process terminates when the last moving ground user has left the
evacuation exit. Details of the iterative algorithm are clarified in Equation (14), followed by
its pseudo-code Algorithm 2, with complexity also discussed.

max
UBP

N

∑
n

K

∑
i

Ri,n

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ Pu ≤ Pmax

∑C
i Ei,n + EF

n ≤ Emax

∑ Bi,n ≤ Bi
vn ≤ vmax
Rmin ≤ Ri

(14)

The complexity of ISATR is also derived. For the block of UAV trajectory planning,
the time complexity is O(NK), where N represents the number of time steps and K denotes
the number of users. In each time step, the algorithm iterates over each user to calculate
the distance between the UAV and each user. This involves a loop nested within the time
step loop, resulting in a time complexity proportional to the product of N and K. Moreover,
constant-time calculations are performed to determine the signal-to-interference-plus-noise

183

Drones 2024, 8, 149

Algorithm 2: ISATR (Iterative Scheduling Algorithm of Trajectory and Resource)

Data: Initial variables in designed blocks X = {x0
U , x0

B,x0
P}

Result: Optimal sets {U, B, P}
1 x0

U ← {un}, u0 = [0, L/2], un = un−1 + [v0 · cosa0, v0 · sina0];
2 xB ← {Bi}, Bi = B/K;
3 xP ← {P0};
4 for t = 1, 2, . . . do
5 for k = 1, 2, . . . , K do
6 for i = 1, 2, . . . , N do

7 xB ← xt−1
B , xP ← xt−1

P ;
8 update xt

U(i, k) with other blocks fixed;
9 xU ← xt−1

U , xP ← xt−1
P ;

10 update xt
B(i, k) with other blocks fixed;

11 xU ← xt−1
U , xB ← xt−1

B ;
12 update xt

P(i, k) with other blocks fixed;
13 end

14 end

15 end
16 if stopping criteria satisfied then

17 return {xT
U , xT

B , xT
P};

18 end

ratio (SINR) and to update the total throughput. Therefore, the time complexity of this
block is O(NK). Similar to the UAV positions optimization, the time complexity of the other
two blocks is also O(NK).

Therefore, the complexity of our method can be derived as O(NK), in which K repre-
sents user number, and N represents time slots, which can be regarded as O(n2).

3.2. UAV Trajectory Subtask Optimization

The first sub-optimization problem block focuses on UAV path planning, with full
knowledge of external information acquired in the previous iteration round, including
resource allocation and environmental states. The sum of Ri stands for the objective
function, namely the total throughput of the A2G communication links.

Objevtive = ∑ Ri

= ∑ B ∗ log2(1 + SINR)

= ∑ B ∗ log2(1 +
Pug(ui, ej)

σ2).

(15)

As the UAV location changes, the parameters of the A2G communication channel
model and the distance between UAV base station and ground users also change, which can
be determined by UAV position and known environmental information. Environmental
parameters also depend on the UAV’s location, thus influencing the SINR value of commu-
nication links. Therefore, when fixing the other two sub-optimization blocks, the objective
function can be regarded as a function of the UAV’s position vector.

184

Drones 2024, 8, 149

To design the location optimization block, constraints of acceleration and energy
limitation are considered, which are performed as unequal constraints.

max
un ,vn

K

∑
i

Ri

s.t.

⎧⎪⎪⎨⎪⎪⎩
∑N

n ∑i EC
i,n + ∑n EF

n ≤ Emax

0 ≤ un ≤ [xmax, ymax]
−π ≤ an ≤ π
vn ≤ vmax

(16)

Decision variables un and vn represent sets of the two-dimensional location and speed
of UAV base station at all time slots, while K and N represent the total number of moving
ground users and communication time slots. ΔT is the interval of each time slot and
P0 counts for typical transmission power of UAV; therefore, ∑N

n ∑i EC
i,n represents energy

consumption of communication, while ∑N
n EF

n is flight energy consumption. un stands for
location of UAV at time slot n, and an indicates the direction of UAV.

3.3. Transmission Power Subtask Optimization

When the location and bandwidth sub-optimization blocks are fixed, the sup-optimization
problem of UAV transmission power consumption can be built by the same format. As
transmission power multiplying Pug term, it can influence the objective function:

Objevtive = ∑ Ri

= ∑ B ∗ log2(1 +
Pug(ui, ej)

σ2)

= ∑ B ∗ log2(1 +
PuG(dj)

(k0dij)n(pLoSφLoS + pNLoSφNLOS)
· 1

σ2).

(17)

At every time slot, the objective function Ri corresponding to ground user i can be
calculated based on transmission power, effective communication bandwidth distributed
to user i, and current UAV location. In the power optimization block, the initial bandwidth
allocation and UAV moving strategy and fixed as follows, which are simply compliant with
velocity and bandwidth constraints:

Bi = B/K.
un = un−1 + [v0 · cosa0, v0 · sina0].

(18)

When other environmental conditions are static, communication efficiency can grow
with transmission power. Thus, to optimize UAV transmission power Pu,n at time slot n,
necessary constraints need to be specified. Relative constraints focus on the upper range of
transmission power and total energy consumption, and the sub-optimization problem is
shown as follows:

max
Pu,n

N

∑
n

K

∑
i

Ri,n

s.t.
{

0 ≤ Pu,n ≤ Pmax

∑N
n Pu,nΔT + EF

n ≤ Emax

(19)

Single decision variable Pu,n denotes the transmission power of UAV at time slot n,
while the upper bound is set as Pmax. Energy constraints are consistent with that in the
location optimization block discussed above, limiting transmission power from selecting
the maximum at all times.

185

Drones 2024, 8, 149

3.4. Communication Bandwidth Allocation Subtask Optimization

The third sub-optimization block pertains to the allocation of bandwidth, which
encompasses a decision variable dimension of significant magnitude.

Objevtive = ∑ Ri
= ∑ Bi ∗ log2(1 + SINR).

(20)

To ensure optimal communication efficiency for all users, it is imperative to guarantee
that the allocated bandwidth does not fall below the minimal threshold required for the
successful transmission of communication data, resulting in constraint on Ri. An equal
constraint is also given in this sub-block, as the sum of allocated bandwidths needs to be
no more than B, but with no waste.

max
Bi

N

∑
n

K

∑
i

Ri,n

s.t.
{

Rmin ≤ Ri

∑K
i Bi = B.

(21)

Decision variable Bi refers to bandwidth resource allocated to user i at a certain time
slot. After these three sub-optimization tasks iterate and eventually converge, a multi-stage
planning scheme can be proposed as follows, with sets of decision variables including
U, B, and P, regarding UAV location, bandwidth allocation, and power control strategy,
respectively. After all, our designed multi-subtask algorithm is established, with three
sub-block problem consisting the total optimization function.

max
UBP

N

∑
n

K

∑
i

Ri,n

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ Pu ≤ Pmax

∑C
i Ei,n + EF

n ≤ Emax

∑ Bi,n ≤ Bi
vn ≤ vmax
Rmin ≤ Ri

(22)

4. Numerical Results and Analysis

In this section, we validate the efficiency and robustness of the proposed optimization
method under different UAV heights and environments. The optimized planned trajectory
and time sequence of communication resources are also demonstrated, under our assump-
tions introduced in the model establishment, and trajectory prediction of moving ground
users. Figure 5 demonstrates path planning for several scenarios.

To train UAV planning, the trajectory of moving ground users needs specification at
first. With the CA model mentioned above, we have obtained the predicted data of ground
users’ location along the time sequence successfully.

For a simple demonstration and test, the number of ground users is set as 10, and the
range of earthquake-stricken area is rectangular with length = 100 m and width = 50 m,
with several obstacles scattered in, resembling residential buildings. The typical speed of
a moving user in adequate wide space is 5 m/s, with evacuation time discretized into a
time series with an interval of 1 s. All the residents have already left architecture at the
first second, with random locations in the valid areas. As time passes, all users move in
the shortest path directed to escape. In this simulation, the evacuation is completed in 80 s,
thus we obtain the predicted trajectory of moving ground users. The software interface of
the simulation is shown in Figure 6.

186

Drones 2024, 8, 149

20 30 40 50 60 70 80 90

x/m
0

10

20

30

40

50

60

y/
m

Mu1 Mu2 Mu3 Mu4 Mu5
Mu6 Mu7 Mu8 Mu9 Mu10

(a)
20 30 40 50 60 70 80 90

x/m
0

10

20

30

40

50

60

y/
m

Mu1 Mu2 Mu3 Mu4 Mu5
Mu6 Mu7 Mu8 Mu9 Mu10

(b)

20 30 40 50 60 70 80 90

x/m
0

10

20

30

40

50

60

y/
m

Mu1 Mu2 Mu3 Mu4 Mu5
Mu6 Mu7 Mu8 Mu9 Mu10

(c)

Figure 5. Trajectory of ground users predicted by CA model. The moving trajectories of considered
users are depicted using scatter plots in different colors, showing that they effectively avoided
obstacles and found the shortest possible paths to the exit, in different tested scenarios. (a) Predicted
trajectory of moving users with 2 obstacles of different sizes. (b) The predicted trajectory of moving
users with 6 scattered obstacles. (c) Predicted trajectory of moving users with 1 centered obstacle.

187

Drones 2024, 8, 149

Figure 6. Software Illustration of ground users’ moving trajectory simulation. As time passes,
the number of evacuation people updates and provides a real-time demonstration of user evacuation
movement based on CA simulation.

As the simulated results demonstrate, the trajectory of users can be predicated and the
data can be applied to train ISATR later. We have generated different user trajectories to
evaluate the adaptability of our proposed method, with scenarios varied in user distribution,
obstacles, and exits.

4.1. Evaluation of UAV Trajectory planning

Based on the environmental information and user trajectories determined above,
trajectory planning for the UAV base station has been achieved through the iterative
optimization algorithm for trajectory sub-block problem, with parameters in the other two
sub-block problems fixed.

As shown in Figure 7, the proposed trajectory planning method achieves the fastest con-
vergence. Compared to several path planning methods including A* and genetic algorithm
(GA), our optimized path planning strategy performs best in the discussed environment.

Visualization of the planned UAV trajectory is given in Figure 8, with trajectories of
10 moving users also displayed.

In each sub-graph, we release the aerial base station from different initial points and
test the algorithm with different user distributions, finding that it maintains stability and
moves synchronously with the trajectories of users toward the exit. In Figure 8a,b, there are
two different-sized obstacle buildings in the environment, with the exit located at the center-
right of the map. The UAVs are released from different initial positions, demonstrating
their adaptability to different initial release positions. In Figure 8c,d, the exit is set at
the bottom-right corner of the map. The scenarios with six dispersed obstacles and one
central obstacle in the map are tested, thus validating the effectiveness of the algorithm in
different scenarios.

Meanwhile, the number of inflection points on the convergence curve matches the
number of users specified in the simulation, lending reasonable support to the optimiza-
tion’s correctness. Therefore, the effectiveness and robustness of the proposed trajectory
planning algorithm are validated.

188

Drones 2024, 8, 149

10 20 30 40 50 60 70 80

Timeslot/0.5s

6600

6650

6700

6750

6800

6850

6900

T
hr

ou
gh

pu
t/b

ps

Throughput optimization with U

opt
fix
A*

70 75 80

6880

6890

6900

Figure 7. Throughput optimized with UAV trajectory in different methods. It can be found that
our ISATR opt method outperforms the traditional A* algorithm and the algorithm with fixed
UAV trajectory.

30 40 50 60 70 80 90

x/m
0

10

20

30

40

50

y/
m

Mu1 Mu2 Mu3 Mu4 Mu5
Mu6 Mu7 Mu8 Mu9 Mu10
UAV

30 40 50 60 70 80 90

x/m
0

10

20

30

40

50

y/
m

Mu1 Mu2 Mu3 Mu4 Mu5
Mu6 Mu7 Mu8 Mu9 Mu10
UAV

(a) (b)
20 30 40 50 60 70 80 90

x/m
0

10

20

30

40

50

60

y/
m

Mu1 Mu2 Mu3 Mu4 Mu5
Mu6 Mu7 Mu8 Mu9 Mu10
UAV

20 30 40 50 60 70 80 90

x/m
0

10

20

30

40

50

60

y/
m

Mu1 Mu2 Mu3 Mu4 Mu5
Mu6 Mu7 Mu8 Mu9 Mu10
UAV

(c) (d)

Figure 8. Trajectory planning illustration. Different initial positions for UAV trajectory optimization
via ISATR are tested to verify the effectiveness and robustness of our algorithm. It can be seen that
the trajectory of UAV is always consistent with users. (a) ISATR opted path 1. (b) ISATR opted path 2.
(c) ISATR opted path 3. (d) ISATR opted path 4.

189

Drones 2024, 8, 149

4.2. Evaluation of Resource Allocation

Besides path planning of the UAV base station, communication resource allocation
also matters. Transmission power and bandwidth allocation for all ground users at different
time slots are derived via our designed optimization algorithm.

It can be seen in Figures 9 and 10 that as time passes, the bandwidth allocation varies
as the power of the UAV increases because the number of users in the valid area decreases.
It is worth noting that there are 10 significant changes in P of the UAV base station, which
is equal to the number of moving ground users, making it consistent with the logic of
algorithm optimization.

Frequency Spectrum Allocation

0 10 20 30 40 50 60 70 80

Time Slot

0

50

100

150

200

250

300

350

400

450

500

B
an

dw
id

th

Mu1 Mu2 Mu3 Mu4 Mu5 Mu6 Mu7 Mu8
Mu9 Mu10

Figure 9. Bandwidth allocation illustration. Bandwidth allocation scheduling is influenced by
the positions of UAV and users, as well as the power of UAV, also adhering to the minimum
throughput constraint.

Variation of P Over Time Slots

0 10 20 30 40 50 60 70 80

Time Slot

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
 V

al
ue

Figure 10. Power control illustration. UAV transmission power control is influenced by the positions
of UAV and users, as well as the current bandwidth allocation, also adhering to the minimum
throughput constraint.

190

Drones 2024, 8, 149

4.3. Evaluation of Trajectory and Resource Joint Optimization

With UAV location, bandwidth allocation, and transmission power all optimized,
total throughput in the communication system has an obvious increase, as illustrated in
Figure 11.

0 10 20 30 40 50 60 70 80

Timeslot/0.5s

6550

6600

6650

6700

6750

6800

6850

6900

6950

T
hr

ou
gh

pu
t/b

ps

Throughput optimization with U

U-opt
original

0 10 20 30 40 50 60 70 80

Timeslot/0.5s

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

T
hr

ou
gh

pu
t/b

ps

104 Throughput optimization with B

B-opt
original

(a) U-optimized (b) B-optimized

0 10 20 30 40 50 60 70 80

Timeslot/0.5s

6450

6500

6550

6600

6650

6700

6750

6800

6850

T
hr

ou
gh

pu
t/b

ps

Throughput optimization with P

P-opt
original

0 10 20 30 40 50 60 70 80

Timeslot/0.5s

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

T
hr

ou
gh

pu
t/b

ps

104 Throughput optimization with UBP

UBP-opt
original

(c) P-optimized (d) UBP-optimized

Figure 11. Throughput optimized with different decision variables. (a) Throughput with U (UAV
location) optimized. (b) Throughput with B (bandwidth allocation) optimized. (c) Throughput with
P (power of UAV) optimized. (d) Throughput with U, B, and P optimized.

The optimization of the three components, U, B, and P, can be seen to have all con-
tributed to the improvement in throughput, with the combined optimization demonstrating
better performance compared to the contrast algorithms. Among them, the optimization of
B presents a step-like pattern, attributed to the consideration of the issue where ground
users leaving the valid area are not involved in allocation in this algorithm. It can be
observed that the number of steps is consistent with the total number of users.

Moreover, we select the average total throughput observed over the time sequence
of simulation as the evaluation metric and compare our method with several alternative
strategies, experimenting with various sets of environmental information. At different
heights, the UAV adjusts the routing plan and resource allocation strategy according to the
optimization functions, maintaining a stable optimization effect, as shown in Figure 12.

In Figure 13, the throughput optimization achieved by various methods is depicted,
highlighting the superior performance of our ISATR method compared to the others. The
compared methods include A*, GA, and fixed algorithm, in which “fixed” refers to the
non-optimized case.

191

Drones 2024, 8, 149

h=20 h=40 h=60 h=80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
ve

ra
ge

 T
hr

ou
gh

pu
t(

bp
s)

109

opt
origin

(a)

Dense urban Urban Suburban
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
ve

ra
ge

 T
hr

ou
gh

pu
t(

bp
s)

109

opt
origin

(b)

Figure 12. Average total throughput illustration in typical environments. (a) Throughput opti-
mized at different heights. (b) Throughput optimized in different environments. Compared to the
non-optimized value, the ISATR method has an increase of 42%.

10 20 30 40 50 60 70 80

Timeslot/0.5s

7000

8000

9000

10000

11000

12000

13000

T
hr

ou
gh

pu
t/b

ps

Throughput optimization with UBP

opt
fix
A*
GA

49 50 51 52

1.04

1.06

1.08

1.1

104

Figure 13. Throughput optimization with different methods. Throughput with location, band-
width allocation, and power control optimized via different algorithms, including the proposed opt
method (ISATR), GA method, A* method, and fixed case. ISATR outperforms the others.

192

Drones 2024, 8, 149

5. Discussion

In the above sections, we have introduced an iterative algorithm ISATR to tackle the
joint optimization problem of UAV-assisted communication, involving trajectory planning,
power control, and bandwidth allocation. This proposed algorithm is dedicated to pro-
viding the pre-planning scheme of a UAV as a temporary base station in an emergency
scenario. It can serve as a necessary baseline in case of emergencies, benefiting from its
high accuracy.

Therefore, it is necessary to combine ISATR with other real-time algorithms, such
as deep reinforcement learning (DRL), for practical implications. The main difference
between ISATR and DRL is that their application scenarios are complementary. The former
is applied to pre-planning which requires high accuracy, while the latter is applied to
dynamic planning that requires real-time response. DRL-based UAV planning algorithm
will be studied in future work to provide a dynamic response.

Physical limitations of UAVs are also essential in UAV-assisted systems. One notable
drawback lies in the current weight and complexity of UAV systems, which can pose
challenges in rapid deployment, particularly in emergency scenarios where swift action
is imperative. To address these limitations, future research could focus on advancing
lightweight UAV designs and streamlined deployment mechanisms. Integration of ad-
vanced materials and miniaturized components could significantly reduce the weight and
size of UAVs, facilitating quick and agile deployment even in constrained environments.

6. Conclusions

This paper discusses a UAV-assisted communication scenario in an earthquake-
stricken cellular cell. As the ground base station is devastated and blocked, a UAV is
dispatched as a temporary aerial base station. An ISATR (iterative scheduling algorithm
of trajectory and resource) is constructed to solve optimization questions to enhance the
UAV’s communication efficiency. A trajectory prediction model is derived via cellular
automata and provides location data of ground users in evacuation for the UAV’s decision.
Path planning and resource allocation including bandwidth distribution and transmission
power control are involved in the decision space, and the total throughput of A2G channels
is considered as the objective function in optimization. With our designed multi-stage
subtask iteration optimization algorithm, the total throughput is enhanced. Compared to
the traditional optimization method GA and path planning method A*, our method has
an advantage in higher optimization performance. Finally, we have an enhancement of
approximately 40% total throughput tested in several typical environments, compared to
non-optimized cases, which indicates that the proposed method can serve as an effective
algorithm for pre-planning emergency UAV scheduling tasks.

Author Contributions: Conceptualization, Z.Z. and Y.L.; methodology, Z.Z., Y.W., and Y.L.; software
and validation, Z.Z. and X.Z.; formal analysis, H.Z.; investigation, Z.Z. and W.D.; resources, Y.W.;
data curation, Y.L.; writing—original draft preparation, Z.Z. and X.Z.; writing—review and editing,
Y.L. and Y.W.; visualization, Z.Z. and H.Z.; supervision, W.D.; project administration, W.D.; funding
acquisition, W.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (U20B2042).

Data Availability Statement: The data used to support this study have not been made available.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE
Commun. Mag. 2016 , 54, 36–42. [CrossRef]

2. Kim, H.; Ben-Othman, J. A Collision-Free Surveillance System Using Smart UAVs in Multi Domain IoT. IEEE Commun. Lett. 2018,
22, 2587–2590. [CrossRef]

193

Drones 2024, 8, 149

3. Hasan, K.M.; Suhaili, W.S.; Shah Newaz, S.H.; Ahsan, M.S. Development of an Aircraft Type Portable Autonomous Drone for
Agricultural Applications. In Proceedings of the 2020 International Conference on Computer Science and Its Application in
Agriculture (ICOSICA), Bogor, Indonesia, 16–17 September 2020; pp. 1–5. [CrossRef]

4. Alsawy, A.; Hicks, A.; Moss, D.; Mckeever, S. An Image Processing Based Classifier to Support Safe Dropping for Delivery-by-
Drone. In Proceedings of the 2022 IEEE 5th International Conference on Image Processing Applications and Systems (IPAS),
Genova, Italy, 5–7 December 2022; Volume 5, pp. 1–5. [CrossRef]

5. Alrayes, F.S.; Alzahrani, J.S.; Alissa, K.A.; Alharbi, A.; Alshahrani, H.; Elfaki, M.A.; Yafoz, A.; Mohamed, A.; Hilal, A.M. Dwarf
Mongoose Optimization-Based Secure Clustering with Routing Technique in Internet of Drones. Drones 2022, 6, 247. [CrossRef]

6. Samir, M.; Sharafeddine, S.; Assi, C.M.; Nguyen, T.M.; Ghrayeb, A. UAV Trajectory Planning for Data Collection from Time-
Constrained IoT Devices. IEEE Trans. Wirel. Commun. 2020, 19, 34–46. [CrossRef]

7. Huang, Z.; Chen, C.; Pan, M. Multiobjective UAV Path Planning for Emergency Information Collection and Transmission. IEEE
Internet Things J. 2020, 7, 6993–7009. [CrossRef]

8. Xu, J.; Ota, K.; Dong, M. Big Data on the Fly: UAV-Mounted Mobile Edge Computing for Disaster Management. IEEE Trans.
Netw. Sci. Eng. 2020, 7, 2620–2630. [CrossRef]

9. Jeong, S.; Simeone, O.; Kang, J. Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path
Planning. IEEE Trans. Veh. Technol. 2018, 67, 2049–2063. [CrossRef]

10. Asad, M.; Aidaros, O.A.; Beg, R.; Dhahri, M.A.; Neyadi, S.A.; Hussein, M. Development of autonomous drone for gas sensing
application. In Proceedings of the 2017 International Conference on Electrical and Computing Technologies and Applications
(ICECTA), Ras Al Khaimah, United Arab Emirates, 21–23 November 2017; pp. 1–6. [CrossRef]

11. Wu, C.; Ju, B.; Wu, Y.; Lin, X.; Xiong, N.; Xu, G.; Li, H.; Liang, X. UAV Autonomous Target Search Based on Deep Reinforcement
Learning in Complex Disaster Scene. IEEE Access 2019, 7, 117227–117245. [CrossRef]

12. Abeygunawaradana, P.; Gamage, N.; De Alwis, L.; Ashan, S.; Nilanka, C.; Godamune, P. E-Medic—Autonomous Drone for
Healthcare System. In Proceedings of the 2021 International Conference on Computing, Communication, and Intelligent Systems
(ICCCIS), Greater Noida, India, 19–20 February 2021; pp. 994–999. [CrossRef]

13. Bitar, A.; Jamal, A.; Sultan, H.; Alkandari, N.; El-Abd, M. Medical Drones System for Amusement Parks. In Proceedings of
the 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Hammamet, Tunisia, 30
October–3 November 2017; pp. 19–20. ISSN: 2161-5330 . [CrossRef]

14. Besada, J.A.; Bernardos, A.M.; Bergesio, L.; Vaquero, D.; Campaña, I.; Casar, J.R. Drones-as-a-service: A management architecture
to provide mission planning, resource brokerage and operation support for fleets of drones. In Proceedings of the 2019 IEEE
International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kyoto, Japan, 11–15
March 2019; pp. 931–936. [CrossRef]

15. Yan, C.; Fu, L.; Zhang, J.; Wang, J. A Comprehensive Survey on UAV Communication Channel Modeling. IEEE Access 2019,
7, 107769–107792. [CrossRef]

16. Khawaja, W.; Guvenc, I.; Matolak, D.W.; Fiebig, U.C.; Schneckenburger, N. A Survey of Air-to-Ground Propagation Channel
Modeling for Unmanned Aerial Vehicles. IEEE Commun. Surv. Tutorials 2019, 21, 2361–2391. [CrossRef]

17. Alsamhi, S.H.; Shvetsov, A.V.; Shvetsova, S.V.; Hawbani, A.; Guizani, M.; Alhartomi, M.A.; Ma, O. Blockchain-Empowered
Security and Energy Efficiency of Drone Swarm Consensus for Environment Exploration. IEEE Trans. Green Commun. Netw. 2023,
7, 328–338. [CrossRef]

18. Srivastava, K.; Pandey, P.C.; Sharma, J.K. An Approach for Route Optimization in Applications of Precision Agriculture Using
UAVs. Drones 2020, 4, 58. [CrossRef]

19. Luan, Q.; Cui, H.; Zhang, L.; Lv, Z. A Hierarchical Hybrid Subtask Scheduling Algorithm in UAV-Assisted MEC Emergency
Network. IEEE Internet Things J. 2022, 9, 12737–12753. [CrossRef]

20. Cabreira, T.M.; Brisolara, L.B.; Ferreira, P.R., Jr. Survey on Coverage Path Planning with Unmanned Aerial Vehicles. Drones 2019,
3, 4. [CrossRef]

21. Al-Hourani, A.; Kandeepan, S.; Jamalipour, A. Modeling air-to-ground path loss for low altitude platforms in urban environments.
In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX, USA, 8–12 December 2014; pp. 2898–2904.
ISSN: 1930-529X. [CrossRef]

22. Lyu, Y.; Wang, W.; Sun, Y.; Yue, H.; Chai, J. Low-Altitude UAV Air-to-Ground Multilink Channel Modeling and Analysis at 2.4
and 5.9 GHz. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2135–2139. [CrossRef]

23. Goddemeier, N.; Daniel, K.; Wietfeld, C. Role-Based Connectivity Management with Realistic Air-to-Ground Channels for
Cooperative UAVs. IEEE J. Sel. Areas Commun. 2012, 30, 951–963. [CrossRef]

24. Ge, C.; Zhai, D.; Jiang, Y.; Zhang, R.; Yang, X.; Li, B.; Tang, X. Pathloss and Airframe Shadowing Loss of Air-to-Ground UAV
Channel in the Airport Area at UHF- and L-Band. IEEE Trans. Veh. Technol. 2023, 72, 8094–8098. [CrossRef]

25. Li, H.; Ding, L.; Wang, Y.; Wang, Z. Air-to-Ground Channel Modeling and Performance Analysis for Cellular-Connected UAV
Swarm. IEEE Commun. Lett. 2023, 27, 2172–2176. [CrossRef]

26. Wang, S.; Lim, T.H.; Choo, H. Path Loss Analysis Considering Atmospheric Refractivity and Precipitation for Air-to-Ground
Radar. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1968–1972. [CrossRef]

27. Cui, Z.; Guan, K.; Oestges, C.; Briso-Rodríguez, C.; Ai, B.; Zhong, Z. Cluster-Based Characterization and Modeling for UAV
Air-to-Ground Time-Varying Channels. IEEE Trans. Veh. Technol. 2022, 71, 6872–6883. [CrossRef]

194

Drones 2024, 8, 149

28. Wan, Y.; Zhong, Y.; Ma, A.; Zhang, L. An Accurate UAV 3-D Path Planning Method for Disaster Emergency Response Based on
an Improved Multiobjective Swarm Intelligence Algorithm. IEEE Trans. Cybern. 2023, 53, 2658–2671. [CrossRef]

29. Wang, X.; Pan, J.; Yang, Q.; Kong, L.; Snášel, V.; Chu, S. Modified Mayfly Algorithm for UAV Path Planning. Drones 2022, 6, 134.
[CrossRef]

30. Zheng, L.; Tian, Y.; Wang, H.; Hong, C.; Li, B. Path Planning of Autonomous Mobile Robots Based on an Improved Slime Mould
Algorithm. Drones 2023, 7, 257. [CrossRef]

31. Shen, Y.; Zhu, Y.; Kang, H.; Sun, X.; Chen, Q.; Wang, D. UAV Path Planning Based on Multi-Stage Constraint Optimization.
Drones 2021, 5, 144. [CrossRef]

32. Wang, B.; Sun, Y.; Sun, Z.; Nguyen, L.D.; Duong, T.Q. UAV-Assisted Emergency Communications in Social IoT: A Dynamic
Hypergraph Coloring Approach. IEEE Internet Things J. 2020, 7, 7663–7677. [CrossRef]

33. Prasad, N.L.; Ramkumar, B. 3-D Deployment and Trajectory Planning for Relay Based UAV Assisted Cooperative Communication
for Emergency Scenarios Using Dijkstra’s Algorithm. IEEE Trans. Veh. Technol. 2023, 72, 5049–5063. [CrossRef]

34. Zhang, S.; Zeng, Y.; Zhang, R. Cellular-Enabled UAV Communication: A Connectivity-Constrained Trajectory Optimization
Perspective. IEEE Trans. Commun. 2019, 67, 2580–2604. [CrossRef]

35. Jayaweera, H.; Hanoun, S. Path Planning of Unmanned Aerial Vehicles (UAVs) in Windy Environments. Drones 2022, 6, 101.
[CrossRef]

36. Zhang, S.; Li, Y.; Ye, F.; Geng, X.; Zhou, Z.; Shi, T. A Hybrid Human-in-the-Loop Deep Reinforcement Learning Method for UAV
Motion Planning for Long Trajectories with Unpredictable Obstacles. Drones 2023, 7, 311. [CrossRef]

37. Gubán, M.; Udvaros, J. A Path Planning Model with a Genetic Algorithm for Stock Inventory Using a Swarm of Drones. Drones
2022, 6, 364. [CrossRef]

38. Zhang, L.; Ma, X.; Zhuang, Z.; Xu, H.; Sharma, V.; Han, Z. Q-Learning Aided Intelligent Routing With Maximum Utility in
Cognitive UAV Swarm for Emergency Communications. IEEE Trans. Veh. Technol. 2023, 72, 3707–3723. [CrossRef]

39. Zhang, T.; Lei, J.; Liu, Y.; Feng, C.; Nallanathan, A. Trajectory Optimization for UAV Emergency Communication With Limited
User Equipment Energy: A Safe-DQN Approach. IEEE Trans. Green Commun. Netw. 2021, 5, 1236–1247. [CrossRef]

40. Qie, H.; Shi, D.; Shen, T.; Xu, X.; Li, Y.; Wang, L. Joint Optimization of Multi-UAV Target Assignment and Path Planning Based on
Multi-Agent Reinforcement Learning. IEEE Access 2019, 7, 146264–146272. [CrossRef]

41. Wang, F.; Xu, X.; Chen, M.; Nzige, J.; Chong, F. Simulation Research on Fire Evacuation of Large Public Buildings Based on
Building Information Modeling. Complex Syst. Model. Simul. 2021, 1, 122–130. [CrossRef]

42. Hou, Z.; Sun, Y.; Cai, M. 3D Visualization of Forest Fire Spread Model Based on Cellular Automata. In Proceedings of the 2023 8th
International Conference on Computer and Communication Systems (ICCCS), Guangzhou, China, 21–23 April 2023; pp. 880–883.
[CrossRef]

43. Ye, Z.; Yin, Y.; Zong, X.; Wang, M. An Optimization Model for Evacuation Based on Cellular Automata and Ant Colony Algorithm.
In Proceedings of the 2014 Seventh International Symposium on Computational Intelligence and Design, Hangzhou, China, 13–14
December 2014; Volume 1, pp. 7–10. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

195

Citation: Lou, J.; Ding, R.; Wu, W.

HHPSO: A Heuristic Hybrid Particle

Swarm Optimization Path Planner

for Quadcopters. Drones 2024, 8, 221.

https://doi.org/10.3390/

drones8060221

Academic Editors: Jihong Zhu, Heng

Shi, Zheng Chen and Minchi Kuang

Received: 19 April 2024

Revised: 22 May 2024

Accepted: 22 May 2024

Published: 28 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

HHPSO: A Heuristic Hybrid Particle Swarm Optimization Path
Planner for Quadcopters

Jiabin Lou, Rong Ding * and Wenjun Wu

State Key Laboratory of Software Development Environment, School of Artificial Intelligence, Beihang University
(BUAA), Beijing 100191, China; loujiabin@buaa.edu.cn (J.L.); wwj09315@buaa.edu.cn (W.W.)
* Correspondence: dingr@buaa.edu.cn

Abstract: Path planning for quadcopters has been proven to be one kind of NP-hard problem with
huge search space and tiny feasible solution range. Metaheuristic algorithms are widely used in
such types of problems for their flexibility and effectiveness. Nevertheless, most of them cannot
meet the needs in terms of efficiency and suffer from the limitations of premature convergence
and local minima. This paper proposes a novel algorithm named Heuristic Hybrid Particle Swarm
Optimization (HHPSO) to address the path planning problem. On the heuristic side, we use the
control points of cubic b-splines as variables instead of waypoints and establish some heuristic rules
during algorithm initialization to generate higher-quality particles. On the hybrid side, we introduce
an iteration-varying penalty term to shrink the search range gradually, a Cauchy mutation operator
to improve the exploration ability, and an injection operator to prevent population homogenization.
Numerical simulations, physical model-based simulations, and a real-world experiment demonstrate
the proposed algorithm’s superiority, effectiveness and robustness.

Keywords: particle swarm optimization; path planning; motion capture; unmanned aerial vehicles
(UAVs); aerial systems; applications

1. Introduction

Path planning is the cornerstone of unmanned aerial systems, enabling Unmanned
Aerial Vehicles (UAVs) to handle complex scenarios [1]. For any given scenario, there are
generally three elements: task, individual, and environment, which together comprise
the path planning optimization problem. The planned path should be optimal within
specific criteria associated with the task. For example, in time-sensitive tasks such as air
delivery and military transport, the core principle is to minimize the distance between the
drone access locations, thereby reducing the time and fuel cost [2]. However, for search
and rescue, patrol, and other search-related tasks, the performance metric is usually to
maximize the area coverage within a fixed amount of time [3]. Meanwhile, the planned
path should be able to safely address environmental threats and smoothly respond to
individual maneuver properties. In general, solving this optimization problem is not a
complicated task. However, as a task becomes more urgent, the environment becomes
more complex, or the UAV becomes less manoeuvrable, it remains a challenge to calculate
feasible optimal paths to avoid all threats within an acceptable time [4].

Researchers have proposed a series of approaches to solve the UAV path planning
problem. Previously, the path planning problem was generally equivalent to the shortest
path problem, and deterministic search algorithms were widely adopted, for instance,
the Dijkstra algorithm [5], the Voronoi diagram method [6] and the A* algorithm [7,8].
However, as researchers began to consider the specific demands of different scenarios,
the optimal path has become associated with the average altitude, fuel consumption,
environmental threats and so on, making it clear that the problem has become increasingly
complex. We know that the path planning problem is an NP-hard problem, which is

Drones 2024, 8, 221. https://doi.org/10.3390/drones8060221 https://www.mdpi.com/journal/drones196

Drones 2024, 8, 221

difficult to solve with deterministic algorithms when the scale of the problem becomes
large. Therefore, researchers have slowly shifted from using deterministic to using non-
deterministic algorithms.

Metaheuristics are one kind of non-deterministic algorithm that can provide a suffi-
ciently good solution to an optimization problem with limited computation capacity. They
are nature-inspired, population-based, and generation-iterated, facilitating powerful global
searching and rapid convergence capability. In recent years, metaheuristic algorithms
have been increasingly favored for UAV path planning because of their ability to explore
low-dimensional manifolds in high-dimensional space [9]. For example, ref. [10] proposed
an initial population enhancement method in a Genetic Algorithm(GA), which speeds
up the convergence process. Ref. [11] proposed a spherical vector-based Particle Swarm
Optimization (PSO) to solve the problem within complicated environments subjected to
multiple threats. In addition, other meta-heuristic algorithms such as Differential Evolution
(DE) [12–14], Ant Colony Optimization (ACO) [15,16], and Wolf Pack Search (WPS) [17]
have been extensively studied in recent years.

Among these algorithms, PSO is much simpler to implement while maintaining excel-
lent efficiency, effectiveness and scalability, and thus has been successfully applied in many
drone fields. Ref. [18] presented a comprehensively improved Particle Swarm Optimization
(CIPSO) algorithm with the chaos-based logistic map initialization and mutation strategy
to solve this problem in war scenarios. Ref. [19] proposed a multiobjective particle swarm
optimization algorithm with multimode collaboration based on reinforcement learning
(MCMOPSO-RL) algorithm to find the optimal path and handle threats simultaneously.
Ref. [20] proposed the SHOPSO algorithm, which combines the Selfish Swarm Optimizer
(SHO) and the PSO, to accomplish a given combat mission at a meager cost. Nevertheless,
the scenarios used in these studies are relatively simple: the number of threats was small,
and the terrain was small-scale or flat, making these algorithms impractical for complex
real scenes. The main reason is that PSO, as a general optimizer, does not analyze the
built-in physics for specific problems. Although it inherently provides approaches for
automatically abstracting features from iterations, the iterations require sufficient time to
play a part. Therefore, with the limited execution time, PSO always suffers from premature
convergence limitations, hindering its promotion in complex, high-dimensional, and noisy
bounded scenarios.

Compared to other scenarios, the drone scenarios often require path planning algo-
rithms that can respond quickly and ensure safety [21]. On the one hand, the drone tasks
are often urgent, resulting in limited planning time for the algorithm. On the other hand, a
drone scenario has many threats and complex terrain, which makes the algorithm easily
to fall into local optimum. For the former problem, we established heuristic rules during
particle initialization to prevent invalid searching and inspire the powerful search efficiency
of the algorithm. For the latter problem, we hybridized a Cauchy mutation operator, an
injection operator and a penalty function to enhance the exploration capabilities of the algo-
rithm. The new algorithm, called Heuristic Hybrid Particle Swarm Optimization (HHPSO),
strikes a good balance between exploration and exploitation and significantly improves the
convergence, robustness and constraint-handling ability. Numerical simulations, Unreal
Engine 4 (UE4) [22] simulations and a real-drone experiment confirmed the results.

The remainder of this paper is organized as follows: Section 2 proposes the problem
scenarios and optimization model. The heuristic rules and hybrid operators are introduced
in Section 3. The experimental results are provided in Section 4. Section 5 concludes
this article.

2. Problem Statement

The quadcopters path planning problem can be treated as a multi-objective constrained
optimization problem. In this section, scenario representation and the optimization model
are discussed.

197

Drones 2024, 8, 221

2.1. Scenario Representation

In a drone scenario, two elements must be considered for the path planning task. One
the terrain, which imposes physical constraints on drones. The other is threats, which
constitute dangers that drones may encounter in their missions.

2.1.1. Terrain

The terrain of the drone scenario is totally open, implying that we can discretize the
broad planning space into a surface. On this basis, the terrain can be generated using
several perlin noises layers [23] with diverse frequencies and amplitudes. This terrain
ensures that the height zij is unique and continuous over the entire plane (xi, yj). To save
computing resources, we sample the entire plane at specific intervals to obtain a point cloud
map of the terrain, as shown in Figure 1a. However, such a discretized representation of
terrain cannot constrain all points on the plane, so we used triangle interpolation among
every three nearest points, thus confirming the unique mapping of (xi, yj), denoted as
zij = Map(xi, yj), as shown in Figure 1b.

(a) (b)

Figure 1. Terrain representation. (a) Terrain representation with a point cloud. (b) Terrain representa-
tion with triangle interpolation.

2.1.2. Threats

In general, quadcopters should remain concealed and secure when performing tasks
in a drone scenario. We assume that the enemy will use radar and missiles to detect and
attack drones. In addition, there are some No-fly Zones (NFZs) in the scene that drones
cannot approach.

The probability of radar and missile affecting flight safety can be calculated by
(1) and (2) [24].

PR =

{ 1
1+ζ2(d4/RCS)

ζ1
if d ≤ RR

0 otherwise
(1)

PM =

{
R4

M/
(

R4
M + d4), if d ≤ RM

0, otherwise.
(2)

where RR and RM denote the maximum influence distance of the radar and missile, respec-
tively, d is the distance between the drone’s position and the missile and radar deployment
center, and ζ1 and ζ2 depend on the radar used. RCS denotes the radar cross-section, which
can be calculated according to the drone’s position and velocity [25].

For the NFZs, we need to determine whether the waypoints are within their range, so
we defined the following equation:

InNFZs(wi) =

{
1, if wi falls in any NFZs
0, otherwise

(3)

where wi(i = 1, 2, ..., n) are waypoints.

198

Drones 2024, 8, 221

2.2. Optimization Model

Mathematically, the path planning problem can be modeled as a Multi-Objective Con-
straint Satisfaction Problem, which comprises three components, i.e., variables, objectives,
and constraints.

2.2.1. Variables

Typically, a path planning problem uses waypoints as planning variables. Suppose
we start from start point S : (xS, yS, zS)

T , and go to target point T : (xT , yT , zT)
T . The path

planning problem can be depicted as finding a series of waypoints W = {w1, w2, ..., wn−1}
through which the UAV can reach its destination successfully. However, the outputs
obtained in the three-dimensional configuration space cannot guarantee differential flat
control. For example, these paths may contain sharp turns that challenge the kinematics
and dynamics of the drone.

Several methods have been proposed to generate a smoothing path from the control
points P = {p0, p1, ..., pm}. In some previous research, the Dubins curve was used to
smooth the path [26]. A Dubins curve uses a series of arcs and straight line segments to
form the motion path of the drone, as shown in the Figure 2a. This method is unsuitable
for parameterization, because it may generate many arcs without curvature continuity.
Another method used in recent research is the Rauch-Tung-Striebel (RTS) smoother, which
consists of two stages, Kalman forward filtering and RTS backward smoothing [27], as
depicted in Figure 2b. At a higher computational cost, RTS smoother achieves relatively
low tracking errors between generated paths and control points. However, it is unnecessary
in the proposed algorithm because the UAV does not require flying directly through the
control points. A Bezier curve [28] and b-spline curve [29] are two of the most well-
known path smoothing methods, as shown in Figure 2c,d. Of these two curves, the latter
evolves from the former and inherits all the advantages, including geometrical invariance,
convexity-preserving, and affine invariance. Compared to the Bezier curve, the b-spline
curve overcomes the disadvantage that moving one control point affects the entire curve
and does not increase the degree of the polynomial no matter how many control points are
added [30].

The b-spline function used in this paper can be defined as:

wi =
m

∑
j=0

pjBj,k

(
i

n + 1

)
(4)

where wi(i = 1, 2, ..., n) are waypoints, pj(j = 0, 1, ..., m) denote control points, Bj,k() are the
k-order normalized b-spline basic functions defined by the de Boor–Cox recursion formula
as follows: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Bj,0(t) =

{
1, if uj ≤ t ≤ uj+1

0, otherwise

Bj,k(t) =
t−uj

uj+k−uj
Bj,k−1(t) +

uj+k+1−t
uj+k+1−uj+1

Bj+1,k−1(t)

define 0/0 = 0

(5)

where t ∈ [0, 1] and U={u0, u1, · · · , uk+m} is a non-decreasing sequence of parameters
called the knot vector.

B-spline enjoys Ck−1 continuous property and the derivative of a b-spline is still a
b-spline curve with order k − 1. Therefore, we choose the cubic b-spline curve with C2

continuity (this guarantees that the quadcopters will not be commanded to change their
propeller speed sharply) to convert the control points P into waypoints W. Concretely, we
fixed the p0 at the starting point S, the pm at the target point T and defined all remaining
intervening control points as decision variables:

ξ = {p1, p2, ..., pm−1} (6)

199

Drones 2024, 8, 221

(a) (b)

(c) (d)

Figure 2. Smooth methods. (a) Tangent circle curve. (b) RTS Smoother. (c) Six-order Bezier Curve.
(d) Cubic b-spline Curve

2.2.2. Objectives

In order to obtain a short, safe and smooth trajectory, five objectives, i.e., length cost,
flight altitude, radar detection, missile attack and turning angle are considered. Generally,
these objectives are somewhat contradictory so we treat them into a weighted function (7).

F = ω1 f1 + ω2 f2 + ω3 f3 + ω4 f4 + ω5 f5 (7)

where ω1, ω2, ω3, ω4, ω5 are weights that sum to 1, and f1, f2, f3, f4, f5 denote different
objectives.

(1) Length Cost

Traditionally, the goal of a planner is to find the shortest path conforming to constraints,
and the normalized approximate length of a path is defined as (8).

f1 =
∑n

i=1

√‖wi − wi−1‖√‖wn − w0‖
(8)

where wi = [xi, yi, zi] denotes the coordinate of the ith waypoint.

(2) Flight Altitude

A lower altitude is desired for the sake of using ground effect to avoid radars and
saving fuel. The mean flight altitude of a path is denoted by (9).

f2 =
n−1

∑
i=1

FAi with

FAi=

{
0, if zi ≤Map(xi, yi)
(zi−Map(xi, yi))/n, otherwise

(9)

where Map(xi, yi) represent the terrain height at (xi, yi).

200

Drones 2024, 8, 221

(3) Radar Detection

The probability of the quadcopters being detected by radars can be calculated as follows:

f3 =
n−1

∑
i=1

R

∑
j=1

PRij (10)

where R denotes the number of radars in the scenario, PR can be obtained according to (1).

(4) Missile Attack

The probability of the quadcopters being attacked by missiles is expressed as follows:

f4 =
n−1

∑
i=1

M

∑
j=1

PMij (11)

where M denotes the number of missiles in the scenario, PM is calculated according to (2).

(5) Smoothness

This is designed to evaluate the smoothness of the planned path. Values closer to 0
indicate smoother paths, and 0 means a straight path [31].

f5 =
1

n − 1

n−1

∑
i=1

θi with

θi =arccos

(
(xi−xi−1, yi−yi−1)·(xi+1−xi, yi+1−yi)

T

‖(xi−xi−1, yi−yi−1)‖·‖(xi+1−xi, yi+1−yi)‖

) (12)

To ensure the single-valuedness and continuity of the arccos function, that is, to ensure
each value corresponds to a unique θi, we choose to restrict the function’s range to [0, π].

2.2.3. Constraints

It’s well accepted that quadcopters should meet the following constraints to ensure
safe and stable flight.

(1) Climbing/Gliding Angle

Since the maneuverability of quadcopters, the slope si should be restricted in the range
of maximum climbing angle αi and minimum gliding angle βi [20]. This forms the
constraint functions g1 and g2:

g1 = max(si − αi) ≤ 0 (13)
g2 = max(βi − si) ≤ 0 (14)

For i in 1, · · · , n − 1, where

αi = −1.5377 × 10−10z2
i − 2.6997 × 10−5zi + 0.4211 (15)

βi = 2.5063 × 10−9z2
i − 6.3014 × 10−6zi − 0.3257 (16)

si =
zi+1 − zi√

(xi+1 − xi)
2 + (yi+1 − yi)

2
(17)

(2) Turning angle constraint

The turning angle θi at waypoint wi can be calculated according to (12). Due to the
maneuverability constraints of the quadcopters, the turning angle should not be greater
than its upper bound, which can be written as

g3 = max(θi − θmax
i) ≤ 0 (18)

201

Drones 2024, 8, 221

(3) Minimum flight altitude

For safety reasons, quadcopters should be at a certain level with the ground, as
described in (19).

g3 = Hsafe − min(zi − Map(xi, yi)) ≤ 0 (19)

where Hsafe denotes the minimal safe flight height.

(4) Forbidden flying area

According to mission requirements, the quadcopters have to keep away from NFZs.
We describe this as a hard constraint as follows:

h1 =
n−1

∑
i=1

InNFZs(wi) = 0 (20)

3. Approach

3.1. Standard Particle Swarm Optimization

The standard PSO algorithm was developed by Kennedy and Eberhart in 1995 based
on social and cognitive behavior [32], and is widely used in engineering. It solves problems
by generating candidate solutions (particles) and moving those particles through a search
space based on their positions and velocities, as seen in (21) and (22).

Vk = wVk + c1 · r1 · (pbk − ξk) + c2 · r2 · (gb − ξk) (21)

ξk = ξk + Vk (22)

where the Equation (21) updates a new velocity for the k-th particle according to its previous
velocity Vk, its current position ξk, its best historical position pbk and the current global
best position gb. And w is the inertia weight that determines the particle to maintain
its original trend, r1 and r2 denote two random numbers, c1 and c2 are learning factors.
The Equation (22) updates each particle’s position based on its updated velocity from
the former.

To further improve the algorithm’s efficiency for solving path planning problems, we
introduce the heuristic rules to guide the search and hybrid some operators to speed up
the convergence.

3.2. Heuristic Rules

When a drone move from the start position to its goal, there are strong constraints
inside a path for respecting the kinematic and the dynamic limits. Embedding these
limits into initialization can provide informative priors, i.e., strong physics constraints and
inductive biases to guide the search.

Thanks to the convexity-preserving property, constraining the derivatives of the
control points is sufficient for constraining the entire b-spline [33]. Therefore we set up
heuristic rules for control points.

3.2.1. Rotated Coordinate System

Searching points within a 3-D Cartesian coordinate system has been widely used in
current studies. But it is usually inefficient since the heading direction is rarely consistent
with axes, so the inherent sequential relationships between waypoints or control points are
underutilized. In this paper, we use the rotated coordinate system OR-XRYRZ to initialize
the candidate solutions, as shown in Figure 3, where XR is the direction from S to T. The
transformation between the two coordinates can be obtained by the rotating matrix:⎛⎝ x

y
z

⎞⎠=

⎛⎝ xR

yR

zR

⎞⎠⎛⎝ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞⎠+

⎛⎝ xS
yS
0

⎞⎠ (23)

202

Drones 2024, 8, 221

where θ is the angle from the X axis to the XR axis, xS and yS denote the x coordinate and
y coordinate of the start point S, and the superscript R represents the coordinates in the
rotating coordinate system.

Figure 3. Division of UAV mission space.

In OR-XRYRZ, we assume that the control points are monotonically increasing along
the XR axis, which means the quadcopters cannot move backwards. Actually, some other
scholars [12,34,35] have also utilized this benefit in the phase of path initialization and they
have proved that the solution set is almost never lost.

3.2.2. Physical Plausibility

Physically plausible paths should ensure the quadcopters keep motor speed changing
smoothly, implying that the distance moved in each time interval should not differ much.
According to this rule, we divided the ST by (n + 1) Δl segments and defined each equilat-
eral point as the expected position of the control points. Considering that the distribution
of each point is different and correlated, we limited a control point’s xR value between the
expected position of its previous and next point in the initialization phase.

Similarly, the yR coordinate can be constrained. As shown in Figure 3, we define two
boundaries parallel to the velocity that constrain the velocity direction variation trend with
the metric ΔD. The value of ΔD is determined based on the maximum flight speed of the
drone. In this paper, We set ΔD equal to Δl, so that the components of the path along the x
and y axes are of the same order of magnitude at initialization. Therefore, we can roughly
determine the xR and yR range of pj according the position of pj−1 (e.g., pm−2 is locked in
the gray area). This restrict is modeled as a Markov Chains, which require a considerable
computational cost to be handled, and also in order not to lose the possible solution, it’s
only used in the initialization phase.

In addition, we defined a mission space. On the XR-axis, the xR coordinate is confined
between 0 and

∣∣ST
∣∣. And on the YR-axis, two lines in Figure 3 determine the upper and

lower bound, which are obtained by extending outward a constant distance Δd of the

203

Drones 2024, 8, 221

points from the nearest safe areas around ST. Under the boundary, the yR coordinate is
restricted in [ymin, ymax], which are calculated as (24) and (25), respectively:

ymin = min
{

min
i

{
y∗threat,i − Ri

}
, 0
}
− Δd (24)

ymax = max
{

max
i

{
y∗threat,i + Ri

}
, 0
}
+ Δd (25)

where Ri is the radius or the circumradius of the ith threat, y∗threat,i is the vertical coordinate
of ith threat in the rotated coordinate frame OR.

3.2.3. Initialization

In practice, we introduce three criteria to the initialization process.
• xR coordinate

In the rotated coordinate system we established before, the xR value is monotonically
increasing. In addition, we assume xR

j obeying the normal distribution with mean (jΔl)
and standard deviation (Δl/3) so that its value will fall in the range we expected with
99.7% probability according to the pauta criterion [36].
• yR coordinate

For y coordinate, it’s highly dependent on the state of the previous point. So we
initialize the yR

i in the range of
(
−ΔD+y′j, ΔD+y′j

)
under uniform distribution, where y′j

reflects the state of the previous point and is calculated by (26).

yj
′ =

⎧⎨⎩ 0 , j < 1
yR

j−1−yR
j−2

xR
j−1−xR

j−2

(
xR

j − xR
j−1

)
+ yR

j−1 , otherwise
(26)

• z coordinate
Heuristically, the drone’s path follows the ups and downs of the terrain. So we

initialize the z-value obeying the normal distribution with mean z′i and standard deviation
Δh, where Δh is set roughly equal to Δl/3 in this paper according to the maneuverability
of quadcopters.

zj
′ = zj−1 + Map(xj, yj)− Map(xj−1, yj−1) (27)

3.3. Hybrid Operators
3.3.1. Penalty Function

We use the penalty function as the constraint-handling method to evaluate the particles
better. This approach defines the particle’s fitness function as the sum of the objective
function and the penalty term due to constraint violation:

f it(ξk) = F(ξk) + ϕ
(

ξk, r(α)
)

(28)

where ϕ
(

ξk, r(α)
)

indicates the penalty term of the kth particle in αth generation and it can
be calculated as follows:

ϕ
(

ξk, r(α)
)
= r(α)

(
4

∑
i=1

(Max[0, gi(ξk)])
2 + h1(ξk)

)
(29)

where r(α) is the penalty factor, it changes with iteration to ensure that infeasible individuals
suffer from more selection pressure at the later stage of iteration:

0 < r(1) < r(2) < · · · < r(α−1) < lim
α→∞

r(α) = +∞ (30)

204

Drones 2024, 8, 221

In this paper, the penalty coefficient is designed as a quadratic function of α.

rα = 10 × α2/I2
max (31)

where Imax denotes the maximum iteration algebra.

3.3.2. Cauchy Mutation

Like other variants of PSO, the heuristic PSO faces the problem of premature conver-
gence; that is, its particles converge to a local optimum in some scenarios. Intuitively, a
stochastic mechanism might help the premature particles escape from the current trapped
local optimum, thus avoiding premature convergence. Genetic algorithms have a similar
mechanism called mutation to help the individual escape from local optima [37]. Suppose
we apply the mutation operator to the premature particles, and then use the fitness function
to evaluate the results. A good mutation means that the mutated particle has a better
fitness value than the original one. Following this criterion, we design a mutation operator
for PSO.

Since the Cauchy distribution has a small peak value at the origin but a long distri-
bution at both ends, it can generate a larger disturbance near the individual to jump out
of the local optimum, thus we choose Cauchy distribution to generate trail variable. The
operator process is shown below:

Firstly, we sorted all particles according to their fitness and took out the inferior half
of the particles as the target of the mutation operator.

Secondly, for each selected particle, the trail variable is generated from its current
position in the following way:

ξ ′k = ξk + C(0, γ) (32)

where ξk denote the position of the kth particle and C(0, γ) represents a Cauchy random
vector of the same dimension as ξk with a location parameter 0 and a scale parameter γ.

Finally, replace the origin particle with the trail variable if the mutated particle has
better fitness value.

3.3.3. Injection

Besides, there is an approach commonly used in the meta-heuristic algorithm to
increase the randomness of the population, namely injection [38]. Due to the role of
heuristic rules, the initial particles of our algorithm are of high quality. Therefore, if
the inferior particle can be initialized with a higher fitness value; it is beneficial for the
population to escape from the current trapped local optimum. Similar to the rules of
mutation, the injection operator operates on the sorted particles at the following scale:

λ(α+1) = ζλ(α) (33)

where λ(α) indicates the number of injected particles in α-th generation, ζ is the
decay factor.

Since the substantial irregularity of the injected particles, the new particle swarm
is sorted to ensure the effectiveness of the injection, and the λα particles at the bottom
are eliminated.

3.4. Algorithm Presentation

To summarize, we use the standard PSO as the prototype, initialize particles with
heuristic rules, hybrid Penalty function operator, Cauchy mutation operator, and Injection
operator to improve the search capability and propose the Heuristic Hybrid Particle Swarm
Algorithm (HHPSO). The pseudo-code of HHPSO is given in Algorithm 1. It’s worth noting
that the fitness f it(ξ) in (28) converts the control points [p0, ξ, pm] to waypoints using a
cubic b-spline curve.

205

Drones 2024, 8, 221

Algorithm 1: HHPSO

1 Initialize: N particles with velocity 0 following the heuristic rules in Section 3.2;
2 Assign the best historical position pb of each particle to its position ξ;
3 for α = 1 to Imax do

4 gb ← argmin[f it(ξk, rα)], for k = 1 to N;
5 for k = 1 to N do � standard PSO
6 Update ξk and Vk using Equations (21) and (22);
7 end

8 for k = 1 to N/2 do � Mutation
9 Generate trail vector ξ ′k according to Equation (32);

10 Replace ξk with ξ ′k and reset its velocity to 0 if f it(ξ ′k) < f it(ξ);
11 end

12 Generate λα particles and inject them into the swarm; � Injection
13 Delete λα inferior particles according to their fitness;
14 Calculate λα+1 and rα+1 according to the Equations (31) and (33) ;
15 end

16 return gb

4. Experimental Results

To verify the effectiveness of the proposed algorithm, numerical simulations, physical
model-based simulations and a real-drone experiment are designed. In the numerical simu-
lation, we deploy the HHPSO to handle various scenarios with increasing obstacles and
different terrains and set up several respective algorithms to draw comparisons. However,
sim-to-real translation has been known to be a long-standing problem in robotics. But it was
difficult for us to set up an accurate test site with the terrain and various constrained areas.
As a compromise, we built similar scenarios on UE4 as physical model-based simulations.
And for the real-drone experiment, we choose NOKOV motion caputrue system as the
global location system and use Bitcraze Crazyflie 2.1 nano-quadrotors [39] as the flying
platform for its characteristics of small volume (9cm rotor-to-rotor), lightweight (34 g),
and suitable for indoor flying. All experiments were conducted on a desktop computer
featuring an Intel Core i9-9900K CPU, 32 GB of DDR4 RAM, a 1 TB NVMe SSD, and an
NVIDIA GeForce RTX 3070Ti GPU.

4.1. Numerical Simulation

In this paper, the proposed algorithm was run in four scenarios with different terrains
and increasing obstacles, and some other recently proposed metaheuristic planners, i.e.,
GA [10], CIPSO [18], CIPDE [13], JADE [12], mWPS [17], were selected as the compared
algorithms, the hyperparameters of these algorithms are shown in the Supplementary
Materials (Tables S1–S6). Besides, the heuristic-PSO and the hybrid-PSO are also put as
comparative algorithms to further discuss the influence of the two operators proposed in
this paper.

For comparisons, all algorithms are shared with the same basic parameters: the
population size of 30, the maximum iteration algebra of 25 and the waypoints num-
ber of 35. In addition, the main control parameters of the mentioned algorithms are
shown in Table 1, the definitions of these parameters can be found from their original
papers. The heuristic-PSO and the hybrid-PSO share the same control parameters as
HHPSO. Since the high security requirements of the scenarios, we have set the weights
([ω1 = 0.2, ω2 = 0.1, ω3 = 0.3, ω4 = 0.3, ω5 = 0.1]) among the five objective functions.

206

Drones 2024, 8, 221

Table 1. Main Control Parameters of Used Algorithms.

Algorithm GA CIPSO JADE

parameter α β f r w c μ a uCR uF
value 0.5 0.5 10 [0.4, 0.9] [0.5, 3.5] 4 2 0.5 0.5

Algorithm CIPDE mWPS HHPSO

parameter μF μCR c Eliminated-Qty Safari-Wolves-Qty w c1 c2 γ ζ
value 0.7 0.5 0.1 5 5 1 1.5 1.5 2 0.9

In order to test the performance of algorithms under different threat density and ter-
rain, we designed four scenarios. Scenarios 1–3 are on the same flat terrain with increasing
threats, and scenario 4 is extremely challenging with rugged terrain and crowded threats.
The threats are randomly generated with the numbers 1, 4, 10, and 20 for each type, the
radar and missile influence area is a sphere of a radius of 10, the RCS is set to −23.8 [40],
and the no-fly zone randomly covers an area of 10–30.

All algorithms are implemented in scenarios 1–4, and the numerical experiment results
are shown in Figure 4. To better analyze the fitness of the path that satisfies the constraint,
which is critical in the drone scenario, we truncate the portion with a fitness value greater
than 5.

From the 2D view of planning results, all the algorithms can complete the task in
simple scenarios (Scenarios 1 and 2). But in the complex scenarios (scenarios 3 and 4),
our algorithm can always find a relatively good location to avoid the threat and reach
the destination, while the rest paths frequently enter the radar areas, missile areas and
NFZs. More clearly seen from the fitness figure, as the scenario gets more complicated,
the performance gaps between the proposed algorithm and others become more and more
apparent. As the penalty coefficient rα increases, all algorithm except HHPSO can’t handle
constraints well. For example, in scenario 3, there are two algorithms that complete the
task, i.e., heuristic-PSO and HHPSO, while the path generated by heuristic-PSO is clearly
stuck in a local optimum. But in scenario 4, only HHPSO is left. Further, we look at
constraint functions. In all scenarios, HHPSO starts with a low constraint value and ends
up satisfying the constraints well. This is mainly because the method fully considers the
problem-dependent heuristics during initialization and the introduction of penalty term
results in higher selection pressure along with iteration. And the heuristic-PSO, which also
benefits from the heuristic initialization, has the same property of low starting constraint
value. Moreover, it shows that the mixture of Cauchy mutation and injection operators
makes our method less prone to falling into local optima and prematurity. Without these
operators, the algorithms easily fall into local minimum, like the heuristic-PSO. But without
the heuristical initialization, the algorithm doesn’t even converge; the hybrid-PSO provides
a good example. And other algorithms perform fine in simple scenarios but miserably in
complex ones. Therefore, it can be inferred that the heuristic rules and the hybrid operators
are of great help to planners, especially in complex scenarios.

To compare these algorithms more rigorously, we ran each algorithm 100 times in
each scenario and adopted several metrics to measure the algorithm performance, i.e.,
Successful Rate (SR), Average Fitness (AF), Average Constraints value(AC) and Average
Time (AT). Here we define the path that satisfies most conditions (at least 3), and the
constraint value does not exceed 0.1 as a successful plan. The results are recorded in
Table 2. Among all algorithms, HHPSO achieves the best fitness with a success rate of over
90% in all scenarios. The worst performer is CIPSO, probably because its original paper
environment has no dense threats and thus weaker constraint control. Some other planners
like GA, JADE, CIPDE and mWPS may get a tolerable AF in simple scenarios but perform
poorly in scenarios 3 and 4. In addition, the two variants of HHPSO, i.e., heuristic-PSO and
hybrid-PSO, performed reasonably well. Heuristic-PSO shows strong constraint handling
ability and requires less running time than HHPSO. But its average fitness value is weaker

207

Drones 2024, 8, 221

than HHPSO, meaning it often falls into the local minimum. Hybrid-PSO also requires less
running time than HHPSO, but due to its weaker constraint handling capability, it does not
perform as well as the other two.

(a)

(b)

(c)

(d)

Figure 4. The comparative results among different algorithms. (a) Scenario 1. (b) Scenario 2.
(c) Scenario 3. (d) Scenario 4.

From the above discussions, it can be seen that the proposed planner is more effective
and efficient than the compared algorithms. In terms of effectiveness, HHPSO achieves
the highest SR and the best AF in all scenarios, which is crucial in drone scenarios. And in
terms of efficiency, HHPSO runs in less than 0.4 s and can be implemented for urgent tasks.

208

Drones 2024, 8, 221

Table 2. Statistical Results for Different Algorithms.

GA CIPSO JADE CIPDE mWPS HHPSO Heuristic-PSO Hybrid-PSO

Scenario 1
SR(%) 87.00 ± 2.61 82.00 ± 2.46 96.00 ± 3.12 92.00 ± 2.76 95.00 ± 2.85 100.00 ± 0.00 99.00 ± 2.97 97.00 ± 2.91

AF 1.73 ± 0.03 18.20 ± 0.91 1.75 ± 0.04 1.28 ± 0.03 1.45 ± 0.04 0.65 ± 0.03 0.85 ± 0.02 0.97 ± 0.02
AC 0.07 ± 0.00 1.78 ± 0.04 0.09 ± 0.00 0.08 ± 0.00 0.05 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.07 ± 0.00

AT(s) 0.39 ± 0.01 0.54 ± 0.01 0.62 ± 0.02 0.60 ± 0.02 0.89 ± 0.02 0.23 ± 0.01 0.19 ± 0.02 0.21 ± 0.01

Scenario 2
SR (%) 86.00 ± 2.58 81.00 ± 2.43 75.00 ± 2.25 84.00 ± 2.52 89.00 ± 2.67 98.00 ± 0.13 96.00 ± 2.88 89.00 ± 2.67

AF 1.76 ± 0.04 14.85 ± 0.74 18.26 ± 0.91 1.83 ± 0.04 1.55 ± 0.04 0.49 ± 0.01 0.51 ± 0.01 0.85 ± 0.02
AC 0.13 ± 0.00 1.41 ± 0.03 1.75 ± 0.04 0.12 ± 0.00 0.09 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.05 ± 0.00

AT(s) 0.33 ± 0.01 0.45 ± 0.01 0.45 ± 0.01 0.47 ± 0.01 0.77 ± 0.02 0.22 ± 0.00 0.15 ± 0.05 0.19 ± 0.00

Scenario 3
SR(%) 26.00 ± 0.78 12.00 ± 0.36 20.00 ± 0.60 48.00 ± 1.44 27.00 ± 0.81 94.00 ± 1.35 68.00 ± 2.04 25.00 ± 0.75

AF 79.27 ± 2.38 208.20 ± 4.16 228.90 ± 5.73 45.50 ± 1.37 295.50 ± 8.87 1.16 ± 0.02 3.75 ± 0.11 10.85 ± 0.33
AC 7.73 ± 0.2 20.54 ± 0.62 22.75 ± 0.68 4.48 ± 0.13 29.45 ± 0.88 0.02 ± 0.00 0.32 ± 0.01 0.97 ± 0.03

AT(s) 0.41 ± 0.01 0.58 ± 0.02 0.58 ± 0.02 0.61 ± 0.02 0.92 ± 0.03 0.34 ± 0.00 0.27 ± 0.05 0.32 ± 0.00

Scenario 4
SR(%) 15.00 ± 0.45 6.00 ± 0.18 11.00 ± 0.33 25.00 ± 0.75 2.00 ± 0.06 92.00 ± 2.32 52.00 ± 1.56 15.00 ± 0.45

AF 15.41 ± 0.46 516.30 ± 15.49 472.80 ± 14.18 22.27 ± 0.67 81.80 ± 2.45 1.35 ± 0.31 10.50 ± 0.32 13.50 ± 0.41
AC 13.20 ± 0.40 51.50 ± 1.55 47.20 ± 1.42 2.18 ± 0.07 8.05 ± 0.24 0.05 ± 0.01 0.92 ± 0.03 1.27 ± 0.04

AT(s) 0.44 ± 0.01 0.68 ± 0.02 0.68 ± 0.02 0.73 ± 0.02 1.23 ± 0.04 0.38 ± 0.00 0.27 ± 0.03 0.29 ± 0.00

4.2. Physical-Based Simulation

We built a suitable terrain in the realistic physics engine Unreal Engine 4 (UE4) and
deployed AirSim [41] as the dynamics model of the quadcopters. The terrain is shown
in Figure 5a and the drone model used in the AirSim is the Ar Drone, which is shown in
Figure 5b.

(a) (b)

Figure 5. Basic components of the physical simulation. (a) The terrain in UE4. (b) Basic components
of the physical simulation.

The terrain is augmented with different threats to generate two experimental scenarios;
scenario 1 has [10, 10, 10] radars, missiles and NFZs and scenario 2 with [30, 30, 30].
The radar and missile detection radius is 20 for scenario 1 and 10 for scenario 2. Those
threats, together with the interpolation point clouds for terrain scanning and the target
point are used as the inputs of HHPSO to generate waypoints. The results are shown in
Figure 6, the demonstration videos are available at https://youtu.be/9-ZV-A0M3b4 and
https://youtu.be/VLxXbAZJzQQ, (accessed on 7 January 2024). It turns out that drones
can follow planned paths to complete missions, and our algorithms can address diverse
scenarios, such as larger threat zones and numerous and fragmented threats.

209

Drones 2024, 8, 221

(a) (b)

Figure 6. The planned paths of HHPSO in UE4. (a) Sparse environment. (b) Dense environment.

4.3. Real-Drone Experiment

Although UE4 simulates physical conditions, it is still just a simulation. We have car-
ried out am in-door experiment to verify the validity of the proposed algorithm. Concretely,
we use a 3 × 1 m test site indoors to map to the simulation system at a ratio of 1 to 10. For
such a small venue, we chose Bitcraze CrazyFlie 2.1 [39], the world’s smallest quadcopter,
as the executor of the algorithm. As shown in Figure 7, we used some boxes to simulate the
NFZs and set the safe height as 5 m (0.5 m in the real world).

Figure 7. Real-world experimental environment

To verify the real-time performance of the algorithm, we set up a series of checkpoints
for the quadcopters to pass through (point A to D in Figure 8). The mission of the planner
is to plan and execute a path to the next checkpoint when the quadcopters approaches a
checkpoint. Although the quadcopters can move in any direction, we force the drone to
keep its heading consistent with the direction of moving during the experiment. Besides,
we add the last three points of the previous plan to the next plan, and calculate the turning
angle according to (12). In this way, the quadcopters can do continuous planning without
hovering over an intermediate point.

The path recorded from a motion capture system is shown in Figure 8, and the video is
available at https://youtu.be/Fis1Fm25z04, (accessed on 7 January 2024). We can see that
the first path of the quadcopters from point A to B is not consistent with the subsequent
planning, this is because that they arrive at point A from different directions, resulting
in different initial states. Moreover, due to the limited space of the physical room, we
introduced a 10x zoom, resulting in some sharp turns in the flight of the quadcopters. But

210

Drones 2024, 8, 221

the actual planning result (Figure 8) is very smooth. This experiment demonstrates that our
algorithm is efficient enough to be deployed for real-time path planning of quadcopters.

Figure 8. Trajectory of the Crazyflie

5. Conclusions and Discussions

Path planning plays a crucial role in autonomous unmanned systems. This paper
presents an effective and efficient PSO-based path planning algorithm that allows the
quadcopters to complete navigation tasks in complex scenarios. Concretely, we set up a
series of heuristic rules during population initialization to generate high-quality particles
to avoid invalid searches. But the heuristic-PSO is easy to fall into the local optimum, so
we hybrid the penalty function, Cauchy mutation operator and Injection operator further
to improve the global search ability of the algorithm. The proposed algorithm is named
HHPSO; comparative numerical simulations of four scenarios with increasing obstacles
show that HHPSO outperforms other state-of-the-art meta-heuristic algorithms. Further-
more, the physical-based simulations in UE4 show that our method can be successfully
deployed in simulation models to perform complex missions on the battlefield. Finally,
a real-world experiment demonstrates that the proposed method is efficient and can be
used for continuous real-time path planning for quadcopters. Although the performance of
HHPSO is remarkable, it has not yet been able to handle confrontational scenarios, which
means enemy aircraft will also be deployed to scout and defend. We will focus on such type
of scenario in the future and we have built a simulation environment in UE4. Finally, we
hope this work could facilitate the applications of intelligent algorithms in path planning.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/drones8060221/s1. Table S1: Binary encoding of all algorithms; Table S2:
11-bits genes for Initialization; Table S3: 13-bits genes for sorting and selection; Table S4: 12-bits genes
for exploitation and exploration; Table S5: 13-bits genes for Ending Criterion; Table S6: 15-bits genes
for other operators.

Author Contributions: Conceptualization, J.L. and R.D.; methodology, J.L.; software, J.L.; validation,
J.L., R.D. and W.W.; formal analysis, J.L.; investigation, R.D.; resources, J.L.; data curation, R.D.;
writing—original draft preparation, J.L.; writing—review and editing, R.D.; visualization, R.D.;
supervision, W.W.; project administration, W.W.; funding acquisition, W.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (No. 2022ZD0116401)
and the State Key Laboratory of Software Development Environment (Funding No. SKLSDE-2023ZX-20).

Data Availability Statement: The datasets generated during the current study are not publicly available
due to confidential agreement but are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

211

Drones 2024, 8, 221

References

1. Huang, H.; Savkin, A.V.; Ni, W. Decentralized Navigation of a UAV Team for Collaborative Covert Eavesdropping on a Group of
Mobile Ground Nodes. IEEE Trans. Autom. Sci. Eng. 2022, 19, 3932–3941. [CrossRef]

2. Brunner, G.; Szebedy, B.; Tanner, S.; Wattenhofer, R. The Urban Last Mile Problem: Autonomous Drone Delivery to Your Balcony.
In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019;
pp. 1005–1012.

3. Dissanayaka, D.; Wanasinghe, T.R.; Silva, O.D.; Jayasiri, A.; Mann, G.K.I. Review of Navigation Methods for UAV-Based Parcel
Delivery. IEEE Trans. Autom. Sci. Eng. 2022, 21, 1068–1082. [CrossRef]

4. He, W.; Qi, X.; Liu, L. A novel hybrid particle swarm optimization for multi-UAV cooperate path planning. Appl. Intell. 2021,
51, 7350–7364. [CrossRef]

5. Julius Fusic, S.; Ramkumar, P.; Hariharan, K. Path planning of robot using modified dijkstra Algorithm. In Proceedings of the
2018 National Power Engineering Conference (NPEC), Madurai, India, 9–10 March 2018; pp. 1–5.

6. Pehlivanoglu, Y.V. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV.
Aerosp. Sci. Technol. 2012, 16, 47–55. [CrossRef]

7. Meng, B. UAV Path Planning Based on Bidirectional Sparse A* Search Algorithm. In Proceedings of the 2010 International
Conference on Intelligent Computation Technology and Automation, Changsha, China, 11–12 May 2010; Volume 3, pp. 1106–1109.

8. Li, J.; Deng, G.; Luo, C.; Lin, Q.; Yan, Q.; Ming, Z. A Hybrid Path Planning Method in Unmanned Air/Ground Vehicle
(UAV/UGV) Cooperative Systems. IEEE Trans. Veh. Technol. 2016, 65, 9585–9596. [CrossRef]

9. Hangxuan, H.; Haibin, D. A multi-strategy pigeon-inspired optimization approach to active disturbance rejection control
parameters tuning for vertical take-off and landing fixed-wing UAV. Chin. J. Aeronaut. 2022, 35, 19–30.

10. Pehlivanoglu, Y.V.; Pehlivanoglu, P. An enhanced genetic algorithm for path planning of autonomous UAV in target coverage
problems. Appl. Soft Comput. 2021, 112, 107796. [CrossRef]

11. Phung, M.D.; Ha, Q.P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Appl. Soft
Comput. 2021, 107, 107376. [CrossRef]

12. Yang, P.; Tang, K.; Lozano, J.A.; Cao, X. Path Planning for Single Unmanned Aerial Vehicle by Separately Evolving Waypoints.
IEEE Trans. Robot. 2015, 31, 1130–1146. [CrossRef]

13. Pan, J.S.; Liu, N.; Chu, S.C. A Hybrid Differential Evolution Algorithm and Its Application in Unmanned Combat Aerial Vehicle
Path Planning. IEEE Access 2020, 8, 17691–17712. [CrossRef]

14. Yu, X.; Li, C.; Zhou, J.F. A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios.
Knowl.-Based Syst. 2020, 204, 106209. [CrossRef]

15. Li, D.; Wang, L.; Cai, J.; Ma, K.; Tan, T. Research on Terminal Distance Index-Based Multi-Step Ant Colony Optimization for
Mobile Robot Path Planning. IEEE Trans. Autom. Sci. Eng. 2022, 20, 2321–2337. [CrossRef]

16. Yu, X.; Chen, W.N.; Gu, T.; Yuan, H.; Zhang, H.; Zhang, J. ACO-A*: Ant Colony Optimization Plus A* for 3-D Traveling in
Environments With Dense Obstacles. IEEE Trans. Evol. Comput. 2019, 23, 617–631. [CrossRef]

17. YongBo, C.; YueSong, M.; JianQiao, Y.; XiaoLong, S.; Nuo, X. Three-dimensional unmanned aerial vehicle path planning using
modified wolf pack search algorithm. Neurocomputing 2017, 266, 445–457. [CrossRef]

18. Shao, S.; Peng, Y.; He, C.; Du, Y. Efficient path planning for UAV formation via comprehensively improved particle swarm
optimization. ISA Trans. 2020, 97, 415–430. [CrossRef] [PubMed]

19. Zhang, X.; Xia, S.; Li, X.; Zhang, T. Multi-objective particle swarm optimization with multi-mode collaboration based on
reinforcement learning for path planning of unmanned air vehicles. Knowl.-Based Syst. 2022, 250, 109075. [CrossRef]

20. Zhao, R.; Wang, Y.; Xiao, G.; Liu, C.; Hu, P.; Li, H. A method of path planning for unmanned aerial vehicle based on the hybrid of
selfish herd optimizer and particle swarm optimizer. Appl. Intell. 2022, 52, 16775–16798. [CrossRef]

21. Shin, J.J.; Bang, H. UAV path planning under dynamic threats using an improved PSO algorithm. Int. J. Aerosp. Eng. 2020, 2020.
[CrossRef]

22. Sanders, A. An Introduction to Unreal Engine 4; CRC Press: Boca Raton, FL, USA, 2016.
23. Perlin, K. An Image Synthesizer. SIGGRAPH Comput. Graph. 1985, 19, 287–296. [CrossRef]
24. Besada-Portas, E.; de la Torre, L.; Jesus, M.; de Andrés-Toro, B. Evolutionary trajectory planner for multiple UAVs in realistic

scenarios. IEEE Trans. Robot. 2010, 26, 619–634. [CrossRef]
25. Patel, J.S.; Fioranelli, F.; Anderson, D. Review of radar classification and RCS characterisation techniques for small UAVs or

drones. IET Radar Sonar Navig. 2018, 2, 911–919. [CrossRef]
26. Anderson, E.; Beard, R.; McLain, T. Real-time dynamic trajectory smoothing for unmanned air vehicles. IEEE Trans. Control. Syst.

Technol. 2005, 13, 471–477. [CrossRef]
27. Wu, X.; Bai, W.; Xie, Y.; Sun, X.; Deng, C.; Cui, H. A hybrid algorithm of particle swarm optimization, metropolis criterion and

RTS smoother for path planning of UAVs. Appl. Soft Comput. 2018, 73, 735–747. [CrossRef]
28. Elhoseny, M.; Tharwat, A.; Hassanien, A.E. Bezier curve based path planning in a dynamic field using modified genetic algorithm.

J. Comput. Sci. 2018, 25, 339–350. [CrossRef]
29. Zhou, X.; Zhu, J.; Zhou, H.; Xu, C.; Gao, F. EGO-Swarm: A Fully Autonomous and Decentralized Quadrotor Swarm System in

Cluttered Environments. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xian,
China, 30 May–5 June 2021; pp. 4101–4107.

212

Drones 2024, 8, 221

30. Qu, C.; Gai, W.; Zhang, J.; Zhong, M. A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path
planning. Knowl.-Based Syst. 2020, 194, 105530. [CrossRef]

31. Xue, Y.; Sun, J.Q. Solving the path planning problem in mobile robotics with the multi-objective evolutionary algorithm. Appl.
Sci. 2018, 8. [CrossRef]

32. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

33. Zhou, X.; Wang, Z.; Ye, H.; Xu, C.; Gao, F. EGO-Planner: An ESDF-Free Gradient-Based Local Planner for Quadrotors. IEEE
Robot. Autom. Lett. 2021, 6, 478–485. [CrossRef]

34. Zhang, X.; Duan, H. An improved constrained differential evolution algorithm for unmanned aerial vehicle global route planning.
Appl. Soft Comput. J. 2015, 26, 270–284. [CrossRef]

35. Wang, J.; Chi, W.; Li, C.; Wang, C.; Meng, M.Q.H. Neural RRT*: Learning-Based Optimal Path Planning. IEEE Trans. Autom. Sci.
Eng. 2020, 17, 1748–1758. [CrossRef]

36. Zheng, L.; Zhang, P.; Tan, J.; Chen, M. The UAV Path Planning Method Based on Lidar. In Intelligent Robotics and Applications;
Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D., Eds.; Springer: Cham, Switzerland, 2019; pp. 303–314.

37. Tao, X.; Guo, W.; Li, Q.; Ren, C.; Liu, R. Multiple scale self-adaptive cooperation mutation strategy-based particle swarm
optimization. Appl. Soft Comput. 2020, 89, 106124. [CrossRef]

38. Salhi, S.; Petch, R.J. A GA Based Heuristic for the Vehicle Routing Problem with Multiple Trips. J. Math. Model. Algorithms 2007,
6, 591–613. [CrossRef]

39. Giernacki, W.; Skwierczyński, M.; Witwicki, W.; Wroński, P.; Kozierski, P. Crazyflie 2.0 quadrotor as a platform for research and
education in robotics and control engineering. In Proceedings of the 2017 22nd International Conference on Methods and Models
in Automation and Robotics (MMAR), Międzyzdroje, Poland, 28–31 August 2017; pp. 37–42.

40. Guay, R.; Drolet, G.; Bray, J.R. Measurement and modelling of the dynamic radar cross-section of an unmanned aerial vehicle.
IET Radar Sonar Navig. 2017, 11, 1155–1160. [CrossRef]

41. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In Field
and Service Robotics; Hutter, M., Siegwart, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 621–635.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

213

Citation: Liu, X.; Xue, W.; Xu, X.;

Zhao, M.; Qin, B. Research on

Unmanned Aerial Vehicle (UAV)

Visual Landing Guidance and

Positioning Algorithms. Drones 2024,

8, 257. https://doi.org/10.3390/

drones8060257

Academic Editors: Jihong Zhu, Heng

Shi, Zheng Chen and Minchi Kuang

Received: 25 April 2024

Revised: 31 May 2024

Accepted: 7 June 2024

Published: 12 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Research on Unmanned Aerial Vehicle (UAV) Visual Landing
Guidance and Positioning Algorithms

Xiaoxiong Liu *, Wanhan Xue , Xinlong Xu, Minkun Zhao and Bin Qin

School of Automation, Northwestern Polytechnical University, Xi’an 710129, China;
xuewanhan@mail.nwpu.edu.cn (W.X.); xuxinlong@mail.nwpu.edu.cn (X.X.);
minkun_zhao@mail.nwpu.edu.cn (M.Z.); binq3638@mail.nwpu.edu.cn (B.Q.)
* Correspondence: nwpulxx@outlook.com

Abstract: Considering the weak resistance to interference and generalization ability of traditional
UAV visual landing navigation algorithms, this paper proposes a deep-learning-based approach for
airport runway line detection and fusion of visual information with IMU for localization. Firstly,
a coarse positioning algorithm based on YOLOX is designed for airport runway localization. To
meet the requirements of model accuracy and inference speed for the landing guidance system,
regression loss functions, probability prediction loss functions, activation functions, and feature
extraction networks are designed. Secondly, a deep-learning-based runway line detection algorithm
including feature extraction, classification prediction and segmentation networks is designed. To
create an effective detection network, we propose efficient loss function and network evaluation
methods Finally, a visual/inertial navigation system is established based on constant deformation
for visual localization. The relative positioning results are fused and optimized with Kalman filter
algorithms. Simulation and flight experiments demonstrate that the proposed algorithm exhibits
significant advantages in terms of localization accuracy, real-time performance, and generalization
ability, and can provide accurate positioning information during UAV landing processes.

Keywords: computer vision; deep neural networks; autonomous landing; combined navigation

1. Introduction

Landing is a critical phase in unmanned aerial vehicle (UAV) flight. Currently, there
are three main navigation methods used during UAV landings: instrument landing system
(ILS), microwave landing system (MLS), and Global Positioning System (GPS). However,
these navigation methods heavily rely on external equipment. Furthermore, they have
drawbacks such as expensive equipment, poor maneuverability, difficulty in installation,
susceptibility to signal interference, and vulnerability to deception. Therefore, the develop-
ment of a fully autonomous, reliable, and stable autonomous landing navigation system
has become an urgent problem.

With the continuous development of visual perception and navigation technologies,
the application of visual navigation in the autonomous landing process of unmanned
aerial vehicles (UAVs) has gained widespread attention. Visual navigation offers several
advantages: (1) It does not require establishing an information link with the outside world,
making it a completely autonomous navigation system that is immune to interference.
(2) There is no need to set up expensive communications equipment on the ground, which
is less costly. (3) It requires minimal prior information about the landing airport, allowing
UAVs to land in relatively unfamiliar or temporary airfields.

UAV visual guidance landing image processing is particularly important, the current
research methods on image processing can be divided into traditional methods to detect the
runway line, traditional methods to detect cooperative signs and deep learning methods to
detect the runway. Traditional methods are faster and easier to deploy but are more sensitive
to the environment; traditional methods to detect cooperative signs are more accurate

Drones 2024, 8, 257. https://doi.org/10.3390/drones8060257 https://www.mdpi.com/journal/drones214

Drones 2024, 8, 257

but require certain labeling conditions; the deep learning methods used in this paper is
environmentally robust and require fewer external conditions. These three methods have
their own advantages and disadvantages and are used in different application scenarios

The detection of runway lines using traditional methods generally involves five steps:
image preprocessing, feature extraction, feature selection, runway line fitting, and runway
line detection and classification. In [1], the authors employ multi-sensor image fusion to
obtain image data of the runway. They use support vector machine (SVM) for runway
recognition and extract runway edges and ground lines using edge detection and the
Hough transform. Finally, they obtain the aircraft’s attitude data. In [2], the authors extract
the horizon and runway edges using the Hough transform. They estimate the aircraft’s
pose separately using the horizon and runway edges and track the runway using template
matching. In [3], the authors detect runway lines using the Canny edge detector and
Hough transform.

The detection of cooperative markers using traditional methods is similar to the
process of detecting runway lines. However, adjustments need to be made based on
the characteristics and requirements of the cooperative markers. Generally, it involves
five steps: image preprocessing, feature extraction, feature selection, marker detection
and localization, and marker classification and recognition. In [4], a monocular single-
frame vision measurement algorithm for autonomous landing of unmanned helicopters is
derived. By detecting square cooperative targets, the position and attitude of the unmanned
helicopter are calculated, totaling six parameters. In [5], the landing guidance process for
unmanned aerial vehicles (UAVs) is divided into two stages. In the initial stage of landing,
runway corner features are used as guidance markers, and in the later stage of landing,
Apriltag labels are recognized to guide the UAV’s landing. In [6], a fixed-wing UAV
autonomous landing method based on binocular vision is proposed.

Using deep learning for runway line detection involves several steps, including data
preparation and preprocessing, building the deep learning model, model training, test
evaluation, model optimization, and model inference. Deep learning methods enable
end-to-end training using a large amount of image data, allowing for the learning of
more complex feature representations and improving the performance and robustness of
runway line detection. Additionally, deep learning methods can adapt to different lighting
conditions, complex backgrounds, and exhibit good generalization capability. In [7], a deep
learning approach is used for UAV detection and tracking. By performing triangulation
and filtering calculations on the detected objects in a binocular vision system, the spatial
position of the UAV is estimated. In the positioning stage, a Kalman filter is used to smooth
the spatial trajectory, approximating the area where the target is likely to appear in the
current frame. This improves the accuracy of estimation while reducing the difficulty
of tracking. In [8], an onboard-YOLO algorithm suitable for lightweight and efficient
usage on UAV onboard systems is proposed. It utilizes separable convolutions instead of
conventional convolutional kernels, effectively improving the detection speed.

However, single visual navigation alone may not satisfy the requirements for precision
and reliability in autonomous UAV landing. It is necessary to complement the limitations of
visual navigation by leveraging measurement information from other sensors. Traditional
methods of combined navigation include GPS/INS(combined navigation), INS/visual com-
bined navigation, GPS/INS/visual combined navigation, and so on. As the number of sen-
sors increases, the accuracy and robustness of the navigation system continuously improve,
enhancing the performance of autonomous UAV landing. In [9], a visual–inertial navigation
fusion algorithm is proposed, where position and attitude alignment are achieved using
Kalman filtering. The position alignment estimates velocity errors and accelerometer biases,
while the attitude alignment estimates attitude errors and gyroscope drift. The estimated
alignment errors and the attitude information output by the visual navigation system
are used to correct the inertial navigation attitude. In [10], YOLOv3 is used to detect the
runway region of interest (ROI), and an RDLines algorithm is employed to extract the left

215

Drones 2024, 8, 257

and right runway lines from the ROI. A visual/inertial combined navigation model is then
designed within the framework of square-root unscented Kalman filtering.

In a visual navigation system, accurate detection of the runway and runway lines is
crucial for the system’s performance [11]. Traditional methods for runway line detection,
such as those based on the Hough transform and LSD line detection, offer good real-time
performance. However, their generalization to different scenarios is poor and they heavily
rely on manually designed features and parameters. Although researchers have proposed
more comprehensive feature description methods (e.g., SIFT, ORB), their robustness and
accuracy still cannot fully meet the demands of practical applications. Therefore, traditional
line detection methods are not suitable for use in visual navigation systems. With the
advancement of parallel computing capabilities brought about by hardware such as GPUs,
deep neural networks have greatly improved detection accuracy and robustness. This has
led to a new stage in object detection and the development of a series of deeper, faster
training, and more accurate deep neural networks. Utilizing deep learning for runway
line detection is a promising choice. Furthermore, considering the limitations of single
visual navigation, integrating IMU (inertial measurement unit) information and visual
localization results can be a good solution. This combination can provide complementary
information and enhance the overall performance of the navigation system.

This paper proposes a deep-learning-based UAV localization method to address the
navigation problem in autonomous UAV landing. The simulation and experimental results
demonstrate that the proposed algorithm exhibits good robustness, accuracy, and real-
time performance. These findings suggest that the algorithm can be used effectively for
autonomous UAV landing.

The main contributions of this paper are as follows:
(1) A runway line detection and visual positioning system during visual guidance

landing is constructed. The system is divided into four parts: runway ROI selection,
runway line detection, visual positioning and combined navigation, thereby providing an
end-to-end navigation solution for UAV visual guidance landing.

(2) In view of the requirements of navigation accuracy and real-time performance in
this application scenario, the image processing end algorithm is optimized and designed, in-
cluding optimizing the loss function, optimizing the feature extraction network and feature
fusion network, adding an attention mechanism, and optimizing the network structure.

(3) In order to further improve the visual positioning accuracy, the Kalman filter
algorithm is used to fuse the IMU information and the visual positioning information.
The simulation results show that the combined navigation algorithm can effectively im-
prove the positioning accuracy.

The rest of this paper is organized as follows: The Section 2 of the paper presents the
framework of the visual-guided landing localization algorithm. The Section 3 focuses on the
runway ROI selection algorithm in the visual landing detection, while the Section 4 explores
the runway line detection algorithm for airport runways within the visual landing detection.
The Section 5 discusses the visual localization and combined navigation algorithm. Finally,
the Section 6 describes the deployment of the algorithm on edge computing devices and
presents the results of simulation experiments.

2. Vision-Guided Landing Positioning Algorithm Framework

This paper focuses on visual-guided landing for small fixed-wing unmanned aerial
vehicles (UAVs). The main research objectives are image processing algorithms and visual
localization algorithms for UAV landing. The specific research content includes runway ROI
selection networks, runway line detection networks, UAV position estimation algorithms,
and combined navigation algorithms. The effectiveness of these algorithms is then validated
in a constructed simulation system. The overall algorithm framework is illustrated in
Figure 1.

216

Drones 2024, 8, 257

Figure 1. Overall flowchart for visually guided landing.

The algorithm system designed in this paper consists of two main components: the
image processing side and the pose estimation combined navigation side. In the image
processing side, the images captured by the camera are processed. The YOLOX runway
ROI selection network is used to perform rough positioning of the runway lines, which
helps exclude interfering objects and ensures that the runway is evenly distributed in the
image. The detected bounding boxes are then input into the runway line detection network
(RLDNet) for line detection. In this stage, instead of using image segmentation techniques,
a specific row (or column) classification method is employed, reducing computational
complexity and improving real-time inference. The line detection outputs information such
as the slope and intercept of the runway lines. The pose estimation and combined naviga-
tion side mainly consist of two algorithms: visual localization and combined navigation.
The visual localization algorithm utilizes prior information about the runway, camera in-
trinsic parameters, UAV attitude information, and information obtained from the detected
runway lines to estimate the UAV’s position. The visual localization algorithm in this
study utilizes a vision-based localization algorithm based on the concept of homogeneous
transformation. The position information derived from visual localization is fused with the
position information obtained from the IMU using Kalman filtering, resulting in accurate
and reliable localization results.

The algorithm designed in this study is applicable to UAV visual landing guidance
scenarios. However, most currently available datasets that include airport runways are
composed of aerial images, such as the runway images in NWPU-RESISC45, which are
all remote sensing aerial images. These datasets cannot meet the design requirements of
the algorithm proposed in this study. Therefore, this study combines runway images from
the landing perspective in the virtual simulation system Vega Prime, real airport runway
images, affine-transformed NWPU-RESISC45 runway images, and simplified runway
images. After manual processing and annotation, these images form the dataset used in
this study, which includes a total of 2500 landing perspective runway images. Additionally,
for the purpose of simulating and validating the visual positioning algorithm and combined
navigation algorithm, the dataset collected from the virtual simulation system Vega Prime
includes UAV’s real poses and IMU data corresponding to the images. The four types of
airport runway images included in this dataset are shown in Figure 2.

Furthermore, in order to save annotation time, this study initially annotates the left and
right runway lines, as well as the starting runway line. Then, by calculating the position of
the rough runway localization box based on the annotated pixel coordinates of the runway
line endpoints, the airport runway rough localization dataset is automatically generated.
After cropping the original image using the rough localization box, the resolution is adjusted
to generate the airport runway line dataset. This allows for the simultaneous generation
of datasets for both the airport runway rough localization and the airport runway line
detection tasks through a single annotation process.

217

Drones 2024, 8, 257

(a) (b)

(c) (d)

Figure 2. Construction of the visual landing guidance datasets. (a) Runway in Vega Prime; (b) Remote
sensing image; (c) Real runway; (d) Airstrip runway.

In order to effectively utilize the dataset and validate the algorithm’s performance, this
study divided the constructed runway rough localization dataset and runway line detection
dataset into training and testing sets using a ratio of 4:1. The training set is utilized to train
the runway rough localization network and runway line detection network. The testing
set is then used to evaluate the prediction performance of the rough localization network
and runway line detection network, as well as to calculate their performance metrics. This
division helps with the optimization and adjustment of the networks.

3. Airport Runway Rough Localization Algorithm

As a general-purpose object detection framework, YOLOX has high detection accuracy
and speed for most object detection applications. However, due to the higher requirements
for image processing accuracy and real-time performance in the scenario of this study,
further optimization and design of YOLOX are needed.

3.1. Design of Probability Prediction Loss Function

The probability prediction loss of YOLOX, Lobj, is calculated using the binary cross-
entropy loss [12]. For a given sample, the binary cross-entropy loss is computed as
Equation (1).

l(yi, ŷi) =
C

∑
i=0

−(yi log(ŷi) + yi log(1 − ŷi)) (1)

where yi represents the ground truth and ŷi represents the predicted value. For all samples,
the binary cross-entropy loss function value is the average of the loss function values for all
positive and negative samples. The calculation method is as Equation (2).

BCELoss =
1
N

N

∑
i=1

l(yi, ŷi) (2)

where N represents the total number of positive and negative samples.
Focal Loss is a solution for addressing the issue of sample imbalance [13]. Its calcula-

tion method is as Equation (3).

Focal Loss =
{−(1 − p̂)γ log(p̂) i f yi = 1

− p̂γ log(1 − p̂) i f yi = 0
(3)

Let

218

Drones 2024, 8, 257

pt =

{
p̂ i f yi = 1

1 − p̂ else
(4)

The expression for Focal Loss can be uniformly represented as Equation (5).

Focal Loss = −(1 − pt)
γ log(pt) (5)

where pt reflects the degree of proximity between the predicted value and the ground truth.
The larger the value of pt, the closer the predicted value is to the ground truth, indicating a
more accurate classification. Where γ > 0 is an adjustable factor. Similarly, the expression
for the binary cross-entropy loss function can be uniformly represented as Equation (6).

Lce = − log(pt) (6)

Compared to the binary cross-entropy loss function, Focal Loss does not modify the
loss function value for inaccurately classified samples, while reducing the weight of the
loss function value for accurately classified samples. This ultimately increases the weight
of inaccurately classified samples in the overall loss function.

The calculation method of the Focal Loss loss function used in the training process is
as Equation (7).

Loss = −α(1 − pt)
γ log(pt) (7)

That is, in the traditional Focal Loss, a coefficient is introduced, and α = 0.25, γ = 2.
At this point, the model accuracy will slightly improve. In all subsequent experiments in
this study, the binary cross-entropy loss is replaced with Focal Loss by default.

3.2. Design of Regression Loss Function

YOLOX calculates the position regression loss for predicting bounding boxes and
ground truth boxes using the IoU loss. When the predicted box and the ground truth box
do not intersect, the IoU loss function cannot reflect the distance between the predicted
box and the ground truth box. In this case, the loss function is non-differentiable, making
it unable to optimize the scenario where the two boxes do not intersect. Therefore, this
paper replaces the calculation method of the position regression loss with EIoU. The EIoU
loss, which reduces the contribution of a large number of anchor frames with less overlap
area with the target frame to the predictor frame regression, makes the regression of the
predictor frame more focused on high-quality anchor frames. The EIoU is calculated as
Equation (8).

LEIoU = LIoU + Ldis + Lasp = 1 − IoU +
ρ2(c, cgt)

d2 +
ρ2(w, wgt)

C2
w

+
ρ2(h, hgt)

C2
h

(8)

where ρ2(c,cgt)
d2 denotes the centroid loss, ρ2(w,wgt)

C2
w

is the width loss, ρ2(h,hgt)

C2
h

is the height loss,

and Cw and Ch are the widths and heights of the smallest outer bounding box containing
the prediction box and the target box.

3.3. Design of Feature Extraction Network

The feature extraction network in YOLOX is a multi-branch residual structure called
CSPDarknet53. Since the algorithm in this paper needs to be deployed on edge devices,
in order to further compress the model parameter size while improving model accuracy,
the feature extraction network of YOLOX is replaced with EfficientRe [14], GhostNet [15],
MobileNetV3-Large, and MobileNetV3-Smallin [16] in separate experiments. The perfor-
mance of different feature extraction networks is tested, and the experimental results are
shown in Table 1.

219

Drones 2024, 8, 257

Table 1. The ablation experiments on different feature extraction networks.

Feature Extraction
Evaluation Metrics

Network AP0.75 F1 Recall (%) Precision FLOPS (G) Param (M)

EfficientRep 93.42 0.86 90.08 82.09 50.229 17.05
GhostNet 94.95 0.86 90.6 82.22 20.309 9.06

MobileNetV3-Small 93.82 0.85 89.11 81.98 18.473 6.849
MobileNetV3-Large 95.01 0.87 91.37 82.35 31.703 25.974

From the experimental results, it can be seen that for the dataset used in this paper,
introducing EfficientRep does not significantly improve the model’s performance. On the
contrary, the introduction of EfficientRep leads to a significant increase in model size
and computational complexity. When using MobileNetV3-Large as the feature extraction
network, the model’s performance is significantly improved; however, the trade-off is a
substantial increase in both model size and computational complexity. As a comparison,
this paper uses MobileNetV3-Small as the feature extraction network, which significantly
reduces the model size and computational complexity. Although AP0.75 is slightly higher
than EfficientRep, it is much lower than MobileNetV3-Large. When using GhostNet as the
feature extraction network, there is a significant improvement in AP0.75, recall, and pre-
cision. In terms of parameter size, the model is comparable to using CSPDarknet53 as
the feature extraction network, but the computational complexity is substantially reduced.
Given the requirements of the application scenario in this paper regarding model perfor-
mance and computational complexity, from this point forward, the experiments in this
paper default to using GhostNet as the feature extraction network.

In addition, the feature extraction network in YOLOX includes the SiLU activation
function. As the network deepens, models that use the SiLU activation function tend to
experience a noticeable decrease in classification accuracy. In this paper, on the basis of
the YOLOX network structure, the SiLU activation function is replaced with the Mish
activation function. With the deepening of the network, the Mish activation function can
still maintain a higher classification accuracy. Equation (9) is the expression of the Mish
activation function [17].

Mish = x × tanh(ln(1 + ex)) (9)

3.4. Feature Fusion Networks and Channel Attention Mechanisms

In this paper, the ordinary convolutions in the YOLOX feature fusion network are
replaced with group shuffle convolution (GSConv). GSConv reduces the model’s parameter
count while preserving the connections between channels in the feature layers, ensuring
that the model’s accuracy is not compromised [18,19]. After the feature layers go through
ordinary convolutions, GSConv applies depth-wise separable convolutions, and then,
concatenates the feature layers before the depth-wise separable convolutions in the channel
direction. Finally, the shuffle structure is used to fuse the feature layers from both ordinary
convolutions and depth-wise separable convolutions. Additionally, if GSConv is used
throughout the entire model, the model will become deeper and may have an impact
on real-time performance. Therefore, in this paper, only the ordinary convolutions in
the YOLOX feature fusion network are replaced with GSConv, specifically, replacing the
BottleNeck in CSPLayer with GSBottleNeck.

Attention mechanism can allocate computational resources to more important tasks
without increasing computational complexity significantly, especially when resources
are limited.

The efficient channel attention (ECA) mechanism builds upon the SE channel attention
mechanism [20] by replacing the fully connected layer with a (1 × 1) convolutional layer.
This allows for learning the weight information between channels without reducing the
channel dimension, and it also helps reduce the number of parameters [21]. The ECA mech-

220

Drones 2024, 8, 257

anism first applies global average pooling to the input feature layer to obtain (1 × 1 × C)-
dimensional feature maps. Then, through (1 × 1 × k) convolutional operations, it learns
the importance of different channels.

The size of the convolutional kernel affects the receptive field, and larger convolu-
tional kernels are needed for feature layers with a larger number of channels. Therefore,
the kernel size can be dynamically adjusted using a function. The calculation method for
the convolutional kernel is as Equation (10).

k = ψ(C) =
∣∣∣∣ log2(C)

2
+

1
2

∣∣∣∣
odd

(10)

In this context, k represents the number of channels in the convolutional kernel, C
represents the number of channels in the input convolutional layer, and ||odd indicates that
the size of the convolutional kernel must be an odd number.

In this paper, we added the channel attention mechanism ECA in the middle of
YOLOX’s feature extraction network and PAFPN.

4. Airport Runway Line Detection Algorithm

4.1. Detection Principle

In this paper, the idea behind designing the runway line detection algorithm is to
select the correct location of the left and right runway lines in a predefined row anchor box
and the start location of the runway line in a predefined column anchor box using global
features. Therefore, the first step is to partition the input image into row anchor boxes and
column anchor boxes. Then, each row and column anchor box is further divided into grid
cells. In this way, runway line detection can be defined as selecting specific cells within
the predefined row/column anchor boxes to represent the positions of the left and right
runway lines and the starting runway line.

Assume the maximum number of runways is C, the number of row anchor boxes is h,
and the number of grid cells in each row/column anchor box is w, and let X denote the
global features of the image. Let f ij represent the classifier for the runway line positions on
the ith row/column anchor box of the jth runway. Then, the prediction of the runway line
can be expressed as Equation (11).

Pi,j,: = f ij(X) (11)

where i ∈ [1, C], j ∈ [1, h], Pi,j,: is an S−dimensional vector that represents the probability of
the Nth grid of the Mth runway line; F denotes the global features of the image, and it is a
(w + 1)−dimensional vector. It represents the probability of the (w + 1)th grid cells for the
ith runway line. For each grid in every row/column anchor box, the network predicts the
probability of the corresponding grid. Thus, the grid with the highest probability represents
the predicted position of the runway line. If no runway line is predicted on a particular
row/column anchor box, then the probability of the last grid in that anchor box is set to 1.

4.2. Network Structure

The network architecture consists of three parts: feature extraction, classification
prediction, and segmentation. The feature extraction part is responsible for extracting
the features of the runway lines from the image. The classification prediction part is
used to classify these features, while the segmentation part helps to fuse multi-scale
features, improving the detection accuracy. To improve the network’s inference speed,
the segmentation part is only used during training and not utilized during the inference
prediction stage [22]. The network structure is illustrated in Figure 3.

221

Drones 2024, 8, 257

Figure 3. Diagram of runway line detection network structure.

The role of the feature extraction part is to extract the features of the runway lines
and provide them to the classification prediction part. Common feature extraction net-
works, such as ResNet, VGG, MobileNet, ShuffleNet, have been proven to exhibit strong
feature extraction capabilities for classification tasks. In this algorithm, ResNet is used as
the feature extraction network. ResNet is a type of residual network that addresses the
problem of increased loss with increasing network depth [23]. Considering the need for
extracting a relatively limited set of features and the requirement for real-time processing
on board computers, the algorithm utilizes the lightest variant of ResNet, which is ResNet18
(18 represents the number of layers that require parameter updating through training).

In the classification prediction, the last feature layer of ResNet18 is initially downsam-
pled by the convolutional operation, reducing the number of channels. Then, the resulting
feature layer is flattened into a column, resulting in a dimension of (1 × 1 × 1800). Next,
the feature layer dimension is transformed to (1× 1× 13, 635) using a fully connected layer
and the ReLU activation function. Finally, the dimension of the fully connected layer is
reshaped to ((w + 1)× h × 3) using the reshape operation. In this context, w + 1 represents
the number of grid cells for each row/column anchor box, h represents the number of
row/column anchor boxes, and 3 corresponds to the total number of runway lines. And the
condition in Equation (12) needs to be satisfied.

h × (w + 1)× 3 = 13635 (12)

Performing softmax on each row/column anchor box for the three runway lines can
compute the grid with the highest probability within each anchor box. This is used as
the predicted position of the track line and is utilized for calculating classification loss,
structural loss, and association loss.

In the segmentation network, the last three feature layers of ResNet18 are first subjected
to convolution and upsampling operations. These three feature layers are then concatenated
along the channel dimension. Subsequently, convolution is applied to reduce the number
of channels in the feature layer to four, these are used for calculating the segmentation loss.

4.3. Loss Function

The classification loss during the network training process can be represented as
Equation (13).

Lcls =
C

∑
i=1

h

∑
j=1

LCE(Pi,j,:, Ti,j,:) (13)

Here, LCE represents the cross-entropy loss, and Ti,j,: represents the ground truth of
the track line position on the jth row/column anchor box of the ith track line.

222

Drones 2024, 8, 257

In addition to the classification loss, several other loss functions are used in the algo-
rithm based on the structural prior information of the runway lines. These loss functions
are utilized to represent the position relationships of the runway lines, allowing the neural
network to learn the structural information of the runway lines. Since each track line must
be continuous, the predicted points of the runway lines in adjacent row/column anchor
boxes should be as close as possible. Therefore, the continuity of the predicted runway lines
can be achieved by constraining the distribution of the classification vectors on adjacent
row anchors. The loss function can be represented as Equation (14).

Lsim =
C

∑
i=1

h−1

∑
j=1

‖Pi,j,: − Pi,j+1,:‖1 (14)

Here, Pi,j,: represents the predicted track line position on the jth row/column anchor
box of the ith track line, Pi,j+1,: represents the ground truth of the track line position on the
(j + 1)th row/column anchor box of the ith track line. In the loss function, the distance
between the predicted track line positions and the ground truth is minimized through an
L1-norm constraint.

Additionally, based on the prior information that each track line is a straight line,
the predicted track points can be constrained using second-order differences. The formula
for the second-order difference can be represented as Equation (15).

Lshp =
C

∑
i=1

h−2

∑
j=1

‖((Loci,j − Loci,j+1)− (Loci,j+1 − Loci,j+2)‖2 (15)

Here, Loci,j represents the predicted point on the jth row/column anchor box of the
jth track line, and its calculation method is given as Equation (16).

Loci,j =
w

∑
k=1

k · Probi,j,k (16)

Here, Probi,j,k represents the probability of the ith track line in the kth grid of the jth
row/column anchor box, and its calculation method is given as Equation (17).

Loci,j,: = so f tmax(Pi,j,1:w) (17)

Based on the above, the overall structural loss of the network can be represented as
Equation (18).

Lstr = Lsim + λLshp (18)

In addition to the classification loss and structural loss, this paper incorporates an
auxiliary segmentation task that utilizes multi-scale features for local feature modeling
during the training process. The auxiliary segmentation loss is calculated using the cross-
entropy function. To improve the performance of the algorithm, this segmentation task is
removed during the testing phase.

Real runway lines are parallel to each other, but due to perspective, the left and
right runway lines in the image become closer as they move upward. Based on this prior
condition, this paper designs the association loss for the runway lines. The design logic is
as follows: if the left and right runway lines above the image are farther apart compared to
the left and right runway lines below, a loss is generated; otherwise, no loss is generated.
The calculation process of the association loss is shown in Algorithm 1, where εT represents
the tolerable error threshold, which is defined in terms of vertical grids.

223

Drones 2024, 8, 257

Algorithm 1 Correlation Loss Calculation Process

Input: The predicted track line point on the j − th row anchor box of the i − th track line:
Loci,j, i ∈ [0, 1], j ∈ [0, h − 1] .

Output: The value of the association loss :Lreduce
1: for j = 0 to h − 1 do
2: Dj = Loc1,j − Loc0,j
3: ΔDj = Dj − Dj−1, j ∈ [1, h − 1]
4: Mj = 0.5 × (|ΔDj| − ΔDj)− εT , j ∈ [1, h − 1]
5: Nj = 0.5 × (|Mj|+ Mj), j ∈ [1, h − 1]

6: Lreduce =
h−1
∑

j=1
‖Nj‖1, j ∈ [1, h − 1] ;

7: end for

In summary, the overall loss of the algorithm can be represented as Equation (19).

Ltotal = αLcls + βLstr + γLseg + θLreduce (19)

Here, Lcls represents the classification loss, Lstr represents the structural loss, Lseg
represents the segmentation loss, and Lreduce represents the association loss. α, β, γ, and θ
represent the weights assigned to the classification loss, structural loss, segmentation loss,
and association loss, respectively.

4.4. Evaluation

In order to ensure the stability of distance calculation and accurately reflect the differ-
ences between the ground truth and predicted points, this paper first uses the predicted
points on the runway lines for least squares fitting to obtain the slope of the fitted line (k).
This further allows us to calculate the distance threshold (ε) between the predicted and
ground truth points. The calculation method is as Equation (20).

ε =
RealDistance

cos(arctan(k))
(20)

where RealDistance represents the pixel distance between the predicted points and the
ground truth points in the horizontal or vertical direction. Considering the actual angle
between the left/right runway lines and the x-axis of the pixel coordinate system is close
to 90 degrees, and the angle with the y-axis is smaller; the starting track line is close
to 90 degrees with the y-axis, and the angle with the x-axis is smaller. Therefore, when
calculating the slope (k) of the line, the left/right runway lines adopt the line equation
’x = ky + b’, and the starting track line adopts the line equation ’y = kx + b’. This means
that the angle with the y-axis of the pixel coordinate system is used when calculating
the threshold for the left/right runway lines, and the angle with the x-axis is used when
calculating the threshold for the starting track line.

Since the runway lines predicted by the neural network are obtained by fitting the
grid points on the predicted track line using the least squares method, the least squares
method reduces the impact of prediction errors on track line predictions to a certain
extent. Therefore, to evaluate the accuracy of the track line predictions, it is necessary to
quantitatively calculate the similarity between the predicted and ground truth runway
lines. The evaluation metrics include accuracy, miss rate, and over-detention rate. Accuracy
represents the similarity in slope between the predicted and ground truth runway lines,
and its calculation method is as Equation (21).

acc =

w
∑

j=1

h
∑

i=1
Λij

w × h
(21)

224

Drones 2024, 8, 257

Λi,j =

{
1 | arctan(kreal,i,j)− arctan(kpred,i,j)| < ε

0 else
(22)

Additionally, the miss rate represents the proportion of the dataset that has ground
truth runway lines but no corresponding predicted results. The over-detection rate repre-
sents the proportion of the dataset that has predicted runway lines but no corresponding
ground truth.

5. Algorithms for Visual Positioning and Combined Navigation

5.1. Algorithm for Visual Positioning

The coordinate systems involved in performing position solving in this paper include
the navigation coordinate system, runway coordinate system, airframe coordinate system,
camera coordinate system, phase plane coordinate system, and pixel coordinate system,
etc., which are defined as Figure 4:

Figure 4. The coordinate systems involved in position algorithm.

The navigation coordinate system (Onxnynzn) is defined as the northeast ground
coordinate system. The runway coordinate system (Orxryrzr) is the base coordinate system
for the position solving in the visual guidance landing process of the UAV in this paper.
The fuselage coordinate system (Obxbybzb) has the origin Ob at the center of the UAV IMU.
The camera coordinate system (Ocxcyczc) is solidly connected to the camera. The image
plane coordinate system (Oixiyizi) has the image plane located in front of the camera at
z = f (f is the focal length). The pixel coordinate system (Opxpypzp) is used to describe the
original image information.

The conversion relationship from runway coordinate system to pixel coordinate system
is as Equation (23) [24].

�vp =
1

Zc
K�vc =

1
Zc

KCγ(�vb −�v1)

=
1

Zc
KCγ

[
Cb

n(�vn −�v0)−�v1

]
=

1
Zc

KCγ

[
Cb

n(C
n
r�vr −�v0)−�v1

]
=

1
Zc

KCγCb
nCn

r

[
I3×3 | −

(
Cb

nCn
r

)−1(
Cb

n�v0 +�v1

)][�vr
1

]
=

1
Zc

KRcr
[
I3×3 | −�tcr

][�vr
1

]
=

1
Zc

P

[
�vr
1

]
(23)

where P = KRcr[I3×3| −�tcr] represents the projection matrix from the runway coordi-
nate system to the pixel coordinate system; Rcr = CγCb

nCn
r = CγCb

r represents the rota-
tion matrix from the runway coordinate system to the camera coordinate system; and

225

Drones 2024, 8, 257

�tcr = (Cb
nCn

r)
−1

(Cb
n�v0) represents the coordinates of the camera coordinate system origin

in the runway coordinate system. �vr indicates the coordinates of a point in the runway
coordinate system; −→vp denotes the coordinates of the corresponding point in the pixel
coordinate system; −→v0r denotes the coordinates of the origin of the airframe coordinate
system in the runway coordinate system; −→v0 denotes the coordinates of the origin of the
fuselage coordinate system in the navigation coordinate system; −→v1 denotes the coordinates
of the camera optical center in the body coordinate system; K is an internal parameter of
the camera that can be obtained by calibrating; Zc is the z-axis coordinate of the point in the
camera coordinate system; γ is the camera mounting angle; Cγ is the rotation matrix of the
camera mounting angles; Cb

r represents the rotation matrix from the runway system to the
machine system; and Cn

r represents the rotation matrix from the runway coordinate system
to the navigation coordinate system. Since the role of the runway coordinate system relative
to the world coordinate system is very small and can be neglected, Cn

r can be represented
as Equation (24).

Cn
r = (Cr

n)
T =

(
Cφr Cθr Cψr

)T ≈ (
Cθr Cψr

)T (24)

If the equation of a line in the pixel coordinate system is y = kx + b, then any point,
�vp = [xp yp 1]T on that line must satisfy Equation (25).

[k −1 b]�vp = [k −1 b]

⎡⎣xp
yp
1

⎤⎦ = 0 (25)

By multiplying both sides of Equation (23) by [k −1 b], we can obtain

[k −1 b]KRcr[I3×3| −�tcr]

[
�vr
1

]
= 0 (26)

So �A = [a1 a2 a3]KRcr = [a1 a2 a3], and

[
a1 a2 a3

]⎡⎣1 0 0 −xcr
0 1 0 −ycr
0 0 1 −zcr

⎤⎦
⎡⎢⎢⎣

xr
yr
zr
1

⎤⎥⎥⎦ (27)

Expanding the above equation, we can obtain

a1xr + a2yr + a3zr = a1xcr + a2ycr + a3zcr (28)

Assuming the width of the runway is denoted as Wr, then in the runway coordi-
nate system, the coordinates of any point on the left runway line can be represented as
Equation (29): [

xr −Wr
2 0

]T
(29)

where xr is an arbitrary variable. By substituting Equation (29) into Equation (28), we can
obtain

a1xr − a2
Wr

2
= a1xcr + a2ycr + a3zcr (30)

Since Equation (30) holds true for any variation in xr, we can conclude that a1 = 0,
which leads to

−Wr

2
= ycr +

a3

a2
zcr (31)

so

226

Drones 2024, 8, 257

[
1 al

3
al

2

][
ycr
zcr

]
= −Wr

2
(32)

Similarly, for the right runway, we have[
1 ar

3
ar

2

][ycr
zcr

]
=

Wr

2
(33)

By combining Equation (32) and Equation (33), we have⎡⎣1 al
3

al
2

1 ar
3

ar
2

⎤⎦[ycr
zcr

]
=

[
−Wr

2
Wr
2

]
(34)

For the starting runway line, it must satisfy the following equation in the runway
coordinate system:

�vr = [0 xr 0]T (35)

where xr is an arbitrary variable. By substituting Equation (35) into Equation (28), we can
obtain

as
2xr = as

1xcr + as
2ycr + as

3zcr (36)

To ensure that Equation (36) holds true for any variation in xr, we have as
2 = 0.

Therefore, we can conclude that

xcr = − as
3

as
2

zcr (37)

For the variables a2 and a3 in Equation (33) and Equation (37), they can be calculated
from �A, as Equation (38).⎧⎪⎨⎪⎩

�Al = [kl −1 bl]KRcr = [al
1 al

2 al
3]

�Ar = [kr −1 br]KRcr = [ar
1 ar

2 ar
3]

�As = [ks −1 bs]KRcr = [as
1 as

2 as
3]

(38)

5.2. Algorithm for Combined Navigation

The visual/inertial fusion navigation system designed in this paper consists of an IMU
(gyroscope, accelerometer) and a visual localization system [25]. Initially, the paper utilizes
the visual localization system to obtain the UAV’s position in the runway coordinate system.
The Kalman filter utilizes the difference between the visual localization system’s output
position and the current position calculated by the combined navigation algorithm as the
measurement information for position error [26].⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q̇t =
1
2 qt ⊗ wt

v̇t = Cn
b,t(at)

ṗt = vt
ε̇r = − 1

τg
εr + wεr

∇̇r = − 1
τa
∇r + w∇r

(39)

where

wt = wm − εg (40)

at = am −∇a (41)

227

Drones 2024, 8, 257

In the equation, ωm represents the gyroscope measurement value, and am represents
the accelerometer measurement value. Since the above kinematic state equation contains
noise terms that cannot be directly eliminated in practical measurements, it is necessary to
estimate these noise terms through the Kalman filter [27]. According to the inertial system
error model, after eliminating the noise terms, the IMU error and its derivative should
be constant. By using the above two sets of equations to calculate the error for each state
variable, we can obtain the error state equation for the state variable [θ, v, p, ε,∇r]T :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δθ̇ = −[ωm − εr]×δθ − εr − wε

δv̇ = −Cn
b [am −∇r]×δθ − Cn

b∇r − Cn
b w∇

δṗ = δv
ε̇r = − 1

τg
εr + wεr

∇̇r = − 1
τa
∇r + w∇r

(42)

By taking partial derivatives of each state variable, we can obtain the state-space
equations for the following prediction model:

Ẋ(t) = F(t)X(t) + G(t)w(t) (43)

where

Ẋ(t) = [δθ̇, δv̇, δṗ, ε̇r, ∇̇r]
T (44)

X(t) = [δθ, δv, δp, εr,∇r]
T (45)

The continuous-time state transition matrix is as Equation (46).

F(t) =

⎡⎢⎢⎢⎢⎢⎣
−[ωm − εr]× 03×3 03×3 −I3×3 03×3

−Cn
b [am −∇r]× 03×3 03×3 03×3 −Cn

b
03×3 I3×3 03×3 03×3 03×3
03×3 03×3 03×3 − 1

τg
I3×3 03×3

03×3 03×3 03×3 03×3 − 1
τa

I3×3

⎤⎥⎥⎥⎥⎥⎦ (46)

The continuous-time noise matrix is as Equation (47).

G(t) =

⎡⎢⎢⎢⎢⎣
−I3×3 03×3 03×3 03×3
03×3 −Cn

b 03×3 03×3
03×3 03×3 03×3 03×3
03×3 03×3 I3×3 03×3
03×3 03×3 03×3 I3×3

⎤⎥⎥⎥⎥⎦ (47)

The noise term is given by Equation (48).

w(t) = [wε, w∇, wεr, w∇r]
T (48)

Since the position output by the visual localization system is in a discrete form,
the measurement equation in the discrete form can be represented as Equation (49).

Zk+1 = Hk+1Xk+1 + vk+1 (49)

where

Zk+1 =

⎡⎣Xn − p̂x
Yn − p̂y
Zn − p̂z

⎤⎦ (50)

[Xn, Yn, Zn]
T represents the three-dimensional position coordinates of the UAV in the

runway coordinate system, calculated by the visual localization system.

228

Drones 2024, 8, 257

The measurement noise vk+1 can be represented as Equation (51).

vk+1 = np (51)

And np satisfies Equation (52).

np ∼ N(0, σ2
np) (52)

The measurement equation can be represented as Equation (53).⎡⎣Xn − p̂x
Yn − p̂y
Zn − p̂z

⎤⎦ = HpXk+1 + np (53)

where

Hp = [03×6 I3×3 03×6] (54)

In summary, the structure of the visual/inertial navigation system developed in this
paper is shown in Figure 5.

Figure 5. Vision/inertial combined navigation structure diagram.

6. Simulation Results of Detection and Localization Algorithms

6.1. Runway ROI Selection Network Training and Testing

This paper tests the optimized network, and the experimental results are shown in
Figure 6. The runway ROI selection network can give the pixel location, category, and
probability of the runway, which lays the foundation for the subsequent segmentation of
the image based on the pixel location and detection of the runway line.

(a) (b)

(c) (d)

Figure 6. Prediction results of the runway ROI selection network. (a) Airport runway line detection
results in virtual environment; (b) Real airport runway line detection results; (c) Airport runway line
detection results after transformation; (d) Simple airport runway line detection results.

229

Drones 2024, 8, 257

This paper also tested the performance of the improved model on a constructed dataset
and plotted the P-R curves before and after optimization. The experimental results are
shown in Figure 7, where YOLOX represents the model before optimization, and YOLOX+

is used to represent the optimized model for ease of description. From the test results, it
can be observed that the P-R curve of the optimized model has a larger enclosed area with
respect to the horizontal and vertical axes. This confirms the effectiveness of the proposed
optimization measures in improving the model’s performance.

Figure 7. The P-R curves before and after the improvement of YOLOX.

6.2. Runway Line Detection Network Training and Testing

In this paper, the input image resolution for training the runway line detection network
is set to 480× 480. The Adam optimization strategy is chosen for model optimization due to
its ease of implementation, efficiency, and low memory requirements. Additionally, a cosine
decay strategy is employed to update the learning rate, with an initial learning rate set to
4 × e−4. The batch size is set as 32, and the training process is conducted for 100 epochs.
The weights assigned to the classification loss (α), structural loss (β), segmentation loss (γ),
and correlation loss (θ) are set to 1, 1, 1, and 0.6, respectively. The row/column anchor box
grid is configured with 50 cells.

The trained network is tested using a partitioned test dataset, and the predicted results
of the network are fitted using the least squares method. The experimental results are
illustrated in Figure 8. From the test results, it can be observed that the runway line
detection network accurately predicts the positions of the three runway lines.

(a) (b)

(c) (d)

Figure 8. Prediction results of the runway line detection network. (a) Airport runway line detection
results in virtual environment; (b) Real airport runway line detection results; (c) Airport runway line
detection results after transformation; (d) Simple airport runway line detection results.

230

Drones 2024, 8, 257

6.3. Visual Localization Simulation Results

In this paper, a test dataset was used to validate the localization algorithm. The test
dataset includes the runway width, relative position between the UAV and the runway,
and relative attitude angles. The UAV’s flight trajectory in the dataset is illustrated in
Figure 9, where x and y represent the UAV’s position in the runway coordinate system,
and height represents the UAV’s altitude above the ground.

Figure 9. Schematic diagram of the flight path of the drone.

The visual localization results are shown in Figure 10. From the experimental results,
it can be observed that the visual localization results follow a similar trend to the ground
truth. However, there is some deviation and significant fluctuations between the visual
localization results and the ground truth in the initial stage. This deviation is mainly due to
the UAV being farther from the runway, resulting in a smaller representation of the runway
in the image. Under the same detection accuracy, this leads to larger pixel errors. As the
UAV comes closer to the runway, the deviation between the visual localization results and
the ground truth gradually reduces.

(a) (b)

(c)

Figure 10. Visual positioning simulation results. (a) x-direction visual positioning results; (b) z-
direction visual positioning results; (c) y-direction visual positioning results.

231

Drones 2024, 8, 257

To quantitatively describe the error characteristics of visual localization, this paper
calculated the MAE (mean absolute error) and RMSE (root-mean-square error) of the visual
localization in three directions. The calculation results are shown in Table 2. Due to the
larger pixel errors as the UAV is farther from the runway, the localization errors in all
three directions are larger and more fluctuating in the initial stage, with some outliers
present. As the UAV approaches the runway, the localization errors in all three directions
gradually reduce, and the number of outliers decreases. Additionally, from the error
curves, it can be observed that when approaching the runway, the localization error in
the x-direction is approximately 4 m. Since the runway has a certain margin in the x-
direction, this localization error meets the landing requirements for the UAV on the runway.
The localization error in the y-direction is about 0.3 m, which can satisfy the accuracy
requirement for UAV landing. However, the localization error in the z-direction is around
2.5 m, which indicates the need for further fusion with other sensor data to improve the
positioning accuracy in the z-direction.

Table 2. Visual positioning error characteristics.

Axis
Evaluation Metrics

MAE (m) RMSE (m)

x-axis 23.7810 40.375
y-axis 0.3548 0.5030
z-axis 4.3948 6.2123

6.4. Simulation Results of Combined Navigation Algorithm

During the simulation process, this paper set the time update frequency and measure-
ment update frequency of the Kalman filter and the adaptive fading Kalman filter to 100 Hz
and 10 Hz, respectively. Additionally, the initial state covariance matrix P0, process noise
covariance matrix Qk, and measurement noise covariance matrix Rk for the traditional
Kalman filter and the adaptive fading Kalman filter were set as Equation (55).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0 = diag{(0.1◦)2, (0.1◦)2, (0.1◦)2,

(0.1 m/s)2, (0.1 m/s)2, (0.1 m/s)2,

(1 m)2, (1 m)2, (1 m)2,

(0.01)2 · I3×3, (0.01)2 · I3×3}15×15

Qk = diag{(0.01 rad/s)2 · I3×3, (0.01 m/s2)
2 · I3×3, 09×9)}3×15

Rk = diag{(40 m)2, (5 m)2, (10 m)2}3×3

(55)

This paper compared the localization results of visual localization, traditional Kalman
filter-based combined navigation, and adaptive fading Kalman filter-based combined
navigation [28,29]. The experimental results are shown in Figure 11. In the initial stage,
where the UAV is far from the runway and the runway occupies a small portion of the
camera’s field of view, the pixel errors on the image processing side are larger. As a result,
the visual localization results in the initial stage exhibit significant fluctuations and outliers.
The traditional Kalman filter adjusts the weights of the state prediction and innovation in the
state prediction process based on the state noise covariance matrix and measurement noise
covariance matrix. This helps to reduce the number of outliers to some extent. However,
the filtering performance of the traditional Kalman filter heavily relies on the accuracy of
the measurement noise covariance matrix. If the statistical properties of the measurement
noise are not well understood, the improvement in filtering accuracy may be limited.
In the adaptive fading Kalman filter, an adaptive factor is introduced, which reduces
the dependence on the accuracy of the measurement noise covariance matrix [30]. This
enables better removal of outliers in the visual localization results, resulting in improved
filtering performance.

232

Drones 2024, 8, 257

(a) (b)

(c)

Figure 11. Comparison results of the true value, visual localization, combined navigation based on
traditional Kalman filter and combined navigation based on adaptive fading Kalman filter. (a) Posi-
tioning result in y-direction; (b) Positioning result in z-direction; (c) Positioning result in x-direction.

In order to quantitatively describe the error characteristics of the two filtering algo-
rithms, this paper calculates the MAE and RMSE of the two filtering algorithms in three
directions, and the experimental results are shown in Table 3. From the experimental results,
it can be seen that the MAE and RMSE of the traditional Kalman filter and the adaptive
fading Kalman filter are smaller than the visual positioning results, and the accuracy has
been improved. Since the adaptive factor is added to the adaptive fading Kalman filter,
the covariance matrix of the measurement can be dynamically adjusted, thereby reducing
the proportion of the measurement in the prediction and estimation, so the filtering effect
is better, and its MAE and RMSE are better than those of the traditional Kalman filter.
The Mann filter is small, and the positioning accuracy is further improved. The experi-
mental results show the effectiveness of the combined navigation algorithm designed in
this paper.

Table 3. Error characteristics of combined navigation algorithm.

Filtering Algorithm Axis
Evaluation Metrics

MAE (m) RMSE (m)

KF
x 22.7146 36.6027
y 0.2819 0.3673
z 4.3260 5.7779

AFKF
x 22.7146 36.6027
y 0.2819 0.3673
z 4.3260 5.7779

233

Drones 2024, 8, 257

6.5. Flight Test in Real Scenario
6.5.1. Model Compression and Acceleration

To accelerate the model training process, this paper utilized a high-performance
NVIDIA GeForce RTX3090 during training. However, the trained model needs to be
deployed on an onboard computer with limited computational power. Direct deployment
may result in insufficient inference speed and latency, which may not meet the real-time
requirements for UAV landing navigation. Furthermore, if models built using different
deep learning frameworks are directly deployed, conflicts may arise, preventing them from
running simultaneously on the onboard computer. Therefore, it is necessary to use a unified
framework to refactor these models. In this paper, when deploying the runway coarse
positioning network and the runway line detection network on the onboard computer,
ONNX and TensorRT were used to compress and accelerate both models [31]. The program
execution flow is illustrated in Figure 12. The speed of the algorithm on an NVIDIA Jetson
Xavier NX is shown in Table 4. The results show that the real-time requirements of the
algorithm can be achieved after model compression and acceleration.

Figure 12. Model compression and acceleration process.

Table 4. Comparison of runway line detection and localization algorithm update frequency.

ONNX and TensorRT Update Frequency (Hz)

Detection algorithms × 44√
56

Detection and localization algorithms × 40√
50

6.5.2. Introduction of Flight Test Equipment

The fixed-wing UAV platform built during the actual flight test is shown in Figure 13a,
with a wingspan of 1.8 m and a maximum flight height of 120 m. The equipment carried
by the UAV mainly includes cameras, onboard computers, flight controllers, and power
supplies. Equipment such as the control and power supply are installed inside the fuselage.
The runway coarse positioning network, runway line detection network, and visual posi-
tioning algorithm are deployed on the onboard computer for image processing and visual
navigation data calculation, and the visual navigation results are transmitted to the flight
control terminal through USART. After the control rate in the flight controller solves the
control command, it controls the steering gear in the form of PWM, and finally, controls the
UAV to land smoothly.

The onboard computer selected in this paper is an NVIDIA Jetson Xavier NX. Due to
its powerful computing power and small size, it can be widely used in drones, small robots,
and security systems. Considering the image quality, volume, weight and other factors,
the camera selected in this paper is a Logitech C1000e in the flight test, and the onboard
computer and camera are shown in Figure 13b. In addition, the flight control system can
ensure the stability and controllability of the UAV flight. The flight control used in this

234

Drones 2024, 8, 257

paper is self-developed flight control, an onboard IMU, barometer, magnetometer, and
other common sensors. The physical picture is shown in Figure 13c.

(a) (b) (c)

Figure 13. Real flight test platform. (a) UAV platform; (b) Onboard computer and camera; (c) Physical
diagram of flight control system.

6.5.3. Flight Test Results

In the work, the landing process of the UAV on a simplified runway, treating the left
and right edges of the runway as the left and right runway lines are simulated, respectively.
Additionally, a starting runway line was added to the simplified runway. The runway line
detection results are shown in Figure 14. From the experimental results, it can be observed
that the designed model accurately detects all three runway lines, demonstrating good
robustness and generalization.

Figure 14. Results of real runway line detection.

In the flight experiment, the visual localization results and the corresponding local-
ization error curves in the x-, y-, and z-directions are shown in Figure 15. Due to various
factors such as the short length of the simplified runway, surrounding building interference,
fast UAV flight speed, and significant UAV maneuverability, the runway appears in the
camera’s field of view for a short time. As a result, there is limited effective localization
data, and the errors are larger compared to the simulation results. However, overall,
the localization trends in all three directions align with the ground truth.

From the error curves, it can be observed that the localization error in the x-direction
gradually decreases as the UAV approaches the runway, reaching around 2 m near the
runway. Since the runway has some margin in the x-direction, this accuracy level is
sufficient for UAV landing requirements. In the y-direction, the localization error is around
2.7 m, which deviates significantly from the simulation results. The reason could be the
curved edges of the left and right runway lines and possible image distortion due to the
rolling shutter effect of the camera, or there may be some deviation in the ground truth
setting. In the z-direction, the localization error is approximately 1.5 m, which cannot
be applied to autonomous navigation during the UAV landing process. Therefore, it is
necessary to further incorporate data such as IMU and laser sensor data to improve the
localization accuracy.

In addition, In the work, the error characteristics of the localization results in the
three directions is also calculated, as shown in Table 5. The accuracy of the errors in the
y-axis and z-axis is low, and the root-mean-square error in the x-axis reaches 22.1081 m.
However, given that the accuracy in the x-direction is not very demanding during the

235

Drones 2024, 8, 257

flight landing process, the visual localization algorithm proposed in this paper is effective.
Furthermore, in the flight experiment, only visual localization is validated. If the adaptive
fading extended Kalman filter algorithm mentioned earlier is further used to fuse the visual
localization results and IMU data, it can theoretically improve the localization accuracy.

(a) (b)

(c) (d)

(e) (f)

Figure 15. Experiment error curves in real scenario. (a) Visual positioning error in x-direction;
(b) Visual positioning error in x-direction; (c) Visual positioning error in y-direction; (d) Visual
positioning error in y-direction; (e) Visual positioning error in z-direction; (f) Visual positioning error
in z-direction.

Table 5. Error characteristics of visual localization algorithm.

Axis
Evaluation Metrics

MAE (m) RMSE (m)

x-axis 19.8979 22.1081
y-axis 3.2175 3.2331
z-axis 0.9074 0.9831

7. Conclusions

In recent years, UAVs have been used in various fields on a large scale. Landing as an
important stage of flight, realizing unmanned autonomous landing is of great significance
for UAV intelligence. This paper takes the visual navigation algorithm for autonomous
UAV landing as the research purpose, constructs an end-to-end visual guidance landing
navigation system, and optimizes the detection algorithm at the image processing end,
and fuses the IMU information and visual localization data at the localization end by com-
bining the navigation algorithms, in response to the requirements of this paper’s application
scenarios for accuracy and real-time. The innovations of this paper are as follows:

(1) To meet the requirements of UAV visual-guided landing, a deep-learning-based
system for runway ROI detection, runway line detection, visual localization, and combined
navigation is constructed.

236

Drones 2024, 8, 257

(2) The paper optimizes the runway ROI detection algorithm and runway line detection
algorithm to meet the navigation accuracy and real-time performance requirements in the
application scenario.

(3) To further improve visual localization accuracy, the paper utilizes the Kalman
filtering algorithm to fuse IMU information and visual localization results.

Simulation and experimental results demonstrate the significant advantages of the
proposed algorithms in terms of detection accuracy, real-time performance, and general-
ization ability. The paper provides a reliable solution for the visual navigation problem in
UAV landing.

Author Contributions: Conceptualization, X.L. and W.X.; methodology, W.X.; software, W.X.; valida-
tion, W.X. and X.X.; formal analysis, W.X.; investigation, W.X.; resources, X.L.; data curation, X.L.,
W.X., B.Q., and X.X.; writing—original draft preparation, W.X.; writing—review and editing, W.X.,
X.X., and B.Q.; visualization, W.X., X.X., and M.Z.; supervision, X.L.; project administration, X.L.;
funding acquisition, X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant num-
ber No.62073266, and the Aeronautical Science Foundation of China, grant number No.201905053003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: Gratitude is extended to the Shaanxi Province Key Laboratory of Flight Control
and Simulation Technology.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References

1. Jiao, S.; Ding, H.; Zhong, Y.; Yao, X.; Zheng, J.J. A UAV Target Tracking and Control Algorithm Based on SiamRPN. J. Syst. Simul.
2023, 35, 1372–1380.

2. Xu, W.; Li, P.; Han, B. An attitude estimation method for MAV based on the detection of vanishing point. In Proceedings of the
2010 8th World Congress on Intelligent Control and Automation, Jinan, China, 7–9 July 2010; pp. 6158–6162.

3. Chong-ming, W.; Xiao-dan, W.; Jin, G.; Wen, Q. Image Matching Method Based on the Modified Hough Transform and the Line
Characteristics. In Proceedings of the 2010 Chinese Conference on Pattern Recognition (CCPR), Beijing, China, 22–24 October
2008.

4. Feng, G.; Zhang, D.; Wu, W. Pose estimation of moving object based-on dual quaternion from monocular camera. Geomat. Inf. Sci.
Wuhan Univ. 2010, 35, 1147–1150.

5. Zhenghong, X.; Qiang, Z.; Xinping, Z. Research on photoelectric surveillance warning system and design scheme for airport
surface. China Saf. Sci. J. 2020, 30, 136.

6. Wei-Dong, Z.; Xiao-Cheng, L.; Peng, H. Progress and challenges of overwater unmanned systems. Acta Autom. Sin. 2020,
46, 847–857.

7. Tao, L.; Hong, T.; Chao, X. Drone identification and location tracking based on YOLOv3. Chin. J. Eng. 2020, 42, 463–468.
8. Liu, J.; Wang, W.; He, Q.; Kong, X.; Ye, B.; Wang, S. Autonomous patrol technology and system of leapfrogcharging UAV (II):

Automatic charging control based on machine vision. J. Electr. Power Sci. Technol. 2022, 36, 182–188.
9. Yin, H.; Zhang, X.; Zhang, X.; Liu, X. Interference analysis to aerial flight caused by UHV lines using airborne GPS. Geomat. Inf.

Sci. Wuhan Univ. 2009, 34, 774–777.
10. Zhang, L.; Wang, Y.J.; Sun, H.H.; Yao, Z.J.; Wu, P. Adaptive scale object tracking with kernelized correlation filters. Guangxue

Jingmi Gongcheng Optics Precis. Eng. 2016, 24, 449–459.
11. Liu, X.; Li, C.; Xu, X.; Yang, N.; Qin, B. Implicit Neural Mapping for a Data Closed-Loop Unmanned Aerial Vehicle Pose-Estimation

Algorithm in a Vision-Only Landing System. Drones 2023, 7, 529. [CrossRef]
12. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.
13. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.
14. Weng, K.; Chu, X.; Xu, X.; Huang, J.; Wei, X. EfficientRep: An efficient RepVGG-style convnets with hardware-aware neural

network design. arXiv 2023, arXiv:2302.00386.
15. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1580–1589.

237

Drones 2024, 8, 257

16. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for
mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28
October 2019; pp. 1314–1324.

17. Misra, D. Mish: A self regularized non-monotonic activation function. arXiv 2019, arXiv:1908.08681.
18. Liu, S.; Huang, D.; Wang, Y. Learning spatial fusion for single-shot object detection. arXiv 2019, arXiv:1911.09516.
19. Li, H.; Li, J.; Wei, H.; Liu, Z.; Zhan, Z.; Ren, Q. Slim-neck by GSConv: A better design paradigm of detector architectures for

autonomous vehicles. arXiv 2022, arXiv:2206.02424.
20. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.
21. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 11534–11542.

22. Qin, Z.; Wang, H.; Li, X. Ultra fast structure-aware deep lane detection. In Proceedings of the Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, 23–28 August 2020; Part XXIV 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 276–291.

23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

24. Jing-hong, L.; Bo, J.; Gang, L.; Qian-fei, Z. Geometric correction of oblique images for array CCD aerial cameras. Chin. J. Liq.
Cryst. Displays 2015, 30, 505–531.

25. Liu, J.; Zhao, Z.; Hu, N.; Huang, G.; Gong, X.; Yang, S. Summary and prospect of indoor high-precision positioning technology.
Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 997–1008.

26. Jing, B.; Jian-ye, L.; Xin, Y. Study of fuzzy adaptive kalman filtering technique. Inf. Control 2002, 31, 193–197.
27. Chen, X.; Zhou, J.; Li, J.; Guo, L. Data processing of wind profiler radar based on nonlinear filtering. Nanjing Xinxi Gongcheng

Daxue Xuebao 2013, 5, 533.
28. Llerena Caña, J.P.; García Herrero, J.; Molina López, J.M. Error Reduction in Vision-Based Multirotor Landing System. Sensors

2022, 22, 3625. [CrossRef]
29. Wubben, J.; Fabra, F.; Calafate, C.T.; Krzeszowski, T.; Marquez-Barja, J.M.; Cano, J.C.; Manzoni, P. Accurate landing of unmanned

aerial vehicles using ground pattern recognition. Electronics 2019, 8, 1532. [CrossRef]
30. Gao, W.; Yang, Y.; Cui, X.; Zhang, S. Application of adaptive Kalman filtering algorithm in IMU/GPS combined navigation

system. Geo-Spat. Inf. Sci. 2007, 10, 22–26. [CrossRef]
31. Yang, X.; Jiawei, W.; Jianxue, L.; Jun, L. A dynamic routing algorithm based on deep reinforcement learning. Inf. Commun. Technol.

Policy 2020, 46, 48.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

238

Citation: Chen, L.; Liu, G.; Zhu, X.;

Li, X. A Heuristic Routing Algorithm

for Heterogeneous UAVs in Time-

Constrained MEC Systems. Drones

2024, 8, 379. https://doi.org/

10.3390/drones8080379

Academic Editor: Carlos Tavares

Calafate

Received: 21 June 2024

Revised: 31 July 2024

Accepted: 3 August 2024

Published: 6 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A Heuristic Routing Algorithm for Heterogeneous UAVs in
Time-Constrained MEC Systems

Long Chen 1,2, Guangrui Liu 1,2, Xia Zhu 1,2,* and Xin Li 1,2

1 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China;
chen_long@seu.edu.cn (L.C.); liu_guangrui@seu.edu.cn (G.L.); lixinseu@163.com (X.L.)

2 Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications
(Southeast University), Ministry of Education, Nanjing 211189, China

* Correspondence: zhuxia@seu.edu.cn

Abstract: The rapid proliferation of Internet of Things (IoT) ground devices (GDs) has created an un-
precedented demand for computing resources and real-time data-processing capabilities. Integrating
unmanned aerial vehicles (UAVs) into Mobile Edge Computing (MEC) emerges as a promising solu-
tion to bring computation and storage closer to the data sources. However, UAV heterogeneity and
the time window constraints for task execution pose a significant challenge. This paper addresses the
multiple heterogeneity UAV routing problem in MEC environments, modeling it as a multi-traveling
salesman problem (MTSP) with soft time constraints. We propose a two-stage heuristic algorithm,
heterogeneous multiple UAV routing (HMUR). The approach first identifies task areas (TAs) and
optimal hovering positions for the UAVs and defines an effective fitness measurement to handle UAV
heterogeneity. A novel scoring function further refines the path determination, prioritizing real-time
task compliance to enhance Quality of Service (QoS). The simulation results demonstrate that our
proposed HMUR method surpasses the existing baseline algorithms on multiple metrics, validating
its effectiveness in optimizing resource scheduling in MEC environments.

Keywords: UAV routing; Mobile Edge Computing; heterogeneous multiple UAVs; IoT ground
devices; heuristic

1. Introduction

Mobile Edge Computing (MEC) provides high-speed processing and large-scale dis-
tributed computing capabilities for many typical computing-intensive applications, such as
automatic navigation, augmented reality, and remote control aircraft [1]. The implementa-
tion of MEC relies on dispersed large-scale IoT devices and their wireless communication.
The number of global IoT devices has increased rapidly in recent years [2]. The increase
in a large number of IoT devices has brought new challenges to mobile communication
and service quality. At the same time, due to the limited computing power of IoT devices,
additional computing resources are needed to support the effectiveness of services. In
this context, UAVs have aroused significant research interest in academia due to their
high maneuverability. As a result, UAV-assisted MEC has emerged as a prominent area of
study [3]. Meanwhile, the short-range communication characteristics of the UAV means
that it cannot transmit data over limited resources over long distances. This requires the
dispatch of UAVs to IoT-device-intensive areas through task allocation, path planning,
and trajectory optimization to assist in completing tasks.

This paper considers assigning multiple UAVs to multiple task clusters for auxiliary
calculations, and effectively formulating UAV flight routes through a heuristic strategy.
Taking into account the different flight capabilities of the UAV and the constraints of the task
time window, the goal of maximizing the QoS is achieved. In this paper, we consider both
the number of tasks resolved by users and the data throughput in relay communications
as elements of the Quality of Service (QoS) considerations. To our best knowledge, in the

Drones 2024, 8, 379. https://doi.org/10.3390/drones8080379 https://www.mdpi.com/journal/drones239

Drones 2024, 8, 379

MTSP, the vast majority of UAVs studied are isomorphic [2]. However, there are many
UAV manufacturers, and there is no fixed unified standard for the UAVs produced, so
the heterogeneous UAV model used in this article has different flight capabilities, i.e., maxi-
mum flight coverage [4], to adapt to different UAVs produced by different manufacturers,
so that various types of UAVs can be applied to our solution. Meanwhile, compared to
previous studies on static environmental systems, we consider the real-time constraints of
tasks generated by GDs, which means that the UAVs can only serve tasks during the open
time window of the task. Real-time tasks are widely present in real environments, such
as a traffic intersection having a large amount of traffic flow during specific time periods
and a company’s security system needing to monitor a certain area at specific times every
day. We model the UAV routing problem with the above characteristics as a heterogeneous
multi-traveling salesman routing problem with soft time constraints. Based on the NP-hard
characteristics of the traveling salesman problem (TSP) and the MTSP, the heterogeneous
multiple traveling salesman routing problem (HMTSRP) is also NP-hard. For UAV-assisted
MEC, as shown in Figure 1, the UAV departs from the airport, is deployed to a TA, that is
an area where a large number of GDs are concentrated, interacts with the GD, and offloads
tasks to the base station.

8$9

8$9 $LUSRUW

%ase 6WaWLRQ

*URXQG 'eYLFes

Figure 1. UAV-assisted MEC schematic diagram.

Providing high QoS for GDs in this model is a challenging issue: (a) A large number of
dispersed GDs may make it difficult to determine the TAs, further leading to difficulties in
selecting the optimal hovering position. (b) The heterogeneity of UAVs results in different
flight capabilities, can lead to different results when different UAVs perform the same task
combination, and significantly increase the solution space of the allocation strategy, then
making the allocation of UAVs a difficult problem. (c) The time window constraint of a task
defines the time it can be served, making it necessary to consider the time factor in UAV
path planning. Only by scheduling the UAV to the task location within the time window
can effective service be provided.

For the challenges mentioned above, we propose a heuristic UAV scheduling algo-
rithm, referred to as HMUR, for the problem under study. The main contributions are
as follows:

• The task allocation and path planning problem of heterogeneous UAVs in MEC
systems is modeled as a heterogeneous MTSP with soft time constraints, which is an
NP-hard problem. This article proposes a solution called HMUR, which applies a
two-stage heuristic algorithm to obtain an approximate optimal solution for improving
the QoS.

240

Drones 2024, 8, 379

• Using the k-means clustering method to cluster the geographic coordinates of a large
number of GDs solves the problem of too many IoT devices.

• A method for calculating the fitness between heterogeneous UAVs with different flight
capabilities and different task assignments is proposed to determine UAV allocation
under resource constraints.

• The time window constraint of the task is considered, and a heuristic method is used
to formulate travel paths within the responsibility range of each UAV to achieve a
higher QoS.

The rest of this paper is organized as follows. Section 2 reviews the existing literature
on the problem under study. Section 3 proposes a modeling method for the system,
and the problem is described and formulated. Section 4 introduces the HMUR algorithm
proposed in this paper. Section 5 shows the experimental results, and Section 6 provides
the conclusion.

2. Related Work

In a MEC environment assisted by UAVs, many studies focus on path planning,
trajectory optimization, task offloading strategies, and other aspects of UAVs. In this
section, we discuss the achievements of existing research and analyze the focus that can be
further studied.

The integration of energy-efficient routing protocols is a critical issue in prolonging the
operating time of UAVs [5]. The research focuses primarily on the following areas: Energy-
Aware Routing Protocol (AODV [6]): This protocol extends the overall network lifetime
by prioritizing UAVs with a higher remaining energy to transmit data. Location-Aware
Routing Protocol (GPSR [7]): This protocol uses a greedy algorithm to select the node closest
to the destination, thereby reducing data transmission distance and energy consumption.
Cluster-Based Routing Protocol [8]: This protocol extends the lifetime of the UAV network
by periodically rotating the cluster heads to balance energy consumption. Hybrid Routing
Protocol (ZRP [9]): This protocol combines reactive and proactive routing mechanisms
and dynamically selects the optimal routing strategy based on the distance between nodes
and their energy status. Security is another critical concern in UAV-assisted MEC systems,
where the integrity and confidentiality of data transmission must be maintained. Ensuring
secure communication involves implementing robust encryption methods and secure com-
munication protocols. Using advanced cryptographic techniques and secure transmission
channels [10,11], the risk of data breaches and unauthorized access can be minimized.

Regarding the routing issue of a single UAV, Dariush Ebrahimi et al. [12] proposed
a reinforcement learning method to enable UAVs to autonomously locate and formulate
trajectories within the task area; this work improved the positioning accuracy of multiple
objects while considering time and path length to reduce UAV energy consumption. Liang
Zhang et al. [13] proposed an energy-efficient trajectory-optimization scheme for UAVs
based on reinforcement learning; they jointly applied reinforcement learning methods to
solve formulaic optimization problems, considering the average data rate, total energy
consumption, and coverage fairness of IoT terminals to optimize the trajectory design of
UAVs. Marceau Coupechoux et al. [14] proposed an algorithm based on the Hamilton
Jacobi equation to solve the single UAV-trajectory-optimization problem. This work finds
the optimal trajectory to minimize costs while considering velocity and service traffic.

Many studies on routing and trajectory optimization for multiple UAVs have received
attention. Kai Wang et al. [15] proposed an iterative algorithm and made the first attempt to
solve the collaborative path planning problem of multiple unmanned aerial vehicles. This
work successfully transforms the problem into an integer linear programming problem
by creating a new directed acyclic graph of the UAV state transition and proposes an
iterative algorithm with a constant approximation ratio to solve this problem. Abhishek
Bera et al. [16] modeled the multi-UAV path planning problem as a capacitated single-
depot vehicle-routing problem (CSDVRP) and proposed a routing-adjustment algorithm to
optimize the trajectory of the UAVs; this algorithm considers the trade-off between different

241

Drones 2024, 8, 379

activation modes of IoT devices and UAV travel time. Yejun He et al. [17] investigated a 3D
multi-UAV trajectory optimization based on GDs selecting the target UAV for task comput-
ing; this algorithm theoretically derives and proves an optimal selection and uninstallation
strategy for IoT devices. Hongyue Wu et al. [18] proposed an improved tabu search algo-
rithm under the background of UAV-assisted edge computing, focusing on path planning,
while effectively optimizing the number of UAVs to speed up the unloading of computing
tasks. Xiaohan Qiu et al. [19] proposed an integrated host and content-centric routing
mechanism that takes advantage of both mechanisms to address the issues of multi-UAV
formation and integrated management. Hao Song et al. [20] modeled the UAV network
using the Poisson clustering process, divided the UAV network into multiple clusters,
and designed an enhanced flood routing protocol based on random network coding and
clustering to achieve efficient routing management of the UAV cluster network. Anna Gay-
damaka et al. [21] proposed a dynamic topology organization and maintenance method for
UAV swarms and, based on this, designed advanced functions for dynamic cluster merging
and separation, making it suitable for practical applications. Xutong Yang et al. [22] pro-
posed an adaptive routing scheme based on the Bodies mobile model to complete the task of
efficient unmanned aerial vehicle (UAV) networks. They developed a biologically inspired
Bodies-based Social Force Model (BSFM) and designed an adaptive UAV routing scheme
to improve the communication performance of the UAV network while maintaining the
topology. Mohammed Gharib et al. [23] proposed a method based on linear programming
modeling to address the problem of a self-organizing unmanned-aerial-vehicle-routing
protocol to find the shortest path. Pengcheng Zhao et al. [24] proposed a blockchain and
deep Q-network (DQN) co-evolutionary routing (BDCoER) scheme for UAV networks,
which completes the path co-evolution of the entire network based on each UAV training
its own DQN model.

Many works on collision avoidance in UAV routing also have achieved accomplish-
ments. Yu-Hsin Hsu et al. [25] proposed a reinforcement learning method to help UAVs
learn collision avoidance without prior knowledge of other UAV paths, while using opti-
mization theory to find the shortest backward path for each UAV to ensure that the UAV
collects data from all relevant IoT devices. Jinyu Fu et al. [26] proposed a multi-layer pro-
jection clustering algorithm for multiple UAVs, developed a straight-line flight judgment
to reduce the computational complexity of obstacle avoidance, and proposed an improved
adaptive window probability roadmap algorithm to plan obstacle avoidance paths.

Table 1 shows a comparison between some related work and the work of this paper.
The comparison of some related works with certain features of this paper, including the
methods, the number of drones, and whether the drones are heterogeneous, reveals that
many studies on multiple UAVs consider UAVs that are isomorphic, with identical battery
capacity, signal transmission power, CPU operating speed, and so on. To better fit the
actual situation and enrich the diversity of choices, we introduce the heterogeneity of UAVs
in this study and then consider routing decisions for multiple UAVs. At the same time,
we consider the real-time characteristics of the task based on the static MEC environment,
to be closer to the real situation of UAV-assisted MEC.

Table 1. Summary of related work.

Related Works Method Number of UAVs Heterogeneity of UAVs

[12,13] Reinforcement Learning one -
[14] Heuristic Algorithm one -
[15–17,19–21] Heuristic Algorithm Multiple Isomorphic
[18,22] Intelligent Algorithm Multiple Isomorphic
[23] Linear Programming Multiple Isomorphic
[24] Deep Learning Multiple Isomorphic
This paper Heuristic Algorithm Multiple Heterogeneous

242

Drones 2024, 8, 379

3. System Model

In our proposed algorithm, each GD possesses an auxiliary calculation task. These
tasks should be offloaded to the high-computing-ability base station (BS) by choosing
proper UAVs as the relay devices, so as to optimize the QoS performance metrics (i.e., the
number of tasks to be solved and the amount of offloaded workload). Several essential
factors are included in the process, such as the number of tasks, the amount of offloaded
workload, energy consumption, and the number of dispatched UAVs. We simulated this
problem by establishing the following models: (a) scenario model, (b) communication
model, (c) task-assisted model, and (d) energy consumption model.

The notations to be used are listed in Notations section.

3.1. Scenario Model

As illustrated in Figure 2, we abstracted the entire environment into two parts: the air
part and the ground part; GDs are fixed in the ground part and clustered as TAs, generating
tasks waiting for UAV-assisted computation; D = {d1, d2, ..., dM} denotes a collection of M
GDs. Each GD is identified by a unique number, and a location is provided in the system.
In this system, to simplify the computation, we assumed that each GD only generates one
task within the same time interval, i.e., A = {a1, a2, ..., aM}; task set A corresponds one-
to-one to GD set D. Each task ai ∈ A is restricted by a real-time window δi = [δstart

i , δend
i]

during which the task can only be performed. Li represents the workload of task ai.

Figure 2. System model.

Due to the large number of GDs, we need to identify TAs containing several GDs in
the environment as a prerequisite for dispatching UAVs, i.e., B = {b1, b2, ..., bN} denotes N
TAs. Due to our simplified model, tasks correspond one-to-one to the GDs, and we can
consider that each TA contains several tasks, i.e., Bn = {an

1 , an
2 , ..., an

s } indicates that TA bn
contains a total of s tasks. For each TA, we determine a unique hover position to facilitate
UAV positioning services. In addition, the BS and airport (AP) are also fixed on the ground,
representing high-computing-power service base stations and UAV aprons, respectively.

In the air part, U = {u1, u2, ..., uK} denotes K UAVs moving in the air. In this paper,
task allocation and path planning are performed on them.

3.2. Communication Model

Based on many previous studies, such as [2,3,16,27,28], we used the air-to-ground
(ATG) [2] LoS channel probability model to simulate the communication between the UAV
and the GD. Let (xU

k (t), yU
k (t), hU

k (t)) and (xD
i , yD

i , 0) denote the coordinates of UAV uk and
GD di at time t; the Euclidean distance between them can be calculated as

dDU
ik (t) =

√
(xU

k (t)− xD
i)2 + (yU

k (t)− yD
i)

2 + (hU
k (t))

2 (1)

243

Drones 2024, 8, 379

The average path loss between UAV uk and GD di can be expressed as a probability-
averaged ATG-LOS model [2,16] into

PLik = PrLoS
ik PLLoS

ik + PrNLoS
ik PLNLoS

ik (2)

where PLLoS
ik and PLNLoS

ik are the pass loss for the LoS and Non-Line of Sight (NLoS) link and
PrLoS

ik and PrNLoS
ik denote the probabilities of LoS communication and NLoS communication,

respectively. PLLoS
ik and PLNLoS

ik are given as

PLLoS
ik = 20 log10

4π fcdDU
ik (t)
c

+ ηLoS (3)

PLNLoS
ik = 20 log10

4π fcdDU
ik (t)
c

+ ηNLoS (4)

where fc is the carrier frequency, c is the velocity of light, and ηLoS and ηNLoS are the average
additional loss for LoS and NLoS, respectively. PrLoS

ik and PrNLoS
ik are given as

PrLoS
ik = (1 + X[−Y(θik−X)])−1 (5)

PrNLoS
ik = 1 − PrLoS

ik (6)

where X and Y are the environmental constants, depending on the environmental condition
in which the system is located. θik is the elevation angle between GD di and UAV uk. It is
expressed in radians, as

θik =
180
π

arcsin
hU

k (t)
dik

(7)

Therefore, the data transfer rate (in bps) between GD di and UAV uk is

RDU
ik = B0 log2(1 +

PD
i /PLik

σ2) (8)

According to the orthogonal frequency-division multiple access (OFDMA) communica-
tion [2], Bbw is the total channel bandwidth, Bbw

0 = Bbw/k0, k0 is the number of GDs
serviced simultaneously, PD

i is the transmission power of GD di, and σ2 is the noise power.
Similarly, the transmission rate RUB

k of the offloaded data from the UAV to the BS is
calculated by

RUB
k = Bbw

0 log2(1 +
PU

k /PLk

σ2) (9)

where PU
k is the transmission power of UAV uk.

3.3. Task-Assisted Model

This work considers using UAVs as mobile relay points, which means that tasks can be
offloaded from UAV relays to the BS for computation. As in many previous studies [2,29,30],
because its size is much smaller than the data size that must be offloaded, we ignored the
delay in sending the data results from the BS back to the UAV and from the UAV back to
the GD.

This work divides the working time of the entire system into several parts of a suffi-
ciently small constant δt of equal size and considers that the UAV is stationary within a
time slot. Due to our communication being divided into two parts, GD to UAV and UAV to
BS, we divided a time slot into the two same parts, i.e., UAV uk assists task ai in offloading
data, and we have δDU

ik + δUB
k = δt, where δDU

ik is the time that GD di offloads data to UAV
uk. δUB

k is the time that UAV uk offloads data to BS. To ensure the complete processing of a

244

Drones 2024, 8, 379

portion of data within one time slot, i.e., the amount of data processed in both parts is the
same, the time relationship between the two parts should meet

δDU
ik RDU

ik (t) = δUB
ik RUB

k (t) (10)

Based on the above, there are

δDU
ik = δt · RUB

k (t)
RUB

k (t) + RDU
ik (t)

(11)

δUB
ik = δt · RDU

ik (t)
RUB

k (t) + RDU
ik (t)

(12)

At this point, the amount of data processed within one time slot, i.e., single time slot data
processing speed, is represented as

βik = δt · RDU
ik (t)RUB

k (t)
RDU

ik (t) + RUB
k (t)

(13)

The service duration of UAV uk for GD di is tik = Li/βik, where Li is the amount of data
that needs to be offloaded by di. At this point, the total duration of the UAV uk hovering
over TA bj is

thover
kj = max

di∈bj
tik (14)

The total flight time of UAV uk from TA bp to TA bq is tk
pq = vk × Dpq, where Dpq is the

Euclidean distance between TAs bp and bq.

3.4. Energy Consumption Model

Due to the fact that the communication energy consumption of the UAVs is much
lower than that of motion (including traveling and hovering), we ignore the communication
energy consumption of the UAVs. Therefore, the energy consumption of UAV uk executing
tasks along the path rk is expressed as

Etotal
k = Etrav

k + Ehover
k (15)

Based on the alternate fixed rotary wing UAV energy consumption calculation method [2,31]
used, when UAV travels at velocity v, the unit time flight energy consumption is

P(||v||) = P0(1 +
3||v||2
U2

tip
)

+ Pi(

√
1 +

||v||4
4v4

0
− ||v||2

2v2
0
)

1
2

+
1
2

d0ρsA||v||3

(16)

where P0, Pi, v0, U2
tip, d0, ρ, s, and A are the aerodynamic parameters of the UAV. Specific

definitions and settings can be found in Table 2. Then, the total flight energy consumption
of UAV uk is measured by

Ek = δt
N

∑
n=1

P(||v||) (17)

245

Drones 2024, 8, 379

Table 2. Parameter setting.

Parameter Value Definition

fc 2 GHz [16] Carrier frequency
c 3 × 108 m/s Velocity of light

ηLoS 1 [2] Average additional loss in LoS
ηNLoS 20 [2] Average additional loss in NLoS

X 10.39 [16] Environmental parameter
Y 0.05 [16] Environmental parameter
σ2 −174 dBm/Hz [28] Gaussian noise
P0 158.76 w [3] Blade profile power in hovering status
Pi 88.63 w [3] Induced power in hovering status

Utip 120 m/s [3] Tip speed of the rotor blade
v0 4.03 [3] Mean rotor-induced velocity in hover
d0 0.3 [3] Fuselage drag ratio
ρ 1.225 km/m3 [3] Air density
s 0.05 [3] Rotor solidity
A 0.503 m2 [3] Rotor disc area

3.5. Problem Formulation

To optimize the QoS with the restriction of energy consumption and the number of
dispatched UAVs, a soft time constraint model named HMTSRP is proposed as follows.
We define

Ytotal =
A

∑
i

xi (18)

Ltotal =
A

∑
i

xiLi (19)

Among these, Ytotal represents the total number of serviced tasks, Ltotal represents the total
amount of offloaded data workload for serviced tasks, and Li represents the amount of data
offloaded by task ai. Boolean variable xi indicates whether task ai is served by the UAV:

xi =

{
0, if ai is not be served,
1, if ai is served.

(20)

Therefore, we formulate a minimization problem as

P1 : max Ytotal (21a)

P2 : max Ltotal (21b)

s. t. C1 :Etotal
k ≤ Emax

k , ∀uk ∈ U (21c)

C2 :qk[0] = qAP, ∀uk ∈ U (21d)

C3 :qk[n] = qAP, ∀uk ∈ U (21e)

C4 :
||B||
∑

j=1, j 	=j′
φ(bj′ , bj) = 1 (21f)

C5 :
||B||
∑

j′=1, j′ 	=j
φ(bj′ , bj) = 1 (21g)

(21a) and (21b) are the optimization objectives, maximizing the total number of service
tasks and data offloading, subject to the following: (21c) represents the battery capacity
constraint for the UAVs; (21d) and (21e) represent the starting and ending points of the
UAVs, which must be the AP; among these, qk[n] is the position of UAV uk at time n and
qAP is the location of the AP; (21f) and (21g) represent that, for all TAs, there only exist one

246

Drones 2024, 8, 379

departure and one arrival for one UAV, respectively. The definition of Boolean variable
φ(bj′ , bj) is as follows:

φ(bj′ , bj) =

{
1, if UAV selects path from bj′ to bj,
0, otherwise.

(22)

4. Problem Analysis and Solution Approach

In order to effectively allocate tasks to BSs for computation by relaying among multiple
UAVs with different capacities, a three-step algorithm named HMUR is proposed in this
paper. HMUR consists of three steps: (a) TA determination: establishing TAs for related
GDs and determining the optimal hover positions of UAVs; (b) UAV allocation: assigning
TAs to suitable UAVs; (c) subpath determination: determining the final task execution path
for each UAV.

4.1. HMUR

Algorithm 1 shows the framework of HMUR. Throughout the entire process, HMUR
first applies the k-means clustering algorithm to cluster the geographic coordinates of the
GD and uses its clustering center as the optimal hover location. Secondly, HMUR executes
Algorithm 2 for the UAV allocation to perform tasks. Finally, HMUR executes Algorithm 3
to determine the final subpath for each UAV.

In this process, we consider using energy consumption as a constraint for task parti-
tioning in Algorithm 2 to ensure that at least one route for the UAV to be able to complete
the designated task. Meanwhile, we use the QoS as an evaluation metric in Algorithm 3 to
determine the final subpath, to optimize the service QoS as much as possible within the
allowable range of energy consumption.

Algorithm 1 HMUR algorithm.

Input: D, A, and U;
Output: Final subpath set R;

1: k-means clustering algorithm generates B from D and determines the optimal hover
position

2: Algorithm 2 determines UAV allocation for B
3: Algorithm 3 determines the final subpath set R
4: return Final subpath set R

Algorithm 2 UAV allocation.

Input: B, U;
Output: Allocation set K for UAV;

1: Generate graph G from B
2: Generate minimum spanning tree TMST from G
3: Generate set of odd degree vertices O from TMST
4: Find minimum weight matching M from O
5: Merge T and M to generate Eulerian circuit HEULAR
6: Generate Hamiltonian circuit RC from HEULAR
7: num = 0
8: while num < len(RC) do
9: bstart = RC[num]

10: for uk ∈ U do
11: Simulate travel from bstart, and generate Bk
12: Record fk
13: end for
14: Choose ubest with fbest for n TAs that it covered
15: Generate Bbest, and allocate ubest for Bbest
16: Add Bbest to K
17: Remove ubest from U
18: num = num + n
19: end while
20: return Allocation set K

247

Drones 2024, 8, 379

Algorithm 3 Subpath determination.

Input: U, K;
Output: Final subpath set R;

1: for Bi ∈ K do
2: for all bj ∈ Bi do

3: visit[bj] = 0
4: end for
5: start = AP
6: while Bi 	= ∅ do
7: for all bj ∈ Bi do

8: if visit[bj] == 0 then
9: Calculate Sbj

10: end if
11: end for
12: Choose TA bh with the highest Sbh

as the target
13: visit[bh] = 1
14: start = bh
15: Add bh to queue ri
16: Delete bh from Bi
17: end while
18: if Energy consumption of ri exceeds the maximum energy consumption of ui then
19: ri = predicted path generated by Algorithm 2
20: end if
21: Add ri to set R
22: end for
23: return R

4.2. TA Determination

Since there are numerous GDs in the MEC environment, it is not realistic to assign
one UAV to each GD for auxiliary computation. Thus, GDs with close geographical
coordinates are aggregated into TAs, which are served by UAVs within certain time periods.
Under constant environmental factors, the data transmission rate is mainly related to the
distance dDU

ik (t) between UAV uk and GD di. Obviously, the smaller dDU
ik (t) is, the higher

the transmission rate. Therefore, in TA bj, the optimal hover location is the position with
the smallest distance from all GDs, and we formulate this problem as follows:

P2 : min ∑
di∈bj

dDU
ik (t) (23)

The k-means clustering algorithm [16,32] is adopted here to establish clusters (i.e., TAs) and
determine the cluster centers (i.e., the optimal hover positions of UAVs). The assignment of
a GD to a nearby TA is iteratively updated by k-means until convergence. Then, the point
with the minimum sum of distances from all the other GDs within one TA is considered as
the optimal hover position.

4.3. UAV Allocation

After obtaining the TAs, each UAV will be allocated to several TAs. Let K = {B1, B2, ...,
BK} be the set of allocations of K UAVs, of which each element Bk represents a mapping
between uk and the TA set Bk. Then, this paper takes the battery capacity carried by the
UAV as a constraint and considers maximizing resource utilization for uk to execute tasks
in Bk. To ensure the continuity of UAV routes, a partitioning method is proposed by adding
breakpoints to a single TSP path to partition TAs. Based on the Christofides approximation
algorithm [16], an advanced fitness function fk is introduced to efficiently evaluate the
allocation results in TAs of different heterogeneous UAVs.

Algorithm 2 employs the Christofides algorithm to obtain an approximate solution
for the traveling salesman problem (TSP). This approach utilizes a minimum spanning
tree, perfect matching, an Eulerian circuit, and a Hamiltonian circuit from graph theory to
provide a suboptimal solution. As mentioned in previous research [16], the performance

248

Drones 2024, 8, 379

ratio of the Christofides algorithm does not exceed 1.5 compared to the optimal solution,
and it is a constructive solution that can be solved within polynomial time.

As shown in Algorithm 2, after creating a complete TSP path Rc by lines 1 to 6, some
breakpoints are inserted to truncate the path into several predicted paths: when UAV
uk travels along RC (denoting a TA sequence) and consumes energy during flight and
mission execution; when a UAV finds that its energy consumption cannot reach the next
TA and then returns to the AP, it will return to the AP and represent the TAs’ path that has
performed for the task as rk. If uk travels along the route rk, the fitness can be designed as

fk = α × Ehover
k

Etotal
k

+ (1 − α)× Etotal
k

Emax
k

(24)

where Ehover
k represents the energy consumption of uk during task execution, Etotal

k repre-
sents the total energy consumption of this travel path, and Emax

k represents the maximum
battery capacity of uk. So, the effective energy consumption rate ρE

k = Ehover
k /Etotal

k . Due
to the heterogeneity among UAVs, different UAVs executing tasks from the same route
may insert virtual points into different positions (i.e., returning to the AP from different TA
endpoints), resulting in different Etrav

k .
An example of Algorithm 2 is illustrated in Figures 3–5. Assume that travel consump-

tion is an integer, and temporarily assume that the hover consumption of UAV at each
concerned TA is 10, i.e., the energy consumption occurring when a UAV resolves tasks at a
specific TA. The UAV executes tasks in the order of (AP − b1(TA1)− b2(TA2)− b3(TA3)),
and the energy consumption rate of each situation is ρE

1 = 10/(10 + 10 + 10) = 33.33%,
ρE

2 = 20/(10 + 10 + 12 + 10 + 20) = 32.26%, and ρE
3 = 30/(10 + 10 + 12 + 10 + 5 + 10 +

20) = 38.96%, respectively. To some extent, the higher ρE
k , the more tasks can be solved

with the same energy consumption, further indicating that we can obtain a better solution
by organizing the dispatch of heterogeneous UAVs. In addition, the second item of (24)
with a gravity control factor α is used to control the resource utilization of UAVs, aiming to
maximize the utilization of the total battery resource carried by the UAV.

4.4. Subpath Determination

After obtaining the allocation set for different UAVs, HMUR determines the final task
execution path for each UAV. In this section, we take into account the real-time window
constraint of tasks.

Figure 3. Route of u1.

249

Drones 2024, 8, 379

Figure 4. Route of u2.

Figure 5. Route of u3.

We process UAV allocation options K and rearrange the routing path within the energy
consumption limitation. According to the predicted results of Algorithm 2, it can be seen
that, among all the tasks the UAV is responsible for, each UAV has at least one route that
can complete all tasks. Specifically, in the selection of the allocation of Bk, the UAV uk starts
from the AP, predicts the arrival time of the task points in Bk that have not been traversed,
and calculates the score function for the selected TA. The score function is formulated
as follows:

Sbj
= YB

bj
− log2 Etrav

bj′ ,bj
+ log10 LB

bj
(25)

where YB
bj

is the number of tasks that open the window upon arrival, Etrav
bj′ ,bj

is the energy

consumption for flying from the previous point to bj, and LB
bj

is total workload of data
expected to be offloaded in bj. The UAV selects the TA with the highest Sbj

and travels to
TA bj to complete as many tasks as possible during the window period. The optimization
in this section focuses on adapting to the real-time window factor of the task, sacrificing
some energy consumption to achieve greater QoS, and to some extent, neglecting energy
consumption control. Therefore, during the adjustment process, there may be situations
where the total energy consumption exceeds the maximum energy consumption of the UAV.
In response to this situation, we abandon the path rearrangement and use the predicted
path generated by Algorithm 2 as the final routing path.

This paragraph analyzes the time complexity of the algorithm to ensure the real-time
applicability of the entire system. As previously mentioned, under the environment of n
TAs and n UAVs, the Christofides algorithm can solve problems within polynomial time
with a complexity of O(n2logn). Additionally, lines 8-19 of Algorithm 2 iterate through
each path divided by the Christofides algorithm and traverse m UAVs in each path, with a
time complexity strictly less than O(mn). Moreover, after initialization, Algorithm 3 enters

250

Drones 2024, 8, 379

a double loop, which simulates the value of the UAVs reaching different TAs on each
subpath, with a time complexity of O(m)× O(n) = O(mn). Consequently, HMUR can
solve the problem within polynomial time.

5. Performance Evaluation

5.1. Dataset

To evaluate HMUR performance, we used real data from IoT users and BS deployments
in Melbourne CBD provided by the Australian Communications and Media Authority [33].
The dataset includes a total of 816 GDs and 125 BSs available for the UAVs to offload data,
In Figure 6, black dots represent geographically fixed GDs and red dots (i.e., the center
of each red circle) represent the service base stations. In the clustering results of Figure 7,
we retain only the abstract representation of GDs and BSs, depicting GDs in different
partitions with light-colored circles of various colors and marking the clustering centers
of the clustering results with red crosses. The overall distribution of the data is between
geographic coordinates of latitude (−37.822, −37.808) and longitude (144.950, 144.975).
Figure 6 provides a realistic map image of the scene, and Figure 7 shows the location of IoT
devices and the results after clustering into TAs (the number of TAs is 50).

Figure 6. The real map.

Figure 7. Cluster result.

251

Drones 2024, 8, 379

5.2. Benchmarks

Due to conducting experimental simulations in urban environments, set X = 10.39,
Y = 0.05 [16], ηLoS = 1, and ηNLoS = 20 [2]. Other parameters related to aerodynamics are
shown in Table 2. To better validate the effectiveness of UAV assistance, we only retained
one available BS (144.966686, −37.815549) in the environment and set the AP at (144.962344,
−37.815303).

The settings and definitions of the instance factors are shown in Table 3. Among them,
three essential factors are used as independent variables to analyze the performance of the
algorithm, which are: (a) the number of TAs, (b) the average real-time window size of the
task, and (c) the average workload generated by the GDs. Four indicators were adopted
to evaluate the compared algorithms, namely (a) the total number of solved tasks, (b) the
amount of offloaded workload, (c) the quantity of dispatched UAVs, and (d) the number of
tasks solved by the UAVs per minute.

Table 3. Factor setting.

Parameter Value or Range of Value Definition

nGD 816 The number of GDs
tA
avg [500, 1500] s Average time window of task

nTA [20, 60] The number of TAs
LD

avg [1, 6] MB GDs’ average workload
EU

avg 400 kJ UAVs’ average battery capacity
EU 700 kJ, 700 kJ, 600 kJ, 500 kJ, 400 kJ, 300 kJ,

200 kJ, 100 kJ, 100 kJ
Heterogeneous UAVs’ battery capacity

α 0.5 Weight of fitness
Bbw 5 GHz Bandwidth

5.3. Performance Comparison

The architecture of this paper was written in Python 3.7, and the algorithm ran on the
Ubuntu 22.04.1 LTS operating system, under an NVIDIA RTX 4090 cluster environment.
To test the performance of the proposed algorithm HMUR, it was compared with the
best-existing algorithms for the considered problem: CEDAN by Bera et al. [16] and the
GA-based method (GAM) of Wang et al. [34]. In this paper, we set the energy payload of
the UAVs in CEDAN and GAM to the average energy payload of heterogeneous UAVs in
HMUR, denoted as EU

avg. Furthermore, to evaluate the effectiveness of the subpath deter-
mination strategy (Algorithm 3), the proposed algorithm without this strategy (HMUWS)
was also compared. Furthermore, in the diagram, as the task TA on the horizontal axis
changes, we maintained the total number of GDs retained. Furthermore, we decreased the
number of GDs included in each TA as the number of TAs increased.

The total number of solved tasks: Figure 8 shows the total number of solved tasks
when varying the number of TAs. As the number of TAs increases, the number of tasks
assisted by HMUR and that by the baseline algorithms both show an increasing trend,
but HMUR is 73.86% higher than CEDAN and 80.22% higher than GAM, while 36.43%
higher than HMUW3 (when the number of TAs is 30). Meanwhile, Figure 9 shows the
numerical performance of the number of auxiliary tasks solved when the average duration
of the task window changes. It reveals that the longer the duration of the task window,
the more tasks the UAVs assist in solving. However, when the time window size exceeds a
threshold (about 1000 s), the number of solved tasks obtained by the other three algorithms
no longer increases, except that of HMUR. This is probably due to HMUR considering the
soft time constraints; in each selection, HMUR tends to choose TAs with more tasks with
open time windows.

252

Drones 2024, 8, 379

Figure 8. Total number of solved tasks (varying the number of TAs).

Figure 9. Total number of solved tasks (varying the average duration of the task window).

The total amount of offloaded workload: It can be seen from Figure 10 that the
amount of offloaded workload generated by HMUR is higher than those of the other
algorithms. With an increase in the number of solved tasks, the amount of offloaded
workload gradually increases for all four algorithms. In Figure 11, we vary the average
duration of the task windows to obtain the value of the workload offloading. HMUR selects
routes that can achieve a higher QoS by calculating the TA’s score function, thereby solving
more tasks and offloading more data.

253

Drones 2024, 8, 379

Figure 10. Total amount of offloaded workload (varying the number of TAs).

Figure 11. Total amount of offloaded workload (varying the average duration of the task window).

The quantity of dispatched UAVs: Figures 12–15 shows the difference in the number
of UAVs dispatched by HMUR and CEDAN when the average amount of data generated by
the GDs varies. The results show that the average number of UAVs dispatched by HMUR
is 25.95% (the average task window is 500 s in Figure 12), 25.19% (the average task window
is 1000 s in Figure 13), 41.63% (the average task window is 1500 s in Figure 14), and 24.62%
(all tasks are open in Figure 15) less than that of CEDAN. This is because HMUR considers
the compatibility between heterogeneous UAVs and paths, making more rational use of the
UAV resources. Moreover, since HMUR is developed by adding Algorithm 3 to the base of
HMUWS, and since Algorithm 3 does not involve changes in the number of unmanned
aerial vehicles, HMUWS is not considered in this context.

254

Drones 2024, 8, 379

Figure 12. The quantity of dispatched UAVs (average duration of task window = 500 s).

Figure 13. The quantity of dispatched UAVs (average duration of task window = 1000 s).

Figure 14. The quantity of dispatched UAVs (average duration of task window = 1500 s).

255

Drones 2024, 8, 379

Figure 15. The quantity of dispatched UAVs (no time window constraint).

Number of tasks solved per minute: Figure 16 shows the time utilization of HMUR
and the baseline algorithm, which we represent as the average number of tasks solved per
minute. It can be seen that HMUR sacrifices some time to obtain a larger number of tasks,
resulting in a decrease in time utilization. However, overall, the performance of HMUR is
still acceptable.

Figure 16. Number of tasks solved per minute.

In the above experiment, we tested the impact of system scale (number of TAs), task
urgency (average duration of the task window), and task load (average workload generated
by GD) on the system. The experimental results show that the number of auxiliary tasks and
offloaded data increase with increasing system scale and average task window duration,
while the quantity of dispatched UAVs mainly increases with the growth of the average
workload generated by the GD. HMUR outperforms the other algorithms because of the
following reasons: The clustering results of k-means exactly meet the requirements of the
system model, that is the sum of distances between the optimal hover position and all
GDs is the shortest. At the same time, in Algorithm 2, the fitness evaluates the effective
energy consumption of the UAVs in executing tasks and maximizes the utilization of battery
energy within the allowable range of energy consumption. Finally, in Algorithm 3, the score
function considering the timeliness constraints helps the UAVs find the TA with the highest
number of executable tasks at each time point, thus improving the QoS.

6. Conclusions and Future Work

In this paper, a multi-UAV routing algorithm named HMUR is proposed for the
UAV-assisted MEC problem. Instead of isomorphic UAVs as commonly considered in

256

Drones 2024, 8, 379

the literature, we also took into account the heterogeneity of UAVs and the real-time
characteristics of the task. An effective fitness measurement is defined to match the UAVs
and different routing paths under certain energy constraints. A score function is designed
to determine the final route with the highest QoS. An extensive comparison of the proposed
algorithm is performed against the best existing approaches. The experimental results
show that the proposed method is superior to the best existing algorithms on multiple
metrics. We demonstrated the effectiveness of the algorithm through experiments divided
into four parts, which collectively evaluated the performance of the service based on the
number of tasks completed, the volume of data offloaded, the efficiency of task resolution,
and the number of UAVs used. The volume of data offloaded is correlated with the
number of tasks completed. Through the HMUR algorithm, heterogeneous UAVs are
appropriately allocated in the UAV allocation segment and tasks are reorganized in the
subpath determination segment to ensure that more tasks are within their window period
when the UAV reaches the task area. Furthermore, since the fitness function considers
the ratios of Ehover

k to Etotal
k (reflecting the effective energy consumption of UAVs) and

Etotal
k to Emax

k (reflecting UAV battery utilization), it ensures that the energy of each UAV is
efficiently used, thereby indirectly reducing the number of UAV deployments.

Future research avenues involve the consideration of the improvement of the proposed
framework. For example, more UAV attributes such as output power, battery weight,
bandwidth, and flight speed can be introduced as a UAV-type selection mechanism. It
also seems worthwhile to apply the proposed algorithm with some heuristic offloading
solutions for further improvement. Meanwhile, future work could consider replacing
FDMA with communication methods such as TDMA and LoRaWAN to achieve new effects.
At the same time, we will explore the integration of machine learning techniques and
reinforcement learning for routing to adaptively allocate tasks based on historical data,
improving the efficiency and responsiveness of our system. Additionally, we aim to develop
a user-friendly tool for easy implementation and deployment of our algorithm in various
MEC environments, enhancing user adoption and practicality.

Author Contributions: Conceptualization, L.C. and G.L.; methodology, L.C. and G.L.; software,
G.L.; validation, G.L. and X.L.; formal analysis, G.L.; investigation, G.L.; resources, L.C. and X.L.;
writing—original draft preparation, L.C. and G.L.; writing—review and editing, L.C., G.L. and X.Z.;
supervision, X.Z.; project administration, G.L.; funding acquisition, L.C. and X.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Key Research and Development Program of China
(No. 2022YFB3305500), the National Natural Science Foundation of China (Nos. 62273089, 62102080),
the Natural Science Foundation of Jiangsu Province (No. BK20210204), and the Fundamental Research
Funds for the Central Universities (No. 2242022R10017).

Conflicts of Interest: The authors declare no conflicts of interest.

Notations

D GD set, D = {d1, d2, ..., dM}
A Task set, A = {a1, a2, ..., aM}
B TA set, B = {b1, b2, ..., bN}
Bn Task set contained in TA bn, Bn = {an

1 , an
2 , ..., an

s }
U UAV set, U = {u1, u2, ..., uK}
K Allocation set, K = {B1, B2, ..., BK}; Bk contains several TAs and represents the allocation

of uk to these TAs
R Subpath set, R = {r1, r2, ..., rK}; rk and uk correspond one-to-one
PLik Average path loss between di and uk
PLLoS

ik Pass loss for LoS link between di and uk
PLNLoS

ik Pass loss for NLoS link between di and uk
PrLoS

ik Probability of LoS link between di and uk

257

Drones 2024, 8, 379

PrNLoS
ik Probability of NLoS link between di and uk

RDU
ik (t) Data transfer rate between di and uk at time t

RUB
k (t) Data transfer rate between uk and the BS at time t

δt Time slot
δDU

ik Time for offloading data from di to uk in a time slot
δUB

k Time for offloading data from uk to the BS in a time slot
βkm Data processing rate between uk and di
δk Time for offloading data from uk to the BS in a time slot
Li The workload of task ai
tik Time required for uk to process ai
thover
kj Time for uk to hover at bj

Etotal
k Energy consumption for uk throughout the entire process

Emax
k Battery capacity of uk

Etrav
k Energy consumption during uk movement

Ehover
k Energy consumption during uk hover

Etrav
bj′ ,bj

Energy consumption for flying from the previous point to bj

References

1. Long, T.; Ma, Y.; Xia, Y.; Xiao, X.; Peng, Q.; Zhao, J. A Mobility-Aware and Fault-Tolerant Service Offloading Method in Mobile
Edge Computing. In Proceedings of the 2022 IEEE International Conference on Web Services (ICWS), Barcelona, Spain, 10–16 July
2022 ; pp. 67–72. [CrossRef]

2. Liao, Z.; Ma, Y.; Huang, J.; Wang, J.; Wang, J. HOTSPOT: A UAV-Assisted Dynamic Mobility-Aware Offloading for Mobile-Edge
Computing in 3-D Space. IEEE Internet Things J. 2021, 8, 10940–10952. [CrossRef]

3. Zhang, T.; Xu, Y.; Loo, J.; Yang, D.; Xiao, L. Joint Computation and Communication Design for UAV-Assisted Mobile Edge
Computing in IoT. IEEE Trans. Ind. Inform. 2020, 16, 5505–5516. [CrossRef]

4. Yan, H.; Bao, W.; Zhu, X.; Wang, J.; Liu, L. Data Offloading Enabled by Heterogeneous UAVs for IoT Applications Under Uncertain
Environments. IEEE Internet Things J. 2023, 10, 3928–3943. [CrossRef]

5. Lu, Y.; Wen, W.; Igorevich, K.K.; Ren, P.; Zhang, H.; Duan, Y.; Zhu, H.; Zhang, P. Uav ad hoc network routing algorithms in
space–air–ground integrated networks: Challenges and directions. Drones 2023, 7, 448. [CrossRef]

6. Perkins, C.; Belding-Royer, E.; Das, S. RFC3561: Ad hoc On-Demand Distance Vector (Aodv) Routing; ACM: New York, NY, USA , 2003.
7. Karp, B.; Kung, H.-T. Gpsr: Greedy perimeter stateless routing for wireless networks. In Proceedings of the of the 6th Annual

International Conference on Mobile Computing and Networking, Boston, MA, USA, 6–11 August 2000; pp. 243–254.
8. Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless microsensor networks. In

Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, HI, USA, 7 January 2000 ; p. 10.
9. Haas, Z.J.; Pearlman, M.R. The performance of query control schemes for the zone routing protocol. ACM SIGCOMM Comput.

Commun. Rev. 1998, 28, 167–177. [CrossRef]
10. Krichen, M.; Adoni, W.Y.H.; Mihoub, A.; Alzahrani, M.Y.; Nahhal, T. Security challenges for drone communications: Possible

threats, attacks and countermeasures. In Proceedings of the 2022 2nd International Conference of Smart Systems and Emerging
Technologies (SMARTTECH), Riyadh, Saudi Arabia, 9–11 May 2022; pp. 184–189.

11. Ko, Y.; Kim, J.; Duguma, D.G.; Astillo, P.V.; You, I.; Pau, G. Drone secure communication protocol for future sensitive applications
in military zone. Sensors 2021, 21, 2057. [CrossRef]

12. Ebrahimi, D.; Sharafeddine, S.; Ho, P.-H.; Assi, C. Autonomous UAV Trajectory for Localizing Ground Objects: A Reinforcement
Learning Approach. IEEE Trans. Mob. Comput. 2021, 20, 1312–1324. [CrossRef]

13. Zhang, L.; Celik, A.; Dang, S.; Shihada, B. Energy-Efficient Trajectory Optimization for UAV-Assisted IoT Networks. IEEE Trans.
Mob. Comput. 2022, 21, 4323–4337. [CrossRef]

14. Coupechoux, M.; Darbon, J.; Kélif, J.-M.; Sigelle, M. Optimal Trajectories of a UAV Base Station Using Hamilton-Jacobi Equations.
IEEE Trans. Mob. Comput. 2023, 22, 4837–4849. [CrossRef]

15. Wang, K.; Zhang, X.; Duan, L.; Tie, J. Multi-UAV Cooperative Trajectory for Servicing Dynamic Demands and Charging Battery.
IEEE Trans. Mob. Comput. 2023, 22, 1599–1614. [CrossRef]

16. Bera, A.; Misra, S.; Chatterjee, C.; Mao, S. CEDAN: Cost-Effective Data Aggregation for UAV-Enabled IoT Networks. IEEE Trans.
Mob. Comput. 2023, 22, 5053–5063. [CrossRef]

17. He, Y.; Gan, Y.; Cui, H.; Guizani, M. Fairness-Based 3-D Multi-UAV Trajectory Optimization in Multi-UAV-Assisted MEC System.
IEEE Internet Things J. 2023, 10, 11383–11395. [CrossRef]

18. Wu, H.; Wu, M.; Peng, W.; Chen, S.; Feng, Z. ITS: Improved Tabu Search Algorithm for Path Planning in UAV-Assisted Edge
Computing Systems. In Proceedings of the 2023 IEEE International Conference on Web Services (ICWS), Chicago, IL, USA, 2–8
July 2023; pp. 340–349. [CrossRef]

19. Qiu, X.; Zhang, S.; Wang, Z.; Luo, H. Integrated Host- and Content-Centric Routing for Efficient and Scalable Networking of UAV
Swarm. IEEE Trans. Mob. Comput. 2023, 23, 2927–2942. [CrossRef]

258

Drones 2024, 8, 379

20. Song, H.; Liu, L.; Shang, B.; Pudlewski, S.; Bentley, E.S. Enhanced Flooding-Based Routing Protocol for Swarm UAV Networks:
Random Network Coding Meets Clustering. In Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer
Communications, Vancouver, BC, Canada, 10–13 May 2021; pp. 1–10. [CrossRef]

21. Gaydamaka, A.; Samuylov, A.; Moltchanov, D.; Ashraf, M.; Tan, B.; Koucheryavy, Y. Dynamic Topology Organization and
Maintenance Algorithms for Autonomous UAV Swarms. IEEE Trans. Mob. Comput. 2024, 23, 4423–4439. [CrossRef]

22. Yang, X.; Wang, L.; Xu, L.; Zhang, Y.; Fei, A. Boids Swarm-based UAV Networking and Adaptive Routing Schemes for Emergency
Communication. In Proceedings of the IEEE INFOCOM 2023—IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Hoboken, NJ, USA, 20 May 2023; pp. 1–6. [CrossRef]

23. Gharib, M.; Afghah, F.; Bentley, E. OPAR: Optimized Predictive and Adaptive Routing for Cooperative UAV Networks. In
Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Vancouver, BC, Canada, 10–13 May 2021; pp. 1–6. [CrossRef]

24. Zhao, P.; Lu, Y.; Wei, Y.; Leng, S. Blockchain and DQN Enabled Co-Evolutionary Routing Scheme in UAV Networks. In
Proceedings of the IEEE INFOCOM 2023—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Hoboken, NJ, USA, 20 May 2023; pp. 1–6. [CrossRef]

25. Hsu, Y.-H.; Gau, R.-H. Reinforcement Learning-Based Collision Avoidance and Optimal Trajectory Planning in UAV Communica-
tion Networks. IEEE Trans. Mob. Comput. 2022, 21, 306–320. [CrossRef]

26. Fu, J.; Sun, G.; Liu, J.; Yao, W.; Wu, L. On Hierarchical Multi-UAV Dubins Traveling Salesman Problem Paths in a Complex
Obstacle Environment. IEEE Trans. Cybern. 2024, 54, 123–135. [CrossRef]

27. Qureshi, H.N.; Imran, A. On the Tradeoffs Between Coverage Radius, Altitude, and Beamwidth for Practical UAV Deployments.
IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2805–2821. [CrossRef]

28. Li, J.; Zhao, H.; Wang, H.; Gu, F.; Wei, J.; Yin, H.; Ren, B. Joint Optimization on Trajectory, Altitude, Velocity, and Link Scheduling
for Minimum Mission Time in UAV-Aided Data Collection. IEEE Internet Things J. 2020, 7, 1464–1475. [CrossRef]

29. Zhou, F.; Wu, Y.; Hu, R.Q.; Qian, Y. Computation Rate Maximization in UAV-Enabled Wireless-Powered Mobile-Edge Computing
Systems. IEEE J. Sel. Areas Commun. 2018, 36, 1927–1941. [CrossRef]

30. Cao, X.; Xu, J.; Zhang, R. Mobile Edge Computing for Cellular-Connected UAV: Computation Offloading and Trajectory
Optimization. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), Kalamata, Greece, 25–28 June 2018; pp. 1–5. [CrossRef]

31. Zeng, Y.; Xu, J.; Zhang, R. Energy Minimization for Wireless Communication With Rotary-Wing UAV. IEEE Trans. Wirel. Commun.
2019, 18, 2329–2345. [CrossRef]

32. Bera, A.; Misra, S.; Chatterjee, C. QoE Analysis in Cache-Enabled Multi-UAV Networks. IEEE Trans. Veh. Technol. 2020,
69, 6680–6687. [CrossRef]

33. Lai, P.; He, Q.; Abdelrazek, M.; Chen, F.; Hosking, J.; Grundy, J.; Yang, Y. Optimal Edge User Allocation in Edge Computing
with Variable Sized Vector Bin Packing. In Proceedings of the 16th International Conference on Service-Oriented Computing
(ICSOC2018), Hangzhou, China, 12–15 November 2018; pp. 230–245.

34. Wang, S.; Jiang, Z.; Bao, X. Autonomous Trajectory Planning Method for Multi-UAV Collaborative Search. In Proceedings of
the 2021 5th International Conference on Automation, Control and Robots (ICACR), Nanning, China, 25–27 September 2021;
pp. 84–88. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

259

Citation: Liao, Y.; Wu, Y.; Zhao, S.;

Zhang, D. Unmanned Aerial Vehicle

Obstacle Avoidance Based Custom

Elliptic Domain. Drones 2024, 8, 397.

https://doi.org/10.3390/

drones8080397

Academic Editor: Abdessattar

Abdelkefi

Received: 8 May 2024

Revised: 31 July 2024

Accepted: 13 August 2024

Published: 15 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Unmanned Aerial Vehicle Obstacle Avoidance Based Custom
Elliptic Domain

Yong Liao *, Yuxin Wu, Shichang Zhao and Dan Zhang

College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan 618307, China;
wyx10561@163.com (Y.W.); 17792325792@163.com (S.Z.); zdmail3108@163.com (D.Z.)
* Correspondence: liaoyong@cafuc.edu.cn; Tel.: +86-18283816015

Abstract: The velocity obstacles (VO) method is widely employed in real-time obstacle avoidance
research for UAVs due to its succinct mathematical foundation and rapid, dynamic planning abilities.
Traditionally, VO assumes a circle protection domain with a fixed radius, leading to issues such as
excessive conservatism of obstacle avoidance areas, longer detour paths, and unnecessary avoidance
angles. To overcome these challenges, this paper firstly reviews the fundamentals and pre-existing
defects of the VO methodology. Next, we explore a scenario involving UAVs in head-on conflicts
and introduce an elliptic velocity obstacle method tailored to the UAV’s current flight state. This
method connects the protection domain size directly to the UAV’s flight state, transitioning from
the conventional circle domain to a more efficient elliptic domain. Additionally, to manage the
computational demands of Minkowski sums and velocity obstacle cones, an approximation algorithm
for discretizing elliptic boundary points is introduced. A strategy to mitigate unilateral velocity
oscillation had is developed. Comparative validation simulations in MATLAB R2022a confirm that,
based on the experimental results for the first 10 s, the apex angle of the velocity obstacle cone for the
elliptical domain is, on average, reduced by 0.1733 radians compared to the circular domain per unit
simulation time interval, saving an airspace area of 13,292 square meters and reducing the detour
distance by 14.92 m throughout the obstacle avoidance process, facilitating navigation in crowded
situations and improving airspace utilization.

Keywords: unmanned aerial vehicle; velocity obstacles; elliptic domains; collision resolution;
geometric optimization algorithm

1. Introduction

1.1. Related Prior Work

As unmanned aerial vehicles (UAVs) are widely used in various fields such as road
traffic planning, military reconnaissance, agricultural production, and logistics distribution,
the demand for low-altitude UAVs in segregated or integrated airspace will gradually
increase in the foreseeable future. The operational safety of UAVs in low-altitude airspace
and urban inter-traffic connections will be particularly important. A prominent issue in this
regard is the collision avoidance problem of UAVs. There have been significant research
achievements in addressing the collision avoidance problems of UAVs (or unmanned
surface vessels, robots) in different research fields. The solutions can be categorized into
global optimization control methods and local real-time avoidance methods.

The global optimal control method is based on the idea of mathematical optimization,
and the required UAV navigation environment and flight state information is more com-
plete, which can usually be planned to obtain a collision-free global navigation route under
the specified constraints. Fu [1] utilized the additional flight distance of unmanned aerial
vehicles as the maneuvering cost function. Initially, they computed the feasible solutions
for initial collision avoidance using stochastic parallel gradient descent (SPGD) and then
employed sequential quadratic programming (SQP) to determine the optimal collision

Drones 2024, 8, 397. https://doi.org/10.3390/drones8080397 https://www.mdpi.com/journal/drones260

Drones 2024, 8, 397

avoidance heading. Sarim [2] proposed a combined solution based on A* mixed integer
linear programming for the initial path planning of multiple unmanned aerial vehicles with
individual task requirements and dynamic constraints. Sunberg [3] converted the multi-
UAV conflict resolution problem into an approximate dynamic programming problem to
solve. In addition, heuristic algorithms such as particle swarm optimization (PSO) and the
genetic algorithm (GA) have considerable potential applications due to their efficient search
capabilities in complex scenarios. Phung [4] effectively explored the configuration space
of unmanned aerial vehicles by establishing corresponding relationships between particle
positions and the UAV’s speed, turning angle, and climb/descent angles. They utilize PSO
to find the optimal path that minimizes the cost function. Pehlivanoglu [5] integrated GA,
Voronoi diagrams, and clustering methods, proposing an initial population enhancement
approach to accelerate the convergence process, thereby obtaining feasible optimal paths
in a short time. The starting point of the above global optimization control methods is
based on the entire process of aircraft conflict, aiming to satisfy the optimization goal of
minimizing a certain cost payment. However, they suffer from poor real-time performance
and limited operability. These methods are difficult to apply when the complete global
aircraft flight data are unknown and the conflict positions are uncertain. Moreover, the
challenge of solving large-scale problems with slow convergence speeds persists.

On the other hand, local real-time path planning methods do not optimize the entire
flight path of the aircraft but rather focus on conflict detection and avoidance. The main
methods include artificial potential field (APF) and velocity obstacle (VO). APF has the
advantage of a short response time and small problem-solving scale but often fails to
produce a flight trajectory directed towards the target point. By setting virtual targets, this
issue can be addressed, allowing for the correct navigation of the drone to avoid obstacles
and reach the target point [6,7]. Pan [8] also introduced a rotational potential field to help
the drone escape local minima and oscillation phenomena, facilitating the navigation of
drone formations and clusters. The VO method, originally proposed by Paolo Fiorini [9], is
a prominent obstacle avoidance strategy that converts the positional collision potential in
the motion space of an agent into the velocity vector space [10]. This method delineated the
entire set of velocities that could lead to a collision with an obstacle within a finite time as
the ‘velocity obstacle space’ (VO space). By assigning the UAV a new linear velocity vector
outside this defined set, the method ensured that the UAV can circumnavigate the obstacle
within a permissible time frame, thereby eliminating collision risks. The method has
excellent geometric intuition and does not require a complex modeling process. The 2D VO
theoretical model simplified the UAV as a circle domain; this geometric central symmetry
significantly eases the calculation of the ‘VO space’. However, this circle assumption
uniformly scaled the conflict risk in all flight directions, potentially rendering conflict
resolution schemes as overly conservative [10]. This could lead to operational failures in
scenarios with high conflict numbers or dense UAV flights. For the same obstacle avoidance
problem, there were also differences in whether or not to collide under circle protection
domains with different radius scales, and if so, in the direction of the chosen resolution.

Current research on UAV obstacle avoidance using the VO method typically employs
an empirical or artificially assigned fixed-radius circle protection domain [11–15]. Com-
monly, this radius is set by default as the UAV’s detection range; when another UAV enters
this range, a potential collision is presumed to have occurred. This radius of this protection
domain was not determined by the specific obstacle avoidance capabilities of the UAV,
which compromises its scientific validity. Such an approach unnecessarily reduces the
available free space—the area not occupied by the UAV’s flight path—potentially leading
to suboptimal utilization of the navigable airspace.

From the perspective of minimizing the spatial size of the protection domain while
ensuring sufficient safe space for UAV operation, substituting the circle domain with an
elliptical domain is a practical option. This change not only maintains the smooth continuity
of the boundary of the protection domain but also reflects the physical form of the intelligent
agents more accurately. Circles tend to overestimate the necessary protection space for

261

Drones 2024, 8, 397

bodies that do not exhibit radial symmetry, while ellipses can more closely conform to
the actual boundaries of the intelligent bodies. This adaptation was particularly beneficial
in specific obstacle scenarios, such as navigating near walls, where circle domains may
unnecessarily increase the detour distance [16,17]. Moreover, the geometric properties of
elliptical domains offer broader applicability—circles are merely special cases of ellipses.
Most agents, including ships and humanoid robots, do naturally conform to a elliptic
boundary. Furthermore, the application of elliptical domains in the fields of pedestrian
locomotion [18] and biomechanics [19] has demonstrated that ellipses provide a more
accurate approximation of human movement.

In obstacle avoidance research utilizing the VO method, many researchers are aware
of the drawbacks of circular domains but still compromise because of the simplicity of the
computation. Still, several scholars had adopted an elliptical boundary domain. Lee [20]
tackled the local obstacle avoidance problem for elliptical robots by approximating both
the robots and obstacles with a minimum area boundary ellipse, implementing VO in
two stages: acquiring a new linear velocity and correcting the angular velocity. Wang
noted the substantial difference between longitudinal and transverse velocities in ground
vehicle operations and designed an elliptical lattice boundary based on the vehicle’s travel
direction, velocity, minimum safe distance, and lane width to model the motion of con-
nected automated vehicle (CAV) clusters [21]. Furthermore, various studies [22–24] on
unmanned surface vehicles (USVs) hved adopted elliptic domains. Liu and Bucknall [25]
also suggested a circular shape for slow-moving obstacles and elliptical shapes for fast-
moving obstacles. Additionally, elliptical boundary agents have been applied to research
on obstacle avoidance using potential field theory [26] and limit cycle theory [27].

In contrast, the development of elliptic domains has not been exploited in the field
of UAV obstacle avoidance. Similar to the conclusions in the literature [21,25], UAVs also
characteristically exhibit a significantly higher longitudinal velocity compared to their
transverse velocity. Current VO obstacle avoidance studies typically only establish a circle
protection domain whose size substantially exceeds that of the individual UAV, leading to
notable issues of spatial redundancy and unscientifically set initial values for the radius. We
investigated the obstacle avoidance flight process of UAVs in head-on conflict scenarios and
innovatively proposed a customized elliptical domain structure related to the separation
distance and flight performance of the conflicting UAV pairs. We conducted a qualitative
comparison of the velocity obstacles for circular and elliptical domains, validating the
advantages of the elliptical domain in simulations that achieve the same safety distance
requirements for obstacle avoidance.

1.2. Organization

The remainder of this paper is structured as follows: Section 2 reviews the basic
principles and related defects of the VO method. In light of these defects, we articulate the
main contributions of our work. In Section 3, we explore the feasibility of elliptical domains
and propose designing an elliptic domain size linked to the UAVs’ flight state (velocity
direction, velocity magnitude, angular velocity, and spatial distance), resulting in a custom
elliptic domain. Section 4 introduces the elliptical velocity obstacles (EVO) method tailored
for the boundaries of elliptic domains, establishing the elliptical absolute velocity obstacles
(EAVO) as the core of our obstacle avoidance strategy. We also develop a velocity recovery
rule to prevent one-sided velocity oscillations in Section 4. In Section 5, we validate our
approach using MATLAB simulation experiments. Our results demonstrate that the EAVO’s
resolution strategy addresses the over-conservative velocity and space wastage issues
prevalent in circle domain VO applications, offering a smaller spatial footprint, a broader
range of potential velocity directions, and robust resolution performance, particularly in
flight scenarios with narrow separation distances. Finally, the results are discussed and
summarized, and studies to improve the method are proposed in Section 6. The research
process and architecture of this study are shown in Figure 1.

262

Drones 2024, 8, 397

UAV Obstacle Avoidance Based Custom Elliptic Domain
Section 1

Related
Prior
Work

Overview of research
methodology

Primary Research
Methodology :VO method

Section 2

Velocity Obstacle
Method Theory

Velocity Obstacle
Method Defects

Velocity Obstacle Excessive
Conservatism Defect

Velocity Adjustment Defect

Velocity Oscillations Defect

Section 3

Comparison of VO in circular and
elliptic domains

Custom Elliptic Domain
Construction

Elliptic Domain Flight
Collision Risk Phase

Division

Collision Risk Phase
Uncertainty Analysis

Collision Risk Phase
Uncertainty Analysis

Custom Elliptic Domain
Obtained

Section 4

EVO Algorithm

EVO Algorithm Obstacle
Avoidance Velocity

Control

EVO Algorithm Oscillation
Elimination in Velocity

Reback

Section 5

Simulation

Scenarios 1 Simulation
Experiment

Scenarios 2 Simulation
Experiment

Section 6

Summary and Outlook

1. Smaller airspace resource occupation
2. Reduced obstacle avoidance deflection angle

and rerouting distance
3. Better adaptation to closer conflict scenarios

Elliptic Domain Advantages

Figure 1. Schematic of research process and architecture.

2. Review of Velocity Obstacle Method

2.1. Velocity Obstacle Method Theory
2.1.1. Minkowski Sum

The Minkowski sum serves as the mathematical foundation of VO theory and is
integral to forming the velocity obstacle space. Essentially, a computational geometry
operation, the Minkowski sum in Euclidean spaces is calculated by adding each vector
from two non-empty sets, ‘A’ and ‘B’. Typically, this operation is defined as follows:

A ⊕ B={a + b|a ∈ A, b ∈ B} (1)

where ⊕ is Minkowski sum notation.
Equation (1) delineates that for each vector in set ‘A’ and each vector in set ‘B’ a new

vector in the Minkowski sum can be formed by their addition. This computation is straight-
forward for convex polygons. Non-convex challenges are often transformed into convex
ones for resolution, lending the method broad applicability. In two dimensions, if ‘A’
and ‘B’ are polygons, their Minkowski sum results in a new polygon that encapsulates all
possible combinations of their relative positions.

The Minkowski sum also provides a geometrically intuitive representation within the
method. It is visualized as the area swept by set ‘A’ as it traces the perimeter of set ‘B’
combined with the area of set ‘B’ itself. If the elements of sets ‘A’ and ‘B’ within an algebraic
system adhere to the properties of an Abelian group, the Minkowski sum also complies with
the commutative law (A ⊕ B = B ⊕ A), reflecting the interchangeability of the summands.
It is evident that the Minkowski sum is commutative within a two-dimensional real vector
space. To clearly differentiate the research subjects in this paper, we define A ⊕ B to denote
the Minkowski sum imposed by set ‘A’ on set ‘B’ . This symbolization helps define the
construction of the velocity obstacle space in the region where set ‘B’ is affected. For two
methods on the computation of convex polygonal Minkowski sums, see Appendix A.1.

2.1.2. Velocity Obstacle Cone Construction

The velocity obstacle method was developed with a focus on circle robots and ob-
stacles whose instantaneous states are measured or known. This approach allows for the
simplification that disregards the computational discrepancies caused by the rotation of
objects and their varying orientations [9]. For ease of description, this paper not only uses
A and B to denote the two UAVs but also to represents the circle or elliptical protection
domains in which A and B are located. The collision cone CA,B is defined in the literature [9]
as the set of relative velocities that could lead to collisions between A and B. Superimposing

263

Drones 2024, 8, 397

CA,B onto the velocity of B defines the avoidance space in terms of B’s absolute velocity.
This can be denoted as follows:{

CA,B =
{

vA,B|λA,B ∩ B̂ 	= ∅
}

VO = CA,B ⊕ vB
(2)

where vA,B is the velocity of A with respect to B, and λA,B is the line on which vector vA,B
lies. A ‘collapses’ to a point Â, and B ‘expands’ to B̂, a circle region of twice the original
radius. We prove this concisely in Appendix A.2. Equation (2) represents the region where
relative velocity intersects with the velocity obstacle, forming a velocity obstacle cone.
By superimposing the speed of Drone B, we can obtain the absolute velocity obstacle cone
for Drone A.

The original definition of the velocity obstacle method involves adjusting the velocity
of UAV-A outside the VO to avoid collisions. By integrating this classical VO definition
and incorporating a time slice τ, the VO and EVO models are summarized and redefined
into three expressions in this paper:⎧⎪⎨⎪⎩

B̂C = A ⊕ B
VOτ

A|B =
{

vA,B|∃t ∈ [0, τ] :: tvA,B ∩ B̂C 	= ∅
}

AVOτ
A|B = VOτ

A|B ⊕ vB

(circle domain) (3)

⎧⎪⎨⎪⎩
B̂E = A ⊕ B
EVOτ

A|B =
{

vA,B|∃t ∈ [0, τ] :: tvA,B ∩ B̂E 	= ∅
}

EAVOτ
A|B = EVOτ

A|B ⊕ vB

(elliptic domain) (4)

For clarity of presentation, we made VOτ
A|B, EVOτ

A|B represent CA,B in the original
definition of the velocity obstacle method. At each time interval τ, the velocity obstacle
cone for the drone can be obtained at each detection moment during the obstacle avoidance
process, allowing for discrete conflict monitoring based on the calculated results.

The three variables above on the left side of Equations (3) and (4) are named the
velocity obstacle set, the relative velocity obstacle cone, and the absolute velocity obstacle
cone, respectively. The variable ‘t’ represents time. According to the definitions used
in this paper, the VO for circle domains with equal radii at any location is illustrated in
Figure 2. The elliptic domain Minkowski sums B̂E cannot be generated directly from the
superposition of the geometric radius; thus, we require specially designed algorithms for
implementation.

r

r

A

B

Bv

Av

,A B
VO

,A B
AVO

Bv

2r

X

Y

O

Yv

CB

Figure 2. Schematic of AVO between equal-radius circle domains.

264

Drones 2024, 8, 397

2.2. Velocity Obstacle Method Defects
2.2.1. Velocity Obstacle Excessive Conservatism Defect

The previous research related to the VO of the assumption of circle and elliptic domains
has been briefly described in Section 1. Despite the computational benefits, we know the
use of circles for multi-agent navigation results in many challenges. In many cases, a circle
overestimates the actual profile of the robots that it represents [10]. In scenarios where the
geometric appearance of agents closely resembles an ellipse, using an elliptical protection
domain is a logical choice. The adoption of geometrical bodies that more closely resemble
the appearance of the study subjects simplifies the obstacle avoidance modeling process.
Essentially, this idea tends to ensure that the simulation results of abstract geometric bodies
are more aligned with the actual movement of intelligent agents, eliminating redundant
and unnecessary protection domains. From this perspective, assuming a circular radar
range as the protective domain for UAVs is undeniably overly conservative. For a pair of
UAVs in head-on conflict, if there is no interference, collisions would invariably occur in
the direction of the velocity. Therefore, it is sensible to provide ample protection space in
the direction of the velocity and reduce the protection space in unnecessary directions.

2.2.2. Velocity Adjustment Defect

The velocity obstacle method assumes that UAVs adjust their velocity states instan-
taneously upon detecting conflict risks, requiring highly sensitive sensors and efficient
control algorithms for devising obstacle avoidance strategies [11]. If the length of time for
velocity adjustment is considered, the VO space will be transformed into an area where
the relative velocity obstacle cone sweeps through this length of time, necessitating greater
velocity changes and occupying more space, which is disadvantageous for navigation in
tight spaces. Moreover, the assumption that velocity changes instantaneously is not appli-
cable when obstacle velocities are nonlinear, as the direction and magnitude of obstacle
speeds can change at any moment, complicating the obstacle space dynamics. The discrete-
time nonlinear velocity obstacle method (NLVO) [28–31] offers an effective solution for
these challenges.

2.2.3. Velocity Oscillation Defects

Another notable problem is the oscillation of velocity selection. This issue arises
when two conflicting entities simultaneously choose velocities for the next moment that
are deemed collision-free. New velocities can lead to misjudgments about collision risks,
prompting a return to original velocities. This cycle repeats, with each subsequent velocity
adjustment reintroducing the potential for collisions. This phenomenon typically occurs
due to a default preference for a higher-priority velocity direction vpre f er, often the initial
velocity. As soon as a collision is detected or disappears, the velocity is approached toward
vpre f er immediately at the next moment.

To address this common problem in VO applications, Van Den Berg [32] proposed the
reciprocal velocity obstacle (RVO) method, where the original VO is shifted by a specified
time–displacement distance by translating it along (vA + vB)/2. By referring to the newly
defined obstacle cone, one can effectively judge and mitigate collisions and oscillations
among autonomous agents. This approach implies that both conflicting parties equally
share the responsibility for collision avoidance. The RVO method has been extensively
utilized in research on obstacle avoidance and safe navigation for dynamic agents [33–35].
Nonetheless, challenges persist due to disagreements and desynchronization over navi-
gation preferences [36], potentially leading to ineffective collaboration and a reciprocal
dance of avoidance [37]. To address this issue, Jamie [38] proposed the hybrid reciprocal
velocity obstacle (HRVO) method, which modifies the passive avoidance approach in RVO
by basing the future trajectory of robots on more than just a simple estimation of the current
velocity [39].

265

Drones 2024, 8, 397

2.3. Our Contributions

In response to the drawbacks identified in the VO methods outlined above, we have
made specific improvements. For the issue of overly conservative circular domain struc-
tures, we aim to establish an elliptical domain that adequately protects UAVs while reducing
the redundancy of the circular domain. Furthermore, to mitigate the adverse effects of
sudden velocity shifts on obstacle avoidance decisions, we analyzed the UAV’s positional
errors under tiny time deflection assumptions. By incorporating this positional uncertainty
into the elliptical domain structure, we can continue to generate obstacle avoidance ve-
locities through the absolute velocity obstacle cone (Section 3). Concurrently, due to the
computational costs associated with precisely solving the Minkowski sum of the elliptical
domain, we propose a discretized elliptical boundary accelerated algorithm using convex
polygons (Section 4).

As for addressing velocity oscillations, RVO has already been widely adopted. This
article is different from the above research on the fully autonomous obstacle avoidance
mode of one or more agents. We provides a solution to the velocity oscillations of UAVs
with motion priority. Unlike the previous assumption that both conflicting agents share
responsibility for collision avoidance [32], this model designates only one UAV in the
conflict as being responsible for adjusting its velocity to avoid potential obstacles, while
the other UAV maximizes the usage of its original flight path, maintaining a steady course
(Section 5). This approach could be particularly relevant in future urban logistics scenarios
where, for example, delivery UAVs tasked with off-site deliveries may be given higher
priority over UAVs returning for landing, reflecting typical head-on conflict characteristics.
Additionally, the integration of UAVs actively avoiding manned aircrafts in fusion airspace
is also a potential application scenario.

3. Custom Elliptic Domain Construction

In this part, we refine the original uniform circle protection domain structure with a
fixed radius used in the VO method, replacing it with a custom elliptical domain structure
that adapts to the UAV’s flight state. It is shown that a circular domain with a given radius
may be redundant, and the actual elliptical domain based on the UAV’s flight conditions is
much more accurate and still ensures that the UAV can avoid obstacles while satisfying
the flight performance. To avoid the complexities present in initial studies, we continue to
focus on the interaction between two UAVs flying in opposite directions, designated as A
and B.

3.1. Comparison of VO in Circular and Elliptic Domains

Based on the review of the theoretical basis and fundamental principles of the velocity
obstacle method, we can derive the following basic conclusions:

• The mathematical principle of the velocity obstacle space is the Minkowski sum of
the boundary curves of two spatial objects. Geometrically, the Minkowski sum of two
colliding entities represents the region swept by object A along the boundary of object
B as it moves continuously for one revolution, combined with object B.

• When both objects are circles, their Minkowski sum is a circle with a radius equal to
the sum of the radii of the two objects. For circles of the same size, their Minkowski
sum is a circle with twice the radius.

• Based on the proof that the Minkowski sum of two circles remains a circle, it can be
anticipated that the precise calculation of the Minkowski sum and velocity obstacle
cone for two elliptical objects will be more difficult. The reason for this is that in
Equation (A1), the radius ‘r’ becomes the non-uniform semi-axis of the ellipse, making
it challenging to simplify the computation of the maximum value. The distances
from any point on ellipse A to the farthest point from the center of ellipse B obtained
through iterative calculations will vary, indicating that the boundary of the Minkowski
sum of two ellipses may not possess simple geometric characteristics. Therefore,

266

Drones 2024, 8, 397

further algorithmic solutions are required to address the velocity obstacle for elliptical
boundaries.

3.1.1. Description of UAV Collision Stations

By approximating the obstacle boundary with the translation of the ellipse, a qual-
itative comparison of the velocity obstacle between circular and elliptic domains can be
conducted. A and B are a pair of UAVs flying in opposite directions at the same altitude.
If no avoidance measures are taken, they will collide at some point in the future. We set A’s
spatial position at the coordinate origin, with the line connecting A and B along the hori-
zontal axis (X-axis) and the vertical direction to the X-axis representing the Y-axis, thereby
establishing a two-dimensional Cartesian coordinate system. Four types of protective
domain combinations were constructed as comparative scenarios, denoted as α0, α1, α2, α3.
The structural relationships and collision schematic diagrams for these four scenarios are
illustrated in Figures 3–6. Among these, the velocity obstacle spaces generated within the
elliptical domains in stations α2 and α3 are approximate calculations, while the results in
stations α0 and α1 are completely precise.

A(O)
BAv Bv

A

r r

bodyUAV obstacleUAV X

Y

Av
0

AVO
2r

B

CBA BVO

ABAVO

X
VO

0

Figure 3. Station α0: Two of the same circular domain collisions.

Station α0: Assuming the protective domain of the UAV is a circle of equal size, let
A represent the obstacle-avoiding UAV and B represent the obstacle UAV. The velocity
obstacle set between A and B forms a large circle with a radius of 2r. By drawing a tangent
line to this large circle from an external point at the origin, we obtain a conical region
known as the relative velocity obstacle cone. By translating this relative velocity obstacle
cone using the velocity vector, we derive the absolute velocity obstacle cone of A with
respect to B. This cone represents the set of velocities that A must avoid in order to evade B.

267

Drones 2024, 8, 397

A(O)
BAv Bv

A

r

bodyUAV
obstacleUAV

Av

A BVO

ABAVO

B

CB
X

X

Y

3r
AVO
1

VO
1

2r

Figure 4. Station α1 : Two different circular domain collisions.

Station α1: Keeping the state information of A and B unchanged in Station α0, we
double the radius of B’s protective domain to obtain a velocity obstacle set represented by
a circular area with a radius of 3r after the ‘expansion’.

BBv

A

Y

VO
2

A BVO

ABAVO

r / 2r
A(O)

Av
bodyUAV X

X
EB

B
obstacleUAV

BvAv AVO
2

obstacleUAV

Figure 5. Station α2: Two of the same internal elliptical collisions.

Station α2: Assuming the UAV’s protective domain is an elliptic area, with A and
B being isomorphic, the elliptic domain is contained within the initial circular domain.
By geometrically describing the approximate velocity obstacles of both entities, we can
simply translate UAV A’s elliptic domain several times until it is tangent to the boundary
of B. We then envelop several tangential ellipses with a larger elliptic boundary, using this
large ellipse to approximate the relative velocity obstacle set of A concerning B. Similarly,
by approximating the tangent lines, we obtain the relative velocity obstacle cone, which,
after translation, forms the absolute velocity obstacle cone.

268

Drones 2024, 8, 397

A(O)
B

bodyUAV obstacleUAV
Av Bv

r

A

EB

A BVO

ABAVO

obstacleUAV

X

BBvAVO
3

Av

VO
3

X

Figure 6. Station α3: Two of the same external elliptical collisions.

The UAV’s protective domain is an elliptical area, with A and B being isomorphic.
The elliptical domain encompasses the initial circular domain, with a short semi-axis of r
and a long semi-axis of 1.5r, while all other assumptions remain unchanged.

3.1.2. Comparison of UAV Collision Stations

• Comparison of station α0 and station α1: A and B both have circular protective domains.
In the same collision scenario, the double protective domain of B in station α1 will
cause a significantly larger velocity obstacle space compared to station α0. The target
avoidance velocity obtained in station α1 will require a greater angular deviation.
Therefore, a critical issue in applying the velocity obstacle principle to ensure collision-
free operation for UAVs is determining the appropriate range of these protective
domains. It is clear that avoidance decisions and outcomes are sensitive to the initial
radius of this area. If the protective domain is too large, it compresses the available
free space, leading to increased avoidance costs. Conversely, if the protective domain
is too small, the performance requirements for the UAV during avoidance maneuvers
increase, along with associated safety risks. Exploring a suitable and safe structure for
the protective domain is a primary focus of this research.

• Comparison of station α0 and station α2: While maintaining a constant protective
distance in the direction of the speed, the protective distance in the normal direction
of the speed is reduced. Consequently, the absolute speed obstacle angle is also
decreased. This indicates that constructing a collision-free zone in the shape of an
elliptical domain with a short axis can not only ensure safe obstacle avoidance but
also minimize the utilization of airspace resources.

• Comparison of station α0 and station α3: In station α3, the elliptical domain completely
encompasses the circular domain from station α0, resulting in a velocity obstacle
space that also covers the velocity obstacle space obtained from the circular domain.
In station α3, the protective distance in the normal direction of the speed remains at r,
while the protective distance in the velocity direction increases by 0.5r. As a result,
the velocity obstacle angle also increases accordingly. This demonstrates that both axes
of the ellipse have an impact on the calculated results of the velocity obstacle space.

Based on the comparison above, it is evident that the elliptical structure in station α2,
while maintaining the original protective space in the direction of speed, has corrected the
overly conservative circular domain by reducing the size in the normal direction of speed.
If there are established safety distance requirements, this dimension should be fixed along
the major axis of the ellipse. For the same drone collision event, the avoidance velocity

269

Drones 2024, 8, 397

sets calculated from the different protective domain structures in station α0, α1, α2, α3 vary
accordingly. Therefore, our objective is to design an elliptical protection domain that ensures
the safe flight of the drone while providing a certain degree of redundancy. To the greatest
extent possible, we provide a larger protective domain space in the collision direction
while minimizing unnecessary dimensions in non-collision directions. Theoretically, this
approach can offer the drone a more diverse selection of obstacle avoidance velocity options.

3.2. Elliptic Domain Flight Collision Risk Phase Division

A Cartesian coordinate system was established with the initial position of UAV-A as
the origin. The size of the elliptical protection domain is related to the UAV’s flight state,
ensuring that the geometrical structure can still be relieved, even under the least ideal
conditions conditions. The model is configured as follows:

In this study, we configure the UAV to update the detection of its surroundings every
τ seconds. Upon detecting an obstacle, the UAV will initiate an avoidance maneuver. It
is important to note that throughout this research, adjusting the direction of velocity has
been consistently used as the primary means of obstacle avoidance. This approach aligns
with the ideal collision resolution under the VO principle. An adjustment that alters only
the magnitude of the velocity, without changing its direction, may put off the conflict into
a subsequent time period, especially when UAV-B is in linear motion. After detecting an
obstacle and identifying a new velocity target orientation, the UAV most at risk of collision
has approximately τ seconds—excluding the time spent computing the obstacle cone and
selecting a new velocity—to reorient towards the target. Consequently, the maximum
possible deflection achievable by the UAV within τ seconds sets the minimum threshold
necessary for collision avoidance.

Assuming that the maximum deflection angle of the UAV per one second is ϕ (rad),
the minimum threshold on the deflection that can be made within τ is ϕin f = τϕ. In sce-
narios where UAVs encounter head-on conflicts, if both UAVs simultaneously maneuver to
the right with the same constant angular velocity towards a predetermined target direction,
the collision can be avoided if their protective domains do not overlap. The entire obstacle
avoidance process is divided into two phases: ‘Phase 1: Conflict risk phase’ and ‘Phase 2:
Conflict risk elimination phase’. Phase 1 is a deflection flight process, while Phase 2 is a
directional process. The active avoidance maneuvers occur during Phase 1. A schematic
diagram illustrating this is provided below, where plink is the two-phase transition node.
UAV-A and UAV-B have equal elliptic domains.

In the second phase, where the velocities of the two UAVs are parallel but not collinear,
overlaps in the protective domains can occur if the steering adjustments from the first phase
are inadequate. This overlap might stem from higher longitudinal velocities or smaller
intervals between obstacle detections. As illustrated in Figure 7, when both UAVs employ
the same avoidance strategy, their directions align at any given moment, and the major and
minor axes of their elliptical domains remain parallel, with UAV-B consistently positioned
above UAV-A. Therefore, potential overlaps during Phase 1 could manifest as one of three
types: frontside, backside, or topside intrusions, as depicted in Figure 8.

270

Drones 2024, 8, 397

X

Y

initialA
initialBO

Phase 1 Conflict risk phase

v

2

1A

1B

A n

Bn

2

Ax

Bx

B
linkp

A
linkp

Phase 2 Conflict risk elimination phase

Figure 7. Schematic of UAV conflict risk phase and conflict risk elimination phase flights.

A B
O

2b

2b

2b

frontside

backside

topmost

Y

X

Figure 8. Schematic illustration of possible collisions during the UAVs’ conflict risk phase.

When analyzing the three relative positional relationships, collisions can be averted in
each scenario as long as the distance between the centers of the two ellipses, when projected
along the direction of the minor axis, remains greater than the length of the minor axis (2b)
throughout Phase 1.

3.3. Collision Risk Phase Uncertainty Analysis
3.3.1. Collision Risk Phase Uncertainty Assumptions

At the critical moment when a UAV anticipates a collision risk using the VO principle,
the essence of obstacle avoidance lies in adjusting the velocity direction to fall outside the
VO. According to the VO method, the velocity is presumed constant within the interval
τ, changing only at the moment a decision is made to avoid an obstacle. This necessitates
frequent sensor refreshes [11], which can lead to discrepancies between the actual flight
position and the VO theoretical one. This means that at every moment, the actual position
of the drone deviates from the estimated position. Such endpoint location uncertainty
may continuously accumulate, potentially impacting the design of the elliptical protection
domain size. Therefore, we categorize the deflection process into three assumptions and
discuss them below.

271

Drones 2024, 8, 397

• Assumption 1: Segmented Multiple Tiny Deflections
Assume that the drone’s directional adjustments are linearly varied over each time
interval. Segmented, multiple, tiny deflections provide a smoother representation
of the actual flight process. This method suggests that the angular velocity during
the deflection process remains constant throughout each tiny time interval. The UAV
produces consistent angles of deflection over identical, short periods, with the cumu-
lative deflection angle increasing incrementally. Simply put, Assumption 1 is a gradual
deflection process, which corresponds to the blue line in Figure 9.

• Assumption 2: Deflection Along the Average Deflection Angle
Deflection along the average deflection angle means that the UAV is oriented towards
the target with the average angle θ of Assumption 1. The endpoint of the blue line in
Figure 9 represents the flight position obtained from Assumption 1, and the heading
angle towards this endpoint from the initial position is denoted as θ. The UAV will fly
along this direction instantly when the risk of collision is detected, which corresponds
to the red dashed line in the middle of Figure 9.

• Assumption 3: Deflected Along the Target Deflection Angle
This assumption is the default assumption of the VO method. It specifies that upon
detecting a collision threat, the UAV will immediately navigate in the direction of
a velocity selected outside the AVO, which is named as the target deflection angle.
In simple terms, the drone initially adjusts its heading to fly along the final flight angle
defined by Assumption 1, which corresponds to the red dashed line at the bottom of
Figure 9.
The flight process for a given time interval τ under the three assumptions is demon-
strated in Figure 9. It is obvious that the flight endpoints are different across the three
different assumptions.

vdt
vdt

d

vdt
vdt

d
X

Y

A B

v

v

O

vdt

vdt

ed

2d

2

n+1 sided polygon

Figure 9. Schematic of flight endpoints under the three assumptions in the conflict risk phase.

3.3.2. Collision Risk Phase Error Expression Derivation

The line velocity of the UAV deflection process is constant in magnitude. Only the
direction of the velocity changes, discretizing the UAV deflection process into n linear
deflection microelements. The time step within each microelement is τ/n, and the displace-
ment distance is vτ/n. Thus, one UAV will produce a total displacement during the time
interval τ:

s = Σ
vτ

n
+ · · ·+ vτ

n
= vτ (5)

272

Drones 2024, 8, 397

The UAV can be deflected by ϕτ/2 at a maximum angular velocity during τ. The UAV
deflection angles form an arithmetic progression with time microelements. The formula
for the general term of the arithmetic series is an(n = 1, 2, · · · , n), the common difference
is dθ = ϕτ/2n, and the sum of the first n terms is Sn, where n denotes the number of
microelements. Then, the construction shown in Figure 9 will form an n + 1 sided polygon.
The average deflection angle can be expressed as follows:

θ̄ = a1 +
(n + 1 − 2)π − (n − 1)(π − dθ)

2
= a1 +

(n − 1)dθ

2
(6)

Since the deflection from the horizontal is 0 degrees, there is essentially a1 = dθ. Thus,
the above equation can be simplified to:

θ̄ =
n + 1

2
dθ (7)

which is exactly the mean of the sum of the n terms of the angular equidistant series:

Sn =
Sn

n
=

n[a1 + a1 + (n − 1)dθ]

2n
= a1 +

(n − 1)dθ

2
= θ̄ (8)

Therefore, θ̄ = n+1
2 · ϕτ

2n = n+1
4n ϕτ ⇒ limn→∞ θ̄ = ϕτ

4
Next, it is proved that the displacement endpoints obtained under Assumptions 1 and 2

have small errors. Decompose the velocity in each microelement in both the horizontal
and vertical directions and accumulate these to obtain the displacement distance in both
directions in τ :⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δx = v limn→∞ ∑n
i=1 cos (ϕτ

2 · i
n) · τ

n = vτ
1∫

0
cos(ϕτ

2 · x)dx = 2v
ϕ sin ϕτ

2

Δy = v limn→∞ ∑n
i=1 sin (ϕτ

2 · i
n) · τ

n = vτ
1∫

0
sin(ϕτ

2 · y)dy = 2v
ϕ

(
1 − cos ϕτ

2
) (9)

Then, generate a joint displacement: s1 =
√

Δx2 + Δy2 = 2v
ϕ

√
2
(
1 − cos ϕτ

2
)

For UAV-A, the coordinates of the end point of the flight by θ̄ are (Δx′, Δy′):{
Δx′ = vτ cos ϕτ

4
Δy′ = vτ sin ϕτ

4
(10)

Then, generate a joint displacement: s2 =
√
(Δx′)2 + (Δy′)2 = τv

Align the displacements x and y along the θ̄. The displacement deviation Δs can be
expressed as a function of the UAV flight speed v, deflection avoidance time interval τ,
and deflection angle per unit time ϕ. Δs is defined as follows:

Δs(v, ϕ, τ) = |s1 − s2| =
∣∣∣∣ 2

ϕ

√
2
(

1 − cos
ϕτ

2

)
− τ

∣∣∣∣ · v (11)

The mean value of the displacement deviation is defined as follows:

Δs′ = 1
n

n

∑
i=1

v

∣∣∣∣∣ 2
ϕi

√
2
(

1 − cos
ϕi · dt

2

)
− dt

∣∣∣∣∣(ϕi =
π

3
,

π

3
+ dθ, · · · , 2π

)
(12)

If the UAV is flying in the direction of the target from the beginning, there is also a
distance difference de between the endpoints of the displacements in Assumptions 2 and 3.

273

Drones 2024, 8, 397

We used the law of cosines in the red isosceles triangle in Figure 9 and obtained the
following:

de(v, ϕ, τ) = vτ

√
2
(

1 − cos
ϕτ

4

)
(13)

3.3.3. Collision Risk Phase Error Analysis

When the UAV detection time scale is small, the UAV flight endpoint error Δs about
Assumptions 1 and 2 is small compared to the actual displacement scale, while the error de
about Assumptions 2 and 3 is much larger. Based on the expressions derived in Section 3.3.2
for Δs and de, we plot the changes in their associated variables in Figure 10.

0

2
11

/6

50

5
/3

3
/2

211
/6

D
is

pl
ac

em
en

t e
rro

r :
s(

m
)

4
/3 5

/3

100

7
/6 3

/2UAV deflection angle: (rad)

4
/3

7
/6

UAV deflection time: (s)5
/6

150

2
/3 5

/6/2

2
/3/2/3 /3/6 /60 0

20

40

60

80

100

120

0

0

2
11

/6

50

5
/3

3
/2

211
/6

D
is

pl
ac

em
en

t e
rro

r :
s(

m
)

4
/3 5

/3

100

7
/6 3

/2

4
/3

7
/65

/6

150

2
/3 5

/6/2

2
/3/2/3 /3/6 /60 0

UAV deflection angle: (rad) UAV deflection time: (s)
0 /6 /3 /2

2
/3

5
/6

7
/6

4
/3

3
/2

5
/3

11
/6 2

UAV deflection time: (s)/angle: (rad)

0

10

20

30

40

50

60

70

80

90

100

D
is

pl
ac

em
en

t e
rro

r :
s(

m
)

Displacement error at =1s
Displacement error at =0.2s
Displacement error at =1.6rad
Displacement error at =1rad

0

2

50

11
/6

5
/3

100

3
/2

211
/6

D
is

pl
ac

em
en

t e
rro

r
d e (m

)

4
/3

150

5
/37

/6 3
/2UAV deflection angle: (rad)

200

4
/3

7
/6

UAV deflection time: (s)5
/6

250

2
/3 5

/6/2

2
/3/2/3 /3/6 /60 0

50

100

150

200

0

/6

D
is

pl
ac

em
en

t e
rro

r
d e (m

)

UAV deflection angle: (rad)

0

2

50

11
/6

5
/3

100

3
/2

211

4
/3

150

5
/3

7
/6 3

/2

200

4
/3

7
/65

/6

250

2
/3 5

/6/2

2
/3/2/3 /3/6 /60 0

UAV deflection time: (s)

0 /6 /3 /2
2

/3
5

/6
7

/6
4

/3
3

/2
5

/3
11

/6 2

UAV deflection time: (s)/angle: (rad)

0

50

100

150

200

250
D

is
pl

ac
em

en
t e

rro
r d

e (m
)

Displacement error at =1s
Displacement error at =0.2s
Displacement error at =1.6rad
Displacement error at =1rad

0

50

2

100

11
/6

150

5
/3

C
om

pa
ris

on
 o

f :
s

an
d

d e (m
)

3
/2

200

4
/3

250

7
/6

5
/6

2
/3

211
/6

5
/3/2 3
/2

UAV deflection time: (s)

4
/3/3

7
/6

5
/6/6

2
/3/20 /3/6

0

50

0

100

150

200

UAV deflection angle: (rad)

0 /6 /3 /2
2

/3
5

/6
7

/6
4

/3
3

/2
5

/3
11

/6 2

UAV deflection angle: (rad)UAV deflection angle: (rad)

0

5

10

15

20

25

30

0.51009

7.8036

=1s,value of s
=1s,value of de

0 /6 /3 /2
2

/3
5

/6
7

/6
4

/3
3

/2
5

/3
11

/6 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
om

pa
ris

on
 o

f :
s

an
d

d e (m
),w

he
n

 =
0.

2s

C
om

pa
ris

on
 o

f :
s

an
d

d e (m
),w

he
n

 =
1s

0.0041111

0.31408

=0.2s,value of s
=0.2s,value of de

（a）

（d）

（g）

（e） （f）

（i）（h）

（b） （c）

Figure 10. Schematic of displacement endpoint errors Δs and de analysis.

Figure 10a shows the variation in the function Δs on [0, 2π]. Figure 10b shows the
projections of the two variables ϕ, τ on their corresponding axis planes, respectively. It can
still be observed qualitatively without exact partial derivatives that the Δs in a certain range
around ‘0’ are low (Figure 10a). This indicates that the value of error Δs is not significant
when both ϕ and τ are small. Fixing one of the variables, taking several discrete values for
the other variable, and changing their errors, we can see that all four curves are increasing
(Figure 10c). This indicates that the partial derivative of the other variable is positive at its

274

Drones 2024, 8, 397

corresponding value. The purple and red curves grow slowly (corresponding to τ fixed),
while the yellow and green curves grow fast (corresponding to ϕ fixed), so that time τ has
a more pronounced effect on Δs than the deflection angle ϕ. This reveals that we prioritize
the control shortening time. The error distance Δs about Assumptions 1 and 2 will be lower.

By analyzing the functional relationship for de over the same range of independent
variables (see Figure 10d–f), we can obtain similar conclusions to Δs, except that most of
the same independent variables ϕ, τ correspond to de greater than Δs (see Figure 10g–i).
Hence, under Assumption 3 of the VO method, the position UAV-A reaches after executing
the redirection maneuver may not align with its actual position, potentially encroaching
into the VO space occupied by UAV-B. Our discussion of this part of the error is similar to
the starting point of the NLVO [28–31].

In this paper, we address the fact that our UAV’s protection domain is neither pre-
determined nor fixed. Consequently, the uncertainty error introduced by this linear as-
sumption can be incorporated into the design of the protection domain. Equivalently, this
displacement deviation is added to the original protection domain space so that the we
can continue to adjust the UAV under Assumption 3 [11], simplifying the calculations and
skipping the complex flight details of Assumption 1.

3.4. Elliptic Domain Size Construction Considering Uncertainty Errors

In Phase 1, as established in this paper, the average displacement deflection angle
consistently remains smaller than the target deflection angle. Thus, under Assumption 3,
the distance between the endpoints of UAVs A and B along the minor axis direction is
invariably greater than that observed under Assumption 2. The minor axis defined under
Assumption 3 contains the length of the error de. Upon analyzing the geometric logic, we
conclude the following: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

di
b = di

vτ · sin θi
b ≈ di

θ̄
· sin θi

b + 2de

di
vτ =

√(
yτi

B − yτi
A
)2

+
(
xτi

B − xτi
A
)2

θi
b = βi

τ +
ϕτ
2 · i − π

2

βi
τ = arc tan

(
y

τi
B −y

τi
A

x
τi
B −x

τi
A

) (14)

In the above equation, di
b denotes the projected distance between the two ellipses in

the direction of the minor axis at the moment τi ; di
vτ , di

θ̄
denote the distance between the

endpoints of the two UAV displacements under Assumptions 2 and 3 at each time step
τ, respectively; βi

τ indicates the inclination of the terminal line under Assumption 3; βi
τ

indicates the angle between the displacement endpoint line and the direction of the normal
velocity under Assumption 3. Since it has been proved in the previous section that Δs is
obviously smaller than de, ignoring Δs, the above equation is approximately equal.

If UAVs A and B are deflected to avoid obstacles at the initial moment under As-
sumption 3, the spatial position at the end of each time τi can be expressed as follows:

{
xτi

A = xτ0
A + ∑n

i=1 vτ · cos
(ϕτ

2 · i
)

yτi
A = yτ0

A − ∑n
i=1 vτ · sin

(ϕτ
2 · i

) &
{

xτi
B = xτ0

B − ∑n
i=1 vτ · cos

(ϕτ
2 · i

)
yτi

B = yτ0
B + ∑n

i=1 vτ · sin
(ϕτ

2 · i
) (

i ∈ N+
)

(15)

To ensure that the UAV can effectively avoid collisions upon detecting a risk during
Phase 1, within the constraints of its physical capabilities, the value of the length of the
minor semi-axis of the ellipse (2b) must not exceed the minimum separation distance. We
define this minimum value as the distance projection along the minor axis direction before
the velocities of UAVs A and B are deflected to π/2 . This is recorded as follows:

bτ
min = min{di

b/2}
(

i ∈ � π

2ϕτ
�&i ∈ N+

)
(16)

275

Drones 2024, 8, 397

Based on this, we anticipate that the lateral distance will also be sufficiently large
to minimize the possibility of the collision scenarios depicted in Figure 8. Consequently,
within each time step τ, we have the following:

li
vτ =

(
xτi

B − xτi
A
) · cos

(ϕτ

2
· i
)
> 0 (17)

Similarly,

aτ
min = min{li

vτ}/2
(

i ∈ � π

2ϕτ
�&i ∈ N+

)
(18)

Since A and B are generally asynchronous in reaching the minimum value, the equation
aτ

min > bτ
min does not necessarily hold. To avoid ambiguity, when aτ

min < bτ
min, we assign

aτ
min = 1.5bτ

min. In summary, the custom elliptic domain structure is given by the following
constraints:

aτ
min > bτ

min :

⎧⎪⎪⎨⎪⎪⎩
aτ

min =
min{li

vτ}
2

bτ
min =

min
{

di
b
}

2

(
i ∈ N+

)
(19)

aτ
min ≤ bτ

min :

⎧⎪⎨⎪⎩
aτ

min = 1.5bτ
min

bτ
min =

min
{

di
b
}

2

(
i ∈ N+

)
(20)

For a given velocity–position state, the values calculated above represent the elliptical
domain sizes for the pair of reversed conflict UAVs, which are simplified as follows:

a = aτ
min; b = bτ

min (21)

The elliptic domain structure we constructed maps the ellipse’s major and minor
semi-axes to the UAV speed, velocity direction, angular velocity performance, hostile UAV
spacing distance, and UAV detection frequency. It has adaptability associated with the
real-time status of the UAV. In Phase 1, if equation di

b < 2b is satisfied, they will intrude on
each other at a certain moment; otherwise, they will never intrude. The projected distance
in the minor-axis direction reflects the closest distance between the two in subsequent
flights in the non-intrusive state and reflects the extent of mutual invasion between the two
in the intrusive state.

4. EVO Algorithm-Based Custom Elliptic Domains

As elliptic domains no longer have the simplicity of calculating the VO space com-
pared to the circle domains, the exact calculation of the Minkowski sum for the elliptic
domains in which A and B are located involves either calculating the boundary convolution
curves [40–42] or employing the close-form implicit equations [43] with more expensive
computational costs. The computation of the tangent line at a point outside the non-circle
domain will also become complicated. Lee and Beom H. [20] have accurately derived
and computed the VO space and obstacle cones for the minimum area boundary ellipse
approximation of obstacles with a high degree of complexity. The conservative linear
computational method proposed by Best [10] is more efficient and has been validated under
multi-obstacle experimental conditions. In addition to applying the VO method for obstacle
avoidance in elliptical agents, Boolean operations on elliptical boundaries have also been
utilized to address conflict scenarios in multi-ship encounters [31,44]. In this section, we
approximate the boundary of the elliptical domain as a convex polygon, allowing for rapid
computation of the VO space. The tangents of this space are efficiently estimated, too.

276

Drones 2024, 8, 397

4.1. EVO Algorithm Preparations

This part discretizes the elliptic boundary in any axial direction to form a convex
polygonal structure. According to the obtained custom elliptic domain size, the standard
elliptic equation located at the coordinate origin is as follows:

x2

a2 +
y2

b2 = 1 (22)

We take the center of the ellipse where UAV-A is located as the coordinate origin
and the major and minor semi-axes as the direction of the X- and Y-axes coordinate system.
Without a loss of generality, any axial UAV-B ellipse exists in this coordinate system with
inclination angle oB and center spacing distance dAB.

We discretize the boundary of the ellipse on which UAV-A is located by taking the
θm angle. As a result, there will be 2π/θm discrete points. Elliptic protected domains are
transformed into convex polygons. Each discrete coordinate point can be represented as
follows: {

xi
A = a cos θi = a cos i ∗ θm(i = 1, · · · , 2π/θm)

yi
A = b sin θi = b sin i ∗ θm(i = 1, · · · , 2π/θm)

(23)

where θi is the angle corresponding to every interval θm, with 0 degrees in the positive
direction of the x-axis and a positive counterclockwise rotation. With UAV-A as a reference,
the discretized boundary points of B at any position and axial direction in this coordinate
system are equivalent to two transformations of the boundary discretization points sought
by A. Rotation transformation first and then translation transformation is equivalent to
translation transformation first and then rotation transformation. If we rotate first using
the clockwise rotation matrix Turn, the mapping is applied accordingly.

Turn =

[
cos oB − sin oB
sin oB cos oB

]
(24)

{
xi

B1 = a cos i ∗ θ̄ · Turn(i = 1, · · · , 2π/θm)

yi
B1 = b sin i ∗ θ̄ · Turn(i = 1, · · · , 2π/θm)

(25)

where oB is the angle of rotation of B with reference to the direction of the major axis of A.
After the rotation is completed, the coordinate points are translated to the location of B to
obtain the discrete boundary points of B in the coordinate system:{

xi
B2 = xB = xi

B1+ dAB cos oB
yi

B2 = yB = yi
B1+ dAB sin oB

(26)

At this point, we have discretized the two elliptical protection domains corresponding
to UAVs A and B into convex polygons and established coordinate correspondences for
each node. Therefore, we obtain a set of discrete points on the boundaries of the elliptical
domains of A and B: ⎧⎪⎨⎪⎩

BoundaryA =
{

xi
A, yi

A

}
BoundaryB =

{
xi

B2, yi
B2

} (i = 1, · · · , 2π/θm) (27)

4.2. EVO Algorithm Steps

Taking UAV-A as the subject of obstacle avoidance and evaluating the EAVO imposed
on UAV-B, the following algorithm steps are executed:

• Step 1: Computation of Minkowski sum and convex hull boundary points

We considered the discrete convex polygons of UAVs A and B. The Minkowski sum,
imposed by A on B, is calculated. Using Method 1 as described in Appendix A.1 of this

277

Drones 2024, 8, 397

paper, we employ the convex polygon convex hull algorithm to derive the convex boundary
from the results of the discrete point summation:

ΩA⊕B = convhull{BoundaryA + BoundaryB} (28)

We can obtain the convex hull structure by extracting the boundary point index.
The 2D convex hull boundary is EVO space (B̂E). This is the set of velocities we need to
satisfy disjointness for obstacle avoidance. The discrete points on the convex hull boundary
are marked as BoundaryB̂ = {pi, i = (1, · · · , n)}, and it may be an elliptical-like structure.

• Step 2: Finding the approximate EVO space tangent line

Since the convex packet boundary is not smooth, the left and right derivatives of each
discrete boundary point are not equal to each other. If it is not differentiable, the slope
does not exist. Owing to the abundance of discrete boundary nodes and the small intervals
between them, we efficiently utilize data from the convex hull algorithm by approximating
the slope at any point within the discrete boundary set by using the slope of the line
connecting the adjacent front and back nodes:

ki =
Δyi
Δxi

=
yi+1 − yi−1

xi+1 − xi−1
(29)

Then, we look for a point (where A is located) outside the convex hull tangent to it.
We do this to find any point on the convex hull and the point where the slope of the line
connecting A is consistent with ki. We connect the boundary discrete points with position
A, where the linear direction function is expressed in the slope as follows:

k′i =
yA − yi
xA − xi

(30)

The absolute errors of these slopes can be found for a series of discrete points:

εi =
∣∣ki − k′i

∣∣× 100% (31)

• Step 3: Return EVO space tangent points

Because more than one discrete point is close to the true tangent points within the error
allowance, there is a risk of double-counting the tangent points. Therefore, the minimum
and maximum slope values within this error range (εagree) should be considered as the two
approximate tangent points of the convex hull at that moment:{

p1
con = arg max

(
arc tan k′i

)
=

(
x1

con, y1
con

)
p2

con = arg min
(
arc tan k′i

)
=

(
x2

con, y2
con

) f or eachεi < εagree (32)

where p1
con and p2

con are the two tangent points we computed.
The denser the discrete points, the smaller the error. Accordingly, εagree can be set

smaller. The approximation of the tangent line is closer to the true value, but the calculation
becomes more time-consuming as a result.

• Step 4: Computation of EAVO

Translate all convex packet boundary points along −→vB in τ. The set of convex packet
boundary points after translation is BoundaryB̂ ⊕−→vB · τ. The position of the tangent points
after translation is p1

con = (x1
con, y1

con)⊕−→vB · τ, p2
con = (x2

con, y2
con)⊕−→vB · τ. We connect the

translational tangent points p1
con and p2

con to the UAV-A coordinates to construct EAVO at a
given moment in time: EAVOτ

A|B =
{

v|v /∈ EVOτ
A|B ⊕ vB

}
.

4.3. EVO Algorithm Obstacle Avoidance Velocity Control

After determining the custom elliptic domain for the UAV, it is essential to establish a
control scheme to adjust the velocity for obstacle avoidance. Additionally, we must address

278

Drones 2024, 8, 397

potential velocity oscillations that could arise during this process to prevent the UAV
from entering a repetitive loop of obstacle avoidance maneuvers and course corrections.
To streamline the process and minimize the time and complexity involved, this paper fixes
the major and minor semi-axes under the initial τ0 computation as the ellipse size based
on the analysis and discussion in Section 3. This eliminates the need for recalculating the
ellipse size with each obstacle encounter.

We utilize the EAVO as the basis for obstacle avoidance. UAV-B has a higher navi-
gational priority compared to A. We adjust only the direction of UAV-A’s velocity while
keeping UAV-B’s heading unchanged. The EAVO for UAV-A is recalculated at the end
of each time step τi. If UAV-A’s velocity falls within the EAVO at point τi−1, the heading
of UAV-A is then adjusted accordingly. It is worth noting that we cannot always regard
the boundary velocity of the cone as the adjusted orientation because of the limitations
of UAV physical deflection capabilities. Additionally, the accuracy of the tangent line
determination is influenced by the number of discrete boundary points, introducing some
discrepancies between the actual position and the results of the approximation algorithm.
To ensure adequate safety, in scenarios where only a minor deflection is necessary for
obstacle avoidance, we deflect A into [ϕτ/2, ϕτ]. Therefore, there are three situations:

τi+1
new =

⎧⎪⎪⎨⎪⎪⎩
{

oτi
A − ϕτ/2, oτi

A ∈ EAVOτi &0 <
∣∣oτi

EAVO − oτi
A

∣∣ ≤ ϕτ/2 ⇒ Collision
−∣∣oτi

EAVO

∣∣, oτi
A ∈ EAVOτi &ϕτ/2 <

∣∣oτi
EAVO − oτi

A

∣∣ ≤ ϕτ ⇒ Collision{
oτi

A − ϕτ, oτi
A ∈ EAVOτi &

∣∣oτi
EAVO

∣∣ > ϕτ ⇒ Collision{
oτi

A, oτi
A /∈ EAVOτi ⇒ NoCollision

(33)

When oτi
A ∈ EAVOτi &0 <

∣∣oτi
EAVO − oτi

A

∣∣ ≤ ϕτ/2, we do not have to deflect at the
upper deflection limit to avoid obstacles. When oτi

A ∈ EAVOτi &
∣∣oτi

EAVO

∣∣ > ϕτ, at most, we
can only deflect ϕτ based on the current velocity. When oτi

A /∈ EAVOτi , a collision will not
occur, and we maintain the UAV at its current velocity. It is worth noting that because of
the default clockwise deflection, as long as the obstacle is avoided more than once before τi,
oτi

A must be the fourth quadrant angle, with one negative value.

4.4. EVO Algorithm Oscillation Elimination in Velocity Reback

In practical applications, after the UAV adjusts its velocity direction to EVO space,
it deviates from the established route of the original flight mission. Therefore, the UAV
needs to adjust its velocity one or more times to gradually fly towards the target point.
Nevertheless, if velocity reback is performed as soon as oτi

A /∈ EAVOτi is detected, the UAV
will generate velocity oscillations (Section 2.2.3). In the RVO approach, the velocity vectors
of UAVs A and B are averaged as a standard translation relative to the apex of the velocity
obstacle cone, ensuring the adjusted velocity remains within the feasible velocity intersec-
tion of A and B. However, this paper intends not to alter the direction of UAV-B’s velocity,
allowing it to continue as much as possible on its original course, while UAV-A actively
performs avoidance maneuvers. Consequently, the velocity oscillations are transferred
primarily to UAV-A, rendering the traditional RVO method inapplicable in this scenario.
There are two solutions for this problem we consider:
Solution 1: Find an optimal position at which UAV-A initiates obstacle avoidance to ensure
safety. Concurrently, UAVs A and B pass each other, ensuring that subsequent conditions
satisfy oτi

A /∈ EAVOτi . This approach prevents the occurrence of velocity oscillations. How-
ever, determining this optimal position introduces another layer of complexity, which this
article will not explore in detail at this time.
Solution 2: We impose a constraint on UAV-A to continue moving in the direction of the
avoidance velocity until UAVs A and B have passed each other, after completing the avoid-
ance maneuver. This approach simplifies the management of UAV trajectories, ensuring
that the avoidance maneuver results in a successful and stable transition. Therefore, we
have the constraint di

vτ < di+1
vτ of mutual passing. After completing the initial obstacle

avoidance, UAV-A’s velocity direction is continuously adjusted towards the endpoint,

279

Drones 2024, 8, 397

ensuring a smooth flight without the need for secondary obstacle avoidance maneuvers.
The adjustment processes still need to satisfy the limit of deflection:

whenoτi+1
new = oτi

A =

⎧⎪⎪⎨⎪⎪⎩
oτi

Adi
vτ > di+1

vτ

oi
target = arc tan

ygoal−y
τi
A

xgoal−x
τi
A

di
vτ < di+1

vτ

oτi
A + ϕτ, di

vτ < di+1
vτ &oi

target − oτi
A > ϕτ

(34)

These are the rules for adjusting and rebacking the velocity of UAV-A throughout the
obstacle avoidance process. We will verify their validity in two scenarios in Section 5.

5. Simulation

5.1. VO and EVO Obstacle Avoidance Evaluation Indicators

In order to distinguish and validate the differences in the resolutions of UAVs in dif-
ferent protection domains for the same conflict scenario, some of the process indicators and
overall indicators in obstacle avoidance are selected as evaluation indicators. The details of
the indicators and what they represent are shown in Table 1.

Table 1. Evaluation indicators for VO and EVO obstacle avoidance models.

Evaluation Indicators Implication

Process Indicators Indicators of Changes over Time with the Flight Process

VO space VO in elliptic domains or circular domains
Flight distance Distance between UAVs during flight
Occupied area AVO-occupied area in 2D space

Angle of velocity direction Change in velocity direction throughout the flight of the UAVs
Detour distance Detour distance in τ compared to the original flight direction

Overall Indicators Indicators for the Entire Flight

Total detour distance Detour distance + remaining distance
Single obstacle avoidance time Average time per calculation of obstacle avoidance direction for UAV-A

5.2. UAV Simulation Parameters

We simulate and analyze a pair of head-on conflict UAVs, A and B. Their flight
endpoints are each other’s initial locations. We set two collision scenarios for validating the
obstacle avoidance performance of the elliptic domains in congested situations, and we
refer to the parameter information of the DJI Air 2S UAV to set up an initial state. The
parameter information is shown in Table 2.

Table 2. UAV state parameters of simulation experiments.

Parameters of UAV UAV v θ o (x0, y0) τ θm ϕ

Scenario 1 A 20 0 0 (0, 0) 0.2 π/360 π/3
B 20 −π −π (500, 0) 0.2 π/360 π/3

Scenario 2 A 20 0 0 (0, 0) 0.2 π/360 π/2
B 20 −π −π (200, 0) 0.2 π/360 π/2

From left to right, the parameters in the table represent the initial state, i.e., the UAV
flight velocity (m/s), the direction of the UAV velocity (rad), the direction of the UAV elliptic
domain (rad), the horizontal and vertical coordinate positions in the absolute coordinate
system of A and B (m), the time slice interval (s), the center angular interval of the discrete
boundary point (rad), and the maximum angular velocity (rad/s), respectively.

It is worth noting the small geometric size of the DJI Air/Mavic series UAVs, which
is around 1 dm3. At the same time, to ensure the effectiveness of obstacle avoidance,
the distance between the A and B intervals should not be set too far, and ϕ should not be
too large. Otherwise, it will lead to the completion of obstacle avoidance in a fraction of

280

Drones 2024, 8, 397

a second. ϕ is taken as the DJI Air 2S Normal Gear π/2 and Smooth Gear π/3 values in
Scenarios 1 and 2, respectively.

5.3. Simulations and Conclusions

At the initial moment τ0, the initial ellipse domain dimensions under the model of
Section 3.3 were calculated under the parameters set in Scenarios 1 and 2.

Scenarios1 :
{

a = 39.2 m
b = 26.2 m

Scenarios2 :
{

a = 23.5 m
b = 15.6 m

(35)

To verify the reliability of the entire constructed AVO/EAVO algorithm described
above, the absolute velocity obstacle cone of UAV B at the initial moment in scenario 1 was
drawn (Figure 11). It shows that the elliptic domain tangent is essentially accurate, and that
the AEVO is enclosed in the AVO. All the calculations and simulations were completed in
Matlab R2022a using a 13th Gen Intel(R) Core(TM) i5-13500H 2.60 GHz processor.

0 100 200 300 400 500 600
X-axis

-200

-150

-100

-50

0

50

100

150

200

Y-
ax

is

Comparison collision space of UAV-A and B EVO/VO

A
BEAVO of UAV-A inpose on UAV-B

AVO of UAV-A inpose on UAV-B

Initial position of UAV-A
Initial position of UAV-B

m

m
Figure 11. Initial moment AVO, EAVO in scenarios 1.

Obstacle avoidance can be ensured by selecting a velocity other than the AVO/EAVO
at the end of each time slice. Evidently, the elliptic domain offers a range of obstacle
avoidance velocities with reduced inclination angles compared to the circle domain.

In the simulation experiments, the existing method of expanding the velocity obstacle
space is applied to circular structures to derive the corresponding velocity obstacle cones,
while the EVO algorithm proposed in Sections 4.1 and 4.2 of this paper is used for elliptical
structures. We simulate the flight process of head-on UAVs A and B according to the
obstacle avoidance and velocity reback adjustment strategies in Sections 4.3 and 4.4. The
following obstacle avoidance results can be obtained.

5.3.1. Scenarios 1 Simulation Experiment

It can be seen that both protection domain assumptions achieve obstacle avoidance
resolution for this pair of UAVs (Figure 12a,b). The flight trajectory of UAV-A under the
elliptical assumption is smoother (Figure 12c,d). Based on the distance between A and B
throughout the flight (Figure 13a,b), it is clear that the closest distance between the two is
much closer under the elliptic domain assumption. Since the length of protection is the
same in all circle domain directions, a separation distance of nearly ‘2a’ between drones is

281

Drones 2024, 8, 397

actually more dangerous. For the elliptic assumption, as the orientation of UAV-A changes,
the elliptic protection domain also changes, and the actual distance between A and B is less
than ‘2a’ but still outside the elliptic domain (Figure 13a green dashed line). Therefore, the
result for the circle domain is clearly more conservative.

0 100 200 300 400 500
X-direction Displacement (m)

-250

-200

-150

-100

-50

0

50

100

150

200

Y-
dir

ec
tio

n
Di

sp
lac

em
en

t (
m

)

Circle protection field of UAV-A
Circle protection field of UAV-B
AVO of UAV-A inpose on UAV-B

0 100 200 300 400 500
X-direction Displacement Length (m)

-200

-150

-100

-50

0

50

100

150

Y-
di

re
ct

io
n

Di
sp

la
ce

m
en

t L
en

gt
h

(m
)

A begin(B end) A end(B begin)

Flight scattered points of UAV-A
Flight scattered points of UAV-B

0 100 200 300 400 500
X-direction Displacement (m)

-250

-200

-150

-100

-50

0

50

100

150

200
Y-

dir
ec

tio
n

Di
sp

lac
em

en
t (

m
)

Elliptic protection field of UAV-A
Elliptic protection field of UAV-B
EAVO of UAV-A inpose on UAV-B

0 100 200 300 400 500
X-direction Displacement Length (m)

-200

-150

-100

-50

0

50

100

150

Y-
di

re
ct

io
n

Di
sp

la
ce

m
en

t L
en

gt
h

(m
)

A begin(B end) A end(B begin)

Flight scattered points of UAV-A
Flight scattered points of UAV-B

(a)

(c) (d)

(b)

(1)

Figure 12. EAVO/AVO space and flight position in scenario 1.

It can be seen that the cone angle of the VO of the circle domain assumption is always
above the elliptic domain assumption (Figure 14a), indicating that using the circle domain
assumption requires a larger angle of deflection to complete the unwinding. The VO of the
circle domain assumption occupies a larger area of the space and squeezes more of the free
space, while the elliptic domain contributes more of the non-conflicting space (Figure 14c).
Since the deflection angle of A under the circle domain assumption is greater (Figure 14b),
the resulting detour distance in each simulation interval τ is also larger (Figure 14d).
Additionally, it is evident that UAV-A’s velocity adjustment does not enter an oscillatory
loop. It merely executes a few obstacle avoidance maneuvers before resuming a stable
flight. It then continues to monitor for collision risks, making adjustments successively as
necessary (Figure 14b).

282

Drones 2024, 8, 397

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Simulation time interval step (:s)

0

50

100

150

200

250

300

350

400

450

500

Di
sta

nc
e

be
tw

ee
n

UA
V-

A
an

d
UA

V-
B

(m
)

Distance between UAV A and B under the circle protection field

86.28 Length of the diameter of circle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Simulation time interval step (:s)

0

50

100

150

200

250

300

350

400

450

500

Di
sta

nc
e

be
tw

ee
n

UA
V-

A
an

d
UA

V-
B

(m
)

Distance between UAV A and B under the elliptical protection field

66.2

Length of the long axis of ellipse
66.2 Length of the short axis of ellipse

Distance of protection domain in the direction of the UAV-A/B linkage

ba

Figure 13. Comparison of flight distances in scenario 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Simulation time interval step (:s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
h

e
 s

iz
e

 o
f

c
o

n
e

 a
n

g
le

 (
ra

d
)

Cone angle of AVO UAV-A inpose on B

Cone angle under AVO

Cone angle under EAVO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Simulation time interval step (:s)

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

T
h

e
 a

re
a

 o
f

c
o

n
e

 A
V

O
 (

m
2
)

10
4 Occupied area of cone AVO UAV-A inpose on B

Occupied area under AVO

Occupied area under EAVO

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

Simulation time interval step (:s)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

T
h

e
 s

iz
e

 o
f
v
e

lo
c
it
y
 d

ir
e

c
ti
o

n
 a

n
g

le
 (

ra
d

)

Angle change in velocity direction of UAV-A

Angle change under AVO

Angle change under EAVO

(a)

(c) (d)

(b)

0 5 10 15 20 25

Simulation time interval step (:s)

0

0.5

1

1.5

2

2.5

3

D
e

to
u

r
d

is
ta

n
c
e

 o
f
U

A
V

-A
 i
n

 e
a

c
h

 i
 (

m
)

Comparision Detour distance in each

Detour distance under AVO

Detour distance under EAVO

Figure 14. Comparison of process indicators in scenario 1.

The observed results stem from the smaller velocity obstacle space within the elliptical
domain, which provides a broader range of optional velocities. This additional velocity
selection, which would be unfeasible under the circle domain assumption, will become
feasible under the elliptical domain, often requiring only small adjustments. In contrast,
under the circle domain hypothesis, a significant portion of the potential obstacle avoidance
directions might be prematurely excluded due to the larger space and the greater angle at
the top of the obstacle cone.

5.3.2. Scenarios 2 Simulation Experiment

Next, the distance between A and B was adjusted to 200 m. We repeated the procedure
according to the experimental conditions in Scenario 2. In Scenario 2, where the spacing
is more constrained, the effectiveness of the velocity adjustments by UAV-A within the

283

Drones 2024, 8, 397

elliptical domain assumption becomes more apparent. This setup allows UAV-A to avoid
obstacles with smaller angular deflections as it approaches UAV-B. However, Figure 15a–d
confirms that the purple and green elliptical domains do not overlap at any point, which is
facilitated by the lack of inherent arbitrary rotational symmetry to ellipses. Figure 16a,b in
the spacing distance curve shows that under the elliptical assumption, UAVs A and B are
closer together compared to when operating under the circle domain assumption, falling
between the lengths of the major and minor axes. Meanwhile, the circle domain maintains
a constant safety interval of 2a at all times, ensuring the distance between A and B remains
above this threshold, which necessitates a larger detour.

0 50 100 150 200
X-direction Displacement (m)

-100

-80

-60

-40

-20

0

20

40

60

80

Y-
dir

ec
tio

n
Di

sp
lac

em
en

t (
m

)

Elliptic protection field of UAV-A
Elliptic protection field of UAV-B
EAVO of UAV-A inpose on UAV-B

0 50 100 150 200
X-direction Displacement (m)

-100

-80

-60

-40

-20

0

20

40

60

80

Y-
dir

ec
tio

n
Di

sp
lac

em
en

t (
m

)

Circle protection field of UAV-A
Circle protection field of UAV-B
AVO of UAV-A inpose on UAV-B

0 50 100 150 200
X-direction Displacement Length (m)

-100

-50

0

50

Y-
dir

ec
tio

n
Di

sp
lac

em
en

t L
en

gt
h

(m
)

A begin(B end) A end(B begin)

Flight scattered points of UAV-A
Flight scattered points of UAV-B

0 50 100 150 200
X-direction Displacement Length (m)

-100

-50

0

50

Y-
dir

ec
tio

n
Di

sp
lac

em
en

t L
en

gt
h

(m
)

A begin(B end) A end(B begin)

Flight scattered points of UAV-A
Flight scattered points of UAV-B

a

c d

b

Figure 15. EAVO/AVO space and flight position in scenario 2.

0 1 2 3 4 5 6 7 8 9 10
Simulation time interval step (:s)

0

20

40

60

80

100

120

140

160

180

200

Di
sta

nc
e

be
tw

ee
n

UA
V-

A
an

d
UA

V-
B

(m
)

Distance between UAV A and B under the elliptical protection field

39.72
Length of the long axis of ellipse

Length of the short axis of ellipse

Distance of protection domain in the direction of the UAV-A/B linkage

0 1 2 3 4 5 6 7 8 9 10
Simulation time interval step (:s)

0

20

40

60

80

100

120

140

160

180

200

Di
sta

nc
e

be
tw

ee
n

UA
V-

A
an

d
UA

V-
B

(m
)

Distance between UAV A and B under the circle protection field

51.24 Length of the diameter of circle

(a) (b)

Figure 16. Comparison of flight distances in scenario 2.

The overall indicators for Scenarios 1 and 2 are summarized in Table 3. It can be seen
that under the scenarios with different distance scales, the total detour distance of the UAV
structured in the elliptic domain is smaller than that in the circle domain throughout the ob-

284

Drones 2024, 8, 397

stacle avoidance process. In terms of the time efficiency of a single resolution, although the
VO space computation of the elliptic domain is much more complicated than that of the
circle domain, the method of calling the convhull function for discrete elliptic boundary
nodes proposed in this paper does not significantly lag behind. And, both of them almost
reach the critical reback moment when A and B pass by each other at the same time.

Table 3. Overall indicators and velocity reback moment.

Pre-Set Scenario Domain Hypothesis Total Detour Distanc (m) Single Obstacle Avoidance Time (s) Velocity Reback Moment (s)

Scenario 1
Elliptic domain 54.37 0.0016 τreback = 61τ = 12.2
Circle domain 69.29 0.00056 τreback = 62τ = 12.4

Scenario 2
Elliptic domain 44.96 0.0043

τreback = 13τ = 2.6Circle domain 56.65 0.0014

Based on Figure 17a–d, we can obtain similar conclusions in Scenario 1. The results
of obstacle avoidance under the elliptic domain structure are more superior in Scenario 2,
which is reflected in the compression of the total detour distance and the improvement of
the computational efficiency in Table 3. Because the initial A and B separation distance is
reduced from 500 m to 200 m, the ellipse assumption still saves about 10 m of extra detours.

0 1 2 3 4 5
Simulation time interval step (:s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Th
e

si
ze

 o
f c

on
e

an
gl

e
(ra

d)

Cone angle of AVO UAV-A inpose on B
Cone angle under AVO
Cone angle under EAVO

0 1 2 3 4 5 6 7 8 9 10
Simulation time interval step (:s)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Th
e

si
ze

 o
f v

el
oc

ity
 d

ire
ct

io
n

an
gl

e
(ra

d)

Angle change in velocity direction of UAV-A
Angle change under AVO
Angle change under EAVO

0 1 2 3 4 5
Simulation time interval step (:s)

0.4

0.6

0.8

1

1.2

1.4

1.6

Th
e

ar
ea

 o
f c

on
e

AV
O

 (m
2)

104 Occupied area of cone AVO UAV-A inpose on B

Occupied area under AVO
Occupied area under EAVO

(a) (b)

(d)(c)

0 2 4 6 8 10
Simulation time interval step (:s)

0

0.5

1

1.5

2

2.5

3

D
et

ou
r d

is
ta

nc
e

of
 U

AV
-A

 in
 e

ac
h

i(m
)

Comparision Detour distance in each

Detour distance under AVO
Detour distance under EAVO

Figure 17. Comparison of process indicators in scenario 2.

We can foresee that when the two UAVs are closer together and the size of the pro-
tection domain obtained in Section 3.3 is smaller than the protection domain required by
the actual physical properties of the UAVs, a situation may occur where the circle protec-
tion domain is unable to avoid obstacles, while the elliptical domain can avoid obstacles.
Assuming that this minimum physical protection domain is a = 20 m, b = 10 m, we test it
when the distance between UAVs A and B is 80 or 100 m, and the other parameters are
consistent with Scenario 2. The actual experiments demonstrated that when the protection
domain fixed the UAV’s velocity in the direction of the major axis, it was not effective for
obstacle avoidance. The circular domain structure also failed in the 80m scenario. On the

285

Drones 2024, 8, 397

contrary, interchanging the values of a and b yields the desired results (Figure 18a–f). This
suggests that timely changes in the axial orientation of the elliptic domain are needed to
better accommodate narrow scenarios of obstacle avoidance.

0 1 2 3 4
Simulation time interval step (:s)

0

10

20

30

40

50

60

70

80

90

100

Di
sta

nc
e

be
tw

ee
n

UA
V-

A
an

d
UA

V-
B

(m
)

Distance between UAV A and B under the elliptical protection field

Length of the long axis of ellipse

Length of the short axis of ellipse

Distance of protection domain in the direction of the UAV-A/B linkage

0 1 2 3 4
Simulation time interval step (:s)

0

10

20

30

40

50

60

70

80

90

100

Di
sta

nc
e

be
tw

ee
n

UA
V-

A
an

d
UA

V-
B

(m
)

Distance between UAV A and B under the elliptical protection field

Length of the long axis of ellipse

Length of the short axis of ellipse

Distance of protection domain in the direction of the UAV-A/B linkage

0 1 2 3 4
Simulation time interval step (:s)

0

10

20

30

40

50

60

70

80

90

100

Di
sta

nc
e

be
tw

ee
n

UA
V-

A
an

d
UA

V-
B

(m
)

Distance between UAV A and B under the circle protection field

36.61

Length of the diameter of circle

0 1 2 3 4 5
Simulation time interval step (:s)

0

10

20

30

40

50

60

70

80

90

100

Di
sta

nc
e

be
tw

ee
n

UA
V-

A
an

d
UA

V-
B

(m
)

Distance between UAV A and B under the elliptical protection field

Length of the long axis of ellipse

Length of the short axis of ellipse

Distance of protection domain in the direction of the UAV-A/B linkage

0 1 2 3 4 5
Simulation time interval step (:s)

0

10

20

30

40

50

60

70

80

90

100

Di
sta

nc
e

be
tw

ee
n

UA
V-

A
an

d
UA

V-
B

(m
)

Distance between UAV A and B under the elliptical protection field

Length of the long axis of ellipse

Length of the short axis of ellipse

Distance of protection domain in the direction of the UAV-A/B linkage

0 1 2 3 4 5
Simulation time interval step (:s)

0

10

20

30

40

50

60

70

80

90

100

Di
sta

nc
e

be
tw

ee
n

UA
V-

A
an

d
UA

V-
B

(m
)

Distance between UAV A and B under the circle protection field

39.65
Length of the diameter of circle

a=20;b=10 a=10;b=20 r=20

r=20a=10;b=20a=20;b=10

a

d e f

b c

Figure 18. Comparison of protection domain obstacle avoidance results at 100 and 80 m.

5.4. Defects of Custom Elliptic Domains for Proximity UAVs

When the drones are in close proximity, the custom elliptic domain we proposed will
also become trapped in a dilemma during obstacle avoidance. During the experimental
phase, both elliptic and circle domains produced mutual intrusions at 100 and 80 m.
Figure 18 indicates that with the movement of the UAV, our aim to provide a larger
protection domain for the velocity direction gradually became inapplicable, and the relative
positional relationship between the two should be considered in real time. When swapping
the values of a and b in the elliptic domains, the UAV’s obstacle avoidance performance
in tight scenarios aligned with our expectations for an elliptic domain (Figure 18). This
indicates that the elliptic domain, which depends only on the state of conflict at the initial
moment and fixes the direction of the velocity as the major axis of the ellipse, will no longer
be applicable as the relative positions of the two UAVs change. Therefore, the ideal elliptic
domain should be a dynamic protection domain that constantly changes with the relative
positions of the conflicting individuals and should always provide a major-axis protection
field for the most significant direction of the conflict.

6. Summary and Outlook

This paper explored the types of protective domains that can scientifically achieve safe
obstacle avoidance during UAV flight. Fixed-size circle domains often lead to redundancy,
which may be feasible when airspace resources are abundant and conflict scales are small.
However, in scenarios where UAVs face limited space for maneuvering or when there are
numerous conflicting UAVs, large circle domains with a preset radius may prove ineffective.
Consequently, this paper investigated elliptic domains and their algorithms to develop
a more generalized and efficient protection framework, enhancing safety in complex or
crowded flight environments. For unmanned aerial vehicles (UAVs) in head-on conflict
scenarios with a specified separation distance, the size of the preset elliptical protection
domain can be determined based on the corresponding UAV performance parameters.

286

Drones 2024, 8, 397

The obstacle avoidance turning angles can be calculated according to the elliptical domain,
allowing the UAVs to return to their flight paths and navigate towards the target point after
the conflict risk has been eliminated.

Based on the results obtained, in Scenario 1, where the distance between A and B
was large, there were some differences between the circle and elliptical domains in terms
of the detour distance. In UAV navigation, the circle domain assumption resulted in
a larger velocity obstacle area and more conservatively adjusted velocities. In contrast,
the elliptic domain occupies less space and lacks the central symmetry of a circle, causing
each deflection to alter the shape of the subsequent velocity obstacle. This alteration affects
the uniformity of tangential velocity changes, thereby eliminating the conservatism of the
circle domain assumption. In Scenario 2, where the proximity between UAVs A and B
was less, the elliptical domain still achieved obstacle avoidance with a decreased detour
distance. Moreover, due to the less demanding computation times, the time consumed
approached that of the circle domain.

To improve the research process in this paper, we plan to explore and solve these
technical problems in the future:

• Custom protection domains for arbitrary flight scenarios

In this paper, we simplified the flight process and reduced the complexity of calculating
parameters such as ellipse distance and projection length by setting a research scenario
where two UAVs collide head-on while simultaneously dodging in the same deflection
velocity direction. This scenario restricts the applicability of the derived ellipse protection
domain sizes to head-on collisions only. For collisions at varying angles, the complexity of
motion and rotation within the elliptic structure may significantly increase. It requires us
to develop a design algorithm that is suitable for more general scenarios and fast enough
for planning.

• The lower limit of the elliptic protection domain

In this paper, the size of the custom elliptic domain was determined based on interval
distance between UAVs A and B, the actual velocity, and the angular velocity. As the
interval distance decreases, the model-derived protection domain may become excessively
small, suggesting the need for a minimum protection domain size based on the actual
physical properties of the UAVs. If the domain size falls below this threshold, the UAVs
may disrupt each other’s flight stability due to airflow interference. Due to the high costs
associated with actual UAV field test flights, this paper had not established a lower limit
for the protection domain, which presents certain limitations.

• Exploring elliptical domain applications in more complex experimental scenarios

This study is limited to the examination of head-on collision risks for drones in a
two-dimensional scenario. The rationale for this foundational assumption is that collisions
between drones flying directly toward each other are deterministic and that their collision
points are easily identifiable. This ensures that critical conditions for avoiding collisions can
be readily derived, facilitating the analysis of the obstacle avoidance flight process using
elliptical domains. It allows for easier consideration of nonlinear velocity adjustments dur-
ing the deflection process of the velocity obstacle method and the resulting endpoint errors
in obstacle avoidance flight positions. In contrast, establishing a quantitative functional
relationship between the size of the elliptical protection domain and the obstacle avoidance
process for drones in arbitrary flight states, such as non-collinear uniform linear motion or
variable speed curve flights, poses significant challenges. Therefore, more complex obstacle
environments, such as multiple static obstacles, drones following arbitrary curved flight
paths, and multiple drones engaged in obstacle avoidance, have not been addressed in
this paper.

Moreover, in real-world flight scenarios for drones, especially those with smaller
geometric dimensions, they are highly susceptible to spatial gusts. When considering
wind factors, the navigation of the drone may need to satisfy various constraints related to
kinematics, dynamics, communication connectivity, and obstacle avoidance. Wind distur-

287

Drones 2024, 8, 397

bances require the planning process to continuously update and generate new trajectories.
Control barrier functions (CBFs) are used to assist in collision avoidance in the face of wind
disturbances while alleviating the need to continually recalculate the motion plans [45].
Additionally, Phadke [46] established a disruption model considering obstacles and wind
factors across multiple scenarios, and its experimental results provide important insights
for assessing whether drones can navigate safely amid environmental disturbances. In this
paper, if external factors such as wind are taken into account, assessing the degree of spatial
positional uncertainty or increased collision risk level due to wind, quantifying it into the
spatial extent of a customized ellipsoidal domain, and superimposing it on an existing
ellipsoidal domain is a research direction that can be explored.

In the future, we plan to further improve and refine the elliptic domain setting al-
gorithm to correlate with the real-time relative positions of the conflicting objects with
respect to the above two problems. In addition, we plan to explore the best obstacle avoid-
ance position eliminating velocity oscillations and verify the superior conflict resolution
performance of the elliptic domains in narrower or crowded multi-UAV situations.

Author Contributions: Conceptualization, Y.W. and Y.L.; methodology, Y.W. and Y.L.; software, Y.W.;
validation, Y.W. and Y.L.; formal analysis, S.Z. and D.Z.; investigation, Y.W.; resources, Y.W. and S.Z.;
data curation, Y.W. and D.Z.; writing—original draft preparation, Y.W.; writing—review and editing,
Y.W.; visualization, Y.W.; supervision, Y.L. and Y.W.; and project administration, Y.L., S.Z. and D.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Key Research and Development Project of Sichuan
Province (No. 2023YFG0163), the China Civil Aviation Safety Capacity Building Fund Project, and
the 2023 Fundamental Research Funds for Universities—Doctoral Innovation Capacity Enhancement
Program (No. PHD2023-038).

Data Availability Statement: The data are contained within this article. The other data will be made
available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this paper:

UAV Unmanned aerial vehicle
VO Velocity obstacles method
EVO Elliptical velocity obstacles method
RVO Reciprocal velocity obstacles method
VO Relative velocity obstacle cone in the circle domain
AVO Absolute velocity obstacle cone in the circle domian
EVO Relative velocity obstacle cone in th elliptic domain
EAVO Absolute velocity obstacle cone in the elliptic domian

Appendix A. Instruction and Analysis

Appendix A.1. Convex Polygons Minkowski Sum methods

Specifically, for a set of points constituted by two convex polygons in a 2D space that
satisfies the property of a convex set, the vectors formed by any two points within the set do
not exceed the boundary of the convex polygons. A related concept is that of Convex hulls.
The intersection S of all convex sets containing the target set X is called the convex hull of
X. S is also the smallest convex set containing X. Simply put, a convex hull is the smallest
convex shape enclosing a set of points. This gives rise to two methods for computing the
Minkowski sum of a convex polygon.
Method 1: For the set of points formed by the boundary points of A and B Pointsm

A, Pointsn
B,

m and n represent the number of elements in the point set, respectively, and the new point
set generated by the corresponding addition contains at most mn elements. The convex
hull of the new point set is the Minkowski sum of A and B. Its complexity is o(mn log mn).

288

Drones 2024, 8, 397

Method 2: For the set of vectors to the boundary of A and B Boundarym
A, Boundaryn

B,
calculating the Minkowski sum of two convex sets is simply a matter of joining and merging
the ‘m + n’ edge vectors after sorting them by their polar angles and then connecting and
merging them in descending order of polar angle size. It can be guaranteed that the
resulting graph is still convex, and the resulting convex hull is the Minkowski sum of A, B.
Its complexity is o((m + n) log mn).

Appendix A.2. VO Space ‘Expanding’ to Twice under Two Identical Circle Domains

In fact, ‘expanding’ B to B̂C is the result of B̂C = A ⊕ B, and the reason for ‘expanding’
to twice the original circle can be proved simply by the following procedure:

Assuming that the center of circle B is the origin and the radius is r, the set of boundary
points of B can be given by the parametric equation PointB = {r cos δB, r sin δB}. Ignoring
the specific location of A, the Minkowski sum imposed on B remains constant, regardless
of where A is located in this coordinate system. In other words, it is only related to the
shape of its boundary, whose boundary points can still be expressed by the parametric
equation PointA = {r cos δA, r sin δA}. Then, based on the Minkowski sum calculation
Method 1, A ⊕ B should be equal to the convex packet of the boundary of PointA + PointB;
i.e., formed by the point farthest from the origin as the boundary, The problem is equivalent
to finding the maximum value of the following function:

L2 = [r(cos δA + cos δB)]
2 + [r(sin δA + sin δB)]

2 = 2r2[1 + cos(δB − δA)] (A1)

It is clear that the above equation obtains its maximum value when δB = δA, showing
that for any boundary point corresponding to δB, the point furthest from the origin is the
point at the same location as it, this distance is exactly 2r. This means that the result of
A ⊕ B is a great circle after doubling the radius of the expansion of B. It also satisfies the
geometrical definition of the concatenation of the region swept by one round of continuous
motion of the set A along the margins of B with the set B itself. At the same time, it is clear
that elliptic domains are not reducible to this forms. Therefore, the Minkowski sum of two
elliptic domains is not simply expandable in the radial direction in general.

Appendix A.3. Descriptions of the Symbols Used in the Text

The following is an explanation of the meanings of some of the symbols, which can
help the reader to understand them.

B̂C Velocity obstacle space imposed by A on B in the circle domian
B̂E Velocity obstacle space imposed by A on B in the elliptic domian
a, b Length of the major and minor semi-axes of the ellipse
τ Arbitrary length time slice
τi Time slice sequence
τreback Time slice for the UAV to return to the endpoint
ϕ Maximum deflection angle of the UAV in one second
Δs UAV flight endpoint error under Assumptions 1 and 2
de UAV flight endpoint error under Assumptions 2 and 3
oτi

A, oτi
B Velocities of UAVs A and B at moment τi

oτi
EAVO Elliptic velocity obstacle tangent direction

di
b Projected distance between the two ellipses in the direction of the minor axis

at τi

References

1. Fu, Q.; Liang, X.; Zhang, J.; Hou, Y. Cooperative conflict detection and resolution for multiple UAVs using two-layer optimization.
Harbin Gongye Daxue Xuebao/J. Harbin Inst. Technol. 2020, 52, 74–83.

2. Sarim, M.; Radmanesh, M.; Dechering, M.; Kumar, M.; Pragada, R.; Cohen, K. Distributed detect-and-avoid for multiple
unmanned aerial vehicles in national air space. J. Dyn. Syst. Meas. Control 2019, 141, 071014. [CrossRef]

289

Drones 2024, 8, 397

3. Sunberg, Z.N.; Kochenderfer, M.J.; Pavone, M. Optimized and trusted collision avoidance for unmanned aerial vehicles using
approximate dynamic programming. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation
(ICRA), Stockholm, Sweden, 16–21 May 2016; IEEE: New York, NY, USA, 2016; pp. 1455–1461.

4. Phung, M.D.; Ha, Q.P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Appl. Soft
Comput. 2021, 107, 107376. [CrossRef]

5. Pehlivanoglu, Y.V.; Pehlivanoglu, P. An enhanced genetic algorithm for path planning of autonomous UAV in target coverage
problems. Appl. Soft Comput. 2021, 112, 107796. [CrossRef]

6. Hao, G.; Lv, Q.; Huang, Z.; Zhao, H.; Chen, W. UAV Path Planning Based on Improved Artificial Potential Field Method. Aerospace
2023, 10, 562. [CrossRef]

7. Liu, Y.; Zhao, Y. A virtual-waypoint based artificial potential field method for UAV path planning. In Proceedings of the 2016
IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, 12–14 August 2016; IEEE: New York, NY,
USA, 2016; pp. 949–953.

8. Pan, Z.; Zhang, C.; Xia, Y.; Xiong, H.; Shao, X. An Improved Artificial Potential Field Method for Path Planning and Formation
Control of the Multi-UAV Systems. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 1129–1133. [CrossRef]

9. Fiorini, P.; Shiller, Z. Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 1998, 17, 760–772.
[CrossRef]

10. Best, A.; Narang, S.; Manocha, D. Real-time reciprocal collision avoidance with elliptical agents. In Proceedings of the 2016 IEEE
International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; IEEE: New York, NY, USA,
2016; pp. 298–305.

11. Guo, H.; Guo, X. Local path planning algorithm for UAV based on improved velocity obstacle method. Hangkong Xuebao/Acta
Aeronaut. et Astronaut. Sin. 2023, 44, 327586.

12. Bi, K.; Wu, M.; Zhang, W.; Wen, X.; Du, K. Modeling and analysis of flight conflict network based on velocity obstacle method. Xi
Tong Gong Cheng Yu Dian Zi Ji Shu/Syst. Eng. Electron. 2021, 43, 2163–2173.

13. Zhang, H.; Gan, X.; Li, A.; Gao, Z.; Xu, X. UAV obstacle avoidance and track recovery strategy based on velocity obstacle method.
Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Syst. Eng. Electron. 2020, 42, 1759–1767.

14. Yang, W.; Wen, X.; Wu, M.; Bi, K.; Yue, L. Three-Dimensional Conflict Resolution Strategy Based on Network Cooperative Game.
Symmetry 2022, 14, 1517. [CrossRef]

15. Peng, M.; Meng, W. Cooperative obstacle avoidance for multiple UAVs using spline_VO method. Sensors 2022, 22, 1947.
[CrossRef]

16. Adouane, L.; Benzerrouk, A.; Martinet, P. Mobile robot navigation in cluttered environment using reactive elliptic trajectories.
IFAC Proc. Vol. 2011, 44, 13801–13806. [CrossRef]

17. Braquet, M.; Bakolas, E. Vector field-based collision avoidance for moving obstacles with time-varying elliptical shape. IFAC-
PapersOnLine 2022, 55, 587–592. [CrossRef]

18. Gérin-Lajoie, M.; Richards, C.L.; McFadyen, B.J. The negotiation of stationary and moving obstructions during walking:
Anticipatory locomotor adaptations and preservation of personal space. Mot. Control 2005, 9, 242–269. [CrossRef]

19. Chraibi, M.; Seyfried, A.; Schadschneider, A. Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 2010,
82, 046111. [CrossRef] [PubMed]

20. Lee, B.H.; Jeon, J.D.; Oh, J.H. Velocity obstacle based local collision avoidance for a holonomic elliptic robot. Auton. Robot. 2017,
41, 1347–1363. [CrossRef]

21. Wang, G.; Liu, M.; Wang, F.; Chen, Y. A novel and elliptical lattice design of flocking control for multi-agent ground vehicles.
IEEE Control Syst. Lett. 2022, 7, 1159–1164. [CrossRef]

22. Du, Z.; Li, W.; Shi, G. Multi-USV Collaborative Obstacle Avoidance Based on Improved Velocity Obstacle Method. ASCE-ASME
J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2024, 10, 04023049. [CrossRef]

23. Mao, S.; Yang, P.; Gao, D.; Bao, C.; Wang, Z. A Motion Planning Method for Unmanned Surface Vehicle Based on Improved RRT
Algorithm. J. Mar. Sci. Eng. 2023, 11, 687. [CrossRef]

24. Singh, Y.; Sharma, S.; Sutton, R.; Hatton, D.; Khan, A. A constrained A* approach towards optimal path planning for an unmanned
surface vehicle in a maritime environment containing dynamic obstacles and ocean currents. Ocean Eng. 2018, 169, 187–201.
[CrossRef]

25. Liu, Y.; Bucknall, R. Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment.
Ocean Eng. 2015, 97, 126–144. [CrossRef]

26. Munasinghe, S.R.; Oh, C.; Lee, J.J.; Khatib, O. Obstacle avoidance using velocity dipole field method. In Proceedings of the
International Conference on Control, Automation, and Systems, ICCAS, Budapest, Hungary, 26–29 June 2005; pp. 1657–1661.

27. Abdallaoui, S.; Aglzim, E.H.; Kribeche, A.; Ikaouassen, H.; Chaibet, A.; Abid, S.E. Dynamic and Static Obstacles Avoidance
Strategies Using Parallel Elliptic Limit-Cycle Approach for Autonomous Robots. In Proceedings of the 2023 11th International
Conference on Control, Mechatronics and Automation (ICCMA), Agder, Norway, 1–3 November 2023; IEEE: New York, NY, USA,
2023; pp. 133–138.

28. Shiller, Z.; Large, F.; Sekhavat, S. Motion planning in dynamic environments: Obstacles moving along arbitrary trajectories.
In Proceedings of the 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), Seoul,
Republic of Korea, 21–26 May 2001; IEEE: New York, NY, USA, 2001; Volume 4, pp. 3716–3721.

290

Drones 2024, 8, 397

29. Large, F.; Laugier, C.; Shiller, Z. Navigation among moving obstacles using the NLVO: Principles and applications to intelligent
vehicles. Auton. Robot. 2005, 19, 159–171. [CrossRef]

30. Chen, P.; Huang, Y.; Mou, J.; Van Gelder, P. Ship collision candidate detection method: A velocity obstacle approach. Ocean Eng.
2018, 170, 186–198. [CrossRef]

31. Chen, P.; Huang, Y.; Papadimitriou, E.; Mou, J.; van Gelder, P. An improved time discretized non-linear velocity obstacle method
for multi-ship encounter detection. Ocean Eng. 2020, 196, 106718. [CrossRef]

32. Van den Berg, J.; Lin, M.; Manocha, D. Reciprocal velocity obstacles for real-time multi-agent navigation. In Proceedings of the
2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; IEEE: New York, NY,
USA, 2008; pp. 1928–1935.

33. Van Den Berg, J.; Guy, S.J.; Lin, M.; Manocha, D. Reciprocal n-body collision avoidance. In Robotics Research: The 14th International
Symposium ISRR; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–19.

34. Han, R.; Chen, S.; Wang, S.; Zhang, Z.; Gao, R.; Hao, Q.; Pan, J. Reinforcement learned distributed multi-robot navigation with
reciprocal velocity obstacle shaped rewards. IEEE Robot. Autom. Lett. 2022, 7, 5896–5903. [CrossRef]

35. Giese, A.; Latypov, D.; Amato, N.M. Reciprocally-rotating velocity obstacles. In Proceedings of the 2014 IEEE International
Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; IEEE: New York, NY, USA, 2014;
pp. 3234–3241.

36. JEON, J.D. A Velocity-Based Local Navigation Approach to Collision Avoidance of Elliptic Robots. Ph.D. Thesis, Seoul National
University, Seoul, Republic of Korea, 2017.

37. Feurtey, F. Simulating the Collision Avoidance Behavior of Pedestrians; The University of Tokyo, School of Engineering, Department
of Electronic Engineering: Tokyo, Japan, 2000.

38. Snape, J.; Van Den Berg, J.; Guy, S.J.; Manocha, D. The hybrid reciprocal velocity obstacle. IEEE Trans. Robot. 2011, 27, 696–706.
[CrossRef]

39. Snape, J.; Van Den Berg, J.; Guy, S.J.; Manocha, D. Independent navigation of multiple mobile robots with hybrid reciprocal
velocity obstacles. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis,
MO, USA, 11–15 October 2009; IEEE: New York, NY, USA, 2009; pp. 5917–5922.

40. Kavraki, L.E. Computation of configuration-space obstacles using the fast Fourier transform. IEEE Trans. Robot. Autom. 1995,
11, 408–413. [CrossRef]

41. Lee, I.K.; Kim, M.S.; Elber, G. Polynomial/rational approximation of Minkowski sum boundary curves. Graph. Model. Image
Process. 1998, 60, 136–165. [CrossRef]

42. Wein, R. Exact and efficient construction of planar Minkowski sums using the convolution method. In European Symposium on
Algorithms; Springer: Berlin/Heidelberg, Germany, 2006; pp. 829–840.

43. Yan, Y.; Chirikjian, G.S. Closed-form characterization of the Minkowski sum and difference of two ellipsoids. Geom. Dedicata
2015, 177, 103–128. [CrossRef]

44. Cheng, Z.; Chen, P.; Mou, J.; Chen, L. Multi-ship Encounter Situation Analysis with the Integration of Elliptical Ship Domains
and Velocity Obstacles. TransNav. Int. J. Mar. Navig. Saf. Od Sea Transp. 2023, 17, 895–902. [CrossRef]

45. Abichandani, P.; Lobo, D.; Muralidharan, M.; Runk, N.; McIntyre, W.; Bucci, D.; Benson, H. Distributed Motion Planning for
Multiple Quadrotors in Presence of Wind Gusts. Drones 2023, 7, 58. [CrossRef]

46. Phadke, A.; Medrano, F.A.; Chu, T.; Sekharan, C.N.; Starek, M.J. Modeling Wind and Obstacle Disturbances for Effective
Performance Observations and Analysis of Resilience in UAV Swarms. Aerospace 2024, 11, 237. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

291

Citation: Shi, D.; Shen, J.; Gao, M.;

Yang, X. A Multi-Waypoint Motion

Planning Framework for Quadrotor

Drones in Cluttered Environments.

Drones 2024, 8, 414. https://doi.org/

10.3390/drones8080414

Academic Editors: Jihong Zhu, Heng

Shi, Zheng Chen and Minchi Kuang

Received: 16 July 2024

Revised: 20 August 2024

Accepted: 21 August 2024

Published: 22 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A Multi-Waypoint Motion Planning Framework for Quadrotor
Drones in Cluttered Environments

Delong Shi *, Jinrong Shen *, Mingsheng Gao and Xiaodong Yang

College of Information Science and Enginnering, Hohai University, Changzhou 213200, China;
gaoms@hhu.edu.cn (M.G.); 221320010019@hhu.edu.cn (X.Y.)
* Correspondence: 221320010014@hhu.edu.cn (D.S.); 19941470@hhu.edu.cn (J.S.)

Abstract: In practical missions, quadrotor drones frequently face the challenge of navigating through
multiple predetermined waypoints in cluttered environments where the sequence of the waypoints
is not specified. This study presents a comprehensive multi-waypoint motion planning framework
for quadrotor drones, comprising multi-waypoint trajectory planning and waypoint sequencing. To
generate a trajectory that follows a specified sequence of waypoints, we integrate uniform B-spline
curves with a bidirectional A* search to produce a safe, kinodynamically feasible initial trajectory.
Subsequently, we model the optimization problem as a quadratically constrained quadratic program
(QCQP) to enhance the trackability of the trajectory. Throughout this process, a replanning strategy is
designed to ensure the traversal of multiple waypoints. To accurately determine the shortest flight
time waypoint sequence, the fast marching (FM) method is utilized to efficiently establish the cost
matrix between waypoints, ensuring consistency with the constraints and objectives of the planning
method. Ant colony optimization (ACO) is then employed to solve this variant of the traveling
salesman problem (TSP), yielding the sequence with the lowest temporal cost. The framework’s
performance was validated in various complex simulated environments, demonstrating its efficacy
as a robust solution for autonomous quadrotor drone navigation.

Keywords: quadrotor drone; trajectory planning; waypoint sequencing

1. Introduction

In real-world scenarios such as inspection, surveying, and monitoring tasks, quadrotor
drones frequently encounter the need to execute complex missions that involve navigat-
ing through multiple waypoints rather than simply targeting a single point. These tasks
demand quadrotor drones to navigate safely through cluttered environments while mini-
mizing travel time, where the sequence of waypoints is often not predetermined. Further-
more, multi-waypoint trajectory planning requires quadrotor drones to consider the spatial
relationships between these waypoints. Navigation algorithms designed for single-goal
navigation may introduce unnecessary path redundancy when applied to multi-waypoint
trajectory planning problems, resulting in a waste of time and energy resources. Therefore,
efficiently determining the optimal sequence for traversing waypoints and subsequently
generating safe trajectories with minimal flight times pose a significant challenge.

Therefore, this paper proposes an advanced quadrotor multi-waypoint motion plan-
ning framework, as illustrated in Figure 1. For the multi-waypoint trajectory planning
problem, we consider the spatial relationships between waypoints and propose a velocity-
adaptive trajectory generation method based on uniform B-spline curves. This method
utilizes the bidirectional A* method to obtain a sequence of B-spline control points, gen-
erating a kinodynamically feasible initial trajectory. Subsequently, we further optimize
the smoothness of the trajectories using quadratically constrained quadratic programming
(QCQP), enhancing trajectory trackability and reducing energy consumption. Finally, dur-
ing the trajectory generation process, we employ a replanning approach to reduce the

Drones 2024, 8, 414. https://doi.org/10.3390/drones8080414 https://www.mdpi.com/journal/drones292

Drones 2024, 8, 414

number of control point variables solved by QCQP, thus improving numerical stability
and algorithm real-time performance. To determine the waypoint sequence in this variant
of the traveling salesman problem (TSP), we employ a combination of the fast marching
(FM) method and ant colony optimization (ACO). First, we compute the velocity map
while adhering to the constraints of the proposed planning method. Then, we utilize FM to
establish a time cost matrix between every pair of waypoints in the TSP problem. Finally,
ACO is utilized to find the waypoint sequence with the lowest time cost.

Global Map
and

Waypoint
Generation

Bidirectional A*

Quintic B-spline

Optimization of
Control Points

Based on QCQP

Front-end Initial Trajectory

+

Back-end Trajectory Optimization

Flight Controller
Desired Trajectory

Quadrotor
Command

Replanning
Strategy

 Cost Matrix
Based on FM

Solving TSP
Problem Using

ACS

Waypoint Sequencing

 Cost
 Matrix

Multi-Waypoint Trajectory Planning

Waypoint
Sequence

Multi-Waypoint Motion Planning Framework

Figure 1. Quadrotor drone multi-waypoint motion planning framework.

We summarize our contributions as follows:

• We design a multi-waypoint trajectory planning method. We refine the bidirectional
A* method with kinodynamic constraints, framing trajectory generation as a B-spline
control point placement problem to achieve initial kinodynamically feasible trajecto-
ries, and QCQP is used to optimize the coordinates of the control points. During this
process, the MINVO-based generation of the minimum convex hull of B-spline curves
is employed to enlarge the solution space and avoid overly conservative trajectories.

• We design a method for determining waypoint sequences. While maintaining consis-
tency with the objectives and constraints of multi-waypoint trajectory planning, we
utilize the FM method to establish a cost matrix. ACO is then applied to solve this
variant of TSP, yielding the waypoint sequence with the shortest time.

• We propose a multi-waypoint motion planning framework incorporating the afore-
mentioned two components. We validate the effectiveness of our proposed method
and this framework through extensive simulation experiments.

This paper is structured as follows. Section 2 reviews the related work. Section 3
introduces the proposed trajectory planning method, while Section 4 presents the proposed
waypoint sequencing method. Section 5 presents the experimental results, followed by the
discussion in Section 6 and conclusions in Section 7.

2. Related Works

Due to the differential flatness of quadrotor drones, their entire state can be repre-
sented by four flat outputs, with the most widely used being 3D position and yaw angle.
The trajectory generation problem for quadrotors is also transformed into a problem of
generating time-parameterized curves [1].

In the realm of quadrotor trajectory planning, a hierarchical planning framework
is commonly utilized, which involves front-end path searching and back-end trajectory
generation. The front-end search comprises search-based and sampling-based methods.
Among the search-based approaches, A* [2] and its variations are extensively studied, while
popular sampling-based techniques include RRT [3] and PRM [4]. However, these methods
typically generate piecewise-linear paths, rendering them unsuitable for direct execution by

293

Drones 2024, 8, 414

quadrotor controllers. Consequently, back-end trajectory generation is essential to convert
them into time-parameterized curves, such as polynomial curves [5], Bezier curves [6], and
B-spline curves [7,8].

However, classical front-end path searching methods focus solely on obstacle avoid-
ance, disregarding the dynamic characteristics of quadrotors. Consequently, the initial
paths obtained from front-end path searching may not belong to the same homotopy class
as the optimal trajectory in practice. In some cases, they may even fail to produce dynam-
ically feasible trajectories through back-end trajectory generation, resulting in planning
failures. Therefore, some scholars integrate the dynamic properties of quadrotors into the
front-end path searching process. Reference [9] proposed a kinodynamic search method
based on motion primitives, representing the motion dynamic constraints of quadrotors as
motion primitives. Then, a graph search method similar to A* was employed to generate a
kinodynamically feasible, continuous, and safe trajectory. Reference [7] introduced a search
method considering motion dynamics based on the hybrid-state A* algorithm. After gener-
ating dynamically feasible initial trajectories, B-spline curves were used to fit and optimize
the initial trajectories, further enhancing trajectory smoothness and safety. Reference [8]
considered dynamical feasibility using the A* algorithm. By combining B-spline curves,
the trajectory generation problem is transformed into a problem of placing B-spline control
points. After generating a feasible sequence of control points, QCQP is used to optimize
the positions of control points further, thereby improving trajectory smoothness.

Nevertheless, most trajectory planning algorithms are designed for single-goal navi-
gation problems, with fewer algorithms tailored explicitly for multi-waypoint trajectory
planning. Compared to single-goal problems, multi-waypoint problems must consider the
spatial relationships between different waypoints to generate efficient trajectories. Refer-
ence [10] applied B-spline curves to trajectory generation involving multiple waypoints,
resulting in shorter and smoother trajectories. However, its flight corridor is predefined and
relatively narrow, suitable only for scenarios without obstacles between waypoints. Refer-
ence [11] considered the complete quadrotor flight model and proposed an optimization-
based multi-waypoint trajectory generation method, aiming to obtain the optimal trajectory
in terms of time. However, it did not account for the influence of obstacles. Reference [12]
also considered the complete quadrotor model and adopted a hierarchical optimization
approach. It first used a variant of PRM to obtain homotopy classes of paths, then guided
the trajectory planning of the point-mass model using these homotopy classes, finally using
the SST algorithm to plan multi-waypoint trajectories using the complete quadrotor model.
Although this method considered obstacles, it suffered from the drawback of excessive
computation times, making it unsuitable for real-time planning.

For the problem of finding the optimal waypoint sequence in terms of time, scholars
have regarded it as a variant of the traveling salesman problem (TSP) [13–16]. Refer-
ence [13] addressed the problem of determining the sequence of multiple target points for
autonomous underwater vehicles (AUVs) in complex underwater environments. Based on
the A* algorithm, it utilized a path planning method combining coarse-grained modeling
and fine-grained modeling to establish a cost matrix and solved the TSP problem using
ACO to obtain the shortest path sequence of waypoints. Reference [14] proposed a method
combining the adaptive weighted PRM (AWPRM) and the best ant colony system (BACS)
to solve the problem of multi-quadrotor waypoint assignment and sequence determination.
It used the Dubins method to construct the shortest obstacle-avoiding paths with turn
radius constraints but did not consider additional quadrotor dynamic constraints. Both
methods aim to minimize distance. Hence, the waypoint sequences obtained may not
necessarily be the time-optimal solution after back-end trajectory generation. Reference [15]
proposed a solution for the shortest time in multi-region quadrotor surveillance problems,
but it required quadrotor drones to fly at maximum speed between multiple regions, which
is unrealistic, as it did not consider the dynamic characteristics of quadrotors. The fast
marching (FM) method is also employed to calculate the distance costs between multiple
task points, which are then optimized using a genetic algorithm (GA) [16]. However, since

294

Drones 2024, 8, 414

they do not account for the robot’s dynamic characteristics when creating the speed map, it
only determines the shortest distance sequence of task points using FM and GA, which
does not correspond to the objective of minimizing time in practical tasks. Therefore, to
achieve the shortest time waypoint sequence, it is essential to maintain consistency between
the constraints of the waypoint sequencing method and the trajectory planning method.
This consistency allows for the establishment of a cost matrix that more accurately reflects
actual flight times, thereby yielding a more optimal solution.

3. B-Spline-Based Bidirectional A* Trajectory Planning

This paper proposes a hierarchical multi-waypoint trajectory planning method for a
given sequence of waypoints. The method comprises a front-end search integrating bidirec-
tional A* and B-spline curves and back-end optimization using quadratically constrained
quadratic programming (QCQP). The front-end search transforms the initial trajectory
generation problem into a B-spline control point placement problem. By integrating motion
dynamic constraints, an improved bidirectional A* algorithm is employed to obtain a
sequence of control points that meet the requirements. Consequently, a safe initial trajectory
that satisfies the motion dynamic constraints is generated. In the back-end optimization,
QCQP is employed to further optimize the positions of the control points, resulting in
smoother and more energy-efficient trajectories. Finally, in response to the challenge of
optimizing a large number of waypoints, a replanning strategy is utilized to improve the
real-time performance of trajectory planning and the numerical stability of QCQP.

3.1. B-Spline Curves

B-spline curves are piecewise polynomial curves. For a B-spline curve of degree k, it
is determined by a knot vector [t0, t1 · · · tn+k+1] and control points [q0, q1 · · · qn] together.
The computation method is as follows:

x(t) =
n

∑
i=0

qiBi,k(t) (1)

Bi,0(t) =
{

1, ti ≤ t < ti+1
0, otherwise

(2)

Bi,k(t) =
t − ti

ti+k − ti
Bi,k−1(t) +

ti+k+1 − t
ti+k+1 − ti+1

Bi+1,k−1(t) (3)

where t ∈ [ti, ti+1) is the interval when the basis function Bi,k(t) is nonzero. This indicates
that the B-spline curve in t ∈ [ti, ti+1) is solely determined by the local k + 1 control points
[qi, qi+1 · · · qi+k]. This property is known as the local control characteristic of B-spline
curves, and the B-spline curve in t ∈ [ti, ti+1) lies entirely within the convex hull formed by
[qi, qi+1 · · · qi+k].

Figure 2 shows where the local quintic B-spline trajectory (red curve) lies within the
convex hull formed by six local control points (cyan–blue area). Additionally, B-spline
curves also possess derivative properties, meaning the derivative of a B-spline curve
remains a B-spline curve.

The unique properties of B-spline curves confer distinct advantages in obstacle avoid-
ance and dynamic constraints. Regarding obstacle avoidance, the convex hull property of
B-spline curves ensures that the convex hull formed by control points satisfies the obstacle
avoidance constraints when located in obstacle-free regions. Dynamic constraints are typi-
cally defined by the maximum values of the quadrotor drone’s velocity and acceleration,
denoted as vmax and amax, respectively. Leveraging the derivative characteristics, low-order
B-spline curves (velocity and acceleration curves) are derived. Subsequently, by utilizing
the convex hull property, control points vi and ai of the velocity and acceleration curves are
constrained not to exceed their maximum values, thereby ensuring dynamic feasibility.

295

Drones 2024, 8, 414

Figure 2. Trajectory represented by a uniform quintic B-spline.

Due to the significant influence of the intermediate two B-spline control points on the
local curve, for a quintic B-spline curve, the local control points Qi = [qi, qi+1 · · · qi+5]

�
generate the i-th segment trajectory near the line connecting qi+2 and qi+3. It provides
favorable conditions for using A* search: ensuring that the line connecting qi+2 and qi+3
does not intersect with obstacles, it can be approximately assumed that the i-th segment
B-spline curve will not collide with obstacles [8].

However, in practical applications, the convex hull formed by the control points of
the B-spline curve does not tightly enclose the local segments of the curve. Consequently,
requiring the convex hull to be within the feasible region will result in conservative trajec-
tories. Therefore, we use control points generated by the MINVO basis [17] to replace the
B-spline control points, minimizing the volume of the convex hull and producing more
aggressive trajectories.

As shown in Figure 3, it can be observed that compared to the local B-spline control
points Qbs, the convex hull formed by the MINVO control points Qmv can more tightly
envelop the local B-spline curve. Therefore, in the process of verifying dynamic feasibility,
we use Qmv instead of Qbs for feasibility checks. These two can be converted into each
other through matrix operations:

Figure 3. Comparison between MINVO and B-spline convex hull.

296

Drones 2024, 8, 414

p(s(t)) = s(t)�Mbs6Qbs = s(t)�Mmv6Qmv (4)

Qmv = (Mmv6)
−1Mbs6Qbs (5)

where Mbs6 represents the constant basis matrix for a quintic B-spline curve [18], and Mmv6
denotes the corresponding MINVO basis matrix [17].

3.2. B-Spline-Based Bidirectional A* Search

The A* algorithm is a classic heuristic search algorithm that is widely used for finding
the shortest path from a starting point to a target point. It combines the benefits of heuristic
search and cost functions to efficiently find the shortest path. When using an appropriate
heuristic function, A* can guarantee finding the optimal solution from the start point to the
end point. Additionally, A* is flexible and can adjust the heuristic function according to
different environments and constraints, making it suitable for various application scenarios.
However, A* applies to discrete paths and cannot be directly applied to generate continuous
trajectories. The core of the A* algorithm lies in the cost function:

f (n) = g(n) + h(n) (6)

where n represents the current node, g(n) denotes the actual cost from the start point to the
current point, and h(n) is the estimated cost from the current point to the target point. In
shortest distance problems, distance is typically used to measure cost. Commonly used
estimates for h(n) include Euclidean distance, Manhattan distance, and diagonal distance.
To ensure that the estimated distance is closer to the actual distance while balancing search
efficiency and optimality, h(n) generally employs diagonal distance.

Most current research utilizes discrete path planning algorithms like A* to generate
safe initial paths. Subsequently, typical waypoints are selected from these paths, and con-
tinuous trajectories are generated using spline interpolation or other smoothing algorithms.
However, because the initial paths do not consider dynamic feasibility, and subsequent
trajectory smoothing may encounter time allocation issues, these trajectories are often
not optimal. Therefore, we employ a dynamic-aware search method. Instead of specific
path points, we treat the expanded nodes in the search process as control points of the
B-spline curve. During node expansion, we consider safety and dynamic feasibility when
choosing the expansion step size, thus avoiding issues with time allocation. By leveraging
the local control characteristics of B-spline curves to compute the smoothness cost of local
curves, we incorporate the smoothness cost into the heuristic function, thereby generating
time-parametrized trajectories that satisfy both avoidance and dynamic constraints, as
shown in Figure 4.

Due to the additional computational overhead introduced by dynamic feasibility
checks, adaptive step size expansion, and the smoothness cost in the cost function of
this search method, the search time is significantly increased. Therefore, we adopt a
bidirectional search method [19] to improve the search speed. The bidirectional A* method
essentially creates and expands two search trees from the initial and goal states. The
starting nodes target the goal nodes, while the goal nodes target the starting nodes. The
complete search path is generated when the nodes expanded by the two search trees meet.
By simultaneously expanding two search trees, the depth of search for each tree decreases,
reducing the number of expanded nodes and decreasing the search time.

We adopt uniform quintic B-spline curves, with waypoints set as {w0, w1, · · · , wm−1}.
Algorithm 1 is the B-spline-based bidirectional A* (BA*-BS) search method used to obtain
the kinodynamically feasible initial trajectory between wj and wj+1. The initial and terminal
nodes in the algorithm are determined by ComputeStartNode() and ComputeEndNode(),
respectively. Expand() alternately extends the forward and backward search trees, while
Checkdynamic() is used to determine if the newly expanded nodes satisfy dynamic feasibil-
ity. Cost() and HeuristicCost() are employed to compute the actual cost and heuristic cost
of the newly expanded nodes, respectively. Lines 9–18 determine whether the bidirectional

297

Drones 2024, 8, 414

search is terminated. Taking the forward search as an example, Near() obtains a set I of
nodes from the reverse Closee whose distance from pcur is less than vmax · Δt. Lines 11–13
find the nodes in I that satisfy the obstacle avoidance requirements, forming the set Cand.e,
which is then sorted based on distance from pcur. Retrivepath() is used to backtrack the
control point list, and Evaluatetraj() is employed to determine if the returned control point
sequence satisfies dynamic feasibility. Finally, based on the returned control point sequence,
a trajectory satisfying both obstacle avoidance and dynamic feasibility requirements is
generated, combined with the node list of the uniform B-spline.

Algorithm 1: BA*-BS Search Method
Input: state(wj), wj+1, wj+2, Δt
Output: CPS = {cp0, cp1, · · · , cpn}�

1 pstart ← ComputeStartNode(state(wj));
2 pend, pend1, pend2 ← ComputeEndNode(wj, wj+1, wj+2, Δt);
3 Opens ← Closes ← Opene ← Closee ← ∅;
4 Add(Opens, pstart, 0),Add(Opene, pstart, 0),i ← 0;
5 while Size(Opens) ∪ Size(Opene) do

6 if i mod 2 = 0 then // Forward search
7 pcur ← PopMin(Opens),Add(Closes, pcur);
8 I ← Near(pcur, Closee);
9 if I 	= ∅ then

10 Cand.e ← ∅;
11 for pi in I do

12 if (pi − pcur).norm() ≤ min{desd f (pi), desd f (pcur)} then

13 Add(Cand.e, pi, (pi − pcur).norm());

14 while Size(Cand.e) 	= 0 do

15 pe ← Pop(Cand.e);
16 CPS ← Retrivepath(pcur, pe);
17 if Evaluatetraj(cps) = true then

18 return CPS;

19 for pnbr in Expand(pcur) do

20 if pnbr /∈ Closes then

21 LocalCPs ← Retrive6(pcur);
22 if Checkdynamic(LocalCPs) = true then

23 costnow ← Cost(pcur) + CostSmmoth(LocalCPs) + Δt;
24 if pnbr ∈ Opens then

25 if costnow < Cost(pnbr) then

26 Update(pnbr, costnow + HeuristicCost(pnbr));

27 else

28 Add(Opens, pnbr, costnow + HeuristicCost(pnbr));

29 else

30 . . . // Backward search

298

Drones 2024, 8, 414

(a) Initial trajectory (b) Optimized trajectory

Figure 4. Illustration of trajectory generation for three waypoints (green dots). As in (a), the sequence
of control points (blue dots) is obtained using the BA*-BS search method, and the initial trajectory (red
curve) is generated. In (b), the position of the control points is optimized using QCQP to generate the
final trajectory.

3.2.1. Initial Node and Terminal Node

To ensure continuous state tracking of the quadrotor drone during flight, we deter-
mine the initial node pstart based on the quadrotor’s initial flight state (position and its
higher-order derivatives) at waypoint wj, represented as state = [p, p′, p′′, p′′′, p′′′′]. The
calculation of the initial node is implemented by the ComputeStartNode():

p(s(t)) = s(t)�Mbs6Qj

s(t) =
[
1 s(t) s2(t) · · · s5(t)

]�
Qj =

[
qj−5 qj−4 qj−3 · · · qj

]� (7)

where p represents the position of the B-spline curve, with t ∈ [tj, tj+1], s(t) = (t − tj)/Δt,
where Δt is the uniform B-spline time interval, Q denotes the B-spline control points,
and Mbs6 is the quintic B-spline basis matrix. At the initial moment s(t) = 0, we use
state = [p, p′, p′′, p′′′, p′′′′] as the five constraints to solve (7), resulting in [q0, q1, q2, q3, q4]

�.
The coordinate of pstart is set to q4.

Since our method considers the trajectory planning of multiple waypoints, the terminal
node selection needs to consider the positional relationships between multiple waypoints.
Similar to the initial node, which needs to be calculated based on the flight state, the terminal
node must also be determined based on the predetermined terminal flight state. Given
that our planning objectives include flight time and smoothness, the flight time would
significantly increase if the quadrotor were to hover (with zero higher-order derivatives
such as speed and acceleration) at every waypoint. Therefore, we need to design the flight
state of the quadrotor at waypoint wj+1. We consider the positional relationships of the
initial waypoint wj, the terminal waypoint wj+1, and the next waypoint wj+2, and we set
the velocity of the quadrotor at wj+1 as vj+1:

vj+1 =

{
ujdj+1 + uj+1dj

dj + dj+1

}
· vmax · scale (8)

scale = tanh(
min(dj, dj+1)

vmax · α
) (9)

where uj is the normalized vector of −−→wjwj, and dj is the Euclidean distance between wj
and wj+1. α is the scaling factor used to adjust the influence of waypoint spacing on v. {x}
denotes normalization of x. The principles for calculating vj+1 are as follows:

299

Drones 2024, 8, 414

1. Waypoints closer to the wj+1 have a greater impact on vj+1.
2. Make sure that vj+1 does not exceed vmax. Its magnitude is determined by the

minimum distance between wj+1 and the adjacent waypoints.

Although the preceding steps set the heuristic velocity vj+1 at waypoint wj+1, during
the actual execution of the algorithm, substituting vj+1 into (7) to solve for the remaining
control points may result in significant deviation of the control points from the current
trajectory. Therefore, to enhance the robustness of the algorithm and maintain high-order
continuity of the trajectory, we employ a safer approach ComputeEndNode() to set the
terminal node pend and subsequent nodes:⎧⎪⎪⎨⎪⎪⎩

pend = wj+1 − vj+1 · Δt

pend1 = wj+1

pend2 = wj+1 + vj+1 · Δt

(10)

if pend or pend2 fall within obstacles, we employ a gradient ascent method based on the
Euclidean signed distance field (ESDF) to ensure that pend, pend1, and pend2 are all located
in obstacle-free regions. Here, pend serves as the terminal node during the search and
is also the starting node for the backward search in the bidirectional search. When the
bidirectional search is completed, pend1 and pend2 are sequentially added as control points
to the end of the control point sequence, and termination is determined.

As the position of the local B-spline trajectory formed by [qi, qi+1, qi+2, qi+3, qi+4, qi+5]
�

lies near the line connecting qi+2 and qi+3, the endpoint of the trajectory obtained by the
search is around pend, while the position of the waypoint is pend1. Therefore, we need an
additional control point to ensure that the endpoint of this segment of the trajectory is
at pend1. In fact, due to the adoption of the replanning method (Section 3.4), we set the
coordinates of the last control point pend3 of this trajectory segment based on the first control
point returned by the next search.

3.2.2. Adaptive Expansion

Similar to the traditional A* algorithm, the improved A* algorithm also searches for the
next expansion node based on 26 directions from the current node (in 3D space). However,
the traditional A* algorithm may encounter situations where it comes too close to obstacles
due to its fixed expansion step size. Therefore, for environments that are densely populated
with obstacles, we adopt an adaptive expansion step size Expand(), where the step size is
smaller when closer to obstacles and larger when farther away, as shown in Figure 5.

(a) 2D Expansion strategy (b) Step function

Figure 5. Illustration of non-uniform expansion. In (a), the blue dot represents the current node,
while the green dots represent the neighbor nodes. The step function is shown in (b).

Based on the fixed time interval of the uniform B-spline curve, the quadrotor drone
flies at a higher speed when farther away from the obstacles and gradually slows down as

300

Drones 2024, 8, 414

the distance from the obstacles decreases, thereby enhancing the safety of the trajectory.
The step function is as follows:

step(desd f) =

⎧⎪⎨⎪⎩
0, desd f � ruav

desd f − ruav, ruav < desd f � ruav + vmax · Δt
vmax · Δt, desd f � ruav + vmax · Δt

(11)

where step(desd f) represents the expansion step size, ruav denotes the radius of the quadro-
tor drone, and desd f stands for the distance between the current node and the nearest
obstacle, obtained from the ESDF.

3.2.3. Cost Function

In contrast to the traditional A* algorithm (6),the cost function is defined as follows:

g(pcur) = g(pcur.parent) + Δt + βsmooth · costsmmoth(pcur) (12)

h(pcur) = ddiag(pcur, pend)/(vmax/η) (13)

where g(pcur) and h(pcur) denote the actual cost and estimated cost of the current node pcur,
respectively, corresponding to the Cost() and HeuristicCost(). g(pcur) consists of two parts:
the time cost n ·Δt, and the smoothness cost βsmooth · costsmmoth. The time cost represents the
actual time required from pstart to pcur. As the smoothness and energy cost of the trajectory
can be represented by the square integral of the trajectory derivatives, the smoothness cost
is the cumulative

∫
jerk2 dt from pstart to pcur, where jerk is third-order derivative of the

trajectory d3 p(t)
dt3 . h(pcur) estimates the time from pcur to pend. ddiag(pcur, pend) represents the

diagonal distance from pcur to pend. Since the quadrotor cannot continuously fly at vmax,
we use a scaling factor η to avoid underestimating the flight time, typically set to 1–2.

3.2.4. Dynamic Feasibility Checking

The traditional A* algorithm only determines that a node is infeasible when the
expansion reaches inside obstacles, whereas our modified A* algorithm considers dynamic
constraints. When expanding a node pnbr, if adding this node to the control point list would
cause the velocity or acceleration to exceed the maximum values vmax, amax, then the node
is considered infeasible.

The judging method is as follows: first, Retrieve6() backtracks 5 control points to
obtain the local control point list [qpnbr−5 , qpnbr−4 , . . . , qpnbr]

�. Then, the control points of its
velocity and acceleration curves are calculated:

vi =
qi+1 − qi

Δt
, ai =

vi+1 − vi
Δt

(14)

Due to the excessive volume of the convex hull formed by the B-spline control points,
we utilize a method similar to (5) to transform them into control points under the MINVO
basis, denoted as vmvi and amvi . If the local vmvi and amvi do not exceed vmax and amax,
respectively, the new node pnbr is deemed to satisfy the dynamic constraints.

Through the aforementioned steps, the improved A* algorithm considering dynamics
can generate a list of B-spline control points that form an efficient time-parameterized
trajectory satisfying dynamic constraints and avoiding collisions with obstacles.

3.3. QCQP Optimization

Although we have generated a safe trajectory satisfying dynamic constraints using
the BA*-BS algorithm, there is still significant room for improvement in its smoothness.
We employ quadratic constraint quadratic programming (QCQP) to further optimize
the coordinates of the B-spline control points, thereby enhancing trajectory trackability.

301

Drones 2024, 8, 414

First, we optimize a segment of the trajectory between two waypoints. For the trajectory
between wj and wj+1, the initial control points obtained through the search are denoted as
CPS = [cp0, cp1, · · · , cpn]�.

(1) Objective function:

f =
n−5

∑
i=0

∫ ti+1

ti

(
d3(p(t))

dt3

)2

dt =
n−5

∑
i=0

Trace
(

QiM
�
bs6HMbs6Qi

)
(15)

The objective is to minimize
∫

jerk2dt, where p(t) represents the B-spline trajectory, and
Qi = [qi, qi+1, . . . , qi+5]

�. H is a constant matrix related to Δt.

(2) Dynamic feasibility constraints:

abs
(

Mmv5
−1Mbs5D1Qi

)
� Vmax, (i = 1, 2, . . . , n − 5)

abs
(

Mmv4
−1Mbs4D2Qi

)
� Amax, (i = 1, 2, . . . , n − 5)

(16)

where D1 and D2 are the first-order and second-order derivative matrices, respectively.
The transformation from B-spline control points to MINVO control points, as achieved
through (16), constrains velocity and acceleration within feasible ranges.

(3) Boundary constraints:

The initial and final states need to be constrained to ensure the continuity of the
trajectory, where the initial state consists of the positions of the first five control points and
the final state is constrained by position and velocity:

qi = cpi, (i = 0, 1, · · · , 4) (17)

1
120

(
1 26 66 26 1
−5 −50 0 50 5

)⎛⎜⎜⎜⎜⎝
qn−4
qn−3
qn−2
qn−1

qn

⎞⎟⎟⎟⎟⎠ =

(
wj+1
vj+1

)
(18)

Equation (17) imposes constraints on the initial state, while (18) imposes the terminal posi-
tion and velocity constraints. [qk−4, qk−3, · · · , qk] denotes the corresponding control points,
ensuring that the position and velocity trajectories pass through wj and vj, respectively,
while maintaining the continuity of motion.

(4) Safety constraints:

For a quintic uniform B-spline, the i-th segment is entirely determined by the six
control points: [qi, qi+1, qi+2, qi+3, qi+4, qi+5]. Due to the significant influence of qi+2
and qi+3 on the trajectory, the line segment connecting qi+2 and qi+3 can be approxi-
mated as the i-th segment of the B-spline trajectory. Therefore, we can constrain the
i-th segment of the B-spline trajectory within a sphere centered at (qi+2 + qi+3)/2 with
a radius of desd f ((qi+2 + qi+3)/2), as shown in Figure 6. According to the conclusion of
Section 3.1, we transform the local B-spline control points into local MINVO control points[

qmvi0
, qmvi1

, . . . , qmvi5

]
using (5).∥∥∥qmvij
− cti

∥∥∥
2
� ri, (i = 2, 3, . . . , n − 3; j = 0, 1, . . . , 5) (19)

The center of the sphere cti = (cpi+2 + cpi+3)/2 is obtained from the initial control points,
and ri = desd f (cti) represents the distance from cti to the nearest obstacle. Since the first
five control points are determined by the initial state, i starts from 2.

302

Drones 2024, 8, 414

Figure 6. Illustration of collision-free balls (yellow circle) and control points (blue dots). The red
circles represent the centers, and the black regions indicate obstacles.

After obtaining all the constraints for trajectory optimization, we express waypoint
constraints as linear equality constraints (Aeqq = beq), dynamic feasibility constraints as lin-
ear inequality constraints (Aieq ≤ bie), and avoidance constraints as quadratic constraints
(q�Qqcq + Aqcq ≤ bqc). Thus, the trajectory optimization can be reformulated as follows:

min qTQoq

s.t. Aeqq = beq,

Aieq ≤ bie,

q�Qqcq + Aqcq ≤ bqc,

qi ∈ Ωi, i = 0, 1, 2, . . . , n.

(20)

where Ωi denotes the feasible domain of the variable qi to be optimized. Solving this
problem yields the optimized B-spline control points.

3.4. Replanning Strategy

Based on receding horizon control (RHC) [20], we designed a replanning method to
improve the real-time performance while avoiding degradation of QCQP numerical stability
due to excessive control point variables. For the waypoint sequence {w0, w1, . . . , wm−1},
we search and optimize the trajectories between three consecutive waypoints wj, wj+1, wj+2,
j ∈ 0, 1, . . . , m − 3, at each iteration. To ensure that the trajectory passes through wj+1, we
add intermediate waypoint constraints to the QCQP and modify (18) as follows:

1
120

(
1 26 66 26 1

)
⎛⎜⎜⎜⎜⎝

qk−4
qk−3
qk−2
qk−1

qk

⎞⎟⎟⎟⎟⎠ =
(
wj+1

)
(21)

1
120

(
1 26 66 26 1
−5 −50 0 50 5

)⎛⎜⎜⎜⎜⎝
qn−4
qn−3
qn−2
qn−1

qn

⎞⎟⎟⎟⎟⎠ =

(
wj+2
vj+2

)
(22)

The control points [qk−4, qk−3, . . . , qk] correspond to the local b-spline curve that terminates
at wj+1. After optimizing the trajectories between these three consecutive waypoints, we

303

Drones 2024, 8, 414

retain only the segment of the trajectory from wj to wj+1, and we use the last five control
points of this segment [qk−4, qk−3, . . . , qk] as the initial state for planning the trajectories
under the subsequent three waypoints wj+1, wj+2, wj+3. Compared to initializing and
optimizing the trajectories for all waypoints at once, this local replanning strategy can
enhance the real-time performance and robustness of the proposed method.

4. FM-ACO Waypoint Sequencing

We consider the problem of optimizing the traversal sequence of multiple waypoints
with the requirement of the shortest flight time as a variant of the traveling salesman
problem (TSP). The TSP is a classical combinatorial optimization problem, aiming to find
a path where a traveler can visit each city exactly once, then return to the starting city
while minimizing the total travel cost. The solution to the TSP problem mainly involves
two parts: constructing a cost matrix between every pair of cities and selecting a solution
method. The difference in solution methods lies their ability to find the minimum-cost
solution in a given cost matrix in a shorter time. Additionally, efficiently constructing a
cost matrix that better reflects the actual problem is a more critical part of determining the
optimal sequence of waypoints in this variant TSP problem.

For environments containing obstacles or threat zones, scholars mainly adopt two
approaches. One still utilizes Euclidean distance to represent travel cost, but it incurs
additional travel costs when the line connecting two points intersects with obstacles. This
method is heavily influenced by parameters and cannot guarantee the existence of a
feasible path between two points. The other approach involves using methods such as A*
to generate the shortest discrete path between each pair of waypoints [13], which is then
considered as the travel cost. This method also does not consider the dynamic constraints
of the quadrotor, leading to potentially infeasible shortest discrete paths and the issue
that the shortest path may not be equivalent to the shortest flight time. Moreover, the
computational cost required for m waypoints, denoted as C2

m = m(m − 1)/2, indicates that
the computational cost will exhibit a quadratic increase with the increase in the number
of waypoints.

To address these issues, we model the travel cost between two points using the fast
marching (FM) method, transforming the shortest path problem into a variant of the TSP
aiming at minimizing flight time. We then utilize ant colony optimization (ACO) to solve
the problem, thereby obtaining the optimal sequence of waypoints.

4.1. FM-Constructed Cost Matrix

The fast marching (FM) method [21] is a special case of level set methods, which are
numerical techniques used to simulate wavefront propagation. The FM method finds wide
applications in fields such as image processing, curve evolution, fluid simulation, and
path planning. It simulates the propagation of wavefronts by assuming that the wavefront
propagates with a speed f along its normal direction. It computes the time at which the
wavefront first reaches a target point, which represents the shortest time for the wavefront
to travel from the starting point to the target point. Assuming a propagation speed f > 0,
indicating that the wavefront only expands outward, and that f is constant over time and
only depends on the spatial position, the evolution of the wavefront is described by the
following equation:

|∇T(x)| = 1
f (x)

(23)

where T is a function representing the arrival time, x denotes the position, and f (x)
describes the speed at x.

In order to apply the FM method to trajectory planning problems, we need to predefine
a velocity map, assigning a speed value f (x) to each grid position in the map. Then, we
utilize (23) to simulate the wave expanding from the starting point, thus obtaining the
arrival time T(x) for each point on the map. By backtracking along the gradient descent
direction of the arrival time from the target point to the starting point, we obtain a path with

304

Drones 2024, 8, 414

the minimum arrival time. Unlike other potential field-based methods, the FM method
avoids local minima and possesses completeness and consistency [22].

In theory, it has the same time complexity as A*, which is O(N log(N)). However,
since our goal is to obtain the flight cost between each pair of waypoints, there is no need
for path backtracking, and the number of computations required is also fewer. For example,
for the m waypoints {w0, w1, · · · , wm−1}, we use FM with w0 as the starting point. By
expanding the wavefront once, we obtain the flight time from w0 to w1, w2, · · · , wm−1. It
effectively reduces redundant computations, thereby significantly lowering the time cost.

In order to ensure consistency with the planning method, FM uses the same velocity
constraints as our trajectory planning method. When defining the velocity map, we main-
tain consistency with the adaptive expansion step (11) of the trajectory planning method:

f (desd f) =

⎧⎪⎪⎨⎪⎪⎩
0, desd f ≤ ruav
desd f −ruav

Δt , ruav < desd f ≤ ruav + vmax · Δt
vmax, desd f ≥ ruav + vmax · Δt

(24)

where desd f represents the distance from the current position to the nearest obstacle, Δt
is the time interval set for the quintic uniform B-spline curve in trajectory planning, and
f (desd f) denotes the velocity at the current position. It is consistent with the calculation
method in (11), where step(d) represents the step size for one expansion within Δt time.

In addition to the flight time cost between two waypoints, there is also a turning time
cost between two segments of the trajectory. For the three waypoints wj−1, wj, wj+1, the
quadrotor drone often requires some additional time to reduce speed or extend the trajectory
in order to adjust its heading while flying from wj−1 to wj. Considering the extreme case
where the direction of −−−−→wj−1wj is opposite to −−−−→wjwj+1, the additional time consumed by
the quadrotor drone for decelerating to zero velocity at maximum acceleration and then
accelerating back to maximum velocity is vmax/amax. Hence, we define the turning time
cost Tθ as follows:

Tθ(j) =
1 − arccos(θj)

2
· vmax

amax
, θj ∈ [0, π] (25)

where θj is the angle between−−−−→wj−1wj and −−−−→wjwj+1. Therefore, for {w0, w1, · · · , wm−1}, the
total flight time cost is:

Tsum =
m−1

∑
j=1

TD(j) +
m−2

∑
j=1

Tθ(j) (26)

where TD(j) is the flight time cost from wj−1 to wj calculated by FM.
Compared to methods such as A*, which obtain path length costs, our method aims

to maintain consistency with the trajectory planning method regarding flight time cost,
thereby establishing a more realistic cost matrix.

4.2. ACO for Sequence Determination

Ant colony optimization (ACO) [23] is a nature-inspired algorithm that is used to solve
combinatorial optimization problems. Due to the limited onboard energy of quadrotor
drones, trajectory planning for large-scale routes is generally not performed in a single
pass. ACO, known for its robustness and adaptability, is widely used in medium-scale TSP
problems. Nevertheless, ACO suffers from slow convergence and sensitivity to parameters.
To balance computational speed and solution quality, we opt for a variant of ACO known
as the ant colony system (ACS) [24] to address our variant TSP problem. ACS significantly
improves the convergence speed and solution quality compared to ACO, primarily through
three improvements: optimizing path selection rules, the global pheromone update strategy,
and the local pheromone update strategy.

(1) Path selection:

305

Drones 2024, 8, 414

ACS provides a more direct strategy for balancing exploration and exploitation:

j =

{
arg maxs∈Jk(i)

{
[τ(i, s)]α · [η(i, s)]β

}
, if q ≤ q0 (exploitation)

0, otherwise (biased exploration)
(27)

where τ(i, s) represents the pheromone concentration between waypoint i and waypoint s,
η(i, s) denotes the heuristic function, and Jk(i) is the set of remaining selectable waypoints.
α and β are the weighting coefficients for the pheromone concentration and heuristic
function, respectively. q is a uniformly distributed random number between 0 and 1, and
q0 is the corresponding threshold (0 ≤ q0 ≤ 1). If q ≤ q0, the best waypoint is selected
directly; otherwise, the next waypoint is chosen randomly according to the following:

pk(i, j) =

⎧⎪⎨⎪⎩
[τ(i,j)]α ·[η(i,j)]β

∑
s∈Jk (i)

[τ(i,s)]α ·[η(i,s)]β , if j ∈ Jk(i)

0, otherwise
(28)

where pk(i, j) represents the probability that the k-th ant selects waypoint j given that it is
at waypoint i.

For the classical TSP problem, η(i, j) is typically set as the reciprocal of the distance
between i and j. However, for our variant problem:

η(i, j) =
1

TD(i, j) + Tθ(r, i, j)
(29)

where TD(i, j) is the flight time cost from waypoint i to waypoint j, and Tθ(r, i, j) is the
turning time cost at waypoint i after selecting waypoint j, where r is the previous waypoint
of i.

(2) Global pheromone update strategy:

In ACS, only the ant with the best history can update the pheromone:⎧⎪⎪⎨⎪⎪⎩
τ(i, j) ← (1 − ε) · τ(i, j) + ε · Δτ(i, j)

Δτk(i, j) =

{
1

Tsum(best) , if (i, j) ∈ global best

0, otherwise

(30)

where ε is the global pheromone evaporation coefficient, Δτk(i, j) represents the amount of
pheromone left by the k-th ant on edge (i, j) in this iteration, and Tsum(best) represents the
flight time cost of the globally best waypoint sequence.

(3) Local pheromone update strategy:

To accelerate the convergence speed, ACS increases the rate of pheromone evaporation,
and the pheromone concentration corresponding to each ant’s path is updated after the ant
traverses a path. {

τ(i, j) ← (1 − ρ) · τ(i, j) + ρ · Δτ(i, j)
Δτ(i, j) = 1

m·Tgreedy

(31)

where ρ is the local pheromone evaporation coefficient, m is the number of waypoints, and
Tgreedy is the total time cost of the waypoint sequence obtained using the greedy algorithm.

5. Experiment and Results

5.1. Experiment Settings

We verify the effectiveness of the multi-waypoint trajectory planning method proposed
in Section 3 and the waypoint sequence determination method proposed in Section 4 through
simulation experiments. The simulation experiment scene size is 25 m × 25 m × 6 m, with
a map resolution of 0.2 m. We randomly generated 15 waypoints (including the specified
ending point) and 50 to 100 cylindrical obstacles in the scene. The quadrotor drone starts
from a specified starting point, traverses all waypoints, and flies to the specified ending

306

Drones 2024, 8, 414

point, with both the initial and final states being hover states. The maximum speed and
maximum acceleration of the trajectory are limited to 2 m/s and 2 m/s2, respectively. All
simulation experiments are conducted using a laptop computer equipped with Windows
11, an i7-12700H processor, and 16 GB of memory. For the trajectory planning part, we use
MATLAB R2019a for the simulation and the Mosek solver to solve the QCQP problem. For
the waypoint sequence determination part, we use PyCharm Community Edition 2021 for
the simulation and utilize the scikit-fmm package to establish the FM cost matrix.

5.2. Trajectory Planning

In this section, we validate the effectiveness of our proposed trajectory planning
algorithm using simulations. In the experiments, we predefine the sequence of waypoints.
We compare our algorithm with the method proposed by Richter et al. in [5]. We use
the A* algorithm to generate the initial path and conduct comparative experiments in
various environments.

Figure 7 shows the trajectories generated by three different trajectory planning meth-
ods on the same random map. Among them, polynomial refers to the method in [5], BA*-BS
refers to our proposed trajectory planning method, and A*-BS refers to the trajectory plan-
ning method without using a bidirectional search. Figure 8 illustrates the acceleration
curves of trajectories generated using three different methods, which are used to assess
trajectory smoothness. The figure shows that the acceleration peaks and the rate of change
in acceleration (jerk) for the A*-BS and BA*-BS methods are slightly higher compared to
the polynomial method, resulting in more aggressive trajectories.

(a) polynomial (b) A*-BS (c) BA*-BS

Figure 7. Comparison of different trajectory planning methods on the same random map (green
dots represent waypoints, the red dot represents the starting point and black regions indicate
cylindrical obstacles).

(a) polynomial (b) A*-BS (c) BA*-BS

Figure 8. Comparison of trajectory acceleration curves.

Table 1 presents the average data from 50 randomly generated maps, including tra-
jectory time, planning time, energy cost (

∫
jerk2 dt), and trajectory length. The simulation

results indicate that all three methods can generate smooth, safe, and dynamically feasible
trajectories. However, by comparing the data in Table 1, we found that both A*-BS and

307

Drones 2024, 8, 414

BA*-BS showed significant improvements across several key metrics of trajectory plan-
ning compared to the polynomial method. BA*-BS performed better than the polynomial
method in terms of the average trajectory time and planning time, significantly reducing the
time required for trajectory planning and generating faster trajectories, thereby enhancing
overall planning efficiency. Although BA*-BS has slightly higher energy consumption
due to its bidirectional search strategy, the significant improvements in planning speed
and trajectory optimization more than make up for this. Overall, BA*-BS demonstrates
superior performance relative to A*-BS and the polynomial method, particularly by en-
hancing planning speed and generating faster trajectories. We analyze the underlying
reasons below.

Table 1. Comparison of trajectory planning methods in 50 random environments.

Method Avg.Traj.Time (s) Avg.Planning Time (s) Avg.Energy (m2/s5) Avg.Length (m)

polynomial 75.521 25.820 20.284 91.927
A*-BS 66.960 7.298 20.672 90.068

1*BA*-BS 66.555 3.865 22.493 89.863

The polynomial method is essentially an extension of the method proposed in ref. [1].
It first generates an initial discrete path and extracts waypoints, then it uses the method
in ref. [1] to generate time–polynomial trajectories. It iteratively seeks the optimal time
allocation, scaling the maximum velocity or acceleration to the boundaries of the dynamic
constraints to minimize the trajectory time. However, if the trajectory collides with obstacles
during this process, additional waypoints must be added to avoid collisions, resulting in
significant time overhead. Moreover, its final result largely depends on the selection of
initial discrete paths and waypoints.

Unlike the classic A* method, which does not consider the quadrotor’s characteristics,
both the A*-BS and BA*-BS methods simultaneously consider dynamic constraints and
time optimality during the search process. They generate initial trajectories with dynamic
feasibility and solve the problem of time allocation with non-uniform expansion steps.
Comparing A*-BS and BA*-BS, their average trajectory times are very close. However,
since BA*-BS uses a bidirectional A* search, it can complete the search faster in complex
environments. The average planning time of BA*-BS is reduced by about 47% in different
environments. Although its energy is slightly higher than that of A*-BS, this is acceptable.

Furthermore, an analysis of the simulation results reveals that our proposed BA*-BS
method is more likely to identify superior feasible trajectories within narrow passages, as
illustrated in Figure 9. This is because traditional polynomial methods treat the turning
points of nodes identified by the A* search as mandatory waypoints, necessitating the prior
expansion of obstacles to prevent the generation of dynamically infeasible trajectories in
overly narrow corridors. As the expansion coefficient increases, the search process tends
to favor regions with sparse obstacles, which can result in trajectories that are unlikely
to belong to the same homotopy class as the optimal trajectory, thereby precluding the
possibility of deriving the optimal trajectory through time optimization. In contrast, our
proposed method considers the dynamic feasibility of the trajectory during the search
process, thoroughly evaluating whether the current narrow passage adheres to the drone’s
dynamic constraints. Additionally, our method accounts for the spatial relationships
between waypoints, aiming to generate trajectories within the same homotopy class as the
optimal trajectory, thereby reducing flight time and enhancing trajectory smoothness.

308

Drones 2024, 8, 414

(a) polynomial (b) BA*-BS

Figure 9. Comparison of trajectories when facing narrow passages using different methods.(green
dots represent waypoints, blue regions indicate obstacles).

5.3. Waypoint Sequencing

In this section, we validate the effectiveness of the proposed waypoint sequencing
method through simulation experiments. We compare our FM-ACO algorithm, which
combines FM and ACO, with the baseline method A*-ACO that we set. First, we separately
use FM and classical A* to build the time cost matrix and distance cost matrix. Then, we
apply the ACO algorithm to determine the waypoint sequence with the minimum cost,
using the same parameter settings recommended in [24]. Finally, we use the same BA*-BS
to generate complete multi-waypoint trajectories and compare them. The parameters for
the simulation experiments in this section are identical to those in Section 5.1. Similarly,
we create 50 random environments for comparative experiments. Figure 10 shows the
trajectories generated by the two algorithms for determining the waypoint sequences in one
of the random environments. Table 2 presents the average data for these 50 environments.
In addition to the trajectory planning data, we also recorded the cost matrix time and
ACO time, representing the time taken to build the cost matrix and the time used for ACO
iterations, respectively.

(a) A-ACO (b) FM-ACO

Figure 10. Comparison of final trajectories using different waypoint sequencing methods.

Based on the data in Table 2, FM-ACO demonstrates significant advantages over the
A*-ACO method. For the final trajectories generated by BA*-BS, the waypoint sequences
determined by FM-ACO outperform those from A*-ACO in terms of average trajectory time.
This indicates that the FM method provides a cost matrix that more accurately reflects actual
flight costs compared to the A* method. Additionally, FM-ACO shows improvements in
the planning time and energy consumption. This enhancement is due to FM’s method of
generating a velocity map that maintains constraint consistency with BA*-BS. By assigning
lower velocities to grid points closer to obstacles, FM-ACO ensures that larger free spaces

309

Drones 2024, 8, 414

have lower cost values, which enhances the smoothness of the final trajectory and reduces
planning time.

Table 2. Comparison of waypoint sequencing methods in 50 random environments.

Method
Avg.Traj.Time

(s)
Avg.Planning

Time (s)
Avg.Energy

(m2/s5)
Avg.Length

(m)
Avg.Cost

Matrix Time (s)
Avg.ACO Time

(s)

A*-ACO 69.003 8.174 29.758 90.135 9.190 0.520
FM-ACO 67.329 3.898 24.496 90.515 4.127 0.523

Furthermore, FM has a significant advantage in terms of the time it takes to build the
cost matrix compared to the A* algorithm. The A* algorithm needs to search for paths
between each pair of waypoints separately to obtain distance costs, leading to longer
computation times. In contrast, FM can expand the entire map at once using a waypoint
as the origin of wavefront expansion, computing the time cost for all other waypoints
relative to the origin in a single pass. This approach of expanding the map in a single
pass significantly improves the search efficiency. According to the experimental data, FM
reduces the time required to build the cost matrix by 55% compared to the A* algorithm.

5.4. Robustness Analysis

In this section, we further analyze the robustness of the proposed method by inves-
tigating the effects of varying waypoint numbers and obstacle densities on the proposed
method. Since the waypoint sequencing method uses the FM algorithm to expand nodes
across the entire map, it can always construct a flight cost matrix between waypoints and
solve it using the ACO method, provided that feasible paths exist between waypoints.
Therefore, this section will focus primarily on a detailed analysis of the final trajectories
generated using the trajectory planning method.

For each environmental configuration, we first generate the optimal waypoint sequence
using FM-ACO and then apply the proposed BA*-BS method to produce multi-waypoint
trajectories. It is important to note that for a given number of waypoints, the coordinates of
the waypoints remain consistent. In all tested scenarios, our method efficiently generates
dynamically feasible and safe trajectories within seconds, as demonstrated in Figure 11.

Table 3 presents the planning time (including only the BA*-BS planning time) and
trajectory time for trajectories generated using the BA*-BS method under varying num-
bers of waypoints and obstacle densities. The results indicate that, with the number of
waypoints and their coordinates held constant, an increase in obstacle density extends the
search time of the BA*-BS method, leading to a longer planning time. Additionally, as the
number of obstacles increases, the likelihood of the optimal path being obstructed also
increases, resulting in a longer trajectory time. It is important to note that these results are
influenced by the distribution of obstacles. For example, even if the number of obstacles
increases, they may be concentrated in areas unrelated to the trajectory, which can affect
the planning results.

Table 3. Comparison of trajectory times and planning times across different numbers of waypoints
(m) and cylindrical obstacle (N.CO) configurations.

m
N.CO = 50 N.CO = 100 N.CO = 150

Traj.T(s) Plan.T(s) Traj.T(s) Plan.T(s) Traj.T(s) Plan.T(s)

5 40.95 0.845 45 2.81 44.55 2.925
10 51.75 1.24 56.7 4.465 61.65 5.673
15 68.85 1.451 70.2 4.055 75.15 5.441

310

Drones 2024, 8, 414

(a) m = 5, N.CO = 50 (b) m = 5, N.CO = 100 (c) m = 5, N.CO = 150

(d) m = 10, N.CO = 50 (e) m = 10, N.CO = 100 (f) m = 10, N.CO = 150

(g) m = 15, N.CO = 50 (h) m = 15, N.CO = 100 (i) m = 15, N.CO = 150

Figure 11. Comparison of final trajectories across different numbers of waypoints (m) and cylindrical
obstacle (N.CO) configurations.

Furthermore, the number of waypoints also impacts the experimental results. For
a map of the same size, there is a positive correlation between the number of waypoints
and the trajectory time. Regarding planning time, although the BA*-BS method requires
more searches with an increasing number of waypoints, the distance between waypoints
decreases, which reduces the number of nodes expanded per search. As a result, the overall
planning time does not necessarily increase with the number of waypoints.

5.5. Complexity Analysis

The complexity of an algorithm significantly affects its scalability. In this section, we
analyze the time complexity of the algorithm.

According to our theoretical analysis, the primary time consumption of our proposed
trajectory planning method, BA*-BS, is attributed to the search process. The time complexity
of BA*-BS is O(m · n log n), where m is the number of waypoints and n is the number of
nodes expanded in a single BA*-BS search. Since the search method of BA*-BS is an
improvement upon A*, the value of n is influenced by factors such as the distance between
waypoints, obstacle density, obstacle distribution, map size, and resolution.

311

Drones 2024, 8, 414

For the waypoint sequencing method, the time complexity of computing the cost
matrix using FM is O(m · (n log n)), where m represents the number of waypoints and n is
the total number of cells in the three-dimensional grid map. The complexity is relatively
insensitive to the density and distribution of obstacles. The time complexity of the ACO
iterative solution is O(m2) (with a fixed number of ants and iterations). However, due to
constraints in onboard energy, the number of waypoints traversed in a single mission is
typically limited.

Figure 12 illustrates the variation in the FM-ACO computation time with the number
of waypoints for a 25 m × 25 m × 6 m map with a resolution of 0.2 m. Figure 12a shows that
the computation time for the cost matrix scales approximately linearly with the number of
waypoints. Figure 12b displays the curve for ACO iterations set to 100, which follows an
m2 growth trend.

(a) FM-based cost matrix computation (b) ACO-based TSP solving

Figure 12. Computation time of FM-ACO for varying numbers of waypoints.

Additionally, the time complexity of ACO is also influenced by its convergence speed.
Figure 13 shows the convergence curves of ACO for different waypoint numbers, indicating
that ACO converges within 100 iterations when the number of waypoints m < 20.

Figure 13. ACO convergence curves.

6. Discussion

This paper proposes a new multi-waypoint motion planning framework to determine
the waypoint sequence that minimizes flight time and generates safe, dynamically feasible
multi-waypoint trajectories in complex environments with multiple waypoints. However,

312

Drones 2024, 8, 414

our research primarily focuses on static environments and fixed waypoints, which may
have certain limitations in practical applications. To better meet real-world demands, future
work needs to deepen and expand in several directions.

1. Different shapes of obstacles may introduce varying computational complexities. In
our experiments, we only used cylindrical obstacles, which, to some extent, facilitate
the efficiency of the search process of A*. However, in the real world, obstacles come
in various forms, such as maze-like obstacles, which can significantly increase the
search time of A*.

2. In reality, waypoints and environments can be dynamic. In our experiments, we only
consider static environments and obstacles. In actual missions, dynamic environments
and waypoints may be encountered. Future work will focus on improving waypoint
sequencing and trajectory planning methods to address these aspects, further enhanc-
ing real-time performance and expanding the applicability of our framework.

3. The dynamic model of quadrotor drones can be made more realistic. Our current
dynamic model is relatively simple, considering only three-dimensional velocity and
acceleration limits. However, in reality, more practical factors need to be consid-
ered, including maximum motor speed and thrust, aerodynamic effects, and battery
power. These factors significantly impact the quadrotor drone’s motion state and
trajectory planning.

4. Multi-quadrotor coordination is also an important research direction. In practical
applications, multiple quadrotors often need to work together to complete complex
tasks. For example, in search and rescue missions, multiple quadrotors need to coor-
dinate searches and task allocation, posing higher demands on waypoint sequencing
and trajectory planning. Future work can explore multi-waypoint motion planning
problems considering multi-quadrotor coordination, studying efficient coordination
strategies and distributed planning algorithms.

Additionally, the performance of the BA*-BS method is influenced by parameters
including the time interval Δt of the uniform B-spline and the map resolution. If the
map resolution is low, or if the waypoints are too close to obstacles, the gridded control
point coordinates might fall within obstacle grids or result in all neighboring nodes being
infeasible during the initial node expansion, often leading to planning failure. Increasing the
map resolution is the simplest way to reduce such failures, although it comes with a higher
computational cost. Furthermore, if the distance between waypoints is too long, it extends
the search time and generates longer B-spline control point sequences, which can impact
the numerical stability of the QCQP-optimized trajectories. In such cases, increasing the
time interval Δt of the uniform B-spline curve can be a feasible solution to improve search
efficiency and numerical stability, even though it may slightly compromise optimality.

In conclusion, although the multi-waypoint motion planning framework proposed
in this paper addresses the problem of finding the waypoint sequence that minimizes
flight time and generates safe multi-waypoint trajectories to some extent, further research
and optimization are needed for practical applications. Future work will aim to solve the
mentioned challenges, apply the framework to actual quadrotor drone flight missions, and
develop a more efficient, practical, and intelligent multi-waypoint motion planning system.

7. Conclusions

This paper presents a novel framework for multi-waypoint motion planning for
quadrotor drones. Faced with cluttered environments containing multiple waypoints
that must be traversed, we decouple the problem into waypoint sequencing and multi-
waypoint trajectory planning. For multi-waypoint trajectory planning, considering the
spatial relationships between waypoints, we propose a bidirectional A* search method
based on B-splines (BA*-BS) to generate continuous initial trajectories that satisfy dynamic
feasibility. Subsequently, the trajectories are further optimized for smoothness using QCQP
to enhance the trackability of the trajectories and reduce energy consumption. Moreover, we
design a replanning strategy to improve the numerical stability of QCQP and the real-time

313

Drones 2024, 8, 414

performance of trajectory planning. For the waypoint sequencing problem, we introduce
an FM-ACO method. Initially, a velocity map consistent with the constraints of the backend
trajectory planning is established. Then, the fast marching method is employed to construct
a time cost matrix. Finally, ACO is used to find the waypoint sequence with the shortest
trajectory time. The proposed methods are compared with existing approaches through
extensive simulation experiments, demonstrating their effectiveness.

Author Contributions: Conceptualization, D.S., J.S. and M.G.; methodology, D.S., J.S. and M.G.; soft-
ware, D.S. and X.Y.; validation, D.S. and X.Y.; formal analysis, D.S., J.S. and M.G.; investigation, D.S.
and X.Y.; resources, J.S. and M.G.; data curation, D.S. and X.Y.; writing—original draft preparation,
D.S.; writing—review and editing, D.S., J.S. and M.G.; visualization, D.S. and X.Y.; supervision, J.S.
and M.G.; project administration, J.S. and M.G.; funding acquisition, J.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Jiangsu Provincial Key Research and Development
Program (NO.BE2022100).

Data Availability Statement: The original contributions presented in this study are included in the
article. Any further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the 2011 IEEE
International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525.

2. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.
Cybern. 1968, 4, 100–107. [CrossRef]

3. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
4. Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]
5. Richter, C.; Bry, A.; Roy, N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In

Robotics Research: The 16th International Symposium ISRR; Springer: Berlin/Heidelberg, Germany, 2016; pp. 649–666.
6. Gao, F.; Wu, W.; Lin, Y.; Shen, S. Online safe trajectory generation for quadrotors using fast marching method and bernstein basis

polynomial. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia,
21–25 May 2018; pp. 344–351.

7. Zhou, B.; Gao, F.; Wang, L.; Liu, C.; Shen, S. Robust and efficient quadrotor trajectory generation for fast autonomous flight. IEEE
Robot. Autom. Lett. 2019, 4, 3529–3536. [CrossRef]

8. Tang, L.; Wang, H.; Liu, Z.; Wang, Y. A real-time quadrotor trajectory planning framework based on B-spline and nonuniform
kinodynamic search. J. Field Robot. 2021, 38, 452–475. [CrossRef]

9. Liu, S.; Atanasov, N.; Mohta, K.; Kumar, V. Search-based motion planning for quadrotors using linear quadratic minimum time
control. In Proceedings of the 2017 IEEE/RSJ international Conference on Intelligent Robots and Systems (IROS), Vancouver, BC,
Canada, 24–28 September 2017; pp. 2872–2879.

10. Rousseau, G.; Maniu, C.S.; Tebbani, S.; Babel, M.; Martin, N. Minimum-time B-spline trajectories with corridor constraints.
Application to cinematographic quadrotor flight plans. Control Eng. Pract. 2019, 89, 190–203. [CrossRef]

11. Foehn, P.; Romero, A.; Scaramuzza, D. Time-optimal planning for quadrotor waypoint flight. Sci. Robot. 2021, 6, eabh1221.
[CrossRef] [PubMed]

12. Penicka, R.; Scaramuzza, D. Minimum-time quadrotor waypoint flight in cluttered environments. IEEE Robot. Autom. Lett. 2022,
7, 5719–5726. [CrossRef]

13. Yu, X.; Chen, W.N.; Gu, T.; Yuan, H.; Zhang, H.; Zhang, J. ACO-A*: Ant colony optimization plus A* for 3-D traveling in
environments with dense obstacles. IEEE Trans. Evol. Comput. 2018, 23, 617–631. [CrossRef]

14. Fu, J.; Sun, G.; Liu, J.; Yao, W.; Wu, L. On hierarchical multi-UAV dubins traveling salesman problem paths in a complex obstacle
environment. IEEE Trans. Cybern. 2023, 54, 123–135. [CrossRef] [PubMed]

15. Tsai, H.C.; Hong, Y.W.P.; Sheu, J.P. Completion time minimization for UAV-enabled surveillance over multiple restricted regions.
IEEE Trans. Mob. Comput. 2022, 22, 6907–6920. [CrossRef]

16. Kong, S.; Wu, Z.; Qiu, C.; Tian, M.; Yu, J. An FM*-Based Comprehensive Path Planning System for Robotic Floating Garbage
Cleaning. IEEE Trans. Intell. Transp. Syst. 2022, 23, 23821–23830. [CrossRef]

17. Tordesillas, J.; How, J.P. MINVO basis: Finding simplexes with minimum volume enclosing polynomial curves. Comput.-Aided
Des. 2022, 151, 103341. [CrossRef]

18. Qin, K. General matrix representations for B-splines. In Proceedings of the Pacific Graphics’ 98, Sixth Pacific Conference on
Computer Graphics and Applications (Cat. No. 98EX208), Singapore, 26–29 October 1998; pp. 37–43.

314

Drones 2024, 8, 414

19. Pohl, I. Bi-Directional Search; IBM TJ Watson Research Center: Yorktown Heights, NY, USA, 1970.
20. Bellingham, J.; Richards, A.; How, J.P. Receding horizon control of autonomous aerial vehicles. In Proceedings of the of the 2002

American control conference (IEEE Cat. No. CH37301), Anchorage, AK, USA, 8–10 May 2002; Volume 5, pp. 3741–3746.
21. Valero-Gomez, A.; Gomez, J.V.; Garrido, S.; Moreno, L. The path to efficiency: Fast marching method for safer, more efficient

mobile robot trajectories. IEEE Robot. Autom. Mag. 2013, 20, 111–120. [CrossRef]
22. LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006.
23. Dorigo, M.; Blum, C. Ant colony optimization theory: A survey. Theor. Comput. Sci. 2005, 344, 243–278. [CrossRef]
24. Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE

Trans. Evol. Comput. 1997, 1, 53–66. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

315

Citation: Guo, J.; Gan, M.; Hu, K.

Cooperative Path Planning for

Multi-UAVs with Time-Varying

Communication and Energy

Consumption Constraints. Drones

2024, 8, 654. https://doi.org/

10.3390/drones8110654

Academic Editors: Jihong Zhu, Heng

Shi, Zheng Chen and Minchi Kuang

Received: 30 September 2024

Revised: 2 November 2024

Accepted: 4 November 2024

Published: 7 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Cooperative Path Planning for Multi-UAVs with Time-Varying
Communication and Energy Consumption Constraints

Jia Guo *, Minggang Gan and Kang Hu

State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation,
Beijing Institute of Technology, Beijing 100081, China; aganbit@126.com (M.G.); 3120215456@bit.edu.cn (K.H.)
* Correspondence: 3220205114@bit.edu.cn

Abstract: In the field of Unmanned Aerial Vehicle (UAV) path planning, designing efficient, safe,
and feasible trajectories in complex, dynamic environments poses substantial challenges. Traditional
optimization methods often struggle to address the multidimensional nature of these problems,
particularly when considering constraints like obstacle avoidance, energy efficiency, and real-time
responsiveness. In this paper, we propose a novel algorithm, Dimensional Learning Strategy and
Spherical Motion-based Particle Swarm Optimization (DLS-SMPSO), specifically designed to handle
the unique constraints and requirements of cooperative path planning for Multiple UAVs (Multi-
UAVs). By encoding particle positions as motion paths in spherical coordinates, the algorithm offers a
natural and effective approach to navigating multidimensional search spaces. The incorporation of a
Dimensional Learning Strategy (DLS) enhances performance by minimizing particle oscillations and
allowing each particle to learn valuable information from the global best solution on a dimension-
by-dimension basis. Extensive simulations validate the effectiveness of the DLS-SMPSO algorithm,
demonstrating its capability to consistently generate optimal paths. The proposed algorithm outper-
forms other metaheuristic optimization algorithms, achieving a feasibility ratio as high as 97%. The
proposed solution is scalable, adaptable, and suitable for real-time implementation, making it an
excellent choice for a broad range of cooperative multi-UAV applications.

Keywords: multi-UAVs; cooperative path planning; time-varying communication constraint;
DLS-SMPSO; energy consumption constraint

1. Introduction

Unmanned Aerial Vehicles (UAVs) have become increasingly prevalent in a variety of
applications, ranging from environmental monitoring [1] and agricultural surveillance [2]
to search and rescue operations [3] and military missions [4]. The ability to deploy multi-
UAVs in a coordinated manner significantly enhances the efficiency and effectiveness of
these missions. However, the complexity of ensuring cooperation among multi-UAVs
introduces several challenges, particularly in terms of path planning [5–7] and maintaining
reliable communication [8].

In dynamic and unpredictable environments, the communication links between UAVs
can fluctuate significantly due to factors such as obstacles, interference, and the mobility of
the UAVs themselves. These time-varying communication [9] constraints present a major
challenge for effective path planning, as UAVs must continuously adapt their trajectories
to maintain connectivity while still accomplishing their mission objectives. Research on
communication constraints in multi-UAV systems has primarily focused on ensuring
reliable data exchange [10] and maintaining network connectivity [11]. Techniques such as
relay placement [12] and network topology optimization [13] have been explored to enhance
communication reliability. However, these methods often assume static or predictable
environments, which is not always the case in real-world applications. Several studies
have proposed integrating communication models with path planning algorithms [14–16]

Drones 2024, 8, 654. https://doi.org/10.3390/drones8110654 https://www.mdpi.com/journal/drones316

Drones 2024, 8, 654

to address time-varying communication constraints. These approaches generally involve
real-time evaluation of communication link quality and dynamic adjustments to UAV paths
to ensure continuous connectivity. However, despite these advancements, there is still
a need for more robust and adaptive methods capable of addressing the complexities of
real-time, dynamic environments.

The field of cooperative path planning for multi-UAV systems has been widely ex-
plored, with numerous approaches developed to tackle various facets of the problem.
Traditional methods like A* and Dijkstra’s algorithms have been commonly applied to path
planning in static environments [17], but they struggle to perform effectively in dynamic set-
tings where time-varying constraints play a significant role. More recent methods have em-
ployed heuristic and metaheuristic approaches, including Genetic Algorithms (GA) [18,19],
Ant Colony Optimization (ACO) [20–22], Grey Wolf Optimizer (GWO) [23–25], and Ar-
tificial Bee Colony (ABC) [26–28] to enhance path planning capabilities under dynamic
conditions. Particle Swarm Optimization (PSO) [29–32] has emerged as a powerful tool
for optimization problems, including path planning for UAVs. Its capability to discover
near-optimal solutions in complex search spaces makes it well-suited for multi-UAV path
planning [33]. However, the standard PSO algorithm lacks the intrinsic ability to manage
communication constraints, which are crucial for the coordination and effective operation
of UAVs in collaborative missions.

Traditional path-planning algorithms often struggle to address the complexities of
time-varying communication constraints, highlighting the need for advanced methods that
can handle dynamic network conditions [34] while ensuring robust communication among
UAVs. PSO [35], a nature-inspired optimization technique, has demonstrated considerable
potential in path planning applications due to its simplicity and effectiveness in navigat-
ing complex search spaces. However, standard PSO algorithms require modifications to
adequately handle the challenges posed by time-varying communication constraints in
multi-UAV systems, ensuring both connectivity and optimal path planning.

To tackle these challenges, various enhanced PSO variants have been developed.
These improvements generally fall into several key areas: adaptive parameter control,
hybridization with other optimization techniques, the introduction of multi-swarm or
cooperative strategies, and the incorporation of novel operators. Ref. [36] presents an
Adaptive Quantum-behaved PSO (AQPSO) algorithm, which is applied to UAV path plan-
ning tasks, demonstrating notable improvements in both convergence speed and solution
quality. Ref. [37] introduces a Cooperative Multiple Swarm PSO (CMSPSO) method, in-
tegrating traditional PSO with a cooperative strategy among multiple swarms, resulting
in enhanced convergence efficiency and superior solution quality for UAV path planning
applications. Ref. [38] proposes an Adaptive Mutation PSO (AMPSO) algorithm, which
integrates mutation operators to prevent premature convergence and improve solution
diversity, particularly in challenging UAV path planning scenarios. Ref. [39] introduces a
Chaotic PSO (CPSO), incorporating chaos theory into the standard PSO algorithm, thereby
enhancing global search capabilities and avoiding local minima in UAV path optimization.
Ref. [40] proposes a Multi-Objective PSO (MOPSO) approach specifically tailored for UAV
path planning, efficiently optimizing multiple conflicting objectives. Meanwhile, Ref. [41]
presents a Quantum-behaved PSO (QPSO) algorithm designed for dynamic environments.
By incorporating quantum mechanics principles, QPSO significantly enhances the swarm’s
exploration capabilities, leading to more robust and adaptive path planning under uncer-
tain and fluctuating conditions. Ref. [42] investigates the application of Angle-encoded
PSO (APSO) for optimizing UAV deployment in search and rescue missions. This approach
encodes the search area using angular parameters, allowing UAVs to swiftly adjust their
search patterns in response to changing environmental conditions, which enhances the
efficiency and speed of rescue operations. Additionally, Ref. [43] introduces a hybrid PSO-
GA method designed to optimize the coverage and connectivity of UAV ad hoc networks.
By combining the strengths of PSO and GA, this hybrid algorithm improves network
performance, specifically in terms of coverage and communication latency. Refs. [44–46]

317

Drones 2024, 8, 654

combine different metaheuristic algorithms to enhance performance in UAV path planning.
The above UAV path planning algorithm is summarized as shown in Table 1.

Table 1. The classification of UAV path planning algorithms.

Algorithms Example

Heuristic A∗, Dijkstra’s, and so on
Metaheuristic GA, ACO, PSO, ABC, GWO, and so on

Hybrid Metaheuristic PSO-GA, PSO-GWO, and so on
PSO variants AQPSO, CMSPSO, AMPSO, CPSO, MOPSO, and so on

To address the challenge of multi-UAV collaborative path planning under communi-
cation constraints, Ref. [47] proposed the Comprehensive Learning and Dynamic Multi-
swarm PSO (CL-DMSPSO) algorithm. This approach facilitates the effective planning of
high-quality paths for UAVs, ensuring optimized performance in constrained environments.
However, it primarily addresses communication constraints alone. In real-world UAV
missions, communication and energy consumption constraints are often interdependent.
For instance, maintaining stable communication may require the UAV to follow a path that
increases energy consumption, while conserving energy might force the UAV to operate in
areas with weaker communication links.

Thus, an effective path-planning algorithm must strike a balance between these con-
straints, optimizing both communication reliability and energy efficiency. Given the limi-
tations in communication and energy consumption, certain UAVs may be unable to inde-
pendently perform path planning. Consequently, effective coordination among all UAVs
becomes crucial in the path-planning process. In this paper, we introduce the DLS-SMPSO
algorithm, specifically designed for cooperative path planning in multi-UAV systems with
time-varying communication and energy consumption constraints. The DLS-SMPSO algo-
rithm tackles the complex challenges of UAV path planning by encoding each particle’s
position as a motion path in spherical coordinates, enabling efficient exploration of the
search space. By incorporating a DLS into velocity updates, the algorithm minimizes oscil-
lations, allowing particles to learn from the global best solution dimension by dimension.
Simulation results validate the algorithm’s feasibility and effectiveness, showcasing its
superior performance in handling these constraints.

The key contributions of our work are outlined as follows:
(1) A novel DLS-SMPSO algorithm is proposed to address the challenges of collabora-

tive path planning for multi-UAVs. By simply adjusting the angles in spherical coordinates,
the particle’s orientation can be modified directly without the need to decompose these
changes into cartesian components. As a result, the DLS-SMPSO algorithm can explore the
search space more naturally, facilitating smoother transitions and more precise adjustments
in particle positions.

(2) In the DLS-SMPSO algorithm, particle positions are encoded as motion paths using
spherical coordinates, rather than the conventional cartesian coordinates employed in
standard PSO. This spherical encoding is particularly advantageous for UAV path planning,
as it allows for more intuitive and direct manipulation of trajectories, resulting in more
efficient optimization and improved path generation.

(3) The integration of DLS minimizes particle oscillation during the evolutionary
process by enabling each particle to learn from the global best solution in a dimension-by-
dimension manner. This strategy helps prevent premature stagnation, leading to a more
stable and efficient optimization process. In addition, the algorithm seamlessly incorporates
constraint handling mechanisms, such as obstacle avoidance and boundary enforcement,
within the optimization process. This guarantees that the generated solutions are not only
optimal but also feasible and safe for practical real-world applications.

The rest of this paper is organized as follows: Section 2 offers a comprehensive
overview of the multi-UAV path planning problem formulation and reviews related work
on objective function design. Section 3 introduces the PSO variant algorithms and details

318

Drones 2024, 8, 654

the proposed DLS-SMPSO approach. Section 4 presents the simulation setup and results,
demonstrating the effectiveness of our approach. Finally, Section 5 concludes the paper
and outlines potential directions for future research.

2. Problem Formulation

In this section, we begin by outlining the cooperative path planning problem for
multi-UAVs, incorporating various essential constraints in Section 2.1. Following that, we
provide a detailed explanation of the path representation in Section 2.2. Building on this
foundation, we formulate the objective function for the specified path planning problem in
Section 2.3.

2.1. Problem Description

The UAV path planning problem involves determining optimal paths for n UAVs,
each starting from a specific location and aiming to reach Unmanned Ground Vehicle 0
(UGV0). The goal is to minimize various factors such as path length, energy consumption,
and collision risks while ensuring that the paths are feasible within the UAV’s kinematic
and dynamic constraints. Additionally, the paths must avoid both static and dynamic
obstacles in the environment. In more detail, the UAV path planning problem entails
finding the most efficient trajectories for five UAVs to travel from their respective starting
points to UGV0. The cost function to be minimized typically includes critical aspects such
as total distance traveled, energy consumption, and the risk of collisions with obstacles or
other UAVs. The planned paths must adhere to each UAV’s physical limitations, including
speed, acceleration, and turning radius, ensuring that the maneuvers are both possible
and safe. Obstacle avoidance plays a central role, requiring the UAVs to navigate around
static obstacles like buildings and trees, as well as dynamic obstacles such as other moving
UAVs or changing environmental factors. The problem also demands consideration of
communication constraints [9,48], especially in scenarios where UAVs must maintain
connectivity with ground stations or other UAVs. Ultimately, the challenge lies in balancing
these multiple objectives achieving paths that are not only optimal in terms of minimizing
costs but also robust, feasible, and safe for real-world operations.

The path planning problem for multi-UAV systems can be defined as determining the
optimal routes for a fleet of UAVs to travel from their respective starting points to UGV0.
These routes must minimize specific cost functions while satisfying constraints such as
obstacle avoidance, communication range, and the UAV’s dynamic capabilities.

(1) The UAV must avoid collision obstacles in the environment.
(2) The UAV’s path must adhere to its turning angle constraints to ensure feasible and

safe flight.
(3) The UAV must maintain communication with a UGV0 or other UAVs, which may

impose constraints on its path.
(4) The UAV’s path must minimize energy consumption to ensure that the mission

can be completed within the available battery capacity.

2.2. Path Representation

In the context of multi-UAV path planning, where there are n UAVs and m waypoints,
the path representation becomes a more complex but structured task. Each UAV’s trajectory
is defined by a series of waypoints, where each waypoint represents a specific coordinate
in 3D space.

For n UAVs, the paths can be represented as:

Pi = [(xi1, yi1, zi1), (xi2, yi2, zi2), . . . , (xim, yim, zim)] (1)

where i = 1, 2, . . . , n denotes the UAV index, and (xij, yij, zij) denotes the j-th waypoint
for the i-th UAV. Here, m represents the total number of waypoints that each UAV must
navigate through from its starting position to UGV0.

319

Drones 2024, 8, 654

The sequence of waypoints forms a trajectory that the UAV must follow from its
start position to UGV0. The challenge lies in ensuring that these waypoints are chosen to
minimize a predefined cost function in Equation (1) while satisfying the UAV’s operational
constraints, avoiding obstacles, and coordinating with other UAVs to prevent collisions.
For a UAV’s path to be considered feasible, it must meet several essential constraints.
These include complying with the UAV’s kinematic and dynamic limits, such as maximum
speed, acceleration, and turning radius. The path must also guarantee the safe avoidance
of obstacles in the environment. Additionally, UAVs must maintain adequate separation
to avoid mid-air collisions. The chosen waypoints should facilitate smooth transitions
between different path segments, avoiding sharp turns or abrupt maneuvers that could
compromise the UAV’s stability. Furthermore, the path must accommodate communication
requirements, ensuring the UAVs remain within the necessary communication range to
maintain control and receive mission updates. By satisfying these conditions, the planned
paths will ensure safe, efficient, and successful mission execution.

2.3. Objective Function

The objective function in UAV path planning is a key mathematical tool that defines
the mission’s goals, such as minimizing total path length, reducing energy consumption,
and avoiding collisions with obstacles. It incorporates various criteria affecting the UAV’s
performance, including kinematic and dynamic constraints, environmental terrain, and
static obstacle avoidance. By optimizing this function, the path planning process aims to
identify the most efficient and safe routes for all UAVs, ensuring they successfully reach
UGV0 while meeting all mission-specific requirements.

In the cooperative path planning problem for multi-UAV systems with time-varying
communication constraints, the objective function is crafted to optimize multiple criteria
simultaneously. The aim is to determine a set of paths that minimize the overall mission
cost while adhering to all constraints. Key factors include path length, safety, energy
consumption, communication connectivity, turning angle limitations, and obstacle collision
avoidance, ensuring that the mission is both efficient and feasible.

The objective function J can be formulated as a weighted sum of these criteria:

J = w1 Jlength + w2 Jsafety + w3 Jenergy + w4 Jcommunication + w5 Jturning + w6 Jobstacle (2)

where w1, w2, w3, w4, w5, and w6 are weighting factors that balance the relative importance
of each criterion. Each component of the objective function is detailed below:

(1) Path length
The path length component aims to minimize the total distance traveled by all UAVs.

It is defined as the sum of the lengths of the paths [31] of all UAVs:

Jlength =
n

∑
i=1

mi−1

∑
j=1

√(
xi(j+1) − xij

)2
+

(
yi(j+1) − yij

)2
+

(
zi(j+1) − zij

)2
(3)

where n is the number of UAVs, mi is the number of waypoints for UAV i, and (xij, yij, zij)
are the coordinates of the j-th waypoint for UAV i.

The cost of path length Equation (3) in UAV path planning is a critical element of the
overall Objective Function Value (OFV), which serves as a comprehensive measure for
evaluating the efficiency and feasibility of a given path. The path length cost reflects the
total distance a UAV must travel from its starting point to UGV0, passing through the nec-
essary waypoints. A shorter path length typically results in reduced energy consumption,
shorter travel times, and overall more efficient mission execution, which is especially im-
portant when UAVs have limited battery life or must operate within strict time constraints.
However, focusing solely on path length may not yield the best solution, as other critical
mission factors must also be considered. To account for this, the OFV often incorporates
a penalty function alongside the path length cost. This penalty function adds terms that
impose additional costs for violating specific constraints, such as proximity to obstacles,

320

Drones 2024, 8, 654

entering no-fly zones, or straying from predefined safe routes. For example, if a UAV’s
path passes too close to a hazardous area or another UAV, the penalty function increases
the OFV, discouraging such risky paths during the optimization process. By integrating the
path length cost in Equation (3) and penalty functions, the objective function becomes more
robust, guiding the path planning algorithm not only to minimize the distance traveled
but also to adhere to safety, regulatory, and operational constraints. This approach ensures
that the resulting paths are not only efficient but also safe and compliant with mission
requirements. By balancing various factors, the optimization process delivers paths that
are both effective and practical, enhancing the UAV’s overall performance in complex and
dynamic environments.

(2) Safety
In UAV path planning, safety and feasibility constraints such as Equation (4) are

paramount to ensuring secure and effective operations. Safety constraints include avoiding
collisions with both static obstacles (e.g., buildings, trees) and dynamic obstacles (e.g., other
UAVs and UGV0), adhering to no-fly zones, and maintaining altitude and speed within
operational limits. Additionally, UAVs must monitor battery life to ensure mission comple-
tion and a safe return while remaining within the communication range of control systems.
Feasibility constraints involve navigating diverse terrains, managing payload weight and
size, adhering to airspace regulations and local laws, and ensuring that the path planning
algorithm is computationally efficient and scalable. These constraints collectively guarantee
that UAVs operate safely, efficiently, and in compliance with relevant regulations. This can
be represented as [42]:

Jsafety =
n−1

∑
i=1

(I[v(mi, mi + 1) < vmin] + I[v(mi, mi + 1) > vmax]

+I[Wi > Wmax]) (4)

where v(mi, mi + 1) is the speed between waypoints mi and mi + 1. vmin and vmax are the
minimum and maximum allowable speeds, respectively. Wi is the weight of the UAV’s
payload. Wmax is the maximum allowable payload weight.

(3) Energy consumption
Energy consumption is a critical factor in UAV path planning, particularly for missions

requiring long endurance or operations in environments where recharging opportunities
are limited. Several factors influence a UAV’s energy consumption, including path length,
speed, altitude, and maneuvering requirements. Therefore, incorporating and minimizing
energy consumption is essential in the objective function, as seen in Equation (5) of the
UAV path planning problem. The energy consumption component aims to minimize the
energy used by UAVs and can be approximated by the total distance traveled, changes in
altitude, and the number of turns along the path. This ensures that the UAVs can complete
their missions efficiently while conserving energy. It is defined as:

Jenergy =
n

∑
i=1

(
mi−1

∑
j=1

√(
xi(j+1) − xij

)2
+

(
yi(j+1) − yij

)2
+

(
zi(j+1) − zij

)2

+α
mi−1

∑
j=1

∣∣∣zi(j+1) − zij

∣∣∣+ β
mi−2

∑
j=1

∣∣∣θi(j+2) − θi(j+1)

∣∣∣) (5)

where α and β are weighting factors for altitude changes and turns, respectively, and θij
represents the heading angle at waypoint j for UAV i.

(4) Time-varying communication
Time-varying communication constraints in UAV path planning refer to the dynamic

nature of communication between UAVs and between UAVs and UGV0. These constraints
can fluctuate due to several factors, including environmental changes (such as obstacles or
weather conditions), UAV positions, and varying network conditions. As UAVs navigate

321

Drones 2024, 8, 654

their paths, the quality of communication links may change [48], leading to periods of
reliable communication interspersed with periods of limited or no communication. To
ensure smooth operations, the path planning algorithm must account for these time-varying
constraints by optimizing routes to maximize communication reliability, ensuring critical
data are transmitted during periods of strong communication, as outlined in Equation (6).
This often involves adjusting the UAV’s positions and flight paths to maintain connectivity
while meeting the mission objectives and environmental challenges. The communication
component of the path planning model penalizes paths where communication constraints
are violated, ensuring that UAVs maintain stable links throughout their mission. It is
defined as [9,49]:

Jcommunication =
T

∑
k=1

n

∑
i=1

n

∑
k=1,j 	=i

(
1

dij(k)− dmax
· I(dij(k) > dmax

))
(6)

where T is the total number of time steps, dij(k) is the distance between UAV i and UAV
j at time k, dmax is the maximum allowable communication range, and I is the indicator
function that is 1 if the condition is true and 0 otherwise.

(5) Turning angle limitation
The turning angle limitation is a critical constraint in UAV path planning, restricting the

maximum angle at which a UAV can change its direction between consecutive waypoints, as
expressed in Equation (7). This constraint ensures that UAV trajectories remain smooth and
feasible, avoiding abrupt maneuvers that could compromise stability or lead to increased
energy consumption. By integrating this limitation into the path planning algorithm, the
resulting flight paths are more realistic and aligned with the UAV’s physical capabilities,
enhancing both safety and overall mission performance. The turning angle limitation
component penalizes large deviations in the heading angle between consecutive waypoints,
ensuring UAVs avoid sharp turns that could be challenging to execute and potentially
destabilizing. This can be represented as [33]:

Jturning =
n

∑
i=1

mi−2

∑
j=1

(
θi(j+1) − θij

)2
(7)

where θij is the heading angle at waypoint j for UAV i. The objective is to minimize the
sum of squared differences between consecutive heading angles.

(6) Obstacle collision avoidance
Each obstacle is represented as a predefined area or volume within the environment,

and the UAV’s path must be designed to avoid entering these restricted zones. This
constraint is typically enforced by calculating the minimum distance between the UAV
and each obstacle at every point along its path, ensuring that this distance stays above
a predetermined safety margin throughout the flight. This is achieved by defining each
obstacle as a fixed region and imposing the condition that the UAV’s coordinates never fall
within these regions, thereby maintaining a collision-free trajectory. Additionally, paths
that come too close to obstacles are penalized, as described in Equation (8), ensuring safe
navigation throughout the mission. This can be represented as [49]:

Jobstacle =
n

∑
i=1

mi

∑
j=1

(
n

∑
k=1,k 	=i

mk

∑
l=1

1∥∥(xij, yij, zij
)− (xkl , ykl , zkl)

∥∥2
+ ε

+
O

∑
o=1

1∥∥(xij, yij, zij
)− (xo, yo, zo)

∥∥2
+ ε

)
(8)

where O is the number of obstacles, (x0, y0, z0) are the coordinates of the obstacles, and ε is
a small positive constant to avoid division by zero.

Equation (2) highlights several important aspects of the UAV path planning problem.
It demonstrates that the problem is a multi-objective optimization task, where the overall

322

Drones 2024, 8, 654

objective function comprises multiple weighted cost terms, such as path length, energy
consumption, collision risk, and turning angle limitations. Furthermore, the inclusion of
penalty functions underscores that constraints like obstacle avoidance and UAV kinematic
limitations are integrated into the optimization process. These penalties ensure that the gen-
erated paths are not only optimal concerning the objective function but also feasible and safe
in real-world applications. Moreover, Equation (2) incorporates constraints such as obstacle
avoidance and turning angle limitations via penalty functions, ensuring that the planned
paths maintain both optimality and feasibility. The use of weighted sums enables flexibility
in prioritizing different mission objectives, making the approach adaptable to real-world
scenarios where multiple objectives and constraints must be addressed simultaneously.

3. UAV Path Planning Method

In this part, we first review the standard PSO and its variants, including ASPSO and
QPSO, in Sections 3.1–3.3. Then, we introduce a new DLS-SMPSO algorithm in Section 3.4.
Finally, the detailed implementation of the path planning method using DLS-SMPSO is
proposed in Section 3.5.

3.1. PSO Algorithm

The PSO Algorithm [50,51] is an optimization technique inspired by the social behavior
of animals like birds flocking or fish schooling. In this algorithm, a swarm of particles, each
representing a potential solution to an optimization problem, moves through the search
space to find the best solution. Each particle through Equations (9) and (10) has a position
vector xi(k) and a velocity vector vi(k), where i is the particle index and k is the iteration
number. The movement of each particle is influenced by its own experience (personal best
position pi(k)) and the experience of the entire swarm (global best position g(k)).

The velocity of each particle is updated using the formula:

vi(k + 1) = ωvi(k) + c1r1 · (pi(k)− xi(k)) + c2r2 · (g(k)− xi(k)) (9)

where ω is the inertia weight that controls the influence of the previous velocity, balancing
exploration and exploitation. c1 and c2 are cognitive and social coefficients that weigh the
particle’s personal best position and the global best position, respectively. r1 and r2 are
random numbers between 0 and 1, introducing stochastic variability.

The new position of each particle is then calculated by updating its current position
with the new velocity:

xi(k + 1) = xi(k) + vi(k + 1). (10)

At each iteration, the fitness of the new position is evaluated. The personal best position
pi(k + 1) is updated if the current position xi(k + 1) offers a better fitness value. Similarly,
the global best position g(k + 1) is updated if any particle achieves a better fitness than the
current global best.

3.2. APSO Algorithm

In APSO [42], each particle’s position and velocity are represented by an angle or
a set of angles in Equations (11) and (12), rather than by cartesian coordinates or other
conventional representations. The position of a particle is encoded as an angle θi within
a certain range, typically between 0 and 2π. This angle can represent directions, phases,
or any other cyclic variables. The velocity and position updates are conducted in angular
space, which requires modifications to the standard PSO in Equations (9) and (10).

The velocity vi(k) in APSO is an angular velocity that determines how quickly and in
which direction the particle’s angle θi(k) will change:

vi(k + 1) = ωvi(k) + c1r1 ·
(

θpbest,i − θi(k)
)
+ c2r2 ·

(
θgbest − θi(k)

)
(11)

323

Drones 2024, 8, 654

θi(k + 1) = θi(k) + vi(k + 1) (12)

where θpbest,i is the angle corresponding to the personal best position, θgbest is the angle
of the global best position, and ω, c1, c2 are the inertia and acceleration coefficients as in
standard PSO.

3.3. QPSO Algorithm

In QPSO [41], particles do not have fixed trajectories determined by velocity. Instead
of being directly influenced by velocity and position updates, as in traditional PSO, each
particle’s position in QPSO is governed by a probability distribution derived from quantum
mechanics. This allows particles to have a probabilistic range of positions, enabling a
broader and more diverse exploration of the search space. In QPSO, each particle is
attracted to an “attractor” point, which is a combination of its personal best position and
the global best position. This attractor guides the particle’s probabilistic position updates,
allowing for more flexible and efficient searching within the solution space.

The attractor Pi(k) for a particle i is typically defined as:

Pi(k) = [pi(k) + gi(k)]/2 (13)

where pi(k) is the personal best position of particle i at time k. gi(k) is the global best
position at time k.

Instead of updating the velocity and position directly, QPSO updates the position
using a random number generated from the particle’s probability distribution. The position
of a particle xi(k + 1) is updated according to:

xi(k + 1) = Pi(k)± β · |m(k)− xi(k)| · ln
(

1
u

)
(14)

where m(k) is the mean best position of all particles at time k. β is a parameter controlling
the convergence speed. u is a uniformly distributed random number in the interval (0, 1).
The ± sign indicates that the particle can move towards or away from the attractor, intro-
ducing exploration.

The mean best position m(k) is calculated as:

m(k) =
1
N

N

∑
i=1

pi(k) (15)

where N is the number of particles in the swarm. This position helps determine the overall
direction of the swarm’s movement. The particles evolve according to Equations (13)–(15)
to converge to the optimal path.

3.4. The Proposed DLS-SMPSO Algorithm

The DLS-SMPSO algorithm extends the traditional PSO by encoding the position of
each particle as a series of motion paths, with each path represented by a set of directional
vectors. Specifically, if a path consists of waypoints w1, w2, . . . , wn, then the motion vector
Vk for the k-th segment of the path is defined as:

Vk = wk+1 − wk (16)

where k = 1, 2, . . . , n − 1. Each waypoint in the path is defined by spherical coordinates:
wk = (rk, θk, φk). Radial distance from the origin rk ∈ (0, pathlength), azimuthal angle
θk ∈ (−π, π) in the xy-plane from the x-axis and polar angle φk ∈ (−π/2, π) from
the z-axis.

From Equation (16), one gets that

Vk = (Δrk, Δθk, Δφk). (17)

324

Drones 2024, 8, 654

According to Equation (17), we can deduce velocity update Equations (18)–(20):

vi
rk
(k + 1) = w · vi

rk
(k) + c1 · r1 · (pi

rk
− wi

rk
(k)) + c2 · r2 · (grk − wi

rk
(k)) + di

rk
(k) (18)

vi
θk
(k + 1) = w · vi

θk
(k) + c1 · r1 · (pi

θk
− wi

θk
(k)) + c2 · r2 · (gθk − wi

θk
(k)) + di

θk
(k) (19)

vi
φk
(k + 1) = w · vi

φk
(k) + c1 · r1 · (pi

φk
− wi

φk
(k)) + c2 · r2 · (gφk − wi

φk
(k)) + di

φk
(k). (20)

The DLS adjustment is:

di
dk
(k) = λ · (gdk

− wi
dk
(k)) (21)

where dk represents each spherical component (rk, θk, φk). w is the inertia weight, control-
ling exploration and exploitation. c1 and c2 are cognitive and social coefficients. r1 and r2
are random values between 0 and 1. pi is the personal best position of particle i. g is the
global best position among all particles. λ is the DLS learning rate influencing the degree
of adjustment.

Updated velocities are used to compute new positions:

wi
rk
(k + 1) = wi

rk
(k) + vi

rk
(k + 1) (22)

wi
θk
(k + 1) = wi

θk
(k) + vi

θk
(k + 1) (23)

wi
φk
(k + 1) = wi

φk
(k) + vi

φk
(k + 1). (24)

To evaluate the associated costs, we will convert Equations (22)–(24) to cartesian coordinates:

xk = wi
rk
· sin(wi

φk
) · cos(wi

θk
) (25)

yk = wi
rk
· sin(wi

φk
) · sin(wi

θk
) (26)

zk = wi
rk
· cos(wi

φk
). (27)

The DLS-SMPSO algorithm is an advanced optimization technique that enhances
traditional PSO by encoding particle positions as motion paths, making it particularly
effective for trajectory optimization problems like UAV path planning. By incorporating
spherical vector-based representation and the DLS, the algorithm significantly improves
exploration capabilities, convergence speed, and overall solution quality. Algorithm 1
provides a summary of the implementation details for the DLS-SMPSO algorithm.

3.5. Implementation of the UAV Path Planning Method Using DLS-SMPSO

The encoding process in the DLS-SMPSO algorithm is crucial for representing and
manipulating the paths or trajectories in the solution space. Here, we present a detailed
description of how the search trajectory is encoded as a series of motion paths and how each
path is further encoded as a set of vectors. In DLS-SMPSO, each solution is interpreted as a
path or trajectory that, like a UAV, follows through the environment. This path is encoded
as a series of motion vectors, each of which represents a movement from one waypoint to
another. Additionally, the DLS is incorporated to address the oscillation of particles during
the evolution process. By using DLS, each particle assimilates advantageous information
from the global optimal solution on a dimension-by-dimension basis. This approach helps

325

Drones 2024, 8, 654

to minimize the degradation of particles throughout the evolution and ensures a more
robust optimization process.

Algorithm 1 Pseudo code of DLS-SMPSO for UAV path planning.
Initialize: Dimension (f); inertia weight (w); acceleration coefficients (c1, c2); max iterations
(itermax); swarm size (nPop); nonupdating number (ci); position (xi); velocity (vi);
Iterate:

1: for each particle in swarm do
2: Create random motion-encoded paths wk;
3: Get a set of directional vectors Vk;
4: The fitness value of xi is calculated by Equation (2);
5: Calculate pi based on current fitness values;
6: end for
7: Set g to the best fit particle;
8: for i = 1 : itermax do
9: for each particle in swarm do

10: Compute velocity vi using Equations (18)–(20);
11: Compute new position xi using Equations (25)–(27);
12: Calculate the fitness value J by Equation (2);
13: Update personal best position pi;
14: end for
15: if J(xi) > pi then
16: ci = ci + 1;
17: if ci > d then
18: ci = 0;
19: else
20: for j = 1 : f do
21: Substitute the the j-th dimension of xi with the corresponding j-th
22: dimension of g, referred to as S;
23: if J(S) < J(xi) then
24: S = xi;
25: end if
26: end for
27: end if
28: end if
29: Update global best position g;
30: end for

The encoding process in the DLS-SMPSO algorithm plays a critical role in representing
and optimizing paths or trajectories in the solution space. Specifically, the algorithm
encodes each search trajectory as a series of motion paths, where each path is represented
by a set of vectors. These vectors correspond to movements from one waypoint to another.
To further enhance the optimization process, the DLS is incorporated, addressing the
common issue of particle oscillation during evolution. DLS allows each particle to assimilate
beneficial information from the global best solution on a dimension-by-dimension basis.
This method reduces the risk of particle degradation during evolution and ensures a more
robust and effective optimization process.

Step 1: Randomly generate initial positions and velocities for all particles in spherical
coordinates. Evaluate initial fitness and set personal and global bests.

Step 2: Compute new velocities using the above Equations (18)–(20), integrating DLS
adjustments (Equation (21)). Update particle positions based on new velocities. Adjust
positions and velocities to satisfy all constraints in Equation (2), compute fitness for up-
dated positions in Equations (25)–(27). Update personal and global bests based on new
fitness evaluations.

Step 3: Repeat iteration until convergence criteria are met (e.g., maximum iterations,
acceptable fitness level).

326

Drones 2024, 8, 654

Step 4: The global best position represents the optimal or near-optimal solution to the
optimization problem.

4. Experiments and Analysis

In this section, we begin by introducing the experimental setups for UAV path planning
in Section 4.1. Following this, Section 4.2 presents the performance evaluation criteria.
Finally, Section 4.3 provides a comparative analysis based on the planned paths within the
experimental setups. This is followed by further discussion in Section 4.4.

4.1. Experimental Setups

In the designed scenario for UAV path planning, several key parameters are established
to ensure the simulation closely mirrors real-world conditions. Each UAV is set to operate
within a speed range of 5 m/s to 25 m/s, balancing agility with stability. The UAVs are
constrained by a minimal turning radius of 50 m, which corresponds to a maximal turning
angle θ of 45 degrees, ensuring that maneuvers are smooth and within safe limits. The
environment is modeled using a Digital Elevation Model (DEM), accurately representing
terrain features. All five UAVs depart simultaneously from point (200, 100, 150) and proceed
toward the UGV0 at point (800, 800).

Additionally, communication limitations are considered, as noted in Ref. [9]. The
path planning algorithm is configured with specific values for the DLS-SMPSO method,
including a population size of 50 particles, a maximum of 200 iterations, and parameter
settings such as an inertia weight w of 1 and both cognitive c1 and social c2 coefficients set
to 1.5. For consistency in comparison, all algorithms are implemented using the same set of
parameters. The simulation environment is divided into two parts, Case 1 and Case 2, and
the parameters are shown in Table 2 and Table 3, respectively.

Table 2. Environment parameter setting: simple environment.

NO. x/m y/m z/m r/m

1 400 500 100 80
2 600 200 150 70
3 500 350 150 80
4 350 200 150 70
5 700 550 150 70
6 650 750 150 80

Table 3. Environment parameter setting: complex environment.

NO. x/m y/m z/m r/m

1 450 550 100 80
2 500 350 150 80
3 300 200 150 50
4 650 650 150 70
5 200 300 150 70
6 300 450 150 70
7 450 150 150 70
8 650 250 150 55
9 750 400 150 75
10 850 650 150 70

4.2. Performance Evaluation Criteria

When assessing the performance of UAV path planning algorithms, several essential
criteria are typically taken into account to evaluate the effectiveness and efficiency of the
proposed solutions. These criteria include the following:

Feasibility Ratio (FR): FR measures the proportion of solutions produced by a UAV
path planning algorithm that satisfies all specified constraints, such as obstacle avoidance,

327

Drones 2024, 8, 654

compliance with turning angle restrictions, and adherence to energy consumption limits. A
higher FR indicates that the algorithm is more effective in generating feasible paths that
meet mission-critical requirements.

Best Cost: The best cost metric is a critical evaluation criterion in optimization al-
gorithms, especially for UAV path planning. It reflects the most optimal solution found
during the search process, representing the path with the lowest possible cost. This metric
is often presented alongside the “Optimal”, “Worst”, and “Mean” values for a more holistic
assessment of the algorithm’s performance. The “Worst” cost highlights the least favorable
solution encountered, offering valuable insights into the algorithm’s robustness and its
ability to consistently generate high-quality solutions.

4.3. Comparison Analysis

(1) Case 1: In this section, we present the experimental results obtained from testing
the proposed UAV path planning algorithm in a simple and complex flight environment.
The aim is to validate the feasibility and effectiveness of the path planning method under
controlled conditions with limited obstacles and forward terrain.

Figures 1 and 2 present the top and three-dimensional views, respectively, of the flight
path for Case 1. From these images, it is evident that the DLS-SMPSO algorithm effectively
designed a path that minimizes the risk of collision and ensures the safety of each UAV
by avoiding potential threats. In contrast, the paths generated by the PSO, APSO, QPSO,
GWO, and ABC algorithms exhibit shortcomings in terms of safety and communication
interference, highlighting the superior performance of DLS-SMPSO in these aspects.

In addition, Figure 3 illustrates the convergence curves of the six algorithms in Case 1.
The convergence curve reveals that the DLS-SMPSO algorithm quickly identifies an optimal
solution in the early stages. As the search progresses, the DLS-SMPSO algorithm adapts
to stricter constraints and gradually converges toward the feasible region, demonstrating
excellent convergence performance and the ability to find superior paths. Although it may
not appear advantageous compared to the PSO, APSO, QPSO, GWO, and ABC algorithms
at first glance, a closer examination of Figure 1a–f in Figure 3 reveals a key distinction:
most of the optimizations in Figure 1a–e involve the continuous refinement of a single
UAV’s path. In contrast, the DLS-SMPSO algorithm, depicted in Figure 1f, excels in
collaborative path planning. Notably, in Figure 1f, it can be observed that UAV2 is able to
maintain a stable flight path with the assistance of other UAVs, even when communication
is interrupted. This underscores the significant advantages of the DLS-SMPSO algorithm
in fostering cooperation among UAVs.

Table 4 presents the statistical results of all algorithms under Case 1, with boldface
indicating the results of our algorithm. As observed in Table 4, the DLS-SMPSO algorithm
outperformed other algorithms in terms of average, worst, and best values; it achieved
the highest FR. This suggests that the DLS-SMPSO algorithm is more effective in finding
feasible solutions. However, it is important to note that the path selected by UAVs using
the DLS-SMPSO algorithm may not always be optimal regarding cooperative cost. This
observation leads us to infer that cooperative path planning for multi-UAVs prioritizes
relatively optimal flight decisions that align with coordination constraints rather than
focusing on achieving an individually optimal path for each UAV.

The experimental results show that the proposed path-planning algorithm successfully
guided all UAVs to their targets in a simple environment. The total path length was
optimized for each UAV, with the algorithm achieving a high FR across all test cases. The
execution time remained within acceptable limits, even as the number of UAVs increased,
demonstrating the scalability of the method.

(2) Case 2: In this section, we present the experimental results obtained from testing
the proposed UAV path planning algorithm in a complex flight environment. The objective
is to evaluate the algorithm’s performance under more challenging conditions, which
include a higher density of obstacles and elements that simulate real-world scenarios.

328

Drones 2024, 8, 654

Figure 4 provides a detailed 3D view of the best flight paths achieved by the various
algorithms in operation, while Figure 5 offers a top view of these corresponding paths.
As observed in Figures 4 and 5, when the flight environment becomes more complex, the
DLS-SMPSO algorithm enables the UAV to successfully avoid obstacles and complete the
path planning task. The convergence curve depicted in Figure 6 indicates that, although the
convergence speed of the DLS-SMPSO algorithm may be slower at times, its performance
remains consistent with the results obtained in simpler environments. Notably, our algo-
rithm demonstrates a significant advantage in collaborative path planning. Furthermore,
the DLS-SMPSO algorithm leverages DLS to learn beneficial information dimension by
dimension from the global optimal solution, thereby improving the feasible ratio of the
paths. As shown in Table 5, the FR of the DLS-SMPSO algorithm is the best, which verifies
the feasibility and superiority of the algorithm.

The experimental results revealed that the proposed path planning algorithm was able
to effectively navigate the UAVs through challenging scenarios. The algorithm maintained
a high FR, with most UAVs successfully reaching their targets while avoiding obstacles.
The results suggest that the proposed UAV path planning algorithm is robust and adaptable
to real-world scenarios.

329

Drones 2024, 8, 654

(a) (b)

(c) (d)

(e) (f)

Figure 1. Top view of flight paths for five UAVs in Case 1: (a) QPSO; (b) GWO; (c) ABC; (d) PSO;
(e) APSO; (f) DLS-SMPSO.

330

Drones 2024, 8, 654

(a) (b)

(c) (d)

(e) (f)

Figure 2. A 3D view of flight paths for five UAVs in Case 1: (a) QPSO; (b) GWO; (c) ABC; (d) PSO;
(e) APSO; (f) DLS-SMPSO.

331

Drones 2024, 8, 654

0 20 40 60 80 100 120 140 160 180 200

Iteration

5000

6000

7000

8000

9000

10000

11000

12000

B
es

t C
os

t

UAV1
UAV2
UAV3
UAV4
UAV5

0 20 40 60 80 100 120 140 160 180 200

Iteration

4000

5000

6000

7000

8000

9000

10000

11000

B
es

t C
os

t

UAV1
UAV2
UAV3
UAV4
UAV5

(a) (b)

0 20 40 60 80 100 120 140 160 180 200

Iteration

5000

6000

7000

8000

9000

10000

11000

12000

13000

B
es

t C
os

t

UAV1
UAV2
UAV3
UAV4
UAV5

0 20 40 60 80 100 120 140 160 180 200

Iteration

4000

5000

6000

7000

8000

9000

10000

11000

B
es

t C
os

t

UAV1
UAV2
UAV3
UAV4
UAV5

(c) (d)

0 20 40 60 80 100 120 140 160 180 200

Iteration

5000

6000

7000

8000

9000

10000

11000

12000

B
es

t C
os

t

UAV1
UAV2
UAV3
UAV4
UAV5

0 20 40 60 80 100 120 140 160 180 200

Iteration

5000

6000

7000

8000

9000

10000

11000

B
es

t C
os

t

UAV1
UAV2
UAV3
UAV4
UAV5

(e) (f)

Figure 3. Convergence curves of five UAVs in Case 1: (a) QPSO; (b) GWO; (c) ABC; (d) PSO; (e) APSO;
(f) DLS-SMPSO.

Table 4. Result comparison after 200 repetitions in a simple environment.

NO. 1 2 3 4

Indicators Worst Optimal Mean FR(%)
QPSO 5.4316 × 103 5.2311 × 103 5.3968 × 103 93
GWO 6.1404 × 103 5.3821 × 103 5.8103 × 103 88
ABC 6.0464 × 103 5.4693 × 103 5.7223 × 103 89
PSO 5.8903 × 103 5.1473 × 103 5.8103 × 103 90

APSO 5.8136 × 103 5.2198 × 103 5.8103 × 103 92
DLS-SMPSO 5.3804 × 103 5.1142 × 103 5.2286 × 103 97

332

Drones 2024, 8, 654

(a) (b)

(c) (d)

(e) (f)

Figure 4. Top view of flight paths for five UAVs in Case 2: (a) GWO; (b) QPSO; (c) APSO; (d) PSO;
(e) ABC; (f) DLS-SMPSO.

Table 5. Result comparison after 200 repetitions in a simple environment.

NO. 1 2 3 4

Indicators Worst Optimal Mean FR(%)
PSO 5.9557 × 103 5.4611 × 103 5.7140 × 103 88

QPSO 5.5405 × 103 5.3727 × 103 5.4199 × 103 91
APSO 5.8203 × 103 5.6814 × 103 5.7140 × 103 90
GWO 7.4486 × 103 6.0255 × 103 6.8329 × 103 85
ABC 6.1732 × 103 5.5040 × 103 5.8287 × 103 87

DLS-SMPSO 5.3878 × 103 5.1790 × 103 5.2391 × 103 96

333

Drones 2024, 8, 654

(a) (b)

(c) (d)

(e) (f)

Figure 5. A 3D view of flight paths for five UAVs in Case 2: (a) GWO; (b) QPSO; (c) APSO; (d) PSO;
(e) ABC; (f) DLS-SMPSO.

334

Drones 2024, 8, 654

0 20 40 60 80 100 120 140 160 180 200

Iteration

5000

6000

7000

8000

9000

10000

11000

B
es

t C
os

t

UAV1
UAV2
UAV3
UAV4
UAV5

0 20 40 60 80 100 120 140 160 180 200

Iteration

5000

6000

7000

8000

9000

10000

11000

B
es

t C
os

t

UAV1
UAV2
UAV3
UAV4
UAV5

(a) (b)

0 20 40 60 80 100 120 140 160 180 200

Iteration

5000

6000

7000

8000

9000

10000

11000

12000

B
es

t C
os

t

UAV1
UAV2
UAV3
UAV4
UAV5

0 20 40 60 80 100 120 140 160 180 200

Iteration

5000

6000

7000

8000

9000

10000

11000

B
es

t C
os

t

UAV1
UAV2
UAV3
UAV4
UAV5

(c) (d)

0 20 40 60 80 100 120 140 160 180 200

Iteration

5000

6000

7000

8000

9000

10000

11000

12000

13000

B
es

t C
os

t

UAV1
UAV2
UAV3
UAV4
UAV5

0 20 40 60 80 100 120 140 160 180 200

Iteration

5000

6000

7000

8000

9000

10000

11000

B
es

t C
os

t

UAV1
UAV2
UAV3
UAV4
UAV5

(e) (f)

Figure 6. Convergence curves of five UAVs in Case 2: (a) GWO; (b) QPSO; (c) APSO; (d) PSO;
(e) ABC; (f) DLS-SMPSO.

4.4. Discussion

Extensive simulations and comparative analyses demonstrate that DLS-SMPSO excels
in generating safe, feasible, and optimal paths for multi-UAV operations. The proposed
algorithm performs exceptionally well in complex environments with numerous obstacles,
as evidenced by its consistently low fitness values. This effectiveness is driven by the
transformation of the search space from cartesian to spherical coordinates, enabling more
intuitive and flexible exploration. Furthermore, constraints on UAV dynamics, such as
turning and climbing angles, are seamlessly integrated into the DLS-SMPSO variables,
refining the search space and yielding high-quality solutions.

However, this paper encounters challenges with complex wind patterns and intricate
obstacle geometries, which may delay UAV progress or cause them to miss waypoints.
Refs. [52,53] explore the modeling of wind and obstacle disturbances to assess UAV swarm

335

Drones 2024, 8, 654

resilience, emphasizing performance and adaptability under challenging environmental
conditions. These studies offer valuable insights into how dynamic environmental factors
impact UAV swarm behavior, which may aid in addressing the issues posed by complex
wind patterns and obstacle geometries.

5. Conclusions

In this paper, we tackled the complex issue of cooperative path planning for multi-UAV
systems under time-varying communication constraints using the DLS-SMPSO algorithm.
The DLS-SMPSO method provides a robust solution by introducing an innovative approach
that encodes particle positions as motion paths in spherical coordinates. This, coupled with
the DLS, significantly enhances the algorithm’s ability to plan cooperative paths, minimizes
oscillations during the optimization process, and improves overall stability. The simulation
results confirm the feasibility and effectiveness of the proposed approach, demonstrating
its potential for real-world applications.

While the proposed approach demonstrates effective path planning capabilities, sev-
eral limitations highlight opportunities for future enhancement. First, this study evaluates
the algorithm with a limited number of agents (five UAVs), constraining the assessment
of scalability and collaborative effectiveness in larger, multi-agent scenarios. Future work
will focus on extending the algorithm to accommodate a greater number of UAVs, en-
abling a comprehensive evaluation of its robustness and scalability in more complex
swarm configurations.

Furthermore, this study does not account for environmental factors such as complex
wind patterns and diverse obstacle geometries, both of which could significantly impact
path feasibility and necessitate adaptive re-planning to maintain safe and efficient trajecto-
ries. For instance, intricate wind dynamics may alter UAV paths and demand continuous
adjustments, while complex obstacle geometries could trap UAVs in confined spaces, test-
ing the limits of the pathfinding strategy. Future research will incorporate these dynamic
environmental variables to enhance the algorithm’s resilience. Additionally, embedding
comprehensive UAV dynamics and considering aspects like inertia and aerodynamics
directly into the optimization framework will allow for a more realistic representation of
physical constraints, enabling adaptable and accurate path planning. Addressing these
factors will help validate and refine the algorithm for a wider range of applications, thereby
improving its efficacy in dynamic and unpredictable environments.

Author Contributions: J.G. was responsible for conceptualization, methodology, writing the original
draft, and supervising the research. M.G. provided valuable guidance and assisted in refining the
methodology. K.H. contributed to editing the manuscript and made critical revisions. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program of
China under Grant 2020YFB1708500.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank the editor and the anonymous reviewers for
their careful reading and valuable suggestions that helped to improve the quality of this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Asadzadeh, S.; de Oliveira, W.J.; de Souza Filho, C.R. UAV-based remote sensing for the petroleum industry and environmental
monitoring: State-of-the-art and perspectives. J. Pet. Sci. Eng. 2022, 208, 109633. [CrossRef]

2. Fu, R.; Ren, X.; Li, Y.; Wu, Y.; Sun, H.; Al-Absi, M.A. Machine-learning-based uav-assisted agricultural information security
architecture and intrusion detection. IEEE Internet Things J. 2023, 10, 18589–18598. [CrossRef]

336

Drones 2024, 8, 654

3. Martinez-Alpiste, I.; Golcarenarenji, G.; Wang, Q.; Alcaraz-Calero, J.M. Search and rescue operation using UAVs: A case study.
Expert Syst. Appl. 2021, 178, 114937. [CrossRef]

4. Di Giovanni, D.; Fumian, F.; Chierici, A.; Bianchelli, M.; Martellucci, L.; Carminati, G.; Malizia, A.; D’Errico, F.; Gaudio, P. Design
of miniaturized sensors for a mission-oriented UAV application: A new pathway for early warning. Int. J. Saf. Secur. Eng. 2021,
11, 435–444. [CrossRef]

5. Maboudi, M.; Homaei, M.; Song, S.; Malihi, S.; Saadatseresht, M.; Gerke, M. A Review on Viewpoints and Path Planning for
UAV-Based 3-D Reconstruction. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2023, 16, 5026–5048. [CrossRef]

6. Bassolillo, S.R.; Raspaolo, G.; Blasi, L.; D’Amato, E.; Notaro, I. Path Planning for Fixed-Wing Unmanned Aerial Vehicles: An
Integrated Approach with Theta* and Clothoids. Drones 2024, 8, 62. [CrossRef]

7. Adam, M.S.; Nordin, R.; Abdullah, N.F.; Abu-Samah, A.; Amodu, O.A.; Alsharif, M.H. Optimizing Disaster Response through
Efficient Path Planning of Mobile Aerial Base Station with Genetic Algorithm. Drones 2024, 8, 272. [CrossRef]

8. Gu, S.; Wang, Y.; Wang, N.; Wu, W. Intelligent optimization of availability and communication cost in satellite-UAV mobile edge
caching system with fault-tolerant codes. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 1230–1241. [CrossRef]

9. Guo, J.; Gan, M.; Hu, K. Relative Localization and Circumnavigation of a UGV0 Based on Mixed Measurements of Multi-UAVs
by Employing Intelligent Sensors. Sensors 2024, 24, 2347. [CrossRef]

10. Gai, K.; Wu, Y.; Zhu, L.; Choo, K.K.R.; Xiao, B. Blockchain-enabled trustworthy group communications in UAV networks. IEEE
Trans. Intell. Transp. Syst. 2020, 22, 4118–4130. [CrossRef]

11. Yanmaz, E. Positioning aerial relays to maintain connectivity during drone team missions. Ad Hoc Netw. 2022, 128, 102800.
[CrossRef]

12. Jiao, L.; Zhang, R.; Liu, M.; Hua, Q.; Zhao, N.; Nallanathan, A.; Wang, X. Placement optimization of UAV relaying for covert
communication. IEEE Trans. Veh. Technol. 2022, 71, 12327–12332. [CrossRef]

13. Zhao, T.; Cao, D.; Yao, J.; Zhang, S. Topology optimization algorithm for UAV formation based on wireless ultraviolet
communication. Photonic Netw. Commun. 2023, 45, 25–36. [CrossRef]

14. Padilla, G.E.G.; Kim, K.J.; Park, S.H.; Yu, K.H. Flight path planning of solar-powered UAV for sustainable communication relay.
IEEE Robot. Autom. Lett. 2020, 5, 6772–6779. [CrossRef]

15. Woosley, B.; Dasgupta, P.; Rogers III, J.G.; Twigg, J. Multi-robot information driven path planning under communication
constraints. Auton. Robot. 2020, 44, 721–737. [CrossRef]

16. Ramaswamy, V.; Moon, S.; Frew, E.W.; Ahmed, N. Mutual information based communication aware path planning: A game
theoretic perspective. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Daejeon, Republic of Korea, 9–14 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1823–1828.

17. Marashian, A.; Razminia, A. Mobile robot’s path-planning and path-tracking in static and dynamic environments: Dynamic
programming approach. Robot. Auton. Syst. 2024, 172, 104592. [CrossRef]

18. Pehlivanoglu, Y.V.; Pehlivanoglu, P. An enhanced genetic algorithm for path planning of autonomous UAV in target coverage
problems. Appl. Soft Comput. 2021, 112, 107796. [CrossRef]

19. Ab Wahab, M.N.; Nazir, A.; Khalil, A.; Ho, W.J.; Akbar, M.F.; Noor, M.H.M.; Mohamed, A.S.A. Improved genetic algorithm for
mobile robot path planning in static environments. Expert Syst. Appl. 2024, 249, 123762. [CrossRef]

20. Miao, C.; Chen, G.; Yan, C.; Wu, Y. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm.
Comput. Ind. Eng. 2021, 156, 107230. [CrossRef]

21. Liu, C.; Wu, L.; Xiao, W.; Li, G.; Xu, D.; Guo, J.; Li, W. An improved heuristic mechanism ant colony optimization algorithm for
solving path planning. Knowl. Based Syst. 2023, 271, 110540. [CrossRef]

22. Ma, Y.N.; Gong, Y.J.; Xiao, C.F.; Gao, Y.; Zhang, J. Path planning for autonomous underwater vehicles: An ant colony algorithm
incorporating alarm pheromone. IEEE Trans. Veh. Technol. 2018, 68, 141–154. [CrossRef]

23. Dewangan, R.K.; Shukla, A.; Godfrey, W.W. Three dimensional path planning using Grey wolf optimizer for UAVs. Appl. Intell.
2019, 49, 2201–2217. [CrossRef]

24. Yu, X.; Jiang, N.; Wang, X.; Li, M. A hybrid algorithm based on grey wolf optimizer and differential evolution for UAV path
planning. Expert Syst. Appl. 2023, 215, 119327. [CrossRef]

25. Liu, X.; Li, G.; Yang, H.; Zhang, N.; Wang, L.; Shao, P. Agricultural UAV trajectory planning by incorporating multi-mechanism
improved grey wolf optimization algorithm. Expert Syst. Appl. 2023, 233, 120946. [CrossRef]

26. Vijitha Ananthi, J.; Subha Hency Jose, P. Optimal design of artificial bee colony based UAV routing (ABCUR) algorithm for
healthcare applications. Int. J. Intell. Unmanned Syst. 2023, 11, 285–295. [CrossRef]

27. Lv, M.; Liu, H.; Li, Y.; Li, L.; Gao, Y. The improved artificial bee colony method and its application on UAV disaster rescue. In
Man-Machine-Environment System Engineering: Proceedings of the 21st International Conference on MMESE: Commemorative Conference
for the 110th Anniversary of Xuesen Qian’s Birth and the 40th Anniversary of Founding of Man-Machine-Environment System Engineering,
Beijing, China, 23–25 October 2021; Springer: Singapore, 2022; pp. 375–381.

28. Han, Z.; Chen, M.; Zhu, H.; Wu, Q. Ground threat prediction-based path planning of unmanned autonomous helicopter using
hybrid enhanced artificial bee colony algorithm. Def. Technol. 2024, 32, 1–22. [CrossRef]

29. Song, B.; Wang, Z.; Zou, L. An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree
Bezier curve. Appl. Soft Comput. 2021, 100, 106960. [CrossRef]

337

Drones 2024, 8, 654

30. Abhishek, B.; Ranjit, S.; Shankar, T.; Eappen, G.; Sivasankar, P.; Rajesh, A. Hybrid PSO-HSA and PSO-GA algorithm for 3D path
planning in autonomous UAVs. SN Appl. Sci. 2020, 2, 1–16. [CrossRef]

31. Yu, Z.; Si, Z.; Li, X.; Wang, D.; Song, H. A novel hybrid particle swarm optimization algorithm for path planning of UAVs. IEEE
Internet Things J. 2022, 9, 22547–22558. [CrossRef]

32. Lin, S.; Liu, A.; Wang, J.; Kong, X. An improved fault-tolerant cultural-PSO with probability for multi-AGV path planning. Expert
Syst. Appl. 2024, 237, 121510. [CrossRef]

33. Li, K.; Yan, X.; Han, Y.; Ge, F.; Jiang, Y. Many-objective optimization based path planning of multiple UAVs in oilfield inspection.
Appl. Intell. 2022, 52, 12668–12683. [CrossRef]

34. Li, Z.; Chen, G. Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans. Circuits Syst. II
Express Briefs 2006, 53, 28–33.

35. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, USA, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 4, pp. 1942–1948.

36. Xu, B.; Li, S.; Razzaqi, A.A.; Wang, L.; Jiao, M. A novel ANFIS-AQPSO-GA-Based online correction measurement method for
cooperative localization. IEEE Trans. Instrum. Meas. 2022, 71, 1–17. [CrossRef]

37. Shichao, M.; Xianglun, Z.; Qiang, T.; Zhiyu, L.; Yukun, Y. Research on Cooperative Path Planning and Formation Control for
Multiple UAVs. In Proceedings of the Chinese Conference on Swarm Intelligence and Cooperative Control, Nanjing, China,
17–19 November 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 52–60.

38. Zhang, J.; Ning, X.; Ma, S. An improved particle swarm optimization based on age factor for multi-AUV cooperative planning.
Ocean Eng. 2023, 287, 115753. [CrossRef]

39. Zhang, X.; Xia, S.; Zhang, T.; Li, X. Hybrid FWPS cooperation algorithm based unmanned aerial vehicle constrained path
planning. Aerosp. Sci. Technol. 2021, 118, 107004. [CrossRef]

40. Chen, Z.; Wu, H.; Chen, Y.; Cheng, L.; Zhang, B. Patrol robot path planning in nuclear power plant using an interval multi-objective
particle swarm optimization algorithm. Appl. Soft Comput. 2022, 116, 108192. [CrossRef]

41. Qian, Q.; Wu, J.; Wang, Z. Optimal path planning for two-wheeled self-balancing vehicle pendulum robot based on quantum-
behaved particle swarm optimization algorithm. Pers. Ubiquitous Comput. 2019, 23, 393–403. [CrossRef]

42. Zhao, R.; Wang, Y.; Xiao, G.; Liu, C.; Hu, P.; Li, H. A method of path planning for unmanned aerial vehicle based on the hybrid of
selfish herd optimizer and particle swarm optimizer. Appl. Intell. 2022, 52, 16775–16798. [CrossRef]

43. Lin, C.; Zhang, X. Application of UAV path planning based on parameter optimization GA-PSO fusion algorithm. J. Physics Conf.
Ser. 2022, 2258, 012018. [CrossRef]

44. Gul, F.; Rahiman, W.; Alhady, S.; Ali, A.; Mir, I.; Jalil, A. Meta-heuristic approach for solving multi-objective path planning for
autonomous guided robot using PSO–GWO optimization algorithm with evolutionary programming. J. Ambient. Intell. Humaniz.
Comput. 2021, 12, 7873–7890. [CrossRef]

45. Zhang, H.; Gan, X.; Li, S.; Chen, Z. UAV safe route planning based on PSO-BAS algorithm. J. Syst. Eng. Electron. 2022,
33, 1151–1160. [CrossRef]

46. Chen, J.; Ye, F.; Li, Y. Travelling salesman problem for UAV path planning with two parallel optimization algorithms. In
Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, 19–22 November 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 832–837.

47. Xu, L.; Cao, X.; Du, W.; Li, Y. Cooperative path planning optimization for multiple UAVs with communication constraints.
Knowl.-Based Syst. 2023, 260, 110164. [CrossRef]

48. Zhang, C.; Zhang, L.; Zhu, L.; Zhang, T.; Xiao, Z.; Xia, X.G. 3D deployment of multiple UAV-mounted base stations for UAV
communications. IEEE Trans. Commun. 2021, 69, 2473–2488. [CrossRef]

49. Thuy, N.D.T.; Bui, D.N.; Phung, M.D.; Duy, H.P. Deployment of UAVs for optimal multihop ad-hoc networks using particle swarm
optimization and behavior-based control. In Proceedings of the 2022 11th International Conference on Control, Automation and
Information Sciences (ICCAIS), Hanoi, Vietnam, 21–24 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 304–309.

50. Pervaiz, S.; Bangyal, W.H.; Ashraf, A.; Nisar, K.; Haque, M.R.; Ibrahim, A.; Ag, A.; Chowdhry, B.; Rasheed, W.; Rodrigues, J.; et al.
Comparative research directions of population initialization techniques using PSO algorithm. Intell. Autom. Soft Comput. 2022,
32, 1427–1444. [CrossRef]

51. Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [CrossRef]
52. Chodnicki, M.; Siemiatkowska, B.; Stecz, W.; Stępień, S. Energy efficient UAV flight control method in an environment with

obstacles and gusts of wind. Energies 2022, 15, 3730. [CrossRef]
53. Phadke, A.; Medrano, F.A.; Chu, T.; Sekharan, C.N.; Starek, M.J. Modeling Wind and Obstacle Disturbances for Effective

Performance Observations and Analysis of Resilience in UAV Swarms. Aerospace 2024, 11, 237. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

338

MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Drones Editorial Office
E-mail: drones@mdpi.com

www.mdpi.com/journal/drones

Disclaimer/Publisher’s Note: The title and front matter of this reprint are at the discretion of the

Guest Editors. The publisher is not responsible for their content or any associated concerns. The

statements, opinions and data contained in all individual articles are solely those of the individual

Editors and contributors and not of MDPI. MDPI disclaims responsibility for any injury to people or

property resulting from any ideas, methods, instructions or products referred to in the content.

Academic Open

Access Publishing

mdpi.com ISBN 978-3-7258-2948-4

